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Abstract

Given any positive integer k, we establish asymptotic formulas for the k-moments

of the distances between the centres of ‘consecutive’ Ford spheres with radius less

than 1
2S2 for any positive integer S. This extends to higher dimensions the work

on Ford circles by Chaubey, Malik and Zaharescu in their 2014 paper k-Moments

of Distances Between Centres of Ford Circles.

To achieve these estimates we bring the current theory of Ford spheres in

line with the existing more developed theory for Ford circles and Farey fractions.

In particular, we see (i) that a variant of the mediant operation can be used to

generate Gaussian rationals analogously to the Stern-Brocot tree construction for

Farey fractions and (ii) that two Ford spheres may be considered ‘consecutive’

for some order S if they are tangent and there is some Ford sphere with radius

greater than 1
2S2 that is tangent to both of them. We also establish an asymptotic

estimate for a version of the Gauss Circle Problem in which we count Gaussian

integers in a subregion of a circle in the complex plane that are coprime to a

given Gaussian integer.
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Chapter 1

Introduction

We will begin by introducing the relevant background of Farey fractions, Ford

spheres and arithmetical functions required within the thesis. While some of the

results in this chapter will be applied directly in our calculation of moments for

Ford spheres, many of them will instead inform the necessary higher dimensional

analogues. A summary of the rest of the thesis can also be found at the end of

this chapter.

1.1 Farey Fractions and Ford Circles

In this section we review various fundamental notions and facts concerning Farey

fractions and Ford circles. In particular we focus on the property of two Farey

fractions being consecutive, as this notion will later be used to give an analogous

definition within the context of Ford spheres. Throughout this section we follow

the theory presented in Ford’s original paper on the matter [5] and Chapter 3 of

Hardy and Wright’s book [11]. The definitions and results in this section can be

found in these texts.

Given a positive integer Q, the Farey sequence of order Q consists of those

reduced fractions in the interval [0, 1] with denominator less than or equal to Q,

taken in increasing order of size. This set is denoted FQ; in other words,

FQ :=

{
p

q
∈ [0, 1] : p, q ∈ Z, (p, q) = 1, q ≤ Q

}
.

8



CHAPTER 1. INTRODUCTION 9

Here and in the following (p, q) denotes the greatest common divisor of p and q.

We denote the number of fractions in FQ by N(Q). While these so-called ‘vulgar

fractions’ first appear to be entirely elementary, closer examination reveals many

interesting properties and relationships to other areas.

The Farey fractions have a somewhat unusual history, being named not af-

ter their original investigator nor even a mathematician, but a geologist, John

Farey Sr. In 1816 Farey noticed an interesting property of these fractions which

he then wrote about in a letter published by Philosophical Magazine. The prop-

erty he observed was that each term in the Farey sequence of order Q is the

mediant of its two neighbours. Given two rationals p
q
< p′

q′
, their mediant is given

by p+p′

q+q′
. This is also sometimes called their ‘freshman sum’ as it is commonly

mistaken for the sum of two fractions when first learning to do such things.

Farey did not provide a proof of his observation but this was later supplied by

Cauchy after seeing Farey’s letter. The result had actually already been stated

and proved by Haros in 1802, but mathematicians have followed Cauchy in at-

tributing the discovery to Farey and the fractions continue to bear his name.

It is worth noting that a mediant will always lie between the two original

fractions, that is p
q
< p+p′

q+q′
< p′

q′
, but that it does not necessarily lie exactly

halfway between them. For the Farey fractions, Farey’s conjecture turned out to

be true for all orders Q. For example, the Farey fractions of order 5 are

0

1
,

1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

1

1
.

Indeed, 1
4

is the mediant of 1
5

and 1
3
, 3

5
is the mediant of 1

2
and 2

3
, etc.

A further (and, it transpires, equivalent) defining characteristic of the Farey

sequence is that for any pair of successive fractions p
q
< p′

q′
,

p′q − pq′ = 1.

This fact motivates the following definition.

Definition 1.1. A pair of rationals p
q
< p′

q′
in FQ will be called adjacent if

p′q − pq′ = 1. (1.1)

If (1.1) is satisfied and q + q′ > Q, the rationals are consecutive in FQ.
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Note that this definition coincides with the usual meaning of consecutive,

i.e. if p
q

and p′

q′
satisfy these conditions then p′

q′
will immediately follow p

q
in FQ.

Moreover, if two fractions in FQ are adjacent, they must be consecutive in FQ′
for some Q′ ≤ Q.

Notedly, when we take mediants of adjacent Farey fractions, the resulting

fraction is always automatically in its reduced form. Further, if we take the

mediant of two fractions which are consecutive in FQ we find a new Farey fraction

which is not contained in FQ. This fact provides us with a strategy for finding

new Farey fractions from old ones. In fact, if we repeatedly apply this strategy

beginning with F1, i.e. the fractions 0
1

and 1
1
, we will encounter every rational in

the interval [0, 1] at some point.

Lemma 1.1. Given any two coprime integers 0 ≤ p < q, we have

p

q
=
a+ c

b+ d

for some pair of consecutive fractions a
b

and c
d

in Fq−1.

Proof. We will argue by induction on q. The fractions 0
1

and 1
1

are given so we

start with F2. In this case the only new fraction to check is 1
2
. Indeed, 0+1

1+1
= 1

2

and clearly 0
1

and 1
1

are consecutive in F1. Now, as p and q are coprime, we can

write

bp− aq = 1 (1.2)

for some positive integers a and b with a < p and b < q. Further, (1.2) implies

that a and b are also coprime, thus a
b

is a Farey fraction in Fq−1. Additionally

we have 0 < p− a < p and 0 < q − b < q. Now,

b(p− a)− a(q − b) = bp− ab− aq + ab

= bp− aq

= 1

by (1.2), so p− a and q− b are coprime and p−a
q−b is a Farey fraction in Fq−1. This

also shows that a
b

and p−a
q−b are adjacent fractions. Moreover, the sum of their

denominators is b+ (q− b) = q > q− 1, so a
b

and p−a
q−b are consecutive fractions in

Fq−1 with mediant p
q
.

This construction strategy can be visualised in the left hand side of the Stern-
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Figure 1.1: The Farey fractions as the left hand side of the Stern-Brocot tree.

Brocot tree, illustrated in figure 1.1. In keeping with the ‘story’ of the Farey

fractions, the Stern-Brocot tree was independently discovered by both a mathe-

matician, Moritz Stern, and a non-mathematician, Achille Brocot. Brocot was a

French clockmaker whose interest in this tree laid in its usefulness in establishing

sensible gear ratios for the gear systems that drive the hands of a clock. The

Stern-Brocot tree is also very intriguing mathematically. As mentioned, it is in-

timately linked with the Farey fractions, but beyond this we find relations to the

Euclidean algorithm, continued fractions and more. These relationships become

apparent when we start to navigate the tree.

A natural way to move through the Stern-Brocot tree is to start at the top and

slide down through the tree from a fraction to one of its ‘children’ linked by the

branches below it. For example, if we start as convention dictates at 1
1

we could

move left to 1
2
, then move right to 2

3
, then left to 3

5
and finally left again where

we reach 4
7
. Following the usual notation, we may write such a movement down

as LRLL or LRL2. Clearly we can write down something similar for any rational

lying between 0 and 1. However, what if we were to consider infinite strings of

L’s and R’s? Doing this allows us to find irrational numbers in the interval (0, 1).

Of course, as the tree only contains rationals, we will never actually reach the

irrational, but we will find increasingly accurate approximations to it. For an

irrational number 0 < α < 1 we create its string starting from 1
1

by adding an

L and moving down the tree to the left if α is less than the current position or

by adding an R and moving down the tree to the right if α is greater than the

current position. For example, the infinite string LRLRLRLR... corresponds to
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the fractional part of the golden ratio φ.

Our movement through the tree is similarly dictated by a number’s contin-

ued fraction representation. Accordingly, for positive integers a1, a2, a3, ..., the

continued fraction
1

a1 +
1

a2 +
1

a3 +
1

a4 + · · ·

(1.3)

represents the number found in the Stern-Brocot tree by following the string

La1Ra2La3Ra4 ... Indeed the continued fraction for the fractional part of φ is

1

1 +
1

1 +
1

1 +
1

1 + · · ·

as expected from its Stern-Brocot tree string.

We now turn our attention to the Ford Circles, introduced by Lester Ford in

[5]. These provide a geometric representation of the Farey fractions according to

the following definition.

Definition 1.2. The Ford circle corresponding to a Farey fraction p
q

is the circle

of radius 1
2q2

touching the x-axis at p
q

which lies in the upper half-plane.

The Ford circles corresponding to the Farey fractions of order 5 can be seen in

figure 1.2. From this perspective, the Farey fractions of order Q can be viewed as

those rationals whose corresponding Ford circles have centres lying on or above the

line y = 1
2Q2 . As we may speculate from figure 1.2, the Ford circles corresponding

to distinct Farey fractions are either tangent or disjoint from one another. We

can verify this by considering the distance between their centres, which we denote

here by D. According to Pythagoras, for Farey fractions p
q
< p′

q′
, we have

D2 =

(
p

q
− p′

q′

)2

+

(
1

2q2
− 1

2q′2

)2
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Figure 1.2: The Ford Circles in the interval [0,1].

=

(
p′q − pq′

qq′

)2

+
1

4q4
+

1

4q′4
− 1

2q2q′2

=
(p′q − pq′)2 − 1

q2q′2
+

(
1

2q2
+

1

2q′2

)2

=
(p′q − pq′)2 − 1

q2q′2
+ (rp + rp′)

2 ,

where rp and rp′ are the radii of the Ford circles corresponding to p
q

and p′

q′

respectively. We must now examine three cases,

1. If |p′q − pq′| > 1, we must have D > rp + rp′ and the circles are disjoint.

2. If |p′q − pq′| = 1 then D = rp + rp′ and the circles are tangent.

3. If |p′q− pq′| < 1 then, as p′q− pq′ is an integer, we must have p′q− pq′ = 0

and so p
q

= p′

q′
.

The third case contradicts our assumption that the Farey fractions are distinct

and so cannot occur.

The interesting case here is case 2, where the two circles are tangent and

we have p′q − pq′ = 1. For such Ford circles, (1.1) is satisfied and the two
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corresponding fractions are adjacent. In particular, two Farey fractions p
q

and p′

q′

are consecutive in FQ if they are adjacent and q+ q′ > Q, that is if their mediant

is not also in FQ. Accordingly, we can view two Ford circles as being consecutive

at order Q if they are tangent and there is no smaller circle between them at that

order. We will recall this perspective in Section 3 when defining consecutivity in

higher dimensions.

Thinking back to our scheme for moving through the Stern-Brocot tree ac-

cording to continued fractions, Ford describes a similar procedure for navigating

the Ford circles to the same end in [5]. This time we imagine the Ford circles as

clocks which we will move down in steps as before. The numbers are positioned

on the ‘clock’ at the points of tangency with adjacent Ford circles, starting with

the zero position at the tangency with the last circle visited. We will start each

journey at the circle corresponding to 0
1
, whose zero position is taken to be the

top of the circle. For this circle the positions will be labelled clockwise, on the

next circle visited they will be labelled anti-clockwise, at the next clockwise again,

and so on, alternating each time we move to a new circle. The continued fraction

(1.3) will then correspond to moving from the circle at 0
1

to the circle tangent to

it at its a1
th position, then from this circle to the one at its a2

th position, and so

on. If the continued fraction is finite, the final circle visited will correspond to

the Farey fraction which is equal to the continued fraction.

Returning to our L and R notation, the continued fraction (1.3) corresponded

to the string La1Ra2La3Ra4 ... We can now follow this system again, where the L’s

denote clockwise movement and the R’s anticlockwise movement. For example,

the fractional part of e has the string LR2LRL4RLR6... and so its sequence of

circles will be
0

1
,

1

1
,

2

3
,

3

4
,

5

7
,

23

32
,

28

39
, · · ·

the first four of which are shown in figure 1.3. These rationals coincide with the

nth convergents of the fractional part of e, which are obtained by keeping the first

n terms of the continued fraction. This is true not only for e, but for any real

number.

This connection between Ford circles and continued fractions will be explored

further in Section 1.2.2.
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Figure 1.3: The sequence of Ford circles corresponding to e.

1.2 Farey Fractions and Ford Circles – Connec-

tions

In this section we examine various interesting uses of Farey fractions and Ford

circles in other contexts.

1.2.1 Hurwitz’s Theorem

Diophantine approximation is concerned with approximating real numbers by

rationals. The first important result in the area is due to Dirichlet and states the

following.

Theorem 1.1. (Dirichlet’s Approximation Theorem) For any real number

α and positive integer N there exists integers p and q with 1 ≤ q ≤ N such that

|qα− p| < 1

N
.

This theorem immediately implies that for any irrational number α the in-

equality ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2



CHAPTER 1. INTRODUCTION 16

has infinitely many solutions p
q

with p in Z and q in N. This inequality has since

been improved and we now have the following theorem.

Theorem 1.2. (Hurwitz’s Theorem) For any irrational number α, the in-

equality ∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

, (1.4)

has infinitely many solutions p
q

with p in Z and q in N.

Importantly, the constant
√

5 cannot be improved upon. Replacing it by any

other number greater than
√

5 results in only finitely many solutions when we

take the irrational to be the golden ratio, i.e. α = 1+
√

5
2

.

The Farey fractions can be used to provide a simple proof of Hurwitz’s The-

orem, which can be achieved as described below, following the proof laid out by

Niven in Chapter 1 of [18].

Proof. We may assume α ∈ (0, 1), as otherwise we can write α = x+α′ for some

integer x and α′ ∈ (0, 1) and proceed as follows with α′ then simply add x back

at the end. For two consecutive Farey fractions p
q

and p′

q′
with p

q
< α < p′

q′
we will

show that one of the fractions p
q
, p′

q′
or their mediant p+p′

q+q′
= a

b
satisfies (1.4).

Now, suppose that (1.4) is false for all three of these rationals and that α < a
b
.

Then we must have

α− p

q
≥ 1√

5q2
, (1.5)

p′

q′
− α ≥ 1√

5q′2
, and (1.6)

a

b
− α ≥ 1√

5b2
. (1.7)

Adding (1.5) to (1.6) and (1.5) to (1.7) gives us

1

qq′
≥ 1√

5

(
1

q2
+

1

q′2

)
, and (1.8)

1

qb
≥ 1√

5

(
1

q2
+

1

b2

)
. (1.9)
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Multiplying (1.8) through by
√

5q2q′2 and (1.9) through by
√

5q2b2 then adding

the results together, we have

√
5q(q′ + b) =

√
5q(q + 2q′) ≥ 2q2 + q′2 + b2 = 3q2 + 2q′2 + 2qq′.

Thus,

0 ≥ (3−
√

5)q2 − 2(
√

5− 1)qq′ + 2q′2

=
1

2

(
(
√

5− 1)q − 2q′
)2

.

As the right hand side is a positive multiple of a square and so must be non-

negative, this implies that

(
√

5− 1)q − 2q′ = 0⇒
√

5 =
2q′

q
+ 1 ∈ Q,

which is a contradiction and so one of the fractions must satisfy (1.4).

On the other hand, if α > a
b
, in place of (1.7) we have

α− a

b
≥ 1√

5b2
.

This can then be added to (1.6) and the proof proceeds similarly, eventually

leading to a contradiction.

Finally, note that we can do this with consecutive fractions in FQ for any

positive integer Q and so obtain infinitely many solutions to (1.4).

1.2.2 Lagrange’s Theorem

Similarly to Hurwitz’s Theorem, we are again concerned with how well real num-

bers can be approximated by rationals. We say that a rational number a
b

is a best

approximation (of the second kind) of a real number α if, for any rational c
d

with

d ≤ b,

|bα− a| ≤ |dα− c|. (1.10)

Note that we have equality in (1.10) if and only if a
b

= c
d
.
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Theorem 1.3. (Lagrange’s Theorem) Let α be a real number and a
b

be a

rational that is not an integer. Then a
b

is a best approximation for α if and only

if it is a convergent of α.

At the end of Section 1.1 we saw how Ford circles are linked to continued

fractions by thinking of the circles like clocks. This idea can be used to give a

nice proof of Lagrange’s Theorem. Indeed, the proof given by Ian Short in [20],

involves first showing that a statement about Ford circles is equivalent to a
b

being

a best approximation, and then showing that this statement is true if and only

if a
b

is a convergent of α. Before we can describe this further it will be helpful to

introduce some notation, we follow that laid out by Short in [20]. We denote the

Ford circle corresponding to a rational x = a
b

by Cx and its radius by rad[Cx].

For a real number α we also define

Rx(α) :=
1

2
|bα− a|2.

When α = x this is zero, otherwise this is the radius of the unique circle that is

tangent to both Cx and the x-axis at α. Finally, we denote the nth convergent of

the continued fraction of α by An
Bn

and define the continued fraction chain of α to

be the sequence of Ford circles CA0/B0 , CA1/B1 , CA2,B2 , . . . . We can now state the

main theorem of [20].

Theorem 1.4. Let α be a real number and x be a rational that is not an integer.

The following are equivalent.

(i) x is a convergent of α.

(ii) Cx is a member of the continued fraction chain of α.

(iii) x is a best approximation of α.

(iv) For any rational z with rad[Cx] ≤ rad[Cz] we have Rx(α) ≤ Rz(α), with

equality if and only if x = z.

The equivalence of statements (i) and (ii) follows immediately from the defini-

tion of the continued fraction chain. The equivalence of statements (iii) and (iv)

is clear from (1.10) and the definition of Rx(α) using the fact that rad[Cx] = 1
2b2

.

The equivalence of statements (i) and (iii) is Lagrange’s Theorem. The proof of

this theorem requires two additional results, the proofs of which can be found in

[20].
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Lemma 1.2. [20, Lemma 2.2] Let x and y be rationals such that their Ford circles

Cx and Cy are tangent. Any rational z lying strictly between x and y must have

Ford circle Cz of radius less than both Cx and Cy.

Lemma 1.3. [20, Lemma 2.3] Let x and y be as in the previous lemma with

rad[Cx] > rad[Cy] and let α be a real number lying strictly between them. For

any rational z lying strictly outside the interval bounded by x and y we must have

Rx(α) < Rz(α).

We now outline the proof of Theorem 1.4. Our strategy is to show that state-

ments (i) and (iv) are equivalent. First, assume that x = An
Bn

and y = An+1

Bn+1
are

consecutive convergents of α (so Cx and Cy are tangent with rad[Cx] < rad[Cy])

and z is a rational with rad[Cx] ≤ rad[Cz]. Then by Lemma 1.2 z must lie

outside of the region bounded by x and y and so by Lemma 1.3 we must have

Rx(α) < Rz(α) as required. Now, assume that x is not a convergent of α.

We may also assume that rad[Cx] > rad[Cα. Now, there must exist a unique

n ≥ 1 such that rad[CAn/Bn ] ≥ rad[Cx] > rad[CAn+1/Bn+1 ]. Further, α must

lie strictly in the interval between An
Bn

and An+1

Bn+1
and by Lemma 1.2 x must lie

outside that interval. Thus, by Lemma 1.3, RAn/Bn(α) < Rx(α) and statement

(iv) fails with z = An
Bn

.

1.2.3 The Riemann Hypothesis

The Riemann Hypothesis is arguably the most important unsolved problem in

mathematics today. If proven true it will have many meaningful consequences,

notably for the distribution of the primes. The Farey fractions can be used to

form a statement that is equivalent to the Riemann Hypothesis, providing a new

avenue for its potential proof. This equivalence was first presented by Franel [7]

and Landau [14]. Further, their theorem has since been generalised by Huxley

[12], showing that the Riemann Hypothesis for a Dirichlet L-function is also

equivalent to a statement about the distribution of Farey fractions, weighted by

the values that the corresponding Dirichlet character takes at their denominators.

The Riemann Hypothesis concerns the zeros of the Riemann zeta function

ζ(s), which is defined for complex numbers s = σ + iτ with Re(s) > 1 by

ζ(s) =
∞∑
n=1

1

ns
,
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and for s with 0 < Re(s) < 1 by

ζ(s) = lim
x→∞

(∑
n≤x

1

ns
− x1−x

1− s

)
.

It can also be analytically continued to be defined at all complex numbers except

s = 1. By doing this we can find the trivial zeros of ζ, which are at all the

negative even integers. The non-trivial zeros, however, are much more intriguing.

Bernhard Riemann conjectured in [19] that they all lie on the so-called critical

line s = 1
2

+ iτ .

The Riemann Hypothsis. Every non-trivial zero of the Riemann zeta function

has real part 1
2
.

The Farey fractions are related to the Riemann Hypothesis via a further equiv-

alent statement regarding the growth of Mertens’ function. To define it we must

first define the Möbius function µ(n), which takes the value of the sum of the

primitive nth roots of unity.

Throughout, given an integer n ≥ 2

n = pα1
1 p

α2
2 ...p

αk
k .

will denote its canonical representation; thus p1 < p2 < · · · < pk are distinct

primes and αi ∈ N.

Definition 1.3. The Möbius function is defined by

µ(n) =


1 if n = 1,

(−1)k if α1 = · · · = αk = 1,

0 otherwise.

Mertens’ function M(x) is then defined as a finite sum of the Möbius function,

so

M(x) =
∑
n≤x

µ(n)

for any positive real number x.

In 1912 Littlewood [16] proved that the following conjecture is equivalent to

the Riemann Hypothesis.
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Conjecture 1.1. For every ε > 0,

lim
x→∞

M(x)

x
1
2

+ε
= 0.

We now outline the connection with Conjecture 1.1 and Farey fractions as

observed by Franel and Landau – full details can be found in [4].

Recall that for any positive integer Q, N(Q) denotes the number of Farey

fractions in FQ. For this section only, it will be practical to exclude 0 from FQ
so, for example,

F5 =

{
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
, 1

}
and N(5) = 10. Now, consider the N(Q) evenly spaced points 1

N(Q)
, 2
N(Q)

, . . . ,
N(Q)
N(Q)

= 1. The Farey fractions are not evenly spaced in the interval [0, 1], so for

ν = 1, 2, . . . , N(Q), the νth Farey fraction rν differs from ν
N(Q)

by some amount

that we denote by δν . We then define a function D(Q) to be the sum of these

differences, that is,

D(Q) =

N(Q)∑
ν=1

|δν |. (1.11)

Theorem 1.5. (Franel-Landau Theorem) The Riemann Hypothesis is equiv-

alent to the following statement. For every ε > 0,

lim
Q→∞

D(Q)

Q
1
2

+ε
= 0, (1.12)

where D(Q) is as defined in (1.11).

We can prove that the statement associated with (1.11) is equivalent to Con-

jecture 1.1 using the formula

N(Q)∑
ν=1

f(rν) =
∞∑
k=1

k∑
j=1

f

(
j

k

)
M

(
Q

k

)
, (1.13)

where f is a real-valued function defined on [0, 1] and rν denotes the νth term of

FQ. To see why this equality holds we start by defining the function

L(x) =

{
1 if x ≥ 1,

0 if x < 1
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for positive real numbers x. We will show that∑
k≥1

M
(x
k

)
= L(x).

First, note that if x < 1 then x
k
< 1 and so M

(
x
k

)
= 0 for all integers k ≥ 1 .

Thus, when x < 1,
∑
k≥1

M
(
x
k

)
= 0. Now, assume x ≥ 1. We have M

(
x
k

)
= 0 for

all integers k > x, and so

∑
k≥1

M
(x
k

)
=

bxc∑
k=1

M
(x
k

)

=

bxc∑
k=1

bx
k
c∑

l=1

µ(l)

=
∑

1≤n≤bxc

∑
k|n

µ(k),

where n = kl. Now, later in Section 1.3.2 we will see that the inner sum is

non-zero only when n = 1, in which case the sum is equal to 1. Thus, when

x ≥ 1,
∑
k≥1

M
(
x
k

)
= 1. Finally, let 0 < p

q
≤ 1 be a fraction written in lowest terms

and consider the coefficient of f(p
q
) in (1.13). On the left-hand side this is 1 if

p
q

is in FQ, i.e. if q ≤ Q, and is 0 otherwise. On the right-hand side note that

f(p
q
) = f(2p

2q
) = f(3p

3q
) = . . . and so the coefficient of f(p

q
) is

M

(
Q

q

)
+M

(
Q

2q

)
+M

(
Q

3q

)
+ · · · = L

(
Q

q

)
,

which is also 1 when q ≤ Q and 0 when q > Q.

To show that (1.12) implies the Riemann Hypothesis we start by substituting

f(u) = e2πiu into (1.13), so that

N(Q)∑
ν=1

e2πirν =
∞∑
k=1

k∑
j=1

e2πi j
kM

(
Q

k

)
.

Now, e2πi j
k for 1 ≤ j ≤ k are the kth roots of unity and so their sum is zero except

when k = 1. In this case the sum is equal to 1 and so the right-hand side of the



CHAPTER 1. INTRODUCTION 23

equality above is just M(Q). Thus, writing N = N(Q), we have

M(Q) =
N∑
ν=1

e2πirν

=
N∑
ν=1

e2πi( ν
N

+δν)

=
N∑
ν=1

e2πi ν
N e2πiδν −

N∑
ν=1

e2πi ν
N +

N∑
ν=1

e2πi ν
N

=
N∑
ν=1

e2πi ν
N

(
e2πiδν − 1

)
+

N∑
ν=1

e2πi ν
N .

The case when Q = 1 is trivial as FQ contains only the element 1, so we can

assume Q ≥ 2, in which case N ≥ 2 and so
∑N

ν=1 e
2πi ν

N = 0. Hence,

|M(Q)| ≤
N∑
ν=1

|e2πi ν
N ||e2πiδν − 1|

=
N∑
ν=1

|e2πiδν − 1|

=
N∑
ν=1

|eπiδν − e−πiδν |

= 2
N∑
ν=1

|sinπδν |

≤ 2π
N∑
ν=1

|δν |.

Thus, (1.12) implies the Riemann Hypothesis.

The proof of the converse is significantly longer and beyond the scope of this

thesis. The key in this direction is to take f(u) in (1.13) to be the periodic

Bernoulli polynomial B̄1(u) = u− buc+ 1
2
, where buc denotes the integer part of

u, i.e. the greatest integer that is less than or equal to u. The full proof can be

found in Section 12.2 of [4].
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1.3 Arithmetical Functions

This section contains notions and results on arithmetical functions required for

the thesis. Some of these results will be used directly where others are noted here

as they will be the base for results on the Gaussian integers detailed in Chapter 2.

The results in the next four sections can be found in many texts on the theory

of arithmetical functions, see Chapters 2 and 3 of [1], and Chapters 16 and 17 of

[11] in particular. Section 1.3.5 follows Chapter 2 of [9].

1.3.1 Multiplicative Functions

An arithmetical function is a function defined on the natural numbers taking

values in the complex numbers, i.e. f : N → C. We will be concerned mainly

with a particular type of these functions called multiplicative functions. These

are those functions f that are not identically zero and satisfy

f(mn) = f(m)f(n) (1.14)

whenever m and n in N are coprime. Further, if (1.14) holds for all m,n ∈ N,

then f is called completely multiplicative.

For example, the Möbius function µ(n), which we encountered in the previ-

ous section, is an arithmetical function that is multiplicative but not completely

multiplicative.

Lemma 1.4. The Möbius function is multiplicative.

Proof. Let m and n be coprime natural numbers. If either m or n has a square

factor then µ(m)µ(n) = 0 and, since mn must then also have a square factor,

µ(mn) = 0 also. So suppose neither m nor n has a square factor and write

m = p1...pk and n = q1...qj for distinct primes pi and qi. Then we have

µ(mn) = µ(p1...pkq1...qj)

= (−1)k+j

= (−1)k(−1)j

= µ(m)µ(n).
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Thus, µ is multiplicative.

However, µ is not completely multiplicative since, for example, µ(2)µ(6) =

−1 6= 0 = µ(12).

Another important example of a multiplicative function is Euler’s totient func-

tion φ.

Definition 1.4. Euler’s totient function φ(n) counts positive integers less than

or equal to n that are coprime to n, so that

φ(n) =
n∑
a=1

(a,n)=1

1.

Two more simple but useful arithmetical functions are the identity and unit

functions. The identity function I(n) is defined by

I(n) =

{
1 if n = 1,

0 otherwise.

The unit function u is defined by

u(n) = 1, for all n.

These two functions are both clearly completely multiplicative.

1.3.2 Dirichlet Convolution

We now introduce a type of multiplication for arithmetical functions called the

Dirichlet convolution and take note of some of its properties.

Definition 1.5. For two arithmetical functions f and g, the Dirichlet convolution

(or Dirichlet product) of f and g is a new arithmetical function defined by

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
=
∑
ab=n

f(a)g(b), (1.15)

where the sum is taken over all positive divisors d of n.
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In particular, the function I(n) is an identity function for ∗. To verify this,

consider (f ∗ I)(n) for any arithmetical function f and natural number n. We

have,

(f ∗ I)(n) =
∑
d|n

f(d)I
(n
d

)
= f(n)

since I
(
n
d

)
= 0 for all divisors d of n except for d = n. The same idea shows that

(I ∗ f)(n) = f(n) also, thus f ∗ I = f = I ∗ f .

Lemma 1.5. The Dirichlet convolution ∗ is associative, i.e. for arithmetical

functions f , g and h we have

(f ∗ g) ∗ h = f ∗ (g ∗ h).

Proof. Denote k = f ∗ g and l = g ∗ h. Using the latter form of (1.15) we have

((f ∗ g) ∗ h)(n) = (k ∗ h)(n)

=
∑
ab=n

k(a)h(b)

=
∑
ab=n

∑
cd=a

f(c)g(d)h(b)

=
∑
bcd=n

f(c)g(d)h(b)

=
∑
cz=n

f(c)
∑
db=z

g(d)h(b)

=
∑
cz=n

f(c)l(z)

= (f ∗ l)(n)

= (f ∗ (g ∗ h))(n).

For an arithmetical function f with f(1) 6= 0, we can define its inverse with

respect to Dirichlet convolution as the unique arithmetical function f−1 such that

f ∗ f−1 = I = f−1 ∗ f.
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Lemma 1.6. The Dirichlet inverse of f exists and can be found using the recur-

sion formulae

f−1(1) =
1

f(1)
,

f−1(n) =
−1

f(1)

∑
d|n
d<n

f
(n
d

)
f−1(d), for n > 1.

Proof. We will show by induction on n that given f as above there exists a

solution to (f ∗ f−1)(n) = I(n) and that this solution is unique for the values

f−1(n). First, let n = 1. Then

(f ∗ f−1)(1) = 1

⇒ f(1)f−1(1) = 1

⇒ f−1(1) =
1

f(1)
,

which exists and is unique as f(1) 6= 0.

Now, assume for k < n that the value of f−1(k) exists and is unique. For

n > 1 we have I(n) = 0 and so

0 = (f ∗ f−1)(n)

=
∑
d|n

f
(n
d

)
f−1(d)

= f(1)f−1(n) +
∑
d|n
d<n

f
(n
d

)
f−1(d).

Thus,

f−1(n) =
−1

f(1)

∑
d|n
d<n

f
(n
d

)
f−1(d)

which exists and is uniquely determined as the values of f−1(d) are already known

for d less than n. Thus, by induction, f−1(n) exists and is unique for all values

of n, and hence so is f−1.

The previous two lemmas combined with the fact that I(n) is an identity

function for ∗ shows that the set of arithmetical functions with f(1) 6= 0 forms a

group with the operation ∗, which we denote A. In fact, as ∗ is easily shown to
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be commutative, A is an abelian group. The multiplicative functions then form

a subgroup of A, as the following two lemmas show.

Lemma 1.7. If f and g are multiplicative arithmetical functions so is their

Dirichlet convolution f ∗ g.

Proof. Let h = f ∗ g and choose m,n ∈ N such that (m,n) = 1. Note that if

d divides mn then d = ab where a divides m and b divides n. Further, since

(m,n) = 1, we must have (a, b) = 1 and
(
m
a
, n
b

)
= 1 also. Thus the products ab

are exactly the divisors d of mn and we have

h(mn) =
∑
d|mn

f(d)g
(mn
d

)
=
∑
ab|mn

f(ab)g
(mn
ab

)
=
∑
a|m
b|n

f(a)f(b)g
(m
a

)
g
(n
b

)

=
∑
a|m

f(a)g
(m
a

)∑
b|n

f(b)g
(n
b

)
= h(m)h(n).

Thus, h is multiplicative.

Further, a similar method shows that if g and f ∗ g are both multiplicative

functions then so is f .

Lemma 1.8. If g is multiplicative so is its Dirichlet inverse.

Proof. We have g ∗ g−1 = I, which is clearly multiplicative. As g is also multi-

plicative, by the result above g−1 is multiplicative.

Another useful property of multiplicative functions emerges when we take

their sum over the divisors of a positive integer n.

Lemma 1.9. If f is a multiplicative function then∑
d|n

f(d) =
∏
pα||n

(
1 + f(p) + f(p2) + ...+ f(pα)

)
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where the product is over prime powers pα which exactly divide n.

Further, if f is completely multiplicative then

∑
d|n

f(d) =
∏
pα||n

f(p)α+1 − 1

f(p)− 1
.

In particular, we can apply this lemma with f equal to the Möbius function

to obtain the following result.

Lemma 1.10. For n ∈ N, ∑
d|n

µ(d) = I(n).

Proof. If n = 1 we have
∑
d|1
µ(d) = µ(1) = 1 = I(1). Now, using Lemma 1.9, for

n > 1 we have ∑
d|n

µ(d) =
∏
pα||n

(
1 + µ(p) + µ(p2) + ...+ µ(pα)

)
=
∏
pα||n

(1 + µ(p))

=
∏
pα||n

(1 + (−1))

= 0

= I(n)

since µ(pa) = 0 for a > 1 and µ(p) = −1 for any prime p.

We can write this result using the Dirichlet convolution notation as

µ ∗ u = I. (1.16)

This implies that the Dirichlet inverse of the Möbius function is u (and vice

versa). We can use this property to prove the following important theorem.

Theorem 1.6. (Möbius Inversion Formula) For two arithmetical functions

f and g,

f(n) =
∑
d|n

g(d)
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if and only if

g(n) =
∑
d|n

µ(d)f
(n
d

)
.

Proof. The first equation is the same as writing f = g ∗ u. Taking the Dirichlet

convolution with µ and recalling that ∗ is commutative, this implies that µ ∗ f =

(g ∗u)∗µ. Now, using (1.16) and the associativity of ∗, we have µ∗f = g ∗ I = g,

which is the same as the second equation of the theorem. The inverse is proved

similarly, by taking the Dirichlet convolution with u on both sides of g = µ∗f .

Möbius inversion can be used to prove the following fact about the Euler

totient function.

Lemma 1.11. For n ≥ 1 we have∑
d|n

φ(d) = n. (1.17)

Proof. First, note that

φ(n) =
n∑
a=1

(a,n)=1

1 =
n∑
a=1

∑
d|(a,n)

µ(d)

since the inner sum is equal to 0 unless (a, n) = 1 by Lemma 1.10. Now, note

that d|(a, n) if and only if d|a and d|n. We then change the order of summation

using a = bd, so that

φ(n) =
∑
d|n

µ(d)

n/d∑
b=1

1

=
∑
d|n

µ(d)
(n
d

)
= (µ ∗N)(n), (1.18)

where N is the function N(n) = n for all n ∈ N. We can then take the Dirichlet

convolution on both sides with u to find that

φ ∗ u = N

which is the same as (1.17).
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Note that since both µ and N are multiplicative, (1.18) with Lemma 1.7 shows

that φ is multiplicative.

1.3.3 Dirichlet Series

We have already seen the most famous Dirichlet series in Section 1.2.3, the Rie-

mann zeta function ζ(s). In general, they are defined as follows.

Definition 1.6. For an arithmetical function f , its Dirichlet series is defined by

F (s) =
∞∑
n=1

f(n)

ns

for some complex variable s.

Recalling that for s > 1 the Riemann zeta function is given by

ζ(s) =
∞∑
n=1

1

ns
,

it is thus clearly the Dirichlet series of the unit function u(n).

Ignoring issues of convergence, we can add and multiply Dirichlet series to-

gether using the rules stated in the lemma below.

Lemma 1.12. For arithmetical functions f and g with Dirichlet series F(s) and

G(s) respectively, we have

1. F (s) +G(s) =
∞∑
n=1

f(n) + g(n)

ns
,

2. F (s)G(s) =
∞∑
n=1

(f ∗ g)(n)

ns
.

For example, we can use this lemma to find the inverse of the Riemann zeta

function. We have

ζ(s)
∞∑
n=1

µ(n)

ns
=
∞∑
n=1

(u ∗ µ)(n)

ns
=
∞∑
n=1

I(n)

ns
= 1.
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Then dividing through by ζ(s) gives the required result

ζ−1(s) =
∞∑
n=1

µ(n)

ns
.

We can also use this along with the fact that φ = µ ∗N to rewrite the Dirichlet

series of Euler’s totient function as follows.

∞∑
n=1

φ(n)

ns
=
∞∑
n=1

(µ ∗N)(n)

ns

=

(
∞∑
n=1

µ(n)

ns

)(
∞∑
n=1

N(n)

ns

)

= ζ−1(s)

(
∞∑
n=1

1

ns−1

)

=
ζ(s− 1)

ζ(s)
.

Dirichlet series can be quickly differentiated according to the following result,

obtained simply by differentiating the sum term by term.

Lemma 1.13. For an arithmetical function f with Dirichlet series F (s),

d

ds
F (s) = −

∞∑
n=1

(lnn)f(n)

ns
.

Thus, for example, the derivative of the Riemann zeta function is

ζ ′(s) = −
∞∑
n=1

lnn

ns
.

1.3.4 Summing Arithmetical Functions

Many arithmetical functions oscillate substantially as n increases and this can

make it difficult to study their behaviour. However, we can manage these oscil-

lations somewhat by taking averages.

We will make use of the following notation.
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Definition 1.7. We write

f(x) = O (g(x))

to mean that there exists a constant M > 0 such that

|f(x)| ≤M |g(x)|

for all sufficiently large x. We write

f(x) = o(g(x))

to mean that

lim
x→∞

f(x)

g(x)
= 0.

These are known as the Landau symbols ‘big-oh’ and ‘little-oh’ respectively.

When it is more convenient we will also use the alternative Vinogradov nota-

tion, writing f(x)� g(x) when f(x) = O (g(x)).

We can now study a useful method for estimating the sums of arithmetical

functions known as Abel’s summation formula or partial summation.

Theorem 1.7. (Abel’s Summation Formula) Suppose we have functions a :

N → R and f : R → R, and that f ′(x) exists and is continuous. Let A(x) =∑
n≤x

a(n). Then

∑
n≤x

a(n)f(n) = A(x)f(x)−
∫ x

1

A(t)f ′(t) dt.

Proof. Let k = bxc. Then A(x) = A(k) and we have

∑
n≤x

a(n)f(n) =
k∑

n=1

a(n)f(n)

=
k∑

n=1

(A(n)− A(n− 1)f(n))

=
k∑

n=1

A(n)f(n)−
k−1∑
n=0

A(n)f(n+ 1)

=
k−1∑
n=1

A(n)(f(n)− f(n+ 1)) + A(k)f(k)− A(0)f(1)
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= −
k−1∑
n=1

A(n)

∫ n+1

n

f ′(t) dt+ A(k)f(k)

= −
k−1∑
n=1

∫ n+1

n

A(t)f ′(t) dt+ A(k)f(k)

= −
∫ k

1

A(t)f ′(t) dt+ A(x)f(x)−
∫ x

k

A(t)f ′(t) dt

= A(x)f(x)−
∫ x

1

A(t)f ′(t) dt.

Alternatively this result can also be quickly proved using Riemann-Stieltjes

integration.

Abel’s Summation Formula can, for example, be used to find
∑
n≤x

nα for any

α ≥ −1. If α > −1, we use Theorem 1.7 with a(n) = 1 and f(n) = nα. We then

have A(x) = bxc and so, denoting {t} = t− btc,

∑
n≤x

nα = A(x)f(x)−
∫ x

1

A(t)f ′(t) dt

= bxcxα −
∫ x

1

αbtctα−1 dt

= xα+1 − {x}xα − α
(∫ x

1

tα dt−
∫ x

1

{t}tα−1 dt

)

=
1

α + 1
xα+1 +O (xα) .

Otherwise if α = −1, we use Theorem 1.7 with a(n) = 1 and f(n) = 1
n
. We then

have A(x) = bxc as before and so

∑
n≤x

1

n
= A(x)f(x)−

∫ x

1

A(t)f ′(t) dt

=
bxc
x

+

∫ x

1

btc
t2

dt

=
bxc
x

+

∫ x

1

1

t
dt−

∫ x

1

{t}
t2

dt
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= lnx+O (1)−O
(∫ x

1

1

t2
dt

)
= lnx+O (1) .

We could also use another technique for estimating sums of arithmetical func-

tions called Euler-Maclaurin summation to improve the last estimate to

∑
n≤x

1

n
= lnx+ γ +

1

2N
+

1

12N2
+O

(
1

N3

)
,

where γ is Euler’s constant. However, the extra main terms will not be needed

in what follows and so we omit the details of this method.

1.3.5 Gauss Circle Problem

In Chapter 4 we will encounter a variant of the Gauss Circle Problem. This

famous problem concerns an arithmetical function r2(n) called the sum of squares

function. In short, r2(n) counts the number of integer solutions to the equation

a2 + b2 = n;

i.e. it counts integer points that lie on the circle or radius
√
n centred at the

origin. The problem we are interested in is called the Gauss Circle Problem,

named after Carl Friedrich Gauss as he was the first person to study it [8].

Gauss Circle Problem. For a given real number m, determine the number of

pairs of integers a and b that satisfy the inequality

a2 + b2 ≤ m.

In terms of the sum of squares function, the problem asks for the value of

A(m) =
∑
n≤m

r2(n).

It is clear that A(m) is equal to the number of integer points inside a circle
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Figure 1.4: Unit squares around points of the integer lattice inside the circle of
radius 4. The shaded area is equal to the number of points.

of radius
√
m centred at the origin. From this perspective, we observe that

A(m) = πm+O (mκ) (1.19)

for some 0 < κ < 1. To see this, draw a unit square with sides parallel to the

co-ordinate axes around each point on the integer lattice that is inside the circle,

as shown in figure 1.4. Clearly the combined area of these squares is equal to the

number of lattice points inside the circle. This area is also obviously close to the

area of the circle, which is πm, but how close is it?

Gauss proved that this holds when κ = 1
2
, which can be seen as follows. The

diagonal of a unit square has length
√

2. So for any point in the circle its square

must be fully contained within the circle of radius
√
m+

√
2

2
centred at the origin.

On the other hand, this also means that the squares must completely cover the

circle of radius
√
m−

√
2

2
centred at the origin. Thus we have

π

(
√
m−

√
2

2

)2

≤ A(m) ≤ π

(
√
m+

√
2

2

)2

.
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This simplifies to

πm− π
√

2
√
m+

π

2
≤ A(m) ≤ πm+ π

√
2
√
m+

π

2
,

leading us to Gauss’s result that κ ≤ 1
2
.

This bound has since been improved upon multiple times and it has been

conjectured that the true bound is O(m
1
4

+ε) for any ε > 0. However, the best

we can do for now is O(mκ) where 1
4
< κ < 131

416
. The lower bound for κ was

provided independently by both by Hardy [10] and Landau [15] in 1915 and the

upper bound follows from Huxley’s work in 2003 [13].

As already mentioned, in Chapter 4 we will be concerned with a variant of

the Gauss Circle Problem also dealt with by the work of Huxley. In particular,

the points of interest are limited to a subregion of the circle.

1.4 k-Moments for Ford Circles

In this section we review the work of Chaubey et. al. in [3] on k-moments of

distances between centres of Ford circles. This will motivate the work carried out

in this thesis which attempts to generalise their work to higher dimensions. While

their calculations are valid for any subinterval I of [0, 1], we focus on the case

when I = [0, 1] as that is what will be most relevant to us in higher dimensions.

Following their notation, we denote the Ford circle corresponding to the jth Farey

fraction in FQ by CQ,j and its centre by OQ,j. We write D(a, b) for the Euclidean

distance between two points a and b. We can now define the kth moment of the

distance between the centres of consecutive Ford circles in FQ as

Mk(Q) =

N(Q)−1∑
j=1

(D(OQ,j, OQ,j+1))k .

Chaubey et. al. study the averages of these moments for all large X,

Ak(X) =
1

X

∫ 2X

X

Mk(Q) dY, (1.20)

where Q = bY c.
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1.4.1 First Moment for Ford Circles

For the first moment Chaubey et al. proved the following result.

Theorem 1.8. [3, Theorem 1.1] When k = 1 in (1.20), we have

A1(X) =
6

π2
ln (4X) +B1 +O

(
1

Xec0(lnX)3/5(ln lnX)−1/5

)
,

where

B1 =
γ − 1

ζ(2)
− ζ ′(2)

ζ2(2)
.

We now briefly review their proof strategy, as we will later use similar tech-

niques in proving the equivalent theorems for Ford spheres. Note that this is

adjusted here to account for the fact that we are only considering moments on

the full interval [0, 1].

First, notice that because the circles CQ,j and CQ,j+1 are Ford circles of con-

secutive Farey fractions, they must be tangent, and so the distance between their

centres is D(OQ,j, OQ,j+1) = 1
2q2j

+ 1
2q2j+1

where qi is the denominator of the ith

fraction in FQ. Thus we have

M1(Q) =

N(Q)−1∑
j=1

(
1

2q2
j

+
1

2q2
j+1

)

=

N(Q)∑
j=2

1

q2
j

+
1

2q2
1

− 1

2q2
N(Q)

=
∑

1≤q≤Q

1

q2

∑
0<a≤q
(a,q)=1

1

=
∑

1≤q≤Q

φ(q)

q2

since q1 = qN(Q) = 1 when working over the full interval [0, 1]. We then have

A1(X) =
1

X

∫ 2X

X

∑
1≤q≤Q

φ(q)

q2
dY =

1

X

∫ 2X

1

∑
1≤q≤Q

φ(q)

q2
dY − 1

X

∫ X

1

∑
1≤q≤Q

φ(q)

q2
dY.

To evaluate this integral we write f(q) = φ(q)
q2

and split into sections where bY c
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is constant.∫ X

1

∑
q≤bY c

f(q) dY =

∫ 2

1

∑
q≤1

f(q) dY +

∫ 3

2

∑
q≤2

f(q) dY + · · ·+
∫ X

X−1

∑
q≤X−1

f(q) dY

=
∑
q≤1

f(q) +
∑
q≤2

f(q) + · · ·+
∑

q≤X−1

f(q)

=
∑

q≤X−1

f(q)(X − q)

=
∑
q≤X

f(q)(X − q).

Now, f(q) is a multiplicative arithmetical function with Dirichlet series

∞∑
q=1

φ(q)q−2

qs
=
ζ(s+ 1)

ζ(s+ 2)

for complex s = σ+ iτ , which converges when σ > 0. Applying Perron’s formula

as stated in [22], for example, for c > 0 gives us

1

X

∑
q≤X

f(q)(X − q) =
1

2πi

∫ c+i∞

c−i∞

Xsζ(s+ 1)

s(s+ 1)ζ(s+ 2)
ds

=:
1

2πi

∫ c+i∞

c−i∞
g(s) ds.

Chaubey et. al. then modify a section of the path of integration and use the

residue theorem to show that

1

2πi

∫ c+i∞

c−i∞
g(s) ds =

∑
Res(g(s)) +

9∑
m=1

Jm,

where the Jm are integrals along the new path and the sum of Res(g(s)) is taken

over all poles of g(s) inside the region bounded by the new path and the unmod-

ified path section. The only such pole in this case is at s = 0 which is of order 2

and has residue

Res(g(s)) =
lnX

ζ(2)
+
γ − 1

ζ(2)
− ζ ′(2)

ζ2(2)
.
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Using standard bounds for ζ(s) and ζ−1(s) they find that

9∑
m=1

Jm = O
(

1

Xec0(lnX)3/5(ln lnX)−1/5

)
,

for some suitable positive absolute constant c0.

Putting all of this together they obtain

A1(X) =
6

π2
ln (4X) +

γ − 1

ζ(2)
− ζ ′(2)

ζ2(2)
+O

(
1

Xec0(lnX)3/5(ln lnX)−1/5

)
as required.

1.4.2 Second and Higher Moments for Ford Circles

For k ≥ 2 Chaubey et al. prove the next two theorems.

Theorem 1.9. [3, Theorem 1.2] When k = 2 in (1.20), we have

A2(X) =
ζ(3)

2ζ(4)
+

3

π2

logX

X2
+

3

π2

(
γ − ζ ′(2)

ζ(2)
+

5

4
− log 2

)
1

X2

+Oε

(
log5/3X(log logX)1+ε

X3

)
.

Theorem 1.10. [3, Theorem 1.3] When k ≥ 3 in (1.20), we have

Ak(X) =
ζ(2k − 1)

2k−1ζ(2k)
+
kζ(2k − 3)

2kζ(2k − 2)

1

X2
+O

(
1

X3

)
.

Chaubey et al.’s proofs of these theorems begin similarly to that of Theo-

rem 1.8, again adjusted here to only include the case when I is the full interval

[0, 1]. We have,

Mk(Q) =

N(Q)−1∑
j=1

(
1

2q2
j

+
1

2q2
j+1

)k

=
1

2k−1

N(Q)∑
j=2

1

q2k
j

+
1

2k

N(Q)−1∑
j=1

k−1∑
i=1

(
k

i

)
1

qijq
k−i
j+1

2
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=
1

2k−1

∑
1≤q≤Q

φ(q)

q2k
+

1

2k

k−1∑
i=1

(
k

i

)N(Q)−1∑
j=1

1

q2i
j q

2k−2i
j+1

=: Sk + S ′k.

Thus,

Ak(X) =
1

X

∫ 2X

X

Sk + S ′k dY

=
1

X

∫ 2X

1

Sk dY − 1

X

∫ X

1

Sk dY +
1

X

∫ 2X

X

S ′k dY. (1.21)

Using the same method as for the first moments yields

1

X

∫ 2X

X

Sk dY =
ζ(2k − 1)

2k−1ζ(2k)
+

1− 22k−3

23k−4(2k − 3)(2k − 2)ζ(2)X2k−2

+O
(

logX

X2k−1

)
.

Now, evaluating S ′k for k ≥ 2 is a key part of their proof and will be split

in cases for k = 2 and k ≥ 3. To proceed they have a geometric criterion for

determining when two integers appear as consecutive denominators, which allows

them to transform the problem into a lattice point counting problem. This is the

basis for the strategy we will use in the proof for the higher dimensional analogue

with Ford spheres.

When k = 2 we have,

S ′2 =
1

2

N(Q)−1∑
j=1

(
1

qjqj+1

)2

.

Noting that we are dealing with the full interval [0, 1], Chaubey et al. then use

Theorem 2 of [2] to obtain

S ′2 =
6

π2Q2

(
logQ+ γ − ζ ′(2)

ζ(2)
+

1

2

)
+Oε

(
log5/3X(log logX)1+ε

X3

)
.
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Putting this and Sk with k = 2 into (1.21) then gives

A2(X) =
ζ(3)

2ζ(4)
+

3

π2

logX

X2
+

3

π2

(
γ − ζ ′(2)

ζ(2)
+

5

4
− log 2

)
1

X2

+Oε

(
log5/3X(log logX)1+ε

X3

)
,

proving Theorem 1.9.

Now, when k ≥ 3 we proceed with S ′k by first considering the sum

Sk,i :=

N(Q)−1∑
j=1

1

q2i
j q

2k−2i
j+1

.

This sum can then be rewritten using the fact that two positive integers r and

q are the denominators of consecutive Farey fractions in FQ if and only if they

satisfy

1. q, r ≤ Q,

2. (q, r) = 1, and

3. q + r > Q.

Thus,

Sk,i =
∑

1≤q,r≤Q
(q,r)=1
q+r>Q

1

q2ir2k−2i
.

Chaubey et al. then split this into three further sums, depending on whether we

have r < Q
2

, q < Q
2

, or q, r > Q
2

. Finally, they use the fact that for x ≥ 2 we have,

∑
n≤x

φ(n)

n
= O (x) ,

∑
n≤x

φ(n)

n2
=

log x

ζ(2)
+O (1) , and

∑
n≤x

φ(n)

na
=
ζ(a− 1)

ζ(a)
+O

(
x2−a) for a ≥ 3,

to evaluate each of these three sums. This leaves us with

S ′k =
kζ(2k − 3)

2k−1ζ(2k − 2)

1

Q2
+O

(
1

Q3

)
.
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As in the previous case, substituting this along with Sk into (1.21) proves Theo-

rem 1.10.

1.5 Higher Dimensions – Ford Spheres

Ford spheres are the three dimensional analogue of Ford circles and were likewise

first defined by Ford in [5]. These spheres arise when in place of ratios of ratio-

nal integers we consider ratios of Gaussian integers. The definitions and results

concerning Ford spheres in this section can be found in Section 8 of Ford’s paper

[5] and those concerning Gaussian integers and Gaussian rationals can be found,

for example, in [6] or [21].

The Gaussian integers are defined as those complex numbers a+ bi for which

a and b are integers. The set of all such numbers forms an integral domain with

the usual addition and multiplication of complex numbers, and it is denoted by

Z[i], i.e. i adjoined to the rational integers. We will denote the set of Gaussian

integers a + bi with a > 0 and b ≥ 0 by Z[i]+. The units of Z[i] are 1,−1, i and

−i.

The Gaussian rationals form the field of fractions of Z[i]. They consist of

those complex numbers a+bi where a and b are real rationals and are denoted by

Q[i]. We can also write the Gaussian rationals as fractions of Gaussian integers

and this is the form we will generally use in this thesis. Note that for Gaussian

integers r = r1 + r2i and s = s1 + s2i we have

r

s
=
r1 + r2i

s1 + s2i

=
(r1 + r2i)(s1 − s2i)

(s1 + s2i)(s1 − s2i)

=
r1s1 + r2s2

s2
1 + s2

2

+
r2s1 − r1s2

s2
1 + s2

2

i.

As with the usual integers, two fractions of distinct Gaussian integers may be

equal to the same Gaussian rational. However, like Z, Z[i] is a unique factorisation

domain and so we can define a greatest common divisor for any pair r and s of

Gaussian integers. We denote this by (r, s) and it is defined as a Gaussian integer

d such that
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1. d divides both r and s, and

2. if another Gaussian integer c satisfies condition 1 then c divides d.

The greatest common divisor is unique up to multiplication by a unit. We will

follow the convention of choosing the divisor that lies in Z[i]+. We can then write

a Gaussian fraction r
s

in its reduced form by dividing r and s by (r, s).

It will also be pertinent to mention the prime elements of Z[i], called the

Gaussian primes. These turn out to be those Gaussian integers a + bi such that

either

1. a or b is zero and the other has absolute value equal to a prime that is

congruent to 3 modulo 4, or

2. a and b are both non-zero and a2 + b2 is prime.

In particular, this means that not all prime numbers are Gaussian primes. For

example, 2 = (1+i)(1−i). As Z[i] is a unique factorisation domain, any Gaussian

integer r can be written uniquely up to some choice of units, as a product of

Gaussian primes and a unit. That is, we can write

r = upα1
1 p

α2
2 ...p

αk
k

for a unit u, real αj ≥ 1 and distinct Gaussian primes pj in Z[i]+.

The Ford spheres give a geometric representation of these Gaussian fractions

according to the following definition.

Definition 1.8. The Ford sphere corresponding to a reduced Gaussian fraction r
s

is the sphere of radius 1
2|s|2 in the upper half-space C×R+, tangent to the complex

plane at r
s
.

We will be concerned with the Ford spheres of those Gaussian rationals lying

in the unit square in the upper-right quadrant of the complex plane, which we

denote I2. If we take a vertical slice of these spheres along the x-axis we obtain an

image of the Ford circles in the interval [0, 1]. Two Ford spheres corresponding to

distinct Gaussian fractions are either tangent or disjoint. This can be shown using

a similar calculation as we used for Ford circles in Section 1.1. As before, the
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interesting case is when the two spheres are tangent and, for the corresponding

Gaussian rationals r
s

and r′

s′
, we have

|r′s− rs′| = 1.

When this is true we call the fractions adjacent. Unlike Ford circles, there is no

obvious way to define ‘consecutive’ for Ford spheres as the Gaussian rationals do

not have a natural ordering like the real integers do. This issue will be addressed in

Chapter 3. There we will also establish a way to generate new Gaussian fractions

from old ones, which builds on Ford’s observation that for adjacent fractions r
s

and r′

s′
, any fraction of the form

r′n
s′n

=
r′ + nr

s′ + ns

is also adjacent to r
s
, where n is any Gaussian integer.

1.5.1 Statements of Main Theorems

In the following chapters of this thesis we will work to prove Theorems 1.11

and 1.12, stated below. These results are the higher dimensional analogues of

Theorems 1.8, 1.9 and 1.10 for Ford circles, in which we examine the k-moments

of the distances between centres of consecutive Ford spheres. As our definition of

consecutive will require the spheres to be adjacent and so tangent, the distance

between their centres is given by the sum of their radii. Thus, the kth moment is

defined as

Mk,I2(S) =
∑

r
s
, r
′
s′ ∈GS

consecutive

(
1

2|s|2
+

1

2|s′|2

)k
, (1.22)

for positive integers k and S.

For the first moment we have the following theorem, which is proved in Chap-

ter 4. Here ζi denotes the Dedekind zeta function for Q(i) defined for a complex

number s with Re(s) > 1 by

ζi(s) =
∑

q∈Z[i]+

1

|q|2s
.
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Theorem 1.11. For S ∈ N and any ε > 0,

M1,I2(S) =
π

4
ζ−1
i (2)(8z′′1 − 1)S2 +Oε(S1+ε).

where z′′1 = −
∫ 1√

2

0 ln(
√

2u)(1− u2)
1
2du.

For all higher moments we prove the following in Chapter 5.

Theorem 1.12. For each integer k ≥ 2, there exists a constant ξk > 0 with the

property that, for any ε > 0 and for any S ∈ N,

Mk,I2(S) = ξkS +Oε(S2κ+ε),

with 1
4
< κ ≤ 131

416
.

1.6 Outlook

In the next two chapters we assemble the foundations required to work with the

moments described in Section 1.5.1. Chapter 2 concerns Gaussian integers and

the analogues of the arithmetical functions we saw in Section 1.3. In particular,

we will define Möbius- and Euler-phi-type functions for Z[i]+, then go on to

explore a number of their valuable properties.

Chapter 3 explores the Ford spheres and the higher dimensional analogue of

the Farey fractions that underpins them in the same way that the Farey fractions

underpin the theory of Ford circles. Specifically, we investigate the best way to

define ‘consecutivity’ for Ford spheres and use this to demonstrate how Gaussian

fractions in I2 can be constructed from just 0, 1, i and 1 + i with an approach

comparable to that used in creating the Stern-Brocot tree. Furthermore, we

classify consecutivity for pairs of denominators of Gaussian fractions and use this

to count the Gaussian integers that are denominators of Gaussian fractions which

are consecutive to another Gaussian fraction with a given denominator.

With the groundwork laid out, in Chapter 4 we prove Theorem 1.11. This

will involve calculating the area of Ωs, a subregion of a circle, then applying this

along with Abel’s Summation Formula and the results of the preceding chapters

in order to achieve our asymptotic estimate of the first moment.
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Finally, Chapter 5 contains the proof of Theorem 1.12, which will be split into

cases for k = 2 and k ≥ 3. This proof will again make use of Abel’s Summation

Formula and many of the prerequisites of Chapters 2 and 3, but requires more

care as the error terms become more delicate in the higher moment calculations.



Chapter 2

Preliminaries – Gaussian Integers

In this chapter we lay out various definitions and results involving Gaussian in-

tegers and associated functions, which will be crucial to the rest of the thesis.

Although many of these are analogues of well known facts for arithmetical func-

tions, for completeness their proofs are also included.

Specifically, in Section 2.1 we define Möbius and Euler-phi-type functions with

domain Z[i]+. We also describe when functions such as these may be considered

multiplicative and detail how their sum may be rewritten as a product in this

case.

In Section 2.2 we state and prove numerous useful lemmas involving the

Möbius and Euler-phi functions from the previous section. In particular, Lemma 2.4

illustrates Möbius inversion for functions defined on Z[i]+.

Lastly, in Section 2.3 we define the Dedekind zeta function for Q(i), which

gives the constant in our asymptotic formula for the partial sums of the Euler-

phi-type function. In proving our estimate of this sum we revisit the sum of

squares function from the Gauss Circle Problem and utilise the lemmas from the

preceding sections.

2.1 Multiplicative Functions on Z[i]

Arithmetical functions were integral to the study of moments of distances be-

tween centres of Ford circles, as their underlying fractions are ratios of positive

integers. Now that we wish to study Ford spheres we will need analogous func-

48
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tions which are defined not on N, but instead on some corresponding subset of

the Gaussian integers. Thus, in place of functions defined on N we work with

functions defined on Z[i]+, which we defined in Section 1.5 as those Gaussian

integers s with Re(s) > 0 and Im(s) ≥ 0. In fact, the functions introduced in

this section will actually be considered to be defined on all the non-zero elements

of Z[i], simply by taking them such that their value is not affected when the input

is multiplied by a unit, that is,

f(z) = f(−z) = f(iz) = f(−iz),

for any z in Z[i]+.

Analogously to the usual arithmetical functions, a function f : Z[i]+ → C will

be called multiplicative if

f(qr) = f(q)f(r) (2.1)

whenever (q, r) = 1. The function is called completely multiplicative if (2.1) is

true for all q and r in Z[i]+. For example, we can define an identity function Ii(q)

on Z[i]+ comparable to the function I(n) on N to be

Ii(q) =

{
1 if q = 1,

0 otherwise.

for any q in Z[i]+. The function is clearly completely multiplicative.

We can also define functions analogous to the Möbius and Euler-phi funtions

we saw in Section 1.3 as follows, recalling that any Gaussian integer q can be

written uniquely in the form

q = upα1
1 p

α2
2 ...p

αk
k (2.2)

for a unit u, real αj ≥ 1 and distinct Gaussian primes pj in Z[i]+.

Definition 2.1. For a Gaussian integer q as in (2.2), define µi : Z[i]+ → Z by

µi(q) :=


1 if q = 1,

(−1)k if α1 = · · · = αk = 1,

0 otherwise.
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Definition 2.2. For a Gaussian integer q as in (2.2), define φi : Z[i]+ → Z by

φi(q) := |(Z[i]/qZ[i])∗| .

The function µi(q) can be shown to be multiplicative using the same argument

as for the usual Möbius function.

In Section 1.3 we saw that sums of multiplicative arithmetical functions can

be rewritten in terms of a product. The following lemma shows that we can do

the same thing here with multiplicative functions defined on Z[i]+. Here and in

the rest of this chapter, for all q ∈ Z[i],
∑

d|q denotes a sum over d ∈ Z[i]+ which

divide q.

Lemma 2.1. For a multiplicative function f : Z[i]+ → C and q = upα1
1 p

α2
2 ...p

αk
k ,

we have ∑
d|q

f(d) =
k∏
j=1

(f(1) + f(pj) + . . .+ f(p
αj
j )).

If f is completely multiplicative then

∑
d|q

f(d) =
k∏
j=1

(
f(pj)

αj+1 − 1

f(pj)− 1

)
.

The proof follows from multiplicativity together with the unique factorisation

property mentioned above.

2.2 Elementary Lemmas

The functions µi and φi have various interesting properties that will be of use to

us in calculating the moments for Ford spheres in Chapters 4 and 5. We begin by

seeing what happens when we take the sum of µi(q) and φi(q) over the divisors

of q. Our first result is an analogue of Lemma 1.10.

Lemma 2.2. For q as in (2.2) we have

∑
d|q

µi(d) =

{
1 if q = u,

0 otherwise.
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Proof. Clearly this is true when q = u so suppose q 6= u. Then we have∑
d|q

µi(d) =
∑

d|p1...pk

µi(d)

= 1−
∑
pi

1 +
∑
pi,pj
i 6=j

1− · · ·

= (1− 1)k

= 0.

The next lemma is analogous to Lemma 1.11.

Lemma 2.3. For every q ∈ Z[i]+ we have∑
d|q

φi(d) = |q|2

Proof. Let U = {x+ iy|0 ≤ x, y < 1}. Then Uq := q ·U is a fundamental domain

for C/qZ[i] and we have

|Z[i]/qZ[i]| = |Uq ∩ Z[i]|

=
∑
d|q

#{r ∈ Uq ∩ Z[i] | (r, q) = d}

=
∑
d|q

#{r ∈ Uq/d ∩ Z[i] | (r, q
d

) = 1}

=
∑
d|q

φi

(q
d

)
=
∑
d|q

φi(d) .

Also, we have |Z[i]/qZ[i]| = vol(Uq) = |q|2, so we are done.

The function µi also provides us with a result analogous to Theorem 1.6 for

Möbius inversion.



CHAPTER 2. PRELIMINARIES – GAUSSIAN INTEGERS 52

Lemma 2.4. (Möbius Inversion on Z[i]+) Two functions f, g : Z[i]+ → C
satisfy

f(q) =
∑
d|q

g(d), (2.3)

for all q ∈ Z[i]+ if and only if they satisfy

g(q) =
∑
d|q

µi(d)f
(q
d

)
=
∑
d|q

µi

(q
d

)
f(d), (2.4)

for all q ∈ Z[i]+.

Proof. Suppose (2.3) holds. Then∑
d|q

µi

(q
d

)
f(d) =

∑
d|q

µi

(q
d

)∑
e|d

g(e)

=
∑
e|q

g(e)
∑
d′| q

e

µi

( q

d′e

)

=
∑
e|q

g(e)
∑
d′| q

e

µi(d
′)

= g(q)

since
∑
d′| q

e

µi(d
′) = 0 unless q

e
= 1. The other direction is proved similarly.

We can use this technique with f(q) = |q|2 and g(q) = φi(q) along with

Lemma 2.3 to relate these Möbius and Euler-phi functions to one another ac-

cording to our next lemma.

Lemma 2.5. For every q in Z[i]+ we have

φi(q) = |q|2
∑
d|q

µi(d)

|d|2
.
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2.3 The Dedekind Zeta Function for Q(i) and

Summing φi

In addition to the higher dimensional analogues of the arithmetical functions, we

will also make use of the Dedekind zeta function for Q(i), which we denote ζi.

We have, for a complex number s with Re(s) > 1 and Gaussian primes p,

ζi(s) :=
∑

q∈Z[i]+

1

|q|2s

=
∏

p∈Z[i]+

(p prime)

(1− |p|−2s)−1.

Further, the inverse of ζi is

ζ−1
i (s) =

∑
q∈Z[i]+

µi(q)

|q|2s
.

With this in mind we now aim to prove the following lemma, which will be

integral to our proofs of Theorem 1.11 and Theorem 1.12.

Lemma 2.6. For Q ≥ 1, we have∑
q∈Z[i]+

|q|≤Q

φi(q) =
π

8
ζ−1
i (2)Q4 +O

(
Q2+2κ

)
.

To begin, recall the sum of squares function,

r2(n) = #{(a, b) ∈ Z2 | a2 + b2 = n},

for any positive integer n. In Section 1.3.5 we saw how a finite sum of this function

behaves. Now, however, we will be interested in its sum when multiplied by some

power of the integer n.

Lemma 2.7. For a ≥ 0,

∑
n≤N

nar2(n) =
πNa+1

a+ 1
+O(Na+κ)
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where κ is the exponent in the error term from the Gauss circle problem and

satisfies 1
4
< κ < 1

2
.

Proof. We apply Abel’s Summation Formula with x = N , f(n) = nb for b ≥ 0

and a(n) = r2(n) so that

A(n) =
∑
n≤N

r2(n) = πN +O (nκ)

from (1.19). Thus,

∑
n≤N

nbr2(n) = A(N)f(N)−
∫ N

1

A(t)f ′(t) dt

= πN b+1 +O (Nκ)− b
∫ N

1

(πt− (A(t)− πt))tb−1 dt

= πN b+1 +O (Nκ)− bπ
∫ N

1

tb dt+ b

∫ N

1

(A(t)− πt)tb−1 dt

= πN b+1 − bπ

b+ 1
N b+1 +

bπ

b+ 1
+O

(
N b+κ

)
=

π

b+ 1
N b+1 +O

(
N b+κ

)
.

The following lemma gives a bound for the tail of ζi(s).

Lemma 2.8. For s > 1, we have

∑
q∈Z[i]+

|q|≥Q

1

|q|2s
�s

1

Q2(s−1)
.

Proof. Rewriting the left hand side as a sum over annuli and using (1.19), we

have

∑
|q|≥Q

1

|q|2s
=
∞∑
k=0

∑
2kQ≤|q|<2k+1Q

1

|q|2s

≤
∞∑
k=0

1

22ksQ2s

 ∑
n≤22|k+1|Q2

r2(n)−
∑

n≤22kQ2

r2(n)


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�
∞∑
k=0

22kQ2

22ksQ2s

=
1

Q2(s−1)

∞∑
k=0

1

22k(s−1)

�s
1

Q2(s−1)
.

We can now use these two lemmas along with Lemma 2.3 to prove Lemma 2.6

as follows.

Proof. We have

∑
q∈Z[i]+

|q|≤Q

φi(q) =
∑

q∈Z[i]+

|q|≤Q

|q|2
∑
d|q

µi(d)

|d|

=
∑

d∈Z[i]+

|d|≤Q

µi(d)
∑

q′∈Z[i]+

|q′|≤ Q
|d|

|q′|2

=
∑

d∈Z[i]+

|d|≤Q

µi(d)
∑
k≤ Q2

|d|2

r2(k)

4
k

=
1

4

∑
d∈Z[i]+

|d|≤Q

µi(d)

(
πQ4

2|d|4
+O

(
Q2+2κ

|d|2+2κ

))
(by Lemma 2.7)

=
π

8
ζ−1
i (2)Q4 +O

(
Q2+2κ

)
.

The last equality uses Lemma 2.8 and the definition of ζ−1
i (s) with s = 2 and

s = 1 + κ.



Chapter 3

Ford Spheres

This chapter comprises of four results concerning the structure of Ford spheres

that will be essential in calculating the k-moments Mk,I2(S) as described in

Section 1.5.1.

First, in Section 3.1 we determine the best way to define consecutivity for

the Gaussian fractions related to Ford spheres, in light of their lack of a natural

ordering by size as we had in the two-dimensional case. With this in mind, in

Section 3.2 we see how every Gaussian rational in I2 can be generated starting

from just 0, 1, i and 1 + i. In doing so we also introduce a variant of the mediant

that is more appropriate now that we are working in higher dimensions.

In Section 3.3 we establish three criteria for when two Gaussian integers will

appear as the denominators of consecutive fractions. Thereby we also determine

how many distinct pairs of consecutive Gaussian fractions will have these denom-

inators.

Finally, in Section 3.4 we consider, for a given Gaussian integers s, how to

count the Gaussian integers s′ which are denominators of a fraction that is con-

secutive to a fraction of the form r
s
. To do this we will use the three previous

results to restate our task in terms of counting lattice points in a region of the

complex plane. From here we will apply our lemmas from Chapter 2 along with

the Prime Number Theorem for Gaussian primes to achieve our goal.

56
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3.1 Defining Consecutivity for Ford Spheres

When we studied Mk(Q) in Section 1.4 we were interested in the distances be-

tween the centres of consecutive Ford circles. In this thesis we are working with

a higher dimensional analogue of Mk(Q) and so we are now concerned with the

distances between the centres of consecutive Ford spheres instead. But what does

it mean to say that two Ford spheres are consecutive?

Two Ford circles are consecutive if their corresponding fractions are consec-

utive in FQ, the elements of which are taken to be in increasing order of size.

On the other hand, the fractions corresponding to Ford spheres are Gaussian

fractions and so in place of FQ we define GS as follows.

Definition 3.1. For a positive integer S,

GS :=
{
r
s
∈ I2 : r, s ∈ Z[i], (r, s) = 1, |s| ≤ S

}
where I2 is the unit square in the upper right quadrant of the complex plane.

However, unlike FQ, as GS consists of elements of Q[i] we cannot simply order

the elements by size and use this order to define consecutivity as we did before.

Alternatively, consecutivity for fractions in FQ is equivalent to the fractions

being adjacent and the sum of their denominators being greater than Q. If

we try this approach for GS, the question becomes, how should we “add” the

denominators and then compare the result to S? To compare their size to S it

makes sense to take an absolute value, but should we do this before or after we

add the denominators? It turns out that both of these options create problems

later when we look at the wider picture of the Ford spheres, particularly when we

look for a way to construct GS using consecutive fractions in an analogous way

to what we have for FQ.

So, instead of defining consecutivity for Farey fractions directly, we can re-

verse our thinking and consider what two fractions being consecutive means for

their corresponding Ford circles. It is easy to see that two Farey fractions are

consecutive in FQ if and only if their Ford circles are tangent and there is no

smaller circle between them for that order Q. Using this idea we can give an

equivalent definition for consecutivity in GS in terms of Ford spheres.
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Definition 3.2. Let r
s

and r′

s′
be fractions in GS with spheres R and R′ respectively.

The fractions are consecutive in GS if they are adjacent and there is at least one

other fraction in Q[i] with sphere of radius less than 1
2S2 which is tangent to both

R and R′.

This definition is consistent with the analogues of other properties of Farey

fractions and Ford circles in higher dimensions, which will be explored in the rest

of this chapter.

Note that having a sphere of radius less than 1
2S2 means that the fraction will

not be in GS itself. The structure of the spheres means that for any two given

tangent spheres there will be multiple smaller spheres which are tangent to both

(unlike Ford circles where there is only one such circle). The definition above

ensures that two spheres are considered consecutive until all of those smaller

spheres are in GS; this will be necessary in the next section, when we study a

method for generating GS comparable to that used in the Stern-Brocot tree for

FQ.

3.2 Generating GS

The Farey fractions can be generated from 0 and 1 by taking mediants, and we

have seen that doing this will eventually generate every rational number in [0, 1].

In the complex case, in place of the interval [0, 1] we are working in I2, the unit

square in the upper-right quadrant of the complex plane. Thus, rather than

beginning with just 0 and 1 it makes sense for us to start with i and 1 + i as well,

so that we have all four corners of I2 to begin with.

If we take mediants of consecutive fractions from here in the same way as

before, we do still find some fractions, namely those on the boundary of I2.

However, none of the fractions in the interior of I2 will ever appear. Even if we

extend our starting set to include i
1+i

for example, or indeed any finite set of

Gaussian fractions within I2, we still miss infinitely many of the rationals in I2.

The issue then, must come from taking mediants.

Ford remarks in [5] that given any adjacent Gaussian fractions r
s

and r′

s′
, any

fraction of the form
r′n
s′n

=
r′ + nr

s′ + ns
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is also adjacent to r
s

for any Gaussian integer n. If we choose n to be 1 then we

have our usual mediant and the resulting fraction is adjacent to r′

s′
as well as r

s
.

In fact, r′n
s′n

is adjacent to both r
s

and r′

s′
if we choose n to be any unit of Z[i]. This

is because two Gaussian rationals a
b

and a′

b′
are adjacent if |a′b− ab′| = 1, and for

r′

s′
and r′+ur

s′+us
where u ∈ Z[i]∗ we have,

|(r′ + ur)s′ − r′(s′ + us)| = |r′s′ + urs′ − r′s′ − ur′s|

= |u(rs′ − r′s)|

= |rs′ − r′s|

= 1,

using the fact that the original fractions r
s

and r′

s′
are adjacent also. Thus, given

two adjacent fractions r
s

and r′

s′
, the four fractions which are adjacent to both are

given by
r + ur′

s+ us′
for u ∈ {±1,±i}. (3.1)

We will use this complex version of mediants for Gaussian fractions in place of

the usual mediant, noting that unlike taking mediants of the usual Farey fractions,

which always results in a denominator larger than that of either initial fraction,

this type of mediant can result in a smaller denominator. Analogously, when

taking mediants of real Farey fractions p
q

and p′

q′
we could instead consider

p+ u′p′

q + u′q′
for u′ ∈ {±1}.

This would sometimes give us a denominator smaller than either q or q′, specif-

ically when we take u′ = −1. Taking mediants in this way only gives us new

Farey fractions when u′ = 1, so we can discard u′ = −1 and still generate every

fraction. However, when taking complex mediants it is not clear which choices

of unit u will lead to larger denominators and which will lead to smaller, so we

need to consider all four units and ignore any repeated resulting fractions.

We now prove that beginning with 0, 1, i, and 1 + i, taking mediants as in

(3.1) will generate every Gaussian rational in the unit square of C.

Lemma 3.1. Given Gaussian integers r = r1 + ir2 and s = s1 + is2 such that
r
s
∈ I2 and (r, s) = 1, r

s
occurs as a complex mediant of two consecutive fractions

in I2 with denominators of modulus less than |s|.
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Proof. We argue by induction on |s|. Assume that all Gaussian rationals in I2

with denominator of modulus less than |s| have already been found. Now, since

(r, s) = 1 we can find x, y ∈ Z[i] such that

rx− sy = 1

with |x| < |s|. Further, we can always choose y
x

to be in I2. To see this, first

note that each edge of I2 looks like the Ford circles, with a sphere sat on every

rational point, creating a ‘wall’ of spheres. This means that a sphere in I̊2 cannot

be tangent to any sphere outside of I2. So if r
s
∈ I̊2 then we must have y

x
∈ I2.

On the other hand, if r
s
∈ I2\I̊2, it is possible to choose y′

x′
/∈ I2 which is adjacent

to r
s
, but in this case we could always instead choose y

x
∈ I2, the mirror image of

y′

x′
over the boundary of I2. Thus, y

x
∈ I2 and by the assumption, y

x
has already

been found. Let
a

b
=
r − vy
s− vx

where v is a unit to be decided later. We claim that a
b

is adjacent to r
s

and y
x
,

and |b| < |s|. First,

ax− by = (r − vy)x− (s− vx)y

= rx− sy

= 1

so a
b

is adjacent to y
x
. Similarly,

as− br = (r − vy)s− (s− vx)r

= v(rx− sy)

= v ∈ Z[i]∗

so a
b

is adjacent to r
s
.

Now, to show that |b| < |s|, consider Figure 3.1. The circle UC contains

all points which are within |s| of s, this is where we want vx to be. The circle

LC contains all the possible locations of x, since |x| < |s|. If we split LC into

quarters we can force vx to lie in any one of those quarters by choosing the unit

v accordingly. In particular, we can choose v so that vx lies in QC, and so in

UC. Thus |b| = |s− vx| < |s| as required.
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Figure 3.1: Diagram for the proof of Lemma 3.1. The point s is shown in black.
UC is the red circle, LC is the blue circle and QC is the shaded quarter circle.

Now all that is left to check is that a
b
∈ I2. We know that r

s
, y
x
∈ I2 so there

are three possibilities:

1. r
s
, y
x
∈ I̊2,

2. r
s
, y
x
∈ I2\I̊2, or

3. r
s
∈ I̊2 and y

x
∈ I2\I̊2 or vice versa.

In cases 1 and 3 at least one of the two fractions is in I̊2 and a
b

is adjacent to

that fraction so, as their spheres are tangent, we must have a
b
∈ I2. In case 2

however, as when choosing y
x
, it is possible to choose a′

b′
/∈ I2 with |b′| < |s| which

is adjacent to both r
s

and y
x
. But in this case we could again always instead choose

a
b
∈ I2, the mirror image of a′

b′
over the boundary of I2. Thus, a

b
∈ I2. Note also

that the fractions a
b

and y
x

are consecutive in GS for S such that S < |s| as their

spheres are tangent (since they are adjacent) and r
s

is a fraction with a sphere

which is tangent to both and has radius less than 1
2S2 .
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3.3 Classifying Consecutive Ford Spheres

In Section 3.1 we gave a geometric definition of consecutivity for Ford spheres.

However, for our moment calculation we will need a set of criteria that tell us

exactly when a given pair of denominators are consecutive in GS.

In FQ, q and q′ are called consecutive if they are denominators of two fractions

which are consecutive. For FQ we have the following classification of consecutivity

for denominators.

Lemma 3.2. Denominators q and q′ will be consecutive in FQ if and only if all

of the following are satisfied:

1. 1 ≤ q, q′ ≤ Q,

2. (q, q′) = 1, and

3. q + q′ > Q.

Furthermore, for each pair of denominators q, q′ satisfying these conditions there

will be exactly two pairs of consecutive fractions with denominators q and q′. In

one case p1
q
<

p′1
q′

, and in the other p2
q
>

p′2
q′

In GS, s and s′ are called consecutive if they are denominators of two fractions

which are consecutive. Now that we know how to generate Gaussian fractions,

we can also classify what it means for two denominators to be consecutive in GS.

In the case of the usual Farey fractions, the three requirements for q, q′ ∈ Z
to be consecutive can be thought of as

1. The fractions are in FQ. (q, q′ ≤ Q)

2. The fractions are adjacent. ((q, q′) = 1)

3. There is no fraction between the original two which is also in FQ. (q+ q′ > Q)

The classification for GS should have conditions analogous to these statements,

but take into account that we are now taking complex mediants. The next lemma

details such a classification.

Lemma 3.3. Two Gaussian integers s and s′ appear as consecutive denominators

in GS if and only if all of the following are satisfied:
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1. |s|, |s′| ≤ S,

2. (s, s′) = 1, and

3. |s′ + u′s| > S for some unit u′.

Furthermore, there are exactly four distinct pairs r, r′ ∈ Z[i] which give consecu-

tive fractions r
s
, r
′

s′
, when these three conditions are satisfied.

The three conditions follow directly from the geometric definition of consec-

utive in GS, which we previously described. The final statement is proved as

follows.

Proof. Suppose s, s′ ∈ Z[i] satisfy the three conditions above. Then there are

r, r′ ∈ Z[i] for which r
s

and r′

s′
are consecutive in GS. So for r, r′ we have

rs′ − r′s = u

where u is a unit in Z[i]. There are four choices for the unit u, each of which

corresponds to a pair r, r′. We claim that each of these four pairs is distinct. We

have

r = us′−1 mod s, and

r′ =
rs′ − u
s

,

so r′ is determined by r. When the unit u is changed either r is changed, or r

remains the same and so r′ is changed. Either way a new pair is found for each

choice of u, and so there are four distinct possibilities for the pair r, r′.

3.4 Counting Consecutive Denominators

To estimate Mk,I2(S) it will be necessary, given s ∈ Z[i]+ with |s| ≤ S, to

count how many different s′ ∈ Z[i]+ have at least one fraction r′

s′
∈ GS which is

consecutive to a fraction with denominator s. In other words, given s, how many

s′ ∈ Z[i]+ satisfy the three conditions of Lemma 3.3?

Ignoring the coprimality condition for now, we need to know how many s′

satisfy
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Figure 3.2: Circles of radius S with centres the origin, ±s and ±is. To be
consecutive to s, denominators s′ must lie in the shaded region.

1. |s′| ≤ S, and

2. |s′ + us| > S for some unit u,

for a given s. The s′ satisfying condition 1 are those points on the Z[i] lattice

that lie inside R, the circle of radius S centred on the origin. In condition 2 we

consider mediants of s′ with s, taking s′ + us for each unit u ∈ {±1,±i}. For s′

to satisfy condition 2, one of these four points must lie outside of R. We can look

at this condition in another way by translating R. For example, consider s′ for

which |s+ s′| > S, so s+ s′ lies outside of R. Then if we translate R by −s, the

point s′ will lie outside of the translated circle. Similarly, if s′ has |s′ + us| > S,

s′ + us lies outside of R and so s′ lies outside the circle of radius S centred at

−us.

Translating the circle R in each of the four directions s, −s, is and −is, we

have the picture in Figure 3.2. Points s′ satisfy the two conditions above if and

only if they lie inside the red circle R and outside at least one of the blue circles,

i.e. in the shaded area. Our aim then is to count the points on the Z[i] lattice in

this region that are coprime to s.

We will denote the shaded region in this diagram by Ωs and its boundary by
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∂Ωs. The following theorem concerns any convex region Ω in the complex plane,

but still holds for our region Ωs from Figure 3.2 in particular as it is the set

difference of two convex regions.

Theorem 3.1. For a convex region Ω in the complex plane with boundary ∂Ω,

we have ∑
z∈Ω

(z,s)=1

1 =
φi(s)

|s|2
|Ω|+Oε (|∂Ω||s|ε)

for all ε > 0.

Proof. By Lemma 2.5, we have∑
z∈Ω

(z,s)=1

1 =
∑
z∈Ω

∑
d|z,s

µi(d)

=
∑
d|s

µi(d)
∑
z∈Ω
d|z

1

=
∑
d|s

µi(d)

(
|Ω|
|d|2

+O
(
|∂Ω|
|d|

))

=
φi(s)

|s|2
|Ω|+O

|∂Ω|
∑
d|s

|µi(d)|
|d|

 .

Now, using Lemma 2.1, we have that

∑
d|s

|µi(d)|
|d|

=
∏
p|s

(
1 +

1

|p|

)
,

and we also observe that

log

∏
p|s

(
1 +

1

|p|

)�∑
p|s

1

|p|
,

where p is a Gaussian prime. Therefore, the worst case scenario is when s is the

product of the smallest possible distinct primes (replacing any such prime with a

larger prime will reduce the value of the sum). So we have

∑
p|s

1

|p|
≤
∑
|p|2≤X

1

|p|
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for some X depending on s.

To estimate X, first note that

|s| =
∏
|p|2≤X

|p|, and

log
∏
|p|2≤X

|p| =
∑
|p|2≤X

log |p|.

Now, using Stieltjes integration and the Prime Number Theorem for Gaussian

primes (Proposition 7.17 in [17]),

∑
|p|2≤X

log |p| =
∫ X+

1−
(log t

1
2 ) dπi(t)

=
(logX)πi(X)

2
−
∫ X

1

πi(t)

2t
dt

=
X

2
+ o(X),

where πi(t) is the prime counting function for Gaussian integers, which counts

Gaussian primes p with |p|2 ≤ t. So∏
|p|2≤X

|p| = e
X
2

+o(X).

If X � log |s|, this says that |s| =
∏
|p|2≤X

|p| � |s|, so we must have X ≤ c log |s|,

for some c > 0. So using Stieltjes integration and the Prime Number Theorem

for Gaussian primes again, we have

∑
p|s

1

|p|
≤

∑
|p|2≤c log |s|

1

|p|

=

∫ (c log |s|)+

1−
t−

1
2 dπi(t)

=
πi(c log |s|)
c

1
2 (log |s|) 1

2

+
1

2

∫ c log |s|

1

πi(t)

t
3
2

dt

� (log |s|) 1
2

log(log |s|)
.
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Figure 3.3: The rotated view of Figure 3.2. The shaded area is Ωs.

Thus, we have

∑
d|s

|µi(d)|
|d|

= exp

O
∑

p|s

1

|p|



= exp

(
O

(
(log |s|) 1

2

log (log |s|)

))

�ε |s|ε

for all ε > 0.

We now show that in this estimation the main term will always be asymptoti-

cally larger than the error term when Ω is Ωs, the shaded region region in Figure

3.2. In this case the sum in Theorem 3.1 is counting points s′ which satisfy all

three conditions for being consecutive to s and so is equal to the inner sum in

(4.1). The following argument uses only the area of the region and the length of

its boundary, not its position. So to simplify the calculations we rotate our view

of the diagram so that the circles’ centres lie on the axes, as shown in Figure 3.3.

We call the top right blue corner region C and the right hand red region A.

Clearly, Area(Ωs) = 4(Area(A)+Area(C)) and |∂Ωs| � S. Let Ah be the height
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of A. This will be given by the difference in the imaginary parts of the points a

and b. The symmetry of the diagram means that Im(b) = −Im(a) and so their

difference is 2Im(a).

Now, the circles with intersection point a have equations

y2 + (x+ |s|)2 = S2 , and

(y + |s|)2 + x2 = S2.

The points of intersection of these two circles lie on the line y = x. Substituting

this into one of the equations gives us

2y2 + 2|s|y + |s|2 − S2 = 0.

The point a has positive imaginary part and so Im(a) is the positive solution to

this equation, i.e.,

Im(a) =
1

2

(
−|s|+

√
2S2 − |s|2

)
Thus, the height of A is

Ah = 2Im(a)

=
√

2S2 − |s|2 − |s|

=
√

2S

(√
1− |s|

2

2S2
− |s|√

2S

)
,

and so

Area(A) = |s|Ah

=
√

2|s|S

(√
1− |s|

2

2S2
− |s|√

2S

)
.

For the area of C note that the two red lines at the edges of C are two sides of

a square of side length |s| which completely contains C. Further, C will always

make up more than half of this square and so,

Area(C) ≥ 1

2
|s|2.

Now, if S ≤ 2|s|, note thatArea(C) ≥ |s|2
2

soArea(Ωs) ≥ 2|s|2, and |∂Ωs||s|ε � |s|1+ε.
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On the other hand, if S > 2|s|, then Area(Ωs) ≥ 4Area(A) ≥ 2(
√

7 − 1)S|s|,
and |∂Ωs||s|ε � S|s|ε. So for any choice of S, the error term is (on average over

s) asymptotically smaller than the main term in Theorem 3.1.



Chapter 4

Ford Spheres – First Moment

In this chapter we aim to prove Theorem 1.11, restated below for convenience.

Theorem. 1.11 For S ∈ N and any ε > 0,

M1,I2(S) =
π

4
ζ−1
i (2)(2z′′1 − 1)S2 +Oε(S1+ε).

where z′′1 = −
∫ 1√

2

0 ln(
√

2u)(1− u2)
1
2du.

To begin, in Section 4.1 we will use the classification of consecutivity for

denominators of Gaussian fractions to rewrite M1,I2(S) in terms of only the de-

nominators s and s′. The resulting sum will involve counting lattice points in the

region Ωs from Section 3.4, to which we apply Theorem 3.1.

In order to continue we will require the area of Ωs, which is calculated in

Section 4.2. We are left with a main term and an error term for M1,I2(S), which

are estimated in Sections 4.3 and 4.4 respectively. The main term calculation in

particular will require many of the lemmas from Chapter 2 and two applications

of Abel’s Summation Formula.

70
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4.1 Rewriting M1,I2(S)

In accordance with (1.22) with k = 1, the sum we are aiming to evaluate in this

chapter is,

M1,I2(S) =
∑

r
s
, r
′
s′ ∈GS

consec

(
1

2|s|2
+

1

2|s′|2

)
.

First of all, we use Lemma 3.3, our classification of consecutivity for denomi-

nators of Gaussian fractions, to rewrite this as

M1,I2(S) =
1

2

∑
s∈Z[i]+

|s|≤S

∑
s′∈Z[i]+

s′ consec to s

4

(
1

2|s|2
+

1

2|s′|2

)

where the factor of 4 comes from the final statement of the lemma. Note that

here and in the rest of the thesis we are choosing to write the Gaussian fractions

so that their denominators are in Z[i]+. Doing this means fractions ur
us

for a unit

u will only be counted one time, rather than once for each choice of the unit u.

We have also multiplied the right hand side by 1
2

to account for the fact that the

double sum will count each distance twice, once for “s is consecutive to s′ ” and

again when the roles are reversed and we have “s′ is consecutive to s”. Now, as

s and s′ run through the same numbers, this also means that for every a ∈ Z[i]+,

for every time s = a produces a 1
2|a|2 term, s′ = a will also at some point produce

another 1
2|a|2 term. Thus we have,

M1,I2(S) = 2
∑

s∈Z[i]+

|s|≤S

∑
s′∈Z[i]+

s′ consec to s

1

|s|2
.

Now, we can use Theorem 3.1, which tells us how to count consecutive de-

nominators, to rewrite M1,I2(S) further as follows.

M1,I2(S) = 2
∑

s∈Z[i]+

|s|≤S

1

|s|2
∑

s′∈Z[i]+

s′ consec to s

1 (4.1)

= 2
∑

s∈Z[i]+

|s|≤S

1

|s|2
∑
z∈Ωs

(z,s)=1

1

4
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=
1

2

∑
s∈Z[i]+

|s|≤S

1

|s|2

(
φi(s)

|s|2
|Ωs|+Oε (|∂Ωs||s|ε)

)

=
1

2

∑
s∈Z[i]+

|s|≤S

φi(s)

|s|4
|Ωs|+Oε

 ∑
s∈Z[i]+

|s|≤S

1

|s|2−ε
|∂Ωs|


=:

1

2
A+Oε(B), (4.2)

for all ε > 0, where Ωs is the shaded region in figure 3.2 with boundary ∂Ωs as

before. We now aim to estimate A and B.

4.2 The Area of Ωs

The first step we need to take in estimating the main term of M1,I2(S) is to

determine the area of Ωs. We will calculate this as follows.

Proposition 4.1. The area of the region Ωs is given by

|Ωs| = −2|s|2 + I1(|s|)

where I1(|s|) = 8S2
∫ sin−1

(
|s|√
2S

)
0 cos2 u du.

Proof. To find the area of Ωs, consider the circles with equations x2 + y2 = S2

and (x+ |s|)2 + y2 = S2, and call them C1 and C2 respectively. Then the region

between these two circles, the line y = x and the x-axis (as shown in Figure

4.1) will be equal to 1
8
|Ωs|. Now, working in polar coordinates, C1 and C2 have

equations r = S and r = −|s| cos θ + (S2 − |s|2 sin2 θ)
1
2 =: rθ respectively, so

|Ωs| = 8

∫ π
4

0

∫ S

rθ

r dr dθ.

We have∫ S

rθ

r dr =

[
1

2
r2

]S
rθ

=
1

2
S2 − 1

2

(
−|s| cos θ +

(
S2 − |s|2 sin2 θ

) 1
2

)2
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Figure 4.1: The area Ωs. The pink area is one eighth of the whole shaded region.

= −1

2
|s|2
(
cos2 θ − sin2 θ

)
+ |s| cos θ

(
S2 − |s|2 sin2 θ

) 1
2

= |s| cos θ
(
S2 − |s|2 sin2 θ

) 1
2 − 1

2
|s|2 cos 2θ.

So, substituting this back into the integral for |Ωs|, we have

|Ωs| = 4

∫ π
4

0

2

(
|s| cos θ

(
S2 − |s|2 sin2 θ

) 1
2 − 1

2
|s|2 cos 2θ dθ

)
= −4

∫ π
4

0

|s|2 cos 2θ dθ + I1(|s|)

= −4

[
1

2
|s|2 sin 2θ

]π
4

0

+ I1(|s|)

= −2|s|2 + I1(|s|),

where I1(|s|) = 8
∫ π

4

0
|s| cos θ

(
S2 − |s|2 sin2 θ

) 1
2 dθ. Now, into I1(|s|) we substitute

sinu =
|s|
S

sin θ, giving us,

I1(|s|) = 8S|s|
∫ sin−1

(
|s|√
2S

)
0

S

|s|
cosu

(
cos2 u

) 1
2 du

= 8S2

∫ sin−1
(
|s|√
2S

)
0

cos2 u du.
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4.3 First Moment - Main Term Calculation

In this section we prove the proposition below, which details an asymptotic for-

mula for the main term of the first moment. We start by applying Proposition 4.1

and then complete the proof using Abel’s Summation Formula (Theorem 1.7) and

the lemmas from Chapter 2.

Proposition 4.2. For A as defined in (4.2),

A =
π

2
ζ−1
i (2) (8z′′1 − 1)S2 +O (S lnS) ,

where z′′1 = −
∫ 1√

2

0 ln(
√

2u)(1− u2)
1
2du.

Proof. We begin by substituting our value for the area of Ωs from Proposition 4.1

into A, which gives us

A =
∑

s∈Z[i]+

|s|≤S

φi(s)

|s|4
I1(|s|)− 2

∑
s∈Z[i]+

|s|≤S

φi(s)

|s|2
.

We focus first on the second sum, applying Abel’s Summation Formula with

x = S2, f(t) = 1
t

and

a(n) =
∑

s∈Z[i]+

|s|=n
1
2

φi(s),

so that, by Lemma 2.6,

A(t) =
∑

s∈Z[i]+

|s|≤t
1
2

φi(s) =
π

8
ζ−1
i (2)t2 +O

(
t1+κ

)
.

Thus, we have

∑
s∈Z[i]+

|s|≤S

φi(s)

|s|2
=
∑
n≤S2

a(n)

n

= A(S2)f(S2)−
∫ S2

1

A(t)t−2 dt

=
(z1

4
S4 +O

(
S2+2κ

))
S−2 +

∫ S2

1

(z1

4
t2 +

(
A(t)− z1

4
t2
))

t−2 dt
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=
z1

2
S2 +O

(
S2κ
)

+

∫ S4

1

(
A(t)− z1

4
t2
)
t−2 dt

=
z1

2
S2 +O

(
S2κ
)
, (4.3)

where z1 = π
2
ζ−1
i (2) and κ is the exponent from the Gauss Circle Problem, which

satisfies 1
4
< κ < 1

2
.

Now, before moving on to the first term of A, it will be helpful to consider the

sum
∑
s∈Z[i]
|s|≤S

φi(s)
|s|4 . We will apply Abel’s Summation Formula with x = S4, f(t) = 1

t

and

â(n) =
∑
s∈Z[i]

|s|=n
1
4

φi(s),

so that

Â(t) =
∑
s∈Z[i]

|s|≤t
1
4

φi(s).

This combined with Lemma 2.6 gives us,

∑
s∈Z[i]
|s|≤S

φi(s)

|s|4
=
∑
n≤S4

â(n)

n

=
∑
|s|≤S

φi(s)S
−4 +

∫ S4

1

Â(t)t−2 dt

=
(
z1S

4 +O
(
S2+2κ

))
S−4 +

∫ S4

1

(
z1t+

(
Â(t)− z1t

))
t−2 dt

= z1 +O
(
S2κ−2

)
+ z1

∫ S4

1

t−1 dt+

∫ S4

1

(
Â(t)− z1t

)
t−2 dt

= 4z1 lnS + z1 +

∫ ∞
1

(
Â(t)− z1t

)
t−2 dt−

∫ ∞
S4

(
Â(t)− z1t

)
t−2 dt+O

(
S2κ−2

)
.

Define

z′1 :=

∫ ∞
1

(
Â(t)− z1t

)
t−2 dt, (4.4)

and note that it is absolutely convergent and so is well-defined. Note also that

we have ∫ ∞
S4

(
Â(t)− z1t

)
t−2 dt�

∫ ∞
S4

1

t
3
2
−κ

2

dt
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�
[
t
κ
2
− 1

2

]∞
S4

� S2κ−2.

Thus, ∑
s∈Z[i]
|s|≤S

φi(s)

|s|4
= 4z1 lnS + (z1 + z′1) +O

(
S2κ−2

)
. (4.5)

Now, returning to A, we need to estimate
∑
s∈Z[i]
|s|≤S

φi(s)
|s|4 I1. We apply Abel’s Sum-

mation Formula with x = S4, f(t) = I1(t1/4), and a(n) =
∑
s∈Z[i]

|s|=n
1
4

φi(s)n
−1. Then

by (4.5),

A(t) =
∑
s∈Z[i]

|s|≤t
1
4

φi(s)

|s|4
= z1 ln t+ (z1 + z′1) +O

(
t
κ
2
− 1

2

)
.

In addition, by the Fundamental Theorem of Calculus,

f ′(t) = 8S2 cos2

(
sin−1

(
t
1
4

√
2S

))
d

dt

(
sin−1

(
t
1
4

√
2S

))

= 8S2

(
1− t

1
2

2S2

)
t−

3
4

4
√

2S

(
1− t

1
2

2S2

)− 1
2

=
√

2St−
3
4

(
1− t

1
2

2S2

) 1
2

.

Thus, we have,

∫ S4

1

A(t)f ′(t) dt =

∫ S4

1

√
2St−

3
4

(
z1 ln t+ (z1 + z′1) +O

(
t
κ
2
− 1

2

))(
1− t

1
2

2S2

) 1
2

dt

=
√

2z1S

∫ S4

1

t−
3
4 ln t

(
1− t

1
2

2S2

) 1
2

dt

+
√

2 (z1 + z′1)S

∫ S4

1

t−
3
4

(
1− t

1
2

2S2

) 1
2

dt

+O

S ∫ S4

1

t
κ
2
− 5

4

(
1− t

1
2

2S2

) 1
2

dt


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= X1 +X2 +O (S) . (4.6)

Now, substituting sin θ = t
1
4√
2S

,

∫ S4

1

t−
3
4

(
1− t

1
2

2S2

) 1
2

dt = 4
√

2S

∫ π
4

sin−1( 1√
2S

)

cos2 θ dθ

=
√

2S
(π

2
+ 1
)

+O (1)

and so

X2 = (z1 + z′1)(π + 2)S2 +O (S) . (4.7)

Finally, letting u = t
1
4√
2S

,

∫ S4

1

t−
3
4 ln t

(
1− t

1
2

2S2

) 1
2

dt = 16
√

2S

∫ 1√
2

1√
2S

ln(
√

2uS)
(
1− u2

) 1
2 du

= 16
√

2S lnS

∫ 1√
2

1√
2S

(
1− u2

) 1
2 du

+ 16
√

2S

∫ 1√
2

1√
2S

ln(
√

2u)
(
1− u2

) 1
2 du

= 16
√

2S lnS

(∫ 1√
2

0

(
1− u2

) 1
2 du−

∫ 1√
2S

0

(
1− u2

) 1
2 du

)

+ 16
√

2S

∫ 1√
2

1√
2S

ln(
√

2u)
(
1− u2

) 1
2 du

=
√

2 (2π + 4)S lnS +O (lnS)

+ 16
√

2S

∫ 1√
2

0

ln(
√

2u)
(
1− u2

) 1
2 du

− 16
√

2S

∫ 1√
2S

0

ln(
√

2u)
(
1− u2

) 1
2 du

=
√

2 (2π + 4)S lnS − 16
√

2z′′1S +O (lnS) ,

where z′′1 = −
∫ 1√

2

0 ln(
√

2u) (1− u2)
1
2 du > 0. Thus,

X1 = (4π + 8)z1S
2 lnS − 32z1z

′′
1S

2 +O (S lnS) . (4.8)



CHAPTER 4. FORD SPHERES – FIRST MOMENT 78

Now (4.6), (4.7) and (4.8) give us

∑
s∈Z[i]+

|s|≤S

φi(s)

|s|4
I1(|s|) =

1

4

∑
s∈Z[i]
|s|≤S

φi(s)

|s|4
I1

=
1

4

(
A(S4)f(S4)−

∫ S4

1

A(t)f ′(t) dt

)
=

1

4

[(
4z1 lnS + (z1 + z′1) +O

(
S2κ−2

))
(π + 2)S2 −X1 −X2

]
+O (S)

= 8z1z
′′
1S

2 +O (S lnS) .

This, together with (4.3), gives our estimate for A,

A =
π

2
ζ−1
i (2) (8z′′1 − 1)S2 +O (S lnS) .

4.4 First Moment - Error Term Calculation

The final component we require is an estimate for the sum B associated with

(4.2). This will be achieved by splitting the sum over dyadic annuli.

Proposition 4.3. For B as defined in (4.2),

B � S1+ε

for all ε > 0.

Proof. Clearly |∂Ωs| � S so, substituting this into B and splitting the resulting

sum over dyadic annuli,

B =
∑
|s|≤S

|∂Ω|
|s|2−ε

� S
∑
|s|≤S

1

|s|2−ε

� S
∑

k≤log2 S

∑
2k−1≤|s|<2k

1

|s|2−ε
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� S
∑

k≤log2 S

1

2k(2−ε)

∑
2k−1≤|s|<2k

1

� S
∑

k≤log2 S

(
2k
)ε

� S1+ε,

using the fact that ∑
2k−1≤|s|<2k

1 � 22k.

Thus, putting together our estimates for A and B, we have

M1,I2(S) =
π

4
ζ−1
i (2) (8z′′1 − 1)S2 +Oε(S1+ε).

Note that z′′1 ≈ 0.68644 > 1
2
, so 8z′′1 − 1 is positive.



Chapter 5

Ford Spheres – Higher Moments

In this chapter we prove Theorem 1.12, restated here for convenience.

Theorem. 1.12 For each integer k ≥ 2, there exists a constant ξk > 0 with the

property that, for any ε > 0 and for any S ∈ N,

Mk,I2(S) = ξkS +Oε(S2κ+ε),

with 1
4
< κ ≤ 131

416
.

The proof will be split into cases for k = 2 and k > 2. The methods for each

will be mostly the same but there is some difference in the details, making it

worthwhile to consider them separately.

For both the second and higher moments, the proof will follow the same lines

as that of the first moment. However, as we are now dealing with powers of the

distances between the centres of the spheres, we will also require a number of

further results to deal with this. These are detailed in Section 5.1. Furthermore,

if we attempt the same method of proof as we used for k = 1, the error terms in

the corresponding calculations become of the same order of magnitude as what

would otherwise be considered the main terms. However, by more refined lattice

point counting techniques we will be able to prove Theorem 1.12.

In Section 5.2 we prove Theorem 1.12 for the second moment, applying again

our results from Chapters 2 and 3 alongside the new lemmas of the preceding sec-

tion and repeated applications of Abel’s Summation Formula. These results will

then be used again in Section 5.3 to prove Theorem 1.12 for all higher moments.

80
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5.1 Preliminary Results

Before proving Theorem 1.12 it will be constructive to lay out a few results

involving sums over a circle in the complex plane, which will then be applied in

the subsequent sections.

Lemma 5.1. For S ≥ 1 we have that∑
s∈Z[i]

0<|s|≤S

1

|s|2
= 2π logS +O(1).

Proof. Using partial summation and (1.19), we have that

∑
0<|s|≤S

1

|s|2
=
∑
`≤S2

r2(`)

`

=
∑
`≤S2

1

`(`+ 1)

∑̀
j=1

r2(j) +
1

S2 + 1

∑
j≤S2

r2(j)

=
∑
`≤S2

π`+O(`κ)

`(`+ 1)
+
πS2 +O(S2κ)

S2 + 1

= π
∑
`≤S2

1

`+ 1
+O(1)

= 2π logS +O(1).

Lemma 5.2. For S ≥ 1,

∑
s∈Z[i]+

|s|≤S

φi(s)

|s|4
= z1 logS +

z1 + z′1
4

+O(S2κ−2),

where z1 = π
2
ζ−1
i (2) and

z′1 =

∫ ∞
1

 ∑
s∈Z[i]+

|s|≤t1/4

φi(s)− z1t

 t−2 dt

from (4.4).
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The proof of this lemma is included in the proof of Proposition 4.2.

Lemma 5.3. For each k > 2 there is a constant zk > 0 such that, for S ≥ 1,

∑
s∈Z[i]+

|s|≤S

φi(s)

|s|2k
= zk +Ok

(
1

S2(k−2)

)
.

Proof. Since 0 < φi(s) ≤ |s|2, it follows from Lemma 2.8 that

zk =
∑

s∈Z[i]+

φi(s)

|s|2k

is positive and finite. By the same result, we also have that

∑
s∈Z[i]+

|s|≤S

φi(s)

|s|2k
= zk −

∑
s∈Z[i]+

|s|>S

φi(s)

|s|2k

= zk +Ok
(

1

S2(k−2)

)
.

5.2 Proof of Theorem 1.12: k = 2 case

We will begin with the k = 2 case of Theorem 1.12. First of all, recall that the

kth moment is defined for k, S ∈ N by

Mk,I2(S) =
∑

r
s
, r
′
s′ ∈GS

consecutive

(
1

2|s|2
+

1

2|s′|2

)k

We start by expanding the square in the summand defining M2,I2(S)

M2,I2(S) =
∑
r
s
∈GS

#{r′/s′ ∈ GS consecutive to r/s}
4|s|4

+
∑

r
s
, r
′
s′ ∈GS

consecutive

1

2|s|2|s′|2

= Σ1 + Σ2. (5.1)

It is important to keep in mind that the sum definingM2,I2(S) is over unordered
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consecutive pairs r/s and r′/s′ in GS, which is why there is 4 in the denominator

of Σ1 and not a 2.

The sum Σ2 will end up being asymptotically smaller than our main error

term, so we estimate it first. From the characterization of consecutivity provided

in Section 3.3 we know that if a pair s, s′ occurs as a pair of consecutive denom-

inators in GS then there are four possible choices for the corresponding pairs of

numerators. By multiplying by appropriate units we may also assume without

loss of generality that s and s′ lie in Z[i]+, so we have that

Σ2 =
∑

s∈Z[i]+

|s|≤S

∑
s′∈Z[i]+

s′cons to s

1

|s|2|s′|2
.

Although the constant here is not important, for completeness we mention that

we have also divided by an extra factor of 2 to account for the fact that the double

sum on the right hand side counts each pair s, s′ twice. Using Lemma 5.1, we

now have that

Σ2 =
∑

s∈Z[i]+

|s|≤S

∑
s′∈Z[i]+

s′ cons to s

1

|s|2|s′|2

�
∑

s,s′∈Z[i]+

|s|,|s′|≤S

1

|s|2|s′|2

≤

∑
|s|≤S

1

|s|2

2

� log2 S. (5.2)

Now, for Σ1, we have that

Σ1 =
∑

s∈Z[i]+

|s|≤S

∑
s′∈Z[i]+

s′cons tos

1

|s|4

=
1

4

∑
s∈Z[i]+

|s|≤S

1

|s|4
∑

s′∈Ωs∩Z[i]
(s,s′)=1

1, (5.3)

where Ωs = Ωs(S) is the region defined in Section 3.4. Using Möbius inversion



CHAPTER 5. FORD SPHERES – HIGHER MOMENTS 84

on the inner sum gives ∑
s′∈Ωs∩Z[i]

(s,s′)=1

1 =
∑

s′∈Ωs∩Z[i]

∑
d|s,s′

µi(d)

=
∑
d|s

µi(d)
∑

z∈d−1Ωs

1.

For each d, the number of lattice points in d−1Ωs is equal to the number of lattice

points in the circle of radius S/|d| centered at the origin, minus the number of

lattice points in the intersection of the four translates of this circle by ±s/|d| and

±is/|d|. The number of lattice points in each of these two convex regions can be

calculated, via the Gauss circle method, using the machinery in [13], and (see the

comments immediately following [13, Equation (1.1)]) the implied constants in

the resulting error terms can be taken to be the same. This leads to the estimate

∑
z∈d−1Ωs

1 =
|Ωs|
|d|2

+O
(
S2κ

|d|2κ

)
,

and using this in the equation above, we have that

∑
s′∈Ωs∩Z[i]

(s,s′)=1

1 = |Ωs|
∑
d|s

µi(d)

|d|2
+O

S2κ
∑
d|s

|µi(d)|
|d|2κ


=
φi(s)

|s|2
|Ωs|+Oε(S2κ+ε). (5.4)

To briefly explain the estimate used in the error term here, first of all notice that

∑
d|s

|µi(d)|
|d|2κ

=
∏
p|s

(
1 +

1

|p|2κ

)
≤ exp

c1

∑
p|s

1

|p|2κ

 ,

for some constant c1 > 0. Using the Prime Number Theorem for Gaussian integers

(as we did in the proof of Theorem 3.1), there is a constant c2 > 0 with the

property that

∑
p|s

1

|p|2κ
≤

∑
p2≤c2 log |s|

1

|p|2κ
� (log |s|)1−2κ

log log |s|
,
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and since

exp

(
(log |s|)1−2κ

log log |s|

)
�ε |s|ε,

for any ε > 0, this explains the error term in (5.4). Returning to our estimate of

Σ1, we now have that

Σ1 =
1

4

∑
s∈Z[i]+

|s|≤S

φi(s)

|s|6
|Ωs|+Oε

(
S2κ+ε

)

=
1

4
Σ3 +Oε(S2κ+ε). (5.5)

Using the formula for |Ωs| from Section 4.2 (Proposition 4.1), we have that

Σ3 =
∑

s∈Z[i]+

|s|≤S

φi(s)

|s|6
I1(|s|)− 2

∑
s∈Z[i]+

|s|≤S

φi(s)

|s|4
,

where

I1(t) = 8S2

∫ sin−1
(

t√
2S

)
0

cos2 u du.

From Lemma 5.2 we have that∑
s∈Z[i]+

|s|≤S

φi(s)

|s|4
= z1 lnS +

z1 + z′1
4

+O(S2κ−2).

In order to estimate the other sum that appears above we first apply Abel’s

Summation Formula (Theorem 1.7) with x = S6, f(t) = 1/t, and

a1(n) =
∑

s∈Z[i]+

|s|=n1/6

φi(s)

so that, by Lemma 2.6,

A1(t) =
∑

s∈Z[i]+

|s|≤t1/6

φi(s) =
z1

4
t4 +O(t2κ+2)
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This gives us

∑
s∈Z[i]+

|s|≤S

φi(s)

|s|6
=
∑
n≤x

a1(n)f(n)

= S−6
∑

s∈Z[i]+

|s|≤S

φi(s) +

∫ S6

1

A1(t)t−2 dt

=
z1

4S2
+O(S2κ−4) +

3z1

4
− 3z1

4S2
+ z′2 +O(S2κ−4)

=
3z1

4
+ z′2 −

z1

2S2
+O(S2κ−4),

with

z′2 =

∫ ∞
1

(A1(t)− z1

4
t2/3)t−2 dt.

Next we apply Abel’s Summation Formula again, this time with x = S6, f(t) =

I1(t1/6), and

b2(n) =
1

n

∑
s∈Z[i]+

|s|=n1/6

φi(s).

We have that

B2(t) =
∑

s∈Z[i]+

|s|≤t1/6

φi(s)

|s|6
=

3z1

4
+ z′2 −

z1

2t1/3
+O

(
t
κ−2
3

)
, (5.6)

and that

f ′(t) = 8S2 cos2

(
sin−1

(
t1/6√

2S

))
d

dt

(
sin−1

(
t1/6√

2S

))
=

2
√

2

3
St−5/6

(
1− t1/3

2S2

)1/2

.

Therefore,

∫ S6

1

B2(t)f ′(t) dt =
(3z1 + z′2)

3
√

2
S

∫ S6

1

t−5/6

(
1− t1/3

2S2

)1/2

dt

+
2
√

2

3
S

∫ S6

1

t−5/6

(
B2(t)−

(
3z1

4
+ z′2

))(
1− t1/3

2S2

)1/2

dt

= X1 +X2. (5.7)
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Making the substitution sinu = t1/6/(
√

2S), we find that

X1 = 2(3z1 + 4z′2)S2

∫ π/4

sin−1(1/
√

2S)

cos2 u du

=
1

4
(3z1 + 4z′2)(π + 2)S2 −

√
2(3z1 + 4z′2)S +

3z1 + 4z′2
6
√

2S
+O(S−3).

Next let

z′′2 =
2
√

2

3

∫ ∞
1

t−5/6

(
B2(t)−

(
3z1

4
+ z′2

))
dt, (5.8)

which by (5.6) is finite. Using a first order approximation for the function

(1− x)1/2 in the compact subregion {|x| ≤ 1/2} of its interval of convergence,

together with the estimate in (5.6), we have that

2
√

2

3

∫ S6

1

t−5/6

(
B2(t)−

(
3z1

4
+ z′2

))(
1− t1/3

2S2

)1/2

dt

=
2
√

2

3

∫ S6

1

t−5/6

(
B2(t)−

(
3z1

4
+ z′2

))
dt+O

(
1

S2

∫ S6

1

t−5/6 dt

)

= z′′2 +O
(

1

S

)
,

which proves that

X2 = z′′2S +O (1) .

Substituting into (5.7) and using Abel’s Summation Formula now gives that

∑
s∈Z[i]+

|s|≤S

φi(s)

|s|6
I1(|s|) = B2(S6)f(S6)−

∫ S6

1

B2(t)f ′(t) dt

=

(
3z1

4
+ z′2 −

z1

2S2
+O(S2κ−4)

)
(π + 2)S2 −X1 −X2

=

(√
2(3z1 + 4z′2)− z′′2

4

)
S +O(1).

Using these formulas in (5.1) and (5.5) then gives the statement of Theorem 1.12,

with

ξ2 =
3z1 + 4z′2

2
√

2
− z′′2

4
.
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Finally, in order to verify that ξ2 > 0, consider the contribution to Σ1, as written

in (5.3), coming from the s = 1 term. The coprimeness condition on the inner sum

is automatically satisfied and, again using the machinery from [13] (see comments

above relating to the uniformness of the errors terms), we find that

#{s′ ∈ Ωs ∩ Z[i]} ≥ #{s′ ∈ Z[i] : |s| ≤ S, |s− 1| ≥ S} � S.

Therefore M2,I2(S)� S and ξ2 > 0.

5.3 Proof of Theorem 1.12: k > 2 case

Suppose now that k > 2. First we write

Mk,I2(S) =
1

2k

∑
r
s
∈GS

#{r′/s′ ∈ GS consecutive to r/s}
|s|2k

+
1

2k

k−1∑
`=1

(
k

`

) ∑
r
s
, r
′
s′ ∈GS

consecutive

1

|s|2`|s′|2(k−`)

= Σ1 + Σ2. (5.9)

Using Lemmas 5.1 and 2.8, we have that

Σ2 �k

k−1∑
`=1

∑
s∈Z[i]+

|s|≤S

∑
s′∈Z[i]+

s′cons to s

1

|s|2`|s′|2(k−`)

�
k−1∑
`=1

 ∑
s∈Z[i]+

|s|≤S

1

|s|2`


 ∑
s′∈Z[i]+

|s′|≤S

1

|s′|2(k−`)


�k logS. (5.10)

This is asymptotically smaller than what we obtained in the k = 2 case because

the inner sum is divergent only if ` = 1 or k − 1, and in either of these cases the

other exponent appearing in the inner summand, 2(k − `) or 2`, is at least 4.
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Next, using (5.4) we have that

Σ1 =
1

2k−2

∑
s∈Z[i]+

|s|≤S

∑
s′∈Z[i]+

s′cons to s

1

|s|2k

=
1

2k

∑
s∈Z[i]+

|s|≤S

1

|s|2k
∑

s′∈Ωs∩Z[i]
(s,s′)=1

1

=
1

2k

∑
s∈Z[i]+

|s|≤S

φi(s)

|s|2k+2
|Ωs|+Oε

(
S2κ+ε

)

=
1

2k
Σ3 +Oε(S2κ+ε). (5.11)

As before, we write

Σ3 =
∑

s∈Z[i]+

|s|≤S

φi(s)

|s|2k+2
I1(|s|)− 2

∑
s∈Z[i]+

|s|≤S

φi(s)

|s|2k
.

From Lemma 5.3 we have that∑
s∈Z[i]+

|s|≤S

φi(s)

|s|2k
= zk +O

(
1

S2(k−2)

)
,

and for the other sum we first apply Abel’s Summation Formula with x = S2k+2,

f(t) = 1/t, and

ak(n) =
∑

s∈Z[i]+

|s|=n1/(2k+2)

φi(s)

so that

Ak(t) =
∑

s∈Z[i]+

|s|≤t1/(2k+2)

φi(s) =
z1

4
t2/(k+1) +O(t(κ+1)/(k+1)),

to obtain∑
s∈Z[i]+

|s|≤S

φi(s)

|s|2k+2
=
∑
n≤x

ak(n)f(n)
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= S−2−2k
∑

s∈Z[i]+

|s|≤S

φi(s) +

∫ S2k+2

1

Ak(t)t
−2 dt

=
z1

4S2k−2
+O(S2(κ−k)) +

(
k + 1

k − 1

)
z1

4
+O(S2(1−k)) + z′k +O(S2(κ−k))

=

(
k + 1

k − 1

)
z1

4
+ z′k +O(S2(1−k)),

with

z′k =

∫ ∞
1

(Ak(t)−
z1

4
t2/(k+1))t−2 dt.

Next we apply Abel’s Summation Formula again, with x = S2k+2, f(t) =

I1

(
t1/(2k+2)

)
, and

bk(n) =
1

n

∑
s∈Z[i]+

|s|=n1/(2k+2)

φi(s).

We have that

Bk(t) =
∑

s∈Z[i]+

|s|≤t1/(2k+2)

φi(s)

|s|2k+2
=

(
k + 1

k − 1

)
z1

4
+ z′k +O

(
t
1−k
1+k

)
, (5.12)

and that

f ′(t) = 8S2 cos2

(
sin−1

(
t1/(2k+2)

√
2S

))
d

dt

(
sin−1

(
t1/(2k+2)

√
2S

))
=

4
√

2

2k + 2
St−(2k+1)/(2k+2)

(
1− t1/(k+1)

2S2

)1/2

.

Therefore, ∫ S2k+2

1

Bk(t)f
′(t) dt = X1 +X2,

where

X1 =
4
√

2

2k + 2

((
k + 1

k − 1

)
z1

4
+ z′k

)
S

∫ S2k+2

1

t−(2k+1)/(2k+2)

(
1− t1/(k+1)

2S2

)1/2

dt

and

X2 =
4
√

2

2k + 2
S

∫ S2k+2

1

t−(2k+1)/(2k+2)

(
Bk(t)−

(
k + 1

k − 1

)
z1

4
− z′k

)(
1− t1/(k+1)

2S2

)1/2

dt.
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Making the substitution sinu = t1/(2k+2)/(
√

2S), we find that

X1 = 8

((
k + 1

k − 1

)
z1

4
+ z′k

)
S2

∫ π/4

sin−1(1/
√

2S)

cos2 u du

=

((
k + 1

k − 1

)
z1

4
+ z′k

)
(π + 2)S2 − 4

√
2

((
k + 1

k − 1

)
z1

4
+ z′k

)
S +O

(
S−1

)
.

Using (5.12), we have that

X2 = z′′kS +O
(
S−2k+3

)
= z′′kS +O

(
S−2

)
,

with

z′′k =
4
√

2

2k + 2

∫ ∞
1

t−(2k+1)/(2k+2)

(
Bk(t)−

(
k + 1

k − 1

)
z1

4
− z′k

)
dt.

This gives that

∑
s∈Z[i]+

|s|≤S

φi(s)

|s|2k+2
I1(|s|) = Bk(S

2k+2)f(S2k+2)−
∫ S2k+2

1

Bk(t)f
′(t) dt

=

((
k + 1

k − 1

)
z1

4
+ z′k +O

(
S2−2k

))
(π + 2)S2 −X1 −X2

=

((
k + 1

k − 1

)√
2z1 + 4

√
2z′k − z′′k

)
S +O(S−1).

Using these formulas gives the statement of Theorem 1.12, with

ξk =
1

2k

((
k + 1

k − 1

)√
2z1 + 4

√
2z′k − z′′k

)
.

As in the k = 2 case, the contribution to Σ1 from s = 1 is large enough to

guarantee that ξk > 0.
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