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ii. Short abstract 

The aim of this thesis is to model the intensified esterification in order to improve the pretreatment 

stage of biodiesel production, where the free fatty acids found in vegetable oils are converted to fatty 

acid methyl esters. The intensified esterification considers the use of a microbubble reactive distillation 

as an alternative to the acid pretreatment. The proposed set of reactions based on a free-radical 

mechanism would favour the process towards completion achieving a yield higher than 90%. This is 

achieved due to the respective water stripping and removal, leading to a higher efficiency of the 

process and avoiding inhibition caused by products. Both the 0-D irreversible and reversible model are 

built in order to portray the relevance of the reverse reaction, since it is known that esterification is a 

reversible reaction of second order. The rate constants obtained in these models are fed into the 2-D 

model, where the reaction kinetics, mass and heat transfer and surface reactions in the gas-liquid 

interface are studied.  

Some of the results obtained in the 2-D model for the reversible esterification are described below.  

A higher FAME concentration is obtained due to the free-radical direct injection into microbubbles 

with plasma and the water removal (Le Chatelier’s push and pull). An enhanced reaction kinetics is 

found with shorter residence times. An increase in temperature would mean an increase in both 

forward and reverse rate constants, favouring the forward rate constant (Esterification is 

endothermic). Decreasing the bubble size results in an increase of the FAME production due to the 

enhanced gas-liquid ratio at the interface and the increased vaporisation and stripping of water. 

Increasing the concentration of the O· radical results in an increase in the FAME concentration in the 

liquid domain. A higher bubble temperature results in a higher water concentration inside the bubble, 

leading to a higher reaction rate and water stripping. These findings are used in order to propose an 

esterification reversible model using J. platyphylla, which accounts shorter residence times lower than 

1x10-4 s, in other words (τres<1x10-4 s), when the maximum water concentration in the bubble is 

reached before it reaches the chemical equilibrium.  

Keywords: esterification, microbubbles, free radical, biodiesel, ozone, modelling 
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iii. Abstract 

In this thesis a computational model was built to analyse the reaction kinetics of the esterification 

of vegetable oils via ozone-rich microbubbles. The model considers a single fluidic oscillator 

microbubble comprised of dry-to-bone air and ozone, with a diameter of 200 m. The spherical bubble 

shape is maintained due to surface tension and the bubble is rising in an infinite reservoir due to 

buoyancy at a terminal velocity to simplify calculations. The proposed reaction mechanism takes place 

on the skin of the bubble and the concentration profile in the liquid phase is not constant.  

The proposed computational model is comprised of a single microbubble (gas phase) in a liquid of 

Free Fatty Acid (FFA) and methanol (bulk liquid). This model is developed and solved numerically using 

a set of equations for mass and energy transfer and different reaction kinetic parameters. It 

complements earlier esterification experiments in which (1) ozone-rich bubbles were used to convert 

91.16% of the oleic acid to oleic acid methyl ester after 32 h at 60 °C, achieving a final 1.33% of FFA 

content in used cooking oil and therefore making it feasible for biodiesel production via 

transesterification; and (2) binary distillation experiments in which an ethanol-water mixture was 

stripped by hot air microbubbles achieving a volume ethanol from the azeotropic mixture of around 

98%. 

 The ozone present in the microbubble decomposes into O· (atomic oxygen), which then reacts in 

the proposed three-step reaction mechanism for the intensified esterification of vegetable oils 

following the Bodenstein steady state approximation. The water formed a by-product of this reaction 

is stripped by the microbubbles rising in the reservoir and kept in the upper gas phase. This model 

presents a novel three-step reaction mechanism which takes place on the skin of the bubble and 

involves free radical (MeO· and HO·) as intermediates for the production of Fatty Acid Methyl Ester 

(FAME), the reaction described previously evolves on a time scale related to the internal mixing of 

microbubbles of 10-3s. The predictions obtained with this model for a single microbubble are in good 

agreement with the experimental data previously mentioned, demonstrating that esterification of 

vegetable oils is relative to the specific interfacial area and favoured at a higher liquid temperature.  

The aim of this study is to propose a computational model robust enough to describe the reaction 

kinetics of the esterification of vegetable oils. Converting the FFAs to FAMEs is an important pre-

treatment stage when producing biodiesel, which is here studied using a microbubble mediated 

reactive distillation shifting the conventional esterification towards completion from 80% to nearly 

95% since the by-product (water) in this case is stripped by the microbubbles and is recovered in the 

off-gases which are comprised of unreacted ozone and humid air that can be vented. The model fits 

the rate constants of the third and slowest reaction in the proposed mechanism, by fitting kf3 and kr3 
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to the data solving for a determined figure of merit and comparing both results following the inverse 

method using the least squares fitting.  

Some relevant features for the 2-D model can be concluded after the respective analysis. The 

temperature profile is nearly isothermal at 333 K and the water concentration is constant across the 

bubble at around 5.26x10-4 mol/m3. This pattern is mainly due to the intensive internal mixing found 

in the inside of the microbubble which favours the homogenisation of both the thermal and chemical 

fields at short residence times when the bubble rises through the liquid. A rapid increase in 

temperature is noticed with an turning point around T=330 K. Secondly, a slow increase can be 

depicted which reaches the liquid temperature 𝑇∞. This would suggest that vaporisation and sensible 

heat transfer are dominating the first and second regime respectively.  

A smaller bubble reaches the thermal equilibrium faster compared to a bubble with a larger radius. 

In the case of R=1x10-4 m, this thermal equilibrium is reached around 9x10-3 s compared to 4x10-2 s for 

a bubble five times its size. A higher FAME concentration is found in the liquid mixture at a smaller 

bubble size. An increase of the FAME concentration from the kinetic side of the process. In terms of 

the vaporisation of water, this process is thermodynamically favoured with an increase in temperature 

and therefore would cause an increase in the FAME production. Having said this, the increase of the 

FAME concentration in the liquid mixture could be attributed to the sum of these two factors which 

address both the reaction kinetics in the proposed mechanism and the physical advantage posed by 

the stripping of the produced water. An initial bubble temperature above the initial liquid mixture 

temperature (T0 bubble > T0 liquid), a maximum in the water concentration is found at the turning 

point previously mentioned. The higher the difference in temperature between these two 

temperatures, the more rapidly the turning point is reached.  

These findings would suggest that the residence time of the microbubble (τres) rising though the 

liquid would necessarily be lower than 1x10-4 s, in other words (τres<1x10-4 s), when the maximum water 

concentration in the bubble is reached before it reaches the chemical equilibrium.  Increasing the 

concentration of the O· radical results in an increase in the FAME concentration in the liquid domain. 

For the initial molar ratio O·:FFA of 2:1 and 3:1, the FAME concentration reaches a maximum value at 

0.1 s of 1.156 and 1.775x10-4 mol/m3. For the esterification reaction here proposed, the forward 

reaction (esterification) is endothermic and the reverse reaction (hydrolysis) is exothermic. The 

endothermic direction is known to have a larger activation energy, in other words Eaf > Ear. The forward 

reaction for the third step has an activation energy of Ea = 4.263 kJ/mol and a pre-exponential factor 

of A = 3.114x10-5 M-1s-1. The reverse reaction for the third step has an activation energy of Ea = 1.974 

kJ/mol and a pre-exponential factor of A = 1.048x10-6 M-1s-1. 
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The intensified esterification mechanism here proposed for the use of Jatropha platyphylla as 

feedstock for the biodiesel production has several relevant features. Firstly, evaporative cooling 

happens at least three orders of magnitude faster than sensible heat transfer for this process. Water 

concentration rapidly increases reaching a maximum water concentration at 2x10-4 s of 1.14x10-3 

mol/m3. This value corresponds to the maximum in the absolute humidity which would mean the 

maximum efficiency in terms of heat transfer from the bubble to the liquid mixture to vaporise the 

water without falling into the sensible heat transfer regime. The concentration of FAME is relatively 

higher compared to the hydroxyl radical. There are nearly two orders of magnitude between the 

concentrations of these two species. This suggests the radical species is being produced by the forward 

reaction in the first and third step of the mechanism and then consumed by forward reaction in the 

second step, so it reaches an equilibrium.  

At a bubble temperature of 343.15-393.15 K with intervals of 10 K, the maximum water 

concentration in the bubble is 6.16x10-4, 6.38x10-4, 7.68x10-4, 8.76x10-4, 9.97x10-4 and 11.14x10-4 

mol/m3 respectively. At long residence times, all these curves would tend to reach the thermal 

equilibrium in the microbubble when the water concentration is 5.38x10-4 mol/m3. A larger 

temperature difference between the initial bubble temperature and the liquid mixture temperature 

results in a longer period required to reach this equilibrium. Increasing the concentration of the O· 

radical results in an increase in the FAME concentration in the liquid domain. For the initial molar ratio 

O·:FFA of 2:1 and 3:1, the FAME concentration reaches a maximum value at 0.1 s of 1.662 and 2.427 

mol/m3. The forward reaction for the third step has an activation energy of Ea = 4.7817 kJ/mol and a 

pre-exponential factor of A = 7.744x10-4 M-1s-1. The reverse reaction for the third step has an activation 

energy of Ea = 2.8117 kJ/mol and a pre-exponential factor of A = 1.282x10-4 M-1s-1. All these results are 

in agreement with the hypothesis that reducing the liquid layer thickness and therefore the residence 

time of the microbubble rising through the liquid would result in maximising the vaporisation of the 

produced water. This would then result in an enhanced FAME production, which is an appealing 

feature when designing an esterification unit.  

Keywords: esterification, microbubbles, free radical, biodiesel, ozone, modelling 
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vi. List of symbols 

Symbol Designation  Symbol Designation 

AN Acid number  Q Internally generated heat 

 ki Rate constant  Qp Work due to pressure changes  

htc Heat Transfer Coefficient   Qvd Work due to viscous dissipation 

KL Mass Transfer Coefficient  Hvi Latent heat of vaporisation 

H Henry Coefficient  Qb Boundary heat source 

A Surface Area  𝑇∞ Liquid temperature far from bubble 

pA Total pressure  𝑚̇ Evaporation rate at interface 

R Universal Gas Constant  Cl Concentration in liquid domain 

g Gravity  Cg Concentration in gas domain 

r Radius   Hi Enthalpy of reaction 

ur Radial velocity vector  Rads  Reaction rate at interface 

uz Axial velocity vector  Si Entropy of reaction 

Ut Terminal velocity  𝜎i Site occupancy number 

T Temperature  Pe Peclet number 

∝ Thermal diffusivity  Re Reynolds number 

D Molecular diffusivity  τ Residence time 

ρ Density  Nu Nusselt number 

ci Molar concentration  Eo Eotvos number 

k Thermal conductivity  Nbub Bubble flux 

Pi Partial pressure  ε Lennard-Jones energy 

xi Mole fraction  kB Boltzmann’s constant 

𝛾i Activity coefficient  VA Molar volume 

µ Viscosity  ṅ𝑖  Evaporation constant at interface 

Pi
* Saturation vapour pressure    vij Stoichiometric coefficients 

si Molar entropy  hi Molar enthalpy 

Qj Heat source of reaction  ΩD Diffusion collision integral 
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1. Introduction 

In this chapter, a brief general background concerning the fundamental concepts explored in this 

thesis is introduced. Section 1.1 describes the thesis background which contains the key features for 

the intensified esterification using ozone-rich microbubbles. The aims and scope of this thesis as well 

as the scope of this project are presented in Section 1.2 and Section 1.3 respectively. Lastly, the thesis 

outline is introduced in Section 1.4. 

1.1. Thesis background  

Currently the predicted shortages of fossil fuels and growing environmental concern are the main 

drivers for the research and development of alternative fuels. One of the most promising substitutes 

for fossil fuels is biodiesel because its commercial production around the world could significantly 

decrease the greenhouse gas emissions and therefore reduce air pollution (Srivastava & Prasad, 2000). 

Over the last decades, a diverse range of methods have been studied for biodiesel production such 

as heterogenous, homogeneous, non-catalytic and enzyme catalysed transesterification. Non-catalytic 

transesterification requires high temperature and pressure operating conditions as well as a high 

alcohol:oil molar ratio. On the other hand, the enzymatic catalysed reaction is found to be expensive. 

The best method to produce biodiesel to date is the transesterification using an alkali catalyst. This 

method has the flexibility of using renewable feedstock such as animal fat, vegetable oil and waste 

cooking oil (WCO).  (Lim & Teong, 2013; Talebian, et al., 2013; Kokoo & Zimmerman , 2018).  

Regarding the feedstock, researchers around the world have focused their attention on non-edible 

oils to overcome environmental problems as well as food competition. Non-edible oils are usually 

grown in waste lands that are not suitable for agriculture reducing the costs of cultivation and 

enhancing a high yield without in-depth care. Compared to the average cost of vegetable oil, waste 

cooking oil (WCO) is three times cheaper which means a significant reduction in terms of the 

production cost. Having said this, there is a particular interest in developing technologies which 

consider these types of alternative feedstock in order to make the bioprocess economically feasible 

(Gui, et al., 2008; Tiwari, et al., 2007; de Araujo, et al., 2013). 

Nevertheless, when non-edible oils or waste cooking oil are considered as the feedstock for 

biodiesel production, the significant Free Fatty Acid (FFA) and water content are seen as a disadvantage 

due to soap formation caused by the reaction with the catalyst. The soap formation limits the reaction 

and add more downstream steps. Esterification is used as a pre-treatment stage to avoid this and 

reduce the FFA content (below 3%) in order to make the feedstock suitable for biodiesel production 

(Aransiola , et al., 2014).   
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Considering esterification as a pre-treatment stage has the potential to improve the downstream 

processing of biodiesel since water removal would take place prior to transesterification. Zimmerman 

et at proposed a model for the evaporation dynamics of microbubbles where both heat transfer and 

evaporation on the microbubble are explored. It is believed that at short residence times, vaporisation 

is favoured, while at long residence times sensible heat transfer governs favouring re-condensation of 

the vaporised water. In order to achieve a maximum removal of vapour with minimum heat transfer, 

both the vaporisation layer thickness (few hundred microns) and the contact time need to be 

accurately estimated. This study proposes a rapid evaporation using hot and dry microbubbles to 

vaporise and strip the water produced from the reacting mixture. Following Le Chatelier’s principle for 

equilibrium reactions, the proposed reactive distillation is forced to achieve completion (Zimmerman, 

et al., 2013).  

 𝑂 ·  + 𝑀𝑒𝑂𝐻 → 𝑀𝑒𝑂 ·  +𝐻𝑂 · 

 𝐻𝑂 ·  +𝐻𝑂 · →  𝐻2𝑂 +  
1

2
𝑂2 

 𝐹𝐹𝐴 + 𝑀𝑒𝑂 · → 𝐹𝐴𝑀𝐸 + 𝐻𝑂 · 

Figure 1 Three-step mechanism proposed for the intensified esterification. 

One of the main purposes of this model is to understand and explore the effects of water 

production and its respective removal. This thesis explores the hypothesis that forces the esterification 

reaction of FFAs to completion via the microbubble mediated reactive distillation. In this case, ozone-

rich bubbles provide the catalyst to this reaction and remove the water product, driving the reaction 

to completion following Le Chatelier’s principle. This approach uses O·, produced from the ozone 

decomposition, as free radical initiator for the three-step reaction mechanism proposed which takes 

place on the bubble interface (gas-liquid), the mechanism is shown in Figure 1. The microbubble 

removes the vapour phase products (water) avoiding product inhibition. When the molecules of 

produced water are removed by vaporisation, the system undergoes further reaction to produce 

another molecule to replace it with, therefore driving the reaction to completion.   

Abdulrazzaq et al studied the non-equilibrium vaporisation pattern in ethanol-water mixtures 

based on hot microbubble injection. The driving force is kinetically more rapid at vaporising ethanol 

than water in all the mixtures. Methanol is more volatile than ethanol, so it would be expected to 

occupy the bubble vapour phase in the case of the esterification reaction mixture. This means that 

methanol would be removed preferentially over water. In Figure 1, the effects of water removal in 

pulling the reaction and excess methanol in pushing the reaction to equilibrium are depicted. By only 

injecting hot bubbles, the equilibrium is pulled but the push diminished. In order to avoid the likeliness 

of methanol to vaporise in the esterification reaction, this thesis explores the hypothesis that methanol 
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becomes immediately reactive in order to achieve an effective water removal. The reaction occurs on 

the bubble interface where the methanol reacts with the oxygen singlet forming the free methoxy free 

radical (see Figure 1). Ozone is known to be a free radical initiator, but actually oxygen singlet radicals 

can be formed and then injected into the bubble by tuning an ozone plasma microreactor which 

preferentially produces these species by selecting the residence time. Oxygen radicals tend to form 

hydroxyl radicals in the presence of water, but either species form water when methanol is present by 

scavenging the hydrogen from the alcohol group resulting in the formation of the methoxy radical. This 

suggests that ozone-rich bubbles injection into FFA-methanol mixtures (no catalyst present) will drive 

esterification towards completion by the water removal mechanism previously described and 

catalysed by the three-step mechanism (free radical chain reaction) (Tran, et al., 2017; Timberlake & 

Hodges, 1970; Zimmerman, 2011; Rehman, et al., 2016; Lozano-Parada & Zimmerman, 2010).  

1.2. Aims and scope 

This research project is comprised of multiple models, simulations and their respective estimation 

of parameters. The main software used for the computational models is COMSOL Multiphysics and 

MATLAB coupled with Livelink. To explore the time scale of different ozone decomposition methods 

discussed in Chapter 3 and to calculate and estimate different parameters like thermodynamic 

properties in Chapter 4, 0-D models in COMSOL are used to input the different reactions mechanisms. 

When studying this reaction mechanism, both the irreversible and reversible reaction for the slowest 

step are discussed in Chapter 5. This section includes a deep analysis of the effect of the different rate 

constants on the water and overall FAME production. 

Another important component of this project is chapter 6 and 7 where the 2-D axisymmetric model 

built in COMSOL for the intensified esterification for both the irreversible and reversible reactions of 

the slowest step. This model couples heat and mass transfer, surface reactions and reaction 

engineering modules so both the vaporisation and stripping of produced water and the free radical 

chain reaction are coupled and then fitted to the experimental data. These two fields are studied 

separately to explore its relevance and effect on the overall FAME production.  

Once the models are built, they are imported to the software COMSOL for MATLAB to be fitted to 

the experimental data using a list of commands found in Appendix B. in order to fit the curves obtained 

from the simulation to the experimental data, the least squares method is used.  

The main aims of this research are detailed below: 

1. To model the ozone decomposition and find its respective time scale using different methods 

such as, the NFG for Aqueous Ozone Decomposition and the Hoigné and Gordon method. 
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2. To model the heat exchanger used in the gas inlet and explore the effect of temperature on 

ozone decomposition for the oxygen singlet radical formation.  

3. To estimate the diffusion coefficients for the different species studied in both the liquid and gas 

phase. 

4.To calculate the effect of different physical parameters on the rising of microbubbles and 

determine the liquid thickness layer and residence time. 

5.To compare the flow and surface parameters with dimensionless analysis (Peclet, Nusselt, 

Reynolds) in terms of microbubbles.  

6. To estimate the mass transfer coefficient and gas-liquid interfacial area to be used in the 

computational model.  

7. To explore the effect of the forward rate constant (kf2) on both water and overall FAME 

production using the 0-D model. 

8. To fit the resulting 0-D models to the experimental data, so the right values of the rate constants 

(kf3 and kr3) for the slowest step are determined. 

9. To explore the effect of the proposed mechanism for the water vaporisation and stripping from 

the reacting mixture.  

10. To fit the 2-D model to the experimental data, including the mass and heat transfer, surface 

reactions and reaction engineering module. 

11. To determine the kinetic parameters for the built models and find the optimum operating 

conditions varying temperature, species concentration and physical parameters.  

12. To explore the effect of the bubble temperature and size, oxygen singlet concentration and 

liquid mixture temperature on the reaction kinetics and physics of the intensified esterification.  

1.3. Objective 

The main objective of this thesis is to build a semi-empirical model for the intensified esterification 

reaction proposed mechanism using ozone-rich microbubbles. The experimental data used for this 

study explores the effect of both temperature and FFA initial content on the overall biodiesel 

production. Once the computational model is built with the respective heat and mass transfer 

definitions and surface reactions mechanism proposed in this work, the reaction kinetics are explored 

using parametric sweeps to analyse the impact on the overall FAME production. Some variants of the 

computational model are used in order to explore the isolated effect of reactions kinetics and the 

water mass transfer by convection. The resulting model should be robust enough, so the user is able 
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to explore the effect of changing physical and chemical parameters such as, the bubble size, 

methanol:oil ratio, temperature of the liquid, temperature of the microbubble and the oxygen singlet 

radical concentration. Since the chain reaction mechanism here proposed is not selective for the 

feedstock, vegetable oils with a FFA content value ranging 10-20% can be modelled using this work.  

1.4. Thesis outline 

The thesis here presented is comprised of eight chapters. In Chapter 1, a brief introduction to the 

thesis is presented with its respective background, aims, scope and objective. Chapter 2 includes a 

comprehensive literature review of biodiesel production, ozone generation and the intensified 

esterification using microbubbles. In Chapter 3, it can be found the experimental data used for to be 

fitted with the models, and the 0-D models for the ozone decomposition and a 2-D model for the heat 

exchanger to study the thermal decomposition of ozone in COMSOL Multiphysics. Chapter 4 presents 

the estimation of the diffusion coefficients, the calculation of different physical parameters on the 

rising of microbubbles, a comparison of the flow and surface parameters with dimensionless analysis 

(Peclet, Nusselt, Reynolds) in terms of microbubbles and an estimation the mass transfer coefficient 

and gas-liquid interfacial area.  

Chapter 5 explores the effect of the forward rate constant (kf2) on both water and overall FAME 

production using the 0-D model and show the fit of the resulting 0-D models to the experimental data. 

Chapter 6 and 7 explore the effect of the proposed mechanism for the water vaporisation and stripping 

from the reacting mixture, the inversion method fit the 2-D model to the experimental data including 

the mass and heat transfer, surface reactions and reaction engineering module, and the kinetic 

parameters for the built models, irreversible and reversible respectively. In Chapter 8, the conclusions 

and suggested future work are presented.   
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2. Literature review 

In this chapter some of the relevant features are presented for the ozone free radical initiated 

mechanism. The comprehensive literature review is divided into three main parts: The biodiesel 

production, ozone generation and the intensified esterification using microbubbles. The biodiesel 

production considers the current global scenario, a description of the biodiesel properties and 

potential feedstock as well as the current technologies in terms of the esterification reaction. The 

ozone generation section is comprised of relevant features regarding the properties, applications and 

stability of ozone, as well as the different technologies for ozone and free radical generation using 

micro plasma. Lastly, the intensified esterification reaction describes the main features of the 

mechanism proposed in this thesis such as, the fluidic oscillator, evaporation dynamics and heat 

transfer, the Bodenstein steady state assumption, the free radical reaction mechanism and the 

microbubble generation. All of these subjects take part in this literature review which is aimed to 

provide the reader with enough background to understand the proposed reaction mechanism 

proposed in this thesis.  

2.1. Biodiesel production 

In this section are presented some of the main subjects regarding the biodiesel production. Some 

of these features are the current global scenario, fuel properties, vegetable feedstock used in the 

biodiesel production suggesting the use of a Mexican species for one of the next chapters, current 

production technologies in terms of the esterification reaction and the potential use of microbubbles 

for this reaction. The main importance of this section is to highlight the main technologies used by 

other researchers and point out their strengths and weakness, in order to point out the gap to be 

fulfilled by the ozone free radical initiated esterification.  

2.1.1. Current global scenario 

Currently the predicted shortages of fossil fuels and growing environmental concern are the main 

drivers for the research and development of alternative fuels. The world energy demand is mainly 

supplied by petrochemical sources, natural and coal respectively in this order; but due to their current 

usage rate they will be consumed soon. In this context, there is special focus on diesel fuels since they 

play a vital role in the industrial economy of developing countries due to its importance for transport 

of industrial and agricultural goods (Srivastava & Prasad, 2000).  

Major economic events and scientific evidence emerging in 2008 had significant contributions for 

biofuels in terms of government and industry aspirations. The use of biofuels, such as bioethanol and 

biodiesel, as a substitute for transport fuels is mainly justified since they could reduce greenhouse gas 

emissions enhancing rural incomes and achieving fuel security. Many of the key events in 2008 which 
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impacted upon the supply, demand and sustainability of biofuels were: the increase in food commodity 

prices (important biofuel feedstock), increase in oil prices, global financial crisis and publication of 

several scientific studies concerning biofuels like the UK’s Gallagher Review (Join Nature Conservation 

Committee, 2009).  

Biofuels such as biodiesel are indeed partial substitutes for petrol fuels and fossil diesel. Nowadays 

there are a small percentage of vehicle engines which can use near pure biofuels but most of the 

world’s vehicles simply cannot utilise more than a 10% biofuels component. This technical limitation 

derived from the engine design creates the well-known “blending ceiling” which will keep limiting the 

biofuel demand until the new generation of engines becomes accessible around the world. Having said 

this, the total diesel consumption and this blending ceiling will determine the biodiesel consumption 

over the coming decade. According to the European Union standards a 10% biofuel substitution target 

for 2020 has been set and the International Energy Agency has estimated substitution levels from 3% 

for Africa to 14% for the Americas by that time. In 2008 the global biofuels substitution was 2.85%, in 

the Americas a level above 10% was possible due to increased blending ceiling in the USA and the use 

of flex fuel vehicles in Brazil (Join Nature Conservation Committee, 2009).  

The depletion of fossil fuels could have significant effects in our lifestyle, forcing many dependent 

industries on fuels, such as the agricultural and automobile, to close down; having negative effects on 

the economic growth of developed and developing countries. Having said this, a practical and suitable 

approach to the problems previously mentioned will be the usage of an alternative fuel obtained from 

renewable sources free of sulphur content. One of these alternative fuels is biodiesel which has gained 

a good reputation amongst the well-known renewable sources due to its reduced toxic emissions, 

when blended with mineral diesel, for its respective use in conventional engines (Bharathiraja, et al., 

2014; Harrington & D'Arcy, 1985).  

Amongst the top biodiesel producing countries are Germany, Brazil, Argentina, Indonesia and 

France. Both Philippines and Taiwan are the only countries where the biodiesel production has met 

the country’s mandate. Based on the traded and exported processed plant oils and animal fats per 

country, in 2006 a review was published reporting the top five countries (Malaysia, Indonesia, 

Argentina, USA and Brazil) to have the potential to produce this biofuel. European countries lead the 

world production of biodiesel with Germany being top, whereas Indonesia is the only Asian country to 

make to the top five producing countries. It can be noticed there is a large gap between the biodiesel 

demand and the production capacity, suggesting there is room for improvement by means of thorough 

research to meet the demands. Table 1 shows the top consuming countries being the USA, Germany, 

Brazil, France and Spain. It is interesting to point out that not all the top producers are the largest 

consumers of this biofuel (Woo, et al., 2016; Johnston & Holloway, 2007). 
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Table 1 Top five countries in production and consumption of biodiesel in 1x106 litres per year (Woo, et al., 2016). 

Producing 

countries 

Produced 

(demand) 

Consuming 

countries 

Consumed 

(ML) 

Germany 3097(2507) USA 3356 

Argentina 3018(816) Germany 2750 

Brazil 2747(1864) Brazil 2611 

France 2673(1819) France 2350 

Indonesia 1973(350) Spain 1857 

On the 6th August 2015, the UK Government published the Renewable transport fuel obligation 

report which stated that 3.29% of total road and non-road mobile machinery fuel was supplied by 

1,671 million litres of renewable fuel. 84% of the total of renewable fuel (1,397 million litres) met the 

sustainable requirements established by the UK government and 50% of the total was comprised of 

biodiesel. In terms of biodiesel, waste cooking oil was the most widely reported source in the UK 

reaching an annual supply of approximately 115 million litres, accounting for 17% of biodiesel and 8% 

of total fuel production in the UK throughout 2015. Around one third of the biofuel produced (30%) 

was sourced from UK feedstock. On the other hand, the most widely reported source for bioethanol 

was wheat from the UK with an annual supply of 144 million litres, accounting for 21% of bioethanol 

and 10% of total fuel production in the UK. It was also stated that almost half of the fuel produced 

(48%) between April 2014 – April 2015 came from non-agricultural residues meaning a greenhouse gas 

saving of 69% compared to conventional fossil fuels. It is important to mention that 99% of the biofuel 

was sourced via a voluntary scheme such as ISCC at 83% of biofuel (Department for Transport, 2015). 

The United States Energy Information Administration (USEIA) reported that for every 42 gallons of 

crude oil, 10 gallons of diesel are produced (circa 24%). Diesel is mainly used as transportation fuel but 

there is a wide spectrum for its use including energy generation. It has been estimated that one barrel 

of biodiesel is equivalent to 0.88 barrel of crude oil, suggesting that the world diesel consumption 

would need to increase by 14% if biodiesel were to replace mineral diesel. Nowadays countries around 

the world aim to utilise biodiesel in transportation at blends of 2-20%. Table 2 illustrates the biodiesel 

feedstock mandates and production of different countries/regions (Woo, et al., 2016; U.S.E.I.A., n.d.; 

BP, 2013).  

As reported by the US EPA, greenhouse gas emissions are reduced by 57-86% when using 100% 

biodiesel compared to mineral diesel. In addition, major tailpipe pollutants from petroleum diesel are 

reduced by biodiesel. Mineral diesel blended with biodiesel, known as B20 due to its proportions, can 

be sourced by many organic oils limited to those one with a low level of free fatty acids, usually below 

4%. Waste greases typically contain 10-25% of FFAs which is beyond the level that can be converted 
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using the alkaline-catalysed reaction. In order to reduce the level of FFAs, pre-esterification processes 

are required but it incurs in additional costs.  

Table 2 Biodiesel feedstock, mandates and production of different countries (Lane, 2014). 

Country/region Feedstock Blend 

(%) 

Crude oil 

(Mt) 

Diesel (Mt) Required 

biodiesel (Mt) 

Brazil Soybean, Palm  5-6 125.6 29.9 1.6 

European Union Rapeseed/Sunflower 7.5  611.3 145.5 12.2 

USA Soybean, Waste oil 10-20 819.9 195.2 21.7 

Indonesia Palm, Jatropha 2-2.5 71.6 17.0 0.3 

Argentina Soybean 10 28.2 6.7 0.7 

The novel approach proposed in this research project intends to make all waste greases potential 

feedstock sources for biodiesel production. Presently, the Greater London Authority (GLA) is examining 

the use of 30% biodiesel (B30), and has reported that the biodiesel cost is 75 p/L compared to 

petroleum diesel of 52 p/L. The biodiesel consumption for 2014 was of 280m litres, with 49bn litres 

for transport, from which 0.57% accounts for UK transport consumption. European production of 

biodiesel is running at only 55% of capacity, and particularly the UK is at 30% (Department for 

Transport, 2015). 

From 1992 to 2012, the world production of vegetable oils has increased by nearly 100 million tons 

in terms of annual production. The world edible oil production from 1992 2012 is shown in Figure 2. 

According to the Food and Agriculture Organisation of the UN Statistics Division, nearly 60% of the oil 

produced every year is used as food supply. If the waste cooking oil is then recovered and treated, this 

could potentially mean around 80 million tons of biodiesel produced by these means. This potential 

amount of biodiesel would be enough to meet the world present world demand that has been 

estimated to be circa 63 million tons (Woo, et al., 2016; FAOSTAT, 2014).  

 

Figure 2 World edible oil production from 1992 to 2012 ( FAOSTAT, 2014). 
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A part of this research project a microbubble intensified esterification kinetic model is proposed in  

order to be implemented with the use of cheap feedstock, such as Jatropha platyphylla, to produce 

biodiesel from the free fatty acids (FFAs). Nowadays blended biodiesel is only profitable due to RTFCs. 

In the USA, subsidies for biodiesel production became too expensive due to its growth in volume and 

mainly because the fee-in tariff was not renewed. The US market crashed since it is not profitable to 

produce biodiesel without subsidy. Increasing profitability by cheaper feedstock sources and 

decreasing processing costs are the main driver to develop new approaches for biodiesel production 

(Bharathiraja, et al., 2014; Department for Transport, 2015). 

2.1.2. Fuel properties 

One of the most promising substitutes for fossil fuels is biodiesel because its commercial production 

around the world could significantly decrease the greenhouse gas emissions and therefore reduce air 

pollution. Presently biodiesel is obtained from a vast range of livestock like algae, animal fat, vegetable 

oils and waste cooking oils; via the conversion of fatty acids into fatty acid methyl esters (FAMEs). 

Biodiesel by definition is described as an alternative fuel derived from either vegetable oil or animal 

fat, comprised of mono-alkyl esters of long chain fatty acids. This type of biofuel has several advantages 

which have been outlined when compared to mineral diesel, some of them are: it reduces CO2 

emissions from vehicle engines, the high purity avoids the future use of lubricant, it involves a more 

efficient production process compared to petroleum, it is derived from renewable sources, and it 

provides a high cetane number which enhances the engine performance (Su & Wei, 2008; Fukuda, et 

al., 2001).  

Biodiesel is produced by a conventional process which involves a catalysed transesterification 

reaction of oils with methanol. As described before, triglycerides from a vegetable oil or animal fat 

react with an alcohol in the presence of a catalyst that speeds up the reaction producing free fatty acid 

methyl esters (FAMEs) known as biodiesel and glycerol. In Figure 3 is shown the chemical reaction 

formula for the transesterification of vegetable oils into biodiesel. 

 

Figure 3 Simplified form of the transesterification reaction (Leung, Wang 2010). 

In order to produce biodiesel two important aspects to be considered are the desired quality of the 

end product and the properties of the feedstock since the operating parameters and process design 

will depend on them. The commercial production of biodiesel from soybean in the United States of 
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America and from rapeseed in the European Union have promoted the respective characterisation of 

this alternative fuel and development of new technologies to optimise its production. In Table 3, the 

corresponding values for biodiesel of the European, German and the USA standards are shown (Leung, 

et al., 2010; Devi, et al., 2006). 

Table 3 Biodiesel values of European, German and American standards (Achten, et al., 2008). 

Variable EN 14214-2003 DIN V 51606 ASTM D6751 

Density (g cm-3) 0.86-0.90 0.87-0.90 -- 

Flash point (°C) Min 120 Min 110 Min 130 

Cetane value Min 51 Min 49 Min 47 

Viscosity at 30°C (cSt) 3.5-5.0a 3.5-5.0a 1.9-6.0a 

Iodine number (mg iodine g-1) Max 120 Max 115 Max 115 

Acid number (mg KOH g-1) Max 0.5 Max 0.5 Max 0.5 

Carbon residue % (kg kg-1) x102 Max 0.3 Max 0.3 Max 0.05 

Sulphur content % (kg kg-1) x102 Max 0.01 Max 0.01 Max 0.015 

Sulphated ash % (kg kg-1) x102 Max 0.02 Max 0.03 Max 0.02 

Water % (kg kg-1) x102 Max 0.5 Max 0.3 Max 0.5 

Free glycerol % (kg kg-1) x102 Max 0.02 Max 0.02 Max 0.02 

Total glycerol % (kg kg-1)x102 Max 0.25 Max 0.25 Max 0.24 

2.1.3. Feedstock 

There is a vast diversity of lipid feedstock sources which can be used for biodiesel production. Error! R

eference source not found. shows some examples of these sources, mainly they are divided into algae, 

palm fruits, seeds and waste oil. In spite of the fact that when using palm fruits, the productivity 

reaches its highest, the most common feedstock sources for biodiesel production are seeds from 

different plants such as Jatropha, sorghum, peanut, sunflower and rapeseed. Climatic, agricultural and 

geographical conditions determine the choice for a selected feedstock, but at the same time is 

important to consider the different feedstock properties. As an example, the fatty acid content and oil 

saturation of oilseed species tend to vary considerably. A higher cetane number and improved 

oxidative stability are characteristic in biodiesel produced from highly saturated oils. Having said this, 

pure plant oil containing a high degree of saturation is more suitable in warmer climates. In the next 

section some of these plants will be described in more detail focusing on oilseed crops particularly 

Jatropha, since it is the feedstock source chosen for this research particularly the Mexican species 

Jatropha platyphylla to be considered in Chapter 8 for a proposed model of the intensified mechanism 

(Worldwatch Institute, 2006). 

The goal set by the Brazilian government for 2008 led to a net production of 800 million litres of 

biodiesel. By 2006, the installed biodiesel production capacity in Brazil doubled reaching a production 
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of around 1,180 million litres per year. On the other hand, in South East Asia there is an increasing 

interest in palm biodiesel. Countries such as Malaysia, Indonesia and Thailand have recently started 

the production of biodiesel from palm oils but faced a growing competition for food at the same time 

since this source belongs to the edible crops type. Nevertheless, non-edible crops like Jatropha are 

drawing attention due to their suitability to be produced on lands with variable quality. In India, 

Jatropha biodiesel production is being held as a strategy regarding wasteland reclamation. Finally, the 

use of oil-bearing seeds, such as like starch-based alcohol fuels, for biodiesel production is limited from 

the perspective of carbon emissions reduction and petroleum substitution (Climate Change Central, 

2006; Government of India Planning Commission, 2005; Gonsalves, 2006). 

2.1.4. Vegetable oils used for biodiesel production 

From the vast diversity of different sources used as feedstock for biodiesel production, this research 

project focuses on the use of vegetable oils. Vegetable feedstock for biodiesel production is a suitable 

source since it is produced on a large scale considering environmental issues and is renewable in 

nature. Vegetable oils include both edible and non-edible ones, almost 95% of the vegetable sources 

used to produce biodiesel come from edible oils since their capacity to be produced in most of the 

arable regions around the world and the properties of the end product meet the standards for them 

to be used as a substitute for mineral diesel. In spite of that, producing biodiesel from edible oils have 

disadvantages such as the competition with the edible oil market which usually leads to an increased 

cost of edible oils and therefore biodiesel (Antolin, et al., 2002; Gui, et al., 2008; Sahoo & Das, 2009). 

The great majority of the biodiesel produced around the world uses soybean oil, methanol and an 

alkaline catalyst to speed up the reaction. Since soybean oil is a food product, the current food 

competition makes production face several challenges. Nevertheless, there is a large amount of low-

cost oils and fats such as animal fats and restaurant waste that could be used and then converted to 

biodiesel. A problem related with the processing of these low-cost sources is that usually the have a 

high content of free fatty acids that cannot be converted using alkaline catalysts (Canakci & Van 

Gerpen, 2001; Demirbas, 2003; Demirbas, 2008).  

In order to compare the proposed feedstock source for this project, Jatropha platyphylla, with many 

other oilseed crops, a detailed description of some of the main feedstock sources is provided like 

rapeseed, soybean, palm oil, sunflower and Jatropha species. Firstly, rapeseed, also known as colza or 

canola, belongs to the family of the Brassicacea and is characterised by a high content of erucic acid 

(50%), toxic compound which may cause liver and heart damage. High content of monounsaturated 

oleic acid and low levels of both polyunsaturated and saturated acids are mainly found in rapeseeds. 

Some of the advantages of using rapeseed as the feedstock source are its oxidative stability, 

combustion characteristics and cold temperature behaviour. China is considered the largest rapeseed 
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producer in the world with an designated for its cultivation expanding rapidly; around the world this 

cultivation area is growing 2% annually. In 2005 1.4 million hectares were cultivated in Europe, half of 

this production was in Germany followed by other countries such as France, Poland and Czech Republic 

(Mittelbach & Remschmidt, 2004; Worldwatch Institute, 2006). 

In Table 4 the fuel properties of methyl esters produced from different feedstock sources are 

compared to a biodiesel blend B20 and mineral diesel. These fuel properties are important because 

they dictate the biofuel characteristics. The physical and chemical properties stated below are included 

and need to be met by any biodiesel producer according to the different International standards that 

regulate its production. 

Table 4 Fuel properties of methyl esters from vegetable oils (Helwani, et al., 2009). 

Biodiesel 
Cetane 

number 

Cloud 

point (ºC) 

Pour point 

(ºC) 

Flash point 

(ºC) 

Density 

(g.cm-3) 

Soybean 45 1 -7 178 0.885 

Rapeseed 54 -2 -9 84 -- 

Palm 62 13 -- 164 0.88 

Sunflower 49 1 -- 183 0.86 

B20 51 -- -16 128 0.859 

Diesel 50 -- -16 76 0.885 

Soybean is the most popular biodiesel feedstock source in the United States and is the most 

produced vegetable oil worldwide and the dominant oilseed crop cultivated. Regarding its production, 

the United States, Brazil and Argentina are the main producers of soybean oil where biodiesel is 

growing rapidly due to its abundance rather than a specific desirability. Although it is an abundant 

feedstock in these countries, only a small fraction of the supply is converted to biofuels. Biodiesel 

produced from rapeseed oil has been discussed to meet the biodiesel standards with iodine values 

similar to sunflower oil ranging 121-143 gI2/100g. Although soybean crops tend to generate a low yield 

of biodiesel per hectare when compared to other oilseed crops; it can grow in both tropical and 

temperate conditions, it has the ability to stock soil nitrogen reducing the amount of fertilizer needed 

generating a positive energy balance (Rutz & Janssen, 2007). 

Palm oil is one of the two main palm trees used for oil production, specifically in South Asia. 

Malaysia and Indonesia are the largest producers of palm oil with a rapid growth in the last decade. 

The second largest planted area of palm oil is located in Nigeria and Brazil is considered to play an 

important role regarding palm oil cultivation in the next decade. Presently the majority of the palm oil 

is used by the food industry but the demand of palm oil Europe for biodiesel production is expected to 

increase significantly. The Netherlands is the largest importer of palm oil in the European Union 

followed by the United Kingdom which imports doubled to 914,000 tons between 1995 and 2004, 



28 
 

 

representing 23% of the EU imports. Palm oil contains a high amount of monounsaturated and 

medium-chain saturated fatty acids. Traditional alkali-catalysed biodiesel production is affected by a 

high content of fatty acids in the feedstock, forcing producers to include acid-catalysed pre-

esterification and deacidification steps (Mittelbach & Remschmidt, 2004). 

Sunflower oilseeds oil is the fifth largest oilseed crop in the world, accounting for almost all the 

remaining biodiesel feedstock in Europe right after rapeseed. It has a significantly higher yield 

compared to soybean but similar when compared to rapeseed. Sunflower crops require less fertilizer 

and water making it acceptable as a suitable feedstock source by the public. Its use for fuel production 

is limited due to the high contents of linoleic acid, poor oxidative stability and high iodine values not 

suitable for fuels (Rutz & Janssen, 2007). 

Table 5 Physicochemical properties of vegetable oils used in the models (Kokoo & Zimmerman , 2018; Makkar, et al., 
2010). 

Property Used cooking oil Jatropha platyphylla oil 

Density (kg/m3)  916 908  

Dynamic viscosity (cSt) 40.2 31.5 

Acid value (mg KOH g-1) 2.1 0.43 

Water content (mg/kg) 1560 326 

 Flash point (°C) 286  274 

Average molecular weight (g/mol) 882 876 

For the purpose of this thesis, modelling of the intensified esterification using microbubbles for 

biodiesel production considers two different feedstocks. In chapters 7 and 8, the feedstocks 

considered for the model are the used cooking oil and Jatropha platyphylla oil. In Table 5, the main 

physico-chemical properties for both oils are illustrated. These features are adapted for each of the 

respective models in order to obtain a more accurate model. 

2.1.5. Jatropha species and J. platyphylla, the Mexican feedstock source 

One of the objectives of this research project is to come up with a computational model that helps 

understanding the reaction kinetics of the esterification reaction in vegetable oils in order to be used 

with one of the species from the genus Jatropha, the Mexican species J. platyphylla. The Mexican 

government is interested in analysing its properties and feasibility as a feedstock source for biodiesel 

production in the North of Mexico. The genus Jatropha belongs to the Euphorbiaceae family, plants 

found in this family are known for their toxicity. The majority of the Jatropha species studied, have 

been found to produce several toxins such as nutritional factors (phytates, lectin, trypsin inhibitor) and 

phorbol esters. The most famous species and also widely promoted as a feedstock source for biodiesel 

production is Jatropha curcas. In this chapter both J. curcas and J. platyphylla are described in order to 
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compare their properties focusing in their feasibility as feedstock sources for biodiesel production 

(Makkar, et al., 2010). 

Jatropha curcas, also known as physic nut, is one of the 150 species in the family of the 

Euphorbiaceae. J. curcas is the most famous species from this family since it has the most research and 

studies conducted. This oilseed crop grows well on semi-arid and marginal lands. The bushes are 

usually harvested twice a year and can remain productive for decades. In India where nearly 64 million 

hectares of land are considered to be uncultivated or wasteland, Jatropha has been identified as one 

of the most propitious feedstocks for large-scale biodiesel production. At the same time, this oilseed 

is well suited for biofuel production at the village level or small-scale (Rutz & Janssen, 2007). 

It has been reported that in J. curcas seeds from different agroclimatic regions in Mexico contain a 

crude protein and lipid content of around 31-35% and 55-58%, respectively. Regarding the fatty acid 

composition of J. curcas found in these Mexican regions (Castillo de Teayo, Pueblillo, Coatzacoalcos 

and Yautepec) was comprised mainly of oleic, linoleic, palmitic and stearic acid. The coastal samples 

analysed registered higher levels of oleic acid, on the other hand samples from the center of Mexico 

contained high levels of linoleic acid. This variation can be related to the differences in soil and climatic 

conditions. Overall, the J. curcas samples were composed mainly of unsaturated fatty acids and similar 

to the one reported from different countries like India, Indonesia and Malaysia (Martinez-Herrera, et 

al., 2006). 

The seed yield has a high impact determining the viability of biodiesel from Jatropha, it has been 

reported a reasonable amount of variability in yield for Jatropha which is attributed to differences in 

plantation practices, climatic conditions, and germplasm quality. Some yield estimates have been 

estimated based on extrapolation of yields from small demonstration plots and individual plants 

instead of being from block plantations. In India, researchers have estimated that 15 billion litres of 

biodiesel could be produced by cultivating J. curcas on approximately 11 million hectares of wasteland 

by 2020 (Worldwatch Institute, 2006). 

Jatropha platyphylla is another species in the family of the Euphorbiaceae, found in the pacific coast 

from Sinaloa to Michoacan states in Mexico. J. platyphylla is restricted to warm areas with 

temperatures fluctuating around 20-29ºC and is normally found around deciduous forests. It has a 

physical appearance of this 2-5 meters high plant which is resistant drought. It has round lobes, 15-35 

cm long peltate leaves across with broad and round seed as well. Physically the appearance of these 

seeds is similar in shape and size to Macadamia nuts (Makkar & Becker, 2009). 

Seeds of J. platyphylla are circular with a diameter of 1.5cm, while the toxic and non-toxic 

genotypes of J. curcas are elliptical (length 1.7cm, width 0.8 cm). The average seed, shell and kernel 

mass of J. platyphylla is 2.3-, 3- and 2-folds higher than those of J. curcas. The shells of J. platyphylla 
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are responsible for more than 50% of the total weight of the seeds, whereas for J. curcas this value 

fluctuates around 32-39%. Regarding the oil and protein contents, in J. platyphylla kernels the oil and 

crude protein content do not differ significantly. But the high oil content in J. platyphylla (60%) makes 

this species a valuable and suitable source for oil and therefore biodiesel production. Although the oil 

content is slightly higher in J. platyphylla, since the proportion of kernels in its seeds is lower than that 

in J. curcas the oil content would be lower; the same would be true for the crude protein content 

(Oyeleye, et al., 2011; Gosselink, et al., 2004). 

Table 6 Composition of kernels and defatted kernel meal from J. platyphylla and J. curcas (Oyeleye, et al., 2011). 

J. platyphylla J. curcas 

            Toxic                    Non-toxic 

Kernel       

Crude protein 27.1 ± 2.0 26.6 ± 1.12 26.8 ± 1.25 

Oil 60.3 ± 3.54 57.4 ± 0.50 57.5 ± 0.69 

Ash 3.9 ± 0.09 4 ± 0.67 4.5 ± 0.56 

Deffated kernel meal       

Crude protein 66.4 ± 2.0 63.7 ± 1.11 62.4 ± 2.65 

Ash 9.0 ± 0.58 9.4 ± 1.01 9.1 ± 1.04 

The composition of kernels and defatted kernel meal from J. platyphylla and from toxic and non-

toxic genotypes of J. curcas are shown in Table 6. Regarding the fatty acid composition, in J. platyphylla 

the saturated fatty acid levels are similar to that of J. curcas. Oil in both species is composed mainly of 

unsaturated fatty acids (linoleic and oleic acid), a higher linoleic acid level is found in J. platyphylla 

which could be beneficial for human consumption but at the same time shows the potential of this 

plant as a suitable feedstock source in the semi-arid coastal areas of Mexico. In Table 7 is shown the 

fatty acid composition of both species in order to compare the fatty acid composition and highlight 

any difference between them. As mentioned before, J. platyphylla contains more than 50% of 

polyunsaturated fatty acids from which the predominant one is linoleic acid, 18:2n-6. The 

monounsaturated fatty acids comprise 25% of the total being the most predominant oleic acid 18:1n-

9 and, oleic acid 18:1n-7 and palmitoleic acid, 16:1n-7 respectively. 

Lastly, the monosaturated fatty acids are found in less proportion of around 21%, from which 

palmitic, 16:0 and stearic acid 18:0 are the most predominant ones. J. platyphylla in comparison to J. 

curcas has a higher amount of polyunsaturated fatty acids due to the abundance of linoleic acid, which 

is higher than that of J. curcas. But concerning monounsaturated fatty acids, J. platyphylla has a lower 

composition than J. curcas due to the lower presence of oleic acid, 18:1n-9 (Oyeleye, et al., 2011; 

Makkar, et al., 1998). 
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Table 7 Fatty acid composition of J. platyphylla and J. curcas (Oyeleye, et al., 2011). 

Fatty acid composition (%) J. platyphylla J. curcas 

       Toxic                      Non-toxic 

Myristic, 14:0 0.2 0.2 0.1 

Palmitic, 16:0 13.2 13.4 15.3 

Stearic, 18:0 7.5 6.4 6.6 

Arachidic, 20:0 0.2 0.2 0.2 

Total saturated 21.1 20.3 22.3 

Palmitoleic, 16:1n-7 0.7 0.8 0.9 

Oleic, 18:1n-9 23.1 36.5 41.0 

Oleic, 18:1n-7 1.0 Not detected Not detected 

Total monounsaturated 25.0 37.3 42.0 

Linoleic, 18:2n-6 53.7 42.1 35.3 

α-linoleic, 18:3n-3 0.1 0.2 0.3 

Total polyunsaturated 52.8 42.3 35.7 

As mentioned before J. platyphylla has been studied in order to analyse its feasibility as a feed 

ingredient for fishes such as Tilapia. Researchers have found that fish species are particularly sensitive 

to Jatropha toxins. Deactivation of the trypsin inhibitor and lectins is achieved by heating J. platyphylla 

kernel meal; this meal is included in a standard diet containing 36% of crude protein in order to replace 

50% of the fish meal protein. Results indicated that fishes fed with or without this kernel substitution 

had normal blood biochemical parameters within the normal ranges. Having said this, both kernels and 

kernel meal of J. platyphylla could serve as a supplement in aquaculture and as part of a diet for 

malnourished children in the pacific coastal areas of Mexico. It could also be used to produce biofuels 

using conventional inter species cross breeding in order to maximise its physical and chemical 

properties as a feedstock source. Considering the high levels of oil contained in this plant and its 

abundance in the semi-arid coastal areas of Mexico, J. platyphylla is a suitable Mexican feedstock 

source for village-level and small scale biodiesel production (Makkar & Becker, 2009; Kumar, et al., 

2010; Akinleye , et al., 2011). 

2.1.5.1. Esterification reactions 

One of the many possible methods to produce biodiesel from waste cooking oils is a two-step 

process involving the esterification of FFA and the transesterification with methanol of the mixture 

using a basic catalyst. Waste cooking oils are known to have high concentrations of FFA. In this section 

several technologies and open challenges concerning esterification reactions are discussed. As 

mentioned in the previous section, the most common way to produce biodiesel from refined vegetable 

oils is the transesterification of triglycerides using methanol and a basic homogeneous catalyst such 
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as, KOH, NaOH and CH3ONa. These catalysts cannot be used with unrefined or waste oils since they 

tend to have a high concentration of FFA. In order to obtain a high yield, there is a requirement of a 

maximum of 1 wt% of FFA (Lee, et al., 2014; Ma & Hanna, 1999).  

Table 8 contains a list of different waste and non-edible oils that are mainly used in biodiesel 

production. A potential solution for this problem could be the use of a homogeneous acid catalyst for 

both the esterification and transesterification. Nevertheless, the second step (transesterification) has 

a low reaction rate and the recovery of the catalyst is desired. When using a heterogenous acid 

catalyst, high reaction temperature and pressure are necessary. A major challenge for catalysis 

researchers involves the identification and characterisation of solid materials capable of carrying out 

the FFA esterification and transesterification simultaneously (Di Serio, et al., 2008; Lee, et al., 2014) 

Table 8 FFA concentration in waste and non-edible oils (Vitiello, et al., 2017). 

Waste oil Acidity (% oleic acid) 

Sunflower 4 

Olive frying oil 7.8 

Jatropha 14.9-19.5 

Commercially refined macroalgae (Kelp) lipid 17.5 

Mahua 3.4 

 A solution to this problem is the esterification of the FFA present in the oil by an esterification with 

methanol producing Fatty Acid Methyl Esters (FAME) in the presence of a catalyst given by the reaction 

in Figure 4, followed by the transesterification of the residual glycerides using an alkaline catalyst. 

However, the chemical equilibrium of the reaction results in a technical constraint when feedstock 

with high FFA (20%) is used. This is explained by the difficulties faced when a FFA concentration lower 

than 1% is aimed for. A few aspects regarding the catalytic aspects of the esterification reactions are 

then explored since they represent the main driver in the utilisation of feedstock with high FFA content 

(Vitiello, et al., 2017).  

 

Figure 4 Esterification reaction of FFA with methanol (Vitiello, et al., 2017). 

The esterification reaction is mainly catalysed by either Lewis or Bronsted acids. The Lewis acid or 

addition of a proton to the carboxylic group results in a more reactive electrophilic group which then 

favours the nucleophilic attack of the methanol. This is mainly described as an equilibrium reaction 

and its yield is reduced by the presence of water. The Bronsted acids are preferred for the esterification 

reaction since they are more active and resistant to the inhibition caused by the presence of water (Di 

Serio, et al., 2008).  
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As an example of a catalysed esterification, the most commonly used method uses sulfuric acid as 

the homogeneous catalyst (1-3% w/w) with a reaction temperature of 40-95°C. In order to favour the 

forward reaction an excess of methanol is used. Chai et al reported an optimal methanol:FFA molar 

ratio of 40:1 (Chai, et al., 2014). 

Different approaches have been studied to avoid the inhibition of the esterification by the presence 

of water. Stacy et al carried out the esterification of FFA with methanol using a bubble column as the 

reactor with an operating temperature of 120°C and atmospheric pressure. This resulted in the 

vaporisation of the methanol and stripping of the produced water. This reactor showed a good 

performance even with pure FFA. Using 0.1% w/w of sulfuric acid and a molar ratio 4:1, a sample of 

95% pure oleic was esterified in 60 minutes. Nevertheless, using homogeneous acid catalysts like 

sulfuric acid has many disadvantages such as, the neutralisation of the acid catalyst before 

transesterification, plant corrosion and downstream processing to remove traces of sulphur from the 

catalyst. These issues could potentially be solved using a heterogeneous catalyst (Stacy, et al., 2014; 

Su, 2013).  

Two main classes of catalysts are pointed out, the inorganic metal oxide-based superacid and the 

sulfonic functionalised solids. Nowadays, technologies have focused on the use of strong cation 

exchange resin for its commercialisation. This particular interest is based solely in the performance of 

strong cation exchange resin in terms of stability and activity for industrial applications. Another aspect 

is their low cost when compared to other catalysts, they can be obtained from styrene and several 

amounts of divinyl benzene (DVB) (Vitiello, et al., 2017).  

These resins can have an internal structure characterised by no discreet pores (gel-type resins) or a 

porous structure (macroreticular resins). Their activity is highly related to the degree of sulfonation 

and the structure. As mentioned before, an increase in the temperature is followed by an increase in 

the reaction rate of the esterification. When this type of catalyst is used, the maximum temperature is 

linked to the thermal stability of the resin used, circa 150°C. Heterogeneous catalysts face the 

equilibrium limitation as well, this is counteract using an excess of methanol usually (1:6 to 1:20). It is 

important to mention that in the case of sulfonic resin, the inhibition due to the presence of water can 

be stronger. Resins undergo a swelling phenomenon when they are in contact with polar solvents like 

water or methanol. Having said this, the composition in both the adsorbed and liquid phase depends 

on the partitioning coefficients of the mixture species (Tesser, et al., 2010).  

On the other hand, the macroreticular resins do not show this swelling dependency. This is the main 

reason why their activity is still kept at low methanol concentrations. Nevertheless, their maximum 

activity is considerably lower compared to the gel-type resins since not all the mass in the resin is 

“swellable”. For methanol concentrations above 10%, their reaction rate decreases. This phenomenon 
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was reported by Jerabek et al who found that low methanol concentrations, the activity of methanol-

occupied sulfonic groups is lower than those which remain unreacted (Jerabek, et al., 2010).  

Overall the stability of the resins under the operating conditions here discussed is good. However, 

one of the main drawbacks is the presence of cations that can potentially dissolve in waste oils when 

using ion-exchange resins. This means a pre-treatment of the feedstock needs to be performed which 

could be the use of a metal adsorption column before the esterification, used in industrial applications 

(Russbueldt & Hoelderich, 2009).   

In terms of different acid solids used for the esterification of FFA, some of the most widely used 

compounds are tin oxide, titanium oxide, ion-exchange resin, sulfonic modified silica, zirconium oxide 

and heteropoly acids. Lately, a big emphasis has been made in the use of aluminosilicates, cation-

exchange resins and zirconium oxides as heterogeneous acid solids (Borges & Diaz, 2012).  

Zatta et al reported the esterification of lauric acid with methanol and ethanol, using raw halloysite 

catalyst. The molar ratio (alcohol:lauric acid) and catalyst proportion were explored at a reaction 

temperature of 160°C during 2 hours in a steel reactor. The lauric acid conversion achieved was 87.11 

and 95.02% for the esterification with ethanol and methanol respectively. The results show the 

halloysite catalyst as an inexpensive and reusable catalyst option for esterification of fatty acids (Zatta, 

et al., 2011). 

The use of H-Mordenite treated with phosphoric acid as an alternative to homogeneous acid 

catalyst for the esterification of FFA in neem oil was reported by Sathyaselvabala et al. The treatment 

is used to increase the weak acid sites which lead to a better esterification. The FFA content in the 

neem samples was reduced from 24.4 to 1.8 mg KOH/g oil. The optimum parameters were a 

methanol:oil molar ratio of 6:1 with a reaction temperature of 60°C and a catalyst loading of 1% 

(Sathyaselvabala, et al., 2010).  

The use of zirconium oxides as a heterogeneous catalyst for the esterification reactions is the most 

widely explored. The main reason for this is due to its high number of Bronsted acid sites. This number 

is a relevant criterion when selecting an efficient compound. Tungsten oxide zirconia has been 

examined as a catalyst for vegetable oils conversion using methanol, which resulted in no leaching and 

a high activity. Amongst the tungstated zirconia catalysts with an extra loading of tungsten of 10-30 

wt%, the 20wt% showed the highest catalytic activity. The high catalytic activity of this catalyst is 

related to its strong acidity (Lee & Saka, 2010; Park, et al., 2010). 

A zirconia supported metaloxide was developed by Kim et al, used in the production of biodiesel 

from brown grease. A high FAME yield was achieved resulting in a total acid number for the product 

of 12 mg KOH/g, meaning a FAME yield of 78%. Rattanaphra et al reported the esterification of myristic 
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acid with methanol using a sulphated zirconia as catalyst. This catalyst is classified as a heterogeneous 

superacid catalyst and has strong acid properties, having a higher acid strength than heteropoly acids 

and sulfonic ion-exchange resins. Nevertheless, after the catalyst was used several times the leaching 

of the sulphate groups became noticeable (Rattanaphra, et al., 2011; Kim , et al., 2011).  

Although the zirconium oxide catalysts show a good performance for the esterification reaction 

when using inexpensive feedstock with high levels of FFA, its cost is relatively high for biodiesel 

production since zirconium is a costly and rare metal. Having said this, there is a need to find a feasible 

and cheaper alternative for this type of reaction. In general, the esterification reaction requires high 

reaction temperatures to obtain a better yield this is why the esterification via microbubbles is studied 

in this thesis to come up with a feasible alternative to produce biodiesel from high FFA content 

feedstock using a reaction mechanism enhanced by free radicals and the vaporisation of the produced 

water.  

2.1.5.2. Esterification via microbubbles 

A microbubble mediated esterification computational model using ozone-rich microbubbles is 

proposed in this research project to obtain biodiesel from vegetable oils. Based on experimental data 

gathered by previous doctoral student on ozonolysis of oleic acid, olive oil and used cooking oil, a 

proper analysis of the reaction kinetics and modelling using COMSOL Multiphysics® Software were 

carried out.  

In 2012-2013, the United Kingdom produced 40% of the world total waste cooking oil-derived 

biodiesel, around 128 m litres. 95% of this waste cooking oil can be free fatty acids, in conventional 

esterification a methanol: oil above 70:1 in order to achieve approximately a conversion of 90%. On 

the other hand, microbubble intensified esterification promises a full conversion of FFAs to biodiesel 

with 1:1 stoichiometric feed (Department for Transport, 2015). 

In 2013 Talebian-Kiakalaieh et al carried out the transesterification of waste cooking oil with 

heterogeneous acid catalyst and methanol. Using the acid-catalysed reaction, several operating 

parameters were controlled such as methanol: oil ratio, temperature, catalyst loading and reaction 

time. Solid acid catalysts are really active for heterogeneous reactions and have several advantages 

like the following: no washing for product (FAME), able to catalyse transesterification and esterification 

simultaneously, insensitive to FFA content, easier separation steps, higher yield obtained, requires 

lower catalyst loading compared to other processes, and the catalyst can be reused. The highest 

conversion obtained by Talebian-Kiakalaieh et al was 88.6% at the optimum temperature of 65 ˚C, 

methanol: oil ratio of 70:1, 10wt% catalyst load during a total reaction time of 14 hours (Talebian-

Kiakalaieh, et al., 2013). 
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Kokoo (Sheffield University PhD student) and Zimmerman (Sheffield University Professor,2014) 

carried out the intensified esterification of olive oil (<1% FFA), waste olive oil (20% FFA) and oleic acid 

(FFA) with ozone-rich microbubble injection (0.1-0.2 L/min and 600 m size) in a 1 litre vessel using 1:1 

methanol loading, GC-MS analysis were conducted on the reacting mixture after 8, 16, 20, and 24 

hours. Olive oil broke was intended to be susceptible for a second acid-catalysed stage, but it reacted 

forming FAMEs and ti completion. Oleic acid and waste olive oil were completely converted to FAME 

at 60 ̊ C after 8 and 20 hours. Ozone microbubbles used remarkably a lower volume of excess methanol 

to achieve a complete conversion of FFA to FAME. This intensified esterification process can be 10 

times faster when compared to conventional esterification of waste cooking oils to biodiesel (Kokoo & 

Zimmerman , 2018). 

Microbubbles produced by a fluidic oscillator are generated with 1000 fold less energy dissipation 

compared to the ones produced by saturation/nucleation mechanism, meaning a 90% decrease in 

capital cost. Oxidation yields found in microbubble dispersal are twice those for fine bubble dispersal, 

suggesting autocatalysis by microbubbles is enhanced by strongly exothermic oxidation reactions, 

which produce free radicals. For 100 m diameter bubbles, the time scale for internal mixing is 1ms. 

Secondly, increased vaporisation rates over fine bubbles by a factor of 7 were caused by the 

microbubble evaporation/distillation principle, due to more rapid internal mixing. Following 

LeChatelier’s principle, water produced by esterification in the bubble is removed, therefore driving 

the reaction to completion. This concept has been proven in the lab, with neither base nor acid 

catalysts, but ozone rich microbubbles. Immediate efflux from the plasma reactor into a microbubble 

for oxidising is tested as potential ozone generators for pilot scale (Zimmerman, et al., 2013). 

In the previous section, several techniques used in the esterification of FFA were presented. 

Although some of them present an alternative for this process, they require a high operating 

temperature, resulting in a more complicated and less efficient reaction. Both the homogeneous and 

heterogeneous acid catalysed esterification represent a valid alternative. Chai et al reported the use 

of sulfuric acid  for the esterification of a used vegetable oil with using a methanol:FFA molar ratio of 

20:1 and a catalyst loading of 5% resulting in a good performance for a FFA range of 15-35%, an 

activation energy for the esterification reaction of 20.7 kJ/mol was calculated (Chai, et al., 2014).  

The biodiesel production from Jatropha oil has been explored using a novel magnetic carbonaceous 

acid. The acid showed high stability and activity, and it was easy to recover (96.3 recovery rate) after 

the reaction was carried out yielding 90% conversion. It was found that the catalyst had a high acid 

density of 2.8 mmol/g and strong magnetism, ideal for direct production of biodiesel from vegetable 

oils with a high acid value (17 mg KOH/g). A non-edible oil (Calophyllum inophyllum) with a FFA of 15% 
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was used for the biodiesel production using a sulphonated carbon catalyst showing a conversion of 

99% (Zhang, et al., 2015; Dawodu, et al., 2014). 

As mentioned before, both the heterogeneous and homogeneous acid catalyst have the 

requirement of methanol in excess, a high temperature and catalyst loading. This separation 

requirement in the pre-treatment stage would be significant in the feasibility of the process in terms 

of industrial applications since it means the use of large vessels with the capability to separate and 

then recycle the excess methanol to make the process economically viable. Another matter of 

importance is the separation of the acid catalyst before transesterification, since an alkaline catalyst is 

used to achieve rapid kinetics. If the acid catalyst is not removed, it would mean the production of salts 

and water. Unreacted FFA would then react with the alkaline catalyst, meaning further downstream 

processing and a surplus of the alkaline provision to substitute the spent catalyst. The downstream 

separation for methanol and water would then require vacuum distillation to be carried out and 

potentially an ion-exchange resin to purify the glycerol and remove the produced salts. All the steps 

here mentioned are classified as energy intensive accounting for a significant part of the cost of the 

process (Kokoo & Zimmerman , 2018; Talebian, et al., 2013).  

Having said this, the esterification of FFA seen as a pre-treatment stage could represent an 

improvement for the downstream processing if the produced water were removed before the 

subsequent step, the transesterification. Zimmerman et al reported a methodology for the rapid 

evaporation with hot, dry microbubbles, which successfully stripped the water from the reacting 

mixture. The direct contact microbubble evaporation always achieved 100% relative humidity, 

observing an absolute humidity decrease and a vapour temperature reduction with contact time 

increase. The process is considered to operate under isothermal conditions with low contact times and 

a high selectivity for vaporisation over sensible heat transfer was achieved (Zimmerman, et al., 2013).  

Therefore, introducing dry microbubbles would favour the stripping of water from the reacting 

mixture. In theory, the proposed reactive distillation can potentially achieve completion according to 

LeChatelier’s principle for an equilibrium reaction. Removing the produced water by means of 

vaporisation would drive the esterification reaction to completion, as a new molecule of water would 

need to be produced in order to replace the one previously removed. Regrettably, the injection of 

microbubbles alone in the reactive mixture of the acid esterification reported by Talebian et al with 

high excess methanol did not achieve the anticipated effect. The operating conditions varied in this 

study were the methanol:oil ratio, catalyst loading, reaction temperature and time. The highest 

conversion of 88.6% was then achieved at a molar ratio of 70:1 at 65°C, with a catalyst load of 10wt% 

and a reaction time of 14 hours (Talebian, et al., 2013).  
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Abdulrazzaq et al reported the separation of azeotropic mixtures using air microbubbles generated 

by a fluidic oscillator. It was reported a strongly non-equilibrium preference for the vaporisation of 

ethanol in mixtures containing water-ethanol when hot microbubbles were injected. In the following 

modelling of the experimental data is described that the non-equilibrium driving force studied in the 

mixtures is more rapidly achieved vaporising ethanol in the different liquid proportions studied 

(Abdulrazzaq, et al., 2015; Abdulrazzaq, et al., 2016).  

Methanol is known to be more volatile than ethanol, this is why it would be expected to vaporise 

and then occupy the vapour phase in the bubble domain in the esterification reacting mixture. 

Suggesting that both water and methanol would be removed from the mixture, but preferentially 

methanol. Excess methanol is needed to push the equilibrium favouring the forward reaction 

(esterification) whereas water removal would pull it, injecting hot microbubbles would pull the 

equilibrium but weaken the push. It is clear that something more than just the injection of hot 

microbubbles is needed to avoid the vaporisation of methanol. Kokoo and Zimmerman proposed the 

methanol present in the esterification as immediately reactive in order to make the water removal 

more effective. The reaction mechanism is set to be on the bubble interface, where the produced 

water can joing the dry bubble and the methanol residue remains in the liquid domain as part of the 

FAME produced. In order to overcome the vaporisation of the methanol, this species forms the 

methoxy free radical whenever a methanol molecule reaches the surface of the bubble (Kokoo & 

Zimmerman , 2018; Timberlake & Hodges, 1970). 

 Microbubbles can potentially be injected with ozone in order to generate ozone-rich microbubbles. 

In fact, ozone is known to be a free radical initiator. It has been reported by Lozano-Parada and 

Zimmerman that it is possible to tune an in-situ ozone plasma microreactor to preferentially produce 

oxygen singlet radicals by adjusting the residence time and then injecting them directly into the bubble. 

At 1x10-2 s, the ozone production found its maximum and for the oxygen singlet the maximum yield 

was found at 1x10-3 s. This means a 10x throughput can be produced by tuning the microreactor at the 

appropriate operating conditions (Lozano-Parada & Zimmerman, 2010; Zimmerman, 2011; Rehman, 

et al., 2016).  

It has been reported that the oxygen radicals would form hydroxyl radical in the presence of water. 

In the presence of methanol, these radical species could potentially scavenge the labile hydrogen from 

the alcohol group and form the methoxy radical. Kokoo and Zimmerman proposed the ozone-rich 

bubbles injection into methanol-FFA mixtures without any catalyst present, suggesting the reaction is 

driven towards completion of esterification by the water removal mechanism previously described, 

but dramatically enhanced by the free radical chain reaction (Kokoo & Zimmerman , 2018).  
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Presently, there are no claims that the esterification of FFA can be free radical catalysed. Abdul-

Majeed et al reported an unconventional flying jet DBD plasma torch for the esterification of used 

cooking oil when compared to conventional transesterification, suggesting that plasma activation can 

successfully catalyse transesterification as well as esterification. Nevertheless, a plasma jet does not 

provide a route for the water vaporisation, meaning one would not expect the esterification to go to 

completion but only being catalysed using this method (Abdul-Majeed, et al., 2016).  

2.2. Intensified esterification using microbubbles 

In this section are discussed the most relevant aspects of the intensified esterification method 

proposed such as the microbubble generation and its size effect, the fluidic oscillator technology, the 

coalescence between microbubbles, the Dielectric Barrier Discharges for plasma generation, the 

Criegee mechanism of fatty acids, the reaction kinetics of this method, the hydroxyl and methoxy 

radical kinetics the steady state approximation and the heat and mass transfer aspects of the 

mechanism proposed. All of these features are used in the next chapters, in order to build a robust 

model that is informed in experiments and then validated. The main importance of this section relies 

on describing the physical and chemical parameters studied in the intensified esterification in order to 

ease the calculations understanding of the proposed models.  

2.2.1. Microbubbles generation and size effect 

The importance of bubbling systems in diverse industrial processes is related to the gaseous 

exchange of heat and mass transfer from the gas to the liquid phase and vice versa. The microbubble 

dispersal application in engineering is called surface aeration, commonly used in the design of 

bioreactors. The higher surface area to volume ratio of microbubbles improves the efficiency of these 

processes where a gaseous exchange takes place. One of the main benefits of microbubbles is the 

transport behaviour in terms of momentum, mass and heat transfer at the interface (skin of the 

bubbles) influenced by the interfacial surface area. The interphase mass transfer flux (J) is given by:  

 𝐽 = 𝐾𝑙 ∙ 𝑎 (𝑐𝑔 − 𝑐𝑙) (1) 

where a is the interfacial area, 𝐾𝑙 is the mass transfer coefficient (mol s-1), 𝑐𝑔and 𝑐𝑙  are the molar 

concentrations of the gas and liquid phase respectively. Regarding the heat transfer flux (Q), there is 

an analogy where the concentrations are replaced by temperature that is the Newton’s Law of cooling 

(Zimmerman, et al., 2008).  

Concerning the effect in momentum transfer, the mass transfer flux is taken by the force (F) in the 

vertical direction due to changes in the velocity in the horizontal direction, this behaviour follows 

Newton’s Law of viscosity given by:  
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 𝐹 = −𝜇𝑎
𝛿𝑤

𝛿𝑥
 (2) 

The momentum transfer is increased by a cloud of rising bubbles because the surface area of the 

cloud drags more of the surrounding liquid with it compared to one larger bubble with less surface 

area. Instinctively it could be thought that smaller bubbles rise slower than a single large bubble 

matching the volume. In Figure 5, the rise velocity of microbubbles is shown based on experimental 

data and theoretically. From the slope in Figure 5 can be deducted that bubbles three times smaller 

stay in the liquid domain ten times longer, this means they have a longer time to transfer the same 

momentum rate. Transfer rates in microbubbles increase inversely proportionally to the size of the 

bubble, but the difference in velocity rises proportionally to the bubble size. Having said this, it could 

be expected for the momentum transfer by the cloud to be comparatively constant. Nevertheless, due 

to the finite height in terms of the liquid layer the momentum transferred should be larger when using 

smaller bubbles. (Zimmerman, et al., 2008; Liger-Belair, et al., 2004).  

 

Figure 5 Rise velocity of microbubbles (Levich, 1962). 

Geometrically speaking the surface area to volume ratio of a bubble (sphere) increases inversely to 

the radius given by: 

 
𝑆

𝑉
=

4𝜋𝑟2

4
3 𝜋𝑟3

=
3

𝑟
 (3) 

Regarding the bubble phase, if the total volume V0 is set to be constant then:  

 𝑆 =
3

𝑟
𝑉0 (4) 

For example, if 1 L of air is dispersed in 100 m bubbles the interfacial area increases significantly 

to 10 m2, which is greater than a tank open to the atmosphere with a reasonable sized air-liquid 

interface. It may result difficult to calculate the mass transfer coefficient when studying one single 

bubble since it depends on the environment, properties of the medium and hydrodynamics of bubble 

rise. Generally, the mass transfer is dominated by convection and be fitted to a phenomenological 
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equation like the interphase mass transfer flux stated previously in this section where the interfacial 

area is proportional to the overall flux. In other words, heat or mass flux are enhanced when decreasing 

the bubble size (Desphande & Zimmerman, 2005; Zimmerman, et al., 2009).  

Dividing a determined volume into N, smaller and equal in size, objects results in additional surface 

area which scales with the cube root of N. The notorious effect of using smaller bubbles is depicted in 

Figure 6, the bubble volume scales as the cube of the bubble size l, but the transfer rate and surface 

area scale with its square. Hence, any transfer coefficient that is proportional to the surface area to 

volume ratio will increase by a factor of 2. This means that if a bubble reduces in size the process 

efficiency is enhanced due to better mass or heat transfer (Brittle, et al., 2015).  

 

Figure 6 Surface area and bubble volume scaling in microbubbles (Zimmerman, et al., 2008). 

As a result of the behaviours pointed out previously, Figure 7 shows that the total transfer rate 

across surface scales inversely with the bubble size. A rising cloud comprised of smaller bubbles lead 

to greater transfer rate when compared to the number of bubbles adjusted to keep the gas phase 

volume at a constant value. Following the Stokes regime, if nonlinearity is neglected then the stirring 

effect by the rising cloud of smaller bubbles surpasses that of a single larger bubble.  

 

Figure 7 Total transfer rate across surface (Zimmerman, et al., 2008). 
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The residence time of a microbubble in a viscous liquid can be calculated using the Stokes Law, 

where as a result of the squared diameter (𝑑2) it can be inferred that residence times for smaller 

bubbles are longer for the same height of the liquid layer.  

 𝑈𝑠𝑡𝑜𝑘𝑒𝑠 =
2

9

𝑔Δ𝜌𝑑2

𝜇
 (5) 

This means smaller bubbles have more time for momentum transfer to the liquid dragged along 

with them, even if they have less momentum to be transferred. Momentum is transferred as well for 

the 
𝑆

𝑉
 ratio of a bubble defined previously by shear stress across the surface area. Consequently, when 

using smaller bubbles, the flux of momentum is increased by the 
𝑆

𝑉
 ratio. Microbubbles appear to have 

a dragging ability which is higher when rising with the same volume of fluid holdup. This is relevant for 

improved mixing in a riser region of a bioreactor, if bubbles are produced energetically efficiently. In 

order to achieve an equivalent mixing level with microbubbles, a lower volumetric flow rate is used. 

This means a higher holdup at lower volumetric flow rates due to a longer residence time in the liquid 

phase. In 2006, Shi studied this behaviour in laboratory experiments demonstrating an 8-fold increase 

in the transfer of dissolved oxygen when using 8-fold smaller bubbles with oscillatory flow compared 

to the same volumetric flow rate through the same nozzle bank (Zimmerman, et al., 2009; Shi, 2006).  

Burns et al compared three commonly used mechanisms used in bubble generation. Air spraying, 

electroflotation and Dissolved Air Flotation (DAF) are then discussed in terms of surface area and 

bubble size produced per time as a function of the power input. This study showed that DAF resulted 

in the finest bubble size distribution with largest average bubble size but assured the highest surface 

area/power/unit time when compared to the other two methods. This method also showed a small 

improvement of bubble size when the pressure was increased to 60-90 psi in order to produce 46-57 

m bubbles (Zimmerman, et al., 2008; Burns, et al., 1997).   

The ultrasonic method to produce microbubbles uniformly with a diameter of 4-15 m at a constant 

rate was reported by Makuta et al. The produced bubbles from the tip of a needle were oscillated using 

ultrasonic waves and projections for the surface waves were formed to produce a continuous stream 

of small bubbles. One of the main bubble generation constraints was the gas viscosity of around 20 

μPa s in a viscous liquid with a high kinematic viscosity ranging between 5-100 mm2 s-1 and a surface 

tension of 20-34 mNm-1 (Makuta, et al., 2006). 

In the previously described processes for microbubble generation, the high value added to the 

compound obtained justifies the use of high-power technologies to generate microbubbles. However, 

it is desired to explore new alternatives to generate microbubbles that do not require a high power. 

The microbubble generation could then potentially benefit from innovations on the energy efficiency 

whilst achieving the same holdups and same bubble size distribution (Zimmerman, et al., 2008).  
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2.2.2. Fluidic oscillator 

The esterification approach is controlled by the microbubble surface are and bubble flux. In 

previous trials at pilot and industrial scale implementations carried out by Zimmerman, less than 100 

m average bubble size can be obtained, whilst lab bench usually achieves a size of around 600 m. 

Having said this, the kinetics of larger scale trials should be faster and better mixed than lab bench 

trials.  

Microbubbles are mainly produced by three methods, the most commonly used one involves the 

compression of a gas to nearly 6 bar to be then released through a nozzle. Another method for 

microbubble generation is ultrasound. Nevertheless, these techniques would require a high-power 

density to generate small bubbles. Lastly, microbubbles can potentially be generated oscillating the 

fluid by mechanical vibration or using a fluidic oscillator. This device offers a cheap alternative and has 

a low maintenance requirement since there a no moving parts that could suffer damage (Zimmerman, 

et al., 2008; Zimmerman & Tesar , 2013). 

 

Figure 8 Fluidic oscillator (Zimmerman, et al., 2009). 

The fluidic oscillator is comprised of two main components, an amplifier and a feedback loop. Figure 

8 shows a fluidic oscillator made by laser cutting in acrylic plates. The amplifier is made of CNC acrylic 

glass plates designed to form a cavity. The feedback is used to connect the two control terminals of 

the amplifier. When the fluid enters the main cavity through a nozzle, it arises as a jet causing the fluid 

to travel from either side of the jet. Around the walls of the device, low pressure regions start 

developing causing the jet to attach to one side of the cavity explained by the Coanda Effect. This 

results in a pressure difference throughout the control terminal generating a pressure wave in the 

feedback loop which then diverts the jet to the other outlet and vice versa. An important parameter 

when operating the fluidic oscillator is the oscillation frequency which depends on the flow rate and 

the length of the feedback loop (Rehman, et al., 2015). 

Zimmerman et al reported an energy efficient mechanism for microbubbles generation on the size 

of the pore used to disperse the bubbles using a fluidic oscillator. This approach decreases the friction 
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losses in the pipe network and nozzle/diffuser due to the boundary layer disruption, this results in an 

energetic consumption saving when compared to steady flow. The bubble cloud generated using this 

technique is of the scale of the pore when the distribution of the antechamber gives a good distribution 

and the frequency of oscillation is high enough. Another parameter that has influence on the size of 

bubbles generation is the surface wetting properties. A thin water film between the pore material and 

the bubble is often seen in hydrophilic surfaces, and when using a hydrophobic gas like air no adhesion 

to the solid surface is experienced. In this case the bubbles emerge like bullets from the pores, instead 

of the conventional (steady flow) slow pushing out from the pore. Having said this, the air pulses has 

an impact on the bubble size (Zimmerman, et al., 2008; Zimmerman, et al., 2009). 

A relevant application of the wave dynamics theory involves the length of the pulse. The linear 

velocity of the fluid is related to the speed of the carrier, and if divided by the frequency of oscillation 

it gives the wavelength of the pulse. In this case, the linear flow rate should be as small as possible and 

the frequency as large as possible in order to produce smaller bubbles in the order of magnitude of 

1x10-6 to 1x10-9. A fluidic oscillator achieves frequencies of 1-100 Hz, it has been reported that the 

smallest bubbles are generated at higher harmonics of the oscillation when using the fluidic oscillator 

(Zimmerman & Rees, 2004; Hool & Schuchardt, 2011).  

An increase in the oscillations is related to the miniaturisation of the fluidic oscillator and resulting 

in oscillations in kHz required if nanobubbles were to be produced. It is important to mention that the 

oscillatory flow differs from classical calculations of bubble mass, and it based on the Tate’s law instead 

defined by: 

 𝑊 = 2𝜋𝑟𝛾 (6) 

where W is the weight of the bubble and is calculated using the surface tension and the pore size. 

The density of a gas is known to be relatively small when compared to a liquid, this law states that a 

larger diameter bubble diameter than the pore radius (r) is obtained unless the surface tension (𝛾) is 

dramatically small. It is relevant to mention that one key feature when working with water is its large 

surface tension, therefore wetting effects are inherently different when microbubbles are generated 

in a fluidic oscillator than in the conventional steady flow generator (Zimmerman, et al., 2011).  

As mentioned before, this research project focuses on the use of microbubbles to carry out an 

intensified esterification using cheap organic oils. Microbubbles have several industrial applications 

due to their higher surface to volume ratios compared to that of fine bubbles. Advantages such as 

efficient mixing and increased mass transfer rate are obtained when working with microbubbles. 

Presently, there are three main microbubbles production methods: injection of compressed air into 

the liquid phase, ultrasonic waves, and the fluidic oscillator driven microbubbles. The last one is the 

preferred approach for this research project since it is a low-power generation method using a porous 
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material. Zimmerman et al in 2009 introduced a fluidic oscillator, this device is connected to a steady 

air supply that in conjunction with a set frequency, generates uniform microbubbles with the same 

size as the pore. This microbubble production method has several advantages, such as robustness, 

non-electrical dependence, and low operating costs. In addition to the higher surface area per unit 

volume ratio observed when using microbubbles compared to that of fine bubbles, their residence 

time is also longer meaning more time for microbubbles to react with the components in the liquid 

phase around them (Zimmerman, et al., 2009). 

In spite of this, a lower transfer momentum has been reported in experiments. In Figure 8, a photo 

of the assembled fluidic oscillator previously described is shown. Its ability to divert the flow passing 

through the supply nozzle is controlled by terminals A and B. The frequency of oscillation is controlled 

by adjusting the supply flow rate and the length of the feedback loop. The surface of the pore has also 

influence on the size of the bubbles, when using hydrophilic surfaces, a thing water film is developed 

between the bubble and the pore material. When using hydrophobic gases, a bullet shape is observed 

since they do not stick to the pore surface (Zimmerman & Rees, 2009; Zimmerman, et al., 2011; Tesar, 

et al., 2006). 

As part of this research project, fluidic oscillator driven microbubbles in conjunction with plasma 

microreactor is used to inject ozone-rich microbubbles to enhance the proposed intensified 

esterification. Presently, there are several techniques to produce ozone, such as electrolytic technique, 

ultraviolet light and non-equilibrium plasma. The electrolytic technique is expensive due to the high 

potential and current needed to electrolyse water. The ultraviolet light requires a great amount of 

energy and achieves only small yields of ozone. Lastly, non-equilibrium plasma is the preferred ozone 

production method in this research project. This method has several advantages like: discharge 

generated from AC power, atmospheric pressure, and moderate gas temperature. Some examples of 

non-equilibrium plasmas are corona discharge, glow discharge and dielectric barrier discharge (DBD). 

This last one is the most common technique for ozone production around the world and an schematic 

of this device is shown in Figure 10 (Eliasson & Kogelschatz, 1991; Conrads & Schmidt, 2000). 

 

Figure 9 Comparison of microbubble generation using the fluidic oscillator (Zimmerman, et al., 2011). 
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A brief comparison of the microbubble generation using the fluidic oscillator is illustrated in Figure 9. 

On the right side of the figure, the resulting microbubbles at a steady flow through a 15 cm diameter 

microporous diffuser considering a pore size of 20 μm size pore. The bubbles here observed have a 

size of 500 μm which is much larger than the pore due to coalescence effects. On the left side, the 

microbubbles generated using the same fluidic oscillated considering a fast oscillation of nearly 90 Hz 

and a flow rate tuned to the Stokes rise velocity are shown. These operating conditions result in non-

coalescent and uniformly dispersed microbubbles with a size of 20-100 μm. There are multiple 

applications where high transfer rates at low volumetric flows and low-energy processes are desired. 

Having said this, microbubble generation even for high flow rates could potentially be achieved using 

this technique. When operating at the same temperature, the bubble size obtained using a fluidic 

oscillator is smaller than a system operating without it, this is due to the pulsejet stream. Typically, 

decreasing the buoyant forces results in a bubble size increase, which is a function of the liquid density. 

Kokoo and Zimmerman reported that the density of oleic acid decreased slightly with an increase of 

the liquid temperature resulting in larger bubbles. The bubble size decreases when the liquid 

temperature is increased due to the reduction of the fluid viscosity (Zimmerman, et al., 2011; Kokoo 

& Zimmerman , 2018; Ma, et al., 2012) 

2.2.3. Low power consumption plasma microreactors  

The production of ozone and the oxygen related radicals is limited by high-power consumption, 

high voltage and vacuum operation. In the past years, Zimmerman et al reported different plasma 

microreactors operating under atmospheric pressure, room temperature and low voltage. A plasma 

reactor onto microchips has been developed with a built-in plasma source and impedance matching 

network, resulting in a greater operational flexibility when compared to conventional plasma sources. 

This set up achieved a low power consumption when operating plasma microreactor for ozone 

formation by taking advantage of the rapid kinetics of the chemical reaction. For greater throughput, 

a prototype dosing lance complex was developed for the plasma reactor, leading to high dispersal rates 

of the ozone when delivered to the microbubble. It is relevant to point out that ozone is highly reactive, 

and microbubbles have a low carrying capacity suggesting the possibility to tune the production and 

dispersal of the ozone and oxygen radicals found in the sample. This eradicates the need for costly 

further processing of unspent ozone destruction (Lozano-Parada & Zimmerman, 2010; Zimmerman, 

2011). 

Zimmerman reported the development of a microreactor operation with its respective plasma 

source and matching network optimisation. It was found that ozone production can be carried out 

developing a glow discharge with a low voltage (170 VC AC) at room temperature and atmospheric 

pressure using an electric field of 100 Hz AC. Conventional plasma sources operate at 13.56 MHz to 
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maintain the plasma continuously. Using a low frequency like 100 Hz, this operation requires one tenth 

the specific power for ozone yield when compared to conventional ozone generation. This 

phenomenon is mainly attributed to the kinetics of the ozone formation reaction. It was demonstrated 

that 99% of the ozone and oxygen singlet equilibrium yield was obtained 1x10-2 and 1x10-3 s. The 

reactor used in this experiment had a length of 1 cm and with a superficial velocity of 1 and 10 m/s, 

the residence times for each species can be calculated. This method allows low power operation simply 

to power the plasma only while the reaction is taking place and then provide fresh reactants to a 

process. There is one potential drawback for this method, the extinction of the plasma at the walls. 

Ions in the plasma are estimated to have a diffusion velocity of 1 cm/s, and the time to extinction is 

around 0.1 s considering the electrodes are 800 m apart from each other. Suggesting that by that 

time the reaction is already over, and the products can be used without worrying about their extinction 

at the walls. Conventional plasma reactors walls are far apart in order to minimise the extinction of 

the plasma (Zimmerman, et al., 2011).  

Dielectric-Barrier Discharges (DBD) are presently used in large industrial scale since they combine 

the advantages of non-equilibrium plasma properties with operating atmospheric pressure. One 

important feature of this technology is the relatively simple scalability from laboratory to industrial 

scale (MW input power). They consider a frequency that lies between 1 kHz and 10 MHz with a 

pressure ranging between 10-500 kPa. Some of the main applications include pollution control, surface 

treatment, ozone generation and CO2 lasers. The operating conditions and the application have an 

influence when choosing the desired discharge with a filamentary structure or a diffuse appearance 

(Kogelschatz, 2003).  

Non-equilibrium plasma is the preferred ozone production method in this research project. This 

method has several advantages like: discharge generated from AC power, atmospheric pressure, and 

moderate gas temperature. Some examples of non-equilibrium plasmas are corona discharge, glow 

discharge and dielectric barrier discharge (DBD). This last one is the most common technique for ozone 

production around the world and an schematic of this device is shown in Figure 10 (Eliasson & 

Kogelschatz, 1991; Conrads & Schmidt, 2000). 
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Figure 10 Ozone generation using dielectric barrier discharge (DBD) (Chalmers, et al., 1998). 

In a DBD device, at least one of the surfaces is covered by a dielectric layer (quartz, ceramic, glass, 

polymers) and uses one of the three types of silent discharge (volume, coplanar and surface). DBD 

devices can be run using AC power supply with a frequency of 50-1 MHz, voltage of 1-10 kV, a gap 

between layers of milimetres range and operated at high pressure of 1-3 bar. Having said this, DBD is 

suitable for large scale production using as the reactant source either air or pure O2. This method does 

not require a vacuum pump or air compressor, resulting in less operating costs and higher active 

processing volumes (Becker, 2005; Pietsch & Gibalov, 1998). 

2.2.4. Reaction kinetics 

There are several factors affecting the yield of biodiesel, such as the alcohol quantity, reaction time, 

and reaction temperature. From the factors listed above, the molar ratio of alcohol to triglyceride 

seems to be one of the main factors. Theoretically for the transesterification reaction, 3 mol of alcohol 

and 1 mol of triglyceride are required to produce 3 mol of fatty acid ester and 1 mol of glycerol. In 

biodiesel production, an excess of alcohol is used to ensure that oils will be converted to esters, and a 

higher alcohol triglyceride ratio can result in a greater ester conversion in a shorter period of time. 

Yield of biodiesel is increased when alcohol triglyceride ratio is raised beyond 3, reaching a maximum. 

The molar ratio associated with the type of catalyst used, and usually the molar ratio used in most 

investigations is 6:1. When the content of FFAs in the oils is high, a molar ratio as high as 15:1 is needed 

when using the acid-catalysed reaction (Leung, et al., 2010). 

The conversion rate of fatty acid esters increases with reaction time. Firstly, the reaction happens 

slowly due to the dispersion and mixing of alcohol into the oil. The reaction proceeds in a faster pace 

after a while, usually the yield reaches a maximum at a reaction time of 90 minutes, remaining constant 

with a further increase in the reaction time. A reduction in the product yield could be cause by an 

excess reaction time, due to backward reactions resulting in a loss of esters. On the other hand, a 

higher reaction temperature decreases the viscosity of oils resulting in an increased reaction rate, 

reducing the reaction time. If the temperature increases beyond the optimal level, the yield of 

biodiesel decreases due to the acceleration of secondary degradation reactions. The reaction 
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temperature should always be less than the boiling point of the alcohol, ensuring that the alcohol is 

not lost through vaporisation. Temperatures normally range from 50 to 60 ˚C (Leung, et al., 2010). 

Tesser et al in 2010 reported a kinetics model for HBr dissociation when considering the 

esterification reaction, they stated that the uncatalyzed reaction (no acid added) is consistent with 

second order kinetics in FFA concentration. The main reason for this is because FFAs serve as both the 

substrate and H+ donor. According to this statement, the concentration of H+ depends on the FFA 

concentration whether the reactions is catalysed or not. The production of H+ depends on the 

dissociation of the acid in the catalysed reaction. It is assumed that bromide ions are only produced in 

stoichiometric ratio with H+ and that aqueous dissociation reaches equilibrium really fast. HBr does 

not dissociate strongly in methanol solution as sulphuric acid giving a weaker acid catalysed 

esterification. Therefore, the introduction of water vapour in the microbubble aids the dissociation of 

HBr. Having said this, the forward reaction depends on the concentration of water and the role of FFA 

in the hydrolysis reverse reaction is also acid catalysed. It is important to acknowledge that exists a 

methanol concentration dependency and varying the methanol concentration increase the curves for 

acid values. This model proposes that the greatest source of H+ is the dissociation of HBr in water, 

showing the dependency of the forwards reaction on the presence of water (Tesser, et al., 2010; 

Berrios, et al., 2007). 

As mentioned before, in this research project one of the aims is to explore the effect of the oxygen 

singlet in the ozone free radical initiated esterification. This reaction is hypothesised to happen on the 

bubble interface. In the reacting mixture, both the methanol and FFA can be found to then notice the 

increase in FAME production as the product of interest. To avoid the propensity of the methanol to 

vaporise, it is assumed that methanol becomes immediately reactive this means the water removal 

would be more effective. In order to make the methanol reactive, it is assumed to form the methoxy 

radical in the presence of oxygen singlet, this is the first step of the reaction mechanism here proposed.  

The methoxy group is known to be a substituent with a large negative 𝜎+ value of 0.78. Timberlake 

and Hodges described the methoxy group as stabilising group with good resonance towards carbonium 

ion centres. The hydrogen abstraction from ethers rates and stabilisation energies of methoxy 

substituted methyl radicals are in agreement with the stabilisation of radical centres by the methoxy 

group (Timberlake & Hodges, 1970). 

Kokoo reported the esterification of oleic acid using methanol as the protic solvent, since it 

increases the production of FFA specifically 1-nonanal, when compared to ethanol, n-propanol, iso-

propanol and butanol. Methanol was reported to have a lower reactivity with ozone, this means 

methanol loss due to its oxidation by ozone is relatively low. The Henry’s Law constant and diffusion 

coefficient reported for FFA-methanol mixtures are higher when compared to the mixtures with the 
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other solvents. This would favour the generation of smaller bubbles in the reacting mixture, increasing 

the interfacial area and hence the mass and heat transfer. The main drawback reported by this study 

was the already known low boiling point of methanol which is here overcome by the high reactivity of 

this species in the proposed reaction mechanism (Kokoo & Zimmerman , 2018).  

Kokoo and Zimmerman reported that in the presence of water, the oxygen radicals produce 

hydroxyl radicals to then form water in the presence of methanol by scavenging the labile hydrogen 

from methanol to form the methoxy radical. Therefore, the reaction mechanism is based on the 

hypothesis that ozone-rich bubbles can be injected to the reacting mixture and tuned in to obtain the 

maximum oxygen singlet generation, so this free radical initiated esterification would be driven 

towards completion by the removal of water caused in the microbubble stripping but enhanced by the 

free radical chain reactions. One of the advantages of this mechanism is that no acid or basic catalyst 

is used, instead the free radical species act as the catalysts. Avoidance of downstream processing to 

eliminate and neutralise the catalysts is then obvious, reducing the operational cost of this process 

compared to the conventional esterification process. It is important to state that the effect of varying 

the oxygen singlet concentration is here studied in order to determine the its overall effect on the 

esterification reaction (Kokoo & Zimmerman , 2018).  

2.2.5. Proposed three-step mechanism reaction  

Kokoo and Zimmerman proposed the methanol present in the esterification as immediately 

reactive in order to make the water removal more effective. The reaction mechanism is set to be on 

the bubble interface, where the produced water can join the dry bubble and the methanol residue 

remains in the liquid domain as part of the FAME produced. In order to overcome the vaporisation of 

the methanol, this species forms the methoxy free radical whenever a methanol molecule reaches the 

surface of the bubble. This reaction is given by the equation below. (Kokoo & Zimmerman , 2018; 

Timberlake & Hodges, 1970). 

 𝑂 ·  + 𝑀𝑒𝑂𝐻 → 𝑀𝑒𝑂 ·  +𝐻𝑂 · (7) 

 Microbubbles can potentially be injected with ozone in order to generate ozone-rich microbubbles. 

In fact, ozone is known to be a free radical initiator. It has been reported by Lozano-Parada and 

Zimmerman that it is possible to tune an in-situ ozone plasma microreactor to preferentially produce 

oxygen singlet radicals by adjusting the residence time and then injecting them directly into the bubble. 

At 1x10-2 s, the ozone production found its maximum and for the oxygen singlet the maximum yield 

was found at 1x10-3 s. This means a 10 times faster throughput can be produced by tuning the 

microreactor at the appropriate operating conditions (Lozano-Parada & Zimmerman, 2010; 

Zimmerman, 2011; Rehman, et al., 2016).  
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By feeding the free radicals generated in the plasma microreactor directly into microbubbles, one 

avoids the three “Ds” that would significantly slow ozone kinetics in water and wastewater. Firstly, 

dispersion is related to the fact that nearly half of the ozone produced does not mixt into the substrate 

liquid, so it must be destroyed. Secondly, dissolution refers to the solubility of ozone in water is very 

low and expected to be similar in methanol-FFA mixtures, which results in dissolution rates with a small 

driver resulting in an inherently slow reaction. Lastly, dissociation of ozone into hydroxyl radicals in 

water is also slow (Beltran, 2003).  

Having said this, the use of microbubbles which are directly fed the oxygen singlet results in 

hydroxyl radicals which can then react with the methanol in the liquid mixture. This reaction is set to 

happen in the gas-liquid interface, the skin bubble. The thesis here presented models the effect of 

increasing the oxygen singlet concentration in order to speed up the overall reaction kinetics of the 

intensified esterification.  

 𝐻𝑂 ·  +𝐻𝑂 · →  𝐻2𝑂 +  
1

2
𝑂2 (8) 

 𝐹𝐹𝐴 + 𝑀𝑒𝑂 · → 𝐹𝐴𝑀𝐸 + 𝐻𝑂 · (9) 

It has been reported that the oxygen radicals would form hydroxyl radical in the presence of water. 

In the presence of methanol, these radical species could potentially scavenge the labile hydrogen from 

the alcohol group and form the methoxy radical. Kokoo and Zimmerman proposed the ozone-rich 

bubbles injection into methanol-FFA mixtures without any catalyst present, suggesting the reaction is 

driven towards completion of esterification by the water removal mechanism previously described, 

but dramatically enhanced by the free radical chain reaction. The esterification reactions are known to 

be second order reversible reactions. (Kokoo & Zimmerman , 2018).  

The reaction mechanism here proposed is then summarised in the overall reaction equation which 

is described below: 

 𝐹𝐹𝐴 + 𝑀𝑒𝑂𝐻 + 𝑂 · ↔ 𝐹𝐴𝑀𝐸 + 𝐻2𝑂 +
1

2
𝑂2 (10) 

The microbubbles generated with a fluidic oscillator have an initial concentration for the free radical 

𝑂 · of [𝑂 ·]= 4500 ppm which corresponds to the initial concentration of [𝑂 ·]= 281.25 mol/m3 used in 

these models. The production rate of the biodiesel is then maximised by producing a high amount of 

𝑂 · using an advanced oxidation plasma reactor. 

In the models here proposed the effect of important parameters such as bubble size, initial bubble 

temperature and the initial oxygen singlet concentration are studied on the production of FAME in the 

ozone free radical initiated esterification. These predictions are of high importance not only for the 

design of the system but also for the optimisation of the bioprocess operating parameters here 

described.  
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2.2.5.1. Free radicals in microbubbles 

Mulakhudair et al reported the production of free radicals in aqueous solution for the 

decomposition of lignin in order to enhance the digestibility of lignocellulosic biomass. The 

degradation of polyvinyl alcohol by collapsing microbubbles has been reported as well, describing 

microbubbles as a strong degradation/oxidizing agent. Li et al reported a reduction in phenol of around 

60% in 2 hours by the application of microbubble collapse to treat wastewater. In this case, the use of 

oxygen microbubbles resulted in the highest rate constant of 1.6 h-1 suggesting the hydroxyl radicals 

enhance the phenol decomposition process. Oxygen microbubbles decomposed more phenol when 

compared to the nitrogen microbubbles, suggesting the oxygen enhances the formation of hydroxyl 

radicals to then speed up the decomposition process. It has been reported that oxygen species like 

superoxide anion radical, hydroxyl and hydrogen peroxide radicals are generated during the reduction 

of molecular oxygen to water (Mulakhudair, et al., 2017; Li, et al., 2009). 

Microbubble boundaries are known to be highly charged interfaces which could carry and release 

free radicals into the medium. When in contact with a liquid, they deposit and attack the surface 

causing degradation of the physical structure or potentially initiation chemical reactions. Ranger et al 

reported that hydroxyl radicals degraded lignin by removing the hydrogen atom from the methyl 

groups or a carbon in its structure. The degradation was influenced by the bubble and particle size, 

carrier gas and the surface charge magnitude.  The radicals generated by collapsing microbubbles are 

mainly hydroxyl and superoxide radicals which are known to attack hydrogen bonds in biomass 

(Ragnar, et al., 1999; Mulakhudair, et al., 2017).  

Chu et al reported that microbubbles have the potential to accelerate the production of hydroxyl 

radicals during the ozonation of simulated dyestuff wastewater. These results are of relevance 

concerning the treatment of hazardous wastewater since this type of radicals have a relatively higher 

standard redox potential of 2.8 V than oxidants lie hydrogen peroxide or ozone (1.77 and 2.07 V 

respectively). This suggests that direct oxidation is relatively slower than radical oxidation. The 

hydroxyl radicals showed an unselective and rapid reactivity with most of the organic compounds 

found in wastewater (Chu, et al., 2007). 

Microbubbles with a high internal pressure could potentially induce the decomposition of ozone 

and therefore contribute to the generation of hydroxyl radicals. According to the Young-Laplace 

equation given by: 

 ∆𝑃 =
2𝛾

𝑟
 (11) 

where ∆𝑃 is the pressure difference, 𝑟 is the radius of the bubble and 𝛾 is the surface tension. This 

suggests that the internal pressure would be higher for bubbles with a smaller radius (Chu, et al., 2007).  
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Han et al reported the generation of free radicals by collapsing microbubbles using th Electron-Spin 

Resonance (ESR) spin-trap method. The presence of short-term free radicals was successfully 

monitored using 5,5-dimethyl-1-pyroroline-N-oxide (DMPO) as the spin-trap reagent, which is 

commonly used for the identification of oxygen-centered radicals like OH and superoxide. Takahashi 

et al reported the free radical generation during microbubble collapse and shrinkage without any 

dynamic stimulus. The reaction rate was increased when the reaction temperature was raised, hence 

accelerating the production of more radicals from microbubbles (Han , et al., 1998; Takahashi, et al., 

2007).  

2.2.6. Heat transfer and evaporation dynamics 

The injection of hot bubbles in a cold liquid causes the energy to be transferred to the surrounding 

mixture either by means of latent heat of vaporisation or sensible heat transfer. The latent heat of 

vaporisation results in the evaporation of the liquid mixture from the surface to the interior of the 

bubble. Whereas, the sensible heat transfer causes an increase in the temperature of the liquid 

mixture. It has been reported by recent experiments that when decreasing the residence time of 

microbubbles in a liquid mixture, vaporisation dominates over heat transfer. At longer residence times, 

heat transfer dominates over vaporisation and the liquid evaporated in the first place is recondensed 

and returned to the liquid mixture from the inside of the bubble (Zimmerman, et al., 2013).  

The recondensation process is connected to a release of sensible heat to the liquid mixture leading 

to an increase in temperature. In order to control these features, the residence time of bubbles is 

determined by the liquid bed height through which the microbubbles rise through. In the case of a thin 

liquid layer, vaporisation is favoured leading to maximum separation efficiency. On the other hand, if 

the bed height is increased then the sensible heat transfer becomes more relevant to the process and 

leads to a reduced vaporisation and increase of the liquid mixture (Abdulrazzaq, et al., 2015).  

Abdurazzaq et al reported the effect of the depth of the liquid layer on the separation efficiency of 

azeotropic mixtures. Increasing the liquid depth resulted in an increase of the final concentration of 

ethanol in the liquid mixture, at 1cm almost no azeotropic separation occurred. This suggests the 

separation of the azeotrope is better at lower bed heights and it can be attributed to the residence 

time of the microbubbles in the liquid. At longer residence times, the microbubbles start cooling down 

and as they rise recondensation of the vapours takes place leading to the transport of these species 

back to the liquid mixture. On the other hand, at lower residence times, this behaviour can be 

prevented, and vaporisation favoured (Abdulrazzaq, et al., 2016). 

The molecules in the liquid mixture need to have enough kinetic energy to escape from the liquid 

to the gaseous phase. The kinetic energy varies directly with temperature, this means that vaporisation 

should happen more rapidly at higher liquid temperatures. An increase in the injected microbubbles 
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temperature would increase the energy carried by the gas phase resulting in an increase of the liquid 

temperature since more sensible heat is transferred.  It is important to point out that higher liquid 

temperatures would increase the kinetic energy of the molecules contained in the mixture, this would 

lead to an increase in the vaporised liquid to the inside of the bubble (Abdulrazzaq, et al., 2015).  

The effects of microbubbles for physico-chemical processes have remained unstudied, phenomena 

such as evaporation and heat transfer on the microbubble interface have significant relevance when 

working at the microscale. In this research project using computational modelling supported by 

experimental evidence, both evaporation and heat transfer on the microbubble interface are explored. 

These two processes are thought to be inherently transient, when dealing with short residence time 

vaporisation tends to be favoured, whilst at longer residence times sensible heat transfer is considered 

to mainly dominate resulting in re-condensation of the vaporised liquid. The main purpose is to address 

how thin a layer thickness (expected to be a few hundred microns) will give the maximum absolute 

vaporisation, after which the vapour is condensed by sensible heat as the bubble cools. When reaching 

the maximum vaporisation in conjunction with the appropriate contact time, a vaporising system with 

minimum heat transfer which removes the maximum of vapour is achieved. Between sensible heat 

transfer of the liquid element and vaporisation on the skin of the microbubble, vaporisation governs 

in right in the beginning. Then the liquid reaches its equilibrium concentration of vapour on the surface 

layer. When working with microbubbles, the internal mixing is essential and in very short time, on the 

order of 10-3s, the maximum absolute humidity is achieved (Zimmerman, et al., 2013). 

Greater heat transfer rates are expected when using greater surface area per unit volumes. Having 

said this, less vaporisation would occur with microbubbles due to less heat available for the latent heat 

of vaporisation to be paid. Energy is split between latent heat of vaporisation and heat transfer to the 

liquid when microbubbles are introduced with turbulent flow. Introducing microbubbles with a fluidic 

oscillator gently introduces bubbles into the liquid using so much less energy density considering a 

laminar flow around the bubbles. In 2012, Hanotu et al reported energy densities 1000-fold smaller 

than those for conventional microbubble generation when using fluidic oscillator driven microbubbles. 

In this process, vaporisation is much faster in the beginning but with a slow heat transfer. By controlling 

the contact time of the microbubbles is possible to achieve a more effective vaporisation without 

sensible heat transfer to the liquid. Some of the results of the experiments carried out by Hanotu et al 

are: vapour temperature reduction with contact time increase, higher liquid temperature with contact 

time increase, and absolute humidity decrease with contact time increase. Microbubble evaporation 

has potential applications like chemical synthesis with reactive extraction, such as condensation 

reactions e.g. esterification (Zimmerman, et al., 2013; Hanotu, et al., 2012).  



55 
 

 

In order to achieve more vaporisation, a different approach could be used in order to conduct the 

process far from equilibrium. It is possible to raise the gas temperature very high with the same 

amount of heat energy since both the density and calorific value for water are 3 orders of magnitude 

larger than that for the gas phase. Zimmerman et al reported the use of a uniform cloud of 

microbubbles which were described as non-convergent (monodisperse). This approach is believed to 

increase the interfacial area which can potentially speed up both evaporation rates and sensible heat 

transfer since the typical model for rate laws are proportional to the gas-liquid surface area. 

Preliminary experiments have reported that the absolute level of humidification can be a controlled 

parameter and varies significantly with the bed height of the liquid that the microbubble rises through. 

One would think that the greater the residence time, the greater the vaporisation achieved. 

(Zimmerman, et al., 2008; Zimmerman, et al., 2011; Zimmerman, et al., 2009) 

There are two recent studies were coarse bubbles were used for the humidification-dehumification 

process by bubbles. Narayan et al reported the potential of this process (solar-driven) desalination and 

modelled a bubble column for the condensation at high concentrations of non-condensable gas using 

bubbles greater than 3 mm with heat transfer coefficients estimated by correlation (Narayan, et al., 

2013).  

Zimmerman et al reported that because of the greater surface are per unit volume of microbubbles, 

a greater heat transfer rate is expected. When microbubbles are introduced under a turbulent flow, 

the energy is then diverted into the latent heat of vaporisation and the heat transfer to the liquid.  The 

microbubbles are introduced gently using a fluidic oscillator into the liquid resulting in a reduction of 

the energy density when compare to conventional microbubbles. This is could be attributed to the fact 

that energy densities are 1000-fold smaller than the nozzle exit regime for conventional microbubble 

generation. Having said this, it is known that heat transfer is slow, but vaporisation is much faster in 

the beginning. This suggests that one can preferentially achieve a more effective vaporisation avoiding 

sensible heat transfer to the liquid by controlling the contact time (Zimmerman, et al., 2013) 

Experiments have been conducted using a bubble column and injecting hot and dry air in four 

different liquids (tap water, methanol-water and ethanol-water binary mixtures, and food particles in 

aqueous solution). The microbubbles were generated using a fluidic oscillator and the major features 

obtained were: a higher liquid temperature and an absolute humidity decrease with residence time 

increase, a vapour temperature reduction was observed as well with a residence time increase. A 100% 

humidity was always achieved and up to a 95% selectivity for vaporisation over sensible heat transfer 

when the bed height of the liquid was tuned. Lowering the liquid bed height from 5 cm to 2cm and 

then 1cm resulted in an increase of the absolute humidity and outlet gas temperature. This means that 

in the competition between sensible heat transfer and vaporisation, vaporisation is favoured 
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immediately. In other words, the liquid would flash to its equilibrium concentration of vapour on the 

surface layer. When using finer bubbles (coarse), this rapid flash has no significant importance since 

the internal mixing of the bubble is too slow to make the most of the preferential vaporisation. When 

using finer bubbles, the effect is considerable since the internal mixing is stronger. The maximum 

absolute humidity is achieved in a very short residence time in the order of 10-3 s, this means a several 

bubble lengths (few hundred microns) for the residence time to be achieved. This is the main driver to 

introduce a microbubble internal mixing that occurs on a time scale of 10-3 s, so the condensing vapour 

or evaporating mixture should obey a rate law that evolves on this rapid time scale (Zimmerman, et 

al., 2013). 

In the models here proposed the effect of important parameters such as bubble size, initial bubble 

temperature and the initial oxygen singlet concentration are studied on the production of FAME in the 

ozone free radical initiated esterification. These predictions are of high importance not only for the 

design of the system but also for the optimisation of the bioprocess operating parameters here 

described.  

2.3. Conclusions 

The esterification of FFA seen as a pre-treatment stage could represent an improvement for the 

downstream processing if the produced water were removed before the subsequent step, the 

transesterification. Introducing dry microbubbles would favour the stripping of water from the reacting 

mixture. In theory, the proposed reactive distillation can potentially achieve completion according to 

LeChatelier’s principle for an equilibrium reaction. Removing the produced water by means of 

vaporisation would drive the esterification reaction to completion, as a new molecule of water would 

need to be produced in order to replace the one previously removed.  

Methanol is known to be more volatile than ethanol, this is why it would be expected to vaporise 

and then occupy the vapour phase in the bubble domain in the esterification reacting mixture. 

Suggesting that both water and methanol would be removed from the mixture, but preferentially 

methanol. Excess methanol is needed to push the equilibrium favouring the forward reaction 

(esterification) whereas water removal would pull it, injecting hot microbubbles would pull the 

equilibrium but weaken the push. Methanol present in the esterification as immediately reactive in 

order to make the water removal more effective. The reaction mechanism is set to be on the bubble 

interface, where the produced water can join the dry bubble and the methanol residue remains in the 

liquid domain as part of the FAME produced. In order to overcome the vaporisation of the methanol, 

this species forms the methoxy free radical whenever a methanol molecule reaches the surface of the 

bubble.  
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 Microbubbles can potentially be injected with ozone in order to generate ozone-rich microbubbles. 

In fact, ozone is known to be a free radical initiator. It has been reported by Lozano-Parada and 

Zimmerman that it is possible to tune an in-situ ozone plasma microreactor to preferentially produce 

oxygen singlet radicals by adjusting the residence time and then injecting them directly into the bubble. 

At 1x10-2 s, the ozone production found its maximum and for the oxygen singlet the maximum yield 

was found at 1x10-3 s. This means a 10x throughput can be produced by tuning the microreactor at the 

appropriate operating conditions.  

It has been reported that the oxygen radicals would form hydroxyl radical in the presence of water. 

In the presence of methanol, these radical species could potentially scavenge the labile hydrogen from 

the alcohol group and form the methoxy radical. This suggests the reaction is driven towards 

completion of esterification by the water removal mechanism previously described, but dramatically 

enhanced by the free radical chain reaction. Having outlined the main features of the literature review 

in terms of the esterification reaction, in the next chapter the methodology followed to build the 

proposed models for this reaction is shown. It is important to consider the thought process between 

understanding the theoretical frame in order to be implemented and applied to the computational 

models.  
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3. Methodology 

This chapter is comprised mainly of the experimental data and the procedure followed to be able 

to build the proposed models found in the following chapters. Some of the main aspects studied in this 

chapter are the acid number and FAME calculations and the model description for the 2-D 

axisymmetric models presented in chapters 7 and 8. It is important to point out that in this chapter the 

raw data is processed in order to be used in the computational models which are aimed to describe 

both the physics and the reaction kinetics in terms of the ozone free radical initiated esterification here 

studied. Some of the assumptions and theories stated in the literature review are here used to ease 

calculations. There is no ultimate answer for this process, but the assumptions and theory formulated 

in the previous chapter is helpful to propose a reaction mechanism based and informed on 

experimental data, which is then validated by fitting the experimental data and the computational 

model.  

3.1. Experimental data used 

The methodology to generate microbubbles for the esterification unit has been reported by Kokoo 

et al using two different techniques (with and without a fluidic oscillator). When the fluidic oscillator 

was used, a dry air flow of 60 L/min at 20°C and 15 psi was fed into the fluidic oscillator designed by 

Zimmerman et al which has been previously described in Chapter 2. One of the main features of this 

fluidic oscillator is that it generates a pulse-jet stream. The dry air is purged so only 0.1 L/min is fed 

into a plasma ozone generator (OZ500, Dryden Acqua). These operating conditions apply for both 

techniques (Kokoo & Zimmerman , 2018; Zimmerman, et al., 2009). 

The resulting gas mixture from the ozone generator had a concentration of 1500 ppm, this mixture 

is then fed into the glass bubble reactor. The reactor has a diameter of 7.5x10-2 m and is filled with a 

total liquid mixture of 0.325 L for each run. The initial concentration of ozone was measured using the 

iodometric method. The glass reactor is comprised of a thermocouple, a sampling tube and a diffuser 

made of borosilicate glass 3.3 with a radius of 1.1 cm (ROBU Glasfilter-Gerate GmbH). A heating mantle 

was used to control the liquid mixture temperature at each run.  

In order to recover the vapour products, a glass condenser was used with a surface area of around 

200 cm2, water at room temperature was used as the cooling medium. The schematic diagram for the 

esterification unit used in Chapter 7 is shown in Figure 11. It is important to mention that all the 

connections and tubing used in this experiment were PTFE, stainless steel or glass in order to guarantee 

the resistance to ozone. The experiments were carried out at atmospheric pressure and a reaction 

temperature of 20, 40 and 60°C, and the samples for further analysis were collected every 4 hours for 

36 h and kept in a 4°C refrigerator.  
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Figure 11 Schematic diagram for the esterification unit (Kokoo & Zimmerman , 2018). 

It can be noticed from the time scale of the experimental data, that the ozonolysis reaction of the 

used cooking oil is slow. This behaviour can be attributed to the use of “off the shelf” ozone generator 

instead of a plasma microreactor that feeds into microbubbles. The process was not yet optimised, 

since the sparger for microbubbles by fluidic oscillation was not adequately designed to fit the purpose. 

Having said this, the major role of the modelling here presented is to explore the parameters previously 

mentioned without building the reactor by validating the model with actual experiments.  

3.2. Acid number and Free Fatty Acid calculation 

In order to quantify the Free Fatty Acid (FFA) content in the samples and analyse the results, 

endpoint data was gathered from Dr Kokoo doctoral thesis “Upgrading of oleic acid, olive oil, and used 

cooking oil via bubbling ozonolysis”. The standard test method for Acid and Base number by colour-

indicator titration (ASTM D974) was used to determine the acid number of the samples comprised of 

Used Cooking Oil (UCO) and methanol after ozonolysis. The analysis of the Acid number is important 

since it can be associated with the FFA percentage in samples and therefore used to calculate the Fatty 

Acid Methyl Ester (FAME) concentration. T 

ASTM D974 method is usually used to determine the acidic of basic constituents in lubricants 

soluble in mixtures of toluene and isopropyl, and petroleum products. It is able to determine acids or 

bases whose dissociation constants in water are larger than 10-9, weak acids or bases with a lower 

dissociation constant do not interfere. Organic and inorganic acids, resins, lactones and salts of heavy 

metals are considered to have acidic characteristic, which can be successfully measured in both new 

and used oils following the ASTM D974 method.  
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Reagent preparation 

1. Titration solvent: It is prepared by mixing toluene, water and anhydrous isopropyl alcohol following 

a volumetric ratio of 100:1:99. 

2. Naphtolbenzein indicator: It is a solution of naphtolbenzein in titration solvent with a concentration 

of 10±0.01 g/L. 

3. Potassium hydroxide solution, Standard alcoholic (0.1 M): It is prepared by adding 6 g of solid KOH 

in 1 L of anhydrous isopropyl alcohol. The mixture is then boiled for 10-15 minutes and stirred to 

avoid a solid conglomeration at the bottom. Then, 2 g of barium hydroxide are added, and the 

mixture again boiled for 5-10 minutes. The solution is filtered through a sintered-glass and stored 

in a chemically resistant bottle.  

Method 

1. Used cooking oil (0.2-2 g) is added to 0.1 L of the titration solvent and 0.5 mL of the indicator 

solution. The mixture is properly stirred until solutes are dissolved, the solution should give an 

orange-yellow colour because of the acid content.  

2. The mixture is immediately titrated using the KOH solution, the process reaches an end when the 

mixture changes to a green colour.  

3. A blank titration is performed using 100 mL of the titration solvent and 0.5 mL of the indicator 

solution, and then titrated using the KOH solution.  

Acid number and FFA calculation 

The acid number in the samples after ozonolysis is calculated using the equation below, stated in 

the ASTM D974: 

 𝐴𝑁, 𝑚𝑔 𝑜𝑓 𝐾𝑂𝐻/𝑔 =
(𝐴 − 𝐵) ∙ 𝑀 × 56.1

𝑊
 (12) 

where A is the KOH solution used for the titration of the sample (mL), B is the KOH solution used 

for the titration of the blank (mL), M is the molarity of the KOH solution, and W is the sample used (g).  

The acid number calculation can be associated to the FFA percentage in a sample defined by: 

 
𝐹𝐹𝐴%

28.2
=

(𝐴 − 𝐵) ∙ 𝑀

𝑊
=

𝐴𝑁

56.1
 (13) 

The Free Fatty Acid (FFA) result from the breakdown of biodiesel or oil. The Acid Number (AN) is 

usually used to describe the FFA content of finished biodiesel, while the FFA% is commonly used to 

describe the FFA content of oils and corresponds to the weight to weight ratio of FFA in the oil sample. 

From the equation above, the relationship between the AN and FFA% can be deducted by solving both 

equations for common values giving: 
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 𝐴𝑁 = 1.99 × 𝐹𝐹𝐴% (14) 

The Acid Number values for the 10% FFA are shown in Figure 12 for the three different 

temperatures (20, 40 and 60°C) which the experiments were carried out. The initial acid number value 

for the 10% FFA samples was 21.11 mg of KOH/g. When comparing the values obtained for the 

different treatments, the lowest value is observed at a higher temperature. For example, after 12 hours 

of ozonolysis the acid number values at 20, 40 and 60°C were 18.70, 18.01 and 17.3 mg of KOH/g 

respectively. The acid number values after 24 hours for the samples at 20, 40 and 60°C were 16.95, 

16.46 and 16.17 mg of KOH/g in that order. The final value for the acid number after 36 hours show a 

value of 16.28, 16.05 and 15.79 mg of KOH/g for the samples at 20, 40 and 60°C. The difference 

between the highest (60°C) and lowest temperature (20°C) in terms of acid number is notoriously 

higher in the first 12 hours of the process than after 36 hours. After 36 hours the 60°C treatment 

showed the biggest decrease (25.2%) regarding the acid number. This suggests a rapid conversion of 

the FFA into FAME in a short period of time. After 32 hours of the process, the acid number seems to 

have reached a plateau suggesting a steady state has been achieved even across the different 

temperature treatments.    

 

Figure 12 Ozonolysis of used cooking oil at 10% FFA (Kokoo & Zimmerman , 2018). 

Figure 13 contains the acid number values for the 15% FFA. The initial acid number value for the 

15% FFA samples was 31.13 mg of KOH/g. At 15% FFA the trend that at a higher temperature the acid 

number is lower still applied. After 12 hours of ozonolysis the acid number values at 20, 40 and 60°C 

were 28.99, 27.92 and 26.94 mg of KOH/g respectively. The acid number values after 24 hours for the 

samples at 20, 40 and 60°C were 27.47, 26.65 and 25.53 mg of KOH/g in that order. The final value for 

the acid number after 36 hours was 26.8, 25.48 and 24.61 mg of KOH/g for the samples at 20, 40 and 

60°C. The difference between the highest (60°C) and lowest temperature (20°C) in terms of acid 

number does not seem to change dramatically during the process for the 15% FFA. After 28 hours of 

the process, the acid number seems to have reached a plateau suggesting a steady state has been 

achieved even across the different temperature treatments. After 36 hours the 60°C treatment 

showed the biggest decrease (20.94%) regarding the acid number. 
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Figure 13 Ozonolysis of used cooking oil at 15% FFA (Kokoo & Zimmerman , 2018). 

Lastly, Figure 14 shows the trend for the acid number values for the 20% FFA. The initial acid 

number value for the 20% FFA samples was 43.63 mg of KOH/g. After 12 hours of ozonolysis the acid 

number values at 20, 40 and 60°C were 35.58, 33.45 and 30.34 mg of KOH/g respectively. The acid 

number values after 24 hours for the samples at 20, 40 and 60°C were 33.31, 29.88 and 28.57 mg of 

KOH/g in that order. The final value for the acid number after 36 hours was 31.07, 29.18 and 28.69 mg 

of KOH/g for the samples at 20, 40 and 60°C. The difference between the highest (60°C) and lowest 

temperature (20°C) in terms of acid number is notoriously higher in the first 12 hours of the process 

than after 36 hours.  

 

Figure 14 Ozonolysis of used cooking oil 20% FFA (Kokoo & Zimmerman , 2018). 

After 20 hours of the process, the acid number seems to have reached a plateau for the curve at 

60°C suggesting a steady state has been achieved and it was this treatment the one showing the biggest 

decrease (34.24%) regarding the acid number. Once the values for the acid number are obtained, the 

FAME production can be calculated using these graphs. Knowing the acid number for each treatment 

at a certain, it is possible to correlate this value to the FFA%. The liquid mixture has an equimolar 

condition for methanol and FFA, this means a ratio of 1:1 methanol to FFA. The molar concentration is 

then calculated using the molecular weight of the species and the volume of the liquid mixture. In 
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Table 9, the results from the calculations followed for the FFA content of 20% at 60°C are presented. 

The rest of the results obtained for these calculations are shown in Appendix A.  

Table 9 Values for the content and concentration at FFA 20% at 60°C. 

Time 

(h) 

Acid number 

(mg of KOH/g) 
FFA %  

FFA (mol) 

x10-2 

[FFA] 

(mol/m3) 

FAME 

(mol) x10-2 

[FAME] 

(mol/m3) 

0 43.63 21.924 10.743 330.555 0 0 

4 34.3 17.236 8.445 259.868 2.297 70.687 

8 31.29 15.723 7.704 237.063 3.038 93.492 

12 30.34 15.246 7.470 229.866 3.272 100.689 

16 28.81 14.477 7.093 218.274 3.649 112.281 

20 28.63 14.386 7.049 216.910 3.693 113.645 

24 28.57 14.356 7.034 216.456 3.708 114.099 

28 28.66 14.402 7.056 217.137 3.686 113.417 

32 28.52 14.331 7.022 216.077 3.720 114.478 

36 28.69 14.417 7.064 217.365 3.678 113.190 

Once the molar concentration for the product of interest calculated, this could be used to generate 

a plot for the fame production over time. For the models presented in Chapter 5 and 6, a concentration 

profile over time like the one shown in Figure 15. This accounts for the average concentration found 

in the reactor, and the molar concentration was used in order to ease calculations with the software 

used.  

 

Figure 15 FAME concentration profile at 20% FFA and 60°C. 

For chapters 7, the FAME production was fitted using the amount of FAME produced in moles over 

time shown in Figure 16. This accounts for the single bubble approach used to correlate the 

experimental data and computational model. The computational model was fitted using the formula 

below: 

 𝑇 = 𝐹̅  ∙ 𝐵̇ ∙ 𝜏 (15) 
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where T is the amount of FAME produced at certain time step defined by the user, 𝐹̅ is the amount 

of FAME produced per bubble rising through the liquid (mol), 𝐵̇ is the bubble flux defined in the system 

(bubbles/s) and 𝜏 is the time step defined by the user. As a first guess and considering the experimental 

data gathered, the time step used was 4 hours. The gradient for both FFA and FAME is then obtained 

after the time step. It is important to mention that the production of FAME in the time step is assumed 

to be linear described by a straight line. Once the gradient is defined, the amount of FFA and FAME 

found in the time step is then fed into the code to be used as initial conditions for the next iterations, 

and this loop is repeated until the final measurement is reached. By changing the initial conditions 

every time step, the curve starts showing a curvature related to the consumption and production of 

FFA and FAME respectively. Once the computational model is run for the whole duration of the 

experiment, the predicted FAME production (𝑦𝑝) is a function of time (t) and the forward (kf) and 

reverse (kr) rate constants, defined by: 

 𝑦𝑝 = 𝐹(𝑡𝑖; 𝑘𝑓 , 𝑘𝑟) (16) 

Having built the function for FAME production over time, it is possible to interpolate smaller time 

steps in order to obtain a better fitting of the model if not satisfied with the time step resolution. The 

time step that satisfied this condition for the proposed model in Chapter 7 was 20 minutes.  

 

 

Figure 16 Number of moles of FAME over time at 20% FFA and 60°C. 

From the figures previously shown, it can be concluded that the acid number decrease is directly 

related to the reaction temperature. The lowest value for the acid number is observed at the highest 

reacting temperature of 60°C, while the acid number is relatively higher compared to lower reacting 

temperatures of 20-40°C. Over the first 12 h, the acid number suffers a decrease across the different 

treatments. The acid number trend followed at 10 and 15% FFA content is relatively similar, compared 
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to the more pronounced curvature observed at 20% FFA content. The reduction of FFAs is due to the 

esterification of both saturated and unsaturated FFAs, which is exploited in this thesis in order to 

propose a reaction mechanism to describe the behaviour here observed. The ozone free radical 

initiated esterification could potentially describe this trend and be applied as an alternative for 

biodiesel production as a pre-treatment stage before the transesterification.  

3.3. Computational model  

In this thesis four computational models are presented, all of these models were built using 

COMSOL Multiphysics software. The first two models account for the irreversible and reversible 

reaction mechanism modelled using a 0-D approach. These two models only consider and analyse the 

reaction kinetics of the set of reactions proposed for the intensified esterification. The description for 

both models can be found at the beginning of Chapter 5 and 6 respectively. On the other hand, the 

other two models use a 2-D axisymmetric approach which includes the heat and mass transfer, surface 

reactions, transport of diluted species and reaction engineering modules available in the software 

previously mentioned. When comparing the 0-D and 2-D axisymmetric inferred rate constants, it is 

important to stress that the 2-D axisymmetric model is for interfacial interaction only.  The 0-D model 

presumes homogeneous reaction and the 2-D model is heterogeneous.  Inherently, this distinction is 

a massively different mechanistic approach.  Conceptually, the 2-D model can make predictions that 

are testable to distinguish between heterogeneous and homogeneous catalysis. For instance, the layer 

depth is extremely important to avoid re-condensation in the 2-D model, whereas the 0-D model has 

no such mechanism so would be monotonically varying with layer depth. In the next section, the model 

description for the 2-D axisymmetric model backbone used in Chapter 7 and 8 is described.  

3.3.1. 2-D axisymmetric model description 

A 2-D axisymmetric computational model of a dry-to-bone air and ozone microbubble is developed 

using COMSOL Multiphysics. The system to be investigated is comprised of a dispersed phase being 

the single fluidic oscillator air microbubble with a diameter of 200 m rising in an infinite reservoir of 

methanol-oil mixture due to a buoyancy force. A simulation study is carried out for the system 

previously described using a time dependent model for the concentration and temperature profile 

inside the microbubble, considering circulation patterns inside and around the bubble correlated to 

the bubble motion. According to the operating conditions set in Chapter 3, the liquid bed height is 8.44 

cm which corresponds to a residence time of 19.26 s for the microbubble to rise through the liquid 

mixture. The model here described is based on the operating conditions defined in the experimental 

set up, this is in order to validate the model with the data gathered.  
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Figure 17 Single microbubble in infinite reservoir for biodiesel production. 

Figure 17 shows a 2-D axisymmetric view of the single microbubble model. As mentioned before 

the bubble has a radius of 100 m and its shown as the blue domain in the middle of the image. The 

infinite reservoir has sides ten times bigger than the radius 1x10-3 m and is shown in the image as the 

grey domain. The values and formulas used in this model for the thermal conductivity, the heat 

capacity at constant pressure and density are found Table 10 and Table 11. These tables are comprised 

of the physico-chemical properties and parameters used in the computational model, some of which 

are temperature dependent and either the value or equation for the regression is shown.  

Table 10 Properties and parameters relevant to the computational model. 

Parameter Name Value 

Initial bulk liquid temperature (K) T0_liq 293.15-333.15 

Bubble initial temperature (K) T0_bub 293.15 

Reaction 3 rate constant forward (m³/(s·mol)) kf3 -- 

Reaction 3 rate constant reverse (m³/(s·mol)) kr3 -- 

Heat transfer coefficient (W/m2·K) htc 0.1 

Mass transfer coefficient (m/s) x10-5 KL 2 

Henry coefficient x10-2 Henry 3.18 

In Table 11 a list of the different variables used in this computational model is shown in order to 

model the different physical and chemical processes happening in the microbubble and its 

surroundings.  
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Table 11 Variables used in the model. 

Variable Name Expression 

Radial bubble velocity ur_bub (Ut*r*z)/Rad^2 

Axial bubble velocity uz_bub Ut*(1-z^2/Rad^2-2*r^2/Rad^2) 

Radial bulk liquid velocity ur_liq 
(-1/r)*(-0.75*r^2*Rad*Ut*z*(r^2-

Rad^2+z^2))/(r^2+z^2)^2.5 

Axial bulk liquid velocity uz_liq 

0.25*Ut*(6*Rad/(r^2+z^2)^0.5-4-

(2*Rad^3)/(r^2+z^2)^1.5-3*(Rad*r^2)*(r^2-

Rad^2+z^2)/(r^2+z^2)^2.5) 

Surface area A 4*pi*Rad^2 

Water vapour pressure pstarwat 10^(8.07131-1730.63/(233.426-273.15+T[1/K]))[Pa] 

Air heat capacity cp_air 
(1075.5-0.5505*T[1/K]+0.0013*T^2[1/K^2]-

0.0000007*T^3[1/K^3])[J/kg/K] 

Water saturation concentration csatwater pstarwat*x2/(T*R) 

Water heat vaporisation Hwat (46238+19.796*T[1/K]-0.0926*T^2[1/K^2])[J/mol] 

Bubble thermal conductivity thermcond_bub (0.0239+0.00007*T[1/K])[W/m/K] 

Water heat capacity Cp_water (1*10^-07)*T^3-0.0001*T^2+0.0375*T-2.0304 

Oil heat capacity Cpoil (1868.8-1.5794*T[1/K]+0.0037*T^2[1/K^2])[J/kg/K] 

Total pressure (Pa) x105 pA 1.0133 

Universal gas constant (J/(mol·K)) R 8.314 

Gravity (m/s²) g 9.806 

Bubble radius (m) x10-4 Rad 1 

Bulk liquid density (kg/m³) Rho_liq 916 

Bulk liquid dynamic viscosity 

(Pa·s) 
mu_liq 0.1075 

Air density (kg/m³) Rho_bub 1.225 

Terminal velocity (m/s) Ut (g*Rad^2*(Rho_liq-Rho_bub)/mu_liq/3) 

3.3.1.1. Governing equations 

In this system both mass and heat transfer take place at the same time leading to vaporisation and 

heating of the water present in the liquid phase. Having said this, the simultaneous solution of the 

mass and energy transfer governing equations inside the microbubble are a key element to obtain the 

concentration and temperature profiles. The vaporisation of the water and its removal are taking place 

at the same time as the free radical initiated esterification. Taking in consideration the simplifications 

mentioned, the equations for mass and heat transfer are considered the main governing equations in 

the model and are shown below: 
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𝛿𝑇

𝛿𝑡
+ 𝑢 ∙ ∇𝑇 = 𝛼∇2𝑇 (17) 

 
𝛿𝑐𝑖

𝛿𝑡
+ 𝑢 ∙ ∇𝑐𝑖 = 𝐷∇2𝑐𝑖 (18) 

In the case of the heat transfer equation T is the temperature of the bubble field, 𝑢 is the velocity 

inside the bubble and 𝛼 is the thermal diffusivity of the air. Concerning the mass transfer equation 𝑐𝑖is 

the molar concentration of species I, and D is the molecular diffusivity. Gas molecular diffusivities and 

gas density are considered constant dependent. The gas properties such as heat capacity, thermal 

diffusivity and thermal conductivity are considered temperature dependent and each value is 

calculated using polynomial empirical correlations.  

To calculate the internal velocity field of the bubble in this model, an equation adopted for small 

spherical bubbles rising under buoyancy force is used. Hadamard and Rybcynski’s equation is the 

solution of the Navier-Stokes equation calculated by Hill’s spherical vortex and the stream function is 

shown below, including the dimensionless radial (r) and axial (z) velocity components derived from it 

(Abdulrazzaq, et al., 2016; Zimmerman, et al., 2013). 
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Both dimensionless velocity components and the terminal velocity are computed to be: 

 𝑢𝑟 = 𝑈𝑡
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 (22) 
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 𝑈𝑡 =
1

3

𝑔𝑅2

𝜇
Δ𝜌 (24) 

where R is the radius of the bubble, 𝑢𝑟 and 𝑢𝑧 are the velocity vectors in radial and axial coordinates 

respectively, 𝑈𝑡  is the terminal velocity of a bubble rising, g is the gravitational acceleration, 𝜇 is the 

viscosity of the liquid phase and Δ𝜌 is the density difference.  

On the other hand, the velocity field outside the bubble is calculated using the dimensionless Stokes 

stream function equation assuming a uniform far-field flow.  
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The radial and axial velocity components are calculated the same way as for the internal velocity 

field, both dimensionless velocity components and the terminal velocity outside the bubble are 

computed to be 

 𝑢𝑟 =
3

4
𝑟𝑅𝑈𝑡𝑧

(𝑟2 − 𝑅2 + 𝑧2)

(𝑟2 + 𝑧2)
5
2

 (26) 
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3
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2

) (27) 

This approach assumes all the bubbles are small enough that the surface tension would oppose 

deformation from the spherical shape, and the time for the bubble to encounter laminar flow is 

infinitesimally short after it has been injected and released into the liquid mixture. Having said this, 

the fluid dynamics can be studied analytically so the main focus is on the mass and heat transfer 

dynamics (Zimmerman, et al., 2013).  

3.3.1.2. Initial and boundary conditions 

The microbubbles used in the computational model are injected at an initial temperature 𝑇0, it is 

important to mention that the initial concentration for water inside the bubble is zero. For the 

methanol-oil (liquid domain) the initial temperature varies between 293, 313 and 333 K for the 

calculations.  Boundary conditions are set for both mass and heat transfer. In this computational 

domain, the side walls are set to a temperature matching the temperature of the liquid depending on 

the experiment (293, 313 and 333 K). In the case of this system, the Langmuir law for evaporation can 

be used to calculate the mass flux for the different species at the interface since the system is working 

far from equilibrium conditions (Abdulrazzaq, et al., 2016). 

 ṅ𝑖 = 𝑘𝑖𝐴(𝑥𝑖𝛾𝑖𝑃𝑖
∗ − 𝑃𝑖) (28) 

where ṅ𝑖  represents the evaporation rate for each species found at the interface, 𝑘𝑖 is the 

evaporation constant describing the amount of component evaporated per unit time per unit pressure 

per unit area, A is the liquid-gas contact area, 𝑥𝑖 is the mole fraction, 𝛾𝑖  is the activity coefficient, 𝑃𝑖
∗ is 

the saturation vapour pressure at the liquid-gas interface, and 𝑃𝑖 is the partial pressure of the vapour 

inside the bubble for each species. This simplified equation states that at equilibrium conditions the 

activity coefficient ṅ𝑖 = 0, evaporation or condensation is purely driven by the difference of the 

interfacial partial pressure and the predicted Raoult’s Law (Zimmerman, et al., 2013).  

For the gas-liquid interfacial dynamics, a common assumption is that the interface flashes to 

equilibrium. In the case of air in contact with water, this is equal to fixing the partial pressure of water 

to the saturation pressure found at the interface temperature. In order to convert the partial pressure 
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of water into its molar concentration, the ideal gas law can be used (Zimmerman, et al., 2013; 

Maccines, et al., 2012).  

The ideal gas law is used to calculate the partial pressure of the vapour species in the bubble, since 

the operating conditions taken into account being high temperature and low pressure, resulting in the 

equation below: 

 𝐶∗ =
𝑃∗𝑥𝑖

𝑅𝑇
 (29) 

According to Himus and Hinchley, the evaporation parameter for pure water evaporated using air 

has a value around 2x10-5 m/s, used in the calculations for this model. The boundary condition for the 

heat transfer in this computational model is given by Fourier’s Law where the normal heat flux at the 

interface is equal to the evaporation rate ṅ𝑖  weighted by the latent heat of vaporisation 𝐻𝑣𝑖 for each 

one of the species. In the equation below 𝑛̂ is the normal vector, K is the thermal conductivity 

(Abdulrazzaq, et al., 2016; Himus & Hinchley, 1924). 

 𝑛̂·𝐾∇𝑇 = ∑ ṅ𝑖∆𝐻𝑣𝑖 (30) 

3.3.1.3. Heat transfer in the bubble and bulk liquid domain 

In COMSOL Multiphysics, the heat transfer in the bulk liquid and bubble domain is described using 

the Heat Transfer in Fluids module. This module is used to model heat transfer by convection and the 

fluid model is active by default on all domains. The temperature equation defined in fluid domains 

corresponds to the convection-diffusion equation that may contain additional contributions like heat 

sources. In this case, the computational model considers a time dependent study given by the set of 

equations given by: 

 𝜌𝐶𝑝

𝛿𝑇

𝛿𝑡
+ 𝜌𝐶𝑝𝒖 · ∇𝑇 + ∇ · 𝒒 = 𝑄 + 𝑄𝑝 + 𝑄𝑣𝑑 (31) 

 𝒒 = −𝑘∇𝑇 (32) 

where 𝑄 represents the internally generated heat (W/m3), 𝑄𝑝 and 𝑄𝑣𝑑 refer to the work due to 

pressure changes and viscous dissipation respectively.  The heat transfer in the bubble domain 

considers an absolute pressure of 1 atm, and the velocity fields for both the axial and radial dimensions. 

In Figure 18, the axial symmetry used for the heat and mass transfer calculations is represented by the 

dark blue boundary located on the left-hand side of the model. The red boundaries represent the 

thermal insulation in the system and have a value of −𝒏 ∙ 𝒒 = 0, assuming no heat is lost beyond this 

boundary.  
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Figure 18 Axial symmetry for model. 

The heat transfer in the bulk liquid domain considers an absolute pressure of 1 atm, and the velocity 

fields for both the axial and radial dimensions. The physico-chemical properties used to describe the 

essential features of the model can be found in Table 11. The red boundaries shown in Figure 18 are 

used to define the thermal boundaries of the system and set to a temperature equal to temperature 

of the liquid. 

The system considers a boundary heat source on the surface of the bubble, this heat source is 

defined by the use given by the equation below: 

 𝑄𝑏 = 𝑛̂ ∙ 𝑘∇𝑇 (33) 

where 𝑄𝑏 represents the boundary heat source and in the case of this computational model follows 

the expression: 

 𝑄𝑏 = ℎ(𝑇 − 𝑇∞) − 𝑚̇∆𝐻𝑣(𝑇) (34) 

This is an adaptation of Fourier’s Law to compute the normal flux component, which is equated to 

the Newton’s Law of Cooling and the latent heat of vaporisation of water (∆𝐻𝑣(𝑇)) at a certain 

temperature weighted by the evaporation rate on the interface (𝑚̇). In the Newton’s Law of Cooling, 

h is the local heat transfer coefficient and 𝑇∞ is the temperature of the liquid domain far from the 

bubble. This equation is the analogous of the two-film theory of mass transfer resistance proposed by 

Lewis and Whitman, used for sensible heat transfer. It is important to point out that this equation is 

not fundamental, in terms of microscale distillation with mass and heat transfer effects a traditional 

McCabe-Thiele diagrams approach is used for analysis, but not kinetics are considered (Lewis & 

Whitman, 1924; Zimmerman, et al., 2013). 

 𝑚̇ = 𝐽 = −𝑛̂ ∙ 𝐷∇𝐶 (35) 

Regarding the evaporation rate, it is noticed that the conservation of mass states that the 

evaporative flux must be equal to the diffusive flux produced from the reaction mechanism, from the 

bubble surface inwards into the bubble described by Fick’s Law. The microbubble is injected dry or in 

other words with an initial water concentration of 0 mol/m3 (Zimmerman, et al., 2013). 
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3.3.1.4. Transport of diluted species in both domains 

In this model the mass transfer is defined using the Transport of Diluted Species module which is 

usually used to compute the concentration field of a dilute solute in a solvent and model multiple 

species transport. Transport and reactions of the species dissolved in a gas and liquid can be computed. 

The driving forces for transport can be diffusion by Fick's law, convection, when coupled to fluid flow. 

This time dependent study considers convection and diffusion inside the bubble domain using the 

concentration of the different species as dependent variables, described by the set of equations: 

 
𝛿𝐶𝑖

𝛿𝑡
+ ∇ ∙ (−𝐷𝑖∇𝐶𝑖) + 𝒖 ∙ ∇𝐶𝑖 = 𝑅𝑖 (36) 

 𝑵𝒊 = −𝐷𝑖∇𝐶𝑖 + 𝒖𝐶𝑖 (37) 

In terms of diffusion, the coefficient is defined by the user in the magnitude of 1x10-9 m2/s. In this 

time dependent model, there is a no flux condition on the surface of the microbubble with a value of 

−𝒏 ∙ 𝑵𝒊 = 0. The initial concentration for water is assumed to be really low and a consequence of the 

instantaneous first reaction described later in the three-step mechanism for this model, with an initial 

value of 1x10-5 mol/m3. The concentration profile for the water formed inside the bubble follows the 

expression: 

 𝐶𝑤 =
𝑃∗ ∙ 𝑥𝑖

𝑅𝑇
 (38) 

The transport of the water produced as a consequence of the surface reactions is described by a 

general inward flux given by: 

 𝑁𝑐𝑤 = 𝐾𝐿 ∙ 𝑎(𝐶𝑙 − 𝐻 ∙ 𝐶𝑔) (39) 

where the liquid -gas film theory for mass transfer coefficients is used. The mass transfer is 

proportional to the concentration driving force at the interface and the interfacial area. 𝐶𝑙 is the 

concentration of the gas in the liquid domain, 𝐶𝑔 is the concentration that results in equilibrium with 

the initial gas concentration in the bubble. KL is the mass transfer coefficient, H is the dimensionless 

Henry constant for this particular case, and a is the surface area. In terms of diffusion, the coefficient 

is defined by the user and are found using the SEGWE method presented Evans et al in 2013 for 

molecules with a weight below 1000g/mol (Evans , et al., 2013; Evans , et al., 2018).  

Table 12 Diffusion coefficients and initial concentrations of the species in the bulk liquid. 

Component Diffusion coefficient (m2/s) x10-9 Initial concentration (mol/m3) 

FAME 3.460 0 

FFA 3.546 301.54 

MeOH 11.38 301.54 

H2O 15.97 0 

O2 11.39 0 
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In this time dependent model, there is a no flux condition on the surface of the microbubble and 

the red boundaries shown in Figure 18 with a value of −𝒏 ∙ 𝑵𝒊 = 0. The initial concentrations for the 

species in the bulk liquid are shown in Table 12. A general inward flux is set on the surface of the bubble 

for each one of the species in the bulk liquid. There is an outflow condition set at the bottom red 

boundary that follows the equation −𝒏 ∙ 𝐷𝑖∇𝐶𝑖 = 0.  

3.3.1.5. Proposed reaction mechanism 

In this computational model, the esterification of vegetable oils is studied mediated by ozone rich 

and dry-to-bone air microbubbles. The proposed mechanism considers a set of three chemical 

reactions involving free radicals. As mentioned before the microbubbles, around 100 m radius in size, 

are injected at the bottom of the esterification unit. The bubbles are injected with an initial oxygen 

singlet concentration of 1500 ppm or 281.25 mol/m3, nitrogen N2 is considered as an inert gas for this 

model. It is important to mention that the bubble is injected dry, with an initial water concentration of 

0 mol/m3. For this model the esterification of the FFAs in the vegetable oil into FAMEs require the 

presence of another reactant such as methanol.  

In order to define the chemical reactions happening in the mechanism previously described both 

the chemistry and surface reactions models are used. The Chemistry module provides an extensive 

library of chemical reactions for use by any physics interface and the kinetic expressions for reaction 

rates, reaction heat sources, and also species transport properties, that can be used by other physics 

interfaces.  

The initial composition of the liquid phase is comprised of FFAs and methanol, and as soon as the 

reaction is carried out the FAMEs start to appear. At the surface of the bubble, where the reaction 

mechanism takes place the free radicals such as MeO·, HO·, and O· can be found. As mentioned 

previously the initial composition of the gas phase (inside the bubble) only considers air and ozone, 

when the reaction is carried out one of the by-products is the water which is then stripped by the 

bubbles whilst rising through the liquid phase in order to avoid product inhibition.  

The first two reaction proposed in this mechanism are considered to be instantaneous, and 

according to the Bodenstein steady state approximation. These two reactions are in equilibrium and 

follow the next expression: 

 𝑘𝑒𝑞 = 𝑘𝑒𝑞0       𝑘𝑒𝑞𝑗 =
∏ 𝐶

𝑖

𝑣𝑖𝑗𝑄𝑝
𝑖=1

∏ 𝐶
𝑖

−𝑣𝑖𝑗𝑄𝑟
𝑖=1

  (40) 

For each reaction the enthalpy (𝐻𝑗), entropy (𝑆𝑗) and heat source of reaction is calculated 

automatically in the model and given by:  
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 𝐻𝑗 = ∑ 𝑣𝑖𝑗ℎ𝑖 − ∑(−𝑣𝑖𝑗)ℎ𝑖

𝑄𝑟

𝑖=1

𝑄𝑝

𝑖=1

 (41) 

 𝑆𝑗 = ∑ 𝑣𝑖𝑗𝑠𝑖 − ∑(−𝑣𝑖𝑗)𝑠𝑖

𝑄𝑟

𝑖=1

𝑄𝑝

𝑖=1

 (42) 

 𝑄𝑗 = −𝑟𝑗𝐻𝑗 (43) 

From the reaction mechanism previously mentioned, the surface species are the radicals 𝑂 ·, 𝑀𝑒𝑂 · 

and 𝐻𝑂 ·. The species found in the bulk liquid domain are the MeOH, FFA and FAME. Lastly, the species 

found in the bubble domain are 𝐻2𝑂 and 𝑂2. For each one of the species here discussed the molar 

mass was entered into the computational model, and the charge (z) was assumed to be z=0.  

The reaction rate for the surface species (𝑂 ·, 𝑀𝑒𝑂 · and 𝐻𝑂 ·) is calculated with the following 

equation at the surface of the microbubble: 

 𝑅𝑎𝑑𝑠 = ∑ 𝑅𝑎𝑑𝑠, 𝑗

𝑗

 (44) 

For the remaining bulk species either in the bubble or the bulk liquid domain, the reaction rate was 

calculated using equation 39 and the following reaction rate: 

 𝑅 = ∑ 𝑅𝑗 

𝑗

 (45) 

The surface reactions interface is used to model the chemical reactions of surface and bulk species 

on a boundary. Surface species can be transported in the tangential direction of the surface by Fick's 

law whereas bulk species are assumed to be immobile on the surface. These assumptions are made in 

order to simplify the calculations when solving the computational model. 

In this model there are three surface (adsorbed) species (𝑂 ·, 𝑀𝑒𝑂 · and 𝐻𝑂 ·). In the time 

dependent study, these species are defined by the following set of equations in terms of mass transfer 

and reaction kinetics:  

 
𝛿𝐶𝑠𝑗

𝛿𝑡
+ ∇𝑡 ∙ (−𝐷𝑖∇𝑡𝐶𝑠𝑗) = 𝑅𝑠𝑗  (46) 

 𝑵𝑠𝑗 = −𝐷𝑖∇𝑡𝐶𝑠𝑗 (47) 

 Θ𝑖 =
𝜎𝑖𝐶𝑠𝑗

Γ𝑠
 (48) 

 
𝛿𝐶𝑏𝑗

𝛿𝑡
= 𝑅𝑏𝑗 (49) 

Regarding the surface properties, the density of sites has a value of 2x10-5 mol/m2. And all the three 

radical species found on the surface have a site occupancy number of 𝜎𝑖=1. In Table 13 are shown the 
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diffusion coefficients and initial surface concentration values for the radical species found in the 

interface.  

Table 13 Diffusion coefficients and initial concentration for the surface species. 

Species Diffusion coefficient 

(m2/s) x10-8 

Surface concentration 

(mol/m2) x10-8 

MeO·  1.16 1 

HO· 1.652 1 

The rate of reaction for the instantaneous reactions in this mechanism are shown below 

 𝑘1 =
[𝑀𝑒𝑂 ·][𝐻𝑂 ·]

[𝑀𝑒𝑂𝐻][𝑂 ·]
 (50) 

 𝑘2 =
[𝐻2𝑂][𝑂2]

1
2

[𝐻𝑂 ·]2
 (51) 

The rate of reaction in terms of the product of interest being FAME is given by the equation 

 𝑟𝐹𝐴𝑀𝐸 = 𝑘𝑓[𝐹𝐹𝐴][𝑀𝑒𝑂 ·] − 𝑘𝑟[𝐹𝐴𝑀𝐸][𝐻𝑂 ·] (52) 

In order to come up with an equation that does not consider the intermediary free radicals, the 

term [𝑀𝑒𝑂 ·] and [𝐻𝑂 ·] are isolated in equations 35 and 36 respectively given  

 [𝑀𝑒𝑂 ·] = 𝑘1

[𝑀𝑒𝑂𝐻][𝑂 ·]

[𝐻𝑂 ·]
 (53) 

 
[𝐻𝑂 ·] =

([𝐻2𝑂][𝑂2]
1
2)

1
2

𝑘2

1
2

 
(54) 

Then the term [𝐻𝑂 ·] from equation 39 is substituted in equation 38, and then substituted in the 

rate of reaction for FAME in order to obtain an equation that does not include the intermediary free 

radicals, but only the radical [𝑂 ·] which is a reagent in this mechanism.  

 𝑟𝐹𝐴𝑀𝐸 = 𝑘𝑓𝑘1𝑘2

1
2[𝐹𝐹𝐴]

[𝑀𝑒𝑂𝐻][𝑂 ·]

[𝐻2𝑂]
1
2[𝑂2]

1
4

− 𝑘𝑟[𝐹𝐴𝑀𝐸]
[𝐻2𝑂]

1
2[𝑂2]

1
4

𝑘2

1
2

 (55) 

3.4. Conclusions 

The acid number calculations here presented are a good estimation for the FAME production in the 

esterification reaction. This allows the reader to understand and follow the thought process. Regarding 

the model description included in this chapter, it is important to mention that most of the theoretical 

background here presented is used in chapters 7 and 8, for the 2-D axisymmetric models. The 

assumptions and theories stated in the comprehensive literature review are used in this chapter for 
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some of the calculations, and to facilitate the analysis of the models discussed in the following 

chapters.  

The main relevance of this chapter relies on showing the raw data and showing the link and the 

procedure to come up with results that are informed and could potentially be validated from 

experiments. The model description shown in Section 3.3 illustrates one example of how the 

theoretical background discussed in Chapter 2 is then applied to the proposed models in order to ease 

calculations and achieve building a robust model which describes the reaction kinetics and dynamics 

of the ozone free radical initiated esterification proposed in this thesis.  

Once the experimental data is gathered, it is useful to analyse some of the key parameters 

happening in terms of the reaction kinetics and dynamics of the process. Having said this, it is relevant 

to explore the effect of parameters such as temperature, diffusion coefficients and reactions kinetics 

of the main species found in the system. In the next chapter, several aspects of the reaction kinetics 

and dynamics are explored using the appropriate approach. All these estimations are carried out in 

order to point out the regimes and operating conditions that would favour the intensified 

esterification. This is one of the main reasons to conduct dimensionless calculations, stability analysis 

and diffusion estimations for the different species found in the system.  
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4. Estimation of different parameters 

In the following chapter some of the key parameters are estimated and discussion for its respective 

use in the computational models. Some of the main aspects here discussed are the diffusion coefficient 

for the species of interest and a detailed analysis of the effect of the bubble size on the dimensionless 

numbers including the Peclet, Nusselt and Reynolds number. The physical properties and transport 

calculations for the oxygen singlet in different medium in the gas phase are included in this chapter. 

The effect of the bubble size on the internal pressure and residence time using different liquid mixtures 

is also included in this chapter. The diffusion coefficients for ozone in both the liquid mixture and gas 

phase are estimated and related to the diffusion time, in case diffusion governed the process.  A brief 

analysis of the ozone stability and the liquid-phase mass transfer coefficient is showed in this chapter 

as well. Lastly, a couple of ozone decomposition models are included (HSB and TFG) and one last model 

for the temperature dependence of ozone in a heat exchanger. The results obtained after analysing 

these parameters are fed into the computational models in order to convey in a robust model that 

successfully describes the physics happening in the intensified esterification.  

4.1. Diffusion coefficient and dimensionless analysis 

In order to build the computational model, some of the physics regarding the relevant species in 

the system are needed. The oxygen singlet radical is hypothesised to enhance the ozone free radical 

initiated esterification. It is relevant to study its behaviour and some of its properties in different 

medium to explore the possible limitations of the model and the regime that best describes the 

operating conditions of the system. Having said this, the diffusion coefficients reported by Morgan and 

Schiff are used as a reference in order to estimate several dimensionless parameters such as, the 

Peclet, Nusselt and Reynolds number. Table 14 shows the physical properties and behaviour of the 

oxygen singlet in different medium to be considered in the gas phase (microbubble domain). Some of 

the main features analysed in this table are the diffusion coefficient, Peclet and Reynolds number, 

density and viscosity and the diffusion time.  

Table 14 Physical properties of the oxygen singlet in inert gases and air (Morgan & Schiff, 1964). 

System Do (cm2 s-1) x10-2 Pe L x10-2 ρ (kg m-3) µ (Pa s) x10-5 Re x10-3 t (s) x10-3 

O/He 7.000 0.397 0.164 1.960 0.232 0.714 

O/Ar 2.090 1.330 1.784 2.230 2.225 2.392 

O/N2 2.180 1.275 1.251 1.760 1.977 2.293 

O/O2 2.220 1.252 1.429 2.040 1.948 2.252 

O/Air 2.187 1.271 1.225  1.818 1.873 2.285 

From the table above, it can be noticed that the Peclet number is considerably lower than 1. This 

would suggest that convection is the dominant mean of mass transport in the gas phase. Although 
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convection is known to happen faster than diffusion, for very small volumes (microbubbles) the more 

efficient means of transport occurs by diffusion. This is the main driver to introduce a microbubble 

internal mixing that occurs on a time scale of 10-3 s, so the condensing vapour or evaporating mixture 

should obey a rate law that evolves on this rapid time scale. In terms of the Reynolds number, 

microfluidic systems are known to have a characteristic length is so small that the Reynolds number 

are mostly always less than 1 as it can be seen in Table 14. This would suggest that the system falls into 

the category of laminar flow which poses the advantage of fluids that can be manipulated very 

precisely and the molecules in the fluid can be controlled to form predictable gradients due to the 

steady streamlines. In the last column the approximation for diffusion time is shown, it can be noticed 

that for all the gas mixtures, if diffusion dominated means of mass transfer, the diffusion time fall into 

the order of magnitude of 1x10-3 s (Zimmerman, et al., 2013; Morgan & Schiff, 1964).  

Once the physical properties of the gas phase are discussed, it is relevant to carry out a 

dimensionless analysis of the regimes found in the system. The estimation for the liquid-side heat 

transfer coefficient used in the system considers contributions from both the Nusselt and Peclet 

number. It is assumed for the purpose of this computational model that the bubbles are injected into 

the liquid at a controlled rate with a significant excess of kinetic energy. As mentioned before, the 

microbubbles are rising in the liquid mixture under buoyancy only. Kumar et al reported a value for 

the heat transfer coefficient of 1080 W/m2·K when using coarse bubbles of 2cm diameter. Since in this 

system the bubbles are relatively smaller, it is sensible to expect that convection would be the major 

contribution to heat transfer and would scale with the Peclet number. One would expect that the heat 

transfer for a bubble with a radius of 1x10-4 m would be six orders of magnitude smaller compared to 

a 1 cm radius bubble. If the dimensional analysis does not follow a proportionality, the Nusselt number 

could be used (Kumar, et al., 1992) 

 

Figure 19 Variation of the Peclet and Nusselt number with bubble size. 

The variation of both the Peclet and Nusselt number with bubble size is shown in Figure 19. The 

Nusselt number is calculated using the correlation reported by Zimmerman et al for fine and coarse 

bubbles given by: 
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 𝑁𝑢 = 𝑓(𝑃𝑒) = 0.6 𝑃𝑒0.5 (56) 

This correlation suggests that the heat transfer coefficient follows ℎ ≈ 𝑑0.5. Assuming there are not 

contributions to convective heat transfer with microbubbles and using the size dependence equation 

with the Eotvos and Reynolds number regimes given by: 

𝐸𝑜 =
𝑔𝑑2

𝜎
Δ𝜌 

It is reasonable to suggest that in the microbubble regime, laminar flow dominates the heat transfer 

and hence the Nusselt number is directly proportional to the Peclet number. This results in a 

correlation for the heat transfer of ℎ ≈ 𝑑2, and a heat transfer that is four orders of magnitude smaller 

for 1x10-4 m radius bubbles. After using these arguments, the proposed valued for the heat transfer 

coefficient is 0.1 W/m2·K, which is similar to the one reported by Zimmerman et al (Zimmerman, 2011; 

Zimmerman, et al., 2013; Kumar, et al., 1992). 

 

Figure 20 Reynolds number and terminal velocity variation with bubble radius. 

Figure 20 illustrates the effect of the bubble size on the terminal velocity and the Reynolds number. 

It is clear that an increase of the bubble radius means an increase in the terminal velocity and therefore 

the Reynolds number. In the ozone free radical initiated esterification, a microbubble with a radius of 

1x10-4 m rising through the liquid mixture, would rise at a terminal velocity of 2.781x10-4 m/s and have 

a Reynolds number 3.17x10-6. This value suggests that the laminar flow is expected in the rising of the 

microbubble for the esterification unit. It is clear that smaller bubbles have a lower terminal velocity 

and therefore its residence time would be higher compared to coarse bubbles.  

Microbubbles are characterised for having a high internal pressure which results from the surface 

tension at the gas-liquid interface. The relationship between the pressure and the diameter of the 

microbubble is given by the Young-Laplace equation found below: 
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 𝑃 = 𝑃1 +
4𝜎

𝑑𝑏
 (57) 

where 𝜎 is the surface tension of the liquid and 𝑑𝑏 is the diameter of the bubble. According to this 

equation, the pressure found in a 1 m would be about 389.325 kPa at 298 K, nearly four times the 

atmospheric pressure. It can be noticed in Figure 21 that mostly all the bubble sizes tend to be similar 

to the atmospheric pressure. For bubbles with a diameter less than 50 m, the internal pressure 

increases dramatically to a certain extent when decreasing the bubble diameter. In this figure the 

internal pressure is shown for the case of water or oil as the liquid mixture. It is clear that water has a 

higher surface tension due to the hydrogen bonding, this results in a higher internal pressure found in 

the microbubble. The internal gas pressure increases when the microbubbles are smaller, and it is 

important to point out that the rate of increase is inversely proportional to the bubble size (Pan , et 

al., 2009).  

 

Figure 21 Variation of the microbubble internal pressure with diameter. 

The effect of the bubble size on the residence time for a microbubble rising through the liquid 

mixture for varying liquid layer thickness is shown in Figure 22. Increasing the liquid layer thickness 

causes an increase in the residence time for the microbubble to rise through the liquid. A bubble one 

order of magnitude smaller rises at a terminal velocity two orders of magnitude slower. For the 

proposed models in this thesis, the liquid layer domain considered in the computational model is ten 

times bigger compared to the radius of the bubble. This would mean that a microbubble with a radius 

of 1x10-4 m rising at a terminal velocity of 2.781x10-4 m/s would take 3.592 s to rise through the liquid 

mixture.  
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Figure 22 Variation of the residence time with bubble size. 

From the experimental data, the volumetric flow used for comparison between the experiments 

and the computational model has a value of 0.1 L/min. As expected both the bubble flux and the 

oxygen single molar inlet flow are directly proportional to the volumetric flow.  

 

Figure 23 Variation of the bubble flux and molar inlet flow with the volumetric flow. 

This figure is shown in the potential case that a further increase of the volumetric flow is required 

to provide the system with a higher amount of the free radical. Having said this, the bubble flux is then 

used to correlate the FAME production between a single microbubble and the cloud of bubble. In 

Figure 24, the bubble flux over time is shown. This parameter is fitted with a quadratic equation given 

by N=0.2114 + 4.0553t – 0.0049 t2 (R2=0.9998). It is important to mention that this function of the 

bubble flux can potentially be used for residence times t < 20 s, which is the case for both models 

presented in Chapter 7 and 8.  
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Figure 24 Bubble flux function in time for the fitting of the model. 

4.2. Ozone and free radical species 

The production rate of the biodiesel can potentially be maximised by producing a high amount of 

𝑂 · using an advanced oxidation plasma reactor. It has been reported by Zimmerman and Lozano 

Parada that it is possible to tune a plasma reactor under specific conditions, so a maximum of 𝑂 · at 

1x10-3 s it then produced. This means there is no need to form the ozone species for then to be 

decomposed in 𝑂 ·, but by tuning the device a set amount of this species can be produced (Lozano-

Parada & Zimmerman, 2010). 

For instance, it is important to explore the behaviour that both the oxygen singlet and ozone would 

have in the microbubble with the variation of the temperature. It is known that the plasma reactor 

produces ozone molecules as well that potentially would react with the Free Fatty Acids under the 

Criegee mechanism. This is the main driver to analyse the total time that this molecule would take to 

go through both the gas and liquid phase if present, this would suggest if the alternative mechanism 

could potentially be detrimental to the reaction mechanism here proposed. The total time for the 

ozone to reach the liquid can be considered as the addition of: i) the diffusion from the centre of the 

bubble to the interface and ii) the diffusion from the interface to the liquid mixture. It is important to 

point out that due to the nature of the oxygen singlet, the total time for the radical species is relatively 

smaller compare to the ozone time. This could be attributed to the difference in the molecular weight 

between the two species. To explore the variation of the residence time with temperature, the 

diffusion time and residence time needs to be calculated for both the gas and liquid domain, the 

procedure followed by Kokoo et al is here described (Kokoo & Zimmerman , 2018).The diffusion time 

of ozone in the gas phase is defined by: 

 𝜏𝑂3,𝑎𝑖𝑟 =
𝑟2

2𝐷𝑂3,𝑎𝑖𝑟
 (58) 
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where r is the radius of the bubble and 𝐷𝑂3,𝑎𝑖𝑟 is the diffusivity of ozone in air. This diffusion 

coefficient can be calculated by the equation given by: 

 𝐷𝑂3,𝑎𝑖𝑟 =
0.00266𝑇1.5

𝑃𝑀𝑂3,𝑎𝑖𝑟
0.5 𝜎𝑂3,𝑎𝑖𝑟

2 Ω𝐷

 (59) 

 where P is the pressure (bar) and the term M is the average molecular weight, σ is the characteristic 

length (A°) and Ω is the diffusion collision integral, these terms are defined by the equations below. 

 𝑀𝑂3,𝑎𝑖𝑟 =
2

1
𝑀𝑊𝑂3

+
1

𝑀𝑊𝑎𝑖𝑟

 (60) 

  𝜎𝑂3,𝑎𝑖𝑟 =
𝜎𝑂3 + 𝜎𝑎𝑖𝑟

2
 (61) 

 Ω𝐷 =
1.0603

𝑇∗0.156
+

0.193

𝑒0.476𝑇∗ +
1.0358

𝑒1.529𝑇∗ +
1.764

𝑒3.894𝑇∗ (62) 

where 𝑇∗ is temperature considering the Lennard-Jones energy ε and the Boltzmann’s constant kB 

(1.381x10-23 J/K). The term 𝑇∗ and the Lennard-Jones energy is described by the equation: 

 𝑇∗ =
𝑘𝐵𝑇

𝜀𝑂3,𝑎𝑖𝑟
 (63) 

 𝜀𝑂3,𝑎𝑖𝑟 = (𝜀𝑂3𝜀𝑎𝑖𝑟)0.5 (64) 

The Lennard-Jones energy and characteristic length for ozone and air needed to carry out the 

calculations are shown in Table 15. 

Table 15 Lennard-Jones energy and characteristic length for ozone and air (Ivanov, et al., 2007). 

Species σ ε 

Ozone 3.875  208.4 

Air  3.711 78.6 

 Ozone-Air  3.793 127.985 

For the diffusion time of ozone in the liquid, a unidirectional mass transfer is assumed since the 

diffusive length (20 nm) of ozone in the oil (oleic acid used as an example) is relatively smaller than the 

radius of the bubble. Therefore, the diffusion time in the liquid can be estimated using the equation 

below: 

 𝐷𝑂3,𝑜𝑖𝑙 =
𝛿2

2𝐷𝑂3,𝑜𝑖𝑙
 (65) 

 𝐷𝑂3,𝑜𝑖𝑙 = 7.4𝑥10−8
(𝜙𝑠𝑀𝑊)0.5𝑇

𝜇𝑠𝑉𝐴
0.6  (66) 

where 𝜇𝑠 is the viscosity of the liquid (cP), VA is the molar volume of ozone at its boiling temperature 

(35.5 cm3/mol) and 𝜙𝑠=1.  Figure 25 illustrates the effect of the temperature on the ozone diffusion in 

both the gas and liquid domain. It is clear that the temperature has a higher impact on the liquid 
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mixture compared to the gas phase, this is mainly to the changes in the physical properties like the 

viscosity when varying the temperature. Another relevant observation is that the diffusive length here 

considered for the liquid is relatively small, this results in a diffusion coefficient seven orders of 

magnitude smaller compared to the one obtained in the gas domain.  

 

Figure 25 Diffusion coefficients for ozone in both the gas and liquid domain. 

The diffusion times in both domains are intrinsically related to the diffusion coefficients, this is the 

main driver to analyse the time required for each domain. Figure 26 illustrates the variation of the 

diffusion time with different temperatures. It is important to point out the different orders of 

magnitude between the diffusion times, this suggests that the diffusion time if possible in the system 

is mainly determined by the diffusion time of ozone in the gas domain (inside the bubble).  

 

Figure 26 Ozone diffusion time in both the gas and liquid domain. 

In the computational models here proposed, the microbubble internal mixing occurs on a time scale 

of 10-3 s, so the condensing vapour or evaporating mixture should obey a rate law that evolves on this 

rapid time scale. It can be depicted from Figure 26 that if diffusion were to be the determining mean 

of mass transfer, both the oxygen singlet and ozone would reach the gas-liquid interface in 1x10-4 s for 

the case of a microbubble with a radius 1x10-4 m.  
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4.3. Ozone stability 

When producing ozone in plasma reactors, it has been reported the relative concentration of the 

oxygen singlet with respect to ozone in pure dry air results. This results in the equation given by: 

 [𝑂]/[𝑂3] ≈ 3 × 108 ∙ exp (−11750 𝐾/𝑇0) (67) 

It is important to mention this ratio is given here a reference in the event that the oxygen singlet 

was to be produced from the decomposition of ozone due to the effect of parameters like temperature 

or the initial concentration. For the computational models proposed in this thesis, the oxygen singlet 

is described by the results reported by Lozano-Parada and Zimmerman that it is possible to tune an in-

situ ozone plasma microreactor to preferentially produce oxygen singlet radicals by adjusting the 

residence time and then injecting them directly into the bubble. At 1x10-2 s, the ozone production 

found its maximum and for the oxygen singlet the maximum yield was found at 1x10-3 s. This means a 

10x throughput can be produced by tuning the microreactor at the appropriate operating conditions 

(Lozano-Parada & Zimmerman, 2010; Zimmerman, 2011; Rehman, et al., 2016) 

 

Figure 27 Relative oxygen concentration of oxygen singlet with respect to ozone. 

Around a temperature of 100°C, the ozone decomposition is already intensive, and its time of 

dissociation fluctuates around 1 s. The reverse reaction of the ozone formation is significantly faster 

and the oxygen singlet concentration at this condition could be neglected [O*]/[O3]=1x10-5. According 

to the equation stated previously for the relative concentration of the oxygen singlet, and as it can be 

depicted from Figure 27 this value becomes comparable at a gas temperature of around 300°C. It is 

relevant to mention that this data is only valid outside of plasma, where the oxygen singlet is produced 

solely from ozone decomposition. The actual losses of ozone related to thermal decomposition take 

place in the rapid reaction of ozone with the oxygen singlet (Fridman, 1953).  
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The characteristic time for the thermal decomposition of ozone, assuming a stationary ratio for 

[O*]/[O3] is given by: 

 𝜏𝑂3
=

5 ∙ 10−18𝑠

𝛼𝑂3

∙ 𝑒𝑥𝑝 (
14050𝐾

𝑇0
) (68) 

As mentioned in Chapter 2, the ozone decomposition has a strong exponential dependence not 

only on the temperature but also on the initial concentration of this species. The factor 𝛼𝑂3
refers to 

the ratio between the ozone concentration and the total gas density. Diluted ozone is known to be 

stable at low temperatures. At a relative concentration of 0.2%, ozone decomposes in around 1 s at an 

operating temperature of 145°C.  

 

Figure 28 Characteristic time of ozone thermal decomposition (Fridman, 1953). 

On the other hand, at a gas temperature of 125°C and a relative concentration of 1% is equally 1 s. 

An increase in both the gas temperature and the initial ozone concentration would cause a rapid ozone 

decomposition. It is important to mention that thermal decomposition of ozone is a highly exothermic 

process and a fast process could potentially lead to overheating and thermal explosion (Fridman, 

1953).   

4.4. Liquid-phase mass transfer coefficient  

The mass transfer coefficient for a microbubble is relatively smaller compared to the value obtained 

when analysing coarse bubbles. This could be attributed to a much thicker liquid-phase boundary film 

than coarse bubbles. The liquid-phase mass transfer coefficient could be estimated using the 

theoretical equation of Levich given by: 

 𝑘𝐿 = 0.65(
𝐷𝐿𝑢𝑅

𝑑
)0.5 (69) 

where 𝐷𝐿 is the diffusivity (m2/s), 𝑢𝑅 is the rising velocity of the bubble (m/s) and d is the bubble 

diameter. For a microbubble with a diameter of 2x10-4 m, the mass transfer coefficient has a value of 
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9.686 x10-5 m/s. Figure 29 illustrates the variation of the mass transfer coefficient for different bubble 

sizes, it is clear that the order of magnitude for this value matches the one used by Abdulrazzaq et al 

in the purification of bioethanol. In the case of the proposed models in chapters 7 and 8, a value of 2 

x10-5 is used for the evaporation parameter of water. A small value of the water vaporisation 

parameter (2x10-7) would result in a slower mass transfer, mainly found in isothermal systems. 

A large value of this parameter would result in systems that flash to equilibrium characterised by a 

rapid vaporisation followed by recondensation as the bubble reaches the second regime. In this study 

a value of 2x10-5 has been used in order to guarantee nonequilibrium dynamics that are rapid enough. 

This value is in agreement with previous values reported by Abdulrazzaq et al in the purification of 

bioethanol in binary mixtures (Abdulrazzaq, et al., 2016; Zimmerman, et al., 2013).  

 

 

Figure 29 Mass transfer coefficient variation with bubble size using Levich equation. 

Another approach to estimate the liquid-phase mass transfer coefficient is the empirical equations 

of Calderbank and Moo-Young, for a diameter smaller than 600 m is given by: 

 𝑘𝐿(𝑣𝐿𝐷𝐿)
2
3 = 0.31[

(𝜌𝐿 − 𝜌𝑔)𝜇𝐿𝑔

𝜌𝐿
2

]
1
3 (70) 

where 𝑣𝐿 is the kinetic viscosity of the liquid, 𝜌𝐿 is the liquid density, 𝜌𝑔 is the gas density, 𝜇𝐿 is the 

liquid viscosity and g is the gravitational acceleration. It can be noticed that the empirical equations of 

Calderbank have no dependency on the bubble size. The liquid-phase mass transfer coefficient is then 

calculated from physical properties like density, viscosity and diffusivity.  

4.5.  Ozone decomposition models 

The decomposition of ozone in an aqueous solution is a very complex process, commonly defined 

as a radical type chain reaction which is extremely sensitive to the operating conditions. Trace amounts 

of impurities could potentially act as scavengers or promoters in this reaction, and the effect of the pH 

or a change in the ionic media have a significant effect on the lifetime of ozone in aqueous solution. 
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As mentioned before, the ozone decomposition in an aqueous solution involves the formation of 

radical species. This process has been mainly described by two different mechanisms, by Hoigné-

Staehelin-Bader (HSB) and Tomiyasu-Fukutomi-Gordon (TFG). In the following sections, these two 

methods are discussed and the key features of each one of them are shown.  

4.5.1. HSB model 

The HSB model states an oxygen-atom transfer from ozone to a hydroxide ion as the initial step of 

the mechanism, and then a reverse one-electron transfer. On the other hand, the TFG model only 

states the oxygen-atom transfer. In both models, the fundamental reaction is the initial step, this 

occurs when the ozone reacts with the hydroxyl radical. The speed of ozone decomposition is slowed 

down by the removal of the hydroxyl radical, O2
- and superoxide anion radical in the chain reaction. 

Having stated this initial step, the stability of the ozone solution is highly dependent on pH and suffers 

a decrease when alkalinity rises. At a pH above 8, the initiation rate has been reported to be 

proportional to the concentration of ozone and the hydroxyl radical. Nevertheless, for an acidic 

solution the reaction with the hydroxyl radical cannot be the initial step (Eriksson, 2004). 

In the mechanism, the oxygen singlet reacts with water, and the propagating products diffuse and 

react with ozone in the bulk liquid continuing the chain reaction. The half-life of ozone is about 2 

minutes at room temperature and 1 M NaOH solution, compared to 40 minutes in 5 M or 83 hours in 

20 M solutions. This observed decrease could be attributed to the formation of ozonide, which then 

reacts with the hydroxyl radicals resulting in the reformation of ozone. There are several factors 

affecting the ozone decomposition. For instance, at a higher temperature ozone depletion happens at 

a more rapid pace. This model describes the reaction of ozone in an aqueous solution as a 

direct/indirect reaction, shown in Figure 30. 

 

Figure 30 SHB mechanism for ozone reaction. 

The direct reaction is selective towards specific functional groups and compounds, this results in 

the cyclo-addition to unsaturated bonds by the Criegee mechanism forming ozonides. The reactivity 

of ozone is enhanced by groups that donate electrons, and in the case of electron-withdrawing groups, 

ozone would act as a nucleophile. The reactions and rate constants for the SHB model are shown in 

Table 16. 



89 
 

 

Table 16 Reactions and rate constants for the HSB model (Eriksson, 2004). 

Reaction Rate constant  

O3 + OH- = HO2 + O2
- 70 

HO2 = H+ + O2
- 10-4.8 

 O2
- + O3 = O3

- + O2 1.6 x109 

O3
- + H+ = HO3 5.2 x1010 

 HO3 = HO* + O2 1.1 x105 

 HO* + O3 = HO4 2 x109 

 HO4
 = HO2 + O2 2.8 x104 

The concentration profile over time for different species is illustrated in Figure 31. An initial 

concentration for all the species of 10 mol/m3 is here used. It can be depicted from this figure that the 

ozone decomposition occurs in an order of magnitude of 1 x10-3 s. The ozone decomposition takes 

longer in this mechanism and it can be seen that takes a few steps in order to achieve a decay in time.  

 

Figure 31 Concentration profile over time for different species in the Hoigé and Gordon model. 

The hydroxyl radical and oxygen singlet are nearly consumed at around 1x10-8 and 1x10-7 s 

respectively. The production of the molecular oxygen is clearly depicted in this figure, nearly achieving 

a concentration four times greater than the initial one. In order to contrast both models, the TFG model 

is presented in the following section.  

4.5.2. TFG model 

Tomiyasu, Fukutomi and Gordon (TFG) proposed a kinetic model for the aqueous decomposition of 

ozone. The TFG model predicts a slow ozone decomposition, but when the set of rate constants are 

modified the new TFG model can predict the lifetime of ozone within an order of magnitude over the 

neutral-alkaline pH region. The modified set of reactions and rate constants of the extended TFG model 

for the aqueous ozone decomposition is shown in Table 17. In this table, second, first and zeroth order 

rate constants are expressed in M-1s-1, s-1 and Ms-1 respectively. This extended model gives an accurate 
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description of ozone decomposition in alkaline solution. It has been reported that this model describes 

well the trends observed in the kinetic traces as a function of the pH in the range 10.4-13.2.   

Table 17 Reactions and rate constants for the TFG model (Nemes, et al., 2008). 

Reaction Rate constant  

O3 + OH- = HO2
- + O2 140  

HO2
- + O3 = O3

- + HO2  5.5 x106 

 O2
- + O3 = O3

- + O2  3 x108 

O3
- + OH = O2

- + HO2 2 x1010 

O3
- + OH = O3 + OH- 8.3 x109 

OH + O3 = HO2 + O2 2.5 x107 

0- + HO2
- = 02

- + OH- 3.2 x109 

0- + O2
- (+ H20) = 02 + 20H- 1.8 x108 

03
- = O2 + 0- 5 x103 

H03 = O2 + OH 1.1 x105 

H02 + OH- = O2
- (+ H20) 1 x1010 

H2O2 + OH-=HO2
-(+H2O) 1 x1010 

OH + OH- = O- (+ H20) 4 x1010 

H03 + OH- = O3
- (+ H20) 5.2 x1010 

H+ + OH- = (H20) 1 x1011 

The concentration profile over time for different species is illustrated in Figure 32. An initial 

concentration for oxygen 42.24 mol/m3 is here used and for the rest of the species like ozone, hydroxyl 

radical and the oxygen singlet an initial concentration of 10 mol/m3 is used. It can be depicted from 

this figure that the ozone decomposition occurs in an order of magnitude of 1 x10-6 s.  

 

Figure 32 Concentration profile over time for different species in the TFG model. 

It is clear that before the rapid decay, a small increase in the ozone concentration occurs at the 

same time as the radical species start being consumed. The hydroxyl radical and oxygen singlet are 

consumed relatively faster than ozone in around 1 x10-8 s. The ozone decomposition in aqueous 



91 
 

 

solution results in the production of the oxygen molecule due to its stability and the rate constant of 

the reaction in charge.   

4.5.3. Heat exchanger model 

Regarding the ozone free radical initiated esterification, the effect of the temperature on the 

production of FAME is a matter of importance in order to explore the temperature dependency of the 

reaction and estimate the temperature that results in a maximum production. Both the bubble and 

liquid mixture are important parameters explored in chapters 7 and 8. Regarding the bubble 

temperature, a heat exchanger is designed for the respective use to pre-heat the gas phase before 

being injected into the microbubble. The heat exchanger here modelled and designed for the 

intensified esterification is based on a previous device use in the microfluidics group at the University 

of Sheffield.  

It is important to mention that this process air heater is not included in the bioreactor shown in 

experimental rig used in Section 3.1. The process air heater here described is used in the Microfluidics 

group at the Kroto Research Institute. The figure below shows the schematic diagram for the process 

air heater, illustrating some of the key features. The air heater is the RS Pro AH75-6MF, a 750 W heater 

with the capacity of heating up to 813 K. In Figure 33 the key features of this process air heater are 

shown, with a heated length A of 88.9 mm, a total chamber B of 101.6 mm and a tubing “T” with 

dimensions C and D of 33.3 mm. The sheath material and T piece are made of stainless steel and copper 

respectively (RS, 2016).  

 

Figure 33 Schematic diagram for the process air heater (RS, 2016). 

The process air heater has an internal diameter of 9.52 mm and length of nearly 10 times the radius, 

resulting in a cross-sectional area of 2.85 x10-4 m2. The gas inlet flow used for the modelling in this 

section has a value of 0.1 L/min. The linear velocity of the gas mixture in the heat exchanger is 

calculated to have a value of 8.488 x10-2 m/s, giving a residence time of 0.294 s.  The gas mixture is in 

the process air heater operates at a Reynolds number of 142.93 which belongs to the laminar regime 

(Re<2300). The temperature of the wall and the gas mixture inlet is set to 673.15 and 293.15 K. In this 

section can be found a brief analysis of the velocity and temperature gradient in the process air heater, 
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the concentration profile for the species of interest has already been discussed previously in this 

chapter.   

4.5.3.1. Temperature profile  

The ozone decomposition has an important temperature dependency. This is the main driver to 

analyse the temperature profile in the process air heater. Some features like the internal diameter and 

the inlet flow are important features when designing a process air heater.  

In Figure 34, the temperature gradient across the process air heater is illustrated. It can be depicted 

from this figure that in around 0.1 s, the temperature of the gas in the process air heater shows an 

isothermal behaviour, reaching a temperature of 673.15. This means that under the operating 

conditions stated previously, at around 0.1 s the gas reaches a thermal equilibrium with the walls of 

the process air heater. If the gas mixture is left for a bit longer compared to this thermal equilibrium, 

this results in assuring the outlet gas temperature to be similar to the one set initially to the process 

air heater.  

 

Figure 34 Temperature profile in K across the process air heater over time (For a-d, t=0.0001, 0.001, 0.01 and 0.1 s). 

Before 0.001 s, the temperature of the gas mixture does not show much of a temperature gradient. 

It is until 0.01 s, when the gas mixture flowing in the middle of the air heater rises it temperature to 

450 K and the temperature around the walls is highly influenced by the operating conditions set. 

Having said this, the gas mixture shows a significant increase in temperature around 0.01 s. This would 

then lead to the thermal equilibrium previously mentioned at around 0.1 s.  

4.5.3.2. Velocity gradient 

One of the relevant aspects to be analysed in a process air heater is the velocity gradient, which is 

defined by several parameters set at the beginning of its design such as the internal diameter and the 
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length of the device. The velocity gradient across the process air heater over time is shown in Figure 

35.  

 

Figure 35 Velocity gradient across the process air heater over time (For a-d, t=0.0001, 0.001, 0.01 and 0.1 s). 

These features result in a characteristic Reynolds number which then governs the fluid dynamics 

and dictates the flow pattern experienced by the gas mixture in the process air heater. In this case, the 

gas phase flowing in the process air heater has a Reynolds number of 142.93 which falls into the 

laminar flow. It can be depicted from this figure that around 0.0001 s, the velocity across the air heater 

fluctuates around 0.08 m/s and tends to zero the closer it gets to the walls of the device. After 0.001 s 

the velocity profile becomes apparent showing a gradient from 0.1 m/s right at the centre of the pipe, 

whereas the velocity at a close proximity with the walls becomes apparent slowing the fluid in this 

section. After 0.01 s, the velocity profile shows a maximum velocity of 0.12 at the centre of the pipe 

and the velocity gradient is well defined. It is clear that at 0.1 s, the same velocity profile is shown for 

this system. This suggests that after 0.01 s, the gas phase flowing in the process air heater is well mixed 

and shows a laminar behaviour dictated by its previously calculated Reynolds number.  

4.6. Conclusions 

The Peclet number is considerably lower than 1. This would suggest that convection is the dominant 

mean of mass transport in the gas phase. Although convection is known to happen faster than 

diffusion, for very small volumes (microbubbles) the more efficient means of transport occurs by 

diffusion. This is the main driver to introduce a microbubble internal mixing that occurs on a time scale 

of 10-3 s, so the condensing vapour or evaporating mixture should obey a rate law that evolves on this 

rapid time scale. In terms of the Reynolds number, microfluidic systems are known to have a 

characteristic length is so small that the Reynolds number are mostly always less than 1. In terms of 

the diffusion time falls into the order of magnitude of 1x10-3 s 
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In the ozone free radical initiated esterification, a microbubble with a radius of 1x10-4 m rising 

through the liquid mixture, would rise at a terminal velocity of 2.781x10-4 m/s and have a Reynolds 

number 3.17x10-6. This value suggests that the laminar flow is expected in the rising of the microbubble 

for the esterification unit. It is clear that smaller bubbles have a lower terminal velocity and therefore 

its residence time would be higher compared to coarse bubbles. Mostly all the bubble sizes tend to be 

similar to the atmospheric pressure. For bubbles with a diameter less than 50 m, the internal pressure 

increases dramatically to a certain extent when decreasing the bubble diameter. 

The internal gas pressure increases when the microbubbles are smaller, and it is important to point 

out that the rate of increase is inversely proportional to the bubble size. A bubble one order of 

magnitude smaller rises at a terminal velocity two orders of magnitude slower. For the proposed 

models in this thesis, the liquid layer domain considered in the computational model is ten times bigger 

compared to the radius of the bubble. This would mean that a microbubble with a radius of 1x10-4 m 

rising at a terminal velocity of 2.781x10-4 m/s would take 3.592 s to rise through the liquid mixture. 

The diffusion time if possible in the system would be mainly determined by the diffusion time of ozone 

in the gas domain (inside the bubble).  

Around a temperature of 100°C, the ozone decomposition is already intensive, and its time of 

dissociation fluctuates around 1 s. The reverse reaction of the ozone formation is significantly faster 

and the oxygen singlet concentration at this condition could be neglected [O*]/[O3]=1x10-5. A large 

value of this parameter would result in systems that flash to equilibrium characterised by a rapid 

vaporisation followed by recondensation as the bubble reaches the second regime. In this study a value 

of 2x10-5 has been used in order to guarantee nonequilibrium dynamics that are rapid enough. 

Regarding the ozone decomposition models, the HSB model occurs in an order of magnitude of 1 

x10-3 s. The ozone decomposition takes longer in this mechanism and it can be seen that takes a few 

steps in order to achieve a decay in time. On the other hand, the TFG model occurs in an order of 

magnitude of 1 x10-6 s.  

For the process air heater model, the operating conditions stated previously, at around 0.1 s the 

gas reaches a thermal equilibrium with the walls of the process air heater. If the gas mixture is left for 

a bit longer compared to this thermal equilibrium, this results in assuring the outlet gas temperature 

to be similar to the one set initially to the process air heater. After 0.01 s, the velocity profile shows a 

maximum velocity of 0.12 at the centre of the pipe and the velocity gradient is well defined. It is clear 

that at 0.1 s, the same velocity profile is shown for this system. This suggests that after 0.01 s, the gas 

phase flowing in the process air heater is well mixed and shows a laminar behaviour dictated by its 

previously calculated Reynolds number.  
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5. 0-D with irreversible reaction for the esterification of FFA 

In this chapter the irreversible 0-D model is presented for the analysis of the reaction mechanism 

proposed in this thesis. The 0-D model is chosen since it has no spatial dependency, it is defined to be 

time dependent. The models are given by ordinary differential equations, since the model is a function 

of only one variable (time). The main purpose of this approach is to explore the behaviour of the three-

step mechanism on its own, in order to have a concrete idea of the kinetics and therefore 

understanding the role of the different parameters in this set of reactions. It is important to isolate the 

reactions in order to analyse the timescale and respective values for the rate constants which will be 

used to fit the model to experimental data. The relevant data calculations and estimations presented 

in both chapter 3 and 4 are here considered.  

The importance of this model relies on maximising the production rate of the biodiesel by increasing 

the initial concentration of oxygen singlet (𝑂 ·) which is thought to catalyse the proposed reaction 

mechanism and take the reaction to completion.  The model does not take into account heat transfer 

on the surface, phase changes or transport of diluted species since they are set in a 0-D model. The 

irreversible mechanism is considered for this chapter since esterification is known to be a reversible 

reaction of second order. In this chapter the reader can find the model description, determination of 

rate constants, least squares fitting of the model and the appropriate results for the variation of 

different parameters such as, temperature and the initial concentration for both methanol and oxygen 

singlet. 

5.1. Model description 

The 0-D model for the chemical reactions involved in the proposed three-step mechanism is built 

using COMSOL Multiphysics. For the purpose of this chapter, the 0-D model is set to be located on the 

surface of the microbubbles, where all the species interact following the reaction mechanism. The 

oxygen singlet (𝑂 ·) reacts with methanol forming free radicals such as, the methoxy radical (𝑀𝑒𝑂 ·) 

and the hydroxyl radical (𝐻𝑂 ·). Right after this happens, the hydroxyl radicals recombine producing 

water (𝐻2𝑂) and oxygen (𝑂2). Lastly, the Free Fatty Acids (FFA) react with the methoxy radical forming 

the Fatty Acid Methyl Ester (FAME) and hydroxyl radical, in which is assumed to be the slowest step of 

the mechanism. The set of equations used in the model are shown below: 

 𝑂 ·  + 𝑀𝑒𝑂𝐻 → 𝑀𝑒𝑂 ·  +𝐻𝑂 · (71) 

 𝐻𝑂 ·  +𝐻𝑂 · →  𝐻2𝑂 +  
1

2
𝑂2 (72) 

 𝐹𝐹𝐴 + 𝑀𝑒𝑂 · → 𝐹𝐴𝑀𝐸 + 𝐻𝑂 · (73) 

To model the set of equations, the Reaction Engineering module is used considering a time 

dependent study and a batch reactor type which is defined by the following equation: 
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𝑑(𝐶𝑖𝑉𝑟)

𝑑𝑡
= 𝑉𝑙𝑖𝑞𝑅𝑖 (74) 

where 𝑉𝑙𝑖𝑞 is the liquid volume. For the model here described, a batch reactor is used with a volume 

of 𝑉𝑙𝑖𝑞=3.25x10-4 m3. The first two reactions in the proposed mechanism are assumed to be in 

equilibrium and the last step is the slowest one, dictating the timescale for the overall reaction rate. 

In this chapter irreversible reaction mechanism is studied. When the reactions are input in the 

modelling software, the fact that there are two equilibrium reactions containing the hydroxyl radical 

(𝐻𝑂 ·) caused issues when solving for the concentrations of the different species. Having said this, the 

reaction rate for the second step is set to be so fast that it feels like equilibrium compared to the final 

reaction. The initial values for the volumetric species concentration are shown in Table 18, traces of 

some of the species have been added to the model to get the simulation running. FFA and methanol 

have the same initial molar concentration in the liquid, this is in agreement with the stoichiometric 

ratio for these two species equal to 1:1. Having said this, the initial concentration for both methanol 

and FFA is given by: 

 [𝐹𝐹𝐴]𝑖 = [𝑀𝑒𝑂𝐻]𝑖  (75) 

The calculations for the initial concentration values are shown in chapter 4. The resulting value for 

the [𝐹𝐹𝐴]𝑖= 301.53 mol/m3. In terms of the initial concentration of 𝑂 · used for the fitting of the model 

to the experimental data, the calculations are shown in the previous chapter. The resulting value for 

the [𝑂 ·]𝑖= 281.25 mol/m3. 

Table 18 Volumetric species initial concentration values used in the 0-D model. 

Species 
Concentration 

(mol/m3) 

O· 281.25 

MeOH 301.53 

MeO·, HO·, 𝐻2𝑂, 𝑂2, FAME 1x10-4 

FFA 301.53 

The first step described by the reaction 𝑂 ·  + 𝑀𝑒𝑂𝐻 → 𝑀𝑒𝑂 ·  +𝐻𝑂 · is set to be in equilibrium 

following the equation 𝑘𝑒𝑞 = 𝑘𝑒𝑞0, where 𝑘𝑒𝑞0 is equal to 1. For the second step in this reaction 

mechanism 𝐻𝑂 ·  +𝐻𝑂 · →  𝐻2𝑂 +  
1

2
𝑂2, the reaction is to be reversible where the rate constants are 

given by 𝑘𝑓 = 𝑘𝑟 ∙ 𝑘𝑒𝑞0 and 𝑘𝑒𝑞0 is equal to 1. Lastly, the third step 𝐹𝐹𝐴 + 𝑀𝑒𝑂 · → 𝐹𝐴𝑀𝐸 + 𝐻𝑂 · is 

set to be irreversible where the forward rate constant kf3 is studied to illustrate the importance of the 

reaction kinetics of this mechanism, and then be fitted to the experimental data. In order to analyse 

the effect of different rate constants and the initial concentration of 𝑂 ·, parametric sweeps are carried 

out changing the value at different orders of magnitude of the parameters shown Table 19. 
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In the next sections of this chapter, the determination of the rate constants kf2 and kf3 are 

described and the variation of different operating conditions is studied for the irreversible mechanism. 

Table 19 Parameters used in the irreversible 0-D model. 

Parameter Name 

Forward rate constant Reaction 2 kf2 

Forward rate constant Reaction 3 kf3 

Initial concentration of O· rado 

The reaction type is kept as irreversible and the concentration of the different species involved in 

the mechanism is given by: 

 
𝑑𝐶𝑖

𝑑𝑡
= 𝑣𝑖𝑟 (76) 

where the third step defined by the reaction 𝐹𝐹𝐴 + 𝑀𝑒𝑂 · → 𝐹𝐴𝑀𝐸 + 𝐻𝑂 ·, the forward rate 

constant is described by the parameter kf3. 

The reaction mechanism described earlier in this section can be separated into two stages for its 

analysis. The first stage involves the first two reactions where the oxygen singlet reacts with methanol 

on the surface, and the resulting hydroxyl radical recombines forming water and oxygen. This stage is 

carried in preparation for the second stage which involves the reaction on the methoxy radical with 

the free fatty acid in order to form the fatty acid methyl ester. In order to determine the heat of 

reaction for each one of the three steps proposed in this mechanism, the heats of formation for each 

species are shown in Table 20. 

Table 20 Heats of formation for selected species at 25°C and 100kPa (Cox, et al., 1989). 

Species Heat of formation (kJ/mol) 

O· 438.05 

MeOH -201.6 

MeO· 17.15 

HO· 37.2 

H2O -241.826 

O2 0 

FFA -764.8 

FAME -727.64 

The heats of reaction for each step in the mechanism are shown in Figure 36. The two reactions 

considered in the first stage of the mechanism have a negative value, indicating they are exothermic. 

On the other hand, the reaction in the second stage (esterification) theoretically has a value of 57.21 

kJ/mol which indicates an endothermic reaction.  

 𝑂 ·  + 𝑀𝑒𝑂𝐻 → 𝑀𝑒𝑂 ·  +𝐻𝑂 ·              ∆𝐻𝑟𝑥𝑛 = −182.1 𝑘𝐽/𝑚𝑜𝑙 
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 𝐻𝑂 ·  +𝐻𝑂 · →  𝐻2𝑂 +  
1

2
𝑂2                    ∆𝐻𝑟𝑥𝑛 = −316.22 𝑘𝐽/𝑚𝑜𝑙 

 𝐹𝐹𝐴 + 𝑀𝑒𝑂 · ↔ 𝐹𝐴𝑀𝐸 + 𝐻𝑂 ·        ∆𝐻𝑟𝑥𝑛 = 57.21 𝑘𝐽/𝑚𝑜𝑙 

Figure 36 Heats of reaction for the proposed mechanism. 

The heats of reaction are discussed in more depth in the discussion section of this chapter. It is 

important to mention that models proposed in chapter 5 and 6 do not consider any heat transfer in 

fluids or transport of diluted species, they strictly focus on understanding and exploring the impact of 

the rate constants in the reactions considered in the proposed mechanism.  

5.2. Determination of rate constants 

In order to explore the kinetics of the first two steps (instantaneous) in this mechanism, the third 

reaction is disabled in the computational model. A parametric sweep is carried out for the forward rate 

constant (kf2) to explore the time scale and effects of the spontaneous reactions with an initial time 

step of 1x10-8 s, an initial concentration for [𝐹𝐹𝐴]𝑖= 301.53 mol/m3 and an initial concentration for 

[𝑂 ·]𝑖= 281.25 mol/m3. The different time scales at which the spontaneous reactions (reaction 1 and 

2) reach equilibrium at three different values of kf2 are illustrated in Figure 37. For a value of the 

forward rate constant (kf2) of 1, 1x105, 1x106 and 1x107 m3/(s·mol), the reaction reaches equilibrium 

at a time scale of 1x10-1, 1x10-6, 1x10-7 and 1x10-8 s respectively.  

Once the third reaction is enabled, the effect of kf2 can be studied by using another parametric 

sweep to explore the differences this may have in the water concentration. For this sweep, kf3 is kept 

constant with a value of 1 m3/(s·mol). kf2 controls the time scale that takes for the spontaneous 

reactions to reach equilibrium. After 1x10-6 s there is no discernible difference between the three 

values for this parameter ranging 1x105-1x107 m3/(s·mol), so the value of kf2= 1x105 m3/(s·mol) is 

chosen as a set value throughout the studies.  

To demonstrate the effect of this parameter in the water concentration, a new value of kf2=1 is 

introduced in the parametric sweep, which shows a discernible difference when compared to values 

of kf2=1x105-1x107 m3/(s·mol). Using the right value for kf2 is important since this parameter dictates 

how much water is being produced and therefore transferred into the bubble. This suggests that the 

value of kf2 needs to be big enough to describe the spontaneous reactions but increasing its value 

above 1x105 m3/(s·mol) has no significant impact since equilibrium is reached before the third step 

takes place.  
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Figure 37 kf2 effect on the water concentration for the spontaneous reactions. 

In Figure 38 is shown time scale at which both the spontaneous and the slow step in the proposed 

mechanism reach equilibrium when a value for kf2 above 1E5 m3/(s·mol) is used, being in the order of 

1x10-6 and 1 s respectively. The water concentration at equilibrium is 254.46 mol/m3.Additionally, 

when kf2 has a value of 1 m3/(s·mol) the overall mechanism reaches equilibrium in the order of 1s. In 

this scenario, the spontaneous reactions do not reach equilibrium before undergoing to the third 

reaction, that explains why the curve only exhibits one plateau after 1s. Plots used in this model 

consider an x-axis log scale since different time scales are explored. 

 

Figure 38 kf2 effect on the water production for the overall mechanism. 

Regarding the effect of kf2 in terms of FAME production, a sensitivity study is conducted by using a 

parametric sweep of kf2. In Figure 39, the parameter kf2 shows no effect on the FAME concentration. 
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To magnify the potential differences between the values of kf2, a double log plot is used where no 

differences are depicted between the range of values for kf2 of 1-1x107 m3/(s·mol). The y-axis log scale 

is used to elucidate if there are differences in the FAME concentration at the beginning of the reaction 

(t<1x10-6 s) due to a variation in the parameter kf2 but for all the values tested of this parameter no 

significant difference is depicted. In other words, no sensitivity to kf2 on FAME production is shown. 

Figure 39 shows that the FAME production is completely independent on kf2, but since this 

parameter affects the water production, kf2 should not have a value of 1 m3/(s·mol) since this model 

is interested in how much water is entering the microbubble. Although it is not possible to see changes 

in FAME concentration caused by varying kf2, there is an impact in terms of water production. 

 

Figure 39 Sensitivity to kf2 on FAME production. 

Having completed the parametric sweep for the rate constant kf2 and established the correct order 

of magnitude, having a value of 1x105 m3/(s·mol), the next step is to set explore the appropriate values 

for the rate constant kf3 for the slowest reaction (𝐹𝐹𝐴 + 𝑀𝑒𝑂 · → 𝐹𝐴𝑀𝐸 + 𝐻𝑂 ·) in the mechanism. 

In  Figure 40, the effect of the rate constant kf3 on the FAME production is shown.  

The aim of the parametric sweep is to find the appropriate order of magnitude for kf3, so it is in 

agreement with the experimental data. According to the experimental data gathered, the three-step 

mechanism should reach equilibrium around 20 h. For a value of the forward rate constant of 1x10-5, 

1x10-6 and 1x10-7 m3/(s·mol), the reaction reaches equilibrium at a time scale of 10, 1x102 and 1x103 h 

respectively. The three rate constants reach equilibrium with a FAME concentration of 281.25 mol/m3, 

this means for all the treatments here studied the reaction is taken to completion. Having said this, 

the most appropriate value for kf3 is 1x10-5 m3/(s·mol) since it matches the correct order of magnitude 

when the three-step mechanism reaches equilibrium. 
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 Figure 40 kf3 effect on the overall FAME production using kf2=1x105 m3/(s·mol).  

In Figure 41, the initial concentration of [𝑂 ·] effect of on FAME production is shown. The values for 

kf2 and kf3 were set to 1x105 and 1x10-5 m3/(s·mol). It can be depicted that increasing the initial 

concentration for the species 𝑂 · increases the FAME production until it reaches a maximum when  

[𝐹𝐹𝐴]𝑖 = [𝑂 ·]𝑖. For an initial concentration of [𝑂 ·] of 10, 100 and 281.25 mol/m3, the final FAME 

concentration is equal to the initial concentration of [𝑂 ·].  

But for values when the initial concentration of 𝑂 · is greater than that of FFA, the FAME 

concentration reaches a maximum value of 301.53 mol/m3. This means that the amount of FAME 

produced in this set of reactions is limited by the initial concentration of 𝑂 ·,  in other words the species 

𝑂 · is the limiting reagent. The reaction reaches an equilibrium in the correct order of magnitude of 10 

h, this is when 𝑂 · is totally consumed and the reaction is taken to completion achieving a resulting 

concentration of FAME of 301.53 mol/m3. This combination of rate constants is then used for the least 

squares fitting for the 0-D irreversible model. 

The mechanism achieves a conversion for FFA of 93.27% and when equilibrium is reached the final 

concentration of FAME is 281.25 mol/m3. In other words, the final concentration of FAME in the 

irreversible reaction mechanism is taken to completion and is equal to the initial concentration of 𝑂 ·, 

following the equation below: 

 [𝑂 ·]𝑖 = [𝐹𝐴𝑀𝐸]𝑓 (77) 

It is important to mention that this condition only applies when the initial concentration of 𝑂 · is 

smaller than the one for FFA. This is because the species 𝑂 · is the limiting reagent in the proposed 

reaction mechanism, this condition is stated by: 

 [𝑂 ·]𝑖 < [𝐹𝐹𝐴]𝑖 (78) 
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Figure 41 𝑂 · initial concentration effect on FAME production. 

The concentration profile for FFA, FAME and water is shown in Figure 42. This profile is obtained 

using an initial concentration for water, FFA and [𝑂 ·] of 1x10-4, 301.53 and 281.25 mol/m3. The value 

for the forward rate constant kf2 is 1x105 m3/(s·mol) and the forward rate constant kf3 has a value of 

1x10-5 m3/(s·mol). The resulting irreversible reaction mechanism reaches equilibrium at 10 h, which is 

the correct order of magnitude for the experimental data. In terms of water production, the 

concentration profile exhibits two plateaus, the first one for the spontaneous reactions at 1x10-10 h 

and the second one for the third step at 10 h.  

 

Figure 42 FAME, FFA and water concentration profile in time. 

For these two plateaus the concentration reached at equilibrium is 95.29 and 254.46 mol/m3 

respectively. The production of FAME reaches a plateau at equilibrium with a concentration of 281.25 
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mol/m3. With the parameters previously mentioned, a conversion of 93.27% of FFA is achieved at 

equilibrium resulting in a production of 25.82 and 23.36 g for FAME and H2O respectively.  

5.3. Least squares fitting for 0-D irreversible model  

The irreversible 0-D model used in Section 5.2 follows a reaction rate for FAME described by the 

following equation: 

 𝑟𝐹𝐴𝑀𝐸 = 𝑘𝑓[𝐹𝐹𝐴][𝑀𝑒𝑂 ·] (79) 

 𝑟𝐹𝐴𝑀𝐸 = 𝑘𝑓3𝑘1𝑘2

1
2[𝐹𝐹𝐴]

[𝑀𝑒𝑂𝐻][𝑂 ·]

[𝐻2𝑂]
1
2[𝑂2]

1
4

 (80) 

where kf is the combination of different rate constants. The procedure describing how this rate 

constant is calculated is described in Chapter 7 in more detail. The forward rate constant for the 

irreversible reaction of the slowest step is therefore defined by: 

 𝑘𝑓 = 𝑘𝑓3𝑘1𝑘2

1
2 (81) 

In Figure 43, one of the curves from the experimental data is shown and it can be depicted that the 

experimental points do not follow a linear behaviour, so a non-linear regression method is needed to 

compare the curvature of these lines. After fitting the curves to a 2nd order polynomial trendline, the 

curvature of the three temperatures is determined by the 2nd derivative. At 20, 40 and 60°C, the value 

for the second derivative is -0.1728, -0.2796 and -0.8738 suggesting that a higher temperature, the 

line produced from plotting the FAME production in time show a more pronounced curvature. The 

experiment was carried using different FFA content with values of 10, 15 and 20%. These curves belong 

to the FFA treatment with an initial content of 20% using waste cooking oil at 20, 40 and 60°C.  

 

Figure 43 FAME production over time from the experimental data. 

The reaction mechanism here proposed is then summarised in the overall reaction equation which 

is described below: 
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 𝐹𝐹𝐴 + 𝑀𝑒𝑂𝐻 + 𝑂 · ↔ 𝐹𝐴𝑀𝐸 + 𝐻2𝑂 +
1

2
𝑂2 (82) 

As mentioned in Section 3.1, the microbubbles generated with a fluidic oscillator have an initial 

concentration for the free radical 𝑂 · of [𝑂 ·]= 4500 ppm which corresponds to the initial concentration 

of [𝑂 ·]= 281.25 mol/m3 used in these models. The production rate of the biodiesel is then maximised 

by producing a high amount of 𝑂 · using an advanced oxidation plasma reactor. It has been reported 

by Zimmerman and Lozano Parada that it is possible to tune a plasma reactor under specific conditions, 

so a maximum of 𝑂 · at 1x10-3 s it then produced. This means there is no need to form the ozone 

species for then to be decomposed in 𝑂 ·, but by tuning the device a set amount of this species can be 

produced (Lozano-Parada & Zimmerman, 2010). 

COMSOL with MATLAB is used for the least squares fitting of this model. This is a mathematical 

procedure used to find the best-fitting curve to the given set of experimental points. In principle the 

fitting minimises the sum of the squares of the offsets of the points from the curve. The least squares 

fitting is given by the equation: 

 𝑅2 = ∑(𝑦𝑝 − 𝑦𝑚)2 (83) 

where 𝑦𝑝 is the predicted value from the model, 𝑦𝑚 is the measured value from the experimental 

data. In the case of the irreversible reaction for the proposed mechanism, the predicted FAME 

production (𝑦𝑝) is a function of time (t) and the forward rate constant (kf), defined by: 

 𝑦𝑝 = 𝐹(𝑡𝑖; 𝑘𝑓) (84) 

Once the model has been fitted to the experimental data, the values for the forward rate constant 

for the irreversible reaction of the slowest step (𝑘𝑓) can be used to elucidate the dependence of the 

rate constant (𝑘𝑓) on the absolute temperature for the proposed reaction mechanism. The Arrhenius 

equation is given by:  

 𝑘 = 𝐴𝑒−
𝐸𝑎
𝑅𝑇 (85) 

where k is the chemical reaction rate in s-1 and M-1s-1 for first and second order rate constants, A is 

the pre-exponential factor in the same units as the rate constant used, 𝐸𝑎 is the activation energy in 

J/mol, R is the gas constant (8.314 J/(mol K)) and T is the temperature in K. If the rate constant for a 

reaction obeys this equation, a plot of ln(k) versus 1/T gives a straight line given by: 

 ln(𝑘) = −
𝐸𝑎

𝑅𝑇
+ ln (𝐴) (86) 

where the slope of the straight line is (−
𝐸𝑎

𝑅
) and the intercept ln (𝐴). In Table 24 are shown the 

different values for the rate forward constant (kf3) at 20, 40 and 60°C from the experimental data.  
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5.4. Results and discussion 

The least squares method is carried out to fit the predicted data from COMSOL Multiphysics to 

match the experimental data. COMSOL with MATLAB is used to perform the fitting of the curves 

following the code found in Appendix B. It is important to mention that before running the code for 

each treatment, the initial concentration of [FFA] and the ym are set to the respective value.  

Once the code is run, it gives the value for kf3 that satisfies the condition of having the least squared 

error and the values for the new predicted yp. The values for the rate constant kf3 for each treatment 

are found in Table 21. In Section 5.1 a prediction for the right order of magnitude when the reaction 

mechanism reached equilibrium gave a value for the forward rate constant kf3 of 1x10-5 m3/(s·mol) 

with a set value of kf2 of 1x105 m3/(s·mol). This value of kf3 is then used as an initial guess for the 

fitting. The resulting order of magnitude for majority of the fitted curves is 1x10-7 m3/(s·mol), in Table 

21 the resulting values of kf3 are shown in (M-1s-1) to ease further calculations. Once the values for the 

rate constant kf3 are found for all the treatments, the least square statistical analysis is carried out to 

discuss the overall quality of the fit. The effect of temperature can be easily described in Table 21, an 

increase in temperature means an increase in the forward rate constant for the three different FFA 

contents. 

Table 21 Rate constant kf3x10-4 (1/M.s) values for each treatment. 

  Free Fatty Acid % 

  10% 15% 20% 

Te
m

p
e

ra
tu

re
 (

K
) 293.15 1.6631 0.8855 0.8930 

313.15 1.9970 0.9602 1.2679 

333.15 2.5311 1.2625 2.6740 

The least squares method used to fit the predicted and measured data finds the best fitting straight 

line in a set of points by finding the minimum of the sum of the squares of the vertical deviations. For 

the iterations used in this method, a condition to find only positive numbers is used since the order of 

magnitude is 1x10-7 and the solver could return negative values. The tolerance for the parameter kf3 

in the iterations is set to 1x10-10 to return values with significant figures.  

Table 22 Statistical analysis of the fitted curves. 

FFA % Temperature (K) Sxx x102 Syy x102 Sxy x102 Cov (x,y) R2 serror 

 

10 

 

293.15 4.617 8.040 5.952 66.1321 0.9769 2.2917 

313.15 6.407 7.917 7.043 78.2590 0.9890 1.5765 

333.15 9.932 10.05 9.949 110.5428 0.9957 1.1163 
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 293.15 5.074 6.981 5.830 64.7770 0.9796 2.0066 

15 313.15 8.911 10.85 9.673 107.4807 0.9836 2.2441 

 333.15 23.16 21.76 22.28 247.5875 0.9927 2.1304 

 293.15 196.8 216.0 204.5 2272.5366 0.9921 6.9772 

20 313.15 379.3 425.1 399.5 4438.8676 0.9949 7.8622 

 333.15 597.4 592.3 594.7 6607.6516 0.9998 2.0281 

 

Table 22 is comprised of the different terms calculated for the least squares method and its 

respective quality. Sxx and Syy are the corrected sum of squares for yp and ym respectively. Sxy 

corresponds to the corrected sum of cross products, Cov(x,y) is the covariance and Serror is the standard 

deviation of the error. The correlation coefficient R2 is the parameterised value for the overall quality 

of the fit.  

All the fitted curves have a correlation coefficient greater than 0.97 which suggests that the method 

used to fit the curves has a high overall quality. For each FFA content (10, 15 and 20%), the highest 

value for R2 is achieved at 60°C, since the experimental data shows the plateau behaviour at higher 

temperatures. As discussed in Section 4.4, the FAME production curves obtained from the 

experimental data exhibit a more pronounced curve at higher temperatures. This behaviour could be 

attributed to the effect of temperature in a chemical reaction, since it is known that a higher 

temperature a reaction occurs more rapidly. In other words, the exponential growth in terms of 

production of FAME at the beginning of the reaction is more noticeable at higher temperatures. The 

best fit was achieved at a temperature of 60°C and 20% FFA with a R2=0.992, the iteration returned a 

value for the forward rate constant 2.6740x10-4 M-1s-1. In terms of comparison, the curve with the 

lowest R2 was the 10 FFA% at 293.15 K. The treatment 10 FFA% at 293.15 K obtained a forward rate 

constant of 1.6631x10-4 M-1s-1(R2=0.976). In the next chapters, this treatment will be used for further 

comparison since the change and hence improvement of the fitting of the respective model can be 

depicted.  

From the results obtained in Figure 43, it can be depicted that there is a significance difference in 

FAME production by changing the temperature. In order to determine if there are any significant 

differences between the forward rate constants obtained at Free Fatty Acid contents of 10, 15 and 

20%, the one-way analysis of variance (ANOVA) with a significance level of 𝛼=0.05 is used. For the test 

a null and alternative hypothesis need to be stated. The null hypothesis to be tested in this case 

involves the average of the forward rate constants obtained for different FFA contents which is given 

by: 



107 
 

 

 𝐻𝑜: 𝜇1 = 𝜇2 = 𝜇3 (87) 

On the other hand, the alternative hypothesis 𝐻𝑎 states that at least one mean is different. It is 

important to mention that this test does specify which specific groups are statistically different from 

each other. Table 23 show the results obtained for the ANOVA analysis with the relevant values 

between and within treatment groups. Since the Fvalue<Fcrit (2.14<5.14), we fail to reject the null 

hypothesis meaning there is no significant difference between the three groups for the FFA content 

10, 15 and 20%. In other words, the forward rate constants that are inferred in this model are not 

significantly different for the change of FFA content, but they are for the temperature.  

Table 23 ANOVA results for the forward rate constant. 

  df SS x10-8 MS x10-9 F Fcrit 

Treatment 2 1.591 7.958 2.144 5.14 

Residuals 6 2.226 3.710   

Total 8 3.817    

Having concluded there is no significant different between the groups accounting for the Free Fatty 

Acid%, the values for the forward rate constant kf3 are used in the Arrhenius equation to obtain the 

activation energy (Ea) and pre-exponential factor (A) for the forward reaction of the third step. Table 

24 contains the value for the average forward rate constant kf3 at each temperature. By plotting ln(k) 

against 1/T, it is possible to determine Ea and A. 

Table 24 Linear regression parameters used for Arrhenius equation parameters. 

Temperature (K) 
Rate constant 

x10-4 (M-1s-1) 
1/T x10-3 (K-1) ln(k) 

293.15 1.1472 3.4112 -9.073 

313.15 1.4084 3.1934 -8.868 

333.15 2.1559 3.0017 -8.442 

From the data gathered in the previous table, Figure 44 exhibits a curve that could be fitted by a 

linear regression. The slope of this curve equates (-Ea/RT) and the intercept ln(A). The linear regression 

has a slope m=-1526.7 and an y-intercept=-3.9057. Having said this, the forward reaction for the third 

step has an activation energy of Ea = 12.692 kJ/mol and a pre-exponential factor of A = 2.0127x10-2 M-

1s-1. These values were calculated using the linear regression with a R2=0.9453. 
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Figure 44 Ln(k) against 1/T plot for the forward rate constant. 

The forward rate constant for the third irreversible reaction can be expressed then using the 

Arrhenius equation, when this expression is combined with the reaction rate for the third step, it is 

possible to define a new equation for the forward rate constant that contains the parameters 

previously calculated in the Arrhenius equation, defined by: 

 𝑘𝑓 = 𝑘𝑓3𝑘1𝑘2

1
2 = 0.020127𝑒

−1526.7
𝑇  (88) 

It is important to point out that the first reaction in the proposed mechanism is in equilibrium 

(keq=keq0) with an equilibrium constant keq0=1, the second reaction is set to be reversible with a forward 

rate constant kf2=1x105 m3/(s·mol), and the third step has a predicted forward rate constant given by 

the equation: 

 𝑘𝑓 = 0.20127𝑒
−1526.7

𝑇  (89) 

The equation shows an exponential decay law which involves the magnitude of the rate constant 

as a function of the exponent (−
𝐸𝑎

𝑅𝑇
). The term RT is used to describe the average kinetic energy, so 

the exponent is the ratio of the activation energy to the average kinetic energy. A larger ratio will give 

a smaller rate constant. A low activation energy combined with a high temperature operating 

conditions will favour larger rate constants and consequently speed up the reaction. Since the terms 

here discussed occur in an exponent, the effect on the rate constant is considerable (Laidler, 1984).  

The effect of the activation energy on the rate constant can be depicted in Figure 45. In this case a 

modest activation energy difference of 15kJ/mol reduces the rate constant by a factor of 102. This 

exponential term considered in the Arrhenius equation suggests that the forward rate constant 

decreases exponentially when the activation energy increases, and the rate of reaction would decrease 

as well since it is directly proportional to the rate constant. It can be noticed that an increase in the 

FFA content means an increase in the activation energy since the esterification is needed to reach the 

y = -1526.7x - 3.9057
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activation stage. A reaction with a low activation energy should proceed faster when compared with 

one that considers a larger activation energy. The intensified esterification reaction here studied 

showed a value for the activation energy of Ea = 12.692 kJ/mol. 

 

Figure 45 Semi-log plot of -Ea/RT against Ea for the forward reaction. 

Ahmed et al reported an activation energy of 16.988, 34.576 and 46.601 kJ/mol for systems with 

varying molar ratios of ethanol to acetic acid of 10, 30 and 50 respectively. Suggesting the reaction 

mechanism here proposed has a lower activation energy than conventional esterification (Logan, 1982; 

Ahmed, et al., 2010). 

5.4.1. Variation of temperature 

Once the parameters for the Arrhenius equation are obtained, they can be used in COMSOL to run 

the irreversible mechanism to explore the effect of temperature on FFA, FAME and water production. 

Consequently, a parametric sweep is performed to explore the effect of varying the temperature in 

the range 283.15-343.15 K by using the Arrhenius equation when calculating the forward rate constant 

for the third step. Before the third step in the proposed irreversible mechanism, there is no discernible 

difference between the curves which could be explained since the Arrhenius equation is only 

considered in the last step.  

In Figure 46, it is easy to appreciate the difference in time between the reaction at the highest and 

lowest temperature. When compared at a same time, the highest temperature always shows a higher 

FAME production right after the third step takes place. An initial concentration of [𝑂 ·]=281.25 mol/m3 

and [FFA]=301.54 mol/m3 are used in this sweep. 
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Figure 46 Temperature (K) effect on FAME production. 

When the temperature is varied in the range 283.15-343.15 K, intervals of 10 K, the reaction 

mechanism reaches a final FAME concentration of 82.91, 95.03, 104.63, 109.37, 111.62, 113.15 and 

116.65 mol/m3 respectively. As soon as the third reaction takes place, the curves for each temperature 

start separating in the exponential phase. It is the curve at 70°C the one showing the highest FAME 

production.  With the parameters previously mentioned, a FAME percentage yield of 31.558, 36.307 

and 37.537% is achieved at 273.15, 293.15 and 313.15 K.  

Even though at a temperature of 70°C the FAME production shows a more rapid reaction rate, the 

boiling point of methanol it is a matter of importance. Methanol at standard conditions has a boiling 

point 64.7°C, this suggests that if the reaction mechanism is carried a temperature higher than the 

boiling point evaporation of this component will take place. In the proposed model in Chapter 7, the 

evaporation of methanol could potentially mean that this species is found in the vapour phase inside 

the bubble. If so, the methanol could react with the oxygen single found in this domain producing the 

methoxy radical and hydroxyl radicals which then react on the surface with the other reactants 

(Zimmerman, et al., 2013).   

From the Arrhenius equation, it can be inferred that the rate constant of an uncatalysed reaction is 

more affected by the operating temperature than a catalysed reaction. This behaviour is explained 

since the catalysed reaction has a smaller activation energy than the corresponding uncatalysed 

reaction. The exponential term of the Arrhenius equation includes the activation energy and the 

temperature as the numerator and denominator respectively, meaning a smaller activation energy 

would result in less of an impact on the forward rate constant compared to a larger activation energy 

(Laidler, 1984; Logan, 1982).  
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 ln (
𝑘2

𝑘1
) = −

𝐸𝑎

𝑅
(

1

𝑇2
−

1

𝑇1
) (90) 

In order to analyse the effect of temperature in the forward rate constant, the Arrhenius equation 

is used. When the temperature is raised (T2>T1), then the right side of the equation is positive. 

Consequently, the value of k2 would be greater than k1. It can be inferred from this equation that the 

effect of temperature on the rate constant is proportional to the activation energy (Ea). For the reaction 

mechanism here proposed, the forward rate constant kf3 has a value of 1.1472x10-4, 1.4084x10-4 and 

2.1559x10-4 M-1s-1 at 273.15, 313.15 and 333.15 K. The behaviour followed by the forward rate 

constants is in agreement with the effect of temperature on rate constants. Considering that the third 

step in this mechanism, the esterification, has a heat of reaction of ∆𝐻𝑟𝑥𝑛 = 57.21 kJ/mol, the reaction 

is defined as endothermic which means the system absorbs energy from the surroundings. If the 

forward reaction of the esterification is endothermic, the other direction (reverse reaction) is 

exothermic.  

The results from the forward rate constants suggest an endothermic behaviour with an increase in 

the rate constant when the temperature is increased. This pattern has been reported by Camara and 

Aranda with the esterification of palmitic and lauric acid using ethanol and a niobium oxide catalyst for 

the production of biodiesel. Marchetti et al also reported an endothermic behaviour studying the 

heterogeneous esterification of oleic acid and soybean oil with acid resins and anhydrous ethanol 

(Marchetti, et al., 2007; Camara & Aranda, 2011). 

In terms of water production, the concentration profile exhibits two plateaus, one for the first two 

spontaneous reactions and the last one for the third step (esterification).   

 

Figure 47 Effect of temperature on water production. 
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After the first plateau is reached, when the temperature is varied in the range 283.15-343.15 K, 

intervals of 10 K, the reaction mechanism reaches a water concentration of 33.51, 38.37, 41.17, 43.36, 

44.27, 45.18 and 46.42 mol/m3 respectively. When the same temperature values are used, the final 

water concentration reaches a value of 72.46, 83.24, 92.47, 96.08, 98.47, 99.41 and 102.38 mol/m3 

respectively. Figure 47 shows the effect of temperature on the water production for the irreversible 

mechanism.  

If the temperature is increased, both the forward and reverse rates increase but it is important to 

mention that the rate of the endothermic reaction is increased more. Following Le Chatelier’s principle, 

equilibrium will then shift in the endothermic reaction therefore the added heat is consumed. In terms 

of the equilibrium constant (Keq), raising the temperature would increase the equilibrium constant for 

an endothermic reaction and the opposite effect for an exothermic reaction (Vallance, 2016).   

5.4.2. Variation of initial methanol concentration  

The importance of the alcohol in the esterification reaction relies on the fact that the reaction is 

reversible. Therefore, the efficiency of this reaction is affected by the amount of alcohol used. The 

reverse reaction can be reduced by using an excess of methanol in the oil:alcohol molar ratio. Abbas 

and Abbas reported the effect of varying from 1:1 to 1:6 the molar ratio of oleic acid to ethanol. The 

oleic acid conversion to the ester increased from 0.61 to 0.87 between the treatments of 1:1 and 1:6 

respectively after 180 minutes using sulfuric acid as the catalyst at 70°C. Marchetti and Errazu reported 

a maximum conversion of free fatty acid of 0.96 with a molar rate of 1:6.126 after a reaction time of 

240 minutes at 55°C (Abbas & Abbas, 2013; Marchetti & Errazu, 2008).  

The use of an excess of alcohol for the esterification incurs in an increase of the process cost. 

Therefore, in the proposed mechanism the molar ratio oil:methanol is set to 1:1. The main difference 

between the reaction mechanism in this thesis and the previous set-ups previously discussed is that 

the proposed mechanism considers a free radical stage which catalyses the reaction. Following the 

three-step mechanism described in Section 5.1, it can be noticed that one mole of the free radical 𝑂 · 

reacts with one mole of methanol to form the methoxy radical and hydroxyl radical. The limiting 

reactant in this mechanism is the 𝑂 ·, which is related to the methoxy radical in the esterification step.  

To explore the effect of methanol on FAME production, an initial concentration of [𝑂 ·]=281.25 

mol/m3 and [FFA]=301.54 mol/m3 is used in this sweep at 333.15 K. The overall concentration profile 

for water, methanol, oxygen, FFA and FAME over time is found in Figure 48. In terms of methanol and 

oxygen production, the concentration profile exhibits two plateaus, the final concentration reached 

for methanol and oxygen is 188.39 and 49.96 mol/m3. After the spontaneous reaction reached 

equilibrium, the concentration for methanol and oxygen is 196.22 and 22.65 mol/m3. This results in a 

production of 4.586 g of oxygen.  
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Figure 48 Concentration profile for selected species. 

From Figure 48 here studied, it can be depicted that the initial concentration for methanol exhibits 

an initial value of 220 mol/m3. This is nearly two thirds of the initial concentration that was set into the 

model. It is important to mention that the initial condition used in Figure 48 considered an equimolar 

concentration for both methanol and FFA. It can be noticed that the initial concentration reported 

from COMSOL is 220 mol/m3. This change in the initial condition is then attributed to the default solver 

when finding consistent initial conditions, since the system is considered to be stiff which is fairly 

common in time integration numerical analysis. This type of system is generally found when computing 

dynamics that are different orders of magnitude from each other or an incongruity of the time scales 

explored in the model. In this case, the system considers kinetics happening at a very rapid and slow 

rate. Having said this, the system needs to get results on the “slow” time scale that properly model the 

fast reaction kinetics.  

In order to study the effect of the initial concentration of methanol on the FAME production and 

the FFA conversion with an initial concentration of [𝑂 ·]=281.25 mol/m3, a parametric sweep for 

different concentrations of methanol is carried out. Figure 49 illustrates the effect of the initial 

methanol concentration on the FFA conversion and FAME production. This figure shows a comparison 

between the theoretical FAME production and the experimental data at different initial concentrations 

of methanol. Theoretically, when the methanol concentration is lower than the initial concentration 

of 𝑂 ·, all the methanol is used and turned into methoxy radicals which then react to form FAME, in 

other words [MeOH]i = [FAME]f. But when the initial concentration of methanol is higher than the one 

of 𝑂 ·, [𝑂 ·]i = [FAME]f. This suggests that the 𝑂 · is the limiting reactant in the three-step mechanism. 

Therefore, no need for an excess of methanol is required in this mechanism since the governing factor 

for FAME production is the initial concentration of 𝑂 · (Kastratović & Bigović, 2017). 
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Figure 49 Methanol concentration effect on FAME production and FFA conversion. 

In the irreversible mechanism can be noticed that the initial concentration of 𝑂 · will limit the 

reaction forcing to achieve a maximum percentage yield for FAME production of 93.274%. This is the 

main driver to explore the effect of the 𝑂 · concentration in order to maximise the FAME production. 

As it can be noticed from the graph the experimental data is far from being similar to the theoretical, 

but this means there is room for improvement. This could be attributed to the fact that the 

experiments were carried out using a considerable large layer thickness for the liquid domain and 

consequently condensation of water is favoured since the microbubble cools down before reaching 

the surface.  

5.4.3. Variation of the initial O· concentration 

The limiting reactant in the proposed mechanism is the initial 𝑂 · concentration. This is why one of 

the main purposes of this thesis is to maximise the production rate of the biodiesel by producing a high 

amount of 𝑂 · using an advanced oxidation plasma reactor. It has been reported by Zimmerman and 

Lozano Parada that it is possible to tune a plasma reactor under specific conditions, so a maximum of 

O3 is produced at 1x10-2 s and 𝑂 · at 1x10-3 s. This means there is no need to form the ozone species 

for then to be decomposed in 𝑂 ·, but by tuning the device a set amount of this species can be 

produced (Lozano-Parada & Zimmerman, 2010; Rehman, et al., 2016).  

The intensified esterification mechanism is catalysed by the oxygen singlet (𝑂 ·) and uses this 

species as the limiting factor for the reaction to be taken into completion. The maximum yield for FAME 

production is seen when the 𝑂 · is put in excess in the system. In order to study the effect of 𝑂 · on the 

FAME production, t is important to analyse what happens to the radical species during the mechanism. 

Figure 50 illustrates the concentration profile for the radical species 𝑂 ·, 𝐻𝑂 · and 𝑀𝑒𝑂 · over time.  
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Figure 50 Radical species concentration profile over time. 

It can be noticed in this figure that both the methoxy radical and the hydroxyl radical have an initial 

concentration of 82.27 mol/m3, and the oxygen singlet has a concentration of 30.88 mol/m3. Both the 

methoxy and hydroxyl radical are produced in the first reaction which is set to be at equilibrium. When 

the second step of this mechanism reaches an equilibrium around 1x10-6 s, the methoxy, hydroxyl and 

oxygen singlet radicals show an intermediate concentration of 105.27, 14.68 and 7.87 mol/m3. Once 

the third step has reached equilibrium, all the methoxy radical and oxygen singlet are used to produce 

to produce FAME. The third step in this mechanism considers the production as well of hydroxyl 

radical, when this step reaches equilibrium the final concentration of hydroxyl radicals is 26.56 mol/m3. 

The effect of the initial concentration of the oxygen singlet on the FFA conversion and FAME 

production is illustrated in Figure 51. This figure shows a comparison between the theoretical FAME 

production and the experimental data at different initial concentrations of the oxygen singlet. As 

mentioned before, it is believed that the oxygen singlet catalyses the first stage of the proposed 

mechanism and by increasing the initial concentration of this species a higher yield of FAME production 

can be achieved. When the 𝑂 ·concentration is comparatively lower than the initial concentration of 

FFA, all the 𝑂 · is used and turned into methoxy and hydroxyl radicals which then react to form FAME, 

in other words [𝑂 ·]i = [FAME]f.  
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Figure 51 O· Initial concentration effect on FAME production. 

On the other hand, when the initial concentration of 𝑂 · is fairly similar or higher to the initial 

concentration of FFA, the reaction tends to completion. For an initial concentration of 300, 400 and 

500 mol/m3, the FAME percentage yield achieved has a value of 96.678, 99.459 and 99.592%. 

Therefore, increasing the initial 𝑂 · concentration increases dramatically the FAME production to a 

certain extent. For initial concentrations higher than 500 mol/m3, the room for improvement is less 

than 0.51% so there is no need to input more 𝑂 · since it would only incur in an elevated cost for its 

production making the first stage of this mechanism fairly feasible. This is why for the irreversible 

mechanism the question is how much of the 𝑂 · would be needed to be input into the system so the 

reaction is still economically feasible.  

As mentioned earlier, the experimental data is far from being similar to the theoretical, but this 

means there is room for improvement. The effect of varying different operating conditions such as 

temperature and the initial 𝑂 · and methanol concentration for the reversible mechanism will be 

discussed in the 0-d model in the next chapter. A discussion in more depth is presented for both the 

forward and rate constants for the three-step mechanism. 

5.5. Conclusions 

It can be noticed that an increase in the FFA content means an increase in the activation energy 

since the esterification is needed to reach the activation stage. A reaction with a low activation energy 

should proceed faster when compared with one that considers a larger activation energy. The forward 

reaction for the third step has an activation energy of Ea = 12.692 kJ/mol and a pre-exponential factor 

of A = 2.0127x10-2 M-1s-1. The highest temperature always shows a higher FAME production right after 

the third step takes place. 
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The forward rate constant kf3 has a value of 1.1472x10-4, 1.4084x10-4 and 2.1559x10-4 M-1s-1 at 

273.15, 313.15 and 333.15 K. The behaviour followed by the forward rate constants is in agreement 

with the effect of temperature on rate constants. Considering that the third step in this mechanism, 

the esterification, has a heat of reaction of ∆𝐻𝑟𝑥𝑛 = 57.21 kJ/mol, the reaction is defined as 

endothermic which means the system absorbs energy from the surroundings. If the forward reaction 

of the esterification is endothermic, the other direction (reverse reaction) is exothermic.  

When the methanol concentration is lower than the initial concentration of 𝑂 ·, all the methanol is 

used and turned into methoxy radicals which then react to form FAME, in other words [MeOH]i = 

[FAME]f. But when the initial concentration of methanol is higher than the one of 𝑂 ·, [𝑂 ·]i = [FAME]f. 

This suggests that the 𝑂 · is the limiting reactant in the three-step mechanism. When the 

𝑂 ·concentration is comparatively lower than the initial concentration of FFA, all the 𝑂 · is used and 

turned into methoxy and hydroxyl radicals which then react to form FAME, in other words [𝑂 ·]i = 

[FAME]f. When the initial concentration of 𝑂 · is fairly similar or higher to the initial concentration of 

FFA, the reaction tends to completion.  

Therefore, increasing the initial 𝑂 · concentration increases dramatically the FAME production to a 

certain extent. For initial concentrations higher than 500 mol/m3, the room for improvement is less 

than 0.51% so there is no need to input more 𝑂 · since it would only incur in an elevated cost for its 

production making the first stage of this mechanism fairly feasible. Having analysed the key features 

of the irreversible mechanism, it is important to explore the effect of the reverse reaction in the third 

step. This is the main driver to develop a new 0-D model to understand the influence of the reverse 

reaction in terms of the produced water but mainly the production of FAME.  
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6. 0-D with reversible reaction for the esterification of FFA 

In the previous chapter, the irreversible model was presented for the reaction mechanism here 

studied. It is important to mention that this chapter follows on the use of a 0-D model to analyse and 

discuss the reaction kinetics. The main feature of the model here presented is that it considers the 

reverse reaction in the third step, acknowledging the esterification reaction as a reversible reaction of 

second order. The importance of the reversible model relies on maximising the production rate of the 

biodiesel by increasing the initial concentration of oxygen singlet (𝑂 ·) which is thought to catalyse the 

proposed reaction mechanism and take the reaction to completion. The relevant data calculations and 

estimations presented in both chapter 3 and 4 are here considered. 

This model considers the same operating conditions stated in Chapter 5 and does not take into 

account heat transfer on the surface, phase changes or transport of diluted species since they are set 

in a 0-D model. The reversible mechanism is considered for this chapter since esterification is known 

to be a reversible reaction of second order. In this chapter the reader can find the model description, 

determination of rate constants, least squares fitting of the model and the appropriate results for the 

variation of different parameters such as, temperature and the initial concentration for both methanol 

and oxygen singlet.  

6.1. Model description 

For the purpose of this chapter, the reversible 0-D model considers the same operating conditions 

stated in the previous irreversible model and it is defined by the set of reactions described below: 

 𝑂 ·  + 𝑀𝑒𝑂𝐻 → 𝑀𝑒𝑂 ·  +𝐻𝑂 · (91) 

 𝐻𝑂 ·  +𝐻𝑂 · →  𝐻2𝑂 +  
1

2
𝑂2 (92) 

 𝐹𝐹𝐴 + 𝑀𝑒𝑂 · ↔ 𝐹𝐴𝑀𝐸 + 𝐻𝑂 · (93) 

The first step described by the reaction 𝑂 ·  + 𝑀𝑒𝑂𝐻 → 𝑀𝑒𝑂 ·  +𝐻𝑂 · is set to be in equilibrium 

following the equation 𝑘𝑒𝑞 = 𝑘𝑒𝑞0, where 𝑘𝑒𝑞0 is equal to 1. For the second step in this reaction 

mechanism 𝐻𝑂 ·  +𝐻𝑂 · →  𝐻2𝑂 +  
1

2
𝑂2, the reaction is to be reversible where the rate constants are 

given by 𝑘𝑓 = 𝑘𝑟 ∙ 𝑘𝑒𝑞0 and 𝑘𝑒𝑞0 is equal to 1. Lastly, the third step 𝐹𝐹𝐴 + 𝑀𝑒𝑂 · → 𝐹𝐴𝑀𝐸 + 𝐻𝑂 · is 

set to be reversible where the forward and reverse rate constant kf3 and kr3 are studied to illustrate 

the importance of the reaction kinetics of this mechanism, and then be fitted to the experimental data. 

In order to analyse the effect of different rate constants and the initial concentration of 𝑂 ·, parametric 

sweeps are carried out changing the value at different orders of magnitude of the parameters used in 

this model shown in Table 25. 
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In the next sections of this chapter, the determination of the rate constants kf2 and kf3 are 

described and the variation of different operating conditions is studied for the reversible mechanism. 

Table 25  Parameters used in the reversible 0-D model. 

Parameter Name 

Forward rate constant Reaction 2 kf2 

Forward rate constant Reaction 3 kf3 

Reverse rate constant Reaction 3 kr3 

Initial concentration of O· rado 

The forward rate constant is described by the parameter kf3 and the reverse rate constant is 

defined by kr3. It is important to mention that the reversible model here described, shows the same 

behaviour compared to the irreversible model when the parametric sweep for kf2 was performed to 

analyse its effect on water production for the spontaneous reactions but it differs from the irreversible 

mechanism once the third step is enabled at values for kf3 and kr3 of 1 m3/(s·mol).  

6.2. Determination of rate constants 

In Figure 52 the effect of kf2 is studied in order to explore its effect on the water production. For 

the purpose of this sweep, both kf3 and kr3 are kept constant with a value of 1 m3/(s·mol). As seen in 

the irreversible mechanism after 1x10-6 s there is no discernible difference between the three values 

for this parameter ranging 1x105-1x107 m3/(s·mol), so the value of kf2=1x105 m3/(s·mol) is chosen as a 

set value throughout the studies.  

When kf2= 1x105-1x107 m3/(s·mol), the curves exhibit a plateau after 1x10-6 and 1x10-2 s. When 

these values for kf2 are compared to kf2=1 m3/(s·mol), this new curve shows a discernible difference 

since it only exhibits only one plateau 1x10-1 s. As discussed before for the irreversible mechanism, a 

value of kf2 needs to be big enough to describe the spontaneous reactions but increasing its value 

above 1x105 m3/(s·mol) does not have a significant impact since equilibrium is reached before the third 

step takes place.  
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Figure 52 kf2 effect on the water production for the overall reversible mechanism. 

The water concentration at equilibrium is 187.34 mol/m3, which is smaller when compared to the 

irreversible mechanism value of 254.46 mol/m3. This means a 26.37% decrease in the water production 

between the irreversible and reversible models. This behaviour can be explained since the reverse 

reaction for the third step competes with the second reaction, the equations involved are given by: 

 𝐻𝑂 ·  +𝐻𝑂 · →  𝐻2𝑂 +  
1

2
𝑂2 (94) 

 𝐹𝐴𝑀𝐸 + 𝐻𝑂 · → 𝐹𝐹𝐴 + 𝑀𝑒𝑂 · (95) 

where both reactions consider the radical species 𝐻𝑂 · as a reagent. Even though the spontaneous 

reaction has a rate constant kf2 (1x105 m3/(s·mol)) higher than kr3 (1x10-8 m3/(s·mol)) by several orders 

of magnitude, the reverse reaction for the third step does show an effect in the overall water 

production. This is due to the fact that 𝐻𝑂 · produced in both the first spontaneous reaction and the 

third step is then reacted with FAME undergoing through the reverse reaction mechanism.   

Regarding the sensitivity to kf2 on the FAME production, the reversible reaction shows no effect on 

the FAME concentration. A double log plot was used for the reversible model as well, showing no 

sensitivity to kf2 on FAME production.  

Having said this, a value for kf2 of 1x105 m3/(s·mol) is used to explore the appropriate values for 

the rate constant kf3 and kr3 for the slowest reaction in the mechanism. In Figure 53 is shown the 

parametric sweep performed to find the right combination for these rate constants.  
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Figure 53 kf3 and kr3 effect on FAME production. 

The sweep was carried out using all the possible combinations when kf3= 1x10-7, 1x10-6 and 1x10-5, 

and kr3= 1x10-8, 1x10-7 and 1x10-6 m3/(s·mol). From the different curves obtained in Figure 53, the two 

pairs that satisfy the correct order of magnitude condition are kf3=1x10-6 and kr3=1x10-7 m3/(s·mol), 

and kf3=1x10-6 and kr3=1x10-8 m3/(s·mol). The time scale for these two pairs of kf3 and kr3 to reach 

equilibrium between 1-100 h which matches the experimental data. These two pairs are shown in 

Figure 54 for comparison purposes.  

 

Figure 54 Comparison of kf3 and kr3 pairs effect on FAME concentration. 

Once the two pairs are isolated for comparison, it can be noticed that for an initial concentration 

of [𝑂 ·]=281.25 mol/m3, the FAME concentration reaches equilibrium at [FAME]=240.06 mol/m3 when 

kf3=1x10-6 and kr3=1x10-7 m3/(s·mol). On the other hand, for a value of kf3=1x10-6 and kr3=1x10-8 
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m3/(s·mol) the FAME concentration reaches equilibrium at [FAME]=268.99 mol/m3. In order to achieve 

a higher conversion of the species 𝑂 ·, the pair kf3=1x10-6 and kr3=1x10-8 m3/(s·mol) is selected for the 

fitting of the model. This pair achieves a higher conversion since the rate constant kr3 has a smaller 

value by one order of magnitude, kr3=1x10-7 and 1x10-8 m3/(s·mol). Therefore, the competition for 

species 𝐻𝑂 · between the last two steps is favoured for the second step due to the orders of 

magnitude.  The pair kf3=1x10-6 and kr3=1x10-8 m3/(s·mol) is then selected because of its time scale in 

the correct order of magnitude and a higher conversion reached at equilibrium.  

The effect of varying the initial concentration of 𝑂 · on the FAME production is illustrated in Figure 

55. For the five different initial concentrations of [𝑂 ·]= 10, 100, 281.45, 400 and 500 mol/m3 studied 

in the sweep, the FAME concentration at equilibrium is 9.99, 99.86, 268.99, 286.02 and 287.3 mol/m3 

respectively. Increasing the initial concentration of 𝑂 · results in an increase of the FAME production 

to a certain extent, being the increase smaller when the initial concentration of 𝑂 · is similar to the 

initial concentration of [FFA]. The 𝑂 · conversion is inversely proportional to its initial concentration. 

This means that at low initial concentrations of 𝑂 · a higher conversion for the limiting reagent is 

achieved. This behaviour can be attributed to the reverse rate constant kr3. Increasing the initial 

concentration for 𝑂 · above the initial [FFA]=301.53 mol/m3, will only result in a small change in the 

FFA conversion due to the reverse rate constant kr3 and the competition for the 𝐻𝑂 · as a reagent for 

the last two steps in the reversible mechanism. Therefore, there is no need to input more 𝑂 · since it 

would only incur in an elevated cost for its production making the first stage of this mechanism not 

economically feasible.  

 

Figure 55 O· initial concentration effect on FAME production. 

The concentration profile for FFA, FAME and water is shown in Figure 56. This profile is obtained 

using an initial concentration for water, FFA and [𝑂 ·] of 1x10-4, 301.53 and 281.25 mol/m3. The value 
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for the forward rate constant kf2 is 1x105 m3/(s·mol), the forward rate constant kf3 has a value of 1x10-

6 m3/(s·mol) and the reverse rate constant kr3 has a value of 1x10-8 m3/(s·mol).  

 

Figure 56 FAME, FFA and water concentration profile in time for the reversible mechanism. 

The resulting reversible reaction mechanism reaches equilibrium between 1-100 h, which is the 

correct order of magnitude for the experimental data. In terms of water production, the concentration 

profile exhibits two plateaus, the first one for the spontaneous reactions at 1x10-10 h and the second 

one for the third step between 1-100 h, same orders of magnitude are obtained for the irreversible 

mechanism. For these two plateaus the concentration reached at equilibrium is 95.29 and 245.11 

mol/m3 respectively. The first spontaneous equilibrium reaches the same concentration of water 

obtained in the irreversible mechanism, meaning the reaction happens so fast compared to the reverse 

reaction on the third step that no effect on 𝐻𝑂 · competition as a reagent for these last two reactions.  

The production of FAME reaches a plateau at equilibrium with a concentration of 269.99 mol/m3. 

With the parameters previously mentioned, a conversion of 89.21% of FFA is achieved at equilibrium 

resulting in a production of 24.694 and 22.502 g for FAME and H2O respectively.  

6.3. Least squares fitting for 0-D reversible model 

The reversible 0-D model here discussed follows a reaction rate for FAME described by the following 

equation: 

 𝑟𝐹𝐴𝑀𝐸 = 𝑘𝑓[𝐹𝐹𝐴][𝑀𝑒𝑂 ·] − 𝑘𝑟[𝐹𝐴𝑀𝐸][𝐻𝑂 ·] (96) 

 𝑟𝐹𝐴𝑀𝐸 = 𝑘𝑓3𝑘1𝑘2

1
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where kf and kr are the combination of different rate constants for both the forward and reverse 

reaction. The procedure describing how these rate constants are calculated is described in Chapter 7 

in more detail. The forward and reverse rate constant for the reversible reaction of the slowest step 

are therefore defined by: 

 𝑘𝑓 = 𝑘𝑓3𝑘1𝑘2

1
2 (98) 

 𝑘𝑟 =
𝑘𝑟3

𝑘2

1
2

 (99) 

In Figure 43, the experimental data is shown, these curves belong to the FFA content of 20% at 20, 

40 and 60°C. In order to facilitate the fitting of the reversible model, the value obtained for the forward 

rate constant in the previous chapter is used here as a set value, given by the equation: 

 𝑘𝑓 = 𝑘𝑓3𝑘1𝑘2

1
2 = 0.020127𝑒

−1526.7
𝑇  (100) 

For each one of the treatments here studied, the reverse rate constant kr3 is calculated using the 

curve of each treatment and the respective value found for the forward rate constant kf3 in Chapter 

5.  

6.4. Results and discussion 

The least squares method is carried out to fit the predicted data from COMSOL Multiphysics to 

match the experimental data. COMSOL with MATLAB is used to perform the fitting of the curves 

following the code found in Appendix B, but some amendments are needed to label the reverse rate 

constant properly. It is important to mention that before running the code for each treatment, the 

initial concentration of [FFA] and the ym are set to the respective value. The same code used for the 

fitting of the irreversible model is here utilised but with modifications in terms of the new parameter 

to be fitted kr3. 

For the iterations used in this method, a condition to find only positive numbers is used since the 

order of magnitude is 1x10-7 and the solver could return negative values. The tolerance for the 

parameter kr3 in the iterations is set to 1x10-10 to return values with significant figures. Once the code 

is run, it gives the value for kr3 that satisfies the condition of having the least squared error and the 

values for the new predicted yp.  

The values for the rate constant kr3 for each treatment are found in Table 26. In Section 6.1 a 

prediction for the right order of magnitude when the reaction mechanism reached equilibrium gave a 

value for the forward rate constant kf3 of 1x10-6 m3/(s·mol) and kr3 1x10-8 m3/(s·mol) with a set value 

of kf2 of 1x105 m3/(s·mol). This prediction was the first one to be run but since it did not return a 

decent fit, the forward rate constant from the irreversible mechanism is then used as a set value. The 

value for kf3 reported for the irreversible reaction is here used as an initial guess for the fitting. The 
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resulting order of magnitude for majority of the reverse rate constants here studied is 1x10-8 

m3/(s·mol) as predicted in Section 6.1. In Table 26, the resulting values for kr3 are shown in (M-1s-1) to 

ease further calculations. The effect on temperature can be easily notice in Table 26, an increase in 

temperature results in an increase in the reverse rate constant across the three different FFA contents 

here studied.  

Table 26 Rate constant kr3x10-5 (1/M.s) values for each treatment. 

  Free Fatty Acid % 

  10% 15% 20% 

Te
m

p
e

ra
tu

re
 (

K
) 293.15 1.8908 1.9981 1.8922 

313.15 3.1010 3.3081 1.4901 

333.15 2.9403 2.9983 2.8824 

Once the values for the reverse rate constant are found for all the treatments, the least square 

analysis is carried out to discuss the overall quality of the fit. Table 27 is comprised of the different 

terms calculated for the least squares method and its respective quality. Sxx and Syy are the corrected 

sum of squares for yp and ym respectively. Sxy corresponds to the corrected sum of cross products, 

Cov(x,y) is the covariance and Serror is the standard deviation of the error. The correlation coefficient R2 

is the parameterised value for the overall quality of the fit.  

Table 27 Least squares analysis for the fitted curves. 

FFA % Temperature (K) Sxx x102 Syy x102 Sxy x102 Cov (x,y) R2 serror 

 

10 

 

293.15 5.047 8.040 6.161 68.459 0.9672 2.7218 

313.15 7.608 7.916 7.612 84.580 0.9808 2.0734 

333.15 10.707 10.052 10.308 114.536 0.9935 1.3569 

 293.15 5.014 6.980 5.763 64.038 0.9741 2.2576 

15 313.15 10.981 10.853 10.700 118.891 0.9801 2.4698 

 333.15 23.624 21.755 22.475 249.732 0.9914 2.3044 

 293.15 221.504 216.010 216.807 2408.970 0.9911 7.3689 

20 313.15 414.677 425.115 417.517 4639.080 0.9944 8.2278 

 333.15 602.933 592.301 597.430 6638.120 0.9997 2.1470 

All the fitted curves have a correlation coefficient greater than 0.97 which suggests that the method 

used to fit the curves has a high overall quality. For each FFA content (10, 15 and 20%), the highest 

value for R2 is achieved at 60°C, since the experimental data shows the plateau behaviour at higher 

temperatures and a more pronounced curvature for the FAME production over time. This behaviour 

could be attributed to the effect of temperature in a chemical reaction, since it is known that a higher 
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temperature a reaction occurs more rapidly. In other words, the exponential growth in terms of 

production of FAME at the beginning of the reaction is more noticeable at higher temperatures.  

The best fit throughout the curves was obtained at a FFA content of 20% and 60°C with a correlation 

coefficient of R2=0.994. Using a forward rate constant of 2.6740x10-4 M-1s-1, the calculated reverse rate 

constant had a value of 2.882x10-5 M-1s-1. In terms of comparison, the curve with the lowest R2 was the 

10 FFA% at 293.15 K. The treatment 10 FFA% at 293.15 K obtained a forward rate constant of 

1.6631x10-4 M-1s-1(R2=0.980). The treatment with the lowest R2 (10 FFA% at 293.15 K) is then used to 

have a better comparison to be made between models. The reversible mechanism model shows an 

improvement in the fitting of the curves when compared to the irreversible model. This would suggest 

that the reversible model describes the experimental data in a better way.  

As mentioned in Chapter 5, from the FAME production curves obtained in Figure 43 and the rest 

found in Chapter 4, an increase in temperature causes an increase in the FAME production and 

therefore an increase in the rate constants. The one-way ANOVA is then used in this section to 

determine if there is a significant difference between the reverse rate constants obtained across the 

FFA contents used in this model (10, 15 and 20%). The statistical test is run with a significance level of 

𝛼=0.05, and considers the same null hypothesis used in Chapter 5. The alternative hypothesis states 

that at least one of the means is different from each other.  

The results obtained for the one-way ANOVA are shown in Table 28, in this case the reverse rate 

constant across the FFA content are not significantly different since Fvalue<Fcrit (0.0782<5.14). In other 

words, we fail to reject the null hypothesis meaning there is no significant difference between the 

three groups for the FFA content 10, 15 and 20% but there is a noticeable difference between the 

temperatures considered in this model. The Fvalue calculated for the reverse rate constant is relatively 

smaller than the one obtained for the forward rate constant, this could be credited to the fact that the 

reverse rate constant are calculated using the forward rates which have already been proven to not 

show any significant difference across the FFA content.  

Table 28 ANOVA results for the reverse rate constant. 

  df SS x10-8 MS x10-9 F Fcrit 

Treatment  2 0.03017 0.1508 0.0782 5.14 

Residuals 6 1.1568 1.9281   

Total 8 1.1870    

Once the statistical analysis across the FFA is completed and it is concluded there is no significant 

different between the groups accounting for the Free Fatty Acid%, the average values for the reverse 

rate constant kr3 are used in the Arrhenius equation to obtain the activation energy (Ea) and pre-

exponential factor (A) for the reverse reaction of the third step. The values for the average reverse rate 
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constant at each temperature are shown in Table 29, these values are then processed to be used in 

the Arrhenius equation. When plotting ln(k) against 1/T, a straight line is then obtained where the Ea 

and A can be calculated from the y-intercept and the slope of the line.  

Table 29 Average rate constants used for Arrhenius equation parameters. 

Temperature (K) 
Rate constant 

x10-5 (M-1s-1) 
1/T x10-3 (K-1) ln(k) 

293.15 1.9270 3.4112 -10.857 

313.15 2.6331 3.1934 -10.545 

333.15 2.9404 3.0017 -10.434 

Once the plot is generated from the rate constants gathered at different temperatures, the curve 

shown in Figure 57 can be fitted by a linear regression to calculate the activation energy and the pre-

exponential factor. The linear regression has a slope m=-1040.7 and an y-intercept= -7.2795.  

 

Figure 57 Ln(k) against 1/T plot for the reverse rate constant. 

Having said this, the reverse reaction for the third step has an activation energy of Ea = 8.562 kJ/mol 

and a pre-exponential factor of A = 6.895x10-4 M-1s-1. These values were calculated using the linear 

regression with a R2=0.9711. The reverse rate constant for the third reversible reaction can be 

expressed then using the Arrhenius equation, when this expression is combined with the reaction rate 

for the third step, it is possible to define a new equation for the forward rate constant that contains 

the parameters previously calculated in the Arrhenius equation, defined by: 

 𝑘𝑟 =
𝑘𝑟3

𝑘2

1
2

= 6.895x10−4𝑒
−1040.7

𝑇  (101) 

It is important to point out that the first reaction in the proposed mechanism is in equilibrium 

(keq=keq0) with an equilibrium constant keq0=1, the second reaction is set to be reversible with a forward 

rate constant kf2=1x105 m3/(s·mol), and the third step has a predicted reverse rate constant that could 

be included in the reaction rate at any temperature given by the equation: 

y = -1040.7x - 7.2795
R² = 0.9471
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(102) 

The Arrhenius equation used to show the dependence of the rate constants at different 

temperatures has an exponential decay which accounts for the ratio of the activation energy to the 

average kinetic energy. As mentioned before a larger ratio will give a smaller rate constant which is 

the case for the proposed reverse mechanism.  

For the esterification reaction here proposed, the forward reaction is considerably more 

thermodynamically favourable than its reverse reaction. Consequently, the forward rate constant is 

greater than the reverse constant, in other words kf3 > kr3. It is relevant to consider that this 

relationship can only be made since the rate constants have the same units. As mentioned before, the 

esterification reaction here proposed show an endothermic behaviour (Laidler, 1984).  

The effect of temperature on both the forward and reverse rate constants is then studied. It is 

known that the effect of temperature on the rate constants is proportional to the activation energy. If 

the activation energy increases, then the effect of changing the temperature would increase. For the 

esterification reaction here proposed, the forward reaction (esterification) is endothermic and the 

reverse reaction (hydrolysis) is exothermic. The endothermic direction is known to have a larger 

activation energy, in other words Eaf > Ear. The reversible model here studied follows this pattern and 

has an activation energy for the forward and reverse reaction of 12.692 and 8.652 kJ/mol respectively.  

 

Figure 58 Semi-log plot of -Ea/RT against Ea for the reverse reaction. 

In Figure 58, the effect of the activation energy on the reverse rate constant can be depicted. For 

the reverse reaction, an activation energy difference of 1 kJ/mol reduces the rate constant by a factor 

of 10-1. The exponential term (-Ea/RT) suggests that the reverse rate constant decreases exponentially 

when the activation energy increases, and the rate of reaction would decrease as well. A reaction with 
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a low activation energy should proceed faster when compared with one that considers a larger 

activation energy. Having said this, the reverse reaction in this mechanism has an activation energy of 

Ea = 8.652 kJ/mol. Mandake et al reported similar activation energies for the forward and reverse 

reaction when studying the catalysed esterification of acetic acid with methanol using a 1:1 molar ratio 

at 308-328 K. Singh et al ported an activation energy of 30 kJ/mol for the esterification of butyric acid 

with ethanol at a molar ratio 1:5 to 1:15 and a temperature 328.15 to 348.15 K (Mandake, et al., 2013; 

Singh, et al., 2013).  

In order to compare both the forward and reverse mechanism, the effect of the reverse rate 

constant is illustrated in Figure 59. The plot is generated using an initial concentration of [𝑂 ·]=281.25 

mol/m3 and [FFA]=301.54 mol/m3 at 60°C. The irreversible mechanism reaches a final concentration 

for both water and oxygen of 254.43 and 127.2 mol/m3 respectively. On the other hand, the reversible 

mechanism reaches a final concentration for water and oxygen of 207.97 and 103.98 mol/m3 

respectively. The reversible mechanism produces 18.26% less water and oxygen when compared to 

the irreversible one, this is attributed to the fact that hydroxyl radical is used in the reverse mechanism 

to carry out the hydrolysis of the esters. The hydrolysis of esters competes with the second step of the 

mechanism which explains why the water and oxygen productions decreases in the reversible reaction.  

 

Figure 59 Comparison of the mechanisms in water and oxygen production. 

The reversible mechanism involves the hydroxyl radical to carry out the hydrolysis of esters. This is 

the main driver to explore what happens to both the methoxy and hydroxyl radical between the 

irreversible and reversible mechanisms here studied, this is illustrated in Figure 60.  



130 
 

 

 

Figure 60 Comparison of the mechanisms in methoxy and hydroxyl radicals production. 

The irreversible mechanism reaches a final concentration for both the methoxy and hydroxyl radical 

of 0 and 53.57 mol/m3 respectively. On the other hand, the reversible mechanism reaches a final 

concentration for the methoxy and hydroxyl radical of 36.4 and 46.05 mol/m3 respectively. The 

reversible mechanism produces 18.26% less hydroxyl radicals, which matches with the water and 

oxygen production. In terms of the methoxy radical production, the reverse reaction produces 

methoxy radicals which are found when the third step reaches equilibrium. The methoxy radicals could 

then react with more FFA if present in liquid mixture to react. Having said this, the reverse mechanism 

produces less water and oxygen since the hydroxyl radicals are used in both the forward reaction of 

the second step and the reverse reaction of the third step. These two reactions compete for the 

hydroxyl radicals, but it is important to acknowledge the fact that the forward reaction of the second 

step has a higher rate constant than the reverse reaction of the third step.  

The esterification of free fatty acids is known to be a reversible reaction of second order shown in 

Figure 61. In order to validate this, the solution of the direct kinetic problem for the second order 

reaction is shown below. In this case, an inequality of the reactant’s initial concentrations is observed. 

The forward reaction in the third step is given by: 

 𝐹𝐹𝐴 + 𝑀𝑒𝑂 · ↔ 𝐹𝐴𝑀𝐸 + 𝐻𝑂 · (103) 

 𝑟𝐹𝐴𝑀𝐸 = 𝑘𝑓[𝐹𝐹𝐴][𝑀𝑒𝑂 ·] − 𝑘𝑟[𝐹𝐴𝑀𝐸][𝐻𝑂 ·] (104) 

To ease and simplify calculations, the reverse term is neglected since the rate constant order of 

magnitude is smaller when compared to the forward rate constant. The forward rate constant has a 

value of 𝑘𝑓 = 2.6740𝑥10−7 m3/(s·mol). Therefore, the second term of the rate of reaction for FAME 

production is relatively smaller when compared to the forward term. Having said this, the rate of 

reaction is here described by: 
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 𝑟𝐹𝐴𝑀𝐸 = 0.20127𝑒
−1526.7

𝑇 [𝐹𝐹𝐴][𝑀𝑒𝑂 ·] (105) 

At 60°C, the initial concentration of FAME at t(0)=0 mol/m3 and the rate of reaction is given by the 

equation below: 

 
𝑑

𝑑𝑡
𝐹𝐴𝑀𝐸(𝑡) = 2.6740𝑥10−7[𝐹𝐹𝐴0 − 𝐹𝐴𝑀𝐸(𝑡)][𝑀𝑒𝑂 ·0− 𝐹𝐴𝑀𝐸(𝑡)] (106) 

To integrate the equation is necessary to locate the terms on the right side, giving: 

 

∫
1

[𝐹𝐹𝐴0 − 𝐹𝐴𝑀𝐸(𝑡)][𝑀𝑒𝑂 ·0− 𝐹𝐴𝑀𝐸(𝑡)]
𝑑𝐹𝐴𝑀𝐸

𝐹𝐴𝑀𝐸

0

= ∫ 2.6740𝑥10−7𝑑𝑡
𝑡

0

 

(107) 

Solving for 𝐹𝐴𝑀𝐸(𝑡) and simplifying the expression results in the equation below: 

 

ln( 𝐹𝐴𝑀𝐸(𝑡) − 𝐹𝐹𝐴0) − 𝑙𝑛( 𝐹𝐴𝑀𝐸(𝑡) − 𝑀𝑒𝑂 ·0) + ln(𝐹𝐹𝐴0) − ln (𝑀𝑒𝑂 ·0)

𝐹𝐹𝐴0 − 𝑀𝑒𝑂 ·0

= 2.6740𝑥10−7 ∙ 𝑡 

(108) 

The following initial conditions are considered for this esterification for [𝐹𝐹𝐴0]=3.0154x102 mol/m3 

and  [𝑀𝑒𝑂 ·0]=2.162x102 mol/m3 which result in the following expression:  

 𝐹𝐹𝐴(𝑡) = 𝐹𝐹𝐴0 − 𝐹𝐴𝑀𝐸(𝑡)           𝑀𝑒𝑂 · (𝑡) = 𝑀𝑒𝑂 ·0− 𝐹𝐴𝑀𝐸(𝑡) (109) 

 𝐹𝐴𝑀𝐸(𝑡) = [𝐹𝐹𝐴0][𝑀𝑒𝑂 ·0]
𝑒([𝐹𝐹𝐴0]𝑘𝑡−[𝑀𝑒𝑂·0]𝑘𝑡)

𝑒([𝐹𝐹𝐴0]𝑘𝑡−[𝑀𝑒𝑂·0]𝑘𝑡) ∙ [𝐹𝐹𝐴0] − [𝑀𝑒𝑂 ·0]
 (110) 

For second order reaction with different initial concentration for the reactants, the previous 

equation can be modified to give a straight line, if so it validates the fact that the third step is second 

order in respect to the free fatty acid and the methoxy radical. The linearization results from plotting 

𝑙𝑛
[𝑀𝑒𝑂·0]∗([𝐹𝐹𝐴0]−𝐹𝐴𝑀𝐸(𝑡))

[𝐹𝐹𝐴0]∗([𝑀𝑒𝑂·0]−𝐹𝐴𝑀𝐸(𝑡))
 against time. 
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Figure 61 Linearization of the second order reaction. 

The kinetic study of FFA esterification here proposed was performed using the three-step reversible 

kinetic model, COMSOL with MATLAB was then used to calculate the molar balances describing the 

concentration of FFA in the system. The Arrhenius equation was then used to determine the influence 

of temperature on the kinetic constants. The experimental data was successfully fitted by the least 

squares model and a good agreement is observed between the predicted and measured data points. 

The activation energies for the esterification and hydrolysis reactions were found to be 12.692 and 

8.652 kJ/mol, respectively. 

6.4.1. Variation of temperature 

Once both the forward and the reverse rate constants are obtained, the effect of the temperature 

on the FAME production can be studied in more detail using the Arrhenius equation. COMSOL is then 

used to run the reversible mechanism to explore the temperature effect on FFA, FAME and water 

production. A parametric sweep is then performed ranging the temperature (283.15-343.25 K) and the 

Arrhenius parameters previously calculated for both reactions are implemented.  

Increasing the temperature results in a higher FAME production mainly caused by the kinetic energy 

of the molecules. It is known that increasing the temperature speeds up a reaction. Before the third 

step in the reversible mechanism (t<1x10-4 s), there is no discernible difference between the curves 

since the Arrhenius equation is only considered for the forward and reverse reaction in the third step.  

In Figure 62, a noticeable difference between esterification at the highest and lowest temperature 

can be appreciated. When compared at a same time, the highest temperature always shows a higher 

FAME production right after the third step takes place. An initial concentration of [𝑂 ·]=281.25 mol/m3 

and [FFA]=301.54 mol/m3 are used in this sweep. 
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Figure 62 Temperature effect on FAME production for reversible mechanism. 

When the temperature is varied in the range 283.15-343.15 K, intervals of 10 K, the reaction 

mechanism reaches a final FAME concentration of 82.16, 93.85, 103.55, 107.41, 109.83, 111.26 and 

114.15 mol/m3 respectively. As soon as the third reaction takes place, the curves for each temperature 

start separating in the exponential phase. It is the curve at 70°C the one showing the highest FAME 

production. With the parameters previously mentioned, a FAME percentage yield of 31.124, 35.621 

and 36.898% is obtained at 273.15, 293.15 and 313.15 K respectively. These yields are relatively similar 

to the ones gathered with the experimental data since the fitted curves showed a better correlation 

coefficient across the treatments. Having said this, the reversible mechanism is then used in the next 

chapter to fit the 2-D axisymmetric model to the experimental data. It is known that esterification 

reactions are reversible 2nd order, this validates the proposed model.  

From the different temperatures modelled, the highest FAME percentage yield is obtained at 70°C. 

Jagadeeshbabu et al reported the esterification of acetic acid at a temperature of 333-353 K using a 

molar ratio 1:1 in the presence of an ion exchange resin catalyst, the experimental data showed that 

the acetic acid conversion is increased with increasing the reaction temperature. Lucena et al reported 

the esterification of oleica cid with methanol using a water adsorption apparatus, the temperature 

was the variable with the greatest effect on the FAME production yield with high temperature (100-

110°C) resulting in conversions ranging from 96.5 to 99.7%. As mentioned before, increasing the 

temperature showed an increase in the rate of reaction and a typical behaviour of reaction with a high 

activation energy that are generally favoured by higher temperatures (Jagadeeshbabu, et al., 2011; 

Lucena, et al., 2008).  

Figure 63 shows the rate constants obtained for both the forward and reverse reaction in the 

proposed mechanism. The values obtained between these two rate constants differ from each other 
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by a factor of 10. The values obtained for the reverse rate constant are considered to be relatively 

small when compared to the forward rate constants, this indicates that the reverse reaction 

(hydrolysis) hardly takes place in the reversible mechanism.  

 

Figure 63 Comparison of the values obtained for kf3 and kr3 against temperature. 

In Figure 63, the effect of temperature on the rate constants is depicted. An increase in temperature 

causes an increase in both the forward and reverse rate constants, but the rate of the endothermic 

reaction increases more. In the temperature range of 293.15-333.15 K, the forward rate constant 

varies from 1.147x10-4 to 2.155x10-4 M-1s-1 which means a difference of 1.008x10-4 M-1s-1. On the other 

hand, the reverse rate constant varies from 1.927x10-5 to 2.940x10-5 M-1s-1 which means a difference 

of 1.013x10-5 M-1s-1. This is attributed to the fact that equilibrium shifts in the endothermic (forward) 

direction since the added heat is consumed according to LeChatelier’s principle. Additionally, for an 

endothermic reaction (esterification), raising the temperature would increase the equilibrium constant 

Keq and would increase the equilibrium constant for the exothermic reaction (hydrolysis) 

(Jagadeeshbabu, et al., 2011).  

 For the reaction mechanism here proposed, the reverse rate constant has a value of 1.927x10-5, 

2.633x10-5 and 2.940x10-5 M-1s-1 at 273.15, 313.15 and 333.15 K. The behaviour followed by the reverse 

rate constants is in agreement with the effect of temperature on rate constants.  

 
𝐹𝐹𝐴 + 𝑀𝑒𝑂𝐻 + 𝑂 · ↔ 𝐹𝐴𝑀𝐸 + 𝐻2𝑂 +

1

2
𝑂2        ∆𝐻𝑟𝑥𝑛

= −441.116 kJ/mol 

(111) 

Considering that the third step in this mechanism, the esterification, has a heat of reaction of 

∆𝐻𝑟𝑥𝑛 = 57.21 kJ/mol. It is important to mention that the three-step mechanism overall follows the 

general equation found above and has a heat of reaction of -441.116 kJ/mol which means overall the 

mechanism is exothermic.  

In terms of water production, the concentration profile exhibits two plateaus, one for the first two 

spontaneous reactions and the last one for the third step (esterification).  After the first plateau is 
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reached, when the temperature is varied in the range 293.15-343.15 K, intervals of 10 K, the reaction 

mechanism reaches a water concentration of 33.55, 38.29, 42.17, 43.71, 44.67, 45.24 and 46.37 

mol/m3 respectively. When the same temperature values are used, the final water concentration 

reaches a value of 72.13, 83.83, 91.73, 95.29, 97.51, 98.84 and 101.51 mol/m3 respectively.  

 

Figure 64 Effect of temperature on water production for reversible reaction. 

Figure 64 shows the effect of temperature on the water production for the irreversible mechanism. 

This figure illustrates how the water production starts varying as soon as the second step takes place. 

The water production is relatively smaller when compared to the values obtained for the irreversible 

reaction, this is explained because the increase in temperature means an increase in both the forward 

and reverse reaction, but the forward reaction increases more. At 333.15 K, the final water 

concentration for both the irreversible and reversible mechanism was 98.84 and 99.41 mol/m3. This 

behaviour is related to the fact that the forward reaction is in the endothermic direction.  

6.4.2. Variation of initial methanol concentration 

In order to study the effect of the initial concentration of methanol on the FAME production, a 

parametric sweep for different concentrations of methanol is carried out. Figure 65 illustrates the 

effect of the initial methanol concentration on the FFA conversion and FAME production. The plot is 

generated using an initial concentration of [𝑂 ·]=281.25 mol/m3 and [FFA]=301.54 mol/m3 at 60°C. This 

figure shows a comparison between the theoretical FAME production and the experimental data at 

different initial concentrations of methanol. For an initial methanol concentration of 200, 300, 400, 

500 and 600 mol/m3, the FAME percentage yield achieved has a value of 57.97, 70.48, 73.51, 74.46 

and 74.90%. Therefore, increasing the initial methanol concentration increases dramatically the FAME 

production to a certain extent.  
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Figure 65 Methanol concentration effect on FAME production and FFA conversion. 

At initial methanol concentrations higher than 400-600 mol/m3, the increase in FAME production 

only varies 1.89%. This suggests that a further increase in the molar concentration of methanol above 

400 mol/m3 would only incur in an increase of the material cost due to the excess used for the process. 

When comparing the molar ratio, the proposed 1:1 ratio of oil:methanol achieves a FAME percentage 

yield of 70.48% and a molar ratio of 1:2 would increase the FAME percentage yield only by 4.42%. 

Having said this, considering an excess of methanol in for the proposed reaction could mean an 

increase in the FAME production but more importantly would ease the reaction taking it to completion.    

6.4.3. Variation of initial O· concentration 

The effect of the initial concentration of the oxygen singlet on the FFA conversion and FAME 

production is illustrated in Figure 66. This figure shows a comparison between the theoretical FAME 

production and the experimental data at different initial concentrations of the oxygen singlet. The plot 

is generated using an initial concentration of [FFA]=301.54 mol/m3 at 60°C, the ratio oil:methanol used 

is 1:1. This figure shows a comparison between the theoretical FAME production and the experimental 

data at different initial concentrations of the oxygen singlet. For an initial 𝑂 · concentration of 200, 

300, 400, 500 and 600 mol/m3, the FAME percentage yield achieved has a value of 58.27, 72.07, 75.87, 

77.05 and 77.57%. Therefore, increasing the initial 𝑂 · concentration increases the FAME production 

to a certain extent. The effect of the 𝑂 · on the FAME production is more significant than varying the 

initial methanol concentration.  
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Figure 66 O· Initial concentration effect on FAME production. 

At initial 𝑂 · concentrations higher than 400-600 mol/m3, the increase in FAME production varies 

2.23%. This suggests that a further increase in the molar concentration of the oxygen singlet above 

600 mol/m3 would only incur in an increase of the material cost due to the excess used for the process. 

When comparing the molar ratio, the proposed 1:1 ratio of oil: 𝑂 · achieves a FAME percentage yield 

of 72.07% and a molar ratio of 1:2 would increase the FAME percentage yield only by 5.49%. Varying 

the initial 𝑂 · means a more significant increase in the FAME production, this is the main driver to 

explore its effect on the 2-D model proposed in the next chapter. The results here obtained are in 

agreement with the hypothesis that the production rate of the biodiesel could be maximised by 

increasing the initial concentration of oxygen singlet (𝑂 ·) which is thought to enhance the proposed 

reaction mechanism and take the reaction to completion.   

6.5. Conclusions 

Some of the key features found when studying the reversible reaction mechanism proposed in this 

chapter are here presented. For the esterification reaction here proposed, the forward reaction 

(esterification) is endothermic and the reverse reaction (hydrolysis) is exothermic. The endothermic 

direction is known to have a larger activation energy, in other words Eaf > Ear. The reversible model 

here studied follows this pattern and has an activation energy for the forward and reverse reaction of 

12.692 and 8.652 kJ/mol respectively. The reverse reaction for the third step has an activation energy 

of Ea = 8.562 kJ/mol and a pre-exponential factor of A = 6.895x10-4 M-1s-1. The forward reaction is 

considerably more thermodynamically favourable than its reverse reaction. 

The irreversible mechanism reaches a final concentration for both water and oxygen of 254.43 and 

127.2 mol/m3 respectively. On the other hand, the reversible mechanism reaches a final concentration 
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for water and oxygen of 207.97 and 103.98 mol/m3 respectively. The reversible mechanism produces 

18.26% less water and oxygen when compared to the irreversible one, this is attributed to the fact that 

hydroxyl radical is used in the reverse mechanism to carry out the hydrolysis of the esters. The 

hydrolysis of esters competes with the second step of the mechanism which explains why the water 

and oxygen productions decreases in the reversible reaction. An increase in temperature causes an 

increase in both the forward and reverse rate constants, but the rate of the endothermic reaction 

increases more. This is attributed to the fact that equilibrium shifts in the endothermic (forward) 

direction since the added heat is consumed according to LeChatelier’s principle. Additionally, for an 

endothermic reaction (esterification), raising the temperature would increase the equilibrium constant 

Keq and would increase the equilibrium constant for the exothermic reaction (hydrolysis). 

Increasing the initial methanol concentration increases dramatically the FAME production to a 

certain extent. A further increase in the molar concentration of methanol above 400 mol/m3 would 

only incur in an increase of the material cost due to the excess used for the process. At initial 𝑂 · 

concentrations higher than 400-600 mol/m3, the increase in FAME production varies 2.23%. This 

suggests that a further increase in the molar concentration of the oxygen singlet above 600 mol/m3 

would only incur in an increase of the material cost due to the excess used for the process. Varying the 

initial 𝑂 · means a more significant increase in the FAME production, this is the main driver to explore 

its effect on the 2-D model proposed in the next chapter. 
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7. 2-D axisymmetric model for ozone free radical initiated esterification 

Having studied the effect of parameters such as, temperature and the initial concentration of both 

methanol and the oxygen singlet in the two 0-D models presented in previous chapters. It is necessary 

to include the heat and mass transfer, surface reactions, transport of diluted species and reaction 

engineering modules available in the software previously mentioned. The relevant data calculations 

and estimations presented in both chapter 3 and 4 are here considered. When comparing the 0-D and 

2-D axisymmetric inferred rate constants, it is important to stress that the 2-D axisymmetric model is 

for interfacial interaction only.  The 0-D model presumes homogeneous reaction and the 2-D model is 

heterogeneous.  Inherently, this distinction is a massively different mechanistic approach.   

Conceptually, the 2-D model can make predictions that are testable to distinguish between 

heterogeneous and homogeneous catalysis. For instance, the layer depth is extremely important to 

avoid re-condensation in the 2-D model, whereas the 0-D model has no such mechanism so would be 

monotonically varying with layer depth. Having said this, in this chapter the reversible mechanism is 

considered since esterification is known to be a reversible reaction of second order. In this chapter the 

reader can find the model description, the numerical method used, least squares fitting of the model, 

the rate constants estimation and the appropriate results and discussion for the simulation profiles 

and variation of different parameters in order to analyse their effect on the key features. The variation 

of bubble size, liquid mixture temperature, bubble temperature and initial oxygen singlet 

concentration are discussed in this chapter.  

7.1. Model description  

In order to model the physical and chemical properties of the intensified esterification process, 

COMSOL Multiphysics is used. This is a platform software for modelling engineering applications 

comprised of add-on modules for simulating processes based on fluid flow, mass and heat transfer, 

chemistry and reaction engineering.  

One of the main purposes of this model is to understand and explore the effects of water 

production and its respective removal. This thesis explores a hypothesis that forces the esterification 

reaction of FFAs to completion via the microbubble mediated reactive distillation. In this case, ozone-

rich bubbles provide the catalyst to this reaction and remove the water product, driving the reaction 

to completion following Le Chatelier’s principle. This approach uses 𝑂 ·, produced in the ozone free 

radical initiation process, as free radical initiator for the three-step reaction mechanism proposed 

which takes place on the bubble interface (gas-liquid). The microbubble removes the vapour phase 

products (water) avoiding product inhibition.  
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The microbubbles containing a free radical rich atmosphere and dry-to-bone air are injected at the 

bottom of the esterification unit and rise due to buoyancy force in the liquid phase, stripping one of 

the resultant by-products like water in the process. The chemical reactions for the esterification of the 

FFAs take place on the skin bubble in the presence of methanol. Figure 67  illustrates the reactants and 

reactions taking place according to the proposed model.  

 

Figure 67 Schematic diagram for the esterification reaction mediated by microbubbles. 

In order to simplify the system described above, the proposed model is based on several 

assumptions: (1) The bubble is always rising in the reservoir at its terminal velocity, making emphasis 

and focusing only on the heat and mass transfer dynamics. (2) Due to a small residence time of the 

bubble in the liquid, the pressure inside the bubble is assumed to be constant. (3) The spherical shape 

of the bubble is maintained since it is sufficiently small that the surface tension around it assures no 

deformation from the spherical shape takes place. (4) The relevant chemical reactions of the model 

take place on the skin of the microbubble (Abdulrazzaq, et al., 2016).  

7.2. Numerical method 

The numerical simulations in this study were carried out using the Galerkin finite element method 

(FEM) with the software COMSOL Multiphysics 5.3a in order to solve the governing equations. The 

simulations were performed using both a personal computer and the University server. The first one 

had an Intel Core i3-7100U Intel HD Graphics 620 running at 2.4 GHz with 8 GB of installed memory 

and the second one had 12 processors and 94 GB of installed memory.  
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Figure 68 Triangular mesh used for the model. 

The mesh used in this computational model is defined by the user. The element size is set to 

calibrate for general physics. Some of the element size parameters are a maximum element growth 

rate of 1.1, a maximum element size of 0.5x10-5 m, a minimum element size of 4x10-8 m, a curvature 

factor of 0.2 and a resolution of narrow regions of 1. This setting is applied to the gas-liquid interface 

where majority of the physical and chemical features take place. There are 19,275 triangular mesh 

elements with an average element quality of 0.9461 and a mesh area of 2x10-6 m2. In Figure 68 is shown 

the triangular mesh used in this computational model after being refined in order to achieve a higher 

resolution of the problem at a lower computational cost.  

7.3. Results and discussion 

The results obtained in the numerical simulations for the ozone free radical initiated esterification 

are presented in this section. The trends observed by the temperature and concentration profiles of 

the species of interest over time in this process are here discussed. Several parametric sweeps are 

presented in order to explore the physics and kinetics of this process by varying parameters such as 

the radius of the bubble, the temperature of the liquid and the bubble, and the initial oxygen singlet 

concentration.  

7.3.1. Simulation profiles 

Firstly, the microbubble profile of water concentration distribution inside the bubble with the 

respective temperature field and velocity vectors is studied. For the simulation profiles, a radius of 100 

m, an initial temperature of the liquid of 333.15 K, an initial temperature of the bubble of 293.15 K, 

an initial oxygen singlet concentration of 281.25mol/m3, and an initial concentration for both methanol 
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and FFA of 301.54 mol/m3 are used. It is important to mention that for the purpose of presenting the 

results in a more detailed and organised structure, the figures in this section have been adapted to the 

appropriate time scale of up to 1 s, where most of the physical and chemical changes are taking place 

inside the bubble and in its surroundings.  

 

Figure 69 Microbubble profile for the water concentration (mol/m3) after t=0.0 09 s. 

Figure 69 shows the microbubble profile for the concentration of water after 0.009 s. The arrows 

represent the steady state velocity field for a bubble rising through the liquid according to Hadamard 

and Rybcynski equation. It can be depicted from the figure that the water concentration is constant 

across the bubble at around 5.26x10-4 mol/m3. This pattern is mainly due to the intensive internal 

mixing found in the inside of the microbubble which favours the homogenisation of both the thermal 

and chemical fields at short residence times when the bubble rises through the liquid (Zimmerman, et 

al., 2013; Abdulrazzaq, et al., 2016).  

Regarding the behaviour of the microbubble rising through the liquid, it was noticed that that both 

the mass and heat transfer dynamics have a strong dependence on time. In terms of the average 

microbubble temperature, this profile is shown in Figure 70. From this figure it can be depicted that 

there are two different regimes happening. Firstly, a rapid increase in temperature is noticed followed 

by a slow increase can be depicted which reaches the liquid temperature 𝑇∞. This would suggest that 

vaporisation and sensible heat transfer are dominating the first and second regime respectively.  
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Figure 70 Average microbubble temperature for a bubble T0=293.15 K. Bottom: semilogx plot. 

The semilog plot found at the bottom of Figure 70 shows that the average microbubble 

temperature displays an exponentially faster increase up to 3x10-3 s compared with the next 10-1 s. 

This could suggest that evaporative cooling happens at least one to two orders of magnitude faster 

than sensible heat transfer for this process. In other words, this could be explained as an effect caused 

by the evaporation of the liquid into the bubble. The latent heat of vaporisation is lost causing the 

bubble temperature to increase rapidly at short contact time. The value of 3x10-3 s is considered as the 

turning point where the process changes of regime. This turning point is one order of magnitude 

different to the one reported by Zimmerman et al of 1x10-4 s. The difference could be attributed to the 

discrepancy in the initial microbubble temperature used in both studies, of nearly 100°C (Zimmerman, 

et al., 2013; Abdulrazzaq, et al., 2016).  

The microbubble temperature profile at the turning point (T=330 K) is illustrated in Figure 71. A 

heat transfer coefficient of 0.1 W/m2K is used in this simulation, the arrows represent the steady state 

velocity field and the shading represents temperature. It can be depicted from the figure that at this 

specific time, the microbubble is relatively isothermal at 330 K. The purpose of this figure is to point 

out that at this turning point is where the maximum internal humidity is achieved.  

The physical properties for both the liquid and gas phase are shown in Table 10 and Table 11. 

Properties like heat capacity and thermal conductivity are defined by polynomial empirical correlations 

since they depend on temperature. Whereas, from Figure 71 can be noticed that the temperature 

variation across the microbubble is not considerably significant, properties like density, viscosity and 

molecular diffusivity are considered constant. 
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Figure 71 Microbubble temperature profile (K) at the turning point. 

For the heat transfer coefficient value, Kumar et al reported a value of 1080 W/m2K for bubble of 

approximately 1 cm. For the purpose of this simulation, since the radius of the microbubble is 100 

times smaller, a value for the heat transfer coefficient of 0.1 W/m2K is considered. This value has been 

used by Zimmerman et al when studying the evaporation dynamics of microbubbles (Zimmerman, et 

al., 2013; Kumar, et al., 1992).  

In order to fully understand the correlation between the ozone free radical initiated esterification 

and the water vaporisation and further removal, it is necessary to analyse the concentration profile of 

the different species found in this reaction mechanism. Firstly, the average oxygen singlet 

concentration profile inside the bubble found in Figure 72 shows the behaviour of this species over 

time. It can be noticed from the graph that the oxygen singlet starts being consumed after 1x10-4 s, 

showing an exponential decay around 1x10-2 s. The concentration reached after one second is 

approximately 275.5 mol/m3. This difference in oxygen singlet concentration could be then correlated 

to the FAME production in the reaction mechanism.  

The decrease in the oxygen singlet concentration means the reaction mechanism here proposed 

has already started and that the subsequent second reaction would take place right after.  

 

Figure 72 Oxygen singlet concentration profile in time. 
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For the average concentration profile of the hydroxyl radical and FAME in the gas-liquid interface, 

it can be noticed that both species show the same exponential behaviour in the first regime, followed 

by a slow increase due to the reaction kinetics of the third step. The concentration profile for both 

species is found in Figure 73. It is assumed for this reaction mechanism that the third step is the slowest 

one. Therefore, the oxygen singlet species reaches an equilibrium concentration and is consumed 

rapidly in less than 1x10-1 s, while the products for the third step would take longer to reach an 

equilibrium in both the liquid and gas domain.  

 

Figure 73 FAME and hydroxy radical concentration on the surface profile over time. 

As expected the concentration of FAME is relatively lower compared to the hydroxyl radical for this 

case. After one second, the FAME and hydroxyl radical concentration reach a value of 1.46x10-2 and 

1.041 mol/m3. There are nearly two orders of magnitude between the concentrations of these two 

species. This suggests the radical species is being produced by the forward reaction in the first step of 

the mechanism and but not been consumed fully by the third reaction (esterification). This would 

suggest that there is room for improvement so most of the radical species produced in the gas-liquid 

interface is fully used. In order to explore the behaviour of the product of interest in this study, the 

FAME production, a concentration profile for FAME over time is presented in Figure 74. In this figure, 

the arrows represent the steady state velocity field and the shading represents concentration profile. 

It can be noticed that time at 1x10-3 s, the FAME concentration on the microbubble surface has a value 

of around 2.5x10-3 mol/m3 across the surface. A thin layer of the FAME produced is observed around 

the microbubble surface. At 1x10-2 s, the FAME concentration reaches a value nearly 4 times greater 

compared to the first time analysed. It is clear that the layer thickness increases in time suggesting 

more FAME is being produced on the gas-liquid interface.  

At 1x10-1 s, it can be depicted from the figure that majority of the FAME produced migrates to the 

bottom of the microbubble and reaches a concentration of 3x10-3 mol/m3. This behaviour is attributed 

to the outflow condition previously mentioned in this chapter in order to emulate the rising of the 
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bubble through the liquid. At 1 s, the FAME produced continues to migrate to the bottom of the 

microbubble and achieves a concentration of 4x10-2 mol/m3.  

 

Figure 74 FAME concentration profile (mol/m3) over time (From left to right t=1x10-3, 1x10-2, 1x10-1 and 1 s). 

It is important to mention that these concentrations may differ from the ones reported in Figure 

73, since in Figure 73 the average concentration on the surface for both species was plotted whereas 

in Figure 74 the whole gradient is shown and the values reported are the maximum at each time 

analysed.  

7.3.2. Variation of the bubble size 

One of the most important parameters when studying microbubbles is the bubble size since it is 

strongly related to the gas-liquid interface, which is responsible for the heat and mass transfer 

dynamics. In Figure 75, the variation of the average bubble temperature with the bubble size is shown. 

In this case four different radius were used to illustrate the effect of the bubble size from top to 

bottom, R= 5x10-5, 1x10-4, 3x10-4 and 5x10-4 m. The initial bubble temperature is T0= 293.15 K and an 

initial FFA concentration of 301.54 mol/m3. It can be noticed that a smaller bubble reaches the thermal 

equilibrium faster compared to a bubble with a larger radius. In the case of R=1x10-4 m, this thermal 

equilibrium is reached around 9x10-3 s compared to 4x10-2 s for a bubble five times its size (r=5x10-4 

m). This is mainly attributed to the fact that smaller bubbles deliver majority of their enthalpy at 

shorter residence times in the liquid mixture, whereas larger bubbles take considerably longer to reach 

the mentioned thermal equilibrium since they possess a weaker internal convection (Zimmerman, et 

al., 2013).  

The plot here discussed has a maximum value on the x-axis of 0.1 in order to magnify the differences 

between the simulations here studied. This behaviour is in agreement with results reported by 

Abdulrazzaq et al when studying the purification of bioethanol using microbubbles generated by fluidic 

oscillation. Their results indicate smaller bubbles deliver their enthalpy relatively faster and reach 
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equilibrium, hence promoting the stripping efficiency of ethanol in binary mixtures (Abdulrazzaq, et 

al., 2016).  

 

Figure 75 Variation of the average bubble temperature with bubble size (m). 

Once the effect of the bubble size on the average bubble temperature has been analysed. It is 

important to explore the effect of the same parameter but in the FAME concentration. Figure 76 

illustrates the effect of the bubble size on the average FAME concentration found in the liquid mixture 

for different radius, from top to bottom R= 5x10-5, 1x10-4, 3x10-4 and 5x10-4 m.  

 

Figure 76 Variation of the average FAME concentration in the liquid mixture with bubble size (m). 

The initial bubble temperature is T0= 293.15 K and an initial FFA concentration of 301.54 mol/m3. 

It can be depicted from Figure 76 that a higher FAME concentration is found in the liquid mixture at a 

smaller bubble size. This behaviour could be attributed mainly to several factors: i) An enhanced mass 

and heat transfer by the enhanced gas-liquid interface when reducing the size of the bubble, ii) the 

increased vaporisation and stripping of the produced water, iii) a combination of both scenarios 

previously mentioned.  

After 1 s at a radius of R= 5x10-5, 1x10-4, 3x10-4 and 5x10-4 m, the average FAME concentration in 

the liquid mixture has a value of 3.07x10-5, 5.15x10-5, 1.32x10-4 and 2.32x10-4 mol/m3 respectively. 

These results suggest that small bubbles are more efficient in terms of FAME production due to an 
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enhanced mass and heat transfer related to a higher surface area to volume ratio. This behaviour is 

best exploited at short residence times within the liquid in order to avoid recondensation. 

Microbubbles have higher residence times and a more intensive internal velocity rate, these attributes 

here mentioned lead to a faster vapour concentration of water inside the microbubble at short 

residence time. At higher residence times, the concentration inside a microbubble tend be similar 

compared to larger bubbles. This pattern is explained because the microbubbles loses most of its 

contents when it cools down due to the recondensation process (Zimmerman, et al., 2013).  

7.3.3. Variation of liquid mixture temperature 

In the esterification process, the liquid mixture temperature is the parameter that mainly 

establishes the temperature at which the reaction kinetics are happening. It is known from the data 

gathered in the previous chapters that an increase in the liquid mixture temperature would result in 

an increase of the FAME concentration in the liquid mixture due to an increase in the rate constants. 

For the conventional esterification reaction, the increase in temperature is mainly limited by the 

boiling point of the solvent used in the reaction. In the case of methanol, the boiling point is 64.7°C. As 

mentioned before in this thesis, the approach considered in the reaction mechanism in order to avoid 

this limitation states that methanol is found to be highly reactive in the presence of the oxygen singlet 

radical which then react to produce the methoxy and hydroxyl radical, therefore initiating the free 

radical chain reaction.  

Having said this, the effect of the liquid mixture temperature on the average water concentration 

inside the bubble is here studied and showed Figure 77. From the figure a few features can be noticed, 

an increase in the liquid mixture temperature results in an increase in the average water concentration 

found in the bubble. In theory, the bubble reaches a maximum concentration in the first regime at the 

turning point previously mentioned, to then decrease until it reaches the thermal and chemical 

equilibrium. In this model, five different temperatures were studied (T=293.15-373.15 K) in order to 

explore and understand if increasing the liquid temperature has an impact on the bubble average 

water concentration. It is important to mention that the experimental data to which the model is 

compared to then be validated considers runs only at 293.15 to 333.15 K.  
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Figure 77 Variation of the bubble average water concentration with liquid mixture temperature (K). 

In Figure 77 can be seen that at a liquid mixture temperature of 293.15-373.15 K, the average water 

concentration in the bubble is 7.17x10-5, 2.12x10-4, 5.38x10-4, 1.23x10-3 and 2.45x10-3 mol/m3 

respectively. This suggests that increasing the liquid mixture temperature would increase dramatically 

the vaporisation of water and therefore favour the FAME production, only if the produced water is 

stripped before it undergoes recondensation after the turning point (Abdulrazzaq, et al., 2016).  

The vaporisation parameter of water in this system is described as (KL). In order to understand the 

influence of this parameter in the reaction mechanism here proposed, a sensitivity study of the 

average bubble temperature to several values of this KL was performed. Figure 78 shows a lack of 

sensitivity to the parameter KL on the average bubble temperature. A small value of the water 

vaporisation parameter (2x10-7) would result in a slower mass transfer, mainly found in isothermal 

systems.  

 

Figure 78 Double log plot of the variation the average bubble temperature with mass transfer coefficient. 

A large value of this parameter would result in systems that flash to equilibrium characterised by a 

rapid vaporisation followed by recondensation as the bubble reaches the second regime. In this study 

a value of 2x10-5 has been used in order to guarantee nonequilibrium dynamics that are rapid enough. 
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This value is in agreement with previous values reported by Abdulrazzaq et al in the purification of 

bioethanol in binary mixtures (Abdulrazzaq, et al., 2016; Zimmerman, et al., 2013). 

As mentioned in previous chapters, an increase in temperature would mean an increase in the rate 

constants. And in the case of the esterification reaction (endothermic process) the rate constants in 

the endothermic direction would always suffer a higher impact by this increase in temperature.  

The effect of the liquid mixture temperature on the average FAME concentration is then analysed 

as well. This parameter is analysed in order to understand its impact on the product of interest. Figure 

79 shows the effect of the liquid temperature at five different temperatures (T=293.15-373.15 K) on 

the FAME concentration found in the liquid. It can be noticed that the behaviour followed by the FAME 

species is similar to the water produced. An increase in the liquid mixture temperature results in an 

increase on the FAME concentration in the liquid mixture. The curves here generated are possible 

thanks to the use of the Arrhenius equation which describes the temperature dependence of the rate 

constants in the reaction mechanism.  

 

Figure 79 Variation of the average FAME concentration with liquid mixture temperature (K). 

This is the explanation for an increase of the FAME concentration from the kinetic side of the 

process. In terms of the vaporisation of water, this process is thermodynamically favoured with an 

increase in temperature and therefore would cause an increase in the FAME production. Having said 

this, the increase of the FAME concentration in the liquid mixture could be attributed to the sum of 

these two factors which address both the reaction kinetics in the proposed mechanism and the 

physical advantage posed by the stripping of the produced water. In Figure 79 can be seen that at a 

liquid mixture temperature of 293.15-373.15 K, the average FAME concentration in the liquid mixture 

reaches a value of 1.05x10-4, 1.18x10-4, 1.32x10-4, 1.44x10-4 and 1.57x10-4 mol/m3 respectively. 
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7.3.4. Variation of the bubble temperature 

The variation of the average bubble water concentration with bubble temperature is here studied 

in order to explore the effect of this parameter. It is important to point out that the experimental data 

was carried out at initial bubble temperature of 293.15 K.  

 

Figure 80 Variation of the average water concentration with bubble temperature (K). 

This is one of the main reasons why the model here proposed is used to explore the behaviour in 

the average bubble water concentration shown in Figure 80. An initial liquid mixture temperature for 

this simulation of 333.15 K and an initial FFA concentration of 301.54 mol/m3 are used. It can be easily 

depicted from this figure, that for an initial bubble temperature above the initial liquid mixture 

temperature (T0 bubble > T0 liquid), a maximum in the water concentration is found at the turning 

point previously mentioned. The higher the difference in temperature between these two 

temperatures, the more rapidly the turning point is reached.  

In other words, the maximum water concentration is achieved when the bubble temperature has 

a higher value. Decreasing the initial bubble temperature would slow the recondensation process. This 

could be understood as if the bubble temperature is increased, the vapour pressures of the species in 

the liquid mixture would increase leading to an increase in the fraction of the evaporated species into 

the inside of the bubble. The results here obtained are in agreement with study reported by 

Zimmerman et al when analysing the evaporation dynamics of microbubbles. This suggests that 

increasing the initial bubble temperature in this process would improve the water vaporisation and 

therefore the FAME production (Zimmerman, et al., 2013).  

The turning point separates the two regimes, the exponential decay caused by the vaporisation of 

the water followed by the sensible heat transfer. in order to maximise the water vaporisation and 

therefore enhance the FAME production, the residence time of the microbubble should always be 

lower than this point. This would mean a maximum in the water vaporisation but without 
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compromising the reaction kinetics for the FAME production. After the turning point, the 

recondensation of the produced water is observed and the water is then returned to the liquid mixture 

allowing the bubble to cool down and give away its enthalpy by slowly increasing the temperature of 

the liquid (sensible heat transfer). It can be noticed that the low heat transfer coefficient used in this 

model leads to a pronounced and long plateau in the water concentration in the bubble while the 

recondensation process slowly takes place, this plateau in time would reach a value of 5.38x10-4mol/m3 

(Zimmerman, et al., 2013).   

In Figure 80 can be seen that at a bubble temperature of 333.15-373.15 K with intervals of 10 K, the 

maximum water concentration in the bubble is 5.417x10-4, 5.623x10-4, 5.868x10-4, 6.225x10-4 and 

6.649x10-4 mol/m3 respectively. Once the data from the simulation is gathered, it is possible to 

generate a plot in order to find a correlation between the maximum water concentration against the 

difference in temperature between the gas and liquid domain, this correlation is illustrated in Figure 

81. It is clear there is a linear correlation between the difference in temperature between the initial 

bubble and liquid mixture temperature and the maximum water concentration in the bubble 

achievable, described by the following expression Cmax=5.3432 + 0.0307ΔT (R2=0.9774). 

It is important to mention that the initial condition for this simulation is that the bubble enters dry 

into the liquid mixture. This plot was generated considering an initial liquid mixture temperature of 

T=333.15 K, a heat transfer coefficient of 0.1 W/m2K and a radius of 1x10-4 m. This correlation could 

then be used in order to calculate the maximum water concentration inside the bubble that would be 

achievable without the need to carry out an experiment.   

 

Figure 81 Maximum water concentration against T=T0-T∞ (K). 

As seen in Figure 80, for every different initial bubble temperature used in the parametric sweep, 

a chemical equilibrium is reached in terms of the water concentration. At a residence time longer than 

the turning point, a thermal equilibrium would be reached by all the different treatments. Figure 82 

shows the thermal equilibrium reached by different average bubble temperatures (T=293.15-373.15) 
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with the surrounding liquid mixture. An initial liquid mixture temperature of 333.15 K and an initial FFA 

concentration of 301.54 mol/m3 are used for this simulation. It can be noticed that the thermal 

equilibrium is reached by all the different temperatures before 0.1 s. A larger temperature difference 

between the initial bubble temperature and the liquid mixture temperature results in a longer period 

of time required to reach this equilibrium.  

 

Figure 82 Double log plot of the variation of the average bubble temperature over time. 

It is fair to say that the additional evaporation achieved when injecting higher bubble temperatures 

could be neglected for the purpose of this simulation mainly because of the volumetric heat capacity 

of the liquid and the size of this computational model. In other words, the product of the density of a 

species by its heat capacity is nearly three orders of magnitude higher that of the vapour phase, and 

the liquid domain is only one order of magnitude large than the radius of the microbubble 

(Abdulrazzaq, et al., 2016).  

7.3.5. Variation of the oxygen singlet concentration 

One of the main features in this thesis is to explore the effect of the oxygen singlet radical on the 

FAME production. It has been hypothesised that increasing its initial concentration would suggest an 

increase in the overall FAME production found in the liquid mixture.  

As mentioned before, the microbubbles generated with a fluidic oscillator have an initial 

concentration for the free radical 𝑂 · of [𝑂 ·]= 4500 ppm which corresponds to the initial concentration 

of [𝑂 ·]= 281.25 mol/m3 used in these models. The production rate of the biodiesel could be potentially 

maximised by producing a high amount of 𝑂 · using an advanced oxidation plasma reactor. It has been 

reported by Zimmerman and Lozano Parada that it is possible to tune a plasma reactor under specific 

conditions, so a maximum of 𝑂 · at 1x10-3 s it then produced. This means there is no need to form the 



154 
 

 

ozone species for then to be decomposed in 𝑂 ·, but by tuning the device a set amount of this species 

can be produced (Lozano-Parada & Zimmerman, 2010). 

The importance of this species relies on the fact that it is one of the initiators in the proposed 

reaction mechanism. Figure 83 shows the effect of different initial concentrations of the oxygen singlet 

radical on the average FAME concentration in the liquid mixture. It can be noticed that increasing the 

concentration of the O· radical results in an increase in the FAME concentration in the liquid domain. 

For the initial molar ratio O·:FFA of 2:1 and 3:1, the FAME concentration reaches a maximum value at 

0.1 s of 1.156 and 1.775x10-4 mol/m3. 

 

Figure 83 Variation of the average FAME concentration with oxygen singlet concentration (mol/m3). 

It can be noticed from this figure, that for the curves when the O· concentration is higher than the 

initial FFA concentration ([O·]I > [FFA]i) the curves reach a maximum around 0.1 s. All the curves reach 

a chemical equilibrium right after 4x10-1 s. These findings would suggest that the residence time of the 

microbubble (τres) rising though the liquid with the respective rate constants would necessarily be 

lower than 0.1 s, in other words (τres<0.1 s), when the maximum FAME concentration in the liquid is 

reached before it reaches the chemical equilibrium.   

In order to maximise the FAME production and optimise the kinetics of this reaction mechanism, 

one approach would be estimating the maximum vaporisation layer thickness. This refers to the 

maximum thickness that ensures a maximum in the FAME concentration by tuning the residence time 

of the microbubble rising through the liquid in terms of the layer thickness. This vaporisation layer is 

estimated to be a few hundred microns (~438 m) for the case of the mechanism here proposed. If 

this design feature is relevant when studying a vaporising system which would achieve maximum water 

removal and FAME production at a cost of the minimum heat transfer. The modelling work here 

presented could be potentially considered for the ozone free radical initiated esterification. The 

simulations analysed in this chapter are informed in experimental data and validated using the least 

square fitting of the curves (Zimmerman, et al., 2013).  
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7.3.6. Rate constants estimation 

In order to validate the results presented in this chapter, the least square method was carried out 

to fit the curves of the product of interest over time. The modelling approach considered the amount 

of FAME produced of the single bubble size to predict the amount of FAME produced that was obtained 

in the experimental data. The assumption of a single bubble size is sensible for microbubbles generated 

by a fluidic oscillator since the interactions between them could be neglected and the size distribution 

is very narrow (Zimmerman, et al., 2008; Abdulrazzaq, et al., 2016).  

In order to compute the residence time of the microbubble in the liquid mixture for the 

experimental data, a few factors need to be taken into account in order to estimate this parameter. 

The residence time is a combination of three regimes: i) the generation of the bubble from the pore in 

the diffuser, ii) the rising time through the liquid mixture, and iii) the time for the bubble to burst at 

the top of the liquid mixture layer. According to the numerical results calculated for this esterification 

unit, the residence time of the microbubbles rising through the liquid mixture has a value of 19.26 s. 

Having said this, the model was run using MATLAB with COMSOL in order to generate an appropriate 

time step that would describe the curves obtained in the experimental data. The information from the 

model is used to generate a gradient for both FFA and FAME over time, based on the gradient of 

production/consumption and the bubble flux over time is possible to generate the plot found in Figure 

84. The code used for this regression is found in Appendix B. 

Figure 84 gives an example of the least squares fitting for the FAME production curves obtained in 

the experimental data. The best fit throughout the curves was obtained at a FFA content of 20% and 

60°C with a correlation coefficient of R2=0.999. Using a forward rate constant of 11.03x10-6 M-1s-1, the 

calculated reverse rate constant had a value of 6.317x10-7 M-1s-1.  The computational model fit is joined 

up by a trend curve, as it is presumed continuous and monotonic, so that one can interpolate if needed. 

For a brief explain of the fitting method refer to Section 3.2 in Chapter 3.  

In terms of comparison, the curve with the lowest R2 was the 10 FFA% at 293.15 K. The treatment 

10 FFA% at 293.15 K obtained a forward rate constant of 1.6631x10-4 M-1s-1(R2=0.998). The 2-D 

reversible mechanism considering mass and heat transfer, surface reactions and the reaction kinetics 

in the gas-liquid interface shows an improvement in the fitting of the curves when compared to the 

irreversible model. This would suggest that the 2-D reversible model describes the experimental data 

in a better way since it acknowledges the physico-chemical properties of the compounds involved in 

the esterification reaction. Consequently, the 2-D reversible model represents a more solid and reliable 

model that could be used for further modelling since it considers every aspect of the reaction kinetics 

happening in the interface and the transport of the species that are being both produced or consumed.  
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Figure 84 Comparison between model and experimental data for the amount of FAME produced over time. 

For the iterations used in this method, a condition to find only positive numbers is used since the 

order of magnitude is 1x10-7 and the solver could return negative values. The tolerance for the rate 

constants in the iterations is set to 1x10-10 to return values with significant figures. Once the code is 

run, it gives the value that satisfies the condition of having the least squared error and the values for 

the new predicted yp.  

The values for the rate constant kf3 for each treatment are found in Table 30. It can be noticed that 

compared to the forward rate constants estimated in Chapter 5 for the 0-D, these values differ by one 

order of magnitude. It is important to point out that the rate constants calculated in both Chapter 5 

and 6 only consider the reaction mechanism in the reactor, the forward rate constants here presented 

consider the heat and mass transfer across the gas-liquid interface as well as the temperature 

dependence of the reaction kinetics. The difference in the orders of magnitude could be attributed to 

the residence time of the microbubble rising in the liquid mixture. In Table 30, the resulting values for 

kf3 are shown in (M-1s-1) to ease further calculations. The effect on temperature can be easily noticed, 

an increase in temperature results in an increase in the forward rate constant across the three different 

FFA contents here studied.  

Table 30 Rate constant kf3x10-6 (1/M.s) values for each treatment. 

  Free Fatty Acid % 

  10% 15% 20% 

Te
m

p
e

ra
tu

re
 (

K
) 293.15 3.569 3.739 3.931 

313.15 3.201 4.175 4.818 

333.15 9.287 10.69 11.03 

The values for the rate constant kr3 for each treatment are found in Table 31. The difference in the 

orders of magnitude pattern is observed for the reverse rate constants as well.  
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Table 31 Rate constant kr3x10-7 (1/M.s) values for each treatment. 

  Free Fatty Acid % 

  10% 15% 20% 

Te
m

p
e

ra
tu

re
 (

K
) 293.15 

3.872 4.028 4.217 

313.15 4.293 4.628 4.912 

333.15 5.846 6.026 6.317 

All the fitted curves have a correlation coefficient greater than 0.97 which suggests that the method 

used to fit the curves has a high overall quality. For each FFA content (10, 15 and 20%), the highest 

value for R2 is achieved at 60°C, since the experimental data shows the plateau behaviour at higher 

temperatures and a more pronounced curvature for the FAME production over time. This behaviour 

could be attributed to the effect of temperature in a chemical reaction, since it is known that a higher 

temperature a reaction occurs more rapidly. In other words, the exponential growth in terms of 

production of FAME at the beginning of the reaction is more noticeable at higher temperatures.  

The results obtained for the one-way ANOVA are shown in Table 32, in this case the forward rate 

constant across the FFA content are not significantly different since Fvalue<Fcrit (0.0866<5.14). In other 

words, we fail to reject the null hypothesis meaning there is no significant difference between the 

three groups for the FFA content 10, 15 and 20% but there is a noticeable difference between the 

temperatures considered in this model. The Fvalue calculated for the reverse rate constant is relatively 

smaller than the one obtained for the forward rate constant, this could be credited to the fact that the 

reverse rate constant are calculated using the forward rates which have already been proven to not 

show any significant difference across the FFA content.  

Table 32 ANOVA results for the forward rate constant. 

  df SS x10-12 MS x10-12 F Fcrit 

Treatment  2  2.413  1.206 0.0866 5.14 

Residuals 

within 
6 83.531  13.921  

  

Total 8  85.944    

Once the statistical analysis across the FFA is completed and it is concluded there is no significant 

different between the groups accounting for the Free Fatty Acid%, the average values for both the 

forward and reverse rate constants are used in the Arrhenius equation to obtain the activation energy 

(Ea) and pre-exponential factor (A) for the reverse reaction of the third step. The values for the average 

forward and reverse rate constant at each temperature are shown in Table 33, these values are then 
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processed to be used in the Arrhenius equation. When plotting ln(k) against 1/T, a straight line is then 

obtained where the Ea and A can be calculated from the y-intercept and the slope of the line.  

Table 33 Average rate constants used for Arrhenius equation parameters. 

Temperature 

(K) 
1/T x10-3 (K-1) 

Forward rate 

constant x10-6 

(M-1s-1) 

ln(k) 

Reverse rate 

constant x10-7 

(M-1s-1) 

ln(k) 

293.15 3.4112 5.352 -12.137 4.670 -14.576 

313.15 3.1934 6.201 -11.990 4.894 -14.530 

333.15 3.0017 6.593 -11.929 5.149 -14.479 

Once the plot is generated from the rate constants gathered at different temperatures, the data 

can be fitted by a linear regression to calculate the activation energy and the pre-exponential factor 

for both the forward and reverse rate constant. For the forward rate constant, the linear regression 

has a slope m=-512.78 and an y-intercept= -10.377 (R2=0.9617). On the other hand, the linear 

regression for the reverse rate constant has a slope m=-237.54 and an y-intercept= -13.768 (R2=0.996). 

Having said this, the forward reaction for the third step has an activation energy of Ea = 4.263 kJ/mol 

and a pre-exponential factor of A = 3.114x10-5 M-1s-1. The reverse reaction for the third step has an 

activation energy of Ea = 1.974 kJ/mol and a pre-exponential factor of A = 1.048x10-6 M-1s-1. Having 

calculated both rate constants, it is possible to substitute these terms in the reaction rate at any 

temperature given by the equation: 

 

𝑟𝐹𝐴𝑀𝐸 = (3.114𝑥10−5𝑒
−512.78

𝑇 )[𝐹𝐹𝐴]
[𝑀𝑒𝑂𝐻][𝑂 ·]

[𝐻2𝑂]
1
2[𝑂2]

1
4

− (1.048x10−6𝑒
−237.54

𝑇 )[𝐹𝐴𝑀𝐸][𝐻2𝑂]
1
2[𝑂2]

1
4 

(112) 

For the esterification reaction here proposed, the forward reaction is considerably more 

thermodynamically favourable than its reverse reaction. Consequently, the forward rate constant is 

greater than the reverse constant, in other words kf3 > kr3. As mentioned before, the esterification 

reaction here proposed show an endothermic behaviour (Laidler, 1984).  

It is known that the effect of temperature on the rate constants is proportional to the activation 

energy. If the activation energy increases, then the effect of changing the temperature would increase. 

For the esterification reaction here proposed, the forward reaction (esterification) is endothermic and 

the reverse reaction (hydrolysis) is exothermic. The endothermic direction is known to have a larger 

activation energy, in other words Eaf > Ear. The reversible model here studied follows this pattern and 

has an activation energy for the forward and reverse reaction of 4.263 and 1.974 kJ/mol respectively.  



159 
 

 

7.4. Conclusions 

Some relevant features for this 2-D model can be concluded after the respective analysis. The 

temperature profile is nearly isothermal at 333 K and the water concentration is constant across the 

bubble at around 5.26x10-4 mol/m3. This pattern is mainly due to the intensive internal mixing found 

in the inside of the microbubble which favours the homogenisation of both the thermal and chemical 

fields at short residence times when the bubble rises through the liquid. A rapid increase in 

temperature is noticed with an turning point around T=330 K. Secondly, a slow increase can be 

depicted which reaches the liquid temperature 𝑇∞. This would suggest that vaporisation and sensible 

heat transfer are dominating the first and second regime respectively.  

A smaller bubble reaches the thermal equilibrium faster compared to a bubble with a larger radius. 

In the case of R=1x10-4 m, this thermal equilibrium is reached around 9x10-3 s compared to 4x10-2 s for 

a bubble five times its size. A higher FAME concentration is found in the liquid mixture at a smaller 

bubble size. This behaviour could be attributed mainly to several factors: i) An enhanced mass and 

heat transfer by the enhanced gas-liquid interface when reducing the size of the bubble, ii) the 

increased vaporisation and stripping of the produced water, iii) a combination of both scenarios 

previously mentioned. Increasing the liquid mixture temperature would increase dramatically the 

vaporisation of water and therefore favour the FAME production, only if the produced water is stripped 

before it undergoes recondensation after the turning point. 

An increase of the FAME concentration from the kinetic side of the process. In terms of the 

vaporisation of water, this process is thermodynamically favoured with an increase in temperature and 

therefore would cause an increase in the FAME production. Having said this, the increase of the FAME 

concentration in the liquid mixture could be attributed to the sum of these two factors which address 

both the reaction kinetics in the proposed mechanism and the physical advantage posed by the 

stripping of the produced water. An initial bubble temperature above the initial liquid mixture 

temperature (T0 bubble > T0 liquid), a maximum in the water concentration is found at the turning 

point previously mentioned. The higher the difference in temperature between these two 

temperatures, the more rapidly the turning point is reached.  

These findings would suggest that the residence time of the microbubble (τres) rising though the 

liquid would necessarily be lower than 1x10-4 s, in other words (τres<1x10-4 s), when the maximum water 

concentration in the bubble is reached before it reaches the chemical equilibrium.  Increasing the 

concentration of the O· radical results in an increase in the FAME concentration in the liquid domain. 

The forward reaction for the third step has an activation energy of Ea = 4.263 kJ/mol and a pre-

exponential factor of A = 3.114x10-5 M-1s-1. The reverse reaction for the third step has an activation 

energy of Ea = 1.974 kJ/mol and a pre-exponential factor of A = 1.048x10-6 M-1s-1. 
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8. 2-D model for the intensified esterification of Jatropha platyphylla oil 

In this chapter a computational model is proposed for the ozone free radical initiated esterification 

using Jatropha platyphylla oil. The main reason for the election of this Mexican species relies on the 

special interest from the postgraduate student who is carrying out this research as well as the Mexican 

government sponsoring this project in order to find a sustainable use for this species in the pacific 

coast from Sinaloa to Michoacán states in Mexico. In this chapter, the use of Jatropha platyphylla oil 

is the main difference when compared to the previous chapter. In order to use the same model as in 

the previous chapter adaptations to the properties of the oil are conveniently updated. A brief 

comparison of the physicochemical properties between the oils used are illustrated in Table 5 found 

in section 2.1.4. The production of biodiesel via the intensified esterification is here analysed as an 

alternative for this vegetable oil. The relevant data calculations and estimations presented in both 

chapter 3 and 4 are here considered. 

It is important to mention that the model proposed in this chapter is informed by the experimental 

data described in Chapter 3 and the model described in Chapter 7 but is yet to be validated with 

experimental runs which are then considered as potential future work in this thesis. In this chapter the 

reader can find the model description, a brief description of the proposed feedstock, the numerical 

method used, rate constants estimation and the appropriate results and discussion for the simulation 

profiles and variation of different parameters in order to analyse their effect on the key features. The 

variation of bubble size, liquid mixture temperature, bubble temperature and initial oxygen singlet 

concentration are discussed in this chapter.  

8.1. Model description  

The computational model used in this chapter uses the same reaction mechanism as the one 

proposed in the previous chapters. The main difference is that in this chapter a shorter residence time 

and enhanced reaction kinetics are estimated in order to assess the performance of the ozone free 

radical initiated esterification in a thin layer thickness of a few hundred microns based solely on the 

assumption that it is possible to maximise the FAME production and optimise the kinetics of this 

reaction mechanism. This could be understood as estimating the maximum vaporisation layer 

thickness. This refers to the maximum thickness that ensures a maximum in the FAME concentration 

by tuning the residence time of the microbubble rising through the liquid in terms of the layer 

thickness.  

This vaporisation layer is estimated to be a few hundred microns (~438 m) for the case of the 

mechanism here proposed. If this design feature is relevant when studying a vaporising system which 

would achieve maximum water removal and FAME production at a cost of the minimum heat transfer. 

The modelling work here presented could be potentially considered for the ozone free radical initiated 
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esterification using the vegetable oil from J. platyphylla. It is important to mention that the heat and 

mass transfer modules, transport of diluted species, chemistry, surface reactions and reaction 

engineering used in the previous chapter are here considered as the backbone for this computational 

model.  

One of the main purposes of this model is to understand and explore the effects of water 

production and its respective removal. This chapter explores the hypothesis that forces the 

esterification reaction of FFAs to completion via the microbubble mediated reactive distillation. In this 

case, ozone-rich bubbles provide the catalyst to this reaction and remove the water product, driving 

the reaction to completion following Le Chatelier’s principle. This approach uses 𝑂 ·, produced in the 

ozone free radical initiation process, as free radical initiator for the three-step reaction mechanism 

proposed which takes place on the bubble interface (gas-liquid). The microbubble removes the vapour 

phase products (water) avoiding product inhibition.  

A 2-D axisymmetric computational model of a dry-to-bone air and ozone microbubble is developed 

using COMSOL Multiphysics. The system to be investigated is comprised of a dispersed phase being 

the single fluidic oscillator air microbubble with a diameter of 200 m rising in an infinite reservoir of 

methanol-oil mixture due to a buoyancy force. A simulation study is carried out for the system 

previously described using a time dependent model for the concentration and temperature profile 

inside the microbubble, considering circulation patterns inside and around the bubble correlated to 

the bubble motion. According to the operating conditions set in Chapter 3, the liquid bed height is 

0.027 cm which corresponds to a residence time of 1 s for the microbubble to rise at terminal velocity 

through the liquid mixture.  

In order to simplify the system described above, the proposed model is based on several 

assumptions: (1) The bubble is always rising in the reservoir at its terminal velocity, making emphasis 

and focusing only on the heat and mass transfer dynamics. (2) Due to a small residence time of the 

bubble in the liquid, the pressure inside the bubble is assumed to be constant. (3) The spherical shape 

of the bubble is maintained since it is sufficiently small that the surface tension around it assures no 

deformation from the spherical shape takes place. (4) The relevant chemical reactions of the model 

take place on the skin of the microbubble (Abdulrazzaq, et al., 2016).  

8.2. Jatropha platyphylla species 

The most famous species and also widely promoted as a feedstock source for biodiesel production 

is Jatropha curcas. In this chapter, J. platyphylla is briefly described in order to point out its feasibility 

as feedstock sources for biodiesel production. 
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Jatropha platyphylla is a species in the family of the Euphorbiaceae, found in the pacific coast from 

Sinaloa to Michoacan states in Mexico. J. platyphylla is restricted to warm areas with temperatures 

fluctuating around 20-29ºC and is normally found around deciduous forests. Concerning to the fat 

profile of J. platyphylla oil, it has been reported a content of 58% oil similar to the one found in J. curcas 

and the kernels of both of these species. Regarding the amino acid compositions, J. platyphylla kernel 

meal had a higher crude protein of 75% against 60% in J. curcas, but similar amino acid composition. 

Except lysine, all the essential amino acids found in the kernel meal were more abundant than in the 

FAO reference protein or the soybean meal (Makkar, et al., 2010). 

Regarding the oil and protein contents, in J. platyphylla kernels the oil and crude protein content 

do not differ significantly. But the high oil content in J. platyphylla (60%) makes this species a valuable 

and suitable source for oil and therefore biodiesel production. Although the oil content is slightly 

higher in J. platyphylla, since the proportion of kernels in its seeds is lower than that in J. curcas the oil 

content would be lower; the same would be true for the crude protein content (Oyeleye, et al., 2011; 

Gosselink, et al., 2004). 

Regarding the fatty acid composition, in J. platyphylla the saturated fatty acid levels are similar to 

that of J. curcas. Oil in both species is composed mainly of unsaturated fatty acids (linoleic and oleic 

acid), a higher linoleic acid level is found in J. platyphylla which could be beneficial for human 

consumption but at the same time shows the potential of this plant as a suitable feedstock source in 

the semi-arid coastal areas of Mexico. As mentioned before, J. platyphylla contains more than 50% of 

polyunsaturated fatty acids from which the predominant one is linoleic acid, 18:2n-6. The 

monounsaturated fatty acids comprise 25% of the total being the most predominant oleic acid 18:1n-

9 and, oleic acid 18:1n-7 and palmitoleic acid, 16:1n-7 respectively. Lastly, the monosaturated fatty 

acids are found in less proportion of around 21%, from which palmitic, 16:0 and stearic acid 18:0 are 

the most predominant ones. J. platyphylla in comparison to J. curcas has a higher amount of 

polyunsaturated fatty acids due to the abundance of linoleic acid, which is higher than that of J. curcas. 

But concerning monounsaturated fatty acids, J. platyphylla has a lower composition than J. curcas due 

to the lower presence of oleic acid, 18:1n-9. Depending on the season, the FFA content found in J. 

platyphylla usually fluctuates between 12-21%, which is convenient in this case so this model can be 

used to propose an enhanced mechanism for the intensified esterification (Oyeleye, et al., 2011; 

Makkar, et al., 1998). 

Having said this, this species has potential and could be used to produce biofuels due to the high 

levels of oil contained in this plant and its abundance in the semi-arid coastal areas of Mexico, J. 

platyphylla would be a suitable Mexican feedstock source for village-level and small scale biodiesel 

production (Makkar & Becker, 2009; Kumar, et al., 2010; Akinleye , et al., 2011) 
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8.3. Numerical method 

The numerical simulations in this study were carried out using the Galerkin finite element method 

(FEM) with the software COMSOL Multiphysics 5.3a in order to solve the governing equations. The 

simulations were performed using both a personal computer and the University server. The first one 

had an Intel Core i3-7100U Intel HD Graphics 620 running at 2.4 GHz with 8 GB of installed memory 

and the second one had 12 processors and 94 GB of installed memory.  

The mesh used in this computational model is defined by the user. The element size is set to 

calibrate for general physics. Some of the element size parameters are a maximum element growth 

rate of 1.1, a maximum element size of 0.5x10-5 m, a minimum element size of 4x10-8 m, a curvature 

factor of 0.2 and a resolution of narrow regions of 1. This setting is applied to the gas-liquid interface 

where majority of the physical and chemical features take place. There are 19,275 triangular mesh 

elements with an average element quality of 0.9461 and a mesh area of 2x10-6 m2.  

8.4. Results and discussion 

The results obtained in the numerical simulations for the ozone free radical initiated esterification 

are presented in this section. The trends observed by the temperature and concentration profiles of 

the species of interest over time in this process are here discussed. Several parametric sweeps are 

presented in order to explore the physics and kinetics of this process by varying parameters such as 

the radius of the bubble, the temperature of the liquid and the bubble, and the initial oxygen singlet 

concentration.  

8.4.1. Simulation profiles 

For the simulation profiles, a radius of 100 m, an initial temperature of the liquid of 333.15 K, an 

initial temperature of the bubble of 393.15 K, an initial oxygen singlet concentration of 281.25mol/m3, 

and an initial concentration for both methanol and FFA of 301.54 mol/m3 are used. According to the 

operating conditions set in Chapter 3, the liquid bed height is 278.1 m which corresponds to a 

residence time of 1 s for the microbubble to rise through the liquid mixture. It is important to mention 

that for the purpose of presenting the results in a more detailed and organised structure, the figures 

in this section have been adapted to the appropriate time scale of up to 1 s, where most of the physical 

and chemical changes are taking place inside the bubble and in its surroundings.  

From the simulation results obtained for the intensified esterification proposed for J. platyphylla, it 

was noticed that that both the heat and mass transfer dynamics have a strong dependence on time. 

The average bubble temperature profile over time is shown in Figure 85. From this figure it can be 

depicted that there are two different regimes happening. Firstly, a rapid decay in temperature is 

noticed with an turning point around T=337 K. The turning point previously described is reached in this 
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system around 2x10-4 s, which is in agreement with the one reported by Zimmerman et al of 1.5x10-4 

s when studying the evaporation dynamics of microbubbles. The discrepancy between these two 

values could be attributed to the difference in temperature between the gas and liquid phase used in 

both models. The temperature difference between the bubble and the liquid reported by Zimmerman 

et al and this model is 130 and 60 K respectively (Zimmerman, et al., 2013).  

Secondly, a slow increase can be depicted which reaches the liquid temperature 𝑇∞. This would 

suggest that vaporisation and sensible heat transfer are dominating the first and second regime 

respectively.  

 

Figure 85 Average microbubble temperature for a bubble T0=393.15 K. Bottom: semilogx plot. 

The semilog plot found at the bottom of Figure 85 shows that the average microbubble 

temperature displays an exponentially faster increase up to 2x10-4 s compared with the next 10-1 s. 

This could suggest that evaporative cooling happens at least three orders of magnitude faster than 

sensible heat transfer for this process. In other words, this could be explained as an effect caused by 

the evaporation of the liquid into the bubble. The latent heat of vaporisation is lost causing the bubble 

temperature to increase rapidly at short contact time (Abdulrazzaq, et al., 2016).  

In order to understand the importance of this turning point, Figure 86 shows the average water 

concentration found in the bubble over time. It can be easily depicted from this graph that water 

concentration rapidly increases reaching a maximum water concentration at 2x10-4 s of 1.14x10-3 

mol/m3. This value corresponds to the maximum in the absolute humidity which would mean the 

maximum efficiency in terms of heat transfer from the bubble to the liquid mixture in order to vaporise 
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the water without falling into the sensible heat transfer regime. The value for this absolute humidity 

would fall off from the maximum value more rapidly when the temperature driving force rises. At long 

residence times, the microbubble will achieve both thermal and chemical equilibrium. In this case the 

thermal equilibrium is reached at T=333.15 K and the chemical equilibrium for the bubble is a water 

concentration of 5.38x10-4 mol/m3. 

 

Figure 86 Average water concentration in bubble over time. 

The microbubble temperature profile at the turning point (T=337 K) is illustrated in Figure 86. A 

heat transfer coefficient of 0.1 W/m2K is used in this simulation, the arrows represent the steady state 

velocity field and the shading represents temperature. It can be depicted from the figure that at this 

specific time, the microbubble is relatively isothermal at 336-337 K.  

 

Figure 87 Microbubble temperature profile (K) at the turning point. 

In order to fully understand the correlation between the ozone free radical initiated esterification 

and the water vaporisation and further removal, it is necessary to analyse the concentration profile of 

the different species found in this reaction mechanism. Firstly, the average oxygen singlet 
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concentration profile inside the bubble found in Figure 88 shows the behaviour of this species over 

time. The same pattern was found to be followed in this system compared to the one studied in 

Chapter 7. This is mainly because the enhanced reaction kinetics only consider the third reaction and 

not the first one, where the oxygen singlet is being consumed. It can be noticed from the graph that 

the oxygen singlet starts being consumed after 1x10-4 s, showing an exponential decay around 1x10-2 

s. The concentration reached after one second is approximately 275.5 mol/m3. This difference in 

oxygen singlet concentration could be then correlated to the FAME production in the reaction 

mechanism.  

 

Figure 88 Oxygen singlet concentration profile in time. 

For the average concentration profile of the hydroxyl radical and FAME in the gas-liquid interface, 

it can be noticed that both species show the same exponential behaviour in the first regime, followed 

by a slow increase due to the reaction kinetics of the third step. The concentration profile for both 

species is found in Figure 89. It is assumed for this reaction mechanism that the third step is the slowest 

one. Therefore, the oxygen singlet species reaches an equilibrium concentration and is consumed 

rapidly in less than 1x10-1 s, while the products for the third step would take longer to reach an 

equilibrium in both the liquid and gas domain. After 1 s, the average concentration on the surface for 

both FAME and the hydroxyl radical is 123.39 and 1.041 mol/m3 respectively.  

As expected the concentration of FAME is relatively higher compared to the hydroxyl radical. There 

are nearly two orders of magnitude between the concentrations of these two species. This suggests 

the radical species is being produced by the forward reaction in the first and third step of the 

mechanism and then consumed by forward reaction in the second step so it reaches an equilibrium.  
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Figure 89 FAME and hydroxy radical concentration on the surface profile over time. 

In order to explore the behaviour of the product of interest in this study, a concentration profile for 

FAME over time is presented in Figure 90. In this figure, the arrows represent the steady state velocity 

field and the shading represents concentration profile. It can be noticed that time at 1x10-3 s, the FAME 

concentration on the microbubble surface fluctuates around 10-15 mol/m3 across the surface. A thin 

layer of the FAME produced is observed around the microbubble surface. At 1x10-2 s, the FAME 

concentration reaches a value nearly 3-4 times greater compared to the first time analysed. It is clear 

that the layer thickness increases in time suggesting more FAME is being produced on the gas-liquid 

interface, and some of this product is migrating to the bottom of the microbubble.  

 

Figure 90 FAME concentration profile (mol/m3) over time (From left to right t=1x10-3, 1x10-2, 1x10-1 and 1 s). 

At 1x10-1 s, it can be depicted from the figure that majority of the FAME produced migrates to the 

bottom of the microbubble and reaches a concentration of 140-160 mol/m3. This behaviour is 

attributed to the outflow condition previously mentioned in chapter 7 in order to emulate the rising 

of the bubble through the liquid. At 1 s, the FAME produced continues to migrate to the bottom of the 

microbubble and achieves a concentration around 200 mol/m3.  

8.4.2. Variation of the bubble size 

The bubble size is strongly related to the gas-liquid interface, which is responsible for the heat and 

mass transfer dynamics. In Figure 91, the variation of the average bubble temperature with the bubble 
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size is shown. In this case four different radius were used to illustrate the effect of the bubble size from 

top to bottom, R= 5x10-5, 1x10-4, 3x10-4 and 5x10-4 m. The initial bubble temperature is T0= 393.15 K 

and an initial FFA concentration of 301.54 mol/m3. It can be noticed that a smaller bubble reaches the 

thermal equilibrium faster compared to a bubble with a larger radius. Smaller bubbles deliver majority 

of their enthalpy at shorter residence times in the liquid mixture, whereas larger bubbles take 

considerably longer to reach the mentioned thermal equilibrium since they possess a weaker internal 

convection. The same pattern is reported in Chapter 7 for the intensified esterification (Zimmerman, 

et al., 2013).  

 

Figure 91 Variation of the average bubble temperature with bubble size (m). 

Once the effect of the bubble size on the average bubble temperature has been analysed. It is 

important to explore the effect of the same parameter but in the FAME concentration. Figure 92 

illustrates the effect of the bubble size on the average FAME concentration found in the liquid mixture 

for different radius, from top to bottom R= 5x10-5, 1x10-4, 3x10-4 and 5x10-4 m. The initial bubble 

temperature is T0= 293.15 K and an initial FFA concentration of 301.54 mol/m3. It can be depicted from 

Figure 92 that a higher FAME concentration is found in the liquid mixture at a smaller bubble size. This 

behaviour could be attributed mainly to several factors: i) An enhanced mass and heat transfer by the 

enhanced gas-liquid interface when reducing the size of the bubble, ii) the increased vaporisation and 

stripping of the produced water, iii) a combination of both scenarios previously mentioned. After 1 s 

at a radius of R= 5x10-5, 1x10-4, 3x10-4 and 5x10-4 m, the average FAME concentration in the liquid 

mixture has a value of 2.311, 1.375, 0.379, and 0.262 mol/m3 respectively. These results suggest that 

small bubbles are more efficient in terms of FAME production due to an enhanced mass and heat 

transfer related to a higher surface area to volume ratio. 
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Figure 92 Variation of the average FAME concentration in the liquid mixture with bubble size (m). 

This behaviour is best exploited at short residence times within the liquid in order to avoid 

recondensation. Microbubbles have higher residence times and a more intensive internal velocity rate, 

these attributes here mentioned lead to a faster vapour concentration of water inside the microbubble 

at short residence time. At higher residence times, the concentration inside a microbubble tend be 

similar compared to larger bubbles. This pattern is explained because the microbubbles loses most of 

its contents when it cools down due to the recondensation process (Zimmerman, et al., 2013; 

Abdulrazzaq, et al., 2016).  

8.4.3. Variation of the liquid mixture temperature 

It is known from the data gathered in the previous chapters that an increase in the liquid mixture 

temperature would result in an increase of the FAME concentration in the liquid mixture due to an 

increase in the rate constants. The effect of the liquid mixture temperature on the average water 

concentration inside the bubble is here studied and showed in Figure 93. An increase in the liquid 

mixture temperature results in an increase in the average water concentration found in the bubble.  

In this model, five different temperatures were studied (T=293.15-373.15 K) in order to explore and 

understand if increasing the liquid temperature has an impact on the bubble average water 

concentration. It can be noticed in this figure that for all the different temperatures, a maximum in the 

water concentration in reached at an early stage. This is the maximum absolute humidity reached due 

to the vaporisation taking place in the first regime, using up all the enthalpy from the hot bubbles to 

vaporise the water present in the liquid mixture. In Figure 93 can be seen that at a liquid mixture 

temperature of 293.15-373.15 K, the maximum water concentration at the turning point is 4.46x10-4, 

7.28x10-4, 1.14x10-3, 1.78x10-3 and 2.89x10-3 mol/m3 respectively. 
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Figure 93 Variation of the bubble average water concentration with liquid mixture temperature (K). 

This suggests that increasing the liquid mixture temperature would increase dramatically the 

vaporisation of water and therefore favour the FAME production, only if the produced water is stripped 

before it undergoes recondensation after the turning point (Abdulrazzaq, et al., 2016).  

The effect of the liquid mixture temperature on the average FAME concentration is then analysed 

as well. Figure 94 shows the effect of the liquid temperature at five different temperatures (T=293.15-

373.15 K) on the FAME concentration found in the liquid. It can be noticed that the behaviour followed 

by the FAME species is similar to the water produced. An increase in the liquid mixture temperature 

results in an increase on the FAME concentration in the liquid mixture.  

 

Figure 94 Variation of the average FAME concentration with liquid mixture temperature (K). 

As mentioned in previous chapters, an increase in temperature would mean an increase in the rate 

constants. And in the case of the esterification reaction (endothermic process) the rate constants in 

the endothermic direction would always suffer a higher impact by this increase in temperature.  
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This is the explanation for an increase of the FAME concentration from the kinetic side of the 

process. In terms of the vaporisation of water, this process is thermodynamically favoured with an 

increase in temperature and therefore would cause an increase in the FAME production. Having said 

this, the increase of the FAME concentration in the liquid mixture could be attributed to the sum of 

these two factors which address both the reaction kinetics in the proposed mechanism and the 

physical advantage posed by the stripping of the produced water. In Figure 94 can be seen that at a 

liquid mixture temperature of 293.15-373.15 K, the average FAME concentration in the liquid mixture 

reaches a value of 1.191, 1.283, 1.375, 1.44 and 1.51 mol/m3 respectively. 

8.4.4. Variation of the bubble temperature 

The variation of the average bubble water concentration with bubble temperature is here studied 

in order to explore the effect of this parameter. It is important to point out that the experimental data 

was carried out at initial bubble temperature of 393.15 K.  

The effect of the bubble temperature on the average bubble water concentration shown in Figure 

95. An initial liquid mixture temperature for this simulation of 333.15 K and an initial FFA concentration 

of 301.54 mol/m3 are used. It can be easily depicted from this figure, that for an initial bubble 

temperature above the initial liquid mixture temperature (T0 bubble > T0 liquid), a maximum in the 

water concentration is found at the turning point previously mentioned. The higher the difference in 

temperature between these two temperatures, the more rapidly the turning point is reached.  

 

Figure 95 Variation of the average water concentration with bubble temperature (K). 

In Figure 95 can be seen that at a bubble temperature of 343.15-393.15 K with intervals of 10 K, the 

maximum water concentration in the bubble is 6.16x10-4, 6.38x10-4, 7.68x10-4, 8.76x10-4, 9.97x10-4 and 
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11.14x10-4 mol/m3 respectively. At long residence times, all these curves would tend to reach the 

thermal equilibrium in the microbubble when the water concentration is 5.38x10-4 mol/m3. 

Once the data from the simulation is gathered, it is possible to generate a plot in order to find a 

correlation between the maximum water concentration against the difference in temperature 

between the gas and liquid domain, this correlation is illustrated in Figure 96. It is clear there is a linear 

correlation between the difference in temperature between the initial bubble and liquid mixture 

temperature and the maximum water concentration in the bubble achievable, described by the 

following expression Cmax=4.8787 + 0.1012ΔT (R2=0.989). This plot was generated considering an initial 

liquid mixture temperature of T=333.15 K, a heat transfer coefficient of 0.1 W/m2K and a radius of 

1x10-4 m. This correlation could then be used in order to calculate the maximum water concentration 

inside the bubble that would be achievable without the need to carry out an experiment.   

 

Figure 96 Maximum water concentration against T=T0-T∞ (K). 

Figure 97 shows the thermal equilibrium reached by different average bubble temperatures 

(T=343.15-393.15) with the surrounding liquid mixture.  

 

Figure 97 Double log plot of the variation of the average bubble temperature over time. 
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An initial liquid mixture temperature of 333.15 K and an initial FFA concentration of 301.54 mol/m3 

are used for this simulation. It can be noticed that the thermal equilibrium is reached by all the 

different temperatures before 0.1 s. A larger temperature difference between the initial bubble 

temperature and the liquid mixture temperature results in a longer period required to reach this 

equilibrium.  

8.4.5. Variation of the oxygen singlet concentration 

One of the main features in this thesis is to explore the effect of the oxygen singlet radical on the 

FAME production. It has been hypothesised that increasing its initial concentration would suggest an 

increase in the overall FAME production found in the liquid mixture.  

The importance of this species relies on the fact that it is one of the initiators in the proposed 

reaction mechanism. Figure 98 shows the effect of different initial concentrations of the oxygen singlet 

radical on the average FAME concentration in the liquid mixture. It can be noticed that increasing the 

concentration of the O· radical results in an increase in the FAME concentration in the liquid domain. 

For the initial molar ratio O·:FFA of 2:1 and 3:1, the FAME concentration reaches a maximum value at 

0.1 s of 1.662 and 2.427 mol/m3. 

 

Figure 98 Variation of the average FAME concentration with oxygen singlet concentration (mol/m3). 

It can be noticed from this figure, that for the curves when the O· concentration is higher than the 

initial FFA concentration ([O·]I > [FFA]i) the curves reach a maximum around 0.1 s. All the curves reach 

a chemical equilibrium right after 0.3 s. After 1s, the FAME concentration reaches a value of 1.375 

mol/m3. These findings would suggest that the residence time of the microbubble (τres) rising though 

the liquid with the respective rate constants would necessarily be lower than 0.1 s, in other words 

(τres<0.1 s), when the maximum FAME concentration in the liquid is reached before it reaches the 

chemical equilibrium.   
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8.4.6. Rate constants estimation 

The values for the rate constant kf3 for each treatment are found in Table 34. It can be noticed that 

compared to the forward rate constants estimated in Chapter 5 for the 0-D, majority of these values 

have the same order of magnitude. It is important to point out that the rate constants calculated in 

both Chapter 5 and 6 only consider the reaction mechanism in the reactor, the forward rate constants 

here presented consider the heat and mass transfer across the gas-liquid interface as well as the 

temperature dependence of the reaction kinetics. The effect on temperature can be easily notice in 

Table 34, an increase in temperature results in an increase in the forward rate constant across the 

three different FFA contents here studied.  

Table 34 Rate constant kf3x10-5 (1/M.s) values for each treatment. 

  Free Fatty Acid % 

  10% 15% 20% 

Te
m

p
e

ra
tu

re
 (

K
) 293.15 7.237 7.547 7.956 

313.15 6.457 8.461 9.743 

333.15 18.74 21.59 23.31 

The values for the rate constant kr3 for each treatment are found in Table 35. The effect on 

temperature can be easily notice in this table, an increase in temperature results in a slight increase in 

the reverse rate constant compared to the forward rate constants.  

Table 35 Rate constant kr3x10-5 (1/M.s) values for each treatment. 

  Free Fatty Acid % 

  10% 15% 20% 

Te
m

p
e

ra
tu

re
 (

K
) 293.15 3.374 3.562 3.821 

313.15 3.912 4.182 4.361 

333.15 4.827 5.394 5.726 

The average values for both the forward and reverse rate constants are used in the Arrhenius equation to obtain the 
activation energy (Ea) and pre-exponential factor (A) for the reverse reaction of the third step. The values for the average 

forward and reverse rate constant at each temperature are shown in  

Table 36, these values are then processed to be used in the Arrhenius equation. When plotting ln(k) 

against 1/T, a straight line is then obtained where the Ea and A can be calculated from the y-intercept 

and the slope of the line. For the forward rate constant, the linear regression has a slope m=-575.14 

and an y-intercept= -7.1633 (R2=0.9875). On the other hand, the linear regression for the reverse rate 

constant has a slope m=-338.19 and an y-intercept= -8.9612 (R2=0.995). 
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Table 36 Average rate constants used for Arrhenius equation parameters. 

Temperature 

(K) 
1/T x10-3 (K-1) 

Forward rate 

constant x10-4 

(M-1s-1) 

ln(k) 

Reverse rate 

constant x10-5 

(M-1s-1) 

ln(k) 

293.15 3.4112 1.081 -9.132 4.038 -10.117 

313.15 3.1934 1.253 -8.984 4.379 -10.036 

333.15 3.0017 1.367 -8.897 4.636 -9.979 

Having said this, the forward reaction for the third step has an activation energy of Ea = 4.7817 

kJ/mol and a pre-exponential factor of A = 7.744x10-4 M-1s-1. The reverse reaction for the third step has 

an activation energy of Ea = 2.8117 kJ/mol and a pre-exponential factor of A = 1.282x10-4 M-1s-1. Having 

calculated both rate constants, it is possible to substitute these terms in the reaction rate at any 

temperature given by the equation: 

 

𝑟𝐹𝐴𝑀𝐸 = (7.744𝑥10−4𝑒
−575.14

𝑇 )[𝐹𝐹𝐴]
[𝑀𝑒𝑂𝐻][𝑂 ·]

[𝐻2𝑂]
1
2[𝑂2]

1
4

− (1.282x10−4𝑒
−338.19

𝑇 )[𝐹𝐴𝑀𝐸][𝐻2𝑂]
1
2[𝑂2]

1
4 

(113) 

For the esterification reaction here proposed, the forward reaction is considerably more 

thermodynamically favourable than its reverse reaction. Consequently, the forward rate constant is 

greater than the reverse constant, in other words kf3 > kr3. As mentioned before, the esterification 

reaction here proposed show an endothermic behaviour. If the activation energy increases, then the 

effect of changing the temperature would increase. For the esterification reaction here proposed, the 

forward reaction (esterification) is endothermic and the reverse reaction (hydrolysis) is exothermic. 

The endothermic direction is known to have a larger activation energy, in other words Eaf > Ear. The 

reversible model here studied follows this pattern and has an activation energy for the forward and 

reverse reaction of 4.781 and 2.811 kJ/mol respectively (Laidler, 1984).  

8.5. Conclusions 

The intensified esterification mechanism here proposed for the use of J. platyphylla as feedstock 

for the biodiesel production has several relevant features. Firstly, evaporative cooling happens at least 

three orders of magnitude faster than sensible heat transfer for this process. Water concentration 

rapidly increases reaching a maximum water concentration at 2x10-4 s of 1.14x10-3 mol/m3. This value 

corresponds to the maximum in the absolute humidity which would mean the maximum efficiency in 

terms of heat transfer from the bubble to the liquid mixture to vaporise the water without falling into 

the sensible heat transfer regime. 
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The concentration of FAME is relatively higher compared to the hydroxyl radical. There are nearly 

two orders of magnitude between the concentrations of these two species. This suggests the radical 

species is being produced by the forward reaction in the first and third step of the mechanism and 

then consumed by forward reaction in the second step, so it reaches an equilibrium. A higher FAME 

concentration is found in the liquid mixture at a smaller bubble size. This behaviour could be attributed 

mainly to several factors: i) An enhanced mass and heat transfer by the enhanced gas-liquid interface 

when reducing the size of the bubble, ii) the increased vaporisation and stripping of the produced 

water, iii) a combination of both scenarios previously mentioned. 

At a bubble temperature of 343.15-393.15 K with intervals of 10 K, the maximum water 

concentration in the bubble is 6.16x10-4, 6.38x10-4, 7.68x10-4, 8.76x10-4, 9.97x10-4 and 11.14x10-4 

mol/m3 respectively. At long residence times, all these curves would tend to reach the thermal 

equilibrium in the microbubble when the water concentration is 5.38x10-4 mol/m3. A larger 

temperature difference between the initial bubble temperature and the liquid mixture temperature 

results in a longer period required to reach this equilibrium. Increasing the concentration of the O· 

radical results in an increase in the FAME concentration in the liquid domain. For the initial molar ratio 

O·:FFA of 2:1 and 3:1, the FAME concentration reaches a maximum value at 0.1 s of 1.662 and 2.427 

mol/m3. 

In the case of the esterification reaction (endothermic process) the rate constants in the 

endothermic direction would always suffer a higher impact by this increase in temperature. Majority 

of both forward and reverse rate constants have the same order of magnitude compared to the ones 

obtained in Chapter 5 and 6. An increase in temperature results in a slight increase in the reverse rate 

constant compared to the forward rate constants. The forward reaction for the third step has an 

activation energy of Ea = 4.7817 kJ/mol and a pre-exponential factor of A = 7.744x10-4 M-1s-1. The 

reverse reaction for the third step has an activation energy of Ea = 2.8117 kJ/mol and a pre-exponential 

factor of A = 1.282x10-4 M-1s-1. All these results are in agreement with the hypothesis that reducing the 

liquid layer thickness and therefore the residence time of the microbubble rising through the liquid 

would result in maximising the vaporisation of the produced water. This would then result in an 

enhanced FAME production, which is an appealing feature when designing an esterification unit.  
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9. Conclusions and future work  

From this research project, it can be concluded that a high-volume process for the production of 

biodiesel comes from esterification, but it suffers from an inherent problem related to not being able 

to go to completion and requiring at least two downstream purification steps to purify the ester 

product. In order to avoid these last purification steps, the proposed microbubble mediated 

esterification using ozone-rich microbubbles could potentially be an alternative to solve this issue. This 

new approach works as an alternative to the traditional biodiesel production as a pre-treatment stage.  

Since up to 80% of the production costs are related to the feedstock sources, this novel approach 

considers the use of unconventional sources remarkably improving profitability of biodiesel. One of 

the main advantages of the esterification process is that cheaper organic oils are used as feedstock 

sources. The great majority of the cheapest organic oils are found above this saponification threshold. 

The proposed approach uses microbubbles in order to remove water vapour produced from the 

esterification reaction driving the reaction to completion, as stated by LeChatelier’s principle. Liquid 

methanol is found in solution with the FFA, both of them reacting with ozone rich microbubbles from 

air plasma injection. As a result, the liquid components in the vessel are removed and taken away by 

the microbubbles leaving only biodiesel in the vessel when reaction is completed. Therefore, no 

downstream separations are needed saving operating costs related to purification steps. 

This research project is based around the hypothesis that the chemical kinetics of microbubble 

intensified esterification is mainly controlled by the average bubble size and the interfacial area. 

Microbubbles are known to support spontaneous generation of free radicals on their interface, at the 

same time ozone plasma injection increases the supply and density of free radicals. As hypothesized, 

if the mechanism of intensified esterification is free radical catalysed, then lab bench experiments can 

be modelled to predict esterification rates under the bubble flux conditions at pilot scale. If valid this 

hypothesis, a design for full scale implementation can be based on lab bench kinetics measurements 

for any organic oil. If not, lab scale data can be extrapolated to industrial scale with some confidence 

at a feasible operating regime. 

A kinetics model of reaction on the bubble interface is built using information from fine bubble and 

microbubble experiments in COMSOL Multiphysics® Software in order to relate both experimental and 

modelling data. In this research project using computational modelling supported by experimental 

evidence, both evaporation and heat transfer on the microbubble interface are explored. Some of the 

key results obtained in the computational models here studied explained in further detail. An increase 

in the FFA content means an increase in the activation energy since the esterification is needed to 

reach the activation stage. A reaction with a low activation energy should proceed faster when 

compared with one that considers a larger activation energy. The forward reaction for the third step 
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has an activation energy of Ea = 12.692 kJ/mol and a pre-exponential factor of A = 2.0127x10-2 M-1s-1. 

The highest temperature always shows a higher FAME production right after the third step takes place. 

Considering that the third step in this mechanism, the esterification, has a heat of reaction of ∆𝐻𝑟𝑥𝑛 = 

57.21 kJ/mol, the reaction is defined as endothermic which means the system absorbs energy from 

the surroundings. If the forward reaction of the esterification is endothermic, the other direction 

(reverse reaction) is exothermic.  

When the methanol concentration is lower than the initial concentration of 𝑂 ·, all the methanol is 

used and turned into methoxy radicals which then react to form FAME, in other words [MeOH]i = 

[FAME]f. But when the initial concentration of methanol is higher than the one of 𝑂 ·, [𝑂 ·]i = [FAME]f. 

This suggests that the 𝑂 · is the limiting reactant in the three-step mechanism. When the 

𝑂 ·concentration is comparatively lower than the initial concentration of FFA, all the 𝑂 · is used and 

turned into methoxy and hydroxyl radicals which then react to form FAME, in other words [𝑂 ·]i = 

[FAME]f. When the initial concentration of 𝑂 · is fairly similar or higher to the initial concentration of 

FFA, the reaction tends to completion.  

Therefore, increasing the initial 𝑂 · concentration increases dramatically the FAME production to a 

certain extent. For initial concentrations higher than 500 mol/m3, the room for improvement is less 

than 0.51% so there is no need to input more 𝑂 · since it would only incur in an elevated cost for its 

production making the first stage of this mechanism fairly feasible. Having analysed the key features 

of the irreversible mechanism, it is important to explore the effect of the reverse reaction in the third 

step. This is the main driver to develop a new 0-D model to understand the influence of the reverse 

reaction in terms of the produced water but mainly the production of FAME.  

For the esterification reaction here proposed, the forward reaction (esterification) is endothermic 

and the reverse reaction (hydrolysis) is exothermic. The endothermic direction is known to have a 

larger activation energy, in other words Eaf > Ear. The reversible model here studied follows this pattern 

and has an activation energy for the forward and reverse reaction of 12.692 and 8.652 kJ/mol 

respectively. The reverse reaction for the third step has an activation energy of Ea = 8.562 kJ/mol and 

a pre-exponential factor of A = 6.895x10-4 M-1s-1. The forward reaction is considerably more 

thermodynamically favourable than its reverse reaction. 

The irreversible mechanism reaches a final concentration for both water and oxygen of 254.43 and 

127.2 mol/m3 respectively. On the other hand, the reversible mechanism reaches a final concentration 

for water and oxygen of 207.97 and 103.98 mol/m3 respectively. The reversible mechanism produces 

18.26% less water and oxygen when compared to the irreversible one, this is attributed to the fact that 

hydroxyl radical is used in the reverse mechanism to carry out the hydrolysis of the esters. The 

hydrolysis of esters competes with the second step of the mechanism which explains why the water 
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and oxygen productions decreases in the reversible reaction. An increase in temperature causes an 

increase in both the forward and reverse rate constants, but the rate of the endothermic reaction 

increases more. This is attributed to the fact that equilibrium shifts in the endothermic (forward) 

direction since the added heat is consumed according to LeChatelier’s principle. Additionally, for an 

endothermic reaction (esterification), raising the temperature would increase the equilibrium constant 

Keq and would increase the equilibrium constant for the exothermic reaction (hydrolysis). 

Some relevant features for the 2-D model can be concluded after the respective analysis. The 

temperature profile is nearly isothermal at 333 K and the water concentration is constant across the 

bubble at around 5.26x10-4 mol/m3. This pattern is mainly due to the intensive internal mixing found 

in the inside of the microbubble which favours the homogenisation of both the thermal and chemical 

fields at short residence times when the bubble rises through the liquid. A rapid increase in 

temperature is noticed with an turning point around T=330 K. Secondly, a slow increase can be 

depicted which reaches the liquid temperature 𝑇∞. This would suggest that vaporisation and sensible 

heat transfer are dominating the first and second regime respectively.  

A smaller bubble reaches the thermal equilibrium faster compared to a bubble with a larger radius. 

In the case of R=1x10-4 m, this thermal equilibrium is reached around 9x10-3 s compared to 4x10-2 s for 

a bubble five times its size. A higher FAME concentration is found in the liquid mixture at a smaller 

bubble size. An increase of the FAME concentration from the kinetic side of the process. In terms of 

the vaporisation of water, this process is thermodynamically favoured with an increase in temperature 

and therefore would cause an increase in the FAME production. Having said this, the increase of the 

FAME concentration in the liquid mixture could be attributed to the sum of these two factors which 

address both the reaction kinetics in the proposed mechanism and the physical advantage posed by 

the stripping of the produced water. An initial bubble temperature above the initial liquid mixture 

temperature (T0 bubble > T0 liquid), a maximum in the water concentration is found at the turning 

point previously mentioned. The higher the difference in temperature between these two 

temperatures, the more rapidly the turning point is reached.  

These findings would suggest that the residence time of the microbubble (τres) rising though the 

liquid would necessarily be lower than 1x10-4 s, in other words (τres<1x10-4 s), when the maximum water 

concentration in the bubble is reached before it reaches the chemical equilibrium.  Increasing the 

concentration of the O· radical results in an increase in the FAME concentration in the liquid domain. 

For the initial molar ratio O·:FFA of 2:1 and 3:1, the FAME concentration reaches a maximum value at 

0.1 s of 1.156 and 1.775x10-4 mol/m3. The forward reaction for the third step has an activation energy 

of Ea = 4.263 kJ/mol and a pre-exponential factor of A = 3.114x10-5 M-1s-1. The reverse reaction for the 
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third step has an activation energy of Ea = 1.974 kJ/mol and a pre-exponential factor of A = 1.048x10-6 

M-1s-1. 

The intensified esterification mechanism here proposed for the use of J. platyphylla as feedstock 

for the biodiesel production has several relevant features. Firstly, evaporative cooling happens at least 

three orders of magnitude faster than sensible heat transfer for this process. Water concentration 

rapidly increases reaching a maximum water concentration at 2x10-4 s of 1.14x10-3 mol/m3. This value 

corresponds to the maximum in the absolute humidity which would mean the maximum efficiency in 

terms of heat transfer from the bubble to the liquid mixture to vaporise the water without falling into 

the sensible heat transfer regime. The concentration of FAME is relatively higher compared to the 

hydroxyl radical. There are nearly two orders of magnitude between the concentrations of these two 

species. This suggests the radical species is being produced by the forward reaction in the first and 

third step of the mechanism and then consumed by forward reaction in the second step, so it reaches 

an equilibrium.  

At a bubble temperature of 343.15-393.15 K with intervals of 10 K, the maximum water 

concentration in the bubble is 6.16x10-4, 6.38x10-4, 7.68x10-4, 8.76x10-4, 9.97x10-4 and 11.14x10-4 

mol/m3 respectively. At long residence times, all these curves would tend to reach the thermal 

equilibrium in the microbubble when the water concentration is 5.38x10-4 mol/m3. A larger 

temperature difference between the initial bubble temperature and the liquid mixture temperature 

results in a longer period required to reach this equilibrium. Increasing the concentration of the O· 

radical results in an increase in the FAME concentration in the liquid domain. For the initial molar ratio 

O·:FFA of 2:1 and 3:1, the FAME concentration reaches a maximum value at 0.1 s of 1.662 and 2.427 

mol/m3. The forward reaction for the third step has an activation energy of Ea = 4.7817 kJ/mol and a 

pre-exponential factor of A = 7.744x10-4 M-1s-1. The reverse reaction for the third step has an activation 

energy of Ea = 2.8117 kJ/mol and a pre-exponential factor of A = 1.282x10-4 M-1s-1. All these results are 

in agreement with the hypothesis that reducing the liquid layer thickness and therefore the residence 

time of the microbubble rising through the liquid would result in maximising the vaporisation of the 

produced water. This would then result in an enhanced FAME production, which is an appealing 

feature when designing an esterification unit.  

It is important to mention that the experimental data obtained for this thesis do not consider the 

use of a thin liquid layer and operate under a low bubble flux. The experiments are indeed slow since 

the time scale for the esterification reaction carried out lasts around 36 h, the samples were collected 

every 4 hours. In terms of the computational model, it is clear that the physics and the reaction kinetics 

happen in the order of magnitude of 1x10-3 s. This has several implications when modelling the single 

bubble esterification reaction. One of them was the mentioned stiff system detected by COMSOL 



181 
 

 

Multiphysics which caused the model to change the initial conditions in order to find an appropriate 

solution for the problem. This could suggest that a more appropriate design of the experiments to be 

carried out would improve the fitting and description of the intensified esterification. Having said this, 

a consideration for future work could be a set of experiments with an online sampling for the species 

of interest in order to gather experimental data with enough sensitivity in the exponential stage of the 

reaction of around 1x10-3 s. Although this experimental data considers samples every 4 h, it is the “first 

word” on the subject and it is important to point out that we are a long way from the “last word”. This 

would pose an engineering problem to be solved and understood scientifically. Even though there 

were some constraints to model the process here studied, the kinetic modelling proposed in this thesis 

aims to explore the parameter space that was not experimentally explored.  

Another important aspect to be considered for future work could be a new set of experiments for 

the utilisation of the Mexican J. platyphylla species in order to properly inform and validate the 

computational model proposed in chapter 8. This matter is of particular interest for the Mexican 

government since it exists in abundancy in the coastal region of Mexico and several alternatives have 

been explored in order to use this plant in a sustainable but economically feasible way. The set of 

experiments would need to consider the right time scale in terms of sampling and the use of a thin 

liquid layer to enhance the reaction kinetics and promote the maximum evaporation of the produced 

water. To mention, the experimental data presented in this thesis was analysed using GC, which is 

sparse temporally; and did not consider enough data in the rapidly changing regime. The main 

drawback of sampling is that is a guess work to know the timescales. This is the main reason to suggest 

the use of an online method to quantify the species of interest in the liquid mixture, so we have 

readings in the rapidly changing regime.  

Another consideration for future work is the appropriate analysis of the microbubbles using a 

bubble size distribution method to quantify its diameter. A feasible option could be the use of a high-

speed camera able to capture 2000 frames/second which could be used for the bubble 

characterisation in order to determine the size distribution. The experimental data only considered a 

bubble temperature of 293.15 K, but it has been reported that an increase in the bubble temperature 

increases the evaporation of the produced water in the esterification reaction. This aspect of the 

process could potentially be exploited by using a process air heater to increase the temperature of the 

gas phase up to 393.15 K. Therefore, achieving a maximum stripping of the water in the liquid mixture 

which would mean an increase in the FAME production following LeChatelier’s principle.  

The recondensation process is connected to a release of sensible heat to the liquid mixture leading 

to an increase in temperature. In order to control these features, the residence time of bubbles is 

determined by the liquid bed height through which the microbubbles rise through. In the case of a thin 
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liquid layer, vaporisation is favoured leading to maximum separation efficiency. On the other hand, if 

the bed height is increased then the sensible heat transfer becomes more relevant to the process and 

leads to a reduced vaporisation and increase of the liquid mixture. In order to achieve a maximum 

removal of vapour with minimum heat transfer, both the vaporisation layer thickness (few hundred 

microns) and the contact time need to be accurately estimated. Reducing the liquid layer thickness 

and therefore the residence time of the microbubble rising through the liquid would result in 

maximising the vaporisation of the produced water. This would then result in an enhanced FAME 

production, which is an appealing feature when designing an esterification unit.  
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viii. Appendices 

In this section of this thesis, the relevant appendices are found in order to ease understanding of 

the calculations and show the remaining features of the findings in this study.  

viii.1. Appendix A. FFA and FAME content and molar concentration 

Table 37 Values for content and molar concentration at FFA 20%. 

 Acid number (mg of KOH/g) FFA (mol) x10-2 [FAME] (mol/m3) 

Time (h) 273.15 K 313.15 K 333.15 K 273.15 K 313.15 K 333.15 K 273.15 K 313.15 K 333.15 K 

0 43.63 43.63 43.63 10.743 10.743 10.743 0 0 0 

4 42.18 40.57 34.3 10.386 9.989 8.445 10.985 23.183 70.687 

8 37.62 34.76 31.29 9.263 8.558 7.704 45.533 67.202 93.492 

12 35.68 33.45 30.34 8.785 8.236 7.470 60.231 77.127 100.689 

16 34.53 30.93 28.81 8.502 7.615 7.093 68.944 96.219 112.281 

20 33.47 30.12 28.63 8.241 7.416 7.049 76.975 102.356 113.645 

24 33.31 29.88 28.57 8.201 7.357 7.034 78.187 104.174 114.099 

28 32.25 29.53 28.66 7.940 7.271 7.056 86.218 106.826 113.417 

32 32.23 29.22 28.52 7.936 7.194 7.022 86.370 109.175 114.478 

36 31.07 29.18 28.69 7.650 7.185 7.064 95.158 109.478 113.190 

 

Table 38 Values for content and molar concentration at FFA 15%. 

 Acid number (mg of KOH/g) FFA (mol) x10-2 [FAME] (mol/m3) 

Time (h) 273.15 K 313.15 K 333.15 K 273.15 K 313.15 K 333.15 K 273.15 K 313.15 K 333.15 K 

0 31.13 31.13 31.13 7.665 7.665 7.665 0 0 0 

4 30.05 29.54 28.72 7.399 7.273 7.071 8.182 12.046 18.258 

8 29.46 28.41 27.36 7.253 6.995 6.736 12.652 20.607 28.562 

12 28.99 27.92 26.94 7.138 6.874 6.633 16.213 24.320 31.744 

16 28.72 27.54 26.51 7.071 6.781 6.527 18.258 27.199 35.002 

20 28.14 27.09 26.03 6.928 6.670 6.409 22.653 30.608 38.639 

24 27.47 26.65 25.53 6.763 6.562 6.286 27.729 33.942 42.427 

28 27.21 26.01 25.22 6.699 6.404 6.209 29.699 38.790 44.776 

32 27.07 25.57 24.76 6.665 6.296 6.096 30.759 42.124 48.261 

36 26.8 25.48 24.61 6.598 6.273 6.059 32.805 42.806 49.397 
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Table 39 Values for content and molar concentration at FFA 10%. 

 Acid number (mg of KOH/g) FFA (mol) x10-2 [FAME] (mol/m3) 

Time (h) 273.15 K 313.15 K 333.15 K 273.15 K 313.15 K 333.15 K 273.15 K 313.15 K 333.15 K 

0 21.11 21.11 21.11 5.197 5.197 5.197 0 0 0 

4 19.96 19.36 18.86 4.914 4.767 4.643 8.712 13.258 17.046 

8 19.21 18.73 17.94 4.730 4.611 4.417 14.395 18.031 24.017 

12 18.7 18.01 17.3 4.604 4.434 4.259 18.258 23.486 28.865 

16 18.27 17.37 16.96 4.498 4.277 4.176 21.516 28.335 31.441 

20 17.62 16.99 16.32 4.338 4.183 4.018 26.441 31.214 36.290 

24 16.95 16.46 16.17 4.173 4.052 3.981 31.517 35.229 37.427 

28 16.66 16.3 16.04 4.102 4.013 3.949 33.714 36.442 38.412 

32 16.4 16.17 15.87 4.038 3.981 3.907 35.684 37.427 39.700 

36 16.28 16.05 15.79 4.008 3.952 3.887 36.593 38.336 40.306 

 

viii.2. Appendix B. MATLAB code for the least squares method 

For the editor code, here are some instructions: 

When working at different FFA%, the new value needs to be changed using COMSOL and saved 

before the code is run. As well as the new set of values for ym from the experimental data. 

function Mario_new();  
close all force;   

addpath('version_50'); 
model=mphload('irrev_matlab_11092018.mph'); 

  options=optimset('display','iter','tolX',1e-10,'tolFun',1e-9);  
[xval fval]=fmincon(@(X) Mario_forward(model,X),1e-6,[],[],[],[],0, 

1e-5,[],options);  
end  

  
function dif=Mario_forward(model,x) 

model.param.set('kf3',x);  
x 
model.study('std1').run;  
out=mphglobal(model,'comp1.re.c_fame'); 
t=mphglobal(model,'t'); 
%out=interp1(t,out,[t1 t2 t3 ...])  
dif=1;  
tdata=[14400 28800 43200 57600 72000 86400 100800 115200 129600]; 
out=interp1(t,out,tdata) ;  
target=[70.68728257 93.49207576 100.6896019 112.281407 113.6451488 

114.0997294 113.4178585 114.4785466 113.1905682];  
plot(tdata,out,'o'); hold on; plot(tdata,target,'*'); hold off; 

drawnow;  
  dif= sum((out-target).^2); 
  %target=[y1 y2 y3 ...];  

%dif=sum((out-target).^2); 
% [kf error]=fminsearch(@(x) Mario_new(x),100000); 

end 
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function Hardwork();  

firstvalue=1.0;  

[gradient_fame1 gradient_ro1]=MarioA(firsvalue);  

step rO; 

step FAME;   

secondvalue= is steppedvalue 

out2=MarioA(secondvalue);  

step FAME  

end 

 

function rateFAME=Mario_anything(rado) 

model=mphload('2dmodel2709.mph'); 

model.param.set('rado',rado);  

model.study('std1').run;  

fin=1.926 

fame=mphglobal(model,'intop1(cfame)'); 

t=mphglobal(model,'t'); 

FAMEf=interp1(t,fame,fin) 

rateFAME=FAMEf*3.979E+05 

end 

 

To retrieve the values for yp at the fitted rate constant 

The function below needs to be run in MATLAB  

function dif=Mario_forward2(x) 

model=mphload('irrev_matlab_11092018.mph'); 
model.param.set('kf3',x);   
x  
model.study('std1').run;  

  out=mphglobal(model,'comp1.re.c_fame');  
t=mphglobal(model,'t'); 
%out=interp1(t,out,[t1 t2 t3 ...])  
dif=1;  
tdata=[14400 28800 43200 57600 72000 86400 100800 115200 129600]; 
out=interp1(t,out,tdata) ;  
target=[70.68728257 93.49207576 100.6896019 112.281407 113.6451488 

114.0997294 113.4178585 114.4785466 113.1905682];  
plot(tdata,out,'o'); hold on; plot(tdata,target,'*'); hold off; 

drawnow;  
  dif=out;  
  %target=[y1 y2 y3 ...];  

%dif=sum((out-target).^2); 
%[kf error]=fminsearch(@(x) Mario_new(x),100000); 

end 

 

In the command window, the following function is typed so it returns the interpolated values at the 

new fitted parameter. It should return a value that looks like the one below. 

A=Mario_forward2(2.67e-7) 
x =   2.6700e-07 
A = 68.7725   93.1002  103.9786  109.2880  111.9945  113.4086  114.1537  114.5490  114.7591 

 


