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ABSTRACT

Sparse regression methods are used for the reconstruction of compressed signals, that

are usually sparse in some bases; or in feature selection problem, where only few features

are meaningful. This thesis overviews the existing Bayesian methods for dealing with

sparsity, improves them and provides new models for these problems. The novel models

decrease complexity, allow to model structure and provide uncertainty distributions in such

applications as medicine and computer vision.

The thesis starts with exploring Bayesian sparsity for the problem of compressive back-

ground subtraction. Sparsity naturally arises in this problem as foreground usually occupies

only small part of the video frame. The use of Bayesian compressive sensing improves the

solutions in independent and multi-task scenarios. It also raises an important problem of

exploring the structure of the data, as foreground pixels are usually clustered in groups.

The problem of structure modelling in sparse problems is addressed with hierarchical

Gaussian processes, that are the Bayesian way of imposing structure without specifying

its exact patterns. Full Bayesian inference based on expectation propagation is provided

for offline and online algorithms. The experiments demonstrate the applicability of these

methods for the compressed background subtraction and brain activity localisation problems.

The majority of sparse Bayesian methods are computationally intensive. This thesis

proposes a novel sparse regression method based on the Bayesian neural networks. It makes

the prediction operation fast and additionally estimates the uncertainty of predictions, while

requiring a longer training phase. The results are demonstrated in the active learning

scenario, where the estimated uncertainty is used for experiment design.

Sparse methods are also used as part of other methods such as Gaussian processes

that suffer from high computational complexity. The use of active sparse subsets of data

improves the performance on large datasets. The thesis proposes a method of dealing with

the complexity problem for online data updates using Bayesian filtering.
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Chapter 1

INTRODUCTION

Nowadays, massive amounts of data are available for processing. Modern databases

contain billions of data entries with thousands of features and, moreover, they are being

updated online with more data. It is important to distinguish relevant features for each

desired outcome to focus the analysis on them.

The statistical analysis that deals with this problem is usually called variable selection

and it is often based on a set of methods called sparse regression. For example, in genetics,

variable selection is used to discover genes responsible for diseases from the set of three

billion base pairs in the human genome. In electroencephalogram source localisation, the

electromagnetic field is measured at a brain cortex and the measurements are used to discover

a particular area inside the brain being active at specific activities of a person, which is

usually assumed to be small.

1.1 Different Forms of Sparsity

Sparsity appears in many forms and can be used to replicate nature of data or to improve

computational complexity.

1.1.1 Compressive Sensing

In the signal processing field, signals are usually represented as linear combinations of basis

functions. Real-life periodic signals are generally well approximated in the Fourier basis that

is formed of sines and cosines, typically only a small amount of representation coefficients

have large values and others are close to zero. Non-continuous signals or signals with a

limited domain can be represented in the wavelet basis, that is a representation of a function

by scaled and translated copies of a decaying oscillating waveform. The existence of such

sparse representations of the real signals allows to reduce the number of samples required to

1



2 Introduction

capture the signal. The area of compressive sensing researches ways of optimising sampling

rates and it is, again, based on sparse regression methods.

1.1.2 Structural Sparsity

Further research of sparse regression problems leads to the following observation: sometimes

genes responsible for deceases are grouped together in a small area of genome; an active

brain area for a particular activity is usually small and localised. The knowledge about

patterns of meaningful features allows to improve results of sparse regression, such approach

is called structured sparsity.

1.1.3 Sparse Coding and Supervised Learning

Usually, the problem of sparse regression requires large computational resources for every new

data point as the problems are solved independently. A different approach to the problem is

based on supervised learning where an algorithm is built to solve sparse regression problems

based on a dataset of input and output pairs. For example, a neural network can be trained

for sparse regression in this context. It requires significant resources for initial training, but

then allows to solve the sparse regression problem for new data efficiently.

1.1.4 Sparse Approximations of Computational Algorithms

The property of sparsity is also an important component of many algorithms. Sparse

approximations increase the scalability of Gaussian process regression to larger amounts

of data: they allow to select only a small subset of inputs that are most relevant. Sparse

matrices of neural network weights may increase the performance of neural networks: they

set some of the weights to zeros, thus removing redundant connections.

1.2 Outline and Key Contributions

Overall, this thesis develops machine learning methods for sparse regression, that allow

faster, more accurate reconstruction of signals. It also develops sparse modifications of

machine learning methods that improve computational requirements. This section provides

an outline and key contributions of the thesis.
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Background

The sparse regression problem is actively researched in statistics with the seminal works

of Mitchell and Beauchamp (1988), Tibshirani (1996), Tipping (2001), Gregor and LeCun

(2010). These significant developments are presented in Chapter 2 of the thesis.

Compressive Background Subtraction

In Chapter 3 the compressive sensing methods for object detection in video are described

and sparse Bayesian models are applied for this problem. They improve the quality results

compared to previously existed methods. The main contributions of this chapter are:

Bayesian compressive sensing for background subtraction. The compressive back-

ground subtraction problem is for the first time considered within the sparse Bayesian

framework and its performance is compared with the existing frequentist methods.

Multitask Bayesian compressive sensing for background subtraction. The multi-

task Bayesian framework extends the model for the sequential data that has similar

properties.

Structured Spike and Slab Models

Models for structured sparsity are described in details in Chapter 4, and new structured

methods that can work without prior knowledge about the exact patterns of sparsity and

with online updates of the data are presented there. The key contributions of the chapter

are:

Spike and slab model with a hierarchical Gaussian process prior. The model has

a flexible structure which is governed only by the covariance functions of the Gaussian

processes. This allows to model different types of structures and does not require any

specific knowledge about the structure such as determination of particular groups of

coefficients with similar behaviour. If, however, there is an information about the

structure, it can be easily incorporated into the covariance functions. The model is

flexible as spatial and temporal dependencies are decoupled by different levels of the

hierarchical Gaussian process prior. Therefore, the spatial and temporal structures are
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modelled independently allowing to encode different assumptions for each type of the

structure.

Offline inference algorithm. The developed Bayesian inference algorithm based on ex-

pectation propagation achieves full posterior inference and perform predictions.

Online inference algorithm. The novel online inference algorithm for streaming data

based on Bayesian filtering improves computational time.

Real data applications. A thorough validation and evaluation of the proposed method

over synthetic and real data is presented including electrical activity data for the EEG

source localisation problem and video data for the compressive background subtraction

problem.

Uncertainty Propagation in Sparse Bayesian Neural Networks

In Chapter 5 the sparse regression problem is considered in the context of supervised learning.

A novel Bayesian neural network is proposed for sparse regression that combines efficient

predictions from neural networks together with uncertainty estimates from Bayesian methods.

The main contributions of this chapter are:

Uncertainty propagation for soft-thresholding. In the Bayesian neural network, un-

certainty estimation of the predictions can be achieved as a result of sequential weight

uncertainty propagation through the layers of a network which leads to complex re-

sulting distributions due to nonlinearities involved. To make the posterior inference

possible, for the first time a method for uncertainty propagation through the soft

thresholding nonlinearity for a Bayesian neural network is proposed, that approximates

the resulting distributions with the spike and slab family.

Bayesian LISTA. A posterior inference algorithm for weights and outputs of neural net-

works with the soft thresholding nonlinearity is developed. This allows to design a

novel Bayesian LISTA neural network for sparse coding.
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Ensemble Kalman Filters for Sparse Gaussian Processes

In Chapter 6 new methods for sparse approximation of Gaussian processes are presented

that use the idea of sequential estimation to operate with online data and they reduce the

computational requirements. The main contributions of this chapter can be summarised as:

Gaussian processes with the ensemble Kalman filter method. For the first time the

ensemble Kalman filter for the problem of online Gaussian process regression and learn-

ing is proposed. The method treats the mean and hyperparameters of the Gaussian

process as the state and parameters of the ensemble Kalman filter, respectively. This

allows to reduce the computational complexity related to prediction, as the size of the

invertible matrices is reduced according to the ensemble sizes. The online evaluation

of the parameters and the state is performed on new upcoming samples of data. This

procedure iteratively improves the accuracy of parameter estimates. The ensemble

Kalman filter reduces the computational complexity required to obtain predictions

with Gaussian processes preserving the accuracy level of these predictions.

Dual and joint versions. The dual and joint versions of the ensemble Kalman filter that

differently approach the state-parameter relationship are presented in the chapter.

House prices experiments. The performance of the algorithms is compared using the

synthetic dataset and real large dataset of the house prices.

Conclusions

Chapter 7 provides an overview of the main results of the thesis and directions for future

work based on the methods proposed in the thesis.

1.3 Disseminated Results

The results from this research are disseminated in following papers:

• Danil Kuzin, Olga Isupova, and Lyudmila Mihaylova (2015). “Compressive sensing

approaches for autonomous object detection in video sequences”. In: Proceedings of the

Sensor Data Fusion: Trends, Solutions, Applications Workshop (SDF). IEEE, pp. 1–6.

doi: 10.1109/SDF.2015.7347706

https://doi.org/10.1109/SDF.2015.7347706


6 Introduction

• Danil Kuzin, Olga Isupova, and Lyudmila Mihaylova (2017). “Structured sparse mod-

elling with hierarchical GP”. in: Proceedings of the 6th Signal Processing with Adaptive

Sparse Structured Representations Workshop (SPARS). url: http://spars2017.lx.

it.pt/index_files/papers/SPARS2017_Paper_48.pdf

• Danil Kuzin, Le Yang, Olga Isupova, and Lyudmila Mihaylova (2018). “Ensemble

Kalman filtering for online Gaussian process regression and learning”. In: Proceedings

of the 21st International Conference on Information Fusion (FUSION). IEEE, pp. 39–

46. doi: 10.23919/ICIF.2018.8455785

• Danil Kuzin, Olga Isupova, and Lyudmila Mihaylova (2018a). “Spatio-temporal

structured sparse regression with hierarchical Gaussian process priors”. In: IEEE

Transactions on Signal Processing vol. 66, issue 17, pp. 4598–4611. doi: 10.1109/

TSP.2018.2858207

• Danil Kuzin, Olga Isupova, and Lyudmila Mihaylova (2018b). “Uncertainty propa-

gation in neural networks for sparse coding”. In: Proceedings of the Third Workshop

on Bayesian Deep Learning (NeurIPS). url: http://bayesiandeeplearning.org/

2018/papers/47.pdf

• Danil Kuzin, Olga Isupova, and Lyudmila Mihaylova (2019). “Bayesian neural networks

for sparse coding”. Accepted at IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP)

Other co-authored works during my study at the University are:

• Olga Isupova, Danil Kuzin, and Lyudmila Mihaylova (2015). “Abnormal behaviour

detection in video using topic modeling”. In: USES Conference Proceedings. The

University of Sheffield. doi: 10.15445/02012015.18

• Olga Isupova, Lyudmila Mihaylova, Danil Kuzin, Garik Markarian, and Francois Septier

(2015). “An expectation maximisation algorithm for behaviour analysis in video”. In:

Proceedings of the 18th International Conference on Information Fusion (FUSION).

IEEE, pp. 126–133. url: https://ieeexplore.ieee.org/document/7266553/
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Chapter 2

BACKGROUND

This chapter presents the sparse regression problem and important solutions for it that

lay the foundation of the thesis. It also describes the compressive sensing problem that

is used in most experiments throughout the thesis. In addition, it overviews a Gaussian

process which is the significant part of the methodology in the thesis.

2.1 Sparse Regression

The main goal of sparse regression is to recover the coefficient vectors based on the observed

vectors and the design matrix with the assumption of sparsity of the coefficient vectors. The

prevalent form of relationship between coefficients and observations is linear, as this degree

of freedom is enough for many real-world applications. It can be achieved with a linear

regression approach.

Let the data be represented by N observations as D = {y(n),β(n)}Nn=1. Every observation

n consists of the coefficient vector β(n) ∈ RD and the observed vector y(n) ∈ RK . The linear

relationship is represented using the design matrix X ∈ RK×D of covariates as

y(n) = Xβ(n) + ε(n), (2.1)

where ε(n) ∈ RK is the noise that captures other factors not included in the linear model.

The sparsity assumption can be expressed with penalty constraints in the frequentist

interpretation of statistical inference, or priors in the Bayesian interpretation.

2.1.1 Frequentist Interpretation

In the frequentist statistics the coefficients β(n) are fixed and unknown, they are selected so

that the resulting distribution on y(n) matches the real distribution for training data.

8
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The frequentist interpretation of sparsity is to solve a regularised regression problem.

For example, lp–norm penalty functions with 0 < p < 2 encourage sparse solutions of the

coefficient vector:

β(n) = argminβ(n)

[
||y(n) −Xβ(n)||22 + ||β(n)||pp

]
, (2.2)

where lp norm is

||β(n)||p =

(
D∑

d=1

|β(n)d |
p

) 1
p

. (2.3)

As p approaches zero, the penalty function becomes the function that counts the number of

non-zero elements of the coefficient vector, which could be interpreted as the true sparsity

penalty for many problems.

For the intuition, why lp-penalty functions provide sparse solutions, Figure 2.1 demon-

strates an example of two-dimensional contour lines for the error term ||y(n) −Xβ(n)||2 and

the penalty term ||β(n)||p for different p. For sparsity-inducing p, the sum of these terms is

minimal when the solution is sparse.

Different choices of p in these penalty functions provide solutions with different properties,

that are further discussed. While there exist a great amount of algorithms for different

frequentist interpretations of sparsity (Bach et al. 2012a), this section presents only the

examples that are used in the thesis.

Regularisation with Non-zero Counting Penalty

The non-zero counting penalty function (p→ 0) is the most obvious approach for sparsity,

but the solution of such optimisation problem is NP-hard (Bach et al. 2012a). The globally

optimal solution can be found only by comparing the target function for all possible values

of coefficients, that is computationally intensive. Greedy algorithms, such as matching

pursuits (Mallat and Zhang 1993), are used for this problem, however, they tend to find

only locally optimal solutions.

Consider the problem (2.2) for one data point n. Orthogonal matching pursuit (OMP) is

a greedy method that iteratively updates the set γ of the non-zero elements of β(n). Initially,

γ is empty; then, at every iteration l, OMP picks the next component of β(n) with the index
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Figure 2.1: Example contour lines for different values of p. Red lines are the contour lines for

the error term, with minimum at β(n) = (1.5, 1.0). Blue lines are the contour lines for the

penalty term, with minimum at β(n) = (0, 0). The minimal sum of these terms is displayed

as a point, one of which components moves towards zero as p approaches zero, therefore

achieving sparsity.
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d∗ as the most correlated with the current residual and not included in the active set yet

d∗ = argmin
d 6∈γ

{
min
ω
||y(n) −Xβ

(n)
l − ωx:,d||2

}
, (2.4)

where x:,d denotes the d-th column of X. The inner optimisation is solved as

ω =
x>:,drl

||x:,d||22
, (2.5)

with rl = ||y(n) −Xβ
(n)
l ||2 being the current residual.

Regularisation with lp-quasinorm, 0 < p < 1

For 0 < p < 1, the penalty term (2.3) is non-convex. While, in theory, these penalties may

provide better results than the l1 penalty and be more computationally efficient than the

non-zero counting penalty, there are no optimisation methods developed for these penalties.

The recent piece-wise quadratic error potentials method (Gorban et al. 2016) is an attempt

to tackle this problem, however, it is not well-researched yet and is out of scope for this

thesis.

Regularisation with l1-norm

For p = 1, the problem (2.2) is called lasso (Tibshirani 1996). The penalty function is

convex, but non-smooth. The convexity of the problem allows to use general efficient convex

optimisation methods to find optimums.

Iterative shrinkage and thresholding algorithm (ISTA) (Daubechies et al. 2004) iteratively

obtains the new approximation of the coefficient vector [β̂
(n)

]l at the iteration l as the

linear transformation of the input y(n) with the previous approximation [β̂
(n)

]l−1 and then

propagates the new approximation through the soft thresholding function hλ(·)

hλ(v) = sgn(v)max(|v| − λ, 0), (2.6)

where λ is a shrinkage parameter. The linear transformation is

β̂
(n)

l = Wy(n) + Sβ̂
(n)

l−1, (2.7)

with weights W = X>/E, E — the upper bound on the largest eigenvalue of X>X and

S = ID×D −WX, ID×D is the identity matrix of size D.
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Alternating direction method of multipliers (ADMM) is the general-purpose algo-

rithm that can solve the convex l1 optimisation problem using the augmented Lagrangian

scheme (Boyd et al. 2011). It augments the problem with an additional variable c, and

weights γ, ρ, and Λ

L = 0.5||y(n) −Xβ(n)||22 + γ||c||1 + 0.5ρ||β(n) − c||22 +Λ(β(n) − c), (2.8)

and minimises the Lagrangian sequentially w.r.t. to the target β(n) and augmented variable

c thus solving two less complex optimisation problems: the least-square regression and

independent one-dimensional l1 minimisation that has soft thresholding as a solution.

Regularisation with lp-norm, 1 < p < 2

When 1 < p < 2, the penalty term is convex and smooth. An example is the elastic net (Zou

and Hastie 2005). Smooth penalty function allows to use more efficient gradient-based

techniques, but solutions are less sparse then in the previous cases.

2.1.2 Bayesian Interpretation

In the Bayesian interpretation, the distribution of noise is assumed Gaussian, ε(n) ∼

N (0, σ2I), and distribution of coefficients β(n) and noise variance σ are assumed unknown.

A prior distribution of coefficients is used to update a posterior distribution of the coefficients

based on the likelihood of the observed data. The posterior distribution is estimated using

the Bayes rule

p(β(n), σ|y(n)) =
p(y(n)|β(n), σ)p(β(n), σ)∫

p(y(n)|β(n), σ)p(β(n), σ)dβ(n)dσ
. (2.9)

The prior term p(β(n), σ) has been extensively studied in the literature to find an optimal

representation of the prior knowledge. In this chapter the solutions leading to sparse posterior

estimates of β(n) are considered.

The main difficulty in the Bayesian approach is evaluation of the integral in (2.9). In

order to make it tractable, conjugacy is used: given the likelihood p(y(n)|β(n), σ), the prior

p(β(n), σ) is usually selected in the way that the posterior p(β(n), σ|y(n)) lies in the same

class of distributions as the prior. The examples are: the beta likelihood with the binomial

prior, the multinomial likelihood with the Dirichlet prior, or the Gaussian likelihood with

the Gaussian-inverse-Wishart prior. All these distributions belong to the exponential family.
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In most cases the integral in (2.9) is intractable. This leads to a great amount of inference

techniques proposed in the literature. A general overview of inference methods is given

by Bishop (2006), Koller and Friedman (2009), and Murphy (2012).

The Bayesian models for sparse regression can be classified into the models with weak

sparsity prior and strong sparsity prior. The weak sparsity prior is a unimodal distribution

of the coefficient vector with a sharp peak at zero. The strong sparsity prior is a mixture of

latent binary variables that capture whether a coefficient is zero or not.

Strong Sparsity

The two important strong sparsity prior models are the spike and slab model and the

Bernoulli–Gaussian model. These models put the discrete probability of being zero on each

coefficient.

In the first spike and slab formulation (Mitchell and Beauchamp 1988) each component

of β(n) is selected from a mixture of a spike, that is the delta-function in zero, and a slab,

that is the uniform distribution with width 2a:

β
(n)
d |ω ∼


{0}, with the probabilityω;

U[−a; a] \ {0}, with the probability 1− ω.
(2.10)

Sparsity naturally comes from the prior formulation as the coefficients are exactly zeros with

the predefined probability ω. This sparsity representation has been further developed by

utilising different distributions for slabs.

The spike and slab model can be represented in terms of mixtures of Gaussian distribu-

tions (George and McCulloch 1993)

β
(n)
d |ωd, τd, cd ∼ ωdN (β

(n)
d ; 0, τ2d ) + (1− ωd)N (β

(n)
d ; 0, c2dτ

2
d ). (2.11)

In this model the spike is a narrow Gaussian distribution with the variance τd, while the

slab is a wide Gaussian distribution, where the variance is cdτd.

Following the Bayesian approach, hidden variables z(n)d that are indicators of spikes are

added to the model (Polson and Scott 2010), they have the Bernoulli distribution. The
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inverse gamma distributions are placed over the model variance σ2β (Murphy 2012)

β
(n)
d |z

(n)
d , σ2β ∼ (1− z(n)d )N (β

(n)
d ; 0, σ2β) + z

(n)
d δ0, (2.12a)

z
(n)
d |ω ∼ Ber(z(n)d ;ω), (2.12b)

σ2|aσ, bσ ∼ IG(σ2; aσ, bσ). (2.12c)

The graphical model for such spike and slab formulation can be found in Figure 2.2a.

The Bernoulli-Gaussian model is also widely considered (Soussen et al. 2011; Zhou et al.

2009). Coefficients are presented as a pair-wise product of

β(n) = z(n) ◦ β̂
(n)
, (2.13a)

z
(n)
d |ω ∼ Ber(z(n)d ;ω), (2.13b)

β̂
(n)
d |σ

2
β ∼ N (β̂

(n)
d ; 0, σ2β), (2.13c)

σ2|aσ, bσ ∼ IG(σ2; aσ, bσ). (2.13d)

The model is different from the spike and slab formulation in the sense of a hierarchy between

coefficients and latent variables. This can be seen from graphical model in Figure 2.2b.

Inference

The most popular inference schemes for these models are sampling methods (Chipman et al.

2001). In addition, the message passing algorithms can be used: approximate message

passing (Donoho et al. 2009) and expectation propagation (Hernández-Lobato, Hernández-

Lobato, et al. 2015). The advantage of the Bernoulli–Gaussian formulation is that it allows

to implement the mean-field variational inference (Titsias and Lázaro-Gredilla 2011).

Weak Sparsity

The weak sparsity prior models are the other class of priors for sparse Bayesian regression.

Many exponential family distributions can be represented as a ratio of two independent

variables, where the denominator has the standard Gaussian distribution (Andrews and

Mallows 1974). These models, that are called scale mixtures of Gaussians, allow to create

symmetrical unimodal distributions that are peaked in zero and have heavy tails.
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Figure 2.2: Graphical models for the sparse regression problem. In the spike and slab

model (a) latent variables {z(n)d , β
(n)
d } are organised in hierarchy and the indicators of spikes

z
(n)
d can be integrated out. In the Bernoulli-Gaussian model (b) the product z(n)d β̂

(n)
d always

exists.

Scale mixtures of Gaussians can be represented as a hierarchical model:

β(n)|µ,Σ ∼ N (β(n);µ,Σ), (2.14)

µ,Σ|τ ∼ ψ(µ,Σ; υ). (2.15)

where ψ is the mixing distribution parameterised by υ, which may vary in different models.

Marginalisation of the parameters of the Gaussian distribution leads to

p(β(n)|υ) =
∫
N (β(n);µ,Σ)ψ(µ,Σ; υ)dµdΣ. (2.16)

For sparse priors, µ is set to a zero vector to ensure that the distributions have a peak

exactly at this point.

Global–local mixtures of Gaussians To represent sparsity, the following factorisation of
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scale mixtures of Gaussians can be used (Polson and Scott 2010):

β
(n)
d |τ, λd ∼ N (β

(n)
d ; 0, τλd), (2.17)

λd ∼ π(λd), (2.18)

τ |σ ∼ φ(τ ;σ), (2.19)

where π and φ are priors for the local variance λ and global variance τ , respectively. Many

of the existing sparse priors have this representation. They are summarised in Table 2.1

Posterior for β(n)d Mixing density π (τ ≡ 1) Reference

Laplace Exponential West (1987)

Student’s t Inverse Gamma Tipping (2001)

Normal/Jeffreys Jeffreys Figueiredo (2003)

Horseshoe Inverse Beta Carvalho et al. (2010)

Generalised double Pareto Exponential-Gamma Armagan et al. (2013)

Dirichlet Laplace Exponential-Dirchlet-Gamma Bhattacharya et al. (2015)

Table 2.1: Weak sparsity priors represented as the scale mixture of Gaussians

Laplace and Student’s t priors are very popular in the literature and different approaches

to inference have been proposed: Gibbs sampling (Hans 2009; Park and Casella 2008),

expectation propagation (Seeger 2008), variational inference (Armagan 2009), double-loop

algorithm (Seeger and Nickisch 2011) and expectation maximisation (Tipping and Faul

2003).

The Horseshoe density has the infinite spike at zero and heavy tails (Carvalho et al. 2010).

This leads to better sparse recovery (Bhattacharya et al. 2015; Polson and Scott 2010).

2.2 Compressive Sensing

Signal acquisition and compression are important areas in signal processing. The compressed

information can be used to reconstruct the original signal and for its analysis. The compressive

sensing framework integrates the acquisition and compression steps together. This allows
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Figure 2.3: Example signal and its DCT transform. It can be noted that after this transform,

the resulting coefficients are sparse, as there are only few dominating frequencies.

to reduce the number of measurements required for the ideal reconstruction of the signal.

Compression is achieved utilising sparse representations of the signals in preselected basis.

2.2.1 Signal Representation

In signal processing signals are usually represented in bases. If the vectors {ψd}Dd=1 form an

orthonormal basis of RD then any signal θ(n) ∈ RD from the set of signals Θ = {θ(1) . . .θ(N)}

can be represented in the form

θ(n) =

D∑
d=1

β
(n)
d ψd, (2.20)

where basis coefficients β(n)d = 〈θ(n),ψd〉 =
∑D

l=1 θ
(n)
l ψld are projections of the signal onto

the basis vectors. Consider matrix Ψ := [ψ1 . . .ψD]. The representation of the signal can

be written as

θ(n) = Ψβ(n). (2.21)

Often, signals can be represented in the Fourier-related basis, that is a sum of sinusoidal

functions with scaled amplitudes. It can be achieved with, for example, a discrete cosine

transform (DCT). Figure 2.3 demonstrates the transform of the sample signal with DCT.

For signals with discontinuities, Fourier coefficients become oscillating and, therefore, β(n)

is dense. This is called the Gibbs phenomenon (Mallat 2008). Wavelets (Daubechies 1992;
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Mallat 2008) are another important example of bases that better approximate non-smooth

or localised signals. They usually achieve sparse representation in image compression.

2.2.2 Transform Coding

The information about sparse representation is used for compressing signals. One of the

examples of the algorithms for compression is called transform coding (Baraniuk, Cevher,

et al. 2010). It is used in MPEG and JPEG formats for media compression. The algorithm

consists of the following steps:

1. acquire the full signal θ(n);

2. compute set of basis coefficients β(n) = Ψ−1θ(n);

3. locate S largest coefficients and discard others, where S is the sparsity of the signal;

4. encode locations and values of the largest coefficients.

Then the original signal can be reconstructed from this information.

2.2.3 Compressive Sensing

Compressive sensing (Candes, Romberg, et al. 2006; Donoho 2006) integrates the acquisition

and compression steps and allows to reconstruct the original signal from less measurements

and without the information of coefficient locations compared to transform coding. This

includes two components: random projections and information that the signal is sparse in

some basis.

Assume that the signal θ(n) is not observed directly and only the random projections

y(n) of the signal are aquired

y(n) = Aθ(n). (2.22)

Here matrix A is the random projections matrix that produces a linear transformation of

the signal, which is less in dimensionality that the original signal. The signal θ(n) can’t be

restored directly from the measurements, therefore the additional assumption of sparsity is

used (2.21). The resulting problem is

y(n) = AΨβ(n), (2.23)
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Figure 2.4: Reconstruction after compressive sensing. Matrix A is used to generate random

projections with size 10% of the signal. Matrix Ψ is the inverse DCT operator.

where β(n) is a sparse vector. This prior information is used to regularise the problem and

find a unique solution β(n) and, therefore, restore the signal θ(n). The reconstruction results

for the previously considered sample signal are presented in Figure 2.4.

Usually, the components of the matrix A are sampled from the independent Gaussian

distributions, but in general it can be any matrix, which is close to orthonormal1.

2.3 Gaussian Processes

Gaussian process (GP) is one of the Bayesian approaches for placing a prior distribution

over the space of functions. This is a broad area that has different applications: latent

variable models (Damianou et al. 2016) that are used for non-linear dimensionality reduction,

Bayesian optimization (Brochu et al. 2010) that is used for black-box optimisation of unknown

functions, and spatio-temporal modelling (Sarkka et al. 2013).

2.3.1 Definition

In probability theory, random variables are sometimes represented in collections. A collection

of random variables indexed by set T is called stochastic process ξ(t), t ∈ T . Index sets can

1The measure of how close the matrix is to orthonormal is derived with restricted isometry property (Candes
and Tao 2005).
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represent time, space, or more general concepts.

Gaussian process f(t) is a stochastic process, such that for every finite subset of indices

T = {t(1), . . . , t(N)} ∈ T values f = {f(t(1)), . . . , f(t(N))} have a multivariate Gaussian

distribution with a mean µ and covariance matrix Σ

p(f) = N (f ;µ,Σ). (2.24)

The mean and covariance for subsets of indices are generalised into the mean and

covariance functions of the GP

• Mean function

m(t) = Ef(t). (2.25)

• Covariance function

k(t(n
′), t(n

′′)) = cov(f(t(n′)), f(t(n
′′))). (2.26)

With the mean and covariance functions, the mean and covariance matrix for the subset

of indices are

µ =


m(t(1))

. . .

m(t(N))

 , Σ =


k(t(1), t(1)) . . . k(t(1), t(N))

. . . . . . . . .

k(t(N), t(1)) . . . k(t(N), t(N))

 . (2.27)

Mean and covariance functions completely define a GP. Different covariance function

families characterise smoothness and stationarity of a GP.

An example of an infinitely smooth covariance function is the squared exponential function

k(t(n
′), t(n

′′)) = σ2exp

{∑
k

(t
(n′)
k − t(n

′′)
k )2

lk

}
, (2.28)

where σ2 is the variance parameter, l is the vector of lengthscale parameters. The example

of samples from a GP with the squared exponential function is demonstrated in Figure 2.52

2Examples of GPs in this section are created with the GPy (2012) software
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Figure 2.5: Samples from the GP with the squared exponential covariance function. This

covariance function provides very smooth samples with different length-scales.

2.3.2 Regression

One of the basic machine learning problems solved with GPs is regression: predict unknown

function values at the test points t∗ based on known function values at the training data

points {t(n), y(n)}Nn=1. Usually observations are corrupted with noise

y(n) = f(t(n)) + ε(n), ε(n) ∼ N (0, σ2). (2.29)

Denote y = [y(1), . . . , y(N)]. In case of the Gaussian noise, p(f(t∗)|y) is a conditional

Gaussian distribution and it is possible to analytically compute predictions

p (f(t∗)|y) =
∫
p (f(t∗)|f) p (f |y) df . (2.30)

In this equation, all distributions are Gaussian, therefore predictions are also Gaussian

f(t∗|y) ∼ N (µ∗,Σ∗). (2.31)

The parameters of this distribution are computed based on the properties of Gaussian

distributions. Denote T = [t(1), . . . , t(N)], then

µ∗ = k(t∗,T)[k(T,T) + σ2I]−1y, (2.32a)

Σ∗ = k(t∗, t∗)− k(t∗,T)[k(T,T) + σ2I]−1k(T, t∗). (2.32b)
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Figure 2.6: Predictions of Gaussian process regression. For every point, its predicted mean

and variance can be computed.

Parameters of the covariance function can be optimised by maximising the likelihood

of the observations p(y|t(1), . . . , t(N)), however, this optimisation may converge to local

extrema. An example of GP regression is provided in Figure 2.6.

2.3.3 Classification

Another basic machine learning problem is two-class classification: map test data into

one of two classes y ∈ {0,+1}, based on known classes for train data {t(n), y(n)}Nn=1. The

relationship between observations and class labels is non-linear, it can be represented with,

for example, the logistic function

y(n) =
1

1 + exp(−f(t(n)) + ε(n))
, (2.33)

that outputs values in the interval (0, 1).

The likelihood function is not Gaussian, and this integral cannot be analytically computed

p (f(t∗)|y) =
∫
p (f(t∗)|f) p (f |y) df . (2.34)

The same problem holds for all types of non-linear functions that can be used for classifica-

tion. Different approaches were proposed for this problem, such as numerical integration,
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Figure 2.7: GP classification. The class label {0, 1} is predicted based on the distribution of

the latent function at the corresponding point.

sampling methods (Markov chain Monte Carlo), approximate Bayesian inference (expectation

propagation, variational inference, Laplace approximation).

An example of GP classification is presented in Figure 2.7.
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Figure 2.8: Inducing points for Gaussian process regression. A subset of training data was

used for predictions. The locations of inducing points can be optimised for better predictions.
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2.3.4 Scalability

All operations with GPs require inverting a matrix of size N ×N , where N is the number of

training data points. This has O(N3) computational complexity and requires O(N2) storage,

which limits the application of GPs to large datasets.

Currently, there is an ongoing work to reduce the computational and memory complexities,

which is mostly based on the idea of sparse approximations: choose a small active subset of

data points, called inducing points, that give similar prediction results to the whole training

dataset.

An example of inducing points for GPs is presented in Figure 2.8

2.4 Summary

This chapter provides on overview of relevant sparse methods. First, the sparse linear

regression problem is introduced with the frequentist and Bayesian approaches. Then, the

overview of sparse representation in signal processing is described. Finally, sparsity in

Gaussian processes is presented.



Chapter 3

COMPRESSIVE BACKGROUND

SUBTRACTION

Sparse models are actively applied for image and video processing (Mairal, Bach, and

Ponce 2014). One of the essential problems in video processing is background subtraction,

that is detection of changes in sequential video frames. This is important for object

localisation and classification, which can be used, for example, for gesture recognition or

traffic monitoring. Sparsity is natural for the background subtraction problem, as the

foreground objects occupy the small regions on a frame. Background subtraction hence

represents a natural application area for sparse modelling. The idea to apply compressive

sensing for background subtraction is originally proposed by Cevher et al. (2008), where the

sparse regression problem is formulated as the optimisation problem with l1-optimisation.

The Bayesian approach for compressive sensing (Ji, Xue, et al. 2008) provides two

desirable properties for the solution: first, it naturally provides the uncertainty estimation of

the predictions from the posterior distribution; second, it allows to use adaptive approach for

design matrix selection, thus improving efficiency of compression. In this chapter the sparse

Bayesian models are considered for compressed background subtraction. As it is shown in

the experiments section, they also achieve better computational time.

The chapter is organised as following. In Section 3.1 the sparse model of background

subtraction is explained. The Bayesian compressive sensing approaches for this problem is

presented in Section 3.2. The experimental results are presented in Section 3.3. Section 3.4

summarises the chapter.

The materials of this chapter were published as

• Danil Kuzin, Olga Isupova, and Lyudmila Mihaylova (2015). “Compressive sensing

approaches for autonomous object detection in video sequences”. In: Proceedings of the

25
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(a) Background frame (b) Frame with object (c) Foreground mask

Figure 3.1: Example of background subtraction problem: extract foreground car silhouette

from the image. For static camera foreground is sparse, as it occupies only small part of the

image.

Sensor Data Fusion: Trends, Solutions, Applications Workshop (SDF). IEEE, pp. 1–6.

doi: 10.1109/SDF.2015.7347706

3.1 Background Subtraction

In a typical background subtraction application the data consists of the sequential frames

V(n) ∈ RD1×D2 , n ∈ {1, . . . , N} from the camera. Assume that the camera is static and

it is possible to acquire a frame B ∈ RD1×D2 from the camera that is referenced as the

background. The problem is to estimate the mask of the foreground objects in the camera

frames. The example of camera frames is presented in Figure 3.1.

To preprocess the video, the camera frames are converted to greyscale and flattened: the

resulting background frame is vector b ∈ RD, the video frames are vectors v(n) ∈ RD, where

D = D1D2.

Usually the foreground objects take only a part of the image, therefore the majority of

the foreground mask β(n) = v(n)−b values are close to zero. This leads to the application of

sparse regression and compressive sensing theory to this problem. They reduce the number

of measurements that need to be taken (Candès and Wakin 2008) and also the results may be

denoised (Mairal, Bach, and Ponce 2014). The values of the foreground mask are estimated

https://doi.org/10.1109/SDF.2015.7347706


3.2 Bayesian Compressive Sensing 27

based on the set of the compressed measurements y(n) ∈ RK

y(n) = Xβ(n), (3.1)

where the design matrix X ∈ RK×D consists of i.i.d. Gaussian variables, according to Bara-

niuk, Davenport, et al. (2008).

Since β(n) = v(n)−b, the estimates of the coefficients y(n) can be done on the acquisition

step as

y(n) = Xv(n) −Xb. (3.2)

The vectors Xb and Xv(n) are the linear combinations of the pixels of the video frames,

and a single pixel camera (Duarte et al. 2008) may be used for simultaneous capturing and

compression of the video.

In this chapter the Bayesian weak sparsity models for sparse regression are used for

the background subtraction problem and their performance is compared with OMP (Sec-

tion 2.1.1).

3.2 Bayesian Compressive Sensing

Model

In Bayesian compressive sensing (BCS), the system (3.1) is reformulated as a linear regression

model (Ji, Xue, et al. 2008)

y(n) = Xβ(n) + ε(n), (3.3)

where ε(n) is a vector which elements are the independent noise from the Gaussian distribution

ε
(n)
d ∼ N (0, σ2) with the variance σ2. Therefore, the likelihood can be expressed as

p(y(n)|β(n), σ2) =

K∏
k=1

N (y
(n)
k ;xk,:β

(n), σ2I), (3.4)

where xk,: is the k-th row of the matrix X.

To implement the full Bayesian approach, the prior distributions are imposed on all

parameters

p(β(n)|α) =
D∏

d=1

N (β
(n)
d ; 0, α−1d ), (3.5)
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Figure 3.2: Graphical models for Bayesian compressive sensing. Multitask model shares the

hyperparameters for several signals of similar structure, thus reducing required number of

measurements.

where α is a prior parameter vector;

p(α) =
D∏

d=1

Γ(αd; a, b), (3.6)

p(σ2) = IG(σ2; c, d). (3.7)

The graphical model is displayed in Figure 3.2a.

According to the Bayes rule the posterior distribution can be written as follows

p(β(n),α, σ2|y(n)) =
p(y(n)|β(n),α, σ2)p(β(n),α, σ2)

p(y(n))
, (3.8)

where p(y(n)|β(n),α, σ2) is the likelihood term, p(β(n),α, σ2) is the prior term, p(y(n)) is

the evidence term. The latter can be expressed as

p(y(n)) =

∫
β(n),α,σ2

p(y(n)|β(n),α, σ2) p(β(n),α, σ2) dβ(n) dα dσ2. (3.9)

This integral is intractable, therefore it should be approximated.
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Inference

In Bayesian compressive sensing (Ji, Xue, et al. 2008), the decomposition of the posterior

probability into the product of the tractable and intractable probabilities is used and the

intractable part is approximated with the delta-function in its mode

p(β(n),α, σ2|y(n)) = p(β(n)|y(n),α, σ2)p(α, σ2|y(n)). (3.10)

The Bayes rule for the first term of (3.10) is

p(β(n)|y(n),α, σ2) =
p(y(n)|β(n), σ2)p(β(n)|α)

p(y(n)|α, σ2)
. (3.11)

These are all the Gaussians, so the probability p(β(n)|α, σ2,y(n)) can be calculated based on

the properties of Gaussians. It is the Gaussian distribution N (β(n);µ,Σ) with parameters

Σ = (σ−2X>X+A)−1, (3.12)

µ = σ−2ΣX>y(n), (3.13)

where A = diag(α1, . . . , αD).

The second term of the posterior probability (3.10) can be expressed as

p(α, σ2|y(n)) =
p(y(n)|α, σ2)p(α)p(σ2)

p(y(n))
. (3.14)

The denominator here is not tractable. The most probable values of α, σ2 are used. To

achieve this, the term p(y(n)|α, σ2) needs to be maximised

p(y(n)|α, σ2) =
∫
p(y(n)|β(n), σ2)p(β(n)|α)dβ(n). (3.15)

Maximisation of (3.15) w.r.t. α and σ2 gives the following iterative process

αnew
d =

γd
µ2d
, (3.16)

(σ2)new =
‖y(n) −Xµ‖22
σ−2 − Σddγd

, (3.17)

where γd = 1− αdΣdd, Σdd is the diagonal element of the matrix Σ (3.12), µ is the mean

vector (3.13). Then the steps (3.16) and (3.17) iterate with the steps (3.12) and (3.13) until

convergence.
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Note that the marginal distribution on β is

p(β
(n)
d ) =

baΓ
(
a+ 1

2

)
(2π)

1
2Γ(a)

(
b+

(β
(n)
d )2

2

)−(a+ 1
2

)
. (3.18)

This is the Student’s t-distribution, that has the most probable area concentrated around

zero. Thereby, it leads to the sparse vector β(n).

3.2.1 Multitask Bayesian Compressive Sensing (MTCS)

In Ji, Dunson, et al. (2009) the Bayesian method to process several signals that have a similar

sparse structure is proposed. The multitask setting reduces the number of measurements that

should be taken comparing to processing all the signals independently. The hyperparameter α

is considered to be shared by all the tasks. The graphical model is displayed in Figure 3.2b.

3.2.2 Design matrix selection

The uncertainty estimation, that is achieved with the Bayesian approach allows to adaptively

modify the matrix X with the goal of reducing uncertainty of β(n). Such approach is usually

called active learning. The common approach for the adaptive design is the minimisation of

the entropy of target variables (Settles 2009). It is shown by Ji, Xue, et al. (2008), that the

minimisation of the differential entropy of β(n) can be achieved by choosing the rows of X

such that they maximise the variance of the expected measurement y(n+1).

3.2.3 Complexity

At every iteration the most computationally intensive step is (3.12), that involves matrix

inversion. It’s complexity is O(D3). For OMP, computational complexity is O(KD) (Tropp

and Gilbert 2007).

Though the complexity is high for all methods, compressive background subtraction

can be used in scenarios with limited resources. One of these scenarios is the usage of sigle

pixel cameras (Takhar et al. 2006), that use a single optical sensor to sample and compress

in one measurement process. Another scenario is embedded systems where compression is

performed on the device with limited resoures and random projections, and reconstruction

can be achieved relatively cheap on powerful hardware.
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Figure 3.3: Comparison of foreground reconstruction based on 2000 measurements by the

algorithms. The three rows correspond to the three sample frames. From left to right

columns: the input uncompressed frame, uncompressed background subtraction, compressed

background subtraction with Bayesian compressive sensing, compressed background subtrac-

tion with multi-task Bayesian compressive sensing, compressed background subtraction with

orthogonal matching pursuit

3.3 Experiments

For the background subtraction problem the Convoy dataset (Warnell et al. 2015) is used,

which consists of 260 greyscale frames and the background frame. The frames are scaled

to the less resolution of 128× 128 to avoid memory problems. For the multitask algorithm

the batches of 40 frames are run together, while for the Bayesian compressive sensing and

OMP algorithms all the frames are processed independently. There are two sets of the

experiments: one with K = 2000 measurements and the other with K = 5000 measurements.

For both sets of the experiments all three methods are run for 10 times with 10 different

design matrices X shared among the methods. For the quantitative comparison the median

values of quality measures among these runs are presented.
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Figure 3.4: Comparison of foreground reconstruction based on 5000 measurements by the

algorithms. The three rows correspond to the three sample frames. From left to right

columns: the input uncompressed frame, uncompressed background subtraction, compressed

background subtraction with Bayesian compressive sensing, compressed background subtrac-

tion with multi-task Bayesian compressive sensing, compressed background subtraction with

orthogonal matching pursuit

The qualitative comparison of the models with the same design matrix X is displayed in

Figures 3.3 - 3.4. The three demonstrative frames are presented. One can notice that with

the same design matrix the models demonstrate similar results. The figures show that 2000

measurements can be used for object region detection, while 5000 measurements which is

only about 30% of the input resolution are enough even to distinguish parts of the objects

like doors and windows of the cars.

For the quantitative comparison of the results the following measures are used:

Reconstruction error. ‖β
(n) − β̂

(n)
‖2

‖β(n)‖2
, where β(n) is the signal ground truth, β̂

(n)
is the

signal, reconstructed by the algorithm;
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Background subtraction quality measure (BS quality). |S(β
(n)) ∩ S(β̂

(n)
)|

|S(β(n)) ∪ S(β̂
(n)

)|
, where

S(β(n)) is the ground truth foreground pixels, S(β̂
(n)

) is the algorithm detected

foreground pixels, | · | is the cardinality of the set;

Peak signal-to-noise ratio (PSNR). 10 log10

(
peakval2

MSE

)
, where peakval is the maxi-

mum possible pixel value, that is 255 in our case. MSE is the mean square error

between β(n) and β̂
(n)

;

Structural similarity index (SSIM).
(2µ

β(n)
µ
β̂
(n) + C1)(2σ

β(n)β̂
(n) + C2)

(µ2
β(n)

+ µ2
β̂
(n) + C1)(σ2

β(n)
+ σ2

β̂
(n) + C2)

, where

µ
β(n)

, µ
β̂
(n) , σ

β(n)
, σ

β̂
(n) , σ

β(n)β̂
(n) are the local means, standard deviations, and cross-

covariance for the images β(n) and β̂
(n)

respectively, and C1, C2 are the regularisation

constants.

The difference between the uncompressed current frame v(n) and the uncompressed back-

ground frame b is used as the ground truth signal β(n) for every frame (the second columns

in Figures 3.3 - 3.4), since this is the signal which is compressed by (3.1).

The results are presented in Figures 3.5 - 3.6. All the quality measures – reconstruction

error, BS quality, PSNR and SSIM – are calculated for every frame. The mean values among

the frames for each measure and computational time can be found in Tables 3.1a – 3.1b.

The computational time is provided for a batch of 40 frames (BCS and OMP process each

frame independently with 4 parallel workers, multitask BCS processes all 40 frames together).

Implementation is made on the laptop with i7-4702HQ CPU with 2.20GHz, 16 GB RAM

using MATLAB 2015a.

Multitask Bayesian compressive sensing demonstrates the best results according to almost

each measure. Bayesian compressive sensing and OMP show the competitive results but

Bayesian compressive sensing works faster. It is worth to note that multitask Bayesian

compressive sensing has the biggest variance among the runs with the different design

matrices, while the variances of the Bayesian compressive sensing and OMP runs for the

same matrices are quite small.
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Figure 3.5: Quantitative method comparison on the frame level for the set of the experiments

with 2000 measurements

3.4 Summary

This chapter presents two Bayesian compressive sensing algorithms in the application of

background subtraction. These are the applications of the Bayesian compressive sensing

and of the multitask Bayesian compressive sensing algorithms. The results presented in
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Figure 3.6: Quantitative method comparison on the frame level for the set of the experiments

with 5000 measurements

Figures 3.3 – 3.4 demonstrate the satisfactory reconstruction quality of the original image

based on only 5000 measurements (that is ≈ 30% of the original image size).

The conventional Bayesian compressive sensing method demonstrates the similar results

to the greedy algorithm OMP but BCS is more effective in terms of the computational time.
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Table 3.1: Mean quality measures

(a) Method comparison based on 2000 measurements

Algorithm Reconstruction error BS quality PSNR SSIM Time (hours)

BCS 0.8037 0.3518 34.2007 0.7198 0.23

Multitask BCS 0.7608 0.4820 37.542 0.8384 0.67

OMP 0.8028 0.3510 34.1705 0.7204 0.51

(b) Method comparison based on 5000 measurements

Algorithm Reconstruction error BS quality PSNR SSIM Time (hours)

BCS 0.4713 0.8119 43.8251 0.9186 0.9

Multitask BCS 0.4702 0.8421 45.0028 0.9212 8.5

OMP 0.4578 0.8109 43.2720 0.9266 4.8

If the computational time is not critical the extension of the Bayesian method designed

for a multitask problem can improve the performance in terms of the different measures.

Therefore, other extensions of the Bayesian method to include the prior information need

further research.

In this chapter the components of the foreground intensities are assumed independent.

For most cases the objects are grouped into several clusters, therefore more sophisticated

sparsity models can be introduced to reflect the structure of the foreground. Chapter 4

presents the hierarchical sparse Bayesian model that is capable of modelling structured data.



Chapter 4

STRUCTURED SPIKE AND SLAB MODELS

In Chapter 3 the weak sparse Bayesian models with the independent prior for sparse

coefficients are considered, but often the independence assumption is not valid (Bach et al.

2012b), as non-zero elements tend to appear in groups, and thus an unknown structure of the

latent variables may exist. For example, wavelet coefficients of images are usually organised

in trees (Mallat 2008), chromosomes have a spatial structure along a genome (Hastie et al.

2015), video from single-pixel cameras has a temporal structure (Yang et al. 2014). In these

cases, it is useful to introduce additional hierarchical or group penalties that promote such

structures in recovered signals. In this chapter the structured formulation of the spike and

slab model is presented, that accounts for the group structure of sparse coefficients. This is

achieved with a hierarchical Gaussian process prior on the latent variables. Such hierarchical

prior allows to model spatial structural dependencies for signal components that can evolve

in time.

The chapter is organised as follows. Section 4.1 discussed the existing work on group

sparsity and Section 4.2 provides an overview of existing spike and slab models. The proposed

model is presented in Section 4.3 and Section 4.4 presents the inference algorithm for the

model. Section 4.5 presents the online version of the proposed algorithm. Section 4.6 presents

the numerical experiments. Section 4.7 summarises the chapter.

The materials of this chapter were published as

• Danil Kuzin, Olga Isupova, and Lyudmila Mihaylova (2017). “Structured sparse mod-

elling with hierarchical GP”. in: Proceedings of the 6th Signal Processing with Adaptive

Sparse Structured Representations Workshop (SPARS). url: http://spars2017.lx.

it.pt/index_files/papers/SPARS2017_Paper_48.pdf

• Danil Kuzin, Olga Isupova, and Lyudmila Mihaylova (2018a). “Spatio-temporal

37
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structured sparse regression with hierarchical Gaussian process priors”. In: IEEE

Transactions on Signal Processing vol. 66, issue 17, pp. 4598–4611. doi: 10.1109/

TSP.2018.2858207

4.1 Group Sparsity

Different spatial structure assumptions for sparse models have been extensively studied in

the literature. The group lasso (Sprechmann et al. 2011; Yuan and Lin 2006) extends the

classical lasso method for group sparsity such that coefficients form groups and all coefficients

in a group are either non-zero or zero together, but groups are required to be defined in

advance. In contrast to group lasso, structural dependencies in the proposed model are

defined by the parameters of covariance functions of the Gaussian processes and the actual

groups are inferred from the data.

Group weak sparsity models include smooth relevance vector machines (Schmolck and

Everson 2007), spatio-temporal coupling of the parameters for the scale mixture of Gaussians

representation (Van Gerven et al. 2010; Wu, Park, et al. 2014), row and element sparsity (Chen

et al. 2016), block sparsity (Zhang and Rao 2011).

For spike and slab priors a spatio-temporal structure can be modelled with a one-level

Gaussian processes prior (Andersen et al. 2017), where the prior is imposed on all locations

of non-zero components together. The covariance matrix is represented as the Kronecker

product of the temporal and spatial matrices.

In contrast to the one-level GP, the proposed model introduces an additional level of

a GP prior for temporal dependencies. Therefore, the temporal and spatial structures are

decoupled. The proposed model is thus more flexible. Broadly speaking, the top-level GP

can encode the slow change of groups of spikes positions in time while the low-level GP

allows to model the local changes of each group. The one-level GP prior model also requires

significantly more memory to store the covariance function for modelling both spatial and

temporal structural dependencies as it is built as a Kronecker product of spatial and temporal

covariance matrices. The resulting size of the covariance matrix scales quadratically with

spatio-temporal dimensionality, which makes it infeasible even for average size problems,

whereas in the proposed model the total size of two covariance matrices scales linearly.

More importantly, in the proposed model structural dependencies are considered at every

https://doi.org/10.1109/TSP.2018.2858207
https://doi.org/10.1109/TSP.2018.2858207
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timestamp whereas in Andersen et al. (2017) the GP prior is imposed on the whole batch of

data. This consideration of every timestamp is promising in terms of incremental inference

— all latent variables should be inferred for the new time moment in the same manner as for

the batch inference. Meanwhile it is unclear how to apply the one-level GP model for the

incremental data without re-processing the previous data.

GPs are widely used to model complex structures and dynamics in data not only in

sparse problems. In Deisenroth and Mohamed (2012) GP is used as a prior for nonlinear

state transition and observation functions for state-space Bayesian filtering. Hierarchical GP

models are proposed to model structures in Lawrence and Moore (2007).

4.2 Spike and Slab Models

This section presents a roadmap of models that are used in the formulation of the proposed

spatio-temporal structured sparse model. It starts from the basic spike and slab model, as

in Section 2.1.2, and continues with its extension for structured data.

The generative model for the spatio-temporal regression problem can be formulated in

the following way:

• The data is collected for the sequence of the N discrete timestamps. Indexes are

denoted by n ∈ [1, . . . , N ].

• At each timestamp n the unknown signal of size D is denoted by β(n) = [β
(n)
1 , . . . , β

(n)
D ]>.

Signals at all timestamps are concatenated into a matrix B = [β(1), . . . ,β(N)].

• The observations of size K are denoted by y(n) = [y
(n)
1 , . . . , y

(n)
K ]>. They are obtained

with the design matrix X ∈ RK×D. Observations at all timestamps are concatenated

into matrix Y = [y(1), . . . ,y(N)].

• An independent Gaussian noise with the variance σ2 is added to the observations.

The probabilistic model can be then expressed as

p
(
y(n)|β(n)

)
= N

(
y(n);Xβ(n), σ2I

)
∀n. (4.1)

It is assumed that the dimensionality K of observations y(n) is less than the dimensionality

D of signals β(n), therefore the problem of recovery of signal β(n) from observations y(n) is
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underdetermined and it can have an infinite number of solutions. Sparsity-inducing priors

allow to specify additional constraints that lead to a unique optimal solution.

4.2.1 Factor Graphs

For Bayesian models, factor graphs are used to visualise complex distributions (Wainwright

and Jordan 2008) in the form of undirected graphical models. They are also important for

the approximate inference method described in Section 4.4.

The joint probability density function p(·) of latent variables ζi can be factorised as a

product of factors ψC that are functions of a corresponding set of latent variables ζC

p (ζ1, ..., ζm) =
1

Z

∏
C

ψC (ζC) , (4.2)

where Z is a normalisation constant. This factorisation can be represented as a bipartite

graph with variable vertices corresponding to ζi, factor vertices corresponding to ψC and

edges connecting corresponding vertices.

The distribution of latent variables β(n) in (4.1) can be represented as a factor

g(n)
(
β(n)

)
= N

(
y(n);Xβ(n), σ2I

)
. (4.3)

The factor graphs are used in this chapter to visualise different spike and slab models.

In Figure 4.1a, Figure 4.2a, Figure 4.4 circles represent variable vertices and small squares

represent factor vertices.

4.2.2 Spike and Slab Model

Sparsity can be induced with the spike and slab model (George and McCulloch 1993), where

additional latent variables Ω = {ω(n)
d }n=1:N, d=1:D indicate if signal components β(n)d are

zeros. This is represented as a mixture of a spike and a slab

p
(
β
(n)
d |ω

(n)
d

)
= ω

(n)
d δ0

(
β
(n)
d

)
+
(
1− ω(n)

d

)
N
(
β
(n)
d ; 0, σ2β

)
. (4.4)

The conditional distributions p
(
β
(n)
d |ω

(n)
d

)
are further denoted by factors f (n)d

(
ω
(n)
d , β

(n)
d

)
.

In this model {ω(n)
d }d=1:D are considered conditionally independent given β(n). The prior

is imposed on the indicators

p
(
ω
(n)
d

)
= Ber

(
ω
(n)
d ; z

)
. (4.5)
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(b) Example data and recovery results

Figure 4.1: Spike and slab model for one time moment (different time moments are indepen-

dent). All signal components are conditionally independent given data, therefore structural

assumptions cannot be modelled.

The prior distributions p
(
ω
(n)
d

)
are further denoted by hind(n)

d

(
ω
(n)
d

)
. The problem (4.1) –

(4.5) can be solved independently for each n.

The model can be represented as a factor graph (Figure 4.1a) with a product of factors

(4.1), (4.4), (4.5) for all n and d.

The posterior p(B,Ω) of latent variables B and Ω is

p =
N∏

n=1

[
g(n)

(
β(n)

) D∏
d=1

[
f
(n)
d

(
ω
(n)
d , β

(n)
d

)
hind(n)

d

(
ω
(n)
d

)]]
. (4.6)

Figure 4.1b demonstrates an example of β(n) generated by this model and recovery

results with z=0.8, K=5, D=10, N=1.

4.2.3 Spike and Slab Model with a Spatial Structure

A spatial structure can be implemented by adding interdependencies for the locations of

spikes in β
(n)
d (Andersen et al. 2017; Wu, Zhang, et al. 2015; Zhao, Gao, et al. 2016). This

is achieved by modelling the probabilities of spikes with the additional latent variables

Γ = [γ(1), . . . ,γ(N)] = {γ(n)d }n=1:N, d=1:D that are samples from a Gaussian process. The

properties of the structure are defined through the covariance function of the GP, which in
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this chapter is assumed to be squared exponential:

p
(
γ(n)

)
= N

(
γ(n);µ(n),Σ0

)
, Σ0(i, j) = αΣ exp

(
−(i− j)2

2`2Σ

)
, (4.7)

where µ(n) is the mean vector and Σ0 is the covariance matrix with the hyperparameters

αΣ and `2Σ. However, the model is not limited to squared exponential covariance functions

and others can be used in practice.

The conditional independence assumption for ω(n)
d from (4.5) is replaced by

p
(
ω
(n)
d |γ

(n)
d

)
= Ber

(
ω
(n)
d ; Φ

(
γ
(n)
d

))
, (4.8)

p
(
γ(n)

)
= N

(
γ(n);µ(n),Σ0

)
, (4.9)

where Φ(·) is the standard Gaussian cumulative distribution function (cdf). Scaling is

required to normalise probabilities to the [0, 1] interval and it is convenient to use Φ(·) for

this purpose in the derivations with GPs (Rasmussen and Williams 2006). The conditional

distributions p
(
ω
(n)
d |γ

(n)
d

)
are denoted by factors h(n)d

(
ω
(n)
d , γ

(n)
d

)
. The prior distributions

p
(
γ(n)

)
are denoted by r(n)

(
γ(n)

)
.

In this model {γ(n)}n=1:N are independent and therefore the problem can be solved

separately for each timestamp. Using the introduced factors (4.1), (4.4) and (4.8) – (4.9), a

factor graph can be built as in Figure 4.2a. The posterior p(B,Ω,Γ) of the latent variables

is given by

p =
N∏

n=1

[
g(n)

(
β(n)

) D∏
d=1

[
f
(n)
d

(
ω
(n)
d , β

(n)
d

)
h
(n)
d

(
ω
(n)
d γ

(n)
d

)]
r(n)

(
γ(n)

)]
. (4.10)

Figure 4.2b demonstrates the recovery results for the data with µ(n)d =0.8, ∀d=[1, . . . , D],

K=5, D=10, N=1.

4.2.4 Gaussian Processes Dynamics System

Gaussian processes dynamics system models allow inference in time series using probability

distributions over transition and measurement dynamics, e.g. in Deisenroth and Mohamed

(2012)

µ(n) ∼ N
(
µ(n)|µ(n−1),Σ

)
, (4.11)

γ(n) ∼ N
(
γ(n)|µ(n),V

)
, (4.12)
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(b) Example data and recovery results

Figure 4.2: Spike and slab model with a spatial structure for one time moment. The locations

of spikes have a GP distribution, therefore encouraging a structure in space, but they are

independent in time.

where M = [µ(1), . . . ,µ(N)] are the latent states and Γ = [γ(1), . . . ,γ(N)] are the observation

vectors.

A factor graph (Figure 4.3a) for the model is expressed by factors

u(n) = N
(
µ(n)|µ(n−1),Σ

)
, (4.13)

r(n) = N
(
γ(n)|µ(n),V

)
, (4.14)

where u(n) models connections between latent states at current and previous time moments;

r(n) identifies dependencies between observations and latent states at each time moment.

The posterior of hidden variables p(M,Γ) is

p =
N∏

n=1

u(n)r(n). (4.15)

The example data and its recovery under the Gaussian process dynamic system model

are presented in Figures 4.3b and 4.3c.
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Figure 4.3: Gaussian process dynamic system model

4.3 The Proposed Spatio-temporal Structured Spike and Slab Model

In this chapter a spatio-temporal latent structure of the positions of non-zero signal com-

ponents is considered for the underdetermined recovery problem (4.1). The following

assumptions are introduced:

1. β(n) is sparse at each timestamp n;

2. non-zero elements in β(n) are clustered in groups for each timestamp n;

3. these groups can move and evolve in time.

This recovery problem is addressed with the hierarchical Bayesian approach. As in the

Section 4.2.2, the first assumption can be implemented in the model using the spike and

slab prior

y(n) ∼ N
(
y(n);Xβ(n), σ2I

)
, (4.16)

β
(n)
d ∼ ω(n)

d δ0

(
β
(n)
d

)
+
(
1− ω(n)

d

)
N
(
β
(n)
d ; 0, σ2β

)
. (4.17)
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Similarly to Section 4.2.3, the second model assumption can be implemented by adding

spatial dependencies for the positions of spikes in β
(n)
d . This is achieved by modelling the

probabilities of spikes Ω with the scaled GP on Γ

ω
(n)
d ∼ Ber

(
ω
(n)
d ; Φ

(
γ
(n)
d

))
, (4.18)

γ(n) ∼ N
(
γ(n);µ(n),Σ0

)
, Σ0(i, j) = αΣ exp

(
−(i− j)2

2`2Σ

)
. (4.19)

GPs specify a prior over an unknown structure. This is particularly useful as it allows

to avoid a specification of any structural patterns — the only parameter for structural

modelling is the GP covariance function.

The third condition is addressed with the dynamic hierarchical GP prior. The mean

M = [µ1, . . . ,µN ] for the spatial GP evolves over time according to the top-level temporal

GP

µ(n) ∼ N
(
µ(n);µ(n−1),W

)
, W(i, j) = αW exp

(
−(i− j)2

2`2W

)
, (4.20)

where W is the squared exponential covariance matrix of the temporal GP with the hyper-

parameters αW and `2W .

This allows to implicitly specify the prior over the evolution function of the structure.

The rate of the evolution is controlled with the top-level GP covariance function.

According to these assumptions, the model can be expressed as a factor graph (Figure 4.4)

with factors

g(n)
(
β(n)

)
= N

(
y(n);Xβ(n), σ2I

)
, (4.21a)

f
(n)
d

(
β
(n)
d , ω

(n)
d

)
= ω

(n)
d δ0

(
β
(n)
d

)
+
(
1− ω(n)

d

)
N
(
β
(n)
d ; 0, σ2β

)
, (4.21b)

h
(n)
d

(
ω
(n)
d , γ

(n)
d

)
= Ber

(
ω
(n)
d ; Φ

(
γ
(n)
d

))
, (4.21c)

r(n)
(
γ(n),µ(n)

)
= N

(
γ(n);µ(n),Σ0

)
, (4.21d)

u(n)
(
µ(n),µ(n−1)

)
= N

(
µ(n);µ(n−1),W

)
. (4.21e)

The full posterior distribution p(B,Ω,Γ,M) is then

p =

N∏
n=1

[
g(n)

(
β(n)

) D∏
d=1

[
f
(n)
d

(
β
(n)
d , ω

(n)
d

)
h
(n)
d

(
ω
(n)
d , γ

(n)
d

)]
r(n)

(
γ(n),µ(n)

)]

×
N∏

n=2

u(n)
(
µ(n),µ(n−1)

)
. (4.22)
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Figure 4.4: Proposed spike and slab model with a spatio-temporal structure. The locations

of spikes have a GP distribution in space with parameters that are controlled by a top-level

GP and they evolve in time, therefore promoting temporal dependence.

4.4 Expectation Propagation for the Hierarchical Spike and Slab Model

The exact posterior for the proposed hierarchical spike and slab model is intractable,

therefore approximate inference methods should be used. In this chapter expectation

propagation (EP) (Minka 2001b) is employed. EP is shown to be the most effective Bayesian

inference method for sparse modelling (Hernández-Lobato, Hernández-Lobato, et al. 2015).

4.4.1 Expectation Propagation

EP is a deterministic inference method that approximates the posterior distribution using

the factor decomposition (4.2), where each factor is approximated with distributions ψ̃C(·)

from the exponential family:

p̃(ζ1, ..., ζm) =
1

Z̃

∏
C

ψ̃C(ζC), (4.23)

where p̃ is an approximating distribution and Z̃ is a normalisation constant. Approximating

factorised distribution is determined by minimisation of the Kullback-Leibler (KL) divergence

with the true distribution. The KL-divergence is a common measure of similarity between

distributions.
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Direct approximation is intractable due to intractability of the true posterior. Min-

imisation of the KL divergence between individual factors ψC and ψ̃C may not provide

good approximation for the resulted product. In EP, approximation of each factor is per-

formed in the context of other factors to improve a result for the final product. Iteratively

one of the factors is chosen for refinement. The chosen factor ψ̃C is refined to minimise

the KL-divergence between the product q ∝ ψ̃C
∏

C′ 6=C ψ̃C′ and ψC
∏

C′ 6=C ψ̃C′ , where the

approximating factor is replaced with a factor from the true posterior.

Factor refinement consists of five steps which are summarised below.

1. Compute a cavity distribution q\C ∝ q

ψ̃C

: the joint distribution without the factor ψ̃C

2. Compute a tilted distribution ψCq
\C : the product of the cavity distribution and the

true factor

3. Refine the approximation q: q∗ = argmin KL
(
ψCq

\C ||q
)

by minimising the KL-

divergence between the tilted distribution ψCq
\C and the approximating distribution q.

This is equivalent to matching the moments of the distributions (Minka 2001b).

4. Compute an updated factor ψ̃new
C ∝ q∗

q\C
using the refined approximation and cavity

distribution.

5. Update the current joint posterior qnew ∝ ψ̃new
C

∏
C′ 6=C ψ̃C′ with the newly updated

factor ψ̃new
C .

The expectation propagation algorithm for this chapter is based on the following product

and quotient rules for Gaussian and Bernoulli distributions.

Product of Gaussians

A product of two Gaussian distributions is an unnormalised Gaussian distribution

N (x;m1,Σ1)N (x;m2,Σ2) ∝ N (x;m,Σ), (4.24)

where

Σ−1 = Σ−11 +Σ−12 , Σ−1m = Σ−11 m1 +Σ−12 m2. (4.25)
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Quotient of Gaussians

A quotient of two Gaussian distributions is an unnormalised Gaussian distribution1

N (x;m1,Σ1)

N (x;m2,Σ2)
∝ N (x;m,Σ), (4.26)

where

Σ−1 = Σ−11 −Σ−12 , Σ−1m = Σ−11 m1 −Σ−12 m2. (4.27)

Product of Bernoulli

A product of two Bernoulli distributions is an unnormalised Bernoulli distribution

Ber(x; Φ(z1))Ber(x; Φ(z2)) ∝ Ber(x; Φ(t(z1, z2))), (4.28)

where

t(z1, z2) = Φ−1

([
(1− Φ(z1))(1− Φ(z2))

Φ(z1)Φ(z2)
+ 1

]−1)
. (4.29)

Quotient of Bernoulli

A quotient of two Bernoulli distributions is an unnormalised Bernoulli distribution

Ber(x; Φ(z1))
Ber(x; Φ(z2))

∝ Ber(x; Φ(d(z1, z2))), (4.30)

where

d(z1, z2) = Φ−1

([
(1− Φ(z1))Φ(z2)

(1− Φ(z2))Φ(z1)
+ 1

]−1)
. (4.31)

4.4.2 Approximating Factors

Here the key components of the EP inference algorithm for the proposed model are provided.

The true posterior p (4.22) is approximated with the distribution q

q =
∏
n

qg(n)qf (n)qh(n)qr(n)qu(n) , (4.32)

where each factor qa, a ∈ {g(n), f (n), h(n), r(n), u(n)}, is from the exponential family and all

latent variables are separated in the factors.

1Although quotient can lose positive semidefiniteness, it will still be referred as a Gaussian distribution
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Below the factors qa of the approximating posterior q are introduced. Gaussian and

Bernoulli distributions are used in the factors, which parameters are updated during the

iterations of the EP algorithm.

The factors g(n) = N (y(n);Xβ(n), σ2I) from (4.21a) can be viewed as the distributions

of β(n) with fixed observed variables y(n): qg(n) = N (β(n);mg(n) ,Vg(n)), where mg(n) =

(X>X)−1X>y(n), Vg(n) = σ2(X>X)−1.

In the EP inference algorithm, each of the introduced approximating factors qf (n) ,

qh(n) , qr(n) , qu(n) is iteratively updated according to the factor refinement procedure as in

Section 4.4.1. Note that the factors qg(n) are not updated, as the corresponding factors g(n)

from the true posterior distribution are already from the exponential family.

The factors f (n) =
∏D

d=1 f
(n)
d from (4.21b) are approximated with the products of

Gaussian and Bernoulli distributions

qf (n) = N (β(n);mf (n) ,Vf (n))

D∏
d=1

Ber(ω(n)
d ; Φ(z

f
(n)
d

)), (4.33)

where the components of β(n) are independent. Therefore, the covariance matrices Vf (n) are

diagonal. Distribution parameters mf (n) , Vf (n) , z
f
(n)
d

are updated during the EP iterations.

The approximation for factors h(n) =
∏D

d=1 h
(n)
d from (4.21c) is similar to f (n). They are

approximated with the products of Gaussian and Bernoulli distributions

qh(n) = N (γ(n);νh(n) ,S(n))
D∏

d=1

Ber(ω(n)
d ; Φ(z

h
(n)
d

)), (4.34)

where the components of γ(n) are independent. Single covariance matrix Sh is used for all

time moments. Distribution parameters νh(n) , Sh, z
h
(n)
d

are updated during EP iterations.

The approximation for factors r(n) = N (γ(n);µ(n),Σ0) and u(n) = N (µ(n);µ(n−1),W)

from (4.21d) and (4.21e) is intended to separate the latent variables and it is represented as

products of Gaussian distributions

qr(n) = N (γ(n);νr(n) ,Sr)N (µ(n); er(n) ,Dr), (4.35)

qu(n) = N (µ(n−1); eu(n)←,Du←)N (µ(n); eu(n)→,Du→). (4.36)

Distribution parameters er(n) , Dr, νr(n) , Sr, eu(n)←, Du←, eu(n)→, Du→ are updated during

EP iterations.
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4.4.3 Full Posterior Approximation

The posterior approximation q given by (4.32) thus contains the products of Gaussian and

Bernoulli distributions that are equal to unnormalised Gaussian and Bernoulli distributions,

respectively. This can be conveniently expressed in terms of the natural parameters and q

can be represented in terms of distributions of the latent variables.

For β(n) in the posterior distribution q the Gaussian product property leads to the

Gaussian distribution N (β(n);m(n),V(n)) with natural parameters

V(n)−1 = V−1
g(n) +V−1

f (n) , V
(n)−1m(n) = V−1

g(n)mg(n) +V−1
f (n)mf (n) . (4.37)

Similarly, γ(n) in q is distributed as N (γ(n);ν(n),S), where natural parameters are

S−1 = S−1h + S−1r , S−1ν(n) = S−1h νh(n) + S−1r νr(n) . (4.38)

The top GP latent variables µ(n) have the Gaussian distributions N (µ(n); e(n),D) with

natural parameters

D−1 =D−1r +D−1u→1n>1 +D−1u←1n<N , (4.39a)

D−1e(n) =D−1r er(n) +D−1u→eu(n)→1n>1 +D−1u←eu(n+1)←1n<N , (4.39b)

where 1 is the indicator function.

The distributions for ω(n) are
∏D

d=1 Ber(ω(n)
d ; Φ(z

(n)
d )) with parameters

z
(n)
d = Φ−1

[(1− Φ(z
f
(n)
d

))(1− Φ(z
h
(n)
d

))

Φ(z
f
(n)
d

)Φ(z
h
(n)
d

)
+ 1

]−1 . (4.40)

The full approximating posterior q is then

q =
N∏

n=1

N (β(n);m(n),V(n))
T∏
t=1

D∏
d=1

Ber(ω(n)
d ; Φ(z

(n)
d ))

×
N∏

n=1

N (γ(n);ν(n),S)
N∏

n=1

N (µ(n); e(n),D). (4.41)

In the derivation of updates for the factors f (n)d , h(n)d , r(n) the superscript (n) is omitted,

as they are conditionally independent for different time stamps.
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EP Update for Factor fd

Cavity distribution The unnormalised cavity distribution q\fd (βd, ωd) =
q(βd,ωd)

qfd (βd,ωd)
can be

computed as

q\fd =
N (βd;m(d),V(d, d))Ber(ωd; Φ(zd))

N (βd;mf (d),Vf (d, d))Ber(ωd; Φ(zfd))

∝ N (βd;md
\f , vd

\f )Ber(ωd; Φ(zd
\f )),

where

(vd
\f )−1 = V−1(d, d)−V−1f (d, d),

(vd
\f )−1md

\f = V−1(d, d)m(d)−V−1f (d, d)mf (d, d),

zd
\f = zhd

.

Moments matching The moments of the tilted distribution q\fdfd are

Zd = Φ(zd
\f )N (0;md

\f , vd
\f ) + (1− Φ(zd

\f ))N (0;md
\f , vd

\f + σ2β),

Eβd =
1− Φ(zd

\f )

Zd
N (0;md

\f , vd
\f )

md
\fσ2β

vd\f + σ2β
,

Eβd2 =
1− Φ(zd

\f )

Zd
N (0;md

\f , vd
\f )

(
(md

\f )2σ4β

(vd\f + σ2β)
2
+

vd
\fσ2β

vd\f + σ2β

)
,

Eωd =
Φ(zd

\f )

Zd
N (0;md

\f , vd
\f ).

The new approximation q∗(βd, ωd) is

q∗ = N (βd;md
q∗ , vd

q∗)Ber(ωd; Φ(zd
q∗)),

where

md
q∗ = Eβd, vdq

∗
= Eβd2 − (Eβd)2, zdq

∗
= Φ−1(Eωd).

Factor update The new factor approximation qnew
fd

(βd, ωd) =
q∗(βd,ωd)

q\fd (βd,ωd)
can be computed

as

qnew
fd

=
N
(
βd;md

q∗ , vd
q∗
)

Ber
(
ωd; Φ

(
zd

q∗
))

N
(
βd;md

\f , vd\f
)

Ber
(
ωd; Φ

(
zd\f

))
∝ N

(
βd;m

new
f (d),Vnew

f (d, d)
)

Ber
(
ωd; Φ

(
znew
fd

))
,
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where

(
Vnew

f

)−1
(d, d) =

(
vd

q∗
)−1
−
(
vd
\f
)−1

,(
Vnew

fd

)−1
(d, d)mnew

fd
(d) =

(
vd

q∗
)−1

md
q∗ −

(
vd
\f
)−1

m
\f
fd
,

znew
fd

= d
(
zd

q∗ , zd
\f
)
.

EP Update for Factor hd

Cavity distribution The unnormalised cavity distribution q\hd(γd, ωd) = q(γd,ωd)
qhd (γd,ωd)

can be

computed as

q\hd =
N (γd;ν(d),S(d, d))Ber(ωd; Φ(zd))

N (γd;νh(d),Sh(d, d))Ber(ωd; Φ(zhd
))

∝ N (γd; νd
\h, sd

\h)Ber(ωd; Φ(zd
\h)),

where

(sd
\h)−1 = S−1(d, d)− S−1h (d, d)

(sd
\h)−1νd

\h = S−1(d, d)µ(d)− S−1h (d, d)νh(d, d)

zd
\h = zfd .

Moments matching The moments of the tilted distribution q\hdhd are

Zd = Φ(zd
\h)Φ(a) + (1− Φ(zd

\h))(1− Φ(a)),

Eγd =
1

Zd
(Φ(zd

\h)K + (1− Φ(zd
\h))(νd

\h −K)),

Eγd2 =
1

Zd

[
(2Φ(zd

\h)− 1)

(
(νd
\h)2Φ(a) + sd

\hΦ(a)

+
2νd
\hsd

\hN (a; 0, 1)√
1 + sd\h

− (sd
\h)2aN (a; 0, 1)

1 + sd\h

)
+ (1− Φ(zd

\h))((sd
\h + (νd

\h)2)

]
,

Eωd =
Φ(zd

\h)Φ(a)

Zd
,

where

a =
νd
\h√

1 + sd\h
, K = sd

\h N (a; 0, 1)√
1 + sd\h

+ νd
\hΦ(a).
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The new approximation q∗(γd, ωd) is

q∗ = N (γd; νd
q∗ , sd

q∗)Ber(ωd; Φ(zd
q∗)),

where

νd
q∗ = Eγd, sdq

∗
= Eγd2 − (Eγd)2, zdq

∗
= Φ−1 (Eωd) .

Factor update The new factor approximation qnew
hd

(γd, ωd) =
q∗(γd, ωd)

q\hd(γd, ωd)
can be computed

as

qnew
hd

=
N
(
γd; νd

q∗ , sd
q∗
)

Ber
(
ωd; Φ

(
zd

q∗
))

N
(
γd; νd\h, sd\h

)
Ber

(
ωd; Φ

(
zd\h

))
∝ N (γd;ν

new
h (d),Snew

h (d, d))Ber
(
ωd; Φ

(
znew
hd

))
,

where

(Snew
h )−1 (d, d) =

(
sq

∗

d

)−1
−
(
sd
\h
)−1

,

(Snew
h )−1 (d, d)νnew

h (d) =
(
sq

∗

d

)−1
νq

∗

d −
(
sd
\h
)−1

ν
\h
d ,

znew
hd

= d
(
zq

∗

d , zd
\h
)
.

EP Update for Factor r

Cavity distribution The unnormalised cavity distribution q\r(γ,µ) = q(γ,µ)
qr(γ,µ) can be computed

as

q\r =
N (γ;ν,S)N (µ; e,D)

N (γ;νr,Sr)N (µ; er,Dr)

∝ N (γ;ν\r,S\r)N (µ; e\r,D\r),

where

(S\r)−1 = (S)−1 − (Sr)
−1

(S\r)−1ν\r = (S)−1ν − (Sr)
−1νr

(D\r)−1 = (D)−1 − (Dr)
−1

(D\r)−1e\r = (D)−1e− (Dr)
−1er.

Find the update for the factor qnew
r For the factor qr parameters of the Gaussian distribu-

tions found during the moment matching step are cancelled out during the factor update
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step and the resulting formulae are

qnew
r (γ,µ) ∝ N (γ;νnew,Snew)N (µ; enew,Dnew) ,

where

(Snew)−1 = (D\r +Σ0)
−1

(Snew)−1νnew = (I− (Snew)−1Σ0)(D
\r)−1e\r

(Dnew)−1 = (S\r +Σ0)
−1

(Dnew)−1enew = (I− (Dnew)−1Σ0)(S
\r)−1ν\r.

EP Update for Factor u(n)

Cavity distribution The unnormalised cavity distribution q\u
(n)

(µ(n−1),µ(n)) =
q(µ(n−1),µ(n))

qu(n)(µ(n−1),µ(n))
can be computed as

q\u
(n)

=
N (µ(n−1); e(n−1),D)N (µ(n); e(n),D)

N (µ(n−1); eu(n)←,Du←)N (µ(n); eu(n)→,Du→)

∝ N (µ(n−1); e(n−1)
\u
,D(n−1)\u)N (µ(n); e(n)

\u
,D(n)\u),

where

(D(n−1)\u)−1 = D−1 − (Du←)−1

(D(n−1)\u)−1e(n−1)
\u

= D−1e(n−1) − (Du←)−1eu(n)←

(D(n)\u)−1 = D−1 − (Du→)−1

(D(n)\u)−1e(n)
\u

= D−1e(n) − (Du→)−1eu(n)→.

Find the update for the factor qnew
u(n) For the factor qu(n) parameters of the Gaussian

distributions found during the moment matching step are cancelled out during the factor

update step and the resulting formulae are

qnew
u(n)(µ

(n−1),µ(n)) ∝ N
(
µ(n); enew

u(n)→,D
new
u→

)
N
(
µ(n−1); enew

u(n)←,D
new
u←

)
,
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where

(Dnew
u→ )−1 = (D(n−1)\u +W)−1

(Dnew
u→ )−1enew

u(n)→ = (I− (Dnew
u→ )−1W)(D(n−1)\u)−1e(n−1)

\u

(Dnew
u← )−1 = (D(n)\u +W)−1

(Dnew
u← )−1enew

u(n)← = (I− (Dnew
u← )−1W)(D(n)\u)−1e(n)

\u
.

4.5 Online Inference with Bayesian Filtering

In this section the problem (4.1) is considered for streaming data, i.e. when new data

becomes available at every timestamp. The conventional batch inference can be infeasible

for large or streaming data. The developed online Bayesian filtering algorithm for the model

presented in Section 4.3 allows to iteratively update the approximation of β(n) based on new

samples of data.

Bayesian filtering consist of two steps that are iterated for each new sample of data:

• prediction, where an estimate of a hidden system state at the next time step is predicted

based on the observations available at the current time moment;

• update, where this estimate is updated once an observation at the next time moment

is obtained.

In the proposed model the hidden state is represented by the latent variables β(n), ω(n),

γ(n) and µ(n) that should be inferred based on observations y(n).

4.5.1 Prediction

At the prediction step for the timestamp n + 1 the current estimate of the posterior

distribution of the latent variables p
(
β(n),ω(n),γ(n),µ(n)|y(1)...(n)

)
is available. It is based

on all observations y(1)...(n) = [y(1), . . . ,y(n)] up to the timestamp n. The initial estimate of

this posterior can be obtained by the offline inference algorithm from Section 4.4 applied to

the initial Ninit timestamps.
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Marginalisation of the latent variables for the current timestamp n allows to obtain

predictions for the latent variables for the next timestamp n+ 1

p
(
β(n+1), ω(n+1),γ(n+1),µ(n+1)|y(1)...(n)

)
=

∫
p
(
β(n+1),ω(n+1),γ(n+1),µ(n+1)|β(n),ω(n),γ(n),µ(n)

)
× p

(
β(n),ω(n),γ(n),µ(n)|y(1)...(n)

)
dβ(n)dω(n)dγ(n)dµ(n). (4.42)

The first term in the integral (4.42) is factorised according to the generative model (4.21)

p
(
β(n+1),ω(n+1),γ(n+1),µ(n+1)|β(n),ω(n),γ(n),µ(n)

)
= p

(
β(n+1)|ω(n+1)

)
p
(
ω(n+1)|γ(n+1)

)
p
(
γ(n+1)|µ(n+1)

)
p
(
µ(n+1)|µ(n)

)
(4.43)

Therefore, the terms related to variables β(n+1), ω(n+1) and γ(n+1) are independent from

the integral variables in (4.42) and the integral can be rewritten as∫
p
(
β(n+1),ω(n+1),γ(n+1),µ(n+1)|β(n),ω(n),γ(n),µ(n)

)
× p

(
β(n),ω(n),γ(n),µ(n)|y(1)...(n)

)
dβ(n)dω(n)dγ(n)dµ(n)

= p(β(n+1)|ω(n+1))p
(
ω(n+1)|γ(n+1)

)
p
(
γ(n+1)|µ(n+1)

)
×
∫
p
(
µ(n+1)|µ(n)

)
p
(
µ(n)|y(1)...(n)

)
dµ(n), (4.44)

where β(n), ω(n) and γ(n) are marginalised out.

The initial estimate of the posterior p
(
µ(Ninit)|y(1):(Ninit)

)
obtained from the offline EP

algorithm is a Gaussian distribution:

p
(
µ(Ninit)|y(1):(Ninit)

)
= N

(
µ(Ninit); e(1):(Ninit),D(1):(Ninit)

)
, (4.45)

where e(1):(Ninit) and D(1):(Ninit) are the mean and the covariance matrix of the estimate of

the posterior for µ(Ninit) obtained based on observations y(1):(Ninit).

According to the generative model, the first term of the integral in (4.44) is also Gaussian

(see (4.21e)), therefore the integral is also a Gaussian distribution on µ(n+1) for n = Ninit:∫
p
(
µ(n+1)|µ(n)

)
p
(
µ(n)|y(1)...(n)

)
dµ(n) = N

(
µ(n+1); e(1):(n),D

(1):(n)
predict

)
def
= p̂(µ(n+1)),

(4.46)

where D
(1):(n)
predict = W +D(1):(n) is the covariance of the predicted distribution.
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Substitution of (4.44) and (4.46) back into (4.42) provides the predicted distribution:

p
(
β(n+1),ω(n+1),γ(n+1),µ(n+1)|y(1)...(n)

)
=p
(
β(n+1)|ω(n+1)

)
p
(
ω(n+1)|γ(n+1)

)
p
(
γ(n+1)|µ(n+1)

)
p̂
(
µ(n+1)

)
. (4.47)

4.5.2 Update

At the update step the predicted distribution (4.47) of the latent variables for the next

timestamp is corrected with the new data y(n+1)

p
(
β(n+1),ω(n+1),γ(n+1),µ(n+1)|y(1)...(n+1)

)
=

1

Z
p
(
y(n+1)|β(n+1),ω(n+1),γ(n+1),µ(n+1)

)
p
(
β(n+1),ω(n+1),γ(n+1),µ(n+1)|y(1)...(n)

)
=

1

Z
p
(
y(n+1)|β(n+1)

)
p
(
β(n+1)|ω(n+1)

)
p
(
ω(n+1)|γ(n+1)

)
p
(
γ(n+1)|µ(n+1)

)
p̂
(
µ(n+1)

)
,

(4.48)

where Z is the normalisation constant.

Since components of the vectors β(n+1) and ω(n+1) are conditionally independent, the

terms p
(
β(n+1)|ω(n+1)

)
and p

(
ω(n+1)|γ(n+1)

)
are further factorised:

p
(
β(n+1),ω(n+1),γ(n+1),µ(n+1)|y(1)...(n+1)

)
=

1

Z
p
(
y(n+1)|β(n+1)

)[ D∏
d=1

p(β
(n+1)
d |ω(n+1)

d )p(ω
(n+1)
d |γ(n+1)

d )

]

× p
(
γ(n+1)|µ(n+1)

)
p̂
(
µ(n+1)

)
. (4.49)

The resulting formula for update (4.49) is the same as the posterior distribution (4.22)

with the only exception in the term related to µ(n+1). The approximation of this posterior

is proposed in Section 4.4. The algorithm is only required to be adjusted for the new

factor p̂(µ(n+1)).

The factor p̂(µ(n+1)) is a Gaussian distribution, i.e. it is from the exponential family

already and it only depends on a single latent variable, therefore this factor should not be

updated in the EP iterations. The information from this factor will be passed through the

general approximating distribution q to the other factors.

In the EP algorithm used for inference of the updated distribution (4.49) the distri-

bution for µ(n) is approximated with the Gaussian distribution for any n. Therefore, the

identity (4.46) is true for any n and the whole procedure can be applied for all timestamps.
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4.5.3 Minibatch Filtering

The developed Bayesian filtering procedure can be easily extended to the case of inferring

minibatches for timestamps [n+ 1 : n+M ], where M is the size of a minibatch:

p(β(n+1)...(n+M),ω(n+1)...(n+M),γ(n+1)...(n+M),µ(n+1)...(n+M)|y(1)...(n+M)), (4.50)

rather than for the next timestamp n+ 1 only as in (4.49).

Indeed, due to conditional independence marginalisation (4.42) also comes down to the

integral (4.46) similar to (4.44). And the update step can also be performed by the EP

algorithm with the only difference that it should be applied for M timestamps rather than

one.

4.5.4 Implementation Details

There are no theoretical guarantees of EP convergence. However, it can be achieved using

damping (Minka and Lafferty 2002): during step 4 of the factor refinement procedure in

Section 4.4.1 the factor is updated as qdamp
a = (qnew

a )η(qold
a )1−η, where qold

a is the value of the

factor from the previous iteration, qnew
a is the updated value of the factor, η ∈ (0, 1] is the

damping coefficient. It is exponentially decreased as η = ηoldξ after each iteration, where

ξ ∈ (0, 1] is the decay parameter that governs the speed of exponential decrease and ηold is

the value of the damping coefficient from the previous iteration.

It is also known that during the EP updates negative variances can appear (Hernández-

Lobato, Hernández-Lobato, et al. 2015). In this case, negative variances are replaced with a

large value representing +∞.

4.6 Experiments

This section presents validation and evaluation results for the proposed algorithms. The

performance of these two-level GP algorithms is compared with:

• the spatio-temporal spike and slab model with a one-level GP prior and its modification

with common precision approximation (Andersen et al. 2017);

• the popular alternating direction method of multipliers (ADMM) method (Boyd et al.
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2011), which is a convex optimisation method used here for the lasso problem (Tibshirani

1996);

• the spatio-temporal sparse Bayesian learning (STSBL) algorithm (Zhang, Jung, et al.

2014).

For quantitative comparison, the following measures are used:

NMSE (normalised mean square error). For a batch of data {β(n)}Nn=1 and estimates

{β̂
(n)
}Nn=1, NMSE is computed as

NMSE =
1

N

N∑
n=1

√√√√√√√√
D∑

d=1

(
β̂
(n)
d − β(n)d

)2
D∑

d=1

(
β
(n)
d

)2 . (4.51)

F measure. In sparse coding it is also important to obtain the correct locations of spikes

(i.e zeros) and slabs (i.e. non-zeros) in the estimates. The problem is therefore viewed

as a skewed two-class classification problem where the number of spikes is higher than

the number of slabs. F-measure (Murphy 2012) is used to evaluate the accuracy of

such problems. It is defined as the harmonic mean of precision and recall

F-measure = 2
precision · recall
precision + recall

, (4.52)

where precision is the fraction of estimated slab locations that are correct, recall is the

fraction of true slab locations among all predicted slab locations.

The NMSE shows the normalised error of signal reconstruction, with 0 corresponding to

an ideal match. The F-measure shows how well slab locations are restored. An F-measure

equal to 1 means that the true and estimated signals coincide, whilst 0 corresponds to lack

of similarity between them. Arguably, for the sparse regression problem, the NMSE is less

meaningful than the F-measure (Xin et al. 2016).

Both two-level and one-level GP algorithms are iterated until convergence, which is

measured by difference in the estimate of the signal B̂ at the current and previous iterations.
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Figure 4.5: Examples of the true signal B for the synthetic data. In each example two

groups of slabs generated at n = 1 evolve in time until n = 50.

4.6.1 Synthetic Data

In this experiment the algorithm performance is studied on synthetic data with known

true values of the signal B and slab locations Ω. The synthetic data represents the signals

that have slowly evolving in time groups of non-zero elements. To create a spatio-temporal

structure of slabs at the first timestamp n = 1 two groups of slab locations are generated

with Poisson-distributed sizes for the signal β(n) of dimensionality D = 100. Then, from

n = 2 to N = 50, these groups randomly evolve: each border of each group can go up,

down, or stay at the same location with such probabilities that in average the sparsity level

remains 95%. In such way locations of the slab groups are generated. The values of non-zero

elements of the signal are then drawn from the distribution N (0, 104). This procedure is

repeated 10 times to generate 10 data samples. The examples of generated B are shown in

Figure 4.5.

The elements of the design matrix X are generated as i.i.d. samples from the standard

Gaussian. For each of the data samples, observations Y = XB of different length K are

generated. The value K/N is referred as an undersampling ratio. It changes from 10% to

55%.

The algorithms are evaluated in terms of average F-measure, NMSE and time2 (Figure 4.6)

2Time is evaluated with 4.2GHz Intel Core i7 CPU and 16GB RAM.
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on this data. On the interval between 10% and 20% of the undersampling ratio both inference

methods for the two-level GP model and full EP inference for the one-level GP model show

competitive results in terms of the accuracy metrics while outperforming the other methods.

On the interval between 20% and 30% of the undersampling ratio the inference methods

for the one- and two-level GP models are already able to perfectly reconstruct the sparse

signal while both ADMM and STSBL show less accurate results. STSBL achieves the perfect

reconstruction starting from the undersampling ratio 30% and ADMM achieves these results

starting from the undersampling ratio 50%.

In the proposed EP algorithm for the two-level GP model (Section 4.3), the complexity

of each iteration is O(D3N), as matrices of size D × N are inverted for each timestamp

to compute cavity distributions for the factors u and r. In the proposed online inference

algorithm (Section 4.5), first the offline version is trained on size Ninit. Then, when new data

of size M is available, the previous results are used as prior and the complexity of update is

O(D3M), while in the offline version it is O(D3(Ninit +M)).

On average, the proposed two-level GP algorithm requires similar to the full one-level GP

algorithm number of iterations for convergence: approximately 30 iterations on the interval

between 10% and 20% of the undersampling ratio, 15 iterations on the interval between 20%

and 30%, and less than 10 iterations for the higher undersampling ratios. The approximate

inference algorithm for the one-level GP model takes slightly more iterations to converge.

In the one-level GP algorithm (Andersen et al. 2017) the complexity of one iteration

is O(D3N3). This is related to inversion of the full spatio-temporal covariance matrix. It

is addressed with low rank and common precision approximations (Andersen et al. 2017),

which reduce both the computational complexity and the quality of the results. The L-

rank approximation, where L is a parameter of the algorithm, reduces the computational

complexity to O(D2LN) and the common precision approximation reduces it to O(D2N +

N2D).

In terms of the computational time the full EP inference for the one-level GP model is

the slowest method. The approximated inference for the one-level GP model significantly

improve its performance in terms of the computational time while also cause loss in accuracy.

The ADMM method shows similar results to the approximated one-level GP model in terms

of the computational time, but has even bigger loss in terms of both accuracy measures.
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The STSBL takes slightly more time for the lower values of the undersampling ratio, which

helps it to achieve better results than the ADMM method in terms of the accuracy measures.

The proposed offline and online inference methods for the two-level GP method demonstrate

a satisfactory trade-off between computational time and accuracy. They obtain competitive

results in terms of accuracy measures as the full EP inference for the one-level GP model

while require significantly less computational time. In terms of computational time the

proposed method demonstrates competitive results with the STSBL method.

The proposed online inference method for the two-level GP model allows to save compu-

tational time while preserving the accuracy of the recovered signal. Note that the developed

inference methods for the two-level GP model outperform competitors in the lowest under-

sampling ratio interval, i.e. they require less measurements to get the same quality as other

algorithms.

4.6.2 Real Data: Moving Object Detection in Video

The considered methods for sparse regression are compared on the problem of object detection

in video sequences. The Convoy dataset (Warnell et al. 2015) is used where a background

frame is subtracted from each video frame (Section 3.3). As moving objects take only part of

a frame the considered signal of the subtracted video frames is sparse. Moreover, objects are

represented as clusters of pixels, which evolve in time. Therefore, the background subtraction

application fully satisfies the proposed spatio-temporal structured model assumptions.

The frames with subtracted background are resized to 32× 32 pixels and reshaped as

vectors β(n) ∈ RD, D = 1024. The number of frames in the dataset is N = 260. The sparse

observations are obtained as Y = XB, where X ∈ RK×D is the matrix with i.i.d. Gaussian

elements. 10 different random design matrices X are used to generate 10 data samples. The

number of observations K is chosen such that the undersampling ratio K/N changes from

10% to 55%.

For this problem the full EP inference for the one-level GP model is infeasible due to its

memory requirements, therefore only the common precision approximated inference for the

one-level GP model is considered.

The average F-measure and NMSE obtained by all the algorithms on the Convoy data are

presented in Figure 4.7. The proposed algorithm shows the best results for the undersampling
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Figure 4.6: Performance of the algorithms on the synthetic data. Note that the NMSE plots

have logarithmic scale of y-axis. As the convergence criteria is ||B̂
new − B̂old||∞
||B̂old||∞

< 10−3,

values below 10−3 are less significant. The proposed algorithms referred as two-level GP

and two-level GP online outperform others in the 10− 20% interval, where the number of

observations is the lowest.

ratio 20− 30%. For larger values of the undersampling ratio all the algorithms provide close

almost ideal results of reconstruction.

Figure 4.8 presents the reconstructed sample frame from the Convoy data. For all the

algorithms, the reconstruction results are provided for the undersampling ratio 10%, where

the proposed algorithms slightly underperform the competitors in terms of the quality

metrics, for the undersampling ratio 20%, where the proposed algorithm outperforms the

competitors both in terms of NMSE and the F-measure, and for the undersampling ratio
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Figure 4.7: Performance of the algorithms on the Convoy data. The proposed algorithms

referred as two-level GP and two-level GP online outperform the others in the 20 − 30%

interval. On the interval 10 − 15% all methods cannot reconstruct the true signal. The

NMSE plot shows that the proposed algorithms underperform the competitors for the values

higher than 30%, but the visual difference in performance becomes insignificant that is

demonstrated in Figure 4.8.

40%, where the proposed algorithms show a little higher NMSE. It is clearly seen that for the

undersampling ratio 10% the difference in the quality metrics is insignificant since none of

the methods is able to reconstruct the signal. The STSBL represents an exceptional example

but still the frame reconstructed by this method contains considerable amount of noise. For

the undersampling ratio 20% the proposed method provides the clear reconstructed frame in

contrast to the reconstructed frames by all the competitors that are more noisy. Meanwhile,

for the undersampling ratio 40% the difference between reconstruction results by all four

algorithms is not remarkable.

Note that similar to the synthetic data experiment the proposed algorithms obtain the

best results for the lowest undersampling ratio values where the reconstruction is reasonable,

i.e. they require a less number of observations.
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Figure 4.8: Sample frame with reconstruction results from sparse observations for the Convoy

data. (a), (f): the original and static background non-compressed frames; (k): object

detection results based on non-compressed frame difference (static background frame is sub-

tracted from the original frame); (b), (g), (l): reconstruction of compressed object detection

results based on the proposed online two-level GP method; (c), (h), (m): reconstruction

of the compressed object detection results based on the one-level GP method; (d), (i), (n):

reconstruction of the compressed object detection results based on the ADMM method;

(e), (j), (o): reconstruction of the compressed object detection results based on the STSBL

method. (b), (c), (d), and (e) show the results for the undersampling rate 10%, where all the

algorithms fail to reconstruct the true signal. (g), (h), (i), and (j) show the reconstruction for

the undersampling rate 20%, where the difference in performance between the algorithms is

visible. While for the undersampling rate 40% ((l), (m), (n), and (o)) reconstruction results

are indistinguishable in quality.
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4.6.3 Real Data: EEG Source Localisation

The third experiment is devoted to the EEG source localisation problem.

Electrical activity inside the brain creates electromagnetic field at the head surface. The

goal of the non-invasive EEG source localisation is to find 3D locations of dipoles such that

their electromagnetic field coincides with the field measured by electrodes on the human

head cortex. This is called electromagnetic source imaging. It is divided into two problems:

forward problem, which is the evaluation of the potentials and magnetic fileds for activity

dipoles, and inverse problem, that is the localisation of sources based on measurements.

The electromagnetic source imaging is important for localisation of active areas in human-

brain interfaces and treatment of neurological disorders (Arvaneh et al. 2011; Baillet, Mosher,

et al. 2001; Jatoi et al. 2014; Xu et al. 2018). This problem is ill-posed in the sense that there

exist an infinite number of possible active areas inside the brain that could produce the same

field on the head cortex. To regularise the problem, activity source locations are assumed to

be spatially grouped and temporally evolve, similar to Baillet and Garnero (1997). Similar

idea applies to the MEG source localisation (Solin et al. 2016).

The electromagnetic field on head surface can be evaluated with integral equations (Geselowitz

1967). The boundary element method (Akalin-Acar and Gençer 2004) is a popular approach

for numerically solving these equations. It allows to compute the potentials at the discretised

head surface with the the lead field matrix X ∈ RK×D, that appears in the approximate

solution of integral equations

y(n) = Xβ(n) + ε(n), ∀n ∈ [1, . . . , N ], (4.53)

where y(n) ∈ RK is the vector containing observations of potential differences taken from

K electrodes placed on a human head cortex, β(n) ∈ RD is the current density of dipole

activation on the grid voxels inside the brain.

In this experiment, observations are taken from K = 69 electrodes, or channels, corre-

sponding to the grid of 272 potential dipole activations. As the 3D locations of dipoles are

used, the dimensionality of the grid voxels β(n) is D = 3× 272, and the vector is flattened as

β(n) =

[
β
(n)
1x , β

(n)
1y , β

(n)
1z , β

(n)
2x , β

(n)
2y , β

(n)
2z , . . . , β

(n)
D
3
z

]>
. (4.54)

For each grid voxel d inside the brain with location coordinates loc(d) = (β
(n)
d , β

(n)
d , β

(n)
d )

the corresponding dipole moments (β
(n)
dx , β

(n)
dy , β

(n)
dz ) along the 3D axis are considered.
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The following covariance function is used, as promotes close values for collinear dipole

moments corresponding to close grid positions:

K(i, j) = αK exp

(
−d(i, j)

2

2`2K

)
, K ∈ {Σ0,W}, (4.55)

where the distance is computed as

d(i, j) =


∞, if axis for dipole moments i, j are different

||loc(i)− loc(j)||22, otherwise.
(4.56)

Hyperparameters are selected so that the sampled potential differences have the similar

behaviour as the provided data.

The data and lead field matrix for the experiments is processed with EEGLAB (Delorme

and Makeig 2004). The data provided in EEGLAB is used for the source localisation problem

with annotated events.

Figure 4.9 presents located dipoles by the proposed method for the fourth event at two

given time moments. The first time moment is taken right after the event happened and

there is no response to it in the brain activity yet. The second time moment is chosen

when the response is detected. Figure 4.10 shows the comparison of measured and restored

potential differences by the proposed algorithm.

The true density B is unknown for the EEG source localisation problem, therefore,

NMSE between the observations y(n) and reconstructed Xβ̂
(n)

is used for the quantitative

comparison in this experiment. The obtained results for all the algorithms around the time of

the brain response are presented in Figure 4.11. The proposed two-level GP algorithm shows

the best results among the competitors. Note that in this experiment the undersampling

ratio is approximately 8%, which confirms that the proposed method is able to provide

better results for lower values of the undersampling ratio.

4.6.4 Parameters Selection

For the proposed algorithms and for the one-level GP the parameters η and ξ are grid

optimised to make the comparison fair. The prior shape hyperparameters `Σ, `W , αΣ,

αW and variances σ2x and σ2 are specified so that sampled data has the same form as

training data. ADMM and STSBL use the default values of parameters. The selected
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(a) Located dipole moments 1 ms after the event (b) Located dipole moments 170 ms after the event

Figure 4.9: Located dipoles by the proposed two-level GP method for the EEG source

localisation problem. There is no brain response immediately after the event and (a)

demonstrates reconstructed brain active area that remains active during the whole period

and it is not related to the event. While (b) shows the reconstructed active area when the

brain response to the event is detected.

hyperparameter values for the proposed algorithms for all datasets are presented in Table 4.1

for the reproducibility of the experiments.

4.7 Conclusions

This chapter proposes a new hierarchical Gaussian process model of spatio-temporal structure

representation with complex temporal evolution in sparse Bayesian inference methods. This

is achieved using the flexible hierarchical GP prior for the spike and slab model, where

spatial and temporal structural dependencies are encoded by different levels of the prior.

Offline and online methods are developed for posterior inference for this model.

The introduced model can be applied to different areas such as compressive sensing

and EEG source localisation. The results show the superiority of the proposed method

in comparison with the non-hierarchical GP method, the alternating direction method

of multipliers and the spatio-temporal sparse Bayesian learning method. The developed

algorithms demonstrate better performance both in terms of signal value reconstruction and
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(b) Reconstructed EEG, estimated as XB̂

Figure 4.10: Reconstruction by the proposed two-level GP method of the EEG signal. As the

true active dipole areas are not known, reconstruction quality is measured between the true

observations and the simulated observations from the reconstructed dipoles. Reconstructed

EEG signal has lower magnitude, potentially because noise has been taken into account, but

it has a similar shape to the orinial signal.
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Figure 4.11: Results for NMSE between y(n) and Xβ̂
(n)

during the brain response time.

The proposed algorithm, referred as two-level GP has the lowest NMSE among the others.

localisation of non-zero signal components: within the low amount of measurements range it

achieves around 15% improvement in terms of slab localisation quality.
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Table 4.1: Two-level GP hyperparameters

Parameter Synthetic Convoy EEG

σ2β 104 160 4 ∗ 105

σ2 10−4 4 10−3

η 0.999 0.99 0.9

ξ 0.9999 0.999 0.8

`W 15 15 22.17

`Σ 10 10 0.2217

αW 10 10 10−2

αΣ 10 10 0.05

In this chapter and Chapter 3 weak and strong Bayesian models for sparsity have been

considered, which can be viewed as Bayesian versions of the penalised sparse regression

problem. Another approach is to achieve sparsity with neural networks, which leads to the

potential Bayesian neural networks for sparsity. This concept is presented in the Chapter 5.



Chapter 5

UNCERTAINTY PROPAGATION IN SPARSE

BAYESIAN NEURAL NETWORKS

In previous chapters, several new properties of weak and strong sparse Bayesian models

are presented. In this chapter, a novel Bayesian approach based on reformulation of iterative

frequentist solutions is proposed. It uses deep neural networks (DNNs) to deal with the

sparsity problem: first, the models are trained on a large sample of training data, then they

can make fast predictions for new data. However, common neural network models loose the

properties of Bayesian models, such as uncertainty estimation for parameter learning and

predictions. In this chapter, the Bayesian neural network (BNNs) is proposed for the sparsity

problem, which maintains the advantages of both approaches: uncertainty estimation and

fast predictions.

The rest of the chapter is organised as following: first, the introduction for the Bayesian

neural networks is given in Section 5.1. The review of neural networks for sparse coding is

given in Section 5.2 and a novel Bayesian neural network is presented in Section 5.3. Then,

uncertainty propagation is described in Section 5.4 and probabilistic backpropagation in

Section 5.5. After that, the experimental results of the algorithm are shown in Section 5.6

and the summary is presented in Section 5.7.

The materials of this chapter were published as

• Danil Kuzin, Olga Isupova, and Lyudmila Mihaylova (2018b). “Uncertainty propa-

gation in neural networks for sparse coding”. In: Proceedings of the Third Workshop

on Bayesian Deep Learning (NeurIPS). url: http://bayesiandeeplearning.org/

2018/papers/47.pdf

• Danil Kuzin, Olga Isupova, and Lyudmila Mihaylova (2019). “Bayesian neural

networks for sparse coding”. Accepted at IEEE International Conference on Acoustics,

71

http://bayesiandeeplearning.org/2018/papers/47.pdf
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Speech and Signal Processing (ICASSP)

5.1 Bayesian Neural Networks

Consider the nonlinear regression problem

y = f(x) + ε, (5.1)

where the exact mapping f(·) is unknown, and a set of training data samples D is available

to restore f(·).

Nowadays, a common approach to model the nonlinear problems is neural networks (Le-

Cun, Bengio, et al. 2015). They approximate f(·) as a series of layers. Sequentially, an

input to the network is transformed with linear and simple non-linear layers to obtain

the approximation of f(·). Some of the layers have parameters Θ, that can be learned by

optimisation of the marginal likelihood p(x|Θ) on the training data. Usually, modern neural

networks have large number of parameters that can lead to overfitting during the training

procedure and overconfidence in estimates.

The Bayesian approach to neural networks attempts to solve the above problems. The

prior distributions p(Θ) can be imposed on the parameters and, then, based on the training

data, the posterior distribution can be computed for weights and predictions. Due to large

data volume and high dimensionality of parameter space, most of the approximate Bayesian

inference methods become infeasible. Below, current ideas that extend Bayesian methods

for neural networks are described.

5.1.1 Sampling Methods

The Bayesian approach for neural networks was initially considered by Neal (1994), with

the Markov chain Monte Carlo methods used for inference. In further works, new sampling

methods were proposed for neural networks, such as Langevin dynamics (Ahn et al. 2012;

Welling and Teh 2011), No-U-Turn sampler (Hoffman and Gelman 2014), sampling with

variational initialization (Hoffman 2017).

In Bayesian inference, sampling methods can possibly achieve the highest quality, but

they require high computational resources.
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5.1.2 Variational Inference

Variational inference is usually computationally cheaper than sampling methods, but it

introduces bias related to variational approximation. Originally, variational inference for

neural networks is considered by Graves (2011). The way of reducing variance in gradient

estimator with reparametrisation trick is proposed by Kingma and Welling (2014) and

Rezende et al. (2014). The dropout element originally proposed for the regularisation of

neural networks (Srivastava et al. 2014), can be viewed as a way to introduce uncertainty

for the network and interpreted with variational inference (Wang and Manning 2013).

Combined with log-uniform prior for the weights it leads to the Bayesian formulation of the

network (Kingma, Salimans, et al. 2015).

5.1.3 Expectation Propagation

The idea of gradient backpropagation for frequentist neural networks was extended into

stochastic backpropagation (Hernández-Lobato and Adams 2015; Rezende et al. 2014). It

infers marginal posterior distributions, by propagating the simple approximated distributions

through the network. The details of it are presented in Section 5.5.

5.2 Neural Networks for Sparse Coding

Consider the sparse linear regression problem (2.1). In Section 2.1.1, the ISTA algorithm is

described, that iteratively updates the estimate of the coefficient vector β̂ with linear and

soft-thresholding functions. Its parameters are the matrices W, S.

The learned ISTA (LISTA), (Gregor and LeCun 2010) algorithm learns the values of

matrices W, S based on set of pairs {Y,B} = {y(n),β(n)}Nn=1, where N is the number

of these pairs. To achieve this, the ISTA algorithm is limited with the fixed amount of

iterations, L and interpreted as a recurrent neural network. Overall, Algorithm 1 describes

the scheme of predicting a coefficient vector β(n) for an observation y(n).

Matrices W, S are the parameters that are initialised as in ISTA and then updated with

the backpropagation algorithm. Vectors cl, b are intermediate vectors that describe forward

propagation.
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Algorithm 1 LISTA forward propagation
Require: observation y, current weights W,S, number of layers L

1: Initialisation. Dense layer b←Wy

2: Initialisation. Soft-thresholding nonlinearity β̂0 ← hλ(b)

3: for l = 1 to L do

4: Dense layer cl ← b+ Sβ̂l−1

5: Soft-thresholding nonlinearity β̂l ← hλ(cl)

6: end for

7: return β̂ ← β̂L

5.3 Bayesian Neural Network for Sparse Coding

This section presents the proposed Bayesian neural network for sparse coding, that is based

on the LISTA network. To formulate the Bayesian version of LISTA, the prior distributions

are imposed on the unknown weights

p(W) =

D∏
d=1

K∏
k=1

N (wdk|0, η−1), (5.2a)

p(S) =
D∏

d′=1

D∏
d′′=1

N (sd′d′′ |0, η−1), (5.2b)

where wdk is a component of the matrix W, sd′d′′ is a component of the matrix S, η is

the precision of the Gaussian distribution. To introduce the uncertainty of observations,

assume that the observations have the Gaussian distribution with the precision γ, centred at

the output of the Bayesian LISTA neural network f(y(n);W,S, λ). The likelihood of B is

defined as

p(B|Y,W,S, γ, λ) =

N∏
n=1

D∏
d=1

N (β
(n)
d ; [f(y(n);W,S, λ)]d, γ

−1), (5.3)

where [·]d denotes the d-th component of a vector. The prior of the introduced Gaussian

precisions are set to the gamma distribution with parameters a· and b·:

p(γ) = Gam (γ; aγ , bγ) , (5.4a)

p(η) = Gam (η; aη, bη) . (5.4b)
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The posterior distribution of unknown parameters is then

p(W,S, γ, η|B,Y, λ) = p(B|Y,W,S, γ, λ)p(W|η)p(S|η)p(η)p(γ)
p(B|Y, λ)

. (5.5)

The shrinkage parameter λ is a hyperparameter of the model.

5.4 Uncertainty Propagation through Soft-Thresholding

For every observation y(n) at every layer of the Bayesian LISTA, the current approximation

β̂l−1 is assumed to have the spike and slab distribution with following parameters: ω is a

probability of a spike, m is a mean of a slab Gaussian distribution, and v is a variance of

the slab distribution

[β̂l−1]d ∼ ωdδ0

(
[β̂l−1]d

)
+ (1− ωd)N (md, vd), (5.6)

where ωd, md, and vd are the components of vectors ω, m, and v, respectively.

In this section, it is shown that the output β̂l of the next layer can be approximated with

a spike and slab distribution and, therefore, it maintains the same family of distributions.

This leads to the proposed probabilistic backpropagation algorithm that is presented in

Section 5.5. Further in this chapter the superscript (n) is ommited as the uncertainty

propagation and the backpropagtion are performed sequentially and independently for each

pair from the training dataset.

5.4.1 Initialisation Dense Layer

The first step in the Bayesian LISTA is initialisation of dense layer (step 1), the Bayesian

version of Algorithm 1. The matrix W consists of Gaussian-distributed components and y

is a deterministic vector.

Lemma 1 (Product of Gaussian matrix and deterministic vector). Let W ∈ RD×K be

a matrix of independent Gaussian-distributed random variables: wdk ∼ N (mw
dk, v

w
dk), and

y ∈ RK be a deterministic vector. Then their product Wy is a vector b ∈ RD of random

variables bd ∼ N (mb
d, w

b
d), where

mb
d =

K∑
k=1

ykm
w
dk, (5.7a)

wb
d =

K∑
k=1

y2kv
w
dk. (5.7b)
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Proof. The statement follows from the property that the family of normal distributions is

closed under linear transformations.

According to Lemma 1, b in (step 1) is a vector of Gaussian-distributed components.

5.4.2 Soft-Thresholding Nonlinearity

At the initialisation soft-thresholding step 2 of the Bayesian LISTA forward propagation,

the Gaussian vector b is taken as an input of the soft-thresholding function.

When a Gaussian-distributed random variable x ∼ N (x;m, v) is propagated through the

soft-thresholding function: x∗ = hλ(x) the probability mass of a resulting random variable

x∗ is split into two parts. The values of x from the interval [−λ, λ] are converted to 0 by the

soft-thresholding operator. Therefore, the probability mass of the original distribution that

lies in [−λ, λ] is squeezed into the probability of x∗ being zero. The values of x from outside

of the [−λ, λ] interval are shifted towards 0. Therefore, the distribution of x∗ 6= 0 represents

the tails of the original Gaussian distribution.

Lemma 2 (Propagation of a Gaussian distribution through soft-thresholding). The distri-

bution of x∗ can be parametrised by the probability of being zero, ω∗, the mean m∗ and the

variance v∗ of the truncated Gaussian distribution.

Proof. The probability ω∗ of a zero equals to the probability mass of the original distribution

from the interval [−λ, λ]

ω∗ = P(x∗ = 0) = P(x ∈ [−λ, λ]) = Φ

(
λ−m√

v

)
− Φ

(
−λ−m√

v

)
. (5.8)

where Φ(·) is the standard Gaussian cumulative distribution function.

The soft-thresholding function shifts elements that are greater than λ or less than −λ

towards 0. Let ψ(·) denote the density of the soft-thresholded distribution on x∗ 6= 0, φ(·)

denote the density of the original Gaussian distribution on x. Then the first moment of

x∗ 6= 0 is

m∗ =

∫ +∞

−∞
xψ(x)dx =

∫ 0

−∞
xφ(x− λ)dx+

∫ +∞

0
xφ(x+ λ)dx, (5.9)
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where ∫ 0

−∞
xφ(x− λ)dx = −

√
v√
2π
e

−(λ+m)2

2v + (λ+m)Φ

(
−λ+m√

v

)
∫ +∞

0
xφ(x+ λ)dx =

√
v√
2π
e

−(m−λ)2

2v + (m− λ)
(
1− Φ

(
−λ−m√

v

))
.

The second moment of x∗ 6= 0 is given as

s =

∫ +∞

−∞
x2ψ(x)dx =

∫ 0

−∞
x2φ(x− λ)dx+

∫ +∞

0
x2φ(x+ λ)dx, (5.10)

where∫ 0

−∞
x2φ(x− λ)dx = −

√
v√
2π

(λ+m)e
−(λ+m)2

2v + (σ2 + (λ+m)2)Φ

(
−λ+m√

v

)
∫ +∞

0
x2φ(x+ λ)dx =

√
v√
2π

(m− λ)e
−(m−λ)2

2v + (σ2 + (m− λ)2)
(
1− Φ

(
λ−m√

v

))
.

The resulting variance is then

v∗ = s− (m∗)2 (5.11)

Based on the results of Lemma 2, the distribution of β̂0 from step 2 is approximated

with a spike and slab distribution with parameters derived in the Lemma: spike probability

ω is equal to ω∗, slab mean m and variance v are set to the corresponding parameters of the

truncated Gaussian m∗ and v∗.

5.4.3 Main Layers

The distributions of the inputs at the step 4 of the Bayesian LISTA for each l are: the vector

b and matrix S that consist of Gaussian-distributed components and β̂l−1, which is a vector

of the spike and slab random variables.

In order to determine the distribution of the output cl, the Lemmas about the spike and

slab distribution are formulated.

Lemma 3 (Moments of a spike and slab distribution). Let a random variable ξ have a spike

and slab distribution with probability of spike ω, slab mean m and slab variance v. Then its

moments are

Eξ = (1− ω)m (5.12a)

Var ξ = (1− ω)(v + ωm2). (5.12b)
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Proof.

Eξ =
∫
x
(
ωδ0(x) + (1− ω)N (x;m, v)

)
dx

= ω

∫
xδ0(x)dx+ (1− ω)

∫
xN (x;m, v)dx = (1− ω)m

Eξ2 =
∫
x2
(
ωδ0(x) + (1− ω)N (x;m, v)

)
dx =

= ω

∫
x2δ0(x)dx+ (1− ω)

∫
x2N (x;m, v)dx = (1− ω)(v +m2)

Var ξ = Eξ2 − (Eξ)2 = (1− ω)(v + ωm2).

Lemma 4 (Product of a Gaussian matrix and a spike and slab vector). Let S ∈ RD×D be a

matrix of independent Gaussian-distributed random variables: sd′d′′ ∼ N (ms
d′d′′ , v

s
d′d′′), and

β̂ ∈ RD be a vector with spike-and-slab-distributed variables: β̂d ∼ ωdδ0+(1−ωd)N (md, vd).

The components of the matrix S and the vector β̂ are mutually independent. Let e ∈ RD

denote the product Sβ̂. Then the marginal mean and variance of elements ed of the vector e

are:

Eed =
D∑

d′=1

ms
dd′(1− ωd′)md′ , (5.13a)

Var ed =
D∑

d′=1

[(ms
dd′)

2(1− ωd′)
2vd′ + (1− ωd′)

2(md′)
2vsdd′ + vsdd′(1− ωd′)

2vd′ ]. (5.13b)

Proof.

Eed =
D∑

d′=1

E[sdd′ β̂d′ ] =
D∑

d′=1

ms
dd′Eβ̂d′

Var ed =
D∑

d′=1

Var[sdd′ β̂d′ ] =
D∑

d′=1

[(ms
d′d′′)

2Var β̂d′ + (Eβ̂d′)2vsdd′ +Var β̂d′v
s
dd′ ].

where Eβ̂d′ , Var β̂d′ are computed according to Lemma 3.

Let el = Sβ̂l−1 at the step (4) of the Bayesian LISTA. The mutual independence of S and

β̂l−1 is assumed. Then, according to the central limit theorem, [el]d can be approximated

as a Gaussian-distributed variable when D is sufficiently large. The parameters of the

approximating Gaussian distribution are set to the marginal mean and variance given in

Lemma 4. The quality of this approximation is discussed in Section 5.4.5.
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Figure 5.1: Approximations of Bayesian LISTA

The output cl at the step 4 is then represented as a sum of two Gaussian-distributed

vectors: b and el

Lemma 5 (Sum of Gaussian vectors). If b ∈ RD and e ∈ RD are both vectors of independent

Gaussian-distributed random variables: bd ∼ N (mb
d, v

b
d), ed ∼ N (me

d, v
e
d) then their sum

c = b+ e is a vector of independent Gaussian-distributed random variables cd ∼ N (mc
d, v

c
d)

with

mc
d = mb

d +me
d, (5.14a)

vcd = vbd + ved. (5.14b)

Proof. Based on properties of Gaussian distributions.

Therefore, cl is a vector of Gaussian-distributed components, which parameters can be

found according to Lemma 5.

Then β̂l at the step 5 of the Bayesian LISTA is the result of soft-thresholding of a

Gaussian distribution, which is approximated with the spike and slab distribution, similar

to the step 2.
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5.4.4 Bayesian LISTA Forward Propagation

All steps of the Bayesian LISTA are formulated above. They provide distributions for outputs

for all elements of the network. The main result of this section describes how the proposed

uncertainty propagation works.

1. b = Wy is the Gaussian distribution with parameters computed according to Lemma

1;

2. β̂0 = hλ(b) is approximated with the spike and slab distribution, which parameters

are computed according to Lemma 2.

3. el = Sβ̂l−1 is approximated with the Gaussian distribution, which parameters are

computed according to Lemma 4;

4. cl = b+el is the Gaussian distribution with parameters computed according to Lemma

5;

5. β̂l = hλ(cl) is approximated with the spike and slab distribution, which parameters

are computed according to Lemma 2.

5.4.5 Approximation Quality

In forward propagation of uncertainty two approximations are used. First, in Lemma 4 a

Gaussian matrix is multiplied by a spike and slab vector and their product is approximated

with the Gaussian distribution. Second, in Lemma 2 the result of soft-thresholding of a

Gaussian vector is approximated with the spike and slab distribution.

Figure 5.1a demonstrates the comparison of the sampled distribution and approximating

distribution for Lemma 4. For sampled distribution, 10000 values were sampled from the

Gaussian matrix and the spike and slab vector and their product is computed, then one of

the dimensionalities is plotted. The approximating distribution is computed according to

Lemma 4.

Figure 5.1b demonstrates the comparison of the sampled distribution and approximating

distribution for Lemma 2. For sampled distribution, 10000 values are sampled from the
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Gaussian vector and propagated through soft-thresholding, then one of the dimensionalities

is plotted. The approximating distribution is computed according to Lemma 2.

5.5 Backpropagation

The exact posterior (5.5) is approximated with a factorised distribution

q(W,S, γ, η) =
D∏

d=1

K∏
k=1

N (wdk|mw
dk, v

w
dk)

D∏
d′=1

D∏
d′′=1

N (sd′d′′ |ms
d′d′′ , v

s
d′d′′)

×Gam(γ; aγ , bγ)Gam(η; aη, bη).

(5.15)

For Bayesian inference, the probabilistic backpropagation algorithm (Hernández-Lobato

and Adams 2015) is expanded for computing parameter updates. It is based on assumed

density filtering (ADF) and expectation propagation (EP) and allows to update parameters

of the distributions based on the derivative of the logarithm of a normalisation constant.

ADF iteratively incorporates factors from the true posterior p (5.5) into the factorised

approximating distribution q (5.15), whereas in EP factors in the q are iteratively replaced

by factors from p.

When a factor from p is incorporated into q, q as a function of Gaussian-distributed

weights W and S has the following form:

q(a) = Z−1f(a)N (a;m, v), (5.16)

where Z is a normalisation constant, f(a) is an arbitrary function, a ∈ {wdk, sd′d′′ ; ∀d, k, d′, d′′}.

According to Minka (2001a), new parameters of the Gaussian distribution for a are

computed as

mnew = m+ v
∂ logZ

∂m
, (5.17)

vnew = v − v2
[(

∂ logZ

∂m

)2

− 2
∂ logZ

∂v

]
. (5.18)

Therefore, to find new values of W, S, it is required to compute derivatives of the

logarithm of Z when the factor of the true posterior p is incorporated in q.

5.5.1 Likelihood

The ADF approach is used to iteratively incorporate the likelihood factors (5.3) of the

true posterior into the approximating distribution q. The normalisation constant of the
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approximating distribution q with the likelihood term for the current data point can be

computed as follows:

Z =

∫ D∏
d=1

[
N (βd|f(y;S,W, λ), γ−1)

]
q(W,S, γ, η)dWdSdγdη (5.19)

Let W, S be sampled from q. The output from the network β̂ = f(y;S,W, λ) is approx-

imated with the spike and slab distribution with parameters ωβ̂, mβ̂, and vβ̂. Then the

normalisation constant is

Z ≈
∫

Gam (γ;αγ , βγ)
D∏

d=1

[
N
(
βd; [β̂]d, γ

−1
)

×
(
ωβ̂
d δ0

(
[β̂]d

)
+
(
1− ωβ̂

d

)
N
(
[β̂]d;m

β̂
d , v

β̂
d

))]
dβ̂dγ (5.20)

As it is discussed in section 2.1.2, the mixture of Gaussian and inverse-gamma distribution

is a Student’s t-distribution. The parameters can be computer as∫
Gam (γ;αγ , βγ)N

(
βd; [β̂]d, γ

−1
)
dγ = T

(
βd; [β̂]d, β

γ/αγ , 2αγ
)
. (5.21)

The Student’s t-distribution density can be parametrised in different ways, here the

following parametrisation is used

T (x;µ, β, ν) =
Γ
(
ν+1
2

)
Γ
(
ν
2

)√
πνβ

(
1 +

(x− µ)2

νβ

)− ν+1
2

, (5.22)

where Γ(·) denotes the gamma function. Using this property, the normalisation constant is

Z ≈
D∏

d=1

[
ωβ̂
d

∫
N
(
βd; 0, γ

−1)Gam (γ;αγ , βγ) dγ

+
(
1− ωβ̂

d

)∫
T
(
βd; [β̂]d, β

γ/αγ , 2αγ
)
N
(
[β̂]d;m

β̂
d , v

β̂
d

)
d[β̂]d

]
(5.23)

The Student’s t-distribution density can be approximated with Gaussian distribution with

the same mean and variance. The quality of such approximation is discussed by Hernández-

Lobato and Adams (2015)

Z ≈
D∏

d=1

[
ωβ̂
d T (βd; 0, β

γ/αγ , 2αγ) +
(
1− ωβ̂

d

)
N
(
βd;m

β̂
d , β

γ/(αγ − 1) + vβ̂d

)]
. (5.24)
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Parameters of the approximating posterior distribution are then updated with the

derivatives of this normalisation constant using equations (5.17-5.18). The derivatives can

be computed using the automatic differentiation frameworks, such as TensorFlow (Abadi

et al. 2016).

5.5.2 Prior

Prior factors from p (5.2), (5.4) are incorporated into q with the EP algorithm (Hernández-

Lobato and Adams 2015), i.e. they replace the corresponding approximating factors from

q, and then q is updated to minimise its KL divergence with q that has the true factor

incorporated.

5.5.3 Hyperparameter Optimisation

The only hyperparameter in the proposed Bayesian LISTA is the shrinkage parameter λ. It

can be optimised using the Type II maximum likelihood procedure. The Type II likelihood,

i.e. the evidence p(B|Y, λ), of the Bayesian LISTA is equal to the normalisation constant

Z (5.19) computed for the whole training dataset B. Given the approximation (5.24), the

optimal hyperparameter λ can be found by a gradient-based optimiser.

5.6 Experiments

The proposed Bayesian LISTA is evaluated in the context of the sparse coding problem with

an undercomplete dictionary, where the number of measurements K is much smaller than

the dimensionality of the vector β.

The proposed Bayesian LISTA is compared with the classical LISTA (Gregor and LeCun

2010) in terms of the predictive accuracy. As baselines, ISTA (Daubechies et al. 2004) and

Fast ISTA (FISTA) (Beck and Teboulle 2009) are also used. FISTA adds the momentum to

ISTA and improves its convergence speed. The number of iterations in these algorithms and

the number of layers in Bayesian and classical LISTA networks are set to L. To measure the

performance of the algorithms the NMSE and F-measure are used (defined in Section 4.6).

The performance on small datasets is demonstrated to highlight that the proposed

algorithm can infer accurate predictions when the dataset size is not sufficient for LISTA to

learn.
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Figure 5.2: Grid optimisation for the shrinkage parameter λ on the synthetic data.

5.6.1 Predictive Performance on Synthetic Data

First, the predictive performance of the proposed Bayesian LISTA is analysed on synthetic

data. Ntrain = 500 sparse coefficients vectors β(n) are generated, each of size D = 100.

Coefficients β(n) are generated from the spike and slab distribution with truncated slab:

each component of [β(n)]d is zero with the probability 0.8 or is from the standard Gaussian

distribution without interval (−0.1, 0.1) with the probability 0.2. To simulate sparse obser-

vations, the random Gaussian design matrix X ∈ RK×D is generated. The observations are

generated according to the linear regression problem (2.1) with zero-mean Gaussian noise

with standard deviation 0.5. The shrinkage parameter is set to λ = 0.1, which is determined

by grid optimisation (Figure 5.2).

In Figure 5.3 predictive performance for different number of layers L is presented. The

observation size is set to K = 50. The Bayesian LISTA outperforms LISTA in terms of both

measures. Although the baselines ISTA and FISTA show better performance in terms of F

measure, the Bayesian LISTA has the lowest NMSE.

Figure 5.4 gives the results of predictive performance for different observation sizes K.

The number of layers is set as L = 4. In the previous experiment Bayesian and classical

LISTA show similar results with this number of layers. The results of Figure 5.4 confirms

this competitive behaviour between two LISTA networks. Baselines show similar results in
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Figure 5.3: Predictive accuracy for different numbers of layers (for neural networks) or

iterations (for baselines) on the synthetic data

terms of F measure and underperform in terms of NMSE.

Overall, the experiments on synthetic data demonstrate that Bayesian LISTA provides

competitive results in terms of predictive accuracy.

5.6.2 Predictive Performance on MNIST Data

Here, the proposed Bayesian LISTA is evaluated in terms of predictive performance on the

MNIST dataset (LeCun, Bottou, et al. 1998). The dataset contains images of handwritten

digits of size 28 × 28 = 784. The design matrix X is learned on 5000 images with the

minibatch online algorithm (Mairal, Bach, Ponce, and Sapiro 2009). The resulting size of X

is K × 784. Then, the observations are generated as y = Xβ, where β are flattened images.

100 images are used for training and 100 for validation. The shrinkage parameter λ is fixed

as 0.1.

Figures 5.5 and 5.6 present quality on the validation set with dictionaries of size 100

and 250. The experiment with K = 100 presents severe conditions for the algorithms:

the very limited size of the training dataset combined with the small dimensionality of

observations. The Bayesian LISTA is able to learn under these conditions, outperforming

LISTA that demonstrates poor results. Under better conditions of the second experiment
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Figure 5.4: Predictive performance for different sizes of observations on the synthetic data

with K = 250 both LISTA networks converge to the similar results. However, the Bayesian

LISTA demonstrates remarkably better convergence rate. Both baselines are unable to

perform well in these experiments.

The proposed Bayesian LISTA network also estimates the posterior distribution for β.

Figure 5.8 shows samples from the posterior for one of the validation data points and Figure

5.7 shows the parameters of this posterior.

5.6.3 Active Learning

To demonstrate a potential scenario that can benefit from uncertainty estimates of the

Bayesian LISTA, the active learning example (Settles 2009) is considered. The active

learning area researches ways to select new training subsets to reduce the total number

of required supervision. One of the popular approaches in active learning is uncertainty

sampling when the data with the least certain predictions is chosen to obtain a new label

for. Uncertainty is usually measured with entropy. In case of the spike and slab distributed

data points there is no closed form for entropy. Therefore, variance from Lemma 3 is used

as a measure of uncertainty.

The data in this example is the same MNIST dataset as in Section 5.6.2 with learnt

dictionary of size K = 100. The train data of size 50, the pool data of size 500, and the test
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Figure 5.5: Predictive performance for different numbers of iterations on the MNIST data

with dictionary size K = 100

data of size 100 are used. The algorithm learns on the train data for 50 iterations and it is

evaluated on the test data. To actively collect a next data point from the pool, the algorithm

is used to predict a point with the highest uncertainty. The selected point is moved from the

pool to the train data and the algorithm performs additional 10 iterations on the updated

train data. Overall, 10 pool additions are performed. After every addition the performance

is measured on the test data.

The actively updated approach of adding new points from the pool is compared with

the random approach that picks a new data point from the pool at random. The overall

procedure is repeated for 20 times with new randomly selected initial datasets.

Figure 5.9 demonstrates performance of the active and non-active methods of updates with

the Bayesian LISTA. The active approach with uncertainty sampling steadily demonstrates

better results in terms of both quality measures. This means that the posterior distribution

learnt by the Bayesian LISTA is adequately estimated.

5.7 Summary

In this chapter a new method for propagating uncertainty through the soft-thresholding

function is presented. This allows to propose the Bayesian LISTA network, that at every
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Figure 5.6: Predictive performance for different numbers of iterations on the MNIST data

with dictionary size K = 250

layer takes the input spike and slab distribution, transforms it with Gaussian parameters

and outputs the spike and slab distribution. The proposed inference algorithm learns the

distributions of the weights and makes the uncertainty estimates of the outputs. The

forward propagation in the algorithm is based on the proposed uncertainty propagation

method, the backward propagation is based on the probabilistic backpropagation method,

that additionally accounts for multidimensionality of inputs and outputs, likelihood of the

Bayesian LISTA and its recurrent nature.

Experiments on the synthetic and MNIST datasets demonstrate that the proposed

algorithm preserves the predictive accuracy of non-Bayesian methods while also providing

posterior estimates. It is also shown that when the training data is very small the proposed

algorithm significantly outperforms the classical LISTA in terms of predictive accuracy.

Experiments on active learning demonstrate that the proposed Bayesian LISTA gives

accurate posterior estimates that can be used to choose the next data point for labelling.
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Figure 5.8: Samples from the posterior for an image of digit 7
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Figure 5.9: Performance for the active learning experiment on the MNIST data



Chapter 6

ENSEMBLE KALMAN FILTERS FOR SPARSE

GAUSSIAN PROCESSES

In Chapters 3-5 sparsity is considered in the sense that the data contains zeros, that

naturally appears in different applications. Another interpretation of sparsity is selection of

the most meaningful data points that can improve computational complexity of different

numerical algorithms. Gaussian processes (Section 2.3) are used in Bayesian machine learning

and signal processing for estimation of unknown functions, which can be useful to model

structure as in Chapter 4. However, GPs suffer from high computational complexity, as in a

basic form they scale cubically with the number of observations. Several sparse approaches

based on inducing points are proposed to handle this problem in a static context. However,

these methods lack performance for data that is received sequentially over time. In this

chapter, a novel online algorithm for training sparse Gaussian process models from online

data is presented, that uses the idea of Bayesian filtering to update values of inducing points.

The chapter is organised in the following way: first, the overview of existing approaches

for sparse Gaussian processes is presented in Section 6.1. The overview of the ensemble

Kalman filter and the problem of state and parameter estimation within this framework is

described in Section 6.2. In Section 6.3 the joint and dual ensemble Kalman filter frameworks

for GPs are proposed. In Section 6.4 the experiments are conducted on the synthetic data

and UK house price data and the conclusion is presented in Section 6.5.

The materials of the chapter were published as

• Danil Kuzin, Le Yang, Olga Isupova, and Lyudmila Mihaylova (2018). “Ensemble

Kalman filtering for online Gaussian process regression and learning”. In: Proceedings

of the 21st International Conference on Information Fusion (FUSION). IEEE, pp. 39–

46. doi: 10.23919/ICIF.2018.8455785
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6.1 Sparse Gaussian Processes

In Bayesian machine learning and signal processing, Gaussian processes (GPs) are used

to approximate unknown functions (Rasmussen and Williams 2006) and provide posterior

estimates for the mean and variance of the target function in the selected points. The function

can be latent, and, in this case, GPs represent the idea of proximity, or structure, when close

values of inputs lead to close values of outputs. Another popular application is black-box

optimisation with GPs known as Bayesian optimisation. GPs are widely applied for signal

processing, examples include audio (Turner and Sahani 2011), communications (Pérez-Cruz

et al. 2013), fault detection (Svensson et al. 2015).

GPs are characterised by covariance functions that usually have a set of hyperparameters.

The popular examples are stationary functions that depend only on distance between points:

squared-exponential, Matérn and exponential covariance functions (Rasmussen and Williams

2006). They provide solutions with different smoothness properties. The hyperparameters

are hard to estimate by experts and they are usually learnt within the GP framework, for

example, by optimising the marginal likelihood, which leads to local maxima.

GPs are usually represented in a grid of points and it is the source of the main limitation.

The required resources are huge: computational time scales cubically with the number of

grid points, memory scales quadratically. It is essential to reduce these numbers in order to

make GPs applicable for larger datasets or online inference.

During the last decades multiple approaches have been proposed to deal with this

problem. The most popular approach is introduction of inducing points (Quiñonero-Candela

and Rasmussen 2005), where the locations of grid points are optimised, their amount is

reduced with an attempt to maintain good prediction power. Inducing points can be

treated as variational parameters and variational inference (Titsias 2009) or expectation

propagation (Bui et al. 2017) can be performed for parameter learning and predictions.

Another approach is distributed computation, where local predictions are combined into

unified mean and variance predictions. For the GP problem, the dataset can be partitioned

with the use of Kd-trees (Shen et al. 2006). Another distributed Bayesian version with sparse

approximation is proposed by Gal et al. (2014).

The online procedure for updating GP parameters is proposed by Huber (2014). The

mean in the grid points is treated as a state variable, GP hyperparameters and noise are
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treated as parameters and for the joint state-parameter vector the unscented Kalman filter

is used. The model has been recently used for received-signal-strength estimation (Yin

and Gunnarsson 2017; Yin, Zhao, et al. 2017), flow modelling and prediction in sports

analytics (Zhao, Yin, et al. 2016).

Other approaches for online updating of the GP hyperparameters include slice sam-

pler (Murray and Adams 2010), sequential Monte Carlo (Svensson et al. 2015), Bayesian

Monte Carlo (Osborne et al. 2012).

6.2 Ensemble Kalman Filter Overview

Ensemble Kalman filter (EnKF) was originally discussed by Evensen (1994), and recent

overview with different improvement techniques is given by Roth et al. (2017). EnKF uses

the Monte Carlo method to generate an ensemble of state sigma points and then this state

ensemble is passed through the measurement function to obtain the observation ensemble.

It is additionally perturbed with the measurement noise. The mean and variance of the

resulting observational distribution together with actual observations are used to update

the state. The main computational difference in comparison to the classical Kalman filter is

that the covariance matrices are replaced with ensembles that can be less in dimensionality.

The usual approach to parameter estimation is augmenting the state vector with parameter

vector thus creating the larger augmented state-parameter vector. It can then be used to

perform online estimation within the EnKF framework (Anderson 2001; Evensen 2009).

Dual estimation of the state and parameters can replace joint estimation as in classical

Kalman filters (Wan and Nelson 1997): for every new observation, first the parameters are

updated and then using the updated parameters the state is updated. Dual estimation of

the parameters and state for EnKF is considered by Moradkhani et al. (2005).

Other approaches for parameters estimation in EnKF include the maximum likelihood

method (DelSole and Yang 2010; Mitchell and Houtekamer 2000) and the Bayesian infer-

ence (Stroud and Bengtsson 2007).

6.3 Ensemble Kalman Filter for Gaussian Processes

This chapter proposes the algorithms for the problem of online estimation of the constant

unknown continuous function f(x) of the D-dimensional input vector x ∈ RD. The unknown
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function is approximated with a GP: the mean g ∈ RK of the GP is approximated at the K

grid points Xg ∈ RK×D and Lθ parameters of the covariance function θ ∈ RLθ are estimated.

With mean and parameters of the covariance function it is possible to predict the mean and

variance of f(x∗) at any point x∗.

It is assumed that the observations of the function are available sequentially, at every

timestamp 1 ≤ n ≤ N , where N is the last observation timestamp. At every iteration n

of the algorithm a total of S one-dimensional noisy function observations y(n) ∈ RS are

obtained at random points X
(n)
new as y(n) = f(X

(n)
new) + εy. The variance σ2y of independent

noise εy is assumed to be unknown and is estimated at every iteration of the algorithm. The

full vector of parameters is therefore η = [θ, σ2y ] ∈ RL, where L = Lθ + 1.

The dependency between covariance function parameters and observations is non-linear,

therefore the nonlinear Kalman filter is used. The ensemble Kalman filter allows to have

constant complexity for updates, which is determined by the number of ensemble points, M .

Two versions of ensemble Kalman filter for the online GP learning are proposed, they

differ in the way how hyperparameters of the GP are treated: Dual EnKF first updates

the hyperparameters of the GP and then based on their estimates updates the state; Joint

EnKF updates hyperparameters of the GP and the state simultaneously with the augmented

state-hyperparameter vector.

6.3.1 Dual Ensemble Kalman Filter for Gaussian Processes

This algorithm is further denoted as Dual GP-EnKF. It uses the ensembles of same size M to

approximate the distributions of the parameters and state. At every iteration the predicted

distributions of the parameters and state are computed, and the observations are predicted.

Then, based on the cross-covariance of the parameter and observation ensembles, the Kalman

gain is computed and it is used to update the parameter distribution. After this step, new

observations are predicted with the updated parameters and then the cross-covariance of

the new observations and state is used to update the state. The details of the algorithm are

presented below.
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Initialisation

Initially, ensembles for parameters H ∈ RM×L = [η(m) ∈ R1×L]1≤m≤M and mean G ∈

RM×K = [g(m) ∈ R1×K ]1≤m≤M at the grid points of the GP are generated. The rows of

matrices correspond to ensemble members. For parameters that can only be positive, such as

variance, logarithms of their values are used in the ensemble. Initial ensembles are generated

from the Gaussian distribution: for each ensemble index 1 ≤ m ≤M

η
0|0
(m) ∼ N (0,ΣH), (6.1a)

g
0|0
(m) ∼ N (0,ΣG), (6.1b)

where ΣH , ΣG are the initial covariance matrices for the ensembles. In the experiments,

they are assumed to be diagonal.

After the initialisation at every iteration of the algorithm three steps follow: prediction,

update for the parameters, update for the state.

Prediction

For the whole running time of the algorithm the estimated function remains constant, while

unknown. This can be simulated with the random walk motion model for the parameters

and state. Each ensemble member is updated as

η
n+1|n
(m) = η

n|n
(m) + εη, (6.2a)

g
n+1|n
(m) = g

n|n
(m) + εg, (6.2b)

where εη ∼ N (0, σηI) and εg ∼ N (0, σgI) are the noise variables with corresponding

variances.

Assume that S observations are obtained at locations X
(n)
new = [x

(n)
new

s
]Ss=1. According to

the definition of GPs the joint distribution for any finite set of samples is the multivariate

Gaussian distribution. Therefore, for each parameter ensemble m the distribution of predicted

function values ŷ(m) = [ŷ1,(m), . . . , ŷS,(m)] at locations X
(n)
new can be obtained as

ŷ(m) = K(X
(n)
new,Xg|θn+1|n

(m) )

× [K(Xg,Xg|θn+1|n
(m) ) + σ

2,n+1|n
y(m) I]−1g

n+1|n
(m) ,

(6.3)
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where K(X1,X2|θ) is the covariance matrix evaluated at every pair of points from X1, X2

with parameters θ; θn+1|n
(m) and σ2,n+1|n

y(m) are components of the joint parameter vector ηn+1|n
(m) .

The matrix for all predictions is denoted as Ŷ ∈ RM×S = [ŷ(m)]
M
m=1

In EnKF, observations are treated as random variables and the observation ensemble

is generated, which has a Gaussian distribution around the actual observation with the

predefined covariance σ2obs

y(m) = y + εobs, (6.4)

where εobs ∼ N (0, σ2obsI).

Update Parameters

EnKF updates are similar to the usual Kalman filter, with the means and covariances

estimated from the ensembles. First, cross covariances of the parameter ensemble and

prediction ensemble are computed. Let Ei[·] denote the expected value with respect to

ensembles. Then

ηn+1|n =
1

M

M∑
m=1

η
n+1|n
(m) , (6.5a)

Σηy =Ei

[
(Hn+1|n − Ei[H

n+1|n])>(Ŷ − Ei[Ŷ])
]

=
1

M − 1

M∑
m=1

(η
n+1|n
(m) − ηn+1|n)>(ŷ(m) − y).

(6.5b)

After that, the forecast error covariance matrix of the predictions is computed

Σyy =Ei

[
(Ŷ − Ei[Ŷ])>(Ŷ − Ei[Ŷ])

]
=

1

M − 1

M∑
m=1

(ŷ(m) − y)>(ŷ(m) − y).
(6.6)

Then the Kalman gain for correcting parameters can be computed as

Kη = Σηy(Σyy + σ2obsI)
−1. (6.7)

The parameters are updated as

η
n+1|n+1
(m) = η

n+1|n
(m) +Kη(y(m) − ŷ(m)). (6.8)
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Update State

Updates for the state are similar to the updates for parameters, but with the updated values

of the parameters.

First, predictions of observations are corrected with the updated parameters using

ŷ(m) =K(X
(n)
new,Xg|θn+1|n+1

(m) )

× [K(Xg,Xg|θn+1|n+1
(m) ) + σ

2,n+1|n
y(m)) I]−1g

n+1|n
(m) .

(6.9)

After that, the cross covariance of the state ensemble and prediction ensemble is updated

gn+1|n =
1

M

M∑
m=1

g
n+1|n
(m) , (6.10a)

Σgy =Ei

[
(Gn+1|n − E[Gn+1|n])>(Ŷ − E[Ŷ])

]
=

1

M − 1

M∑
m=1

(g
n+1|n
(m) − gn+1|n)>(ŷ(m) − y).

(6.10b)

The forecast error covariance matrix of the predictions is computed according to (6.6)

and then the Kalman gain for correcting state is

Kg = Σgy(Σyy + σ2obsI)
−1. (6.11)

Then the state is updated as

g
n+1|n+1
(m) = g

n+1|n
(m) +Kg(y(m) − ŷ(m)). (6.12)

The resulting procedure is given in Algorithm 2.

6.3.2 Liu-West Filter

The evolution of the parameter distribution in (6.2) leads to its over-diffuse. The Liu-West

filter (Liu and West 2001) uses kernel density estimation, it can be used to estimate the

predicted distribution of the parameters so that the resulting distribution converges to the

true distribution. It is parametrised with a discount factor δlw ∈ (0, 1], that is usually taken

from the interval [0.95, 0.99]. With introduction of additional parameters

alw =
3δlw − 1

2δlw
, (6.13a)

h2lw = 1− a2lw. (6.13b)
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Algorithm 2 Dual GP-EnKF algorithm
Initialise (6.1)

for n = 1 to N do

Predict

for m = 1 to M do

Predict parameters and state (6.2)

Predict observations (6.3)

Compute noisy trajectories (6.4)

end for

Update parameters

Compute cross covariance of parameter ensemble and prediction ensemble (6.5)

Compute forecast error covariance matrix of the predictions (6.6)

Compute Kalman gain for correcting parameters (6.7)

Update parameters (6.8)

Update state

Predict observations with updated parameters (6.9)

Compute cross covariance of state ensemble and prediction ensemble (6.10)

Compute forecast error covariance matrix of the predictions (6.6)

Compute Kalman gain for correcting state (6.11)

Update state (6.12)

end for
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the evolution of the parameter density is

η
n+1|n
(m) = alwη

n|n
(m) + (1− alw)ηn|n + εlw, (6.14)

where εlw ∼ N
(
0,
√
h2lw Varηn|n

)
The algorithm is further denoted as Liu-West Dual

GP-EnKF.

6.3.3 Computational Complexity of Dual Ensemble Kalman Filter for Gaussian Processes

At the prediction step the most demanding operation is prediction of observations, that

requires inversion of the covariance matrix for each ensemble member, that is O(MK3).

At the update steps it is computation of Kalman gains, that is O(S3) + O(LS2) for the

parameters and O(S3)+O(KS2) for the state. If the number S of observations is greater than

the dimensionality L of hyperparameters, then the resulting computational time complexity

for the Dual GP-EnKF is O(N(MK3 + S3 +KS2)).

The classical GP without inducing points that stores all previous observations and

recomputes predictions at every time step n has O(S3n3) computational complexity due to

the covariance matrix growing in size as Sn at every dimension. The resulting computational

time complexity for the classical GP is then O(S3N3). Note that the computational

complexity of the dual ensemble Kalman Filter is linear with respect to the number N of

time steps.

6.3.4 Joint Ensemble Kalman Filter for Gaussian Processes

It is also possible to estimate parameters of the model by augmenting the state vector g

with the parameter vector η: the augmented state is s = [g;η]. The algorithm is further

denoted as Joint GP-EnKF. The details are presented in Algorithm 3.

Initialisation

Initially, an ensemble for the augmented state S ∈ RM×(L+K) = [s(m)]1≤m≤M is generated.

For each 1 ≤ m ≤M

η
0|0
(m) ∼ N (0,ΣS), (6.15a)

where ΣS is the initial covariance matrices for the ensembles. After the initialisation the

algorithm iterates prediction and update steps.
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Prediction

Similar to the dual EnKF, the random walk assumption for the motion model of the

augmented state is assumed. Each ensemble member is updated as

s
n+1|n
(m) = s

n|n
(m) + εs, (6.16)

where εs ∼ N (0, σsI) is the noise variable with corresponding variance.

The predictions are made in the same way as in (6.3) and observations are noised as

in (6.4).

Update

Updates for the augmented state are similar to the updates for the state in dual EnKF. The

cross covariance of the augmented state ensemble and prediction ensemble is estimated as

sn+1|n =
1

M

M∑
m=1

s
n+1|n
(m) , (6.17a)

Σsy =Ei

[
(Sn+1|n − E[S]n+1|n)>(Ŷ − E[Ŷ])

]
=

1

M − 1

M∑
m=1

(s
n+1|n
(m) − sn+1|n)>(ŷ(m) − y).

(6.17b)

After that, the forecast error covariance matrix of the predictions is computed as (6.6)

and then the Kalman gain for correcting augmented state

Ks = Σsy(Σyy + σyI)
−1. (6.18)

Then the augmented state is updated as

s
n+1|n+1
(m) = s

n+1|n
(m) +Ks(y(m) − ŷ(m)). (6.19)

6.4 Experiments

In this section the performance of the proposed algorithms is evaluated on both synthetic

and real data. Three versions of the EnKF for online GP parameters estimation are assessed:

Dual GP-EnKF, Liu-West Dual GP-EnKF, and Joint GP-EnKF. The developed algorithms

are compared with the classical GP regression without online updates in terms of both
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Algorithm 3 Joint GP-EnKF algorithm
Initialise (6.15)

for n = 1 to N do

Predict

for m = 1 to M do

Predict augmented state (6.16)

Predict observations (6.3)

Compute noisy trajectories (6.4)

end for

Update augmented state

Compute cross covariance of augmented state ensemble and prediction ensem-

ble (6.17)

Compute forecast error covariance matrix of the predictions (6.6)

Compute Kalman gain for correcting augmented state (6.18)

Update augmented state (6.19)

end for

computational time and predictive accuracy. At every iteration n the classical GP regression

is applied on all historical data.

For quantitative evaluation of the predictive accuracy, two quality metrics are used on

held-out test data [xtest,ytest]:

Log marginal likelihood of the model.

log p(ytest) = −
1

2
y>(K(xtest,xtest) + σ2yI)

−1ytest

− 1

2
log |K(xtest,xtest) + σ2yI| −

Ntest
2

log 2π,

(6.20)

where Ntest is the total number of test data points.

Mean normalised squared error of predictions (NMSE).

NMSE =
1

Ntest

Ntest∑
s=1

√
(ys − f∗(xtest s))2

|ys|
, (6.21)

where ys is the observed value of the function at the test data point xtest s, and

f∗(xtest s) is the predicted function value at the test data point.
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(a) The target function used in the synthetic data ex-
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used as the input for the algorithm at one iteration is
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(b) The classical GP mean with two standard devi-

ations, parameters optimised on the full history of

observations.

Figure 6.1: Target function and classical GP approximation for the synthetic data

6.4.1 Synthetic Data

The algorithms are firstly evaluated on the synthetic data. The target function for this data

is f(x) = x
2 + 25x

1+x2 cos(x) (Figure 6.1a). The experiments are conducted with the following

parameters: the observation noise is σ2y = 0.01, size of grid is K = 51, the covariance function

is squared-exponential and it has two hyperparameters, θ = [variance, lengthscale], size

of each ensemble is M = 100, sample size is S = 5 and the total number of iterations is

N = 200.

Figure 6.1b shows the function estimate given by the classical GP regression. Since the

total number of observations is sufficiently large, the classical GP enables to reconstruct

ideal predictions of the function.

The performance of the proposed approaches is given in Figure 6.2–6.4. As one can

observe the Joint GP-EnKF (Figure 6.2) correctly estimates peaks of the target function,

but it has large predictive errors for most of the observations. The Joint GP-EnKF learns

the consistent ensemble estimates of the hyperparameters, i.e. their variance is not large.

The Dual GP-EnKF (Figure 6.3) provides predictions that are more accurate that the

predictions by the Joint GP-EnKF, but still there are several locations where the true target
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(b) Final distributions for the estimated GP parameters

Figure 6.2: Performance of the Joint GP-EnKF on the synthetic data

function values lie outside of the two standard deviations of the prediction. The ensemble

of the Dual GP-EnKF has the low variance for the logarithm of the lengthscale parameter

of the covariance function and the high variance for the estimates of the signal variance

parameter.

The Liu-West Dual GP-EnKF (Figure 6.4) is applied with the discount factor δlw = 0.99.

The algorithm makes predictions that are very close to the true values of the target function.

The ensemble of the Liu-West Dual GP-EnKF has better estimations of hyperparameter

than both Dual and Joint GP-EnKFs.

The procedure is repeated for 10 Monte Carlo runs with different random seeds. The

results below are presented as average among these 10 Monte Carlo runs. In the Figure 6.5

the history of quality measures is given over time. Their final values together with the

computational time are presented in Table 6.1. While the Joint GP-EnKF is the fastest

method, the NMSE of both Dual GP-EnKF methods is lower with the Liu-West Dual

GP-EnKF providing the best results. The classical GP provides the lowest NMSE, however,

it has the computational time more than 10 times higher than the slowest of the proposed

approaches. In terms of the likelihood all methods show similar results with Joint GP-EnKF

slightly outperforming the other two algorithms.
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Figure 6.3: Performance of the Dual GP-EnKF on the synthetic data

6.4.2 House Prices

The Dual GP-EnKF approach is further evaluated on the real data. In this example the HM

Land Registry Price Paid Data1 is considered. The subset of all flats and maisonettes sold in

2017 is selected and parameter estimation is performed to predict mean prices corresponding

to the locations of properties. Longitude and latitude values for every location have been

calculated based on the postcode. Therefore, in this experiment, every single input x is

two-dimensional.

1https://data.gov.uk/dataset/land-registry-monthly-price-paid-data/

Table 6.1: Performance on the synthetic data at N = 200

Method NMSE Log Likelihood Time (s)

Joint GP-EnKF 0.64 −155.10 7.23

Dual GP-EnKF 0.48 −187.19 13.68

Liu-West Dual GP-EnKF 0.19 −161.61 15.60

Classical GP 0.02 −155.88 186.20
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(b) Final distributions for the estimated GP parameters

Figure 6.4: Performance of the Liu-West Dual GP-EnKF on the synthetic data

A total of N = 20 iterations have been performed with two-dimensional grid of size

K = 25× 25 = 625. At every iteration, S = 100 samples of the logarithms of standardised

prices are used to update parameters and mean in the grid points. The ensemble consists of

M = 200 members. The covariance function is stationary squared-exponential.

Figure 6.6 demonstrates the results after the first and final iterations. It is clear that the

prices have converged close to real values, identifying such areas as London and Oxford as

places with higher prices. Though there are spikes of the mean in the sea, the corresponding

covariance values that describe uncertainty of predictions in these points are high. Note that

the used squared-exponential covariance function is one of the simplest covariance functions in

terms of complexity of modelling dependencies of function values at different data points. The

stationary squared-exponential covariance function does not depend on locations. Therefore,

the results can potentially be further improved if the squared-exponential covariance function

is considered together with non-stationary covariance functions to obtain more precise

estimates for covariance difference between sea and land locations.
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Figure 6.5: History of quality measures

6.5 Summary

This chapter proposes two ensemble Kalman filters for online Gaussian process regression

and learning. The mean and hyperparameters of the GP are interpreted as the state and

parameters of the ensemble Kalman filter, respectively. The ensemble Kalman filter updates

are utilised to recursively improve estimates of both state and parameters. Two versions of

the ensemble updates are proposed: Joint GP-EnKF where the update step of the EnKF is

applied for the augmented vector-parameter vector and Dual GP-EnKF where the update

step is split to first update the parameters and then based on new estimates of the parameters

the state is updated. For the Dual GP-EnKF the Liu-West filter (Liu and West 2001) updates

are additionally developed for further improvement of the estimates.

The proposed ensemble Kalman filter approach for the GP has a linear computational

complexity with respect to the number of sequential observations, it depends mainly on

the dimensionality of the observations at each timestamp and internal parameters of the

filter. For the large volume of data acquired sequentially it can significantly reduce the

computational time in comparison to the classical GP regression that scales cubically with

respect to the number of observations. Starting from a sufficient number of observations

cubic complexity makes the usual GP not applicable for this large-scale data. The proposed

ensemble Kalman filter is applicable to any number of sequential observations given that at
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Figure 6.6: Mean estimates of the prices with Dual GP-EnKF

each timestamp the dimensionality of observations is feasible.

The experiments both on synthetic and real data show that the proposed ensemble

Kalman filter approaches for Gaussian process estimation provide satisfactory predictive

accuracy using significantly less computational time in comparison to the GP regression

without online updates. Among the proposed approaches the Liu-West Dual GP-EnKF filter

demonstrates the best results in terms of the predictive accuracy slightly underperforming

the Joint GP-EnKF in terms of the computational time.



Chapter 7

CONCLUSION

This chapter presents the overview of main contributions presented in the thesis and

provides potential directions for future research in the area of Bayesian sparsity.

7.1 Contributions

The sparse methods are important components of machine learning as they allow to reduce

computational complexity and increase interpretability of the results. They are also used

on their own in signal processing to approximate signals from the reduced number of

measurements. This thesis develops new Bayesian machine learning algorithms to deal

with the sparse regression problem. The developed algorithms are applied for EEG source

localisation and video compression problems.

Several different interpretations of sparsity are used in this thesis. In the first part, the

sparse Bayesian regression is explored and extended for structured data. In the following

part, the completely new approach for sparse regression based on Bayesian neural networks

is presented. In the last part, the sparsity in Gaussian processes is explored within the

context of Bayesian filtering.

In Chapter 3, the problem of compressive background subtraction in video is considered.

Two weak Bayesian sparsity methods, based on the Bayesian compressive sensing framework,

demonstrate improved computational time compared to the frequentist methods. The

multitask Bayesian compressive sensing method improves the performance for the multitask

setup, where multiple similar problems are solved in parallel. This chapter demonstrates

the potential advantages of sparse Bayesian modelling and raises the problem of structure

modelling for sparse models.

Chapter 4 explores the problem of structure modelling within the sparse Bayesian

regression. The strong hierarchical sparse model is presented, that discovers time-evolving

108
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structures within the coefficient domain. Structure modelling is achieved with a two-level

GP, which allows to approximate structures of an arbitrary shape. The algorithm can

operate with online data, drastically reducing computational complexity in this case. The

Bayesian inference method is based on EP. The performance of the model is demonstrated

on compressive background subtraction and EEG data.

A different approach for sparse regression based on Bayesian neural networks is developed

in Chapter 5. The neural network approach for sparse regression reduces time required for

predictions while requiring training. The Bayesian neural network approach attempts to solve

some of the problems related to the frequentist neural network approach: it can quantify the

uncertainty and reduce the overfitting problem. This is achieved by introducing uncertainty

for weights of the neural network and propagating the input and uncertainty added with

weights through the network to get the distribution of the output. The probabilistic

backpropagation algorithm allows to update the distributions of weights based on the

training data. The examples demonstrate that the performance of the model is similar to

the frequentist model, while the additional uncertainty estimations measures the confidence

of the model and it can be useful in different scenarios, such as active learning.

Gaussian processes achieve good results for structure modelling, but they require huge

resources for posterior inference. In Chapter 6 the approach to reduce computational

complexity for GP regression with online data is introduced. It uses inducing points and

recomputes the posterior distribution at these points with Bayesian filtering. Several different

versions of EnKF-based filters are developed, which deal with updates. The results are

demonstrated on the house price data.

7.2 Directions for Future Work

This thesis presents several new directions of research in sparse Bayesian modelling, that are

described in this section.

7.2.1 Variational Inference

The algorithms for Bayesian inference in Chapter 4 and Chapter 5 are based on the expectation

propagation method. Another popular inference algorithm is variational inference (Titsias

and Lázaro-Gredilla 2011), that approximates posterior by optimising a different form of
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KL-divergence, thus leading to different solutions. Usually variational inference poorly scales

for increasing number of data points. The models could be reformulated as conditionally

conjugate models with local and global variables, where the global variables are the parameters

for all data points and the local variables are specific for each data point. For such problems

there exists a stochastic variational inference algorithm that allows to speed up updates for

global variables (Hoffman, Blei, et al. 2013): the conventional variational inference algorithm

uses all data points to update approximations for global variables, while the stochastic

algorithm uses only subsets of data points. The corresponding variational algorithms may

be developed for models proposed in this thesis to compare their performance with the

proposed algorithms.

7.2.2 Expectation Propagation

Similarly to variational inference, expectation propagation also has scaling issues, as the

memory overhead increases with the number of data points. For the algorithm introduced in

Section 4.4.1, it can be noticed that storage of approximating factors, ψ̃C , is required for all

factors, thus leading to large memory requirements. To avoid this problem, it is possible to

store only the average approximating factor (Li et al. 2015). The algorithms in Chapter 4

and Chapter 5 could be updated to stochastic versions to reduce the memory requirements,

especially for large training datasets in neural networks.

7.2.3 Neural Networks Architecture

Several different nonlinearities suitable for the LISTA model have been proposed since

the development of the original algorithm (Borgerding et al. 2017), which provide better

estimates. The corresponding Bayesian formulations may be developed for the algorithm in

Chapter 5 that can improve the learning speed or the posterior approximation quality.

7.2.4 Sparse Gaussian Processes with Bayesian Filtering

While the Chapter 6 provides several filtering algorithms for sparse GPs, they all use the

predefined locations of the inducing points. These locations can also be treated as latent

variables and therefore they can be learned within the filtering framework as well.
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Squared-exponential covariance function was used for experiments, but it can be replaced

with other functions to achieve better performance for the nonstationary data.
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