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Abstract

In-silico trials refer to pre-clinical trials performed, entirely or in part, using individ-

ualised computer models that simulate some aspect of drug effect, medical device, or

clinical intervention. Such virtual trials reduce and optimise animal and clinical trials,

and enable exploring a wider range of anatomies and physiologies. In the context of

endovascular treatment of intracranial aneurysms, in-silico trials can be used to eval-

uate the effectiveness of endovascular devices over virtual populations of patients with

different aneurysm morphologies and physiologies. However, this requires (i) a virtual

endovascular treatment model to evaluate device performance based on a reliable per-

formance indicator, (ii) models that represent intra- and inter-subject variations of a

virtual population, and (iii) creation of cost-effective and fully-automatic workflows to

enable a large number of simulations at a reasonable computational cost and time.

Flow-diverting stents have been proven safe and effective in the treatment of large

wide-necked intracranial aneurysms. The presented thesis aims to provide the ingre-

dient models of a workflow for in-silico trials of flow-diverting stents and to enhance

the general knowledge of how the ingredient models can be streamlined and acceler-

ated to allow large-scale trials. This work contributed to the following aspects: 1) To

understand the key ingredient models of a virtual treatment workflow for evaluation

of the flow-diverter performance. 2) To understand the effect of input uncertainty and

variability on the workflow outputs, 3) To develop generative statistical models that

describe variability in internal carotid artery flow waveforms, and investigate the ef-

fect of uncertainties on quantification of aneurysmal wall shear stress, 4) As part of

a metric to evaluate success of flow diversion, to develop and validate a thrombosis

model to assess FD-induced clot stability, and 5) To understand how a fully-automatic

aneurysm flow modelling workflow can be built and how computationally inexpensive

models can reduce the computational costs.
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Chapter 1

Introduction





3 1.1. In-silico clinical trials for medical devices

1.1 In-silico clinical trials for medical devices

The European medical technologies market in 2014 was estimated at 100 billion with

a compound annual growth rate (CAGR) of around 4.5% during the period of 2014-

2020 [2, 3]. This was the second largest medical technologies market in the world after

the United States [3]. The development and assessment process of medical devices

includes: 1) concept definition and preliminary planning, 2) design development and

verification through, for example, in-vitro safety tests such as mechanical and biocom-

patibility tests, 3) design validation stage, where the design is tested for efficacy in

animal trials and clinical trials, and, 4) launch and post-market surveillance [2]. In

the United States, according to the Food and Drug Administration (FDA) regulations,

any medical device that supports or sustains human life, prevents impairment of hu-

man health, or presents a potential, unreasonable risk to human is characterised as a

high-risk device [4, 5]. Manufacturers must obtain a premarket approval (PMA) before

marketing high-risk medical devices. Similar pathways are followed by the European

regulatory authorities to approve marketing of novel medical devices. The approval pro-

cesses include all the laboratory and animal testing, and the clinical trials performed

in stages three and four [4]. In a survey of over 200 manufacturers [6], a FDA PMA,

from the first communication to the final approval, took 54 months on average. For an

equivalent device, the European authorities took 11 months to grant a CE mark certi-

fication [6]. It was reported that the activities performed as part of the FDA approval

account for 79% of the total cost of bringing a product to market [6].

Recent advancements in computer modelling and simulation have drawn attention

towards simulation-based trials to reduce and optimise the animal and conventional

clinical trials and alleviate the economical, ethical, and environmental issues. In-silico

clinical trials refer to pre-clinical trials performed, entirely or in part, using individ-

ualised computer models that simulate some aspect of drug effect, medical device, or

clinical intervention. Such virtual trials reduce and optimise the required animal and

clinical trials and lower costs of testing new devices [2]. They enable exploring the

performance of devices over a wider range of anatomies and physiologies (e.g., for rare

conditions when recruiting large trial populations is impossible). These large-scale tri-

als extend the cohort beyond what would be available with purely patient-specific data

collection. In an in-silico trial framework, by combining models of anatomy from a real

cohort of patients and an inter-subject variability model of physiology, a population

of virtual patients is generated. It has been acknowledged that virtual patient models

must incorporate both patient variability and the model uncertainty to augment clin-

ical trials [7]. A virtual treatment workflow can then deploy the device in the virtual
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patients and assess the treatment effectiveness. A detailed description of how the in-

gredient models are combined to build an in-silico trial space is presented in Chapter

5.

Therefore, in creation of a framework for in-silico trials, the first challenge is to

develop models of variability and uncertainty and to generate a population of virtual

patients that captures inter-/intra-subject variabilities in morphology and physiology

of real pathologies. A virtual treatment model should also be developed to simulate

different aspects of a treatment and to measure the treatment efficacy in the population

of virtual patients. Finally, a large-scale in-silico trial includes simultaneous simulation

of the treatment in multiple virtual patients and can include computationally expensive

processes. Hence, the third challenge is to automate and streamline the ingredient

processes as workflows on a computational platform that allows simultaneous execution

of several processes (e.g., MULTIX1, www.multi-x.org). This is also important to invest

in development of computationally inexpensive models to replace costly models and

accelerate the trials. The focus of this thesis is to contribute to addressing the above

challenges. I demonstrated my developments in an exemplar challenging unmet clinical

need: the assessment of the effectiveness of flow-diverting stents in the treatment of

intracranial aneurysms.

1.2 Flow diversion of intracranial aneurysms

Intracranial aneurysms are localised pathological dilatations of the intracranial arteries

that commonly occur at various locations around the circle of Willis in approximately

5-8% of the general population [8]. Although most aneurysms remain stable through-

out the patient’s life, their ruptures are associated with high rates of mortality (around

50%) and permanent disability [8]. While the ruptured aneurysms must be immedi-

ately treated, unruptured aneurysms present a challenge to the clinicians whether the

aneurysm must be treated or only observed. Treatment of these vascular pathologies

aims at isolating the aneurysm from the circulatory system and is performed through

surgical clipping of the aneurysm neck or endovascular techniques (e.g., coiling, and

flow diversion).

Endovascular stents have been used in treatment of intracranial aneurysms since

1990’s [9]. This included stents used to assist aneurysm coiling or the use of a sin-

gle stent to induce stasis in the sac [9, 10]. High porosity of the intracranial stents,

1MULTIX is a cross-domain research-oriented platform for accessible, collaborative and reproducible computational
and data-intensive analysis. It has been constructed as an engine to enable clinical researchers to collaborate and
translate research ideas into products, platforms, and services for the community. It has been designed focusing on
three aspects: usability, scalability, and reproducibility.

www.multi-x.org
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however, limited the their effectiveness in isolation of the aneurysm [9]. FDs, intro-

duced around 2008 [9, 10, 11], are woven stent-like endovascular devices. Unlike some

intracranial stents, FDs have low radial opening force and great metal coverage [9].

Upon deployment in the parent vessel at the aneurysm neck, FDs are expected to re-

construct the parent vessel and redirect flow towards the longitudinal axis of the parent

vessel reducing the blood exchange between the aneurysm and the parent vessel [9, 10].

The reduced blood flow in the aneurysm after flow diversion helps to form an occlusive

clot in the sac and, ultimately triggers the process of aneurysm healing [9, 10].

SILK and Pipeline Embolisation Device (PED) were the first two flow diverters to

receive the CE mark approval in 2008 [10, 11]. However, PED is the only FD ap-

proved by the FDA for embolisation of intracranial aneurysms [12]. Since premarket

approval of the first-generation PED in 2011, two other generations of this device were

introduced [13]. The second-generation PED, called Pipeline Flex Embolisation Device

received approvals from the European community and the FDA in 2014 and 2015, re-

spectively [13]. Pipeline Flex allows repositioning and redeployment of the device once

implanted [13]. The third-generation of PED, called Pipeline Shield and is the same

as Pipeline Flex, but coated with a polymer to reduce its surface thrombogenicity [13].

Pipeline Shield received the CE mark approval in 2015 [13].

In the past decade, flow-diverting stents have shown promise in effective treatment

of large/giant and wide-necked aneurysms. The efficacy of FDs has been studied in

several clinical studies. Byrne et al. [14] reported a complete occlusion rate of 49% in 70

aneurysms treated with SILK flow diverters (9-528 days follow up). In the PUFS study,

Becske et al. [15] reported the same occlusion rate for 109 aneurysm (3 years follow

up). In the FIAT study, Raymond et al. [16] reported an occlusion rate of 58% in 75

aneurysms treated with PED and SILK (3-12 months follow up). In a meta-analysis of

29 studies with 1654 aneurysms, Brinjikji et al. [17] reported complete occlusion rates of

74% (95% CI, 63%–83%) and 76% (95% CI, 53%–90.0%) for large and giant aneurysms,

respectively. In the PARAT study, Liu et al. [18] reported an occlusion rate of 75.3% in

82 aneurysms treated with Tubridge flow diverter (6 months follow up). Risk of post-

treatment ischaemic and haemorrhagic strokes reported to be approximately 2% and

5%, respectively [9, 14, 18]. Haemorrhagic strokes can be parenchymal or intracerebral

haemorrhage (ICH) remote from the aneurysm or subarachnoid haemorrhage (SAH)

due to the aneurysm rupture [14]. The SAH rate due to post-FD rupture of the

aneurysms was reported to be as high as 8% in giant aneurysms [9, 18].

Despite several studies aimed at assessing FD performance in inducing a complete

and stable aneurysm occlusion, there are only two randomised trials reported so far

(the PARAT [18] and the FIAT [16] studies) and both trials reported below-expectation
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efficacies and high complication rates [18]. More randomised trials are required to bet-

ter understand mechanisms behind flow diversion success and failure and to determine

the true safety and efficacy of FDs [16, 18]. Such trials are costly, include animal test-

ing, and can take years to be performed. As mentioned in Section 1.1, in-silico trials

can help to alleviate such issues. In-silico clinical trials can be part of flow diverters’

pre/post-market studies (e.g., randomised clinical trials) to enable comparative investi-

gation of different devices performance in a wider and more comprehensive population

of patients. Such virtual trials can accelerate the evolution of flow diverters, that has

already taken more than 20 years, and help making new FDs available faster and at a

lower cost.

In-silico trials allow population-specific optimisation of the treatment procedure (de-

vice selection and sizing, level of compaction, anti-coagulant and anti-platelet prescrip-

tion) and provide insight into the process of clot development after flow diversion. The

biological mechanisms of FD-induced thrombosis and aneurysm healing, and the un-

derlying mechanisms of complications like delayed post-FD aneurysm rupture are not

fully understood [19]. While conventional clinical trials are limited in answering why

failures happen, virtual trials can help to understand why flow diversion sometimes

fails or why flow diversion sometimes leads to post-treatment complications.

1.3 Aim and research questions

The aim of the work presented in this thesis was to identify and address the main

challenges in creating an in-silico trial framework for assessment of flow diverters’ per-

formance in treatment of intracranial aneurysms. Although most methods developed

in this work are general to any in-silico trial framework in vascular flow, the models

were demonstrated on aneurysm flow and aneurysm flow diversion. I also note that

in personalised medicine, models and workflows developed in this work can be used in

patient selection and treatment planing of aneurysms with indication of flow diversion.

I addressed these questions:

• What are the key ingredients of a model for virtual treatment of aneurysms? How

can uncertainty and variability in inputs of each ingredient model affect the model

outputs? – Literature review

• How can statistical models be used to quantify uncertainty in internal carotid

artery blood flow waveforms and to generate a virtual population of ICA wave-

forms? In addition, how can these uncertainties affect the quantification of WSS

on the aneurysm sac?
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• As part of a metric to evaluate success of flow diversion, how can a virtual treat-

ment model assess FD-induced clot stability?

• How can a fully automatic flow-modelling framework be built to enable in-silico

clinical trials of flow diverters? In addition, how can computationally inexpensive

models be used to reduce the computational costs of such frameworks?

Figure 1.1 provides a diagram illustrating the research questions and thesis structure.

1.4 Contributions

Chapters 2 to 5 each present a study addressing the above research questions. The

chapters are adapted from published or submitted journal or peer-reviewed conference

papers and are self-contained. Therefore, some concepts might be repeated but refor-

mulated according to the specific interests of each chapter. In this section, I provide

an outline of the thesis, and summarise its contributions.

• Chapter 2 – As part of a FD in-silico clinical trial framework, a virtual endovascular

treatment model is needed to treat the virtual patients and perform the virtual

experiments. In this chapter, I presented an advanced review of the key ingredient

models of a virtual endovascular treatment workflow for device assessment in terms of

inducing a stable clot inside the aneurysm. As discussed in section 1.1, when creating

a framework for in-silico clinical trials, it is important to incorporate variability

and uncertainty of the input variables to the models used in the framework. The

sources of variability and uncertainty in virtual endovascular treatment workflows

were reviewed, and where possible, I quantified the effects of these variabilities and

uncertainties using a meta-analysis of works published in the literature.

Sarrami-Foroushani, A.; Lassila, T.; Frangi, A. F., “Virtual endovascular treat-

ment of intracranial aneurysms: models and uncertainty.” Wiley Interdisciplinary

Reviews: Systems Biology and Medicine 9(4):e1385, 2017.

• Chapter 3 – Intrinsic to creating virtual populations needed for in-silico trials is

collecting and analysing clinical data and developing generative statistical models

to populate envelopes2 of patient physiology. The literature review (presented in

Chapter 2), showed that aneurysmal haemodynamics is sensitive to the variations in

inflow boundary conditions. However, these variations can occur in both the time-

averaged magnitude of the pulsatile flow or the waveform itself. In this chapter, I

2The term envelope is used to refer to the entire range of possible variation of a variable (e.g., vascular blood flow
rate) under a specific condition
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develop a method for statistical modelling of waveform variability in internal carotid

blood flow waves used as inflow boundary conditions in aneurysm flow simulations.

The uncertainties arising from inter-subject variability of internal carotid blood flow

were quantified; a virtual population of 50 flow waveforms were created, and the un-

certainties were propagated to the model output space (aneurysm wall shear stress).

Using this approach, it was also studied that what happens to the aneurysm rupture

likelihood predictions made by deterministic models, if one incorporates the flow

uncertainties.

Sarrami-Foroushani, A.; Lassila, T.; Gooya, A.; Geers, A. G.; Frangi, A. F., “Un-

certainty quantification of wall shear stress in intracranial aneurysms using a data-

driven statistical model of systemic blood flow variability.” Journal of Biomechanics

49(11):3815-3823, 2016.

• Chapter 4 – An in-silico trial framework needs a device performance indicator to

assess effectiveness of the FDs in inducing a stable clot inside the aneurysm sac. In

chapter 2, I argued that prediction of post-FD biochemistry and the clot composition

is essential for assessing FD success. In this chapter, I developed a new model

of thrombus formation and platelet dynamics inside intracranial aneurysms that

enabled characterising stable and unstable thrombus.

Sarrami-Foroushani, A.; Lassila, T.; Hejazi, S. M.; Nagaraja, S.; Bacon, A.; Frangi,

A. F., “A computational model for prediction of clot platelet content in flow-diverted

intracranial aneurysms.” under review, 2018.

• Chapter 5 – To enable large-scale in-silico trials, there is a need for (i) an automated

workflow implemented on a computational platform that provides the capability of

streamlining the virtual experiments and running them in parallel (ii) making simu-

lations computationally inexpensive, for example, by replacing the costly mechanistic

models with data-driven phenomenological models. In this chapter, I presented two

proof of concept studies to show how each of these needs can be met. In the first

study, I built a fully automatic aneurysm flow-modelling framework and utilised a

parallel-processing platform (MULTIX, www.multi-x.org) to simulate flow in a cohort

of aneurysms at rest and exercise conditions. In the second study, a computation-

ally inexpensive, statistical framework was developed to predict the aneurysmal wall

shear stress patterns directly from the aneurysm shape.

Lassila, T.; Sarrami-Foroushani, A.; Hejazi, S. M.; Frangi, A. F., “Population-

Specific Flow Modelling: Between/Within-Subject Variability in the Internal Carotid

Arteries of Elderly Volunteers.” under review, 2018.

www.multi-x.org
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Sarrami-Foroushani, A.; Lassila, T.; Pozo J. M.; Gooya, A.; Frangi, A. F., “Di-

rect Estimation of Wall Shear Stress from Aneurysmal Morphology: A Statistical

Approach.” International Conference on Medical Image Computing and Computer-

Assisted Intervention – MICCAI 2016 pp. 201-209, 2016
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The Virtual Endovascular 
Treatment Workflow
To simulate flow diversion 
and evaluates performance 
of the flow diverter over a 
virtual population

Challenge I

The Computational 
Framework & 
Acceleration
To allow fully-automatic 
modelling and cost-effective 
simulations. 

Challenge III

The Model of Variability 
and Uncertainty
To capture intra- and inter-
subject variations of a 
virtual population (e.g.,  in 
morphology, physiology). 

Challenge II

What are the key 
ingredient models of a 
virtual endovascular 
treatment workflow?

We identified a need to 
predict clot stability and to 
devise a performance 
indicator.

Research Question I

How can computational 
models be used to 
predict clot stability 
upon flow diversion?

How can statistical 
models be used to 
quantify uncertainty in 
internal carotid blood 
flow waveforms & to 
generate virtual 
population of waves?

How can an automatic 
workflow be built for in-
silico clinical trials of 
flow diverters?
How can the 
computational costs be 
reduced? 

How can variability in 
inputs to ingredient 
models affect the 
workflow outputs?

Uncertainties in internal 
carotid flow waveforms are 
the main source of 
uncertainty.
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In-silico trials for assessment of endovascular devices

Notes:
Panels with a green header show questions that are 
answered. 
Panels with a yellow header show questions that are 
partly answered with some preliminary results. 

In-silico trials for assessment of flow diverters’ performance

Research Question II

Research Question IV

Research Question III

Research Question V

Figure 1.1: A graphical representation of the thesis structure, and the contribution of
each chapter.
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Virtual endovascular treatment of

intracranial aneurysms: models and

uncertainty
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Abstract — Virtual endovascular treatment models (VETMs) have been devel-

oped with the view to aid interventional neuroradiologists and neurosurgeons to pre-

operatively analyse the comparative efficacy and safety of endovascular treatments for

intracranial aneurysms. Based on the current state of VETMs in aneurysm rupture risk

stratification and in patient-specific prediction of treatment outcomes, I argue there

is a need to go beyond personalised biomechanical flow modelling assuming determin-

istic parameters and error-free measurements. The mechanobiological effects associ-

ated with blood clot formation are important factors in therapeutic decision making

and models of post-treatment intra-aneurysmal biology and biochemistry should be

linked to the current purely haemodynamic models to improve the predictive power

of current VETMs. The influence of model and parameter uncertainties associated

to each component of a VETM are, where feasible, quantified via a random-effects

meta-analysis of the literature. This allows estimating the pooled effect size of these

uncertainties on aneurysmal wall shear stress. From such meta-analyses, two main

sources of uncertainty emerge where research efforts have so far been limited: i) vascular

wall distensibility, and ii) intra/inter-subject systemic flow variations. In the future, I

suggest that current deterministic computational simulations need to be extended with

strategies for uncertainty mitigation, uncertainty exploration, and sensitivity reduction

techniques.
1

1Adapted from: Sarrami-Foroushani, A., Lassila, T., & Frangi, A.F.: Virtual endovascular treatment of intracranial
aneurysms: models and uncertainty. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 9(4):e1385, 2017.
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2.1 Introduction

Intracranial aneurysms (IAs) are pathological dilatations of the intracranial arteries

that commonly occur in various locations around the circle of Willis in approximately

5-8% of the general population [8]. Aneurysm rupture causes subarachnoid haem-

orrhage, which is associated with high rates of morbidity, mortality, and long term

disability [8]. The clinical strategy for treating aneurysms is to isolate them from

the circulation, which is commonly performed either by open surgery (clipping the

aneurysm), or by endovascular treatment (catheter insertion of a flow diverter or a coil

within the aneurysm). In each method, isolation is aimed at creating conditions of

blood stasis leading to the generation of a stable clot in the aneurysm sac (embolisa-

tion). Once the aneurysm has occluded completely, a neo-intimal layer forms over the

aneurysm neck and separates the aneurysm from the circulatory system (endothelial-

isation). Although it might be addressed as more advanced interventional techniques

become available, currently, aneurysms treated with endovascular techniques are more

likely to recur than those treated surgically [20]. However, the non-invasiveness of the

endovascular approaches has made them more favourable options for treatment of IAs.

Recent progress made in diagnostic techniques over the past few decades has in-

creased the detection rate of unruptured IAs [21]. This has consequently posed the

dilemma of whether every unruptured aneurysm must be treated immediately upon

discovery, and if so, which treatment option represents the least risk to the patient

[20, 22, 23]. The challenge is therefore to evaluate the safety and efficacy of differ-

ent endovascular treatments in a patient-specific context. Post-treatment ruptures,

aneurysm recurrence or incomplete occlusion, and thromboembolic complications af-

ter endovascular treatment further magnify the importance of choosing an appropriate

endovascular treatment option. Clinicians’ attempts at answering such questions has

revealed the need for tools that help them in reliable risk assessment and designing

appropriate patient-specific treatment plans for each individual aneurysm.

The important role of haemodynamics in the initiation, progression, and rupture

of aneurysms has drawn the research community’s attention to image-based compu-

tational fluid dynamics simulations. Such tools would allow researchers to study the

haemodynamic variables in each specific aneurysm pre- and post-operation. Exploit-

ing recent advancements in image segmentation and computational mechanics, virtual

endovascular treatment models (VETMs) have been developed to create image-based

patient-specific models of aneurysm geometries [24, 25, 26], to virtually deploy endovas-

cular devices [27, 28, 29, 30], and to simulate intra-aneurysmal blood flow [31, 32, 33].

This has allowed investigating how safely and effectively each device deployment strat-
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Figure 2.1: An ideal virtual endovascular treatment model is comprised of sub-models
in which the vascular surface, virtual treatment, and biomechanics and biochemistry
are modelled, respectively. Patient’s angiogram (a) is segmented and a vascular surface
model (b) is reconstructed and used for virtual treatment with coils or flow diverting
stents (c). Computational simulations then are performed to calculate blood velocity
field (d) in the presence of device-induced intra-aneurysmal clot, from which the shear
stresses on the vessel wall (e) can be computed.

egy alters the intra-aneurysmal haemodynamics, and to what extent the altered intra-

aneurysmal flow is favourable to the formation of a stable clot, leading finally to com-

plete aneurysm occlusion and elimination [33, 34]. Moreover, such endovascular treat-

ment models help clinicians to pre-operatively assess the candidate treatment options

and deployment strategies; especially in complex cases like anatomically complex and

surgically inaccessible vertebrobasilar dolichoectasia with fusiform aneurysms [35, 36],

or aneurysms at/near bifurcations where the neighbouring branches/perforators are at

the risk of being covered and occluded [37].

The identification of an appropriate metric to assess post-operative performance of

the endovascular treatment is still an active area of research. Different flow and wall

shear stress-related quantities have been proposed for this purpose. Localised low and
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oscillatory aneurysmal wall shear stress (WSS) is hypothesised to lead to pathological

endothelial responses, thrombosis, wall degeneration, and eventual aneurysm rupture

[38]. On the other hand, endovascular devices are shown to trigger the aneurysm

healing process by inducing flow stasis and thrombosis inside the aneurysm sac [20].

However, it is not clear why low shear-induced thrombosis may lead to complete em-

bolisation in some aneurysms, but incomplete embolisation and rupture in some others

[39, 40]. Kulcsar et al. [39] hypothesised that the quality, quantity, and evolution of

the thrombus and consequently the thrombus-induced autolytic activities in the wall,

determine whether intra-aneurysmal thrombus generation leads to aneurysm healing

or rupture. This implies that the endovascular device performance should be assessed

in terms of the capability to induce a stable clot, which triggers the process of reverse

remodelling and aneurysm healing, possibly accounting for the effect of coadjuvant

blood-thinning pharmacological agents. Therefore, although post-operative aneurys-

mal haemodynamics play an important role in the outcome of the intervention, a VETM

should incorporate information about device-induced biochemistry and mechanobiol-

ogy for assessing its performance for making predictions about aneurysm occlusion

and treatment outcomes. Such information can be provided either by phenomenolog-

ical sub-models that use haemodynamics as a surrogate of intra-aneurysmal biochem-

istry and biology [41, 42, 43], or by more complex mechanistic sub-models, which are

coupled to the haemodynamic sub-models and describe the ongoing biological process

[41, 44, 45]. Consequently, as shown in Figure 2.1, an ideal VETM is comprised of: 1)

a computational blood flow simulation in an image-based vascular surface model cou-

pled with proper boundary conditions, 2) an endovascular device deployment model,

and 3) a blood coagulation model, which describes the intra-aneurysmal clot formation

process in the presence of endovascular devices.

In 2012, Kallmes et al. [46] raised concerns about the clinical relevance of com-

putational models by arguing that they are prone to several sources of uncertainty

and error that influence the model predictions. Despite many advancements bridg-

ing some of the gaps between model predictions and actual physiological phenomena,

the characterisation of the uncertainties and errors associated with the model inputs,

and the sensitivity of personalised haemodynamic predictions require more detailed

investigation. Uncertainties arise from lack of personalised information about some

model inputs, imprecise model structures, e.g. mathematical descriptions of the bio-

logical phenomena, and inherent inter- and intra-subject variabilities of physiological

variables. As depicted in Figure 2.2, uncertainty quantification can be performed to

identify and quantify uncertainties in the model inputs. Similarly, error analyses can

be performed to identify and quantify errors in the deterministic inputs that are not
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Figure 2.2: The left panel shows overall structure of a typical mathematical model
with xd and xu as vectors of deterministic and uncertain model inputs, respectively;
f describing the model structure; and y as vector of model outputs. The right panel
shows error analysis and uncertainty quantification as processes to identify and quantify
errors and uncertainties, respectively; and sensitivity analysis as a process to propagate
the quantified errors and uncertainties to the model outputs.

uncertain but can produce errors if not selected properly, e.g. computational meshes.

In order to reliably represent the patient-specific physiological processes and achieve

truly clinically relevant predictions, it is important that these uncertainties and er-

rors be propagated into the model predictions through sensitivity analyses, and be

eliminated when possible.

I address the state of different sub-models of a typical VETM based on a compre-

hensive literature review of the articles focused on computational models of intracranial

aneurysms and published online before June 2016. For each sub-model, the possible

sources of uncertainty and error were discussed, and, where they exist, review the sen-

sitivity analyses that have been done to show how model predictions are affected by

either the uncertain inputs or errors in the deterministic inputs. For simplicity, from

now on, I denote both uncertain inputs and errors in deterministic inputs as uncer-

tainty throughout the paper. In order to summarise the effect of uncertain inputs,

meta-analyses are conducted where the following criteria are met: 1) the study was

numerical, performed on the intracranial aneurysms, and published between January

2006 to June 2016, 2) at least 3 cases were studied, and 3) the effect of uncertain model

inputs on the aneurysmal WSS was investigated and quantitative values of WSS were

reported. For those sources of uncertainties where a sufficient number of studies pro-

vided evidence, effect sizes are calculated as standardised mean differences (Hedges’ g)

between the two non-independent groups in each study and then are pooled across stud-

ies using random-effects meta-analysis [47]. Finally, I summarise the most important

uncertainties that should be addressed in order to present patient-specific predictions
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to enable such simulations to be reliably used in clinical practice.

2.2 Vascular surface and blood flow modelling

2.2.1 Image-based patient-specific vascular surface modelling

Creating vascular surface models from medical images is the first and most important

step in developing a patient-specific model for endovascular treatment of aneurysms

[31], on which all the other steps depend. Vascular angiograms are usually acquired us-

ing computed tomography angiography (CTA) [48], magnetic resonance angiography

(MRA) [49], or three-dimensional rotational angiography (3DRA) [50]. The spatial

resolution of 3DRA (1282−5122 matrix with voxel size of 0.42-1 mm) is usually higher

than CTA (5122 matrix with pixel size of 0.23-0.45 mm and slice thickness of 0.5-1.3

mm) and MRA (2562 matrix with pixel size of 0.78-1.25 mm and slice thickness of

0.7-1.6 mm) [24]. Piontin et al. [51] assessed the accuracy of 3DRA, CTA, and MRA

techniques for measuring the volume of an in vitro model of an anterior communicat-

ing artery aneurysm. They showed that CTA is more accurate than MRA (p-value

= 0.0019), and 3DRA is more accurate than CTA, (p-value = 0.1605; not statisti-

cally significant). They observed that aneurysm volume was overestimated by 7% and

11.3% in 3DRA and CTA, respectively, and underestimated by 15% in MRA images.

Ramachandran et al. [52] reported that errors in measuring aneurysm characteristic

lengths (e.g., height and maximum diameter) by any of the 3DRA, CTA, and MRA

were 0.8-4%, with no significant differences between the modalities. In clinical practice,

due to the less invasive nature of CTA and MRA, these imaging techniques are favoured

for the diagnosis and monitoring of intracranial aneurysms; however, 3DRA provides

the highest spatial resolution and is consequently favoured for surgical or endovascular

treatment planning [53, 54, 55]. On the other hand, high spatial and contrast resolution

and no interference of bony structures and surrounding tissues in 3DRA images, and

consequently their ease of reconstruction, make them more appropriate for construc-

tion of 3D aneurysm surface models that can subsequently be used in computational

fluid dynamics (CFD) analyses and virtual treatment models [24, 51, 56, 57].

Starting from volumetric medical images, different techniques have been proposed

for segmentation and creation of vascular surface models, which can then be used for

generating a computational volumetric mesh and solving blood flow equations. In this

paper, I only reviewed methods which have been tested and evaluated on intracranial

aneurysms. The need for contrast injection into the feeding artery of the aneurysm

exposes the 3DRA modality to limitations when aneurysms with multiple feeding ar-

teries are being scanned. Castro et al. [56] proposed a segmentation methodology,
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which combined image co-registration and surface merging techniques to overcome this

limitation, and provided surface models for aneurysms with multiple inlet branches

such as those located on the anterior communicating arteries. They evaluated their

method on a virtual 3D rotational angiogram of a digital phantom of an anterior

communicating artery aneurysm. The maximum distance between the segmented and

phantom model (0.2 mm) was reported as a measure of accuracy. Chang et al. [24]

proposed another segmentation methodology called charged fluid-based aneurysm seg-

mentation (CFAS), which combined a region-growing method with the 3D extension of

a deformable contour based on a charged fluid model. Their method was particularly

designed for segmentation of aneurysms with different geometrical complexity levels

and was evaluated on 3DRA images of 15 aneurysms. Comparing segmented surfaces

with the manually delineated contours, a conformity score of 68.36% was reported. A

knowledge-based segmentation algorithm based on the geodesic active regions (GAR)

was presented by Hernandez et al. [26] and evaluated by segmentation of intracra-

nial aneurysms from CTA (10 aneurysms) and 3DRA (5 aneurysms) images. They

reported average dice similarity coefficient (DSC) of 91.13% and 73.31% as measures

of accuracy for 3DRA and CTA images, respectively. Bogunovic et al. [58] proposed

another methodology for segmenting 3DRA images based on an image intensity stan-

dardisation (IIS) –method, which improved the automation of knowledge-based vas-

cular segmentation algorithms by standardisation of image intensity ranges of tissue

classes in routine medical images. They evaluated the method on 10 patients that un-

derwent both 3DRA and time-of-flight magnetic resonance angiography (TOF-MRA).

DSC scores of 92% and 91% was achieved for segmentations from 3DRA and MRA

images, respectively. Firouzian et al. [25] proposed another segmentation technique

for segmenting aneurysms from CTA modality, which worked based on geodesic ac-

tive contours (GAC) and did not require image intensity training unlike when working

with knowledge-based methods. They evaluated the method on 11 aneurysms and re-

ported a DSC score of 82.1% as a measure of accuracy. A detailed review of the above

mentioned methods can be found in Refs [31, 32, 33, 59]. Comparisons of different

segmentation techniques for intracranial aneurysms can also be found in Refs [58, 60].

2.2.2 Uncertainty in vascular surface modelling

Uncertainties in the vascular geometric models can originate from images used to re-

construct the vascular surfaces. Such uncertainties include the inherent noise in the

acquired images, registration artefacts, and motion of arteries during the cardiac cy-

cle. Depending on the operator’s experience and skill, manual operations during image

acquisition may also lead to errors in the acquired images. Another more important
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source of uncertainty in vascular surface modelling are segmentation errors. Despite

automation of the segmentation process in most state-of-the-art segmentation meth-

ods, manual editing operations are still required in the final stages, especially where

complex structures like small or kissing branches are present in the region of interest.

Cebral et al. [31] performed a sensitivity analysis on different uncertain aspects of an

image-based model. They qualitatively showed that the geometric uncertainties arising

from segmentation of aneurysm surfaces by different operators has the greatest effect

on the intra-aneurysmal flow when compared to uncertainties in other variables. Cas-

tro et al. [61] investigated the effect of parent vessel reconstruction on the flow in the

aneurysm sac. For each aneurysm they constructed two different models; one with the

original parent vessel and the other with a truncated parent vessel, which was replaced

with a straight tube. They observed an underestimation of aneurysmal WSS in geomet-

ric models with a truncated parent vessel and showed that segmentation of the parent

vessel can highly affect the characteristic flow patterns inside aneurysm. As a future

work, they suggested a sensitivity analysis for typical aneurysms of different locations,

which gives an estimation of the length of the upstream parent vessel needed for an

appropriate simulation of flow inside the aneurysm. Gambaruto et al. [62] compared

the effect of the smoothing level, as part of the segmentation procedure, with the effect

of the blood rheological model on the intra-aneurysmal flow and aneurysmal WSS.

They showed that geometric uncertainties due to the use of different smoothing levels

resulted in greater errors (of order of 15%), although this was comparable with er-

rors arising from using different blood rheological models (of order of 5%). Geers et

al. [57, 63] performed CFD simulations in aneurysm models reconstructed from CTA

and 3DRA images. They showed that the main flow characteristics remains the same in

aneurysms obtained from both modalities but a difference of up to 44.2% was observed

in the absolute value of mean WSS on the aneurysm sac.

2.2.3 Blood flow modelling

In order to simulate blood flow in the reconstructed vascular volume, equations of

motion for blood flow need to be discretised and solved. This requires a volumetric

mesh over the domain confined by the vascular surface mesh. Vascular surface meshes

are usually extruded at the truncated boundaries to minimise the effects of boundary

conditions on the domain of interest (i.e., the aneurysm) Tetrahedral or polyhedral

elements are commonly used to discretise the volume [64]. To accurately address

high velocity radial gradients in vicinity of the wall, and thus to accurately estimate

the WSS, three to five layers of prismatic boundary layer elements are required in

near-wall regions [31, 65, 66]. Unstructured meshes in the context of aneurysm flow
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modelling are commonly comprised of elements of 0.1-0.2 mm and three boundary layer

prism layers with a total height of 0.05-0.15 mm. Careful mesh-dependency tests are

necessary to achieve mesh-independent solutions [67]. The presence of vascular devices

with very fine struts that are placed in vessels several order of magnitude larger in

diameter pose a challenge to meshing algorithms. Computational meshes need to be

computationally cost effective to solve for the flow in the aneurysm and parent arteries

while, at the same time, be accurate enough to resolve the flow around the very thin

wires of stents or coils and the near-wire grid elements must be fine enough to resolve

the wires and accurately reconstruct flow through the implanted device. Stuhne and

Steinman [68] suggested that the mesh resolution in the vicinity of the stent wires

needs to be about one-third of the wires radius to achieve an accurate flow solution

in the near-strut regions. Other studies (e.g., Refs [69, 70]) have also reported on

the properties of convergence of haemodynamics solutions in stented aneurysms with

near-strut element sizes similar to what was reported by Stuhne et al. [68]. The widely-

used body-fitted [71] grid generation can be complex and time-consuming for meshing

aneurysms with implanted endovascular devices. Cebral et al. [72] proposed a hybrid

method which uses the body-fitted approach to discretise the interior of the vessel

walls but the adaptive embedded [71] approach for meshing the endovascular devices.

Appanaboyina et al. [73] compared solutions produced by the hybrid approach and

the pure body-fitted grids and showed their agreement (1-3% difference in predicting

the maximum post-treatment velocity reduction over three predefined lines passing

through the sac) after three levels of adaptive refinement of the near-strut elements in

the hybrid approach.

Solving equations of motion requires setting the constitutive parameters (i.e., density

and viscosity) as well as prescribing boundary conditions to the fluid. Blood flow in

medium-sized arteries can be assumed to be incompressible with constant density. The

rheology of blood can either be described by using a Newtonian model with a constant

viscosity, which simplifies the equations of motion to the Navier-Stokes equations, or

by using non-Newtonian models that consider the shear-thinning behaviour of blood.

As common practice in CFD modelling of blood flow in vascular domains, a velocity-

related (usually flow rate) boundary condition is assigned at the inlet boundaries. This

can be a constant flow rate (steady simulation) or a time-varying flow waveform (un-

steady simulation). Such inflow boundary conditions are often derived from literature,

where blood flow measurements are acquired in a particular artery for a specific cohort

of people and reported in terms of descriptive statistics (mean values from standard

deviations, see e.g. the works [74, 75, 76]). In some cases, patient-specific flow mea-

surements are available from phase-contrast magnetic resonance imaging (PC-MRI)
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or transcranial Doppler ultrasound (TCD), and patient-specific inflow boundary con-

ditions are used for CFD simulations.

To prescribe outlet boundary conditions, zero-pressure boundary conditions are ad-

equate for vascular domains with only one outlet. In contrast, in vascular domains

with more than one outlet, flow distribution among outlet branches depends on the

resistance and compliance of the distal vascular bed, which requires more advanced

techniques to estimate the flow distribution ratio. However, many studies neglect the

distal resistances and use zero-pressure outlet boundary conditions for multiple outlet

vascular domains, which allows the flow to distribute among daughter branches accord-

ing to their diameter and pressure drop [77]. To consider the effect of distal resistance

and compliance, the three-dimensional computational vascular domain of interest can

be coupled to lower-dimensional reduced-order models [78, 79]. However, although such

boundary conditions give a more accurate representation of distal resistances, they in-

crease the amount of parameters to be set in the model. Zero-dimensional (lumped

parameter) [79, 80] models usually require setting the values of the terminal resistance

and capacitance at each outlet branch. In one-dimensional models [81, 82, 83, 84] the

branching topology, length, diameter, and material properties of vessel segments need

to be assigned. Although some studies (e.g. Refs [85, 86, 87]) used fluid-structure-

interaction techniques to account for the arterial wall compliance in the models, wall

distensibility is neglected in almost all CFD simulations of blood flow in aneurysms

and a no-slip boundary condition is assigned on the walls.

Despite the use of various commercial or in-house solvers with different numeri-

cal solution strategies by CFD modellers for simulating aneurysmal flow, recent CFD

challenges [88, 89] showed a global agreement between the haemodynamic quantifica-

tions produced by various CFD solvers in the participating groups. However, as noted,

simulation of vascular blood flow requires proper setting of constitutive parameters

and prescribing boundary conditions. Both constitutive parameters and boundary

conditions are subject to intra-subject and inter-subject variabilities which introduce

uncertainties into the computational models of blood flow. Intra-subject variabilities

have roots in the state of the person (e.g., level of stress, physical activity, sleep pat-

tern, etc.). For example, plasma volumes losses during maximal exercise will result

in increases in haematocrit, haemoglobin concentration, and concentration of plasma

proteins, which consequently increase the blood viscosity [90]. Inter-subject variabil-

ities have roots in demographic characteristics (e.g., age, gender, weight, etc.) or the

person’s lifestyle (smoking, drinking, physical activity, etc.). For example, both ageing

and smoking will affect the arterial wall properties and consequently alter the arterial

flow waveforms [76, 91]. On the other hand, uncertainties in computational blood flow
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simulations can also arise from assumptions associated to the underlying models (e.g.,

wall motion or blood rheological models). The influence of such uncertainties on the

aneurysmal haemodynamics is discussed in the next section.

2.2.4 Uncertainty in blood flow modelling

Blood rheology is often assumed to be Newtonian, which while an acceptable approx-

imation in medium-sized arteries, is strictly speaking not consistent with the shear-

thinning nature of blood. An overestimation of aneurysmal WSS magnitude with

almost no effect on the WSS distribution on the aneurysm sac has been reported

in several studies comparing aneurysmal WSS values obtained from Newtonian and

non-Newtonian simulations [31, 92, 93]. Xiang et al. [94] compared Newtonian CFD

simulations with those performed with the Casson [95] and Herschel-Bulkley [95] mod-

els and observed almost similar WSS distributions and magnitude in two of the three

examined aneurysms; in the other complex-shaped aneurysm, the Newtonian model

overestimated WSS on the aneurysm bleb with a low WSS magnitude. Since low WSS

regions are thought to be the regions where aneurysms may rupture, Xiang et al. [94]

suggested that using a Newtonian model might underestimate the aneurysm rupture

risk in aneurysms with pronounced low shear regions, e.g., complex aneurysm shapes

with daughter aneurysms; they also noted the importance of blood rheology in simu-

lating post-treatment flows where intra-aneurysmal stasis is induced in the presence of

endovascular devices to trigger thrombosis and the aneurysm healing process. Castro et

al. [96] compared CFD simulations performed with Newtonian and Casson models in

ten multi-bleb aneurysms. They observed that the Casson model produced higher WSS

values on some aneurysmal regions at some instances during the cardiac cycle. How-

ever, since the differences were not statistically significant, they concluded that there

was no evidence that any of the models overestimate aneurysmal WSS values.

Gambaruto et al. [62] compared the effect of blood viscosity model and geometric

uncertainties and showed that segmentation errors had greater effects on the model

outcomes. The errors in mean aneurysmal WSS were of the order of 15% for geometric

uncertainties and 5% for uncertainties in the rheological model. Fisher et al. [97] com-

pared aneurysmal WSS numerically predicted using four different rheological models

in idealised aneurysm geometries; they showed that, compared to the parent vessel, the

non-Newtonian effects were measurable inside the aneurysm sac (especially during the

diastole); they observed the Carreau [95] model to be the most conservative, producing

lower WSS magnitudes with larger regions of low WSS. However, Fisher et al. [97]

emphasised that although the choice of the blood rheology model seems to have an

effect on the numerical predictions of WSS, the differences raised from uncertainties in
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the aneurysm morphology were greater.

Other studies investigated the effect of the choice of blood rheological model in the

presence of endovascular devices. Rayz et al. [43] investigated intra-aneurysmal haemo-

dynamics in three fusiform aneurysms that were thrombus-free pre-treatment, but de-

veloped thrombus during follow-up studies. They showed better agreement, although

not statistically significant, between the low-flow regions and regions of thrombus depo-

sition when a non-Newtonian rheology model was used. Morales et al. [98] studied the

effect of blood rheology on steady flow simulations in three aneurysms before and af-

ter coiling; in untreated aneurysms, the Newtonian model overestimated intra-saccular

velocities up to 16% in space-averaged velocities with a maximum of 45% in pointwise

comparisons; these increased up to 55% in space-averaged velocities with a maximum of

700% in pointwise comparisons in coiled aneurysms; space-averaged WSS differed up to

2% and 12% between the two rheological models in the untreated and coiled aneurysms,

respectively, while the Newtonian model overestimated the WSS in some cases and un-

derestimated the WSS in others. These results demonstrate again the magnification

of non-Newtonian effects in slow flow regions. However, Morales et al. [98] reported

similar global flow patterns and post-treatment aneurysmal flow reductions in both

Newtonian and non-Newtonian models. Admitting the observed magnitude differences

in coiled aneurysms with thrombogenic slow flows, Morales et al. [98] concluded that

a Newtonian rheology model could be adequate for blood flow simulations in coiled

aneurysms, if the global haemodynamic alterations are used for device performance

assessment. Huang et al. [99] studied the effect of blood rheology modelling choices in

idealised stented aneurysms and observed that Newtonian models overestimated the

intra-aneurysmal mean velocity magnitude by 6-26% in large-neck stented aneurysms

and by 51-57% in small-neck stented aneurysms. Cavazzuti et al. [100, 101] investi-

gated the effect of using a non-Newtonian rheology model in stented aneurysms and

observed that average aneurysmal WSS values produced by the Newtonian rheology

were around 15% greater in some regions and smaller in other regions; they concluded

that the Newtonian to non-Newtonian effects are generally important but position

dependent.

Among the above mentioned studies, Castro et al. [96], Morales et al. [98], and

Fisher et al. [97] performed quantitative comparisons between time and space-averaged

aneurysmal WSS values obtained from CFD simulations based on Newtonian and non-

Newtonian (Casson) rheology and reported values of time-and-space-averaged WSS on

the aneurysm sac for different cases. According to a random-effects meta-analysis, the

standardised mean difference (Hedges’ g) was 0.02 with a 95% confidence interval of

-0.04 to 0.07. This suggests limited effect of blood rheology model choice on WSS
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Figure 2.3: Forest plot showing the overestimation of space and time-averaged aneurys-
mal WSS produced by the non-Newtonian blood rheology. The plot illustrates effect
sizes, Hedges’ g, (represented by a square) and the confidence intervals (the horizontal
lines) for each study and the pooled effect (the centre of the diamond) and its confi-
dence interval (the width of the diamond) across all studies. Vertical dotted lines for
each study show the study mean and the green squares are sized according to the study
weight.

predictions by CFD. The meta-analysis based on these three studies failed to find a

significant overall effect for the choice of rheological model (p-value = 0.292). None of

the studies presented a pointwise comparison of aneurysmal WSS values provided by

each rheology. Comparing time-and-space averaged WSS values, the study with the

largest cohort performed by Castro et al. [96], showed that WSS values produced by the

Newtonian model were twice as large as the values predicted by non-Newtonian models

at some aneurysmal regions; however, at some other regions on the same aneurysm, the

Newtonian model predicted WSS values half as large as those predicted by the non-

Newtonian model. They found no significant correlation between low WSS regions and

regions where any of the models produced higher or lower WSS than the other.

The forest plot presented in Figure 2.3 illustrates the results provided by the meta-

analysis. Standardised mean differences (SMDs), defined as the difference between the

mean values of the two groups (i.e., Newtonian and non-Newtonian cases) divided by a

representation of the standard deviation [47], are used to present the effect size reported

by each study and the pooled effect size. Cohen’s d and Hedges’ g are two different

formulations for calculation of the SMDs, which differ in the type of the standard de-

viation used to standardise the mean differences [47]. Since the Cohen’s d is known to

overestimate the effect sized in small samples [47], in this study I used Hedge’s g which
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is the unbiased estimation of the effect size. As suggested by Cohen et al. [102], effects

of size 0.2, 0.5, and 0.8 can be interpreted as small, medium, and large, respectively.

Based on the reviewed works and the meta-analysis, it can be concluded that differences

between the aneurysmal WSS values produced by any of the investigated rheological

models have not been shown to be significant. Although all the reviewed studies re-

ported differences in magnitude of the WSS values, it is still not clear whether any

of the investigated rheological models produce systematically larger or smaller WSS

values. Flow stasis and low recirculating flow are known to play an important role

in aneurysmal inflammatory phenotype and thrombosis, and consequently in rupture

or device-induced aneurysm healing. Thus, the observed discrepancies in WSS values

suggest consideration of non-Newtonian behaviour of blood where the aneurysmal flow

is very slow and disturbed due to the irregular aneurysm shape or is reduced by en-

dovascular devices. Such consideration is more important when local haemodynamic

evaluations, rather than global time- or space-averaged haemodynamic quantities, are

of interest. Moreover, although all the reviewed studies reported almost no influence of

blood rheological model choice on the WSS distribution and characterisation of regions

where shear stress is relatively low or high, it is not still clear whether the reported

discrepancies in magnitude and direction of CFD-predicted shear stresses result in false

predictions about the aneurysm or the endovascular treatment effect.

Inlet boundary conditions to the vascular model of interest are another ingredient

of the flow simulation that contains uncertainty. Inflow boundary conditions are often

taken from the literature, where typical flow waveforms in a particular artery are re-

ported for a specific cohort of people who usually have demographic differences with the

specific patient whose aneurysm is being simulated. Some studies [103, 104, 105] used

patient-specific inflow boundary conditions obtained from patient-specific measure-

ments. Such patient-specific boundary conditions are superior to the typical literature-

based boundary conditions, since they are acquired from the same patient. However,

even the patient-specific boundary conditions cannot fully represent systemic blood

flow, since systemic flow is highly dependent of the state of the person (e.g., level of

stress, physical activity, sleep pattern, etc.) and measurements are only acquired at

a particular point in time and under very specific scanning conditions. Nevertheless,

although not representative of the effect of intra-subject variability, using one-shot

measurements of patient-specific inflow boundary conditions has been shown to have

limited effects on the distribution of WSS and oscillatory shear index (OSI) on the

aneurysmal sac. However, comparing results obtained from simulations with typical

literature-based and directly measured inflow boundary conditions has revealed re-

markable differences in the magnitude of aneurysmal WSS and OSI [103, 104, 105, 106].
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Consequently, exactly how intra-/inter-subject variations of systemic flow conditions

may affect intra-aneurysmal haemodynamics and the rupture risk has become a rele-

vant question within the research community.

Bowker et al. [107] investigated the effect of moderate aerobic exercise on three

middle cerebral artery aneurysms and observed an average of 20% increase in time-

averaged WSS on the aneurysm sac; this result has been obtained by keeping the

inlet waveform fixed and increasing the time-averaged inflow and heart rate by 7.8%

and 73.4%, respectively. Geers et al. [108] systematically investigated the effect of

time-averaged inflow rate, heart rate, and inflow wave pulsatility index and showed

that, under a fixed time-averaged flow rate, increasing heart rate and inflow pulsatil-

ity index had no effect on the aneurysmal time-averaged WSS magnitude. Xiang et

al. [109] studied the effect of inflow waveforms on intra-aneurysmal haemodynamics of

four aneurysms. They performed CFD simulations with four different waveforms that

had the same time-averaged flow rate and showed that different waveforms produced

the same spatial distributions on WSS and OSI on the aneurysm wall. They also

observed the same values of time-averaged WSS magnitudes, but drastically different

values of OSI in the four CFD simulations performed for each aneurysm. They finally

concluded that inflow boundary conditions have only limited effects on the aneurys-

mal WSS and OSI for the purpose of aneurysm rupture stratification. Keeping the

time-averaged flow rate fixed, Sarrami-Foroushani et al. [110], performed CFD simu-

lations using inflow waveforms obtained from a data-driven model of internal carotid

artery flow and observed that variations in internal carotid artery (ICA) flow waveform

had no effect on the time-averaged WSS but altered the local directionality of WSS;

they also showed that the inflow waveform variations changed the rupture outcome

prediction in 4 out of 19 cases when a simple logistic regression model was used to pre-

dict the rupture outcome. For each aneurysm in a fifteen-aneurysm cohort, Morales et

al. [111] performed eleven CFD simulations with different inflow rates (but using the

same waveform) and showed that spatiotemporally averaged aneurysmal WSS varied

as a quadratic function of time-averaged inlet flow rate. They showed that values of

aneurysmal OSI did not change by changing the time-averaged flow rate while keeping

the waveform constant.

Since patient-specific flow measurements are rarely available as a clinical routine for

aneurysm patients, CFD modellers often scale the typical literature-based flow wave-

forms to approximately impose patient-specific boundary conditions to their models.

For each aneurysm model, scaling is performed in order to maintain a fixed spatiotem-

porally averaged velocity or WSS at the inlet boundary. The literature-based flow

rate is scaled according to the inlet diameter squared, if the scaling is based on time-
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Figure 2.4: Forest plot showing the overestimation of space-and-time-averaged aneurys-
mal WSS produced by the generalised inflow boundary conditions. The plot illustrates
effect sizes, Hedges’ g, (represented by a square) and the confidence intervals (the hor-
izontal lines) for each study and the pooled effect (the centre of the diamond) and its
confidence interval (the width of the diamond) across all studies. Vertical dotted lines
for each study show the study mean and the green squares are sized according to the
study weight.

and-space-averaged velocity, and cubed, if the scaling is based on time-and-space av-

eraged WSS [112, 113]. The choice of inlet location (and consequently inlet diameter)

and scaling model (cubed or squared) is, however, a source of uncertainty in inlet

boundary conditions. Valen-Sendstad et al. [112] investigated the effect of the choice

of inlet location and the scaling model on the resulting inflow rates. They showed that

scaling according to the squared diameter produced flow rates more consistent with

the physiological flow rates. They also quantified the uncertainties arising from trun-

cating the ICA at different locations and showed that all truncation locations below

the cavernous segment produced the same uncertainties as physiological uncertainties

of ICA flow rate and thus lead to reliable CFD simulations. Visually comparing CFD-

predicted and digital subtraction angiography (DSA) -imaged intra-aneurysmal flow

patterns, Pereira et al. [114] showed that reliable CFD outcomes were obtained using

vascular models with inlet vessels truncated as far upstream as obtainable from the

medical images, and coupled to Womersley inlet velocity profiles. Hodis et al. [115]

also studied the effect of inlet artery length on 10 ICA ophthalmic aneurysm models

and showed that removing two bends from the parent artery resulted in approximately

15% error in peak systolic space-averaged WSS over the aneurysm sac.

Jansen et al. [103], McGah et al. [105], and Karmonik et al. [106] performed quan-
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titative comparisons between time-and-space-averaged aneurysmal WSS values ob-

tained from CFD simulations based on measured patient-specific and generalised in-

flow boundary conditions and reported values of time-and-space-averaged WSS on the

aneurysm sac for different cases. In these studies, the inlet boundaries of the vascular

domains located on the ICA and generalised ICA flow waveforms were obtained from

studies by Ford et al. [74] and Vanooij et al. [116], in which the ICA flow was mea-

sured over cohorts of 17 young and healthy volunteers and 8 patients with intracranial

aneurysms, respectively. For each aneurysm case, McGah et al. [105] scaled the gener-

alised waveform to maintain a physiological mean WSS of 1.5 Pa at the inlet boundary.

However, Karmonik et al. [106] directly used the generalised flow waveforms obtained

from the study by Ford et al. [74] without scaling; while Jansen et al. [103] have not

reported the scaling process clearly. According to a random-effects meta-analysis, the

standardised mean difference (Hedges’ g) was 0.30 with a 95% confidence interval of

0.08 to 0.52 (p-value = 0.003). This suggests a moderate effect of inflow waveform

on the prediction of WSS magnitude by CFD. Figure 2.4 illustrates the results pro-

vided by the meta-analysis of the effect of using generalised boundary conditions on

the aneurysmal WSS magnitude. It is worth noting that in this meta-analysis study,

I used aneurysmal WSS values provided by patient-specific boundary conditions as

the baseline values. WSS values generated by the generalised boundary conditions

can be arbitrarily higher or lower than the baseline values. However, I calculated the

effect sizes in a consistent way keeping the WSS values generated by patient-specific

boundary conditions as baseline for all studies. Thus, bearing in mind that the “sign”

has no physical meaning in this meta-analysis, the term “overestimation” was used in

consistency with other meta-analyses presented in this work.

A rigid-wall assumption is often made in cerebrovascular flow simulations [117].

Estimating regional aneurysmal wall motion from dynamic X-ray images, Dempre-

Marco et al. [85] compared CFD simulations of blood flow in aneurysms with rigid

and non-rigid wall assumptions and observed that, although the distribution of WSS

on the sac and elevated WSS areas remained almost identical, rigid wall simulations

tended to overestimate the pointwise aneurysmal WSS magnitude by around 50%.

On the other hand, fluid structure interaction (fluid structure interaction (FSI)) tech-

niques have been used to simulate aneurysmal flow in non-rigid aneurysmal models.

Torii et al. [86, 87, 118] performed non-rigid fluid-structure-interaction simulations on

aneurysms and reported up to 20% differences among WSS magnitudes obtained from

rigid and non-rigid simulations. Takizawa et al. [118, 119, 120, 121], performed quanti-

tative comparisons between maximum peak systolic aneurysmal WSS values obtained

from rigid and flexible wall (fluid structure interaction) CFD simulations and reported
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Figure 2.5: Forest plot showing the overestimation of maximum peak systolic aneurys-
mal WSS produced by the rigid arterial wall assumption. The plot illustrates effect
sizes, Hedges’ g, (represented by a square) and the confidence intervals (the horizontal
lines) for each study and the pooled effect (the centre of the diamond) and its confi-
dence interval (the width of the diamond) across all studies. Vertical dotted lines for
each study show the study mean and the green squares are sized according to the study
weight.

values of WSS on the aneurysm sac for different cases. According to a random-effects

meta-analysis, the standardised mean difference (Hedges’ g) was 0.34 with a 95% con-

fidence interval of 0.22 to 0.45 (p-value < 0.001). Figure 2.5 illustrates the results

provided by the meta-analysis.

The meta-analysis suggests an effect of wall distensibility on the prediction of WSS

magnitude by CFD. However, visual inspections and quantitative comparisons based

on global space-averaged measures showed an agreement between the rigid-wall and

non-rigid-wall simulations as long as the distribution of WSS on the aneurysm wall, or

the main characteristics of flow in the aneurysm (e.g., the complexity of flow pattern, or

presence of an impinging flow jet, etc.) are of interest [31, 85, 122]. The main challenge

to the current structural models of aneurysm wall is the present limitations in measure-

ment techniques leading to uncertainties in identification of wall mechanical properties

like thickness or modulus of elasticity. Aneurysms often have pathological walls with

material properties varying spatially over sac. Despite some attempts to create ad hoc

models of such variations, e.g. a thinner wall on the sac [123], the structural models

are still far from the physiological reality. Thus, notwithstanding the important effects

induced by rigid wall assumption, such issues with realistic quantification of aneurysm

wall mechanics have resulted in rigid-wall CFD simulations remaining predominant in
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the context of intracranial aneurysm modelling. To the best of my knowledge, the

effect of using rigid-wall assumption on rupture risk stratifications and predictions of

endovascular treatments’ outcome has not been studied yet. However, the observed

effects on WSS magnitudes, and presumably direction, magnifies the importance of fu-

ture studies on non-rigid aneurysm wall models, especially when quantification of WSS

and its mechanistic relation to the aneurysm wall biology and intra-aneurysmal throm-

bogenesis is of interest, e.g., in VETMs.

All in all, the meta-analyses found that wall distensibility and inlet flow waveform

uncertainties have effects on the magnitude of aneurysmal wall shear stress predic-

tions by CFD. Since only the maximum WSS values, representing a state of maximum

stress [124] and wall deformation [121], were reported in some of the studies, thr meta-

analysis on the effect of wall distensibility is based on maximum WSS. This limits

the comparability of wall compliance meta-analysis with the other two meta-analyses

that are based on the averaged WSS, i.e., the meta-analyses on the effect of inflow

waveform and blood rheology. In future, in order to perform compliant wall simula-

tions, improvements on the structural models of arteries and current techniques for

measuring mechanical properties of the aneurysm wall are necessary. To the best of

my knowledge, the effect of rigid wall assumption on the endovascular treatment pre-

dictions, and stratification and rupture risk assessment of intracranial aneurysms has

not been explored yet. In addition, inter-subject variability of arterial flow rates as well

as intra-subject variations of the systemic flow conditions in response to the regulatory

systems lead to an uncertainty in the parent arteries’ flow rate waveforms. Despite the

recent studies [109, 110] on quantification of the uncertainties raised from inter-subject

variability of inflow waveforms, the effect of intra-subject variability of systemic flow

on aneurysmal WSS is still not attempted by the research community. Recent stud-

ies [125, 126] have revealed some new aspects of the effect of flow multi-directionality

on the biological responses of the endothelium, which may play an important role in

aneurysmal wall inflammation and degradation and aneurysm thrombosis by activat-

ing platelet activators [127, 128]. However, the sensitivity of WSS directionality to the

above mentioned sources of uncertainty has not been well investigated in the literature.

These, on the other hand, accentuate the importance of addressing geometric and flow

uncertainties in the endovascular treatment models.

Uncertainties in aneurysmal blood flow modelling may also arise in outlet bound-

ary conditions. Ramalho et al. [129] investigated the sensitivity of intra-aneurysmal

haemodynamics to the outlet boundary conditions assigned using four different meth-

ods: traction-free, zero-pressure, coupling to a zero-dimensional model, and coupling to

a one-dimensional model. They observed that coupling the outlet boundary to a zero-
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dimensional or a one-dimensional model resulted in more appropriate flow distribution

between the side branches. However, using the reduced-order models as boundary

conditions requires proper choice of model parameters, like resistance and capacitance

in zero-dimensional models, and vascular structural and mechanical properties in one-

dimensional models. Uncertainty in such model parameters should be addressed to

produce reliable patient-specific results, e.g. Refs [130, 131].

In addition to the uncertainties in quantifying physiological model parameters (i.e.,

blood density and viscosity) and boundary conditions, variabilities in discretisation

strategies may influence the model outcomes. Providing a fixed set of boundary con-

ditions and flow model parameters, the two recent CFD challenges on aneurysmal flow

modelling invited CFD modellers to simulate blood flow in selected aneurysms and

investigated how variations in solution strategies influence aneurysmal blood velocity

and pressure quantifications. In the Aneurysm CFD Challenge 2013 [132], despite us-

ing different solution strategies and resolutions (mesh sizes of 86k-31200k using first or

second order elements and time step sizes of 0.01-10 ms), approximately 80% of the 26

participating groups reported similar results with standard deviations of below 9% for

cycle-averaged and peak systolic velocity, and pressure on the parent artery centreline

in the two aneurysm cases studied; flow inside both studied aneurysms was stable and

comparison among participating groups resulted in standard deviations below 20% for

the velocity cut-planes through the aneurysm sacs. However, the aneurysmal flow inside

the aneurysm involved in the Aneurysm CFD Challenge 2012 [89] was not stable and

thus despite the overall agreement among the 27 submitted solutions, solutions with

higher temporal resolutions (time step sizes below 0.2 ms) were able to capture flow in-

stabilities; detection of flow instabilities by some groups resulted in greater inter-study

variabilities particularly in peak systolic velocity patterns. According to the above chal-

lenges, CFD simulations with high temporal resolutions of at least 0.2 ms are required

to capture aneurysmal flow instabilities. On the other hand, despite a strong correla-

tion (R2 > 0.9) between time-averaged WSS magnitudes, Valen-Sendstad et al. [133]

observed a weak correlation (R2 = 0.23) between OSI values predicted by normal (with

spatial resolutions of 0.1-0.2 mm and temporal resolutions of about 1 ms) and high res-

olution (with spatial resolutions of about 0.06 mm and temporal resolutions of about

0.05 ms) simulations. Comparing normal and high resolution CFD simulations, they

observed an average of 30% and 60% differences in pointwise values of time-averaged

and maximum WSS on the aneurysm sac, respectively. They suggested that partic-

ularly for bifurcation unstable aneurysms, normal resolution CFD simulations cannot

accurately capture oscillations both in magnitude and direction of WSS vectors. Due

to the observed differences between OSI values and pointwise WSS magnitudes pre-
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dicted by normal and high resolution schemes, Valen-Sendstad et al. [134] argued that

although normal resolution CFD simulations may be adequate for aneurysm rupture

risk assessment based on spatiotemporally averaged flow indices, they cannot be relied

on to fully characterise WSS as a complex biomechanical stimuli on the aneurysm wall.

Mesh resolution near the wires also influences the flow quantification in the presence

of endovascular devices. Comparing the solutions provided by 6 participating groups

for three particular stented aneurysms, the Virtual Intracranial Stenting Challenge

(VISC) in 2007 [88] showed that an accurate reconstruction of blood flow around the

stent wires requires an adequately fine mesh resolution near the struts. Janiga et al. [66]

observed more than 15% relative difference between intra-aneurysmal maximum flow

velocities obtained based on first- and second-order numerical discretisation. They

recommended second-order solvers for flow simulation in stented aneurysms.

To sum up, mesh-dependency tests are necessary when building VETMs, in par-

ticular, to ensure the convergence on the aneurysmal wall and near the device wires.

Although assessments of device performance based on the highly reduced indices (e.g.,

flow reduction or increase in the aneurysm sac turnover time) can be done using coarser

discretisations, higher resolution CFD simulations are required for an accurate reso-

lution of velocity and WSS fields, especially when the interaction between localised

haemodynamics and biology is of interest, e.g., platelet activation in the high shear

flows between the struts [40], and inflammatory or thrombogenic biochemical surface

reactions [126, 135]. In VETMs, CFD solutions require temporal resolutions higher

than 0.2 ms to capture flow instabilities of interest, and spatial resolutions in the order

of 0.1-0.2 mm within the vasculature and of about one-third of the wire radius near

the wires. In addition, volumetric meshes require at least a few layers of prismatic

boundary layer elements near the wall.

2.3 Modelling of endovascular devices and their deployment

Mathematical models developed for device deployment can be either mechanistic or

phenomenological. Mechanistic models of device deployment dynamics account for the

design and mechanical properties of the particular device and its mechanical interac-

tions (contact) with the flow, the arterial wall, and the device itself. This makes mech-

anistic models potentially more accurate. However, such models have a large number of

model parameters and, consequently, are more prone to uncertainty in the identification

of model parameters. In contrast, while they may ignore some of the underlying biome-

chanical mechanisms, phenomenological models make certain geometrical or physical

assumptions to describe the observable process of device deployment. These models
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are computationally faster and their parameters are more easily obtainable from the

device manufacturer. Therefore, phenomenological models are more commonly used

for simulating virtual treatment procedures for the embolisation of aneurysms.

Mechanistic virtual coil models have been employed to describe the dynamics of coil

deformation after insertion into the aneurysm sac [136, 137, 138, 139]. Such models

have many ingredients to adjust in order to optimise the deployment strategy, such

as the diameter, length, and mechanical properties of the coils as well as a proper

set of boundary conditions describing interactions of the coil with the micro-catheter,

aneurysm wall, and the coil itself. Equations of blood flow are then solved within

the coiled aneurysm. Phenomenological models of endovascular coil deployment can

be categorised into: (i) models that only modify the governing equations of blood

flow to account for the impedance of fluid flow in the porous region of a thrombosed

coil [140, 141, 142, 143, 144], and (ii) models that use mathematical descriptions to

explicitly model the coil deployment inside a specific aneurysm and then solve blood

flow equations in the aneurysm sac with a deployed coil inside [72, 145, 146, 147]. The

dynamics of stent deployment have been mechanistically modelled using finite element

models (FEMs) [29, 148, 149, 150, 151]. Such models, however, are computationally

very expensive since they consider the structural properties of the stent as well as its

interactions with the micro-catheter and the vascular wall. Phenomenological models

describe the endovascular stent by representing it as a porous medium [152, 153], by

mapping the stent design on a previously expanded cylinder inside the vessel [72, 73],

by deforming a mesh until it reaches the vessel wall [28, 70, 154, 155], or by weaving

stent wires around a circular cone deformed to fit against the vessel wall [27]. Flore et

al. [150] and Bernardini et al. [148] compared aneurysmal flow after placement of an

endovascular stent with a mechanistic FE model with that predicted after deploying

the stent using a phenomenological fast virtual deployment model and observed a good

quantitative agreement accompanied by a reduction in the computational time.

Virtual treatment models have been used to pre-operatively study the effect of coil

shape, orientation, and packing density in patient-specific aneurysm models. Schirmer et

al. [147] investigated the effect of orientation of helical coils on the aneurysmal flow and

showed that the coil orientation with respect to the aneurysmal flow has a considerable

influence of the effectiveness of helical coils. They showed that helical coils that are

located parallel to the flow jet entering the aneurysm are more effective in preventing

flow from entering the aneurysm and reducing the level of aneurysmal WSS. They

observed the least flow reduction in aneurysms with coils placed orthogonal to the

entering jet. Similarly, Jeong et al. [156] investigated the effect of coil shape and orien-

tation on the aneurysmal haemodynamics and showed that cage-shaped coils deployed



Virtual endovascular treatment of intracranial aneurysms 36

orthogonally to the entering flow jet provided the least flow reduction in aneurysms.

Agiilar et al. [157] studied the effect of coil surface area (diameter) and packing density

on the intra-aneurysmal flow. They observed that coiled aneurysms with the same coil

surface area but different packing densities produced similar intra-aneurysmal haemo-

dynamics. They also observed that the coiled aneurysm with the largest coil surface

area had the most effect on flow reduction and concluded that the coil surface area

influenced on its performance. Morales et al. [158] studied the effect of coil packing

density and configuration on the intra-aneurysmal flow and showed that at low packing

densities (< 12%), the aneurysmal flow was highly dependent on the coil configuration

and this dependency decreased as packing density grew. They observed an insignificant

influence of coil configuration at high packing densities.

Aneurysmal haemodynamics following the placement of a flow diverter stent are

known to be dependent on the aneurysm size and shape [159, 160, 161, 162], location

[159, 161], stent design and configuration [149, 155, 163, 164, 165, 166], and its orien-

tation and position in the parent vessel [165, 167, 168, 169]. The stent porosity has

also been shown to highly influence the effectiveness of the deployed stent [170, 171].

Virtual treatment models provide the opportunity to investigate the effect of the afore-

mentioned variables using image-based patient specific models before the actual place-

ment of flow diverters [33]. In clinical practice, flow diverters are usually selected to be

oversized, i.e., to have slightly greater diameter than the vascular calibre. This results

in an adequate appositioning against the vascular wall on the one hand and a stretch

of stent cells along the vascular axis on the other. Mut et al. [172] studied the effect

of stent oversizing on the post-treatment aneurysmal haemodynamics and showed that

oversizing will result in larger stent cells and will decrease the haemodynamic effective-

ness of the flow diverter stent. While deploying flow diverters, clinicians can maximise

the strut local compaction, and consequently the flow diversion, across the aneurysm

neck. The dynamic push-pull flow diverter deployment technique has been used to

increase and decrease the local density of the flow diverter at the aneurysm neck and

perforator-rich regions of the parent vessel, respectively, to allow maximum flow diver-

sion at the neck while maintaining the perforators and branch vessels [173]. Janiga et

al. [174] simulated flow through similar flow diverters that are differently deployed to

have eight different local compactions at the neck; and, observed that different local

compactions lead to different post-deployment intra-aneurysmal flow reductions rang-

ing from 24.4% to 33.4%. They remarked that flow diverter local compaction across

the aneurysm neck can be virtually and pre-operatively optimised to reach maximum

flow reduction. However, Xiang et al. [40] simulated this deployment technique and

showed that although resulting in an increased flow diversion, it pushes the flow di-
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verter to bulge out inside the aneurysm, and produces a weaker inflow compared to the

standard deployment technique that results in lower shear rates near the stent struts.

Since high shear-induced activation of platelets plays a role generation of a stable white

thrombus (versus instable stasis-induced red thrombus) inside the aneurysms,Xiang et

al. [40] suggested that this deployment technique may result in lowering the platelet

activation and, consequently, white thrombus formation potential.

Performance of endovascular devices in treatment of aneurysms is assessed by their

ability to induce a flow stasis and consequently an occluding stable blood clot in

the aneurysm sac [20]. Virtual endovascular treatment models can be used to pre-

operatively predict the likelihood of recanalisation in candidate aneurysms for coil

embolisation. Presence of high WSS ( > 35 Pa as reported by Refs [175, 176]) at

the neck of the coiled aneurysms was shown to have a correlation with post-treatment

recanalisation and regions of high WSS coincided with regions where recanalisation

happened [175, 176, 177, 178]. Delayed or incomplete occlusion and post-treatment

rupture are the challenging complications associated with flow diverter treatments.

Currently, there is no reliable measure to predict the performance of implanted flow di-

verters in terms of inducing a durable clot that occludes the sac completely and triggers

the process of healing. Several attempts have been made to computationally quantify

the stent-induced post-treatment haemodynamic alterations and use them to predict

the treatment outcomes. Chung et al. [179] evaluated the treatment outcome in 36

rabbits with elastase-induced aneurysms treated with flow diverters; nine aneurysms

were occluded completely or near completely within 4 weeks (categorised as fast group)

and six aneurysms incompletely occluded at 8 weeks (categorised as slow group); dif-

ferences were observed between the morphological indices of the two groups; e.g., neck

area was 0.365±0.082 cm2 in the slow and 0.144±0.078 cm2 in the fast occlusion group,

p-value = 0.015. However, from haemodynamic measures (measured immediately after

stent deployment), the aneurysm inflow rate and mean intra-aneurysmal velocity were

lower in the fast occlusion group (inflow rate was 0.155±0.095 mL/s in the slow and

0.047±0.053 mL/s in the fast occlusion group, p-value = 0.024 and intra-aneurysmal

velocity was 0.506±0.298 cm/s in the slow and 0.221±0.224 cm/s in the fast occlusion

group, p-value = 0.058); no differences were observed between WSS-based measures

(e.g., space-averaged WSS, minimum WSS, or low WSS areas). Mut et al. [180] ex-

amined post-stent aneurysm flow in 23 aneurysms (15 aneurysms considered as fast

with occlusion times less than 3 months, and the other 8 considered as slow with in-

complete occlusion or patency at 6 months); they found differences in post-treatment

inflow rate (1.89±1.88 mL/s in the slow and 0.47±0.52 mL/s in the fast group, p-value

= 0.021), mean velocity (3.11±2.04 cm/s in the slow and 1.13±0.92 cm/s in the fast



Virtual endovascular treatment of intracranial aneurysms 38

group, p-value = 0.004), and shear rate (32.37±20.93 /s in the slow and 20.52±23.18

/s in the fast group, p-value = 0.021) values between the fast and slow groups; they

suggested a threshold of 1.3 cm/s on post-stent mean velocity could predict occlusion

time (slow or fast) with an accuracy of 84%. Kulcsar et al. [181] examined pre- and

post-treatment haemodynamics in eight para-ophthalmic aneurysms treated with flow

diverters; one was occluded but ruptured 5 day after treatment, one remained patent

after one year, and others were occluded during the one year follow-up. In aneurysms

with complete occlusion, they observed reductions of 10%-80% in the mean velocity,

12%-58% in the maximum velocity, 44%-81% in the mean WSS, and 32%-82% in the

maximum WSS after flow diverter placement; however, mean and maximum velocities,

and mean and maximum WSS were reduced by 60% and 47%, and 68% and 60% in

the aneurysm that remained patent, respectively. In the aneurysm with post-treatment

rupture, Kulcsar et al. [181] also observed 20% and 0% reductions in the mean and

maximum velocities, respectively, while the mean WSS was reduced by 60% and a

reduction of 20% was observed in the maximum WSS after stenting. They pointed

out that lower reduction rate in the maximum velocity of the ruptured aneurysm sug-

gests a persisting jet that prevents the successful occlusion of this aneurysm. However,

based on the observations reported by Kulcsar et al. [181], the averaged haemody-

namic measures in the case with persisting patency are not significantly different from

those aneurysms with successful occlusion. Focusing on the relative changes (post- to

pre-treatment ratio) induced by flow diverters, Ouared et al. [182] attempted to find

patient-unspecific haemodynamic ratio thresholds that significantly determine the con-

dition required for a durable aneurysm occlusion; they examined pre- and post-stent

space-and-time-averaged velocity and WSS in 12 aneurysms (nine were occluded at

12 months’ follow-up while the remaining three were still patent) but found no sig-

nificant absolute occlusion threshold based on post-stent velocity and WSS absolute

values; however, they found an area under curve (AUC) with a p-value of only 0.052

for pre- to post-stent mean velocity ratio with a minimum of one-third velocity re-

duction necessary to generate a long-term occlusion (with a sensitivity and specificity

of about 99% and 67%, respectively), independent of the aneurysm geometry; despite

post-treatment WSS reductions in all aneurysms, they could not find any significant

occlusion threshold based on post- to pre-stent WSS ratios.

The above-mentioned studies identified reductions in aneurysmal flow and WSS

following the treatment with endovascular devices; however, most of them found no

significant haemodynamic differences between cases with successful occlusions or per-

sisting patency. Although the observed post-treatment haemodynamic changes suggest

the capability of pure haemodynamic models in predicting the treatment outcomes, the
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limited sample sizes in each individual study prevents any general conclusion; for ex-

ample, all aneurysms included in the study by Kulcsar et al. [181] have post-treatment

mean velocities greater than that suggested by Mut et al. [180] as a fast occlusion

threshold; or the so called patient-unspecific velocity reduction occlusion threshold

proposed by Ouared et al. [182] results in a sensitivity and specificity of about 67%

and 50% in the cohort studied by Kulcsar et al. [181]. Despite the hypothesised im-

portant role of WSS on aneurysm wall biology and initiation of thrombosis, none of

the reviewed studies identified a significant difference between the fast and slow oc-

clusion outcomes based on averaged WSS-based measures; this could be attributed

to the highly localised patterns of aneurysmal WSS and the consequent biological

aneurysm wall phenotypes that are not captured by the averaged quantities studied in

the mentioned works. Moreover, inducing a selective aneurysmal clotting that triggers

the healing process is crucial [183]. Unlike the stasis-induced red thrombus, which

is less organised and contains a high content of leukocytes and proteolytic enzymes,

white thrombus is more stable and contains a low content of leukocytes and proteolytic

enzymes [40]. Unstable red thrombus forms under low shear flow; conversely, white

thrombus forms through activation of platelets in high shear rate regions (e.g., near the

stent struts) [40]. Recent findings on post-procedural ruptures of aneurysms treated

with flow diverters suggest that the presence of fresh and non-organised red throm-

bus may result in a pathophysiological cascade leading to aneurysm wall degradation

and rupture [39]. This revealed that device-induced intra-aneurysmal flow stasis may

result in formation of unorganised red thrombus and lead to aneurysm rupture after

treatment. Xiang et al. [40] hypothesised that white thrombus should desirably be

induced in the aneurysm to promote stabilisation red thrombus and generate a stable

clot that assist in the formation of a neointimal layer over the aneurysm neck. The

hypothesis that the stable intra-aneurysmal clot is a combination of red (forms via

stent-induced stasis) and white (forms via stent-induced platelet activation) thrombi

needs further investigation and validation [40]. This hypothesis also magnifies the im-

portance of appropriate anticoagulant/antiplatelet therapies in such complex problems

[40, 183]. Summing up, the favourable treatment outcome, i.e., formation of a com-

plete stable clot at a rate faster than thrombus-induced wall degradation, however,

is highly affected by the mechanical and biochemical interactions between clot and

intra-aneurysmal flow, in the presence of the anticoagulant/antiplatelet therapies. The

above discussion implies that whether or not an implanted endovascular device leads

to a complete aneurysm occlusion may not be assessed only based on post-treatment

highly averaged haemodynamic quantities. Information from the intra-aneurysmal bio-

chemistry and biology is required to reliably predict device performance. This could
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be achieved by coupling mechanistic blood coagulation sub-models to the VETMs or

devising more advanced phenomenological haemodynamic surrogates that capture the

ongoing biological processes more effectively. Creating device performance indicators

that compare the device-induced formation rates of unstable red versus stable white

thrombi in the presence of anticoagulant/antiplatelet therapies may help predict the

efficacy of an endovascular device for a specific patient.

2.3.1 Uncertainty in modelling of the endovascular devices

Uncertainty in modelling of the endovascular devices can arise either from uncertain

model parameters or the way each model represents deployment of the device and its

interaction with blood flow (model uncertainty). Phenomenological models of coil and

stent deployment often rely on parameters such as device design, diameter, and length,

which are often obtainable from the manufacturer. However, mechanistic models in-

clude mechanical properties of the devices and boundary conditions, which cannot be

easily measured, and thus, introduce uncertainty into the model. The effect of device

configuration, orientation, and position of the devices has been investigated in the lit-

erature, but to the best of my knowledge, the quantification of the uncertainty in the

model parameters has not been attempted so far.

Modelling endovascular devices as porous media, although is not strictly a source

of uncertainty, introduces errors in quantification of aneurysmal flow; especially lo-

cal values of haemodynamic variables. Morales et al. [30] compared post-treatment

aneurysmal flow fields obtained from modelling the deployed coil as a porous medium

with that obtained from modelling the coils explicitly. They observed considerable

differences in intra-aneurysmal velocity and local concentration of contrast agent pre-

dicted by each of the two techniques. However, due to the lack of quantitative compar-

isons between post-treatment aneurysmal flow fields obtained from models and in vivo

measurements, it is not yet certain, which of the proposed models better represents

the device performance under specific conditions. Levitt et al. [184] compared post-

treatment haemodynamics in two coiled aneurysm phantoms numerically simulated

using the porous medium technique and explicit model of coils obtained from high-

resolution high-energy synchrotron X-ray micro-tomography; substantial differences up

to 50% and 130% respectively in time-averaged WSS and OSI values averaged over the

aneurysm sacs suggest inaccurate haemodynamic quantifications using homogeneous

porous medium coil models. Although synchrotron tomography is not currently avail-

able in the routine clinical practice, this modality can be used to evaluate the accuracy

of other more complex coil modelling techniques. In two of the three stented aneurysms,

Raschi et al. [185] reported a qualitative and quantitative agreement (with up to 10%
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difference in post-treatment reductions in aneurysm-averaged WSS) between aneurys-

mal post-treatment haemodynamics predicted by explicit and porous medium models

of the deployed stents; in the third aneurysm, post-treatment reduction in aneurysm

averaged WSS differed up to 25% between the porous medium and explicit models

of the flow diverters. In a similar study with two stented aneurysms, identical WSS

distributions with relative root mean square errors of 21%-24% in mean WSS magni-

tude averaged over the entire sac and 45%-81% in mean WSS magnitude averaged over

the aneurysm dome are reported for simulations with flow diverters modelled either as

porous medium or explicitly [152]. Capturing the local variations of porosity is a chal-

lenge in porous medium models of both coils and flow diverters. For example, complex

geometry of the host artery, or particular deployment techniques (e.g., the push-pull

technique) result in local variation of stent porosity at the aneurysm neck which cannot

be easily mimicked by the porous medium models; especially if pre-operative evalua-

tions of the devices are of interest so that the post-deployment porosities cannot be

estimated by micro-tomography techniques. Thus, although refinements may improve

on the predictions by encouragingly cost-effective porous medium models, the geomet-

rical complexity of endovascular devices and the consequent effects on the flow seem

to be a serious challenge to these models.

Intra-procedural changes in the host vessel geometry (shape and size) introduce

further uncertainties in VETMs that has yet to be studied in more detail and quan-

tified. The parent vessel can undergo dilation as a consequence of stent expansion

during deployment, vasodilator drug administration, and the intentional post-release

manipulations to correct stent apposition all leading to reported differences of about

5% and 10%, respectively, between virtual and real stent final radius and length [186].

Delayed geometrical and angular alterations of the host arteries within a year after

deployment are also reported in stented aneurysms [187]. Straightening of the parent

artery after deployment of stents was reported by King et al. [188]. In sidewall vertebral

artery aneurysms, this resulted in alterations in the flow direction and rate (by 10%)

of the aneurysm inflow jet [189]. However, none of the current deployment techniques

accounted for such device-induced geometrical alterations [66]. Formation of a rapid

and stable clot, which completely occludes the aneurysm sac, is the desired goal of

a successful endovascular aneurysm treatment [190]; and, uncertain intra-procedural

alterations in the physiological flow can affect the treatment outcome. Mut et al. [191]

investigated intra-aneurysmal haemodynamics in aneurysms treated with three differ-

ent stents under five different time-averaged flow rates in the parent vessel and observed

that a change of 30-50% in the parent vessel flow rate during the stenting procedure

resulted in a 30-80% change in the aneurysmal haemodynamic variables. This obser-
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vation highlights the importance of inlet flow variability as a source of uncertainty (see

the uncertainty in blood flow modelling section) in vascular treatment models.

2.4 Modelling of blood clotting

2.4.1 Clotting in aneurysms

In ruptured intracranial aneurysms, clot formation is the response of the haemostatic

system and prevents blood loss at the site of injury, where the aneurysm has burst.

Chronic spontaneous thrombosis can also occur in unruptured aneurysms, resulting in

further wall damage and later aneurysm rupture or a natural healing process through

complete occlusion of the aneurysm sac [192]. On the other hand, as mentioned before,

intrasaccular thrombosis can also be induced by endovascular devices, like coils and

stents, to occlude the aneurysm sac and isolate it from the vascular bed and reduce

the rupture risk.

The desired process of healing in endovascular treatment is to generate a stable

clot throughout the aneurysm sac. The aneurysm will then be excluded from the par-

ent vessel by formation of a neointimal layer over the aneurysm neck [193, 194, 195].

Endovascular treatments are associated with complications such as incomplete occlu-

sion, recanalisation or recurrence [196, 197], and thromboembolisation [198], which

expose the patient to the risk of a later haemorrhage or an ischemic stroke. Antico-

agulant drugs are usually prescribed after endovascular treatments [199], and prevent

uncontrolled acute device-induced thrombus formation and reduce the risk of throm-

boembolisation on one hand and prolong the endosaccular clot formation on the other.

Due to the prolonged treatment procedure, further wall inflammation and damage may

occur due to the presence of an incomplete clot partially covering the aneurysm wall,

increasing the risk of post-treatment rupture [39, 200]. Moreover, the increased time of

clotting due to the prescription of antiplatelets and anticoagulants can further increase

the risk of bleeding in patients with endovascular treatments [199].

2.4.2 Mechanisms of intra-aneurysmal thrombosis

It has been thought that adverse haemodynamic conditions at the aneurysm wall may

result in wall inflammation and damage to the endothelium [38]. Aneurysm wall is

often characterised by dysfunction/loss of endothelium [200]. The cell-based model of

coagulation [201] provides an explanation for spontaneous thrombosis resulting from

the endothelial damage and exposure of vascular tissue factor (TF) to the circulating

blood in the aneurysm sac. WSS at regions where flow is low and multidirectional or
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at regions where flow variations are dominated by frequencies higher than the systemic

flow frequency (the heart rate) have been shown to correlate with the pro-inflammatory

response of the endothelial cells [135, 202]. Inflamed endothelium expresses the NF-κB

transcription factor (a nuclear transcription factor that can be activated by environ-

mental signals, like WSS, and mediate wall inflammation and weakening), leading to

upregulation of blood borne TF, which can subsequently trigger spontaneous thrombo-

sis in such regions [203, 204]. Platelet activation and aggregation within the recircula-

tion regions followed by deposition in regions of low flow has also been used to explain

spontaneous coagulation in aneurysms [205, 206].

As far as device-induced coagulation in aneurysms is considered, pro-coagulant al-

terations in aneurysm haemodynamics, platelet activation as a result of blood contact

with the deployed devices, and shear-induced platelet activation are key factors in ini-

tiating endosaccular thrombosis. Intra-aneurysmal flow reduction using endovascular

devices is thought to create dead zones where the flow stasis favours platelet adhesion

and activation, a key step in the thrombosis process [40, 41]. Such flow stasis can also

be associated with damage to the endothelium and exposure of the sub-endothelial TF

[207]. Blood contact with the artificial material (the deployed devices) is hypothesised

to also be responsible for the initiation of blood coagulation inside the aneurysm sac

[208, 209]. Xiang et al. [40] suggested that platelets can become activated in high-shear

regions near the flow diverter stent struts and can be transferred to and deposited in

low-flow regions in the sac. They further distinguished between white and red thrombi,

where the former favours aneurysm healing and the latter leads to further wall weak-

ening and the ultimate aneurysm rupture after flow diverter placement.

2.4.3 Computational models for spontaneous thrombosis in aneurysms

The most challenging part of a mechanistic model of thrombus formation in aneurysms

is the mechanism used to describe thrombosis initiation. It has been observed that

blood clots form or at least deposit in the regions where blood flow is extremely low

and multidirectional [43, 210, 211, 212]. However, it is not yet well understood whether

clotting starts extrinsically due to the endothelial damage and TF exposure in disturbed

flow regions, i.e., aneurysmal wall regions where haemodynamic stresses are extremely

low and multidirectional; or, intrinsically due to platelet activation and aggregation

and exposure of blood borne TF under certain haemodynamic conditions [213]. Coag-

ulation models in aneurysms can be classified into two main groups. The former only

characterise blood flow in aneurysms and do not include any biochemical reactions.

The latter, however, couple both flow and reaction to model coagulation in aneurysms.

Some models include additional parts that consider the mechanical interactions be-
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tween the clot and the blood flow field.

Rayz et al. [43, 214] and Ouared et al. [42, 215] correlated flow velocity, flow resi-

dence time residence time (RT) and WSS with clot formation and simulated clotting in

aneurysms without considering the biochemical reactions. For three patients with mag-

netic resonance imaging scans before and after thrombus formation, Rayz et al. [214]

showed that blood clots developed in regions with low WSS and high RT. They re-

vealed a correlation between the location of intraluminal blood clots and regions of

high RT and low WSS. Zimny et al. [216] classified thrombosis initiation mechanisms

in aneurysms into intrinsic and extrinsic mechanisms. In their multiscale model, in-

trinsic mechanisms initiated clotting through platelet activation by the inflamed wall

or by the contact of blood with external devices (e.g., coils and stents) and extrinsic

mechanisms initiate clotting through exposure of TF due to damage to the aneurysm

wall. Such damage was considered to be a result of post-treatment flow alterations in

the sac or any damage that occurred during the deployment procedure. They finally ex-

tended the mesoscale model presented by Ouared et al. [42, 215] to a three-dimensional

aneurysm model and simulated flow-mediated thrombus generation based on a thresh-

old on aneurysmal WSS under which thrombosis initiates. deSousa et al. [41] simulated

flow in ten patient-specific aneurysms and showed that spontaneous thrombosis was

present in aneurysms with low shear rate and suppressed pulsatility. They also showed

for three aneurysms treated with flow diverters that after flow diverter deployment,

the aneurysmal shear rate fell below a certain threshold that has been correlated with

the onset of thrombosis generation.

Although such models can provide some information about the possibility of pres-

ence of endosaccular thrombosis under certain aneurysmal morphology or haemody-

namic environment, they will not provide enough information about the morphology

of the aneurysmal blood clot and its interaction with the aneurysmal blood flow. Since

these models do not include the underlying biochemical reactions, they cannot be used

to predict effects of the chemical composition of blood or use of anticoagulants on spon-

taneous clotting or the final outcome of endovascular treatment. Coupling blood flow

with a network of biochemical reactions, Bedekar et al. [44] and Biasetti et al. [217]

simulated clot formation in intracranial and abdominal aortic aneurysms, respectively.

They both used TF exposure on the aneurysm wall as the initiator of the clotting

process and assigned a prescribed concentration of TF on the aneurysm wall as bound-

ary condition. This approach benefited from a biochemical web of surface reactions

to model clot formation on the aneurysm wall; however, it assumed that TF was uni-

formly exposed on the aneurysm wall and initiated the coagulation cascade. On the

contrary, it has been observed that inflammatory lesions and endothelial damage, which
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are thought to be responsible for TF exposure, are localised phenomena resulted from

region-specific adverse haemodynamic conditions. Malaspinas et al. [211] set up a series

of in vitro experiments and obtained WSS thresholds below which coagulation starts in

idealised aneurysm geometries. Then, they used those thresholds to simulate clotting

in two real aneurysms and successfully validated their results against patient-specific

medical images. Although Malaspinas et al. [211] took a threshold-based approach to

study spontaneous clotting in aneurysms, they simulated the underlying biochemical

reactions; that is, the threshold has been used as the initiator of a web of chemical

reactions. This makes their model capable of investigating the effect of patient-specific

deficiencies in certain coagulation factors and/or the effect of anticoagulants on the

clotting time and the final percentage of aneurysm occlusion.

2.4.4 Computational models for device-induced thrombosis in

aneurysms

Xiang et al. [40] presented a model of blood flow in stented aneurysms, and demon-

strated that blood flow near stent struts can provide shear rates high enough to activate

platelets and trigger blood coagulation in the aneurysm sac where the flow is low enough

for platelets to aggregate. Ngoepe et al. [45] coupled flow and biochemistry to simulate

both spontaneous and stent-induced thrombosis in patient-specific aneurysm geome-

tries. They used a level-set method to track the clot surface at each instance of the

time and consider the effect of clot on the flow domain. They considered vascular TF

as the sole initiator of the clotting process; however, instead of a uniform exposure

of TF on the aneurysm wall, they used a shear rate threshold below which TF can be

expressed on the wall and initiate the clotting process. This allowed coagulation to

start only on the portions of the endothelium that are expected to be damaged, which

is more physiologically relevant than exposing TF uniformly on the aneurysm lumen.

Recently, observing the fact blood clotting in aneurysms is not necessarily triggered

by the exposure of TF due to the wall damage, Ou et al. [212] presented a model with

more emphasis on the blood-borne TF as the initiator of stasis-induced thrombosis in

aneurysms. To concentrate on the role played by the blood-borne TF, they ignored

exposure of TF on the sub-endothelium and thrombogenicity of the flow-diverter. They

hypothesised that accumulation of blood-borne TF in aneurysmal dead zones, where

flow is low enough, is responsible for the initiation of thrombosis in those regions. The

validity of their proposed model was supported by in vivo observations of surgically

induced stasis in ligated right common carotid arteries of rats.
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Figure 2.6: Possible mechanisms of intra-aneurysmal thrombosis.

2.4.5 Uncertainty in computational models of blood coagulation

Blood coagulation, either as part of haemostatic system or under pathological condi-

tions, is a very complex system with several sources of uncertainty. One may consider

the lack of in vivo experimental data and the limited knowledge on the underlying

pro- and anticoagulant mechanisms as the main sources of uncertainty in such a com-

plex process. It has been implied that neither cascade nor cell-based models of co-

agulation can satisfactorily explain in vivo coagulation in pathologies like intracranial

aneurysms [209]. The role of the vessel wall in chemical initiation and hosting the coag-

ulation process and interactive effects of the clot and blood flow field are still uncertain

[44, 45, 218].

According to Virchow’s triad, thrombosis can be initiated as a result of damage to

the endothelium, damage to the blood itself, or under certain blood flow conditions.

Particularly, as depicted in Figure 2.6, coagulation in aneurysms can be initiated due

to 1) platelet activation as a result of endothelial damage and contact of blood with the

vascular TF, 2) platelet activation as a response to upregulation of the blood-borne TF

due to pro-inflammatory response of the endothelium, 3) platelet activation as a result

of blood contact with thrombogenic surface of endovascular implants, and 4) platelet

activation as a response to high blood shear force at high shear regions like near the flow-

diverter struts. Blood stasis (dead zones) in complex aneurysmal geometries is always a

favourable region for activated platelets to deposit and trigger blood coagulation. When

considering blood coagulation in a given aneurysm, it is unclear beforehand if any or

all of the above mentioned mechanisms are responsible for initiation or amplification

of the thrombosis. Moreover, none of the current models developed to simulate blood

coagulation in aneurysms include all of the above mechanisms or measure the relative

importance of them for a particular aneurysm.

Insufficient experimental data and uncertain role of the coagulation factors can even
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increase the level of uncertainty of the current models. For example, activation of the

coagulation factor XII (a coagulation plasma protein that can be activated on artificial

surfaces) in the presence of endovascular implants, which plays an important role in

amplification of the coagulation, is not included in the cell-based model of coagulation

[208].

Intra-subject variability in blood composition and pathologic deficiencies of certain

coagulation factors can also increase the amount of uncertainty in coagulation mod-

elling. It has been shown that uncertainty in the concentration of certain coagulation

factors can result in completely different thrombin generation curves in a single pa-

tient. This can even be generalised to inter-subject, age-, sex-, and lifestyle-related

variabilities in concentration of coagulation factors. These variabilities can also af-

fect kinetics of the underlying reactions in terms of their rate constants. Danforth et

al. [219] and Luan et al. [220, 220] investigated uncertainties in the reaction rate con-

stants and showed that the predictive capability of the entire model is highly sensitive

to variabilities in some of the numerous rate constants involved in a biochemical model

of coagulation.

2.5 Conclusions

Endovascular treatment of intracranial aneurysms requires evaluating the best treat-

ment options in terms of efficacy and safety. Whether a certain endovascular treat-

ment leads to formation of a stable clot in a specific aneurysm is a question that

challenges neurointerventionalists. Endovascular planning systems that would allow

pre-interventional assessment of aneurysmal haemodynamics before and after virtual

treatment are potentially valuable clinical tools. Underpinning such systems, CFD

alongside other computational techniques for creating image-based vascular surface

models and models of endovascular devices have already been extensively used to

characterise intra-aneurysmal blood flow, and to understand the interplay between

blood flow, aneurysm rupture risk, and endovascular treatment outcome. This paper

overviewed the state-of-the-art in this area; and highlighted the importance of future

efforts concentrating in device-induced thrombosis and uncertainty modelling in the

context of VETMs.

We have presented a review of the current status of vascular anatomy and blood

flow models, endovascular device deployment models, and blood coagulation models

as the main ingredients that can be integrated into a VETM to help clinicians in

the management of intracranial aneurysms. To provide a complete picture of treat-

ment outcome, current systems for VETM need to be extended to incorporate post-
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treatment aneurysmal response and account, for instance, for the mechanisms of clot

formation in the presence of endovascular devices. Although efforts exist to model

intra-aneurysmal blood coagulation [219, 221], none of the current models include all

of the underlying mechanisms of intra-aneurysmal coagulation (see Figure 2.6) or mea-

sure the relative importance of them for a particular aneurysm. Most of the models

have not been personalised or are difficult to personalise based on available patient-

specific data. Stratification [222, 223] and success criteria for endovascular treatment

need to be established that objectively define the ideal outcome in a way that could

be used by the modelling community as part of a treatment optimisation framework.

Therefore, future research will have to first bridge the gap between available empirical

evidence from clinical studies as to what constitutes and leads to a successful treat-

ment outcome and the technical ability to computationally model the complex interplay

between factors due to the anatomy, haemodynamics, blood clot, and endovascular de-

vice. This underlying complexity, on the other hand, will have to be modelled in a

judiciously simplified manner not only to make the problem computationally tractable

while remaining faithful to key mechanisms but also to enable personalisation of model

parameters to limited patient-specific data. At the same time, current attempts to

create advanced haemodynamic surrogates for intra-aneurysmal biological phenotypes

(e.g. thrombosis) [41, 43, 214, 224], should be further validated against in vivo obser-

vations and potentially used to develop more accurate predictors of intra-aneurysmal

thrombosis that those attainable by simulating even simplified models the underlying

complex biological mechanisms.

In an editorial, Kallmes et al. [46] expressed concerns regarding the status of compu-

tational studies on intracranial aneurysms and their clinical relevance. Two challenges

were raised: 1) Can the VETM be used to predict flow quantities that are useful in clin-

ical diagnosis and prognosis? 2) Do the numerous modelling assumptions and related

uncertainties make the results questionable? In another editorial, Cebral et al. [225]

emphasised that certain approximations and simplifications are needed in CFD studies

to make them more cost effective and feasible. They suggested that what is important

is measuring the effect of those assumptions on model outcomes and their relative im-

portance, which could be evaluated using sensitivity analysis techniques. In this work,

I have reviewed the three main ingredients of an image-based patient-specific virtual

endovascular treatment model for intracranial aneurysms. Each of these sub-models is

prone to uncertainties, which should be addressed in order to make the virtual endovas-

cular treatment model reliable as well as patient-specific. For those uncertainties that

I found enough quantitative analyses, meta-analyses were performed to identify their

pooled effect. As presented in Table 1, uncertainties were categorised into: 1) those
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for which a meta-analysis has been performed and thus their effects are supported by

the highest level of evidence, 2) those which have been studied in the literature but

for which I could not perform a meta analysis due to effects not being reported quan-

titatively or having only been considered in a limited number of studies, and 3) those

which have not been studied yet in the context of IAs and thus their effect on the

model outcomes is not still clear.

Virtual endovascular treatment models are influenced by several sources of uncer-

tainty that need to be accounted for when interpreting the results of their predictions.

Uncertainty handling is relevant to most computational biomechanics problems but can

become particularly severe in complex multi-scale models. Meta-analyses have been

performed on three well-known sources of uncertainty, and the uncertainties arising

from vascular wall distensibility and inflow waveform variabilities showed effect sizes

(Hedge’s g) of 0.34, 95% CI [0.22, 0.45], p-value < 0.001, and 0.3, 95% CI [0.08,0.52], p-

value = 0.003, respectively. Significance of non-rigid FSI models in future understand-

ing of complex biomechanical processes at the aneurysm wall has also been pointed

out by Chung et al. [122]. Physiologically realistic FSI models of aneurysms require

measuring local variations of wall mechanical properties over highly heterogeneous

pathologic aneurysms’ wall which is not easily achievable in routine clinical practice.

In future, such uncertainties should be addressed by 1) using more accurate techniques

for measuring model input parameters (uncertainty mitigation), 2) consideration to the

propagation of uncertainties from input parameters into the model outputs by reporting

confidence intervals and sensitivities instead of deterministic results (uncertainty explo-

ration), or 3) replacing model outputs with other alternative variables, which carry the

same information but are less sensitive to the unknown model parameters (sensitivity

reduction). Specifically, more advanced imaging techniques can provide higher quality

images of the vascular lumen along with fully automatic segmentation techniques that

do not require a posteriori manual editing and can eliminate some of the geometric un-

certainty. Conducting more experimental studies regarding the mechanisms underlying

thrombosis, particularly in aneurysms, can reduce model uncertainties in aneurysmal

clotting and thus produce more reliable virtual treatment outcome predictions. How-

ever, inherent uncertainties in the systemic flow (and several other model parameters)

cannot be eliminated. In such cases, advanced uncertainty quantification techniques

[130, 226, 227] can be used to systematically explore the effects of these uncertainties.

The concept of personalisation should not be limited to deterministic identification of

model parameters at a particular moment in time. Instead, model parameters should

be treated as uncertain and/or fluctuating quantities; and uncertainty quantification

techniques should be employed to propagate those uncertainties through the virtual
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treatment models in order to produce confidence intervals and sensitivities associated

with the model predictions.
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Table 2.1: Major sources of uncertainty in different sub-models of a typical endovascular treatment model.

a) Uncertainties for which a meta-analysis has been performed

Source of uncertainty Reference(s)
Summary effect (Hedges’ g)

Mean (95% CI)

Wall distensibility

Torii et al. [118]

Bazilevs et al. [120]

Bazilevs et al. [121]

Takizawa et al. [119]

0.34 (0.22 – 0.45)

Inlet flow rate waveform

(inter-subject variability)

Karmonik et al. [106]

McGah et al. [105]

Jansen et al. [103]

0.02 (-0.04 – 0.07)

Blood rheology

Fisher et al. [97]

Morales et al. [98]

Castro et al. [96]

0.30 (0.08 – 0.52)

b) Uncertainties for which a meta-analysis has not been performed

Source of uncertainty Reference(s) Main findings

Segmentation and recon-

struction accuracy

Cebral et al. [31]

Castro et al. [61]

Gambaruto et al. [62]

Geers et al. [57]

Mikhal et al. [228]

Schneiders et al. [229]

Overestimation of neck size by CTA compared to 3DRA lead to a 44.2%

difference in time-and-space-averaged WSS over the aneurysm sac.

Overestimation of neck size by 3DRA compared to 2D DSA lead to

differences up to 98% in maximal WSS over the aneurysm sac.

Reconstruction smoothing level can affect aneurysmal WSS by 15%.

Reconstruction of aneurysm and parent vessel surface models signifi-

cantly affect aneurysmal haemodynamics. Special care should be taken

about removing kissing vessels, overestimation of aneurysm neck size

by CTA and 3DRA, smoothing levels, and parent vessel reconstruction.

Length of parent vessel

proximal to the aneurysm

Pereira et al. [114]

Hodis et al. [115]

Valen-Sendstad et al. [112]

Length of proximal parent vessel have a large effect on the aneurysmal

haemodynamics (approximately 20% on the aneurysmal WSS). Parent

vessels should at least be truncated as far upstream as images allow,

preferably below the cavernous segment on ICA.
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Continuation of Table 2.1.b) Uncertainties for which a meta-analysis has not been performed

Source of uncertainty Reference(s) Main findings

Outlet boundary conditions Ramalho et al. [129]

Outflow boundary conditions highly influence the aneurysmal haemo-

dynamics (approximately 20% on the aneurysmal WSS) when multiple

outlets are present. 0D and 1D outlet boundary conditions provide

realistic flow split between branches when tuned carefully.

Moving parent arteries Sforza et al. [230]
Pulsating intracranial vasculature motion has small effects on the

aneurysmal haemodynamics (less than 5% on the aneurysmal WSS).

Using different CFD solvers Steinman et al. [89]
Standard deviations of below 9% for cycle-averaged and peak systolic

velocity and pressure.

Discretisation schemes Valen-Sendstad et al. [134]

Strong correlation (R2 > 0.9) between time-averaged WSS magnitudes

between values obtained from normal and high resolution simulations.

Weak correlation (R2 = 0.23) between OSI values predicted by normal

and high resolution simulations.

Endovascular device deploy-

ment model structure (im-

precise governing equations)

Morales et al. [30]

Levitt et al. [184]

Raschi et al. [185]

Augsburger et al. [152]

Modelling aneurysmal coils explicitly or approximating them by a

porous medium will highly affect the predictions of post-treatment

haemodynamics (approximately 70% difference in the post-treatment

intra-aneurysmal velocity).

Differences up to 50% and 130%, respectively in post-treatment time-

averaged WSS and OSI values averaged over the aneurysm sacs ob-

tained from explicit and porous medium models of coiled aneurysms

Aneurysm-averaged WSS Differences of 10-25% between aneurys-

mal post-treatment haemodynamics predicted by explicit and porous

medium models of the deployed stents.

Relative root mean square errors of 21-24% in mean WSS magnitude

averaged over the entire sac and 45-81% in mean WSS magnitude aver-

aged over the aneurysm dome between simulations with flow diverters

modelled either as porous medium or explicitly.

Intra-procedural systemic

flow alterations
Mut et al. [191]

Intra-procedural parent vessel flow rate alterations greater than 30%

can result can result in a 30-80% change in the aneurysmal haemody-

namic variables.
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c) Uncertainties that have so far not been studied in intracranial aneurysm simulations

Source of uncertainty

Intra-procedural alterations in parent vessel geometry

Blood coagulation model structure (missing reactions etc.)

Parameters of mechanistic models of medical devices (coils and stents)

Variabilities in blood composition and coagulation kinetic reaction rates in normal or pathological conditions





Chapter 3

Uncertainty quantification of wall

shear stress in intracranial

aneurysms using a data-driven

statistical model of systemic blood

flow variability





57

Abstract — Adverse wall shear stress (WSS) patterns are known to play a key

role in the localisation, formation, and progression of intracranial aneurysms (IAs).

Complex region-specific and time-varying aneurysmal WSS patterns depend both on

vascular morphology as well as on variable systemic flow conditions. Computational

fluid dynamics (CFD) has been proposed for characterising WSS patterns in IAs; how-

ever, CFD simulations often rely on deterministic boundary conditions that are not

representative of the actual variations in blood flow. I develop a data-driven statis-

tical model of internal carotid artery (ICA) flow, which is used to generate a virtual

population of waveforms used as inlet boundary conditions in CFD simulations. This

allows the statistics of the resulting aneurysmal WSS distributions to be computed.

It is observed that ICA waveform variations have limited influence on the TAWSS

on the IA surface. In contrast, in regions where the flow is locally highly multidirec-

tional, WSS directionality and harmonic content are strongly affected by the ICA flow

waveform. As a consequence, I argue that the effect of blood flow variability should be

explicitly considered in CFD-based IA rupture assessment to prevent confounding the

conclusions.

Adapted from: Sarrami-Foroushani, A., Lassila, T., Gooya, A., Geers, A.J., & Frangi, A.F.: Uncertainty quan-
tification of wall shear stress in intracranial aneurysms using a data-driven statistical model of systemic blood flow
variability. Journal of Biomechanics, 49(16), 3815-3823, 2016.
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3.1 Introduction

Pro-inflammatory responses in the vascular endothelium play a key role in intracranial

aneurysm (IAs) growth and rupture [38]. The driving factor behind this response is

hypothesised to be wall shear stress (WSS), defined as the frictional force of blood on

the vessel wall. Localised adverse WSS patterns, i.e., spatiotemporal distribution of

hemodynamic WSS on the aneurysm sac, have been shown by Feaver et al. [135] to

correlate with the expression of transcription factors related to inflammation (such as

NF-κB), and have been shown by Davies et al. [231], Chiu et al. [232] and, Mohamied et

al. [125] to correlate with locations of atherosclerotic lesions on the vessel wall. Several

attempts have been made to further characterise the atherogenic WSS patterns by

looking into, e.g., WSS magnitude oscillations [233, 234], temporal and spatial gradients

[235, 236], and the harmonic content of the WSS waveforms [135, 237].

Evaluation of WSS from phase contrast magnetic resonance imaging is not reli-

able enough to provide quantitative measures [238]. Therefore, computational fluid

dynamics (CFD) has been proposed as a tool for characterising WSS patterns.

WSS multidirectionality has been recently used to characterise atherogenic flows

in CFD simulation studies by Mohamied et al. [125], and Peiffer et al. [239]. How-

ever, CFD-based studies are controversial among interventional neuroradiologists and

have not become widely accepted in clinical decision making. Such controversies can

be found in e.g. Kallmes et al. [46], Cebral et al. [225], Valen-Sendstad et al. [134], and

Xiang et al. [240], where the clinicians and CFD modellers discussed the confounding

nature and unreliability of various CFD-based haemodynamic variables and the impor-

tance of assumptions and uncertainties associated to CFD models. Failure to address

underlying variations in systemic blood flow due to the state of the patient (e.g., level

of stress, physical activity, sleep, etc.) and its effect on WSS patterns may be one of

the reasons behind this perceived unreliability.

Here, the primary aim is to quantify the effect of flow waveform variability on

the hemodynamic WSS over the intracranial aneurysm surface. Boundary conditions

in CFD models are typically either drawn from literature data or obtained by patient-

specific flow imaging over a few heartbeats. Neither approach reproduces the intra-

subject variability of systemic blood flow arising due to the presence of dynamic regu-

latory systems.

The sensitivity of the intra-aneurysmal haemodynamics to the systemic flow con-

ditions has been explored in various studies. For example, Geers et al. [108] found a

20% increase in flow rate to correspond to a 27% increase in aneurysmal WSS; Xiang et

al. [109] found different flow rate waveforms with the same time-averaged inflow rate to
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produce almost identical WSS distributions and WSS magnitudes, similar oscillatory

shear index (OSI) distributions, but drastically different OSI values; and Morales et

al. [111] observed that the spatiotemporal-averaged aneurysmal WSS varies quadrat-

ically with the inflow rate. However, CFD models of vascular blood flow still mostly

report deterministic flow results.

To address this problem, I construct a Gaussian process model (GPM) for generating

internal carotid artery (ICA) waveforms. The GPM is calibrated against the data from

Ford et al. [74] on ICA flow measurements across a cohort of 17 young adults. The

variability due to flow uncertainty is measured in three quantities of interest: time-

averaged WSS (TAWSS), OSI, and transverse wall shear stress (transverse wall shear

stress (TransWSS)), and means and confidence intervals are computed for each.

In this way, we achieve a novel combination of CFD simulations and statistical

models that: 1) incorporates physiological flow measurements, 2) is more systematic

than previous approaches for quantifying flow uncertainty, and 3) can be fitted to the

characteristics of particular cohorts.

Classifying IAs by their rupture likelihood is currently performed by looking at

morphological features and patient-specific risk factors [22]. Machine learning has been

proposed to aid in this task. Xiang et al. [241] used morphological and hemodynamic

features assessed on a cohort of 119 patients to train a logistic regression model for IA

classification. Bisbal et al. [242] performed an exhaustive evaluation of seven different

classifiers trained on 60 different features identified as being significant. Using the

bounds on WSS uncertainty computed in this study, it is explored what happens when

flow uncertainties are incorporated into a classifier similar to that of Xiang et al. [241].

The results demonstrate that the effect of flow variability on IA classifiers should be

explicitly considered to avoid biasing effects that may confound the conclusions of CFD

studies used to predict IA rupture likelihood.

3.2 Materials and Methods

3.2.1 Image-based patient-specific intracranial aneurysm models

Patient-specific surface models for two saccular IAs from the @neurIST cohort were

previously reconstructed from three-dimensional rotational angiography as described

in by Villa-Uriol et al. [243] using the geodesic active regions approach of Bogunovic et

al. [58]. Both IAs were located on the ophthalmic segment of the left internal carotid

artery. During the follow-up period, the aneurysm in patient 1 ruptured, whereas the

one in patient 2 did not rupture. Vascular models were discretised using unstructured

volumetric meshes in ANSYS ICEM v16.2 (Ansys Inc., Canonsburg, PA, USA). Tetra-
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hedral elements with maximum edge size of 0.2 mm were used and three layers of

prismatic elements with an edge size of 0.1 mm were used to create boundary layers.

The total number of elements were 2.2 and 6.6 million and mesh densities were 3025

and 3315 elements per mm3 for patients I and II, respectively.

3.2.2 Computational fluid dynamics simulations

Blood flow in the IA was modelled using the incompressible unsteady Navier-Stokes

equations. Blood was assumed to be a Newtonian fluid of density 1066 kg/m3 and

viscosity of 0.0035 Pa·s. Peak systolic Reynolds numbers at the inlet ranges from 338

to 532, and no turbulence modelling was performed. To ensure fully-developed flow,

the computational domain was extended at the inlet boundary by an entrance length

proportional to the inlet boundary maximum Reynolds number. The Navier-Stokes

equations were solved in ANSYS CFX v16.2 (Ansys Inc., Canonsburg, PA, USA) using

a finite-volume method. Second-order-accurate discrete approximations were used both

in space and time, i.e., a second-order advection scheme and a second-order backward

Euler transient scheme. The cardiac cycle was discretised in time into 200 equal steps.

Element and time-step sizes were set according to the @neurIST processing toolchain

where mesh and time-step size independency tests were performed on WSS, pressure,

and flow velocity at several points in the computational domain as described by Villa-

Uriol et al. [243]. Arterial distensibility was not considered in this study (rigid-wall

assumption).

3.2.3 Inlet boundary conditions and generation of ICA waveforms

A GPM (see e.g. Ref. [244] for details) was used to generate multiple inflow waveforms

that mimicked the inter-subject flow variability at the ICA. The GPM was trained

on subject-specific data from the study of Ford et al. [74] describing ICA flow mea-

surements in 17 young adults. In that work, descriptive statistics of the reference

flow rate waveform were reported in terms of mean values and variances of both time

and flow rate at 14 fiducial landmarks. Flow rate mean values and variances were

used to generate the GPM in this study. Any GPM is defined by its mean waveform

plus a covariance function. Since the ICA flow waveform was smooth, continuous,

and differentiable, the covariance function was chosen to be a squared exponential,

σ2(tj, tk) = σ2
0 exp (−||tj − tk||2T/2L2), with parameters σ0 and L [244]. The distance

metric was chosen as ||tj − tk||T := min {|tj − tk|, |tj − tk + Tperiod|, |tj − tk − Tperiod|}
to get periodic waveforms, where Tperiod was the normalised cardiac cycle length and

tj, tk ∈ [0, T ]. As a stationary Gaussian process could not fully fit the observed data
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(variance at systolic peak was greater than during diastole), a symmetric bell-shaped

function, f , was used to introduce non-stationarity in the process.

f(tj, tk) = sd +
1

1
sps

+ |max(tj ,tk)−xps
2

|4
(3.1)

In equation (3.1), sd ∈ [0, 1] and sps ∈ [0, 1] are parameters controlling the variance

during diastole and at peak systole, respectively; and, xps is the peak systolic land-

mark number. As reported by Ford et al. [74], the ICA waveform systolic variance is

approximately four times greater than diastolic variance and the systolic peak is the

third landmark on the ICA waveform. Thus, in equation (3.1) the parameter sps was

replaced by 4sd and xps was set to 3.

Finally, the GPM mean waveform was set to the mean ICA waveform taken from

Ford et al. [74]; and the GPM covariance function σ2(tj, tk) was constructed as

σ2(tj, tk) = f(tj, tk) · σ2
0·

exp
(
−min {|tj − tk|, |tj − tk + Tperiod|, |tj − tk − Tperiod|} /2L2

)
. (3.2)

Random realisations of the GPM was then used GPM-generated ICA waveforms.

To fit the process covariance σ2
0 and correlation length L to that observed in the

measurements, for each sd ∈ [0, 1], a two-dimensional numerical optimisation problem

was solved based on the cost function, g, that penalised values exactly equal to the

mean waveform or greater than twice the standard deviation for each landmark.

g(yj) =


Po(yj − (ȳj + 2SDj)) ȳj + 2SDj ≤ yj
−Pm

2SDj
|yj − ȳj|+ Pm ȳj − 2SDj ≤ yj ≤ ȳj + 2SDj

Po(yj − (ȳj − 2SDj)) yj ≤ ȳj − 2SDj

(3.3)

For each landmark j, yj is the value of ICA flow generated by the GPM; and, ȳj

and SDj are the mean and standard deviation reported by Ford et al. [74]. Penalty

parameters Pm and Po penalise yi values that are exactly equal to the mean or are

deviated more than twice the standard deviation from the mean.

A virtual population of 50 internal carotid flow waveforms was then generated and

used as inlet boundary conditions to the CFD models. To maintain a physiological

arterial WSS of 1.5 Pa and to enable population-wide comparisons, Poiseuille’s law

was used to scale the GPM-generated waveforms such that the time-averaged WSS

was 1.5 Pa at the inlet. Figure 3.1(a) shows the 95% confidence bounds of flow at the



Statistical model of systemic blood flow variability 62

fiducial landmarks (black bars), and a virtual population of internal carotid artery flow

waveforms generated from the Gaussian process model (red curves).

Figure 3.1: a) Response surface of the surrogate model of the ICA MAP. ICA MAP is
90 mmHg on the red solid line. b) Response surface surrogate model of the ICA PPI.
ICA PPI is 0.5 on the red solid line. c) Intersection of the MAP and the PPI isolines
gives the right terminal resistance (R) and capacitance (C) values for the desired MAP
and PPI at the ICA. d) Reference flow rate waveforms for patients 1 and 2 that are
scaled such that the TAWSS at the inlet was 1.5 Pa for each patient. e) CFD-predicted
pressure waveforms at the ICA after choosing the right R and C values.
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3.2.4 Outlet boundary conditions

A two-element windkessel (RC) boundary condition model was assigned at the outlet

boundaries. The RC windkessel model acts as a low-pass filter with a RC time constant

τ = R × C. To guarantee that the terminal RC circuit converges to the ultimate

pulsatile pressure and the solution is independent from the initial transient numerical

effects, each simulation was run for certain number of cycles, defined as nCycle =⌈
τ

Tperiod

⌉
+1, where dxe symbolized the ceil function. Results from the last cardiac cycle

were then used to calculate the hemodynamic parameters of interest. The resistance

and capacitance values of the windkessel model were chosen to maintain a physiological

range of ICA pressure and pulsatility for each particular patient. To enable rapid

parameter tuning, a surrogate model was built using polynomial response surfaces to

approximate the MAP and PPI of the flow for each (R,C) pair. A Chebyshev grid of

81 (9×9) points was created on a 2D physiological range of variability for R and C

(reported in e.g. Brown et al. [82, 83, 245, 246, 247]) in such a way that each point on

the grid was associated with a pair of R and C values. A total of 81 CFD simulations

were performed while recording the observed values of steady-state MAP and PPI in

the ICA for each simulation after nCycle heartbeat cycles. To develop a surrogate

model of ICA MAP and PPI vs terminal resistance and capacitance, MAP and PPI

surfaces were linearly interpolated over a uniform grid of 100×100. The surrogate

model was used to select values R and C values in such a way that when the reference

inflow waveform were applied at the inlet boundary, the model provides ICA pressures

with MAP and PPI matching clinically measured values of 90 mmHg and 0.5 from the

normal individual, respectively. Figure 3.1(b) and Figure 3.1(c). show the response

surfaces of MAP and PPI against terminal resistance and capacitance for patient 1.

Figure 3.1(d), values of R and C at the point, where MAP = 90 mmHg and PPI

= 0.5 intersects, were selected as optimized windkessel parameters for patient 1. As

mentioned above, a derivation of the Poiseuille’s law that relates the inflow rate to

the WSS and vessel’s inlet cross-sectional area was used to scale the time-averaged

flow rate in the parent vessel for each patient. Since the time-averaged flow rates are

different in patient 2, the resistance and capacitance values from the first patient’s

surrogate model need to be scaled using factor α defined as α = inflowtav,1/inflowtav,2,

where where inflowtav,1 and inflowtav,2 are time-averaged inflow rates for patients 1 and

2. The terminal resistance and capacitance were then scaled as R2 = (1/α) × R1 and

C2 = α× C1, respectively.

Figure 3.1(e) shows reference inflow waves for patients 1 and 2. Figure 3.1(f) shows

that, applying the windkessel outlet boundary condition with tuned R and C values,
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the same desired ICA pressure has been obtained for patients 1 and 2 with different

inflow waveforms. Since the time-averaged inflow rate was kept constant and only

waveform shapes varied across the virtual population, the same R and C values as

those tuned with the reference inflow waveforms were used for all 50 CFD simulations

on each patient.

3.2.5 Data analysis

WSS, τw(x, t), is a time-varying vector field that represents the tangential component

of the traction vector on the wall. The magnitude, pulsatility, directionality and the

harmonic content of the WSS waveforms on the aneurysm wall were assessed using

several derived quantities of interest.

WSS magnitude

TAWSS was calculated by averaging the magnitude of WSS vector at each surface node

over the cardiac cycle.

TAWSS(x) =
1

Tperiod

∫ T0+Tperiod

T0

|τw(x, t)| dt (3.4)

The variables T0 and T0 + Tperiod are the starting point (3rd heartbeat) and the

length of the cardiac cycle over which the WSS was integrated, respectively.

WSS directionality

As suggested by Mohamied et al. [125] and Peiffer et al. [239, 248], to assess the

directionality of WSS I used both OSI and transverse WSS. The oscillatory shear

index was calculated as

OSI =
1

2

(
1−
|
∫ T0+Tperiod
T0

τw(x, t) dt|∫ Tperiod
0

|τw(x, t)| dt

)
(3.5)

and transverse WSS was calculated as defined by Peiffer et al. [239]

transWSS =
1

Tperiod

∫ T0+Tperiod

T0

|τw(x, t) · q̂| dt, (3.6)

where q̂ = p̂ × n̂ and the unit vector p̂ is the direction of the time-averaged WSS

vector, n̂ is the surface normal, and consequently the unit vector q̂ is located in the

same plane as p̂ an its direction is perpendicular to the time-averaged WSS vector.
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The unit vector p̂ was calculated as

p̂ =

∫ T0+Tperiod
T0

τw(x, t) dt

|
∫ T0+Tperiod
T0

τw(x, t) dt|
(3.7)

As long as a preferred time-averaged direction of flow exists, TransWSS ranges from

0 to TAWSS. As the TAWSS takes substantially different values at aneurysmal regions

with disturbed or regular flow, I defined the rTransWSS as the TransWSS normalised

by the TAWSS at each surface point.

WSS harmonics

As indicated by Lee et al. [233], despite the multidirectional nature of blood flow in

patient-specific vascular models, most experimental studies are performed under uniax-

ial flow due to constraints in experimental flow setups. Recently, WSS projections onto

a reference axial direction were performed to rectify multidirectional flows and make

them comparable to the flows used for in vitro experiments of Arzani et al. [249] and

Morbiducci et al. [250]. However, since rectifying the WSS signal combines the magni-

tude and directionality aspects of the WSS vector and influences its harmonic content,

I chose to perform a harmonic analysis on both the original and the rectified WSS

signals. It has been observed that most physiological waveforms can be accurately re-

constructed by the first ten or fewer harmonics [77]. Studying the first eight harmonics

of the WSS signals at the ICA, Feaver et al. [135] showed that the endothelial inflam-

matory responses are mainly regulated by the first harmonic of the WSS signal. Thus,

in this study, I based the harmonic analyses on the first eight harmonics of the WSS

signals. I calculated the axial WSS as the component of time-varying WSS vector

projected onto the unit vector p̂. The fast Fourier transform was used to describe the

time-varying aneurysmal WSS and axial WSS waveforms in the frequency domain and

extract the amplitudes of the harmonics zeroth to eighth. It has been hypothesised

that dominance of frequencies higher than the heart rate in the WSS magnitude signal

triggers inflammatory responses in the vascular endothelium [135, 202]. The DH is

another quantity of interest defined as the harmonic with the greatest amplitude by

Himburg et al. [237]. As shown by Lee et al. [233], DH is independent from other WSS-

related variables. In this study I also used DH to investigate how waveform variability

in the parent vessel affect the dominant frequency of the time-varying WSS magnitude

over the aneurysm sac.
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Intracranial aneurysm rupture prediction

To evalute the effect of WSS uncertainty in IA rupture prediction, a different subset of

38 IAs all located at the sylvian bifurcation of the middle cerebral artery (MbifA-type)

were selected from the @neurIST cohort and processed through the CFD pipeline as

described in the Methods section. For this cohort, outlet branches were automatically

clipped 20 mm after their proximal bifurcation. Branches shorter than 20 mm were

extruded before truncation. Zero-pressure boundary conditions were then imposed at

all outlets. As a full CFD simulation of all 50×38 cases would have been prohibitively

costly, three representative waveforms were instead used for each of the 38 cases: mean

flow, minimum flow and maximum flow predicted by the GPM model. TAWSS, OSI,

and TransWSS were post-processed for each of these simulations and spatially averaged

over the aneurysm sac to arrive at the feature values used for classification. These three

different flow waveforms were then used to train a logistic regression model classifier

similar to that of Xiang et al. [241]:

logit(Pr) = β0 + β1OSI + β2TAWSS,

where Pr is the model-predicted probability of the ruptured type, and the logit

function is defined as logit(p) = log
(

p
1−p

)
. The regression coefficients β0, β1, β2 were

obtained through standard generalised regression techniques, and were used to define

the corresponding odds ratios (OROSI = exp(β1) etc.), signifying how the odds of

rupture increase by each unit increase in OSI.

3.3 Results

Figure 3.2 shows the mean values and the coefficient of variance (CoV) for haemody-

namic variables TAWSS, OSI, and rTransWSS on the aneurysm sac simulated by CFD

over the population of 50 difference ICA waveforms. In both cases, the ICA waveform

variability had limited effects ( CoV < 0.05) on the TAWSS. However, the effects were

remarkable on WSS directional variability. CoVs for aneurysmal OSI and rTransWSS

were both greater than 0.4 at regions where the WSS vectors had low magnitude but

were directionally varying in time (disturbed flow regions). Waveform variability in

the parent vessel had less significant effects on the WSS directionality at regions where

shear stresses are higher and remain mostly unidirectional throughout the cardiac cycle

(stable flow regions).
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Figure 3.2: The mean values and the coefficients of variation (CoV) of the TAWSS,
the OSI, and the rTransWSS across the virtual population over the aneurysm walls for
patients 1 and 2.

Figure 3.3 shows mean values and CoVs for the dominant harmonic ( DH) over the

aneurysm sac. On both aneurysms, there are regions where the dominant frequencies

are up to 5 times greater than the fundamental frequency (the heart rate). Results

show that ICA waveform variability highly influences the time-varying WSS signal at

regions where the higher harmonics dominate ( CoV > 2). Similar to the directionality,

less significant effects were observed at regions with regular pulsatile flow dominated
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by the heart rate frequency (regions where DH is unity).

However, DH was originally defined for a unidirectional axial flow and may not

lead to clinically interpretable results in multidirectional nonaxial flow [233, 250]. To

alleviate this issue in the complex aneurysmal flows, I followed the method presented by

Lee et al. [233] and rectified WSS vectors by projecting them on the time-averaged WSS

direction as a reference axial direction. Figure 3.3 also shows the effect of parent vessel

waveform variability on the harmonic content of the axial WSS magnitude signal.

Results show that rectification of the WSS signal increased the DH at regions where flow

is multidirectional. This can be attributed to the previously mentioned effects of ICA

waveform variations on the WSS directionality, which implicitly affected the WSS

magnitude signal during the rectification process. It can be seen that ICA waveform

variability significantly influences the harmonic content of the axial WSS at disturbed

flow regions ( CoV > 2). To provide more intuition into the effects of parent vessel flow

waveform variability, I illustrated the results for five manually selected representative

points on the aneurysm sacs.

3.3.1 Effect of flow uncertainty on rupture pattern

The three WSS-derived quantities were evaluated through CFD simulations in N = 38

cases taken from the @neurIST database. Summary statistics of the WSS values eval-

uated are shown in Table 3.1 for the case of mean flow. An unpaired two-sided two-

sample t-test was used to select the WSS-related features that were significantly dif-

ferent in the ruptured vs. unruptured populations. Spatially averaged OSI was signif-

icant or almost significant for all three flow cases (p ∈ [0.032, 0.058]), whereas TAWSS

and TransWSS were not significant for any of the three flow cases considered (p = 0.7

for TAWSS and p ∈ [0.12, 0.15] for TransWSS). This was in agreement with the analysis

of Bisbal et al. [242] (who used a superset of the data used in this study), but contra-

dicted the observations of Xiang et al. [109] who obtained significance also for TAWSS.

It was therefore opted to train the classifier only on one feature, the OSI, leading to

the regression model logit(Pr) = β0 + β1OSI for the rupture classification variable Pr.

Before training the classifier, the OSI values were scaled so that the maximum value

across the 38 cases was equal to 10. The data were divided into 19 training cases,

which were used to estimate the regression coefficients, and 19 test cases, which were

used for cross-validation.
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Ruptured (N = 14) Unruptured (N = 24) p-value
TAWSS [Pa] 3.32 (3.36) 3.76 (3.25) 0.7
OSI 12.4×10−3 (7.25×10−3) 7.79×10−3 (6.05×10−3) 0.032∗

rTransWSS 0.104 (0.037) 0.088 (0.029) 0.12

Table 3.1: WSS quantities derived from CFD-simulations in the ruptured vs. un-
ruptured groups of the @neurIST cohort. Values are group-wise means and standard
deviations of the mean flow case. Statistical significance in univariate analysis com-
puted using a two-sided t-test.

Figure 3.3: The mean values and the coefficients of variation (CoV) of the DH and
axial DH across the virtual population over the aneurysm walls for patients 1 and 2.

The logistic regression based classifier achieved an area under the ROC curve that

ranged in AUC ∈ [0.8947, 0.9044]. For the cutoff value Pr = 0.9, the resulting clas-

sifier achieved a sensitivity ranging in SENS ∈ [79.0%, 84.2%], and a specificity rang-

ing in SPEC ∈ [79.0%, 89.5%] in the cross-validation exercise. The regression co-

efficients identified in each three flow cases were in the range β0 ∈ [−3.59,−2.93]

and β1 ∈ [0.804, 0.883]. The corresponding odds ratio for OSI was in the range

OROSI ∈ [2.23, 2.42], reproducing the known correlation between elevated OSI and

rupture status. While the accuracy of the classifier was only moderately affected by
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the flow case considered, the final rupture/no-rupture prediction changed as a function

of flow for 4 cases out of 19.

3.4 Discussion

Recent evidence links the region-specific inflammatory phenotype of the endothelial

cells to both directionality and harmonic content of the time-varying WSS vector field

[125, 126, 135, 202, 239]. Spatiotemporal variations of vascular WSS are driven by vari-

abilities in the blood flow waveform and the vascular morphology. Although attempts

at measuring the effect of parent vessel flow waveforms on WSS-related quantities of

interest measuring directionality and harmonic content have been made by Peiffer et

al. [135, 202, 233, 239] and others, there are few studies that have systematically eval-

uated the sensitivity of WSS to flow variability.

Time-averaged inflow rates have been shown to affect the magnitude of aneurys-

mal WSS[108]. Using one-shot measurements of patient-specific inflow boundary con-

ditions has been shown to highly influence the magnitude of aneurysmal WSS when

compared to results obtained from simulations with typical inflow boundary conditions

derived from literature [104, 105, 106]. However, in vivo flow measurements typically

record systemic flow only for a few cardiac cycles, and therefore do not represent the

full range of flow variability. In the recent study of Xiang et al. [109], the effect of four

different inlet waveforms on the space-averaged OSI was tested using CFD. Different

waveforms produced drastically different absolute values of OSI, but similar OSI dis-

tributions over the aneurysm sac. A linear relationship was also observed between the

spatially averaged OSI values calculated using different inflow waveforms, which sug-

gests that changing the waveform did not consistently change the rupture risk ranking

of aneurysms. Absolute values of OSI might, however, not be a robust criteria for clini-

cal decision making unless the flow-related uncertainty is explicitly taken into account.

I evaluated the flow-induced WSS variability by performing simulations using bound-

ary conditions sampled from a statistical description of inter-subject flow variability.

When keeping the time-averaged flow rate fixed, variations in ICA flow waveforms

had limited effects on the TAWSS over the aneurysm sac. However, it was found

that WSS directionality measures (OSI and rTransWSS) in the disturbed flow regions

(atheroprone regions) were very sensitive to flow waveform variability, although the

effects were limited in regular flow regions where a preferred direction of flow exists

(atheroprotective regions). To shed more light on regional effects of flow waveforms

on the aneurysmal WSS, I defined atheroprone regions as regions where WSS is low

(TAWSS < 1 Pa) and multidirectional (rTransWSS > 0.3) and atheroprotective re-
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gions as regions where TAWSS > 3 Pa and almost unidirectional (rTransWSS < 0.1).

These thresholds were conservatively chosen according to studies where WSS magni-

tude and directionality were correlated with pro-inflammatory endothelial phenotypes

[125, 126, 135, 239]. As shown in Figure 3.4 for the two IAs considered, varying inflow

waveform had limited effects on the TAWSS in both disturbed flow and regular flow

regions (CoV < 0.1). However, WSS directionality in disturbed flow regions is strongly

affected by the inflow waveform (CoV up to 2 with a median at 0.25), when compared

to the protective regions. This implies the importance of flow waveform uncertainty

in aneurysmal regions which are prone to inflammatory phenotypes and potential rup-

ture. Mohamied et al. [125] observed that despite OSI, TransWSS correlated signif-

icantly with atherosclerotic lesions in rabits’ aorta. Comparing OSI and rTransWSS

as measures of WSS directionality, I observed that these two variables are in stronger

correlation at regular flow (atheroprotective) regions (Pearson r = 0.94 and 0.96 for

aneurysms 1 and 2, respectively; p < 10−5) when compared to disturbed flow (athero-

prone) regions where flow is highly multidirectional (Pearson r = 0.75 and 0.66 for

aneurysms 1 and 2, respectively; p < 10−5).

I have studied variability of the DH of the local WSS signal and observed that, due to

nonlinear effects due of the vascular morphology, there are regions where the dominant

harmonic of the time-varying WSS signal is not the systemic fundamental frequency

(heart rate). I observed that, when considering the DH of the axial WSS signals,

regions with higher DH than the heart rate co-localise with the regions where flow is

multidirectional. This co-localisation could be explained by the fact that axial WSS

is the projection of the instantaneous WSS vector in the time-averaged WSS vector

direction. Xiang et al. [109] observed a strong correlation between the space-averaged

aneurysmal OSI and the inflow waveform pulsatility index (PI), and suggested that OSI

might be mainly determined by the PI of the inlet waveform. As a subsidiary study,

I investigated any possible correlation between the inflow PI and the local OSI at five

points on the aneurysm sacs. At each point on the aneurysm sac, PI was calculated as

the difference between maximum and minimum flow rate divided by the time-averaged

flow rate during each cardiac cycle. No clear correlation was observed between inflow PI

and OSI at points where the dominant frequency was higher than the heart rate.This

implies that parent vessel PI (easy to measure) is not a good surrogate for evaluating

aneurysmal OSI (difficult to measure).
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Figure 3.4: Regional variations of the time-averaged WSS magnitude and the rela-
tive transverse WSS. Histograms shows the distribution of the coefficient of variations
on each of the atheroprone and atheroprotective regions. A boxplot complementary
illustration is also presented under each histogram.

The effects that WSS uncertainty may have on IA rupture likelihood have been

explored by using a logistic regression. In the dataset I used, the TAWSS did not reach

statistical significance in separating ruptured cases from non-ruptured cases, so that a

classifier was built solely based on OSI values. The classifier reached similar accuracy to

that previously reported (sensitivity ranging in SENS ∈ [79.0%, 84.2%] and specificity

ranging in SPEC ∈ [79.0%, 89.5%]), but provided a range of values depending on the
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choice of input flow waveform used. While the accuracy of the classifier was similar

across waveforms, the classification between likely to rupture/likely to not rupture

changed in 4 out of the 19 cases when the flow solution was varied. It is my view

that, due to such effects, flow-related uncertainty should be explicitly accounted for

in WSS-based rupture predictions to improve their credibility.

The limitations of this study were that the blood flow was assumed to be Newtonian

and arterial distensibility was not taken into account, which overestimates WSS by up

to 15% Section [251]. Transition from laminar to turbulent occurs at Re = 300-500

in intracranial aneurysms [252], and using laminar flow models may not capture all

aneurysmal flow characteristics accurately. Parabolic velocity profiles imposed at the

inlet boundaries may lead to different flow characteristics compared to the Womersley

profiles. Intra-aneurysmal hemodynamics has been shown to be sensitive to the choice

of inlet location for truncating the ICA from the surrounding vascular bed [114]. To

reduce such errors and allow realistic flow inside the aneurysms, all the inlets were

truncated at consistent locations below the cavernous segment to include the largest

possible arterial segment upstream the aneurysm [112]. Vascular models were extruded

at inlet boundaries by an entry length proportional to the specific Re to allow for

fully developed flow. The flow variability model considered also modelled inter-subject

variability only (rather than intra-subject), and was based on data from young adults

only.
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Abstract — Treatment of intracranial aneurysms with flow-diverting stents is a

safe and minimally invasive technique. The goal is a stable embolisation that facil-

itates stent endothelialisation, and elimination of the aneurysm. However, it is not

fully understood why some aneurysms fail to develop a stable clot even with sufficient

levels of flow reduction. Computational prediction of thrombus formation dynamics

can help predict the post-operative response in such challenging cases. In this work, I

propose a new model of thrombus formation and platelet dynamics inside intracranial

aneurysms. The novel contribution of this work is the combination of platelet acti-

vation and transport with fibrin generation, that is key to characterising stable and

unstable thrombus. The model is based on two types of thrombus inside aneurysms:

red thrombus (fibrin- and erythrocyte-rich) can be found in unstable clots, while white

thrombus (fibrin- and platelet-rich) can be found in stable clots. The thrombus gener-

ation model is coupled to a computational fluid dynamics (CFD) model and the FiPi

is defined as a quantitative measure of clot stability. The model is validated against an

in-vitro phantom study of two flow-diverting stents with different sizing. I demonstrate

that the model accurately predicts the lower thrombus stability in the oversized stent

scenario. This opens possibilities for using computational simulations to improve en-

dovascular treatment planning and reduce adverse events, such as delayed haemorrhage

of flow-diverted aneurysms.

Adapted from: Sarrami-Foroushani, A., Lassila, T., Hejazi, S. M., Nagaraja, S., Bacon, A., & Frangi, A. F.: A
computational model for prediction of clot platelet content in flow-diverted intracranial aneurysms. under review, 2018.
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4.1 Introduction

Treatment of large and wide-necked intracranial aneurysms of the anterior circulation

with flow-diverting stents has proven to be safe and effective [10, 19, 253]. However,

post-treatment rupture after seemingly successful treatment, reported in almost 2% of

cases [10, 254], is associated with high risks of mortality and morbidity. Two types of

thrombi have been identified from autopsy studies of aneurysms. White thrombus, rich

in fibrin and platelets [19, 255], and red thrombus. Red thrombus is characterised by:

(i) less enmeshed platelets [19, 255], (ii) not being able to facilitate the formation of a

neointimal layer [256, 257], (iii) being prone to continuous fibrinolysis and renewal [255,

258, 259], and (iv) inducing autolytic activities in the wall resulting in weakening of the

wall and ultimately rupture [19, 255, 260]. The presence of non-organised red thrombi

after flow diversion has been suggested as a potential predictor for post-treatment

rupture [19, 254, 255, 260, 261, 262]. There is a growing consensus that assessment

of thrombus composition is required to successfully predict flow diverter performance

[19, 254, 255, 260, 261, 262, 263].

Mechanisms of flow diverter (FD) -induced initiation and propagation of thrombosis

are not well understood. In flow stasis, secretion of tissue factor by endothelium [264],

white blood cells [264], and hypoxic platelets [264, 265]; as well as, secretion of platelet

activating factors by the endothelium [266] and hypoxic red blood cells [264, 267, 268]

are associated with fibrin generation and platelet activation, the two major compo-

nents of clot formation. Regions with low shear flow and high residence time promote

platelet activation and adhesion [42, 266], and stabilisation of platelet aggregates [269].

They also enhance platelet-fibrin and platelet-endothelium interactions [42]. However,

despite a diverse set of initiation mechanisms, flow stasis can be considered as the nexus

between all of them. It was, therefore, chosen to focus on flow stasis as the pathway

to thrombus formation.

While extensive computational investigations focusing on thrombosis in flow sys-

tems, few studies have simulated coupled haemodynamics and biochemistry in flow-

diverted aneurysms [270, 271]. Taking thrombin concentration as a surrogate for throm-

bosis, Ngoepe et al. [270] simulated clot growth in aneurysms after flow diversion, and

an assumption was made that thrombin generation originated on the endothelial wall

due to tissue damage. In contrast, Ou et al. [271] focused on stasis-induced expres-

sion on blood-borne tissue factor as the initiator and simulated fibrin generation inside

the flow-diverted aneurysm. Although these studies presented promising results on

simulation-based prediction of FD-induced thrombosis, they did not attempt to pre-

dict the platelet composition of the clot or its stability.
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The objective of this study is to create a coupled flow and thrombosis model that

is capable of predicting the stability of the clot that forms after flow diversion. To this

end, a computational thrombosis model must consider estimation of the clot extent and

stability in terms of composition of its structural components, i.e. fibrin and platelets.

I consider FD-induced stasis as a surrogate for all the above mentioned thrombosis

initiation mechanisms and simultaneously model thrombin and fibrin generation, and

platelet activation and aggregation in stagnation regions. I validate the model against

an in-vitro experiment performed in [1], in which thrombus formation was examined

in an aneurysm phantom treated with FDs of different sizes.

4.2 Materials and Methods

4.2.1 Mechanisms of thrombosis after flow diversion

Increased flow residence time, decreased flow velocity, decreased shear rate, and de-

creased vorticity have been used to characterise flow stasis in aneurysms [272, 273, 274].

When compared with thrombosed regions, velocity, vorticity, and shear rate were re-

ported to be 2.8 times larger in non-thrombosed regions of elastase-induced aneurysms

in animal models [272]. Based on a harmonic analysis of shear rate waves in ten

aneurysms, de Sousa et al. [266] determined 25 s−1 as the time-averaged shear rate

below which thrombosis happened. Rayz et al. [274] showed that thrombus deposits in

aneurysmal regions with a residence time greater than 18.22± 11 s. I therefore assumed

thrombosis to initiate and progress in prothrombotic regions of the aneurysm after flow

diversion, i.e., regions with time-averaged shear rate smaller than SRt = 25 s−1 [266]

and residence time greater than RTt = 5 s [274].

In the present work, I considered four biochemically-coupled events that result in a

clot of fibrin mesh and aggregated platelets: (i) Thrombin generation occurs by conver-

sion of prothrombin to thrombin on the surface of both resting and activated platelets,

but the kinetics of the reaction are faster for activated platelets. Also considered in the

model is thrombin inhibition by its primary plasma inhibitor (anti-thrombin), in the

absence of heparin catalysis. (ii) Fibrin generation occurs in the presence of thrombin,

which converts fibrinogen to fibrin monomers. Further polymerisation of the fibrin

monomers was not considered. (iii) Platelet activation occurs when resting platelets

became activated by exposure to thrombin or other activated platelets. The latter

mechanism was used as a surrogate for activation by agonists released from other acti-

vated platelets [275]. (iv) Platelet aggregation in the presence of fibrin takes place when

platelets attached to the fibrin network and aggregated to form bound platelets. Bound

platelets were assumed to be able to activate prothrombin and other resting platelets.
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Figure 4.1: Left panel: schematic representation of platelet transport to the clotting
site. Right panel: schematic representation of the clotting reaction network modelled
in this study.

All in all, the model in this work included five biochemical species: prothrombin (PT),

thrombin (TH), anti-thrombin (AT), fibrinogen (FG), fibrin (FI). Three categories of

platelets; resting platelets (RP), activated platelets (AP), and fibrin bound aggregated

platelets (BP) were considered. A schematic representation of the biochemical species

and reactions is given in Figure 4.1. Details of the chemical reactions are described in

the next sections.

4.2.2 Governing equations

To assess the likelihood of formation of a fibrin and platelet rich clot, a macroscopic

model for post- FD thrombosis in aneurysm was made based on the previous models

of haemostatic thrombosis [275, 276] and platelet deposition [277, 278]. In previous

models, presence of an injury activated a set of procoagulant factors and finally resulted

in thrombin generation and platelet activation. However, the mechanisms of stasis-

induced thrombosis after aneurysm flow diversion are far from crystal clear. Yet,

different models for thrombus formation and depostion have been proposed in the

literature (e.g., in [266, 274]). The model is based on bulk initiation and propagation

of thrombosis in regions of flow stasis as a surrogate to several intermediate mechanisms

that are not still clear. I based the mathematical description of thrombin generation

and platelet activation on the model presented by Sorensen et al. [278]. Since this model

does not include fibrin generation, I used the mathematical model of fibrin generation

presented by Anand et al. [276]. To model the bulk aggregation of platelets, I modified

a representation of platelet aggregation at the site of injury that was originally proposed

by Leiderman and Fogelson [277], called the LF model. Finally, to couple the growing

clot to the velocity field, similar to the LF model, a Darcy term was added to the

equations of blood motion.

Following the common practice in biochemical reaction modelling, where the rate
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of occurrence of event, x, requires an appropriate concentration of a particular species,

Ci, i.e., the concept of cooperativity, the Hill function, a sigmoidal activation function

of form φix = Cn
i /(C

n
i +Cn

i,50), was used [279]. In this equation, Ci is the concentration

of species i, Ci,50 is the concentration of species i where the half-maximal activation

(half saturation) occurs, and the exponent n, called the Hill coefficient, reflects the

steepness and switch-like character of the sigmoid. In this study, I set n = 4 where a

narrow switch-like response to availability of a specie was needed, and set n = 2 when

a wider and smoother response was required.

Fluid flow

Three dimensional momentum equations for incompressible and Newtonian fluid, the

Navier-Stokes equations, were used to describe blood flow.

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p+ µ∇2u− µΦ(kf , kp)u. (4.1)

In (4.1), u and p represent the velocity vector and pressure, respectively. Blood was

assumed to be a Newtonian fluid with constant density, ρ = 1060 kg/m3 and viscosity,

µ = 0.004 Pa.s. To account for the effect of clot on the fluid velocity field, without

modelling the fluid-structure interaction, the blood clot was treated as a porous medium

with both fibrous (fibrin strands) and granular (bound platelets) components. A Darcy

term, µΦ(Cf , Cp)u, was added to the momentum equations. The function Φ(Cf , Cp)

was defined as

Φ(Cf , Cp) =
1

kfi
φfip +

1

kbp
φbpp , (4.2)

where kfi and kbp are permeabilities of the clot due to fibrin fibres and bound platelets,

respectively. The Hill functions φfip and φbpp were used ensure that there is no flow re-

striction in regions with no fibrin or platelet aggregates, while flow restriction increases

to half of its maximal value as fibrin and platelet concentrations approaches Cfi,50 and

Cbp,50, respectively. According to Anand et al. [276], the concentration of a fibrin gel

at plasma level fibrinogen concentration was assumed to be greater than 600 nM, i.e.,

a fibrin gel was assumed to be formed when concentration of fibrin reached 600 nM.

Based on this and the measurments done by Wufsus et al. [280], I set Cfi,50 = 600 nM,

Cbp,50 = 7× 105 platelets/µm3, kfi = 1.2× 10−1µm2, and kbp = 3.1× 10−1µm2. I also

set n = 4 to ensure a sharp boundary between the clot and blood while maintaining

the numerical stability.
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Fluid-phase chemical species

I denote by Cpt, Cth, Cat, Cfg, Cfi, the bulk concentrations of prothrombin, throm-

bin, anti-thrombin, fibrinogen, and fibrin, respectively. Transport of each species was

modelled using the advection-diffusion-reaction equation:

∂Ci
∂t

+ (u · ∇)Ci = Di∇2Ci + Si, (4.3)

where Ci is the species concentration, Di is the diffusion coefficient, and Si is the

reaction term.

Thrombin generation was assumed to occur on the surface of resting and activated

platelets and the platelets bound to the clot. The kinetics of the reactions was assumed

as second order chemical reactions with kinetic constants krpth , kapth , and kbpth, respectively.

Thrombin inhibition by anti-thrombin was also modelled as a second order reaction

with kinetic constant, katth. Thrombin-mediated fibrin generation was assumed to occur

according to Michaelis-Menten kinetics with kthfi and kthm,fi as kinetic constants. The

reaction source terms in (4.3) were formulated for each species as:

Spt = −krpthCrpCpt − k
ap
thCapCpt − k

bp
thCbpCpt (4.4)

Sth = krpthCrpCpt + kapthCapCpt + kbpthCbpCpt − k
at
thCatCth (4.5)

Sat = −katthCatCth (4.6)

Sfg = −Sfi = −kthfiCthCfg/(kthm,fi + Cfg). (4.7)

Platelet activation and binding

Transport of resting, Crp, and activated, Cap, platelets were modelled using (4.3). The

same equation was solved for bound platelets, Cbp, but advection and diffusion terms

were removed to prevent platelets from being transported once recruited by the clot.

Platelet activation by thrombin and already activated platelets were modelled as

first order reactions with kthpa and kappa as kinetic constants of activation by thrombin

and activated platelets, respectively. Platelet activation by thrombin was assumed to

occur when thrombin concentration was greater than 9.11× 10−1 nM [278]. This was

modelled by multiplying the associated reaction source by a Hill activation function,

φthpa with Cth,50 = 9.11× 10−1 nM and n = 4 to ensure a steep and switch-like response

around the threshold concentration.

Leiderman and Fogelson [277] assumed platelet aggregation and deposition at the

site of injury to be proportional to the free platelet concentration and value of a bind-

ing affinity function, a Hill function, representing proximity of free platelets to already
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Table 4.1: Model parameter values

Biochemical reactions kinetic constants
krpth 6.50× 10−10

U PLT−1s−1µM−1 [278] kapth 3.69× 10−9
U PLT−1s−1µM−1 [278]

kbpth 6.50× 10−10
U PLT−1s−1µM−1 [278] katth 7.083× 10−3

µM−1s−1 [278]
kthfi 59.00 s−1 [276] kthm,fi 3160 nM [276]
kthpa 0.50 s−1 [275] kappa 0.30 nM−1s−1 [275]
kbppa 0.30 nM−1s−1 [275] kpb 1.00× 104

s−1 [277]

Diffusion coefficients
Dpt 5.21× 10−7

cm2s−1 [276] Dth 6.47× 10−7
cm2s−1 [276]

Dat 5.57× 10−7
cm2s−1 [276] Dfg 3.10× 10−7

cm2s−1 [276]
Dfi 2.47× 10−7

cm2s−1 [276] Drp 2.50× 10−7
cm2s−1 [277]

Dap 2.50× 10−7
cm2s−1 [277]

bound platelets. Fibrin generation was not considered by Leiderman and Fogelson

[277]. In the present model, I considered thrombin-induced fibrin generation and its

effect on platelet trapping and aggregation. I assumed platelet recruitment and deposi-

tion to depend on the concentration of free platelets and value of a function representing

fibrin-platelet. I used a second order Hill function φfipb with Cfi,50 = 60 nM, i.e., 10%

of the threshold concentration at which fibrin clot is said to be formed, i.e., 600 nM.

According to the above, the reaction source terms for resting and activated platelets

were formulated as:

Srp = −kthpaφthpaCrp − kappaCrp (4.8)

Sap = kthpaφ
th
paCrp + kappaCrp − kpbφ

fi
pbCap (4.9)

Sbp = kpbφ
fi
pbCap. (4.10)

4.2.3 Model parameters and initial concentrations

The model includes eight biochemical species and nine biochemical reactions. Values

of reaction rate constants were taken from the experimental literature and are reported

in Table 4.1. The parameter kpb represents the rate of aggregation and deposition in

the presence of fibrin. To my knowledge, this parameter has not been measured ex-

perimentally. Leiderman and Fogelson [277] estimated a fixed value for this parameter

and reported only some change on the platelet density distribution in response to up to

100-fold increases of this value. I used the same value as Fogelson and Leiderman [277]

and remark that as long as the value maintained though all the experiments, despite
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the limited effect on platelet aggregation densities, it will not influence the case-to-case

comparisons made based on the platelet aggregation density.

Values of diffusion coefficients for all species were taken from the experimental lit-

erature. The shear dependent diffusion augmentation effect of red blood cells on the

diffusion of platelets was considered by two orders of magnitude increase in the expected

value in normal Brownian motion [277, 281]. Platelets were assumed to be static once

bound to the clot, therefore, in Table 4.1, no diffusion coefficient is reported for the

bound platelets.

4.2.4 Flow-induced Platelet index (FiPi)

I defined the flow-induced platelet index (FiPi) as the relative difference of the platelet

concentration between a closed and an open system:

P =
Copen
bp − Cclosed

bp

Cclosed
bp

=
Copen
bp

Crp,0 + Cap,0
− 1. (4.11)

In (4.11), Crp,0 and Cap,0 are initial concentrations of resting and activated platelets in

the clot-free blood, respectively. FiPi quantifies the effect of blood flow on transport of

platelets to and from the site of clot formation and consequently on the final platelet

content of the formed clot. In a closed system without any inflow or outflow, I assumed

the concentration of bound platelets in a formed clot to be equal to the summation

of the concentrations of resting and activated platelets at the initial state before any

clot formed. However, in an open system, where blood can flow over and through

the forming clot, the final concentration of bound platelets in the formed clot would

be different from that in closed systems. Particularly, in flow-diverted aneurysms, it

has been hypothesised that the flow entering the sac can bring resting and activated

platelets into contact with the forming clot and lead to a higher concentration of

platelets in the formed clot, when compared to the clot that is formed in almost absolute

stasis.

4.2.5 Computational model validation

Phantom experiment for the effect of two different sized stents

Gester et al. [1] performed an in-vitro evaluation of intra-aneurysmal FD-induced

thrombus formation. Two FDs of same type with two different diameters were de-

ployed in a silicone phantom of a simplified lateral aneurysm; one of the FD’s had a

diameter of 4.00 mm (FD-4.0) the other was oversized with a diameter of 4.50 mm

(FD-4.5). Blood from the cervical artery of slaughter house pigs were circulated in the
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Figure 4.2: The first two columns represent the concept of the flow-induced platelet
index (FiPi). In a closed system, the platelet content of the clot is equal to the initial
concentration of platelets in the container before clotting occurred. In an open system,
more platelets are advected with the blood flow to the clotting site, where they can
attach to the clot and increase the clot platelet content. The third column shows the
phantom from [1] (first row) and the computer models of the phantom (before and
after FD placement) used in this study.

phantom model. PIV and Doppler sonography were performed to monitor the flow

inside aneurysm. The FD-induced intra-aneurysmal clots were qualitatively evaluated

once the sonography signal no longer existed (i.e., 10-12 hours after the experiments

started). In the aneurysm treated with FD-4.0, a red cap-shaped clot was observed,

mostly consisting of organised and platelet-rich clot formed with a growth direction

opposite to the entering flow jet. In the aneurysm treated with the oversized stent,

FD-4.5, a less platelet-rich clot filling almost the entire sac without any clear growth

direction was observed with only a rigid (platelet-rich) region near the center of the

aneurysm.

Computer model of the phantom experiment and the flow diverters

A computer model of the phantom was built using ANSYS Design Modeler v16.2

(Ansys Inc., Canonsburg, PA, USA). Geometric models of the deployed FD’s were

created using the fast virtual stenting (FVS) method [282]. According to the study [1],

each FD consisted 24 wires of 40 µm thickness and mean porosities of the FD’s in their

deployed configuration were 72% and 65% for FD-4.5 and FD-4.0, respectively. Virtual

stenting model parameters were chosen so that the digital FD models had the same

geometrical characteristics. Since I were only interested in the effect of FDs on the
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Figure 4.3: Mesh test outcomes for the non-oversized stent (FD-4.0). Mesh indepen-
dence tests performed using volumetric meshes at coarse (Mesh 1), medium (Mesh 2),
and fine (i.e., the reference mesh) refinement levels near the struts. For each of the
examined variables, percentage differences were calculated with respect to the values
obtained using the reference mesh.

intra-aneurysmal flow, to reduce the computational costs, the FD models were clipped

and portions of the FDs laying entirely on the vessel wall were removed. The effect of

partial stent modelling on intra-aneurysmal haemodynamics was proven negligible in

previous studies [283].

Numerical simulations

Volumetric meshes were generated using ANSYS ICEM CFD v16.2 (Ansys Inc., Canons-

burg, PA, USA). Element sizes in the core region of the domain were set according

to the @neurIST processing toolchain where mesh independence tests on non-stented

aneurysms were performed as described in [243]. Stuhne and Steinman [68] suggested

that the mesh resolution in the vicinity of the stent wires needs to be about one-third

of the wire’s radius to achieve an accurate flow solution around the struts. In this

study, mesh independence test was performed with three levels of refinement around

the struts maintaining the mesh size in the core region. A coarse mesh (maximum edge

size of 0.02 mm on the wires), a medium size mesh (maximum edge size of 0.01 mm

on the wires), and a fine mesh (maximum edge size of 0.005 mm on the wires) were

considered while the fine mesh used as the reference in the test. Mesh independence

was performed based on the inflow rate at the aneurysm neck and the sac-averaged

concentrations of the fibrin and platelets, and mesh independence was assumed to be

reached when the solutions differed less than 1% from the reference-mesh solutions

(see Figure 4.3). Mesh independence was obtained for the medium size mesh where
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tetrahedral elements with maximum edge size of 0.2 mm and five layers of prismatic

elements with a maximum edge size of 0.1 mm were used to discretise the core region of

the computational domain. Around the stent struts, five layers of prismatic elements

with a maximum edge size of 0.01 mm were used. This resulted in volumetric meshes

with 13 and 12 million total number of elements for the FD-4.0 and FD-4.5 cases,

respectively.

Three sets of simulations were performed for each of the FD-4.0 and FD-4.5 cases:

(i) steady-state simulation of intra-aneurysmal haemodynamics before and after stent

placement; (ii) transient pulsatile-flow simulation of intra-aneurysmal haemodynamics

before and after stent placement (to enable comparisons with PIV reported by Gester et

al. [1]; and (iii) transient steady-flow simulation of intra-aneurysmal haemodynamics

and biochemistry before and after stent placement. The system of momentum trans-

port (4.1) and transport equations for biochemical species (4.3) were solved in ANSYS

CFX v16.2 (Ansys Inc., Canonsburg, PA, USA) using a finite volume method. CFX’s

Finite Rate Chemistry combustion built-in model was used to simulate blood flow in

which thrombosis biochemical reactions occur. Second-order-accurate discrete approx-

imations were used both in space and time, i.e., a second-order advection scheme and

a second-order backward Euler transient scheme. CFX’s Automatic time-scale control

was used in the steady-state simulations. Solutions of the steady-state simulations and

those of unsteady simulations at each time step converged when maximum residual of

the computational domain was less than 5 × 10−4. Concentration of each species at

inlet was set at their normal value in human blood. The inlet concentrations of throm-

bin and fibrin were set to zero [276]. Prothrombin, anti-thrombin, and fibrinogen were

assumed to have inlet concentrations of 1400, 2410, and 7000 nM, respectively [276].

Concentration of resting platelets at inlet was set to 2× 108 platelets per millilitre and

5% of this concentration was assumed as the level of background platelet activation

[278]. All model variables were initialised at steady state using a steady-state simula-

tion with all the reaction terms off. Once the variables were initialised, unsteady-state

simulations of the reactive flow were performed to cover a 30 seconds time interval. The

time-step size was set to 0.01 second according to a time-step size independence test

with a 2% agreement criterion on velocity and concentrations obtained from different

solutions.
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4.3 Results

4.3.1 Aneurysmal haemodynamics before/after flow diversion

In steady-state simulations of flow before FD placement, sac-averaged velocity, resi-

dence time, and shear rate were 0.04 m/s, 0.65 s, and 89.66 s−1. After flow diversion

with the FD-4.5, sac-averaged velocity and shear rate were reduced by 81% and 79%, re-

spectively, and the sac-averaged residence time increased by 200%. Relative reductions

in the aneurysm treated with FD-4.0 were 94% for both sac-averaged velocity and shear

rate, and the sac-averaged residence time increased by almost 1000% in this case. In-

flow rate at the aneurysm neck reduced by 74% and 89% in the aneurysms treated with

FD-4.5 and FD-4.0, respectively. Figure 4.4 shows intra-aneurysmal haemodynamics

on the aneurysm sagittal mid-plane before and immediately after FD deployment be-

fore any clot formed. To enable a qualitative comparison with the PIV measurements

made in [1], I ran pulsatile flow simulations, with no chemical reaction, and presented

velocity contour plots at peak systole. In Figure 4.4, shear rate and residence time

contour plots are taken from steady-state simulations and represent the time-averaged

values.

4.3.2 Thrombus formation and comparison to in-vitro observations

Unsteady simulations of FD-induced thrombosis covered a 30 s interval after FD de-

ployment. According to previous studies [276, 284], The clot was assumed to be formed

in regions where the fibrin concentration is greater than 600 nM. Figure 4.5 (first row)

shows the contour plots of the fibrin concentration inside the aneurysm along the sagit-

tal mid-plane at the end of the simulation. The white solid iso-lines, drawn at fibrin

concentrations of 600 nM, show the thrombus front. In fibrin contour plots, the dark

red is associated with fibrin concentrations greater than 3500 nM, showing an almost

complete conversion of plasma fibrinogen into fibrin. In agreement with the observa-

tions in [1], the simulations showed that both FDs resulted in formation of a clot that

filled nearly the entire sac. In the FD-4.0 case, more pronounced formation and anchor-

age of fibrin strands to the proximal region of the FD were reported in the phantom

experiments once the clot began to form. A proximal-to-distal direction of clot growth

was reported in the FD-4.0 case, as opposed to no clear growth direction in the case

treated with FD-4.5. Based on the transient results (see fibrin concentration contour

plots at t = 10 s in Figure 4.5), I observed that in the aneurysm treated with FD-4.0,

the clot started to form from the aneurysm proximal region and grew in a direction

opposite to the entering flow jet direction to fill the aneurysm. In the aneurysm treated
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Figure 4.4: Intra-aneurysmal haemodynamic quantification before and immediately
after FD deployment. Velocity quantifications were made at the peak systole to enable
comparisons with PIV measurements made in [1].

with FD-4.5, there was also a clot forming in the central part of the aneurysm (the

central recirculation zone), growing without any preferred direction. I also observed a

thicker band of high fibrin concentration started from the proximal region of FD and

extended across the sac to the upper distal wall.

Figure 4.5 (second row) shows sagittal mid-plane contour plots of FiPi, platelet

content of the formed clot normalised by initial concentration platelets in thrombus-

free blood. I remark that FiPi can be used to measure the effect of blood flow on

the platelet content of the clot. In the FD-4.0 case, the results showed a platelet-rich

clot (FiPi > 0.15) covering the entire aneurysm neck region and extended towards

the upper wall. However, in the FD-4.5 case, formation of the platelet-rich clot was

almost limited to the central region of the sac. I observed a less platelet-rich clot at the

proximal region of the aneurysm (in both cases) and in a small region at the centre of the

platelet-rich clot formed in the centre of the aneurysm treated with the oversized FD.

This observation is in agreement with the hypothesis that rapid formation of clot in

regions of extensive stasis results in a less platelet-rich clot, however, as the clot grows
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Figure 4.5: Thrombosis modelling in flow diverted aneurysms. In the first two rows,
contour plots are presented on the aneurysm sagittal mid-plane. In the first row, the
white solid line represents a concentration of 600 nM.

and interacts with the blood flow, more platelets take the opportunity to contact with

the forming clot, which results in formation of a more platelet-rich clot [260, 263]. The

above observations are in agreement with the study by Gester et al. [1], where a clot

with a generally higher platelet content was reportedly induced by the FD-4.0, and the

presence of regions with high platelet content around the central vortex were reported

in the FD-4.5 case.

4.4 Discussion

4.4.1 Thrombus formation and model validation

The in-vitro study [1] compared the effects of flow diversion by two different stents

in the same silicone phantom. They reported that in both cases the phantom was

filled with thrombus at the end of the experiment, at which point they removed the

silicone model and provided snapshots of the clots induced by each of the two FDs.

To enable comparisons with snapshots presented in [1], I set a threshold on FiPi, the
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measure of platelet content, and extracted from this the platelet-rich clot morphol-

ogy. The morphology of the clots obtained from the model showed the best qualitative

agreement with snapshots of the phantom experiment, when I used FiPi > 0.15 as a

threshold. Figure 4.5, the third row, show the model predictions of the morphology of

the platelet-rich clot as well as snapshots of the phantoms taken from [1]. To enable

comparison, snapshots and model predictions were presented in the same spatial scale

and dotted lines were used to show the clot extent above the FDs.

Location of the clot and the growth direction. In both cases, in-vitro experiments [1]

showed that the clot started to form on the proximal wall. In the case of FD-4.5,

the course of thrombosis continued by formation of fibrin as a result of stagnation of

blood at the centre sac, i.e., the central vortex. Fibrin then filled the aneurysm with-

out a clear growth direction. In the case of FD-4.0, the clot grew layer-by-layer and

filled the aneurysm towards the distal wall. The thrombosis model correctly predicted

the locations of clot deposition and the growth directions reported in these in-vitro

experiments. Cebral et al. [272] studied 14 aneurysms successfully treated with flow

diverters. They reported a layer-wise growth of clot from regions with smaller velocity,

shear rates, and vorticity, i.e., the dome, towards the aneurysm neck. These results

show that the thresholds based on residence time and shear rate were valid and that

the model predicted realistic thrombi deposition location and growth direction.

Location of the high platelet content clot. In the case treated with FD-4.0, the simu-

lations indicated a transformation from inertia-driven to shear-driven flow (Fig. 4.4).

Flow stasis along the proximal wall resulted in rapid formation of a less platelet-rich

clot. However, during the course of thrombosis, the shear-driven, well-distributed blood

flow promoted the attachment of platelets to the forming clot. This finally led to the

formation of a homogeneous platelet-rich clot almost in the entire aneurysm. However

in the aneurysm treated with the oversized stent FD-4.5, inertial effects persisted in

the post-treatment flow and circulation in the aneurysm sac was observed (Fig. 4.4).

Although less pronounced than in FD-4.0, extensive stasis along the proximal wall

resulted in the rapid formation of a less platelet-rich clot. I also observed formation

of a clot in the central vortex. In contrast to FD-4.0, the inertia-driven flow jet was

not slow enough to promote a platelet attachment. Such flow pattern resulted in a

heterogeneous clot with a higher platelet concentration limited to the outer layers of

clot initially formed in the central vortex (Fig. 4.5). These findings agreed qualitatively

with the histological observations in [1].
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Coverage of the aneurysm neck. Formation of a platelet-rich organised clot over the

aneurysm neck is essential to fully close up the aneurysm and facilitate endothelialisa-

tion and formation of a neointimal layer [256, 257]. In this study, surface reactions on

the FD struts were not simulated. However, in FD-4.5, I observed formation of a thin

platelet-rich layer covered the proximal section of the aneurysm neck and extended to

a thicker layer in the central section of the neck. However, the distal section of the

neck remained patent. In contrast, in FD-4.0, I observed a thick platelet-rich layer

fully covered the aneurysm neck. Similar behaviour is reported in in vitro experiments

[1] and also in [256, 257] where the flow-diverter failed to fully close the sac in real

aneurysms.

4.4.2 Clinical utility

Treatment planning of flow diversion is usually based on the aneurysm morphol-

ogy [19, 253]. Aside from symptomatic aneurysms, large and giant aneurysms and

those with a high aspect ratio or complex morphology are thought to be prone to

post-FD haemorrhage [260]. Immediately after deployment, the efficacy of the FD is

evaluated by measuring the reduction of flow into the aneurysmal sac by angiographic

examination. However, post-operative rupture was reported in several cases with ex-

cellent immediate angiographic results after FD deployment [255, 260, 262].

In the phantom studied in this work, post-treatment haemodynamics in both FD-

4.0 and FD-4.5 cases met the success criteria suggested in [273, 285, 286]. However,

the two cases develop a clot with completely different qualities. This shows that purely

haemodynamic assessments are insufficient to predict the likelihood of formation of

a stable and occlusive clot. In order to provide a more comprehensive assessment of

post-FD occlusion, it is necessary to consider the potential quality of the FD-induced

clot, i.e., whether flow diversion results in a stable white clot or a red unorganised clot.

The model showed promise in predicting the biochemical composition of clot structural

components, fibrin and platelets, and thus, the likelihood of formation of a fibrin and

platelet-rich white thrombi after flow diversion.

There is also evidence that in aneurysm treatment with FD, formation of a stable

white clot over the aneurysm neck and the consequent formation of neo-intimal layer

and FD endothelialisation are of superior importance than FD-induction of the thrombi

inside the aneurysm body [256, 257]. Cebral et al. [272] trained a statistical model to

predict the local occlusion based on local haemodynamics and found poorer predictions

near the aneurysm neck, when compared to other regions of the flow diverted aneurysm.

This magnifies the utility of models similar to the one in the present work to further

improve personalised assessment of aneurysm flow diversion.
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4.4.3 Limitations

All of the thrombosis model parameters were taken from experimental literature or

relevant computational studies that performed sensitivity analyses, except the fibrin

concentration at which rate of platelet attachment to the fibrin mesh is half of its

maximum value, Cfi,50. A fixed value of this concentration used in all The simulations.

My limited sensitivity analyses showed that this parameter have very small effects of

the location and extent of the thrombus deposition, and on the distribution of platelets

in the final clot. More comprehensive analyses are required to determine the sensitivity

of blood composition to the model parameters.

Due to the computational burden required, the time scale of the thrombosis model

is not representative of the physiological time scale of FD-induced clot formation and

aneurysm occlusion, i.e., weeks to months. I relate this to: (i) the extensive simpli-

fication of the thrombosis chemical network, neglecting several molecular and cellular

level phenomena involved in initiation, progression, and inhibition of thrombosis course

after flow diversion, (ii) neglecting phenomena like lysis, organisation, and contraction

of the clot (iii) neglecting the effect of flow pulsation on the reactions, especially on

the initiation reactions when the clot-related concentrations are very small, and (iv)

the effect of anti-coagulants and anti-platelets that are both common in flow diversion

patients. I did not consider such anticoagulation in the model.

Augsburgeret al. [287] showed that flow pulsation is not a major determinant of

flow diverter performance in terms of reducing aneurysmal velocity. Since I was mostly

interested in the final state of the clot and not in phenomena like thrombus breakdown,

I did not consider flow pulsatility and the simulations were performed using a steady-

state inflow boundary condition, however, the thrombosis model can easily be run with

pulsatile boundary conditions.

4.5 Conclusion

The thrombosis model in the present study was developed to predict the platelet con-

tent distribution in intra-aneurysmal clots formed after flow diversion. The predictions

made by the model showed qualitative similarities in the clotting pattern and platelet

composition when compared with an in-vitro phantom experiment performed by an

independent research group in [1]. I also compared the model predictions against the

literature on qualitative thrombotic behaviour in aneurysms treated with flow diverters.
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5.1 In-silico clinical trials of flow diverting stents

As described in Chapter 1, by in-silico clinical trials of flow diverters (FDs), I refer

to the trials performed to assess a flow diverting stent effectiveness in treatment of a

population of virtual patients. What distinguishes the concept of in-silico clinical trials

from the personalised medicine or patient-specific modelling paradigms is that the un-

derlying models and simulations are not tailored for a specific patient, but rather should

be able to represent and generate an entire population of virtual patients. Intrinsic to

developing virtual populations needed for in-silico trials is collecting and analysing clin-

ical data and developing generative statistical models to populate envelopes of patient

morphology and physiology. The term envelope is used to refer to the entire range of

possible variation of, for example, the aneurysm morphology or a physiological variable

under a specific condition.

A morphological envelope is a population of aneurysm surface models that rep-

resents the variability of aneurysmal shapes in patients diagnosed with intracranial

aneurysms. Aneurysm surface models in such virtual populations can be obtained

by: (i) segmenting three-dimensional angiograms of a population of patients that is

large enough to capture the morphological variability of aneurysms, or (ii) generat-

ing synthetic aneurysms using statistical models of aneurysmal shape variations, i.e.,

statistical shape models (see [288] for example). Creation of statistical shape models

requires a population of aneurysm shapes as the training set and results in the mean

shape models as well as a parameterisation of the shape variability. The model then

enables generation of new shapes by non-rigid deformation of the mean shape along

the modes of variation.

A physiological envelope is a statistical representation of intra- and inter-subject

variability/uncertainty in a class of relevant physiological measures (e.g. systemic flow

waveforms, heart rate, tissue and blood properties, etc.). Advanced statistical tech-

niques have been used to quantify the model input uncertainties and propagate them

to the model output spaces. For example, adaptive stochastic collocation technique

has been used in [289] for uncertainty quantification and propagation in models of

blood flow in the cardiovasular system. A Gaussian process approach has been used in

[110] to build a data-driven model of internal carotid artery (ICA) flow rate waveforms

which allows random generation of a virtual population of inflow boundary conditions

for cerebrovascular computational fluid dynamics (CFD) models.

Figure 5.1 shows a schematic view of how the above models could be combined

in a tensor-product way to generate a multi-dimensional space of virtual experiments

on which endovascular devices can be tested using a virtual treatment workflow (Fig-
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Figure 5.1: An in-silico trial framework for assessment treatment success in a pop-
ulation of virtual patients treated with flow diverting stents. Each virtual patient is
treated a virtually implanted device that operates under a physiological envelope.

ure 5.1). Once an in-silico trial space is populated with virtual patients, a virtual

endovascular treatment workflow computationally simulates the aneurysm treatment

and assesses FD performance for each virtual patient. A detailed review of such a

workflow and all its ingredient models is presented in Chapter 2. Semi-automated

aneurysm management workflows used in @neurIST [243], and AView [290] are able

to characterise pre-interventional aneurysm morphology and haemodynamics with the

aim to help neuro-interventionalists in decision making and treatment planning. An-

gioLab [291] enables semi-automatic haemodynamic characterisation of the aneurysm

after virtual treatment with coils and stents. Whether a virtual treatment workflow is

designed with the aim to enable large-scale in-silico clinical trials or to aid in patient

selection and treatment planning, it should be fully-automatic and include a device per-

formance indicator that enables prediction of the flow diversion success in providing a

stable aneurysm occlusion. Computational models used measures of the aneurysm mor-

pholgy and pre-/post-deployment haemodynamics to predict the flow diversion sucess.

In Chapters 2 and 4, I discussed that although such measures provide insight into the



99 5.1. In-silico clinical trials of flow diverting stents

Figure 5.2: Streamlining and parallel execution of the in-silico trial framework pro-
cesses on a computational framework. Once an in-silico trial space is populated with
virtual experiments, a computational platform can be used for parallel execution of the
costly simulations.

performance of flow diverters in aneurysms, they fail to provide accurate predictions

about formation of an occlusive and stable clot after flow diversion. Ouared et al. [182]

reported a successful flow diversion in aneurysms with at least 35% post-FD flow reduc-

tion (N = 12, balanced accuracy1 = 83% for occlusion/no-occlusion threshold-based

binary classification). Kulcsar et al. [39] suggested that aneurysms with an aspect

ratio < 1.6 will occlude successfully after flow diversion. I applied this criterion on

8 cases reported in Kulcsar et al. [181] and Ouared et al. [182] and estimated a bal-

anced accuracy of around 55%. Using the criterion suggested by Ouared et al. [182]

to predict occlusion in the cohort reported in [181], I obtained a balanced accuracy of

58%. I argued that inclusion of stable clot formation likelihood as a decision variable

in the computational pipeline would improve predictions made based on morphology

and post-FD flow alterations.

I remark that apart from all the above mentioned ingredients, to enable large-scale

in-silico trials, there is a need for (i) an automated workflow implemented on a compu-

tational platform that provides the capability of streamlining the virtual experiments

and running them in parallel (ii) making simulations computationally as inexpensive

as possible. Figure 5.2 shows how a parallel-processing platform can be utilised to run

multiple virtual experiments and finally analyse the performance of each device on the

virtual population.

While this thesis provided several ingredients required to build a framework for

1The balanced accuracy is defined as the arithmetic mean of specificity and sensitivity and is suggested as a measure
of classification accuracy of an imbalanced test set, i.e., when the positives outnumber the negatives.
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in-silico clinical trials of FDs, creation of fully-automatic framework and its implemen-

tation on a parallel-processing platform is out of the scope of this work. However,

in this chapter, I present two proof of concept studies two as a preliminary step to-

wards addressing the questions: How can an automatic framework be built for in-silico

clinical trials of flow diverters? and, how can computationally inexpensive models be

used to reduce computational costs of such trials? In the first study, I built a fully-

automatic aneurysm flow modelling framework and utilised a parallel-processing plat-

form (MULTIX, www.multi-x.org) to simulate flow in a cohort of aneurysms (N = 54)

at rest and exercise conditions. In the second study, a computationally inexpensive,

statistical framework was proposed to predict the aneurysmal wall shear stress patterns

directly from the aneurysm shape.

5.2 A fully-automatic framework for aneurysmal flow simula-

tion

2The main objective of this section is to showcase a fully-automatic computational

framework that was developed to study the aneurysm haemodynamics under a range

of physiological conditions. It has been shown that changes in wall shear stress (WSS)

induced by flow variability can significantly change the CFD-based predictions of in-

tracranial aneurysm rupture risk [109, 110]. In this study, I considered within-subject

flow variability induced by changes in systolic blood pressure (BP) and heart rate (HR)

during physical exercise, and studied the corresponding changes in WSS indicators,

such as time-averaged WSS (TAWSS) or oscillatory shear index (OSI).

5.2.1 Materials and methods

Patient-specific vascular flow measurements

Patient-specific carotid flow data (Lido cohort) used in this study were part of an

Alzheimer’s disease study conducted at the Istituto di Ricovero e Cura a Carattere

Scientifico San Camillo, Lido di Venezia, Italy, and previously reported in [292]. The

cohort included 103 elderly people (age 73 ± 7 years), of whom 53 were diagnosed

with mild cognitive impairment and the rest were healthy controls. Exclusion criteria

included cerebrovascular disease as main aetiology, as well as the presence of any car-

diovascular disease. The cohort could, therefore, be identified as elderly but healthy

from the standpoint of vascular disease. The study was approved by the joint ethics

2The content of this section is adapted from: Lassila, T., Sarrami-Foroushani, A., Hejazi, S. M., Frangi, A. F.:
Population-Specific Flow Modelling: Between/Within-Subject Variability in the Internal Carotid Arteries of Elderly
Volunteers, under review, 2018.

www.multi-x.org
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Figure 5.3: Training of the within-subject flow variability -model (5.1)–(5.4).

committee of the Health Authority Venice 12 and the IRCCS San Camillo (Protocol

number 2014.08) and all participants gave informed consent prior to participation.

To measure carotid flow, ultrasound imaging (Siemens Acuson X300PE, Siemens

Healthineers, Erlangen, Germany) was performed. Both left and right internal carotid

waveforms were digitised from the DICOM images using im2graph (Shai Vaingast,

www.im2graph.co.il). Flow velocity signals were converted to flow rates by assuming

a circular cross-section and fully developed flow. The resulting flow rate signals were

normalised to unit time and synchronised so that the maximum systolic upstroke point

was matched between all the signals.

Statistical modelling of within-subject variability in ICA flow

Within-subject variability in ICA flow arises mainly due the changes in cardiac output,

quantified here by HR and systolic blood pressure (SBP). These changes are modu-

lated by thecerebral autoregulation system (CARS) that includes myogenic (pressure-

driven), shear-induced (flow-driven), and metabolic (energy-driven) regulation mech-

anisms. To model within-subject variability of carotid flow, a range of arterial BP

waveforms with different values of HR and SBP was considered and used a mathemat-

ical model of the CARS to generate the corresponding flow rate waveforms.

The HR model of Mader et al. [293] is a two-element feedback controller, for which

orthostatic stress tests were previously used to identify model parameters in both

www.im2graph.co.il
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middle-aged and elderly volunteers:

dv1

dt
= −(a+ b+ c)v1(t) + (c− d(t))v2(t) + (a+ b)p(t)

dv2

dt
= −bv1(t)− dv2(t) + bp(t)

d(t) =
bcfaut(t)

Mc p(t)− (a+ c)faut(t)

faut(t) = 2.03 · 10−6p(t)3 − 6.02 · 10−4p(t)2 + 5.94 · 10−2p(t)− 1.95

, (5.1)

where the model parameters

a = amλ+ (1− λ)ae, b = bmλ+ (1− λ)be,

c = cmλ+ (1− λ)ce, M = Mmλ+ (1− λ)Me

(5.2)

depended piecewise linearly on age xage:

λ =


1, if xage < 35

75− xage

40
, if 35 ≤ xage ≤ 75

0, if xage > 75

(5.3)

Finally, the flow velocity in the middle cerebral artery (MCA) was obtained as:

vMCA(t) = M(p(t)− v1(t)) + v, (5.4)

where v corresponds to the time-averaged flow velocity. To translate MCA flow veloci-

ties to ICA flow rates, a linear relationship was assumed between ICA and MCA flows:

qICA = γAICAvMCA, (5.5)

where AICA was the cross-sectional area of the ICA, and the VMCA/VICA index was

γ = 1.67 + 0.005× xage for women and γ = 2.00 for men, as proposed in [294].

To drive the CARS model, the BP waveform p(t) needed to be specified. For a given

reference HR, it was assumed there exists a reference BP signal pref(t) with SBP ps,ref

and diastolic blood pressure (DBP) pd,ref. The effect of HR and SBP variability on BP

was then obtained by rescaling the reference BP waveform:

p(t; τ, ps, pd) =
pref

(
τref
τ
t
)
− pd,ref

ps,ref − pd,ref

(ps − pd) + pd. (5.6)

where τ = 60/ HR is the cardiac interval. Since BP waveforms were not available
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in this cohort, an inverse procedure was used to recover the reference BP from the

ultrasound flow measurement by solving the least squares problem:

min
pref

∑̀
i=1

| qICA,ref(ti)− CARS(ti; p) |2, (5.7)

where CARS(ti; pref) is the output of the CARS model at time ti when driving the model

with the reference pressure pref(t), and qICA,ref is the reference ICA flow waveform. The

within-subject variability model fitting process is graphically represented in Fig. 5.3.

Study on the effect of exercise on aneurysm flow

I studied the specific case of flow prediction in intracranial aneurysms (IAs). The

mechanobiological growth and rupture process of IAs has been linked to changes in

WSS patterns. A number of CFD studies [40, 110, 295] have looked at the effect

of cerebral blood flow (CBF) fluctuations in WSS patterns, but none to my knowledge

have considered the effect of the CARS. Quantities of interest include time-averaged

WSS (TAWSS), oscillatory shear index (OSI), and transverse WSS (TransWSS):

TAWSS(x) =
1

Tperiod

∫ T0+Tperiod

T0

|τw(x, t)| dt;

OSI(x) =
1

2

1−

∣∣∣∫ T0+Tperiod
T0

τw(x, t) dt
∣∣∣∫ T0+Tperiod

T0
|τw(x, t)| dt

 ;

TransWSS(x) =
1

Tperiod

∫ T0+Tperiod

T0

|τw(x, t) · (p̂× n̂)| dt,

(5.8)

where n̂ is the surface normal, and the unit vector p̂ in the direction of the time-averaged

WSS vector can be calculated as:

p̂(x) =

∫ T0+Tperiod
T0

τw(x, t) dt∣∣∣∫ T0+Tperiod
T0

τw(x, t) dt
∣∣∣ . (5.9)

To enable comparison of TransWSS across cases, I calculated the relative TransWSS

( rTransWSS) as the TransWSS normalised by the TAWSS at each surface point [110].

All point-wise quantities were averaged over the aneurysmal sac and used for population-

specific analyses. Previous studies indicate that endothelial regions at-risk of rupture

can be characterised as having low TAWSS but highly fluctuating WSS (both high OSI

and high TransWSS) [38]. As a sudden rise in blood pressure may trigger the rupture

of an aneurysm [296, 297], I investigated whether changes in CBF experienced in hy-



In-silico clinical trials of flow diverting stents 104

pertensive conditions play a role in altering the WSS patterns.

To generate a virtual cohort of IAs to test the differences in WSS between rest vs.

exercise, patient-specific vascular surface models (N = 54) were segmented from previ-

ously acquired 3-D rotational angiography images in the @neurIST project [298]. Vas-

cular models were discretised using unstructured volumetric meshes in ANSYS ICEM

v16.2 (Ansys Inc., Canonsburg, PA, USA). Tetrahedral elements with maximum edge

size of 0.2 mm were used and three layers of prismatic elements with an edge size of

0.1 mm were used to create boundary layers. Blood flow in the IA was modelled using

the unsteady Navier–Stokes equations. Blood was assumed to be an incompressible

Newtonian fluid with a density of 1066 kg/m3 and viscosity of 0.0035 Pa·s. To ensure

fully developed flow, the computational domain was extended at the inlet boundary

by an entrance length proportional to the inlet boundary maximum Reynolds number.

The Navier–Stokes equations were solved in ANSYS CFX v16.2 (Ansys Inc., Canons-

burg, PA, USA). The unsteady Navier-Stokes equations were solved in ANSYS CFX

v16.2 (Ansys Inc., Canonsburg, PA, USA) using a finite-volume method. Second-order-

accurate discrete approximations were used both in space and time, i.e., a second-order

advection scheme and a second-order backward Euler transient scheme. The cardiac

cycle was discretised in time into 200 equal steps. Element and time-step sizes were

set according to the neurIST processing toolchain where mesh and time-step size de-

pendecy tests were performed on WSS, pressure, and flow velocity at several points in

the computational domain as described by [298].

No patient-specific flow measurements were available in the @neurIST cohort. In-

stead, the mean waveform (different for men/women) from the Lido cohort was used

as the baseline flow waveform. The baseline waveform was used as inlet boundary

condition to the CFD models of aneurysm flow at rest. For each patient, obtain

patient-specific physiologically-relevant flow waveforms and to enable population-wide

comparisons, Poiseuille’s law was used to scale the mean waveform such that the time-

averaged WSS was 1.5 Pa at the inlet. We modeled differences between rest and

exercise by increasing the HR from 66 bpm (at rest) to an elevated level of 145 bpm

(during exercise), i.e., an increase by a factor of 2.2 [299]. These values were used as

parameters in the within-subject flow variability model of Sect. 2.3. The baseline pres-

sure waveform was determined for each case by solving problem (5.7). After solving the

inverse problem, the systolic BP was correspondingly increased by a factor of 1.3 [299]

in formula (5.6) to simulate effects of exercise and used to drive the CARS model and

obtain the ICA waveform. The ICA waveforms where then used as inlet boundary con-

dition to the CFD models of aneurysm flow during exercise. Zero-pressure boundary

conditions were imposed at all outlets.
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Figure 5.4: A framework for aneurysm flow modelling: investigation of the effect of
exercise on aneurysm flow.

Aneurysm flow modelling framework

As mentioned above, we chose a cohort of 54 aneurysms taken from the @neurIST

database as the morphological envelope. The aneurysms were already segmented using

geodesic active region segmentation algorithm and the surface models were used in

the study [58]. As depicted in Figure 5.4, this framework includes three main steps:

(i) generating boundary condition envelopes for rest and exercise conditions, (ii) com-

putational fluid dynamics modelling and statistical analysis of the results, and (iii)

visualisation population- and patient-specific results. Since there was no endovascular

device implantation, the trial space was built only by combining two components, i.e.,

the morphology and the physiology envelopes. In a preliminary step, aneurysm surface

models were first used to generate volumetric meshes while the inlet areas were mea-

sured and used for scaling the inlet flow boundary condition. Figure 5.5 shows details

of the workflows used in each step. In step one, reference waveforms taken from the

Lido cohort were used to generate flow waveforms at rest and exercise and the trial

space was populated with virtual patients, each had a morphology and flow bound-

ary condition. Simulations were performed in the second step, and population- and

patient-specific results were visualised at the third step. Workflows in this framework

were built using Apache Taverna software [300] and ran on the MULTIX platform.

Results

Flow variability in the host artery (either the internal carotid, middle cerebral, or pos-

terior communicating artery) during rest and exercise was measured with two different
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Figure 5.5: A framwork for aneurysm flow modelling: ingredient tools and workflows.

indicators: mean flow (FLOW) and PI. The variabilities of these indicators as well as

the WSS-related quantities measured in the aneurysm are reported in in Table 5.1. Due

to the effects of the CARS, CARS only fluctuated moderately (< 10%) even when the

HR was increased considerably. Meanwhile, the PI increased by over 100% in certain

cases. In practice, all WSS-related indicators ( TAWSS, OSI, rTransWSS) experienced

on average an increase when moving from rest to exercise (Table 5.1). By far the largest

increase was observed in OSI, which more than doubled on average during exercise.

rTransWSS was considerablly less sensitive to flow fluctuations, being only somewhat

more sensitive than TAWSS. In my previous study [110] TransWSS was similarly found

to be a smoother measure of WSS fluctuations.

Changes in the absolute values of WSS and OSI might have relatively little phys-

iological meaning unless critical thresholds are met for upregulating atheroprotective

(for high TAWSS) or inflammatory pathways (low TAWSS and high OSI) in the en-

dothelium. Therefore, I also studied areas of low TAWSS (defined as TAWSS < 0.4

Pa) and high OSI (defined as OSI > 0.4) relative to the total area of the aneurysmal

sac. Their changes are also reported in Table 5.1. It was observed that relative area

of low TAWSS decreased on average, while the relative area of high OSI increased. To

understand better the interplay of TAWSS and OSI, in Fig. 5.6 I present the case of

a 41-year-old woman with a posterior communicating artery aneurysm. In this case,

a large increase in host vessel pulsatility (∆PI = 102%) lead to a corresponding large

increase in TAWSS (∆TAWSS = 39%) and OSI (∆OSI = 129%). It should be noted

that OSI tends to be a spatially concentrated measure of flow variability, so that even

a large increase in OSI only effects a small part of the aneurysmal wall. At the same



107 5.2. A fully-automatic framework for aneurysmal flow simulation

Table 5.1: Within-subject variability of flow- and WSS-related quantities in N = 54
intracranial aneurysms. Values given are cohort means (std. dev. in parentheses).

Indicator Rest Exercise Relative difference
FLOW [ml/min] 240 (99) 245 (109) 2.00% (2.22%)
PI 1.18 (0.00) 2.13 (0.16) 80.3% (13.5%)
TAWSS 4.78 (4.17) 5.78 (4.93) 27.2% (19.6%)
OSI 0.027 (0.023) 0.053 (0.035) 124.0% (84.1%)
rTransWSS 0.168 (0.069) 0.240 (0.084) 48.1% (29.3%)
rArea Low TAWSS [%] 12.87 (22.07) 7.42 (15.04) -58.6% (27.8%)
rArea High OSI [%] 2.30 (2.60) 5.09 (5.37) 165% (143%)

Table 5.2: Correlation coefficients between flow variability in the host artery (ICA)
and WSS variability in N = 54 intracranial aneurysm.

Comparison Pearson’s ρ p-value
∆FLOW vs. ∆TAWSS 0.277 0.043∗

∆FLOW vs. ∆OSI −0.132 0.340
∆FLOW vs. ∆rTransWSS −0.100 0.473
∆FLOW vs. ∆rAreaLowTAWSS −0.276 0.069
∆FLOW vs. ∆rAreaHighOSI −0.064 0.649
∆PI vs. ∆TAWSS 0.430 0.001∗

∆PI vs. ∆OSI −0.200 0.148
∆PI vs. ∆rTransWSS −0.225 0.102
∆PI vs. ∆rAreaLowTAWSS −0.183 0.237
∆PI vs. ∆rAreaHighOSI −0.101 0.469

time, while TAWSS increased in most regions it remained low in the region where OSI

was simultaneously elevated. Thus the actual change in rupture risk should be evalu-

ated based on a combined informations about TAWSS and WSS pulsatility indicators,

including analysis of the spatial patterns of WSS.

Linear correlations between changes in flow vs. changes in WSS are reported in

Table 5.2. It was found that, on average, TAWSS increases were associated incresses in

both FLOW and PI, while the correlations between flow and OSI/rTransWSS changes

were not statistically significant.

Discussion

Computational fluid dynamics modelling is a promising tool for virtual treatment plan-

ning in cardio- and cerebrovascular disease, but requires patient-specific boundary con-

ditions to achieve results that are relevant to the specific patient’s physiology. If nor-

mative flow boundary conditions are used instead, derived quantities of flow, such as

WSS, may incur large errors and uncertainties. In the context of intracranial aneurysm
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Figure 5.6: Example of flow in a posterior communicating artery aneurysm of a 41-
year old female where a large increase in host vessel pulsatility (∆PI = 102%) leads to
corresponding large increases in TAWSS (∆TAWSS = 39%) and OSI (∆OSI = 129%).

flow modelling, previous meta-analysis [301] showed that the use of patient-unspecific

boundary conditions leads to a moderate-sized effect (Hedges’ g = 0.30) when evaluat-

ing WSS patterns on the aneurysmal endothelium. This uncertainty can be multiplied

by the presence of within-subject flow variability. However, in clinical practice only a

single flow measurement is usually performed and no estimate of systemic variability

is available to guide the modeller as to the variability in the flow measurements.

A within-subject flow variability model was developed that mimics the response of

the cerebral autoregulation system to cardiac output variability. This model can be

used to extend a single baseline carotid flow measurement to a range of CBF experi-

enced during the person’s daily activities. As a concrete example, I performed CFD

simulations in 54 intracranial aneurysms where the intra-subject flow variability model

was used to generate waveforms at rest and during physical activity. The results showed

that physiological changes in CBF during increased physical activity may induce fluc-

tuations an order of magnitude higher in certain WSS-related quantities, such as OSI

(a 2% mean increase in flow lead to a 124% mean increase in OSI in the virtual cohort).

This indicates that OSI may be too sensitive to flow uncertainty to be reliably used

for rupture-risk evaluation. A partial recipe to this problem is to use alternative WSS

indicators that are robust to flow fluctuations. Specifically, I showed that TransWSS

was less sensitive to flow fluctuations than OSI, so that if both indicators are equally

informative for the rupture risk then TransWSS should be preferred over OSI. I re-

mark that the study is limited in the sense that the within-subject CBF variability

was controlled by a simple autoregulation model that only considers short-term effects.

Long-term response to chronic disruptions in CBF, such as cardiac disease, should be

modelled using a more advanced autoregulation model.
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5.3 A computationally inexpensive model for haemodynamic

quantification in aneurysms

3This study is presented as a proof of concept to show how computationally inexpensive

models can be used to accelerate costly simulations in an in-silico trial framework.

Here, I addressed the problem of estimating WSS on the surface of patient-specific

image-based models of vascular aneurysms. Such estimates are clinically relevant as

abnormal endothelial cell response to WSS variations is hypothesised to be one of the

driving factors in the inflammatory process that leads to aneurysm growth and rupture.

Boussel et al. [302], for example, reported a correlation between aneurysm growth and

areas of low time-averaged WSS. WSS in small vessels is difficult to be estimated

accurately from flow imaging, so that it is often evaluated indirectly through CFD

simulations.

CFD simulations can be very time-consuming, especially in the context of rapid

clinical decision making or in trials where haemodynamic analyses on a large-scale

virtual population are of interest, e.g., in-silico clinical trials. Thus there is a need to

develop methods that predict WSS directly from image-based models of aneurysms,

preferably without relying on costly CFD simulations. One way to do this is by applying

machine learning algorithms to build statistical models. This has been previously

proposed e.g. by Schiavazzi et al. [130] to learn the relation between inlet/outlet flow

and pressure in vascular flows. Statistical models for aneurysms are not found in the

literature, possibly due to the heterogeneity of shapes and the consequent problems in

establishing point correspondences.

To successfully predict WSS based only on the morphology of the aneurysm, I hy-

pothesised that we deal with geometry-driven flow. This means that the time-averaged

flow (and consequently the time-averaged WSS) is determined mainly by the mor-

phology of the vasculature, and that other factors such as the mean input flow and

the blood viscosity only contribute negligible fluctuation terms. Cebral et al. [31]

performed a sensitivity analysis of various haemodynamic parameters in intracranial

aneurysms (IAs), and showed that the greatest impact on the computed flow fields was

indeed due to the morphology.

I proposed a framework to predict the time-averaged WSS ( TAWSS) on the surface

of patient-specific saccular IAs. A joint statistical model (JSM) was trained by a hybrid

dataset of IA shapes and CFD-predicted aneurysmal TAWSS. I applied the method

of Gooya et al. [288] for joint clustering and principal component analysis for building

3The content of this section is adapted from: Sarrami-Foroushani, A., Lassila, T., Pozo J. M., Gooya, A., Frangi,
A. F.: Direct Estimation of Wall Shear Stress from Aneurysmal Morphology: A Statistical Approach. International
Conference on Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, pp. 201-209, 2016
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statistical models. However, the published method does not provide a mechanism to

predict missing values from partially observed data. The model was further extended

by collapsing the JSM to a shape only model, obtaining initial TAWSS values, and

further refining the result by projecting it to the JSM space.

The JSM was trained using a database of 38 patient-specific IA morphologies plus

114 TAWSS patterns (three different flow scenarios for each IA morphology). The

optimal model was first selected by maximising the model evidence, and used to predict

the TAWSS pattern given the IA morphology of the test aneurysm. To the best of my

knowledge, this represents the first development of a statistical model for complex IA

shapes that also provides predictions of WSS. While the focus here is on the TAWSS,

the method is general and can also predict flow quantities in other cases where the

geometry-driven flow assumption holds.

5.3.1 Materials and methods

Vascular modelling and pre-processing of shapes

A cohort of 38 IA cases were selected from the @neurIST database. Surface models of

the parent vessels, the neck surface, and the aneurysm sac were previously reconstructed

using the @neurIST processing toolchain as described by Villa-Uriol et al. in [243]. In

all these cases, the IA was located at the sylvian bifurcation of the middle cerebral

artery (MbifA-type), which is the most prevalent location for IAs. For each vascular

model, the inlet branches were truncated at the beginning of the internal carotid artery

(ICA) cavernous segment and extruded by an entry length of 5× the inlet diameter

to allow for fully developed flow. Outlet branches were automatically clipped 20 mm

after their proximal bifurcation. Branches shorter than 20 mm were extruded before

truncation. The processed vascular surface models were then used for CFD simulation

of blood flow as described in the next section.

Flow simulation and post-processing of TAWSS

For each surface model, a volumetric mesh of unstructured tetrahedrons with a maxi-

mum side length of 0.2 mm was generated in ANSYS ICEM v16.2 (Ansys Inc., Canons-

burg, PA, USA). Three boundary layers of prismatic elements with edge size of 0.1 mm

were used to provide convergence of WSS-related quantities. Blood was considered in-

compressible and Newtonian with density of 1066 kg/m3 and dynamic viscosity of

0.0035 Pa·s. Arterial distensibility was not considered.

Time-varying inlet boundary conditions were prescribed at the ICA. To account

for intra-subject flow variability on the aneurysmal TAWSS, I performed multiple flow
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simulations with different inflow boundary conditions for each case. A Gaussian process

-model (GPM) was used to generate multiple inflow waveforms over the physiological

range of variability at the ICA. This GPM was trained on subject-specific data from

the study of Ford et al. [74], describing the statistical variance of 14 fiducial landmarks

on the waveform. To simulate the high, moderate, and low flow conditions, I selected

three representative waveforms from the GPM generated samples and used them as

inlet boundary conditions for flow simulations. A Poiseuille profile was imposed at all

times of the inlet, and zero pressure at the outlets.

The unsteady Navier-Stokes equations were solved in ANSYS CFX v16.2 (Ansys

Inc., Canonsburg, PA, USA) using a finite-volume method. Second-order-accurate dis-

crete approximations were used both in space and time, i.e., a second-order advection

scheme and a second-order backward Euler transient scheme. Mesh convergence tests

were performed on WSS, pressure, and flow velocity at several points in the com-

putational domain. Unsteady simulations were run for 3 heartbeats until a periodic

solution with stationary mean pressure was achieved. A total of 38 × 3 = 114 flow

simulations were performed. Thereafter, the WSS vector field τw(x, t) on the surface

was reconstructed and WSS was computed as described in the previous section.

The area of interest for building the statistical model contained only the aneurysm

sac. This choice was made to reduce the shape complexity due to variations of

the branch vessels. For each of the 114 simulated cases, aneurysm sacs along with

the TAWSS data were extracted from the complete vascular model and aligned semi-

automatically by Procrustes registration according to their neck surfaces. Joint IA

aneurysm sac and TAWSS field data sets were then decimated to point sets of around

600 points, so that the statistical model could be trained in a reasonable amount of

time (< 30 mins).

Construction of hybrid point sets

The combined 4-D data vectors mixed both spatial (coordinates (x, y, z) of the points)

and flow components (TAWSS in units of Pa). The relative magnitudes of the differ-

ent components thus needed to be carefully selected to avoid biasing the joint model

towards either pure shape or pure TAWSS approximations. As initial scaling, the Eu-

clidean distance (d) of each point in the point sets from the global centroid of point

sets was computed and the maximum, dmax, was used to scale the spatial coordinates

as (x̃, ỹ, z̃) = (x, y, z)/dmax. TAWSS values were scaled to fall between [0,1] by dividing

them with the peak TAWSS value computed across all the vectors in the training set.

To open up a possibility to investigate the effect of relative weight of shape and TAWSS

in the JSM, I introduced a weighting factor (α). Thus, for each case (k = 1, . . . , 114)
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the 4D point set was, Xk(α) = [Ỹk, αF̃k], where Ỹk was the shape vector and F̃k was

the TAWSS vector. Note that there was no point-to-point correspondence between

different shapes.

Joint statistical flow-and-shape model construction

4Let Xk = {xkn}Nk, K
n=1,k=1 denote the kth point set, where xkn is a D = 4 dimensional

vector containing spatial and TAWSS coordinates of the nth landmark. The statistical

model can be explained by considering a hierarchy of two interacting mixture models.

In D dimensions, points in Xk were assumed to be samples from a Gaussian mixture

model (GMM) having M components. Furthermore, by consistently concatenating

the coordinates of those components, Xk can be represented as an MD dimensional

vector. These were assumed to be samples from a mixture of J probabilistic principle

component analysers (PPCAs) [303]. Clustering and linear component analysis for

Xk takes place in this high-dimensional space. The jth PPCA is an MD dimensional

Gaussian specified by the mean vector µ̄j, and the covariance matrix given by WjW
T
j +

β−1I. Here, Wj is an MD × L dimensional matrix, whose columns encode the variation

modes in the cluster j. Let vk be an L dimensional vector and define µjk = Wjvk+µ̄j,

a re-sampled representation of Xk in the space spanned by principal components of the

jth cluster. Meanwhile, if we partition µjk into a series of M subsequent vectors and

denote each as µ
(m)
jk , we obtain the means of the corresponding GMM.

To specify point correspondences, let Zk = {zkn}Nk
n=1, and zkn ∈ {0, 1}M . The latter

is a vector of zeros except for its arbitrary mth component, where zknm = 1, indicating

that xkn is a sample from the D-dimensional Gaussian m. Moreover, let tk ∈ {0, 1}J ,

whose component j being one, (tkj = 1), indicates that Xk belongs to cluster j. It was

defined

p(xkn|zkn,tk,β,W,vk) =
∏
j,m

N (xkn|µ(m)
jk , β

−1ID)zknmtkj . (5.10)

Finally, prior multinomial distributions were imposed on Z = {Zk} and T = {tk}
variables, normal distributions on W = {Wj} and V = {vk} variables, and assumed

conditional independence (see [288] for further details).

To train the joint flow-shape model, I considered estimating the posterior proba-

bility of p(θ|X,M,L, J), where X = {Xk} and θ = {Z,T,W,V}. Since this was not

analytically tractable, an approximate posterior was sought by maximising a lower

bound (LB) on the p(X|M,L, J) (also known as model evidence). This was achieved

by assuming a factorised form of posteriors, following the variational Bayesian (VB)
4The details of statistical model has been given in [288]. A brief overview is provided here for the sake of completeness.
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Figure 5.7: Lower bound of model evidence used for optimising the number of clusters
J when L = 1 (left), and the number of modes of variation per cluster L when J = 1
(right). Results shown for different M , the number of sampling points in each cluster.

principal. On the convergence, the approximated posteriors were computed, hence ex-

pectations (denoted by 〈·〉) of latent variables with regard to these variational posteriors

became available. For a new test point set Xr, the model projected point set the can

be computed using the definition of the expectation: 〈x̂rn〉 =
∫

x̂rnp(x̂rn|Xr,X)dx̂rn.

The latter can be shown to lead into the following result.

〈x̂rn〉 =
∑
j,m

〈tjr〉〈zrnm〉〈µjr〉(m) (5.11)

To predict TAWSS values from a shape, the trained joint model was first collapsed

to a shape-only model, by discarding flow related rows from the Wj matrices and

µ̄j vectors. Using this collapsed model, then, VB iterations were performed and the

initial posteriors for the corresponding tr, Zr and vr variables were obtained. Fol-

lowing this, the 〈Wj〉 and µ̄j were obtained from the joint model and it was set:

〈µjr〉 = 〈Wj〉〈vr〉+ µ̄j. Subsequently, the (5.11) was used to estimate initial TAWSS

values. These estimates were then further refined by performing VB iterations (using

the joint model), updating tr, Zr and vr, and interlacing imputations from (5.11). I

observed that a convergence was achieved within 10 iterations (< 5 mins).

5.3.2 Results

Model selection and validation

The lower bound of the model evidence, p(X |M,L, J), was used as a criterion to select

optimal numbers of: 4-dimensional Gaussians (M), PPCA clusters (J), and modes of

variations (L) in each cluster. A nine-fold cross validation was then performed using 36

IA shapes and flows to assess the generality and specificity of the model. The scaling
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Figure 5.8: Mean and first mode of variation for the two most populated clusters. The
mode of the first cluster (top row) represents mainly the IA size, while the mode of the
second cluster (bottom row) represents mainly changes in TAWSS patterns.

parameter α, representing the relative weight of shape and TAWSS information in each

point set, was then chosen to minimise the generalisation and specificity errors. It was

observed that the specificity and generalisation errors was minimised for the default

choice of scaling, i.e. α = 1. These parameters were used for the flow prediction test.

Fig. 5.7 shows the variation of model evidence with respect to the model parameters

(J , L, and M). For each 1 ≤ J ≤ 40 and 1 ≤ L ≤ 20, I repeated the training for

10 rounds of initialisations. The mean and standard deviation of the model evidences

obtained are reported. As shown in Fig. 5.7, maximal model evidence was observed

for J = 23, L = 1, and M = 100.

Fig. 5.8 shows the mean shape and the first (and only) mode of variation for the two

most populated clusters (the largest cluster having 12 point sets, and the second largest

cluster containing 9 point sets). It can be seen that the IA size was the leading mode

of the first cluster. However, in the second cluster, the leading mode of variation acted

mainly to reorient the TAWSS pattern while the aneurysm shape remained similar.

This demonstrated that the modes identified in the model training capture both flow

and shape variabilities.

TAWSS Prediction from Shape

To evaluate the ability of the JSM to predict TAWSS for a given test shape, I performed

leave-one-out cross-validations. Since CFD model inputs were shown to only affect

the TAWSS magnitude and not the distribution of TAWSS on the aneurysm sac [109],

Pearson correlation test was used to perform a statistical point-by-point comparison

between the model predicted TAWSS and that obtained from the full CFD simulation.
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Among a total of 38, the following correlation coefficients were found: ρ ≥ 0.6 for 18

cases, 0.4 ≤ ρ ≤ 0.6 for 13 cases, and ρ ≤ 0.4 for the rest. It was observed that IAs

with worst correlation coefficients fell into clusters with only one aneurysm shape in

them. This revealed that the unsuccessful WSS prediction cases were associated with

what appeared to be outlier shapes from the training data set; mainly complex multi-

bleb aneurysm shapes. Fig. 5.9 shows the model predicted TAWSS compared with the

ground truth CFD solutions for the four best and worst cases. For each aneurysm,

we report correlation coefficient ρ and the most probable cluster size (MPCS). The

latter refers to the size of the cluster that appeared most similar to the test case. It

can be seen that the IA with the worst ρ value (bottom row) fell into a cluster with

size of three. While others with stronger predictions fell into more populated clusters

containing at least 9 point sets in the training data.

5.3.3 Discussion

I presented the first statistical model for complex saccular aneurysms that also pre-

dicted TAWSS patterns. The JSM was trained using a database of 38 patient-specific IA

geometries and corresponding TAWSS values obtained from CFD simulations. A mix-

ture PPCA model with 23 clusters and one mode of variation in each provided the best

fit in terms of model evidence. Only the morphology and TAWSS on the aneurysmal

sac were used for training, yet the TAWSS included implicitly information about the

configuration of the host vessels. This enabled estimations of TAWSS on the IA wall

based on the IA shape alone. Observation of the modes of variation of the largest clus-

ters confirmed that the modes contained information on the variability of both TAWSS

and shape.

The large inter-subject variability of IA shapes and their parent vessel configura-

tions means that a sufficiently representative set of training data needs to be acquired.

Even when choosing the most populous type of IA (MbifA-type) from the most compre-

hensive imaging database available to us, I only had 38 patient cases for training. To

further study the prediction power of the proposed method, a larger cohort of synthetic

aneurysms could however be generated and analyzed as a future work. As a result,

the leave-one-out flow prediction test revealed that some IA shapes in the dataset were

outlier shapes in which the TAWSS could not be well approximated. These outlier

shapes included IAs with multiple daughter aneurysms and/or unusual positioning of

the IA with respect to the vasculature. They could be flagged for further CFD analysis

based on the size of the cluster in the training data that they were most likely to be

part of.

I used IAs as an example of heterogeneous datasets with large variability in both
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Figure 5.9: Leave-one-out cross validation test for TAWSS estimation. Shown are the
four best cases and the worst case (in terms of Pearson’s ρ). The JSM accurately
predicts flow impingement regions (case 1) and absence of flow (case 2). Case 5 is
a complex outlier shape that does not resemble any of the other IA shapes used for
training. All correlations significant to p < 0.001 except case 5, p = 0.05.

flow patterns and shapes. Building the shape model is challenging since there is no

straightforward method for establishing point correspondences between heterogeneous

shapes. In the proposed method point correspondences are not required. Furthermore,

the use of the PPCA mixture model allows outliers to be automatically separated into

their own clusters. This is an improvement to single cluster PPCA models, which are

known to be sensitive to outliers. The method presented here is therefore general and

applicable to a number of other flow prediction scenarios in the presence of complex

shape variations.
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5.4 Conclusion

As discussed in section 5.1, in in-silico clinical trials, a combination of vascular surface

models from a real cohort of patients and inter-/intra-subjects flow variability models

provide a space of virtual patients that extend the cohort beyond what would be avail-

able with purely patient-specific data collection. In this chapter, I presented two pre-

liminary studies towards addressing a fully-automatic and computationally inexpensive

frameworks for aneurysm flow modelling. In section 5.2, I built an automatic frame-

work to quantify aneurysmal haemodynamics in a range of physiological conditions,

i.e., rest versus exercise. In section 5.3, I presented a model to estimate aneurysmal

TAWSS directly from its morphology bypassing the computationally expensive process

of solving Navier-Stokes equations. I believe that such developments could be further

extended and utilised in large-scale in-silico clinical trials.





Chapter 6

Conclusions and outlook
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6.1 Conclusions

• Measures of quantity and quality of the device-induced clot are important when

assessing a FD performance in inducing a stable occlusive clot. Models of post-

treatment clot formation should be linked to the purely haemodynamic virtual en-

dovascular treatment workflows to improve them in predicting formation of a stable

clot after flow diversion. My review of literature and meta analyses showed that

uncertainties emerging from vascular wall distensibility and intra-/inter-subject sys-

temic flow variability affect the aneurysmal haemodynamics. I argued there is a need

to extend the current deterministic models of cardiovascular flow with strategies for

uncertainty mitigation, uncertainty exploration, and sensitivity reduction.

– Chapter 2

• I developed a data-driven statistical model of ICA flow, which was used to gener-

ate a virtual population of waveforms used as inlet boundary conditions in CFD

simulations. The utility of such virtual populations lies in in-silico trials where the

model provided one of the ingredients to successful virtual trials of cerebrovascular

interventions, particularly aneurysm flow diversion. I used this virtual population

to compute the statistics of the aneurysmal WSS distributions in presence of flow

variability. Variations of internal carotid flow waveform had limited effect on the

magnitude of time-averaged WSS on the aneurysm sac. In regions where the flow

was locally highly multi-directional, WSS directionality and harmonic content were

largely affected by the ICA flow waveform. Incorporating the flow variations in classi-

fication of the aneurysms based on rupture likelihood, changed the rupture prediction

in 4 out of 19 cases, when compared to classifications based on haemodynamic vari-

ables predicted from deterministic models. I argued that the effect of systemic blood

flow variability should be explicitly considered in CFD-based aneurysm rupture as-

sessment to prevent confounding the conclusions.

– Chapter 3

• I developed a thrombosis model to predict the platelet content distribution in intra-

aneurysmal clots formed after flow diversion. The predictions made by the model

showed qualitative similarities in the clotting pattern and platelet composition when

compared with an in-vitro phantom experiment performed by an independent re-

search group in [1]. I also compared the model predictions against the literature on

qualitative thrombotic behaviour in aneurysms treated with FDs.

– Chapter 4

• As a primilary step towards creation of an in-silico trial framework for FD assess-
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ment, I demonstrated how a fully-automatic framework can be built for aneurysm

flow modelling. I used this framework to simulate aneurysmal flow in 54 intracranial

aneurysms at rest and during physical activity. The results showed that physiological

changes in CBF during increased physical activity may induce fluctuations an order

of magnitude higher in certain WSS-related quantities, such as OSI (a 2% mean

increase in flow lead to a 124% mean increase in OSI in the virtual cohort). This

indicates that OSI may be too sensitive to flow uncertainty to be reliably used for

rupture-risk evaluation. A partial recipe to this problem is to use alternative WSS

indicators that are robust to flow fluctuations. Specifically, I showed that TransWSS

was less sensitive to flow fluctuations than OSI, so that if both indicators are equally

informative for the rupture risk then TransWSS should be preferred over OSI.

I also presented the first statistical model for complex saccular aneurysms that also

predicted time-averaged WSS patterns. This enabled direct estimation of WSS pat-

terns based on the aneurysm morphology. Such computationally inexpensive statis-

tical models can alleviate the problem of costly CFD simulations and are beneficial

for acceleration of large-scale in-silico trials. I demonstrated that the predicted WSS

patterns can achieve significant similarities to the CFD-based results.

– Chapter 5

6.2 Outlook

While each chapter of this thesis is self contained and specific prospects are discussed

at the end of each chapter, I summarise of the main possible future directions:

• Previous studies demonstrated the need for prediction of the FD-induced clot bio-

chemical composition that is key in characterising stable and unstable thrombus

(e.g. [19, 254, 262]). I pointed out that predictions about the success of flow di-

version made purely based on aneurysm morphology or post- FD flow alterations

cannot capture formation of a stable clot inside aneurysm. Computational pre-

diction of clot stability requires virtual treatment workflows to include models of

intra-aneurysmal thrombosis that enable characterisation of the composition of the

clot constituents, especially the structural components, i.e., fibrin and platelets. I

remark that flow diversion success predictions should be made based on aneurysm

morphology, post- FD flow alterations, and biochemical composition of the clot

induced by FD. In future FD performance indicators should devised as a com-

bination of these three components to better assess FD performance in terms of

inducing a stable clot that closes the aneurysm sac.
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• Virtual endovascular treatment workflows are influenced by several sources of un-

certainty to be accounted for when interpreting the results of their predictions.

In Chapter 2, meta-analyses were performed on three well-known sources of un-

certainty, and the uncertainties arising from vascular wall distensibility and in-

flow waveform variabilities showed effect sizes (Hedge’s g) of 0.34, 95% CI [0.22,

0.45], p-value < 0.001, and 0.3, 95% CI [0.08,0.52], p-value = 0.003, respectively.

Significance of non-rigid FSI models in future understanding of complex biome-

chanical processes at the aneurysm wall has also been pointed out by Chung et

al. [122]. Physiologically realistic FSI models of aneurysms require measuring lo-

cal variations of wall mechanical properties over highly heterogeneous pathologic

aneurysms’ wall which is not easily achievable in routine clinical practice. In

future, such uncertainties should be addressed by: 1) using more accurate tech-

niques for measuring model input parameters (uncertainty mitigation); 2) con-

sidering the propagation of uncertainties from input parameters into the model

outputs; and reporting confidence intervals and sensitivities instead of determin-

istic results (uncertainty exploration); or 3) replacing model outputs with other

alternative variables, which carry the same information but are less sensitive to the

unknown model parameters (sensitivity reduction). Specifically, more advanced

imaging techniques can provide higher quality images of the vascular lumen along

with automatic segmentation techniques that do not require a posteriori manual

editing and can eliminate some of the geometric uncertainty. Conducting more

experimental studies regarding the mechanisms underlying thrombosis, particu-

larly in aneurysms, can reduce model uncertainties in aneurysmal clotting and

produce more reliable virtual treatment outcome predictions. However, inher-

ent uncertainties in the systemic flow (and several other model parameters) can-

not be eliminated. In such cases, advanced uncertainty quantification techniques

[130, 226, 227] can systematically explore the effects of these uncertainties. The

concept of personalisation should not be limited to deterministic identification

of model parameters at a particular moment in time. Instead, model parame-

ters should be treated as uncertain and/or fluctuating quantities; and uncertainty

quantification techniques should propagate those uncertainties through the vir-

tual treatment models in order to produce confidence intervals and sensitivities

associated with the model predictions.

• Generation of boundary condition envelopes that capture the entire range of vari-

ability of a boundary variable is needed both as part of an in-silco trials and to

increase the credibility of personalised simulations usually made based on a single

set of boundary conditions. In this thesis, I presented statistical models of inter-
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nal carotid flow variability (see chapters 2 and 5). These data-driven models are

made based on limited number of experimental measurements made on cohorts

with homogeneous characteristics, e.g., young and healthy. Data from larger,

cross-sectional population studies (e.g. the UK Biobank project [304]) is needed

to retrain the models for increased coverage and to achieve actual population-

specific, not just cohort-specific models. In future, instead of simple autoregula-

tion models that only consider short-term effects, long-term response to chronic

disruptions in cerebral blood flow, such as cardiac disease, should be modelled

using a more advanced autoregulation model.

• Quantitative description of the clot composition and morphology is not available

in the literaure reporting experimental results on the FD-induced clots (e.g., ref-

erences [1, 305]). Well-designed in-vitro experiments are needed for validation of

the thrombosis models based on more quantitative results.

• The time scale of thrombosis models is not representative of the physiological time

scale of FD-induced clot formation and aneurysm occlusion, i.e., weeks to months.

Anti-coagulants and anti-platelets, both common in the treatment of flow diversion

patients, are absent from thrombosis models. More advanced and computationally

efficient thromosis models are needed to overcome such limitations. Computer

models should consider these chemicals to help clinicians in planning the treatment

so they prevent the events like in-stent thrombosis and the possible embolic effects

while promoting clot formation in the sac.

• This thesis contributed some of the key components needed for creating an in-silico

trial framework, particularly for assessing flow diverting stents. Even when all the

models and workflows are ready, further developments are needed to streamline

them and enjoy a computational framework that enables the large-scale in-silico

trials. Platforms like MULTIX1 are needed to orchestrate the workflows and enable

performing processes on heterogeneous large-scale data. To allow large-scale in-

silico trials, it is important to consider the computational cost reduction, especially

when costly processes like thrombosis simulations are involved. Replacing costly

mechanistic models of a in-silico trial framework, with phenomenological models,

e.g., data-driven models based on machine learning techniques, can be considered

to alleviate such issues.

• Intracranial aneurysms phenotypes are highly complex and heterogeneous [38].

Despite the agreements on the mechanisms underlying the aneurysm initiation,

1See Section 1.1
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mechanisms of growth, rupture/stabilisation, and spontaneous/post-treatment

healing of the aneurysms are still controversial. Many researchers have inves-

tigated the role of haemodynamics in aneurysm progression and rupture. For ex-

ample, it was shown that WSS differ in ruptured and unruptured aneurysms [241];

and both high and low WSS were correlated with the aneurysm rupture status [38].

Spontaneous aneurysm thrombosis was also shown to occur in regions where blood

residence time is high [43, 214]. However, although there is a consensus that

intra-aneurysmal haemodynamics do play a role in aneurysm pathophysiology,

the mechanisms of the haemodynamic-biologic interactions are not clearly under-

stood.

Whether an aneurysm ruptures or remains stable is thought to depend on the bal-

ance between the eutrophic and the destructive changes in the aneurysm wall [38].

Adverse WSS conditions are believed to disrupt the balance and drive aneurysm

wall inflammation and degradation. Under healthy conditions, changes in WSS

are sensed by the intact endothelium, however, the aneurysm wall is often char-

acterised by dysfunction/loss of endothelium [200] and, thus, impaired mechan-

otransduction. Cebral et al. [306] examined 10 wall tissue samples obtained from

different human intracranial aneurysms. Intact endothelium was observed in only

3/10 samples and they did not find any significant difference in the number of

aneurysms with intact endothelium in the ruptured and unruptured groups. The

study by Cebral et al. [306] is the first I know of to compare in-vivo haemodynam-

ics with the histology of human intracranial aneurysms. Cebral et al. [306] used

sac-averaged WSS to examine the correlations among flow conditions and cellular

interactions in the wall, which prevents any general conclusion due to the highly

heterogeneous wall structure and aneurysm flow condition. Tissue samples from

different regions of the sac and registration of the histologic data with the local

haemodynamics should be included in the future studies to better understand the

interplay between hemodynamics and the cellular mechanisms of inflammation,

and degradation.

In Chapters 3 and 5, I presented models of inter-/intra-subject variability of phys-

iology and studied the uncertainty in the quantification of the aneurysmal WSS.

The presented methods are general and not limited to uncertainty quantification

of WSS, and thus can be used to investigate the effect of physiological variabilities

on other simulation-based haemodynamic measures. In Chapter 4, the thrombosis

initiation is not based on any particular biological mechanism at the wall, e.g.,

wall TF exposure, or blood-borne TF secretion. Instead, flow stasis was assumed

as the nexus between all of the complex initiation mechanisms and volumetric
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haemodynamic parameters (i.e., residence time and low shear rate) were used to

identify regions of flow stasis where the clot can form through a diverse set of

initiation mechanisms.
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[73] S. Appanaboyina, F. Mut, R. Löhner, C. Putman, and J. Cebral, “Computa-

tional fluid dynamics of stented intracranial aneurysms using adaptive embedded

unstructured grids,” Int. J. Numer. Meth. Fl., vol. 57, no. 5, pp. 475–493, 2008.

[74] M. D. Ford, N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman, “Char-

acterization of volumetric flow rate waveforms in the normal internal carotid and

vertebral arteries,” Physiol. Meas., vol. 26, no. 4, p. 477, 2005.

[75] M. N. Gwilliam, N. Hoggard, D. Capener, P. Singh, A. Marzo, P. K. Verma, and

I. D. Wilkinson, “Mr derived volumetric flow rate waveforms at locations within

the common carotid, internal carotid, and basilar arteries,” J. Cerebr. Blood F.

Met., vol. 29, no. 12, pp. 1975–1982, 2009.

[76] Y. Hoi, B. A. Wasserman, Y. J. Xie, S. S. Najjar, L. Ferruci, E. G. Lakatta,

G. Gerstenblith, and D. A. Steinman, “Characterization of volumetric flow rate

waveforms at the carotid bifurcations of older adults,” Physiol. Meas., vol. 31,

no. 3, p. 291, 2010.

[77] W. Nichols, M. O’Rourke, and C. Vlachopoulos, McDonald’s blood flow in arter-

ies: theoretical, experimental and clinical principles. CRC Press, 2011.

[78] Y. Shi, P. Lawford, and R. Hose, “Review of zero-d and 1-d models of blood flow

in the cardiovascular system,” Biomed. Eng. Online, vol. 10, no. 1, p. 33, 2011.

[79] L. Grinberg and G. E. Karniadakis, “Outflow boundary conditions for arterial

networks with multiple outlets,” Ann. Biomed. Eng., vol. 36(9), pp. 1496–1514,

2008.

[80] M. S. Olufsen, A. Nadim, and L. A. Lipsitz, “Dynamics of cerebral blood flow

regulation explained using a lumped parameter model,” Am. J. Physiol. Reg. I.,

vol. 282, no. 2, pp. R611–R622, 2002.

[81] L. Formaggia, D. Lamponi, and A. Quarteroni, “One-dimensional models for

blood flow in arteries,” J. Eng. Math., vol. 47, no. 3-4, pp. 251–276, 2003.

[82] P. Reymond, F. Merenda, F. Perren, D. Rüfenacht, and N. Stergiopulos, “Vali-
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[154] L. Flórez-Valencia, M. Orkisz, and J. Montagnat, “3d graphical models for

vascular-stent pose simulation,” Mach. Grap. Vision, vol. 13, no. 3, pp. 235–248,

2004.

[155] K. Spranger and Y. Ventikos, “Which spring is the best? comparison of methods

for virtual stenting,” IEEE. T. Biomed. Eng., vol. 61, no. 7, pp. 1998–2010, 2014.

[156] W. Jeong, M. H. Han, and K. Rhee, “Effects of framing coil shape, orientation,

and thickness on intra-aneurysmal flow,” Med. Biol. Eng. Comput., vol. 51, no. 9,

pp. 981–990, 2013.

[157] M. L. Aguilar, H. G. Morales, I. Larrabide, J. M. Macho, L. San Roman, and

A. F. Frangi, “Effect of coil surface area on the hemodynamics of a patient-specific

intracranial aneurysm: A computational study,” in IEEE Int. Sympos. Biomed.

Imaging (ISBI). IEEE, 2012, Conference Proceedings, pp. 1180–1183.

[158] H. G. Morales, M. Kim, E. Vivas, M.-C. Villa-Uriol, I. Larrabide, T. Sola,

L. Guimaraens, and A. Frangi, “How do coil configuration and packing den-

sity influence intra-aneurysmal hemodynamics?” Am. J. Neuroradiol., vol. 32,

no. 10, pp. 1935–1941, 2011.

[159] I. Larrabide, M. Aguilar, H. Morales, A. Geers, Z. Kulcsár, D. Rüfenacht, and
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and J. Hernesniemi, “Saccular intracranial aneurysm: pathology and mecha-

nisms,” Acta Neuropathol., vol. 123, no. 6, pp. 773–786, 2012.

[201] M. Hoffman, “A cell-based model of coagulation and the role of factor viia,” Blood

Rev., vol. 17, pp. S1–S5, 2003.

[202] H. A. Himburg, S. E. Dowd, and M. H. Friedman, “Frequency-dependent response

of the vascular endothelium to pulsatile shear stress,” Am. J. Physiol. Heart C.,

vol. 293(1), pp. H645–H653, 2007.

[203] Y.-D. Li, B.-Q. Ye, S.-X. Zheng, J.-T. Wang, J.-G. Wang, M. Chen, J.-G. Liu,

X.-H. Pei, L.-J. Wang, and Z.-X. Lin, “Nf-κb transcription factor p50 critically

regulates tissue factor in deep vein thrombosis,” J. Biol. Chem., vol. 284, no. 7,

pp. 4473–4483, 2009.

[204] N. Mackman, “Role of tissue factor in hemostasis, thrombosis, and vascular de-

velopment,” Arterioscl. Throm. Vas., vol. 24, no. 6, pp. 1015–1022, 2004.

[205] J. Biasetti, T. C. Gasser, M. Auer, U. Hedin, and F. Labruto, “Hemodynamics of

the normal aorta compared to fusiform and saccular abdominal aortic aneurysms

with emphasis on a potential thrombus formation mechanism,” Ann. Biomed.

Eng., vol. 38, no. 2, pp. 380–390, 2010.

[206] J. Biasetti, F. Hussain, and T. C. Gasser, “Blood flow and coherent vortices in

the normal and aneurysmatic aortas: a fluid dynamical approach to intra-luminal

thrombus formation,” J. R. Soc. Interface, vol. 8, no. 63, p. 1449–1461, 2011.

[207] P. F. Davies, “Flow-mediated endothelial mechanotransduction,” Physiol. Rev.,

vol. 75, no. 3, pp. 519–560, 1995.

[208] T. Bodnár, A. Fasano, and A. Sequeira, Mathematical models for blood coagula-

tion. Springer, 2014, pp. 483–569.

[209] M. S. Chatterjee, W. S. Denney, H. Jing, and S. L. Diamond, “Systems biology

of coagulation initiation: kinetics of thrombin generation in resting and activated

human blood,” PloS Comput. Biol., vol. 6, no. 9, p. e1000950, 2010.

[210] W. Chong, Y. Zhang, Y. Qian, L. Lai, G. Parker, and K. Mitchell, “Computa-

tional hemodynamics analysis of intracranial aneurysms treated with flow divert-

ers: correlation with clinical outcomes,” Am. J. Neuroradiol., vol. 35, no. 1, pp.

136–142, 2014.



References 150

[211] O. Malaspinas, A. Turjman, D. R. de Sousa, G. Garcia-Cardena, M. Raes, P.-T.

Nguyen, Y. Zhang, G. Courbebaisse, C. Lelubre, and K. Z. Boudjeltia, “A spatio-

temporal model for spontaneous thrombus formation in cerebral aneurysms,” J.

Theor. Biol., vol. 394, pp. 68–76, 2016.

[212] C. Ou, W. Huang, and M. M.-F. Yuen, “A computational model based on fib-

rin accumulation for the prediction of stasis thrombosis following flow-diverting

treatment in cerebral aneurysms,” Med. Biol. Eng. Comput., pp. 1–11, 2016.

[213] K. C. Koskinas, Y. S. Chatzizisis, A. P. Antoniadis, and G. D. Giannoglou,

“Role of endothelial shear stress in stent restenosis and thrombosis: pathophysio-

logic mechanisms and implications for clinical translation,” J. Am. Coll. Cardiol.,

vol. 59, no. 15, pp. 1337–1349, 2012.

[214] V. Rayz, L. Boussel, L. Ge, J. Leach, A. Martin, M. Lawton, C. McCulloch, and

D. Saloner, “Flow residence time and regions of intraluminal thrombus deposition

in intracranial aneurysms,” Ann. Biomed. Eng., vol. 38, no. 10, pp. 3058–3069,

2010.

[215] R. Ouared and B. Chopard, “Lattice boltzmann simulations of blood flow: non-

newtonian rheology and clotting processes,” J. Stat. Phys., vol. 121, no. 1-2, pp.

209–221, 2005.

[216] S. Zimny, B. Chopard, O. Malaspinas, E. Lorenz, K. Jain, S. Roller, and J. Berns-

dorf, “A multiscale approach for the coupled simulation of blood flow and throm-

bus formation in intracranial aneurysms,” Procedia Comput. Sci., vol. 18, pp.

1006–1015, 2013.

[217] J. Biasetti, P. G. Spazzini, J. Swedenborg, and T. C. Gasser, “An integrated

fluid-chemical model toward modeling the formation of intra-luminal thrombus

in abdominal aortic aneurysms,” Front. Physiol., vol. 3, p. 266, 2012.

[218] S. Cito, M. D. Mazzeo, and L. Badimon, “A review of macroscopic thrombus

modeling methods,” Thromb. Res,, vol. 131, no. 2, pp. 116–124, 2013.

[219] C. M. Danforth, T. Orfeo, K. G. Mann, K. E. Brummel-Ziedins, and S. J. Everse,

“The impact of uncertainty in a blood coagulation model,” Math. Med. Biol.,

vol. 26, no. 4, pp. 323–336, 2009.

[220] D. Luan, M. Zai, and J. D. Varner, “Computationally derived points of fragility

of a human cascade are consistent with current therapeutic strategies,” PloS

Comput. Biol., vol. 3, no. 7, p. e142, 2007.



151 References

[221] G. Moiseyev and P. Z. Bar-Yoseph, “Computational modeling of thrombosis as

a tool in the design and optimization of vascular implants,” J. Biomech., vol. 46,

no. 2, pp. 248–252, 2013.

[222] C. S. Ogilvy, M. H. Chua, M. R. Fusco, A. S. Reddy, and A. J. Thomas, “Strati-

fication of recanalization for patients with endovascular treatment of intracranial

aneurysms,” Neurosurgery, vol. 76, no. 4, pp. 390–395, 2015.

[223] C. S. Ogilvy, M. H. Chua, M. R. Fusco, C. J. Griessenauer, M. R. Harrigan,

A. Sonig, A. H. Siddiqui, E. I. Levy, K. Snyder, and M. Avery, “Validation of

a system to predict recanalization after endovascular treatment of intracranial

aneurysms,” Neurosurgery, vol. 77, no. 2, pp. 168–174, 2015.

[224] A. Arzani, A. M. Gambaruto, G. Chen, and S. C. Shadden, “Lagrangian wall

shear stress structures and near-wall transport in high-schmidt-number aneurys-

mal flows,” J. Fluid Mech., vol. 790, pp. 158–172, 2016.

[225] J. R. Cebral and H. Meng, “Counterpoint: realizing the clinical utility of com-

putational fluid dynamics—closing the gap,” Am. J. Neuroradiol., vol. 33, no. 3,

pp. 396–398, 2012.

[226] P. Hennig, M. A. Osborne, and M. Girolami, “Probabilistic numerics and uncer-

tainty in computations,” in P. Roy. Soc. A Math. Phy., vol. 471, 2015, Conference

Proceedings, p. 20150142.

[227] S. Sankaran, L. Grady, and C. A. Taylor, “Impact of geometric uncertainty on

hemodynamic simulations using machine learning,” Comput. Meth. Appl. M., vol.

297, pp. 167–190, 2015.

[228] J. Mikhal, D. Kroon, C. Slump, and B. Geurts, “Flow prediction in cerebral

aneurysms based on geometry reconstruction from 3d rotational angiography,”

Int. J. Numer. Meth. Bio., vol. 29, no. 7, pp. 777–805, 2013.

[229] J. Schneiders, H. Marquering, L. Antiga, R. Van den Berg, E. VanBavel, and

C. Majoie, “Intracranial aneurysm neck size overestimation with 3d rotational an-

giography: the impact on intra-aneurysmal hemodynamics simulated with com-

putational fluid dynamics,” Am. J. Neuroradiol., vol. 34, no. 1, pp. 121–128,

2013.
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