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Abstract

Introduction: Individually randomised controlled trials (iRCTs) of complex interventions com-

monly induce clustered outcomes in the intervention arm only, termed partially nested trials

(pnRCTs). In addition, iRCTs are increasingly used to evaluate interventions delivered propor-

tionate to individual need. This can result in only some of the intervention arm having clustered

outcomes due to post randomisation allocation to clusters, termed within-arm pnRCTs.

Research question: What elements need to be considered in the design, analysis and reporting

of complex intervention trials with continuous outcomes, with a particular focus on proportionate

interventions and intervention induced clustering in one trial arm?

Methods: Firstly, a systematic review of trials of proportionate interventions was performed.

Simulation of pnRCTs and within-arm pnRCTs were used to investigate appropriate analysis

methods. Sample size formulae for such RCTs were identified and summarised. Finally, a review

of publicly funded iRCTs with clustering was undertaken.

Results: Proportionate interventions commonly induced within-arm partial nesting. Appropri-

ate analysis methods were identified and demonstrated for pnRCTs, although with few clusters,

small cluster sizes, and small intracluster correlation coefficient (ICC) there was no optimal

method. Accounting for non-random clustering in within-arm pnRCTs was not possible; how-

ever, under realistic scenarios ignoring clustering can provide valid statistical inference. Sample

size formulae for pnRCTs require an ICC estimate. From 15 publicly funded iRCTs the me-

dian healthcare provider ICC was 0.009. To improve transparency an additional Consolidated

Standards of Reporting Trials-nonpharmacologic treatments item related to reporting ICC is

suggested.

Conclusions: This thesis demonstrates the extent of clustering in both proportionate inter-

vention trials and publicly funded iRCTs. Appropriate analysis methods are demonstrated for

pnRCTs. For within-arm pnRCTs it is typically recommended to ignore the clustering. Sam-
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ple size methods are summarised and empirical ICCs provided. This work provides practical

guidance for design, analysis and reporting for continuous outcomes in RCTs with intervention

induced clustering in one trial arm.
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Chapter 1

Introduction

In recent decades there has been an increasing acceptance and emphasis on evidence based

healthcare, the aim of delivering and making informed healthcare decisions through the use of

sound research and evidence evaluation [1]. Resources for any healthcare system are limited,

consequently rational policies and decision making will ideally use these limited resources to

provide and implement interventions that have been proven to be both effective and cost-effective

through well designed research and evaluation.

Randomised controlled trials (RCTs) play a central role in building this evidence as they are gen-

erally considered the gold standard for evaluating the effectiveness of interventions in healthcare.

The term intervention defines an activity undertaken with the purpose of improving, assessing,

promoting or modifying health or health conditions. RCTs have been widely used to evaluate the

effectiveness of pharmacological interventions. There has also been a move in public health, pri-

mary care and educational research towards evaluating the effectiveness of non-pharmacological

complex interventions. Complex interventions are conventionally those that are made up of a

variety of interacting components [2]. For example, evaluating weight management groups for

obesity, surgical interventions, and delivery methods of a psychotherapy intervention.

Individually randomised controlled trials (iRCTs) of complex interventions commonly induce

clustered outcomes in the intervention arm only, termed partially nested trials (pnRCTs). RCTs

are also being used to evaluate the effectiveness of complex interventions delivered proportionate

to individual need. This can result in only some of the intervention arm having clustered

outcomes due to post randomisation allocation to clusters, termed within-arm pnRCTs.

Appropriate statistical design and analysis of RCTs are required to enable valid and useful
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conclusions to be made. The design and analysis of iRCTs evaluating complex interventions

are improving; however, there is need for improved understanding. The overarching research

question of this thesis is: what elements need to be considered in the design, analysis and

reporting of complex intervention trials with continuous outcomes, with a particular focus on

proportionate interventions and intervention induced clustering in one trial arm.

1.1 Chapter aims

This chapter aims to introduce a motivating example, the E-SEE trial design, providing a brief

overview of the trial in order to present the various complexities that can arise. The thesis

research question and research aims are then introduced. The chapter will conclude with an

overview of the thesis structure.

1.2 Motivating example: the E-SEE trial

Much of the motivation for this thesis originated from discussion regarding the design and anal-

ysis of the multi-centre E-SEE (Enhancing Social-Emotional health and wellbeing in the Early

years) trial. The E-SEE trial aims to evaluate the effectiveness of a community based implemen-

tation of the Incredible Years (IY) group-based parenting programme, delivered proportionate to

need [3]. The trial is funded through the National Institute for Health Research (NIHR) Public

Health Research programme call asking the research question “What are the effective and cost-

effective interventions to promote social and emotional wellbeing among children aged under 2

years?”. Figure 1.1 shows the NIHR call [4], focussing on proportionate universal interventions

[5] considering the impact on health inequalities.

The E-SEE trial aims to deliver IY as a proportionate universal intervention based on assessment

of need. The research question is: “Are the IY-Infant (IY-I) and IY-Toddler (IY-T) programmes,

when delivered in a dose proportionate to need, and when compared to services as usual, effective

and cost-effective in enhancing child social and emotional well-being at 20 months of age?”. At

the time of writing this thesis the E-SEE trial is still ongoing and this PhD has been running

in parallel with the trial.

Participants were randomised at the individual level to one of two trial arms: control arm (care

as usual) or IY intervention arm. The IY intervention arm consists of a proportionate delivery of
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Figure 1.1: NIHR PHR programme May 2013: 13/93 Social and Emotional Wellbeing in Early
Years

three levels of the IY intervention program. Within the IY intervention arm IY-Baby is issued

at the universal level to all. At two months, parents are offered the group based IY-Infant

if they are showing levels of stress or mild depression (PHQ-9 score of ≥5), comprised of 10

weekly parenting group sessions (2 -9 months). Parents are assessed again at nine months and

offered IY-Toddler if they show signs of stress or mild depression, comprised of weekly group

parenting sessions (9-18 months). The E-SEE trial is an individually randomised controlled

trial, with treatment induced clustering in one arm of the trial. Group sessions are delivered to

groups of parents in local centres by trained facilitators, delivered in a number of authorities,

with different facilitators at local centres. The clustering only occurs at certain stages of the

intervention (clustering by group based intervention at IY-Infant and IY-Toddler). Clustering

occurs in only one arm of the trial (partial nesting) and for only some individuals in that trial

arm (within-arm partial nesting).
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The original trial design aimed to evaluate the overall effectiveness of all three levels of the IY

programme and the individual effectiveness of each level being investigated. The E-SEE design

presents particular challenges for both the design and analysis of the trial and led to the initial

idea of exploring this in depth as a PhD. Further exploration of the wider topic informed the

generation and refining of the research objectives.

1.3 Research question

As highlighted above the focus of this thesis is to answer the research question: what elements

need to be considered in the design, analysis and reporting of complex intervention trials with

continuous outcomes, with a particular focus on proportionate interventions and intervention

induced clustering in one trial arm?

1.4 Research aims

The specific thesis aims to address the research question are:

1. To review current practice of how randomised trials of proportionate interventions are

designed and analysed and the extent of clustering in such trials.

2. To evaluate commonly used analysis methods for partially nested randomised trials and

within-arm partially nested randomised trials to establish which methods are most appro-

priate and why.

3. To identify and collate a comprehensive summary and resource for sample size methods

available for partially nested randomised trials.

4. To determine the extent and quality of reporting of clustering in iRCTs with intervention

induced clustering and provide empirical estimates of ICCs.

1.5 Thesis Structure

In this chapter the E-SEE trial has been presented as an example of the various complexities

that arise from randomised trials of complex interventions, focusing on the two key themes of

proportionate interventions and treatment induced clustering. The research objectives of this

24



thesis are introduced. A description of the thesis structure and what each chapter includes

follows.

Chapter 2 provides a conceptual framework and background for this thesis reviewing the public

health and statistical literatures. Key terminology and concepts are defined, including complex

intervention, proportionate universalism and proportionate interventions. Randomised con-

trolled trial (RCT) designs are introduced including individual, cluster, partially nested, and

within-arm partially-nested RCTs. Implications for the precision of treatment effects are given

for statistical analyses and sample size, describing how the statistical analysis and reporting of

a trial needs to correspond to the features of the design. Aspects of clustering including, types

of clustering, quantifying clustering, and defining and calculating the intracluster-correlation

coefficient (ICC) are introduced.

The framework is used in chapter 3 to structure a systematic review to address the aim of

reviewing how randomised trials of proportionate interventions are designed and analysed in

practice and the extent of clustering in such trials. The systematic review identifies trials of

proportionate interventions, categorised as either stepped-care or optimal intervention strategy

studies. The search strategy and eligibility criteria for selecting the trials are provided. Data is

extracted and summarised on the therapeutic area, stages and decision rules of the intervention,

statistical analysis used, whether different intervention stages were analysed and the frequency

and treatment induced clustering. The most common therapeutic area is mental health and

treatment induced clustering is present in the majority of trials identified.

Chapters 4 and 5 address the aim of evaluating appropriate statistical methods for analysing

trials with nested outcomes in one trial arm. Chapter 4 summarises analysis models commonly

employed for pnRCTs and evaluates these through a simulation study. The literature to date

is considered, the issue of degrees of freedom, and the lack of clear guidance highlighted. The

simulation study emulates pnRCTs over various scenarios of cluster size, number of clusters,

ICC and both homoscedastic and heteroscedastic individual variances. Six analysis methods

are compared in terms of bias, Type I error, ICC estimation, and power. Recommendations

regarding the appropriate analysis method to use are presented in relation to the design of the

study. Model fitting code is presented for R, Stata and SAS. The simulation code is given in an

appendix.

Chapter 5 extends the case of pnRCTs to those similar to E-SEE and seen in the systematic

review in chapter 3. Randomised trials which introduce within-arm partial nesting are further
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introduced and potentially appropriate statistical analysis methods are presented and reviewed

using a simulation study. Again, the simulation study emulates within-arm pnRCTs over various

scenarios of cluster size, and number of clusters. Recommendations regarding the appropriate

analysis method to use are presented in relation to the design of the study, the expected pro-

portion of participants with clustered outcomes and expected ICC. The simulation study only

considers one clustered intervention stage, trials which evaluate interventions with numerous

clustered intervention stages are discussed and the limitations this may have on accounting for

clustering in the analysis.

Chapter 6 reviews and collates sample size formulae and relevant statistical software for the

design of trials with clustering in one arm. The sample size formulae are outlined, building up

from individually randomised trials to cluster trials and finally to pnRCTs. The issue of within-

arm clustering is discussed in the context of sample size calculations and guidance provided in

relation to the simulation results in chapter 5. Practicalities of obtaining the values required for

these sample size formulas are discussed.

Chapter 7 investigates the extent, reporting, and evidence of clustering and ICCs in individ-

ually randomised trials published in the Health Technology Assessment (HTA) Journal, as a

representative source of publicly funded and reported trials in the UK. Trials with potential for

treatment induced clustering are selected. Extent of clustering is reported alongside how it has

been recognised in the design, analysis, and reporting. Reporting is assessed with adherence

to key items of the CONSORT-non-pharmacological treatments checklist related to clustering.

Evidence of ICCs used in sample size and empirical estimates of ICCs from the trials are pre-

sented, with the aim of raising awareness and informing current trial design and required sample

size calculations.

A discussion of the thesis is found in chapter 8. This is structured according to the aims, placing

the thesis in the context of the existing literature. Areas for further work are identified.
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Chapter 2

Background

2.1 Introduction

RCTs of complex interventions raise numerous challenges in the design and analysis stages.

The E-SEE trial was presented in chapter 1 as a means to introduce the key themes of this

thesis: proportionate interventions and intervention induced clustering. RCTs are essential

for evaluating the effectiveness of health interventions, however, clustering and proportionate

delivery introduce additional complexity to the analysis of the trial.

This chapter provides background for the understanding and definition of complex interventions

in health, introducing the motivation for proportionate universalism, proportionate interventions

and focusing on the complexities that arise from clustered of outcome data and proportionate

interventions.

2.2 Chapter aims

The chapter introduces key terminology and concepts, including complex intervention, pro-

portionate universalism and proportionate interventions. Various types of RCT designs are

introduced. Implications for the precision of treatment effects are given for statistical analy-

ses and sample size, describing how the statistical analysis and reporting of a trial needs to

correspond to the features of the design. Aspects of clustering including, types of clustering,

measuring clustering, and defining and calculating the intracluster correlation coefficient (ICC)

are introduced.
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2.3 Complex interventions

Many interventions aimed at improving healthcare can be defined as complex interventions, in

that they are made up of multiple interacting components [6]. Trials of such interventions often

present their own specific challenges [7]. Complex interventions are defined here based on the

Medical Research Council (MRC) guidance [6] and the more recent work by Kühne et al. [8].

The role the researcher takes in defining an intervention simple or complex is also considered

[9].

Complex interventions are defined as those that are made up of several interacting components,

they are generally non-pharmacological interventions. The complexity may arise through [6]:

� Number of components and interactions between components;

� Number of different groups/organisational levels targeted by the intervention;

� Variability of outcomes;

� The degree of flexibility/tailoring of intervention permitted.

An intervention component is any aspect of the intervention that could potentially have an

effect on the efficacy of the intervention. A component can be part of the intervention content,

features that promote adherence or fidelity of delivery. The multiple components may target

different levels of the social-ecological model, designed to affect change at these different levels

[10]. For instance, an intervention can be delivered to the individual patient such as the OCTET

trial of low intensity cognitive behavioural therapy and guided self-help for obsessive compulsive

disorder [11]. They can be delivered at the community level such as the PLEASANT trial of a

letter sent from General Practice (GP) aimed at reducing childhood asthma exacerbation levels

[12]. Some interventions are delivered to the healthcare professional. The intervention can also

be delivered at the family level, for example, the ‘Families for Health’ trial of family based

childhood obesity treatment delivered to the whole family [13]. To add to the complexity, a

combination of these different levels can also occur within one trial. The multiple components

can affect the efficacy, effectiveness, and cost-effectiveness of the intervention.

Evaluation of complex interventions can raise difficulties due to the inherent features of the inter-

vention itself. Datta and Petticrew [14, p.16] state that “the literature on complex interventions

is thick with descriptions of complex, challenging interventions, but thin on practical advice on
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how these should be dealt with”. RCTs of complex interventions are sometimes criticised as

being ‘black box’. It can be challenging to evaluate and understand both the effectiveness of

an intervention and how it works without examining underlying processes. This is something

the MRCs guidance [6, 15] on developing and evaluating complex interventions emphasises, the

importance of evaluating both the effectiveness of an intervention and how it works. These

guidelines breakdown the key elements of complex intervention framework into: development;

feasibility and piloting; evaluation; and implementation. Guidelines and frameworks for the

reporting of trials of complex interventions also exist [16, 17].

Petticrew [9] argues that there is not an easy divide between simple and complex interventions,

they are on a continuum and simple questions can be asked of complex interventions and vice

versa. These are considered pragmatic perspectives used by researchers and it is actually the

researchers perspective and research question that defines the simple and complex explanations of

an intervention. With this viewpoint a staged proportionate intervention (each stage a different

component), such as the IY intervention in the E-SEE trial, could be both simple and complex

dependent upon the analysis. A complex analysis may want to examine the effects of how and

whether the component parts work alone and together as well as the synergies between them.

A simpler analysis may focus on whether the intervention works as a whole package. It can be

difficult or impossible to identify whether it is a particular component of a complex intervention

that is causing the effect. In addition, some components may induce clustering in the outcome

due to the nature of the delivery of the intervention, for example, therapist led treatment or

group based treatment (this will be expanded upon in section 2.7). This is where the importance

of study design is key, to design a trial to answer the key research questions and to understand

how and for whom an intervention is working.

Multi-component interventions can be costly and resource intensive. Patient tailored or stratified

healthcare is becoming more common, and this principle can be applied to complex interventions.

The different components may not all be required or appropriate to individual need. One

approach to address this is the use of proportionate or adaptive interventions. Proportionate or

adaptive interventions are multi-component interventions given in a staged manner. In such an

approach participants receive a low intensity intervention, then individuals who do not respond

receive a more intense intervention component. Before explaining proportionate interventions,

the following section will discuss the origins and motivations of proportionate universalism which

was breifly introduced in chapter 1 through the E-SEE trial and the NIHR call [4].
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2.4 Proportionate universalism

There are limits on healthcare funds, hence, proportionate universalism [5] is focussed on pro-

viding care for those who need it when they need it with the aim of reducing health inequalities.

The term proportion universalism originated from the Strategic Review of Health Inequalities

in England Marmot Review [5]. There is a strong case for local authorities to invest in tackling

health inequalities, benefits being both social and economic. Marmot et al. [5] writes:

“Focusing solely on the most disadvantaged will not reduce health inequalities suf-
ficiently. To reduce the steepness of the social gradient in health, actions must be
universal, but with a scale and intensity that is proportionate to the level of disad-
vantage. We call this proportionate universalism.” [5, p.15].

Marmot et al. [5] argued that universal healthcare has done little to reduce health inequalities.

Suggesting that consideration should be given to exploring different ways complex interventions

could be administered in order to reach those most in need, improve health, and reduce in-

equalities. In 2012 the National Institute for Health and Care Excellence (NICE) stated that

only 0.4% of public health research had been focussed on interventions aimed to improve health

inequalities [18]. Since the Marmot Review [5] there has been an increased interest in the im-

portance the social gradient in health can have throughout society, it does not just affect those

at the very low socio-economic statuses but is graded throughout the population [19].

Many standard interventions can actually increase health inequalities. The affluent often access

interventions with higher frequency than the more deprived, thus, though the interventions may

improve the health of those who receive the interventions they are actually leading to an increase

in health inequalities due to access to services and interventions [5]. The universal level of a

proportionate intervention is aimed at bringing the general health of the whole population of

interest up and then targeting additional stages of the proportionate intervention to those in

need.

Proportionate universalism may be interpreted in varying manners, from the development of

direct health interventions for those in most need to dose-response interventions with tailoring

of the intensity of interventions proportionate to need. A recent framework for the application of

proportionate universalism [20] argued that interventions in a proportionate universalist set-up

need to be applied to some degree to the whole population (the universal level), rather than

only to those most disadvantaged. Targeting specific groups risks labelling these groups and
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thus the associated stigmas that come with labelling. However, proportionate universalism will

incorporate a level of selectivism based on an individuals needs (the proportionate level) and in

turn this will require some targeting. Few systems or policies are truly universal; some argue that

the need for judgements restricts universalism through the decisions of who gets what service

[20].

The principle and terminology of proportionate universalism has been taken up largely in the

fields addressing parent [21, 22] and child health [19, 23–26], including mental health [26], all

focal in the Marmot Review [5]. The literature varies from narrative articles, qualitative studies,

to quantitative analyses of observational data identifying health inequalities.

A key focus of studies which mention proportionate universalism has been on promoting the

best start for a child in the early years, significant in developmental processes that shape the

rest of life [19]. Unequal access to services is central to the inequalities in child health and

development, these inequalities increase as a child grows up [19]. The studies pointed to a lack

of evidence on how to promote child health and development in an equitable way even though

there is a large amount of evidence and discourse of its importance [19, 27].

A number of reviews exist aiming to identify interventions that promote health equality for

children [23, 26]. The scoping review by Welsh et al. [26] focussed on interventions to promote

mental health well-being and reduce inequalities in children in high-income countries. Out of

more than 1000 potentially relevant interventions, none were understood to follow a propor-

tionate universalism framework, they were either targeted or universal. Some of the universal

programmes somewhat emphasised inequalities by benefiting the advantaged children more,

whereas others found stronger effect sizes for the most disadvantaged. This emphasizes the

importance of a proportionate universalism framework, providing appropriate healthcare for all,

not merely those at the top or bottom of the socio-economic scale. A systematic review by

Morrison et al. [23] identified 23 universal, targeted and proportionate parenting interventions

in European countries (1999-2013) which aimed to reduce inequalities in child health and de-

velopment. However, only two of the 23 interventions followed a proportionate universalism

principle, whilst the rest were targeted at those at higher risk or who were already showing signs

of a developmental problem. These reviews have identified a gap between the recommendations

of proportionate universalism and the available interventions.
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2.5 Proportionate interventions

One consequence of proportionate universalism as a motivation for intervention delivery is the

development and evaluation of proportionate complex interventions in RCTs. Proportionate

interventions comprise of various stages or different component parts. For example, everyone

receives the first stage of the intervention and their response to this stage determines if they

progress onto the next stage; it is delivered proportionate to the need of the individual. The

E-SEE trial aims to evaluate a proportionate delivery model of the IY parenting programme [3].

Proportionate universalism has two levels: the universal and the proportionate.

Proportionate universalism is a relatively new term, aiming not to increase inequalities by imple-

menting health interventions. However, the principle of adapting interventions proportionate to

need has been present for much longer. Proportionate universal interventions are closely linked

to other terminology, including:

� dynamic treatment regimens;

� adaptive treatment regimens;

� adaptive interventions;

� adaptive treatment strategies;

� stepped-care interventions;

� multi-level interventions.

The following defines what is meant by a proportionate intervention, using the literature on

adaptive interventions to motivate this work. A proportionate intervention or adaptive inter-

vention entails an individualised approach with numerous treatment sequences dependent upon

individual need as treatment is adapted dependent on need (for example, continue, augment,

switch, step-down) [28]. This may mimic how decisions are made in practice, thus guiding the

intervention process. These interventions have two main components: (a) individualised treat-

ment based on participants needs and (b) a time varying intervention that adapts in response to

participants changing need over time [29]. There are often a variety of questions to answer when

developing a proportionate intervention, including: when is the optimal time to assess respon-

siveness to treatment?; should non-responsive individuals be offered an augmented treatment

or an alternative treatment?; should the initial period of treatment be based on an individuals
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baseline characteristics?; could the decision to augment treatment be individualised based on

other outcomes?.

A proportionate intervention includes: (i) decision stages and at each decision stage: (ii) inter-

vention options; (iii) tailoring variable(s); (iv) a decision rule; (v) outcomes. The decision rule

utilises the tailoring variable(s) to decide upon the staged intervention an individual receives.

The tailoring variable is patient information. The decision rule cut-off should ideally be based on

previous research. The intervention may be individualised based on decision rules using dynamic

information about the individual that is likely to change due to intervention such as response

or adherence either singularly (only one decision) or sequentially (multiple decision stages).

Proportionate interventions are useful as individuals who require a step-up/down or switch in

treatment receive that and for those that are responding to the current treatment there are

no increased burdens such as side effects or invested time. Increased burden can lead to non-

adherence, which may in turn reduce positive intervention effects. In addition, all interventions

incur costs and as healthcare resources are limited, the ability to reduce costs of receiving

unnecessary further interventions whilst treating those in greatest need is an important goal.

Proportionate interventions may be particularly relevant for interventions with heterogeneous

responses. For example, interventions developed for mental health disorders often produce

heterogeneous responses due to the within person (over time) and between person differential

responses to intervention [30].

Developing and evaluating proportionate interventions in trials raises specific issues in the design

and analysis. Teams developing such complex intervention packages may want to evaluate the

effectiveness of the individual stages or the incremental benefits of each stage in addition to the

overall intervention. This presents fresh challenges for the design and statistical analysis of such

interventions. In general, trials randomise individuals or clusters to a whole treatment pathway

to assess effectiveness. However, a proportionate universalist design creates multiple treatment

pathways, each dependent upon outcomes at the previous stage of treatment.

In an RCT, an intention-to-treat (ITT) analysis provides an estimate of the average effect size

for those randomised to the intervention of interest. A per-protocol (PP) provides an estimate

of the average effect size for those who adhere to the protocol fully. In a staged or proportionate

intervention the intervention is delivered dependent upon the need of an individual, thus the

estimates of an average effect size may not be as relevant as they are in more standardised

interventions.
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Further complexities also arise from the clustering of outcomes in one or more stages of propor-

tionate interventions. For instance, in the E-SEE trial the first component of the IY intervention

is delivered at the individual level and the second and third components of the intervention are

delivered to groups of individuals. This will potentially induce treatment induced clustering

from both the group dynamics and the role of the group facilitator. This clustering is induced

by the nature of the intervention rather than randomisation to a cluster. Clustering in iRCTs

will be discussed in more detail in sections 2.6 and 2.7.

2.6 Randomised controlled trials

An RCT is a controlled experiment designed to evaluate the effectiveness of one or more in-

terventions to an appropriate comparator. The intervention may be: a drug or other form of

medical intervention such as surgery or therapy; or a method of organising or delivering health-

care such as a new system or training for care providers. This section provides a background

to some of the key types of RCTs used in health research and the corresponding requirements

for the design and analysis of such trials. More detailed information on power calculations and

sample sizes are given in chapter 6 and comparison of analysis methods given in chapters 4 and

5.

The main aim of an RCT is typically to obtain an unbiased and reliable estimate of the effec-

tiveness of the intervention being tested. In a parallel two arm trial individuals or units known

as clusters are randomised to either receive a control condition, often the standard of care, or an

experimental intervention condition. By using randomisation, all known and unknown factors

that could possibly confound the estimate of the intervention effect should be balanced on aver-

age between the two trial arms; this allows any difference between the two arms to be attributed

to the intervention. It is then possible to make statistical inference about the causal effectiveness

of an intervention by comparing the outcomes of the trial arms after a predetermined follow-up

period.

Drug trials are classified by phase, with four main stages and well defined guidelines for each of

phase I/II/III/IV purposes and scope. The same phases of development are not used for inter-

vention trials. However, there has been an increasing use and acceptance that clinical treatments

and public health decisions should be based on a comprehensive review of the evidence. This

evidence should be based on rigorously conducted studies, which evaluate both benefits and ad-
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verse events. The use of such evidence will ideally enable policy makers and healthcare services

to allocate resources accordingly to interventions which have been proven to be both effective

and cost-effective [31].

2.6.1 Superiority trials and hypothesis testing

A two-arm parallel RCT is commonly used to show one intervention is superior to another.

Individuals are randomly allocated to one of two arms and a statistical test is undertaken to

make inference about the intervention effect. This is referred to as a superiority trial.

Let’s define a null hypothesis (H0) and alternative hypothesis (HA). In a two-arm superiority

trial comparing intervention treatment t = 1 to control treatment t = 0 these are

� H0: ȳ0 = ȳ1, two treatments are the same

� HA: ȳ0 6= ȳ1, two treatments are different

where ȳ is the average outcome measure in the corresponding treatment arm.

An RCT only investigates a sample of the population; the outcome is an estimate of the true

population outcome. A hypothesis test can be used to test the significance of the difference

in outcome between the control and intervention group. A 0.05 cut-off level for statistical

significance is typically chosen, however, this is arbitrary and confidence intervals should be

reported alongside any p-value.

The use of a p-value cut-off results in a dichotomous decision, giving two possible errors, Type

I and Type II error summarised in Table 2.1. Type I error occurs when we reject the null-

hypothesis when it is true, a false positive (α = probability of Type I error) and is determined

in advance of a study. Type II error occurs when we fail to reject the null-hypothesis when it is

false, a false negative, and is dependent upon the sample size and the effect size of interest (β =

probability of Type II error). We more commonly report the power of a study (1− β) to detect

an effect size.
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Table 2.1: Summary of Type I and Type II errors

H0 True H0 False

Do not reject H0 Correct decision Type II error

(1− α) (β)

Reject H0 Type I error Correct decision

(α) (1− β)

2.6.2 Continuous outcomes

This thesis considers continuous outcomes, these are commonly used in complex intervention

and public health research for example through the use of outcomes such as body mass index

(BMI) and Patient Health Questionnaire-9 (PHQ-9) and Quality of Life (QoL) outcomes such

SF-36, EQ5D, PHQ-9. Continuous outcomes were the most common primary endpoint in a

recent review of UK publicly funded trials (NIHR funded), 45.8% of trials published between

2006 and 2016 (49 of 107 RCTs published in the Health Technology Assessment journal) [32].

2.6.3 Individually randomised trial

RCTs can employ an individually randomised controlled trial (iRCT) design, where participants

are individually randomised to receive one of the investigative treatments. Figure 2.1 presents

a schematic of a two-arm parallel iRCT, they are commonly used in drug trials and other

types of individual therapies. In iRCTs we often assume that the outcomes from participants

are independent of one another and thus usual assumptions of independence of outcomes in

statistical analysis are met. The corresponding sample size calculations for such trials can use

standard calculations which assume independent outcomes [33].

Figure 2.1: Schematic of a two-arm parallel individually randomised trial where R represents
randomisation and there are nc and nI patients in the control and intervention arms, respectively.

R

Control

n1

n2

...

nc

Intervention

n1

n2

...

nI
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2.6.4 Cluster randomised trial

Using an iRCT is not always appropriate or feasible. Cluster randomised trials (cRCTs) may

be more suitable. Cluster randomisation occurs when an entire unit (for example GP practice,

school or hospital) known as clusters, are randomised to interventions [31]. Figure 2.2 presents a

schematic of a cluster trial with two arms, a control and an intervention arm. They are employed

for a number of reasons. The intervention may need to be applied to whole communities or it is

easier to administer it this way, for example, implementation of new procedures in a GP practice

or hospital where the intervention applies to the whole unit. Cluster randomisation helps reduce

the likelihood of contamination between intervention arms; it may not be realistic to offer the

intervention to one individual without others at the same cluster (hospital or GP practice) being

exposed to the intervention as well.

Figure 2.2: Schematic of a cluster trial where R represents randomisation (randomisation is at
the cluster level), k clusters in each treatment arm, and m number of patients in each cluster.
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n2k,2

...
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Clustering is defined in general for an RCT to be when outcomes are grouped together based

upon a common property, such as GP practice, school or hospital. Outcomes for subjects within

the same cluster are expected to be more similar than those from different clusters.

The implications of clustering in cRCTs are widely acknowledged [34]. Cluster trials generally

require larger sample sizes than individual trials designed to answer the same research question

(if an iRCT is possible) and should account for the correlation of outcomes in the analysis

method. Analysis methods are further discussed in section 2.8.2.

2.6.5 Individually randomised controlled trials with clustering

Where randomisation occurs at the individual level clustering may also occur, consequently,

clustering of outcomes can be present in iRCTs. For instance, clustering of participants’ out-
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comes due to receiving treatment as part of a group-based parenting intervention [35], treatment

in specialist clinics for the treatment of venous leg ulcers [36], or participants under the care of

a surgeon for comparison for hemostasis in elective benign thyroid surgery [37]. The clusters

in iRCTs are not necessarily the organisational unit, they are the care provider or intervention

group which may play a role in the causal pathway of the intervention effect. We might expect

a correlation of outcomes between individuals either in the same group or receiving treatment

from the same care provider. This clustering can be caused by care provider characteristics such

as level of experience, level of training, competence, or in a group trial through group dynamics

[38, 39].

When designing and analysing iRCTs with clustering we need to consider implications of the

potential lack of independence. Ignoring clustering in the analysis can lead to misleadingly

precise results and consequently incorrect conclusions [40].

There is increasing acknowledgement of clustering present in iRCTs, with a growing awareness

of the need to account for this clustering [41–46]. Consolidated Standards of Reporting Trials

(CONSORT) statement consists of a minimum set of reccomendations for reporting randomised

trials [16]. Extended CONSORT guidelines for the reporting of RCTs of nonpharmalogical in-

terventions (CONSORT-NPT) have drawn attention to the need, when applicable, to address

clustering by care provider and/or centre [17, 44]. However, studies still fail to account for

potential treatment induced clustering and a recent CONSORT extension for social and psy-

chological interventions (published July 2018) does not address the issue of potential clustering

though it is common in psychological interventions [47].

2.6.6 Nested and partially nested randomised controlled trials

Treatment induced clustering in iRCTs has been termed a nested randomised controlled trial

(nRCT) [48] and can occur in both arms of the trial as presented in Figure 2.3. In a similar

vain, an increasingly applied design in healthcare and education research is a partially nested

randomised controlled trial (pnRCT), where participants are individually randomised to trial

arms and clustering of outcomes occurs in only one arm of the trial [48, 49] (sometimes termed

partially clustered trials). A schematic of a pnRCT is presented in Figure 2.4. The STEPWISE

trial is an example of a pnRCT, assessing a structured lifestyle education programme aimed at

supporting weight loss for adults with schizophrenia and first episode psychosis in a community

mental health setting. Individuals were randomised to either an intervention arm of group-
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Figure 2.3: Schematic of a nested trial where R represents randomisation, there are k clusters
in each treatment arm, and m number of patients in each cluster.
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Figure 2.4: Schematic of a partially nested trial where R represents randomisation, there are
nc patients in the control arm, k clusters in the intervention arm, and m number of patients in
each cluster.
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based lifestyle education sessions or a control arm receiving usual care at the individual level

[50]. In iRCTs with treatment induced clustering where clustering does not occur for all the

trial participants, analysis must be at the individual level.

The cluster sizes in nRCTs and pnRCTs are typically smaller than those in cRCTs. Cluster

size in a cRCT is often externally fixed, such as the number of individuals attending a clinic or

number of individuals in a GP practice. In contrast to cRCTs, there may be more researcher

control over cluster sizes in pnRCTs such as the number of patients treated by a care provider

or the group sizes. Although group sizes are typically decided by intervention developers; they

need to form a viable group for the intervention delivery and develop group dynamics. Limits

on care providers capacity will also lead to cluster size restrictions.
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2.6.7 Further complicated designs

The above sections have described some of the most commonly used RCT designs in complex

intervention research, though many others exist. One obvious extension from the above include

what Walwyn and Roberts [38] term crossed designs, where care providers treat patients in both

trial arms. A crossed design may result in contamination, for example, asking the same therapist

or physician to present two very different therapies to their patients could be impractical, the

therapist may get confused, and patients of the same therapist or physician might be acquainted

[51].

A second extension from the pnRCT design is seen in the E-SEE trial and trials of other

proportionate interventions. These are a more complex version of the pnRCT in which only

one arm has clustered outcomes and within that arm only some of the patients have clustered

outcomes, as not all receive the clustered intervention. For instance, in E-SEE only those who

step-up to the parenting groups will be clustered by group, the other participants receive only

the parenting book (their outcomes would not be expected to be clustered). For the remainder of

this thesis these types of trials are referred to as ‘within-arm partially nested trials’ (within-arm

pnRCTs) in which only some of the intervention arm have clustered outcomes.

Landau and Chalder [52] recommend “where feasible randomise participants to clusters that are

related to the delivery of treatment (therapists, groups)”. However, in trials such as E-SEE group

interventions are offered only to a subset of the intervention arm (those who meet some criteria

after the previous intervention stage). In addition, only one or two groups are to be delivered

in each location and group allocation is based on nearest available group. This type of trial

design will result in non-random allocation to groups, consequently it is likely that a potential

clustering effect occurs. For example, participants offered the group intervention are those with

more similar responses and people from the same catchment area may have similarities, such as

socio-economic class and health, adding to the potential clustering effect (if it is not possible to

fully adjust for the predictive characteristics using baseline covariates).

2.6.8 Multi-centre trials

All of the above designs have only considered either one or two-levels of hierarchy in the data, the

individual and a single cluster level variability. There are often more than two-levels, for instance

large public health research iRCTs are commonly run across multiple sites, such as geographical
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regions, NHS hospitals or mental health clinics. These trials are termed multi-centre studies,

participants are recruited across multiple centres, in order to achieve the required sample size

and to improve generalisability of findings. Participants from the same centre may be expected

to have similar outcomes implying a positive correlation and possibly the need to account for

the centre based clustering. Details of different types of clustering are presented in more detail

in section 2.7.2. A multi-centre iRCT design can result in three or more levels of hierarchy in the

data. For example, the SARAH: Stretching and Strengthening for Rheumatoid Arthritis of the

Hand study was a multi-centre iRCT evaluating the clinical and cost-effectiveness of an exercise

programme over and above usual care for Rheumatoid Arthritis. The trial included four levels

of data hierarchy: seventeen NHS trusts in England, comprising 21 rheumatology and therapy

departments, 48 hand therapists, and finally individual level variance [53].

2.7 Clustering

In the previous section different types of RCTs were introduced. This section goes into more

detail regarding the clustering of outcomes, provides a formal definition of clustering and sum-

marises the types of clustering that may occur in trials.

2.7.1 Defining clustering

Clustering in the context of RCTs can be defined as “when observations are grouped together

based upon common attributes” [54, p.2]. Consequently, outcomes from individuals within the

same cluster may be expected to be correlated to one another. The correlation of outcomes of

individuals from the same cluster results in a lack of independence of outcomes.

Two key reasons for correlation of outcomes within a cluster exist. Firstly, patients within the

same cluster may have similar characteristics, for example, patients from the same hospital may

have similar socio-economic status. Secondly, clusters themselves can influence the patients

outcome, for example, patients within the same hospital may have more similar outcomes due

to the quality of the hospital staff or hospital procedures or patients being treated by the same

therapist may have more similar outcomes due to the therapists’ experience [54].

The ‘clustering effect’ is commonly quantified using the intracluster correlation coefficient (ICC).

The ICC measures the extent to which outcomes from participants within the same cluster are

correlated to one another [40]. This correlation violates usual assumptions for sample size
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calculations and analysis methods of independent observations. If clustering is ignored and we

analyse results as if independent we assume we have more information than we actually do. An

estimate of the ICC is commonly used to calculate the variance inflation factor [55], also known

as the design effect. The design effect is used to adjust sample sizes to allow for clustering.

Further details regarding how we define and estimate the ICC are discussed in section 2.8.2 and

how to calculate sample sizes in chapter 6.

Clustering is defined by Kahan and Morris [54] as either pre- or post-randomisation. Pre-

randomisation clustering relates to when patients are grouped into clusters and then randomised,

for example when patients present to different hospitals and then are randomised upon presen-

tation. Post-randomisation clustering occurs when patients are randomised and subsequently

assigned to clusters, for example when patients are randomised to a type of therapeutic interven-

tion and then assigned a therapist. Whereas, if therapist were used as a stratification variable in

the randomisation procedure (patients are assigned to therapist and then randomised) it would

be defined as pre-randomisation clustering.

2.7.2 Types of clustering

Table 2.2 draws together and summarises the different clusters and associated clustering that

may be present in RCTs. These are centre in a multi-centre RCT, cluster in a cluster RCT, care

provider, and group treatment.

Table 2.2: Types of clustering in RCTs and associated clustering

Cluster Example Possible associated clustering

Centre in a
multi-centre
RCT

Hospital, NHS
trust, site

Pre- and post-intervention outcomes due to being from the same
centre, possibly similar characteristics. Post-intervention outcomes
if delivery or implementation of the intervention varies by centre.

Cluster in
cRCT

GP practice,
school

Pre- and post-treatment outcomes due to being from the same
cluster, possibly similar characteristics. Post-intervention outcomes
if delivery or implementation of the intervention varies by cluster.

Care
provider

Therapist,
GP, facilitator

Post-intervention outcomes due to variability in care provider
delivering the intervention being tested.

Group
treatment

Parenting
group, weight
loss group

Post-intervention outcome may be clustered due to group treatment
effects/dynamics.
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2.7.3 Clustering and randomised trials

Table 2.3 draws together section 2.6 and section 2.7.2 providing a summary of differences be-

tween individual, cluster, care provider, and group treatment RCTs (adapted from Roberts and

Roberts [48]). Many individual, care provider, and group treatment RCTs are also multi-centre

studies and thus need to consider the possibility of clustering by centre.

Table 2.3: Summary of differences between individual, cluster, care provider, and group treat-
ment RCTs

iRCT∗ cRCT Care provider
RCT

Group treatment
RCT

Randomisation Individual Individual/Cluster Individual/Cluster Individual/Cluster

Cluster size - Mean cluster size
expected to be same
across intervention
arms

Depends on
interventions being
compared, may be
different across
intervention arms

Depends on
interventions being
compared compared,
may be different
across intervention
arms

Variance in
cluster size

- Equal between arms Variable, based on
care providers
capacity

Likely to be small
within an
intervention

Cluster
membership

- Defined at
randomisation

Defined by
intervention and
may be more than
one care provider -
ideally recorded in
measurement
protocol

Defined by
intervention - ideally
recorded in
measurement
protocol

ICC - Considered equal
between arms under
null hypothesis

Care provider effects Group dynamics

*Clustering may be present due to centre in multi-centre iRCT

2.8 Analysing and measuring clustered outcomes

In addition to obtaining sufficient power and accurate results, accounting for clustering enables

us to estimate the ICC. The following sections provide a description of the ICC, briefly introduce

analysis methods for clustered outcomes, and how to estimate the ICC. ICCs are important for

the interpretation of trial results where we may be directly interested in the group or thera-

pist effects. ICCs are also required when calculating sample sizes for RCTs with clustering to

maintain power and control Type I error rates [40]. Therefore, better reporting of ICCs in trial

results papers is vital for providing an evidence base of ICCs and improving the assumptions

used in trial design.
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2.8.1 Defining the ICC

The ICC (introduced in section 2.7.1) explains the extent of similarity between individual out-

comes within the same cluster.

The definition of the ICC comes from the expression for the correlation between outcomes from

two individuals [56]. The assumptions which underlie this definition are given by Eldridge et al.

[56] as:

1. any two responses from different clusters are independent, but pairs of responses within

clusters are correlated, and

2. the correlation is the same for all pairs of individuals from the same cluster.

Figure 2.5 presents formal proportion of variance definitions of the ICC, it is the ratio of the

between-cluster variance to the total variance (the sum of between and within cluster variance).

In a pnRCT the total variance refers to the variance in the clustered trial arm. There are

circumstances in which we may be interested in modelling the dependence of the correlation

on cluster characteristics. However, when considering a trial with one level of clustering, for

example care provider or parenting group, it is commonly assumed that there is a a single

common correlation ρ presented in equation 2.2, Figure 2.5.

Figure 2.5: Definitions of the ICC

For an outcome Y , the ICC between the ith and lth responses in the jth cluster can
be defined as

ρj =
cov(Yij , Ylj)√

var(Yij)var(Ylj)
∀i 6= l (2.1)

It is common to assume there is a single common correlation ρ which applies to all
clusters in a trial, also known as compound symmetry, or exchangeability assumption
[56]. The assumption of common correlation enables us to define a general ICC
definition of

ρ =
cov(Yij , Ylj)√

var(Yij)var(Ylj)
∀i 6= l and ∀j. (2.2)

The true ICC will lie in the interval [− 1/(m− 1), 1], where m is the cluster size. The lower

bound of the ICC is − 1/(m− 1) if all the clusters are the same size. When cluster sizes vary the

lower bound becomes − 1/(mmax − 1), where nmax is the largest cluster size [56]. The closer to 1

the more correlated the outcomes within the same cluster are, and vice versa. However, it is

generally believed that ICCs in trials with clustering are unlikely to be negative [51] and under

the proportion of variance definition of the ICC the ICC is always positive. It is plausible that
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individuals treated by the same care provider, in the same group or from the same GP practice

are positively correlated to one another and unlikely that they will be negatively correlated.

However, negative correlation may arise in some instances. Individuals may respond to the same

therapist differently, some responding positively, some with no change and some deteriorate. A

negative ICC could occur if this increased variability occurs more within therapists than between

therapists. Negative ICCs could also occur if there is competition among individuals being

treated by the same therapist leading to an unequal distribution of limited therapist resources;

if lots of resources are used for one patient in a cluster then less will be available for another

patient in that cluster. For example, competition for attention from a therapist in a group

administered intervention or a therapist burning out toward the end of a trial [57].

2.8.2 Analysing clustered outcomes and calculating the ICC

Different analysis methods are available to analyse clustered outcomes and estimate ICCs from

both cRCTs and iRCTs with clustering. Model choice depends upon research goals, design and

type of outcome.

Two standard approaches for analysing clustered data exist: analysis at the cluster level and

analysis at the individual level. If statistical inference is aimed at the cluster level such as GP

practice then cluster level analysis may be appropriate. If statistical inference is aimed at the

individual level then individual level analysis is more suitable, and CONSORT [34] recommend

the use of models that analyse individual level data whilst controlling for clustering effect.

There are four common approaches used to analyse RCT data with a continuous outcome, whilst

adjusting for clustering [40]:

1. Cluster level analysis - analysis carried at the cluster or care provider level

2. Linear regression with cluster robust standard errors - analysis carried at the individual

level

3. Mixed effects models - analysis carried at the individual level

4. Marginal models - analysis carried at the individual level

We can account for clustering by including the cluster as a fixed effect in a regression model.

Though this method is simple to implement and has been used in practice in both cRCTs
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and iRCTs with clustering it is not recommended. This strategy can result in a Type I error

rate inflated above what would have occurred if we ignored the clustering altogether [43]. In

addition, using the fixed effects method has been argued to limit the results of the analysis to

the specific clusters used in a study (section 7.3.1.2 includes more discussion on this) and will

generally produce low estimates of the treatment effect variability as the cluster level variability

is removed [51].

For the following models define yij as a continuous outcome for individual i in cluster j, i =

1, . . . , N , j = 1, . . . , k, tij is the intervention indicator (0 = for control, 1 = for intervention), θ is

the treatment effect, β0 is an intercept term, and εij errors represents individual level variation

and uj represent cluster level varaition.

2.8.2.1 Cluster level analysis

Analysis at the cluster level can be conducted using a two-stage process in which we create

a summary measure of the individual outcomes for each cluster (for example proportion of

individuals who quit smoking or the mean of a continuous outcome). The cluster level summaries

are then analysed using an appropriate statistical test, commonly an independent two-samples

t-test or a non-parametric test such as the Wilcoxon’s rank sum test [31]. Randomisation ensures

the cluster summary measures are statistically independent.

Cluster level analysis is often not the most efficient analysis approach. Firstly, when clusters

are of differing sizes this can violate the assumptions of the independent samples t-test (that

cluster summary measures are Normally distributed within each arm and that the there are

equal variances across arms) [51]. Secondly, cluster level analysis is not suitable for trials in

which clustering of outcomes only occurs for some individuals and not others, for example in

pnRCTs only those in one trial arm belong to clusters and those in the other trial arm are

independent of one another. Finally, cluster-level analysis does not provide an estimate of the

ICC.

2.8.2.2 Individual level analysis

This section explains the three individual level analysis methods.

Linear regression with cluster robust standard errors
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It is possible to use linear regression with robust cluster variance estimators. Robust standard

errors gives regression coefficients that are more robust to violations of the underlying assump-

tions. The concept of robust variance estimates have been extended to cover the situation of

clustering of outcomes [58]. These will be discussed in more detail in chapter 5.

Mixed effects model

Mixed effects models can be used to analyse individual level outcome data whilst accounting

for both the between- and within- cluster variation. They represent the different levels in data

(cluster, individual, repeated measures level) and the residual variance constitutes variance

components for the different levels. They also allow multiple levels of clustering and nested data

to be accounted for by adding additional random effects, such as therapists nested within sites.

Mixed effects models for clustered data typically comprise: a constant, the fixed effects (which

include the intervention effect), individual residuals and a random effect representing cluster-

specific effects. These models estimate the cluster specific effect of the intervention on the

endpoint, the variance of the distribution of cluster means is estimated (between-cluster variance)

(σ2
u) and within-cluster variance (σ2

ε ). The random effects refer to uj and are assumed to be

taken at random from a population of clusters. This is also referred to as the random intercept

model. The fixed part of the model states an overall regression line representing the population

average outcome and the random effect uj moves this regression line up or down according to

each cluster. It is typically assumed that the cluster residuals uj are Normally distributed.

If we consider the simple case of a randomised trial with two levels of data hierarchy for all indi-

viduals: everyone belongs to a cluster resulting in cluster level variability and there is individual

level variability. The following mixed effects model can be defined for a continuous outcome for

individual i in cluster j, i = 1, . . . , N , j = 1, . . . , k,

yij =β0 + θtij + uj + εij , (2.3)

uj ∼N(0, σ2
u),

εij ∼N(0, σ2
ε )

where the random intercept term uj represents between cluster variation and εij the individual

residuals. The above model assumes the effect of every cluster j is to add a random effect uj to

outcomes. The parameters of the mixed effects model are commonly estimated using maximum
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likelihood estimation (MLE) or restricted maximum likelihood methods (REML), with the latter

shown to produce less biased results particularly when there are a small number of clusters [40].

The statistical significance of the parameters are usually assessed using the likelihood-ratio,

Score or Wald statistics.

In mixed effects models parameters of additional levels will be harder to estimate, for each

additional level (or each additional random effect) more data is required, especially for the

variance-covariance parameters of the higher levels. Convergence diagnostics may become an

issue if there are a large number of levels. However, mixed effects models allow fitting of complex

models such as the inclusion of covariates, stratification variables and longitudinal outcome data

and their handling of missing data by incorporating all available data therefore, these are the

focus of this work.

Estimation of the ICC is a by product of fitting a mixed effects models. The ICC is calculated

using

ρh =
cov(Yij , Ylj)√

var(Yij)
(2.4)

=
cov(θ + uj + εij , θ + uj + εlj)

var(uj) + var(εij)

=
cov(uj , uj)

var(uj) + var(εij)

=
σ2
u

σ2
u + σ2

ε

where σ2
u is the component of outcome variance related to differences between clusters, the

between-cluster variation and σ2
ε is the component of outcome variance related to differences

between individuals within clusters, the within cluster variation. The total variance of the

clustered outcomes is σ2 = σ2
u + σ2

ε , hence, ρh is the proportion of variance explained by the

between-cluster variation [31]. The variance components cannot be negative, resulting in the

positivity constraint of ρh (ρh lies between 0 and 1).

Marginal models using generalised estimating equations

Marginal models provide an alternative method of analysis for individual level data to estimate

regression coefficients. They provide population averaged rather than cluster specific estimates

[31]; the term population averaged comes because we can estimate θ by averaging over the

clusters treating the correlation as nuisance parameters. The population averaged or marginal
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model can be written as

yij = β0 + θtij + vij (2.5)

where the error term vij is regarded as random error, correlated within clusters. The error term

is considered a nuisance term which is accounted for in the estimation procedure (there are

no additional terms in the model that estimate cluster specific effects as in the mixed effects

models).

The GEE method, developed by Liang and Zeger [59], can be used to estimate the regression

coefficients in marginal models, estimating the intervention effect and its precision are carried

out separately. The residuals are assumed to be correlated, with Corr(vij , vlj) = ρ(tij , tlj ;<).

A working correlation matrix R is used to estimate the correlation matrix < and different

correlation structures can be assumed to model the clustering of individuals in the same cluster.

An exchangeable correlation structure is commonly assumed, the same correlation within each

cluster this common correlation ρ is the ICC.

GEEs typically use robust standard errors of the parameter estimates to allow for clustering

which are derived from the observed variability in the data (as opposed to an underlying prob-

ability model). The significance of the intervention effect estimate is then determined using a

Wald test statistic using the robust variance estimate [59]. The robust standard error estimate

is consistent even when correlation structure is misspecified, however, when there are only a

small number of clusters in the intervention arm it has been shown to be underestimated [31].

A number of methods have been proposed to address the limits of the robust standard error

estimator.

2.8.2.3 Small numbers of clusters

The individual analysis methods are based on asymptotic theory, with the assumption that there

are a large number of clusters. When there are only a small number of clusters the methods may

be unreliable. Various minimum numbers of clusters for trials with continuous outcomes have

been suggested in order to maintain Type I error rates at for example 5%. Hayes and Moulton

[31] suggest that more than 30 clusters (15 clusters per arm) are required to use mixed effects

models or GEEs. Additionally, a minimum of 30-40 clusters have been suggested for mixed

effects models and 40-50 for GEEs [51]. However, performance of models is also affected by how

other model assumptions are met, the size of clusters and variability of cluster sizes. Mixed
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effects models have been shown to be less biased than GEEs when there are a small number of

clusters [42, 51, 60]. The feasibility of running trials with large number of clusters is key to the

problem. Partial nesting may add to this issue, there may be a smaller number of clusters due

to clustering only occurring in one trial arm.

A number of small sample corrections have been developed to circumvent the problem of having

only a small number of clusters. It is not always possible to design trials with a large number of

clusters, particularly in iRCTs with clustering when the number of clusters may be limited by

the number of care providers available to deliver the intervention. The corrections work in one

of two ways: increasing the estimated standard error of the intervention effect or altering the

degrees of freedom used to calculate confidence intervals and/or p-values for the intervention

effect. Leyrat et al. [61] undertook a recent comparison of analysis methods for cRCTs with small

numbers of clusters (40 or fewer). They found that unweighted and variance-weighted cluster-

level analysis, mixed effects models with degree of freedom corrections (Satterthwaite), and GEE

with a small-sample correction provided Type I error rate at or below 5% in most scenarios,

down to as few as six or eight clusters, whereas uncorrected approaches lead to inflated Type

I error rates. Consequently, where individual level analysis is required and there are a small

number of clusters it is recommended to use small sample corrections for degrees of freedom

(for example Satterthwaite) where possible. Small sample corrections relevant to this thesis are

discussed in more detail in chapter 4 section 4.4.6.

2.8.2.4 Methods for ICC estimation

Analysis at the individual level allows estimation of the ICC as shown in equation 2.4. In addition

to mixed effects models and GEEs, analysis of variance (ANOVA) can be and is commonly used

to calculate the ICC. This can be done using a one-way ANOVA with the cluster level variable

as a random factor. ANOVA estimates the mean squares between and within clusters, referred

to as MSB and MSW, respectively. MSW estimates the within-cluster variance (estimating σ2
u)

and MSB estimates the mean square between clusters which varies due to between- and within-

cluster variance (estimating mσ2
r + σ2

u, mis number of individuals per cluster). The ANOVA

proportion of variance estimation interpretation of the ICC is estimated using

ρA =
MSB −MSW

MSB + (m− 1)MSW
(2.6)
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The ICC estimate from equation 2.6, ρA, can be negative. If cluster sizes are unequal the cluster

size m is replaced with weighted average cluster size m0 in equation 2.6 calculated as

m0 =
1

k − 1

(
Ns −

∑
m2
j

Ns

)
(2.7)

where k is the number of clusters, Ns is the total number of individuals, and mj is the number of

individuals in cluster j. Ukoumunne et al. [62] explain that the above weighted average cluster

size is used in place of the arithmetic mean cluster size because the between-cluster variance can

be underestimated when using the arithmetic mean.

Table 2.4 briefly summarises and compares the three different methods for estimating ICCs.

Most methods will give similar ICC results unless the data are very extreme, for instance contain

outliers and unbalanced cluster sizes [40].

Table 2.4: Methods to estimate ICCs

Method Advantages Disadvantages

One way ANOVA of
between and within
cluster variation

No positivity constraint,
can give zero and
negative ICC estimates.

Less suited with varying cluster sizes and when
adjusting for covariates [63].

Mixed effects
models: using MLE
or REML

Can adjust for
covariates and/or
multiple levels of
nesting.

Positivity constraint, for small ICCs the ICC
estimate may have positive bias.

GEE marginal
models

Can adjust for
covariates.

Treats clustering as nuisance parameter,
underestimates standard error of intervention
effect when the number of clusters is small [64].

2.9 Summary

The motivation for this thesis originated from difficulties in the design and analysis of staged

interventions such as those evaluated in the E-SEE trial. This prompted work to understand

the aims of the proportionate universalism framework and proportionate interventions, how this

framework fits into the wider context of complex intervention trials in public health and any

particular challenges in such trials. The first aim of this thesis is to review current practice

of how randomised trials of proportionate interventions are designed and analysed and the

extent of clustering in such trials. This is addressed in the following chapter using a systematic

review of trials. An initial scoping search and discussions around the E-SEE trial identified

proportionate interventions as likely to present particular issues relating to the hierarchical data

structures. Consequently this thesis investigates design, analysis and reporting of trials with
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partial clustering of outcomes, starting with the simpler case of pnRCTs and building up to the

more complex case of a within-arm pnRCTs. This chapter outlined the different trial designs,

complexities that arise through clustered outcomes and relevant terminology which will be used

throughout the thesis.

The next chapter presents a systematic review of trials of proportionate intervention trials

addressing the aim to review current practice of how randomised trials of proportionate inter-

ventions are designed and analysed and the extent of clustering in such trials.
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Chapter 3

Design and analysis of trials of

proportionate interventions:

systematic review

3.1 Introduction

In chapter 2, proportionate universalism was introduced and the move towards evalutating

proportionate interventions in RCTs and a few of the subsequent challenges discussed. The

proportionate universal framework has been discussed in NICE guidelines [18], National Health

Service (NHS) documents [65], charities [66] and by public health authorities [67]. However, there

is little written in academic literature on how to actually implement proportional universalism

in practice or how to assess effectiveness of these interventions. A recent framework for the

application of proportionate universalism has been published [20] with the aim of filling the

gap between principle and practice. The framework provides an approach for governments and

policy makers but does not extend to how to best evaluate which proportionate interventions

are effective in practice. This chapter presents a systematic literature review of published trials

of proportionate interventions.

The current review addresses the first research aim of this thesis, to review current practice of

how trials of proportionate interventions are designed and analysed and the extent of intervention

induced clustering in such trials. Particular interest is given to whether any trials evaluated the

effectiveness of the different components of these interventions to understand the process or
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treated them as a whole. The presence of intervention induced clustering in the trials included

in this systematic review are also reviewed.

In addition to my supervisors, the chapter acknowledges the collaborative support of Tracey

Bywater, researcher at the University of York. Tracey contributed to the search strategy design.

The work was led and carried out by myself and has been submitted to Trials journal [68].

3.2 Chapter aims

This chapter reviews current practice of how randomised trials of proportionate interventions

are designed and analysed and the extent of intervention induced clustering in such trials. A

systematic review is conducted to address this aim the specific objectives of this systematic

methodological review are to:

1. explore how trials evaluating proportionate interventions are being conducted and re-

ported;

2. review the type of statistical design and analysis methods being implemented in randomised

trials involving staged proportionate interventions;

3. review whether trials of proportionate interventions are being analysed differently to more

conventional non-proportional intervention trials and if the component parts and clustering

of outcomes are considered in the analysis.

3.3 Methods

Details of the protocol for this systematic review were registered on PROSPERO (www.crd.

york.ac.uk/PROSPERO/display_record.asp?ID=CRD42016033781).

3.3.1 Literature search

Proportionate interventions evaluated in a randomised trial between 2010 and 2015 were sought.

A scoping study was undertaken to identify relevant search terms with guidance provided by a

systematic reviewer regarding search terms, databases and making full use of truncation. Advice

regarding search terms was also sought from PhD supervisors and external expert collaborator
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Tracey Bywater. The objective related to whether intervention induced clustering of outcomes

was considered in the analysis was added to the protocol after further consideration of the

motivation for this review and findings from the scoping search identified many trials with

potential clustering.

Electronic searches were undertaken using the databases: MEDLINE (OvidSP), Web of Science

(Core Collection), and PsycINFO. The following search terms were used in the title or abstract:

‘proportionate universalism’, ‘proportionate intervention’, ‘proportionate treatment’, ‘staged in-

tervention’, ‘staged treatment’, ‘adaptive treatment regimen’, ‘adaptive intervention’, ‘adaptive

treatment strategy’, ‘dynamic treatment regimen’, ‘multi-level intervention’, or ‘stepped care’.

The final search combined search terms with the Boolean operator ‘OR’ and the Boolean oper-

ator ‘AND’ to combine them with the randomised trial search strategy. The randomised trial

search strategy was based on the Cochrane Highly Sensitive Search Strategies for identifying

randomized trials [69]. The start date of the six year time frame was chosen based on the

2010 publication date of the Marmot review [5] (it was anticipated no trials would use the term

proportionate universalism prior to this).

The final search was conducted on 16th March 2016 (after piloting of the search strategy and

refining). See Figure 3.1 for the MEDLINE search strategy. It was intended to provide a

thorough overview of the types of trials evaluating proportionate interventions being used in

practice and not be exhaustive, therefore, additional hand searching or searching of clinical

trials registers was not incorporated.

Figure 3.1: MEDLINE search strategy

1. (randomi#ed controlled trial OR controlled clinical trial).pt. OR
randomi#ed.ab. OR placebo.ab. OR clinical trial as topic.sh. OR ran-
domly.ab. OR trial.ti.

2. limit 1 to yr=”2010 -2015”

3. (proportionate universalism OR proportionate intervention$ OR propor-
tionate treatment$ or staged intervention$ or staged treatment$ OR multi-
level intervention$ OR multi-level program$ OR multi-level system$ OR
multi-level treatment$ OR stepped care).ab,ti.

4. (adaptive treatment$ OR adaptive treatment regime$ OR adaptive
intervention$ OR adaptive treatment strateg$ OR dynamic treatment
regime$).ab,ti.

5. 3 OR 4

6. 1 AND 5

7. 2 AND 6

8. limit 7 to English language
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3.3.2 Eligibility criteria

All results that were trials or pilot studies (including protocols) which evaluated interventions

delivered proportionate to need were eligible. An intervention was defined as proportionate when

there was a variation in the intervention dependent upon either an intermediate or primary out-

come measured prior to the study endpoint. The intervention included decision stages and at

each stage there were intervention options based on tailoring variables and pre-defined decision

rules. Interventions which were tailored without decision rules were excluded from this review.

Observational studies were excluded and the review was restricted to English language results

only. Where more than one article for a single study was found, the main published results

articles were included if present and superseded any protocol or cost-effectiveness study. All

therapeutic areas were considered and no restrictions imposed on the types of participants/de-

mographics.

3.3.3 Quality control

No quality assessment of the identified studies was used as the purpose of this review was to

understand the extent of studies evaluating proportionate interventions and how they are being

designed and analysed.

3.3.4 Study selection

Searches were conducted and all duplicates removed. Study selection based on the eligibility

criteria was performed by myself to identify relevant results from the search strategy. At the

initial screening stage, titles and abstracts were assessed to identify eligible studies. The full

articles of studies meeting review criteria were inspected to identify relevant studies that fulfil

the inclusion criteria.

3.3.5 Data extraction and analysis

A dedicated data extraction tool was developed for this review in an Excel spreadsheet. The

data extraction tool was discussed and finalised amongst three reviewers, myself and two thesis

supervisors, to agree on data extraction fields. Data were not double-extracted for the purpose

of this review. However, to quality check agreement, clarity of eligibility criteria, and the
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data extraction tool two second reviewers (thesis supervisors) reviewed a random sample of

ten results each. After the quality check, a small clarification to the eligibility criteria was

made but no changes to the data extraction were deemed necessary. For a small number of

studies a second opinion was sought from thesis supervisors where inclusion was not clear. The

review evaluated designs and methods used in proportionate intervention trials, therefore, there

was no meta-analysis undertaken. The data extraction included: publication year, location of

study (country), therapeutic area, type of study (trial results, protocol or secondary analysis),

design type, aim, eligibility criteria, intervention, tailoring variable and decision rules, number of

decision stages, control intervention, final study follow-up period, sample size, primary outcome,

overall statistical model, whether analysis of different stages was undertaken, and intervention

induced clustering.

PRISMA guidelines for reporting systematic reviews were followed where relevant [70]. A

PRISMA checklist was completed to reflect the manuscript submitted to Trials based on this

the work from this chapter.

The review results were presented using summary statistics and a narrative synthesis, providing

a description of any similarities and differences across the included studies. Studies were grouped

by design type, with description of study characteristics tabulated to allow comparison of the

main features.

3.4 Results

3.4.1 Study Selection

Figure 3.2 presents the selection of studies in this systematic review. Of the 531 unique records

identified from the database search, 44 eligible studies were identified. The narrative synthesis

is split into two subcategories by type of study design, stepped-care and optimal intervention

strategy. Inclusion of a control was not required for eligibility. Due to the nature of assessing

proportionate interventions some results did not include a control, for instance if the study

objective was to identify an optimal intervention strategy.
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Figure 3.2: PRISMA study flow diagram, representing the number of records identified, included
and excluded during the literature search

Records identified through database searching (n=856)

Records after duplicates removed (n=531)

Records screened (n=531)

Records excluded (n=435)

Full-text records assessed for eligibility (n=96)

Full-text records excluded (n=52)
- Intervention not adapted to need (n=13)

- No or undefined decision stages/rules n=27)
- Unavailable (n=1)

- Protocol, preliminary, or
study already included (n=10)

- Abstract only (n=1)

Studies included in data synthesis (n=44)
- Stepped-care (n=37)

- Optimal treatment strategy (n=7)

3.4.2 Study characteristics

Table 3.1 presents an overview of included studies. There were 18 studies based in the United

States, 16 in The Netherlands, two in each of Australia, England and Scotland, Norway, and

Sweden, and three based in other countries (India, Nigeria and a multi-site study across France,

Hungary, Romania and Slovakia).

The median number of decision stages (points at which the intervention was adapted according

to need based on predefined decision rules) was 2 (interquartile range (IQR) 1-3). The median

length of trial follow-up was 12 months (IQR 6-12 months) and the median sample size was 236

(IQR 150 to 387).

Measures were taken at baseline, at each decision stage and after the end of the final intervention

stage. Generally, follow-up measures were also taken a number of months after completion of

interventions. There were both individually and cluster randomised trials included in the results.
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There were a variety of reasons given for adopting a proportionate intervention, including costs,

resources, and providing interventions appropriate to individuals.

Table 3.1: Overview of studies included in the systematic review

First Author Datea Therapeutic area Country Follow-upb N

Ell [71] 2010 Depression and anxiety United States 12 387
Van’t
Veer-Tazelaar [72]

2010 Depression and anxiety The Netherlands 12 170

Braamse [73] 2010 Distress after autologous stem cell
transplantation

The Netherlands 10 286

Patel [74] 2010 Depression and Anxiety India 12 2796
Gilliam [75] 2010 Obsessive compulsive disorder United States 3 14
Kay-Lambkin [76] 2010 Depression among metham-

phetamine users
Australia 5 8

Richter [77] 2011 Blood pressure France, Hungary,
Romania, Slovakia

6 256

Weissd [78] 2011 Prescription opioids dependence United States 6 653
Mitchell [79] 2011 Bulimia nervosa United States 12 293
Seekles [80] 2011 Depression and anxiety The Netherlands 6 120
Tolin [81] 2011 Obsessive compulsive disorder United States 3 34
van der Leeden
[82]

2011 Anxiety in children The Netherlands 6 133

Apil [83] 2012 Depression The Netherlands 12 136
Karp [84] 2012 Depression and chronic pain United States 12 250
Shortreed d [85] 2012 Schizophrenia United States 18 1460
Dozeman [86] 2012 Depression and anxiety The Netherlands 10 185
Nordin [87] 2012 Stress management of cancer pa-

tients
Sweden 12 300

Jakicic [88] 2012 Weight loss United States 18 363
Wangd [89] 2012 Oncology United States 7 150
Pommer [90] 2012 Depression and anxiety in patients

with asthma or COPD
The Netherlands 24 160

Lamb [91] 2012 Whiplash injuries England and Scotland 12 3851
Krebber [92] 2012 Distress in head and neck and lung

cancer patients
The Netherlands 12 176

Borsari [93] 2012 Alcohol consumption United States 9 598
Rosed [94] 2013 Smoking cessation United States 6 606
Watson [95] 2013 Alcohol consumption England and Scotland 12 529
Oosterbaan [96] 2013 Common mental disorders The Netherlands 8 163
van Dijk [97] 2013 Depression among patients with

diabetes and/or coronary heart
disease

The Netherlands 12 236

Arving [98] 2013 Stress management of cancer pa-
tients

Norway 24 300

Mattsson [99] 2013 Depression and anxiety Sweden 24 200
Carels [100] 2013 Weight loss United States 4 52
van der Aa [101] 2013 Depression and anxiety The Netherlands and

Belgium
24 230

Kasari d [102] 2014 Communication for minimally ver-
bal children with autism

United States 8 61

Muntingh [103] 2014 Panic and anxiety The Netherlands 12 180
Kilbourne d [104] 2014 Mood disorder United States 24 1600
Hamall [105] 2014 Families living with childhood

chronic illness
Australia 6 1050

Gureje [106] 2015 Depression Nigeria 12 1190
Stoop [107] 2015 Depression and anxiety in patients

with diabetes, asthma or COPD
The Netherlands 18 46

Stam [108] 2015 Impairment in older dizzy people The Netherlands 12 300
Lock [109] 2015 Anorexia nervosa United States 6 45
Schuurhuizen
[110]

2015 Distress in patients with
metastatic colorectal cancer

The Netherlands 11 715

Haug [111] 2015 Panic and anxiety Norway 12 173
Salloum [112] 2015 Post-traumatic stress in children United States 3 53
Wud [113] 2015 Bipolar disorder United States 3 365
Painter [114] 2015 Depression in HIV patients United States 12 249
a Publication date, b Primary follow-up post baseline in months, N = Sample size, d Optimal-intervention strategy subcategory

59



3.4.3 Stepped-care

Table 3.3 presents a summary of the included studies categorised as stepped-care. A total of 84%

(37 of 44) of the studies followed a stepped-care model for the intervention. The stepped-care

model is recommended by NICE [115] for the provision of services for common mental health

disorders. In a stepped-care model the least intensive intervention, or level of intervention, is

delivered first to all patients, and patients step up or down the stepped-care pathway dependent

upon their response to the previous intervention step.

Figure 3.3 represents the flow of patients through an example of a typical stepped-care trial with

three intervention steps. The key principles of stepped care are: to provide the most appropriate

and best intervention according to need; reduce the burden on patients by providing only the

intervention required; and improve cost-effectiveness by providing the level of intervention re-

quired for a positive outcome [115]. The reduction of costs for those who respond to lower level

intensity interventions can free up resources for those who require more intensive intervention

[116].

Figure 3.3: Example of a stepped-care trial with three steps and the option to rejoin treatment
if relapse occurs (R - Randomise)

R

Step 1

Control

Monitor

Remission

Step 2

Relapse

Remission

Step 3

Relapse

Yes

No
Yes

No

The majority of stepped-care studies, 73% (27 of 37) were focussed on the therapeutic areas

of depression, anxiety, stress, or some form of mental health disorder. Other therapeutic areas

targeted included: weight loss [88, 100], alcohol consumption [95, 117], eating disorders [79, 109],

whiplash injuries [91], blood pressure control [77], resilience and wellbeing of families living with
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childhood chronic illness [105], and impairment in older dizzy people [108].

The intervention often involved some form of watchful waiting period for the first step followed

by regular monitoring at pre-defined follow-up times of an outcome measure (either secondary

or primary). Based on this outcome measure, decisions were made whether to progress to the

next step or not, this process continued for however many steps were included in the interven-

tion. Each decision stage comprised of either a choice of interventions, continued treatment,

augmented treatment, or to discontinue the treatment all together for the following step based

on an individuals’ outcome. The progression of treatment steps for interventions aimed at

mental health disorders commonly included a watchful waiting period or bibliotherapy/guided

self-help, psychotherapy sessions (either individual or group based), with possible progression

to medication (for example, antidepressants).

Control conditions were generally usual care or enhanced usual care with others being assessment

only [105], waitlist control [93], or the active intervention delivered in a non-stepped model [81,

100, 118]. Four of the stepped-care trials included no explicit control [75, 77, 82, 87]. The lack

of control was argued by [82, p.70] as “partially inherent to the stepped care design, since it

would be unethical to assign children to a waiting list after a first treatment phase if they needed

further treatment”. This suggests a confusion in how to evaluate proportionate interventions as

it would have been ethical to randomise at baseline to a control arm of care as usual. Nordin

et al. [87] did not include a comparator for step one intervention, however, after step one those

who continued to report stress symptoms were randomised to a group or individual format of

intervention deliver (step two a or b) thus a comparison of delivery method was possible.

A variety of statistical analysis methods were used dependent upon the outcome measures and

main aims. Longitudinal data were incorporated into many of the analyses. Mixed effects mod-

els, containing both fixed and random effects, were used as the statistical analysis method in

38% of studies (14 of 37), see Table 3.3. They were used to account for both longitudinal data

and the clustering effects of NHS trusts, therapists, and other health professionals. Repeated

measures ANOVA was used in three studies [75, 92, 99], however, this method does not success-

fully deal with missing values. In contrast the mixed effects model assume data are missing at

random and allows for imbalance or missing observations within patient [60].

Six stepped-care studies included or planned some form of analysis of the different intervention

stages. These included: summaries of outcome measures presented per intervention step [77];

analysis of outcomes after step one and step two [96]; analysis at the end of each step and the
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end of the whole intervention as well as a comparison of differences in outcomes and patient

characteristics (weight loss and self-monitoring characteristics) between those who were stepped

down and those who remained in treatment in the stepped-care arm [100]; analysis comparing

patient demographic characteristics of those who agree to participate in step two/three compared

to those who decline (for eligible patients) [105]; percentages of children free of any anxiety

disorder after each treatment phase and by intervention [82]; analysis of outcomes after step one

and analysis of outcomes after step two adjusting for intervention received in step one and any

interactions between step one and two interventions [91].

The objectives of the study by Lamb et al. [91] were to evaluate the effectiveness of step one, step

two, and the combined effects of the interventions together. This was made possible by designing

two linked, pragmatic, RCTs. In step one emergency departments were cluster randomised to

The Whiplash Book or usual care, and individual consent was not sought at this stage. In step

two participants who received either of the step one interventions and were eligible after step

one (persistent symptoms at three weeks) were individually randomised at step two to either

one physiotherapist advice session or up to six physiotherapist advice sessions.

Table 3.2: Abbreviations for Table 3.3

Abbreviation Description

BAI Beck Anxiety Inventory
CBT Cognitive behavioural therapy
CES-D Epidemiologic Studies Depression scale
CGI Clinical Global Impression
CGI-S Clinical Global Impression – Severity scale
CIDI Composite International Diagnostic Interview
DSM-IV Diagnostic and Statistical Manual of Mental Disorders
EORTC-QLQ-C30 European Organization for Research and Treatment of Cancer QLQ-C30 quality of

life questionnaire
GAD-7 Generalised Anxiety Disorder-7
GHQ-12 12-item General Health Questionnaire
HADS Hospital Anxiety and Depression Scale
HADS-A Hospital Anxiety and Depression Scale – Anxiety
HADS-D Hospital Anxiety and Depression Scale – Depression
ICD-10 International Statistical Classification of Diseases and Related Health

Problems-10th revision
IDS Inventory of Depressive Symptomatology
IES Impact of Events Scale
MASC Multidimensional Anxiety Scale for Children
MINI Mini International Neuropsychiatric Interview
PHQ-9 Patient Health Questionnaire
PST Problem solving treatment
SCL-20 20-item Symptom Checklist Depression Scale
STAI State-Trait Anxiety Inventory
WSAS Work and Social Adjustment Scale
Y-BOCS Yale-Brown Obsessive-Compulsive Scale
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Table 3.3: Characteristics of included stepped care studies

First
Author

Intervention Tailoring variable and de-
cision rules (response un-
less otherwise stated)

Primary outcome Statistical analysis Analysis
of
stages

Ell [71] Stepped-care, 3 steps: 1) based on patient preference, pa-
tients start PST or antidepressant medication 8 weeks, 2)
a different antidepressant medication or the addition of an-
tidepressant medication or PST 4 weeks, 3) considered for
additional PST, augmentation of low-dose Trazodone for in-
somnia, and referral to speciality mental health care.

50% SCL-20 reduction Depression remission was as-
sessed by SCL-20<0.5 or
PHQ-9<5

Logistic regression model to
compare the odds of achieving
clinically meaningful improvement
between treatment groups.

No

Van’t
Veer-
Tazelaar
[72]

Stepped-care, 4 steps: 1) watchful waiting, 2) bibliotherapy,
3) PST and 4) antidepressant medication. Stages were in 3
month cycles.

CES-D<16 MINI/DSM-IV diagnostic
status of depressive and
anxiety disorders

Incremental effectiveness computed
as the difference in the probability
of a disorder-free period between
groups.

No

Braamse
[73]

Stepped-care, 2 steps: 1) internet based self-help program,
2) contracting, individual face-to-face counselling, medica-
tion, or referral to other services.

PHQ-9≤10 and/or HADS<8
and/or STAI < 40.

Psychological distress using
HADS and physical role func-
tion using EORTC-QLQ-C30.

ANOVA No

Patel [74] Stepped-care, 4 steps: 1 ) psychoeducation, 2) antidepres-
sants, 3) interpersonal psychotherapy in addition to antide-
pressants or an alternative to antidepressants for those who
did not respond to them, 4) referral to psychiatrist.

Varying ICD-10 diagnosis Chi-square and t-test. Mixed effect
models for longitudinal data.

No

Gilliam
[75]

Stepped-care, 2 steps: 1) short therapist sessions and bib-
liotherapy, 2) longer therapist directed sessions.

Y-BOCS reduction≥5 points
plus a post-treatment score of
≤13

Y-BOCS total score and the
clinician’s CGI severity rat-
ing.

Repeated measures ANOVA No

Kay-
Lambkin
[76]

Stepped-care, 4 steps: 1) brief integrated CBT/motivational
interview (MI) intervention one session, 2) 4 CBT/MI ses-
sions: 3) 4 CBT/MI sessions, 4) 4 CBT/MI sessions.

Varying Depression and metham-
phetamine use.

Small sample size so no statistical
analyses.

No

Richter
[77]

Stepped-care, 6 steps: incremental therapy included the
following add-on therapies at 4-week intervals: aliskiren
150–300 mg once daily, hydrochlorothiazide 12.5–25 mg once
daily, and finally amlodipine 5–10 mg once daily, as needed.

Meet the target blood pres-
sure at 4-week intervals.

Estimated cumulative proba-
bility of patients achieving BP
target

Probability of reaching the BP
target, assessed by estimating
control rates of patients who reached
target per visit using life-table
survivor estimates at each visit.
Summaries presented of change in
blood pressure per treatment step.

Yes

Mitchell
[79]

Stepped-care, 3 steps, 1) therapist assisted self-help for 18
weeks, 2) fluoxetine until 1 year follow-up, 3) full CBT for
6 months.

70% or more reduction in fre-
quency of purging by the end
of session six.

Recovery (no binge eating or
purging behaviours in the past
28 days). Remission (no
longer meeting DSM–IV crite-
ria).

ANOVA with the site × treatment
interaction.

No

Seekles
[80]

Stepped-care, 4 steps: 1) watchful waiting 4 weeks, 2) guided
self-help, 3) short face-to-face PST 5 sessions, 4) pharma-
cotherapy and/or specialised mental health care.

IDS<14 and HADS<8 and
WSAS<6

IDS and HADS t-tests No

Tolin [81] Stepped-care, 2 steps: 1) bibliotherapy 6 weeks, 2) therapist
directed ERP sessions.

Y-BOCS decreased by ≥5 and
≤13.

Y-BOCS and cost Mixed effects model No
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van der
Leeden
[82]

Stepped-care, 4 steps: 1) randomised to group or individual
CBT sessions for children and parents, 2) five manual-based
Parent-Child Treatment for Anxiety (PCTA) sessions, 3) ad-
ditional five PCTA sessions.

Children diagnosed with an
anxiety disorder and/or who
scored below the cut-off of the
MASC

Change in proportion of chil-
dren with any DSM-IV anxi-
ety disorder

Percentages of children free of any
anxiety disorder after each
treatment phase and by intervention
(step 1 only, 1-2, and 1-2-3, and all
combined). Mixed effects models for
changes on continuous variables.

Yes

Apil [83] Stepped-care, 4 steps: 1) watchful waiting 6 weeks, 2) bib-
liotherapy self-help booklet 6 weeks, 3) individual CBT 12
weekly sessions, 4) referral to physician or psychotherapist
for any indicated treatment.

CES-D ≤16 Incidence of new depressive
episode

Feasibility evaluated descriptively.
Chi-square used to test if selective
drop-out biased results on incidence
of a new depressive episode.

No

Karp [84] Stepped-care, 2 steps: 1) 6 weeks open treatment with ven-
lafaxine xr 150 mg/day and supportive management (SM),
2) 14 weeks in which non-responders are randomised to high-
dose venlafaxine xr (up to 300 mg/day) with PST for De-
pression and Pain or high-dose venlafaxine xr and continued
SM.

PHQ-9 of ≤5 for 2 weeks
and at least 30% improvement
in the average numeric rating
scale for pain.

Univariate pain and depres-
sion response and both ob-
served and self-report disabil-
ity.

Number needed to treat between 2
interventions. Repeated measures
mixed-effect models for self-reported
and observed physical disability
between the 2 interventions across
time.

No

Dozeman
[86]

Stepped-care, 4 steps: 1) watchful waiting 3 months, 2)
activity-scheduling 3 months, 3) life review and consulta-
tion with GP 3 months, 4) consultation with GP discuss
further treatment 3 months.

Improvement of ≥5 points on
the CES-D.

Incidence of major depressive
disorder or anxiety disorder
using MINI

Incidence rate ratio using an
unadjusted and adjusted Poisson
regression analysis of the
MINI/DSM-IV depressive and
anxiety cumulative incidence
(1=developed a disorder, and
0=remained disorder-free) on the
treatment indicator.

No

Nordin
[87]

Stepped-care, 2 steps: 1) low intensity stress-management
intervention given to all patients, 2a) more intensive group
stress management treatment, 2b) more intensive individual
stress management treatment .

A decrease in stress related
symptoms measured by IES
and/or HADS from clinical
levels to normal results.

Subjective distress (intrusion
and avoidance) assessed by
IES.

Repeated measures ANOVA
(continuous variables) and
Chi-square test (categorical
variables)

No

Jakicic
[88]

Stepped-care, 6 steps: 1) monthly group intervention session
+ weekly mailed lessons and submission of self-monitoring
diaries, 2) continue step 1 + 10-minute monthly telephone
contact, 3) step 2 + a second 10-minute telephone contact
each month, 4) step 3 + 1 individual in-person intervention
contact per month, 5) step 4 + provided meal replacement
shakes and bars to replace 1 meal and 1 snack per day, 6)
step 5 + replace 1 of the telephone contacts with a second
individual session per month. Modified based on weight loss
achievement at 3 month intervals.

Weight loss goals 5% at 3
months, 7% at 6 months, 10%
at 9 months, and remained at
10% at 12, 15, and 18 months.

Change in weight over 18
months

t-test to compare mean weight loss
between groups. Mixed effects
models for longitudinal data.

No

Pommer
[90]

Stepped-care, 3 steps: 1) 4 sessions of extensive psycho-
education, 2) a course on coping with depression and/or
anxiety, 10 consultations, 3) coaching (6 booster sessions on
top of step 2) complemented with optional anti-depressant
and/or anxiolytic medication.

PHQ-9<7 and/or GAD-7<8. PHQ-9 & GAD-7 & MINI Chi-square and t-test. Mixed effect
models for longitudinal data.

No
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Lamb [91] Stepped-care, 2 steps: 1) The Whiplash Book advice/active
management advice, 2a) single session of physiotherapist ad-
vice or 2b) up to six sessions of physiotherapy.

Non-response if persistent
symptoms 3 weeks after emer-
gency department attendance
(WAD grades I–III).

Neck Disability Index (NDI) Mixed effects model (accounts for
clustering effects from NHS trusts
and therapists in step 2).

Yes

Krebber
[92]

Stepped-care, 4 steps: 1) watchful waiting 2 weeks, 2) guided
self-help via internet or booklet 5 weeks + 6 phone/email
coaching sessions, 3) PST administered by a specialised
nurse, 4) specialised psychological intervention or antide-
pressant medication chosen in cooperation between patient
and care co-ordinator.

HADS-A or HADS-D ≤7 HADS Repeated measures ANOVA
(continuous outcomes). GEEs used
to evaluate longitudinal changes.

No

Borsari
[93]

Stepped-care, 2 steps: 1) brief advice session, 2a) brief mo-
tivational intervention, 2b) assessment only.

Non-response if student
has heavy episodic drinking
(HED) ≥4 and/or alcohol-
related consequences ≥5 in
the past month they were
randomised to receive step 2
or control (assessment only).

HED and peak blood alcohol
content

Comparison of outcomes at 3, 6 and
9 months between those assigned to
2a or 2b using generalised
estimating equations for
longitudinal data.

Yes

Watson
[95]

Stepped-care, 3 steps: 1) behavioural change counselling 1
session, 2) motivational enhancement therapy, 3 sessions, 3)
local specialist alcohol services .

AUDIT–Consumption (3-
item) (AUDIT–C) < 5

Average drinks per day Mixed effects model (accounts for
variation in GP practice and
allocated therapist).

No

Oosterbaan
[96]

Stepped-care, 2 steps: 1) self-help course, 2) CBT in combi-
nation with antidepressant medication.

CGI-S<3 % of patients responding to
and remitting after treatment
measured using CGI-S

Logistic mixed effects models.
Analysis after step 1 and step 2.

Yes

van Dijk
[97]

Stepped-care, 4 steps: 1) watchful waiting, 2) guided self-
help, 3) PST, 4) referal to GP.

PHQ-9≥6 Cumulative incidence of
DSM-IV major depressive
disorder using MINI

Logistic mixed effects models. No

Arving
[98]

Stepped-care, 2 steps: 1) low-intensity stress-management
consisting of 2 counselling sessions over 6 weeks, 2) more in-
tensive stress-management treatment consisting of 4-7 ses-
sions.

IES and/or HADS score at 6
week assessment not clinically
significant.

Avoidance and intrusions Repeated measures ANOVA
(continuous variables) and
Chi-square test (categorical
variables).

No

Mattsson
[99]

Stepped care, 2 steps: 1) Self-help material, chat forum and
FAQ section, 2) CBT.

HADS subscale<7 at 1, 4, or
7 months after inclusion.

HADS, 20% change as clini-
cally relevant.

Repeated measures ANOVA
(regarding anxiety, depression,
post-traumatic stress, and
health-related QoL).

No

Carels
[100]

Stepped-care, 3 steps: 1) group-based behavioural weight
loss programme 6 weeks, 2a) behavioural weight loss pro-
gramme 6 weeks or 2b) self-help, 3a) behavioural weight
loss programme 6 weeks or 3b) self-help.

Meet the 3% weight loss tar-
get.

% weight loss Repeated measures ANOVA
(continuous variables) and
Chi-square test (categorical
variables) to compare differences
between treatment groups at the
end of each stage and the end of the
whole intervention

Yes

van der
Aa [101]

Stepped-care, 4-steps: 1) watchful waiting, 2) guided self-
help, 3) PST, 4) referral to GP.

CES-D<16 or HADS-A<7 MINI Survival analysis and mixed effects
model.

No
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Muntingh
[103]

Stepped-care, 4 steps: 1) guided self-help, 2) CBT 6 sessions,
3) antidepressant medication prescribed by GP, 4) optimiza-
tion of medication in primary care or referal to secondary
care.

50% reduction in BAI score
and BAI≤11

BAI score Difference in gain BAI gain scores
from baseline. Inverse probability
weighting used, accounts for
variation in receiving treatment.

No

Hamall
[105]

Stepped-care, 3 steps: 1) family resilience and well-being
fact-sheet, 2) family resilience and well-being activity book-
let, 3) family resilience information support group or waitlist
control.

Step 2: parents eligible if have
a child attending one of 4 se-
lected outpatient clinics at the
paediatric hospital. Step 3:
eligible if K10≥15.

Parental well-being (K10).
Family functioning (McMas-
ters Family Assessment De-
vice, FAD). Social connect-
edness (Medical Outcomes
Study Social Support Survey,
MOSSSS). Family beliefs.

Descriptive statistics used for Step
1. ANOVA for effect of booklet
intervention for all participants in
Step 2 and sustained change tested
using a repeated measures mixed
effects model for the participants
who did not move into Step 3.
ANOVA to examine additional effect
of the information support group
relative to wait-list control group.

Yes

Gureje
[106]

Stepped-care, 3 steps: 1a) 8 weekly psychoeducation & PST
sessions, 1b) 8 weekly weekly psychoeducation & PST ses-
sions + doctors advice on treatment, 2a) 4 monthly weekly
psychoeducation & PST sessions, 2b) 8 weekly weekly psy-
choeducation & PST sessions, 2c) consult doctor + 8 weekly
weekly psychoeducation & PST sessions, 3a) 4 monthly
weekly psychoeducation & PST sessions, 3b) consult doc-
tor + 8 weekly weekly psychoeducation & PST sessions.

Step 1: 1a) if PHQ-9 11-14 ,
1b) if PHQ-9≥18. Step 2: 2a)
PHQ-9<11, 2b) PHQ-9 11-17,
2c) PHQ-9≥18. Step 3: 3a)
PHQ-9<11, 3b) PHQ-9≥11.

Recovery of depression at 12
months as shown by a PHQ-
9≤6

Mixed effects model. No

Stoop
[107]

Stepped-care, 3 steps: 1) 4 weekly psychoeducation individ-
ual meetings, 2) 10 weekly individual meetings covering the
coping with depression/anxiety course, 3) advice to meet
GP to discuss optional medication and 6 booster sessions
during 6 months. Followed by monitoring of symptoms of
depression or anxiety in case of remission.

PHQ-9<7 and/or GAD-7<8. Symptoms of anxiety and de-
pression after 12-months in-
tervention and 6 months post
intervention.

ANCOVA and clinical significance
in terms of effect size.

No

Stam
[108]

Risk factor guided intervention including: 1) medication
adjustment in case of three or more prescribed fall-risk-
increasing drugs, 2) stepped care in case of anxiety disorder
and/or depression, and 3) exercise therapy in case of im-
paired functional mobility. Those eligible for more than one
intervention start them at the same time. Stepped-care, 4
steps: 1) watchful waiting 6 weeks, 2) guided self-help treat-
ment 6 weeks, 3) problem-solving treatment max 6 sessions,
4) referral to GP.

GAD-7<10, a PHQ-9<10, or
a positive PHQ-PD score.

Dizziness-related impairment,
assessed using the Dizziness
Handicap Inventory (DHI).

Mixed effects models for
longitudinal data to compare
intervention and control group,
regardless of number of
interventions. Subgroup analysis for
3 groups separately that received 1
of 3 interventions.

No

Lock [109] Adaptive intervention, Intensive Family Coaching, consist-
ing of family-based treatment (FBT)/Intensive Parental
Coaching (IPC): 4 sessions of FBT + 3 session of IPC.

Weight gain≥2.3kg after
FBT, proceed to IPC.

Retentions and treatment use,
suitability and expectancy,
clinical outcomes, changes in
parental self-efficacy.

Feasibility and acceptability
compared across the randomised
groups (FBT vs. FBT/IPC) using
chi-square test and t-test.

No
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Schuurhuizen
[110]

Targeted selection by a nurse (HADS≥13 and/or
“Lastmeter”≥5), enhanced care (treatment process man-
aged by a trained nurse) and stepped-care. Stepped-care,
4 steps: 1) watchful waiting 3 weeks, 2) a guided self-help
program 5-7 weeks max 6 sessions in 10 weeks, 3) face to
face PST, 4) psychotherapy, medication or a referral to
other services (e.g. social work).

HADS<13 Psychological distress mea-
sured by HADS.

ANCOVA for difference between
groups. Time patients entered
stepped-care and the response to
treatment (progression or not) are
accounted for via a covariate.

No

Haug
[111]

Stepped care, 3 steps: 1) short psychoeducation, 2) 10 weeks
Internet-based self-help program, 3) 12 weeks individual
CBT.

Two out of three of the fol-
lowing criteria: 1) loss of pri-
mary diagnosis (SCID-I), 2)
CSR≤ 3 and reduced by at
least two points, and 3) for
PD, BSQ≤2.5, and for SAD
SPS≤25.

Clinicians’ Severity Rating
(CSR) a 0-8 severity rating of
the primary anxiety diagnosis

Multiple regression analyses. No

Salloum
[112]

Stepped-care, 2 steps, 1) 3 therapist-led sessions, 11 par-
ent–child meetings at home over 6 weeks using a workbook,
weekly brief phone support, online psychoeducation infor-
mation and video demonstrations, 2) 9 trauma focussed
CBT sessions.

PTS≤3, or a Trauma Symp-
tom Checklist for Young Chil-
dren PTS score ≤39, and an
IE Clinical Global Impression-
Improvement rating of 3, 2, or
1.

Trauma Symptom Checklist
for Young Children - post-
traumatic stress subscale
(TSCYC-PTS).

Linear mixed effects models
(continuous outcomes). Generalised
linear mixed effects models
(non-continuous outcome) for
longitudinal data.

No

Painter
[114]

Stepped-care, 5 steps: 1) watchful waiting, 2) depression
care team treatment suggestions (counselling or pharma-
cotherapy, considering participant preference), 3) pharma-
cotherapy suggestions after review of treatment history ,4)
combination pharmacotherapy and speciality mental health
counselling, 5) referral to speciality mental health.

Non-response defined on 5
different measures, including:
antidepressant adherence,
counselling non-adherence,
report of severe adverse effect,
increase in PHQ-9 from base-
line by ≥5, or <50% decrease
from enrolment PHQ-9.

Quality-adjusted life years
and percentage of participants
with depression treatment
response

Generalised linear models to
calculate predicted expenditure for
each participant to determine
incremental cost. Logistic regression
models to compare the odds of
achieving clinically meaningful
improvement (SCL-20 improved by
≥50%) between groups.
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3.4.4 Optimal intervention strategy

A summary of the studies categorised as optimal intervention strategy is presented in Table 3.5.

A total of 16% (7 of 44) of the review studies were aimed at finding an optimal intervention

strategy when interventions consist of more than one stage. Unlike the majority of stepped-

care studies, randomisation occured more than once and there was often no true control arm

as the different proportionate intervention strategies were compared to one another. Six of the

studies were explicitly defined as sequential multiple assignment randomised trials (SMARTs)

with the other study based on a two phase trial design evaluating an adaptive smoking cessation

intervention stratgey [94].

The optimal intervention strategy studies included three trial results studies [78, 94, 102], three

secondary analyses of trials [85, 89, 113], and one trial protocol [104]. All seven studies were

based in the United States, where the SMART design was developed [119, 120]. Therapeutic

areas covered, include: oncology [89], schizophrenia [85], depression and anxiety [104], bipo-

lar disorder [113], patients dependent on prescription opioids [78], smoking cessation [94], and

communication for minimally verbal children [102].

The SMART study design has been developed to inform the development of an optimal inter-

vention strategy. SMARTs compare groups of experimental conditions and provide the evidence

to choose the intervention options at different stages. They enable the investigation of the inter-

vention effects of different stages as part of a sequence rather than standalone interventions. The

aim of a SMART is typically to develop an optimal adaptive intervention, it is recommended

that the developed optimal adaptive intervention is then evaluated using a further randomised

confirmatory trial comparing it to an alternative [120]. However, some SMART trials have also

been run as confirmatory trials with control arms for comparison.

Five of the optimal intervention strategy studies were based on two stages of intervention and

two studies used a three stage design [89, 104]. A measurement at the end of each stage was

used to assess response and thus progression to the next stage. Participants were generally

randomised to stage one interventions and if they were classified as responders to stage one they

continued this treatment and non-responders were randomised to the following stage treatments,

an example design is represented in Figure 3.4. The number of treatments at each randomisation

stage varied greatly between studies, at stage one there were between two and six treatments

randomised (two treatments [78, 102, 104], three treatments [113], four treatments [89], or five
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treatments [85]). No control group was used in four of the studies [85, 89, 102, 104], one study

used placebo in stage one [113], and usual care was used in another [78].

Figure 3.4: Example of SMART design with second randomisation dependent upon an interme-
diate outcome response status (R, Randomise; B, C and D, treatments; B+, enhanced treatment
B, and C+, enhanced treatment C)

R

B

C

Responders

Non-responders R

B

B+

B+C

Responders

Non-responders R

C

C+

C+D

In general, more complex analysis methods were used for the optimal proportionate intervention

strategy category compared to the stepped-care trials. Inverse probability weighting methods

were used to estimate the outcome means associated with each of the two-stage dynamic treat-

ment regimes [89]. A comparison of two treatment conditions was done using the stage two

endpoint and GEEs (to account for correlation among measurements of patients from the same

site) [78]. Other methods to estimate optimal intervention strategy included mixed effects mod-

els [102, 104] and Q-learning [113] .

The studies generally aimed to estimate the optimal proportionate intervention strategy as

a whole rather than considering the effects of each treatment stage. Different stages of the

interventions were considered in some studies. Weiss et al. [78] measured participants who

responded after stage one and randomised those who did not respond to stage two. Weighted

regression was used by Kasari et al. [102] to compare outcomes between the three embedded

proportionate interventions including an indicator for stage one and stage two treatment and

accounting for the probability of a participant following their assigned sequence of treatments

based on randomisation sequence.
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Table 3.4: Additional abbreviations for Table 3.5.

Abbreviation Description

EF External facilitator

EMT Enhanced milieu teaching

IF Internal facilitator

JASP Joint attention symbolic play enagagement and regulation

PANSS Positive and Negative Syndrome Scale

PSA Prostate-specific antigen

QOL Quality of life

REP Replicating Effective Programs

SF-12 12-Item Short Form Health Survey

SGD Speech-generating device
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Table 3.5: Characteristics of included optimal intervention strategy studies

First
Au-
thor

Intervention Tailoring variable and deci-
sion rules (response unless
otherwise stated)

Primary outcome Statistical analysis Analysis
of
stages

Weiss
[78]

2 stage intervention. Stage 1: buprenorphine-naloxone in-
duction, 2 weeks of stabilization, a 2-week taper, and 8 weeks
of follow-up. Stage 2: 12 weeks of buprenorphine-naloxone
stabilization, a 4-week taper, and 8 weeks of follow-up. In
each phase, patients randomised to (1) standard medical
management (SMM) or (2) SMM plus individual drug coun-
seling

Stage 1: self-reported opioid use
on ≤4 days in a month, absence of
2 consecutive opioid-positive urine
test results, no additional sub-
stance use disorder treatment, and
≤1 missing urine sample. Stage
2: abstaining from opioids during
week 12 and during ≥2 of the pre-
vious 3 weeks.

Composite measures indicating
minimal or no opioid use based
on urine test–confirmed self- re-
ports

Compare 2 treatment conditions
using the stage 2 endpoint. GEEs
to account clustering of patients by
site.

Yes

Shortreed
[85]

2 stage intervention. Initially randomised to newer atypical
antipsychotics or to perphenazine. Patients randomised at
stage 1 to perphenazine who discontinue were randomised
to a newer atypical antipsychotic. Patients randomised at
stage 1 to newer atypical antipsychotic who discontinue were
given the choice of 2 randomisation arms, including, ziprasi-
done, olanzapine, risperidone, or quetiapine, excluding their
previous treatment or either clozapine, olanzapine, risperi-
done, or quetiapine, again excluding their previous treat-
ment. Dissatisfied patients could opt to switch treatment
again, at this stage treatment was neither randomised nor
blinded.

Non-response if patient discontin-
ues treatment and then eligible for
randomisation to next stage.

12-month PANSS score and 12-
month QOL score.

Marginal structural modelling us-
ing a weighted analysis to com-
pare treatment regimes, the al-
ways atypical antipsychotic regime
or the perphhenazine and atypical
regime.

No

Wang
[89]

3 stage intervention. Stage 1: randomised to 1 of 4 combina-
tion chemotherapies. Stage 2: 2a) responders receive second
course of same chemo, 2b) non-responders, randomised to
second-line treatment. Stage 3: After 2a, 3a) responders re-
ceive second course of same treatment, 3b) if not treatment
finished. After 2b, 3c) if overall success finish treatment, 3b)
if not randomised to second treatment and process repeated
once more. After 3a, finish treatment.

Response defined as: Prostate-
specific antigen (PSA) decline of at
least 40% from baseline, objective
regression (of any magnitude) of
any measurable disease, improve-
ment in any cancer-related symp-
toms, and no new lesions or new
cancer-related symptoms. Success
defined as: a PSA decline of at
least 80% from baseline, resolution
of all cancer-related symptoms, an
objective tumour regression of at
least 50% from baseline for all
measurable lesions, and no new le-
sions or cancer-related symptoms.

Long term survival using log sur-
vival time. Efficiency in dimin-
ishing disease burden over 32
weeks using three specific scor-
ing functions defined as func-
tions of toxicity and efficacy tak-
ing values in the interval [0,1].

Inverse probability weighting
methods to estimate the mean
of counter-factual outcome for
dynamic treatment regimens and
sequentially randomised trials.

No
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Table 3.5 – Continued from previous page

Rose
[94]

2 stage intervention. Stage 1: all received nicotine patch
treatment 2 weeks before quit date. Responders continue
nicotine patch treatment. Non-responders randomised to 1)
control (nicotine patch), 2) nicotine patch and bupropion, or
3) verenicline alone. Stage 2: for precessation nicotine patch
responders, nonlapsers continue nicotine patch and for those
who lapsed in the first week after quit date randomised to
1) control (nicotine patch), 2) nicotine patch and buprpion,
or 3) verenicline alone.

Ad lib smoking (expired car-
bon monoxide levels) decreased by
>50% after 1 week

Continuous smoking abstinence
at end of treatment

Logistic regression compared each
rescue treatment against the con-
trol.

Yes

Kasari
[102]

2 staged intervention. Stage 1: sessions of a) JASP+EMT or
b) JASP+EMT+SGD. Stage 2: early responders continue
stage 1 treatment. Slow responders from 1a) randomised to
receive intensified stage 1 treatment or augmented stage 1.
Slow responders from 1b) receive intensified stage 1 treat-
ment.

After stage 1 if child demonstrated
25% or greater change on at least
half of the variables (7 out of 14),
then the participant was consid-
ered an early responder.

Total spontaneous, communica-
tive utterances coded from a
standardised Natural Language
Sample

Mixed effects models compared
outcome between stage 1 treat-
ments. Secondary aim analysis
used a weighted regression to com-
pare mean outcomes between the
3 embedded adaptive intervention,
including an indicator for stage 1
and stage 2 treatments.

Yes

Kilbourne
[104]

SMART design for adaptive implementation strategy. Run-
in phase: sites offered REP to implement life goals (LG) for
patients with mood disorders. Sites not initially responding
to REP are randomised to receive additional support from
an EF or both EF/IF. Additionally, sites randomised to EF
and still not responsive will be randomised to continue with
EF alone or to receive EF/IF.

<50% patients receiving ≥3 evi-
dence based practice sessions

SF-12 mental health-related
quality of life and PHQ-9 scores

Mixed effects models. Compare
interventions in non-responding
sites beginning with REP +
EF/IF versus interventions begin-
ning with REP + EF on longitu-
dinal patient-level change in num-
ber of LG sessions received. Com-
pare whether continuing REP +
EF vs. augmenting with REP +
EF/IF leads to changes in out-
comes, among sites who are non-
responsive to REP + EF at month
12.

Yes

Wu
[113]

2 staged intervention. Stage 1: patients randomised to
Bupropion, Paroxetine, or placebo. Stage 2: non-responders
assigned 2nd intervention. If receive Buporopion or Paroxe-
tine at stage 1, current doses increased. If placebo at stage
1, Bupropion or Paroxetine.

≥50% improvement over initial
Scale to Assess Unawareness of
Mental Disorders and not meeting
DSM-IV criteria for hympomania
or mania

Scale to Assess Unawareness of
Mental Disorders

Q-learning to estimate optimal
regime

Yes
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3.4.5 Intervention induced clustering

Any potential intervention induced clustering was identified in studies included in this review.

Table 3.6 presents a summary of intervention induced clustering of the trials, including the

clustering type (therapist or group), the clustered intervention/s and which intervention stages

had the potential for intervention induced clustering. Of the 44 trials in this review, 37 (84%)

were identified as having some form of potential intervention induced clustering.

Of the stepped-care trials 95% (35 of 37) described interventions which were identified as having

possible intervention induced clustering. Of the optimal treatment strategy trials 43% (3 of 7)

described interventions which were identified as having possible intervention induced clustering.

Though there were only a small number of these types of trials included in this review. Of the

37 studies 42% (16), 30% (11) and 27% (10), had clustering at one, two and three or more stages

of the intervention, respectively. Furthermore, of these 37 studies, 54% (20), 68% (25) and 62%

(23), had potential clustering at stage one, stage two, and stage three (and possibly subsequent

stages) of the intervention, respectively.

Clustering was accounted for in the analysis of some trials. When cluster randomisation by

site was undertaken this type of clustering was generally taken account of in both the design

and analysis. Intervention induced clustering was accounted for in the analysis of two trials

included in this review [91, 95]. Lamb et al. [91] ran a two stage trial with a cRCT for step one

(randomisation unit was the NHS trust), evaluating The Whiplash Book versus usual advice,

and an iRCT for step two, comparing physiotherapy versus reinforcement of advice given in

emergency departments. The analysis used random effects to adjust for clustering of NHS trusts

at step one and clustering of NHS trusts and of therapists within NHS trusts at step two. ICCs

were reported for different outcomes and different follow-up times for both NHS trusts and NHS

therapists. The AESOPS trial [95] involved clustering at step one of the intervention included

(20-minute counselling session by a practice/research nurse) and at step two (three 40-minute

motivational enhancement therapy sessions by a therapist such as an alcohol health worker,

clinical nurse manager or drug and alcohol counsellor). The analysis reported that where the

data allowed, the therapist/nurse identification in the AESOPS trial was added as a random

effect, including three levels of data hierarchy: participant within therapist within practice [95].

In the majority of sites, step one and two were delivered by a different care provider. The same

care provider delivered the interventions and steps one and two in four sites. However, the

final model used was a two-level mixed model with participants nested within GP practice as
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the three-level model (including nurse/therapist) resulted in a model that failed to converge.

Both trials that reported to adjust for intervention induced clustering were reported in the HTA

Journal (AESOPS [95] is also included in the HTA review in chapter 7).
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Table 3.6: Summary of intervention induced clustering in trials included in systematic review.
indicates potential intevention induced clustering in that stage of intervention.

First author Clustering
type

Clustered intervention/s Clustering stage

Stage 1 Stage 2 Stage 3 +

Ell [71] Therapist PST (stage 1, 2 & 3)

Van’t
Veer-Tazelaar
[72]

Therapist PST (stage 3)

Braamse [73] Therapist counselling (stage 2) -

Patel [74] Therapist Psycotherapy (stage 3), psychiatrist
(stage 4)

Gilliam [75] Therapist therapist sessions (stage 1 & 2)

Kay-Lambkin
[76]

Therapist CBT/MI sessions (stage 1, 2 3, & 4)

Weiss [78]d Therapist Counselling (stage 1 & 2) -

Mitchell [118] Therapist Psychoeducation (stage 1),
depression/anxiety course (stage 2),
coaching (stage 3)

Seekles [80] Therapist PST (stage 3)

Tolin [81] Therapist Therapist sessions (stage 1 & 2)

Van der Leeden
[82]

Therapist Group or individual CBT (stage 1),
parent-child sessions (stage 2 & 3)

Apil [83] Therapist CBT (stage 3), psycotherpy (stage 4)

Dozeman [86] Therapist Life review (stage 3) & consultation with
GP (stage 3 & 4)

Nordin [87] Therapist &
Group

Individual or group stress management
(stage 2)

-

Jakicic [88] Therapist &
Group

Group session (stage 1 - 6), individual
session (stage 6)

Pommer [90] Therapist Psychoeducation (stage 1),
depression/anxiety course (stage 2),
coaching (stage 3)

Lamb [91] Therapist Pysiotherapy advice (stage 2a & 2b)

Krebber [92] Therapist PST (stage 3), psychological intervention
(stage 4)

Borsari [93] Therapist Advice session (stage 1), motivational
intervention (stage 2)

Watson [95] Therapist Counselling (stage 1), therapy (stage 2)

Oosterbaan [96] Therapist CBT (stage 2)

Van Dijk [97] Therapist PST (stage 3)

Arving [98] Therapist Counselling (stage 1 & 2)

Carels [100] Therapist Group programme (stage 1-3b)

Van der Aa [101] Therapist PST (stage 3)

Kasari [102]d Therapist &
Group

Speech clinician, special educator or
child psychologist sessions (phase 1,
children only & phase 2, children &
parents)

Muntingh [103] Therapist CBT (stage 2)

Kilbourne [104]d Therapist Life goals program (LG) provider

Hamall [105] Group Support group (stage 3)

Gureje [106] Therapist Psychoeducation & PST sessions (stage
1-3)

Stoop [107] Therapist Psychoeducation (stage 1),
depression/anxiety course (stage 2),
coaching (stage 3)

Stam [108] Therapist PST (stage 3)

Lock [109] Therapist Family coaching (stage 1), parent
coaching (stage 2)

Schuurhuizen
[110]

Therapist PST (stage 3), psychotherapy (stage 4)

Haug [111] Therapist Psychoeducation (stage 1), CBT (stage
3)

Salloum [112] Therapist Therapist sessions (stage 1), CBT (stage
2)

Painter [114] Therapist Counselling (stage 2 & 4)
d Optimal-intervention strategy subcategory. Stage is used interchangeably with step, but as a more generic term

applicable to both stepped-care and optimal proportionate intervention strategies.
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3.5 Discussion

3.5.1 Main findings

The results suggest that trials are being designed in various therapeutic areas that fit the pro-

portionate universal framework. Most studies were conducted in developed countries. The term

proportionate universalism was not used within the identified studies, other terminology used

included: stepped-care, proportionate intervention strategy, dynamic treatment regimen, and

SMARTs. In the review eligible studies fell into two main subcategories of designs: trials using

the stepped-care design (to provide treatment dependent on need) or trials aimed at identify-

ing an optimal intervention strategy (when more than one intervention was available at various

stages and administered dependent upon need).

The stepped-care model begins with a lower level of intervention at the first step and treatment

is only administered at further steps to those in need, randomisation generally only occurs at

baseline. The optimal intervention strategy trials inform decisions on how and when to alter

treatment, they generally involved randomisation at each stage dependent upon response at the

end of the previous stage.

Mental health disorders were the most common therapeutic area of research in this review.

This is most likely because a large majority of the results were stepped-care trials, which is a

NICE recommended pathway for mental health care [115]. Reasoning for using a proportionate

intervention was mainly based around costs and providing the level of care required by an

individual. This is particularly relevant in mental health and complex interventions due to the

sometimes resource intensive interventions (both in terms of time and costs).

Statistical methods used varied greatly based on the outcome measures, though longitudinal

data is generally a feature of trials of proportionate interventions. The trials need to update

and measure the changing needs of patients during delivery of the intervention, resulting in

the collection of longitudinal data. ANOVA and repeated measures ANOVA were used in a

number of analyses. However, these are not recommended as a general approach for longitudinal

data due to the limitations in not being able to deal with missing data, failing to model the

covariance among repeated measures and the use of a repeated measures ANOVA assumes an

exchangeable auto-correlation structure between any two observations on the same individual

[60]. More complex analysis methods were employed in the SMART studies which aimed to find

the optimal intervention strategy.
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Findings highlight that the nature of proportionate interventions commonly results in a com-

plex hierarchical structure of data, with hierarchical clustering introduced by both intervention

and/or centre, in addition to longitudinal data. If outcomes are correlated, not accounting for

this in the analysis methods will result in an inflation in standard errors. The majority of trials

in this systematic review were identified as potentially resulting in some form of intervention

induced clustering.

A minority of studies considered the different stages of the interventions. Some stepped-care

studies used an intention to treat analysis to compare the intervention group to the control

group after each step individually and after the whole intervention period. Only one study

explicitly evaluated the effectiveness of the different components as a key objective [91]. Without

consideration of the separate component parts of a proportionate intervention the assumption is

that each component will in itself be effective. Though this may be true, the effectiveness of the

components might alter as they are incorporated with one-another. By design, the population

size of a stepped-care trial on an intervention decreases as the trial progresses through the steps.

This makes any comparisons between stages to be either impossible or very difficult without

consideration at the design phase to account for this because of insufficent power. It is possible

to evaluate the effectiveness of each stage of a proportionate intervention, as done by Lamb

[91], by randomising patients who are eligible to the active or control treatment, regardless of

the treatment they received at the previous stage. However, this requires large sample sizes

and strong assumptions about response rates (hopefully relatively accurate) based on decision

stages and rules to ensure there are enough patients to randomise at later stages of the trial. In

certain scenarios it would be unethical or impossible to withhold the next stage treatment of a

proportionate intervention if a patient were eligible. For example, if an unstaged version of the

active treatment being tested was used as the control treatment or if each stage builds upon the

previous stage in the following stage.

3.5.2 Limitations

Due to the resource limitations of this review it was not possible to supplement the database

searching with reference list checking or trial registries. Only articles published in English were

included. The studies included were mainly stepped-care, this may suggest limitations in the

search criteria or eligibility criteria to identify other types of studies that were also trials of

proportionate interventions. The review was limited to articles published after 1 January 2010,
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however, this was with the aim to reflect current practice.

3.5.3 Wider context

Proportionate interventions have a role to play in the overarching goal of proportionate univer-

salism, both in reducing health inequalities and providing care to those in need. If the use of

early stage low intensity interventions provides similar outcomes to more intense interventions

then costs are reduced and health interventions less onerous on both patients and health pro-

fessionals. Increased intensity of treatments does not necessarily lead to increased effectiveness.

Some patients are expected to respond to lower intensity interventions.

In broad terms proportionate interventions fit within the overarching goals of personalised

medicine: to make decisions appropriate to an individual patient, decisions that lead to the

best outcomes for the patient, and to formalise clinical decision-making and make it evidence

based. Personalised medicine aims to assign individuals to interventions based on their individ-

ual characteristics and target interventions to patients likely to benefit. This requires evidence

on what types of patients will benefit from different interventions, which is not always available

[121]. In contrast, proportionate interventions can be self correcting with individuals failing to

benefit from lower intensity interventions stepping up to more intense interventions.

The recommendation from the Marmot review for interventions to follow a proportionate univer-

salism framework has not been supported by an evidence base on how to evaluate or implement

such interventions [5]. This review provides examples of the types of interventions that fit under

the proportionate universalism framework and the trial designs used to evaluate these at present.

3.5.4 Implications and recommendations

There have been recent developments in proportionate intervention strategies, trial designs now

exist to develop optimal intervention strategies (SMARTs). Designs also exist to evaluate the

effectiveness of stepped-care interventions as a whole. Further research considering how to

design and analyse trials of proportionate interventions would benefit from considering when

quantifying the effectiveness or the incremental effectiveness of each stage is necessary and how

this may be implemented. This depends upon whether the separate stages have been evaluated

in a trial before as well as the interactions between them, is the interaction of the different

component parts expected and of interest? Without this aspect it may be unclear how all
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components work and how they interact with one another.

Trialists need to consider the impact that multiple hierarchical levels (often present in propor-

tionate interventions) have on the design and analysis. More complex mixed effects models

accounting for the various correlations may be necessary. These may consider and build on

methods for iRCTs with intervention induced clustering [48, 122]. Many proportionate inter-

ventions identified in this review were an extension of a partially nested trial, with intervention

induced clustering often at different stages of the intervention.

Of the 52 studies excluded based on the full texts, 27 were excluded due to lack of or undefined

nature of the decision stages or rules in the intervention. This lack of clarity was occasionally due

to the decision rule being based on a health professionals opinion. However, lack of clarity was

also repeatedly due to limited information in the articles’ explanation of what the intervention

actually entailed. For any trials to provide fully usable information and interventions replicable

they require a clear explanation of the decision stages and rules, readers can then understand

the reasoning and the process can either be implemented in a different setting or in a further

trial.

When reporting trials it is important to follow both the relevant CONSORT guidelines checklist

[16] and the template for intervention description and replication (TIDieR) checklist [123]. The

CONSORT-NPT [17] statement also explicitly instructs authors to, where applicable, report

details of whether and how clustering by care providers or centres was addressed in the sample

size and statistical methods, and results (participant flow). Both CONSORT and TIDieR state

that interventions must be reported with sufficient detail to allow replication, including how and

when they were administered. This is particularly pertinent in proportionate interventions such

as stepped-care as the how and when are often multifaceted.

3.6 Summary

The increasing demand on healthcare services has driven the move for proportionate universal-

ism as well as the move towards fairer and more effective personalised medicine; appropriate

treatment and service provision according to individual need is key. The proportionate univer-

salism framework enables individuals to receive the care they require and reduces the burden of

treatment on an individual whilst reserving resources for those most in need. This review has

identified various contexts and therapeutic areas in which trials of proportionate intervention
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are being designed and implemented in, mainly in the treatment of mental health disorders.

Potential intervention induced clustering was identified in the majority of the studies included

in this review. The term proportionate universalism was not used in any of the studies identi-

fied, though analogous terms will be used including the stepped-care model, adaptive treatment

strategy, and dynamic treatment regimen. The two key types of study designs found in this

review included stepped-care studies and SMART studies. The effectiveness of different stages

was considered in a minority of studies and often only as a simple analysis using summary

statistics.

The findings from this review are used to inform investigations of methods to analyse trials of

proportionate interventions which result in within-arm nesting in chapter 5. The next chapter

investigates analysis methods for pnRCTs, the more simple form of a within-arm pnRCT.
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Chapter 4

Partially nested trials

4.1 Introduction

Clustering of any form needs to be considered in trial design and analysis, it can result in

a reduction in statistical efficiency and if ignored standard errors and p-values for intervention

effects are typically underestimated [31]. Chapter 2 introduced pnRCTs (clustering of individuals

in only one arm of the trial), highlighting that these often arise in trials of complex interventions

and are likely to occur in trials of proportionate interventions. Bauer et al. [49] undertook a

literature review of RCTs published in four public health and clinical research journals; out of 94

RCTs, they identified 32% as pnRCTs, 40% as iRCTs and 27% as cRCTs. A lack of awareness

for the need to account for the dependence of observations in the clustered arm of the pnRCTs

was identified. Specific statistical methods need to be used for analysing pnRCTs, this chapter

uses a simulation study to evaluate analysis methods for pnRCTs with continuous outcomes.

In theory, the mixed-effects models can be formulated for analysis of pnRCTs so that they do not

model clustering in the control arm. However, when running these models in statistical software

packages it is necessary to impose some form of clustering in the control arm. Although there

is literature on the topic of analysing pnRCTs [42, 45, 48, 49, 122, 124], the analysis models

have not been evaluated in a systematic manner. Research to date is lacking in addressing the

best way to treat the non-clustered control arm when running the models in statistical software,

using scenarios of relevance in the field of public health with small clusters and small ICCs [45,

125], and estimating the effect of the variance ratio of the residuals on the model fit.

In this chapter, a series of simulations are used to evaluate the statistical analysis models for
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two-arm parallel pnRCTs with continuous outcomes. This follows on from work of Flight et

al. [45], a range of scenarios are evaluated including the effect of ICC, heteroscedasticity of

individual level variance across trial arms, cluster size and the number of clusters. In pnRCTs

there may be small numbers of clusters, for instance only seven therapists treated patients in

the intervention arm of the Accupuncture for lower back pain trial [126], thus the simulations

evaluate the impact of the number of clusters on statistical inference and if statistical inference

remains valid using mixed effects models with a small number of clusters.

In addition to my supervisors, this chapter acknowledges the collaborative support of the fol-

lowing researchers: Munya Dimairo; Laura Flight; Laura Mandefield; and Stephen J Walters,

ScHARR Statisticians. They contributed during the simulation conception and design for qual-

ity control and to ensure simulation scenarios where chosen of relevance to real world trials. The

work was led and implemented by myself (including set-up and running of all simulations and

write-up) and has been published in BMC Medical Research Methodology journal [68].

4.2 Chapter aims

This chapter addresses the research aim to evaluate commonly used analysis methods for pn-

RCTs to establish which methods are most appropriate and why. The specific objectives are to

explore:

1. where mixed effects models are necessary,

2. methods of specifying the clusters in the non-clustered arm when fitting a model and the

impact these have on the analysis,

3. the impact of cluster sizes and the number of clusters on statistical inference and,

4. the impact of heteroscedastic individual variance between trial arms on statistical inference.

4.3 Literature on pnRCTs

Table 4.1 presents a summary of the key literature on the analysis of pnRCTs. Literature was

identified using an updated literature search of the one undertaken by Flight et al. [45] for more

recent work and findings. Sample size calculations for pnRCTs have been addressed elsewhere

[127–131] and are discussed in chapter 6.
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Analysis methods for pnRCTs have mainly focussed on using mixed effects models [45, 48, 49,

122, 132–135]. These allow us to control for baseline covariates and represent the different levels

in the data, including cluster, individual, and repeated measures (where applicable) and estimate

the ICC as part of the primary analysis.

The cluster inducing intervention may result in a decrease or increase of the individual level vari-

ability. Consequently, in addition to accounting for the clustering, it might be expected that the

variance of the individual errors to differ between trial arms in pnRCTs, termed heteroscedastic

variance [48]. When an intervention arm with clustering is compared to a non-clustered control

arm the between-cluster variation in the intervention arm is not present in the control arm.
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Table 4.1: Summary of relevant literature on analysis of pnRCTs

Author Relevant themes Range of values* Findings

Schweig
[135]

Describe and compare models for pnRCTs
with non-compliance using a simulation
study.

Simulation for two levels of
clustering, exact cluster sizes (m)
unclear in paper, cschool = 37,
cclass = 177, λB = 2, 8,
ρschool = 0.005, 0.05, 0.15,
ρclass = 0.0004, 0.10, 0.25, and
θ = 0.087.

Clustering and non-compliance may have a substantial impact on statistical
inference about intention-to-treat effects. Provide methods that may accommo-
date pnRCT with non-compliance, recommend using complier average causal
effect estimate (CACE) and scaling by the proportion of compliers. No mention
of degrees of freedom, assumed they used default degrees of freedom method
available in R lme packages.

Flight
[45]

Compare models applied to four examples
of pnRCTs. Compare three different meth-
ods for classifying the non-clustered control
arm in pnRCTs, including: singleton clus-
ters, one large cluster and pseudo clusters.

Examples with
{m, c} = {36, 8; 24, 7; 14, 8; 5, 6},
and estimated
ρ̂ =< 0.0001, 0.02, 0.007.

Recommend use of the heteroscedastic model, recommendations based only on
re-analysis of case studies. Methods for classifying the non-clustered control
arm in pnRCTs had a large impact in fully clustered mixed effects models and
no measurable impact in partially nested mixed effects models. ICCs in four
examples were found to be small.

Sterba
[124]

Review of modelling developments for pn-
RCTs, focused on those particularly rele-
vant to psychotherapy trials.

Recommend the inclusion of cluster variability in analysis model as it pro-
vides insight into treatment process (rather than treating it as a nuisance).
Annotated Mplus commands for models.

Lohr
[133]

Report presenting a guide to design and
analysis issues for pnRCTs in education re-
search, using example trials. Discussion of
degrees of freedom issue in Appendix.

Guidance document, defines pnRCT in context of education research and show
methods to analyse these using SAS. Provides SAS commands for model fitting
in examples.

Korendijk
[132]

Compare models for pnRCTs using a simu-
lation study, investigate misspecification for
the estimation of the parameters and their
standard errors.

Simulation study with m = 5,
c = 10, 30, 50, 100,
ρ = 0.05, 0.1, 0.2, λA = 1, d = 0.3.

All models perform comparably with respect to fixed effect estimates. Recom-
mend use of partially nested mixed effects model. Simulations were under null
hypothesis and ICC was always greater than zero. No mention of degrees of
freedom, assumed default degrees of freedom used from MLwiN software, and
homoscedasticity was assumed for individual variances between the two arms.

Sanders
[134]

Compare models for pnRCTs using simu-
lation study in terms of Type I error and
power.

Simulation study with
{m, c} = {2, 10; 4, 4; 5, 4; 10, 2},
ρ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, λA = 1,
and ω2 = 0, 0.01, 0.059, 0.138.

Type I error rate increased as ICC increased, Satterthwaite degrees of freedom
had better control than Kenward-Roger degrees of freedom. Found using mixed
effects model for pnRCT when ICC is zero likely leads to never detecting
intervention effects, observed Type I error rates nearly non-existent under all
scenarios with ICC equal to zero. Recommend to evaluate if ICC is significantly
different from zero prior to selecting analysis method. Homoscedasticity was
assumed for individual variances between the two arms.
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Table 4.1 – Continued from previous page

Baldwin
[122]

Compare analysis models for pnRCT sim-
ulation study, comparing three degrees of
freedom calculations, and a pnRCT exam-
ple.

Simulation for m = 5, 15, 30,
c = 2, 4, 8, 16,
ρ = 0, 0.05, 0.1, 0.15, 0.3,
λB = 0.25, 1, 4, and d = 0, 0.5.

Recommend pnRCTs take account of heteroscedasticity. Satterthwaite and
Kenward-Roger degrees of freedom control Type I error rate. The heteroscedas-
tic model provides an unbiased estimate and little reduction in power compared
to the homoscedastic model. Argue that using a partially nested mixed effects
model only a problem for statistical inference when the number of clusters is
small. The number of clusters has greater impact on power in pnRCTs. At
least eight, preferably 16 clusters, to maintain Type I error rate.

Bauer
[49]

Review of RCTs to ascertain the prevalence
of pnRCTS in four public health and clinical
research journals. Analysis models for pn-
RCTs extended to include pre-test measures
as covariates, individual and group level co-
variates, and example of pnRCT

Example with clustering in one
arm c = 41, m = 9, and estimated
ρ̂ = 0.02.

Out of 94 RCTs, 32% were pnRCTs, 40% iRCTs and 27% cRCT. None used
methods specific to pnRCTs. Example pnRCT data could be analysed using
mixed effects models. Argue pnRCTs “often increase external validity at the
expense of internal validity” (p.20).

Roberts
[48]

Examine the case of pnRCTs, heterogeneity,
comparison of analysis methods for simula-
tion study and present an example.

Simulation for m = 6,
c = 8, ρ = 0, 0.1, 0.2, 0.3,
λA = 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2
and d = 0.

Recommend pnRCTs take account of heteroscedasticity. Satterthwaite unequal
variances t-test gave robust to heteroscedasticity. The heteroscedastic model
gives slightly inflated test size for large ρ: suggest Satterthwaite degrees of
freedom as a solution.

Lee [41,
42]

Describe analysis models for iRCTs with
clustering and apply to two examples (us-
ing Bayesian approach)

Show that ignoring clustering may underestimate uncertainty, leading to in-
correct conclusions.

Hoover
[136]

Statistical tests for RCTs with clustering
that differ across trial arms.

Example with clustering in both
arms with m = 7− 12, c = 3.

Provide an adjustment for the independent samples t-test for pnRCTs. Sta-
tistical impact of heterogeneity effect increases as the cluster size increases,
and as heterogeneity increases. The test does not allow for the inclusion of co-
variates, multiple treatments, baseline measures, or non-normally distributed
outcomes.

*m = cluster size, c = number of clusters, ρ= ICC, d = standardised effect size, ω2= Omega Squared effect size percent of variability accounted for by treatment condition, λA = ratio of total
variance in control arm compared to clustered, λB= ratio of individual variance in control arm compared to clustered arm. Ordered by year of publication.
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During research of the literature I found an error in the description of the simulation study in

Baldwin et al. [122] paper, they had simulated a ratio of standard deviations as opposed to a

ratio of variances. Following contact with the corresponding author a correction was made to

this paper.

4.4 Analysis methods for partially nested trials

As discussed in chapter 2, it is not recommended to analyse clustered trial data using a fixed effect

for each individual cluster in the model. This section provides more information on the main

modelling approaches currently available and used for pnRCTs, including ignoring clustering

altogether, imposing clustering in the non-clustered control arm, and explicitly modelling the

partially nested design by modelling clustering only in the intervention arm.

Define y as a continuous outcome, i is the individual participant indicator, j is the cluster

indicator, tij is the intervention indicator (0 = control, 1 = intervention), θ is the intervention

effect, β0 is an intercept term. Error terms are defined depending on the model procedure,

represented using ε, u, and r.

4.4.1 Linear regression model

One approach, and the one often taken in pnRCTs, is to ignore the clustering altogether. Linear

regression analysis ignores the grouping and uses analysis for non-clustered trials, assuming

independence between individuals regardless of whether they are in the same cluster. The

outcome for the ith individual ignoring any group level variation is given by the model

yi = β0 + θti + εi, (4.1)

εi ∼ N (0, σ2
ε ).

This infers that the conditional variance of y in both the treatment and control arms is equal.

Ordinary least squares (OLS) is a method to estimate parameters in linear regression model

which minimises the residual (differences between observed and predicted responses) sum of

squares. An important assumption of the linear regression model is that the outcomes are

independent, if the outcomes of individuals in the same cluster are correlated, the independence

assumption is violated and standard errors of the intervention effect are underestimated when
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using the linear regression model in equation 4.1 [40].

4.4.2 Fully nested mixed effects model

We can use a fully clustered mixed effects model which includes the cluster as a random effect

as in equation 4.2; this includes variability at both the individual and cluster level. The mixed

effects model with imposed clustering of the control arm requires the estimation of a random

cluster effect for both intervention and control arms. Some options for the imposed clustering in

the control arm are given in Table 4.2. Here, the random intercept term uj represents between

cluster variation, this can model the cluster level variation and εij is the individual level variation

for the ith individual in the jth cluster. The outcome for the ith individual and the jth cluster

is given by the model

yij =β0 + θtij + uj + εij , (4.2)

uj ∼N(0, σ2
u),

εij ∼N(0, σ2
ε ).

The variance of the control arm and intervention arm are assumed to be the same (homoscedas-

tic). When the variance is believed to differ between control and intervention arm equation 4.2

is not appropriate as it does not account for heteroscedasticity [48]. Adding random coefficients

at individual and group level to equation 4.2 can account for between treatment heterogeneity.

Again the clustering in the control arm must be specified.

4.4.3 Partially nested mixed effects models

Alternatively the cluster effect can be applied to the clustered arm only, defined as partially

nested models which accurately reflects the design of the study [48, 49, 122, 131, 135, 137].

Individuals in the non-clustered arm are assumed independent.

4.4.3.1 Homoscedastic model

In the partially nested homoscedastic model, the random effect uj is applied to the clustered

treatment arm only, between-cluster variability is only present for the intervention arm. The

outcome for the ith individual and the jth cluster is given by the partially nested homoscedastic
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model

yij = β0 + θtij + tijuj + εij , (4.3)

uj ∼ N (0, σ2
u),

εij ∼ N (0, σ2
ε ).

Equation 4.3 equates to a random intercept model for each cluster in the intervention arm,

yij |(tij = 0) = β0 + εij ,

yij |(tij = 1) = β0 + θ + uj + εij .

Mutual independence of the random components uj ⊥ εij is assumed. The ICC in the treatment

arm is ρ = σ2
u/(σ

2
u +σ2

ε ). There is no ICC for the control arm as there is no estimate of between

cluster variance; total variance differs between the control (σ2
ε ) and treatment arm (σ2

u + σ2
ε ).

Equation 4.3 is homoscedastic as the variance of the individual errors, εij , between arms is the

same, in practice this may differ between trial arms. It makes the assumption that the variance

in the intervention arm is greater than the control arm which will not necessarily always be

the case. The clustered intervention may result in a decrease or increase of the individual level

variability.

4.4.3.2 Heteroscedastic model

The variance of the individual errors may differ between trial arms [48]. Therefore, equation

4.3 is extended to a partially nested heteroscedastic model in equation 4.4. This allows for

differing individual errors between intervention and control arms but does not constrain the

form of heteroscedasticity. For instance, in a pnRCT with a therapist led treatment in the

intervention arm we might expect the individual level variance to differ between participants of

the intervention and control arms. The partially nested heteroscedastic model is given by
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yij = β0 + θtij + tijuj + (1− tij)rij + tijεij , (4.4)

uj ∼ N (0, σ2
u),

rij ∼ N (0, σ2
r ),

εij ∼ N (0, σ2
ε )

where εij are the individual level residuals in the clustered arm and rij are the individual level

residuals in the unclustered arm. Equation 4.4 gives,

yij |(tij = 0) = β0 + rij ,

yij |(tij = 1) = β0 + θ + uj + εij .

The variance of y in equation 4.4 differs between the control (σ2
r ) and intervention arm (σ2

u+σ2
ε )

thus accounting for heteroscedasticity and not assuming the variance in treatment arm is always

greater than the variance in the control arm. The ICC in the intervention arm is ρ = σ2
u/(σ

2
u+σ2

ε ).

4.4.4 ICC estimation

It is possible to use a mixed effects model to analyse pnRCT data with a fixed treatment slope

and a random intercept related to cluster level residuals as in equations 4.3 and 4.4. Theoretically

in such models, the residual cluster variance is only estimated for the clustered intervention arm.

We may consider that there are two ICC values in such a pnRCT trial: the ICC in the whole

dataset which we can use to calculate how correlated the outcome is in relation to all participants

in the trial across both arms (reported in Flight et al. [45]) given by

ρ = σ2
u/(σ

2
u + σ2

r + σ2
ε ).

As no individual has both εij and rij the above ICC is likely to be an underestimate of the true

ICC. The ICC in the clustered intervention arm only (how correlated the outcome is in relation

to participants in just the intervention arm) is given by

ρ = σ2
u/(σ

2
u + σ2

ε ).
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In a sense, inference is based on overall ICC although the source of clustering is driven by one

arm. On the other hand, if we assume the ICC in the unclustered arm is zero then one approach

when designing a pnRCT is to inflate the sample size only in the clustered treatment arm using

arm specific ICC. The assumption of zero ICC in the unclustered arm may be questionable and

trial dependent considering what the control arm receives. The second approach for estimating

ICC is used in this study.

4.4.5 Impose clustering in the control arm

Regardless of whether or not the model assumes clustering in one or both arms, there is still

a need to create artificial clusters in the non-clustered arm to fit the model and within the

statistical software package a decision must be made about how to code the cluster indicators

in the control arm. One method is to impose clusters for all individuals, including those in the

control arm, and use analysis for cRCTs with clustering in both arms.

Table 4.2 represents the different options for imposing clustering, j, in the control arm, l is

the number of individuals in the control arm and k is the number of arbitrary clusters in the

control group. Option one treats the control group as one single cluster; option two treats each

individual in the control arm as their own cluster of size one (singleton clusters) giving j = l

clusters in the control arm. ICC estimation can be problematic with options one and two, in

theory, it is not possible to estimate between-cluster variability in option one, or estimate within

cluster variability in the control group using option two [138]. Option three imposes artificial

pseudo-random clusters in the control group to overcome the problem of estimating within or

between-cluster variability. The number of arbitrary clusters, k, needs to be considered. In this

work it was chosen to be equal across treatment arms. In addition, option three will likely result

in a lower ICC estimation due to the assumed independence of control participants.

Table 4.2: Options for imposing clustering of controls

Option Cluster Intervention

1 j= 0 j= 1, . . . ,c
2 j= 1, . . . ,l j=l + 1, . . . ,c
3 j= 1, . . . ,k j=k + 1, . . . ,c

Recent work by Flight et al. [45] investigated the effect of the different methods of imposing

clustering in the control arm presented in Table 4.2 in four pnRCT case-studies. The four case-

studies covered trials evaluating the effect of: specialist leg ulcer clinics (clustered by clinic),

acupuncture for low back pain (clustered by acupuncturist), postnatal support in the community
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(clustered by community support worker), and telephone befriending for maintaining quality of

life in older people (clustered by volunteer facilitator) Little difference was found between the

different methods for the fully clustered mixed effects models and there was no difference found

between the different methods for the partially nested mixed effects models.

4.4.6 Degrees of freedom for fixed effect estimates

In addition to the correct choice of model, the test statistics and degrees of freedom in mixed

effects models also need to be considered. In the mixed effects models described in sections 4.4.2

and 4.4.3 we typically wish to carry out significance tests for the intervention effect, θ. The

intervention effect, θ, is estimated using MLE or REML and the significance is estimated using

the likelhood-ratio or Wald test statistic. The significance of the intervention effect is typically

determined using a Wald test statistic in statistical packages. The Wald test statistic is used to

test the hypothesis that the estimated regression coeficient θ̂ is 0, it is obtained by comparing

the estimated regression coeficent with its standard error [31]

W =
θ̂

se(θ̂)

For large sample sizes in mixed effects models, the Wald test statistic for fixed effects can be

assumed Normally distributed. However, for small samples the large sample approximations

may not be appropriate and the t and F distributions can be used as an approximation of

the distribution of the Wald test statistic. The denominator degrees of freedom for the t and F

statistics can be approximated using the Satterthwaite [139] or the Kenward-Roger [140] method

to account for small samples and unbalanced data or balanced data with complicated covariance

structures.

Comparison of degrees of freedom correction methods has been undertaken for cRCTs and

pnRCTs with small numbers of clusters [122, 141]. The Satterthwaite small-sample degrees

of freedom correction takes into account the variance structure of the data, for pnRCTs, it

has been shown to be superior to the between-within method for maintaining Type I error rates

(and comparable to the Kenward-Roger method) [122]. When an unadjusted analysis is suitable,

Baldwin et al. [122] argue the Satterthwaite unequal variance t-test is appropriate. Following

these results, the Satterthwaite approximation was used to calculate degrees of freedom (using

dfmethod() option for mixed, available in Stata 14 onwards [142, 143]).
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There are two commonly used packages for fitting mixed effects models in R: lme4 and nlme.

The Satterthwaite approximation can be implemented for lme4 using the lmerTest package.

However, lme4 does not currently implement nlme’s features for modelling heteroscedasticity

and correlation of residuals so it is not possible to fit the heteroscedastic model in equation 4.4

using lme4, nlme is required. At the time of running this simulation study, I was not aware of a

method to implement the Satterthwaite approximation in nlme. Hence, the statistical software

Stata was used for the simulation study. Stata allows the fitting of the heteroscedastic partially

nested model (equation 4.4) with the Satterthwaite degrees of freedom correction.

4.4.7 Summary of analysis methods

Table 4.3 presents a summary of the models for the analysis of pnRCTs from the previous section

and which were used in the simulation study.

In the simulation study, the fully clustered model 2 was parametrised using the imposed clus-

tering from Table 4.3. The models were defined as:

1. Model 2.1 fully clustered mixed effects model with singleton clusters in the control arm;

2. Model 2.2 fully clustered mixed effects model with one large cluster in the control arm;

3. Model 2.3 fully clustered mixed effects model with pseudo clusters in the control arm.

It was anticipated that the method of imposing the clustering in the control arm would not affect

the results of the methods which model clustering in only one arm, however, this was evaluated

in the simulation study.
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Table 4.3: Models for the analysis of pnRCTs

Model description Statistical model Heteroscedastic
residuals

Model 1 Linear regression
(ignore clustering)

yi=β0+θti+εi
εi ∼ N(0, σ2

ε ) the individual level
variation

No

Model 2 Fully clustered
(impose clustering)

yij=β0+θtij+ uj+εij
uj ∼ N(0, σ2

u), a random effects term
representing between cluster variation
εij ∼ N(0, σ2

ε ) the individual level
variation

No

Model 3 Partially nested
homoscedastic

yij=β0+θtij+ ujtij+εij
uj ∼ N(0, σ2

u), a random effects term
representing between-cluster variation in
clustered arm
εij ∼ N(0, σ2

ε ) the individual level
variation

No

Model 4 Partially nested
heteroscedastic

yij=β0+θtij+ ujtij+rij(1−tij) +εijtij
uj ∼ N(0, σ2

u), a random effects term
representing between cluster-variation in
clustered arm
rij ∼ N(0, σ2

r) the individual level
variation in the non-clustered control
arm.
εij ∼ N(0, σ2

ε ) the individual level
variation in the clustered arm

Yes

4.5 Simulation study methods

4.5.1 Overview

A simulation study was conducted to evaluate the aims presented in 4.2, evaluating the statistical

analysis models for pnRCTs presented in Table 4.3 and the imposed clustering of the control

arm presented in Table 4.2. The simulation study utilised guidance on design, conduct and

reporting of simulation studies [144, 145]. All models were fitted using a REML. REML has

been shown to be more robust than MLE [40].

The number of iterations used in simulations was 1000, therefore, an estimated type I error of

5% would have a Monte Carlo standard error of approximately 0.7%. The Satterthwaite degrees

of freedom correction computed using dfmethod(sat) is computationally intensive, hence, the

number of simulations were partly limited due to computational time required. See Appendix

A.2 for simulation code.
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4.5.2 Software

All simulations were done in Stata [142] and graphs produced using ggplot2 [146] in R [147].

Stata is a statistical software package, which allows programming of simulations and analysis

and presentation of results. Stata does have a simulation command, however, it was not used

for this study as it did not provide enough flexibility. Simulations were instead written directly

using a combination of loops and the Stata postfile commands.

Random number generation within Stata is technically pseudo-random, numbers are not truly

random but generated from a specific algorithm. To allow the simulations to be replicable, a

random number seed should be provided at the start of a simulation study and recorded. The

seed for the Stata pseudo-random number generator was set at the start of each set of simulations

and recorded so that simulations could be reproduced if required.

4.5.3 Data-generating mechanism

Data were simulated to replicate a two-arm parallel pnRCT trial with a non-clustered con-

trol arm and a clustered intervention arm (randomised 1:1) and a continuous outcome. Data

were simulated under various design scenarios and under both the null (θ = 0) and alternative

hypothesis (θ = A, where A 6= 0).

Data were simulated from the following model with the intercept set to zero and group allocation

denoted by t (t = 0 for control arm, t = 1 for intervention arm):

1. For the control arm (t = 0) yij = zij
√
γ(1− ρ)

2. For the intervention arm (t = 1) yij = θ + uj
√
ρ+ zij

√
(1− ρ)

Where uj ∼ N(0, 1) and zij ∼ N(0, 1). This simulates an ICC of ρ and a ratio of individual level

variance between the non-clustered control arm and the clustered intervention arm of γ. If γ = 1,

there is homoscedasticity between the individual level variance in the control and intervention

arms. Full simulation study steps, including the data generation process and modelling, are

presented in Figure 4.1.
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Figure 4.1: Flowchart representing the simulation study steps

4.5.4 Scenarios to be investigated

Simulation scenarios are presented in Table 4.4. The intervention effect, ICC, cluster size,

number of clusters, and ratio of individual variance between the trial arms were varied across

scenarios. Values were chosen based on literature on pnRCTs [42, 45, 48, 49, 122, 124, 132, 134],

as well as extending these to more extreme cases of γ and ρ that may occur in rare instances.

Reporting of ICCs in iRCTs with clustering is limited at present and it is plausible that ICCs in

pnRCTs differ from those of cRCTs. Current evidence suggests ICCs in iRCTs with clustering

in either one or both arms are generally small and often less than 0.05 [45, 46, 48, 50], hence the

choice to include a small ICC ρ = 0.01 in the simulations. If γ = 0.25 then individual variance

in the control arm is one quarter that in the intervention arm and if γ = 4 then individual

variance in the control arm is four times that in the intervention arm. The number of clusters

in the intervention group was 3, 6, 12 or 24. These figures reflect the small numbers of clusters

recruited in many pnRCTs and, coupled with the cluster sizes of 5, 10, 20 or 30, they allowed

alternative combinations of cluster size and number of clusters to be investigated for a given

total trial size. For each of the total of 1,440 scenarios 1,000 datasets were generated.
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Table 4.4: Simulation input scenario values (total 1,440 scenarios)

Variable Notation Values

Number of clusters c 3, 6, 12, 24
Cluster size m 5, 10, 20, 30
Intervention effect θ 0, 0.2, 0.5
ICC ρ 0, 0.01, 0.05, 0.1, 0.2, 0.3
Ratio of individual variance
between control and cluster
trial arms

γ 0.25, 0.5, 1, 2, 4

4.5.5 Methods

Each simulated dataset was analysed using the models described in Table 4.3: a linear regression

model, a fully clustered mixed effects model, partially nested mixed effects homoscedastic model,

and a partially nested heteroscedastic mixed effects model.

4.5.6 Estimand

The estimands of interest were the intervention effect θ and the ICC ρ.

4.5.7 Performance measures

The following performance measures were used:

� Bias of the intervention effect estimate: calculated as the difference between the average

estimate of the effect and the true effect using Bias = E(θ̂)− θ.

� Mean square error (MSE): provides a measure of accuracy which incorporates both bias

and variability and calculated using E[(θ̂ − θ)2].

� Coverage of the intervention effect estimate 95% confidence intervals: proportion of sim-

ulations that the obtained 95% confidence interval contains the true specific intervention

effect θ.

� Type I error rate: proportion of simulations in which the p-value < 0.05 when the null

hypothesis is true, true intervention effect θ = 0.

� Power: proportion of simulations in which the p-value < 0.05 when the alternative hy-

pothesis is true, true intervention effect θ 6= 0.
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� Where applicable, model estimated ICC was calculated. ICC calculated using ρ̂ = σ̂2
u/(σ̂2

ε + σ̂2
u),

where σ̂2
ε and σ̂2

u are within- and between-cluster variance estimates for the clustered in-

tervention arm.

4.6 Results

Models converged between 95% and 100% of the time across the different scenarios. Results in

this chapter are presented mainly in figures and tables of results are included in the Appendix

A.

4.6.1 Imposed clustering in the control arm

Methods for imposing clustering in the control arm, presented in 4.2, had a negligible impact

on the performance measures of the partially nested mixed effects models (models 3 and 4).

Under the simulation scenarios, the differences in the p-value, 95% confidence intervals and

estimated ICC between the methods were only present at four decimal places. Model fitting was

considerably faster (around four to five times faster) using either one large cluster or the pseudo

clusters compared to the singleton clusters, however, this will likely be immaterial when fitting

only a small number of models.

Methods for imposing clustering in the control arm had a large impact on the performance

measures of the fully clustered mixed effects models (models 2.1, 2.2, and 2.3). Specific results

for each performance measure are presented in the subsequent sections.

Results are reported only for the partially nested mixed effects models (models 3 and 4) with

the non-clustered controls classified as one large cluster, as other methods were comparable. All

three methods for classifying the non-clustered control arms for the fully clustered mixed effects

model (models 2.1, 2.2, and 2.3) are reported.

4.6.2 Bias

The bias of the intervention effect estimate was not affected by the analysis model used, indi-

vidual variances (γ) or the ICC (ρ). All models produced bias of the intervention effect less

than |0.057| under all scenarios considered. Figure 4.2 presents a box-plot of bias of intervention

effect estimate θ̂ by θ and model.
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Figure 4.2: Bias of intervention effect estimate by θ and model

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●
●

●

●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

θ=0 θ=0.2 θ=0.5

−0.06

−0.04

−0.02

0.00

0.02

0.04

B
ia

s 
of

 in
te

rv
en

tio
n 

ef
fe

ct
 e

st
im

at
e

Model
1

2.1

2.2

2.3

3

4

4.6.3 Mean square error

The models produced unbiased estimators with no difference in the observed MSE between the

different models. The MSE of the intervention effect estimate had a mean of 0.051 (SD 0.056)

and maximum of 0.346. Figure 4.3 shows the MSE of the intervention effect estimate by ρ and

γ for model 4 as there was no difference across models.

Figure 4.3: MSE of intervention effect estimate by ρ and γ

●●● ●●●
●●●

●
●
●

●●
●

●●●
●●●

●●●

●
●

●

●●
●

●●● ●●
●

●
●
●

●●
●

●●●

●

●●
●

●●●

●●●
●●●

●●●

●
●●

●
●●

●

●●●

ρ=0.1 ρ=0.2 ρ=0.3

ρ=0 ρ=0.01 ρ=0.05

0.25 0.5 1 2 4 0.25 0.5 1 2 4 0.25 0.5 1 2 4

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Ratio of individual varainces (Gamma)

M
S

E
 o

f e
ffe

ct
 e

st
im

at
e

4.6.4 Type I error

Plots of the mean Type I error rates split by model, the ratio of individual variances (γ) and the

ICC (ρ) are presented in Figure 4.4. As would be expected the linear regression model which

ignores clustering had inflated Type I error rates, with Type I error rate affected by ICC (ρ),

100



the ratio of individual variances (γ), number of clusters (c), and cluster size (m). Although the

inflation was minimal when ICC ρ = 0.01, the mean Type I error was 0.061 (SD 0.010). When

cluster size m ≤ 10 and ICC ρ = 0.01 the mean Type I error rate was 0.056 (SD 0.007).

Model 2, the fully clustered models with imposed clustering in the control arm resulted in biased

Type I error rates. Imposing clustering as singleton clusters (model 2.1) led to Type I error rates

which were largely affected by the ratio of individual variances (γ) and ICC (ρ). Imposing one

large cluster in the control arm (model 2.2) resulted in Type I error rates of zero (due to the

Satterthwaite degrees of freedom correction resulting in large degrees of freedom when imposing

one large cluster in the control arm). Imposing pseudo clusters in the control arm of the same

size as the intervention arm (model 2.3) provided relatively good control of Type I error rates,

mean Type I error of 0.039 (SD 0.018), but was affected slightly by both the ratio of individual

variances (γ) and the ICC (ρ).

Both the homoscedastic and heteroscedastic partially nested models (models 3 and 4) provided

good control of Type I error rates (model 3: mean Type I error 0.045 (SD 0.016) and model 4:

mean Type I error 0.044 (SD 0.014)) with little difference present between the two models.

For more detailed comparison Figure 4.5 presents the Type I error rates for the linear regression

model (model 1), the homoscedastic (model 3) and the heteroscedastic (model 4) partially nested

models by ICC (ρ), the ratio of individual variances (γ), number of clusters (c), and cluster size

(m). Higher ICC values resulted in higher Type I error rates in each model. The impact

of ignoring clustering (model 1) depends on both ICC (ρ), cluster size (m), and number of

clusters (c). Larger number of clusters (c) resulted in better control of Type I error rates for

the partially nested models. When ICC ρ = 0, the Type I error rates of the partially nested

models (models 3 and 4) were reduced from the nominal 5% level. This is due to the cluster

variance components being estimated when they are not actually present in the data. When the

ICC was small (ρ ≤ 0.05) and the individual variance in the control arm was smaller than that

in the intervention arm (γ < 1), the Type I error rates of partially nested models were reduced

from the nominal 5% level. When ICC was large (ρ = 0.3) the partially nested models generally

resulted in inflated Type I error rates. As ICC increased Type I error rates increased, with the

partially nested models 3 and 4 only reaching above the nominal Type I error rate of 5% on

average when ICC ρ ≥ 0.2.

The Satterthwaite correction used in Stata mixed (dfmethod(sat)) did not fully correct the

Type I error rates to the nominal level of 5%, even with the use of the heteroscedastic model 4.
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Figure 4.4: Mean Type I error rate by γ and ρ over all scenarios, for each model
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The heteroscedastic model 4 did have slightly improved control of Type I error rates compared

to the homoscedastic model 3.
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Figure 4.5: Type I error rate of models 1, 3 and 4, by ρ, γ, c, and m
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4.6.5 Coverage

Plots of the mean coverage of the 95% confidence intervals of the intervention effect estimate,

split by model, ICC (ρ) and the ratio of individual variances (γ) are presented in Figure 4.6 under

the alternative hypothesis. The linear regression model (model 1) resulted in under coverage

when ICC was small (ρ ≤ 0.05) and the coverage rates decrease as ICC (ρ) increases. The fully

clustered models with imposed clustering in the control arm resulted in both over and under

coverage dependent on the direction of the variance ratio and the method of imposed clustering.

Imposing clustering as singleton clusters (model 2.1) resulted in coverage rates largely affected

by the ratio of individual variances (γ). Imposing one large cluster in the control arm (model

2.2) resulted in over coverage, due to the Satterthwaite degrees of freedom correction. Imposing

pseudo clusters in the control arm (model 2.3) provided mean coverage rates of 0.961 (SD 0.018).
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Both the homoscedastic and heteroscedastic partially nested models (models 3 and 4) provided

good control of coverage rates of 95% confidence intervals (model 3: mean coverage rate 0.956

(SD 0.014) and model 4: mean coverage rate 0.956 (SD 0.014)) with little difference between

the two models. In the simulations over coverage of the 95% confidence intervals for the het-

eroscedastic model 4 occurred when ICC ρ ≤ 0.05, except when the ratio of individual variances

γ = 4. Hence, the results were generally conservative when ICC was small. Under coverage of

the 95% confidence intervals for the heteroscedastic model 4 only occurred for large ICC (ρ) and

ratio of individual variances (γ).

Figure 4.6: Mean coverage of 95% CI, by ρ and γ over all scenarios
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4.6.6 Power

Increasing the number of clusters as opposed to increasing the cluster size had a bigger impact on

power with a fixed sample size. Figure 4.7 shows the power of the linear regression model (model
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1), the homoscedastic (model 3) and the heteroscedastic (model 4) partially nested models when

intervention effect θ = 0.5 by ICC (ρ), the ratio of individual variances (γ), number of clusters

(c), and cluster size (m) (see Appendix A for when θ = 0.2). Under the simulation scenarios

conducted, 12 or more clusters and cluster sizes of ten or more were generally required for a

power greater than 80%. Using three or six clusters rarely gave power over 80%. Only for ICC

ρ ≤ 0.05 and relatively large cluster sizes m ≥ 20 did the power go over 80%.

For ICC ρ ≤ 0.05, which is commonly assumed when planning complex intervention trials in

healthcare, power of 80% was generally achieved with: 24 clusters of any size, 12 clusters of size

ten or more, and six clusters of size 20 or more (120 in each arm).

Figure 4.7: Power when θ = 0.5, by ρ, γ, c and m

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ρ=0 ρ=0.01 ρ=0.05 ρ=0.1 ρ=0.2 ρ=0.3

M
odel 1

M
odel 3

M
odel 4

0.
25 0.

5 1 2 4 0.
25 0.

5 1 2 4 0.
25 0.

5 1 2 4 0.
25 0.

5 1 2 4 0.
25 0.

5 1 2 4 0.
25 0.

5 1 2 4

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Ratio of individual variances (Gamma)

P
ow

er

Cluster size (m) ● 5 10 20 30 Number of clusters (c) ● ● ● ●3 6 12 24

Under a ratio of individual variances γ = 1 the total residual variance in both trial arms is equal
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to one, hence, the intervention effect (θ) simulated is the standardised intervention effect. Figure

4.8 shows the power of models 1, 3 and 4 under homoscedastic individual variances (γ = 1).

The heteroscedastic model 4 is over-parametrised in the case of the ratio of individual variances

γ = 1, however, it did not result in a substantially lower power than the homoscedastic model.

Figure 4.8: Power with standardised intervention effect of 0.5 (θ = 0.5 and γ = 1)
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Table 4.5 presents the power of model 4 and model 1 under ICC ρ = 0, model 4 is over-

parametrised here. There is a loss in mean statistical power which ranged between 2-6%.

Table 4.5: Mean and SD of power of model 4 versus model 1 under ρ = 0 over all scenarios

Intervention Model Power
effect (θ) Mean SD

0 1 0.050 0.007
4 0.033 0.014

0.2 1 0.388 0.276
4 0.327 0.286

0.5 1 0.803 0.254
4 0.740 0.298
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4.6.7 ICC

Figure 4.9 presents the mean estimated ICC across the fully clustered and partially nested mixed

effect models, by the ratio of individual variances (γ) and ICC (ρ). ICC estimation was consistent

under the heteroscedastic partially nested model (model 4). The homoscedastic partially nested

model (model 3) resulted in biased ICC, with the direction of bias dependent upon the ratio of

individual variances (γ).

Figure 4.10 presents the ICC for the homoscedastic (model 3) and heteroscedastic (model 4)

partially nested models by the ratio of individual variances (γ), ICC (ρ), number of clusters (c),

and cluster size (m). The ICC estimation from the homoscedastic model was highly affected by

γ. The ICC from the heteroscedastic model was not affected by γ. Using the heteroscedastic

model, there was a slight positive bias in the ICC estimation when ICC ≤ 0.05, and when ICC

≥ 0.2 there was slight negative bias in the ICC estimation. For example, when ICC = 0.0 the

mean ICC estimate was 0.028 (SD 0.018), and when ICC = 0.05 the mean estimate was 0.060

(SD 0.014). As expected ICC estimation improved as sample size increased. The ICC estimation

was only consistent across all values of ICC (ρ) regardless of cluster size when there were 24

clusters. For an accurate estimate of ICC when ICC = 0.05, under the simulation scenarios

cluster sizes (m) of 20 or 30 were required or at least six clusters of size ten or 24 clusters of size

five.
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Figure 4.9: Mean estimated ICC by γ and ρ over all scenarios, for each model
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Figure 4.10: ICC estimation of heteroscedastic partially nested model, by γ, ρ,m and c
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4.6.8 Summary of results

Simulation results are summarised in Table 4.6 presenting the performance of the simple linear

regression model (model 1), homoscedastic partially nested mixed effects model (model 3) and

heteroscedastic partially nested mixed effects model (model 4) under different design scenarios.

Results from the fully clustered mixed effects models (model 2) are excluded from Table 4.6 as

these are not recommended in any scenario regardless of the method used to impose clustering

in the control arm. None of the fully clustered mixed effects models provided full control of the

Type I error rates and the partially nested mixed effects models always outperformed them.
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Table 4.6: Summary of simulation results in terms of Type I error (α̂) and ICC estimation (ρ̂)
for models 1, 3, and 4 split by ρ, m and c averaged over all γ.

ICC
(ρ)

Cluster
size
(m)

No.
clusters
(c)

Mean (SD)

Model 1 Model 3 Model 4

α̂ α̂ ρ̂ α̂ ρ̂

0 5 - 10 3 - 6 0.049 (0.007) 0.025 (0.009) 0.047 (0.043) 0.026 (0.013) 0.047 (0.020)

12 - 24 0.052 (0.007) 0.040 (0.010) 0.035 (0.040) 0.042 (0.009) 0.023 (0.010)

20 - 30 3 - 6 0.050 (0.007) 0.023 (0.011) 0.014 (0.012) 0.024 (0.014) 0.013 (0.004)

12 - 24 0.050 (0.007) 0.038 (0.010) 0.010 (0.011) 0.040 (0.009) 0.006 (0.002)

0.01 5 - 10 3 - 6 0.058 (0.007) 0.028 (0.010) 0.052 (0.043) 0.030 (0.016) 0.052 (0.017)

12 - 24 0.055 (0.006) 0.041 (0.011) 0.041 (0.044) 0.043 (0.007) 0.029 (0.010)

20 - 30 3 - 6 0.064 (0.015) 0.029 (0.010) 0.021 (0.016) 0.029 (0.016) 0.019 (0.003)

12 - 24 0.066 (0.008) 0.044 (0.012) 0.017 (0.016) 0.046 (0.008) 0.013 (0.001)

0.05 5 - 10 3 - 6 0.072 (0.016) 0.031 (0.011) 0.077 (0.057) 0.031 (0.016) 0.079 (0.016)

12 - 24 0.071 (0.012) 0.047 (0.012) 0.067 (0.061) 0.048 (0.008) 0.058 (0.007)

20 - 30 3 - 6 0.120 (0.035) 0.041 (0.008) 0.051 (0.031) 0.039 (0.011) 0.052 (0.002)

12 - 24 0.123 (0.032) 0.052 (0.017) 0.050 (0.036) 0.050 (0.006) 0.050 (0.001)

0.1 5 - 10 3 - 6 0.093 (0.024) 0.037 (0.007) 0.108 (0.068) 0.037 (0.012) 0.114 (0.011)

12 - 24 0.092 (0.025) 0.050 (0.013) 0.103 (0.082) 0.050 (0.008) 0.100 (0.004)

20 - 30 3 - 6 0.192 (0.058) 0.053 (0.011) 0.090 (0.046) 0.050 (0.012) 0.093 (0.004)

12 - 24 0.185 (0.055) 0.055 (0.015) 0.097 (0.056) 0.050 (0.007) 0.099 (0.002)

0.2 5 - 10 3 - 6 0.136 (0.049) 0.047 (0.012) 0.174 (0.091) 0.044 (0.012) 0.187 (0.008)

12 - 24 0.135 (0.047) 0.054 (0.011) 0.183 (0.113) 0.051 (0.005) 0.193 (0.004)

20 - 30 3 - 6 0.301 (0.087) 0.060 (0.009) 0.169 (0.072) 0.057 (0.012) 0.177 (0.011)

12 - 24 0.286 (0.077) 0.051 (0.011) 0.188 (0.084) 0.049 (0.006) 0.196 (0.003)

0.3 5 - 10 3 - 6 0.181 (0.068) 0.056 (0.011) 0.242 (0.108) 0.053 (0.010) 0.262 (0.012)

12 - 24 0.177 (0.065) 0.054 (0.012) 0.268 (0.135) 0.050 (0.007) 0.288 (0.006)

20 - 30 3 - 6 0.383 (0.092) 0.065 (0.010) 0.245 (0.090) 0.061 (0.011) 0.258 (0.017)

12 - 24 0.368 (0.094) 0.051 (0.009) 0.278 (0.105) 0.050 (0.007) 0.292 (0.005)

*Model 1: simple linear regression; Model 3: homoscedastic partially nested mixed effects model; Model 4: heteroscedas-
tic partially nested mixed effects model. Green highlighted ≤ than expected, red highlighted > than expected.
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4.7 Discussion

This chapter has investigated six modelling strategies for the analysis of pnRCTs with a con-

tinuous outcome. The simulation study showed that when analysing pnRCTs the use of the

heteroscedastic partially nested mixed effects model for normally distributed outcome data (us-

ing Satterthwaite degrees of freedom) in general provides: unbiased effect estimates; maintains

relatively good control of Type I error rates; and did not noticeably cause a reduction in power

even with homoscedastic individual variances across arms. The heteroscedastic partially nested

model takes account of the between-cluster variance (if present) and therefore provides valid

inferences for the intervention effect. When using the partially nested mixed effects model, the

method of classifying the non-clustered controls had a negligible impact on statistical inference

under the simulation scenarios, agreeing with findings from analysis of four example pnRCTs

by Flight et al. [45].

The findings were broadly similar to those of Baldwin et al. [122]. However, they did not assess

the method of classifying the non-clustered controls or performance of models under small ICC

(ρ = 0.01) which commonly occur in pnRCTs [45, 46, 48, 50, 122]. Unlike findings from Baldwin

et al. [122], the Satterthwaite degrees of freedom correction did not fully control the Type I error

rate in the simulations. The most discrepancy from the nominal level occurred when the ICC

was small, ratio of individual variances γ < 1, and under small sample sizes.

It was illustrated that using a näıve linear regression model which ignores clustering in pnRCTs

gives inflated Type I error rates and results in under coverage of confidence intervals when

clustering of outcomes was present. When ICC 0.01 ≤ ρ ≤ 0.05, which is typical in pnRCTs

[45], ignoring clustering led to largely inflated Type I error rates using the linear regression

model. A low ICC may still have a large impact, particularly when there are large cluster sizes.

When ICC was small and/or with very few clusters and small cluster sizes using the partially

nested mixed effects models 3 and 4 resulted in deflated Type I error rates. These models

correctly reflect the design of the trials; however, they can result in conservatism regarding the

precision of estimates due to the bias in estimating the variance estimates when there are a small

number of clusters. Consequently, using the partially nested mixed effects models with small

ICC may make it difficult to detect differences between the trial arms when present.

Sanders [134] recommend evaluating whether ICC is significantly different from zero prior to

selecting an analysis method. The use of significance testing for ICC and similarly testing for
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heteroscedasticity are generally discouraged in agreement with Roberts and Roberts [48] and

Donner and Klar [148]. These tests will generally lack power in a pnRCT and it is not the

statistical significance of the ICC that matters but impact of the magnitude on inference. In

general, the use of the partially nested models when analysing pnRCT trials is recommended,

particularly if conservatism and an ICC estimate are desired. However, model choice decision

and the requirement or not for conservatism needs to be considered in the context of the specific

trial setting.

Similar to cRCTs [40], in a pnRCT increasing the number of clusters rather than increasing the

cluster size had a greater increase in power for a fixed total sample size. The simulation results

showed that this will also provide a more accurate estimation of the ICC. When the number of

clusters is small, for example, three clusters in the intervention arm, the ICC estimation will

likely be upwardly biased. With six clusters in the intervention arm, the ICC estimate was

relatively unbiased once the true ICC ≥ 0.1. ICC estimation became consistent regardless of

cluster size or true ICC only once there were 24 clusters in the simulation scenarios. This reflects

findings from previous research that a large number of clusters are required to reliably estimate

the size of clustering effects [149].

This chapter investigated the case of analysing pnRCTs under complete compliance. Non-

compliance in the clustered arm of a pnRCT may occur when some participants randomised

to a particular treatment group or therapist do not attend any sessions or receive treatment as

part of different treatment group or therapist intended at randomisation. Consequently, non-

complier outcomes may be assumed independent if they do not receive the clustered intervention.

Schweig and Pane [135] describe and compare models for pnRCTs with non-compliance using

a simulation study. They argue that an unbiased intention-to-treat (ITT) estimate under non-

compliance on a pnRCT may be obtained using a Complier Average Causal Effects (CACE)

model. This method involves estimating the treatment effect for compliers and scaling this

CACE effect estimate by the proportion of compliers to provide an ITT effect estimate. The

issues posed by non-compliance warrant further investigation, considering a broader range of

scenarios and investigating the degrees of freedom corrections for valid statistical inferences.

A wide variety of terminology is used in iRCTs with clustering, including partially nested, par-

tially clustered, multi-level, and individually randomized group intervention. A more consistent

use of terminology would reduce confusion, improve reporting and make finding relevant ICCs

from previous trials easier. The terminology partially nested randomised controlled trial is
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suggested to describe an iRCT with clustering in one arm.

4.7.1 Limitations

All the mixed effects models assume that the cluster effects follow a Normal distribution. This

may not be a valid assumption, for example, when there are a small number of clusters.

The simulations used fixed cluster sizes. In practice, cluster size may vary, causing a loss in

efficiency when estimating the intervention effect. A Monte Carlo simulation study by Candel

and Van Breukelen [128] found the efficiency loss in the intervention effect estimate was rarely

more than 10%, requiring recruitment of 11% more clusters for the intervention arm and 11%

more individuals for the control arm. The loss of efficiency in the intercept variance reached

up to 15%, requiring 19% more clusters in the clustered arm, and no additional recruitment in

the control arm. Additionally, it has been shown in cluster trials if the coefficient of variation

in cluster size is small, less than 0.23, then the correction on sample size is negligible [150]. It

should be noted that cluster sizes are likely more similar in the group administered treatment

compared to trials which impose clustering by being treated by the same care provider [48].

Throughout the simulations it was assumed that there was no effect of clustering in the control

arm, this may not strictly be true in practice. In healthcare intervention trials, a commonly used

control intervention is ‘care as usual’. This type of control may induce some form of low-level

clustering, for instance, treatment by a healthcare practitioner. If the same practitioner treats

numerous individuals, it can be assumed, in the same sense as was done for the intervention

arm, that these individuals are clustered and include this in the modelling procedure. However,

this information is often not available in trial data and is not unique to pnRCTs.

Partially nested trials pose a number of challenges, in particular, the issue of internal validity

[49]. The grouping of individuals as part of the delivery of a treatment may affects the outcome.

However, taking a pragmatic viewpoint, the grouping is considered as part of the treatment

as a whole if this is reflective of treatment delivery in real-world practice. In addition, if the

ungrouped controls are the true comparison in real life a pnRCT design will provide external

validity.
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4.7.2 Model fit code for Stata, R, and SAS

It is still common for clustering in pnRCTs to be ignored in the design and analysis stages.

To encourage the use of analysis methods which take account of clustering, Table 4.7 presents

commands to implement the homoscedastic and the heteroscedastic partially nested models in

three commonly used statistical packages, Stata, R, and SAS, along with the degrees of freedom

correction options (where available). The homoscedastic model is included for clarity and where

there is a strong priori belief of homoscedasticity it may be more suitable to use. Both the

homoscedastic and heteroscedastic models can be fitted in Stata and SAS with the option of

the Satterthwaite degrees of freedom correction. Both models can be fitted in R, however, at

the time of submission of this thesis I was not aware of a method that allows the fitting of

the heteroscedastic partially nested model (model 4) using the Satterthwaite degrees of freedom

correction. Instead, it is possible to use bootstrapping to obtain confidence intervals and the

likelihood ratio test to obtain p-values for the effect estimate.

Table 4.7: Stata, R and SAS model fitting commands for the partially nested models

Software Homoscedastic partially nested
model

Heteroscedastic partially nested
model

Stata mixed command with dfmethod(sat)
option

mixed command with dfmethod(sat)
option and residuals(independent,
by(intervention))

Example code mixed y treat || cluster:treat, nocons
reml dfmethod(sat)

mixed y treat || cluster: t, nocons reml
residuals(independent, by(treat))
dfmethod(sat)

R* lmer function from lme4 package, and
package lmerTest for Satterthwaite df

lme function from nlme package with
weights=varIdent(form=∼1|treat)
option. No option for Sattertwaite df.

Example code lmer(y ∼ x + (0 + treat|cluster)) lme(fixed=y ∼ treat,
random=∼(0+treat)|cluster,
weights=varIdent(form=∼1|treat),
method=”REML”)

SAS proc mixed command with the option
ddfm=sat

proc mixed command with the option
ddfm=sat and repeated / group =
treat;

Example code proc mixed covtest;
class cluster treat;
model y = treat / solution ddfm=sat;
random intercept treat / subject =
cluster;
run;

proc mixed covtest;
class cluster treat;
model y = treat / solution ddfm=sat;
random intercept treat / subject =
cluster;
repeated / group = treat;
run;

y = outcome, treat = intervention arm indicator, cluster = intervention cluster indicator. *At present cannot fit
the heteroscedastic partially nested model with degrees of freedom correction in R. The function lmer in R does not
allow for different variances for each level of a grouping factor.
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4.8 Summary

This chapter has described the scenarios in which pnRCTs may arise, the reason clustering

needs to be considered, and available analysis methods. Partially nested RCTs are increasingly

used in complex intervention research. Ignoring clustering can lead to large inflations of the

Type I error rates, even for small ICCs. When analysing a pnRCT it is recommended to use

a heteroscedastic partially nested mixed effects model with corrected degrees of freedoms such

as the Satterthwaite method, for continuous outcomes similar to those generated under the

scenarios of the simulations study. The model is easy to implement in standard statistical

software and does not cause a notable reduction in power under homoscedastic variances. The

method used for classifying the non-clustered controls made a negligible impact on the results

using the partially nested mixed effects model. With few clusters, small cluster sizes and small

ICC, the partially nested model underestimated Type I error rates and gave largely inflated

ICC estimates, hence, for such designs there is no optimal model and we need to be cautious in

model interpretation. Finally, in order to aid the design and prior selection of an appropriate

analysis plan for pnRCTs, it is strongly recommended to report both estimated ICC and 95%

confidence interval for primary and secondary endpoints when publishing trials results.

The next chapter expands upon findings from this chapter and the systematic review in chapter

3, the analysis of within-arm pnRCTs is investigated, pnRCTs with clustering of only some of

the intervention arm based on intermediate response.
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Chapter 5

Within-arm partially nested trials

5.1 Introduction

In chapter 4 it was demonstrated that it is possible to analyse pnRCTs appropriately parametris-

ing the model with fixed and random effects. When there are a sufficient number of clusters,

partially nested mixed effect models provide an unbiased effect estimate, maintaining nominal

Type I error rates and account for the clustering in one arm providing ICC estimation. When

clustering is only present for some in the intervention arm, termed within-arm pnRCTs herein,

analysis which reflects the design of the trial becomes more challenging. This chapter expands

upon chapter 3 and 4 and investigates the analysis of within-arm pnRCTs through a simulation

study.

Proportionate interventions can induce a complicated hierarchical data structure. The system-

atic review in chapter 3 found that, similar to the E-SEE trial, trials of proportionate interven-

tions often induce some form of clustered outcomes at different stages of the intervention. One

or more of the intervention stages can result in the presence of possibly non-ignorable clustering

[54]. This clustering may be due to therapist effects, for example therapists running the trauma

focussed CBT sessions in step two of the stepped care trial by Salloum et al. [112], or group

effects, for example the Incredible Years-Infant parenting groups in the E-SEE trial [3], or both

the group and the group facilitator effects (if group facilitators run more than one parenting

group).

When clustered outcomes are present for all individuals in the intervention arm, for instance

when stage one induces clustering, these can be defined in the same manner as pnRCTs and
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analysis models parametrised accordingly using partially nested mixed effects models. However,

the clustering may not affect all participants in the intervention arm, and if so it is typically

not at random (participants who receive the clustered intervention stage are those who did not

respond to the previous intervention stage), and defined as post-randomisation clustering.

Within-arm partial nesting can occur from both the design of the intervention, such as propor-

tionate interventions, or from non-compliance within the trial. This chapter considers the case

related to design, non-compliance has been considered elsewhere [135]. A series of simulation

studies are used to evaluate appropriate analysis methods for within-arm pnRCTs with contin-

uous outcomes. A range of scenarios are evaluated including the effect of ICC, cluster size and

the number of clusters.

5.2 Chapter aims

This chapter aims to evaluate the performance of commonly used analysis methods for within-

arm pnRCTs to establish which methods are most appropriate and why. The specific objectives

are to:

1. evaluate models for within-arm pnRCTs using linear regression and mixed effects models;

2. evaluate linear regression with robust/bootstrap standard errors to account for clustering;

3. quantify the impact that ignoring clustering can have on Type I error and precision;

4. provide recommendations for the most appropriate analysis methods for within-arm par-

tially nested randomised controlled trial considering the ICC and cluster size.

5.3 Analysis methods for within-arm partially nested trials

This section presents and discusses the modelling approaches available to analyse within-arm

pnRCTs, expanding on those presented in chapter 4 including: ignoring clustering altogether

using linear regression; linear regression with cluster robust standard errors; linear regression

with cluster bootstrap standard errors; and mixed effects model.
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5.3.1 Within-arm partially nested trial design

In order to be able to evaluate the different methods of analysis, all models are tested on the same

within-arm pnRCT trial scenarios. Attention is limited to a two arm, two stage intervention as

follows:

1. first stage is delivered at the individual or universal level, for example, bibliotherapy for the

treatment of depression. If individuals do not respond to stage one (based on pre-defined

decision rules) they are offered,

2. second stage intervention which is delivered in a manner that results in intervention induced

clustering of outcomes, for example, Cognitive Behavioural Therapy treatment by therapist

for depression.

Figure 5.1 represents the trial design described above in a flow diagram form; this is a version of

a stepped-care trial with two steps. The primary aim of a trial using this design (and primary

analysis used to power such a trial) is typically to evaluate the effectiveness of the overall

intervention being tested (comprised of stage one and two) compared to the control arm. The

control is commonly care as usual or a comparator treatment. Therefore, the aim of the trial

in Figure 5.1 would be to evaluate the overall effectiveness of the proportionate intervention

compared to control, regardless of whether participants were only offered stage one, or were

offered both stage one and two.

Figure 5.1: Diagram representing the simple proportionate intervention with clustering of out-
comes at intervention stage 2.

R

Stage 1

Control

Monitor/continue stage 1

Remission

Stage 2 (clustered)

Yes

No

There are specific issues that arise in the analysis of Figure 5.1. The outcome follow-up after
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stage two is clustered due to intervention induced clustering of stage two. We ideally wish to

adjust for this clustering in the analysis. However, not all individuals in the intervention arm

get stage two and it is not randomly allocated, clustering is dependent on previous outcome

after stage one intervention.

For the following modelling approaches, define yfij as a continuous outcome at follow-up f for

the ith individual and jth cluster, i = 1, . . . , N and j = 1, . . . , k. The intervention indicators

are t11j is the trial arm indicator (0 = control, 1 = intervention, and all in the intervention arm

receive stage one intervention) and t2ij is the stage two indicator (0 = no stage two intervention

received, 1 = stage two intervention received). Let the outcome follow-ups occur after stage one

intervention, y1ij , and after stage two intervention, y2ij . Let θ denote the overall intervention

effect and θ1 and θ2 denote the effect of stage one and stage two interventions, respectively.

Error terms are again defined depending on the model, represented using ε, u and r, and β0 is

an intercept term.

5.3.2 Linear regression model and other naive analysis

One approach to analysis of within-arm pnRCTs (the one most commonly used to date and

seen in the systematic review results of chapter 3) is to ignore the treatment induced clustering

altogether. For instance, analysis could be done using a t-test, ANOVA, linear regression model,

or a mixed effects model analysing the longitudinal follow-up data of patients by including a

random effect for patient (accounts for within person correlation). The näıve linear regression

model presented in equation 4.1 can be used to analyse the within-arm pnRCT.

Due to the design induced clustering we may wish to choose a more robust method than fitting

OLS regression. Possible methods are described in the following sections.

5.3.3 Mixed effects regression

Chapter 4 recommended the use of a heteroscedastic partially nested mixed effects model. Fol-

lowing this, the initial modelling strategy was to try and extend and parametrise a mixed effects

model for the within-arm pnRCT data, which would model the clustering for only those who

receive the clustered intervention stage two. Schweig and Pane [135] formulated a similar mixed

effects model to account for non-compliance in pnRCTs and estimate the intervention effect,

this attributed random effects only to those individuals who received the cluster intervention
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and suppressed random effects for those that did not receive the clustered intervention.

A mixed effects model for the analysis of within-arm pnRCT shown in Figure 5.1 would require

a fixed intervention effect for intervention arm t1ij (0 = control arm, 1 = intervention arm),

individual random variation and an additional random effect for those who receive the clustered

intervention. Hence, the random intercept term uj represents the between cluster variation in

the stage two intervention (clustered), where t2ij is an indicator for stage two (0 = no stage two

intervention, 1 = stage two intervention) and εij are the individual level residuals in the control

arm and rij are the individual level residuals in the intervention arm. Additional predictive

covariates can also be added to the model in practice. The outcome at follow-up two (f = 2)

for individual i in cluster j, i = 1, . . . , N , j = 1, . . . , k, is given by the model

y2ij = β0 + θt1ij + ujt2ij + rij(1− t1ij) + εijt1ij , (5.1)

uj ∼N(0, σ2
u),

rij ∼N(0, σ2
r )

εij ∼N(0, σ2
ε ).

The mixed effect model in equation 5.1 is expected to result in a biased estimate of the overall

intervention effect. The rationale is based on the parametrisation of the model and the structure

of the data. Firstly, the model includes a random intercept at the cluster level (uj) for the

individuals who receive stage two and no fixed effect for stage two intervention. Secondly, the

clusters or treatment groups in within-arm pnRCTs are not organised randomly. Only those with

interim measures below a threshold (non-responders) are assigned to groups. This effectively

down-weights the contribution of these participants when allowing for non-dependence (with a

random effect) because these participants are more similar even before they receive any stage

two intervention and hence the estimate of the mean effect estimate is biased.

To account for the intervention effect and clustering effect of stage two both a fixed and random

effect would need to be directly included in a mixed effects model. A partially nested mixed

effects model accounting for clustering of stage two treatment and adding a fixed effect for stage

one and one for patients who receive stage two using the following model
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y2ij = β0 + θ1t1ij + θ2t2ij + ujt2ij + rij(1− t1ij) + εijt1ij , (5.2)

uj ∼N(0, σ2
u),

rij ∼N(0, σ2
r ),

εij ∼N(0, σ2
ε ).

Equation 5.2 will also provide an estimate of the ICC for stage two intervention, t2ij , using

ρ = σ2
u/(σ2

u + σ2
ε ). However, as stage two is not given at random it is important to note this

will produce biased intervention effect estimates when randomisation occurs only at baseline.

This is confirmed using a small simulation study described in section 5.4. Although the anal-

ysis method in equation 5.2 will typically not be powered for during the design phase, it will

provide an estimate of the ICC. The ICC may be of descriptive interest to evaluate how the

outcomes are correlated within clusters. Equation 5.2 can be considered a heteroscedastic par-

tially nested mixed effects model accounting for clustering of stage two treatment and adding

subgroup covariates.

Preliminary work to evaluate bias of the mixed effect models given in equations 5.1 and 5.2 was

undertaken using simulations of a number of different scenarios, with a single large simulated

dataset for each scenario. This work showed the models to be largely biased when estimating

the intervention effect estimate. The preliminary work coupled with the statistical properties

of the mixed effect models in equations 5.1 and 5.2 suggest that these models are inappropriate

and largely bias the effect estimate. This is formally confirmed using a small simulation study

described in section 5.4. Only a small simulation study is required to demonstrate the large-

sample bias of the effect estimator identified in the preliminary work [151]. Guidance for the

simulation study is taken from Morris et al. [151] to demonstrate a large-sample bias of an

estimator. The sample size of the simulated dataset is large to show that the effect estimator is

largely bias from its true value and two scenarios are chosen (one under the null and the other

under the alternative hypothesis).

So far this chapter has explored how to construct a mixed effects model for within-arm pnRCTs.

The following section will discuss alternative analysis which may be able to account for clustering

and provide an estimate of the interventions effect (θ).
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5.3.4 Linear regression with robust standard errors

Robust standard errors are a method of estimating standard errors in linear regression analysis.

They are robust to minor concerns about the OLS regression assumptions, such as concerns

about normality, heteroscedasticity, or having some observations with large residuals, leverage

or influence. The robust variance estimator is also called the sandwich estimator, Huber-White

sandwich estimators are used in Stata [142].

The robust sandwich variance estimator of the parameter estimate θ is given by

VRob

(
θ̂
)

= (X′X)−1

(
N∑

i=1

e2
ix
′
ixi

)
(X′X)−1

where ei = yi−xiθ, xi is the ith row of X which is an n×p matrix of covariates, n is the number

of observations and p the number of parameters.

5.3.4.1 Cluster robust

When using the robust estimator of the variance it is possible to relax the assumption of in-

dependent observations by using cluster-robust standard errors. Cluster robust standard errors

require that observations are independent across clusters but not necessarily within-clusters.

They do not require specification of a model for within-cluster error correlation, but cluster-

robust standard errors do assume “that the number of clusters, rather than just the number of

observations, goes to infinity” [58, p.318].

The cluster robust variance estimator is given by

VClusRob

(
θ̂
)

= (X′X)−1




k∑

j=1

u′juj


 (X′X)−1 (5.3)

where j is the cluster identifier, uj =
∑
eijxij and nc is the number of clusters. The clustered

robust variance formula is that of the robust (unclustered) estimator with the individual eijxij ’s

replaced by their sums over each cluster.

Cluster-robust standard errors were incorporated into Stata by Rogers et al. [152]. They can be

implemented in Stata using the vce(cluster clustervar) command, where clustvar spec-

ifies to which cluster each observation belongs, for example, vce(cluster cluster1) in data

with observations in the clusters defined by cluster1. This affects the standard errors and vari-
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ance–covariance matrix of the estimators but not the estimated regression coefficients. Using

the cluster estimator is expected to result in more conservative errors when positive correlation

exists [152].

5.3.5 Linear regression with bootstrap standard errors

Bootstrapping was first proposed by Efron and Tibshirani [153], it can used for estimating

standard errors and other statistical measures whilst making few assumptions. It is a non-

parametric approach using computational re-sampling techniques rather than formulae.

The basic concept of bootstrapping is presented in the following. Let θ̂ again denote the estimate

of our parameter from the original sample. A nonparametric bootstrap procedure can be used

to calculate standard errors using the following steps [154]:

1. Draw B independent random bootstrap samples, each consisting of n data values drawn

with replacement from the sample dataset x, generating B pseudo-samples (for estimating

standard error B is usually in the range of 25-200 [153]);

2. Estimate the desired statistic corresponding to each of these bootstrap samples, which

forms the sampling distribution of θ̂;

3. Estimate standard error from the sample standard deviation of the sampling distribution

using

ŝeB =

{
1

B − 1

B∑

b=1

(
θ̂b − θ

)2
}1/2

where θ̂b, b = 1 . . . , B denote the B estimates of β from the bootstrap samples, and θ∗ =

(1/B)
∑B

b=1 θ̂b is the mean of the estimates across the B bootstrap samples. Though the boot-

strap estimates of the statistic are used to estimate the standard error, the actual estimated

value used for the statistic is still the original observed value θ̂ computed using the original

observations.

Bootstrap confidence intervals can be calculated using the Normal approximation or using the

percentile method. The percentile method is constructed from the sampling distribution of the

B bootstrap estimates of the parameter of interest, reading off the 2.5% and 97.5% percentiles

of the distribution gives you the 95% confidence interval. Though an obvious choice for the

confidence interval the percentile method can be biased, hence, it is generally not recommended

124



as the best method [153]. This bias can be estimated and corrected for using the bias corrected

and accelerated (BCa) method [153, 154]. Bootstrapped confidence intervals may, therefore, be

asymmetric and be better able to deal with skewed data.

5.3.5.1 Cluster bootstrap

Bootstrap resamples from the original data and assumes the data are independently and identi-

cally distributed. If clustering is present and we ignore the dependence of the data by resampling

at the level of the individual observation we cannot preserve the distribution of the estimate

of the desired statistic, this can result in under estimated standard errors and give incorrect

inferences [155].

It is possible to bootstrap at the cluster level. We can recognize that observations within a

cluster are not independently distributed by, instead of drawing individual observation units with

replacement, each sample drawn during each replication is a bootstrap sample of clusters drawn

with replacement. Each bootstrap resample will have exactly k clusters. Some of the original

clusters will not appear at all while other original clusters may be repeated in the bootstrap

sample two or more times [58]. Cluster bootstrap standard errors also assume independence

across clusters of observations.

Although the majority of the data in a within-arm pnRCT are independent, correlated outcomes

exist for participants that receive the clustered stage two treatment. Pals et al. [43, p.1421] notes

that “bootstrap standard errors are correct in the context of within-group correlation only when

bootstrapping is done at the group level”. Hence, it was assumed that the simple bootstrap

ignoring the cluster level would be invalid. If the ICC is positive then the cluster bootstrap

standard errors compared to the usual bootstrap standard errors will result in a larger standard

error and consequently larger confidence intervals.

Bootstrap standard errors are included in many statistical packages with the option of boot-

strapping at the cluster level. In Stata bootsrap standard errors of the parameter estimates can

be caluclated using the vce(bootstrap) command. Again, issues arise when there are a small

number of clusters. Bootstrap cluster confidence intervals may have poor coverage properties

when there are a small number of clusters [155]. It is also possible to re-sample separately from

each stratum (using the strata option in Stata).
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5.4 Simulation study methods

5.4.1 Overview

A simulation study was undertaken to address the aims of this chapter, to evaluate the analysis

models for within-arm pnRCTs presented in section 5.3 and summarised in Table 5.2. As in

chapter 4 the study utilised guidance on design, conduct and reporting of simulation studies

[144, 145].

5.4.2 Software

Software used for the simulations was the same as that used in chapter 4: simulations in Stata

[142] and graphs produced using ggplot2 [146] in R [147]. See Appendix B.2 for example simu-

lation code.

5.4.3 Data generating mechanisms

Data were simulated to replicate a parallel within-arm pnRCT with an unclustered control arm

and a two stage treatment in the intervention arm (randomised on a 1:1 basis), with clustering in

the second stage treatment and a continuous outcome. Data were simulated under various design

scenarios and under both the null and alternative hypotheses. Data generating mechanisms are

explained in more detail in this section.

Data were simulated from the following model with the intercept set to zero and trial arm

allocation denoted by t1 (t1 = 0 for control arm, t1 = 1 for intervention arm). All in the

intervention arm receive stage one, t1 = 1. Fifty percent of the intervention arm receive stage

two, based on outcome after t1 t2 = 1 if y1 < θ1, (t2 = 0 no stage two intervention, t2 = 1 stage

two intervention). The outcome y was simulated after t1 and after t2, y1 and y2 respectively.

The model is:

1. For the control arm (t = t1 = t2 = 0):

y1ij = y2ij = rij (5.4)

2. For the intervention arm:
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(a) Stage one treatment (t1 = 1)

y1ij = θ1 + eij (5.5)

(b) Stage two treatment (t2 = 1). If y1 < θ1 (the non-responders) then t2 = 1 and the

outcome

y2ij = θ1 + θ2 + uj + eij (5.6)

where rij ∼ N(0, σ2
r ) uj ∼ N(0, σ2

u), eij ∼ N(0, σe2). Values of σ2
e and σ2

u were chosen to

simulate the ICC, ρ, of clustered stage two intervention to be approximately 0.01, 0.05, 0.1, and

0.2. The variances σ2
e + σ2

u = 1 and the individual variance σ2
r = 1 for all scenarios.

Full simulation study steps, including the data generating process and modelling, are presented

in Figure 5.2. An additional error term could be added for the time effect thus representing the

repeated measures design, the error terms in the above equations would need to be changed so

that the simulation still induces an ICC of ρ.

Figure 5.2: Flowchart representing the simulation study steps under null hypothesis.
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5.4.4 Scenarios to be investigated

Simulation scenarios are presented in Table 5.1. For each of the total 98 scenarios 1,000 datasets

were generated.

The bias of the mixed effect models were evaluated using simulated within-arm pnRCT data for

two scenarios, one under the null hypothesis and one scenario under the alternative hypothesis.

Only two scenarios were simulated as the parametrisation of the model and preliminary inves-

tigations showed the mixed effects model to be largely biased, the aim here was to demonstrate

(large-sample) bias. It was decided that a large simulated dataset would provide this (number

clusters was chosen to be 50 to ensure there were no issues with small number of clusters).

The other objectives of this chapter were to evaluate whether linear regression (with OLS stan-

dard errors, cluster robust standard errors or cluster bootstrap standard errors) in terms of bias

and confidence interval coverage rates as well as quantifying the impact of ignoring clustering.

Simulation values were chosen based on findings from the systematic review in chapter 3 and

some constraints of the data generating model. For all simulations equal allocation to two

treatment arms was assumed and the proportion of the intervention arm who receive the clus-

tered stage two treatment patients (π2) was simulated as approximately 50%. The proportion

of participants that receive the second clustered intervention stage will vary slightly based on

the response to the first stage and the uptake of the intervention being offered. Due to the

proportionate design of this type of trial the sample size of those who receive the second stage

treatment is smaller than the sample size at randomisation. As y1|t1 = 1 ∼ N(θ1, σ
2
e) choosing

t2 = 1 for those with y1 < θ1 we expect half the intervention arm to receive t2 = 1. The

overall intervention effect θ is made up of θ1 and θ2. Under HA {θ1, θ2} = {0.25, 0.5} and the

expectation of the overall intervention effect is θ = 0.5. The cluster size, number of clusters,

ICC of the clustered stage two intervention and intervention effect were controlled and varied

across scenarios. A description of the scenarios used are summarised in Table 5.1.
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Table 5.1: Simulation scenarios for within-arm pnRCT

Parameter Notation Value

Investigation the bias of mixed effects model (two scenarios) under H0 and HA (2
scenarios)

Proportion in stage two π2% 50%

No. clusters c 50

Cluster size m 10

ICC* ρ 0.05

Intervention effect θ made up of θ1, θ2 Under H0 {θ1, θ2} = {0, 0} or
Under HA {θ1, θ2} = {0.25, 0.5}

Investigating bias and coverage of linear regression models (OLS, cluster robust and
cluster bootstrap) under H0 and HA (96 scenarios)

Proportion in stage two π2% 50%

No. clusters c 5, 10, 20

Cluster size m 3, 6, 12, 24

ICC* ρ 0.01, 0.05, 0.1, 0.2

Intervention effect θ made up of θ1, θ2 Under H0 {θ1, θ2} = {0, 0} or
Under HA {θ1, θ2} = {0.25, 0.5}

5.4.5 Methods

Table 5.2 presents a summary of the analysis models fitted during the simulation study. Un-

clustered participants were treated as singleton clusters based on findings from the simulation

study in chapter 4.

129



Table 5.2: Models used for the analysis of simulated within-arm partially nested trials

Model description Statistical model Cluster definition

M1 Mixed effect
model with single
fixed effect

yij = β0 + θt1ij + ujt2ij
+rij(1− t1ij) + εijt1ij ,
uj ∼ N(0, σ2

u),
εij ∼ N(0, σ2

ε )

Cluster and singleton
clusters for unclustered

M2 Mixed effect
model with two
fixed effects

yij = β0 + θ1t1ij + θ2t2ij + ujt2ij
+rij(1− t1ij) + εijt1ij ,
uj ∼ N(0, σ2

u),
εij ∼ N(0, σ2

ε )
rij ∼ N(0, σ2

r )

Cluster and singleton
clusters for unclustered

L1 Linear regression
(ignore
clustering)

yi = β0 + θt1i + εi,
εi ∼ N(0, σ2

ε )
Not applicable

L2 Linear regression
with cluster
robust SEs

yi = β0 + θt1i + εi,
εi see section 5.3.4

Cluster and singleton
clusters for unclustered

L3 Linear regression
with cluster
bootstrap SEs

yi = β0 + θt1i + εi,
εi see section 5.3.5

Cluster and singleton
clusters for
unclustered*

*Resampling was stratified on t2, whether a participant received stage two intervention or not.

5.4.6 Estimand

The estimand of interest was the overall intervention effect θ, and the intervention effect of stage

one and stage two θ1 and θ2.

5.4.7 Performances measures

The following performance measures were used:

� For models M1, L1-L3, bias of the average intervention effect estimate for those in the

intervention arm compared to control, regardless of whether they received stage two treat-

ment or not using Bias = E(θ̂)− θ. For model M2 bias of intervention effect estimates of

stage one and stage two using Bias = E(θ̂1)− θ1 and = E(θ̂2)− θ2.

� For models M1, L1-L3, mean square error of the intervention effect estimate using E[(θ̂−

θ)2]. For models M2 mean square error of the intervention effect estimates using E[(θ̂1 −

θ1)2] and E[(θ̂2 − θ2)2].

130



� Type I error rate: proportion of simulations in which the p-value < 0.05 when the null

hypothesis is true, true intervention effect θ = 0.

� Coverage of the 95% confidence intervals of the intervention effect estimate: proportion of

simulations that the obtained 95% confidence interval contains the true intervention effect

θ when the alternative hypothesis is true (using Bias corrected confidence intervals for the

cluster bootstrap standard errors).

5.5 Results: Mixed effects model

5.5.1 Bias, mean square error and coverage

Results of the bias and MSE for the overall intervention effect θ̂ from mixed effects model M1

with a single fixed effect are provided in Table 5.3. The model included a fixed effect for the

intervention arm and random effect representing a random intercept for the clustering of stage

two. The mixed effect model M1 (equation 5.1) resulted in a bias of the intervention effect

estimate. The model largely overestimated the intervention effect, bias of the intervention effect

estimate was 0.739 when θ = 0 and 0.464 when θ = 0.5, (equating to 73% and 93% percentage

bias). The corresponding confidence intervals did not include the true intervention effect θ.

Table 5.3: Results of simulation investigating the bias of mixed effects model M1 with a single
fixed effect for θ, under H0 and HA with ICC of t2 ρ = 0.05, m = 10 and c = 50

Data generating
model

Bias MSE

θ = 0 0.739 0.548

θ = 0.5 0.464 0.217

Results of the bias and MSE for the intervention effect θ̂1 and θ̂2 from mixed effects model M2

with two fixed effects are provided in Table 5.4. The mixed effect model M2 resulted in bias of

both intervention effect estimates θ̂1 and θ̂2.
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Table 5.4: Results of simulation investigating the bias of mixed effects model M2 with two fixed
effect for θ1 and θ2, under H0 and HA with ICC of t2 ρ = 0.05, m = 10 and c = 50

Data generating
model

θ̂1 θ̂2

Bias MSE Bias MSE

H0 : θ = 0,
{θ1, θ2} = {0, 0}

0.789 0.624 -1.580 2.497

HA : θ = 0.5,
{θ1, θ2} = {0.25, 0.5}

1.039 0.624 -1.079 2.494

5.6 Results: Linear regression models (OLS, cluster robust and

cluster bootstrap standard errors)

5.6.0.1 Bias

All three linear regression models (OLS, cluster robust and cluster bootstrap) compared in this

simulation study led to unbiased estimates of the intervention effect. The maximum absolute

bias of the intervention effect was |0.015| for all models. Bias of the intervention effect was not

affected by the analysis model used, the ICC or the proportion in stage two.

5.6.1 Mean square error

MSE did not differ by model. The MSE of the intervention effect had a mean of 0.002 (SD

0.073).

5.6.2 Type I error

Plots of the mean Type I error rates split by model and the ICC (ρ) are presented in Figure

5.3. As expected the linear regression model which ignores clustering had inflated Type I error

rates, with Type I error rate affected by ICC (ρ), number of clusters (c), and cluster size (m).

Although the inflation was minimal when ICC was small, mean Type I error when ρ = 0.05 was

0.057 (SD 0.008) and mean Type I error when ρ = 0.01 was 0.051 (SD 0.005).

The linear regression model with both cluster robust and cluster bootstrap standard errors

(models 2 and 3) resulted in biased Type I error rates. The cluster robust standard errors over

corrected the Type I error and the cluster bootstrap standard errors resulted in inflated Type I

errors.
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Figure 5.3: Type I error rate of linear regression model for analysis of within-arm partially
nested trials: using OLS standard errors (model L1), cluster robust standard errors (model L2),
cluster bootstrap standard errors (model L3), by ρ
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Figure 5.4 shows the Type I error rates for the linear regression model with OLS standard errors

(model L1), cluster robust standard errors (model L2) and with cluster bootstrap standard

errors (model L3) by ICC (ρ), number of clusters (c), and cluster size (m). When using the

linear regression model with cluster robust standard errors Type I error rates were reduced from

the nominal 5% level under all ICC values. In contrast, when using the linear regression model

with cluster bootstrap standard errors Type I error rates were inflated from the nominal 5%

level under all ICC values. Higher ICC values resulted in higher Type I error rates in each

model. The impact of ignoring clustering (model L1) depends on both ICC (ρ) and cluster size

(m).
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Figure 5.4: Type I error rate of linear regression model for analysis of within-arm partially
nested trials: using OLS standard errors (model L1), cluster robust standard errors (model L2),
cluster bootstrap standard errors (model L3), by ρ, c, and m
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5.6.3 Coverage

Plots of the mean coverage of the 95% confidence intervals of the intervention effect estimate

split by model and the ICC (ρ) under the alternative hypothesis are presented in Figure 5.5. The

linear regression (which ignores clustering) resulted in under coverage, with coverage affected

by ICC (ρ) and cluster size (m). The coverage rate of the 95% confidence intervals decreased as

ICC (ρ) increased.

Linear regression with either cluster robust or cluster bootstrap standard errors (models 2 and 3)

resulted in biased coverage rates. Cluster robust standard errors resulted in coverage rates above

the nominal 95% level. In contrast, the cluster bootstrap standard errors resulted in coverage

rates below the nominal 95% level. Figure 5.6 presents the coverage rates in more detail for

the linear regression model with OLS standard errors (model L1), cluster robust standard errors
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(model L2) and with cluster bootstrap standard errors (model L3) by ICC (ρ), number of clusters

(c), and cluster size (m).

Figure 5.5: Coverage rate of 95% confidence intervals of linear regression model for analysis
of within-arm pnRCTs: using OLS standard errors (model L1), cluster robust standard errors
(model L2), bootstrap standard errors (model L3), by ρ
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Figure 5.6: Coverage rate of 95% confidence intervals of linear regression model for analysis
of within-arm pnRCTs: using OLS standard errors (model L1), cluster robust standard errors
(model L2), bootstrap standard errors (model L3), by ρ, c, and m
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5.7 Discussion

This chapter expands upon the simulation study in chapter 4 to the more complex within-arm

pnRCTs. Different modelling strategies have been investigated for the analysis of a within-arm

pnRCT with a continuous outcome and a two staged intervention with clustering at the second

stage. Initial investigations into formulating an appropriate mixed effects model for within-

arm pnRCTs showed that it was not possible to parametrise a mixed effects model that both

accounts for the clustering of stage two and provides an unbiased intervention effect. The bias of

the intervention effect estimate from a mixed effect model was demonstrated with a simulation

study under ICC ρ = 0.05. The model was biased under both the null and alternative.

The linear regression models were found to provide unbiased effect estimates regardless of the
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method used for standard error estimation. The findings presented in this chapter demonstrate

that ignoring within-arm partial nesting using a linear regression model can result in under

coverage rate of 95% confidence intervals. When ICC ρ ≥ 0.05 the coverage rate of the linear

regression model was almost always under the nominal 95% level regardless of the cluster size

m or number of clusters c. This in turn may result in misleadingly over precise estimation of

intervention effect estimates. However, when the ICC was small ρ = 0.01 the Type I error was

only minimally inflated.

Neither of the methods used with the aim to account for clustering of stage two intervention,

cluster robust or cluster bootstrap standard errors, provided coverage at the nominal level. In

addition, the mixed effect model presented in equation 5.1 resulted in biased effect estimates.

Caution in the analysis of this trial design can result in more spurious effect estimates and/or

coverage rates.

One of the objectives of this chapter was to provide recommendations for the most appropriate

analysis methods for within-arm pnRCTs considering the ICC estimates. The scenarios explored

in this simulation study suggest that it is not possible to account for clustering in a within-arm

pnRCT at the a latter stage of intervention whilst also obtaining an unbiased effect estimate

using the methods evaluated in this chapter. In a proportionate intervention if either the ICC

and/or the proportion of participants expected to receive the conditional clustered intervention

stage(s) are expected to be large then the findings from this chapter suggest caution should be

taken in considering what a trial of such an intervention will be able to provide us. Such a

within-arm pnRCT will likely not be able to provide estimates of the intervention effect with

usual expected precision. It is recommended to ignore the clustering when it is realistic to

assume ICC is small. Where feasible, methods to reduce the affect of clustering such as small

clusters and standardising the intervention are also suggested. It may be possible to group or

cluster those who do not receive the clustered intervention into pseudo clusters. Pseudo clusters

impose a clustered structure for participants who do not have one. Although the affects of this

would need to explored, as those in the pseudo clusters do not have clustered outcomes.

An ideal solution for analysing within-arm pnRCTs was not identified in this chapter. However,

as will be shown in chapter 7, treatment induced clustering is often small (ρ ≤ 0.01) and thus its

impact on results may be expected to be relatively small particularly if cluster sizes are small.

If non-random clustering occurs it is not recommended to account for it using the methods

evaluated in this chapter (cluster robust or cluster bootstrap standard errors). If a study aim is
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to evaluate the effect of different intervention stages with a treatment pathway and also account

for the clustering of these stages randomisation after each stage of the intervention would be

required. For instance, a SMART trial design re randomises individuals sometimes multiple

times as seen in chapter 3. These designs are typically used to find an optimal intervention

as opposed to a confirmatory trial of effectiveness. Multiple randomisations could result in

requiring prohibitively large sample sizes for the overall trial design and a greater administrative

burden. Landau and Chalder [52] argue that if the allocation of clusters is driven by patient

characteristics (for example, the “best” therapist sees “worst” patients) then therapist effects

cannot be separated from patient effects. Within-arm pnRCTs do not necessarily link allocation

of care providers to patient characteristics. However, typically the non-responders or high risk

patients proceed to more intense latter stages of the interventions, thus it is not possible to

untangle the effect of clustering from the fact that these patients are higher risk (non-responders).

Being unable to untangle the confounding of cluster effects and patient characteristics is not

helpful if we wish to estimate clustering effects for the use in future sample size calculations.

However, ICC estimates can still be obtained from such trials and are recommended to be able

to better understand the validity of the precision of effect estimates. For individuals who receive

the clustered interventions given proportionately, it may be possible to report the pre-treatment

ICC (at the decision stage) and compare this with post-treatment ICC to see if ICC has increased

by treatment.

Ideally, to ensure internal validity, it is recommended that the allocation of participants to

clusters should be done at random. However, the nature of a using a RCT to evaluate the

overall intervention effect of a proportionate intervention with randomisation at baseline will

mean this is not possible.

5.7.1 Limitations

Fixed cluster sizes have been used in this simulation study and it has been assumed there is no

effect of clustering in the control arm (as in chapter 4). Both of these things may not strictly

be true in practice, the implications have been discussed in more detail in chapter 4.

This simulation study only considered a two stage intervention design. As seen in the systematic

review in chapter 3 there are often more than two stages in a proportionate intervention stage.

Although, as we move further along the treatment pathway it seems plausible that there will

be fewer patients that receive the latter stepped-up intervention stages. The proportion of
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participants clustered at latter stages will likely reduce to small percentages of those in the

intervention arm. The fewer patients that have clustered outcomes the smaller affect this has

on the precision of the standard errors.

5.8 Summary

This chapter has built on findings from the systematic review in chapter 3 and the simulation

study in chapter 4. Different analysis methods were evaluated for within-arm pnRCTs with a

continuous outcome and a two staged intervention with clustering at the second stage. Neither a

mixed effects model nor a linear regression model using either cluster robust or cluster bootstrap

standard errors provided both an unbiased effect estimate and coverage rates around the nominal

95% rate. Consequently, no ideal solution for analysing within-arm pnRCTs was identified in this

chapter. In a proportionate intervention if either the ICC and/or the proportion of participants

expected to receive conditional clustered intervention stage(s) are expected to be large then it is

important to bear in mind what a trial of such an intervention will be able to provide us. Such

a within-arm pnRCT will not be able to provide estimates of the intervention effect with usual

expected precision.

In the next chapter that follows sample size formulae for pnRCTs are summarised. No optimal

analysis strategy which accounts for clustering was found for within-arm pnRCTs, hence, sample

size formulae in chapter 6 are not expanded to the case of within-arm pnRCTs at present.
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Chapter 6

Sample size methods for partially

nested trials

6.1 Introduction

Previous chapters highlighted the importance of the analysis method for iRCTs with clustering.

Chapter 2 also introduced the concept of the use of the design effect to inflate sample sizes

for trials with clustering. This chapter identifies and collates sample size formulae currently

available for pnRCTs with continuous outcomes, presents a worked example of these methods,

and identifies some possible areas for further work. There is a growing body of literature

on sample size methods relevant for pnRCTs. There are accessible methods and corresponding

software to allow for the design complexities of clustering in trials with continuous outcomes and

these can be extended for further complexities such as variable cluster sizes and incorporation

of baseline measures in the analysis.

A priori sample size calculations are used when designing trials. The calculation is used to

estimate the minimum number of participants required to be able to detect an intervention

effect to a specified probability. The size of an intervention effect, with the precision conveyed

by a confidence interval, also need to be estimated. Sample size calculations are an important

and often challenging part of a trial. Lack of independence in pnRCTs introduces complexities

to the design phase of a trial, similar to that which occur in cRCTs. Ignoring the clustering in

the sample size calculation could result in underpowered studies.
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6.2 Chapter aims

This chapter aims to identify and collate a comprehensive summary and resource for sample size

methods available for pnRCTs. The specific objectives are to:

1. provide a summary of existing methods;

2. provide practical guidance around the use of different methods;

3. link these methods to relevant available software.

This chapter also highlights the sensitivity of sample size calculations to both the ICC and

cluster size. The focus is on parallel group trials with continuous outcomes.

6.3 Methods

6.3.1 Literature search

A comprehensive literature search was used to identify published methods for sample size calcu-

lations for pnRCTs. The database Ovid MEDLINE was searched on 30th June 2017 for relevant

articles. The search criteria presented in Figure 6.1 was implemented. Search terms were chosen

based on literature already reviewed for this thesis, carefully looking for search terms in the

documents, particularly at the title, abstract and the key words used.

To keep up to date, an Auto Alert was created within Ovid MEDLINE to provide a monthly

notification of new citations that match the search specifications after the 30th June 2017 and

reviewed until 30th June 2018.

Figure 6.1: Ovid MEDLINE search criteria for relevant articles on pnRCTs sample size calcu-
lations

Controlled Clinical Trials as Topic/mt, sn OR

Randomized Controlled Trials as Topic/mt, sn AND

Cluster Analysis OR

"partial$ nest$".mp. OR

"partial$ cluster$".mp. OR

"Individual$ Randomized Group Treatment

Trial$".mp OR.

"Multilevel data".mp.

The results were hand searched based on titles, abstracts and where necessary the full article,

to identify relevant results. In addition to the database search, papers known by myself or
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supervisors to be relevant were included. The results were reviewed and summarised, identifying

the most relevant articles describing methodology for sample size calculations in pnRCTs.

6.3.2 Literature search results

The Ovid MEDLINE search identified 296 unique articles. After the searching 16 full text

articles were selected (15 from MEDLINE and one already known to author). These texts

include methodology, application, and software specific articles with methods for pnRCTs.

6.4 Results: sample size formulae

The sample size formulae for pnRCTs are presented. For clarity, this chapter builds up from

the standard parallel two arm trial, to the fully clustered trial design which introduces the need

to account for clustering, and finally moving onto the fully and partially nested design with

results from the literature search. Sample size formulae have been re-expressed in consistent

terminology and all assume a continuous outcome.

All sample size in this chapter assume a two-sided significance level α and power of 1− β. The

following considers a superiority RCT used to test the hypotheses,

H0 : δ = 0 versus HA : δ = δ∗,

where δ∗ is the clinically meaningful difference.

Sample size formulae commonly assume large samples (n ≥ 30); it has been suggested that

the asymptotic Normality assumption of the test statistic is acceptable if there are 30 or more

individuals in each trial arm [156]. When sample sizes are small the additional uncertainty can

be accounted for by using a t-distribution. Although the total number of individuals in an RCT

with clustering may be large the number of clusters is often small.

6.4.1 Trial design features that impact on sample size

In conducting a priori sample size calculation certain trial design features need to be estimated,

key design features are presented in Table 6.1. These are typically decided upon using a com-

bination of previous trial data, observational data and health records, financial and practical

143



constraints, and expert opinion. Some features can be manipulated by the researcher, however,

others will be constrained by the limits of the data, the ICC, or financial resources. Chapter 7

adds to the evidence of ICC for the choice of ICC ρ in iRCTs with clustering.

Table 6.1: Trial design features required for a sample size calculation in a pnRCTs

Design
feature

Description Notation

Endpoint Endpoint used for the primary outcome y

Error rates Type I error α

Type II error β

Effect size Minimum clinically important difference measured on
primary endpoint

δ

Variance Population variability for primary outcome.

Total variance σ2

Individual variance control arm σ2
r

Individual variance intervention arm σ2
ε

Cluster variance σ2
u

Cluster size Number of participants in each cluster, may be fixed or
researcher may be able to choose the size.

m

Variability in
cluster size

The variability in cluster sizes: Coefficient of variation cv

Variability
between
clusters

How much of the outcome variability is due to
clustering: ICC ρ = σ2

u/σ2
u + σ2

ε

ρ

Other Expected drop-outs/attrition rates

6.4.2 Sample size formulae for individually randomised trial

Consider an iRCT using a parallel group design with Normally distributed outcomes y, with

mean ȳ and standard deviation σ and assume equal variance between arms. The intervention

effect size is the expected mean of the outcome value in the intervention arm minus the expected

mean value in the control arm

δ = ȳ1 − ȳ0 (6.1)

The standard parametric test for the hypotheses for a superiority RCT (expressed above) is an

independent two-sample t-test. The test is based on the test statistic, T , which under the null

hypothesis has a central t-distribution on v = nI(r + 1)− 2 degrees of freedom where nI is the
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sample size in one trial arm and r is the allocation ratio between the two arms. The T test

statistic is given by

T =
√
r(1− r)nI

(
ȳ1 − ȳ0

σ

)

=
√
r(1− r)nIδs. (6.2)

where δ is the expected effect size, σ is the estimated population standard deviation and δs is

the standardised effect size, δs = δ/σ.

6.4.2.1 Intervention effect estimator variance

We wish to minimise the variance of the intervention effect estimator, hence, it is used as the

optimality criterion; minimal variance results in maximal power to detect an intervention effect.

In general terms for a two-sided significance level α and power of 1− β we require,

Var(δ̂) =

(
δ

Z1−β + Z1−α/2

)2

and

Var(δ̂) =
σ2

nI
+
σ2

nB
=

(r + 1)

r

σ2

nI
(6.3)

where nB = rnI and Z1−β and Z1−α/2 are the 100(1−β)% and 100(1−α/2)% points of a standard

Normal distribution.

6.4.2.2 Approximate sample size formulae using asymptotic methods

For moderately large sample sizes (≥ 30) the t-distribution approximates to a standard Normal

distribution. The approximate sample size per arm using the Normal approximation, from

equations in 6.3, is

nI =
(r + 1)(Z1−β + Z1−α/2)

2σ2

rδ2
(6.4)
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where r is the allocation ratio, δ is the expected effect size, σ2 is the estimated population

variance [33]. Assuming an allocation ratio of 1:1 this gives

nI =
2σ2(Z1−β + Z1−α/2)

2

δ2
. (6.5)

6.4.2.3 Exact sample size formulae

When a clinical trial is undertaken the population variance σ2 is usually considered to be un-

known and a sample variance is used in its place, s2, estimated with v = nI(r+ 1)−2 degrees of

freedom. Uncertainty in the variance estimate can be reflected by replacing the Z-statistic with

a t-statistic. The following sample size formulae can be used to achieve a power of at least 1−β

nI ≥
(r + 1)(Z1−β + t1−α/2,nI(r+1)−2)2σ2

rδ2
.

This equation does not have a direct solution as nI appears on both sides of the equation. The

equation can be written in terms of power and solved using an iterative technique

1− β = Φ

(√
rnIδ2

(r + 1)σ2
− t1 − α/2,nI(r+1)−2

)
(6.6)

where Φ(.) is the cumulative density function of N(0, 1). When a sample variance is being used,

s2, the power should be estimated from the cumulative t-distribution instead of the Normal

distribution. In addition, power is estimated under the alternative hypothesis and Senn [157]

showed more accurate sample size calculations can be done using the non-central t-distribution.

The power is actually being estimated under δ 6= 0, hence, the corresponding t-distribution

should be non-central which represents the distribution of the test statistic under the alternative

hypothesis of unequal means. The non-centrality parameter is given by

λ =

√
rnIδ2

(r + 1)σ2
.

The power equation can be rewritten to give

1− β = 1− T−1

(
t1−α/2,nI(r+1)−2, nI(r + 1)− 2,

√
rnIδ2

(r + 1)σ2

)
(6.7)

where T−1 is the cumulative density function of the non-central t-distribution. Again this

equation cannot be solved for nI explicitly. Practically, the Normal approximation can be used
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as an initial sample size and then use an iterative solution until the required power is reached.

Alternatively, to allow for the Normal approximation to the t-distribution a correction factor of

Z1−α/2
4 can be added to equation 6.4 to approximate and give

nI =
(r + 1)(Z1−β + Z1−α/2)

2σ2

rδ2
+
Z2

1−α/2

4
. (6.8)

When sample sizes are small the Normal approximation to the t-distribution is poor, this can

result in overestimation of power. The differences between the Normal distribution and the

non-central t-distribution are generally minimal [33]. In general, the central t-distribution is

used, Machin et al. [158] propose that the use of t rather than Z adds 1 and 2 per group for the

5% and 1% significance level, respectively.

6.4.3 Sample size formulae for cluster randomised trial

A simple approach to take account of the clustering effect when designing a cluster trial was

proposed by Donner et al. [159]: calculate a sample size for an iRCTs (as in section 6.4.2)

and inflate this by the design effect (DE) to reach the required statistical power under cluster

randomisation

DE = 1 + (m− 1)ρ (6.9)

where m is the number of individuals per cluster and ρ is the ICC. For example, when the

ICC is 0.05 and the cluster size is eight, the design effect equals 1.35 meaning that 35% more

participants would need to be recruited to achieve a sufficient sample size. This design effect (in

equation 6.9) is actually for cluster level analyses which compares relevant summary statistics

from the cluster level. Different design effects are summarised by Eldridge et al. [150] for the

different analyses methods; when individual level analyses are planned using equation 6.9 is

conservative.

6.4.3.1 Approximate sample size formulae using asymptotic methods

Assuming an allocation ratio of 1:1 the required number of individuals per arm for a cRCT is,

nC =
2(Z1−β + Z1−α/2)

2

δ2
s

(1 + (m− 1)ρ)

nC =nI ×DE (6.10)
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where δs is calculated as δs = δ/
√
σ2
u + σ2

ε , σ
2
u is the between cluster variance and σ2

ε is the

within cluster variance. The number of clusters required per arm, k, is then given by

k =

(
nC(1 + (m− 1)ρ)

m

)
. (6.11)

6.4.3.2 Exact sample size formulae and small number of clusters

Sample size formulae in equations 6.11 assume a relatively large number of clusters, thus the

Normal approximation will be appropriate. When the number of clusters is small, using the

Normal approximation is likely to overestimate power and underestimate sample size [148]. As

in the standard parallel two-arm iRCT, it is possible to replace the Normal distribution with a

non-central t-distribution. Donner and Klar [148] presented a power calculation for cluster-level

analyses which uses the non-central t-distribution with v = 2(k − 1) degrees of freedom and a

non-centrality parameter of

λ =
δs√

2
(

1+((m−1)ρ)
mk

) . (6.12)

The above gives us a formulae for power of

1− β = 1− T−1


t1−α/2,2(k−1), 2(k − 1),

δs√
2
(

1+((m−1)ρ)
mk

)


 (6.13)

The degrees of freedom for the t-distribution are determined by the number of clusters, which

is what we are trying to estimate using sample size calculations. Hence, the above requires an

iterative process of estimation. Harrison, Brady, et al. [160] also show that more accurate power

calculations can be done using the non-central t-distribution, presenting formulae for sample

size and power under the non-central t-distribution alongside a Stata command to perform

these calculations sampncti.

6.4.3.3 Unequal cluster sizes

The standard design effect given in equation 6.9 assumes that the cluster sizes are equal. How-

ever, it is common to have variable cluster sizes, for example variable GP practice sizes or

variable school sizes. Exact cluster sizes may not be known at the design stage due to lack of

148



information and variability over time. However, a priori estimates of the distribution of cluster

sizes may be available (mean and standard deviation). Where the cluster sizes are unequal it is

helpful to consider the impact this can have when designing a trial.

The design effect in equation 6.9 can be approximated by including a simple correction for the

variable cluster size as shown by Eldridge et al. [150]

DE = 1 + ((cv2 + 1)m̄− 1)ρ (6.14)

where cv is the coefficient of variation in cluster size. Coefficient of variation is the ratio of the

standard deviation of cluster sizes, σm, to the mean cluster size, m̄ (σm =
∑(

mi − m̄)2/(k − 1)
)

where mi is the size of cluster i and k is the number of clusters) calculated using

cv =
σm
m̄
. (6.15)

Eldridge et al. [150] demonstrate that using the coefficient of variation formula in cluster size

provides either good or conservative estimate of sample size requirements.

6.4.4 Sample size formulae for partially nested randomised trials

Sample size formulae for iRCTs with treatment induced clustering have similarities to those for

cRCTs. Where there is differential clustering between arms, as in a pnRCT, the variance may

differ and thus the analysis needs to account for this variation. The analysis of a pnRCT may in

its simplest form correspond to that of an unequal variances t-test [136], however, it is typically

the case that analysis adjusted for baseline covariates is required and can provide more precise

effect estimates (analysis methods were evaluated in chapter 4 of this thesis).

Assuming the individual variance in the unclustered control arm is given by σ2
r , the individual

variance in the cluster arm by σ2
ε and the between cluster variation in the clustered arm by σ2

u.

The ICC in a pnRCTs, ρ, is only present in the clustered intervention arm, and is again given

by ρ = σ2
u/σ2

u + σ2
ε.
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6.4.4.1 Partially nested randomised trials sample size literature

A simple solution to incorporate clustering effects in pnRCTs sample size calculations is to:

calculate sample size for the corresponding iRCT; calculate the design effect as in a cluster trial;

and inflate only the clustered arm by this design effect. Similarly, for nRCTs both trial arms may

be inflated, either using the same design effect for both arms or if different ICCs and/or cluster

sizes are anticipated for different trial arms then two separate design effects can be calculated

one for each trial arm as suggested by Pals et al. [43]. Although this method does recognise

the clustering effect and has been used, it does not fully account for the potential differential

variance between arms in pnRCTs and may not provide an optimal allocation ratio. A review of

recent methodological developments in group randomised trials design by Turner et al. [161] gave

a brief summary of relevant literature dedicated to what they term Individually Randomised

Group-Treatment trials, with references to various sample size articles. This chapter aims to

extend this, with further information, a focus on pnRCTs, and a summary of software for sample

size calculations in pnRCTs.

There are various articles reporting specific sample size formulae for trials with clustering of

outcomes in only one trial arm. Roberts and Roberts [48] present an optimal allocation ratio

for pnRCTs. Moerbeek and Wong [131] derive sample size formula for pnRCTs, which account

for both the clustering in one arm and the possible heteroscedastic variance between arms.

Similar formulae assuming homoscedastic variances have also been derived [57, 122, 132, 137].

Lohr et al. [133] derive a design effect for pnRCTs, however, this makes the assumption that

the individual variance parameters are equal across arms σ2
r = σ2

ε , which may not always be

the case. During the design phase of a trial specific information on the individual variances

may not be available, however, with improved reporting of such trials this will have hopefully

lead to more information on variance estimates and a better understanding of potential levels

of heteroscedasticity of variances across arms. Hoover [136] suggested a sample size and power

formula for small studies for the Satterthwaite unequal variance t-test. Roberts and Roberts [48]

state that where variance is larger in the larger group (feasibly that this is true when comparing

group therapy to individual therapy) the formula underestimates power.

Multi-centre trials introduce an additional level of data hierarchy in pnRCTs. Heo et al. [137]

consider centre level clustering, they derive sample size formulae for pnRCTs under homoscedas-

tic variances. They derive sample size formulae for testing main effects of a group-based inter-

vention compared to individual-based control based on two- and three-level mixed-effects linear
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models. The two-level mixed effects model represents when there is only clustering due to the

group base intervention. The sample size formulae in Heo et al. [137] differs from Moerbeek

and Wong [131] due to the assumption of homoscedastic variances and the assumption of equal

allocation across arms. Appendix C provides a table comparing the two methods under different

designs. The three-level mixed effects model represents when there is clustering due to the group

based intervention and clustering due to the centre. In practice, the centres in multi-centre trials

are commonly included as a stratification variable in the randomisation procedure and included

as a fixed effect in the mixed effect model as opposed to a random effect. However, the use of

random effects can have advantages compared to fixed effects in many scenarios [54].

Other complex designs, including clustered designs with clustering by therapist in both trial

arms, or the crossed design where each therapist provides therapy in both trial arms, have been

discussed with a focus on psychotherapy but are more widely applicable [38, 39].

6.4.4.2 Intervention effect estimator variance

The variance of the intervention effect estimator, δ̂ = ȳ1 − ȳ0, in a pnRCTs was derived by

Moerbeek and Wong [131] as

Var(δ̂) =
σ2
ε +mσ2

u

mk
+

σ2
r

npn

and

Var(δ̂) = σ2
r

(
γ

(m− 1)ρ+ 1

mk
+

1

npn

)
(6.16)

where γ = σ2
u + σ2

ε/σ2
r is the ratio of variance in the clustered arm to the unclustered arm. The

cluster size and number of clusters are denoted by m and k and npn is the number of individuals

in the control arm.

Equation 6.16 can be simplified under the assumption of equal individual variances across the

two treatment arms σ2
r = σ2

ε to give

Var(δ̂) =
σ2
r +mσ2

u

mk
+

σ2
r

npn

and

Var(δ̂) = σ2
r

(
(m− 1)ρ+ 1

mk
+

1

npn

)
. (6.17)
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The variance of the intervention effect estimator, δ, expressed in equations 6.16 and 6.17 is

dependent upon the cluster size m, number of clusters k, and the number of individuals in the

control arm npn. The combination of these parameters is referred to as a design, ξ = {m, k, npn}.

Different designs can result in the same power level, with an optimal design providing the best

combination of ξ = {m, k, npn} under the structure, budget and practicalities of a particular

trial.

6.4.4.3 Approximate sample size formula using asymptotic methods

Equal allocation is commonly used for RCTs, this typically maximises power for a given total

sample size. However, if costs and variances differ between trial arms, often the case in pnRCTs,

the power may be maximised by changing the allocation ratio between the trial arms. The

following presents both optimal allocation ratios and sample size formulae to achieve desired

power and Type I error rate.

Sample size for fixed cluster size and optimal allocation ratio

If the cluster size is known and we wish to choose the optimal sample size calculations for a

pnRCT a number of steps are required. An optimal allocation ratio for large partially clustered

trials is given by Roberts and Roberts [48] as the ratio of the individuals in the unclustered

control arm to the clustered intervention arm

mk

npn
=
√

1 + (m− 1)ρ. (6.18)

This can be extended to account for heteroscedastic variance by adding the variance ratio γ,

which gives

mk

npn
=
√
γ(1 + (m− 1)ρ). (6.19)

An increase in the design effect and the variance ratio both result in an increase in the sample

size in the clustered arm. The number of individuals required in the control arm is given by

Moerbeek and Teerenstra [130] as

npn =
(√

γ(1 + (m− 1)ρ) + 1
)(Z1−β + Z1−α/2

δs

)2

(6.20)

where the standardised effect size expresses the intervention effect in relation to the standard
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deviation in the control arm, δs = δ/σr. In practice, the number of control participants required

is calculated using equation 6.20 in conjunction with the allocation ratio formula in 6.19 to

calculate the number of intervention groups, k (and the number of individuals in the clustered

intervention arm, mk). The steps to undertake a pnRCT sample size for a known cluster size

calculation are illustrated below.

Calculate sample size for a partiality nested trial assuming two-sided test with α = 0.05

and power 1− β = 0.80:

1. Information assumed provided by investigator: Intervention effect size of interest

δs=0.5 and expected number of patients per cluster m=10

2. Obtain an estimate of ρ (from previous studies, observational data, and/or discus-

sions with investigator): ICC ρ=0.05

3. Preliminary sample size: Estimated sample size of control arm npn = 69.20 and

clustered intervention arm mk = 83.33, total sample size of 152.53, using equations

6.19 and 6.20 and assuming variance ratio γ = 1.

4. Calculate sample size required: Round clustered intervention arm to multiple of

cluster size m.

� Rounding down gives mk = 80 and recalculate control arm sample size npn =

73 to achieve desired power, total sample size of 153.

� Rounding up gives mk = 90, nine clusters of size ten, and recalculate control

arm sample size npn = 64 to achieve desired power, total sample size of 154.

5. Allowing for 10% drop-out in participants from baseline to follow-up, this gives

mk = 108 nine clusters of size 12 and control arm sample size npn = 72 to achieve

desired power, total sample size of 180.

Table 6.2 illustrates the sample sizes required in a pnRCT to achieve 1-β=0.80 in a two-sided

test with α=0.05 to detect a standardised intervention effect δs = 0.5, γ = 1 (assuming ho-

moscedasticity between individual variance across trial arms) for various values of cluster size

m and ICC ρ. For instance, for ρ = 0.05, m = 10 eight clusters are required in the intervention

arm mk = 80 and npn = 73 in the control arm. For a parallel group iRCT, with no clustering,

the required sample size would be 64 per arm. Calculations in Table 6.2 use equations 6.19 and
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6.20. When calculating sample sizes which include clusters, it is generally necessary to round

the clustered intervention arms to a multiple of the cluster size. The required sample size in the

clustered intervention arm can be either rounded down or up to the nearest multiple and the

control arm sample size calculated accordingly using equation 6.20. Similar total sample sizes

are required in the examples given in Table 6.2, however, this is not always the case if cluster

size or ICC are large rounding can have a larger influence on the required total sample size to

achieve desired power.

It is evident from sample sizes presented in Table 6.2 that for larger cluster sizes m larger overall

sample sizes are required to achieve the same power. This agrees with findings from chapter 4.

For instance, with an ICC of ρ = 0.05 we require a total sample size of 138 with a cluster size

of m = 5 and a total sample size of 181 with a cluster size of m = 20.

Table 6.2: Sample size for pnRCT to achieve 1-β=0.80 in a two-sided test with α=0.05 to detect
a standardised intervention effect δs=0.5, γ=1 (assuming homoscedasticity between individual
variance across trial arms) for various values of cluster size m and ICC ρ.

ρ
Rounding
method*

Cluster size (m)

5 10 20

k mk npn Total k mk npn Total k mk npn Total

0.01
Up 13 65 64 129 7 70 62 132 4 80 59 139

Down 12 60 69 129 6 60 74 134 3 60 84 144

0.05
Up 15 75 64 139 9 90 64 154 6 120 65 185

Down 14 70 68 138 8 80 73 153 5 100 81 181

0.1
Up 17 85 66 151 11 110 69 179 8 160 73 233

Down 16 80 70 150 10 100 78 178 7 140 90 230

*Rounding method of sample size calculation refers to the method of rounding from the original calcula-
tion: either rounding number of clusters up or rounding number of clusters down.

Sample size for fixed cluster size and fixed number of clusters

The number of individuals in the control arm for fixed cluster size m and number of clusters in

the intervention arm k [131] is

npn =
σ2
r(

δ2

(Z1−β+Z1−α/2)
2 − σ2

ε+mσ2
u

mk

) =
1(

δ2s

(Z1−β+Z1−α/2)
2 − γ(1+(m−1)ρ)

mk

) . (6.21)

Sample size including costs

The optimal allocation ratio and sample size formulae can also be extended to account for

differential costs. It may be the case that costs do not depend only on the total sample size but
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are based on other parameters. If a trials budget includes the intervention running costs then

there are likely to be differing costs between trial arms. The cost ratio c1/c0 where c1 and c0

are the costs per individual in the intervention and control arms can be added to sample size

formulae [130] giving

mk

npn
=

√
γ(1 + (m− 1)ρ)

c1

c0
. (6.22)

The number of individuals required in the control arm accounting for costs is

npn =

(√
γ(1 + (m− 1)ρ)

c1

c0
+ 1

)(
Z1−β + Z1−α/2

δ

)2

. (6.23)

The notion of including intervention costs to calculate the optimal allocation ratio to reduce

overall costs for a pnRCT design was put forward by Moerbeek and Teerenstra [130] and Mo-

erbeek and Wong [131]. No trials of where differential intervention costs had been used in the

sample size could be found to provide an example in this chapter. It is likely that this is more

suitable for certain healthcare settings dependent upon the funding models.

6.4.4.4 Exact sample size formulae: small sample sizes and unequal variances

The sample sizes calculations in equations 6.19-6.21 are based on the standard Normal approx-

imation of the test statistic, and thus assume asymptotic Normality which is only suitable for

large number of clusters. For small studies using these formulae will underestimate sample size

and overestimate power. In addition, Roberts and Roberts [48] noted that in small studies the

optimal allocation ratio they derived (equation 6.19) will give a smaller allocation ratio than is

optimal.

Again for small studies the t-distribution can be used as an approximation to the Normal

distribution and the test statistic under the alternative hypothesis can be approximated with a

non-central t-distribution.

The variance of the effect estimator can be used to give a non-centrality parameter for a pnRCT

[130]

λ =
δ

s.e.(δ)
=

δ√
σ2
ε+mσ2

u
mk + σ2

r
npn

=
δs√

γ (m−1)ρ+1
mk + 1

npn

(6.24)
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Using the non-central t-distribution the power is derived as

1− β = 1− T−1


t1−α/2,v, v,

δs√
γ (m−1)ρ+1

mk + 1
npn


 (6.25)

with degrees of freedom v. The degrees of freedom for the t-distribution are determined by

the number of clusters, which is what we are trying to estimate using sample size calculations.

Equation 6.25 requires an iterative process of estimation, the approximate sample size using

asymptotic methods can be used as an intial sample size (from section 6.4.4.3) and then use an

iterative solution until the required power is reached. As shown in chapter 4, the Satterthwaite

degrees of freedom correction can be used to estimate v, which avoids the assumption of equal

variances and makes a small sample correction for small number of clusters [139, 162]. The

Satterthwaite approximation for effective degrees of freedom is made up of a weighted linear

combination of the variances in this instance given by

v =

(
σ2
ε+mσ2

u
mk + σ2

r
npn

)2

1
k−1

(
σ2
ε+mσ2

u
mk

)2
+ 1

npn−1

(
σ2
r

npn

)2 . (6.26)

For small samples Candel and Van Breukelen [162] used a numerical evaluation to formulate

corrections when using the Normal approximation in iRCTs with clustering in both arms; they

recommend that in a two-tailed test using REML, a correction for 80% and 90% power, is to

add three clusters to each trial arm for a 5% type I error rate and four clusters to each trial arm

for a 1% type I error rate.

6.4.4.5 Unequal cluster size

A pnRCT may have unequal cluster sizes. For example, the CASPER plus (CollAborative

care for Screen-Positive EldeRs) trial evaluated collaborative care for older adults with major

depressive disorder compared to usual care, a total of 20 collaborative care case managers treated

a mean of 11.9 patients ranging between 1 to 46 patients [163].

This section extends the optimal allocation ratio and sample size formulae for the number of

individuals in the control arm from Moerbeek and Wong [131], to now account for the variable

cluster size by including the coefficient of variation, cv, and the mean cluster size (combining

equation 6.14 with 6.22 and 6.23)
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mk

npn
=

√
γ(1 + ((cv2 + 1)m̄− 1)ρ)

c1

c0
(6.27)

and

npn =

(√
γ (1 + ((cv2 + 1)m̄− 1)ρ)

c1

c0
+ 1

)(
Z1−β + Z1−α/2

δs

)2

. (6.28)

If homoscedastic variances and/or equal costs are assumed, γ and/or c1/c0 can be removed from

the above equations. The effect of varying cluster sizes in trials with differential clustering was

investigated by Candel and Van Breukelen [128] using a Monte Carlo simulation study. Under

the simulations scenarios it was found the efficiency loss in the intervention effect estimate was

rarely more than 10%, requiring recruitment of 11% per cent more clusters for the intervention

arm and 11% more individuals for the control arm. Additionally, Eldridge et al. [150] showed in

cRCTs if the coefficient of variation in cluster size is small, less than 0.23, then the correction

on sample size is negligible. However, the coefficient of variation may be high in iRCTs with

treatment induced clustering. In the SHEAR trial there were 402 patients in the intervention

arm treated by 79 clinicians. Clinicians treated between 1 to 35 patients and a coefficient of

variation of cluster size of cv = 1.14 (this was calculated using the data provided by the trial

statistician for work in the following chapter 7 cv = σm/m̄ = 5.72/5.03) [164]. Another approach

for incorporating cluster size viability in sample size calculations would be to take a simulation

approach to sample size. Table 6.3 presents the effect of cv on sample size using equation 6.27

for a number of different scenarios of ρ and cv.

Table 6.3: Effect of coefficient of variation of pnRCT sample size, with 1−β = 0.80, a two-sided
test with α = 0.05, δs = 0.5, γ = 1, and m = 10.

ρ cv
Sample size ignoring cv Sample size including cv

k mk npn Total k mk npn Total

0.05

0.2 9 90 70 160 9 90 70 160

0.4 9 90 70 160 9 90 71 161

0.6 9 90 70 160 9 90 72 162

0.8 9 90 70 160 10 100 74 174

1 9 90 70 160 10 100 76 176

1.2 9 90 70 160 11 110 78 188

0.1

0.2 11 110 75 185 11 110 76 186

0.4 11 110 75 185 11 110 77 187

0.6 11 110 75 185 12 120 79 199

0.8 11 110 75 185 12 120 82 202

1 11 110 75 185 13 130 85 215

1.2 11 110 75 185 14 140 89 229
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6.4.4.6 Statistical software

To facilitate the work of statisticians planning trials it is important that statistical software is

readily available to calculate sample sizes for pnRCTs. Available software for parallel arm pn-

RCTs sample size calculations are summarised in Table 6.4 referring to commonly used statistical

software packages, sample size software and standalone software.

Table 6.4: Software for sample size calculations in pnRCTs

Software Functionality

PASS Not aware of any built-in functionality at this time

nQuery Two group Satterthwaite’s t-test (unequal variance) computes
power and sample size [165], computed using formulas from Moser
et al. [166]

R Not aware of any built-in functionality at this time

SAS Not aware of any built-in functionality at this time

Stata User-written command clsampsi: can compute sample size and
optimal allocation ratio for pnRCTs for continuous and binary
outcomes. Uses the non-central F distribution and Satterthwaite
degrees of freedom [127].

SPA-ML Matlab stand-alone program. Sample size calculations for pn-
RCTs, and fully nested iRCTs with clustering in both arms. Uses
the t-distribution where possible and Hoover [136] degrees of free-
dom [167].

The two statistical software sepcifically designed with pnRCTs in mind are clsampsi Stata

program [127, 168] and SPA-ML [167]. The clsampsi Stata program [127, 168] was developed

to calculate the power or the number of clusters and cluster sizes required to evaluate the

difference of means or proportions in the presence of differential clustering effects in each trial

arm, including pnRCTs. The paper published in The Stata Journal [127] explains that by

default, the program clsampsi calculates power by integrating the non-central F-distribution as

described by Moser et al. [166]. It uses a numerical search to find sample sizes, initially starting

with estimated number of clusters based on the normal approximation as a starting value and

then the number of clusters are increased until sufficient power is reached. This program also

‘roughly’ approximates the optimum allocation ratio between trial arms for a given power.

SPA-ML (Statistic Power Analysis for Multilevel Design) is written in Matlab and available as

stand-alone program for Windows [130, 167]. SPA-ML uses the theoretical sample size formula

for pnRCTs from Moerbeek and Teerenstra [130] and Moerbeek and Wong [131] included in this

chapter. It is based on mathematical relations between sample size and power: no Monte Carlo

simulations are used. The output is provided as text and in graph format. Whenever it was
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possible, instead of the presented Normal approximation, the software uses the t-distribution

to calculate the required sample size/power (this was found out from email correspondence

with the SPA-ML developer hence there is no reference). The degrees of freedom for the t-

distribution were taken from the Hoover [136] paper. As a result there will be some small

discrepancies between the estimations based on the formulas and obtained with the software

SPA-ML, particularly for smaller samples.

Comparison of software

Below shows a comparison of the two sample size software designed specifically with pnRCTs

in mind, SPA-ML and clsampsi for Stata, for the scenario of 80% power, ρ = 0.05, δs = 0.5,

and m = 10. The sample size using approximate asymptotic equations 6.20 and 6.19 gives a

total sample size of 154 (9 clusters of size 10 and 64 individuals in control arm); using clsampsi

this has an estimated power of 78.4% slightly lower than the approximated 80% using Normal

approximation.
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Stata clsampsi gives total sample size = 166, output from Stata below.

Estimated power/sample size using the Satterthwaite approximate F test for two-sample

comparison of means with clustering

Test Ho: mu1 = mu2, where mu1 is the mean in population 1

and mu2 is the mean in population 2

Assumptions: alpha = 0.0500 (two-sided)

Sample 1 Sample 2

Mean (mu) 0 .5

Total St. Dev.(sd) 1 1

Number of Clusters (k) 10 66

Cluster Size (m) 10 1

Cluster Size Var.(varm) 0 0

Sample Size (N) 100 66

Intra-Cluster Corr. (rho) .05 0

SD (summary level) .380789 1

Total Sample Size: 166

Allocation ratio (N2/N1): .66

Ratio of Number of clusters (k2/k1): 6.6

Ratio of Cluster sizes (m2/m1): .1

Satterthwaite’s degrees of freedom: 32.69

Sample size (ni) for integration: 1000

Estimated power: 0.8027
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SPA-ML gives total sample size = 168, output from SPA-ML below.

Individual randomized trial, clustering in experimental condition. Scenario: use cost

function and fixed size of experimental clusters to calculate number of control subjects

and number of experimental clusters. Outcome variable type: continuous. Tail(s) = two;

Type I error rate = 0.05; Desired power = 0.8; Cost ratio = 1; Size of experimental

clusters = 10; Intracluster correlation coefficient = 0.05; Standardized effect size = 0.5;

Variance ratio = 1;

Number of control subjects = 68; Number of experimental clusters = 10; Total sample

size = 168; Total costs = 168; Actual power = 0.8013.

—————————————————————————————

There are no alternative designs.

Summary of sample size formulae for pnRCTs

Figure 6.2 presents a flowchart summarising the sample size formulae for pnRCTs.
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Figure 6.2: Summary of sample size formulae for pnRCTs

Approximate sample size for pnRCT

Fixed cluster size (m)

Number in control arm:

npn =
(√

γ(1 + (m− 1)ρ) + 1
)(

Z1−β+Z1−α/2
δs

)2

Number in intervention arm:
mk = npn

√
γ(1 + (m− 1)ρ

Fixed cluster size (m) &
fixed number of clusters
(k)

Number in control arm:
npn = 1(

δ2s

(Z1−β+Z1−α/2)
2 − γ(1+(m−1)ρ)

mk

)

Number in intervention arm (fixed):
mk

Differential costs Add cost ratio c1
c0

to formulae

Unequal cluster size Add coefficient of variation (cv) to formulae

Exact sample size for pnRCT

Small samples

Sample size derived from power function

1 − β = 1 − T−1


t1−α/2,v, v, δs√

γ
(m−1)ρ+1

mk + 1
npn




where v is the Satterthwaite degrees of freedom.
Recommend use of software clsampsi or SPA-ML due
to the need for iterative calculations.

6.4.5 Sample size formulae for within-arm pnRCT

It is typically true that the analysis of a trial should reflect the design, and so a clustered design

should be followed by analysis which accounts for clustering. Within-arm pnRCTs involve some

of a trial arm having clustered outcomes. An appropriate analysis method which both accounted

for the clustering and obtaining an unbiased intervention effect was not identified in chapter 5.

When this clustering is dependent upon a post-randomisation outcome/intermediate outcome

then it has been shown, in the previous chapter 5, that it is not possible to analyse these types of

trials accounting for the clustering and obtaining an unbiased intervention effect. Consequently,

the use of such designs is cautioned if a large ICC or large clusters are expected (this will result
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in an inflation of the Type I error in the analysis). When within-arm pnRCT designs are used

and clustering is non-random the results of chapter 5 suggest ignoring clustering in the analysis

such as using a linear regression model.

Sample size calculations are often done from a conservative standpoint. Although no appropriate

method was identified in chapter 5 for analysing within-arm pnRCTs (which both accounted for

clustering and provided an unbiased effect estimate), in the near future an appropriate method

of analysis which accounts for clustering may be found. Inflating sample size to account for

within-arm clustering (for example using methods developed for pnRCT sample sizes) would in

future allow newly developed appropriate analysis methods to be used.

6.4.6 Inclusion of baseline measures

Trials often include baseline measurements of the outcome of interest. Making use of this

measure in the analysis by including both the baseline measure and the intervention group as

covariates in the analysis model can improve the precision of the effect estimate of treatment by

decreasing the variability (intra-subject variance is reduced). This consequently may allow us

to study fewer patients for a given power. When the primary outcome is continuous European

Medicines Agency (EMA) guidelines specify that the baseline variable should be included as a

covariate in the primary analysis regardless of which outcome is chosen in this scenario (either

be the raw outcome variable or the change from baseline) [169].

We would need to know how much the adjustment will reduce the standard deviation of the

endpoint. If the correlation between outcome variable and the adjustment variable are known,

the reduction in standard deviation can be estimated. With one outcome follow-up measure and

one baseline measure the adjusted variance using the baseline measure is given by

Variance = σ2(1− ρ2
f ) (6.29)

where ρ2
f is the correlation between the baseline and follow-up measure of the outcome. The

above variance estimator can be substituted into the relevant sample size formula. To halve the

sample size required the standard deviation needs to be halved, this requires a correlation of

0.87
(√

1− ρ2
f = 1

2 → ρf = 0.87
)

.
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6.5 Discussion

This chapter has identified and summarised methods for sample size calculations in pnRCTs

with continuous outcomes. Methods have been shown to calculate the number of clusters in

the intervention arm when there is a fixed cluster size and to calculate the optimum number of

controls, incorporating costs, unequal cluster sizes, inclusion of baseline measures. Asymptotic

sample size formulae exists for pnRCTs assuming Normal approximation. Exact sample size

methods are also available in specific software SPA-ML and clsampsi. The asymptotic methods

have been extended to include the simple correction for coefficient of variation to account for

variation in cluster size. This is similar to the commonly used method for cRCTs and simple

to implement thus should enable widespread use of this approach as opposed to a potentially

more complicated method. However, this will likely have small effect on sample size unless the

coefficient of variation is large. Further work investigating the coefficient of variations seen in

pnRCTs would be of interest to inform appropriate sample size adjustments.

There is a balance to be met between generalisability, internal validity, and pragmatism when

designing trials in which we believe the care provider or group effects have an influence on the

outcome. As in cRCTs, precision levels in pnRCTs can typically be improved if more clusters

and fewer individuals per cluster are sampled for the study.

However, the extra costs of training and recruiting staff to deliver interventions or running extra

groups needs to be considered in parallel with the reduction in sample size that increasing the

number of clusters and reducing the cluster size will lead to. Although too few clusters will result

in unreliable estimates of the ICC and results with limited generalisability to care providers or

groups outside the trial.

Chapter 5 evaluated the effect of clustering in within-arm pnRCTs. No method of analysis eval-

uated was able to account for this within-arm clustering dependent upon intermediate response.

However, taking a conservative standpoint it may be appropriate to still inflate sample size to

allow for clustering and in the near future an appropriate method of analysis which accounts for

clustering may be found.

Sample size calculations require estimates of various measures. This chapter demonstrates that

the ICC is key in any trial with clustering. There is a need for more empirical ICC estimates

from iRCTs with clustering, the next chapter 7 provides empirical estimates of ICCs from 15

HTA iRCTs with treatment induced clustering.
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6.6 Summary

This chapter describes the sample size formulae for pnRCTs with continuous outcomes. Asymp-

totic sample size formulae exists for pnRCTs assuming Normal approximation. Exact sample

size methods have also been identified and explicitly expressed in familiar sample size termi-

nology in this chapter. The asymptotic methods have been extended to include the simple

correction for coefficient of variation to account for variation in cluster size.

These methods can be used in conjunction with recommendations from both the simulation

chapters which evaluate analysis methods, chapters 4 and 5, and the following chapter 7 which

provides empirical ICC estimates and background information to inform future sample size

calculations.
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Chapter 7

Review of individually randomised

trials with clustering

7.1 Introduction

Previous chapters highlighted that clustering commonly occurs in individually randomised trials

in health research. Chapter 6 presented methods to account for clustering of outcomes in the

design of iRCTs, these methods require an estimate of the ICC. The correlation of outcomes is

increasingly being recognised in both the design and analysis of such trials. However, there is

poor transparency of the methods used, how clustering is reported in trial reports, and a limited

evidence base of ICCs used and observed for future studies. This chapter explores the extent

and reporting of intervention induced clustering in HTA funded iRCTs, adds to the evidence of

ICCs used in sample size calculations and empirical ICC estimates, and provides exemplars for

design and reporting.

Clustering in iRCTs has been recognised in methodology literature [38, 39, 48], this study in-

vestigates how this has translated into application in publicly funded trials and provides further

evidence of ICCs in such trials. It was anticipated that the increase in publications related to

clustering in iRCTS has raised awareness of this area. CONSORT guidelines are often used by

trialists not only when reporting trials but also as a guideline when designing and analysing

trials to ensure the relevant criteria will be met when reporting results. Additionaly, the CON-

SORT extension for nonpharmacologic treatments (CONSORT-NPT) [17, 44] states that where

applicable clustering by care provider or centre should be accounted for.
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This chapter presents a review of the extent and reporting of clustering in iRCTs with interven-

tion induced clustering and provides evidence of ICCs. HTA reports of individually randomised

single or multi-centre RCTs are reviewed and trials with potential intervention induced cluster-

ing identified. The NIHR is a major funder of research into the clinical and cost effectiveness

of healthcare interventions and tests in the UK, with the NIHR HTA funding the largest pro-

gramme within this. The HTA programme funds both researcher-led and commissioned health

related research including RCTs [170]. Information from the HTA trials are extracted, relating

to: trial characteristics, sample size, clustering characteristics, information on ICC, and whether

clustering was accounted for in each of the design, statistical analysis, and reporting of the trial.

Data completeness in relation to relevant CONSORT items is recorded.

The chapter acknowledges the information provided by various corresponding authors and trial

statisticians of the included HTA studies. In particular, Beth Stuart of the University of

Southampton for providing a preprint of a manuscript of their work investigating clustering

at the general practice level in iRCTs in primary care [171].

7.2 Chapter aims

The main aim of this chapter is to determine the extent and quality of reporting of clustering

in iRCTs with intervention induced clustering and provide empirical estimates of ICCs. The

specific objectives are:

1. review the extent and reporting of clustering in single and multi-centre individually ran-

domised control trials funded and published by the UK’s NIHR HTA Programme;

2. add to the evidence on clustering in iRCTs by reporting ICCs for a number of outcomes;

3. provide exemplars of well-reported iRCTs with clustering, which can be used to enhance

adequate trial reporting.

7.3 Background

Investigators are frequently hampered when planning the sample size of trials with clustering

due to a lack of prior information on the probable size of the ICC [55]. The ICC is an important

component of sample size calculation. To better inform the design of trials with clustering

168



empirical evidence of ICCs are required, from both trials and observational studies. The ICC

will vary depending on the outcome (and follow-up time), population, intervention, and setting

and the method of analysis [172]. Therefore, a rich resource of estimates are needed from which

to choose from to enable consideration of the planned study population and design

Several studies have detailed ICC estimates in various trial settings for cRCTs, examples include:

ICCs from primary care [63]; primary and secondary care implementation studies [172]; maternal

and paternal health [173]; low and middle income countries [174]; and school based studies [175].

However, fewer studies exist reporting ICC estimates from iRCTs with clustering, examples

include: surgical trials [46], psychotherapy trials [57], and general practice level clustering [171].

A small number of studies have identified and reviewed the extent of clustering in iRCTs in

different study areas, including: public health and behavioral health journals [43]; orthopaedic

surgery [176]; British Medical Journal (BMJ) [41], and surgical trials [46]. Overall these reviews

concluded that clustering in iRCTs is highly prevalent and commonly not accounted for in

either the design and/or analysis of the trial, resulting in possibly misleadingly precise effect

estimates. Of the 42 iRCTs identified in the review by Lee and Thompson [41], 38 had some

form of clustering, 17 (40%) with clustering by health professional imposed by the design of the

trial and only six of the 38 (16%) mentioned clustering as an issue. Pals et al. [43] reviewed

published articles across four public health and behavioural health journals which identified 34

articles reporting results of iRCTs in which treatment was delivered in groups. Thirty two (94%)

used analysis at the individual level, ignoring the group level clustering entirely and six (18%)

articles reported size of groups/clusters (between 6-12), and three reported number of groups

per trial arm.

As indicated previously, ICC estimates do exist from a small number of studies which collate

estimates from iRCTs with clustering specifically. Cook et al. [46] calculated ICCs from ten

multi-centre surgical trials: 198 ICC estimates for both centre and surgery level. The median

(range) number of centres and surgeons was 19 (8-27) and 49 (16-191), respectively. The largest

ICCs came from outcomes such as operation time and length of stay (related to cost), hence,

they concluded that clustering was likely to have the most impact on economic evaluation.

Baldwin et al. [57] calculated ICCs from psychotherapy trials, mainly behavioural or cognitive

behavioural. They included 20 studies and report 495 ICC estimates relating to therapists. The

number of therapist sessions ranged between 1 to 23, number of therapists ranged between 2

to 581, and average number of patients per therapist ranged from 2.2 to 51.1. General practice
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level clustering in iRCTs was investigated in a recent paper by Stuart et al. [171]. The paper

evaluated 17 primary care studies to provide ICC estimates by GP practice, concluding that

iRCTs in primary care should also take account of clustering in sample size (particularly when

cluster sizes are expected to be large). See Appendix D.1 for links to ICC estimates from other

studies.

7.3.1 What ICCs are of interest?

In iRCTs there may be different levels of clustering either related to intervention or centre in a

multi-centre trial. Details of different types of clustering were presented in more detail in chapter

2 section 2.7.2. The main focus of this study is to investigate intervention induced clustering,

however, where potential centre clustering is also present this is included.

7.3.1.1 Intervention induced ICC

Intervention induced clustering refers to the clustering which occurs due to the nature of the

intervention itself. For example, a healthcare provider delivered intervention or a group inter-

vention. For intervention induced clustering it can be realistically assumed that ICCs at baseline

will often be zero. An instance where this may not be the case could be when more experienced

care providers treat patients with worse baseline outcome measures. Consequently, the baseline

ICC will be non-zero as an artefact of the design, patients are effectively sorted and more similar

ones put in the same group. It is the intervention induced ICCs at follow-up that are generally

are of interest as they will effect the precision of the effect estimate thus used when designing

iRCTs with intervention induced clustering.

7.3.1.2 Centre ICC

There may be more than two-levels of hierarchy in iRCT data. Large iRCTs in health research

are commonly run across multiple centres, for example multiple geographical regions, NHS hos-

pitals or mental health clinics. Multi-centre studies recruit participants across multiple centres

to both achieve the required sample size and to improve generalisability of findings. Participants

from the same centre may be expected to have similar outcomes implying a positive correlation

and possibly the need to account for the centre based clustering.

A multi-centre iRCT design can result in two or more levels of hierarchy in the data. For
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example, the Stretching and Strengthening for Rheumatoid Arthritis of the Hand (SARAH)

study was a randomised multi-centre trial to evaluate the clinical and cost-effectiveness of an

exercise programme in addition to usual care for Rheumatoid Arthritis. The trial included four

levels of data hierarchy from: seventeen NHS trusts in England, comprising 21 rheumatology

and therapy departments, 48 hand therapists, and finally individual level variance [53]. However,

at times it can be difficult to include multiple levels of variability in the analysis model, adding

extra levels of variability can result in non-convergence (particularly in small samples).

Randomisation procedures in multi-centre trials often involve permuted blocks stratified by

centre. These are used to ensure similar proportions of intervention assignments across the

multiple centres, helpful for practical reasons and/or as centre is expected to be confounded

with other prognostic factors. EMA guidelines recommend that stratification variables used in

the randomisation procedure are adjusted for in the primary analysis:

“If centre was used for stratification in a multi-centre trial problems might arise in
case of many centres recruiting small numbers of patients (‘small centres’). Adjusting
for many small centres might be possible but raises analytical problems for which
there is no best solution. Analyses either ignoring centres used in the randomisation
or adjusting for a large number of small centres might lead to unreliable estimates
of the intervention effect and P-values that may be either too large or too small.”
[169, p.7]

When outcomes are continuous there are two key methods of adjusting for centre in the analysis,

using models which use fixed centre effect or random centre effect. Including fixed centre effects

can be helpful when the centre effects themselves are of interest. However, where there are a

large number of centres relative to number of patients it can be difficult as this can involve

estimating a large number of parameters compared to the total sample size.

In the literature there are different interpretations of analysis using fixed or random centre effects.

Using fixed centre effects, the results are only applicable to the centres included in the trial.

When using random centre effect it has been suggested that results are generalisable to centres

not included in the trial. However, Kahan and Morris [177] reason that this interpretation of

results using random centre effect assumes the centres in a trial are randomly sampled from

the population of centres. It is rarely the case that centres are a true random sample, centres

are typically chosen based on their willingness, readiness and ability to participate and recruit

participants according to trial protocols. Consequently, it can be argued that both fixed and

random centre effects adjustments for centres have the same interpretation. As Kahan and
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Morris [177, p.1139] notes “any generalisation to patients or centres outside the trial should be

carried out on the basis of external validity, rather than on the basis of a particular statistical

model”.

Random centre effects have been shown to perform comparably or better than fixed centre effects

and were robust to non-Normal centre effects and centre outliers [177]. An additional advantage

of random centre effects is that clustering is explicitly modelled and thus the different levels of

variability in the data can be investigated [40]. When using random centre effects with a small

sample size a degrees or freedom correction is recommended to ensure coverage is maintained

at nominal levels. Consequently, random centre effects can offer advantages over fixed centre

effects.

7.3.2 Reporting guidance for trials with intervention induced clustering

Clear and consistent reporting of trials is vital for readers to understand the design and analysis

and to fully interpret the results. This study aimed to review the reporting of clustering in

single and multi-centre iRCTs, this was done in relation to relevant CONSORT items. The

following is a description of the identification of relevant CONSORT items with features specific

to clustering in single and multi-centre iRCTs.

The CONSORT 2010 statement consists of guidelines for reporting parallel group randomised

trials [16]. It provides guidance on reporting RCTs, focussing on parallel group trials and

includes a 25-item checklist and a participant flow diagram template. The CONSORT statement

has been extended for various specific types of designs and interventions. Two CONSORT

extensions specifically relevant for iRCTs with clustering are the CONSORT extension to cluster

randomised trials (CONSORT-cluster) [34] and the CONSORT-NPT [17, 44].

Other guidelines have crossovers with the CONSORT statements including the Template for In-

tervention Description and Replication (TIDieR) checklist and Criteria for Reporting the Devel-

opment and Evaluation of Complex Interventions (CReDECI 2) in healthcare [178]. CONSORT-

NPT items 5, 5a, 5b, 5c, 5d are consistent with the TIDieR checklist.

Table 7.1 presents the relevant reporting items from the CONSORT-cluster and CONSORT-

NPT. The CONSORT-NPT statement was originally published in 2008 and recently updated in

2017. In extension to the CONSORT 2010 statement for parallel group randomised trials both

the CONSORT-cluster and the CONSORT-NPT explicitly instruct authors to, where applicable,
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report details of whether and how clustering by care providers or centres was addressed in

the sample size and statistical methods, and results (incorporating into the participant flow

diagram). A further results section checklist item exists in the CONSORT-cluster, item 17a.

Item 17a instructs authors to report a coefficient of intra-cluster correlation (ICC or k) for each

primary outcome. An equivalent checklist item for the results section does not exist in the

CONSORT-NPT.

Table 7.1: Relevant CONSORT reporting checklist items

Section/
Topic

Item
no.

CONSORT-cluster CONSORT-NPT

Methods

Participants 4a None When applicable, eligibility
criteria for centres and for care
providers

Sample size 7a Method of calculation, number
of clusters(s) (and whether
equal or unequal cluster sizes
are assumed), cluster size, a
coefficient of intracluster
correlation (ICC or k), and an
indication of its uncertainty.

When applicable, details of
whether and how the clustering
by care providers or centres was
addressed

Statistical
methods

12a How clustering was taken into
account

When applicable, details of
whether and how the clustering
by care providers or centres was
addressed

Results

Participant
flow (diagram
is strongly
recommended)

13a For each group, the numbers of
clusters that were randomly
assigned, received intended
intervention, and were analysed
for the primary outcome

The number of care providers or
centres performing the
intervention in each group and
the number of patients treated
by each care provider or in each
centre

Baseline data 15 Baseline characteristics for the
individual and cluster levels as
applicable for each group

When applicable, a description
of care providers (case volume,
qualification, expertise, etc.)
and centres (volume) in each
group.

Outcomes and
estimation

17a Results at the individual or
cluster level as applicable and a
coefficient of intracluster
correlation (ICC or k) for each
primary outcome

None

Figure 7.1 presents the explanation for the extension to CONSORT-cluster extension item 17a.

A similar explanation could also be reasoned for reporting the ICC for each primary outcome

analysed in trials of non-pharmacological treatments (when applicable). It was unclear from the

published literature why such a statement was not included. Donner and Klar [55] state that

for trials with more than one level of clustering, ICCs at each level should be reported and also
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Figure 7.1: Explanation of Item 17a taken from CONSORT statement cluster extension [34]

“When reporting the results of a cluster randomised trial, point estimates with con-
fidence intervals should be reported for primary outcomes. Given the impact of the
extent of the intracluster correlation on the power of the study, the intracluster cor-
relation coefficient or k statistic, for each outcome being analysed should also be
provided. This information will allow readers to assess the appropriateness of the
original sample size calculations as well as the magnitude of the clustering for each
outcome. Showing both adjusted and unadjusted estimates would provide another
indication of the extent of the clustering. Several authors have advocated publishing
intracluster correlation coefficients to allow them to inform the development of future
cluster trials in similar settings.”[34, p.10-11]

argue that a complete report should include estimates of between- and within-cluster variance

for each ICC estimate. The CONSORT-NPT first author Isabelle Boutron was contacted by

myself to discuss their reasoning for not including this item in the original CONSORT-NPT

in 2008 or the update in 2017. Boutron fed-back that it was not added as people felt it was

already good to have the clustering/ICC addressed in the methods and it does not apply to all

NPT trials. Although similar can be said for the CONSORT-NPT methods items 7a and 12a

as these do not apply to all NPT trials. Boutron also stated that it would be a very important

point to discuss for further updates. Consequently, this study investigates how many trials are

already reporting the ICC for each primary outcome analysed and identifies some examples of

good practice.

7.4 Methods

This section describes the methods used to conduct the review, providing rationale for the

process undertaken.

7.4.1 Trial identification

Reports of iRCTs published in the NIHR HTA Journal from January 2013 to December 2017

were reviewed. A previous review investigating recruitment and retention in trials funded and

published by the UK HTA Programme had been conducted by statisticians at the University of

Sheffield up to the end of April 2016 [179]. Access was gained to the data from this review in an

Excel file. This was updated to cover up to 31st December 2017 and data extraction undertaken

relating to clustering and ICCs for all relevant trials between 2013 and 2017.
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Trials published between 2013 and 2017 inclusive were chosen as the interest was in recent re-

porting to understand current practice. It was envisaged reporting and accounting for clustering

in recently published trials will be improved compared to past trials due to the higher prevalence

of published papers and specific CONSORT guidelines.

HTA publishes research on the effectiveness, costs and broader impact of health technologies for

those who use, manage and provide care in the NHS. The NIHR HTA funding is a national peer-

reviewed funding programme. Reports are published in the HTA Journal if they have resulted

from work for the NIHR HTA Programme and they are of a sufficiently high scientific qual-

ity as assessed by the external reviewers and journal editors (https://www.journalslibrary.

nihr.ac.uk/hta/about-the-hta-journal.htm). HTA Journal trial reports were selected for

a number of reasons. They are of high quality and provide detailed trial, design and analysis in-

formation. HTA Journal reports are comprehensive, hence, it was anticipated that the reporting

of design and analysis including the reporting of ICCs in results sections of these trial reports

would be generally more detailed than other journal publications and likely to contain ICC if

reported at all. Limiting the review to publicly funded trials published in the HTA Journal

identified trials from medicine, surgery and therapy from a range of disease areas.

HTA Journal reports were obtained from the NIHR Journals Library website (http://www. jour-

nalslibrary.nihr.ac.uk/hta). Efforts were made to check publicly available sources for additional

information about identified studies. If published, the International Standardised Randomised

Controlled Trial Number (ISRCTN) was used to check the ISRCTN register of clinical tri-

als for any additional information, a trial website or any previously unobtainable trial reports

(http://www.isrctn.com/). Author name, study name and ISRCTN number were used to iden-

tify published trial papers and trial protocols where available. The HTA Journal report was

used as main source of information if any discrepancies in reporting existed.

7.4.2 Inclusion/exclusion criteria

Trials included in the review were single and multi-centre RCTs that were either fully or partially

randomised and where recruitment to the trial was finished. Trials were not restricted to iRCTs

with clustering in only one arm. Though this design is common, the aim of this review was to

capture iRCTs with potential intervention induced clustering regardless of the the number of

trial arms this occurred in. Results would thus be more generalisable and useful to a broader

range of trials designs. Nested parallel trials as part of another RCT and trial reports of two
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or more parallel RCT were included. Trials with a continuous primary endpoint were included

(the focus of this thesis).

During review, trials with the following designs were excluded: cluster randomised trials, trials

with non-continuous primary endpoints, adaptive designs, and pilot or feasibility trials. Feasi-

bility studies are not designed to provide robust effect estimates, hence, estimates of the ICC

from such trials may not be reliable. Additionally, the reporting of feasibility and pilot studies

would follow the CONSORT extension for pilot and feasibility trials [180]. Ethics approval was

not required for this study as analysis was based on either published results or existing datasets

from previously conducted studies (which had appropriate approvals in place).

7.4.3 Data extraction

7.4.3.1 Trial information

The standardised data extraction form from the original University of Sheffield statistics review

was obtained from the authors with approriate permissions. It included detailed trial information

from the HTA reports. Data from the original form used in this review were: the trial design,

the clinical area, intervention type, type of control, number of arms, single or multi-centre and

number of centres, recruitment setting, the number and timing of follow-up visits, and the sample

size. Data extraction was updated to include trials published up to 31st December 2017 [179].

Trials with potential intervention induced clustering were identified. For these trials additional

data were extracted for the purpose of this review relating to clustering and ICCs, including:

potential clustering both by healthcare provider/group intervention and by centre, number of

clustered arms, whether clustering was recognised, ICCs used in sample size, evidence source

for ICCs, results ICC, and information on number and size of clusters.

ICC estimates (and 95% confidence intervals), where available, were taken from trial reports.

When observed ICCs were not reported contact was made with the corresponding author to

ask them to either provide this information or the corresponding data for relevant calculations,

with follow-ups when no initial response was received. If no response was received by 31st June

2017 no further follow-up was taken, this provided time for analysis and writing-up of results.

The ICC can be estimated either from an ANOVA or a mixed effects model. An advantage

of using a mixed effects model is that covariates can be included in the model. Including any

potential confounders as covariates whilst estimating the ICC represents the kind of analysis
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that is undertaken in practice. Where possible the ICC was requested to be from an adjusted

mixed effects model to reflect the statistical analysis of a trial.

For both intervention induced clustering and centre based clustering the median ICC, interquar-

tile range (IQR) and range for all trials and all outcomes were calculated and specifically for the

primary endpoint (primary outcome at primary follow-up). Where the ICC was reported as <

or ≤ it was rounded up to that number for calculations (for example ≤ 0.001 rounded to 0.001).

7.4.3.2 Reporting quality

Data were also extracted based on the reporting of relevent CONSORT extension items related

to clustering. A seven item checklist was developed based on extension checklist items identi-

fied from the CONSORT-cluster [34] and CONSORT-NPT [17, 44] statements in section 7.3.2.

Items were identified that deserved special consideration when reporting in iRCT with potential

intervention induced clustering. Adherence to the following items was recorded:

1. Methods - When applicable, eligibility criteria for centers and for care providers (CONSORT-

NPT 4a);

2. Methods - When applicable, details of whether and how the clustering by care providers

or centers was addressed (CONSORT-NPT 7a);

3. Methods - When applicable, details of whether and how the clustering by care providers

or centers was addressed (CONSORT-NPT 12a);

4. The number of care providers or centers performing the intervention in each group and

the number of patients treated by each care provider or in each center (CONSORT-NPT

13a);

5. As 4 above in diagram form (CONSORT-NPT 13a);

6. Results - When applicable, a description of care providers (case volume, qualification,

expertise, etc.) and centers (volume) in each group (CONSORT-NPT 15);

7. Results - Where applicable, to report a coefficient of ICC for each primary outcome (based

on CONSORT-cluster 17a)

The CONSORT-cluster item 17a was translated for applicability to CONSORT-NPT: “where

applicable, to report a coefficient of ICC for each primary outcome”. Reporting adherence of
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these items was recorded according to the following system of completeness: “absent”, “totally

complete”, “partially complete”, “cannot access” and “not applicable”. The number and pro-

portion of studies meeting at least partial, compliance in reporting criteria for each checklist

item was calculated. Furthermore, a total measure of the number and proportion of checklist

items meeting total and at least partial compliance criteria was calculated.

See Appendix D.2 for further details on what the data extraction included.

7.5 Results

7.5.1 Overview

Figure 7.2 details the selection of studies in this review. In total 399 reports were published

between January 2013 and December 2017 in the HTA Journal and 103 of these were reports of

iRCTs (excluding pilot/feasibility studies). Of the 103 trials, 48 (47%) had a continuous primary

endpoint. Twenty nine (60%) of which were categorised as having potential intervention induced

clustering. Intervention induced clustering relates to either healthcare provider or group based

clustering.

Figure 7.2: Flowchart representing process for a review of trial reports published in the Health
Technology Assessment Journal between 2013 and 2017 inclusively.

HTA Journal reports published between 2013 - 2017 (n = 399)

Individually randomised trials identified from HTA
Journal published between 2013 - 2017 (n = 103)

Trials excluded (n = 55,
primary endpoint not continuous)

Individually randomised trials analysed (n = 48)
- With treatment induced clustering (n = 29)

The 29 trials identified as having potential intervention induced clustering are summarised in

the subsequent sections.
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7.5.2 Trial characteristics

The characteristics of the 29 trials included in the review are summarised in Table 7.2 and Table

7.3. The majority, 72% (21/29), of trials were parallel group two arm trials. Included trials cov-

ered a range of intervetnions: therapy, surgery, complex intervention, and those categorised as

other (for example a group weight management programme in the SWAP trial [181]), with ther-

apy the most common intervention type 41% (12/29). No drug intervention trials were identified

as having potential intervention induced clustering due to the nature of such trials. Trials were

most commonly in the clinical areas of mental health 31% (9/29) and orthopaedics/rheuma-

tology/musculoskeletal 28% (8/29). The trial settings were evenly spread across hospital 28%

(8/29) general practice 28% (8/29) and community settings 24% (7/29).

The median number of centres was 17 (IQR 4.5 to 35, range 1 to 94). The median number of

intervention induced clusters was 20 (IQR 11 to 70, range 1 to 244), where number of clusters

was available in reports for 21 trials explicitly and derived for one trial from the report.
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Table 7.2: Summary of studies included

ID Intervention(s) Healthcare
providers

Number of

Participants Clustered
arms

Arms Centres Intervention
clusters*

1 AESOPS - stepped care
intervention for hazardous
alcohol users [95]

Step 1 -
practice/research
nurse. Step 2 -
therapist.

529 2 2 51 -

2 AIM - close contact casting vs
open surgical reduction and
internal fixation for unstable
ankle fractures in patients > 60
years [182]

Surgeon 620 2 2 24 100

3 Body psychotherapy (group
based) for Schizophrenia
patients [183]

Dance movement
psychotherapist

356 2 2 5 17

4 Booster - ”booster”
interventions to sustain
increases in physical activity in
middle-aged adults in deprived
neighbourhoods [184]

Research
assistants

282 2 3 1 6

5 BREATHE - self-guided
intervention vs. ‘face-to-face’
physiotherapy for asthma [185]

Physiotherapist 655 1 3 34 1

6 CASPER - low-intensity
collaborative care for
screen-positive subthreshold
depression [186]

Case manager
(mental health
worker/Improv-
ing Access to
Psychological
Therapies
(IAPT) worker)

705 1 2 32 18

7 CASPER plus - low-intensity
collaborative care
screen-positive major
depression [163]

Case manager
(mental health
worker/IAPT
worker)

485 1 2 74 20

8 CHAMP - CBT for health
anxiety [187]

Health
professional or
psychologist

444 1 2 5 11

9 CLASS - foam sclerotherapy vs.
endovenous laser ablation vs.
surgery for varicose veins [188]

Surgeon 798 3 3 11 -

10 COBRA -behavioural activation
(BA) vs. CBT for depression
[189]

BA - mental
health worker.
CBT -
psychological
therapist.

440 2 2 36 10 & 12

11 eTHoS - stapled
haemorrhoidopexy vs.
traditional haemorrhoidectomy
for haemorrhoids [190]

Surgeon 777 2 2 29 -

12 Families for health - group
family programme for
overweight children. [13]

Trained
facilitators

115 1 2 3 -

13 Getting out the house - outdoor
mobility rehabilitation
programme for stroke patients
[191]

Occupational
therapists and
physiotherapists

568 1 2 15 29

14 IMPACT - CBT vs. short-term
psychoanalytic psychotherapy
(STPP) vs. brief psychosocial
intervention (BPI) for
adolescents with unipolar major
depression [192]

CBT - CBT
trained staff;
STPP - Child
Psychotherapist;
BPI - therapist.

372 3 3 15 38, 44 & 63
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Table 7.2 continued from previous page

ID Intervention(s) Healthcare
providers

Number of

Participants Clustered
arms

Arms Centres Intervention
clusters*

15 KAT - knee arthroplasty
with/without: metal backed
tibial component
(KATMETAL), mobile bearing
between tibial and femoral
components (KATMOBILE),
patella resurfacing
(KATPATELLA) [193]

Surgeon 2352 2 8 34 116

16 OCTET - supported
computerised CBT vs. guided
self-help vs waiting list for
high-intensity CBT for OCD
[11]

Psychological
wellbeing
practitioner

475 2 3 14 93

17 PD REHAB - physiotherapy
and occupational therapy for
Parkinson’s [194]

Physiotherapist
and occupational
therapist

762 1 2 38 -

18 PEPS - psychoeducation with
problem-solving therapy for
personality disorder [195]

Mental health
nurse/psychology
graduates with
clinical
experience

306 1 2 3 18

19 PhysioDirect - physiotherapist
initial assessment and telephone
advice, with face-to-face care
when necessary for
musculoskeletal problems [196]

Physiotherapist 2256 2 2 94 32

20 POWeR+ - brief advice vs.
internet-based behavioural
intervention with: nurse
support face-to-face vs. remote
for obesity [197]

Nurse 818 2 3 56 -

21 ProFHER - surgery vs.
non-surgical treatment for
fracture of the proximal
humerus [198]

Surgeon 250 1 2 33 66

22 SARAH - exercise programme
for hands and upper limbs for
rheumatoid arthritis [53]

Hand therapist 490 1 2 17 48

23 SHEAR - brief advice for
excessive alcohol consumption
[164]

Clinician 802 1 2 3 79

24 START - manual-based
individual therapy for dementia
carers [199]

Psychology
graduate

260 1 2 4 10

25 STRIDE - CBT for fear of
falling in older people [200]

Health-care
assistant

415 1 2 3 3

26 SWAP - group weight
management programme vs.
practice nurse intervention in
areas of high social deprivation
[181]

Research health
psychologist

330 2 2 2 4 & 15

27 TIME-A - music therapy for
children with autism

Music therapist
[201]

445 3 3 7 -

28 UK DRAFFT - Kirschner-wire
fixation vs. locking-plate
fixation for fracture of the
distal radius [202]

Surgeon 461 2 2 18 244

29 UKUFF - open vs. arthroscopic
rotator cuff repair [203]

Surgeon 662 2 2 47 20

* Where more than one number reported this refers to no. clusters in different arms if more than one arm
clustered. Some trials with more than one clustered arm reported no. of clusters overall. - : number of
clusters not reported.
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Table 7.3: Trial characteristics

Characteristic n (%)
Trial design

Parallel 27 (93)
Factorial 1 (3)
Crossover 1 (3)

Study arms
Two 21 (72)
≥Three 8 (28)

Setting
Hospital 8 (28)
General practice 8 (28)
Mixed 4 (14)
Community 7 (24)
Other 2 (7)

Therapeutic area
Mental health 9 (31)
Orthopedics/ Rheumatology/ Musculoskeletal 8 (28)
Obesity 3 (10)
Other 9 (31)

Intervention type
Therapy 12 (41)
Surgery 5 (17)
Complex intervention 3 (10)
Other 9 (31)

intervention induced clustering
Care provider 25 (86)
Group & care provider 4 (14)

7.5.3 Reporting of checklist items specific to clustering

Figure 7.3 represents data completeness in relation to CONSORT guidelines and clustering

information. As shown in Figure 7.3, suboptimal reporting compliance was observed in items

relating to sample size (7a), participant flow diagram (13a) and outcomes (17a). The following

proportions exclude items 17a - Outcomes and 13a - Participants flow diagram as these are

not explicitly required according to CONSORT-NPT. The proportion of trials meeting at least

partially complete reporting (of items 4a, 7a, 12a, 13a, and 15) was 48% (14/29) and meeting

complete reporting was 21% (6/29). Regarding the suggested CONSORT-NPT addition item 17a

(“were applicable, a coefficient of ICC for each primary outcome”), 24% (7/29) and 28% (8/29)

partly and fully reported, respectively. Item 17a is not a checklist item included in CONSORT-

NPT at present, it was identified as a key component of reporting for iRCTs with intervention

induced clustering. Reporting of item 13a was separately recorded relating to participant flow

and the participant flow diagram (which is strongly recommended to report a participants flow

diagram in the CONSORT guidelines).
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Figure 7.3: CONSORT adherence related to clustering items over all trials included in review

4a Participants

7a Sample size

12a Statistical methods

13a Participant flow

13a Participant flow diagram

15 Baseline data

17a Outcomes

0% 25% 50% 75% 100%

Absent Partly complete Complete Not applicable
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7.5.3.1 Sample size calculations

The trial characteristics related to sample size calculations are summarised in Table 7.4. Among

the 29 studies sample size calculations were reported as follows: 52% (15/29) at the individual

level, 38% (11/29) took account of ICC at intervention level, 3% (1/29) took account of ICC at

centre level, and 3% (1/29) took account of ICC at intervention and centre level. The ProFHER

trial [198] was classified as ‘other’ regarding whether the sample size calculations took account of

ICC, the sample size calculation explained that it did not take account of any potential cluster

effect as they did not expect there to be many patients treated by individual surgeons. The

most common intervention level ICC used in sample size calculations was 0.02 (range between

0.01 to 0.1).

Table 7.4: Trial characteristics relating to sample size calculations

Characteristic n (%)

Sample size calculations
Reported at individual level 15 (52)
Reported to account for ICC (intervention level) 11 (38)
Reported to account for ICC (centre level) 1 (3)
Reported to account for ICC (centre & intervention level) 1 (3)
Other 1 (3)

Sample size ICC intervention level
0.01 - 0.025 4 (14)
0.026 - 0.05 5 (17)
≥ 0.06 3 (10)
None 17 (59)

Sample size ICC centre level
0.04 1 (3)
0.05 1 (3)
None 27 (93)

ICC evidence source
None reported 10 (34)
Previous trial/s 3 (10)
Previous observational research 1 (3)
Not applicable* 15 (52)

*Sample size calculation did not account for clustering

7.5.3.2 Reasons stated when clustering is not accounted for

This section explains and provides accounts of trials included in this review that did not ac-

count for clustering but provided reasoning for this decision. Explanations were identified either

through published journal reports or through correspondence with authors and trial statisticians

when contacted for more information regarding the ICC.
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Three key reasons emerged for not accounting for clustering, including:

1. lots of small clusters;

2. difficult to define clusters;

3. non-convergence mixed effects models with cluster as a random effect.

Some trials provided more than one of these reasons. More detail on each of these reasons is

provided in the following paragraphs.

Firstly, a number of the trials either had clusters of size one or very small clusters, hence, the

effect of clustering by healthcare provider was expected to be negligible or zero. For instance, the

UK DRAFT trial [202] did not include a random effect for surgeon or centre: surgeon because

surgeons mainly treat only one person (number of patients treated per surgeon ranged from one

to 27) and they used a likelihood ratio test to test for centre effect. However, it is generally

recommended not to test for significance of clustering in trials as the test is not powered.

Results stated that “any individual surgeon operated only on a small number of patients (n =2

or 3) enrolled in the study; 88% of surgeons (215 out of 244) treated fewer than three study

participants. This greatly reduces the likelihood of a surgeon-specific effect on the outcome at

any one centre, that is one particularly good or bad surgeon dominating the other surgeons in

the study” [202, p.25]. On the opposite end of the spectrum was the BREATHE trial [185] in

which all participants involved in the face-to-face physiotherapy arm were treated by a single

physiotherapist.

Secondly, was the issue of undefined or hard to define intervention induced clusters (common

in primary care and pragmatic trials). This was evident in the PD REHAB trial [194], from

further correspondence with the trial statistician they explained that they did not look at the

ICC due to the large number of permutations of staff that worked with the patients making

it unmanageable. For example, the patient may have seen the same occupational therapist

each time, but seen different physiotherapists, or seen by multiple physiotherapists and multiple

occupational therapists. The recording of cluster definition can also be an obstacle to accounting

for it. The UKUFF trial [203] was undertaken in 19 centres and in many of the centres more than

one surgeon participated. The physiotherapy post-surgery was part of routine care, it was not

recorded who did it or whether it was all done in the hospital where the surgery was performed.

Similarly, the PhysioDirect trial [196] did not collect data related to clustering at the level of the

care provider. The corresponding author explained that individual physiotherapists providing
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consultations were recorded in the PhysioDirect software held within the NHS, but not within

the research data. In addition, participants had contact with more than one provider and given

the brief nature of the intervention (assessment and advice) there was not considered to be

any likelihood of major intervention-induced clustering affecting the estimates of effect. In the

TIME-A trial [201] the NIHR funded part of a larger international trial and data on therapists

was not held in this dataset, the methods section specified that clustering was accounted for in

the analysis, however, ICC was not reported in the final results.

Thirdly, mixed effects models did not converge when intervention induced clustering was added

as a random effect in analysis of some of the trials. For example, the Families for Health trial

[13] planned to fit a three-level hierarchical mixed-effects model including a random effect for

delivery group and a random effect for family. However, it was stated in the results models

comprising the delivery group random effect failed to converge and thus a two-level hierarchical

model was used. The AESOPS trial [95] primary analysis compared minimal intervention with

stepped care on the primary outcome measure, ADD, at 12 months post randomisation using a

mixed model, to account for any variation due to GP practice and the allocated therapist/nurse

delivering the intervention. However, the three-level model including the nurse/therapist failed

to converge, consequently a two-level mixed model was used with participants nested within GP

practice.

Finally, additional explanations included finding the clustering effect had little effect on the

results and consequently not including the random effects in the analysis model. The COBRA

trial stated in the methods that “although we initially planned to include therapist as a random-

effects variable in our models, given the low levels of observed clustering we took a parsimonious

approach and fitted our models without inclusion of therapist. We also checked that there was no

difference in inference with and without the inclusion of a random-effects therapist term” [189,

p.41]. Correspondingly, the results stated “there was evidence of a small, negligible clustering

of primary and secondary outcome scores at follow-up across therapists overall and within BA

and CBT groups (intracluster correlation coefficient of ≤ 0.04)” [189, p.67]. The SHEAR trial

also stated that including the clinician random effect had little effect on the results, and thus it

was ignored for the comparison of secondary outcomes [164].

These findings highlight that clustering in iRCTs is not always possible to account for. It may

initially be considered during the design stage, however, in the resulting analysis is not possible

to include.
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7.5.3.3 Empirical ICC estimates

In total there were 221 ICC estimates (39 clustering by centre, 179 clustering related to inter-

vention - 35 group, 1 family and 146 healthcare provider) from 17 studies for which an ICC was

either extracted from the original HTA report, further publication or from correspondence with

the author. This constituted both primary and secondary outcomes and outcomes reported at

multiple follow-ups.

Table 7.5 presents a collated summary of ICC estimates, for all ICC estimates and only those for

the primary endpoint, referred to as primary ICC from here on. There were 17 studies providing

estimates for 15 intervention induced and eight centre primary ICC estimates. The number of

estimates per intervention ranged from 1 to 27 (median 4, IQR 1.5 to 9.5). The median centre

based ICC was 0.015 (IQR 0.006 to 0.043). The median healthcare provider ICC was 0.009 (IQR

0.001 to 0.51). The median group based ICC was 0.019 (IQR 0.001 to 0.054). This suggests a

small amount of clustering at centre and intervention induced. These are summary estimates,

the summaries including all ICCs do not take account of the correlation within studies due to

multiple ICC estimates arising from the same study.

A table of all estimates of ICCs from the studies is included in Appendix D.1. An extended

table including further information such as sample size, cluster information and status of outcome

and follow-up (primary/secondary) has been collected into an Excel sheet, however it was not

possible to include all this in the Appendix. This is stored using ORDA - The University

of Sheffield Research Data Catalogue and Repository which is hosted on Figshare via https:

//figshare.com/s/d2645eb91b3ea9b65e0d.

Table 7.5: Summary of ICC estimates (Primary refers to primary endpoint)

Clustering
level

Outcomes n ICC

Median IQR Min Max

Centre All 39 0.015 (0.006, 0.043) 0.0000 0.4490
Centre Primary 8 0.014 (0.005, 0.045) 0.0000 0.0730

Healthcare
provider

All 146 0.009 (0.001, 0.050) 0.0000 0.678

Healthcare
provider

Primary 15 0.007 (0.001, 0.030) 0.000 0.099

Group All 35 0.019 (0.001, 0.054) 0.000 0.156
Group Primary 3 0.001 (0.001, 0.036) 0.000 0.070

Family All/Primary 1 0.471 - 0.471 0.471

Figure 7.4 presents a visual comparison of the ICCs used in sample size matched to the primary
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ICC estimate. The majority of ICC estimates were lower than assumed in sample size. Two

studies found a higher ICC than assumed in the sample size calculation: the COBRA trial [189]

reported an ICC as ≤ 0.04 compared to sample size ICC of 0.01 and the family level ICC in the

Families for Health trial was 0.471 compared to sample size ICC of 0.270.

Figure 7.4: Comparison of ICC used in sample size and that found in analysis for intervention
induced clustering
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7.5.4 Exemplars

One of the aims of this chapter was to explore exemplars of well-reported aspects of iRCTs with

clustering, which could be used to enhance adequate trial reporting. None of the publications met

full compliance with CONSORT checklist items identified in section 7.3.2. There were, however,

some good examples of reporting of iRCTs with potential clustering across the different checklist

items. This section seeks to provide exemplars from the HTA studies, for each of the checklist

items in turn. This adds to and expands on the examples of adequate reporting provided in

the CONSORT-NPT statement [17], now including examples of adequate reporting of checklist

item 17a “where applicable, a coefficient of ICC for each primary outcome”. A number of tables

and figures below have been reproduced from the original HTA reports (with no changes made
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and suitable acknowledgement to original reports) adhering to the copyright rules of the 2018

Queen’s Printer and Controller of HMSO.

7.5.4.1 Methods - Participants

In the case of reporting eligibility criteria for centres and for care providers (CONSORT-NPT

4a), the CHAMP trial [187] provided a clear description of therapists and the training they

received.

Example: “At each clinic we therefore trained a psychologist, research nurse or equiv-
alent health professional (G-grade or equivalent) to administer the treatment. ...Each
therapist attended two workshops at the beginning of the study and received up to 3
months’ training from the senior practitioners in the study, sometimes in vivo with
two therapists being present in treatment sessions, before taking on the care of pa-
tients alone.” [187, p.6]

The COBRA trial [189] reported experience and workload of therapists in each trial arm.

Example: “Ten MHWs provided BA [median 22 participants each (interquartile range
19–25 participants each)] and 12 therapists provided CBT [median 21 participants
each (interquartile range 13–23 participants each)]. MHWs had a mean of 18 months’
mental health experience (SD 11 months’ mental health experience) and CBT ther-
apists had a mean of 22 months’ experience (SD 24 months’ experience) post CBT
qualification. We removed one CBT therapist from the trial in the early stages who
did not meet acceptable competency”. [189, p.19]

7.5.4.2 Methods - Sample size

A number of studies reported sample size calculations providing details of whether and how

clustering by care providers or centres had been addressed. The SWAP trial [181] reported

sample size calculations which adhered to CONSORT-NPT, including assumed mean cluster

size and ICC.

Example: “To account for potential clustering effects due to group treatment in
the WAP arm, assuming a mean cluster size of 18 and an intracluster correlation
coefficient of 0.05, a total of 208 individuals will be required in the WAP arm. The
same power can be achieved with 108 in the nurse arm and 216 in the WAP arm, which
we increased to 110 in the nurse arm and 220 in the WAP arm to give an allocation
ratio between the two arms (2 : 1) that can be expressed in whole numbers. Thus,
we required a total of 330 individuals for the entire study.” [181, p.20]

The OCTET trial [11] reported sample size calculations with transparency for a crossed-therapist

design, therapists deliver interventions in more than one intervention arm.

189



Example: “The comparison of either supported cCBT or guided self-help is a partially
nested design for which the sample size calculation needs to consider the intracluster
correlation coefficient (ICC) for therapist. The comparison of supported cCBT with
guided self-help is a crossed therapist design, as support for both treatments was
delivered by the same therapists. Sample size for crossed therapist design depends
on the ICC for therapist for treatment within therapist, which is smaller than the ICC
for therapists. Formulae for this calculation are given in Walwyn and Roberts. In
the absence of estimates of the two ICCs required for the two calculations, sensitivity
of study power to larger values was considered in the calculation below.
Assuming a standard deviation (SD) for the primary outcome (Y-BOCS-OR) at
6 months of 7.3 units, a correlation between baseline Y-BOCS-OR and 6-month Y-
BOCS-OR of 0.43, a study with 366 service users followed up to the primary end point
has a power > 80% to detect a difference of 3 Y-BOCS points for each comparison.
We were unable to find evidence for a ‘clinically important difference’. A reduction of
3 points was agreed based on clinical consensus with the study team. This calculation
assumed that supported cCBT and guided self-help were delivered by 24 therapists.
It also assumes that the ICC for therapists was 0.06 and an ICC for treatment within
therapist was 0.015, which implies that the correlation between the random effect for
supported cCBT and guided self-help is 0.75. The design effects, sometimes called
the sample size inflation factor, were 1.1225 and 1.06125 for the partially nested and
crossed designs, respectively. We considered these values of the ICC to be plausible,
but in the event that the ICC for therapist was as large as 0.1 and the ICC for
treatment within therapist was 0.05, the power of the trial is still > 75% for all three
comparisons.” [11, p.16]

7.5.4.3 Methods - Statistical methods

Details of whether and how the clustering by care providers or centres was addressed in the

staistical analysis methods was described in the START trial [199], adjusting for centre and the

partially nested design using a mixed-effects model.

Example: “Separate regression analyses were used to estimate group differences in
HADS-T score over the short term (using 4- and 8-month follow-ups) and the longer
term (using 12- and 24-month follow-ups). In both cases, random-effects models
accounted for repeated measurements and therapist clustering in the intervention
arm. Adjustments were made for baseline HADS-T scores and centre (on which
randomisation was stratified), and also on factors believed from the literature to affect
affective symptoms (carer age, sex, carer burden and care recipient neuropsychiatric
symptoms).” [199, p.18]

The SWAP trial methods explained clearly that analysis would account for clustering in both

arms, with mention of a small sample degrees of freedom correction.
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Example: “All analyses accounted for clustering by group in the WAP arm and
clustering by nurse in the nurse arm. Each participant has been defined as belonging
to a cluster, by which group they belonged to if they were in the intervention arm and
by which nurse they were treated by if they were in the control arm. This variable has
been included as a random intercept in a mixed-effects regression model. This analysis
assumes that the intraclass correlation coefficient is the same between groups in the
intervention arm as it is between nurses in the control arm. The Kenward–Roger
degree of freedom correction was used for all linear mixed-effects models.” [181, p.21]

7.5.4.4 Results - Participant flow

For clarity the results section should report the participant flow, for NPT trials this relates to

also reporting the number of care providers or centres performing the intervention in each group

and the number of patients treated by each care provider or in each centre. For example, the

IMPACT trial [192] provided a description of the care provider workload in both text and a

figure of the frequency distribution of number of trial participants for each therapy type seen

by a trial therapist.

Example: “All therapists delivering a trial therapy were given a trial therapist identi-
fier. The therapist identifier was missing for 18 (12%) BPI trial treatments, 13 (9%)
CBT trial treatments and 2 (1%) STPP trial treatments. A total of 63 therapists
delivered BPI, 44 delivered CBT and 38 STPP. For all three modalities, the young
person received their trial therapy from a single trial therapist. Figure 6 gives the dis-
tribution of the number of young people treated by each therapist for each treatment
arm. The number of trial participants seen by a particular therapist ranged from
1 to 15. Forty BPI therapists treated only one young person in the trial, whereas
the corresponding figures for CBT and STPP were 19 and 18, respectively. This
difference in number of therapists per treatment group is due, in part, to the rather
larger number of available BPI compared with CBT or STPP therapists within the
15 NHS CAMHS clinics.” [192]

7.5.4.5 Results - Participant flow diagram

Figure 7.5 presents the participant flow diagram used in the CASPER trial report depicting the

number of case managers (care providers) performing the intervention in the collaborative care

arm. An exemplar related to a surgical trial can be found in the ProFHER HTA trial report

(Figure 7) [198].
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Figure 7.5: Example of a participant flow diagram depicting iRCT with intervention induced
clustering (taken from [186])

7.5.4.6 Results - Baseline data

A clear description of care providers (case volume, qualification, expertise, etc.) and centres

(volume) in each group was presented in the report for the UK DRAFFT trial [202]. The

surgeon grade, experience by intervention arm was presented in a table and further information

regarding operating times etc. presented in figures.
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Figure 7.6: Example of a study including results at the individual or cluster level as applicable
and an ICC for each primary outcome (taken from Table 9 [186])

7.5.4.7 Results - Outcomes and estimation

Figure 7.7 presents an example of reporting ICCs from the PEPS study [195], which reported

an ICC and 95% confidence interval for each primary and secondary outcome at 72 weeks in

PEPS arm according to the therapy group, alongside a summary of the size and number of

clusters. This provides a clear summary of the level of clustering, it could be further improved

by clarifying which models were used to account for this clustering. Another exemplar can be

found in Table 8 of the Getting out the House study [191], which reported an ICC for each

primary and secondary outcome, however, without precision estimates or number of clusters.
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Figure 7.7: Example of study results reporting an ICC for each primary outcome (taken from
[195])

The CASPER trial [186] reported secondary analyses results which adjusted for clustering by

case manager, providing ICC and 95% confidence intervals for the primary outcome at each

follow-up.

Example: “The average ICC for clustering within case managers was found to be
lower than expected (ICC 0.0069, 95% CI 0.0000 to 0.0644, for PHQ-9 scores at 4
months; ICC 0.0072, 95% CI 0.0000 to 0.0676, for PHQ-9 scores at 12 months).”
[186, p.36]
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7.6 Discussion

7.6.1 Main findings

This study reviews and presents the extent, reporting and evidence of intervention induced

clustering (ICC estimates) in single and multi-centre iRCTs funded and published by the UK’s

NIHR HTA Programme with continuous outcomes. It was found that clustering in iRCTs was

often acknowledged and considered in either the design and/or analysis stages. Although, results

related to clustering (including number of clusters, range, ICC estimate and 95% confidence

interval) were typically not fully reported within the results section.

The reporting of an ICC represents an important contribution to the research literature, both

allowing future studies to plan for adequate power and providing evidence of, for example, the

role of care provider and centre cluster in the variation in outcome. This chapter has collated and

added to the evidence on clustering in iRCTs by reporting ICCs for a number of outcomes that

were missed from the original reports. The results of this study have highlighted the importance

of recording all elements of the complex intervention to enable clustering to be accounted for,

however, it is acknowledged that there are difficulties in this such as access to routine data.

It is useful to note that of those who fully reported, the majority had over-estimated the ICC

in the sample size. Many trials reported ICC and/or a p-value for the significance of the ICC

without a confidence interval. As in other statistical inferences it is good practice to report

confidence intervals alongside estimates and p-values. There is generally not enough power to

test for statistical significance of ICCs in trials. Consequently, it is of more interest to use a

sensitivity analysis for this type of analysis and compare both with/without therapist/cluster

effects.

There were various challenges identified related specifically to iRCTs with clustering. Clustering

was sometimes acknowledged in the text as a possibility but not directly included in the sample

size or analysis methods. This may be for valid reasons, such as expecting very small cluster

sizes [198] or trial participants being treat by multiple healthcare providers over the course of

an intervention and thus the cluster was difficult to define [194]. Additionally, as shown in

chapter 6, sample size methods and corresponding statistical software for iRCTs with clustering

are relatively newly developed so awareness may still be limited. Being treated by multiple care

providers will also reduce the likelihood of any one care provider having a effect on individual

patients outcome. Some trials included a very small number of clusters, and though this may
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still result in clustered outcomes it is difficult to account for the clustering in the analysis as

estimating an ICC from a small number of clusters can result in bias ICC estimates (as shown

in simulation results of chapter 4). Defining therapist/cluster in real life can be challenging as

therapists can leave or move roles and be replaced. For example, in the Getting out the House

[191] HTA trial two different definitions of therapist were used to evaluate therapist effects: the

main therapist was defined as the individual who was the therapist for the initial (assessment)

session and an alternative definition of the therapist, for instance for the exercise programme

arm, using the therapist who took the second session (first exercise session).

The main overarching factor for not accounting for clustering was the pragmatic nature of the

trials included. Many of the interventions had components that were routine practice and not

fully documented, which meant that researchers found it hard to define levels of clustering.

7.6.2 Comparison with literature

The extent of potential intervention induced clustering was 59% from trials included in this

review. Slightly higher than that found by Lee and Thompson [42] in a review of trials published

in the BMJ, 40% had clustering by health professional imposed by the design of the trial.

Reporting has been shown to need improvement across different study designs and therapeutic

areas. Samaan et al. [204] found of 50 systematic reviews reporting adherence to reporting

guidelines 80.6% reported suboptimal levels (across different clinical areas and study designs).

Specifically, Nagendran et al. [205] assessed adherence of RCTs in surgery to the standard

CONSORT and CONSORT-NPT guidelines. They identified 54 surgical trials and found of

the eight items with less than 30% overall compliance seven were from the CONSORT-NPT

extension. These items included: eligibility criteria for centres performing the interventions

(24%), how clustering by care providers or centres was addressed as it relates to sample size (6%),

how clustering by care providers or centres was addressed as it relates to statistical methods

(4%), a description of care providers (case volume, qualification, expertise, etc) and centres

(volume) in each group (0%). Adherence to CONSORT-NPT was much poorer than to standard

CONSORT, raising awareness of the CONSORT-NPT items and the need to consider and report

the role of centres and care providers in trials appears to be a key issue.

The HTA Journal endorses the CONSORT statement. According to the webpage, all RCTs

reporting in the HTA Journal are required to submit a CONSORT checklist alongside the report
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(reports cannot be reviewed without these forms). Guidelines have been shown to correspond

with improved reporting. The CONSORT Statement is endorsed by many medical journals, and

CONSORT is part of a wider effort to improve the reporting and quality of health research. Ivers

et al. [206] reviewed impact of the 2004 CONSORT-cluster trial extension on the reporting and

methodological quality of cluster randomised trials. They identified significant improvements in

five of 14 reporting criteria. However, only 18% of the 300 manuscripts [206] reviewed reported

an ICC, this was an improvement on previous estimates of 4% and 8%. Of the 29 studies

included in this review 24% and 28% partially and fully reported CONSORT-cluster item 17a

(related to reporting an ICC where applicable), respectively. This suggests that adding this

item to the CONSORT-NPT would not be an undue burden as there are already some studies

reporting ICCs at present.

Turning now to the reporting of ICC estimates, estimates of ICCs from iRCTs have been pro-

duced for a number of studies and will vary based on the intervention, population and outcome

of interest. There are numerous studies reporting ICC estimates relevent for cluster trials [63,

172–175]. However, ICC estimates from cluster trials are related to the unit of randomisation,

for example the centre or hospital, and not directly relevant for the ICC estimates for interven-

tion induced clustering. ICC estimates from epidemiological studies and observational research

may be more relevant to intervention induced clustering, such as therapist ICCs estimated from

observational data [207]. Estimates from observational data may be more precise due to the

often large sample sizes, however, estimates may also not be directly relevant to trials in health

research. The therapists, conditions, and more manualised interventions used within trials can

result in different ICCs to those seen in observational data. ICC estimates from iRCTs of care

provider effects include: surgeon ICCs median 0.014 (IQR 0.00 to 0.053 and range 0.000 to

0.514) [46] and therapist ICCs median -0.0255 (IQR -0.114 to 0.078 and range -0.343 to 0.450)

[57]. ICCs of centre based effects in multi-centre RCTs include: median ICC of 0.015 (IQR

0.000 to 0.059 and range 0.000 to 0.450) for centres in surgical trials [46] and median ICC of

0.01 (IQR 0.00 to 0.03) for general practice [171]. The ICC estimates collated in this study

provide a further resource for trialists planning new studies.

7.6.3 Strengths and limitations

This study adds to the evidence base of observed ICCs in iRCTs. The review includes a range

of intervention studies reported within the HTA journal, which includes detailed reports. In
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practice, ICC estimates will vary based on the outcome, study design, population, intervention,

setting and the method of analysis. Clustering in trials is complex and the exact ICC prior to

study completion will never be known. This study does, however, provide further evidence to

the potential ICCs that are present in iRCTs and, alongside other studies, can form the basis

of future sample size calculations

This study has several limitations. The study was restricted to publicly funded RCTs published

as reports in the HTA Journal. Journals adopting CONSORT have been shown to have better

reporting standards than others [208] and the limited space available in traditional journal papers

(unlike HTA reports) may mean that overall reporting standards in wider published literature

are worse than those we found. Data extraction was carried out by a single reviewer for the

purpose of this thesis. Some other studies reporting ICCs had access to original data sources for

all trials, hence, where able to use consistent methods of ICC estimation across all studies. This

study was focussed on investigating the ICCs seen and reported in practice and took a pragmatic

viewpoint, extracting empirical ICCs from HTA reports where reported. This resulted in ICC

estimates estimated using different methods across different studies (for instance an ANOVA

versus mixed effects model). Reporting of the methods or adjustment variables used in the

model used to estimate ICCs were not always clear, consequently, it is recommended to clearly

report this. ICC estimates calculated with adjustment for important factors such as baseline

measures are likely to be lower than unadjusted measures [46].

7.6.4 Implications and future work

The implications of this study are that the amount of clustering in iRCTs may often be small

and an unadjusted analysis may result in valid results. However, the true ICC value will not

be known during the design stage of the trial. The distribution of the ICCs and full list of

ICCs can be used to assist in future sample size calculations and analysis plans. To gain more

information on the potential for clustering effect in iRCTs, the clustering level should be at least

acknowledged and reported regardless of significance.

There are a number of ways the potential clustering effect can be reduced during the design stage

of a trial. When designing studies, using a large number of care providers will likely reduce their

clustering effect. For example in the Body Psychotherapy for Schizophrenia patients trial group

leaders (psychotherapist or Pilates instructor) were permitted to run a maximum of two groups in

an aim to limit the impact of any one group leader on the outcomes [183]. However, practically
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this may be a challenge in terms of recruiting, training and coordination of the trial. It is,

however, recommended not to use only one healthcare provider or one group where clustering

may occur as it will reduce the generalisability of the trial results. Results from such trials

cannot be certain that the results will generalise to treatment by a wider range of healthcare

providers. Using manualised therapies and interventions will likely reduce the clustering effect

by reducing the variation in intervention delivery.

It is recommended, where possible, to use ICC estimates from past studies for sample size

calculations. A sensitivity sample size calculation can be undertaken showing power at extremes

of ICC values, for instance what would the power of the planned study be at ICC of 0.05 when

an ICC of 0.02 was used in the original sample size calculation. When multiple ICC estimates

are available a formal meta-analysis would enable good use of available data and achieve greater

precision [46, 57].

This study has highlighted that reporting of clustering in iRCTs could be improved. In par-

ticular, in relation to the reporting of how clustering was accounted for in the sample size

calculations (CONSORT-NPT item 7a), clustering in the results including the participant flow

diagram (CONSORT-NPT item 13a) and the reporting of an ICC for each primary outcome

(CONSORT-cluster item 17a). Although at present reporting of ICC estimates in results is

not included as an item in the CONSORT-NPT. To encourage improvement in the design and

reporting of iRCTs with clustering adding a checklist item to CONSORT-NPT is recommended,

along the lines of: “when applicable, a coefficient of intracluster correlation for each primary

outcome”. The framework developed for reporting ICCs in cRCTs [209] is also broadly applica-

ble in iRCTs with clustering (either in the main paper or online supplementary material which

are now commonly available in open access journals), identifying three dimensions to consider

when reporting an ICC:

� a description of the dataset (including characteristics of the outcome and the intervention);

� how the ICC was calculated;

� and the precision of the ICC.

This has the potential to improve the assumptions about ICCs in iRCTs and raise awareness of

the need to account for clustering in both the sample size and analysis in iRCTs with clustering.

Finally, in the later stages of this study the CONSORT extension for social and psychological

interventions (CONSORT-SPI) [210] was published. This extension only mentions clustering
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and ICC in the extension for cRCTs for social and psychological interventions. Clustering in

psychological interventions is common [57] and it seems unfortunate that potential clustering is

not mentioned in CONSORT-SPI to further raise awareness in this research area.

Reporting guidelines are important to improve the standard of reporting, however, there needs to

be concurrent action to increase adherence to relevant guidelines. There is space for improvement

in the reporting of ICCs in iRCTs and in future investigations collating ICC estimates (from

general and specific study areas). This will, aid the understanding of cluster variability in

such trials and enable their use in future study designs with the possibility of meta-analytically

combining multiple ICC estimates for sample size calculations.

7.7 Summary

This chapter highlighted the extent of intervention induced clustering in iRCTS with continuous

outcomes. For primary endpoints the healthcare provider induced ICC identified was 0.007 (IQR

0.001 to 0.048) and for centre ICC the median was 0.014 (IQR 0.005 to 0.030). The intervention

induced ICC used in sample size calculation was typically higher than the empirical ICC estimate

from the results, where both were available. Empirical ICC estimates are provided (see Appendix

D.3) which can be used in conjunction with sample size formulae in chapter 6.

The exemplars demonstrate some good examples of practice with regards to reporting clustering

in iRCTs. Transparency of methods used to design and analyse iRCTs with clustering is im-

portant for trialists and to understand generalisability of such trials. To improve transparency

an additional CONSORT-NPT item related to reporting ICC where applicable is suggested to

bring the results in line with the design and analysis of such trials.
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Chapter 8

Discussion

8.1 Introduction

The focus of this thesis was to answer the research question: what elements need to be considered

in the design, analysis and reporting of complex intervention trials with continuous outcomes,

with a particular focus on proportionate interventions and intervention induced clustering in

one trial arm?

The specific aims to address the research question were:

1. To review current practice of how randomised trials of proportionate interventions are

designed and analysed and the extent of clustering in such trials.

2. To evaluate commonly used analysis methods for partially nested randomised trials and

within-arm partially nested randomised trials to establish which methods are most appro-

priate and why.

3. To identify and collate a comprehensive summary and resource for sample size methods

available for partially nested randomised trials.

4. To determine the extent and quality of reporting of clustering in iRCTs with intervention

induced clustering and provide empirical estimates of ICCs.

This chapter summarises the thesis findings and how they address each of the research aims. The

results of the research are translated into guidance and recommendations for trialists involved

in RCTs of proportionate interventions and RCTs with intervention induced clustering. The

chapter concludes with a description of potential future work to build upon this research.
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8.2 Main findings and comparison to other work

Figure 8.1 shows an overview of the studies conducted for this thesis.

Figure 8.1: Thesis Overview

Study 1 - Chapter 3 
Systematic review of
trials of proportionate

interventions 

Study 2 - Chapter 4 
Analysis of pnRCTs

simulation study 

Study 3 - Chapter 5 
Analysis of within-arm

pnRCTs simulation
study 

Study 4 - Chapter 6 
Sample sizes for

pnRCTs and within-arm
pnRCTs 

Study 5 - Chapter 7 
Extent, reporting and
evidence of clustering

in iRCTs

8.2.1 Proportionate interventions

The first aim was to review current practice of how randomised trials of proportionate inter-

ventions are designed and analysed and the extent of clustering in such trials. This aim was

addressed through a systematic review in chapter 3. The proportionate universalism frame-

work enables individuals to receive the care they require and reduces the burden of treatment

on an individual whilst reserving resources for those most in need [5]. Proportionate interven-

tions follow this line of thought in aiming to use resources efficiently by providing interventions

proportionate to individual need.

The systematic review represented in chapter 3 identified and elaborated on 44 trials of propor-

tionate interventions conducted in various therapeutic areas, the majority in mental health. The

trial designs often induced in complex hierarchical data structures, with clustering introduced

by both intervention and/or centre, in addition to longitudinal data.

Review findings were summarised into two key sub categories, stepped-care and optimal inter-

vention trials. There appears to be a move towards conducting trials of intervention pathways,

with some patients expected to respond to lower intensity interventions thus reducing both the

costs to healthcare and the burden of treatment to patients. By evaluating a staged or propor-

tionate intervention as a whole intervention effect using a trial (with randomisation at baseline

only) there is an underlying assumption that each of the stages of the intervention is effective.

If we were interested in the effect of the individual stages multiple subsequent randomisations

would be required possibly leading to the requirement of prohibitively large sample sizes (an

issue as many trials struggle to recruit to target [179]). The SMART trial design was used in
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a number of the review findings, this has been developed as a method of developing optimal

proportionate interventions which are then ideally evaluated in a full confirmatory trial.

Potential intervention induced clustering was identified in the majority, 84%, of the trials of

proportionate interventions identified in the review. The intervention induced clustering was

typically present at one or more stages of the intervention, often with clustered stages depen-

dent upon outcomes based on previous stages of the intervention. If outcomes are correlated,

standard errors will typically be underestimated if this correlation is ignored in the analysis.

This clustering was accounted for in the analysis of two of the trials included in review (both

published in the HTA Journal), hence appropriate analysis for within-arm partially nested trials

was identified as an aim to address in this research.

8.3 Partially nested trials and within-arm partially nested trials

Having highlighted the potential complex hierarchical data structures present in proportionate

interventions it prompted the investigation of how to appropriately analyse trials whilst account-

ing for clustering in the intervention arm. The research presented in chapter 4 and 5 addressed

the research aim to evaluate commonly used analysis methods for pnRCTs and within-arm pn-

RCTs to establish which methods are most appropriate and why. The initial aim was to evaluate

methods to analyse pnRCTs (trials with clustering in one arm) and then secondary use these

findings to inform evaluation of the more complex partially nested data similar to that seen in

the systematic review results in chapter 3, termed within-arm pnRCTs.

Analysis of pnRCTs using a partially nested mixed effects model with the Satterthwaite degrees

of freedom correction was shown to be unbiased and maintain confidence interval coverage near

to the nominal 95% level. The current findings are broadly consistent with previous simulation

studies [48, 122] that demonstrated the partially nested mixed effects model was suitable for

analysis under most design scenarios. However, previous research did not assess these methods

in a fully systematic manner, the method of classifying the non-clustered controls or performance

of models under small ICC (ρ = 0.01) which was found in the review of HTA trials in this thesis

(chapter 7) and other research [45, 46, 48, 50, 122] commonly occurs in pnRCTs. Unlike findings

from Baldwin et al. [122], the Satterthwaite degrees of freedom correction did not fully control

the Type I error rate in the simulations.

When ICC was small and/or with very few clusters and small cluster sizes using the partially
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nested mixed-effects models 3 and 4 resulted in Type I error rates below the nominal level.

These models correctly reflect the design of the trials; however, they can result in conservatism

regarding the precision of estimates due to the bias in estimating the variance estimates when

there are a small number of clusters. Consequently, using the partially nested mixed effects

models with small ICC may indirectly reduce power making it difficult to detect differences

between the trial arms when present.

Under homoscedastic individual variances across trial arms the heteroscedastic model is over

parametrised, however, it did not result in a substantially lower power than the homoscedastic

model. Even under an ICC of zero, no correlation, the heteroscedastic model resulted in a loss

in mean statistical power of 2-6% when compared to a linear regression model.

In terms of ICC estimation, when the sample size was small and the true ICC ≤ 0.05, then

the ICC was overestimated. ICC estimation improved as sample size increased. Increasing the

number of clusters, rather than increasing the cluster size, had a greater increase in power for a

fixed total sample size and this will also provide a more accurate estimation of the ICC, similar

to cRCTs [40]. Finally the method used to classify the unclustered controls had a negligible

impact on results, though using one large cluster for the control arm sped up the model fitting

computation time considerably.

Expanding on the work in chapter 4, an example of the more complicated data structures seen

in the systematic review and the E-SEE trial were evaluated in chapter 5. Though clustering

of partially nested trials has been discussed and evaluated in the literature, to my knowledge

no research has directly considered or investigated the more complex multilevel structures of

data that are being introduced by trials of proportionate interventions. Schweig and Pane [135]

and Roberts [211] evaluated analysis methods for within-arm pnRCTs when the clustering was

related to non-compliance. If this non-compliance is random then their methods appeared to

hold. However, in the case of proportionate interventions the within-arm clustering is due to

the delivery of the intervention and thus clustering is typically non-random.

Simulations of two stage within-arm pnRCTs were undertaken. The intervention comprised a

two-stage proportionate intervention with an individual universal stage one intervention and a

clustered stage two intervention delivered only to non-responders of stage one. Analysis of this

two stage within-arm pnRCT was shown to result in a biased intervention effect if a mixed-effect

model, accounting for the clustering of stage two, was used. Neither a linear regression model

with cluster robust standard errors or cluster bootstrap standard errors provided coverage of
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the effect estimate near the nominal 95% level, although the point estimate was unbiased. This

research could not identify a unified approach model for the analysis of within-arm pnRCTs

which provided both an overall intervention effect estimate and accounted for clustering. How-

ever, if the ICC was ≤ 0.05, then the mean coverage rate of the linear regression model with

OLS standard errors was 0.948 (SD 0.006) under the simulation scenarios.

Limited literature or guidance on analysing trials with non-random clustering was found during

research for this thesis [52]. However, there needs to be clarity on what effect adjusting for non-

random clustering can have on the bias of intervention effect estimates. Statisticians need to

exercise caution when adjusting for clustering. For instance, if the aim is to provide an unbiased

overall intervention effect and correct precision then statisticians may adjust for clustering,

however, this adjusted analysis can result in bias effect estimates.

8.3.1 Sample size methods for partially nested trials

One of the aims of this thesis was to provide a comprehensive summary and resource for sample

size methods available for pnRCTs. Several papers [43, 48, 57, 122, 128, 130–133, 136, 137,

162] and a book [130] containing sample size methodology for pnRCTs had been published but

none had provided a comprehensive overview and practical resource of the methods available.

Chapter 6 summarises and combines relevant sample size methods for pnRCTs with continuous

outcomes with links to corresponding software to allow for the design complexities of clustering

in trials with continuous outcomes.

The sample size formulae are built up from iRCTs to cRCTs and then to pnRCTs to make

the methods clear. The methods have been extended to include the coefficient of variation to

account for variable cluster size. This is familiar to the commonly used method for cRCTs thus

should enable ease of use of this approach as opposed to a potentially more complicated method.

Software for iRCTs with clustering, with options for pnRCTs, were identified and collated.

The practical use of sample formulae require estimates of the relevant input parameters, with

the ICC being a key parameter for the design of any trial with potential clustering. With this

in mind empirical estimates of ICCs were extracted and presented in chapter 7 and are included

in Appendix D.3.
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8.3.2 Extent, reporting and evidence of clustering in individually randomised

trials

The final aim was to determine the extent and quality of reporting of clustering in iRCTs with

intervention induced clustering and provide empirical evidence of the magnitude of ICCs. This

was addressed through a review of HTA trials in chapter 7. Of 103 trials published in the HTA

journal between 2013 and 2017, 48% had a continuous primary endpoint, of which 59% were

categorised as having potential intervention induced clustering. The extent in this review was

slightly higher than the 40% of trials which had clustering by health professional found in a

review of trials published in the BMJ [42]. This is likely due to the types of interventions funded

by the NIHR HTA funding programme in comparison to those published in BMJ, and a possible

increase in trials used to evaluate complex interventions.

The review included 29 trials, of these trials clustering was often acknowledged and consid-

ered in the design and/or the analysis but to a varying degree. Reporting has been shown

to need improvement across different study designs and therapeutic areas [204]. Reporting of

CONSORT-NPT checklist items related to clustering were found to be sub-optimal in the re-

view of HTA trials, though improved on the review of surgical trials by Nagendran et al. [205].

This may partly reflect an increased uptake of the CONSORT-NPT, or reflect the increased

space available in the HTA journal for reporting compared to traditional journal publications,

or reflect improved peer review standards in HTA. It is likely a combination of all three.

Empirical ICC estimates are provided (either from published reports or further correspondence

with authors, see Appendix D.3) which can be used as evidence to support assumptions in

conjunction with sample size formulae from chapter 6. For primary endpoints the median

treatment induced ICC identified was 0.007 (IQR 0.001 to 0.048) and for centre ICC the median

was 0.014 (IQR 0.005 to 0.045). These add to the evidence base of empirical ICCs from iRCTs for

both care provider effects [46, 57] and centre based effects in multi-centre RCTs [46, 171]. The

treatment induced ICC used in sample size calculation was typically higher than the empirical

ICC estimate from the results, where both were available. This suggests when clustering was

acknowledged in the design, trialsists were actually being relatively conservative in their use of

ICC for sample size, this may reflect the uncertainty about the ICC at the design phase and

thus conservatism has been used as a precaution.

The examplars in chapter 7 provide examples of good practice when intervention induced clus-
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tering is present in RCTs. The importance of transparency is highlighted, both in the design

(sample size and analysis methods) and reporting of results. It would be beneficial for the valid-

ity of an RCT and for future RCTs to see fully how clustering has been acocunted for and the

estimate of clustering effect in the rsults. This could follow the guidelines for reporting ICCs

in cRCTs as similar principles apply [209]. To improve transparency an additional CONSORT-

NPT item related to reporting ICC where applicable is suggested to bring the results in line

with the design and analysis of such trials.

8.4 Strengths and contributions of this research

This research contributes knowledge for the use of those planning and analysing trials in the

area of proportionate interventions and with intervention induced clustering.

Robust methodology have been used throughout the thesis. The systematic review, conducted

in chapter 3 was implemented using robust methods, including: developing a protocol, scoping

search, validation of search terms, data collection form, and following PRISMA guidelines.

The methods used to undertake the systematic review also aided the searching undertaken

for the review of sample size methodology in chapter 6 and the data collection for chapter

7. The simulation studies in chapters 4 and 5 followed the advice of Burton et al. [144] and

Morris et al. [151]. They had a pragmatic focus and covered a range of settings with scenarios

covering different cluster sizes, number of clusters, ICCs and under both the null and alternative

hypothesis.

This work is likely to have an impact in practice; a strength being its generalisability to com-

monly employed trial designs. The simulation studies focused on realistic scenarios, and made

practical recommendations for trial analysis. The model fitting code for R, SAS and Stata for

the analysis methods used in chapters 4 are provided to make the analysis clear. This, along

with the findings of previous research, gives strength to the conclusions that the partially nested

heteroscedastic mixed effects model is typically the most suitable analysis model for pnRCTs.

In addition, it was highlighted that proportionate interventions are initially appealing and come

under the remit of proportionate universalism. However, they induce structure that can be

difficult to fully accommodate in the analysis.

A final strength is the aim to influence better study design for a new wave of future studies.

The collation of sample size methods and ICCs from publicly funded trials provides important
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information for future trial designs and providing a broad range of empirical ICC estimates will

assist in researchers planning adequately powered trials. The lack of empirical estimates of ICCs

directly relevant to iRCTs with intervention induced clustering led to this research. As shown

in chapter 6 there are sample size formulae available for pnRCTs thus providing a broad range

of empirical ICC estimates will assist in researchers planning adequately powered trials.

Dissemination of results has been considered throughout this PhD. Two manuscripts based on

chapters 3 and 4 have been submitted to Trials and BMC Medical research Methodology open

access peer reviewed journals [68, 212], the first is currently under review and the latter has

been published. In addition, the results of chapters 3, 4 and 5 have been disseminated at a

number of statistics and clinical trials conferences, the Meeting of the Society for Clinical Trials

in 2018 [213], the joint International Clinical Trials Methodology Conference and Meeting of the

Society for Clinical Trials in 2017 [214], and at International Society for Clinical Biostatistics

conferences in 2017 and 2016 [215, 216].

8.5 Limitations

There are limits to the generalisability of the thesis findings and some limitations related to

resource limitations.

During the initial stages of this project it was considered that the issue of evaluating the effects of

different stages of proportionate interventions would be investigated. However, it became clear

that randomisation at each stage or some form of fractional factorial design would be required

to evaluate each intervention stage of proportionate interventions. There is a large team of

researchers investigating these sort of designs in USA thus it did not become the focus of this

research. The focus moved towards partial nesting/intervention induced clustering in iRCTs as

there was evidence of a lack of awareness of this issue and limited evidence of what to do in such

scenarios.

Due to resource limitations it was not possible to supplement the systematic review database

searching in chapter 3 with reference list checking or trial registries. The searching and data

extraction for both the systematic review and the review of publicly funded trials were typically

undertaken by one reviewer (JCa). This is a limitation as it could not be quality-assured during

the review process. However, steps were taken to improve the consistency and quality of both

reviews and have been explained in more detail in the methods of relevant chapters.
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Whilst a broad range of scenarios were considered in the simulation studies, only fixed cluster

sizes were used in both studies and only a 50% proportion of within-arm clustering was considered

for the within-arm pnRCT study. In practice, cluster size may vary, causing a loss in efficiency

when estimating the intervention effect. The proportion that receive subsequent stepped-up

intervention stages will vary dependent on the trial, however, the within-arm pnRCT simulation

study was able to represent the effect this sort of staged clustering can have in practice.

Trials with clustering in only one arm were considered in the simulation studies and the sample

size methodology. Although these designs are common in practice [49], the results are not

necessarily generalisable beyond these designs.

It was not possible to gain empirical ICC estimates from all of the HTA trials identified with

potential intervention induced clustering. However, a valid reason for the lack of available

empirical ICCs was generally provided from correspondence with authors or explanations in

HTA reports, either logistical, data limitations, time constraints, or from the nature of the

design itself. Where ICC estimates where provided or available they were often for only the

primary endpoint and did not extend to other follow-up times or secondary outcomes.

8.6 Implications and recommendations

This section translates the research findings into the implications and a series of recommen-

dations for the design, analysis and reporting of complex intervention trials with continuous

outcomes, specifically proportionate interventions and intervention induced clustering in one

trial arm. These recommendations are summarised in Figure 8.2 at the end.

8.6.1 Design

In terms of design of trials it is recommended to use specific sample size methods developed

for pnRCTs (when clustering is random). Sample size formulae are summarised and collated in

chapter 6, providing a useful resource for design of studies. Where available, it is suggested to

use prior empirical evidence of probable ICC value in sample size. The fact that this research has

shown a median ICC of 0.009 for care provider induced clustering and 0.019 for group induced

clustering provides a good starting point for statisticians when discussing the design of a trial.

However, the wider generalisability of such findings is cautioned and researchers should aim to

consider previous estimates of ICCs calculated from datasets relevant to their study. Sample size
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methods should be reported fully and undertaking a sensitivity sample size calculation showing

power under different ICC values can contribute to the transparency of the design. Chapter

7 provides some examplars of this linking back to CONSORT-NPT. It was also evident that

due to the pragmatic nature of many complex intervention trials there are often hard to define

or undefined clusters. Planning during the design phase for better recording of all elements

which may be considered part of a complex intervention, even when they are part of routine

care, would aid the analysis and improve understanding of the complex intervention delivery

and clustering effects. Finally, where proportionate interventions induce clustering based on

intermediate outcomes it is recommended to consider the impact this can have on precision of

intervention effect estimate (what proportion might be expected to receive this intervention and

how the effect of clustering may be reduced) and whether evaluating full intervention effect is

suitable.

8.6.2 Analysis

Overarching advice for the analysis of pnRCTs based on this research would be to use a het-

eroscedastic partially nested mixed effects model in general with a small sample correction,

particularly if conservatism and an ICC estimate are desired. However, model choice decision

and the requirement or not for conservatism needs to be considered in the context of the specific

trial setting. For within-arm pnRCTs with non-random clustering it is recommended to ignore

clustering in estimation of overall intervention effect. Taking a pragmatic viewpoint if the clus-

ter effect is small and only some of the intervention arm receive the clustered intervention then

the impact of ignoring clustering in the analysis on precision is likely to be minimal. Although,

estimation of an ICC from clustered intervention stages would help inform understanding of the

intervention. Researchers should be aware of the possible bias in ICC estimation when there are

a small number of clusters and true ICCs are small.

8.6.3 Reporting

Trial reports require information on the design and results to enable readers to fully interpret

the results. Intervention induced clustering is not always obvious and accounted for, better

reporting of trials could feasibly improve awareness of intervention induced clustering. Where

applicable, researchers should report their trial findings in accordance with CONSORT-NPT and

consider the extension suggested in chapter 7 related to reporting of ICCs for primary outcomes
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(as a minimum). It is suggested to add an item to CONSORT-NPT results stating: “when

applicable, a coefficient of intracluster correlation for each primary outcome”. In addition, full

reporting would include: number of clusters, mean (SD) cluster size, ICC and precision of the

ICC; adjusted analysis and what method was used to estimate ICC; and when an ICC cannot be

estimated during the analysis, a reason should be provided in the trial results reporting. If the

reporting of clustering is adopted into routine practice, as is expected from a cRCT, it should

improve the interpretation of iRCTs with clustering in the future and improve the evidence base

of empirical ICCs for future study design. These results, empirical ICC estimates and exemplars

of reporting, will prove useful in the design of trials in the future.
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Figure 8.2: Recommendations and considerations for the design, analysis and reporting of com-
plex intervention trials with continuous outcomes, specifically proportionate interventions and
intervention induced clustering in one trial arm

Design

� Use specific sample size methods developed for pnRCTs (when clustering is random);

� Where available, use prior empirical evidence of probable ICC value in sample size;

� Report sample size methods fully and undertake sensitivity sample size showing
power under different ICC values;

� Transparent and clear recording of all elements which may be considered part of a
complex intervention, even when they are part of routine care, including aspects of
clustering;

� Where proportionate interventions induce clustering based on intermediate out-
comes consider impact on precision of intervention effect estimate and whether
evaluating full intervention effect is suitable.

Analysis

� For pnRCTs typically recommended to use heteroscedastic partially nested mixed
effects model with small samples degrees of freedom correction;

� For pnRCTs with few clusters, small cluster sizes and small ICC the heteroscedastic
partially nested mixed effects model underestimates Type I error rates and there is
no optimal model;

� For within-arm pnRCTs with non-random clustering recommended to ignore clus-
tering in estimation of overall intervention effect;

� For within-arm pnRCTs estimation of an ICC from clustered intervention stages is
recommended to inform understanding of the intervention.

Reporting

� Report number of clusters, mean (SD) cluster size, ICC and precision of the ICC;

� Report adjusted analysis and what method was used to estimate ICC;

� When ICC cannot be estimated during analysis, provide reasoning in results;

� Add item to CONSORT-NPT - “when applicable, a coefficient of intracluster cor-
relation for each primary outcome”.
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8.7 Future research

There is potential for further research stemming from this thesis. The area of proportionate or

adaptive interventions is a current area of interest as researchers aim to evaluate the effectiveness

of intervention pathways which respond to individual need. In addition, the awareness of the

different and often multiple levels of clustering present in iRCTs is growing, and this thesis

documents only a small portion of the various trial designs and primary outcome measures.

The focus of this thesis was primarily on continuous outcomes, therefore, there is an avenue

to further research alternative outcome measures both binary and survival. There has been

recent work on the analysis and design of partially nested trials with binary outcomes [217].

This research could be extended to different trial designs, including but not limited to trials

with clustering in both arms, more complex crossed-nested trials and investigating the effect of

further levels of clustering in within-arm pnRCTs.

Chapter 7 highlighted the variation in cluster size sometimes present in iRCTs with intervention

induced clustering. The loss of efficiency and effect of varying cluster size is an area for future

research. Candel and Van Breukelen [128] provided sample size adjustments for varying cluster

sizes in pnRCTs, they evaluated a number of different scenarios with cv varying from 0.24 to

0.42, suggesting the addition of 11% more clusters to account for the varying cluster size. The

review of HTA trials in chapter 7 did suggest that the coefficient of variation in iRCTs with

clustering may actually be higher than the range investigated by Candel and Van Breukelen

[128], hence, investigating higher variation in cluster size is recommended as an extension to

this work.

Work could be extended to investigate the extent of heteroscedasticity in trials with clustering

in only one arm. If the ICC is typically quite small, say less than 0.01, we might expect the

individual residuals to also be quite similar across trial arms. Empirical work into the extent

of heteroscedasticity in partially nested trials would aid statisticians when calculating sample

sizes.

Missing data occurs in RCTs through various different mechanisms. Multiple imputation is

a commonly used method to handle missing data, it can improve estimation of the precision

of parameter estimates by incorporating information from individuals who have missing data

(unlike complete case analysis). In cluster trials it is recommended that a multiple imputation

model should be multilevel and thus reflect the cluster dependence [218], similar may be true for
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iRCTs with clustering, however, further research is required here to provide recommendations.

Various issues relating to reporting and acknowledging of intervention induced clustering have

been raised in this thesis. This research has highlighted the gap in reporting guidelines for

iRCTs with clustering, findings from chapter 7 advocate adding item 17a to CONSORT-NPT

at the next update. In addition, guidance and literature on trials of proportionate or adaptive

interventions need to raise awareness to the issue of clustering in such designs as they are being

increasingly used. Alongside this it is important to think about how to reduce the effect of

clustering as in any study, such as standardising the intervention (though not always suitable)

and keeping cluster sizes small.

8.8 Concluding remarks

This thesis has presented an investigation of the elements to be considered in the design, analysis

and reporting of complex intervention trials with continuous outcomes, with a particular focus

on proportionate interventions and intervention induced clustering in one trial arm. The findings

and recommendations will aid trialists designing such trials with intervention induced clustering.

A large amount of research and guidance has been focussed on the design and analysis of cRCTs

with continuous outcomes. Now there is raising awareness of the potential effects of clustering in

iRCTs, such trials require similar appropriate guidance. This work has provided evidence of the

extent of intervention induced clustering both in partially and within-arm partially nested trials.

The issue of clustering in trials of both proportionate interventions and the effect such staged

clustering can have on increasing Type I error rates has been highlighted. Recommendations

based on simulations results are given for the appropriate analysis of both pnRCTs and within-

arm pnRCTs. Sample size methods for pnRCTs have been collated and and compared. Relevant

reporting related to intervention induced clustering has also been investigated with examplars

identified for use to guide future studies.
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(chapter 4)

A.1 Supplementary results, figures and tables
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Figure A.1: Power when θ = 0.2, by ρ, γ, c and m
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Figure A.2: Bias of between- and within-cluster variance estimates from the heteroscedastic
partially nested model (model 4) by ρ, γ, c and m
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Table A.1: Type I error rate (mean and SD) under null hypothesis by Model, γ and ρ

Model
γ ρ 1 2.1 2.2 2.3 3 4

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
0.25 0 0.05 0.01 0.03 0.01 0.00 0.01 0.02 0.01 0.02 0.01 0.02 0.01

0.01 0.07 0.01 0.04 0.01 0.00 0.01 0.03 0.01 0.03 0.01 0.03 0.02
0.05 0.12 0.05 0.07 0.03 0.00 0.01 0.04 0.01 0.03 0.01 0.03 0.02
0.1 0.18 0.08 0.10 0.03 0.00 0.01 0.05 0.01 0.04 0.01 0.04 0.01
0.2 0.28 0.11 0.15 0.05 0.00 0.01 0.06 0.01 0.05 0.01 0.05 0.01
0.3 0.35 0.13 0.19 0.06 0.00 0.01 0.06 0.01 0.05 0.01 0.05 0.01

0.5 0 0.05 0.01 0.03 0.01 0.00 0.01 0.03 0.01 0.03 0.01 0.03 0.01
0.01 0.06 0.01 0.04 0.01 0.00 0.01 0.03 0.01 0.03 0.01 0.03 0.01
0.05 0.11 0.03 0.06 0.02 0.00 0.01 0.04 0.01 0.04 0.01 0.04 0.01
0.1 0.17 0.07 0.08 0.03 0.00 0.01 0.05 0.01 0.04 0.01 0.04 0.01
0.2 0.26 0.11 0.12 0.04 0.00 0.01 0.05 0.01 0.05 0.01 0.05 0.01
0.3 0.33 0.13 0.16 0.05 0.00 0.02 0.06 0.02 0.05 0.01 0.05 0.01

1 0 0.05 0.01 0.03 0.01 0.00 0.01 0.02 0.01 0.03 0.01 0.03 0.01
0.01 0.06 0.01 0.03 0.01 0.00 0.01 0.03 0.01 0.03 0.01 0.03 0.01
0.05 0.09 0.03 0.04 0.01 0.00 0.01 0.03 0.01 0.04 0.01 0.04 0.01
0.1 0.14 0.05 0.05 0.01 0.00 0.01 0.04 0.01 0.05 0.01 0.05 0.01
0.2 0.22 0.09 0.07 0.02 0.00 0.01 0.05 0.01 0.05 0.01 0.05 0.01
0.3 0.29 0.12 0.09 0.02 0.00 0.01 0.05 0.01 0.06 0.01 0.05 0.01

2 0 0.05 0.01 0.01 0.01 0.00 0.01 0.03 0.01 0.04 0.01 0.04 0.01
0.01 0.06 0.01 0.01 0.01 0.00 0.01 0.03 0.01 0.04 0.01 0.04 0.01
0.05 0.08 0.02 0.01 0.01 0.00 0.02 0.03 0.02 0.05 0.02 0.04 0.01
0.1 0.12 0.04 0.01 0.01 0.00 0.02 0.04 0.02 0.06 0.01 0.05 0.01
0.2 0.18 0.07 0.01 0.01 0.00 0.01 0.04 0.01 0.05 0.01 0.05 0.01
0.3 0.23 0.10 0.02 0.01 0.00 0.01 0.05 0.01 0.06 0.01 0.06 0.01

4 0 0.05 0.01 0.00 0.00 0.00 0.01 0.02 0.01 0.04 0.01 0.04 0.01
0.01 0.06 0.01 0.00 0.00 0.00 0.02 0.03 0.02 0.05 0.01 0.05 0.01
0.05 0.07 0.01 0.00 0.00 0.00 0.02 0.03 0.02 0.05 0.02 0.05 0.01
0.1 0.09 0.03 0.00 0.00 0.00 0.02 0.03 0.02 0.06 0.02 0.05 0.01
0.2 0.14 0.06 0.00 0.00 0.00 0.01 0.04 0.01 0.06 0.01 0.05 0.01
0.3 0.18 0.08 0.00 0.00 0.00 0.01 0.04 0.01 0.06 0.01 0.06 0.01
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Table A.2: Power (mean and SD) under alternative hypothesis by Model, γ and ρ

Model
γ ρ 1 2.1 2.2 2.3 3 4

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
0.25 0 0.71 0.31 0.67 0.34 0.06 0.18 0.62 0.37 0.62 0.36 0.60 0.38

0.01 0.71 0.31 0.66 0.34 0.06 0.20 0.60 0.36 0.60 0.36 0.58 0.38
0.05 0.70 0.30 0.64 0.33 0.03 0.08 0.56 0.35 0.54 0.35 0.54 0.36
0.1 0.70 0.28 0.62 0.31 0.01 0.02 0.52 0.34 0.49 0.33 0.48 0.35
0.2 0.70 0.25 0.60 0.29 0.00 0.01 0.45 0.32 0.42 0.32 0.42 0.33
0.3 0.71 0.23 0.59 0.28 0.00 0.01 0.40 0.30 0.36 0.3 0.36 0.31

0.5 0 0.68 0.32 0.63 0.35 0.03 0.11 0.58 0.37 0.6 0.36 0.59 0.37
0.01 0.67 0.32 0.62 0.35 0.05 0.16 0.57 0.37 0.58 0.36 0.58 0.37
0.05 0.67 0.30 0.60 0.33 0.03 0.08 0.53 0.35 0.53 0.34 0.53 0.35
0.1 0.67 0.29 0.58 0.32 0.01 0.02 0.50 0.34 0.48 0.33 0.48 0.34
0.2 0.68 0.26 0.56 0.30 0.00 0.00 0.43 0.32 0.41 0.32 0.41 0.32
0.3 0.68 0.24 0.55 0.29 0.00 0.00 0.39 0.30 0.36 0.30 0.36 0.30

1 0 0.62 0.33 0.55 0.36 0.01 0.02 0.52 0.37 0.56 0.36 0.56 0.36
0.01 0.62 0.33 0.55 0.36 0.02 0.07 0.51 0.37 0.55 0.36 0.55 0.36
0.05 0.62 0.32 0.51 0.34 0.02 0.08 0.49 0.36 0.51 0.34 0.51 0.34
0.1 0.62 0.3 0.48 0.33 0.01 0.02 0.45 0.34 0.46 0.33 0.46 0.33
0.2 0.64 0.28 0.46 0.32 0.00 0.00 0.41 0.32 0.40 0.32 0.40 0.32
0.3 0.64 0.25 0.46 0.30 0.00 0.00 0.37 0.3 0.36 0.30 0.36 0.30

2 0 0.54 0.34 0.22 0.29 0.00 0.00 0.44 0.36 0.50 0.35 0.50 0.35
0.01 0.54 0.33 0.22 0.29 0.00 0.00 0.44 0.36 0.49 0.35 0.50 0.34
0.05 0.54 0.32 0.22 0.29 0.01 0.04 0.42 0.35 0.47 0.34 0.47 0.33
0.1 0.55 0.31 0.21 0.28 0.01 0.02 0.40 0.34 0.44 0.33 0.43 0.32
0.2 0.57 0.29 0.22 0.28 0.00 0.00 0.37 0.32 0.39 0.31 0.38 0.30
0.3 0.59 0.27 0.25 0.27 0.00 0.00 0.34 0.29 0.35 0.29 0.35 0.28

4 0 0.43 0.32 0.02 0.04 0.00 0.00 0.34 0.33 0.40 0.33 0.42 0.32
0.01 0.43 0.31 0.02 0.04 0.00 0.00 0.34 0.33 0.40 0.33 0.41 0.32
0.05 0.44 0.31 0.02 0.04 0.00 0.00 0.33 0.32 0.40 0.32 0.39 0.31
0.1 0.45 0.31 0.02 0.05 0.00 0.01 0.33 0.32 0.39 0.31 0.37 0.30
0.2 0.48 0.29 0.04 0.07 0.00 0.00 0.31 0.30 0.36 0.29 0.34 0.28
0.3 0.50 0.28 0.05 0.10 0.00 0.00 0.30 0.28 0.33 0.28 0.32 0.27
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A.2 Stata simulation code for partially nested trials analysis

The following Stata code was used for the simulation study in chapter 4. Code was going to be

written in R initially, until it became apparent that the heteroscedastic model with Satterthwaite

degrees of freedom correction was not available in R packages at the time of the study. Models 2,

3 and 4 were run for imposed clustering of different types, however, only cluster type 1 (singleton

clusters in control group) are shown in simulation code below.

/* Simulation Parameters */

*Simulation for Yij = alpha +theta*tij + ujtij+(1-tij)rij + tijeij

*normally distributed continuous outcome with cluster (j) and

*residual (i) variability

/* Function parameters */

*theta*: difference in outcome between treatment and control

*gam*: ratio of individual varaince between control and treatment arm

*rho*: ICC in clustered treatment arm

*clusterSize*: Size of each cluster

*nClusters*: Number of clusters in treatment arm

*total trial sample size = 2*nClusters*clusterSize

*nIterations*: number of iterations for simulation

/* Variable Specification */

*y*: is the dependent variable;

*cluster* is one of the following clustering options

*cluster1* is the cluster indicator and treats the control group as clusters of

size 1;

*cluster2* is the cluster indicator and treats the control group as one cluster

;

*cluster3* is the cluster indicator and treats the control group as random

clusters;

*tx* is a binary indicator for treatment (intervention group = 1, control group

= 0).

cap log close

clear

set more off

capture log

/* 1_simulation.do takes args simul_No nIterations theta rho gam clusterSize nClusters

.

Use a master file to run 1_simulation.do file with various scenarios given by args

for example, do do\1_simulation.do 1 1000 0.2 0 1 5 12 */

/* args assigns the first command line argument to the local macro simula_No, second

argument to nIterations and so on.*/

args simul_No nIterations theta rho gam clusterSize nClusters

/* Set working directory */

cd "working directory"

local initial_seed = c(seed)

/* Log file */

log using log\simulation‘simul_No’.smcl, smcl replace
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/*Set up file for output*/

* Create a temporary file that will store the output from the simulations

tempname memhold

tempfile results

qui postfile ‘memhold’ Theta gam rho clusterSize nClusters Model Treat SE P_value

CI_ll CI_ul Cover Ind_cont_var Ind_clust_var Btw_clust_var ICC Converge using ‘

results’, replace

forvalues sim = 1/‘nIterations’{

* monitor iterative process of simulations by displaying a dot after every 100

simulations

if int(‘sim’/100) ==‘sim’/100{

di as text "." _cont

}

* quietly performs command but suppress terminal output

quietly{

* Create an empty dataset where the number of observations are number of clusters x 2

local n2 = ‘nClusters’*2

set obs ‘n2’

gen cluster = _n

gen clustZ = rnormal(0,1)

* Expand so have ’clusterSize’ observations per cluster

expand ‘clusterSize’

bysort cluster: generate clustID = _n

* Generate treatment indicator

gen tx = 0

replace tx = 1 if _n< = _N/2

* Generate clustering in control arm

bysort tx: gene txID=_n

*cluster1 = singletone clusters in control arm

gen cluster1 = .

replace cluster1 = (txID + ‘nClusters’) if (tx == 0)

replace cluster1 = cluster if (tx == 1)

* cluster2 = one large cluster in control arm

gen cluster2 = .

replace cluster2 = 0 if (tx == 0)

replace cluster2 = cluster if (tx == 1)

* cluster3 = pseudo clusters in control arm

gen cluster3 = cluster

* Generate random variables

gen indZ = rnormal(0,1)

* Generate individual and cluster residuals

gen ClustRes_j = clustZ*sqrt(‘rho’)

gen ClustInd_ij = indZ*sqrt(1-‘rho’)

gen ContInd_ij = indZ*sqrt(‘gam’)*sqrt(1-‘rho’)

drop clustZ indZ txID

* Generate outcome

gen y = ‘theta’*tx + tx*ClustRes_j + tx*ClustInd_ij + (1-tx)*ContInd_ij
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/* Fit models */

* Model 1: ignoring clustering

capture {

regress y tx

*define model number as first column

if _rc == 0 local converge = 1

local m 1

* retrieve the contents of the outputs (estimates)

mat define M1 = r(table)

local b M1[1,1] //estimate of the treatment effect

local se M1[2,1] //standard error of the treatment effect

local p M1[4,1] //p value

local ll M1[5,1] //ll 95%CI

local ul M1[6,1] //ul 95%CI

local cv inrange(‘theta’,‘ll’,‘ul’) //coverage indicator

local ind_var = e(rmse)

post ‘memhold’ (‘theta’) (‘gam’) (‘rho’) (‘clusterSize’) (‘

nClusters’) (‘m’) (‘b’) (‘se’) (‘p’) (‘ll’) (‘ul’) (‘cv’) (‘

ind_var’) (.) (.) (.) (‘converge’)

}

if _rc != 0 {

local converge = 0

local m 1

post ‘memhold’ (‘theta’) (‘gam’) (‘rho’) (‘clusterSize’) (‘

nClusters’) (‘m’) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (‘

converge’)

}

* Model 2: fully clustered random effects

* Cluster 1

capture{

mixed y tx || cluster1: , reml nolog dfmethod(sat) emiterate(10)

if _rc == 0 local converge = 1

local m 2.1 //define model number

* retrieve the contents of the outputs (estimates)

mat define M21 = r(table)

mat list M21

local b M21[1,1] //estimate of the treatment effect

local se M21[2,1] //standard error of the treatment effect

local p M21[4,1] //p value

local ll M21[5,1] //ll 95%CI

local ul M21[6,1] //ul 95%CI

local cv inrange(‘theta’,‘ll’,‘ul’) //coverage indicator

local ind_var = exp(M21[1,4])^2 //individual variance

local btw_clust_var = exp(M21[1,3])^2 //between cluster variance

(clustered arm)

estat icc

local estrho r(icc2) //ICC

*post the results of each model output from each simulation

post ‘memhold’ (‘theta’) (‘gam’) (‘rho’) (‘clusterSize’) (‘

nClusters’) (‘m’) (‘b’) (‘se’) (‘p’) (‘ll’) (‘ul’) (‘cv’) (‘

ind_var’) (‘ind_var’) (‘btw_clust_var’) (‘estrho’) (‘converge

’)

}

if _rc != 0 {

local converge = 0

local m 2.1
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post ‘memhold’ (‘theta’) (‘gam’) (‘rho’) (‘clusterSize’) (‘

nClusters’) (‘m’) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (‘

converge’)

}

* Model 3: partial clustering homoscedastic

* Cluster 1

capture {

mixed y tx || cluster1: tx , nocons reml nolog dfmethod(sat) emiterate

(20)

if _rc == 0 local converge = 1

*define model number

local m 3.1

* retrieve the contents of the outputs (estimates)

mat define M31 = r(table)

local b M31[1,1] //estimate of the treatment effect

local se M31[2,1] //standard error of the treatment effect

local p M31[4,1] //p value

local ll M31[5,1] //ll 95%CI

local ul M31[6,1] //ul 95%CI

local cv inrange(‘theta’,‘ll’,‘ul’) //coverage indicator

local btw_clust_var = exp(M31[1,3])^2 //between cluster variance

(clustered arm)

local ind_var = exp(M31[1,4])^2 //individual variance (clustered

arm)

local estrho ‘btw_clust_var’/(‘btw_clust_var’+‘ind_var’) // ICC

*post the results of each model output from each simulation

post ‘memhold’ (‘theta’) (‘gam’) (‘rho’) (‘clusterSize’) (‘

nClusters’) (‘m’) (‘b’) (‘se’) (‘p’) (‘ll’) (‘ul’) (‘cv’) (‘

ind_var’) (‘ind_var’) (‘btw_clust_var’) (‘estrho’) (‘converge

’)

}

if _rc != 0 {

local converge = 0

local m 3.1

post ‘memhold’ (‘theta’) (‘gam’) (‘rho’) (‘clusterSize’) (‘

nClusters’) (‘m’) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (‘

converge’)

}

* Model 4: partial clustering heteroskedastic

* Cluster 1

capture {

mixed y tx || cluster1:tx, nocons reml nolog residuals(independent, by(

tx)) dfmethod(sat) emiterate(10)

if _rc == 0 local converge = 1

*define model number

local m 4.1

* retrieve the contents of the outputs (estimates)

mat define M41 = r(table)

local b M41[1,1] //estimate of the treatment effect

local se M41[2,1] //standard error of the treatment effect

local p M41[4,1] //p value

local ll M41[5,1] //ll 95%CI

local ul M41[6,1] //ul 95%CI

local cv inrange(‘theta’,‘ll’,‘ul’) //coverage indicator

local btw_clust_var = exp(M41[1,3])^2 //between cluster variance

(clustered arm)

local ind_clust_var = (exp(M41[1,4]+ M41[1,5]))^2 //individual

variance (clustered arm)
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local ind_cont_var = (exp(M41[1,4]))^2 //individual variance (

control arm)

local estrho ‘btw_clust_var’/(‘btw_clust_var’+‘ind_clust_var’) //

ICC

*post the results of each model output from each simulation

post ‘memhold’ (‘theta’) (‘gam’) (‘rho’) (‘clusterSize’) (‘

nClusters’) (‘m’) (‘b’) (‘se’) (‘p’) (‘ll’) (‘ul’) (‘cv’) (‘

ind_cont_var’) (‘ind_clust_var’) (‘btw_clust_var’) (‘estrho’)

(‘converge’)

}

if _rc != 0 {

local converge = 0

local m 4.1

post ‘memhold’ (‘theta’) (‘gam’) (‘rho’) (‘clusterSize’) (‘

nClusters’) (‘m’) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (‘

converge’)

}

}

clear

}

qui postclose ‘memhold’

qui use ‘results’, clear

/* After all all simulations are run and the N-obsrvation dataset of results is

created, code ends with */

note: File results‘simul_No’

note: Ran simluation ‘0’

note: Time taken (minutes) ‘tmins’

note: Seed was ‘initial_seed’

save dta\results‘simul_No’, replace

/* Closed and convert log to html */

log close

translate log\simulation‘simul_No’.smcl log\simulation‘simul_No’.log, replace

A.3 Publication
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Abstract

Background: In individually randomised trials we might expect interventions delivered in groups or by care
providers to result in clustering of outcomes for participants treated in the same group or by the same care
provider. In partially nested randomised controlled trials (pnRCTs) this clustering only occurs in one trial arm,
commonly the intervention arm. It is important to measure and account for between-cluster variability in trial
design and analysis. We compare analysis approaches for pnRCTs with continuous outcomes, investigating the
impact on statistical inference of cluster sizes, coding of the non-clustered arm, intracluster correlation coefficient
(ICCs), and differential variance between intervention and control arm, and provide recommendations for analysis.

Methods: We performed a simulation study assessing the performance of six analysis approaches for a two-arm
pnRCT with a continuous outcome. These include: linear regression model; fully clustered mixed-effects model with
singleton clusters in control arm; fully clustered mixed-effects model with one large cluster in control arm; fully clustered
mixed-effects model with pseudo clusters in control arm; partially nested homoscedastic mixed effects model, and
partially nested heteroscedastic mixed effects model. We varied the cluster size, number of clusters, ICC, and individual
variance between the two trial arms.

Results: All models provided unbiased intervention effect estimates. In the partially nested mixed-effects models,
methods for classifying the non-clustered control arm had negligible impact. Failure to account for even small ICCs
resulted in inflated Type I error rates and over-coverage of confidence intervals. Fully clustered mixed effects models
provided poor control of the Type I error rates and biased ICC estimates. The heteroscedastic partially nested mixed-
effects model maintained relatively good control of Type I error rates, unbiased ICC estimation, and did not noticeably
reduce power even with homoscedastic individual variances across arms.

Conclusions: In general, we recommend the use of a heteroscedastic partially nested mixed-effects model, which models
the clustering in only one arm, for continuous outcomes similar to those generated under the scenarios of our simulations
study. However, with few clusters (3–6), small cluster sizes (5–10), and small ICC (≤0.05) this model underestimates Type I
error rates and there is no optimal model.
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Background
Randomised controlled trials (RCTs) are often categorised
into two types: individually randomised controlled trials
(iRCTs) where participants are individually randomised to
treatment arms to receive one of the investigative treat-
ments; and cluster randomised controlled trials (cRCTs)
where groups of participants (clusters) are randomised to
treatment arms. We may expect outcomes for participants
within the same cluster to be more similar than those from
different clusters. The similarity can arise due to partici-
pants in the same cluster receiving care from the same
health provider or interacting with one another [1]. The im-
plications of clustering in cRCTs are widely acknowledged
[1, 2]. Clustering results in a reduction in statistical effi-
ciency in cRCTs and if ignored standard errors and p-values
for intervention effects are typically underestimated.
Clustering can also occur in iRCTs. For instance, clus-

tering of participants outcomes due to receiving treat-
ment as part of a group-based parenting intervention
[3], treatment in specialist clinics for the treatment of
venous leg ulcers [4], or participants under the care of a
surgeon for comparison for hemostasis in elective
benign thyroid surgery [5]. The care provider or group
dynamics may play a role in the causal pathway of the
intervention effect. We might expect correlated out-
comes between individuals either in the same group or
receiving treatment from the same care provider.
Standard sample size and analysis methods for iRCTs

rely on the assumption of independence between partici-
pants, which is violated when clustering is present. The
‘clustering effect’ is commonly quantified using the
intracluster correlation coefficient (ICC). The ICC mea-
sures the extent to which outcomes from participants
within the same cluster are correlated to one another
[1]. When designing and analysing iRCTs with cluster-
ing we need to consider implications of the potential
lack of independence. Ignoring clustering in the ana-
lysis can lead to over precise results and consequently
incorrect conclusions [1]. Clustering of any form re-
sults in a reduction in the effective sample size,
hence, there is a reduction in the power to detect an
intervention effect if it truly exists.
In addition to obtaining sufficient power and accurate

results, accounting for clustering enables us to estimate
the ICC. ICCs are often important for the interpretation
of trial results; we may be directly interested in the inter-
vention group or care provider effects. ICCs are also key
when calculating sample sizes for RCTs with clustering,
in order to maintain power [1].
An increasingly applied design in healthcare and educa-

tion research is a partially nested randomised controlled
trial (pnRCT) [6], where participants are individually ran-
domised to trial arms and clustering of outcomes occurs
in only one arm of the trial [7] (also termed partially

clustered trials). The STEPWISE trial is an example of a
pnRCT, assessing a structured lifestyle education
programme aimed at supporting weight loss for adults
with schizophrenia and first episode psychosis in a
community mental health setting. Individuals were rando-
mised to either an intervention arm of group-based life-
style education sessions or a control arm receiving usual
care at the individual level [8].
Specific statistical methods need to be used for analys-

ing pnRCTs. Consequently, there has been a consider-
able growth in the methodology literature (particularly
in the fields of psychotherapy and educational research)
in the past few decades both proposing and reviewing
statistical methods for pnRCTs.
Table 1 presents a summary of relevant literature

on the analysis of pnRCTs. This expands on the lit-
erature search by Flight et al. [9] summarising models
for the analysis of pnRCTs. Sample size calculations
for pnRCTs have been addressed elsewhere [10–14].
Analysis methods for pnRCTs have mainly focussed on
using mixed-effects models, individual-level models
which account for the hierarchical structure of the data
[6, 7, 9, 15–19]. These models allow us to control for
baseline covariates and represent the different levels in the
data, including cluster, individual, and repeated measures
(where applicable). In addition to accounting for the
clustering, we may expect the variance of the individ-
ual errors to differ between trial arms in pnRCTs,
termed heteroscedastic variance [7]. When a clustered
intervention arm is compared to a non-clustered control
arm the between-cluster variation in the intervention arm
is not present in the control arm. The clustered interven-
tion may result in a decrease or increase of the individual
level variability.
In this study, we use a series of simulations to evaluate

the statistical analysis models for two-arm parallel
pnRCTs with continuous outcomes, assessing a range of
scenarios including the effect of cluster size and the
number of clusters. In theory, the mixed-effects models
can be formulated so that they do not model clustering
in the control arm, however, when running these models
in statistical software packages it is necessary to impose
some form of clustering in the control arm. The litera-
ture identified in Table 1 highlighted that research to
date is lacking in addressing the best way to treat the
non-clustered control arm when fitting the models in
statistical software, using scenarios of relevance in the
field of public health with small clusters and small ICCs
[9], and evaluating the effect of the variance ratio of the
residuals on the model fit. In pnRCTs we may have small
numbers of clusters [9], thus we evaluate the impact of
the number of clusters on statistical inference and if
statistical inference remains valid using mixed-effects
models.
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Table 1 Summary of relevant literature on analysis of pnRCTs

Paper Relevant themes Range of valuesa Findings

Schweig &
Pane [16]

Describe and compare models for
pnRCTs with non-compliance using
a simulation study.

Simulation for two levels of clustering,
exact cluster sizes (m) unclear in paper,
cschool = 37, cclass = 177, λB = 2, 8,
ρschool = 0.005, 0.05, 0.15, ρclass = 0.0004,
0.10, 0.25, and θ = 0.087.

Clustering and non-compliance may have
a substantial impact on statistical inference
about intention-to-treat effects. Provide
methods that may accommodate pnRCT
with non-compliance, recommend using
complier average causal effect estimate
(CACE) and scaling by the proportion of
compliers. No mention of degrees of
freedom, we have assumed they used
default degrees of freedom method
available in R lme packages.

Flight et al. [9] Compare models applied to four
examples of pnRCTs. Compare
three different methods for classifying
the non-clustered control arm in
pnRCTs, including: singleton clusters,
one large cluster and pseudo clusters.

Examples with {m, c} = {36, 8; 24, 7; 14,
8; 5, 6}, and estimated ρ = < 0.0001, 0.02,
0.007.

Recommend use of the heteroscedastic
model, recommendations based only on
re-analysis of case studies. Methods for
classifying the non-clustered control arm
in pnRCTs had a large impact in fully
clustered mixed effects models and no
measurable impact in partially nested
mixed-effects models. ICCs in four
examples were small.

Sterba [27] Review of modelling developments
for pnRCTs, focused on those particularly
relevant to psychotherapy trials.

Recommend the inclusion of cluster
variability in analysis model as it provides
insight into treatment process (rather than
treating it as a nuisance). Annotated Mplus
commands for models

Lohr, Schochet
& Sanders
[19]

Report presenting a guide to design
and analysis issues for pnRCTs in education
research, using example trials. Discussion
of degrees of freedom issue in Appendix.

Guidance document, defines pnRCT in
context of education research and show
methods to analyse these using SAS.
Provide SAS commands for model fitting
in examples.

Korendijk
[18]

Compare models for pnRCTs using
simulation study, investigate
mis-specification for the estimation
of the parameters and their standard
errors.

Simulation study with m = 5, c = 10, 30,
50, 100, ρ = 0.05, 0.1, 0.2, λA = 1, d = 0.3.

All models perform comparably with
respect to fixed effect estimates.
Recommend use of partially nested
mixed-effects model. Simulations were
under null and ICC always greater than
zero. No mention of degrees of freedom,
we have we assumed default degrees of
freedom used from MLwiN software, and
homoscedasticity was assumed for
ndividual variances between the two
arms.

Sanders [17] Compare models for pnRCTs using
simulation study in terms of Type
I error and power

Simulation study with {m, c} = {2, 10; 4,
4; 5, 4; 10, 2}, ρ = 0, 0.1, 0.2, 0.3, 0.4, 0.5,
λA = 1, and ω2 = 0, 0.01, 0.059, 0.138.

Type I error rate increased as ICC increased,
Satterthwaite degrees of freedom had
better control than Kenward-Roger degrees
of freedom. Found using mixed-effects
model for pnRCT when ICC is zero likely
leads to never detecting intervention
effects, observed Type I error rates nearly
non-existent under all scenarios with ICC
equal to zero. Recommend to evaluate if
ICC is significantly different from zero prior
to selecting analysis method. Homoscedas
ticity was assumed for individual variances
between the two arms.

Baldwin
et al. [15]

Compare analysis models for pnRCT
simulation study, comparing three
degrees of freedom calculations,
and a pnRCT example.

Simulation for m = 5, 15, 30, c = 2, 4, 8,
16, ρ = 0, 0.05, 0.1, 0.15, 0.3, λB = 0.25,
1, 4, and d = 0, 0.5.

Recommend pnRCTs take account of
heteroscedasticity. Satterthwaite and
Kenward-Roger degrees of freedom
control Type I error rate. The heteroscedas
tic model provides an unbiased estimate
and little reduction in power compared to
the homoscedastic model. Argue that using
a partially nested mixed-effects model only
a problem for statistical inference when the
number of clusters is small. The number of
clusters has greater impact on power in
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We evaluate and provide recommendations for the
most appropriate analysis methods for pnRCTs,
including:

1) where mixed-effects models are necessary,
2) methods of specifying the clusters in the non-

clustered arm when fitting a model and the impact
these have on the analysis,

3) the impact of cluster sizes and the number of
clusters on statistical inference and,

4) the impact of heteroscedastic individual variance
between trial arms on statistical inference.

Methods
Methods for analysis of partially nested trials
In this section, we present the main modelling ap-
proaches currently available and used for pnRCTs, in-
cluding ignoring clustering altogether, imposing
clustering in the non-clustered control arm, and expli-
citly modelling the partially nested design by modelling
clustering only in the intervention arm.
It is possible to account for clustering by including each

cluster as a fixed effect in a standard regression model, in
addition to a fixed effect representing the intervention ef-
fect. Although this method is simple to implement, it is

not recommended. Firstly, it does not reflect the study de-
sign of a pnRCT and may require a large number of fixed
effects to be fitted lowering the degrees of freedom [9].
Secondly, if clusters are of size one there is insufficient in-
formation to estimate both the intervention effect and the
cluster effect for each cluster. Finally, it will generally
underestimate the intervention effect variability as the
cluster level variability is removed.
Table 2 presents a summary of the models for the ana-

lysis of pnRCTs using findings from the literature search
by Flight et al. [9]. We define: y as a continuous out-
come, i is the individual participant indicator, j is the
cluster indicator, t is the intervention indicator (0 = con-
trol, 1 = intervention), θ is the intervention effect, β0 is
an intercept term. Error terms are defined depending on
the model procedure, represented using ϵ, u, and r,
where u represents the between cluster variation and ϵ
and r represent individual level variation.
Model 1 (Table 2) is the linear regression model which ig-

nores the clustering and uses analysis for non-clustered tri-
als, assuming independence between individuals regardless
of whether they are in the same cluster. This infers that the
conditional variance of y in both the intervention and con-
trol arms is equal. If the outcomes of individuals in the
same cluster are correlated, the independence assumption

Table 1 Summary of relevant literature on analysis of pnRCTs (Continued)

Paper Relevant themes Range of valuesa Findings

pnRCTs. At least eight, preferably 16 clusters,
to maintain Type I error rate.

Bauer
et al. [6]

Review of RCTs to ascertain the prevalence
of pnRCTS in four public health and clinical
research journals. Analysis models for pnRCTs
extended to include pre-test measures as
covariates, individual and group level
covariates, and example of pnRCT

Example with clustering in one arm
c = 41, m = 9, and estimated ρ = 0.02.

Out of 94 RCTs, 32% were pnRCTs, 40%
iRCTs and 27% cRCT. None used methods
specific to pnRCTs. Example pnRCT data
could be analysed using mixed-effects
models. Argue pnRCTs “often increase
external validity at the expense of internal
validity” (p.20).

Roberts &
Roberts [7]

Examine the case of pnRCTs, heterogeneity,
comparison of analysis methods for
simulation study and present an example.

Simulation for m = 6, c = 8, ρ = 0, 0.1, 0.2,
0.3, λA = 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2
and d = 0.

Recommend pnRCTs take account of
heteroscedasticity. Satterthwaite unequal
variances t-test gave robust to heterosce
dasticity. The heteroscedastic model gives
slightly inflated test size for large ρ: suggest
Satterthwaite degrees of freedom as a
solution.

Lee &
Thompson
[28]

Describe analysis models for iRCTs with
clustering and apply to two examples
(using Bayesian approach)

Show that ignoring clustering may
underestimate uncertainty, leading to
incorrect conclusions.

Hoover
[34]

Statistical tests for RCTs with clustering
that differ across trial arms.

Example with clustering in both
arms with m = 7 − 12, c = 3.

Provide an adjustment for the independent
samples t-test for pnRCTs. Statistical impact
of heterogeneity effect increases as the
cluster size increases, and as heterogeneity
increases. The test does not allow for the
inclusion of covariates, multiple treatments,
baseline measures, or non-normally
distributed outcomes.

am = cluster size, c = number of clusters, ρ= ICC, d = standardised effect size, ω2= Omega Squared effect size percent of variability accounted for by treatment
condition, λA= ratio of total variance in control arm compared to clustered, λB= ratio of individual variance in control arm compared to clustered arm. Ordered by
year of publication
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is violated and we underestimate uncertainty around inter-
vention effects when using the linear regression model
above.
Model 2 (Table 2) is the fully clustered mixed-effects

model which includes the cluster as a random effect; this
includes variability at both the individual and cluster level.
The mixed-effects model with imposed clustering of the
control arm requires the estimation of a random cluster
effect for both intervention and control groups. Some op-
tions for the imposed clustering in the control arm are
given in Table 3. The variance of the control arm and
intervention arm are assumed to be the same (homoscedas-
tic). When the variance is believed to differ between control
and intervention arm model 2 is not appropriate as it does
not account for heteroscedasticity. Models 3 and 4
(Table 2) apply the cluster effect to the clustered arm only
[7, 10, 11, 14], we term these the partially nested models.
Individuals in the non-clustered control arm are as-

sumed independent. This accurately reflects the design
of the study with clustering only in one arm. In the par-
tially nested homoscedastic model, we apply the random
effect uj to the clustered intervention arm only;
between-cluster variability is only present for the inter-
vention arm. Model 3 is homoscedastic as the variance
of the individual errors, ϵij, between arms is the same. In
practice, the variance of the individual errors may differ
between trial arms [7]. Therefore, model 3 is extended
to a partially nested heteroscedastic model, model 4,
this allows for differing individual errors between

intervention and control arms but does not constrain
the form of heteroscedasticity.

Imposed clustering in the control arm
Regardless of whether or not the model assumes cluste-
ring in one (models 3 and 4) or both arms (model 2),
within the statistical software package a decision must
be made about how to code the cluster indicators in the
control arm. One method is to impose clusters for all in-
dividuals, including those in the control arm, and use
analysis for cRCTs with clustering in both arms.
Table 3 represents the different options for imposing

clustering, j, in the control arm, l is the number of indi-
viduals in the control arm and k is the number of arbi-
trary clusters in the control group. Option one treats the
control group as one single cluster; option two treats
each individual in the control arm as their own cluster
of size one (singleton clusters) giving j=l clusters in the
control arm. ICC estimation can be problematic with
options one and two, in theory, it is not possible to
estimate between-cluster variability in option one, or es-
timate within cluster variability in the control group
using option two [20]. Option three imposes artificial
pseudo-random clusters in the control group to
overcome the problem of estimating within or between-
cluster variability. The number of arbitrary clusters, k,
needs to be considered. We chose it to be equal across
treatment arms. In addition, option three will likely
result in a lower ICC estimation due to the assumed
independence of control participants.
In our simulation study, the fully clustered model 2 is

parametrised using the imposed clustering from Table 3.
The models are:

� Model 2.1 fully clustered mixed-effects model with
singleton clusters in the control arm;

Table 2 Models for the analysis of pnRCTs

Model description Statistical model Heteroscedastic
residuals

Model 1 Linear regression
(ignore clustering)

yi = β0 + θti + ϵi
• ϵ i � Nð0; σ2ϵ Þ the individual level variation

No

Model 2 Fully clustered
(impose clustering)

yij = β0 + θtij + uj + ϵij
• u j � Nð0; σ2uÞ a random effects term representing between cluster
variation

• ϵ i j � Nð0; σ2ϵÞ the individual level variation

No

Model 3 Partially nested
homoscedastic

yij = β0 + θtij + ujtij + ϵij
• u j � Nð0; σ2uÞ a random effects term representing between-cluster variation
in clustered arm

• ϵ i j � Nð0; σ2ϵÞ the individual level variation

No

Model 4 Partially nested
heteroscedastic

yij = β0 + θtij + ujtij + rij(1 − tij) + ϵijtij
• u j � Nð0; σ2uÞ a random effects term representing between cluster-variation
in clustered arm

• rij � Nð0; σ2r Þ the individual level variation in the non-clustered control arm.
• ϵ i j � Nð0; σ2ϵÞ the individual level variation in the clustered arm

Yes

Table 3 Options for imposing clustering in the non-clustered
control arm

Option Cluster Intervention

1 j = 0 j = 1, …, c

2 j = 1, …, l j = l + 1, …, c

3 j = 1, …, k j = k + 1, …, c
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� Model 2.2 fully clustered mixed-effects model with
one large cluster in the control arm;

� Model 2.3 fully clustered mixed-effects model with
pseudo clusters in the control arm.

Flight et al. [9] investigated the effect of the different
methods of imposing clustering in the control arm
presented in Table 3 in four pnRCT case-studies. The four
case-studies covered trials evaluating the effect of: specialist
leg ulcer clinics (clustered by clinic), acupuncture for low
back pain (clustered by acupuncturist), postnatal support in
the community (clustered by community support worker),
and telephone befriending for maintaining quality of life in
older people (clustered by volunteer facilitator). Little differ-
ence was found between the different methods for the fully
clustered mixed-effects models and there was no difference
between the different methods for the partially nested
mixed-effects models.
We anticipated that the method of imposing the clus-

tering in the control arm does not affect the results of
the methods which model clustering in only one arm,
however, this evaluated in the simulation study.

Degrees of freedom for fixed effect estimates
In the mixed-effects models above we wish to carry out
significance tests for the intervention effect. In addition
to the correct choice of model, the test statistics and
degrees of freedom in mixed-effects models also need to
be considered. For large sample sizes in mixed-effects
models, the test statistics for fixed effects can be as-
sumed Normally distributed. However, for small samples,
the t-distribution is generally used as an approximation of
the distribution of the test statistic. Estimating the degrees
of freedom for the t-distribution is unclear for pnRCTs
and will affect both the significance test and the confi-
dence intervals of the intervention effect estimate.
Comparison of degrees of freedom correction methods

has been undertaken for cRCTs and pnRCTs with small
numbers of clusters [15, 21]. The Satterthwaite
small-sample degrees of freedom correction takes into
account the variance structure of the data, for pnRCTs,
it has been shown to be superior to the between-within
method for maintaining Type I error rates (and compa-
rable to the Kenward-Roger method) [15]. Following
these results, the Satterthwaite approximation was used
to calculate degrees of freedom (using dfmethod() option
for mixed, available in Stata 14 onwards [22]).

Simulation study
Overview
We performed a simulation study to evaluate the statis-
tical analysis models for pnRCTs presented in Table 2,
and the imposed clustering of the control arm in Table 3

[23]. All models were fitted using a restricted maximum
likelihood procedure (REML). All simulations were done
in Stata [22], graphs produced using ggplot2 [24] in R
[25]. See Additional file 1 for simulation code.

Data-generating mechanism
We simulated data to replicate a two-arm parallel
pnRCT trial with a non-clustered control arm and a
clustered intervention arm (randomised 1:1) and a con-
tinuous outcome. We simulated data under various de-
sign scenarios and under both the null (θ = 0) and
alternative hypothesis (θ =A, where A ≠ 0).
Data were simulated from the following model with

the intercept set to zero and group allocation denoted
by t (t = 0 for control, t = 1 for intervention arm):

� For the intervention arm ðt ¼ 1Þ yi j ¼ θ þ uj
ffiffiffi

ρ
p þ zi j

ffiffiffiffiffiffiffiffi

1−ρ
p

� For the control arm ðt ¼ 0Þ yi j ¼ zi j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γð1−ρÞp

Where uj~N(0, 1) and zij~N(0, 1). This simulates an ICC
of ρ and a ratio of individual level variance between the
non-clustered control arm and the clustered intervention
arm of γ. If γ = 1, there is homoscedasticity between the
individual level variance in the control and intervention
arms. Full simulation study steps, including the data
generation process and modelling, are presented in Fig. 1.
Simulation scenarios are presented in Table 4. We var-

ied: the intervention effect, ICC, cluster size, number of
clusters, and ratio of individual variance between the
trial arms. If γ = 0.25 then individual variance in the con-
trol arm is one quarter that in the intervention arm and
if γ = 4 then individual variance in the control arm is
four times that in the intervention arm.
Simulation values were chosen based on literature on

pnRCTs [7, 9, 15, 17, 18, 26–28], as well as extending
these to more extreme cases of γ and ρ that may occur
in rare instances. Reporting of ICCs in iRCTs with clus-
tering is limited at present and it is plausible that ICCs
in pnRCTs differ from those of cRCTs. Current evidence
suggests ICCs in iRCTs with clustering in either one or
both arms are generally small and often less than 0.05
[7–9, 29], hence the choice to include a small ICC ρ =
0.01 in the simulations with ICCs of 0.2 or more occur-
ring only in rare instances. We were unaware of specific
literature on the evidence of heteroscedasticity, however,
from the authors experience of working on trials it was
expected γ to typically stay within the range of 0.5–2.
The number of clusters in the intervention group was 3,
6, 12 or 24. These figures reflect the small numbers of
clusters recruited in many pnRCTs and, coupled with
the cluster sizes of 5, 10, 20 or 30, they allowed alterna-
tive combinations of cluster size and number of clusters
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to be investigated for a given total trial sample size.
Figure 2 provides a graphical example of the simulated
partially nested trial data.

Methods
Each simulated dataset was analysed using the models
described in Table 2.

Estimand
Our estimands of interest are the REML estimate of
the intervention effect θ and the model estimate of
the ICC ρ.

Performance measures
We used the following performance measures: bias,
mean square error (MSE), and coverage of 95% confi-

dence intervals for θ̂, Type I error rate and power (calcu-
lated as the proportion of simulated results with a
statistically significant intervention effect at the 5% level
when the null or alternative hypothesis were true, for
Type I error and power respectively) and where appli-
cable, model estimated ICC. See Additional file 2 for
more detail on performance measures. For each of the
1440 scenarios 1000 datasets were generated; a 5%
significance level and 95% confidence interval based on
1000 simulations has a Monte Carlo error of 0.7%.

Results
Model convergence was generally satisfactory for all
models with models converging 95–100% of the time
across the different scenarios.

Imposed clustering in the control arm
Methods for imposing clustering in the control arm, pre-
sented in Table 3, had a negligible impact on the per-
formance measures of the partially nested mixed-effects
models (models 3 and 4). Under the simulation scenar-
ios, the differences in the p-value, confidence intervals

Fig. 1 Flowchart representing the simulation study steps

Table 4 Simulation input scenario values (total 1440 scenarios)

Variable Notation Values

Number of clusters c 3, 6, 12, 24

Cluster size m 5, 10, 20, 30

Intervention effect θ 0, 0.2, 0.5

ICC ρ 0, 0.01, 0.05, 0.1, 0.2a, 0.3a

Ratio of individual variance
between control and cluster
trial arms

γ 0.25a, 0.5, 1, 2, 4a

aConsidered extreme values to occur in rare scenarios
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and estimated ICC between the methods were only
present at four decimal places. Model fitting was consid-
erably faster (around four to five times faster) using ei-
ther one large cluster or the pseudo clusters compared
to the singleton clusters, however, this will likely be im-
material when fitting only a small number of models.
Methods for imposing clustering in the control arm

had a large impact on the performance measures of the
fully clustered mixed-effects models (models 2.1, 2.2,
and 2.3). Specific results for each performance measure
are presented in the following sections.
Results are reported only for the partially nested

mixed-effects models (models 3 and 4) with the
non-clustered controls classified as one large cluster, as
other methods were comparable. All three methods for
classifying the non-clustered control arms for the fully
clustered mixed-effects model (models 2.1, 2.2, and 2.3)
are reported.

Bias
The bias of the intervention effect estimate was not af-
fected by the analysis model used, individual variances
(γ) or the ICC (ρ). The maximum absolute bias of the
intervention effect was |0.057|, |0.043|, and |0.053| for
θ = 0, 0.2 and 0.5, respectively.

Mean square error
The models produced unbiased estimators with no dif-
ference in the observed MSE between the different
models. The MSE of the intervention effect estimate had
a mean of 0.051 (standard deviation (SD) 0.056) and
maximum of 0.346.

Type I error
Plots of the mean Type I error rates split by model, the
ratio of individual variances (γ) and the ICC (ρ) are pre-
sented in Fig. 3. As would be expected the linear regres-
sion model which ignores clustering had inflated Type I
error rates, with Type I error rate affected by ICC (ρ),
the ratio of individual variances (γ), number of clusters
(c), and cluster size (m). Although the inflation was
minimal when ICC ρ = 0.01, the mean Type I error
was 0.061 (SD 0.010). When cluster size m ≤ 10 and
ICC ρ = 0.01 the mean Type I error rate was 0.056
(SD 0.007).
Model 2, the fully clustered models with imposed clus-

tering in the control arm resulted in biased Type I error
rates. Imposing clustering as singleton clusters (model
2.1) led to Type I error rates which were largely affected
by the ratio of individual variances (γ) and ICC (ρ). Im-
posing one large cluster in the control arm (model 2.2)
resulted in Type I error rates of zero (due to the
Satterthwaite degrees of freedom correction resulting in
large degrees of freedom when imposing one large clus-
ter in the control arm). Imposing pseudo clusters in the
control arm of the same size as the intervention arm
(model 2.3) provided relatively good control of Type I
error rates, mean Type I error of 0.039 (SD 0.018), but
was affected slightly by both the ratio of individual
variances (γ) and ICC (ρ).
Both the homoscedastic and heteroscedastic partially

nested models (models 3 and 4) provided good control of
Type I error rates (model 3: mean Type I error 0.045 (SD
0.016) and model 4: mean Type I error 0.044 (SD 0.014))
with little difference present between the two models.
For more detailed comparison Fig. 4 presents the Type

I error rates for the linear regression model (model 1),
the homoscedastic (model 3) and the heteroscedastic
(model 4) partially nested models by ICC (ρ), the ratio
of individual variances (γ), number of clusters (c), and
cluster size (m). Higher ICC values resulted in higher
Type I error rates in each model. The impact of ignoring
clustering (model 1) depends on both ICC (ρ), cluster
size (m), and number of clusters (c). Larger number of
clusters (c) resulted in better control of Type I error
rates for the partially nested models. When ICC ρ = 0,
the Type I error rates of the partially nested models
(models 3 and 4) were reduced from the nominal level.
This is due to the cluster variance components being es-
timated when they are not actually present in the data.
When the ICC was small (ρ ≤ 0.05) and the individual
variance in the control arm smaller than that in the
intervention arm (γ < 1), the Type I error rates of par-
tially nested models were reduced from the nominal 5%
level. When ICC was large (ρ = 0.3) the partially nested
models generally resulted in inflated Type I error rates.
As ICC increased Type I error rates increased, with the
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Fig. 2 Example of simulated partially nested trial dataset, ρ = 0.1,
γ = 1, c = 12, and m = 10
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partially nested models 3 and 4 only reaching above the
nominal Type I error rate of 5% on average when ICC
ρ ≥ 0.2.
The Satterthwaite correction used in Stata mixed

(dfmethod(sat)) did not fully correct the Type I error
rates to the nominal 5% level, even with the use of the
heteroscedastic model 4. The heteroscedastic model 4
did have slightly improved control of Type I error rates
than the homoscedastic model 3.

Coverage
Plots of the mean coverage of the 95% confidence inter-
vals of the intervention effect estimate split by model,
ICC (ρ) and the ratio of individual variances (γ) are pre-
sented in Fig. 5 under the alterative hypothesis. The lin-
ear regression model (model 1) resulted in under
coverage when ICC was small (ρ ≤ 0.05) and the cover-
age rates decrease as ICC (ρ) increases. The fully clus-
tered models with imposed clustering in the control arm

resulted in both over and under coverage dependent on
the direction of the variance ratio and the method of im-
posed clustering. Imposing clustering as singleton clus-
ters (model 2.1) resulted in coverage rates largely
affected by ratio of individual variances (γ). Imposing
one large cluster in the control arm (model 2.2) resulted
in over coverage, due to the reduced Type I error rates
of zero caused by the Satterthwaite degrees of freedom
correction. Imposing pseudo clusters in the control arm
(model 2.3) provided mean coverage rates of 0.961 (SD
0.018).
Both the homoscedastic and heteroscedastic partially

nested models (models 3 and 4) provided good control
of coverage rates of 95% confidence intervals (model 3:
mean coverage rate 0.956 (SD 0.014) and model 4: mean
coverage rate 0.956 (SD 0.014)) with little difference be-
tween the two models. In the simulations over coverage
of the 95% confidence intervals for the heteroscedastic
model 4 occurred when ICC ρ ≤ 0.05, except when the

Fig. 3 Mean Type I error rate by γ and ρ over all scenarios, for each model
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ratio of individual variances γ = 4. Hence, the results
were generally conservative when ICC was small. Under
coverage of the 95% confidence intervals for the hetero-
scedastic model 4 only occurred for large ICC (ρ) and
ratio of individual variances (γ).

Power
Increasing the number of clusters as opposed to increas-
ing the cluster size had a bigger impact on power with a
fixed total sample size. Fig. 6 shows the power of the lin-
ear regression model (model 1), the homoscedastic
(model 3) and the heteroscedastic (model 4) partially
nested models when intervention effect θ = 0.5 by ICC
(ρ), the ratio of individual variances (γ), number of
clusters (c), and cluster size (m) (see Additional file 2 for
when θ = 0.2). Under the simulation scenarios con-
ducted, 12 or more clusters and cluster sizes of ten or
more were generally needed for a power greater than
80%. Using three or six clusters rarely gave power over
80%, only for ICC ρ ≤ 0.05 and relatively large cluster
sizes m ≥ 20, did power go over 80%.

For ICC ρ ≤ 0.05, which is commonly assumed when
planning complex intervention trials in healthcare,
power of 80% was generally achieved with: 24 clusters of
any size, 12 clusters of size ten or more, and six clusters
of size 20 or more (120 in each arm).
Under a ratio of individual variances γ = 1 the total

residual variance in both trial arms is equal to one,
hence, the intervention effect (θ) we simulated is the
standardised intervention effect. Figure 7 shows the
power of models 1, 3 and 4 under homoscedastic indi-
vidual variances (γ = 1). The heteroscedastic model 4 is
over-parameterised in the case of the ratio of individual
variances γ = 1, however, it did not result in a substan-
tially lower power than the homoscedastic model.
Table 5 presents the power of model 4 and model 1

under ICC ρ = 0, model 4 is over-parametrised here.
There is a loss in mean statistical power which ranged
between 1.7 to 6.3%.

ICC
Figure 8 presents the mean estimated ICC across the
fully clustered and partially nested mixed effect models,

Fig. 4 Type I error rate of models 1, 3 and 4, by ρ, γ, c, and m
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by the ratio of individual variances (γ) and ICC (ρ). ICC
estimation was consistent under the heteroscedastic par-
tially nested model (model 4). The homoscedastic par-
tially nested model (model 3) resulted in biased ICC,
with the direction of bias dependent upon the ratio of
individual variances (γ).
Figure 9 presents the ICC for the homoscedastic

(model 3) and heteroscedastic (model 4) partially nested
models by the ratio of individual variances (γ), ICC (ρ),
number of clusters (c), and cluster size (m). The ICC es-
timation from the homoscedastic model was highly af-
fected by γ. The ICC estimation from the
heteroscedastic model was not affected by γ. Using the
heteroscedastic model, there was a slight positive bias in
the ICC estimation when ICC ρ ≤ 0.05, and when ICC
ρ ≥ 0.2 there was slight negative bias in the ICC estima-
tion. For example, when ICC ρ = 0.0 the mean ICC esti-
mation was 0.028 (SD 0.018), and when ICC ρ = 0.05 the
mean estimation was 0.060 (SD 0.014). As expected ICC
estimation improved as sample size increased. The ICC
estimation was only consistent across all values of ICC
(ρ) when there were 24 clusters, regardless of cluster
size. For an accurate estimate of ICC when true ICC ρ =
0.05, under the simulation scenarios we required cluster

sizes (m) of 20 or 30 or at least six clusters of size ten or
24 clusters of size five.

Summary of results
Simulation results are summarised in Table 6 presenting
the performance of the simple linear regression model
(model 1), homoscedastic partially nested mixed effects
model (model 3) and heteroscedastic partially nested
mixed effects model (model 4) under different design
scenarios. Results from the fully clustered mixed-effects
models (model 2) are excluded from Table 6 as we do
not recommend these in any scenario regardless of the
method used to impose clustering in the control arm.
None of the fully clustered mixed-effects models pro-
vided full control of the Type I error rates and the par-
tially nested mixed effects models always outperformed
them.

Discussion
In this study, we have investigated six modelling strat-
egies for the analysis of pnRCTs with a continuous out-
come. Our simulation study showed that when analysing
pnRCTs the use of the heteroscedastic partially nested
mixed-effects model for normally distributed outcome

Fig. 5 Mean coverage of 95% confidence interval, by ρ and γ over all scenarios
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Fig. 6 Power when θ = 0.5, by ρ, γ, c, and m

Fig. 7 Power with standardised intervention effect of 0.5 (θ = 0.5 and γ = 1)
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data (using Satterthwaite degrees of freedom) in general
provides: unbiased effect estimates; maintains relatively
good control of Type I error rates; and did not noticeably
cause a reduction in power even with homoscedastic indi-
vidual variances across arms. The heteroscedastic partially
nested model takes account of the between-cluster

variance (if present) and therefore provides valid infer-
ences for the intervention effect. Additional file 2 presents
model-fitting code for R, Stata and SAS. When using the
partially nested mixed-effects model, the method of classi-
fying the non-clustered controls had a negligible impact
on statistical inference under the simulation scenarios,
agreeing with findings from analysis of four example
pnRCTs by Flight et al. [9].
Our findings were broadly similar to those of Bald-

win et al. [15]. However, they did not assess the
method of classifying the non-clustered controls or
performance of models under small ICC (ρ = 0.01,
lowest value used in our study) which commonly
occur in pnRCTs [7–9, 26, 29]. Unlike findings from
Baldwin et al. [15], the Satterthwaite degrees of freedom
correction did not fully control the Type I error rate in
our simulations. The largest discrepancy from the nominal
level occurred when the ICC was small, ratio of individual
variances <1, and under small sample sizes.

Table 5 Mean and SD of power of model 4 versus model 1
under ρ = 0 over all scenarios

Intervention
effect (θ)

Model Power

Mean (SD)

0 1 0.050 (0.007)

4 0.033 (0.014)

0.2 1 0.388 (0.276)

4 0.327 (0.286)

0.5 1 0.803 (0.254)

4 0.740 (0.298)

Fig. 8 Mean estimated ICC by γ and ρ over all scenarios, for each model
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We have illustrated that using a naïve linear regression
model, which ignores clustering in pnRCTs, gave inflated
Type I error rates and resulted in under coverage of
confidence intervals when clustering of outcomes was
present. When ICC 0.01 ≤ ρ ≤ 0.05, which we believe is
common in pnRCTs [9], ignoring clustering led to
largely inflated Type I error rates using the linear regres-
sion model. A low ICC may still have a large impact,
particularly when cluster sizes are large.
When ICC was small and/or with very few clusters

and small cluster sizes using the partially nested
mixed-effects models 3 and 4 resulted in underestimated
Type I error rates. These models correctly reflect the de-
sign of the trials; however, they can result in conservati-
vism regarding the precision of estimates due to the bias
in estimating the variance estimates when we have a
small number of clusters. Consequently, using the par-
tially nested mixed effects models with small ICC may
make it difficult to detect differences between the trial
arms when present.
Sanders [17] recommend evaluating whether ICC is sig-

nificantly different from zero prior to selecting an analysis
method. We caution such significance testing for ICC,
and similarly testing for heteroscedasticity [7]. These tests
will generally lack power in a pnRCT and it is not the

statistical significance of the ICC that matters but impact
of the magnitude on inference. In general, we recommend
the use of the partially nested models when analysing
pnRCT trials, particularly if conservatism and an ICC esti-
mate are desired. However, the choice of model and the
requirement or not for conservatism needs to be consi-
dered in the context of the specific trial setting.
Similar to cRCTs [1], in a pnRCT increasing the number

of clusters rather than increasing the cluster size has a
greater increase in power for a fixed total sample size. Our
simulation results showed that this will also provide a more
accurate estimation of the ICC. When the number of clus-
ters is small, for example, three clusters in the intervention
arm, the ICC estimation will likely be upwardly biased.
With six clusters in the intervention arm, the ICC estimate
was relatively unbiased once the true ICC ≥0.1. The ICC
estimation became consistent regardless of cluster size or
true ICC only once there were 24 clusters in the simulation
scenarios. This reflects findings from previous research that
to reliably estimate the size of clustering effects a large
number of clusters are required [30].
This study investigated the case of analysing partially

nested trials under complete compliance. Non-compliance
in the clustered arm of a pnRCT may occur when some
participants randomised to a particular treatment group or

Fig. 9 ICC estimation of heteroscedastic partially nested model, by γ, ρ, m and c
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care provider do not attend any sessions or receive treat-
ment as part of different treatment group or care provider
intended at randomisation. Consequently, non-complier
outcomes may be assumed independent if they do not
receive the clustered intervention. Schweig and Pane [16]
describe and compare models for pnRCTs with non-com-
pliance using a simulation study. They argue that an un-
biased intention-to-treat (ITT) estimate under non-
compliance on a pnRCT may be obtained using a Complier
Average Causal Effects (CACE) model. This method in-
volves estimating the treatment effect for compliers and
scaling this CACE effect estimate by the proportion of
compliers to provide an ITT effect estimate. The issues
posed by non-compliance warrant further investigation,
considering a broader range of scenarios and investigating
the degrees of freedom corrections for valid statistical
inferences.
The design and analysis of trials with clustering in one

arm needs to take account of heterogeneity and ICC to
have a sufficiently powered sample size and accurate
intervention effect. We strongly recommend the reporting
of ICCs in trials results papers. The framework developed
for cRCTs is also broadly applicable in iRCTs with cluster-
ing, identifying three dimensions to consider when report-
ing an ICC: a description of the dataset (including
characteristics of the outcome and the intervention); how

the ICC was calculated; and the precision of the ICC [31].
This has the potential to improve the assumptions about
ICCs in iRCTs, adhere to CONSORT reporting guidelines
for RCTs of nonpharmacological interventions [32], and
raise awareness of the need to account for clustering in
both the sample size and analysis in iRCTs with clustering.
A wide variety of terminology are used in iRCTs with

clustering in one arm, including partially nested, partially
clustered, multi-level, and individually randomized group
intervention. A more consistent use of terminology would
reduce confusion, improve reporting and make finding
relevant ICCs from previous trials easier. We suggest the
terminology partially nested randomised trial (pnRCT) to
describe an iRCT with clustering in one arm.

Limitations
All the mixed-effects models assume that the cluster
level means follow a Normal distribution. This may not
be a valid assumption, for example, when we have a
small number of clusters.
In the simulations, we have used fixed cluster sizes. In

practice, cluster size may vary, causing a loss in efficiency
when estimating the intervention effect. A simulation
study by Candel and Van Breukelen [10] found the effi-
ciency loss in the intervention effect estimate was rarely
more than 10%, requiring recruitment of 11% more

Table 6 Summary of simulation results by different models split by ρ, m, and c averaged over all γ

*Model 1: simple linear regression; Model 3: homoscedastic partially nested mixed effects model; Model 4: heteroscedastic partially nested mixed effects model.
Green highlighted ≤ than expected, red highlighted > than expected
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clusters for the intervention arm and 11% more individ-
uals for the control arm. The loss of efficiency in the inter-
cept variance reached to 15%, requiring 19% more clusters
in the clustered arm, and no additional recruitment in the
control arm. Additionally, it has been shown in cluster tri-
als if the coefficient of variation in cluster size is small, less
than 0.23, then the correction on sample size is negligible
[33]. It should be noted that cluster sizes are likely to be
more similar in group administered interventions com-
pared to trials which impose clustering by being treated
by the same care provider [7].
Throughout the simulations we assumed there was no

effect of clustering in the control arm, this may not strictly
be true in practice. In healthcare intervention trials, a
commonly used control intervention is ‘care as usual’. This
type of control may induce some form of low-level clus-
tering, for instance, treatment by a healthcare practitioner.
If the same practitioner treats numerous individuals, we
can assume, in the same sense as we have done for the
intervention arm that these individuals are clustered and
include this in the modelling procedure. However, this in-
formation is often not available in trial data and is not
unique to pnRCTs.
Partially nested trials pose a number of challenges, in

particular, the issue of internal validity [6]. The grouping
of individuals as part of the delivery of a treatment may
affect the outcome. However, taking a pragmatic view-
point, we consider the grouping as part of the treatment
as a whole if this is reflective of treatment delivery in
real-world practice. In addition, if the ungrouped con-
trols are the true comparison in real life a pnRCT design
will provide external validity.

Conclusion
Partially nested RCTs are increasingly used in complex
intervention research. Ignoring clustering can lead to infla-
tions of the Type I error rates, even for small ICCs. When
analysing a pnRCT with continuous outcomes we recom-
mend the use of a heteroscedastic partially nested
mixed-effects model with corrected degrees of freedoms
such as using the Satterhwaite method, for outcomes similar
to those generated under the scenarios of our simulations
study. The method used for classifying the non-clustered
controls had a negligible impact on the results using the par-
tially nested mixed-effects model. The model is easy to im-
plement in standard statistical software and does not cause a
notable reduction in power under homoscedastic variances.
With few clusters, small cluster sizes and small ICC, the par-
tially nested model underestimated Type I error rates and
gave largely inflated ICC estimates, hence, for such designs
there is no optimal model and we need to be cautious in
model interpretation. Finally, to aid the design and prior
selection of an appropriate analysis plan for pnRCTs, we

strongly recommend the reporting of estimated ICC when
publishing trials results.
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Appendix B

Within-arm partially nested

randomised trials (chapter 5)

B.1 Supplementary results, figures and tables

B.1.1 Linear regression models (OLS, cluster robust and cluster bootstrap)

Table B.1: Type 1 error mean and standard deviation by ρ

ICC
Model: linear regression with

OLS SEs Cluster robust SEs Cluster bootstrap SEs
Mean SD Mean SD Mean SD

0.01 0.051 0.005 0.006 0.006 0.076 0.010
0.05 0.057 0.008 0.006 0.008 0.080 0.009
0.1 0.064 0.009 0.007 0.007 0.080 0.009
0.2 0.077 0.021 0.009 0.009 0.080 0.008

Table B.2: Coverage rates of 95% confidence intervals mean and standard deviation by ρ

ICC
Model: linear regression with

OLS SEs Cluster robust SEs Cluster bootstrap SEs
Mean SD Mean SD Mean SD

0.01 0.951 0.007 0.989 0.009 0.935 0.009
0.05 0.947 0.005 0.988 0.009 0.936 0.006
0.1 0.937 0.010 0.985 0.011 0.935 0.010
0.2 0.920 0.019 0.981 0.010 0.931 0.009
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B.2 Stata simulation code for within-arm partially nested trials

analysis

The following Stata code was used for the simulation study in chapter 5.

/* Simulation Parameters */

*Simulation for Yij = alpha + theta1*tij + theta2*t2ij + ujt2ij + eij

*normally distributed continuous outcome with cluster (j) and

*residual (i) variability

/* Function parameters */

*theta1*: stage one intervention effect

*theta2*: stage two intervention effect

*rho*: ICC in clustered stage two

*clusterSize*: Size of each cluster

*nClusters*: Number of clusters in stage two

*nIterations*: number of iterations for simulation

/* Variable Specification */

*y*: is the dependent variable;

*cluster* is one of the following clustering options

*cluster1* is the cluster indicator and treats the unclustered as clusters of

size one

cap log close

drop _all

clear

set more off

capture log

/* Value of parameters: args assigns the first command line argument to the local

macro simula_No, the second argument to nIterations and so on. */

args simulNo nIterations theta1 theta2 sigmau sigmae rho clusterSize nClusters

/* Set working directory */

cd "working directory"

local initial_seed = c(seed)

/* Log file for debugging and working out where mistakes are*/

log using log\simulation‘simulNo’.smcl, smcl replace

tempname memhold

tempfile results

qui postfile ‘memhold’ simICC theta1 theta2 sigmau sigmar sigmae rho clusterSize

nClusters Model TreatEst SE p_value NormalCI_ll NormalCI_ul NormalCI_cv BCCI_ll

BCCI_ul BCCI_cv ind_var converge using ‘results’, replace

forvalues sim = 1/‘nIterations’{

* monitor iterative process of simulations by displaying a dot after every 100

simulations

if int(‘sim’/100) ==‘sim’/100{

di as text "." _cont

}

quietly{
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local n2 = round((‘nClusters’*‘clusterSize’)/.5,2)*2

set obs ‘n2’

di ‘n2’

local n2 = _N

local sigmar = 1-‘sigmau’

* Generate treatment indicator

gen treat1 = 0

replace treat1 = 1 if _n< = _N/2

* Generate unique patient ID

gen patID = _n

* generate individual residuals control arm

gen e = rnormal(0,sqrt(‘sigmae’))

* generate individual residuals int arm

gen r = rnormal(0,sqrt(‘sigmar’))

* generate outcome after follow-up 1

gen y1 = ‘theta1’*treat1 + r*treat1 + e*(1-treat1)

* generate treat2

gen treat2 = 0

replace treat2 = 1 if y1<‘theta1’ & treat1 ==1

* generate cluster ID for those who get treat2 and singleton cluster ID for others

bysort treat2: egen cluster1 = seq(), b(‘clusterSize’)

summarize cluster1 if treat2 == 1

scal nClusters_treat2 = r(max)

*Number of clusters who receive intervention treat2-

replace cluster1 = (_n + nClusters_treat2) if (treat2==0)

* Generate cluster residual

sort cluster1

by cluster1: gen _rcl = rnormal(0,sqrt(‘sigmau’)) if _n==1

by cluster1: egen u = max(_rcl)

* generate follow-up 2

gen y2 = y1 + ‘theta2’*treat2 + u*treat2

* Calculate ICC of simulated data

tabstat u, by(treat2) stat(v) save

mat define I1 = r(Stat2)

local ClustRes_var I1[1,1]

tabstat r, by(treat2) stat(v) save

mat define I2 = r(Stat2)

local ClustInd_var I2[1,1]

local simICC =‘ClustRes_var’/(‘ClustRes_var’+‘ClustInd_var’)

*--------------------------

/* FIT MODELS */

*--------------------------

/* Notes on standard errors in regress: vce(vcetype) specifies the type of standard

error reported, which includes types that are derived from asymptotic theory (ols)

, that are robust to some kinds of misspecification (robust), that allow for

intragroup correlation (cluster clustvar), and that use bootstrap or jackknife
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methods (bootstrap, jackknife); see [R] vce option */

* Model: Simple linear regression model ignoring clustering for follow-up 1 outcome

capture {

regress y2 treat1

*define model number as first column

if _rc == 0 local converge = 1

local m 1.0

* retrieve the contents of the outputs (estimates)

mat define M10 = r(table)

local b M10[1,1] //estimate of the treatment effect

local se M10[2,1] //standard error of the treatment effect

local p M10[4,1] //p value

local ll M10[5,1] //ll 95%CI

local ul M10[6,1] //ul 95%CI

local cv inrange(‘theta1’,‘ll’,‘ul’) //coverage indicator

local ind_var = e(rmse)

post ‘memhold’ (‘simICC’) (‘theta1’) (‘theta2’) (‘sigmau’) (‘

sigmar’) (‘sigmae’) (‘rho’) (‘clusterSize’) (‘nClusters’) (‘m

’) (‘b’) (‘se’) (‘p’) (‘ll’) (‘ul’) (‘cv’) (.) (.) (.) (‘

ind_var’) (‘converge’)

}

if _rc != 0 {

local converge = 0

local m 1.0

post ‘memhold’ (‘simICC’) (‘theta1’) (‘theta2’) (‘sigmau’) (‘

sigmar’) (‘sigmae’) (‘rho’) (‘clusterSize’) (‘nClusters’) (‘m

’) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (‘converge’)

}

* Model: Simple linear regression model with cluster robust Std errors

* cluster() indicates that observations are clustered into groups and that

observations may be

* correlated within these clusters, but independent between the clusters. By including

the cluster

* option we also imply the robust option. The standard errors now take account that

observations within

* clusters are correlated. Using this procedure, clusters are bootstrapped and the

resampled clusters

* are kept intact.

capture {

regress y2 treat1, cluster(cluster1)

*define model number as first column

if _rc == 0 local converge = 1

local m 2

* retrieve the contents of the outputs (estimates)

mat define M21 = r(table)

local b M21[1,1] //estimate of the treatment effect

local se M21[2,1] //standard error of the treatment effect

local p M21[4,1] //p value

local ll M21[5,1] //ll 95%CI

local ul M21[6,1] //ul 95%CI

local cv inrange(‘theta1’,‘ll’,‘ul’) //coverage indicator

local ind_var = e(rmse)

post ‘memhold’ (‘simICC’) (‘theta1’) (‘theta2’) (‘sigmau’) (‘

sigmar’) (‘sigmae’) (‘rho’) (‘clusterSize’) (‘nClusters’) (‘m

’) (‘b’) (‘se’) (‘p’) (‘ll’) (‘ul’) (‘cv’) (.) (.) (.) (‘

ind_var’) (‘converge’)

}
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if _rc != 0 {

local converge = 0

local m 2

post ‘memhold’ (‘simICC’) (‘theta1’) (‘theta2’) (‘sigmau’) (‘

sigmar’) (‘sigmae’) (‘rho’) (‘clusterSize’) (‘nClusters’) (‘m

’) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (‘converge’)

}

* Model: boostrap SEs, cluster1, strata treat2

capture {

bootstrap _b[treat1], cluster(cluster1) strata(treat2) reps(1000): regress y2

treat1

*define model number as first column

if _rc == 0 local converge = 1

local m 3

mat define M3 = r(table)

local b M3[1,1] //estimate of the treatment effect

local se M3[2,1] //standard error of the treatment effect

local p M3[4,1] //p value

estat bootstrap, all

mat define N3 = e(ci_normal)

local n_ll N3[1,1] //normal ll 95%CI

local n_ul N3[2,1] //normal ul 95%CI

mat define B3 = e(ci_bc)

local bc_ll B3[1,1] //bias-corrected confidence interval ll 95%CI

local bc_ul B3[2,1] //bias-corrected confidence interval ul 95%CI

local n_cv inrange(‘theta1’,‘n_ll’,‘n_ul’) //coverage indicator

local bc_cv inrange(‘theta1’,‘bc_ll’,‘bc_ul’) //coverage

indicator

mat define V3 =e(V)

local ind_var = V3[1,1]

di ‘b’ ‘se’ ‘p’

post ‘memhold’ (‘simICC’) (‘theta1’) (‘theta2’) (‘sigmau’) (‘

sigmar’) (‘sigmae’) (‘rho’) (‘clusterSize’) (‘nClusters’) (‘m

’) (‘b’) (‘se’) (‘p’) (‘n_ll’) (‘n_ul’) (‘n_cv’) (‘bc_ll’) (‘

bc_ul’) (‘bc_cv’) (‘ind_var’) (‘converge’)

}

if _rc != 0 {

local converge = 0

local m 3

post ‘memhold’ (‘simICC’) (‘theta1’) (‘theta2’) (‘sigmau’) (‘

sigmar’) (‘sigmae’) (‘rho’) (‘clusterSize’) (‘nClusters’) (‘m

’) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (‘converge’)

}

}

clear

}

qui postclose ‘memhold’

qui use ‘results’, clear

/*

After all all simulations are run and the N-obsrvation

dataset of results is created, the code ends with

*/

note: File results‘simul_No’

note: Ran simluation ‘0’

note: Seed was ‘initial_seed’
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save dta\results‘simulNo’, replace

/* Closed and convert log to html */

log close

translate log\simulation‘simulNo’.smcl log\simulation‘simul_No’.log, replace
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Appendix C

Sample size methods for partially

nested trials (chapter 6)

C.1 List of included papers

Turner, E. L., Li, F., Gallis, J. A., Prague, M., and Murray, D. M. (2017). Review of recent

methodological developments in group-randomized trials: part 1-design. American journal of

public health, 107(6), 907-915.

Candel, M. J., and Van Breukelen, G. J. (2015). Sample size calculation for treatment effects in

randomized trials with fixed cluster sizes and heterogeneous intraclass correlations and variances.

Statistical methods in medical research, 24(5), 557-573.

Moerbeek, M. and Teerenstra, S. (2015). Power analysis of trials with multilevel data. Chap-

man and Hall/CRC.

Batistatou, E., Roberts, C., and Roberts, S. (2014). Sample size and power calculations for

trials and quasi-experimental studies with clustering. The Stata Journal, 1, 159-75.

Heo, M., Litwin, A. H., Blackstock, O., Kim, N., and Arnsten, J. H. (2017). Sample size

determinations for group-based randomized clinical trials with different levels of data hierarchy

between experimental and control arms. Statistical methods in medical research, 26(1), 399-413.

Lohr, S., Schochet, P. Z., and Sanders, E. (2014). Partially Nested Randomized Controlled

Trials in Education Research: A Guide to Design and Analysis. NCER 2014-2000. National

Center for Education Research.
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Roberts, C., and Walwyn, R. (2013). Design and analysis of non-pharmacological treatment

trials with multiple therapists per patient. Statistics in medicine, 32(1), 81-98.

Korendijk, E. (2012). Robustness and optimal design issues for cluster randomized trials

(Doctoral dissertation, Utrecht University).

Baldwin, S. A., Murray, D. M., Shadish, W. R., Pals, S. L., Holland, J. M., Abramowitz, J. S.,

... and Christensen, A. (2011). Intraclass correlation associated with therapists: estimates and

applications in planning psychotherapy research. Cognitive Behaviour Therapy, 40(1), 15-33.

Baldwin, S. A., Bauer, D. J., Stice, E., and Rohde, P. (2011). Evaluating models for partially

clustered designs. Psychological Methods, 16(2), 149.

Walwyn, R. E. (2010). Therapist variation within meta-analyses of psychotherapy trials.

Manchester, UK: University of Manchester.

Candel, M. J., and Van Breukelen, G. J. (2009). Varying cluster sizes in trials with clusters in

one treatment arm: sample size adjustments when testing treatment effects with linear mixed

models. Statistics in medicine, 28(18), 2307-2324.

Moerbeek, M., and Wong, W. K. (2008). Sample size formulae for trials comparing group and

individual treatments in a multilevel model. Statistics in Medicine, 27(15), 2850-2864.

Pals, S. L., Murray, D. M., Alfano, C. M., Shadish, W. R., Hannan, P. J., and Baker, W. L.

(2008). Individually randomized group treatment trials: a critical appraisal of frequently used

design and analytic approaches. American journal of public health, 98(8), 1418-1424.

Roberts, C., and Roberts, S. A. (2005). Design and analysis of clinical trials with clustering

effects due to treatment. Clinical Trials, 2(2), 152-162.

Hoover, D. R. (2002). Clinical trials of behavioural interventions with heterogeneous teaching

subgroup effects. Statistics in medicine, 21(10), 1351-1364.

C.2 Sample size comparison

Table C.1 provides a comparison of empirical sample size calculated using respective formulae

from Heo et al. [137] and Moerbeek and Wong [131].
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Table C.1: Comparison of pnRCT sample size methods from Heo et al. [137] and [131]. Assuming
a standardised intervention effect δs = 0.5 and homoscedastic variances γ = 1.

ICC m
Heo [137] method Moerbeek [131] method
k mk npn Total k mk npn Total

0.01 10 7 70 70 140 7 70 65 135
0.05 10 8 80 80 160 9 90 70 160
0.1 10 9 90 90 180 11 110 75 185
0.01 5 13 65 65 130 14 70 64 134
0.05 5 14 70 70 140 15 75 66 141
0.1 5 15 75 75 150 17 85 69 154
0.2 10 12 120 120 240 15 150 84 234
0.4 10 17 170 170 340 22 220 99 319
0.6 10 22 220 220 440 29 290 111 401
0.2 5 17 85 85 170 20 100 74 174
0.4 5 21 105 105 210 27 135 83 218
0.6 5 24 120 120 240 34 170 90 260
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Appendix D

Information on empirical ICCs and

data extraction (chapter 7)

D.1 ICC estimates from other studies

Links to ICC estimates from other studies that may be used alongside those presented in this

Appendix:

� Baldwin et al. [57] contact author for ICC estimates from psychotherapy trials (therapist

ICCs) (on-line link from paper is no longer in use);

� Cook et al. [46] database of ICC estimates in surgery trials (centre and surgeon) avail-

able via downloadable excel spreadsheet from webpage https://www.abdn.ac.uk/hsru/

what-we-do/tools/index.php#panel177;

� Stuart et al. [171] database of ICCs from primary care trials (GP centre ICCs), at the time

of this thesis submission the paper was still under revisions .

D.2 Data extraction variables

The extraction variables included for the purpose of the HTA audit in chapter 7 are listed below.

This is useful to show the data extracted but is not vital for the main body of the thesis.

Paper details:
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� Database ID

� Data extraction date

� Auditor

� Publication Year, Volume, Issue

� Study

� Lead Author

� ISRCTN

Trial details:

� Trial type and design

� Number of arms

� Clinical area

� Setting

� Type of primary endpoint

� Primary endpoint

� Primary follow-up

� Control type

� Geographical region

� Recruitment centre type

� Recruitment total

Treatment induced clustering:

� Treatment clustering

� Number clustered arms

� Clustering intervention
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� Clustering control

� Multi-centre

� Number centres

� Treatment induced clustering recognised

� Centre clustering recognised

� Sample size accounted for clustering?

� Sample size ICC treatment induced

� Sample size ICC centre

� Is sample size inflated in all arms?

� Evidence source for ICC

� Information on number of treatment clusters overall (if not reported per arm)

� Information on number of treatment clusters per arm (average, SD, range)

� Free text column regarding notes on clustering analysis and ICC

CONSORT adherence relating to items:

� CONSORT-NPT 4a, 7a, 12a, 13a (participant flow and diagram recorded separately), 15

� CONSORT-cluster 17a

� Free text column regarding whether and for what item it could be used for an exemplar.

D.3 Empirical ICC estimates

Table D.1 shows ICC values from the HTA iRCT identified in chapter 7. An extended table

including further information such as sample size, cluster information and status of outcome

and follow-up (primary/secondary) has been collected into an Excel sheet It was not possible to

include all this in the Appendix. I aim to include the excel file as an online supplementary file

to be submitted alongside a publication based on findings from chapter 7. For the purpose of

this thesis submission it is presently stored using ORDA - The University of Sheffield Research
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Data Catalogue and Repository which is hosted on Figshare via https://figshare.com/s/

d2645eb91b3ea9b65e0d.

Table D.1: ICC values from HTA studies
ID Trial Outcome with

follow-up
Cluster ICC 95%

CI
Clinical area

1 AESOPS Average drinks per
day (ADD) 12m

GP Practice 0.0570 NR NR Primary care

3 Body Therapy for Schizophrenia Calgary 10w Physio 0.0010 NR NR Mental health
3 Body Therapy for Schizophrenia MANSA 10w Physio 0.0010 NR NR Mental health
3 Body Therapy for Schizophrenia PANSS Positive 6m Physio 0.0010 NR NR Mental health
3 Body Therapy for Schizophrenia PANSS Positive 10w Physio 0.0010 NR NR Mental health
3 Body Therapy for Schizophrenia SAS 10w Physio 0.0010 NR NR Mental health
3 Body Therapy for Schizophrenia SIX 6m Physio 0.0010 NR NR Mental health
3 Body Therapy for Schizophrenia SIX 10w Physio 0.0010 NR NR Mental health
3 Body Therapy for Schizophrenia SAS 6m Physio 0.0070 NR NR Mental health
3 Body Therapy for Schizophrenia CAINS Expression

10w
Physio 0.0220 NR NR Mental health

3 Body Therapy for Schizophrenia CAINS Expression
6m

Physio 0.0230 NR NR Mental health

3 Body Therapy for Schizophrenia CAINS Experience
10w

Physio 0.0370 NR NR Mental health

3 Body Therapy for Schizophrenia CAINS Experience
6m

Physio 0.0410 NR NR Mental health

3 Body Therapy for Schizophrenia MANSA 6m Physio 0.0500 NR NR Mental health
3 Body Therapy for Schizophrenia PANSS Marder 6m Physio 0.0750 NR NR Mental health
3 Body Therapy for Schizophrenia Calgary 6m Physio 0.0860 NR NR Mental health
3 Body Therapy for Schizophrenia PANSS General 10w Physio 0.0960 NR NR Mental health
3 Body Therapy for Schizophrenia PANSS Negative 10w Physio 0.0990 NR NR Mental health
3 Body Therapy for Schizophrenia PANSS Negative 6m Physio 0.1370 NR NR Mental health
3 Body Therapy for Schizophrenia PANSS General 6m Physio 0.2050 NR NR Mental health
3 Body Therapy for Schizophrenia PANSS Marder 10w Physio 0.6780 NR NR Mental health
6 CASPER PHQ-9 4 m Case manager 0.0069 0.0000 0.0644 Mental health
6 CASPER PHQ-9 12m Case manager 0.0072 0.0000 0.0676 Mental health
7 CASPER Plus PHQ-9 4 m Case manager 0.0001 0.0000 0.0644 Mental health
10 COBRA PHQ-9 12m NR 0.0400 NR NR Mental health
12 Families for Health BMI z-score 12m Family-level 0.4713 0.3170 0.0396 Obesity
12 Families for Health BMI z-score 12m Families for Health

delivery group
0.0000 NR NR Obesity

13 Getting out of the house NEADL 12m Occupational
therapist/Physio

0.0012 NR NR Stroke

13 Getting out of the house SF36-v2 12m Occupational
therapist/Physio

0.0025 NR NR Stroke

13 Getting out of the house GHQ-12 (participant)
6m

Occupational
therapist/Physio

0.0028 NR NR Stroke

13 Getting out of the house GHQ-12 (participant)
6m

NHS stroke services 0.0035 NR NR Stroke

13 Getting out of the house GHQ-12 (participant)
12m

NHS stroke services 0.0043 NR NR Stroke

13 Getting out of the house SF36-v2 6m Occupational
therapist/Physio

0.0051 NR NR Stroke

13 Getting out of the house NEADL 6m Occupational
therapist/Physio

0.0052 NR NR Stroke

13 Getting out of the house RMI 12m NHS stroke services 0.0057 NR NR Stroke
13 Getting out of the house RMI 6m NHS stroke services 0.0060 NR NR Stroke
13 Getting out of the house GHQ-12 (carer) 12m NHS stroke services 0.0066 NR NR Stroke
13 Getting out of the house GHQ-12 (participant)

12m
Occupational
therapist/Physio

0.0075 NR NR Stroke

13 Getting out of the house SWOM 12m NHS stroke services 0.0093 NR NR Stroke
13 Getting out of the house SF36-v2 6m NHS stroke services 0.0099 NR NR Stroke
13 Getting out of the house RMI 6m Occupational

therapist/Physio
0.0111 NR NR Stroke

13 Getting out of the house SWOM 6m NHS stroke services 0.0123 NR NR Stroke
13 Getting out of the house RMI 12m Occupational

therapist/Physio
0.0134 NR NR Stroke

13 Getting out of the house GHQ-12 (carer) 12m Occupational
therapist/Physio

0.0136 NR NR Stroke

13 Getting out of the house NEADL 6m NHS stroke services 0.0155 NR NR Stroke
13 Getting out of the house NEADL 12m NHS stroke services 0.0171 NR NR Stroke
13 Getting out of the house GHQ-12 (carer) 6m Occupational

therapist/Physio
0.0176 NR NR Stroke

13 Getting out of the house GHQ-12 (carer) 6m NHS stroke services 0.0234 NR NR Stroke
13 Getting out of the house SWOM 6m Occupational

therapist/Physio
0.0289 NR NR Stroke

13 Getting out of the house SWOM 12m Occupational
therapist/Physio

0.0315 NR NR Stroke

13 Getting out of the house SF36-v2 12m NHS stroke services 0.0597 NR NR Stroke
14 IMPACT MFQ centred time

variable in model
Orthopaedic surgeon 0.0001 NR NR Mental health

15 KATMETAL EQ-5D 12m Orthopaedic surgeon 0.0000 0.0000 0.0250 O/R/MSK
15 KATMETAL EQ-5D 12m NHS Hospital 0.0060 0.0000 0.0700 O/R/MSK
15 KATMETAL EQ-5D 3m NHS Hospital 0.0000 0.0000 0.000* O/R/MSK
15 KATMETAL EQ-5D 3m Orthopaedic surgeon 0.0140 0.0000 0.1040 O/R/MSK
15 KATMETAL EQ-5D 60m Orthopaedic surgeon 0.0000 0.0000 0.000* O/R/MSK
15 KATMETAL EQ-5D 60m NHS Hospital 0.0000 0.0000 0.000* O/R/MSK
15 KATMETAL Operating time (min) NHS Hospital 0.4490 0.1720 0.7260 O/R/MSK
15 KATMETAL Operating time (min) Orthopaedic surgeon 0.5140 0.2780 0.7270 O/R/MSK
15 KATMETAL Oxford knee score

12m
NHS Hospital 0.0210 0.0000 0.0420 O/R/MSK

15 KATMETAL Oxford knee score
12m

Orthopaedic surgeon 0.0560 0.0000 0.1300 O/R/MSK

15 KATMETAL Oxford knee score 3m NHS Hospital 0.0000 0.0000 0.000* O/R/MSK
15 KATMETAL Oxford knee score 3m Orthopaedic surgeon 0.0070 0.0000 0.0570 O/R/MSK
15 KATMETAL Oxford knee score

60m
NHS Hospital 0.0000 0.0000 0.000* O/R/MSK

15 KATMETAL Oxford knee score
60m

Orthopaedic surgeon 0.0020 0.0000 0.0210 O/R/MSK
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ID Trial Outcome with
follow-up

Cluster ICC 95%
CI

Clinical area

15 KATMOBILE EQ-5D 60m NHS Hospital 0.0150 0.0000 0.0800 O/R/MSK
15 KATMOBILE EQ-5D 12m Orthopaedic surgeon 0.0240 0.0000 0.0800 O/R/MSK
15 KATMOBILE EQ-5D 3m Orthopaedic surgeon 0.0710 0.0210 0.1490 O/R/MSK
15 KATMOBILE EQ-5D 12m NHS Hospital 0.0400 0.0040 0.1030 O/R/MSK
15 KATMOBILE Oxford knee score

60m
NHS Hospital 0.0440 0.0000 0.1230 O/R/MSK

15 KATMOBILE EQ-5D 60m Orthopaedic surgeon 0.0190 0.0000 0.0650 O/R/MSK
15 KATMOBILE Operating time (min) Orthopaedic surgeon 0.1990 0.0730 0.3900 O/R/MSK
15 KATMOBILE EQ-5D 3m NHS Hospital 0.0600 0.0050 0.1330 O/R/MSK
15 KATMOBILE Oxford knee score

12m
NHS Hospital 0.0630 0.0230 0.1340 O/R/MSK

15 KATMOBILE Oxford knee score
12m

Orthopaedic surgeon 0.0590 0.0120 0.1340 O/R/MSK

15 KATMOBILE Oxford knee score 3m Orthopaedic surgeon 0.0680 0.0180 0.1300 O/R/MSK
15 KATMOBILE Oxford knee score 3m NHS Hospital 0.0730 0.0160 0.1580 O/R/MSK
15 KATMOBILE Operating time (min) NHS Hospital 0.1670 0.0920 0.2940 O/R/MSK
15 KATMOBILE Oxford knee score

60m
Orthopaedic surgeon 0.0510 0.0000 0.1210 O/R/MSK

15 KATPATELLA EQ-5D 60m NHS Hospital 0.0020 0.0000 0.0210 O/R/MSK
15 KATPATELLA EQ-5D 12m Orthopaedic surgeon 0.0400 0.0110 0.0760 O/R/MSK
15 KATPATELLA EQ-5D 3m NHS Hospital 0.0080 0.0000 0.0410 O/R/MSK
15 KATPATELLA EQ-5D 3m Orthopaedic surgeon 0.0050 0.0000 0.0320 O/R/MSK
15 KATPATELLA EQ-5D 12m NHS Hospital 0.0170 0.0000 0.0520 O/R/MSK
15 KATPATELLA Oxford knee score

12m
NHS Hospital 0.0270 0.0040 0.0710 O/R/MSK

15 KATPATELLA EQ-5D 60m Orthopaedic surgeon 0.0090 0.0000 0.0470 O/R/MSK
15 KATPATELLA Operating time (min) Orthopaedic surgeon 0.4450 0.3600 0.5240 O/R/MSK
15 KATPATELLA Oxford knee score 3m NHS Hospital 0.0410 0.0140 0.0870 O/R/MSK
15 KATPATELLA Oxford knee score

60m
NHS Hospital 0.0450 0.0160 0.0860 O/R/MSK

15 KATPATELLA Oxford knee score
12m

Orthopaedic surgeon 0.0470 0.0150 0.0940 O/R/MSK

15 KATPATELLA Oxford knee score 3m Orthopaedic surgeon 0.0500 0.0210 0.0870 O/R/MSK
15 KATPATELLA Operating time (min) NHS Hospital 0.3700 0.2540 0.4700 O/R/MSK
15 KATPATELLA Oxford knee score

60m
Orthopaedic surgeon 0.0370 0.0030 0.0740 O/R/MSK

16 OCTET Guided self-help Y-BOCS-OR 12m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Guided self-help Y-BOCS-OR 3m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Guided self-help Y-BOCS-OR 6m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Guided self-help CORE-OM 12m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Guided self-help CORE-OM 6m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Guided self-help CSQ-8 3m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Guided self-help GAD-7 6m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Guided self-help PHQ-9 3m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Guided self-help PHQ-9 6m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Guided self-help SF-36 v2 MCS 3m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Guided self-help WSAS 3m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Guided self-help WSAS 6m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Guided self-help SF-36 v2 PCS 12m Psychological
wellbeing practitioner

0.0020 NR NR Mental health

16 OCTET Guided self-help CORE-OM 3m Psychological
wellbeing practitioner

0.0030 NR NR Mental health

16 OCTET Guided self-help Y-BOCS-SR 12m Psychological
wellbeing practitioner

0.0040 NR NR Mental health

16 OCTET Guided self-help SF-36 v2 PCS 6m Psychological
wellbeing practitioner

0.0040 NR NR Mental health

16 OCTET Guided self-help SF-36 v2 MCS 12m Psychological
wellbeing practitioner

0.0070 NR NR Mental health

16 OCTET Guided self-help Y-BOCS-SR 3m Psychological
wellbeing practitioner

0.0090 NR NR Mental health

16 OCTET Guided self-help PHQ-9 12m Psychological
wellbeing practitioner

0.0110 NR NR Mental health

16 OCTET Guided self-help WSAS 12m Psychological
wellbeing practitioner

0.0120 NR NR Mental health

16 OCTET Guided self-help GAD-7 3m Psychological
wellbeing practitioner

0.0300 NR NR Mental health

16 OCTET Guided self-help SF-36 v2 MCS 6m Psychological
wellbeing practitioner

0.0480 NR NR Mental health

16 OCTET Guided self-help Y-BOCS-SR 6m Psychological
wellbeing practitioner

0.0780 NR NR Mental health

16 OCTET Guided self-help GAD-7 12m Psychological
wellbeing practitioner

0.0820 NR NR Mental health

16 OCTET Guided self-help CSQ-8 6m Psychological
wellbeing practitioner

0.0970 NR NR Mental health

16 OCTET Guided self-help SF-36 v2 PCS 3m Psychological
wellbeing practitioner

0.1780 NR NR Mental health

16 OCTET Supported cCBT Y-BOCS-OR 6m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Supported cCBT Y-BOCS-SR 6m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Supported cCBT CORE-OM 12m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Supported cCBT CORE-OM 6m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Supported cCBT CSQ-8 3m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Supported cCBT GAD-7 6m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Supported cCBT PHQ-9 3m Psychological
wellbeing practitioner

0.0010 NR NR Mental health
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16 OCTET Supported cCBT WSAS 3m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Supported cCBT WSAS 6m Psychological
wellbeing practitioner

0.0010 NR NR Mental health

16 OCTET Supported cCBT Y-BOCS-SR 3m Psychological
wellbeing practitioner

0.0030 NR NR Mental health

16 OCTET Supported cCBT SF-36 v2 PCS 12m Psychological
wellbeing practitioner

0.0110 NR NR Mental health

16 OCTET Supported cCBT SF-36 v2 MCS 6m Psychological
wellbeing practitioner

0.0180 NR NR Mental health

16 OCTET Supported cCBT PHQ-9 6m Psychological
wellbeing practitioner

0.0190 NR NR Mental health

16 OCTET Supported cCBT CORE-OM 3m Psychological
wellbeing practitioner

0.0260 NR NR Mental health

16 OCTET Supported cCBT Y-BOCS-OR 3m Psychological
wellbeing practitioner

0.0270 NR NR Mental health

16 OCTET Supported cCBT GAD-7 3m Psychological
wellbeing practitioner

0.0280 NR NR Mental health

16 OCTET Supported cCBT CSQ-8 6m Psychological
wellbeing practitioner

0.0410 NR NR Mental health

16 OCTET Supported cCBT SF-36 v2 MCS 12m Psychological
wellbeing practitioner

0.0900 NR NR Mental health

16 OCTET Supported cCBT Y-BOCS-SR 12m Psychological
wellbeing practitioner

0.0980 NR NR Mental health

16 OCTET Supported cCBT Y-BOCS-OR 12m Psychological
wellbeing practitioner

0.1090 NR NR Mental health

16 OCTET Supported cCBT GAD-7 12m Psychological
wellbeing practitioner

0.1510 NR NR Mental health

16 OCTET Supported cCBT WSAS 12m Psychological
wellbeing practitioner

0.1580 NR NR Mental health

16 OCTET Supported cCBT PHQ-9 12m Psychological
wellbeing practitioner

0.1600 NR NR Mental health

16 OCTET Supported cCBT SF-36 v2 PCS 6m Psychological
wellbeing practitioner

0.1640 NR NR Mental health

16 OCTET Supported cCBT SF-36 v2 PCS 3m Psychological
wellbeing practitioner

0.1820 NR NR Mental health

16 OCTET Supported cCBT SF-36 v2 MCS 3m Psychological
wellbeing practitioner

0.2250 NR NR Mental health

18 PEPS SPSI-R 72 w Problem-solving
therapy groupgroup

0.0100 0.0100 0.1700 Mental health

18 PEPS Three main problems
client’s assessment of
severity 72 w

Problem-solving
therapy groupgroup

0.0100 0.0100 0.1500 Mental health

18 PEPS SFQ 72 w Problem-solving
therapy groupgroup

0.0700 0.0000 0.2900 Mental health

18 PEPS HADS-T 72 w Problem-solving
therapy groupgroup

0.1100 0.0000 0.2900 Mental health

19 PhysioDirect SF-36 v2 PCS 6m NHS Primary Care
Trust

0.0050 NR NR O/R/MSK

19 PhysioDirect SF-36 v2 PCS 6m GP Practice 0.0050 NR NR O/R/MSK
20 POWER+ EQ5-D 12m GP Practice 0.0140 0.0000 0.3600 Obesity
20 POWER+ Mean weight

reduction 12m
GP Practice 0.0150 0.0000 0.0900 Obesity

20 POWER+ Clinically important
weight reduction 12m

GP Practice 0.0180 0.0000 0.1600 Obesity

22 SARAH MHQ overall hand
function 12m

Hand therapist 0.0000 NR NR O/R/MSK

23 SHEAR Form 90: Alcohol
6mconsumption in
last 90 days

Clinician 0.0120 0.0001 0.6486 Mental health

24 START HADS-T 12m Psychology graduate 0.0000 0.0000 0.0700 Mental health
24 START HADS-T 18 m Psychology graduate 0.0000 0.0000 0.0700 Mental health
24 START HADS-T 8 m Psychology graduate 0.0000 0.0000 0.0800 Mental health
24 START HADS-T 4 m Psychology graduate 0.0200 0.0000 0.0900 Mental health
26 SWAP Group (intervention) Weight 6m Weight management

group
0.0130 0.0000 0.1050 Obesity

26 SWAP Group (intervention) Weight 12m Weight management
group

0.0010 0.0000 0.0760 Obesity

26 SWAP Group (intervention) Waist 6m Weight management
group

0.1170 0.0000 0.2650 Obesity

26 SWAP Group (intervention) Waist 12m Weight management
group

0.0800 0.0000 0.2030 Obesity

26 SWAP Group (intervention) SBP 6m Weight management
group

0.0320 0.0000 0.1350 Obesity

26 SWAP Group (intervention) SBP 12m Weight management
group

0.0200 0.0000 0.1080 Obesity

26 SWAP Group (intervention) DBP 6m Weight management
group

0.1560 0.0000 0.3220 Obesity

26 SWAP Group (intervention) DBP 12m Weight management
group

0.0570 0.0000 0.1690 Obesity

26 SWAP Group (intervention) BMI 6m Weight management
group

0.0280 0.0000 0.1290 Obesity

26 SWAP Group (intervention) BMI 12m Weight management
group

0.0010 0.0000 0.0760 Obesity

26 SWAP Group (intervention) Lost 5% of body
weight 6m

Weight management
group

0.0010 0.0000 0.0840 Obesity

26 SWAP Group (intervention) Lost 5% of body
weight 12m

Weight management
group

0.0010 0.0000 0.0760 Obesity

26 SWAP Group (intervention) Lost 10% of body
weight 6m

Weight management
group

0.0010 0.0000 0.0840 Obesity

26 SWAP Group (intervention) Lost 10% of body
weight12m

Weight management
group

0.0010 0.0000 0.0760 Obesity

26 SWAP Group (intervention) Food knowledge
assessment 6m

Weight management
group

0.0010 0.0000 0.0840 Obesity

26 SWAP Group (intervention) Food knowledge
assessment 12m

Weight management
group

0.0460 0.0000 0.1510 Obesity

26 SWAP Group (intervention) Food craving index –
frequency domain 6m

Weight management
group

0.0390 0.0000 0.1460 Obesity

26 SWAP Group (intervention) Food craving index –
frequency domain
12m

Weight management
group

0.0010 0.0000 0.0770 Obesity

26 SWAP Group (intervention) Food craving index –
strength domain 6m

Weight management
group

0.0190 0.0000 0.1150 Obesity
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26 SWAP Group (intervention) Food craving index –
strength domain 12m

Weight management
group

0.0010 0.0000 0.0780 Obesity

26 SWAP Group (intervention) Three factor eating –
cognitive restraint
domain 6m

Weight management
group

0.0010 0.0000 0.0850 Obesity

26 SWAP Group (intervention) Three factor eating –
cognitive restraint
domain 12m

Weight management
group

0.0010 0.0000 0.0780 Obesity

26 SWAP Group (intervention) Three factor eating –
uncontrolled eating
domain 6m

Weight management
group

0.0810 0.0000 0.2130 Obesity

26 SWAP Group (intervention) Three factor eating –
uncontrolled eating
domain 12m

Weight management
group

0.0350 0.0000 0.1350 Obesity

26 SWAP Group (intervention) Three factor eating –
emotional eating
domain 6m

Weight management
group

0.0650 0.0000 0.1870 Obesity

26 SWAP Group (intervention) Three factor eating –
emotional eating
domain 12m

Weight management
group

0.0630 0.0000 0.1790 Obesity

26 SWAP Group (intervention) IPAQ – METS
minutes/week domain
6m

Weight management
group

0.0010 0.0000 0.1010 Obesity

26 SWAP Group (intervention) IPAQ – METS
minutes/week domain
12m

Weight management
group

0.0500 0.0000 0.1730 Obesity

26 SWAP Group (intervention) IPAQ – sitting
domain domain 6m

Weight management
group

0.0280 0.0000 0.1470 Obesity

26 SWAP Group (intervention) IPAQ – sitting
domain domain 12m

Weight management
group

0.0010 0.0000 0.1020 Obesity

26 SWAP Nurse (control) Weight 6m Nurse 0.0010 0.0000 0.1010 Obesity
26 SWAP Nurse (control) Weight 12m Nurse 0.0010 0.0000 0.0860 Obesity
26 SWAP Nurse (control) Waist 6m Nurse 0.0010 0.0000 0.1010 Obesity
26 SWAP Nurse (control) Waist 12m Nurse 0.0010 0.0000 0.0860 Obesity
26 SWAP Nurse (control) SBP 6m Nurse 0.0010 0.0000 0.1010 Obesity
26 SWAP Nurse (control) SBP 12m Nurse 0.0550 0.0000 0.2220 Obesity
26 SWAP Nurse (control) DBP 6m Nurse 0.0010 0.0000 0.1010 Obesity
26 SWAP Nurse (control) DBP 12m Nurse 0.0010 0.0000 0.0860 Obesity
26 SWAP Nurse (control) BMI 6m Nurse 0.0010 0.0000 0.1010 Obesity
26 SWAP Nurse (control) BMI 12m Nurse 0.0010 0.0000 0.0860 Obesity
26 SWAP Nurse (control) Lost 5% of body

weight 6m
Nurse 0.0010 0.0000 0.1010 Obesity

26 SWAP Nurse (control) Lost 5% of body
weight 12m

Nurse 0.0140 0.0000 0.1210 Obesity

26 SWAP Nurse (control) Lost 10% of body
weight 6m

Nurse 0.0010 0.0000 0.1020 Obesity

26 SWAP Nurse (control) Lost 10% of body
weight12m

Nurse 0.0010 0.0000 0.0860 Obesity

26 SWAP Nurse (control) Food knowledge
assessment 6m

Nurse 0.0010 0.0000 0.1010 Obesity

26 SWAP Nurse (control) Food knowledge
assessment 12m

Nurse 0.0010 0.0000 0.0860 Obesity

26 SWAP Nurse (control) Food craving index –
frequency domain 6m

Nurse 0.0500 0.0000 0.2220 Obesity

26 SWAP Nurse (control) Food craving index –
frequency domain
12m

Nurse 0.0800 0.0000 0.2800 Obesity

26 SWAP Nurse (control) Food craving index –
strength domain 6m

Nurse 0.0930 0.0000 0.3190 Obesity

26 SWAP Nurse (control) Food craving index –
strength domain 12m

Nurse 0.0170 0.0000 0.1300 Obesity

26 SWAP Nurse (control) Three factor eating –
cognitive restraint
domain 6m

Nurse 0.0160 0.0000 0.1430 Obesity

26 SWAP Nurse (control) Three factor eating –
cognitive restraint
domain 12m

Nurse 0.0970 0.0000 0.3190 Obesity

26 SWAP Nurse (control) Three factor eating –
uncontrolled eating
domain 6m

Nurse 0.2370 0.0000 0.6070 Obesity

26 SWAP Nurse (control) Three factor eating –
uncontrolled eating
domain 12m

Nurse 0.1070 0.0000 0.3460 Obesity

26 SWAP Nurse (control) Three factor eating –
emotional eating
domain 6m

Nurse 0.1150 0.0000 0.3680 Obesity

26 SWAP Nurse (control) Three factor eating –
emotional eating
domain 12m

Nurse 0.1830 0.0000 0.5010 Obesity

26 SWAP Nurse (control) IPAQ – METS
minutes/week domain
6m

Nurse 0.0010 0.0000 0.1240 Obesity

26 SWAP Nurse (control) IPAQ – METS
minutes/week domain
12m

Nurse 0.0010 0.0000 0.1000 Obesity

26 SWAP Nurse (control) IPAQ – sitting
domain domain 6m

Nurse 0.0010 0.0000 0.1210 Obesity

*NR:Not reported; O/R/MSK: Orthopedics/ Rheumatology/ Musculoskeletal (including back pain)
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