
Theoretical and Empirical Evaluation of
Diversity-preserving Mechanisms in

Evolutionary Algorithms
On the Rigorous Runtime Analysis of Diversity-preserving

Mechanisms in Evolutionary Algorithms

Edgar Covantes Osuna

Department of Computer Science
University of Sheffield

This dissertation is submitted for the degree of
Doctor of Philosophy

February 2019

I would like to dedicate this thesis to my loving parents and to all my friends.

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. Some
pieces of this dissertation are based on articles that have been published elsewhere as specified
in Section 1.1.

Edgar Covantes Osuna
February 2019

Acknowledgements

I would like to express my deep gratitude and appreciation to my supervisor Dr. Dirk Sudholt,
I could not think of a better mentor. I would like to thank you for all your support, advice and
for allowing me to grow as a research scientist. I would also like to specially thank Pietro
S. Oliveto for his role as my second supervisor, and my co-authors Gao Wanru and Frank
Neumann. I thank Carsten Witt for his advice and comments on one of the articles in which
one of the chapters of this dissertation is based.

I would also like to thank my PhD buddies from the Algorithms group: Jorge, Alasdair,
Donya, George, Juan Carlos, Dogan and Andrei. I thank as well all the members of the
department that contributed to a enjoyable working atmosphere, specially to Abdullah. To
my friends that I met here and that some have already left to their country of origin or are
working overseas: Mario, Toñao, Alejandro, Ariel, Gerardo, Pablo, Rafael, Andres, Marcos,
Alejandra, Lucy, Juana, Ale, Karla, Elizabeth. And to my friends in México who have made
themselves felt despite the distance: Perla, Juan José, Pedro, Erika, Roberto, Hugo, Jesus,
Cristopherson, Marisol, Dani, Rosendo, Bily, Miguel, Anselmo.

And of course my family, my father, César Covantes Rodríguez, mother, Elvia Yolanda
Osuna Lizárraga, both of my brothers, Gerardo Covantes Osuna, and César Covantes Osuna
and to his wife, Irma G. Tirado Lerma that together they brought to the world the most
recent member of the family, César Alejandro Covantes Tirado, and the rest of my family
deserve my deep gratitude for their endless support and patience during my PhD at Sheffield,
specially to both of my grandmothers, Maria and Tomasa.

I gratefully acknowledge the financial support from the Department of Computer Sci-
ence of The University of Sheffield, and the Consejo Nacional de Ciencia y Tecnología —
CONACYT (the Mexican National Council for Science and Technology) under the grant no.
409151 and registration no. 264342 and the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 618091 (SAGE).

Last but not least, to my favourite pub in Sheffield, Red Deer, and to beer, thank you both
for keeping me sane during all this journey.

Abstract

Evolutionary algorithms (EAs) simulate the natural evolution of species by iteratively ap-
plying evolutionary operators such as mutation, recombination, and selection to a set of
solutions for a given problem. One of the major advantages of these algorithms is that they
can be easily implemented when the optimisation problem is not well understood, and the
design of problem-specific algorithms cannot be performed due to lack of time, knowledge,
or expertise to design problem-specific algorithms. Also, EAs can be used as a first step to
get insights when the problem is just a black box to the developer/programmer. In these
cases, by evaluating candidate solutions it is possible to gain knowledge on the problem at
hand.

EAs are well suited to dealing with multimodal problems due to their use of a population.
A diverse population can explore several hills in the fitness landscape simultaneously and offer
several good solutions to the user, a feature desirable for decision making, multi-objective
optimisation and dynamic optimisation. However, a major difficulty when applying EAs is
that the population may converge to a sub-optimal individual before the fitness landscape is
explored properly.

Many diversity-preserving mechanisms have been developed to reduce the risk of such
premature convergence and given such a variety of mechanisms to choose from, it is often
not clear which mechanism is the best choice for a particular problem. We study the
(expected/average) time for such algorithms to find satisfactory solutions for multimodal and
multi-objective problems and to extract guidelines for the informed design of efficient and
effective EAs. The resulting runtime bounds are used to predict and to judge the performance
of algorithms for arbitrary problem sizes, further used to clarify important design issues from
a theoretical perspective.

We combine theoretical research with empirical applications to test the theoretical recom-
mendations for their practicality, and to engage in rapid knowledge transfer from theory to
practice. With this approach, we provide a better understanding of the working principles
of EAs with diversity-preserving mechanisms. We provide theoretical foundations and we
explain when and why certain diversity mechanisms are effective, and when they are not. It
thus contributes to the informed design of better EAs.

Table of contents

List of figures xv

List of tables xix

List of Algorithms xxii

Nomenclature xxiii

I Introduction and Background 1

1 Introduction 3
1.1 Underlying Publications . 15

2 Runtime Analysis of Evolutionary Algorithms 17
2.1 Fitness Functions . 19

2.1.1 Single-objective Functions . 20
2.1.2 Multi-objective Functions . 26

2.2 Randomised Search Heuristics . 28
2.2.1 Single-Objective Algorithms . 28
2.2.2 Multi-Objective Algorithms . 30

2.3 Methods for the Analysis of Evolutionary Algorithms 30
2.3.1 Standard Mutations . 31
2.3.2 Accounting Method . 32
2.3.3 Typical Run Investigations . 33
2.3.4 Coupon Collector Problem . 35
2.3.5 Fitness-based Partitions . 36
2.3.6 Markov Chains . 39
2.3.7 Family Trees . 41

xii Table of contents

2.3.8 Drift Analysis . 43
2.3.9 Experimental Supplements . 49

3 Population Diversity in Evolutionary Algorithms 53
3.1 A Review of Diversity Mechanism on Evolutionary Algorithms 55
3.2 Diversity Mechanisms for the (µ+1) EA 60

3.2.1 Plain (µ+1) EA . 62
3.2.2 No Genotype Duplicates . 63
3.2.3 No Fitness Duplicates . 64
3.2.4 Deterministic Crowding . 66
3.2.5 Fitness Sharing . 67
3.2.6 Ageing . 72

3.3 Diversity Benefits Crossover . 81
3.3.1 Escaping Local Optima with Diversity Mechanisms and Crossover . 83
3.3.2 Escaping Local Optima with High Mutation Rates and Crossover . 90

3.4 Diversity in Island Models . 91
3.5 Diversity for Multi-Objective Optimisation 96

3.5.1 Diversity for Approximating Pareto-Optimal Sets 96
3.6 Conclusions . 102

II Runtime Analysis of Diversity Mechanisms on Multimodal Opti-
misation 103

4 Runtime Analysis of Niching Mechanisms on TWOMAX 105
4.1 Probabilistic Crowding . 109

4.1.1 Experimental Analysis . 113
4.1.2 Conclusions . 115

4.2 Restricted Tournament Selection . 115
4.2.1 Large Window Sizes Are Effective 115
4.2.2 Small Window Sizes Can Fail . 118
4.2.3 Experimental Analysis . 120
4.2.4 Conclusions . 122

4.3 Clearing . 122
4.3.1 Small Niches . 124
4.3.2 Large Niches . 127
4.3.3 Generalisation to Other Example Landscapes 139

Table of contents xiii

4.3.4 Experimental Analysis . 142
4.3.5 Conclusions . 149

5 Empirical Analysis of Diversity Mechanisms for Multimodal Optimisation 153
5.1 Jansen-Zarges Multimodal Function Classes 154
5.2 Experimental Analysis . 156

5.2.1 Finding Peaks of Equal Height . 157
5.2.2 Finding Peaks with Different Height 159
5.2.3 Escaping from Local Optima . 161

5.3 Conclusions . 163

III Runtime Analysis of Diversity Mechanisms on Multi-Objective
Optimisation 165

6 Diversity-based Parent Selection for Evolutionary Multi-objective Optimisa-
tion 167
6.1 Preliminaries . 170
6.2 Diversity-Based Parent Selection . 172
6.3 On Diversity-Based Progress . 177
6.4 Speedups on ONEMINMAX . 180
6.5 Speedups on LOTZ . 181
6.6 Experimental Analysis . 185
6.7 Comparing Selection Schemes: How Much Greed is Good? 190

6.7.1 Why Highest Diversity Contribution Stagnates 191
6.7.2 NMUAR is Fast but Brittle . 196

6.8 Conclusions . 200

IV Conclusions and Outlook 201

7 Conclusion 203

References 207

Appendix A Mathematical Background 223
A.1 Box and Whiskers Plots (Box Plots) . 223
A.2 Probability Theory . 224

A.2.1 Axioms of Probability . 224

xiv Table of contents

A.2.2 Random Variables and Expectation 226
A.2.3 Chernoff Bounds . 227

A.3 Useful Combinatorial Inequalities . 228

List of figures

2.1 Projection of the Boolean hypercube in two dimensions with some points
located based on the position and number of zeroes and ones. 19

2.2 Sketches of the function ONEMAX with n = 8 on the genotypic space (2.2a)
and on the phenotypic space (2.2b). The position of a point on the genotypic
space is given by the position and number zeroes and ones in the bitstring,
and the position of a point on the phenotypic space is just given by the
number of ones in the bitstring. 22

2.3 Sketch of the function TWOMAX with n = 8. 23
2.4 Example landscapes from the Jansen-Zarges Multimodal function classes.

Where k represents the number of peaks in the landscape and each i-th peak
is defined by its position pi ∈ {0,1}n, its slope ai ∈ R+ and its offset bi ∈ R+

0 . 25
2.5 Sketch of the function ONEMINMAX (OMM) with n = 8. Where the red

points represent the set of all Pareto-optimal decision vectors X∗ called
Pareto set and the blue line represents the Pareto front F∗

n that contains all
the set of all Pareto-optimal objective vectors. 27

2.6 Sketch of the function LOTZ with n = 8. Where the blue lines represents
the different fronts (Fi) that the population (blue points) has to go through
before it reaches the last blue line F∗

n called Pareto front that contains the set
of all Pareto-optima decision vectors X∗ called Pareto set and all the set of
all Pareto-optimal objective vectors. 27

2.7 Illustration of fitness-based partitions with n = 8. The darker the arrow, more
easily is to jump from one partition to another with higher fitness. 36

3.1 Sketch of the function BALANCE (Rohlfshagen et al., 2009). 61
3.2 Sketch of the function LOCALOPTk (Oliveto and Sudholt, 2014). 76
3.3 Sketch of the function PLATEAU (Jansen, 2013). 77
3.4 Sketch of the function JUMPk with n = 18 and k = 5 (Jansen, 2013). 84
3.5 Sketches of common topologies. 92

xvi List of figures

4.1 The normalised best fitness TWOMAX/n reached among 100 runs at the
time both optima were found or the t = 10µn lnn generations have been
reached on TWOMAX for n ∈ {32,64,128, . . . ,16384} by the (µ+1) EA
with probabilistic crowding with µ = 32. 114

4.2 The number of successful runs measured among 100 runs at the time both
optima were found on TWOMAX or t = 10µn lnn generations have been
reached for n = 100 with the (µ+1) EA with restricted tournament selection
with µ ∈ {2,4,8, . . . ,1024}, w ∈ {1,2,4,8, . . . ,128}, genotypic and pheno-
typic distance. 121

4.3 Snapshot of a population at the time both optima were reached, showing the
spread of individuals in branches of TWOMAX for n = 30, σ = 1 and κ = 1.
Where the red (extreme) points represent optimal individuals, blue points
represent niche winners. The rows on the grid represents the fitness value of
an individual and its position on TWOMAX and the vertical lines represent
the partitioned search space (niches) created by the parameter σ 144

4.4 Snapshot of a population at the time both optima were reached, showing the
spread of individuals in branches of TWOMAX for n = 30, σ =

√
n and µ = 8.

Where the red (extreme) points represent optimal individuals, blue points
represent niche winners, and the green points represent cleared individuals.
The rows on the grid represents the fitness value of an individual and its
position on TWOMAX and the columns represent the partitioned search space
(niches) created by the parameter σ . 145

4.5 Snapshot of a population at the time both optima were reached, showing
the spread of individuals in branches of TWOMAX for n = 30, σ = n/2
and κ = 1. Where the red (extreme) points represent optimal individuals,
blue points represent niche winners, and the green points represent cleared
individuals. The rows on the grid represents the fitness value of an individual
and its position on TWOMAX and the columns represent the partitioned
search space (niches) created by the parameter σ 146

4.6 The average number of generations measured among 100 runs at the time
both optima were found on TWOMAX or t = 1 million generations have
been reached for n = 30 and n = 100, σ = n/2, κ = 1 and 2 ≤ µ ≤ κn2/4
for the populations with randomised and biased initialisation (blue and red
line, respectively). 147

List of figures xvii

4.7 The average number of generations measured among 100 runs at the time
both peaks p1 = 0n and p2 ∈ {0n,0n−11,0n−212, . . . ,1n} were found with
a1 = a2 = 1 and b1 = b2 = 0 on the fitness landscape defined by JZ2 or
have reached t = 1 million generations for n = 100, with genotypic clearing
with σ = min{H(p1, p2),n/2} and σ = H(p1, p2)/2, κ = 1 and µ = 32 for
populations with randomised (blue line) and biased (red line) initialisation. . 150

5.1 Fraction of peaks found on JZ1 with peaks of equal slopes a1 = · · ·= ak = 1
and offsets b1 = · · ·= bk = 0 for all (µ+1) EA variants from Table 4.1 among
100 instances generated uniformly at random for each number of peaks
k = {2,4,8, . . . ,64}, µ = 100 and n = 100, stopping runs after 10µn lnn
generations. Squares indicate median values. 158

5.2 Experimental results for all (µ+1) EA variants from Table 4.1 among 100
instances generated uniformly at random for each number of peaks k =

{2,4,8, . . . ,64}, µ = 100 and n = 100, stopping runs after 10µn lnn gener-
ations. Blue/left: fraction of peaks found on JZ2 with peaks with different
heights, b1 . . .bk chosen uniformly at random from {0,1, . . . ,n/3}. Red/right:
normalised best fitness found on JZ2 experiments. Squares indicate median
values. 160

5.3 The average number of generations among 100 runs for finding both peaks
p1 = 0n and p2 = {0n−11,0n−212, . . . ,1n} on the fitness landscape defined
by JZ2 with a1 = a2 = 1 and b1 = b2 = 0 or t = 10µn lnn generations were
reached, for all (µ+1) EA variants mentioned in Table 4.1, using n = 100
and µ = 32. Results for both random and biased initialisation are shown. . . 162

6.1 Rank-based selection schemes and its selection probabilities. 175
6.2 Examples of populations where NMUAR with CDC or HVC may only select

bad individuals from {0n,1n} on ONEMINMAX and/or LOTZ, depending
on the choice of reference point (all non-extreme points have the same score,
NMUAR only selects extreme points). 197

A.1 Visualisation of a box and whisker plot. 224

List of tables

3.1 Classification of diversity mechanisms for balancing between diversification
and intensification (Črepinšek et al., 2013). 56

3.2 Overview of the main results from Dang et al. (2016b). The table represents
the run time bound for best-possible population size µ = 2 for each diversity
mechanism. The results for deterministic crowding only holds for pc =

k/n, for the rest of the mechanisms, the results hold for constant crossover
probability pc < 1. 85

3.3 Overview over the main results from Horoba and Neumann (2010). All
exponential times hold w. o. p. The bounds come with restrictions on the
population size µ and the size of the boxes δ 101

4.1 Overview of runtime analyses for the (µ+1) EA with different diversity
mechanisms on TWOMAX. The success probability is the probability of
finding both optima within (expected) time O(µn logn). Conditions include
restrictions on the population size µ , the sharing/clearing radius σ , the
niche capacity κ , window size w, and µ ′ := min(µ, logn). Results adapted
from Covantes Osuna and Sudholt (2018c). 107

4.2 Success rate measured among 100 runs for the (µ+1) EA with phenotypic
clearing on TWOMAX for n = 30 for the different parameters clearing radius
σ , niche capacity κ and population size µ 143

6.1 Mean (first rows) and STD (second rows) of generations required to find
the Pareto front for SEMO and GSEMO on ONEMINMAX and LOTZ with
n = 100. 186

6.2 Mean (first rows) and STD (second rows) of generations required to find the
Pareto front for SEMO and GSEMO with diversity-based parent selection
methods on ONEMINMAX with n = 100. “Stagnation” indicates a failure
rate larger than 0. 187

xx List of tables

6.3 Mean (first rows) and STD (second rows) of generations required to find the
Pareto front for SEMO and GSEMO with diversity-based parent selection
methods on LOTZ with n = 100. “Stagnation” indicates a failure rate larger
than 0. 188

6.4 Mean (first rows) and STD (second rows) of generations required to find the
Pareto front for the modified GSEMO and diversity-based parent selection
methods on LOTZ with n = 100. “Stagnation” indicates a failure rate larger
than 0. 189

List of Algorithms

1 Structure of an Evolutionary Algorithm 6
2 Randomized Local Search (RLS) . 28
3 (µ+λ) EA . 29
4 (1+1) EA . 29
5 (µ+1) EA . 29
6 SEMO . 30
7 GSEMO . 31
8 (µ+1) EA with no genotype duplicates . 63
9 (µ+1) EA with no fitness duplicates . 65
10 (µ+1) EA with deterministic crowding . 66
11 (µ+1) EA with fitness sharing . 68
12 (µ+1) EA with population-based fitness sharing 70
13 (µ+1) RLS with population-based fitness sharing and deterministic crowding 71
14 Algorithmic Framework of the (µ+1) EA with Ageing 73
15 Static Pure Ageing (Age of New Search Points) 74
16 Static Pure Ageing (Removal Due to Age) 75
17 Stochastic Pure Ageing (Removal Due to Age) 79
18 Hybrid Pure Ageing (Removal Due to Age) 80
19 Scheme of a (µ+λ) GA with mutation rate p, and crossover with probability

pc for maximising f : {0,1}→ R . 82
20 Structure of an island model with migration interval τ (Sudholt, 2015) . . . 92
21 GDEMO . 97
22 Selection for Removal . 98
23 RADEMO . 98
24 (µ+1) EA with probabilistic crowding . 110
25 (µ+1) EA with restricted tournament selection 116
26 (µ+1) EA with clearing . 123
27 Clearing . 124

xxii List of Algorithms

28 Crowding Distance Operator . 174
29 SEMO with diversity-based parent selection 176
30 GSEMO with diversity-based parent selection 176
31 Modified Global SEMO with diversity-based parent selection 183

Nomenclature

Functions

f = O(g) Function f grows at most as fast as g

f = Ω(g) Function f grows at least as fast as g

cp(x) Closest peak, return the index of the closest peak to the search point x in the
context of the Jansen-Zarges Multimodal Function Classes

d(x,y) Distance between x and y

D(t) Depth of a family tree of the (µ+1) EA at time t

E[X] Expectation of the random variable X

f (x) Fitness function

fi(x) The i-th fitness function

fsh(x,P) Shared fitness of individual x in the population P

G
(
x,xopt

)
GENERALISEDMAX function

H(x,y) Hamming distance between x and y for x, y ∈ {0,1}n

JZ1(x) Nearest peak function

JZ2(x) Weighted nearest peak function

logn Logarithm of x to the base 2

lnn Natural logarithm of x, i. e., logarithm of x to base e

f = poly(n) Function f is polynomial

Prob(A) Probability of the event A

xxiv Nomenclature

sh(x,y) Sharing function between x and y

f = o(g) Function f grows slower than g

f = ω(g) Function f grows faster than g

f = Θ(g) Functions f and g have the same order of growth

T(r∗) Family tree with root r∗

u(x) Unitation function

Greek Symbols

α Scaling factor, a positive constant that regulated the shape of the sharing
function in the context of fitness sharing

γ The Euler-Mascheroni constant ≈ 0.577

κ Niche capacity, maximum number of winners that a niche can accept in the
context of clearing

λ Offspring population size

µ Population size

σ Niching radius (sharing radius in the context of fitness sharing or clearing
radius in the context of clearing), size of the niche

τ Migration interval in the context of island models or maximum age in the
context of ageing mechanism

ε Some constant ∈ R+

Other Symbols

ai Slope of the i-th peak

bi Offset of the i-th peak

bi String with i concatenations of the letter b

e Euler’s number e = exp(1) = 2.7182 . . .

F Objective space

Nomenclature xxv

F∗ Pareto front

xopt Global optimum

Hn Harmonic number Hn = lnn+Θ(1)

xt
i The i-th individual or search point at the time t

k Number of peaks

Y Set of local optima

m Number of fitness functions

n Problem size or length of a bitstring

N Set of natural numbers, N= {1,2,3, . . .}

N0 Set of natural numbers including zero

|x|1 Number of 1-bits in individual x

pc Crossover probability

pi Position of the i-th peak

pm Mutation probability

Pt Population at the time t

Qt Offspring population at the time t

R Set of real numbers

R+ Set of positive real numbers, R>0 = {x ∈ R | x > 0}

R+
0 Set of positive real numbers including zero, R≥0 = {x ∈ R | x ≥ 0}

S Search space

w Window size, number of individual that participate in the tournament in the
context of restricted tournament selection

X Decision space in the context of Pareto optimality

X∗ Pareto set

xxvi Nomenclature

|x|0 Number of 0-bits in individual x

Acronyms / Abbreviations

aGA Ageing Genetic Algorithm

AIS Artificial Immune Systems

ASGA Genetic Algorithms with Age Structure

CDC Crowding Distance Contribution

cf. confer or “compare”

CL Clearing

DC Deterministic Crowding

DE Differential Evolution

DOPs Dynamic Optimisation Problems

EA Evolutionary Algorithm

EC Evolutionary Computation

EDO Evolutionary Dynamic Optimisation

e. g., exempli gratia or “for example”

EMO Evolutionary Multi-objective Optimisation

EP Evolutionary Programming

ES Evolutionary Strategies

FEMO Fair population-based Evolutionary Multi-objective Optimiser

FrEAK Free Evolutionary Algorithm Kit

FS Individual-based Fitness Sharing

GA Genetic Algorithm

GDEMO Global Diversity Evolutionary Multi-Objective Optimiser

GP Genetic Programming

Nomenclature xxvii

GSEMO Global Simple Evolutionary Multi-objective Optimiser

HDC Highest Diversity Contribution

HVC Hypervolume Contribution

IBEA Indicator-Based Evolutionary Algorithm

i. e., id est or “that is”

MOEA Multi-Objective Evolutionary Algorithm

MOO Multi-objective Optimisation

NFD No Fitness Duplicates

NGD No Genotype Duplicates

NMUAR Non-Minimum Uniform at Random

NSGA-II Non-dominated Sorting Genetic Algorithm II

PC Probabilistic Crowding

PFS Population-based Fitness Sharing

PL Plain (µ+1) EA

RADEMO Rank- And Distance-based Evolutionary Multi-Objective Optimiser

RLS Randomized Local Search

RTS Restricted Tournament Selection

SEMO Simple Evolutionary Multi-objective Optimiser

SMS-EMOA S Metric Selection Multi-Objective Optimisation Algorithm

SO Single-objective Optimisation

SPEA2 Strength Pareto Evolutionary Algorithm 2

SSSP Single Source Shortest Path Problem

STD Standard Deviation

u. a. r. Uniformly at random

xxviii Nomenclature

w. h. p. With high probability

w. l. o. g. Without loss of generality

w. o. p. With overwhelming probability

Part I

Introduction and Background

Chapter 1

Introduction

Darwinian evolution is intrinsically a robust search and optimisation mechanism. Living
organisms demonstrate optimised complex behaviour at every level: cells, organs, individuals,
and populations (Fogel, 1997). Biology is making continuous progress in the description of
the components that make up living organisms and of the ways in which those components
work together either by chaos, chance, temporality and nonlinear inter activities (Floreano
and Mattiussi, 2008). The evolutionary process can be applied to optimisation problems.
An optimisation problem refers to finding one or more feasible solutions which correspond
to extreme values of one or more objectives. When an optimisation problem involves only
one objective function, the task of finding the optimal solution is called single-objective
optimisation (SO). When an optimisation problem involves more than one objective function,
the task of finding one or more optimum solutions is known as multi-objective optimisation
(MOO).

Compared with SO problems, which have a unique solution, the solution to MOO
problems consists of sets of trade-offs between objectives. The goal of MOO is to generate
these trade-offs. Exploring all these trade-offs is particularly important because it provides
the system designer/operator with the ability to understand and weight the different choices
available to them. The same evolutionary process can also be applied when analytical models
are very complex, and numerical methods are susceptible of being nonconvergent, depending
on the model used, when the optimisation problem is not well understood, and the design of
problem of problem-specific algorithms cannot be performed due to lack of time, knowledge,
or expertise to design problem-specific algorithms. As a result, evolutionary algorithms have
received increased interest, particularly with regard to the manner in which they are applied
for practical problem solving (Lee and El-Sharkawi, 2008).

Evolutionary Computation (EC) is the branch of computer science focusing on algorithms
loosely inspired by the theory of evolution. Natural evolution is a hypothetical population-

4 Introduction

based optimisation process. Simulating this process on a computer results in stochastic
optimisation techniques that can often outperform classic methods of optimisation when
applied to difficult real-world problems. EC is a branch of computational intelligence, it
is also included into the broad framework of bio-inspired heuristics (Lee and El-Sharkawi,
2008; Squillero and Tonda, 2016).

In 1948, Turing (1948) was probably the first to propose a “genetical or evolutionary
search”, and by 1962, Bremermann (1962) had actually executed computer experiments on
“optimisation through evolution and recombination”. More commonly, the birth of EC is set
in the 1960s with the appearance of four independent research lines: Genetic Algorithms
(GA) (Goldberg, 1989; Holland, 1973), Evolution Strategies (ES) (Beyer and Schwefel, 2002;
Schwefel and Rudolph, 1995), Evolutionary Programming (EP) (Fogel, 1995, 1999) and
Genetic Programming (GP) (Koza, 1994). These four main paradigms, together with several
variants proposed over the years, have been grouped under the term Evolutionary Algorithms
(EAs) (Bäck et al., 1997; Eiben and Smith, 2003; Yu and Gen, 2012). For a more complete
overview we refer the reader to a general book on EC by Eiben and Smith (2003) and for a
more detailed overview of in the history of EC on the context of optimisation we refer to
Chapter 1 in Yang (2010).

In ES, the algorithms share many features with the GA, the major similarity between these
two types of algorithms is that they both maintain populations of potential solutions, and use
selection mechanisms for choosing the solutions from the populations. The main difference
is that ES relied on mutation as search operator, GAs rely mainly on operators called
recombination or crossover, and ES is an abstraction of evolution at individual behaviour
level, stressing the behavioural link between the parent population and its offspring, whereas
GAs maintain the genetic link. Both algorithms evaluates the objective function (fitness) of
each solution to guide its search. There is no requirement for other auxiliary knowledge or
particular problem-knowledge.

Similar to ES, EP is a useful method of optimisation when other techniques such as
gradient descent or direct analytical discovery are not possible. Combinatorial and real-valued
function optimisation in which the optimisation surface or fitness landscape is “rugged”,
possessing many locally optimal solutions, are well suited for EP. In GP, each individual
is a computer program. This approach is used as induction to devise a computer program.
This is achieved by using evolutionary operators on candidate programs with a tree structure
to improve the adaptive fit between the population of candidate programs and an objective
function. An assessment of a candidate solution involves its execution.

Aside from the previous four approaches, there is a relatively new population-based
optimisation technique called Differential Evolution (DE) (Storn and Price, 1997). Unlike

5

the conventional evolutionary algorithms that depend on predefined probability distribution
function for mutation process, DE uses the differences of randomly sampled pairs of objective
vectors for its crossover and mutation process. The object vectors’ differences will pass
the objective functions’ topographical information toward the optimisation process with
the intention of providing more efficient global optimisation capability. Another main
characteristic of DE is its ability to search with floating point representation instead of binary
representation as used in many basic EAs such as in GA and ES.

All EAs mentioned before can be applied to virtually any problem that can be formulated
as a function optimisation task. The main steps for any of these algorithms is the candidate
solution representation, variation operators to generate new solutions from the old ones, a
performance metric in order to evaluate the solutions, and finally, some way of selection that
allows the best individuals pass to next generations.

The representation of the candidate solution is commonly named as genotype, or in the
context of GAs, the genetic material of a candidate solution or individual. The multi-set
formed by all these candidate solutions is commonly named as population. Normally this
population is created by generating potential solutions uniformly at random, using previous
knowledge or as a product of another process like any other algorithm.

The solutions in the population are directly manipulated by the variation operators and
can be chosen independent from the problem, the solution representation has to allow the
variation operators the maintenance of the link between parent and offspring. The variation
operators should allow small changes in the structure of a parent and lead to small changes
in the resulting offspring in order to facilitate an understanding of the problem space, and
likewise large changes should engender gross alterations.

The performance metric is commonly named as fitness, it is a measure of how well the
candidate solution is able to solve the target problem. While alternative definitions have been
proposed in literature, we will use the term phenotype as the intermediate form in which the
genotype needs to be transformed into before it is evaluated (Squillero and Tonda, 2016).
Finally, some kind of selection is used to ensure that the best solutions pass to the following
iteration (also called generation). Over iterations of random variation and selection, the
population can be made to converge asymptotically to optimal solutions (Fogel, 1997).

By iteratively applying selection for reproduction, variation operators (mutation and
recombination), and selection for survival, a multi-set (population) of solutions (individuals)
is evolved until a satisfactory solution is found. The strength of these algorithms relies on the
stochasticity of the operators, which when well designed, will lead to an artificial evolution
towards the optimal solution (Pérez Heredia, 2017).

6 Introduction

The idea is to solve an optimisation problem by evolving sets of search points such that
satisfying results are obtained. An EA maintains a population of individuals, Pt = {xt

1, . . . ,x
t
n}

for iteration t := 0 (initialisation). Each individual represents a potential solution to the
problem implemented on the search space S. This search space normally is structured
as a Cartesian product of some other sets (S = S1 × S2 × ·· · × Sn). The most common
cases for theory and practical applications are S = {0,1}n, S = Rn and the permutation
set (S = Sn = {π | π is permutation on {1,2, . . . ,n}}) normally represented as bitstrings of
length n, vectors of n real numbers, and n natural numbers, respectively. In this thesis we
will only focus on the search space or genotype space {0,1}n.

The structure of an EA is shown in Algorithm 1. A population is created with µ

individuals. Each solution xt
i is evaluated (referred to as parents) to give some measure of its

“fitness” given by the objective value of the function to be optimised; one speaks of the fitness
of a solution and refers to the function as fitness function. Then, a new population Qt with
size λ is formed by selecting some parents (selection for reproduction step) and by applying
transforming methods like mutation, which takes one parent as an input and randomly creates
one individual, and/or higher order transformations like crossover, which creates (at least)
one new individual by combining parts from several (two or more) individuals (variation
step). The resulting population Qt is called offspring population.

After creating the offspring population, most often there is some kind of replacement
policy in which µ individuals are selected from the parent and/or the offspring population to
be part of the new population Pt+1, and some are discarded (selection for survival/replacement
step). After the new generation Pt+1 is created, it is checked if some termination criterion is
met. If not, the algorithm starts its cycle starting from the selection for reproduction step. It
is hoped that the best individual represents an optimum (or reasonable) solution at the end of
the evolutionary cycle.

Algorithm 1 Structure of an Evolutionary Algorithm
1: Let t := 0 and initialise the population P0 with µ individuals.
2: Evaluate Pt .
3: while stopping criterion not met do
4: Select a multiset of parents from population Pt .
5: Create an offspring population Qt of size λ by recombining the selected parents.
6: Apply mutation to the offspring population Qt .
7: Select µ individuals from populations Pt+1 = Pt ∪Qt .
8: Evaluate Pt+1 and let t := t +1.
9: end while

Because of the modularity and flexible architecture of the EAs it is not unusual to use
and/or combine different methods for each step. In the following we describe some of the

7

different methods that can be used in each step, and the more important ones for the present
investigation, of course these procedures are not the only ones since there is no limit in
the design of new methods and how to used them in the EA (cf. Jansen (2013) for more
information about different modules and methods for the EAs).

Initialisation

Normally, for the search space S = {0,1}n this process is done purely at random (uniform
initialisation). In some cases, initialisation may use previous knowledge. If there is enough
information or any idea about how a “good” solution may be, it can be initialised accordingly
(e. g., Friedrich et al., 2017) or it can be product of another process like any other heuristic.

Selection

As mentioned before, an EA has two selection procedures: selection for reproduction in
which a set of individuals is selected as parents to undergo reproduction, and selection for
survival, a set of individuals is selected to be part of the next generation. For simplicity we
have merged both selection steps into a single section. Since selection for replacement can
be described as selection for survival, it follows the same idea as selection for reproduction.
Selection is often based on the fitness of the individuals but some approaches may use other
properties like the age of the individual or taking even the population into consideration.
Normally there are two ways to apply selection, by defining the probability to be selected or
selecting all individuals that are needed in one batch.

The simplest method is called uniform selection where individuals are selected uniformly
at random (u. a. r.). However, the original purpose of selection is to mimic the principle of
survival of the fittest, hence it is reasonable that individuals with higher fitness have a higher
probability of being selected, both for mating and for surviving to the next generation. Fol-
lowing this principle, we can find popular selection mechanisms such as fitness-proportional
selection where an individual x from population P is selected with probability f (x)/∑y∈P f (y)
(this method assumes that all fitness values are positive). If differences between values in the
population are very large, fitness-proportional selection behaves almost deterministically. On
the other hand, small differences between values can lead to a uniform selection scheme.

Another method based on favouring higher fitness values is the rank selection, it uses
fitness-proportional selection but it replaces the fitness value of an individual x ∈ P by its rank,
i. e., its position in the list of all individuals of the current population sorted in descending
order with respect to fitness, ties are broken uniformly at random. Tournament selection is
another very common selection mechanism, it selects individuals as winners of tournaments.

8 Introduction

The individuals for the tournaments are chosen uniformly at random, and the winner is put
into the population. This procedure is repeated until the specified number of individuals is
achieved.

There are selection mechanisms where the best individuals are chosen deterministically
from the current population or parent population with size µ and/or from the offspring
population with size λ , e. g., truncation selection: the best individuals are selected with
respect to its fitness, and ties are broken uniformly at random. There are two variants of
truncation selection used for the selection for replacement step. Comma-selection chooses
the best µ individuals from the offspring population. In this case if µ individuals are selected
from λ individuals, λ needs to be chosen greater than µ . This kind of selection is denoted as
(µ,λ). And plus-selection where the best µ individuals are selected from both, the parent
and the offspring population, and it is denoted as (µ+λ). Normally plus-selection has a slight
preference for the offspring, i. e., if the parent and offspring have equal fitness, the offspring
is preferred.

Mutation

Is a variation operator that only uses one individual as input M : {0,1}n → {0,1}n (unary
operator). This operator depends on the structure of the individuals and thus on the search
space. All mutation operators have in common that they tend to create rather small changes.
Typically, mutation uses only the genotypic information of the parent to produce a slightly
different genotype. Two of the most extended mutation operators for the {0,1}n search
space are standard bit mutation or global mutation and k-bit mutation. Standard bit mutation
creates a new offspring by flipping each bit from a parent x independently at random with
probability pm (mutation probability). The most common mutation probability is pm = 1/n,
flipping just one bit on average. In k-bit mutation, an offspring y is created by flipping
exactly k bits from a parent x. Each position of these k bits is chosen uniformly at random,
and is user defined. The most common value for k is 1 and is also known as local mutation.

Crossover

Similar to mutation, this operator cannot be designed independently of the search space.
The difference from mutation is that more than one parent is used. Most operators make
use of two parents (binary operator C : {0,1}n,{0,1}n →{0,1}n), which is clearly closer to
the natural paradigm. For any two parents x1,x2 ∈ {0,1}n, is not unusual for the crossover
operator to create two offspring, one offspring created by assembling pieces of the two
parents and the other with the unused pieces of the two parents.

9

In k-point crossover, the method selects k different positions from {1,2, . . . ,n − 1}
uniformly at random. Let these positions be p1 < p2 < · · · < pk. Then, the offspring y is
defined by copying the first p1 bits from x1, the second p2− p1 from x2, the next p3− p2 bits
from x1, and so on, alternating between x1 and x2. This method can be visualised as having
the two parent bitstrings cut into pieces after each pi-th position. Then the offspring is the
concatenation of the pieces taken alternately from the two parents. The most common forms
of k-point crossover are 2-point crossover and even 1-point crossover. In uniform crossover,
for each bit the value is copied from one of the parents and the decision the bits to be copied
is made independently and with equal probability for each bit.

The idea of crossover is to generate an offspring by inheriting beneficial properties from
both parents. However, the same rationale works for detrimental properties. Although the
research question is not settled, crossover has been proved to be useful for some scenarios (as
we will see in Section 3.3).

Termination Criterion

As the final step of the evolutionary cycle, it decides if the algorithm is stopped or if another
generation is to be started. This criteria can be more or less flexible depending of the
method used. With adaptative termination criteria, it is possible to considerate any kind
of properties like population, fitness values, or statistics; common examples are stagnation
of the population or number of generations since the last improvement. Fixed termination
criteria uses a predefined number of generations or fitness evaluations to stop the algorithm.
And finally, from the theoretical perspective, a no termination criterion is used. This kind
of termination criterion is mainly used in theoretical analysis, the EA runs until the first
time an optimum has been found, this time takes into consideration the number of function
evaluations required to find such global optimum. As mentioned before, this time is called
optimisation time, and it is used to describe how long it is necessary to wait on average in
order to find the optimal solution.

As described before, some modules of the EA may have several parameters that need to
be set but an EA also has global parameters aside from the methods mentioned before. The
value of these global parameters has a direct effect on the complexity of the algorithm. Most
of the empirical and theoretical analyses are focused on providing guidelines of how to set
these global parameters and to explain the complete behaviour of the EA. In this section we
introduce the most basic parameters.

The dimension of the search space n does not belong to the EA process, it is a property
of the search space and thus the fitness function. This parameter is one of the most important
since the performance of the EA depends on the size of the input, and its results are expressed

10 Introduction

in an asymptotic form (see Definition 2.2). One assumes that the size of the input grows to
infinity. Finally, some parameters depends on n like the mutation rate, which often is defined
as 1/n.

Other parameters related to the populations sizes like population size µ and the offspring
population size λ , the number of individuals in the population and the number of offspring
generated in each generation have to be defined during the design phase. Concerning
mutation, the probability to produce an offspring via mutation is defined as probability for
mutation pm. We set this probability to 1, this means that the algorithm always is going
to apply mutation to an individual. Since all of the EAs analysed in this thesis only use
mutation as a variation operator, and mutation is applied with probability 1, we will refer
to the parameter pm as mutation rate, i. e., the probability of each bit in the bitstring is
flipped. And finally, the crossover probability pc, the probability to produce an offspring
via crossover. Any choice pc ∈ [0,1] is possible; the most often recommended choices are
quite large constant values like pc ∈ [0.5,0.8]. In some EAs either crossover or mutation is
applied. In some cases crossover is applied with probability pc and consequently mutation
with probability 1− pc and in other instances, the application of crossover and mutation is
independent and an offspring created by crossover undergo a subsequent mutation.

According to Floreano and Mattiussi (2008), the theory of natural evolution rests on
four pillars: population, diversity, heredity, and selection. It is not possible to speak of
evolution of a single organism. A necessary component of evolution is the existence of a
population, which consists of two or more individuals. Diversity means that the individuals
of the population vary from one another to some extent.

According to Squillero and Tonda (2016), this diversity can be quantified in three different
ways: as a distance metric between individuals; as a measurable attribute of individuals
(individual diversity); as a characteristic of the population as a whole (population diversity).
Using some distance metric it is possible to measure the diversity contribution of an individual
(how far the individual is from the other individuals in the population) or the population (the
average of the individual diversity) (Squillero and Tonda, 2016). In many cases the use of
a distance metric is not necessary to define individual diversity or population diversity, in
some cases a problem related metric can be used like: the number of optimal solutions have
been obtained.

Heredity indicates that individual characters can be transmitted to offspring through
reproduction (Floreano and Mattiussi, 2008), ideally it is desired that the parents inherit their
best features to the next generation of offspring. To get better offspring, it is necessary to
select “good” parents. Selection indicates that only a subset of individuals will be able to
reproduce, and in the same time, that only a subset of individuals will be able to survive

11

and to transmit its characteristics to the future generations. This selection for reproduction
and survival are not completely random, it is regulated by environmental conditions like too
many individuals competing for the available resources, better or faster individuals will have
higher chances of reproduction and survival (Floreano and Mattiussi, 2008).

Considering diversity, many solutions have been proposed to maintain or promote diver-
sity in an EA (Črepinšek et al., 2013; Glibovets and Gulayeva, 2013; Shir, 2012; Squillero
and Tonda, 2016). There are many methods that have been proposed to maintain and/or
promote diversity in an evolutionary algorithm. These mechanisms range from simple ones
like: eliminating duplicates, replacing a fraction of the current population with new generated
solutions (or even replacing the whole population) or varying the selection pressure from an
elitist approach to more relaxed selection approaches to let less fit individuals participate in
the mating process. Other more advanced approaches divide the population into subpopula-
tions like island models, cellular evolutionary algorithms or niching techniques. Given the
plethora of mechanisms to be applied, it is often not clear what the best strategy is. Which
diversity mechanisms work well for a given problem, which don’t, and, most importantly,
why? In particular, the effect of such mechanisms have on search dynamics and performance
are often not well understood.

The main goal of this thesis is to narrow the gap between theory and practice by analysing
diversification components or diversity-preserving mechanisms for population-based EAs
as tools to increase diversification. We want to observe if these EAs can be potentiated or
enhanced with diversity techniques. We want to use the tools and techniques for the analysis
of evolutionary algorithms with any diversity-preserving mechanism. For the case of SO, we
want to analyse the expected time till a diverse set of optima have been found, and for the
case of MOO, we want to analyse the expected time till the set of possible trade-offs between
objectives has been generated or found.

The main contribution of this thesis is the plethora of rigorous theoretical and empirical
results of EA in which we show how and why diversity play a key role. There has been a line
of work comparing various diversity mechanisms on several test functions (we will make
a rigorous review of this line of work in Chapter 3) in the context of various evolutionary
algorithms. The results obtained in this thesis help to get insight into the search behaviour
of evolutionary algorithms in the presence or absence of diversity, and how parameters and
explicit diversity mechanisms affect the performance. These results in particular highlight
which diversity mechanisms are effective for particular problems, and which are ineffective.
More importantly, they explain how to design the most effective evolutionary algorithms for
the problems considered.

12 Introduction

Aside from this introduction, this thesis contains 2 introductory chapters, Chapter 2
introduces the reader to the field of runtime analysis of evolutionary algorithms. In Section 2.1
we describe some prominent fitness functions, we review some other functions in later
sections in the context of different algorithms and desired goals. In that section we describe
the most common functions analysed in the area of runtime analysis, we describe several
single-objective functions with one optimum and functions with more than one optimum
(multimodal functions). We also describe multi-objective functions and some of their
properties.

The most important evolutionary algorithms for this thesis are defined in Section 2.2.
There we have divided the randomised search heuristics in single-objective algorithms and
multi-objective algorithms. Finally, in Section 2.3 we describe some of the methods and tools
from the analysis of randomised algorithms that are adapted to the analysis of evolutionary
algorithms. As these methods will be used throughout this thesis, we normally present an
application example to familiarise the reader with their application. We also make use of these
examples to give a first impression on the asymptotic runtime of evolutionary algorithms on
the example functions defined in Section 2.1.

The second introductory chapter (Chapter 3) provides an extensive survey of the work
done in runtime analysis of diversity on evolutionary algorithms. This literature review is
based on the work done by Sudholt (2018), we extend his survey by adding an extensive
review on the ageing mechanism (commonly applied in the area of artificial immune systems)
on evolutionary algorithms (Section 3.2.6). This review of rigorous theoretical runtime
analyses of evolutionary algorithms cover several algorithmic approaches where diversity
plays a key role, such as results related to implicit operators of evolutionary algorithms
like mutation and crossover or explicit operators embedded to evolutionary algorithms like
avoiding genotypes or phenotype duplicates, dividing the population into subpopulations like
island models, and niching techniques that try to establish niches of similar search points, and
preventing niches from going extinct. Some of the niching techniques reviewed and analysed
in this thesis include deterministic crowding and fitness sharing. Another contribution done
in this thesis is a review of diversity in multi-objective optimisation (Section 3.5). We found
that diversity mechanisms that are effective for one problem may be ineffective for other
problems, and vice versa.

After both introductory chapters we continue with the main contribution of this thesis
and original work from this research. Chapter 4 extends the results presented in Section 3.2
by presenting the runtime analysis of three niching mechanisms on a bimodal function with
two hills with symmetric slopes (branches) with 0n and 1n as global optima called TWOMAX.
In Section 4.1 we analyse the niching mechanism called probabilistic crowding, here the

13

offspring competes against its parent using fitness-proportional selection. We rigorously
prove that this method fails miserably and we include additional experimental results used to
corroborate our theoretical proofs. Probabilistic crowding is not even able to evolve search
points that are significantly better than those found by random search. Section 4.2 contains the
results for restricted tournament selection (RTS), here the offspring competes with the closest
element from w (window size) members selected uniformly at random from the population,
and the best individual from this competition is allowed to pass to the next generation. The
analysis of RTS is divided in 3 sections: Section 4.2.1 provides a positive result on the
example bi-modal function TWOMAX, if w is chosen very large, the evolutionary algorithm
is able to find both optima in the same fashion as deterministic crowding. On the contrary,
in Section 4.2.2, if w is chosen to small, it may be possible that the offspring competes
with an individual that is too different, resulting in a competition between individuals in
different subpopulations, leading to an unwanted replacement which translates into a loss
of diversity. The third section consists of complementary experiments in which we explore
different settings for the population size and the parameter w (Section 4.2.3).

Finally in Section 4.3, we present an extensive analysis on the clearing diversity mech-
anism. The basic idea of this mechanisms is that the search space is divided into niches
(or subpopulations) by a parameter σ , and in each niche there is an individual called the
winner that has its fitness value preserved while the others individuals contained in that niche
have their fitness value cleared or removed. This mechanism allows for both exploitation
and exploration: it allows winners to find fitness improvements, while at the same time
enabling cleared individuals to tunnel through fitness valleys. In fact, cleared individuals are
agnostic to the fitness landscape as they always have the worst possible fitness. Hence cleared
individuals can explore the landscape by performing random walks. As we will show, this
allows the algorithm to escape from local optima with even very large basins of attraction.
As in previous analyses, the results are divided into different sections that explore different
aspects of the algorithm. Section 4.3.1 deals with a small setting for the σ parameter and how
this allows to optimise all functions of unitation when the proper values for other parameters
are chosen, and a proper distance metric is used. Section 4.3.2 deals with a large setting for
σ , and how it can optimise the TWOMAX function. We also provide additional experimental
results used to highlight the strengths of this mechanism.

In Chapter 5 we provide an extensive empirical analysis on the performance of several
diversity-preserving mechanisms on example landscapes for multimodal optimisation. This
analysis include all diversity mechanisms mentioned in Section 3.2 and Chapter 4. We
provide insights into the working principles of these mechanisms by testing their ability to
find many peaks with equal height (Section 5.2.1) and their ability of each mechanism to

14 Introduction

maintain the population diversity when considering peaks with different heights to yield
global and local optima (Section 5.2.2). Finally, the third one focusses on landscapes with
two peaks, we want to test the ability of the diversity mechanisms to deal with different
basins of attraction and to observe which mechanisms are able to escape from local optima
by tunnelling through the fitness valley that separates two peaks (Section 5.2.3). We make
use of previous theoretical results to inform the choice of algorithm parameters and to discuss
in how far our empirical results agree with theoretical results obtained for TWOMAX.

Chapter 6 deals with the analysis of multi-objective evolutionary algorithms (MOEAs).
In this chapter we analyse the performance of well-known MOEAs in the context of diversity-
based parent selection. We introduce parent selection mechanisms that make use of infor-
mation provided by two diversity contribution metrics to select promising individuals for
reproduction. The general framework is based on the idea that individuals in less populated
areas (or poorly explored areas) of the objective space should have better chances to create
new individuals than those in areas where there are several individuals.

We have designed different parent selection schemes with different degrees of strength,
from mild preferences for more appealing parents to very aggressive schemes. All these
parent selection schemes use hypervolume contribution or crowding distance contribution
to select individuals, the higher the contribution the better. Section 6.1 introduces the
algorithmic framework like the MOEAs and functions used for the theoretical analysis.
Section 6.2 provides formal definitions of the parent selection schemes, definitions of the
diversity metrics, and a description of how to modify the plain algorithms by introducing the
diversity-based parent mechanisms into the MOEAs. Section 6.3 establishes the analytical
framework used on the theoretical analysis; here we stablish some general properties that
show how the MOEAs with diversity-based parent selection mechanism can outperform its
plain variant.

The theoretical analysis for both of our example functions is presented in Section 6.4
and 6.5, respectively. In each section we show that it is possible to achieve speedups on the
performance of the algorithms. The theoretical results show that a linear factor can be saved
for the investigated settings. In Section 6.6 we provide experimental results related to the
effectiveness of the parent selection mechanisms. The experiments show that it is possible to
achieve a speedup of one magnitude for problems of size n = 100.

Finally, in Section 6.7 we conclude the chapter by complementing the theory done in
Section 6.4 and 6.5 with more theoretical studies on the effectiveness of greediness in parent
selection. There we show that very extreme schemes can lead to undesired results. This thesis
ends with conclusions and an outlook in Chapter 7 and an appendix containing some useful
mathematical tools collected from the literature needed through all the thesis. In this appendix

1.1 Underlying Publications 15

it is contained basic probability theory needed to understand this thesis, mathematical tools
like Chernoff bounds and some useful inequalities that were used during the writing of this
thesis and from the following underlying publications.

1.1 Underlying Publications

Aside from the literature review provided in Chapters 2 and 3, we provide a list of the main
contributions of this thesis based on the following publications. Authors’ names are sorted
alphabetically. For all joint papers with k authors, this author’s contribution in terms of ideas,
proofs, and writing can roughly be quantified as 1/k.

Chapter 4 is based on the following papers:

1. Covantes Osuna, E. and Sudholt, D. (2018b). On the Runtime Analysis of the Clearing
Diversity-Preserving Mechanism. Evolutionary Computation. To appear. Preprint
available from http://arxiv.org/abs/1803.09715.

A preliminary version was published in:

Covantes Osuna, E. and Sudholt, D. (2017). Analysis of the Clearing Diversity-Preserv-
ing Mechanism. In Proceedings of the 14th ACM/SIGEVO Conference on Foundations
of Genetic Algorithms, FOGA ’17, pages 55–63. ACM.

2. Covantes Osuna, E. and Sudholt, D. (2018c). Runtime Analysis of Probabilistic Crowd-
ing and Restricted Tournament Selection for Bimodal Optimisation. In Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO ’18, pages 929–936.
ACM. Nominated for a best paper award in the track ‘Genetic Algorithms’.

Chapter 5 is based on the following paper:

3. Covantes Osuna, E. and Sudholt, D. (2018a). Empirical Analysis of Diversity-
Preserving Mechanisms on Example Landscapes for Multimodal Optimisation. In
Parallel Problem Solving from Nature – PPSN XV, pages 207–219. Springer Interna-
tional Publishing.

Chapter 6 is based on the following papers:

4. Covantes Osuna, E., Gao, W., Neumann, F., and Sudholt, D. (2018). Design and
analysis of diversity-based parent selection schemes for speeding up evolutionary
multi-objective optimisation. Theoretical Computer Science. To appear. Preprint

http://arxiv.org/abs/1803.09715

16 Introduction

available from http://arxiv.org/abs/1805.01221.

A preliminary version was published in:

Covantes Osuna, E., Gao, W., Neumann, F., and Sudholt, D. (2017). Speeding Up
Evolutionary Multi-objective Optimisation Through Diversity-based Parent Selection.
In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17,
pages 553–560. ACM.

http://arxiv.org/abs/1805.01221

Chapter 2

Runtime Analysis of Evolutionary
Algorithms

In this chapter we will introduce the most important EAs, fitness functions and tools for
the analysis of EAs will be also defined in this chapter. We will like to mention that some
parts of this chapter have been freely adapted from the main three textbooks regarding the
theoretical runtime analysis of EAs: Neumann and Witt (2010), Auger and Doerr (2011) and
Jansen (2013), for any other source we will make explicit reference to each publication.

In the case of runtime analysis, the specific definition of a stopping criterion is often
omitted since the algorithm is considered as an infinite stochastic process. The main interest
is the random time until a global optimum is found, this performance measured is denoted as
runtime or optimisation time (in our case, optimisation time based on maximal fitness), the
time T (number of fitness evaluations) needed for an algorithm to finish its execution.

Definition 2.1 (Optimisation Time). Let {Xt}t≥0 be a stochastic process on the search space
S = {0,1}n and f : S →R a fitness function. The optimisation time T is the first point in time
when the process’ value yields the maximum fitness value in the population, i. e.,

T := inf

{
t ≥ 0 | Xt = argmax

Xt∈S
f (Xt)

}
.

As mentioned before, EAs are optimisation and randomised search heuristics, hence the
question translates to finding the expected time (E[T]) needed to find the optimal solution.
This time is often expressed with asymptotic notation (also known as Landau notation or
“big-Oh” notation) in terms of the problem size n. This reflects the order of growth of the
bound and neglects constant factors or smaller order terms, leading to simplified terms for

18 Runtime Analysis of Evolutionary Algorithms

the bounds (the books by Motwani and Raghavan (1995) and Cormen et al. (2009) give more
details on the following definitions).

Definition 2.2 (Asymptotic Notation). Let f , g : N0 → R+ be two functions, we say that:

• f grows at most as fast as g and write f = O(g) if and only if there exist con-
stants c ∈ R+ and n0 ∈ N, such that for all n ≥ n0 it holds that f (n)≤ cg(n).

• f grows at least as fast as g and write f = Ω(g) if and only if g = O(f).

• f and g have the same order of growth and write f = Θ(g) if and only if f = O(g)
and f = Ω(g).

• f grows faster than g and write f = ω(g) and only if lim
n→∞

g(n)/ f (n) = 0.

• f grows slower than g and write f = o(g) if and only if g = ω(f).

By using asymptotic notation we can focus on the order of growth by abstracting away
some details of this function. Furthermore, it is possible to establish efficiency criteria for
EAs. Generally speaking, a polynomial optimisation time denotes an efficient algorithm
while an algorithm with an exponential optimisation time is inefficient for the considered
problem. Here some notions for inverse polynomial and inverse exponential functions that
will be used mostly for probabilities.

Definition 2.3 (Polynomial/Superpolynomial/Exponential). For a function f : N→ R+, we
say that

• f is polynomial f = poly(n) if f (n) = O(nc) for some constant c ∈ R+
0 .

• f is superpolynomial if f (n) = ω(nc) for every constant c ∈ R+
0 .

• f is exponential if f (g) = Ω

(
2nε
)

for some constant ε ∈ R+.

• f is polynomially small and write f = 1/poly(n) if 1/ f is polynomial.

• f is superpolynomially small if 1/ f is superpolynomial.

• f is exponentially small if 1/ f is exponential.

Since we use the Landau notation to express the expected optimisation time needed to
find the optimal solution in terms of the problem size n and using the efficiency criteria
defined in Definition 2.3, we use the same handy notation for events that are very likely
defined as notions for probabilities by Sudholt (2008).

2.1 Fitness Functions 19

Definition 2.4 (Notions for probabilities, Sudholt, 2008). We say that an event A occurs with
high probability (w. h. p.) if 1−Prob(A) = O

(
n−k) for some k ∈ R+. We say that an event A

occurs with overwhelming probability (w. o. p.) if 1−Prob(A) is exponential small.

2.1 Fitness Functions

In the following we will make use of definitions and conventions that are standard in this
field (see e. g., Pérez Heredia, 2017; Sudholt, 2008). Throughout this thesis, we only consider
the maximisation of pseudo-Boolean functions f : {0,1}n → R. Throughout this thesis n
always denotes the number of bits, µ the population size, and λ the offspring population size.
Although we only consider maximisation, it is straightforward to notice that minimisation
problems can be obtained just by multiplying the fitness function by −1. Elements of the
search space are synonymously called search points, solutions, or individuals in the context
of EAs. For a search point x we often denote x = x1 . . .xn where xi represents the value of
the i-th bit in the bitstring. Thereby, we use the string notation x1 . . .xn as concatenation of
x1,x2, . . . ,xn. In particular, we adopt the widely used notation bi for the i concatenations of
the letter b. Thus, the all-one bitstring of length n can be written as 1n.

Each search point gets assigned a real value by the pseudo-Boolean fitness function
and each search point can be located in the the Boolean hypercube by the number of 1-bits
(vertical position) and the number of 1-bits until the first appearance of a 0-bit (horizontal
position). Figure 2.1 sketches the 2-dimensional projection of the structure of the hypercube
and the location of some points in the hypercube.

0n

10n−1

1n−10

0n−11

1n/20n/2 0n/21n/2

01n−1

1n

Figure 2.1: Projection of the Boolean hypercube in two dimensions with some points located
based on the position and number of zeroes and ones.

One way to define how close or far, equal or different two search points are when studying
pseudo-Boolean functions, is to define some distance (or dissimilarity) metric between search

20 Runtime Analysis of Evolutionary Algorithms

points. The most common distance metric for the Boolean hypercube is the Hamming
distance or also called genotypic distance in the context of dissimilarity metric between two
individuals in the space of genotypes.

Definition 2.5 (Hamming Distance or Genotypic Distance). Given two bitstrings x, y ∈
{0,1}n, the Hamming distance between them is the number of bits that have different values:

d(x,y) := H(x,y) :=
n

∑
i=1

|xi − yi|,

if H(x,y) := 1 we say that x and y are Hamming neighbours.

We define optima with respect to Hamming distance. The term local optimum will be
used for bitstrings without Hamming neighbours of higher fitness that are not global optima.
And global optimum will be used for the search point with the highest fitness.

Definition 2.6 (Local and Global Optima). Given a function f : {0,1}n → R, the set Y of
local optima is given by Y := {y | y ∈ {0,1}n,∀x ∈ {0,1}n : H(x,y) = 1 ⇒ f (y) ≥ f (x)}.
And the global optimum xopt is defined as xopt := argmax{ f (y) | y ∈ {0,1}n}.

Most of the theoretical analyses are made on example functions with specific character-
istics based on natural landscapes that reflects the search space. A single global optimum
can be seen as a “hill-climbing” task where the goal is to reach the top of a “hill”. In cases
of multiple global optimum, the goal is to find regions of the search space where the fitness
points towards a “peak” (this region is informally called “basin of attraction”), and to reach
the top of the peak. Sometimes we are interested in escaping from the basin of attraction of
a suboptimal peak in order to reach the basing of attraction of a better peak. This kind of
behaviour resembles to the need to cross a “valley” with paths of Hamming neighbours with
high fitness surrounded of points of lower fitness (ridges) or paths of Hamming neighbours
with equal fitness values (plateau). We do not present formal definitions for these terms
as they are only used in informal discussions on a high level of abstraction. We normally
will use these terms to refer a particular task and to highlight some of the properties of the
algorithms analysed. We will refer to this high level abstraction as fitness landscape.

2.1.1 Single-objective Functions

When an optimisation problem involves only one objective function, the task of finding the
optimal solution is called single-objective optimisation. In single-objective optimisation,
every solution is mapped to a real value and solutions can always be compared in pairs via
the less or equal relation ≥ on R.

2.1 Fitness Functions 21

2.1.1.1 Unimodal Functions

In cases where a function f only contains exactly one global optimum, f it is called an
unimodal function.

Definition 2.7 (Unimodal Function). A function f is called unimodal if and only if for every
search point x that is not a global optimum there is a Hamming neighbour y of x with
f (y)> f (x).

The GENERALISEDMAX function as defined by Pérez Heredia (2017) simply counts the
number of mismatched bits between a solution x and a given target solution xopt. It represents
an easy hill climbing task since each bit-position’s fitness contains information about the
direction towards the optimum.

Definition 2.8 (GENERALISEDMAX). Let x, xopt ∈ {0,1}n, then

G
(
x,xopt

)
:= n−H

(
x,xopt

)
.

The choice of the target solution xopt does not affect the optimisation process, since the
algorithms studied here are unbiased (i. e., they do not favour flipping 0-bits into 1-bits or
vice versa). Then, the typical choice for the target solution is the all ones bitstring, this way
we introduce the most popular unimodal test function used to study EAs, the function counts
the number of ones in the bitstring x: ONEMAX(x) := GENERALISEDMAX(x,1n).

Definition 2.9 (ONEMAX). The function counts the number of ones in the bitstring x ∈
{0,1}n, then

ONEMAX(x) :=
n

∑
i=1

xi.

The goal of the optimization process is to find the maximum number of ones in a bitstring.
The global optimum is the 1n bitstring (see Figure 2.2). By symmetry, ZEROMAX(x) :=
n−ONEMAX(x) holds for the 0n bitstring.

An example of a function with a ridge landscape is the LEADINGONES function. In this
function the fitness value is defined by the length of uninterrupted sequence of 1-bits starting
at x0. In this function the bits positions are key: bits following the first 0-bit have no effect on
fitness and flipping one 1-bit in the sequence of consecutive bits can yield to a huge fitness
loss. As in the previous case, the choice of the all ones bitstring as target solution does not
affect the optimisation process.

22 Runtime Analysis of Evolutionary Algorithms

0

1

...
n/2−1

n/2

n/2+1

...
n−1

n

1n

1n/20n/2 0n/21n/2

0n

(a) Genotype

ONEMAX(x)

ones0

n/2

n

0 n/2 n

(b) Phenotype

Figure 2.2: Sketches of the function ONEMAX with n = 8 on the genotypic space (2.2a) and
on the phenotypic space (2.2b). The position of a point on the genotypic space is given by
the position and number zeroes and ones in the bitstring, and the position of a point on the
phenotypic space is just given by the number of ones in the bitstring.

Definition 2.10 (LEADINGONES). The function counts the number of 1-bits at the beginning
of the bitstring until the appearance of the first 0-bit. Let x ∈ {0,1}n, then

LEADINGONES(x) :=
n

∑
i=1

i

∏
j=1

x j.

The goal of the optimisation process is to find the bitstring 1n.

2.1.1.2 Multimodal Functions

Functions with several local and global optima of equal or different fitness are commonly
called multimodal. Real optimisation problems often lead to multimodal domains and so
require the identification of multiple optima, either local or global (Sareni and Krahenbuhl,
1998; Singh and Deb, 2006). Multimodality in a search and optimisation problem usually
causes difficulty to any optimisation algorithm in terms of finding the global optimum
solutions. This is because in these problems there exist many attractors in which an algorithm
can become directed to. Finding the global optimum solutions in such a problem becomes a
challenge to any optimisation algorithm.

A well-known multimodal function in the area of runtime analysis is the bimodal function
TWOMAX (also investigated in the context of GAs by Hoyweghen et al., 2002; Pelikan
and Goldberg, 2000). TWOMAX can be seen as a bimodal equivalent of ONEMAX. The
fitness landscape consists of two hills with symmetric slopes (or branches) ZEROMAX and

2.1 Fitness Functions 23

ONEMAX with 0n and 1n as global optima, respectively. In contrast to Friedrich et al. (2009)
where an additional fitness value for 1n was added to distinguish between a local optimum
0n and a unique global optimum, we have opted to use the same approach as Oliveto et al.
(2014), and leave unchanged TWOMAX (see Definition 2.11).

Definition 2.11 (TWOMAX). A bimodal function which consists of two different symmetric
slopes ZEROMAX and ONEMAX with 0n and 1n as global optima, respectively.

TWOMAX(x) := max

{
n

∑
i=1

xi,n−
n

∑
i=1

xi

}
.

In the region of search points with more than n/2 1-bits, the fitness increases with the
number of 1-bits and in the region of search points with less than n/2 1-bits, the fitness
increases with the number of 0-bits. These sets are refereed as branches. The aim is to find a
population containing both optima (see Figure 2.3).

TWOMAX(x)

onesn/2
0

n

n/2 n

Figure 2.3: Sketch of the function TWOMAX with n = 8.

TWOMAX is an example of a function of unitation, which are defined as follows

Definition 2.12 (Function of Unitation). Any function u : {0,1}n → R, where u(x) depends
only on the number of ones in x and is always non-negative. That is, u is entirely defined by
a function f : {0, . . . ,n}→ R+

0 .

In the case of functions of unitation, instead of using Hamming distance between two
search points, often a dissimilarity metric in the space of phenotypes is used (Covantes Osuna
and Sudholt, 2017, 2018b,c; Friedrich et al., 2009; Oliveto et al., 2014). Usually defined
as Euclidean distance between two phenotypes, a phenotypic distance function, allows the
distance function d(·, ·) to depend on the number of ones (see Definition 2.13).

24 Runtime Analysis of Evolutionary Algorithms

Definition 2.13 (Phenotypic Distance). Given two bitstrings x, y ∈ {0,1}n, the phenotypic
distance is defined only on the number of ones:

d(x,y) := ||x|1 −|y|1 |,

where |x|1 and |y|1 denote the number of 1-bits in individual x and y, respectively.

Jansen-Zarges Multimodal Function Classes

Introduced by Jansen and Zarges (2016), the authors addressed the need for more suitable
benchmark functions for the theoretical analysis of EAs on multimodal functions. Their
benchmark functions allow the control of different features like the number of peaks (defined
by their position), their slope and their offset (also called height provided in an indirect way),
while still enabling a theoretical analysis. This benchmark setting is defined in the search
space {0,1}n and it uses the Hamming distance between two bitstrings.

Jansen and Zarges (2016) define their notion of a landscape as the set of peaks k ∈ N
and the definition of the k peaks (numbered 1,2, . . . ,k) where the i-th peak is defined by its
position pi ∈ {0,1}n, its slope ai ∈R+, and its offset bi ∈R+

0 (both slope and offset are used
to influence and modify the fitness value). The general idea is that the fitness value of a search
point depends on peaks in its vicinity and by using the slope and offset of the peaks higher
peaks can “overrule” closer but smaller peaks. The main objective for any optimisation
algorithm operating in this landscape is to identify those peaks: a highest peak in unimodal
optimisation or a collection of peaks in multimodal optimisation. A peak has been identified
or reached if the Hamming distance of a search point x and a peak pi is H(x, pi) = 0. Since
we are considering maximisation, it is more convenient to consider G(x, pi) instead (see
Definition 2.8).

There are three different fitness functions used to deal with multiple peaks in Jansen and
Zarges (2016); we consider the two most interesting function classes JZ1 and JZ2 defined in
the following.

Definition 2.14 (Definition 3 in Jansen and Zarges, 2016). Let k ∈N and k peaks (p1,a1,b1),

(p2,a2,b2), . . . ,(pk,ak,bk) be given, then

• JZ1(x) := acp(x) ·G
(
x, pcp(x)

)
+bcp(x), called nearest peak function,

• JZ2(x) := max
i∈{1,2,...,k}

ai ·G(x, pi)+bi, called weighted nearest peak function,

where cp(x) := argmin
i∈{1,2,...,k}

H(x, pi) is defined by the closest peak to a search point, and G(x, pi)

indicates the proximity of x to pi.

2.1 Fitness Functions 25

The nearest peak function, JZ1, has the fitness of a search point x determined by the
closest peak i = cp(x) that determines the slope ai and the offset bi. In cases where there
are multiple i that minimise H(x, pi), i should additionally maximise ai ·G(x, pi)+ bi. If
there is still not a unique individual, a peak i is selected uniformly at random from those that
minimises H(x, pi) and those that maximises ai ·G(x, pi)+bi.

In Figure 2.4a we show an example landscape defined by the JZ1 function with k = 32
peaks, ai = 1 and bi = 0 for all i peaks (all peaks have the same height). An individual in this
landscape will also looks like a peak and as mentioned before, its fitness will be determined
by the closest peak.

The weighted nearest peak function, JZ2, takes the height of peaks into account. It uses
the peak i that yields the largest value to determine the function value. The bigger the height
of the peak, the bigger its influence on the search space in comparison to smaller peaks.

The landscape defined by JZ2 is more difficult to explore than the landscape defined by
JZ1 due to the influence of higher peaks. In Figure 2.4b we show an example landscape
defined by the JZ2 function with k = 32 peaks, ai = 1 and bi = [0,50]. As can be seen the
height of each peak can vary, an individual in this landscape can easily be trapped by the
influence of higher peaks. If the goal is to find as many peaks as possible, this setting can be
used to analyse the ability of an algorithm to escape from the basin of attraction of higher
peaks in order to find other peaks on the search space.

0

50

100

0 20 40 60 80 100

(a) JZ1, with k = 32, ai = 1 and bi = 0.

0

50

100

150

0 50 100 150

(b) JZ2, with k = 32, ai = 1 and bi = [0,50].

Figure 2.4: Example landscapes from the Jansen-Zarges Multimodal function classes. Where
k represents the number of peaks in the landscape and each i-th peak is defined by its position
pi ∈ {0,1}n, its slope ai ∈ R+ and its offset bi ∈ R+

0 .

26 Runtime Analysis of Evolutionary Algorithms

2.1.2 Multi-objective Functions

In this case, when an optimisation problem involves more than one objective function, the task
of finding one or more trade-offs between solutions is known as multi-objective optimisation,
one searches for a set of these trade-offs instead of a single one.

In our investigations we consider problems f = (f1, . . . , fm):{0,1}n → Rm. Throughout
this thesis, we assume w. l. o. g. that each function fi, 1 ≤ i ≤ m, should be maximised. As
there is no single point that maximises all functions simultaneously, the goal is to find a set
of so-called Pareto-optimal solutions.

Definition 2.15 (Pareto Optimality). Let f : X → F, where X ⊆ {0,1}n is called decision
space and F ⊆ Rm objective space. The elements of X are called decision vectors and
the elements of F objective vectors. A decision vector x ∈ X is Pareto optimal if there
is no other y ∈ X that dominates x. y dominates x, denoted as y ≻ x, if fi(y) ≥ fi(x) for
all i = 1, . . . ,m and fi(y) > fi(x) for at least one index i. A decision vector y weakly
dominates x, denoted by y ≽ x, if fi(y)≥ fi(x), for all i. The set of all Pareto-optimal decision
vectors X∗ is called Pareto set. F∗ = f (X∗) is the set of all Pareto-optimal objective vectors
and denoted as Pareto front.

We consider ONEMINMAX and LOTZ (Leading Ones, Trailing Zeroes) problems
introduced in Giel and Lehre (2010) and Laumanns et al. (2004), respectively. ONEMIN-
MAX generalises ONEMAX function, and LOTZ generalises LEADINGONES function to the
multi-objective case. ONEMINMAX has the property that every single solution represents a
point in the Pareto front and that no search point is strictly dominated by another one. The
goal is to cover the whole Pareto front, i. e., to compute a set of individuals that contains for
each i, 0 ≤ i ≤ n, an individual with exactly i ones.

Definition 2.16 (ONEMINMAX). A pseudo-Boolean function {0,1}n → N2 with the objec-
tive functions

ONEMINMAX(x1, . . . ,xn) :=

(
n

∑
i=1

xi,n−
n

∑
i=1

xi

)
,

where the aim is to maximise the number of ones and zeroes at the same time (see Figure 2.5).

In the case of LOTZ, all non-Pareto optimal decision vectors only have Hamming
neighbours that are better or worse. This fact facilitates the analysis of the population-based
algorithms, which certainly cannot be expected from other multi-objective optimisation
problems. Note that the Pareto front for LOTZ is given by the set of n+ 1 search points
{1i0n−i | 0 ≤ i ≤ n}.

2.1 Fitness Functions 27

OMM2

OMM1

F∗
n

11111111

00000000

0n/21n/2

0

n/2

n

0 n/2 n

Figure 2.5: Sketch of the function ONEMINMAX (OMM) with n = 8. Where the red points
represent the set of all Pareto-optimal decision vectors X∗ called Pareto set and the blue line
represents the Pareto front F∗

n that contains all the set of all Pareto-optimal objective vectors.

Definition 2.17 (LOTZ). A pseudo-Boolean function {0,1}n → N2 defined as

LOTZ(x1, . . . ,xn) :=

(
n

∑
i=1

i

∏
j=1

x j,
n

∑
i=1

n

∏
j=i

(1− x j)

)
,

where the goal is to simultaneously maximise the number of leading ones and trailing zeroes
(see Figure 2.6).

LOTZ2

LOTZ10

n/2

n

0 n/2 n
F1

Fn−2

Fn−1

F∗
n

0∗∗∗∗∗∗1 11110∗∗1

11111111

00000000

11110000

Figure 2.6: Sketch of the function LOTZ with n = 8. Where the blue lines represents the
different fronts (Fi) that the population (blue points) has to go through before it reaches the
last blue line F∗

n called Pareto front that contains the set of all Pareto-optima decision vectors
X∗ called Pareto set and all the set of all Pareto-optimal objective vectors.

28 Runtime Analysis of Evolutionary Algorithms

2.2 Randomised Search Heuristics

The analysis of EAs started with very simple variants. In this section we introduce some
of the most important stochastic search algorithms analysed in the runtime analysis area.
All algorithms are described for the maximisation of a given fitness function f . This
section is divided in two sections, for single-objective optimisation and multi-objective
optimisation. Let us note that not all the algorithms mentioned in the following are subject of
our investigation but for its importance on the area of runtime analysis we choose to mention
them.

2.2.1 Single-Objective Algorithms

Randomised Local Search (RLS) in the binary case produces from a current solution xt ∈
{0,1}n a new one y by flipping a randomly chosen bit (Algorithm 2). Here, the bit-flip
operator refers to the mutation operator and normally this 1-bit mutation it is also known as
local mutation.

Algorithm 2 Randomized Local Search (RLS)
1: Let t := 0 and choose xt ∈ {0,1}n uniformly at random.
2: while stopping criterion not met do
3: Create y by flipping 1 bit chosen uniformly at random in xt .
4: if f (y)≥ f (xt) then xt+1 = y else xt+1 = xt end if
5: Let t := t +1.
6: end while

The most general EA for single-objective optimisation that works with a population size µ

and an offspring population size λ is the (µ+λ) EA (Algorithm 3). This algorithm uses
uniform initialisation and keeps a parent population of size µ . A fitness function describes
the quality of each candidate solution and in each generation, individuals from the parent
population are mutated using standard bit mutation to create the offspring population of
size λ . Then a new population is created by choosing the best µ individuals out of the P∪Q
parent and offspring populations (plus-selection method). In case of ties, the offspring are
preferred over parents. This process continues until the termination condition is satisfied.

Another important EA is the (1+1) EA defined in Algorithm 4; this algorithm is the
most simple and theoretically analysed EA. It can be obtained from Algorithm 3 by set-
ting µ = λ = 1. It starts with a randomly chosen bitstring xt of length n, and the algorithm
produces in each iteration a child by flipping each bit of xt with probability 1/n. As can
be seen, the (1+1) EA can be considered as a variant of the RLS with a different mutation
operator.

2.2 Randomised Search Heuristics 29

Algorithm 3 (µ+λ) EA
1: Let t := 0 and initialise P0 with µ individuals chosen uniformly at random.
2: while stopping criterion not met do
3: Let Qt = /0.
4: for i = 1 to λ do
5: Choose xi from Pt uniformly at random.
6: Create y by flipping each bit in xi independently with probability 1/n.
7: Let Qt = Qt ∪ y.
8: end for
9: Create the new population Pt+1 by choosing the best µ individuals out of the Pt ∪Qt

parent and offspring population.
10: Let t := t +1.
11: end while

Algorithm 4 (1+1) EA
1: Let t := 0 and choose xt ∈ {0,1}n uniformly at random.
2: while stopping criterion not met do
3: Create y by flipping each bit in xt independently with probability 1/n.
4: if f (y)≥ f (xt) then xt+1 = y else xt+1 = xt end if
5: Let t := t +1.
6: end while

Another variant of the (µ+λ) EA with finite population size > 1 is the (µ+1) EA.
This algorithm uses uniform parent selection with population size µ , with standard bit
mutation (and no crossover) and elitist selection for survival. The offspring y replaces a worst
individual z from the population if f (y)≥ f (z) (see Algorithm 5).

Algorithm 5 (µ+1) EA
1: Let t := 0 and initialise P0 with µ individuals chosen uniformly at random.
2: while stopping criterion not met do
3: Choose x ∈ Pt uniformly at random.
4: Create y by flipping each bit in x independently with probability 1/n.
5: Choose z ∈ Pt with worst fitness uniformly at random.
6: if f (y)≥ f (z) then Pt+1 = Pt \{z}∪{y} else Pt+1 = Pt end if
7: Let t := t +1.
8: end while

30 Runtime Analysis of Evolutionary Algorithms

2.2.2 Multi-Objective Algorithms

We want to examine MOEAs that are generalisations of the RLS and the (1+1) EA. Therefore,
we investigate and analyse a simple algorithm called Simple Evolutionary Multi-Objective
Optimiser (SEMO) due to Laumanns et al. (2004).

SEMO starts with an initial solution s ∈ {0,1}n chosen uniformly at random. All non-
dominated solutions are stored in the population P. Then, it selects a solution s uniformly at
random from P, and a new search point s′ is produced by the mutation step which flips one
bit of s chosen uniformly at random. The new population contains for each non-dominated
fitness vector f (s), s ∈ P∪{s′}, one corresponding search point (dominated individuals are
removed from the population), and in the case where f (s′) is not dominated, s′ is added to P
(see Algorithm 6).

Algorithm 6 SEMO
1: Choose an initial solution s ∈ {0,1}n uniformly at random.
2: Determine f (s) and initialize P = {s}.
3: while stopping criterion not met do
4: Choose s uniformly at random from P.
5: Choose i ∈ {1, . . . ,n} uniformly at random.
6: Define s′ by flipping the i-th bit of s.
7: if s′ is not dominated by any individual in P then
8: Add s′ to P, and remove all individuals weakly dominated by s′ from P.
9: end if

10: end while

Applying SEMO to a single-objective optimisation problem, we obtain the RLS where
in each step a single bit is flipped. Giel (2003) has introduced an algorithm called Global
SEMO (GSEMO), which is shown in Algorithm 7. In GSEMO a new solution s′ is created
by flipping each bit from a solution s independently with probability 1/n, then it proceeds in
the same way as SEMO. GSEMO differs from SEMO by using the more general mutation
operator of the (1+1) EA, in this sense GSEMO applied to single-objective optimisation
problems equals the (1+1) EA.

2.3 Methods for the Analysis of Evolutionary Algorithms

In this section, we will discuss some important methods used for the runtime analysis of EAs.
Such methods have already been applied in the field of randomised algorithms (Motwani
and Raghavan, 1995). Many methods are accompanied by examples showing their concrete
application for some the algorithms mentioned in Section 2.2.

2.3 Methods for the Analysis of Evolutionary Algorithms 31

Algorithm 7 GSEMO
1: Choose an initial solution s ∈ {0,1}n uniformly at random.
2: Determine f (s) and initialize P = {s}.
3: while stopping criterion not met do
4: Choose s uniformly at random from P.
5: Define s′ by flipping each bit in s independently with probability 1/n.
6: if s′ is not dominated by any individual in P then
7: Add s′ to P, and remove all individuals weakly dominated by s′ from P.
8: end if
9: end while

In this section we introduce different methods for the time complexity analysis of EAs.
We introduce the methods used throughout this thesis, and we illustrate them by providing
examples where algorithms mentioned in Section 2.2 are analysed on some example functions.
Some parts of the following subsections have been freely adapted from the main three
textbooks regarding the theoretical runtime analysis of EAs: Neumann and Witt (2010),
Auger and Doerr (2011) and Jansen (2013), and the previous writen works: Sudholt (2008)
and Pérez Heredia (2017). For any other source we will make explicit reference to each
publication.

2.3.1 Standard Mutations

As mentioned in Section 2.2, most of the EAs studied in theoretical runtime analyses use
standard mutations as a variation operator. The operator creates a new individuals by flipping
each bit from the selected parent with probability pm := 1/n. Let us remember that the
mutation probability is always set to 1, in this setting, pm refers to the mutation rate. Because
of its relevance, it is important to gain some insight of the characteristics of this operator.
This section is based on Section 2.3.1 from Sudholt (2008), where all these properties have
been mentioned.

Using the nomenclature from the algorithms defined in Section 2.2.1, the selection for
reproduction chooses an individual x. An individual y is create by flipping each bit in x
independently with probability 1/n. The number of bits changed due to mutation can be
measured using the Hamming distance. So the change from x to y can be measured by
H(x,y) := k ≥ 1, then the probability that the mutation creates y from x is(

1
n

)k

·
(

1− 1
n

)n−k

.

32 Runtime Analysis of Evolutionary Algorithms

This probability is bounded from above by (1/n)k. For the lower bound
(
1/enk), it can be

obtained by (1−1/n)n−k ≥ (1−1/n)n−1 ≥ 1/e with e := exp(1) := 2.7182 . . . by Lemma
A.16 in the appendix.

Any search point with Hamming distance k from x have the same probability of being
generated of (

n
k

)
·
(

1
n

)k

·
(

1− 1
n

)n−k

.

By Lemma A.19,
(n

k

)
≤ nk/k! yields 1/k! as upper bound. The following lemma concentrate

the properties define above.

Lemma 2.18 (Lemma 2.3.1 in Sudholt, 2008). Consider a standard mutation of a search
point x and let 1 ≤ k ≤ n. The probability that a specific search point with Hamming distance
k to x is created is bounded from below and above by

1
enk ≤

(
1
n

)k

·
(

1− 1
n

)n−k

≤ 1
nk .

The probability that an arbitrary search point with Hamming distance k is created is(
n
k

)
·
(

1
n

)k

·
(

1− 1
n

)n−k

≤ 1
k!

The expected time until one of the events described in Lemma 2.18 with probability p
happens is geometrically distributed with parameter p. From Definition A.14, the expected
waiting time equals 1/p. The expected waiting time for a specific k-bit mutation is at least nk

and at most enk, and the expected waiting time for a mutation flipping k-bits is at least k!

2.3.2 Accounting Method

This method is part of the field of amortised analysis for the analysis of algorithms. With
amortised analysis, it is possible to show that the average cost of an operation is small, if we
average over a sequence of operations, even though a single operation within the sequence
might be expensive. An amortised analysis guarantees the average performance of each
operation in the worst case. We will base this section in Section 17.2 in Cormen et al. (2009).

In the accounting method, different operations can have different “charges”, with some
operations charged more or less than they actually cost. The amount charged to an operation
is called amortised cost. The most common analogy used in this scenario is: when the
amortised cost is higher than the actual cost of an operation, the difference is saved as a

2.3 Methods for the Analysis of Evolutionary Algorithms 33

credit, and when the amortised cost is lower than the actual cost of an operation, the credit
saved from previous operations can be used to pay the deficit on the cost.

For this method it is necessary to choose the amortised costs of operations carefully.
Choosing the correct parameters for the accounting method requires as much knowledge of
the problem and the complexity bounds one is attempting to prove. The main requirement
when analysing with amortised costs is to ensure that the total amortised cost of a sequence of
operations provides an upper bound on the total actual cost of the sequence. For example, let
say that the actual cost of the i-th operation is ci and the amortised cost of the i-th operation
is ai; it is necessary to ensure

n

∑
i=1

ai ≥
n

∑
i=1

ci (2.1)

for all n operations. As mentioned before, the credit used to pay for the deficit cost is the
difference between the total amortised cost and the total actual cost (∑n

i=1 ai −∑
n
i=1 ci), and

by inequality (2.1) we ensure that the total credit is not negative all the times. If this condition
is not fulfilled, then the total amortised costs incurred at the i-th operation would be below
than the total actual cost at the i-th operation; for the sequence of operations up to the i-th
operation, the total amortised cost would not be an upper bound on the total actual cost.

We use this method in Chapter 6 to bound the time required to create desired offspring
by selection of a parent and by mutation. The main idea is to count the expected number
of mutations required to create an individual from a parent selected for mating. The sum
(upper bounds) on all these times across all 0 ≤ i ≤ n, is used to estimate the expected total
number of generations needed for SEMO and GSEMO to find all solutions in the Pareto set
on ONEMINMAX and LOTZ in the context of diversity-based parent selection.

2.3.3 Typical Run Investigations

Typical runs were introduced in the analysis of EAs (Wegener, 2002) following the consider-
ation that sometimes the “global behaviour of a process” is predictable with high probability
contrary to the local behaviour which instead, is quite unpredictable. It is often necessary to
track the typical behaviour of an EA by dividing the process into i phases which are long
enough to assure that some event happens with probability pi and does not happen with
probability 1− pi.

According to Sudholt (2008), the total runtime can be estimated by the sum of times spent
in all phases. By dividing the overall runtime in i phases it is possible to divide the search
into specific goals, these goals can be specific behaviours of the algorithm or problem-based.
The main benefit is that a carefully specified goal for phase i allows a more detailed analysis
of the following phases. For example, when looking for an upper bound, the goal of phase i

34 Runtime Analysis of Evolutionary Algorithms

may imply that then the goal of phase i+1 is reached efficiently. This phase division is also
useful to make the runtime analysis easier to understand; the whole analysis is divided into
different sub-analyses with specific details and ideas in order to solve the sub-task, and by
combining all the sub-analysis together, the complete analysis can be obtained. By careful
specification of phases and their corresponding goals, it is possible to obtain strong results
on the runtime distribution of an EA (Wegener, 2002).

The following theorem is an example application for SEMO (Algorithm 6) on LOTZ
(Definition 2.17). Here, the analyses is divided into two phases; the first phase covers the
time until the first Pareto-optimal point is found and the second phase stops if the entire
Pareto set is found.

Theorem 2.19 (Adapted from Lemma 1 and 2 in Laumanns et al., 2004). The expected time
for SEMO to cover the whole Pareto front on LOTZ is Θ

(
n3).

Proof. For the first phase let us consider the time until the first Pareto-optimal is found. Using
the notation from Definition 2.15 and Algorithm 6, SEMO starts with a single individual s in
the population, and only one individual s′ can be created due to 1-bit mutation that either
produces an individual that dominates s or it is dominated by s. Hence if an offspring is
accepted, it will replace the parent from which it is produced if and only if s ∈ Fi and s′ ∈ Fj

with i < j (i. e., s′ belongs to a better front). Since this can only happens by flipping one
specific bit (increase the number of leading ones or trailing zeroes) with probability 1/n, the
waiting time to leave Fi is O(n). The time until F∗ is reached is O

(
n2) since there are at most

O(n) such steps necessary.
Once we have reached the Pareto front, the goal of the next phase consists in finding all

the individuals in the Pareto set. As the population is a subset of the Pareto front, only these
individuals can create a new Pareto-optimal point. Let i be the current number of individuals
found on the Pareto front. A new individual on the front is created if the leading ones or the
trailing zeroes is improved; this can be achieved by sampling one individual from the i with
probability of at least 1/i and at most 2/i (two individuals that can produce a new individual
in opposite directions), and the probability of a subsequent successful mutation is at least
1/n and at most 2/n.

Hence, by summing up the expected runtimes for finding the (i+1)-th Pareto-optimal
solution which is at most in and at least i/2 ·n/2 = in/4, we bound the waiting time until
the entire Pareto set is found by at most ∑

n−1
i=1 ni = n3/2− n2/2 and at least ∑

n−1
i=1 ni/4 =

n3/8−n2/8.

2.3 Methods for the Analysis of Evolutionary Algorithms 35

Here, as well as in several other studies, we will make use of this method to derive
upper bounds for SEMO and GSEMO on ONEMINMAX and LOTZ in the context of
diversity-based parent selection in Chapter 6.

2.3.4 Coupon Collector Problem

Occupancy problems are very important stochastic processes and are the core of the analyses
of many randomized algorithms ranging from data structures to routing in parallel computing.
In such problems we define m objects, normally referred as “balls” being randomly assigned
to one of n distinct classes, normally referred as “bins”. In other words, each ball is placed in
a bin chosen independently, uniformly at random, and normally the problem is translated
to questions like: what is the maximum number of balls in any bin? what is the expected
number of bins with k balls in them (Motwani and Raghavan, 1995)?

An important variant of the occupancy problem is the one known as coupon collector’s
problem. Suppose that a certain product contains one of n different coupons. Once you obtain
one of every type of coupon, you can exchange them for a prize. Assuming that the coupon
in each product is chosen independently and uniformly at random from the n possibilities
and you do not collaborate with others to collect the coupons, how many products must you
buy before you obtain at least one of every type of coupon (Mitzenmacher and Upfal, 2005)?
The formal definition of the coupon collector problem is given below (Doerr, 2012).

Theorem 2.20 (Coupon Collector). The expected time to collect all n coupons is nHn, where
Hn := ∑

n
i=1 1/i is the n-th Harmonic number (see Lemma A.17). Since Hn = lnn+Θ(1), the

coupon collector needs an expected time of n lnn+Θ(n).

Proof. Let X be a random variable that represents the number of products bought until at
least one of every type of coupon is obtained. Now determine E[X]. Xi is a geometric random
variable representing the number of products bought while i different coupons have been
obtained, then X = ∑

n
i=1 Xi. The probability of obtaining a new coupon is Probi = (n− i)/n.

By Definition A.14 we got

E[Xi] =
1

Probi
=

n
n− i

.

And by linearity of expectation (see Theorem A.9), we have that

E[X] = E

[
n

∑
i=1

Xi

]
=

n

∑
i=1

E[Xi] =
n

∑
i=1

n
n− i

= n
n

∑
i=1

1
i
.

Thus, for the coupon collector’s problem, the expected time required to obtain all n
coupons is n lnn+Θ(n).

36 Runtime Analysis of Evolutionary Algorithms

This method is useful when analysing elitist algorithms on functions of unitation. We
show an example of its application by analysing RLS (Algorithm 2) on the ONEMAX function
(see Definition 2.9).

Theorem 2.21. The expected optimisation time for the RLS starting from 0n on ONEMAX

is nHn = n lnn+Θ(n).

Proof. Let i denote the number of 1-bits in the current solution. By local mutations, it can
only create Hamming neighbours. The algorithm can only create an improvement if one of
the n− i bits (the remaining 0 bits) are flipped creating an individual with higher ONEMAX

fitness. Since each bit has a probability of being flipped of 1/n, the probability of flipping
one of the remaining n− i bits is (n− i)/n, exactly as the coupon collector problem. Using
Theorem 2.20 completes the proof.

2.3.5 Fitness-based Partitions

This simple method has been used for a wide class of problems. We assume that we are
considering a stochastic search algorithm that works in each iteration with at least one solution
that produces at least one offspring. All variants of (µ+λ) EA fit into this scenario. Assume
that we are working in a search space S and consider w. l. o. g. a function f : S→R that should
be maximized. S is partitioned into disjoint sets A1, . . . ,Am such that A1 < f A2 < f · · ·< f Am

holds, where Ai < f A j means that f (a)< f (b) holds for all a ∈ Ai and all b ∈ A j. In addition,
Am contains only optimal search points. An illustration is given in Figure 2.7, here we have
partitioned the search space S ∈ {0,1}n into the sets A1, . . . ,A8 where the best individuals
point towards to A8.

A1

A2

A3

A4

A5

A6

A7

A8

Prob(leave Ai)≥ si

fit
ne

ss

Figure 2.7: Illustration of fitness-based partitions with n = 8. The darker the arrow, more
easily is to jump from one partition to another with higher fitness.

We denote for a search point x ∈ Ai by Prob(x) the probability that in the next step
a solution x′ ∈ Ai+1 ∪ ·· · ∪Am is produced. Let Probi = mina∈Ai Prob(x) be the smallest

2.3 Methods for the Analysis of Evolutionary Algorithms 37

probability of producing a solution with a higher partition number (Neumann and Witt, 2010).
Here we show the formal definition of the fitness-based partition method (Wegener, 2002).

Theorem 2.22 (Fitness-based Partition Method in Wegener, 2002). For two sets A,B ⊆
{0,1}n and fitness function f let A < f B if f (a)< f (b) for all a ∈ A and all b ∈ B. Consider
the (µ+λ) EA and a partition of the search space into non-empty set A1, . . . ,Am such that

A1 < f A2 < f · · ·< f Am

and Am only contains global optima. Let si be a lower bound on the probability of creating a
new offspring in Ai+1 ∪·· ·∪Am, provided the population contains a search point in Ai. Then
the expected number of generations for the (µ+λ) EA to find an optimum is bounded by

m

∑
i=1

1
si
.

As an example of its application, we apply the method to the analysis of the (1+1) EA on
ONEMAX already investigated by Droste et al. (2002).

Theorem 2.23. The expected optimisation time for the (1+1) EA on ONEMAX is O(n logn).

Proof. When analysing unitation functions, it is natural to partition the space in sets depend-
ing on the number of ones of a bitstring. So let’s consider a set Ai with i ones. Then we can
calculate the lower bound on the probability Probi to reach a partition A j where j > i. It is
just necessary to flip one of the n− i zeroes to one, and to leave the remaining bits unchanged.
Since each bit has a probability of 1/n of being flipped and not being flipped of (1−1/n), the
probability of flipping one of the zero bits to one is (n− i)/n and the probability of leaving
the remaining bits unchanged is (1−1/n)n−1. Hence the probability is bounded from below
as follows

Probi ≥
n− i

n
·
(

1− 1
n

)n−1

≥ n− i
en

.

The inequality follows because according to Lemma A.16, (1− 1/n)n−1 ≥ 1/e. So by
Theorem 2.22, the expected optimisation time is at most

n−1

∑
i=0

1
pi

≤
n−1

∑
i=0

en
n− i

= en
n

∑
i=1

1
i
≤ en · (lnn+1) = O(n logn).

Now, we would like to mention that since we are using O-notation, constant factors are
usually ignored or omitted. Changing from one base of a logarithm to another (lna = loga

loge)
changes the value of the logarithm by a only a constant factor. Computer scientists find 2

38 Runtime Analysis of Evolutionary Algorithms

to be the most natural base for logarithms because so many algorithms and data structures
involve splitting a problem into two parts (Cormen et al., 2009). From now one we will use
this convention and we will make use of constant terms when needed.

Another example of the application of the fitness-based partitions method but on a
population-based EA it is the analysis of the (µ+1) EA on ONEMAX already investigated in
Witt (2006).

Theorem 2.24 (Adapted from Theorem 2 from Witt, 2006). The expected optimisation time
for the (µ+1) EA with µ = poly(n) on ONEMAX is O(µn+n logn).

Proof. The proof follows the progress to the optimum by the potential L, defined as the
maximum ONEMAX value of the current population. Let us start by mentioning that for the
resulting optimisation time T , it is necessary to add µ function evaluations for the initial
population, so the overall number of function evaluations is O(µ +T). In the following we
will define the value for T .

In order to increase L, it is necessary to select one of the existing i individuals with L ones.
Since each individual has at least n−L zeroes, with probability of being selected of i/µ ,
then considered probability is bounded below by

i
µ
· n−L

n
·
(

1− 1
n

)n−1

≥ i(n−L)
eµn

Now, the objective is to increase number of individuals with the current best fitness from 1
to min{µ,n/(n−L)}. However, the (µ+1) EA can produce replicas of individuals. If the
number of best individuals is i, the probability of selecting one of the best i individuals is at
least i/µ , and the probability of leaving the remaining bits untouched of (1−1/n)n ≥ 1/(2e),
then probability of creating a clone of a best individual is bounded below by i/(2eµ).

If a replica is generated, this new individual replaces a worst individual and increases the
number of best individuals with L ones. Now assume pessimistically that L does not increase
until we have at least min{µ,n/(n−L)} best individuals. The expected time for this is at
most

⌈n/(n−L)⌉−1

∑
i=1

2eµ

i
≤ 2eµ ln

(
en

n−L

)
.

The expected waiting time for increasing the number of current best is

2eµ

n−1

∑
L=0

ln
(

en
n−L

)
= 2eµ ln

(
ennn

n!

)
≤ 2eµ log

(
e2n)= 4eµn = O(µn)

2.3 Methods for the Analysis of Evolutionary Algorithms 39

as upper bound (using Stirling’s formula to estimate n!≥ (n/e)n, see Lemma A.18). Now, af-
ter the desired number of individuals with value L has been obtained, the time for increasing L
is at most

eµn
min{µ,n/(n−L)} · (n−L)

=
eµn

min{µ(n−L),n}
≤ eµn

µ(n−L)
+

eµn
n

.

Hence, the expected waiting time to increase all L ones is at most

n−1

∑
L=0

(
eµn

µ(n−L)
+

eµn
n

)
≤ en ln(en)+ eµn = O(µn+n logn),

and the total expected runtime is at most O(µ)+O(µn)+O(µn+n logn) = O(µn+n logn).

2.3.6 Markov Chains

In this section we will describe the stochastic model called Markov chain used to describe
a sequence of possible events in which the probability of each event depends only on the
state attained in the previous event. We will base the present section on the definitions and
representations defined in Sections 6.2 and 7.1 from Motwani and Raghavan (1995) and
Mitzenmacher and Upfal (2005), respectively.

A Markov chain M is a discrete-time stochastic process defined over a set of states S in
terms of a matrix P of transition probabilities. The set S is either finite or countable infinite.
Consider a sequence of random variables X0,X1, . . . , defined on state-space S and suppose
that the set of possible values of these random variables is 0,1, . . . ,M. It will be helpful
to interpret Xt as being the state of some system at time Xt , and in accordance with this
interpretation, we say that the system is in state i at time t if Xt = i. The sequence of random
variables is said to form a Markov chain if, each time the system is in state i, there is some
fixed transition probability—call it pi j—that the system will next be in state j, given that the
current state is i. That is, for all i, j ∈ S, we have 0 ≤ pi j ≤ 1, and ∑ j pi j = 1.

An important property of a Markov chain is the memorylessness property: the future
behaviour of a Markov chain depends only on its current state, and not on how it arrived
at the present state. This follows from the observation that the transition probabilities pi j

depend only on the current state i. We will denote by Xt the state of the Markov chain at time
t; thus, the sequence {Xt} specifies the history or the evolution of the Markov chain. The
memorylessness property can be stated more formally as follows:

Prob(Xt+1 = j | Xt = i,Xt−1 = it−1, . . . ,X1 = i1,X0 = i0) = Prob(Xt+1 = j | Xt = i) = pi j.

40 Runtime Analysis of Evolutionary Algorithms

A Markov chain (indeed, a random walk) need not have a prespecified initial state; in
general, its initial state X0 is permitted to be chosen according to some probability distribution
over S. Of course, an initial probability distribution includes as a special case the deterministic
specification that the initial state X0 be i. Given a distribution for the initial state X0, we have
a probability distribution for the history {Xt}. For states i, j ∈ S, define the t-step transition
probability as pt

i j = Prob(Xt = j | X0 = i). Given an initial state X0 = i, the probability that
the first transition into state j occurs at time t is denoted by rt

i j and is given by

rt
i j = Prob(Xt = j, and, for 1 ≤ s ≤ t −1, Xs ̸= j | X0 = i).

Also, for X0 = i, the probability that there is a visit to (transition into) state j at some point
time t > 0 is denoted by fi j, and is given by

fi j = ∑
t>0

rt
i j.

And the expected number of time steps to reach state j starting from state i is denoted by hi j

and is given by
hi j = ∑

t>0
t · rt

i j

for fi j = 1, and hi j = ∞ otherwise. Now, it is convenient to arrange the transition probabilities
pi j in a square array as follows: 

p00 p01 . . . p0M

p10 p11 . . . p1M
...

...
pM0 pM1 · · · pMM


Such an array is called a matrix. Knowledge of the transition matrix and of the distribution

of X0 enables us, in theory, to compute all probabilities of interest. For instance, the joint
probability mass function of X = 0, . . . ,Xn is given by

Prob(Xn = in,Xn−1 = in−1, . . . ,X1 = i1,X0 = i0)

= Prob(Xn = in | Xn−1 = in−1, . . . ,X0 = i0)Prob(Xn−1 = in−1, . . . ,X0 = i0)

= pin−1,inProb(Xn−1 = in−1, . . . ,X0 = i0),

2.3 Methods for the Analysis of Evolutionary Algorithms 41

and continual repetition of this argument demonstrates that the preceding is equal to

pin−1,in pin−2,in−1 · · · pi1,i2 pi0,i1Prob(X0 = i0).

An attempt of building a general framework for analysing the average hitting times of
EAs by using the theory of Markov chains was made by He and Yao (2003). However,
the generality of this approach was at the cost of its applicability. Although they derived
explicit solutions for some case studies, the authors recognised that in general it might very
difficult to solve the proposed equations. These general limitations in deriving expected
time expressions from the transition matrix highlight the necessity of introducing other
randomised algorithm analysis tools that may be used as “tricks” to gather information about
the Markov process without having to build the exact Markov chain model.

Another method based on Markov chain theory was presented by Sudholt (2011b). Here,
the author exploited the link between runtime and mixing time and applied the coupling
technique to derive estimations of the algorithm’s runtime. In Chapter 4, we will partly use
this approach and the above introduced concepts from Markov chain theory.

2.3.7 Family Trees

In this section we analyse the dynamics within the population by means of so-called family
trees. Parts of this section are taken from Covantes Osuna and Sudholt (2018b), which will
be presented in Chapter 4 for the analysis of the choice of the population size for the clearing
diversity-preserving mechanism (Section 4.3).

The analysis of EAs with family trees has been introduced by Witt (2006) for the analysis
of the (µ+1) EA (Algorithm 5). According to Witt, a family tree is a directed acyclic graph
whose nodes represent individuals and edges represent direct parent-child relations created by
a mutation-based EAs. After initialisation, for every initial individual r∗ there is a family tree
containing only r∗. We say that r∗ is the root of the family tree T(r∗). Afterwards, whenever
the algorithm chooses an individual x ∈ T(r∗) as parent and creates an offspring y out of x, a
new node representing y is added to T(r∗) along with an edge from x to y. That way, T(r∗)
contains all descendants from r∗ obtained by direct and indirect mutations.

There may be family trees containing only individuals that have been deleted from the
current population. As µ individuals survive in every selection, at least one tree is guaranteed
to grow. A subtree of a family tree is, again, a family tree. A (directed) path within a family
tree from x to y represents a sequence of mutations creating y out of x. The number of edges
on a longest path from the root r∗ to a leaf determines the depth of T(r∗).

42 Runtime Analysis of Evolutionary Algorithms

Witt (2006) showed how to use family trees to derive lower bounds on the optimisation
time of mutation-based EAs. Suppose that after some time t the depth of a family tree T(r∗)
is still small. Then typically the leaves are still quite similar to the root.

Lemma 2 in Witt (2006) bounds the probability for having random family trees with large
depth. It states that with overwhelming probability, a family tree of the (µ+1) EA becomes
no deeper than the total number of mutations performed in a single run. The tree becomes
wide, but a flat tree means that on any path from the root, few mutations occur.

Here we make use of Lemma 1 in Sudholt (2009) (which is an adaptation from Lemma 2
and proof of Theorem 4 in Witt, 2006) to show that the individuals in T(r∗) are still concen-
trated around r∗. If the distance from r∗ to all optima is not too small, then it is unlikely that
an optimum has been found after t steps.

Lemma 2.25 (Adapted from Lemma 1 in Sudholt, 2009). Let r∗ be an individual entering the
population in some generation t∗. The probability that within the following t/λ generations
some y∗ ∈ T(r∗) with H(r∗,y∗)≥ 8t/µ is 2−Ω(t/µ).

In the following we will just refer to t generations instead of t/λ since the (µ+1) EA
only creates just one offspring and we will describe a general lower bound for functions with
a unique global optimum. This lower bound will be useful to prove a lower bound for the
(µ+1) EA on the ONEMAX function.

Theorem 2.26 (Adapted from Theorem 4 in Witt, 2006). Let f : {0,1}n →R be an arbitrary
function with a unique global optimum, let µ = poly(n), then the expected optimisation for
the (µ+1) EA on f is Ω(µn+n logn).

Proof. Let us start proving the lower bound Ω(n logn). For this case a small population
µ ≤ (logn)/2 hold. Consider an initial individual x that has a bit i ∈ 1, . . . ,n that differs from
the optimal. This i bit from individual x differs from the optimum with probability 1/2, and
with probability (1/2)µ ≥ n−1/2 all initial individuals in the population have this bit different
from the optimal. Since this probability holds for any bit position i, the expected number of
bits that are not set correctly in any individual of the initial population is bounded below by
n ·n−1/2 = n1/2. By Chernoff bounds (cf. Lemma A.15), at least

√
n/2 bits are different in

all initial individuals with probability 1−2−Ω(
√

n). Therefore, assuming that there are
√

n/2
different bits, the probability that at least one of these bits is never flipped within the first
t := (n−1)(lnn/2) generations is bounded below by

1−

(
1−
(

1− 1
n

)(n−1)(lnn/2)
)√

n/2

≥ 1−
(

1− 1√
n

)√
n/2

≥ 1− e−1/2,

2.3 Methods for the Analysis of Evolutionary Algorithms 43

which implies that t steps are required with probability at least (1− e−1/2 −2−Ω(
√

n)) · (n−
1)(lnn/2) = Ω(1) ·Ω(n lnn) = Ω(n logn).

Now for the lower bound Ω(µn), we define a larger population size µ > (logn)/2. We
consider the first s := cµn generations, where c > 0 is some small constant. The idea is that
in s steps, each family tree created by the (µ+1) EA does not contain nodes labelled with
optimal individuals with high probability. We know that the probability to have a family tree
of depth greater than 3cn is bounded above by 2−Ω(n) (Lemma 2 in Witt, 2006). This implies
that the expected depth of any family tree is bounded above by 3cn (since µ = poly(n)).

For family tress whose depth is bounded by 3cn, each offspring is the result of standard bit
mutation, the Hamming distance between any two search points on the same path or sequence
is bounded by the number of bits flipped which is at most 3cn. By applying Chernoff bounds
(cf. Lemma A.15) with respect to the upper bound 4cn, we obtain that the probability of
an individual of Hamming distance at least 8cn to r∗ emerging on a particular path is at
most e−4cn/3. Taking the union bound over all possible paths in the family tree still gives a
failure probability of 2−Ω(n) (Lemma 2.25). We see that in only 8cn function evaluations the
optimum is not found with probability close to 1. This implies that the expected optimisation
time for the (µ+1) EA on f is at least Ω(µn).

The total expected runtime is at least Ω(µn+n logn).

The general lower bound in Theorem 2.26 covers a wide range of unimodal functions.
Since ONEMAX is a function with a unique global optimum, Theorem 2.24 and Theorem 2.26
imply the following corollary.

Corollary 2.27. The expected optimisation time for the (µ+1) EA with µ = poly(n) on ONE-
MAX is Θ(µn+n logn).

2.3.8 Drift Analysis

Drift analysis dates back to Hajek (1982) by studying the stochastic drift, i. e., the expected
change of a stochastic process’ value.

Definition 2.28 (Stochastic Drift). Let {Xt}t≥0 be a stochastic process over a finite state
space Ω. The drift is defined as ∆(Xt , t) := E[Xt −Xt+1 | Xt].

Then it was introduced in the study of the computational complexity of EAs and ran-
domised algorithms by He and Yao (2001). In this thesis we will only use drifts that do
not depend on the current time. Hence, from now on we will write ∆(Xt) for the sake of
simplicity and on the following definition. Given a Markov process {Xt}t≥0 over a search

44 Runtime Analysis of Evolutionary Algorithms

space S and a distance function g : S →R+
0 mapping each state to a non-negative real number,

the one-step drift at time t of the Markov process is defined as

∆(Xt) = g(Xt)−g(Xt+1).

The drift ∆(Xt) represents the random decrease in distance to the optimum obtained by
the algorithm in one step at time t. This decrease is the rate of change in position with
respect to time, the drift is the expected rate of change of the stochastic process. The idea
behind drift analysis is quite simple. If the current process is at distance d from the optimum
and at each step there is an improvement (i. e., a positive drift) towards the optimum of at
least δ > 0, then the optimal solution will be found in at most d/δ steps. We are interested
in the first hitting time T of a target state with g-value 0. A natural example is to choose g
as the Hamming distance of the population to a global optimum or in the context of typical
runs, define g as a some sort of distance to the goal of the current phase.

There are several methods available in the literature that can be used to define the g-value.
These methods are called additive (He and Yao, 2001), multiplicative (Doerr et al., 2012),
variable drift (Johannsen, 2010) and negative (Oliveto and Witt, 2011, 2012) drift theorems.
The main motivation in the development and use of this methods it is based on the idea that
it is easier to estimate the drift of a random sequence rather than using a Markov chain

The additive drift will use constant bounds for the real drift, whereas a multiplicative
drift requires a progress which multiplicatively depends on the current potential value. The
variable drift is an generalisation of the previous two drift theorems where the drift is
monotonically increasing with the current state. The negative drift is considered in cases
where the expected drift is negative on some interval, then the algorithm is moving in
expectation away from the optimum rather than towards it.

2.3.8.1 Additive Drift

In order to derive upper or lower bounds on E[T], it is not necessary that δ describes the
drift exactly. If δ is a lower bound for the drift and nevertheless δ > 0, then we can derive
an upper bound E[T]≤ E[g(x0)]/δ . Symmetrically, if δ is an upper bound for the drift and
δ > 0, a lower bound E[T]≥ E[g(X0)]/δ can be shown.

Both bounds (upper and lower) have been derived in separate studies. The upper bound
can be found in Lemma 6 in Wegener and Witt (2005) and the lower bound in Lemma 12 in
Jägersküpper (2007). We use Theorem 2.3.8 from Sudholt (2008) that extends the results
from He and Yao (2004) with bounds for the unconditional expected first hitting time E[T].

2.3 Methods for the Analysis of Evolutionary Algorithms 45

Theorem 2.29 (Additive Drift, Sudholt, 2008). Consider a Markov process {Xt}t≥0 with
state space S and a function g : S → R+

0 . Let T := inf{t ≥ 0 : g(Xt) = 0}.

1. If there exists δ > 0 such that for every time t ≥ 0 and every state Xt with g(Xt)> 0
the condition E[g(Xt)−g(Xt+1) | Xt]≥ δ holds, then

E[T | X0]≤
g(X0)

δ
and E[T]≤ E[g(X0)]

δ
.

2. If there exists δ ∈ R+ such that for every time t ≥ 0 and every state Xt with g(Xt)> 0
the condition E[g(Xt)−g(Xt+1) | Xt]≤ δ holds, then

E[T | X0]≥
g(X0)

δ
and E[T]≥ E[g(X0)]

δ
.

Let us show an example of its application, we analyse the (1+1) EA on the ONEMAX

function. This setup will help us as a baseline for the following drift theorems.

Theorem 2.30. The expected optimisation time of the (1+1) EA on ONEMAX is O
(
n2).

Proof. Let xt be the current search point in generation t. We choose the distance function
as the distance of missing ones from the optimum g(xt) := n−ONEMAX (xt). If the initial
solution x0 has i ones, it is enough to increase the number of ones by not flipping non
of the i ones (with probability (1− 1/n)i) and flipping one of the 0-bit is flipped (with
probability 1/n). This event has probability at least 1/(en) and then g(xt+1) = g(xt)−
1. As the ONEMAX-value cannot decrease, this implies E[g(xt)−g(xt+1)] ≤ 1/(en) if
ONEMAX(xt)> 0. Invoking Theorem 2.29 with δ := 1/(en) yields the upper bound

E[T]≤ E[g(X0)]

δ
≤ n

1/(en)
= e ·n2 = O

(
n2).

2.3.8.2 Multiplicative Drift

If the potential used is not properly defined, the drift can yield too loose results for the
runtime. The multiplicative drift theorem is inspired by the multiplicative weight decrease
method (Arora et al., 2012) introduced and used to slightly improve the constants (Doerr
et al., 2012). The multiplicative drift theorem is tailored towards applications where there is
a logarithmic factor in the runtime bound, a slowdown that seems to appear naturally as EAs
approach the optimum.

The multiplicative drift theorem was extended to also include a probability tail bound
in addition to an upper bound on the expected runtime. This latest version is stated as
follows (Doerr and Goldberg, 2010).

46 Runtime Analysis of Evolutionary Algorithms

Theorem 2.31 (Multiplicative Drift, Doerr and Goldberg, 2010). Let {Xt}t≥0 be a sequence
of random variables taking values in some set S. Let g : S → R+

0 and assume that gmax :=
max{g(x) | x ∈ S} exists. Let T := min{t ≥ 0 : g(Xt) = 0}. If there exists δ > 0 such that

E[g(Xt+1) | g(Xt)]≤ (1−δ)g(Xt)

then
E[T]≤ 1

δ
(1+ lngmax)

and for every c > 0

Prob
(

T >
1
δ
(lngmax + c)

)
≤ e−c

Let us show a case study for the multiplicative drift theorem for the (1+1) EA on
ONEMAX.

Theorem 2.32. The expected optimisation time of the (1+1) EA on ONEMAX is at most
en(1+ lnn).

Proof. Let Xt be the number of 0-bits at time t. Each of those Xt bits has a probability of being
mutated of 1/n and leaving the remaining 1-bits unchanged with probability (1−1/n)n−Xt .
Hence, the probability of creating an individual with 1-bit more is bounded as follows:

Prob(Xt −Xt+1 | Xt)≥
Xt

n
·
(

1− 1
n

)n−Xt

≥ Xt

en
≥ 1

en
.

This follows by using (1−1/n)n−Xt ≥ 1/e since n−Xt < n and Xt ≥ 1. Finally, this implies

E[Xt+1 | Xt]≤
(

1− 1
en

)
Xt .

Applying the multiplicative drift theorem (Theorem 2.31) with δ = 1/en and gmax = n we
obtain a runtime of E[T]≤ en(1+ lnn).

2.3.8.3 Variable Drift

The variable drift theorem allows any drift E[Xt −Xt+1 | Xt = k]≥ h(k), as long as h(k) is
monotone increasing. This assumption is sensible, since one expects that, in general, an EA
slows its progress when is approaching the optimum. However, there can be drift expressions
which are not monotone increasing. The following theorem is a straightforward extension of
the variable drift theorem (Johannsen, 2010) towards reaching any state smaller than some

2.3 Methods for the Analysis of Evolutionary Algorithms 47

threshold a. It can be derived with simple adaptations to the proof in Rowe and Sudholt
(2014).

Theorem 2.33 (Generalised Variable Drift, Johannsen, 2010). Consider a stochastic process
X0,X1, . . . on {0,1, . . . ,m}. Suppose there is a monotonic increasing function h : R+ → R+

such that
E[Xt −Xt+1 | Xt = k]≥ h(k)

for all k ∈ {a, . . . ,m}. Then the expected first hitting time of the set {0, . . . ,a−1} for a ∈ N
is at most

a
h(a)

+
∫ m

a

1
h(x)

dx.

Again, we exemplify the use of the variable drift on the same problem, (1+1) EA on
ONEMAX, to show that it outperforms both the multiplicative and additive drift.

Theorem 2.34 (Adapted from Theorem 3 from Doerr et al., 2011). The expected runtime of
the (1+1) EA on ONEMAX is at most en lnn−0.369n+O(1).

Proof. We apply Theorem 2.33 with Xt defined to be the number of 0-bits at time t. Now
we bound the expected number of 0-bits flipped into 1-bits in one iteration. Note that the
probability that the number of 1-bits increases by i is at least the probability that i 0-bits are
flipped while no 1-bit is flipped. Let Xt = x, then we have

E[Xt −Xt+1 | Xt]≥
x
n

(
1− 1

n

)n−x

.

Note that h(x) is monotone increasing in x, let it be our h-function in the Variable Drift
(Theorem 2.33), so h(x) := x

n

(
1− 1

n

)n−x
, a = 1 and m = n. Assuming that initialisation is at

the 0n string E[T]≤ E[T | X0 = n] and hence

E[T]≤ 1
h(1)

+
∫ n

1

1
h(x)

dx

=
n(

1− 1
n

)n−1 +n
(

1− 1
n

)−n ∫ n

1

(
1− 1

n

)x

x
dx

≤ n(
1− 1

n

)n−1 +n
(

1− 1
n

)−n ∫ n

1

e−x/n

x
dx (2.2)

Since this is a case study, we use the upper bound defined in the proof of Theorem 3 in
Doerr et al. (2011)

n
(

1− 1
n

)−n ∫ n

1

e−x/n

x
dx = n

(
1− 1

n

)−n(
−γ + lnn+

e−1
n

−
∫ n

1

e−x

x
dx
)
.

48 Runtime Analysis of Evolutionary Algorithms

Note that
(
1− 1

n

)−n
=
(
1+ 1

n−1

)n ≤ e
(
1+ 1

n−1

)
and γ ≈ 0.577 being the Euler-Masche-

roni constant. Thus, by introducing this back to Equation (2.2), and by Theorem 2.33, we
have

E[T]≤ n
(

1− 1
n

)1−n

+ne
(

1+
1

n−1

)(
−γ + lnn+

e−1
n

−
∫ n

1

e−x

x
dx
)

≤ n+ne
(
−γ + lnn+

e−1
n

)
= en lnn−n(eγ −1)+ e(e−1).

2.3.8.4 Negative Drift

If the expected drift is negative in some interval, then the algorithm is moving in expectation
away from the optimum rather than towards it. Instead of deriving upper bounds to show
the efficiency of an algorithm, the negative drift shows the inefficiency of algorithms by
providing an exponential lower bound. However, this is not enough to prove exponential
lower bounds on the runtime. To this end, also the probability that the process may perform
large jumps towards the optimum should be proven to be low. Various drift theorems for the
obtainment of exponential lower bounds have been devised (i. e., Giel and Wegener, 2003;
He and Yao, 2001).

Compared to previous versions, the following theorem with simplified drift conditions
was presented by Oliveto and Witt (2011, 2012). There are two simple requirements for
an algorithm to be inefficient: the drift must be smaller than a negative constant and the
probability of large jumps must be low.

Theorem 2.35 (Negative Drift, Oliveto and Witt, 2011, 2012). Consider a Markov process
X0,X1, . . . on {0, . . . ,m} with transition probabilities pi, j and suppose there exist integers
a,b with 0 < a < b ≤ m and ε > 0 such that for all a ≤ k ≤ b the drift towards 0 is

E[k−Xt+1 | Xt = k]<−ε (2.3)

Further assume there exist constants r,δ > 0 (i. e., they are independent of m) such that for
all k ≥ 1 and all d ≥ 1, the probability of moving forward and backwards a distance d from
k is

pk,k±d ≤ r
(1+δ)d , (2.4)

where the notation “pk,k±d ≤ x” is a shorthand for “pk,k+d ≤ x and pk,k−d ≤ x”. Let T be
the first hitting time of a state at most a, starting from X0 ≥ b. Let ℓ= b−a. Then there is a

2.3 Methods for the Analysis of Evolutionary Algorithms 49

constant c > 0 such that
Prob

(
T ≤ 2cℓ/r

)
= 2−Ω(ℓ/r).

Theorem 2.35 is usually sufficient to prove results for the (1+1) EA. A more general
version of this simplified drift theorem tailored towards the analysis of population-based EAs
was introduced and applied to the analysis of an EA with fitness-proportional selection for
parent selection (Neumann et al., 2009).

The negative drift theorem is used in Section 4.1 for the (µ+1) EA with a niching method
called probabilistic crowding (which is basically fitness-proportional selection). In that
section it is proven that this (µ+1) EA variant is not able to find the 1n bitstring on ONEMAX

and no optimum on TWOMAX for any population size µ w. o. p. in polynomial time.

2.3.9 Experimental Supplements

The main focus of this thesis is to try to close the gap between empirical and theoretical
fields. We perform rigorous theoretical analyses accompanied by experimental supplements.
Both fields use artificially designed functions to highlight characteristics of the studied EAs
when tackling optimisation problems. The goal is to develop new ideas for the design of new
variants of EAs and other search heuristics (Jansen, 2013).

Most of the analyses and comparisons made between diversity-preserving mechanisms
are assessed by means of empirical investigations using complex benchmark functions and
algorithmic frameworks (Sareni and Krahenbuhl, 1998; Singh and Deb, 2006). Experimental
investigations face two major difficulties, nondeterminism and arbitrariness of environmental
conditions (Preuss, 2015). Nondeterminism due to the stochastic nature of the algorithm can
lead to varying results in quality and required effort to achieve some task. This complicates
the measure and evaluation of the algorithm performance. In this sense, the definition of an
outcome (success, failure or stagnation) is non-trivial, and it may result in a difficult task if
the experimenter is not familiar or does not have enough experience with the algorithm.

In the case of the arbitrariness of environmental conditions, this is related to the parame-
ters to adjust, the test problems used to test the algorithm, and the performance metric used
to evaluate the algorithm. A experimental setting can only analyse a tiny subset of possible
setups; in this scenario the practitioner is forced to make many restrictive decisions before
the first results are obtained. Again, the definition of all these factors reside in the experience
and knowledge of the experimenter.

Most of the theoretical analysis is made on simpler example functions with clear and
concrete structure so that they are easy to understand. And yet they are defined in a formal
way and allow for the derivation of theorems and proofs allowing us to develop our knowledge

50 Runtime Analysis of Evolutionary Algorithms

about EAs in a sound scientific way. There are examples where empirical investigations are
used to support theoretical runtime analyses (Covantes Osuna et al., 2018; Covantes Osuna
and Sudholt, 2017, 2018b,c; Friedrich et al., 2009; Oliveto et al., 2014). These experiments
can be used to provide information for problem dimensions that may not be covered by
the theoretical results. Also, experiments can reveal insight into the constants factors and
lower-order terms hidden in the asymptotic notation. In particular, experiments can provide
hints whether the asymptotic runtime bounds are tight.

Both approaches are important to understand how these mechanisms impact the EA
runtime and if they enhance the search for obtaining good individuals. These different
expectations imply where EAs and which diversity-preserving mechanism should be used
and, perhaps even more important, where they should not be used. We use the experiments
for illustrative purposes. As argued in Sudholt (2008), a combination of theoretical results
and experiments can deliver a more complete picture. Moreover, if visualized properly,
experimental data is readable and easy to grasp. Another benefit of experiments is that the
scope of a scientific work is broadened and a wider audience is addressed.

In this thesis all experiments have been conducted by the author using the Free Evolution-
ary Algorithm Kit (FrEAK) (Briest et al., 2004b), developed by Briest et al. (2004a). FrEAK
is a free toolkit for the creation, simulation, and analysis of EAs and other randomised
search heuristics within a graphical interface designed in the programming language Java,
and released under the GNU General Public License (GPL). It has been designed such that
it is easily extendible to incorporate phenotype search spaces, fitness functions, genotype-
mappers, stopping criteria, populations models, operators like mutation, recombination,
selection, and to allow the design of algorithms as if they were graphs (for more information
related to the process of designing new modules, we refer the reader to Briest et al., 2004b,
the Module Developer’s Guide).

Moreover, the graphical interface allows the creation of observers; these modules can be
used to show different performance measures, the individuals of the current population or
other data derived from the dynamic behaviour of the algorithm. For the experiments in this
thesis we have used version 0.2 of FrEAK. We have also used and developed some additional
modules that have not been published.

Finally, we would like to mention that in this thesis we make use of different ways to
represent the results but always trying to answer the same question: how good the algorithm
works when diversity is introduced? In cases where the algorithm analysed uses several
parameters, we opted to use tables instead of graphs or plots. We think that a simple, well-
structured table makes it easier to track the different results for all parameters analysed than
plotting several graphs with all the parameters distributed in the different axis, with several

2.3 Methods for the Analysis of Evolutionary Algorithms 51

lines overlapping each other (more difficult to see than the exact data). In some cases we have
applied box plots for representing some of the statistical data (see Appendix, Section A.1)
in order to observe the variance and the distribution of a population at the end of a run. We
also apply the non-parametric Mann-Whitney test (Mann and Whitney, 1947) to test the
hypothesis whether two sets of samples originate from the same probability distribution and
to test whether one algorithm outperforms another one.

Overall, we have opted to sacrifice a little bit consistency for readability and clarity by
representing in different ways the experimental results (when needed) in order to make it
easier to appreciate the most important features of each diversity-preserving mechanism.

Chapter 3

Population Diversity in Evolutionary
Algorithms

Although there is no guarantee of finding the optimal solution, approaches based on the
influence of biology and life sciences such as EA, neural networks, swarm intelligence
algorithms, artificial immune systems, and many others have shown to be highly practical
and have provided state-of-the-art solutions to various optimisation problems (Chiong, 2009).

The advantages of nature-inspired algorithms are widely reported in literature (cf. Bous-
saïd et al., 2013; Chiong, 2009; Floreano and Mattiussi, 2008; Gendreau and Potvin, 2010;
Rai and Tyagi, 2013; Talbi, 2009; Yang, 2010) but there has been a lack of a theoretical foun-
dation. The assessment of nature-inspired algorithms is commonly based on experimental
comparisons or problem solving oriented or by means of theoretical runtime analyses. In
order to exploit nature-inspired algorithms (and any other optimisation algorithm in general)
to their full potential, different statistical tests have to be carried out from experimental data
to ensure a fair and meaningful comparisons between these algorithms and next to these anal-
yses, provide theoretical foundation in order to understand the fundamental characteristics in
which these nature-inspired algorithms work.

It is important to recognise that the number of parameters has a direct effect on its
complexity, which complicates analysis (e. g., in the case of EAs, number of generations,
iterations, population/offspring size and crossover/mutation probabilities and the dimension
of the problem). Therefore, scalability for high-dimensional problems becomes an essential
requirement for sophisticated optimisation approaches. Often such problems are so difficult
that they can only be solved by introducing some mechanism able to visit many and/or
different unexplored regions of the search space, and generate solutions that differ in various
significant ways from those seen before (Gendreau and Potvin, 2010; Glover and Laguna,
1997; Lozano and García-Martínez, 2010).

54 Population Diversity in Evolutionary Algorithms

There are two forces that largely determine the behaviour of an EA, intensification and
diversification. EAs should be designed with the aim of effectively exploring the search
space (diversification or also commonly known as exploration). The search performed by
an EA should be “clever” enough to intensively explore areas in the search space with high
quality solutions (intensification or also commonly known as exploitation), and to move to
unexplored areas of the search space when necessary. In the following, we mention some
literature reviews of several high level descriptions of intensification and diversification
approaches: Battiti (1996); Glover and Laguna (1997); Mitchell (1998); Stützle (1999);
Yagiura and Ibaraki (2001).

In general, providing an adequate balance between intensification and diversification
becomes a very complicated task (Talbi and Bachelet, 2006). The main difference between
the existing optimisation algorithms concerns the particular way in which they try to achieve
this balance (Birattari et al., 2001). In fact, although most algorithms attempt to achieve
this objective in their own way, it turns out that some of them show certain specialisation in
intensification or diversification.

Using the clasification from Blum and Roli (2003), the intensification and diversification
components occurring in optimisation algorithms can be divided in basic (or intrinsic) and
strategic. The basic components are the ones defined by the basic ideas of an algorithm
(mutation, crossover and selection in the case of EAs). The strategic components are
composed of techniques and strategies added to the plain algorithm by the designer to
improve its performance. Many of these strategies were originally developed in the context
of a specific algorithm but with some adaptations or small changes added to other algorithmic
approaches. Aside from the already mentioned classification made by Blum and Roli
(2003), Liu et al. (2009) classified EAs into uniprocess- and multiprocess-driven approaches
regarding how the balance between exploration and exploitation is achieved.

In Črepinšek et al. (2013) and Squillero and Tonda (2016) we can find a detailed review of
both basic and strategic components in the family of EAs who seek to provide intensification
and diversification. On the one hand, beneficial diversification properties are inherent to
EAs, because they manage populations of solutions, providing a natural and intrinsic way
for exploring the search space. Even more, many techniques were presented in the literature
that favour diversity in population-based EAs with the aim of consolidating diversification
associated with these algorithms (cf. Alba and Dorronsoro, 2005; Chaiyaratana et al., 2007;
Goldberg, 1989; Koumousis and Katsaras, 2006; Lozano et al., 2005). On the other hand,
some components of EAs may be specifically designed and their strategy parameters tuned,
in order to provide an effective refinement. In fact, several EAs specialising in intensification

3.1 A Review of Diversity Mechanism on Evolutionary Algorithms 55

have been presented with this aim (cf. Kazarlis et al., 2001; Lozano et al., 2004; Noman and
Iba, 2008).

3.1 A Review of Diversity Mechanism on Evolutionary Al-
gorithms

In this thesis we look for runtime analyses of theoretical results on diversification compo-
nents or diversity-preserving mechanisms for population-based EAs as tools to increase
diversification (exploration) instead of intensification (exploitation). Although the relevance
of these two concepts is commonly agreed, so far there is no unifying description to be found
in the literature. In the case of EAs, diversification can be achieved by means of variation
operators and intensification can be achieved by means of selection mechanisms. However,
the selection mechanisms can be used to control the level of diversification and intensification,
i. e., higher selection pressure can be used to orient the search towards intensification and
lower selection pressure can be used to orient the search towards diversification.

In this thesis we will review methods that in some way try to achieve a balance between
diversification and intensification by applying some diversity mechanism. We would like to
observe whether these EAs can be potentiated or enhanced with diversity techniques. We
will review, without going into too much detail, how different mechanisms have been applied
to find a global optimum, to find a diverse set of optima, or, specifically in the context of
multi-objective optimisation, finding Pareto optimal set of solutions (or an approximation of
the Pareto front).

The main goal is to review some methods used to avoid premature convergence in the
population-based EAs. There is no point of having a population consisting of copies of the
same individual, or similar individuals. In those cases diversity mechanisms can be helpful
to break these clusters of similar individuals and to promote the search to unexplored regions
of the search space.

Aside from exploring the search space, a diverse population can be useful to improve
the performance of the EA by improving other operators like crossover. There are better
chances to create a new offspring by using different parents. Also, since the EAs work
with a population of potential solutions, a diverse population can be presented to a decision
maker in multi-objective optimisation where is necessary to generate solutions that often
require trade-offs between different objectives. And finally in dynamic optimisation where
the optimum moves over time, the diversity mechanisms can help to track new optima, and
move from optima to optima without getting stuck in previous ones.

56 Population Diversity in Evolutionary Algorithms

As mentioned before, many solutions have been proposed to maintain and/or promote
diversity in an EA, some of the mechanisms include techniques such as eliminating duplicates,
subpopulations with migration as island models, cellular EAs, and niching techniques that try
to establish niches (groups or subpopulations of similar search points), and preventing niches
from going extinct. In Table 3.1 we mention some mechanisms/approaches and general
ideas of the techniques available to promote diversity. We also use this table to introduce
the reader to the main mechanisms studied in this thesis, population-based mechanisms
(non-niching) and the fitness and replacement-based mechanisms (niching). This table is a
short version of Table 1 in Section 4 of Črepinšek et al. (2013). In Črepinšek et al. (2013) a
more detailed description of the methods on each category is presented with a more detailed
list of published work in the field of diversity mechanisms on EAs.

Table 3.1: Classification of diversity mechanisms for balancing between diversification and
intensification (Črepinšek et al., 2013).

Maintenance (Non-niching)

Population-based Varying population size, duplicate elimination, infusion tech-
niques (e. g., random immigrants, restarts, extinction), external
archives, or migration between subpopulations.

Selection Based Changing selection pressure or replacement restrictions.

Crossover/Mutation-
based

Mating restrictions or disruptive operators.

Hybrid Ensembles or other specific approaches.

Maintenance (Niching)

Fitness-based Fitness sharing in its explicit form (Goldberg and Richard-
son, 1987) and its implicit form (Smith et al., 1993), clearing
(Pétrowski, 1996), modified clearing (Singh and Deb, 2006),
clustering (Yin and Germay, 1993).

Replacement-based Deterministic crowding (Mahfoud, 1995), probabilistic crowd-
ing (Mengsheol and Goldberg, 1999), restricted tournament
selection (Harik, 1995).

Preservation-based Species conserving GA (Li et al., 2002, 2003).

Hybrid Ensemble of niching algorithms (Yu and Suganthan, 2010),
adaptive elitist-population based GA (Liang and Leung, 2011).

Continued on next page

3.1 A Review of Diversity Mechanism on Evolutionary Algorithms 57

Table 3.1 – Continued from previous page

Controlling

Through selection Survival probability can be computed based on population
diversity, or diversity can be included within those fitness func-
tions that further drive the selection process.

Through crossover and
mutation

Increase/decrease the probability of crossover and/or mutation
after population diversity, fitness, and/or fitness improvements
are computed.

Through changing pop-
ulation

After measuring population diversity, either the population size
or the population alone is changed.

Learning

Cultural learning In combination with different machine learning techniques to
learn (un)explored search areas, individuals are able to pass
their knowledge to individuals in subsequent generations.

Self-organising maps Takes into consideration not only the diversity of a current
population, but also across the whole evolution process. This
information is introduced into the fitness function and used to
discover unexplored regions of the search space.

Binary space-
partitioning tree

Avoiding previous discovered solutions, previous solutions are
recorded and in the case of revisiting, random mutation within
this subspace can be used to find the nearest unvisited subspace.

Estimation of distribu-
tion

Explore the search space by using machine learning techniques
to learn about locations within the more promising regions.

Other Direct Approaches

Using different subpop-
ulations for diversifica-
tion and intensification

Subpopulations are used exclusively for a particular task, e. g.,
one subpopulation is focused on diversification and other sub-
population is focused on intensification.

Triggers cause alterna-
tion between diversifica-
tion and intensification

The use of triggers to cause alternation between diversification
and intensification within the population.

Continued on next page

58 Population Diversity in Evolutionary Algorithms

Table 3.1 – Continued from previous page

Ancestry-based By using an ancestry tree-based approach for explicitly mea-
suring diversification and intensification. If an offspring is
generated with a distance bigger than a defined threshold from
the parent, a new tree is formed with the offspring as a root
(intensification). The process is repeated using the offspring as
a root to generate new trees (diversification).

Many of the niching techniques work by modifying the selection process of individuals,
taking into account not only the value of the fitness function but also the distribution of
individuals in the space of genotypes or phenotypes. On the genotype level, the mechanism
can try to create a diverse set of bitstrings, or on a phenotypic level, it can obtain different
phenotypes by taking into consideration some form of mapping from genotypes to phenotypes.
For instance, for functions of unitation (see Definition 2.12), the genotype is a bitstring, but
the phenotype is given by the number of 1-bits.

Given the plethora of mechanisms to be applied, it is often not clear what the best strategy
is. Which diversity mechanisms work well for a given problem, which don’t, and, most
importantly, why? In particular, the effect of such mechanisms have on search dynamics
and performance are often not well understood. For more extensive surveys on diversity-
preserving mechanisms and/or different taxonomies, we refer the reader to the previous cited
works and to the surveys by Shir (2012), Črepinšek et al. (2013), Glibovets and Gulayeva
(2013), and Squillero and Tonda (2016).

Most analyses and comparisons made between diversity-preserving mechanisms are as-
sessed by means of empirical investigations (Chaiyaratana et al., 2007; Sareni and Krahenbuhl,
1998; Singh and Deb, 2006; Ursem, 2002) using real-parameter multimodal optimisation
problems (Das et al., 2011; Li et al., 2013) without providing a comprehensive theory of the
population dynamics and the diversity achieved. The above includes most of the methods
published.

In the case of theoretical runtime analyses (Doerr et al., 2016; Friedrich et al., 2007; Gao
and Neumann, 2014; Jansen and Wegener, 2005; Oliveto and Sudholt, 2014; Oliveto et al.,
2014), the analysis is made using simpler example functions easier to analyse compared
to the ones used in empirical investigations. These simplified functions are helpful when
analysing specific characteristics of an algorithm and particular problems, e. g., the time

3.1 A Review of Diversity Mechanism on Evolutionary Algorithms 59

required to escape from a local optimum, the time required of a certain subpopulation to
takeover other subpopulation, or the time needed to find one or several optima.

In theoretical runtime analysis the results help to get insight into the search behaviour
of EAs in the presence or absence of diversity, and how parameters and explicit diversity
mechanisms affect the performance. They in particular highlight which diversity mechanisms
are effective for particular problems, and which are ineffective. More importantly, they
explain why diversity mechanisms are effective or ineffective, and how to design the most
effective evolutionary algorithms for the problems considered.

Let us note that the goal of this chapter is not to provide a comprehensive survey of the
work done in both fields. The main goal is to provide a general review of the work done in
the area of analysis of diversity mechanisms. At the same time, we do not look to replicate
the formal proofs of the cited theoretical works. Instead, we combine formal theorems with
informal explanations for the proofs by just explaining key ideas. In the same note, we will
compare the results obtained from experimental work with results from the theoretical field
when applicable. Finally, we only present selected results from the papers, or results that are
simplified towards special cases for reasons of simplicity. We refer the reader to the original
papers for further details.

We would like to conclude this introduction by mentioning that a similar work to this
chapter has been done by Sudholt (2018). Sudholt reviews runtime analyses that have shown
benefits of population diversity, this includes explicit diversity mechanisms embedded into
a EA or through intrinsic EA methods. His survey reviews part of the results from the
present thesis. Results from Section 4.3 and Chapter 6 are summarised in Sections 3.1.6
and 6 from Sudholt (2018), respectively. This thesis also contains material that was not
available at the time the survey was written. We present theoretical results of two more
niching mechanisms: probabilistic crowding (Section 4.1) and restricted tournament selection
(Section 4.2). We also present an extensive empirical analysis of several diversity mechanisms
in Chapter 5. Finally, we expand Sudholt’s survey by presenting a review of the work done
with a mechanism from the artificial immune systems field called ageing, and the work done
in multi-objective optimisation that was not included in that survey.

Finally, since this chapter is based on the same topics as Sudholt’s survey, this chapter
adopts some of the structure in Sections 3.2, 3.3, and 3.4 by reviewing the same work
independently. And as mentioned before, this chapter expands Sudholt’s survey by providing
a review of ageing mechanisms (Sections 3.2.6 and 3.3.1.2) and multi-objective optimisation
(Section 3.5). Another difference of this chapter compared to Sudholt’s survey is that we
will focus on panmictic populations (where all individuals are potential partners like in

60 Population Diversity in Evolutionary Algorithms

the (µ+1) EA), i. e., we will mention some general ideas from the results obtained using
subpopulations on island models but without going into too much details.

3.2 Diversity Mechanisms for the (µ+1) EA

In the following sections we review runtime analyses on EAs with explicit diversity mecha-
nisms for the TWOMAX and BALANCE function. We present these two functions together in
this section to show that some mechanisms that are able to optimise TWOMAX are not able
to optimise BALANCE and vice versa. We will make clear and highlight these observations
in each of the following sections. This section is inspired by Sections 3.1 and 5.1 in Sudholts’
survey, we further expand it by adding a review of the ageing mechanisms in Section 3.2.6.

Let us start with the TWOMAX function. As defined earlier in Section 2.1.1.2, TWOMAX

is an ideal benchmark function for studying diversity mechanisms as it is simply structured,
hence facilitating a theoretical analysis, and it is hard for EAs to find both optima as they
have the maximum possible Hamming distance. Some combinatorial optimisation problems
share the same structure of TWOMAX, e. g., the bipartite graph VERTEXCOVER analysed in
Oliveto et al. (2008) which consists of two branches with one local optimum and the other to
the minimum cover and the MINCUT instance analysed in Sudholt (2011a). The first results
using diversity mechanisms on this function were obtained by Friedrich et al. (2009) and
Oliveto et al. (2014).

For all results on TWOMAX, we choose to present the results from the survey done by
Sudholt (2018) instead of the original work (see Friedrich et al., 2009). The reason for this is
that in this thesis we take into consideration TWOMAX with two global optima instead of
TWOMAX with one global optima (like in Friedrich et al., 2009). The results from Sudholt
(2018) are adapted to take into consideration our definition of TWOMAX and are more
suitable for comparison with our results presented in Chapter 4.

The BALANCE function (see Definition 3.1) was first introduced by Rohlfshagen et al.
(2009). Following the description provided by Oliveto and Sudholt (2014), this function
consists of a prefix of length n/2 and a suffix of the same length. The fitness of a search
point is determined by the number of leading ones in the prefix and the number of 1-bits
(i. e., ONEMAX) in the suffix. A globally optimal search point has the maximal value n/2 of
leading ones (i. e., LO(a) = n/2) in the prefix. However, before reaching the global optimum
the algorithm may reach the two trap regions corresponding to search points with less that
n/16 0-bits or less than n/16 1-bits in the suffix. The trap regions and the global optimum are
separated by a region of 0-fitness of length

√
n that makes it prohibitive for search heuristics

to reach the optimum from the traps.

3.2 Diversity Mechanisms for the (µ+1) EA 61

Definition 3.1 (BALANCE, Rohlfshagen et al., 2009). Let a,b ∈ {0,1}n/2 and x = ab ∈
{0,1}n. Then

BALANCE(x) :=


n3 if LO(a) = n/2, else

|b|1 +n ·LO(a) if n/16 < |b|1 < 7n/16, else

n2 ·LO(a) if |a|0 >
√

n, else

0 otherwise.

Where |x|1 = ∑
n/2
i=1 xi, |x|0 = n/2−|x|1 denotes the number of ones and the number of zeroes

in individual x, respectively. LO(x) := ∑
n/2
i=1 ∏

i
j=1 x j counts the number of leading ones. A

sketch of the BALANCE function is given in Figure 3.1.

n3

0

0

n2 ·LO(a)

n2 ·LO(a)

n ·LO(a)+ |b|1|b|1

LO(a)

Figure 3.1: Sketch of the function BALANCE (Rohlfshagen et al., 2009).

BALANCE is used in Dynamic Optimisation Problems (DOPs), and the field concerned
with the application of EAs to these classes of problems is called Evolutionary Dynamic
Optimisation (EDO). In DOPs, the optimisation algorithm not only has to locate the optimum
of a given problem, but also to track the optimal solution over time when the problem changes
every τ generations. In BALANCE, every τ generations, the role of zeros and ones in the
suffix is reversed, so that the fitness gradient switches between maximising and minimising
the number of ones in the ONEMAX part.

Diversity can be used to avoid getting trapped in local optima independent of the frequency
of change and to keep track of global optima, to explore and re-discover new global optima
in case the previous global optimum becomes a local optima due to the change of fitness, and
another local optimum becomes the new global optimum. Here we mention some runtime
analyses done on the area of EDO (e. g., Dang et al., 2017b; Jansen and Zarges, 2014; Kötzing
et al., 2015; Kötzing and Molter, 2012; Lissovoi and Witt, 2015; Oliveto and Zarges, 2015;

62 Population Diversity in Evolutionary Algorithms

Rohlfshagen et al., 2009). In the following we describe the work done in the area of EDO
with diversity mechanisms on the BALANCE function.

In order to guarantee a fair comparison on TWOMAX and BALANCE, the plain (µ+1) EA
is considered, then diversity mechanisms are added to the plain (µ+1) EA. The diversity
mechanisms considered for both functions include: avoiding genotype and fitness duplicates,
deterministic crowding, fitness sharing (in two variants) and finally, a combination of fitness
sharing and deterministic crowding is analysed in the context of (µ+1) RLS. The main goal is
to determine whether populations equipped with diversity mechanisms can be robust enough
to optimise the TWOMAX function on an static setting, and BALANCE on a dynamic setting.

In Section 3.2.6 we review the work done with the ageing mechanism for other test
functions. Since the work done for ageing consists of several ways to apply this mechanism
we will highlight some of them by providing high-level ideas of the results obtained with
ageing compared to its plain version without going into too much details for each variation
of ageing.

3.2.1 Plain (µ+1) EA

The plain (µ+1) EA (Algorithm 5) has already been investigated by Witt (2006) for pseudo-
Boolean functions, and in (Friedrich et al., 2009, Theorem 1) for the case of TWOMAX and
in Oliveto and Zarges (2015) for the case of BALANCE. With respect of TWOMAX, the
selection pressure is quite low, nevertheless, the (µ+1) EA is not able to maintain individuals
on both branches for a long time; the whole population is likely to converge to one of the two
peaks (Theorem 3.2).

Theorem 3.2 (Theorem 1 in Sudholt, 2018). The probability that the (µ+1) EA with no
diversity-preserving mechanisms and µ = o(n/logn) finds both optima of TWOMAX in
time nn−1 is o(1). The expected time for finding both optima is Ω(nn).

The idea behind the proof of Theorem 3.2 is that, let us assume that 0n has been found,
two possible events may happen: create a clone of 0n or find 1n. The first event can occur if
0n is selected as parent and no bit is flipped during mutation, i. e., a clone of 0n enters the
population. The more clones of 0n are contained in the population, the larger the probability
of this event becomes. And to create 1n, it is necessary to flip the remaining 0-bits in an
individual and no 1-bits are flipped. If the population is small, clones of 0n will tend to
takeover the whole population before the 1n optimum is found. Once the whole population
collapses to the 0n individuals, it will be necessary to flip all the bits from one of 0n individuals
at the same time (which has probability n−n) in order to create the 1n individual, and find

3.2 Diversity Mechanisms for the (µ+1) EA 63

both optima on TWOMAX. And even considering nn−1 generations, the probability of this
jump converges to 0, that is o(1). So the expected optimisation time is Ω(nn).

For BALANCE, the (1+1) EA has already been analysed by Rohlfshagen et al. (2009).
They show that the expected optimisation time is exponential if the frequency of change is
low. Oliveto and Zarges (2015) analysed the (µ+1) EA and show that the whole population
gets stuck in one of the traps before any individual reaches the global optimum.

Theorem 3.3 (Theorem 1 in Oliveto and Zarges, 2015). If τ > 20µn and µ ≤ n1/2−ε then
the expected time for the (µ+1) EA to optimise BALANCE is at least nΩ(

√
n). If τ > 38µn3/2

and µ ≤ n1/2−ε then the (µ+1) EA requires at least nΩ(
√

n) steps with w. o. p.

The main reason for this bad performance is that the population reaches the trap before
it optimises the leading 1-bits prefix. Since it is easier to fall into a trap by optimising the
ONEMAX suffix than reach the n/2 leading 1-bits in the prefix. With low frequencies of
change, this is very likely to happen.

3.2.2 No Genotype Duplicates

One of the simplest ways to enforce diversity maintenance on a population-based algorithm
is by avoiding duplicates. In the context of the (µ+1) EA, once the population has been
initialised, new individuals are not allowed to enter the population, if there is a solution with
the same genotype already contained in the population. This effect can be achieved by adding
the condition “and y /∈ Pt” to the “if” statement in the Line 6 from Algorithm 5, resulting
in Algorithm 8. This kind of mechanism has already been studied in Storch and Wegener
(2004) and for the case of TWOMAX in (Friedrich et al., 2009, Theorem 2).

Algorithm 8 (µ+1) EA with no genotype duplicates
1: Let t := 0 and initialise P0 with µ individuals chosen uniformly at random.
2: while stopping criterion not met do
3: Choose x ∈ Pt uniformly at random.
4: Create y by flipping each bit in x independently with probability 1/n.
5: Choose z ∈ Pt with worst fitness uniformly at random.
6: if f (y)≥ f (z) and y /∈ Pt then Pt+1 = Pt \{z}∪{y} else Pt+1 = Pt end if
7: Let t := t +1.
8: end while

This mechanism ensures that the population always contains µ different genotypes
(modulo possible duplicates during initialisation). However, ensuring genotype diversity is
too weak and is not able to prevent the extinction of one branch, ending with the population
converging to one optimum with high probability (Theorem 3.4).

64 Population Diversity in Evolutionary Algorithms

Theorem 3.4 (Theorem 2 in Sudholt, 2018). The probability that the (µ+1) EA with genotype
diversity and µ = o

(
n1/2

)
finds optima of TWOMAX in time nn−2 is at most o(1). The

expected time for finding both optima is Ω
(
nn−1).

Unlike Algorithm 5, Algorithm 8 does not allow clones of the 0n individual to enter the
population. The algorithm can still create individuals similar to 0n by flipping just one 0-bit
to 1, in this sense the population can have one 0n individual, and since the mutation can flip
any of n-bits, the population can contain many search points with only a single 1-bit that
are at least as fit as the current best search point. If the population size is µ = o

(
n1/2

)
, it

is likely that individuals on the 1n branch get extinct due to the takeover of the 0n branch.
Again the argument was based on selecting 0n as parent, with only one individual with 0n

genotype. This leads to a more restrictive condition on µ = o
(

n1/2
)

compared to the setting
of no diversity mechanism (µ = o(n/logn)).

In the context of BALANCE, again the diversity mechanisms is not strong enough to
promote diversity leading the whole population into the traps in the same way as the plain
(µ+1) EA on the BALANCE function. Not allowing copies in the population does not
significantly change the behaviour of the algorithm.

Theorem 3.5 (Theorem 2 in Oliveto and Zarges, 2015). For the (µ+1) EA with no genotype
duplicates, the same results from Theorem 3.3 hold.

3.2.3 No Fitness Duplicates

Similar to avoiding duplicates in a genotype level, diversity can be enforced by avoiding
duplicates in a phenotype level. According to Algorithm 9, after initialisation, if there is an
individual z in the population with the same fitness as the new individual resulting from the
mutation y, y replaces z (novelty is rewarded), otherwise it proceeds as the plain (µ+1) EA,
choosing the worst individual z uniformly at random, and if y is at least as good as z, y
replaces z. This mechanism has already been analysed in Friedrich et al. (2007) for plateaus
of constant fitness and in (Friedrich et al., 2009, Theorem 3) for TWOMAX. In addition, this
resembles the idea of fitness diversity proposed by Hutter and Legg (2006).

Again, this simple mechanism is not able to prevent the extinction of one branch, ending
with the population converging to one optimum with high probability (Theorem 3.6). In
this version of TWOMAX with two global optima, the population will never be able to
contain both optima, so instead of achieving a population with both optima, Sudholt (2018)
considered the cases where a population and the offspring contains both optima.

3.2 Diversity Mechanisms for the (µ+1) EA 65

Algorithm 9 (µ+1) EA with no fitness duplicates
1: Let t := 0 and initialise P0 with µ individuals chosen uniformly at random.
2: while stopping criterion not met do
3: Choose x ∈ Pt uniformly at random.
4: Create y by flipping each bit in x independently with probability 1/n.
5: if there exists z ∈ Pt such that f (y) = f (z) then
6: Pt+1 = Pt \{z}∪{y}
7: else
8: Choose z ∈ Pt with worst fitness uniformly at random.
9: if f (y)≥ f (z) then Pt+1 = Pt \{z}∪{y} else Pt+1 = Pt end if

10: end if
11: Let t := t +1.
12: end while

Theorem 3.6 (Theorem 3 in Sudholt, 2018). The probability that the (µ+1) EA with fit-
ness diversity and µ ≤ nO(1) finds both optima of TWOMAX in time 2cn, c > 0 being an
appropriate constant, is at most o(1). The expected time for finding both optima is 2Ω(n).

In this scenario, once an optimum has been found (let us say 0n optimum), individuals
with the same fitness are not allowed to enter the population; this means that individuals
on zero branch are forced to have different fitness values covering this branch. Then, there
will be a competition between new generated individuals and individuals covering the zero
branch. If a new individual is generated in the opposite branch (1n), this individual replaces
the old individual with the same fitness on the opposite branch (0n). Friedrich et al. (2009)
defined a potential function that captures this competition, and showed that there is a bias
that favours the branch with the already found optimum. The idea is that individuals from the
undiscovered optimum have to make more difficult mutations to climb up the branch, while
individuals from the discovered optima need one bit-flip to create a new individual which
provokes the extinction of the individuals on the opposite branch.

In contrast to TWOMAX where the runtime is exponential for any population size, no
fitness duplicates is effective w. o. p. on BALANCE independent of the frequency of change.

Theorem 3.7 (Theorem 4 in Oliveto and Zarges, 2015). Let µ > n−2(
√

n−1). Then w. o. p.
the (µ+1) EA with no fitness duplicates optimises BALANCE in time O

(
µn3) for arbitrary

τ ≥ 0.

The (µ+1) EA with no fitness duplicates and sufficiently large population size is able to
get individuals into both traps. Once both traps are found, and the regions of 0-fitness of
length

√
n that separate the traps with the global optimum are found, no other individual with

66 Population Diversity in Evolutionary Algorithms

the those fitness values are accepted. Then, the remaining individuals can evolve leading to
the global optimum of the BALANCE function afterwards.

3.2.4 Deterministic Crowding

In this niching mechanism the offspring competes directly with its most similar parent.
According to Mahfoud (1995), in a GA, all elements of the population are grouped into µ/2
pairs (assuming µ to be even). Then, these groups are recombined and mutated. For each
pair of offspring, two sets of parent-child tournaments are possible. Each offspring competes
against the most similar parent according to a distance metric, either genotypic or phenotypic,
and the offspring replace their closest parent if it is at least as good. As the (µ+1) EA does
not consider crossover, the offspring competes with its only parent. Then the population
contains µ lineages that evolve independently (see Algorithm 10).

Algorithm 10 (µ+1) EA with deterministic crowding
1: Let t := 0 and initialise P0 with µ individuals chosen uniformly at random.
2: while stopping criterion not met do
3: Choose x ∈ Pt uniformly at random.
4: Create y by flipping each bit in x independently with probability 1/n.
5: if f (y)≥ f (x) then Pt+1 = Pt \{x}∪{y} else Pt+1 = Pt end if
6: Let t := t +1.
7: end while

It is proven in (Friedrich et al., 2009, Theorem 4) that this mechanism with a suffi-
ciently large population is able to reach both optima with high probability in expected time
O(µn logn) (Theorem 3.8). Here we show the modified result from Sudholt (2018) that takes
into consideration finding both optima instead of only one global optimum.

Theorem 3.8 (Theorem 4 in Sudholt, 2018). The (µ+1) EA with deterministic crowding and
µ ≤ nO(1) reaches in TWOMAX a population consisting of only global optima in expected
time O(µn logn). In that case the population contains both global optima with probability at
least 1−2−µ+1.

Since all µ lineages evolve independently, and each global optimum 0n and 1n can
be found after hill climbing with probability 1/2, the probability of finding an optimum
is 1−2−µ−1. It is only when all individuals are initialised in one branch (which happens
with probability 2−µ+1), when it is likely that only one optimum is reached. Aside from this
unlucky initialisation, individuals in both branches can evolve independently, leading to an
upper time bound of O(µn logn).

3.2 Diversity Mechanisms for the (µ+1) EA 67

On the contrary, the (µ+1) EA with deterministic crowding on BALANCE fails, it requires
exponential time to optimise the function.

Theorem 3.9 (Theorem 3 in Oliveto and Zarges, 2015). With overwhelming probability, the
(µ+1) EA with deterministic crowding and µ ≤ nO(1) requires exponential time to optimise
BALANCE if τ > 8eµn.

The population of the (µ+1) EA with deterministic crowding behaves similarly to µ

parallel executions of the (1+1) EA, i. e., µ individuals explore the fitness landscape indepen-
dently, and this parallelism does not prevent the population from getting stuck in one of the
traps.

3.2.5 Fitness Sharing

This mechanism was one of the first attempts to deal directly with the location and preser-
vation of multiple solutions in GAs. The fitness sharing algorithm restricts the growth of
one type of individuals by sharing its real fitness assignment with nearby elements in the
population (Goldberg and Richardson, 1987).

The idea is to reduce the pay-off in densely populated regions. The fitness sharing
algorithm restricts the growth of one type of individuals by making each individual in the
population share its fitness assignment with nearby elements on the population. If there are
several copies of the same individual in the population, they share their fitness by degrading
an individual’s pay-off due the presence of other individuals in its neighbourhood, and the
amount of sharing contributed by each individual into its neighbour depends on the proximity
between the individuals.

As a consequence, selection is likely to remove such clusters and to keep the individuals
apart. The similarity between individuals x and y is measured by a so-called sharing
function sh(x,y) ∈ [0,1] where a large value corresponds to a great similarity and a 0 value
implies no similarity. The shared fitness fsh(x,P) of individual x in the population P with
fitness f (x) is

fsh(x,P) =
f (x)

µ

∑
y∈P

sh(x,y)

where sh(x,y) =

 1−
(

d(x,y)
σ

)α

, if d(x,y)< σ ;

0, otherwise.
(3.1)

Where α is a positive constant called scaling factor which regulates the shape of the shar-
ing function, d(x,y) is any a distance metric, either genotypic or phenotypic, and σ is called
sharing radius. The σ parameter defines for each individual, the maximum distance over

68 Population Diversity in Evolutionary Algorithms

which it has to share its fitness with other population members, i. e., individuals only share
fitness if they have a distance less than σ . In the following, we will review runtime analyses
for the original approach (individual-based fitness sharing), a variant called population-based
fitness sharing that uses the shared fitness of the population as a selection for survival policy;
the population with highest shared fitness is chosen to become the next population on the
next generation. Finally a hybrid between population-based fitness sharing and deterministic
crowding is also reviewed for the case of BALANCE; by using deterministic crowding in
the selection for survival step, the population-shared fitness of the current population is
compared against the population-shared fitness of the resulting offspring population, then the
population with the largest shared fitness is selected.

Let us note that in both analyses the scaling factor has been set to α = 1 and, sharing
distance to σ = n/2 (as this is the smallest value allowing discrimination between the two
branches). Also, only phenotypic distance (see Definition 2.13) is analysed since TWOMAX

only depends on the number of ones. The precise sharing function is then

sh(x,y) =

{
1−2 ||x|1−|y|1|

n , if d(x,y)< σ ;
0, otherwise.

(3.2)

To our knowledge no runtime analyses for fitness sharing with genotypic distance on
TWOMAX and on the BALANCE functions are available.

3.2.5.1 Individual-based Fitness Sharing

The original fitness sharing, where selection is based on individuals (Algorithm 11) was
studied by Oliveto et al. (2014) using the sharing function described in Equation (3.2) for the
case of TWOMAX.

Algorithm 11 (µ+1) EA with fitness sharing
1: Let t := 0 and initialise P0 with µ individuals chosen uniformly at random.
2: while stopping criterion not met do
3: Choose x ∈ Pt uniformly at random.
4: Create y by flipping each bit in x independently with probability 1/n.
5: Let P∗

t = Pt ∪{y}.
6: Update the fitness of all individuals in P∗

t according to the fitness sharing procedure
described in Equation (3.1).

7: Choose z ∈ P∗
t with worst fitness uniformly at random.

8: if f (y)≥ f (z) then Pt+1 = P∗
t \{z} else Pt+1 = P∗

t \{y} end if
9: Let t := t +1.

10: end while

3.2 Diversity Mechanisms for the (µ+1) EA 69

The analysis in Oliveto et al. (2014) showed that a population size µ = 2 is not sufficient
to find both optima in polynomial time. With probability 1/2+Ω(1) the population will
reach the same optimum, and from there the expected time to find both optima is Ω

(
nn/2

)
.

However, there is still a constant probability Ω(1) to find both optima in polynomial expected
time O(n logn), if the two search points are initialised on different branches, and if these two
search points maintain similar fitness values throughout the run.

Theorem 3.10 (Theorem 1 and 2 in Oliveto et al., 2014). The (2+1) EA with fitness sharing,
α = 1, σ = n/2, and phenotypic sharing with probability 1/2+Ω(1) will reach a population
with both members in the same optimum, and then the expected time for finding both optima
from there is Ω

(
nn/2

)
. However, with probability Ω(1) the algorithm will find both optima

in time O(n logn).

With µ ≥ 3, once the population is close enough to one optimum, individuals descending
the branch heading towards lower fitness values are accepted. This allows an individual to
reach the opposite branch, and after that, the expected time required to climb up the new
found branch and find the remaining optimum is O(µn logn).

Theorem 3.11 (Theorem 3 in Oliveto et al., 2014). For any population size µ ≥ 3 the
(µ+1) EA with fitness sharing, α = 1, σ = n/2, and phenotypic sharing will find both
optima TWOMAX in expected time O(µn logn).

Concerning the effects of the offspring population, increasing the offspring population of
a (µ+λ) EA, with µ = 2 and λ ≥ µ cannot guarantee convergence to populations with both
optima, i. e., depending on λ one or both optima can get lost, and so the expected time for
finding both optima is Ω

(
nn/2

)
.

Theorem 3.12 (Theorem 4 in Oliveto et al., 2014). With probability 1−o(1) the (2+2) EA
with fitness sharing with α = 1, σ = n/2, and phenotypic sharing will, at some point of time,
reach a population with both members in the same optimum. The expected time for finding
both optima from there is Ω

(
nn/2

)
.

3.2.5.2 Population-based Fitness Sharing

This variant was introduced and analysed for the case of TWOMAX in (Friedrich et al., 2009,
Theorem 5) with sharing function as described in Equation (3.2). Rather than selecting
individuals based on their shared fitness, selection was done on a level of populations. The
goal is to select the new population out of the union of all parents and all offspring such that

70 Population Diversity in Evolutionary Algorithms

it maximises the overall shared fitness of the population. In this case the shared fitness of the
population is defined as

f (P) = ∑
x∈P

fsh(x,P). (3.3)

The drawback of this approach is that all possible size-µ subsets of this union of size µ +λ

need to be examined (see Algorithm 12). For large µ and λ , is computationally expensive.

Algorithm 12 (µ+1) EA with population-based fitness sharing
1: Let t := 0 and initialise P0 with µ individuals chosen uniformly at random.
2: while stopping criterion not met do
3: Choose x ∈ Pt uniformly at random.
4: Create y by flipping each bit in x independently with probability 1/n.
5: Let P∗

t = Pt ∪{y}.
6: Update the population fitness of P∗

t according to the fitness sharing procedure de-
scribed in Equation (3.3).

7: Choose z ∈ P∗
t that f (P∗

t \{z}) is maximised.
8: Let Pt+1 = P∗

t \{z}.
9: Let t := t +1.

10: end while

This population-based fitness sharing approach, constructing the best possible new popu-
lation amongst parents and offspring is able to find both optima in expected time O(µn logn)
for any population size µ ≥ 2.

Theorem 3.13 (Theorem 8 in Sudholt, 2018). The (µ+1) EA with population-based fitness
sharing and µ ≥ 2 reaches on TWOMAX a population containing both optima in expected
optimisation time O(µn logn).

Let us imagine TWOMAX as a straight line, then the maximum population shared fitness
can be achieved with individuals with the smallest and the largest number of ones, these two
individuals have the largest distance to all individuals in the population. The method promotes
the creation of individuals in opposite directions (this includes individuals with worst fitness),
which translates in the creation of individuals with the minimum (0n) and maximum (1n)
number of ones. Performing a hill-climbing towards both extremes of TWOMAX yields the
expected time of O(µn logn).

3.2.5.3 Population-based Fitness Sharing and Deterministic Crowding

Finally, Oliveto and Zarges (2015) analysed a hybrid version of the population-based fitness
sharing and deterministic crowding mechanisms for the case of BALANCE. As mentioned

3.2 Diversity Mechanisms for the (µ+1) EA 71

before, by using deterministic crowding in the selection for survival step, the population-
shared fitness of the current population is compared against the population-shared fitness
of the resulting offspring population, then the population with the largest shared fitness is
selected.

The specifics of the algorithm are as follows. In this variant the population size is set
to µ = 2, Hamming distance is used as a dissimilarity metric with parameters α = 1 and
sharing radius σ = n (basically all individuals in the population share their fitness) for the
fitness sharing method, and instead of standard bit mutations, local mutations are used to
flip exactly one bit chosen uniformly at random. The resulting algorithm is referred to as
(2+1) RLS (Algorithm 13).

Algorithm 13 (µ+1) RLS with population-based fitness sharing and deterministic crowding
1: Let t := 0 and initialise P0 with µ individuals chosen uniformly at random.
2: while stopping criterion not met do
3: Choose x ∈ Pt uniformly at random.
4: Create y by flipping a randomly chosen bit in x.
5: Let P∗

t = Pt \{x}∪{y}.
6: if f (P∗

t)≥ f (Pt) then Pt+1 = P∗
t else Pt+1 = Pt end if

7: Let t := t +1.
8: end while

Theorem 3.14 (Theorem 5 in Oliveto and Zarges, 2015). With probability at least 1/2−
e−Ω(n) the (2+1) RLS with population-based fitness sharing and deterministic crowding finds
the optimum of BALANCE in time O

(
n2) for arbitrary τ ≥ 0.

The proof idea is that, with probability exponentially close to 1/2 the two individuals
will never reach the traps, and if the traps are not reached, the optimum can be found in
time O

(
n2) by optimising the leading ones part in the prefix. If the sum of leading 1-bits in

x and y is greater or equal than 2, then only bit-flips in the suffix increasing the Hamming
distance are accepted (f (x,y)+H(x,y)> 2n). If H(x,y)+ f (x)+ f (y)< 2n, such bit flips
are accepted if and only if they increase the fitness.

Now, with probability at least 1/2, the (2+1) RLS will always have a fitness larger than 2n
with individuals x and y having a total of at least 2 leading ones. Again, by the fitness sharing
method, only bit flips on the ONEMAX section will be accepted if the Hamming distance
increases. This is helpful since individuals will never meet the extreme values corresponding
to a trap. The leading ones part will be optimised as it has a much larger impact on the fitness,
leading to a global optimum in the claimed time. However, if τ is set to small, the algorithm
will never optimise BALANCE with constant probability.

72 Population Diversity in Evolutionary Algorithms

Theorem 3.15 (Theorem 6 in Oliveto and Zarges, 2015). Let τ > 12n+1. With probability
bounded below by a constant the algorithm (2+1) RLS with fitness sharing and crowding
requires infinite time to optimise BALANCE.

The general idea is that the algorithm starts by maximising the number of ones in the
ONEMAX section, with fitness f (x,y)+H(x,y)< 2n leading to one of the search points to
the upper trap. Once the population has reached this trap, the population will be trapped with
a fitness larger than 2n and will start to maximise the Hamming distance which will drive the
other individual the other trap. Finally once both individuals are trapped, local mutations
are not able to create the global optimum from a trap and in consequence there is no way to
escape from both traps.

3.2.6 Ageing

In most of the generational approaches, the parent population is replaced by the offspring
population by applying survival selection. In its basic form, ageing can be seen as a softened
version of the generational approach; individuals with a certain age are discarded after they
have reached a maximal age τ to promote diversity. Ageing operators are applied in the
field of artificial immune systems (AIS) to increase the diversity of the population during
the optimisation process. These AIS are a class of general purpose algorithms based on the
immune system of vertebrates (de Castro and Timmis, 2002).

Apart from the absence of crossover operators, the main distinguishing features of AIS
compared to EAs are the hypermutation operators, and the presence of ageing operators to
enhance diversity in the population. In the context of ES, one of the first proposals where the
concept of ageing is introduced was in Schwefel and Rudolph (1995). Furthermore, in the
context of GAs, Ghosh et al. (1996) developed an ageing genetic algorithm (aGA), where
age for an individual is included into the fitness function as well as into mating. As in nature,
adult individuals are considered more fit for mating. On a given problem, Ghosh et al. (1996)
reported that aGA maintains more diversity in the population, while its performance has also
been improved.

Kubota and Fukuda (1997) proposed two GAs with age structure (ASGA) where indi-
viduals are removed from the population when they have reached a lethal age regardless of
the fitness value. They mentioned that these two ASGA have three major advantages over
standard GAs: (1) prevent individuals with high fitness from taking over the population, (2)
control selection pressure by the ageing process and maintain relatively high genetic diversity
in a population and, (3) solve optimisation problems with a small population size.

3.2 Diversity Mechanisms for the (µ+1) EA 73

There are several runtime analyses of ageing mechanisms introduced in EAs (Horoba
et al., 2009; Jansen and Zarges, 2009, 2010a,b, 2011a,b; Oliveto and Sudholt, 2014). By
introducing the ageing mechanism into the standard (µ+1) EA, we can obtain Algorithm 14.
Essentially, a population of µ individuals of age 0 is initialised uniformly at random. In each
generation each individual’s age is increased by 1, one individual is selected for reproduction
and one offspring is created due to mutation. Then, the age of the new individual is set
by introducing some ageing operator. Once the age of the new individual has been set,
individuals are removed from the population according to their age. These age removal
operators are used in Line 5 from Algorithm 14. In AIS two main ageing mechanisms
are common: static pure ageing, individuals are removed once they have reached a certain
threshold (Cutello et al., 2007b) and stochastic pure ageing, individuals are removed with
some probability (Cutello et al., 2003, 2007a), then taking advantages from both operators,
Oliveto and Sudholt (2014) designed a third operator called hybrid pure ageing, individuals
that have reached a certain threshold are removed with some probability.

The most common selection for replacement is as follows. If the population size is smaller
than µ , then the population gets filled with individuals created uniformly at random (birth
phase) to ensure that the population size remains throughout the run. If the population remains
size µ , i. e., no individual has been removed due to the ageing operator, the replacement
proceeds like the plain (µ+1) EA (an individual z with worst fitness is selected uniformly at
random and removed from the population). The idea behind all these ageing approaches is to
increase the diversity of the population by removing old individuals that have been in the
population for a long time (Oliveto and Sudholt, 2014).

Algorithm 14 Algorithmic Framework of the (µ+1) EA with Ageing
1: Initialisation:

Initialise population P of size µ .
2: Ageing, Growing older:

Increase age of all search points in P.
3: Variation:

Generate new search point z.
4: Ageing, Age of new search points:

Decide about the age of the new search point z.
5: Ageing, Removal due to age:

Remove individuals with age exceeding τ .
6: Selection for replacement:

Decide if z is to be inserted in P. Remove or add search points as needed.
7: Stopping:

If stopping criterion not met continue at Line 2.

74 Population Diversity in Evolutionary Algorithms

As can be seen from Algorithm 14, there are 4 sections where ageing plays a crucial role
(Lines 2, 4, 5 and 6) and in each section the age of an individual can be used to perform
each operation. Due to the high modularity of the EAs, many methods can be added in each
line of Algorithm 14. For example, if the offspring is created as a result of two parents by
using variation operators in Line 3, Jansen and Zarges (2010a) defined an algorithm to use
crossover, mutation, and static pure ageing. And now that an offspring is created by two
parents, static pure ageing is modified to take into consideration 2 parents.

Jansen and Zarges (2010b) took the previous idea, and made a step further. Due to
crossover, each new search point has two parents as origin, so what age has to be inherited if
no improvement was made? This question was addressed by providing three variants; the
age of the offspring gets the age of the older parent, the age of the offspring gets the age of
the best parent according to the fitness function value, or setting the age of the offspring with
the age of the worst parent according to the fitness function value.

Finally, in Jansen and Zarges (2011a) different methods for selection for replacement
are defined. In some cases all individuals with the most frequently age within the current
selection (including z) are selected for replacement. Another approach is that an element
with the minimal age distance to the new search point is selected uniformly at random for
removal. Finally, the set of search points whose age occurs fewest within the current selection
of search points (including z) are selected for replacement.

Due to the large number of results for ageing-based operators, for simplicity we will
focus on the method for setting the age of new search points and how to remove individuals
in the population due to age (static, stochastic and hybrid pure ageing for removal due to
age). Algorithm 15 is commonly named as static pure ageing, the age of the offspring y is
set to the same age as the parent x unless it has better fitness, in this case, its age is set to 0
(i. e., if f (y)> f (x) then yage := 0). Note that there are another 2 ways to set the age of an
offspring called evolutionary ageing and genotypic ageing analysed in Jansen and Zarges
(2009). In the following we will just mentioned the results obtained by these two methods
compared to static pure ageing without going into details.

Algorithm 15 Static Pure Ageing (Age of New Search Points)
Require: Two search points, the parent x and the offspring y.
Ensure: The age of the offspring y.

1: if f (y)> f (x) then y.age := 0 else y.age := x.age end if

Other results will just be mentioned when needed. We will focus on general ideas like the
importance of the τ parameter and how the ageing operator can outperform other randomised
search heuristics without these mechanisms, and other randomised search heuristics with

3.2 Diversity Mechanisms for the (µ+1) EA 75

restarts (the complete population is replaced by new search points generated uniformly at
random). We will also mention some other ageing-based mechanisms without going to deep
into the definition of each operator, instead we will provide a high level description of them,
we refer the reader to the source paper for formal definition and specifics of the results.

3.2.6.1 Static Pure Ageing

In static pure ageing for removal due to age operator, a threshold τ is used to indicate the
deterministic life time of individuals. When individuals reach an age of τ +1 generations,
they are automatically removed from the population. An experimental analysis for this
operator was carried out by Castrogiovanni et al. (2007). The static pure ageing for removal
mechanism is formalised in Algorithm 16. Note that the (µ+1) EA is identical to the
(µ+1) EA with static pure ageing operator when setting the maximal age τ = ∞.

Algorithm 16 Static Pure Ageing (Removal Due to Age)
Require: Set of search points P.
Ensure: Set of search points P without individuals with age > τ .

1: Remove all individuals in P with age > τ .
2: return P

Horoba et al. (2009) analysed the influence of the parameter τ in the population. They
show that the choice of the maximal age τ can decide between polynomial and exponential
optimisation time. Hence, a good choice for the parameter τ can be essential as well as
difficult since the range of suitable values for τ may be extremely small. The results are
divided in two analyses: situations where a large maximal age is needed and the analysis
where the maximal age must not be too large. By setting τ big enough, it may allow the
algorithm to reach the global optimum while setting τ small enough may lead to exponential
time due to the constant birth and death cycle. Hence, a good choice of the maximal age τ is
essential since the range of suitable values for τ may be extremely small.

In Jansen and Zarges (2009) the influence on the performance of static pure ageing,
evolutionary ageing, and genotypic ageing is analysed. The main focus of the analysis is the
performance of these ageing operators on two example functions, one with a fitness landscape
containing a local optimum called LOCALOPTk (see Definition 3.16). And the other with
a fitness landscape containing a plateau that contains n points spanning a large Hamming
distance of n−1 between the first and the last point on the plateau (see Definition 3.17).

76 Population Diversity in Evolutionary Algorithms

Definition 3.16 (LOCALOPTk, Oliveto and Sudholt, 2014). For n ∈N and 2 ≤ k = O(1) the
function LOCALOPTk : {0,1}n → R is defined for x ∈ {0,1}n by

LOCALOPTk(x) :=


n · (i · k+1) if x ∈ {1i·k0n−i·k | i ∈ {1,2, . . .⌊n/k⌋}},

n · (i+1) if x ∈ {0n−i1i | i ∈ {1,2, . . .⌊n/2⌋}},

ZEROMAX(x) otherwise.

A sketch of the function is given in Figure 3.2.

0n

k

1i0n−i 0n−i1i

1n

Figure 3.2: Sketch of the function LOCALOPTk (Oliveto and Sudholt, 2014).

Following the description from Oliveto and Sudholt (2014), most of the search space
LOCALOPTk follows ZEROMAX guiding the search towards the 0n bitstring. From there
an “easy-to-find-path” is found if the i rightmost 0-bits are flipped into 1-bits (i. e., i ∈
{1,2, . . . ,⌊n/2⌋}) and a “hard-to-find” path is found if exactly i · k leftmost bits are flipped
into 1-bits (i. e., i ∈ {1,2, . . . ,⌊n/k⌋}). The easy path leads to a local optimum represented
by the 0n/21n/2 bitstring with fitness value n · (⌊n/2⌋+ 1). The hard leads to the global
optimum 1n of value n · (⌊n/k⌋ · k+1).

And for the case of the PLATEAU function, like in LOCALOPTk, in the vast majority of
the search space the fitness values guide the search towards the 0n bitstring. The n points
{1i0n−i | i∈ {0,1,2, . . . ,n−1}} form the plateau. While the number of points on the plateau
is rather small, the Hamming distance between the first and the last point of the plateau
equals n− 1 and is really large. Since there are no hints in which direction better search
points can be found, and since all points not on the plateau have worse fitness value, usually
the algorithm will perform a random walk on the plateau until they happen to find the unique
global optimum 1n.

3.2 Diversity Mechanisms for the (µ+1) EA 77

Definition 3.17 (PLATEAU, Jansen, 2013). For n ∈ N, the function PLATEAU : {0,1}n → R
is defined for x ∈ {0,1}n by

PLATEAU(x) :=


n if x ∈ {1i0n−i | i ∈ {0,1,2, . . . ,n−1}},

n+1 if x = 1n,

ZEROMAX(x) otherwise.

A graphical representation of the PLATEAU function is given in Figure 3.3.

0n

1i0n−i

1n

Figure 3.3: Sketch of the function PLATEAU (Jansen, 2013).

Jansen (2002) showed that the (1+1) EA cannot find the global optimum efficiently on a
variant of LOCALOPTk specifically designed for population with very small µ . With high
probability the algorithm finds the easy path and ends up being stuck on the local optimum
while a (1+1) EA with restarts can optimise this LOCALOPTk variant in polynomial time. The
results for the (µ+1) EA with evolutionary ageing on LOCALOPTk show that the algorithm
requires a very large expected optimisation time. For the case of static pure ageing and
genotypic ageing, if the maximal age τ is sufficient large, the population will gather in the
local optimum with probability close to 1 (for not too large µ). Since no new search points
with larger function values can be created unless the global optimum is found, the algorithm
only creates new search points that inherit their age. Creating a copy of a current best search
point is much faster that finding the global optimum. So, no new search points enter the
population. Thus, after some time, the complete population is replaced by new search points
generated uniformly at random (equal to a restart). Since the path to the global optimum is
found with not too small probability Ω

(
1/nk−1), on average after O

(
nk−1) restarts the path

to the global optimum is found.

78 Population Diversity in Evolutionary Algorithms

Theorem 3.18 (Theorem 2 and 5 in Jansen and Zarges, 2009). For n,k ∈ N with k = O(1),
any number of search points µ ∈ N, and a maximal age τ ∈ N with τ = Ω

(
nk+1 +µn logn

)
.

Algorithm 14 with static pure ageing or genotypic ageing has expected optimisation time
O
(
τnk−1) on LOCALOPTk.

The general idea is that, there is always a restart if all search points are removed due to
their age simultaneously. This happens once the local optimum has been found and copies
of the current best search point are been created. So the proof takes the time required to
reach the local optimum and the population consist of copies of the local optimum, then
after τ generations

(
O
(
τ +n2 +µn logn

))
a restart is done. Multiplying it with the expected

time to reach the global optimum O
(
nk−1), the upper bound on the expected optimisation

time is O
(
τnk−1 +nk+1 +µnk logn

)
. With τ = Ω

(
nk+1 +µn logn

)
the bound simplifies

to O
(
τnk−1). In this case there is not a real advantage in using ageing over a simple restart

strategy.
For the case of PLATEAU, the expected optimisation time of the (1+1) EA is Θ

(
n3)

(Theorem 7 in Jansen and Wegener, 2001) and for the (µ+1) EA is O
(
µn3) (Theorem 3 in

Witt, 2006). For the case of the performance of the ageing operators on PLATEAU, the proofs
ideas use the family trees method (see Section 2.3.7). For evolutionary ageing and genotypic
ageing, the expected optimisation time of the (µ+1) EA with these ageing operators and
maximal age τ = ω(logn · (n+µ logn)), is O

(
µn3)

Evolutionary ageing and genotypic ageing does not change much compared to the
corresponding algorithm without ageing on PLATEAU given that the maximal age τ is
sufficiently large. For the case of static pure static ageing, descendants of plateau points that
are on the plateau inherit the age of their parents, which may lead to the extinction of the
whole population on the plateau if the maximal age τ is not sufficiently large.

Theorem 3.19 (Theorem 4 in Jansen and Zarges, 2009). For n ∈ N, let α(n) = ω(1)
and α(n) = O

(
(n/ln)4/3

)
. Then for µ,τ ∈N with µ = poly(n), τ = ω(logn · (n+µ logn))

and τ = O
(
n3/(α(n) lnn)

)
, with probability 1−n−Ω

(√
α(n)

)
, the optimisation time of the

(µ+1) EA with static pure ageing on PLATEAU is nΩ

(√
α(n)

)
.

In this case, individuals can still reach the plateau but the main difference is that individu-
als inherits the age of the parent once they have reached the plateau. The resulting random
process corresponds to a fair random walk which leads to the constant extinction of the
population before any progress is achieved. And in the same way as LOCALOPTk, the use of
ageing does not translate into improvements compared to its plain version.

We conclude this section by mentioning the work done by Oliveto and Sudholt (2014) on
static pure ageing on the BALANCE function (see Definition 3.1). The following theorem

3.2 Diversity Mechanisms for the (µ+1) EA 79

shows that the (µ+1) EA with static pure ageing as a removal operator fails for any value
of τ . If τ is not large enough to allow the individuals to improve their fitness before reaching
age τ , then no local optimum will be found at all. For larger values of τ it is shown that
w. o. p. the trap is reached before the global optimum. Consequently, when the individuals
are eventually restarted they end up in the trap all over again w. o. p.

Theorem 3.20 (Theorem 8 in Oliveto and Sudholt, 2014). Let ϕ > 38µn3/2 and µ ≤ n1/2−ε .
Then the (µ+1) EA with static pure ageing requires at least 2Ω(

√
n) generations to optimise

BALANCE w. o. p. for every value τ .

3.2.6.2 Stochastic Pure Ageing

In stochastic pure ageing individuals are given an expected life time. In each generation
an individual has a probability to survive of plive = e−

c
τ ′ (i. e., hence a probability to die

of pdie = 1− e−
c
τ ′) where c is usually a constant and τ ′ the main parameter operator. Hence,

the expected life time of an individual is E[τ] = 1/pdie. The stochastic pure ageing mechanism
is formalised in Algorithm 17.

Algorithm 17 Stochastic Pure Ageing (Removal Due to Age)
Require: Set of search points P.
Ensure: Set of search points P with removed individuals with probability pdie.

1: for each x ∈ P do
2: Let P = P\{x} with probability pdie.
3: end for
4: return P

Jansen and Zarges (2009) have shown how a (µ+1) EA cannot find the global optimum
of the LOCALOPTk function efficiently because there is a high probability that the algorithm
finds the easy path and ends up being stuck on the local optimum. On the other hand, from
Theorem 3.18, we know that the (µ+1) EA with static pure ageing (age assignment for new
individuals and removal operator) can optimise LOCALOPTk efficiently. Static pure ageing
can implicitly restart the population allowing it to escape from the local optimum and to
eventually find the path leading to the global optimum.

In Oliveto and Sudholt (2014) it is shown that stochastic pure ageing can optimise
LOCALOPTk if the population size is not too large in a similar fashion. First, the time
reaching the local optimum is considered. If the wrong local optimum 0⌈n/2⌉1⌈n/2⌉ is reached,
the (µ+1) EA can escape by performing a restart where all individuals die in the same
generation. Once a local optimum with leading ones form is reached, there is a good chance
for the (µ+1) EA to climb up these local optima until the global optimum is reached.

80 Population Diversity in Evolutionary Algorithms

Theorem 3.21 (Theorem 4 in Oliveto and Sudholt, 2014). The expected optimisation time
on LOCALOPTk of the (µ+1) EA with stochastic pure ageing, population size µ = O(1) and

pdie = min

{
1

320µ2 ,
1

48µ
·
(

1
cµnk+1

)1/µ
}

for a sufficiently large constant c > 0, is at most

O
(

µnk+1 +nk−1 · p−µ−1
die

)
= O

(
n2k+(k+1)/µ

)
.

For large population sizes, stochastic pure ageing fails to work efficiently. Oliveto and
Sudholt (2014), showed that the effects of stochastic pure ageing can range from a population
evolving without guidance of the fitness to take exponential time to escape from the local
optimum due to its inability to reproduce a complete restart.

3.2.6.3 Hybrid Pure Ageing

In Oliveto and Sudholt (2014), the authors observed that stochastic pure ageing is effective
in achieving implicit restarts and in escaping from local optima beyond restarts only if the
population size is not too large, so in order accomplish the same results but with larger
populations, they introduce a hybrid mechanism which attempt of taking advantages from
the static and stochastic pure ageing operators. In hybrid pure ageing, the operator does not
act on an individual until its lifetime reaches a deterministic value τ . All the individuals with
age greater than τ survive with probability plive and are removed from the population with
probability pdie = 1− plive like in stochastic ageing. This allows, even in large populations,
both complete restarts and the possibility for some individuals to survive after they have
escaped a local optimum. The hybrid pure ageing mechanism is formalised in Algorithm 18.

Algorithm 18 Hybrid Pure Ageing (Removal Due to Age)
Require: Set of search points P.
Ensure: Set of search points P with removed individuals with probability pdie.

1: for each x ∈ P do
2: if x.age > τ then let P = P\{x} with probability pdie end if
3: end for
4: return P

The (µ+1) EA with hybrid pure ageing for LOCALOPTk is analysed in Oliveto and
Sudholt (2014). The basic idea follows the same line of though as the one used in the proof
for Theorem 3.18.

3.3 Diversity Benefits Crossover 81

Theorem 3.22 (Theorem 7 in Oliveto and Sudholt, 2014). Let k = O(1), plive = 1/µ and
τ = ω

(
logn · (nk +µn)+µ3). The (µ+1) EA with hybrid pure ageing optimises the function

LOCALOPTk in expected time Ω
(
τnk−1 +nk+1).

First, it is assumed that the local optimum is found before the global optimum. Once the
local optimum is reached, the time required for the whole population to collapse on the local
optimum is taken into consideration. Then, the time required for all individuals to have the
same age is considered. Since only copies are accepted and these inherit their parent’s age
all the population will reach age τ +1 at the same generation, and each individual will die
with probability pdie. At this moment, it is necessary to wait for a “genuine restart”, i. e., the
whole population dies in the same generation escaping from the local optimum. If a genuine
restart happens, after O

(
nk−1) expected number of genuine restarts, the best individual will

reach the global optimum before the age τ is reached.
For the case of BALANCE, the (µ+1) RLS with hybrid pure ageing instead of the (µ+1) EA

is analysed in Oliveto and Sudholt (2014). The proof idea takes into consideration that the
trap is found before the global optimum by all individuals but with constant probability the
individuals reach an age τ +1 and there will be at least one individual with exactly n/16+1
zeroes (i. e., it will escape the trap if it flips a 1-bit of the suffix and survives the restart).
Again, it is necessary to wait till a survivor escapes from the trap and the survivor reach the
global optimum by making improvements before τ generations.

Theorem 3.23 (Theorem 10 in Oliveto and Sudholt, 2014). Let µ ≤ n1/2−ε , τ > cµn lnn
and c a large enough constant. Then the expected time for the (µ+1) RLS with hybrid pure
ageing to optimise the BALANCE function is O

(
µ2n3) for any frequency of change ϕ > 0.

3.3 Diversity Benefits Crossover

This section is based on Section 4 from Sudholt (2018), we adopt a similar structure but
we present the results in a different way and we expand Section 4.5 in Sudholt (2018) by
introducing the results from ageing and crossover in Section 3.3.1.

The general framework of an EA with crossover is described in Algorithm 19. Parents are
selected based on some policy (uniformly at random) and the crossover operator is performed
with probability pc; this operator can be any of the operators mentioned in Chapter 1, like
uniform crossover or k-point crossover. Mutation is performed with mutation rate p (normally
p = 1/n unless stated otherwise). The replacement policy selects the µ best individuals and
in case of ties, some tie-breaking rule can be used like breaking ties uniformly at random.

One of the major concerns related to crossover is to define how this procedure can be
helpful in the evolution process. The area of runtime analysis has been trying to provide

82 Population Diversity in Evolutionary Algorithms

Algorithm 19 Scheme of a (µ+λ) GA with mutation rate p, and crossover with probability
pc for maximising f : {0,1}→ R

1: Let t := 0 and initialise P0 with µ ∈ N individuals chosen uniformly at random.
2: while stopping criterion not met do
3: Let P′ = /0.
4: for i = 1 to λ do
5: Choose p ∈ [0,1] uniformly at random.
6: if p ≤ pc then
7: Select two parents x1, x2.
8: Let y := crossover(x1,x2).
9: else

10: Select a parent y.
11: end if
12: Create y′ by flipping each bit in y independently with probability p.
13: Add y′ to P′.
14: end for
15: Let Pt+1 contain the µ best individuals from Pt ∪P′; break ties according to a specified

tie-breaking rule.
16: Let t := t +1.
17: end while

answers to the questions: how crossover is able to promote diversity? And how helpful is
crossover in an optimisation problem? The first theoretical analysis towards these answers
was done by Jansen and Wegener (2002) (we will review these results in Section 3.3.1.1).
Another study in the same direction was done by Jansen and Wegener (2005). The authors
showed that a (µ+1) GA was able to optimise 2 example functions (called real royal road
functions) in polynomial expected optimisation time while mutation-based EAs needed
exponential expected optimisation time w. o. p.

The main feature of this (µ+1) GA is that a simple rule to increase the diversity on the
population is added to the replacement policy: once an offspring is added to the population
(if has a better fitness than an individual with worst fitness of the current population), then
a multi-set W of individuals with worst fitness is selected, and from W another set W ′ is
formed from the individuals with the largest number of copies in W . Then, one element in
W ′ is removed from the current population uniformly at random.

Another simple strategy that showed to be better than mutation-based EAs was the greedy
(2+1) GA with uniform crossover and standard bit mutation for the case of hill climbing
(ONEMAX) analysed by Sudholt (2012). This greedy GA chooses two parents with the best
fitness uniformly at random, then crossover and mutation are applied, then it proceeds as
the standard (µ+1) EA. Sudholt showed that this greedy (2+1) GA with uniform crossover

3.3 Diversity Benefits Crossover 83

and standard bit mutation is at least as twice fast as its plain version with just standard bit
mutation (up to small order terms). Then, Sudholt (2017) extended the idea to a more general
analytical framework that applies to all (µ+λ) GA (including the greedy (2+1) GA), subject
to mild conditions. One feature of this (µ+λ) GA, was its tie-breaking on the selection for
survival step; better individuals are selected with the individuals with the fewest duplicates.
Again, it is shown that this (µ+λ) GA with uniform crossover and standard bit mutation is at
least twice as fast as every EA with only standard bit mutations on ONEMAX.

Corus and Oliveto (2017) showed that it still possible to achieve speed-ups on ONEMAX

without some diversity-based tie-breaking rule. By always applying uniform crossover (each
bit of the offspring is chosen from each parent with probability 1/2), an offspring is created
and standard bit mutation (with mutation rate c/n) is applied to this offspring. Finally the
best µ individuals are selected from the µ +1 individuals and ties are broken uniformly at
random.

As can be seen, in order for crossover to work, some diversity has to be achieved (like
simple greedy strategies or removing duplicates mentioned previously) before crossover
shows its full potential. In the following sections we will focus on works that show that cross-
over can outperform mutation-based EAs by using explicit diversity-mechanisms embedded
into a GA (Section 3.3.1) and by means of diversity emerging by the implicit mechanism:
mutation (Section 3.3.2).

3.3.1 Escaping Local Optima with Diversity Mechanisms and Crosso-
ver

In this section we will review how some GAs with diversity mechanisms. In Section 3.3.1.1
we focus our attention on the performance of the (µ+1) GA with duplicate elimination, dupli-
cate minimisation, deterministic crowding, convex hull and Hamming distance maximisation,
and population-based fitness sharing and how these mechanisms with crossover can escape
from local optima (Dang et al., 2016b). In Section 3.3.1.2 we mention some results that show
how ageing and crossover can improve the performance of a (µ+1) EA compared to a plain
(µ+1) EA or equipped with restart strategies.

3.3.1.1 Diversity Mechanisms and Crossover

Unlike the (µ+1) EA that only uses mutation, the (µ+1) GA uses crossover and mutation
operators. Dang et al. (2016b) introduced diversity mechanisms into this algorithm and they
provide an analysis of its performance on the JUMPk function (see Definition 3.24, Jansen
and Wegener, 2002).

84 Population Diversity in Evolutionary Algorithms

Definition 3.24 (JUMPk, Jansen, 2013). Let n ∈N and k ∈ {1,2, . . . ,n} be given. The fitness
function JUMPk : {0,1}n → R is defined by

JUMPk(x) :=

n−ONEMAX(x) if n− k < ONEMAX(x)< n,

k+ONEMAX(x) otherwise.

A graphical representation of JUMPk is given in Figure 3.4.

ones

k

n+ k

n

n− k n

A B C

Figure 3.4: Sketch of the function JUMPk with n = 18 and k = 5 (Jansen, 2013).

As shown in Figure 3.4, the JUMPk function is divided in 3 sections, the section denoted
by A is directed into the direction of the 1n bitstring but that leads to a locally optimal
plateau with fitness n− k. Section B is defined by the points with more n− k but less than n
1-bits, the function value is given by n−ONEMAX(x) (the values vary between 1 and k−1)
with smaller function values than all bitstrings not in this part. Finally, the unique global
optimum 1n forms the third and last part of the search space denoted by C.

The main goal of any EA on this function is to overcome the fitness valley with Hamming
distance k from the optimum. Jansen and Wegener (2002) showed that mutation-only
algorithms such as the (1+1) EA require expected time Θ

(
n logn+nk), which is the expected

time to reach the plateau plus the expected time required to mutate exactly the k bits
simultaneously in order to reach the global optimum. For large k ≥ 2 this time becomes
Θ
(
nk). A simple (µ+1) GA with uniform crossover only needs time O

(
µn2k3 +4k/pc

)
.

This time is O
(
4k/pc

)
for large k, and hence significantly faster than mutation-only EAs.

Kötzing et al. (2011) later showed that the (µ+1) GA with no genotype duplicates by
mutation and with/without mutation after crossover also works with very small populations
(µ ≥ 2 and µ ≤ poly(n)) and not too big crossover probability (pc = k/n) on JUMPk. The
expected optimisation time in Kötzing et al. (2011) analysis is O

(
µn logn+ e6k ·µk+2 ·n

)
, if

µ = 2 and k = c log logn for a sufficiently small c, the expected time simplifies to O(n logn).

3.3 Diversity Benefits Crossover 85

As can be noticed from the previous results, it is possible to achieve speedups on the
optimisation time by using crossover and mutation. However, if all individuals in the
population are very similar, crossover will create a similar offspring, so in order for crossover
to work, some degree of diversity has to be achieved before applying the operator. Dang
et al. (2016b) used diversity mechanisms to improve the population diversity. The goal was
to study how diversity helps to escape local optima and how crossover can be enhanced by
promoting diversity in the population. The (µ+1) GA uses explicit diversity mechanisms in
the tie-breaking rule for the survival selection. The main results are summarised in Table 3.2
(Table 1 in Dang et al., 2016b).

Table 3.2: Overview of the main results from Dang et al. (2016b). The table represents the
run time bound for best-possible population size µ = 2 for each diversity mechanism. The
results for deterministic crowding only holds for pc = k/n, for the rest of the mechanisms,
the results hold for constant crossover probability pc < 1.

Mechanism General case k = 2 k = 4

Duplicate elimination (Theorem 3.1) O
(
n logn+nk−1) O(n logn) O

(
n3)

Duplicate minimisation (Theorem 3.2) O
(
n logn+nk−1) O(n logn) O

(
n3)

Deterministic crowding (Theorem 3.3) O
(
n logn+ne5k) O(n logn) O(n logn)

Convex hull max. (Theorem 4.1) O
(
n2 logn+4k) O

(
n2 logn

)
O
(
n2 logn

)
Hamming distance max. (Theorem 4.2) O

(
n logn+nk logk+4k)O(n logn) O(n logn)

Fitness sharing (Theorem 4.4) O
(
n logn+nk logk+4k)O(n logn) O(n logn)

More general results can be found in the respective theorems. Another contribution
made from Dang et al. (2016b) is that the upper bounds do not rely on small crossover
probabilities (like in Jansen and Wegener, 2002 and Kötzing et al., 2011), in this case all
diversity mechanisms mentioned in Table 3.2 work for more realistic constant probabilities
pc ≤ 1 (except for deterministic crowding). In the following we will explain the tie-breaking
rules based on each diversity mechanism, along with the main ideas behind each analysis.

In duplicate elimination as a tie-breaking mechanism, if there are duplicates of the worst
individual, one is selected for removal so that the number of duplicated individuals decreases.
If no duplicates with the worst individual are found, a least-fit individual is selected uniformly
at random for removal. The analysis it is based on the idea that once the whole population
has reached the plateau in expected time O(µn+n logn) and after O

(
µ2n
)

generations in
expectation, there will be cµ duplicates in the population (with 0 < c < 1 being an arbitrary
constant). In this scenario crossover can create a surplus of ones, so that mutations only has
to flip the remaining at most k−1 zeroes, so the expected number of generations until the
optimal string appears is Ω

(
nk−1).

86 Population Diversity in Evolutionary Algorithms

For duplicate minimisation, if there is a large number of duplicates in the population, an
individual from this subpopulation is selected for removal. In this sense the largest group of
duplicates cannot increase over time. In this case it is just necessary to wait until the size of
this group is at most cµ in expected time O(µn). Then, the same waiting time for flipping at
most k−1 bits from duplicate elimination apply.

In the case of deterministic crowding, the offspring always survive. If just mutation is
used, the parent is always removed and if crossover is used, one of the parents is selected
uniformly at random and removed from the population while the offspring gets to the next
generation. The main idea to create individuals with not a single 0 in common due to mutation
(no crossover), and these individuals get chosen for crossover that succeeds in creating the
optimum.

Convex hull maximisation focusses in the maximisation of the number of bit positions
where the population contains both a 0 and an 1 some individual. First, it is necessary to
wait until a maximum amount of diversity is reached, i. e., in expected time O

(
µn2 logn

)
.

Now, since all two individuals have no 0s in common, an optimal individual can be formed
by crossover with probability 1/22k with a waiting time 4k · p−1

c .
Hamming distance maximisation removes an individual from the population such that the

overall Hamming distance of the population is maximised without that individual. Similar
to convex hull maximisation, the algorithm reaches a population of maximal diversity in
expected time O

(
µ2kn log(µk)

)
and by repeating the same arguments from convex hull

maximisation the bound is obtained.
For fitness sharing, the idea of population-based fitness sharing is used, the population

with the maximum shared fitness is the one that passes to the next generation. With σ ≥ 2k,
population-based fitness sharing turns out to be equivalent to maximising the total Hamming
distance between pairs of search points, obtaining the same results. We conclude this section
by mentioning that this is not the only result concerning population-based fitness sharing
and crossover; Fischer and Wegener (2005) and Sudholt (2005) have shown that GAs with
this diversity mechanism perform better than mutation-based EAs for the Ising model (Ising,
1925).

The Ising model was first presented by Naudts and Naudts (1998) as subject for the
investigation of GAs and EAs. In its general form it is NP-hard to solve and consists of an
undirected graph G = (V,E), V = {1, . . . ,n} and a search point x = (x1, . . . ,xn) represents a
colouring of V . An edge e = {u,v} contributes the value fe(x) := w(e) · xu · xv to the fitness
where w(e) is the weight of the edge and xu,xv ∈ {−1,+1}. The fitness of an individual x
is the sum of all fe(x) and has to be maximised. In case where w(e) = 1 for all e ∈ E by a
affine transformation, the state space can be changed to {0,1}n and the fitness fe(x) equals

3.3 Diversity Benefits Crossover 87

the number of monochromatic edges leading to the 0n and 1n being optimal and being the
only optimal states for connected graphs.

Fischer and Wegener (2005) showed that population-based fitness sharing enhances
crossover for the Ising model on the ring, an one-dimensional undirected graph than can have
one of two colours (or states) 0 or 1. For this fitness function, the value corresponds to the
number of monochromatic edges, and all colourings where all connected components have
the same colour are global optima. One particular characteristic of this ring model is that it
contains large plateaus that the GA or EA has to overcome in order to find one of the global
optimum. As mentioned by Sudholt (2018), let us say that there is one individual with the
following genotype structure 0001111000, a mutation flipping: 0001111000, 0001111000,
0001111000 or 0001111000 are fitness-neutral, i. e., a plateau with no effect on the fitness.
For this it is necessary to change complete blocks to create an improvement. Fischer and
Wegener (2005) showed that the expected optimisation time for the (1+1) EA on the Ising
model on the ring is Θ

(
n3) while a (2+2) GA using two-point crossover with population-

based fitness sharing with Hamming distance function and parameters σ = n and α = 1 can
optimise the Ising model on the ring in expected time O

(
n2).

As mentioned in Section 3.2.5 for the case of the TWOMAX function, population-based
fitness sharing promotes the creation of individuals in opposite directions. For this case it
is not different, dissimilar individuals will have a higher shared-fitness. If the two-point
crossover chooses properly where to place the cutting points from complementary individuals,
it is possible to invert whole blocks.

Sudholt (2005) investigated another instance of the Ising model, complete binary trees.
In this problem class the building blocks form subtrees, and subtrees of the same color
represent building blocks of good solutions. Finally, let us note that this class of problem
has difficult local optima, for example when the two subtrees of the root are coloured with
different colours. Sudholt (2005) proved that the (µ+λ) EA with mutation rate pm needs at
least expected time 2Ω(n) to find a global optimum on the complete binary tree Ising class
while the (2+2) GA with two-point crossover and population-based fitness sharing with
parameters σ = n, α = 1, Hamming distance, and probability pc = 1/2 can find the optimal
in the complete binary tree class in expected time O

(
n3).

Again, population-based fitness sharing promotes the creation of individuals with max-
imum Hamming distance between them. In the case of x and y being complementary,
two-point crossover can effectively substitute subtrees to increase the fitness. In this problem
class there is no plateau; this means that any change in the Hamming distance has an effect
on the fitness value of the populations, i. e., instead of individuals, the replacement is done at
the level of populations, e. g., P = {x,y} (the parent and current population) and P′ = {x′,y′}

88 Population Diversity in Evolutionary Algorithms

(the offspring population), the population P′ replaces P if the shared fitness is f (P′)≥ f (P).
In the analysis Sudholt (2005) shows that there are several situations where the fitness can
improve by performing more complex operations (mutation and/or crossover); however, these
steps have probability Ω

(
1/n2), leading to the overall time bound of O

(
n3).

3.3.1.2 Ageing and Crossover

As mentioned in Section 3.2.6.1, in Horoba et al. (2009) it is shown that the proper setting
for τ can make the difference between very inefficient and efficient search. In Jansen and
Zarges (2009), the authors have pointed out that in many cases ageing may be replaced by
a suitable restart mechanism that has the same beneficial effects on the performance of the
search heuristic. A question left open was: is there a real advantage of using ageing over
restarts? Since restarts are easier to implement and computationally simpler and cheaper in
comparison to ageing, in Jansen and Zarges (2010a), the authors showed that an EA with
crossover, mutation, and static pure ageing can efficiently optimise their example function f
(see Definition 8 in Jansen and Zarges, 2010a) while other randomised search heuristics
without crossover and ageing, and with just restarts fail completely.

In this case, an offspring can be produced not just by mutation but also by crossover.
Variation creates one new search point y by means of k-point crossover and standard bit
mutations. The crossover operator cuts two search points into k+1 pieces using k randomly
selected crossover points. The two search points are selected uniformly at random. If no
crossover is carried out (with probability 1− pc) one search point is selected uniformly at
random and undergoes standard bit mutation. In this mutation each of the n bits is flipped
independently with probability 1/n. Now, the “classic” static pure ageing has to be changed
to deal with two parents, so if the fitness of the offspring is better than the fitness of both
parents, the age of the offspring is set to 0, if it is worst, the age of one the parents (selected
uniformly at random) is used to define the age of the offspring.

So in order to show that the new (µ+1) EA with crossover and ageing operators works
better than simple restarts, Jansen and Zarges (2010a) make use of a function simply called
f : {0,1}n → R (see Definition 8 in Jansen and Zarges, 2010a), with structure similar to
LOCALOPTk, with a vast majority of the points on the search space leading to the 0n bitstring.
It has a path of Hamming neighbours of the form 1i0n−i leading to a local optimum at
1n/403n/4, with the difference that the points of the form 1n/40n/4q with q ∈ {0,1}n/2 and
ONEMAX(q)≥ n/12 are defined as the set of all global optima of the f function (cf. Figure 1
in Jansen and Zarges, 2010a).

By allowing partial restarts, i. e., some individuals are removed due to its age and some
individuals remain on the path 1i0n−i or at the local optimum 1n/403n/4, the set of optima

3.3 Diversity Benefits Crossover 89

points can be reached by applying crossover to new generated individuals and individuals
from the path; the structure of f is tailored in such way that it can be optimised by crossover
and ageing. General search heuristics without crossover will find it difficult to optimise this
function efficiently, and a complete restart will always maintain a cycle between new born
individuals and individuals stuck on the local optimum. In the following we just mention
the upper and lower bounds on the expected optimisation time of the (µ+1) EA with k-point
crossover and static pure ageing on the f function. The proof ideas follow from the arguments
used from previous results and from the previous paragraph.

Theorem 3.25 (Theorem 10 in Jansen and Zarges, 2010a). Consider the function f . The
(µ+1) EA with static pure ageing with population size µ ∈ N with µ ≥ 2 and µ = nO(1),
crossover probability pc with 0 < ε ≤ pc ≤ 1− ε < 1 for a positive constant ε , k = O(1)
crossover points in k-point crossover, and maximal age τ = ω(µn log µ) has expected
optimisation time O

(
µ ·
(
τ +n2 +µn logn

))
.

Theorem 3.26 (Theorem 11 in Jansen and Zarges, 2010a). Consider the function f . The
(µ+1) EA with static pure ageing with population size µ ∈ N with µ ≥ 2 and µ = nO(1),
crossover probability pc with 0 < ε ≤ pc ≤ 1− ε < 1 for a positive constant ε , k = O(1)
crossover points in k-point crossover, and any maximal age τ has expected optimisation
time Ω

(
τ +n2 +µn logn

)
.

We would like to mention that Jansen and Zarges (2010b) use the same function analysed
by Jansen and Zarges (2010a) but with different ways of setting the age of the offspring. Due
to crossover, each new search point has two parents as origin, so what age has to be inherited
if no improvement was made? This question is addressed in Jansen and Zarges (2010b)
by providing three variants that follow the general scheme given by static pure ageing for
two parents. In age-based static pure ageing the age of the offspring is set using the age
of the older parent. Optimistic value-based static pure ageing, the age of the offspring is
set by using the age of the best parent according to the fitness function value or pessimistic
value-based static pure ageing, setting the age of the offspring with the age of the worst
parent according to the fitness function value.

We conclude the results obtained by ageing and crossover by mentioning that in Jansen
and Zarges (2011b) the same f function is analysed and the same algorithmic framework
is used with the same variants for static pure ageing, but this time different selection for
replacements are introduced. Most frequent replacement, all individuals with the most
frequently age within the current selection are selected for replacement. In smallest age
distance replacement, an element with the minimal age distance to the new search point
is selected uniformly at random for removal. In random replacement a search point is

90 Population Diversity in Evolutionary Algorithms

selected from replacement uniformly at random and in fewest replacement, the set of search
points whose age occurs fewest within the current selection of search points. Each of this
replacement mechanisms offer different degrees of diversity with respect to age.

3.3.2 Escaping Local Optima with High Mutation Rates and Crossover

In Section 3.3 and 3.3.1 we mentioned examples where some degree/method for diversity
is introduced to the plain GA to speed up hill climbing on ONEMAX and to speed up the
escape from local optima on JUMPk, respectively. Now, in this section we introduce the work
done by Dang et al. (2017a), in which the authors show that crossover, when followed by
high mutation rates, may lead to a sudden burst of diversity.

As mentioned before, the work done by Jansen and Wegener (2002) and Kötzing et al.
(2011) relied on mutations to provide diversity with small crossover probability. Both
approaches focussed on creating diversity through a sequence of mutations, relying on
crossover to create the optimum once sufficient diversity has been created. In Dang et al.
(2016a) it is shown that diversity can also be created and speed-ups can be achieved by
introducing frequent applications of crossover followed by standard mutation rates but
restricted to very short jumps (k = O(1)). Then, Dang et al. (2017a) extended the analysis
done in Dang et al. (2016a) by introducing higher mutation rates and generalising the results
to a much larger class of JUMPk, only requiring k = o(n). The resulting optimisation time
using standard mutation rate with k = o(n) is stated as follows.

Theorem 3.27 (Theorem 2 in Dang et al., 2017a). The expected optimisation time of the
(µ+1) GA with pc = 1 and µ ≤ κn, for some constant κ > 0 on JUMPk, with k = o(n) is
O
(

µn
√

k log µ +nk/µ +nk−1 log µ

)
.

For µ = κn and k ≥ 3, the bound simplifies to the dominant term O
(
nk−1 logn

)
, achieving

a speedup of order Ω(n/logn) compared to the expected time of Θ
(
nk) for the (1+1) EA

(Jansen and Wegener, 2002). The analysis follows the same ideas from previous results;
once the population has reached a fitness of n− k (the plateau), in the worst case scenario,
there is no diversity: all individuals are identical. Selection and crossover cannot create
different offspring from the parents. But with mutation, new local optima can be created by
flipping a 1-bit back to 0 from the n− k+ 1 bits available. The algorithm now can spend
time creating new individuals at the plateau. Finally, once several local optima have been
created by mutation, crossover has a chance to create a surplus of 1-bits, and then the global
optimum can be found by flipping the at most k−1 remaining 0-bits to 1.

Now higher mutation rates (1+δ)/n for a constant δ > 0 leads to an increment on the
diversity, i. e., the larger the mutation rate, the easier it is to promote the emergence and

3.4 Diversity in Island Models 91

maintenance of diversity. This leads to the following improved upper bound, which for
reasonably small µ and for k ≥ 3, simplifies to the dominant term O

(
nk−1), achieving a

speed-up of order n compared to the expected time of the (1+1) EA.

Theorem 3.28 (Theorem 3 in Dang et al., 2017a). The (µ+1) GA with mutation rate
(1+δ)/n, for a constant δ > 0, and population size µ ≥ ck lnn for a sufficiently large
constant c > 0, has for k = o(n) expected optimisation time O

(
n
√

kµ log µ +µ2 +nk−1
)

on
JUMPk.

3.4 Diversity in Island Models

As mentioned in Section 3.1, the main interest of this chapter (and this thesis) is on panmictic
populations, but because of its importance as a diversity mechanism, we will review some of
the results obtained with island models. This section is loosely based on Section 3.2 from
Sudholt (2018) but without going into too much detail. For a more detailed survey on this
diversity mechanism and on runtime analyses on parallel EAs we refer the reader to Sudholt
(2015).

Due to their highly parametrisable nature (problem representation, operators, evolution
mode, etc.), EAs are specifically adequate for the analysis of hybrid and parallel approaches
(Cotta-Porras, 1998). As mentioned before, some of the mechanisms include the partition
of the population into subpopulations; in the case of island models, each island can run an
EA and with the help of a migration policy communicate each other by sending/receiving
selected search points.

Each island can run an EA on parallel hardware in various ways. It is possible to
parallelise specific operations, or to parallelise the evolutionary process itself. These island
models communicate with other islands based on a topology that connects the islands, and
migration involves sending solutions to all neighbouring islands. Often periodic migration is
used: migration happens every τ iterations (migration interval). The solutions sent are then
considered for inclusion on the receiving island according to a selection process.

One of the major advantages is that the islands evolve independently, and the flow of
genetic information in the whole system is slowed down (compared to having one large
population). In the same way as selection pressure in panmictic populations can be used
to control diversification and intensification, the migration interval τ , the migration policy,
the number of individuals to be migrated, or the selection schemes for emigration and
immigration can be used to increase diversity and to prevent (or at least delay) premature
convergence. Algorithm 20 shows a general scheme of a basic island model.

92 Population Diversity in Evolutionary Algorithms

Algorithm 20 Structure of an island model with migration interval τ (Sudholt, 2015)
1: Let t := 0.
2: Initialise a population made up of subpopulations or islands, Pt = {Pt

1, . . . ,P
t
m}.

3: while stopping criterion not met do
4: for each island i do in parallel
5: if (t mod τ) == 0 then
6: Send selected individuals from island Pt

i to selected neighbouring islands.
7: Receive immigrants It

i from islands for which islands Pt
i is a neighbour.

8: Replace Pt
i by a subpopulation resulting from a selection among Pt

i and It
i .

9: end if
10: Produce Pt+1

i by applying reproduction operators and selection to Pt
i .

11: end for
12: Let t := t +1.
13: end while

Figure 3.5 sketches some of the most common topologies, common topologies include
unidirectional rings (a ring with directed edges only in one direction), bidirectional rings,
torus or grid graphs, hypercubes, scale-free graphs (De Felice et al., 2011), random graphs
(Giacobini et al., 2005), and complete graphs. As can be seen in Figure 3.5, some of the
topologies require more time to spread the information and reach a desired vertex like rings
and torus graphs, hypercubes, complete graphs, and many scale-free graphs can spread the
information faster due to the large amount of connected vertices.

(a) Ring (b) 2D Torus (c) Complete Graph

Figure 3.5: Sketches of common topologies.

The first theoretical result where communication between islands plays a key role was
presented in Lässig and Sudholt (2010, 2013). Lässig and Sudholt showed that communica-
tion between islands is necessary to optimise the family of problems LOLZ with n, z, b and
ℓ as parameters of the function. An island model running (1+1) EA with a correct setting of
the migration interval and for any migration topology that is not too sparse, is able to find the

3.4 Diversity in Island Models 93

optimum of LOLZ in polynomial time with high probability. On the other hand, independent
islands running (1+1) EA and the (µ+1) EA with large population require exponential time
with high probability.

The function LOLZ is based on the function LEADINGONES and its symmetric counter-
part LEADINGZEROS that counts the number of leading zeroes. The function is defined in
such a way that the maximum contribution provided by the leading zeroes cannot exceed a
limit called z, i. e., the fitness cannot be increased by adding more leading zeroes, leading to
a local optimum. The algorithm is encouraged to either establish a prefix of ones or a prefix
of zeroes (both with probability close to 1/2), and as defined by z on the long run, gathering
leading zeroes is a bad choice since at some point this decision becomes irreversible and it
will be necessary to switch from one prefix to the other to escape from the local optimum.

The function is composed by several blocks denoted by b and each block contains ℓ bits,
each block has to be optimised one by one, from left to right. Once the first block consists
only of leading ones, the fitness depends on the correct decision made in the second block.
Only by making all decisions correctly, the EA will be able to find the global optimum with
a prefix of bℓ leading ones (cf. Table 1 in Sudholt, 2018 for an example of this function).

For the case of the (µ+1) EA, it is not possible to optimise LOLZ efficiently, w. o. p. A
population-based EA tends to gather leading bits of the same value; sooner or later it will
make a wrong decision and get stuck in some local optimum. The same holds for independent
runs, if the islands do not communicate, each island behaves like a population-based EA.

An island model with a suitable parametrisation can optimise the function LOLZ effi-
ciently. If a set of islands have made the correct decision, the migration policy and topology
can help in the dissemination of “good” individuals to other islands. This helps to maintain
good individuals for a long period of time with high probability. In this case it is necessary
to set the migration policy properly so that migration only transmits good individuals; if
migration happens to soon it may be possible to transmit individuals with leading zeroes.
For the case of the topology, it is necessary to define a topology able to spread the right
information quickly. Lässig and Sudholt (2013) have defined the following desired property
for a topology: a topology G is called well-expanding if there is a constant ε > 0 such that
the following holds. For every subset V ′ ⊆V with |V ′|≤ |V |ε we have |N(V ′)|≥ (2+ ε)|V ′|.
Lässig and Sudholt (2013) give the following positive result by considering an island model
running a (1+1) EA with a well-expanding topology and migration interval τ = n5/3.

Theorem 3.29 (Theorem 3 in Lässig and Sudholt, 2013). Consider an island model where
each island runs a (1+1) EA with migration on a well-expanding migration topology with
τ = n5/3 and µ = poly(n) subpopulations, accepting a best search point among all immigrant
and the resident individual. Let the function LOLZ be parametrised according to ℓ= 2τ/n =

94 Population Diversity in Evolutionary Algorithms

2n2/3, z = ℓ/4 = n2/3/2, and b ≤ n1/6/16. If the migration counter t starts at τ/2 = n5/3/2
then w. o. p. the algorithm finds a global optimum within O(bℓn) = O

(
n2) generations.

The main proof idea is that each island makes its own decision for the first block (from
left to right). Some may start gathering leading zeroes and some may start gathering leading
ones (with high probability at least one island start gathering leading ones). Then, once
a migration happens (the migration interval is tuned such that between two migrations all
islands will be starting to optimise the same new block, excluding islands that got stuck
on previous blocks), individuals with leading ones are strictly better than individuals with
leading zeroes, so the leading ones individuals takeover the leading zeroes individuals if
the topology is not too sparse. In this case there will be many islands that have made the
right decision, and the individuals can continue towards the next block. The idea is that
this process is repeated block after block, with “good” decisions made and communicated
to other islands until some island makes it to the end of the last block and finds a global
optimum with high probability.

The definition of the migration interval τ and the setting of the topology are crucial for
the proper propagation of the information. If these two settings are chosen wrong, takeover
may happen; if migration happens too frequently, the island model is subjected to genetic
drift in the same fashion as the (µ+1) EA population and if migration is slow, promising
individuals can die out depending on the maximum degree of the topology.

The island model has also been analysed for the case of the JUMPk function by Dang
et al. (2016b); their island model uses a particular topology called single-receiver model
(Watson and Jansen, 2007). This model was introduced to prove that a constructed royal road
function with a building block structure could be solved efficiently by crossover. It was also
used in Neumann et al. (2011) where it was shown that crossover during migration can be
effective, for constructed functions as well as for instances of the VERTEXCOVER problem.
We refer the reader to Neumann et al. (2011); Watson and Jansen (2007) and Section 46.5.4
from Sudholt (2015) for details.

The topology is formed by µ +1 islands, µ of them running a (1+1) EA in parallel and
the remaining island is called receiver. In each iteration 2 of the µ islands are selected
uniformly at random, then copies of their respective best-so-far individuals are sent to the
receiver, then crossover is performed and the resulting offspring replaces the resident if it
has higher fitness. The run is stopped once the receiver island produces the optimum. The
main idea of the analysis is similar to the ones in deterministic crowding. These islands will
generate individual with 0s in different positions or reduce the number of bit positions where
they have 0s in common. Then by crossover, the receiver will have good chances of creating

3.4 Diversity in Island Models 95

the optimum from the 2 migrants with the same bound as Hamming distance maximisation
and population-based fitness sharing.

For the case of island models for combinatorial optimisation, Lässig and Sudholt (2014)
considered island models for sorting (as maximisation of sortedness), shortest paths and the
Eulerian cycle problem. The main goal for this analysis was to show how general-purpose
island models with EAs perform when applied to a broad range of problems.

The sorting problem was first considered as an optimisation problem and analysed in
Scharnow et al. (2005) in the context of the (1+1) EA. Given a sequence of n distinct elements
from a totally ordered set, sorting is the problem of maximising the sortedness. The main
goal is to find the unknown optimal permutation πopt such that

(
πopt(1), . . . ,πopt(n)

)
is the

sorted sequence with respect to some unknown criterion. The search space is the set of
all permutations π on {1, . . . ,n}. The fitness function fπopt(π) describes the sortedness of
(π(1), . . . ,π(n)) with respect to

(
πopt(1), . . . ,πopt(n)

)
. The main results of this analysis of

parallel executions of the (1+1) EA, show that it is possible to achieve linear speedups when
certain restrictions on the number of islands are defined and used in comparison to the
standard (1+1) EA. These results also show that the bounds improve with the density of
topologies.

Scharnow et al. (2005) also analysed the single source shortest path problem (SSSP) in
the context of the (1+1) EA. An of the SSSP is given by an undirected connected graph with
vertices {1, . . . ,n} and a distance matrix D = (di j)1≤i, j≤n where di j ∈ R+

0 ∪{∞} defines the
length value for given edges from node i to node j. The goal is to find the shortest path from
a node s to each other node 1 ≤ i ≤ n−1.

A solution is represented as a shortest paths tree, a tree rooted at s with directed shortest
paths to all other vertices. A search point x is defines as a vector of length n−1, where each
position i describes the predecessor node xi of node i in the shortest path tree. The results in
Lässig and Sudholt (2014) show that a parallel implementation with λ islands also allows
for linear speedups. The maximum number of islands guaranteed to yield linear speedups
depends on the topology and the mutation operator used.

An undirected graph is called Eulerian if it is connected and all vertices have an even
degree. Given an undirected, loopless Eulerian graph, the goal is to find and Eulerian cycle,
i. e., find a traversal of the graph on which each edge is traversed exactly once. This problem
can be solved in linear computation time using Hierholzer’s algorithm and has already been
analysed in the context of EAs (Doerr et al., 2007a; Doerr and Johannsen, 2007; Doerr et al.,
2007b; Neumann, 2008).

Lässig and Sudholt (2014) showed that if the migration policy is set large enough,
parallelisation can help to make the right decision through independent evolution. The

96 Population Diversity in Evolutionary Algorithms

authors showed that island models can lead to a superlinear speedup on problems from
combinatorial optimisation but this good performance can only be achieved if migration is
rarely used, or if independent runs are used. On the contrary, if the migration interval is set
too small (this include the number of islands and the topology), the island model rapidly loses
diversity. Only strictly better immigrants are considered for inclusion, with all the islands
performing independent random walks, then there is a constant probability that the some
island propagates its solution throughout the whole island model, before any other island
can make an improvement. This example shows that the choice of the migration interval can
make a difference between exponential and logarithmic speedups.

Finally, for the case of island model on DOPs we can find the work done by Lissovoi
and Witt (2017) on the MAZE function. This function was introduced by Kötzing and Molter
(2012) and the goal is to track the optimum while this changes in phases of t steps. The
authors showed that the (1+1) EA is not able to keep track of the optimum and requires
with high probability an exponential amount of time to find the optimum. Lissovoi and Witt
(2017) analysed this function in the context of parallel EAs. By using an island model with
communication occurring within regular intervals, islands allow efficient tracking of the
optimum of the MAZE function. We refer to Kötzing and Molter (2012); Lissovoi and Witt
(2017) for more details and formal definition of MAZE.

3.5 Diversity for Multi-Objective Optimisation

When dealing with large Pareto fronts, MOEAs try to spread the individuals in the population
over the whole Pareto front with a set of solutions representing the different trade-offs with
respect to the given objective functions. The number of these trade-offs can be exponential
with regard to the problem size, which implies that not all trade-offs can be computed
efficiently. In this case, one may be interested in good approximations of the Pareto front
consisting of a not too large set of Pareto-optimal solutions (see Definition 2.15). The
application of a wide range of diversity mechanism can help to achieve this goal (Fonseca
and Fleming, 1995). We refer to Brockhoff’s survey (Brockhoff, 2012) for a review of further
theoretical results.

3.5.1 Diversity for Approximating Pareto-Optimal Sets

A popular diversity strategy is to use some density estimator to favour individuals in less
crowded regions of the objective space (Laumanns et al., 2001). A well-known diversity

3.5 Diversity for Multi-Objective Optimisation 97

strategy is the δ -dominance approach: partitioning the objective space into boxes and
restricting the population to at most one individual per box (Laumanns et al., 2002).

Horoba and Neumann (2010) focussed on how such diversity mechanisms influence the
approximation ability of MOEAs, specifically on GSEMO. Here, we present the results from
Horoba and Neumann (2010) that show the usefulness of such diversity mechanisms. They
point out for each diversity mechanism a typical situation, which explains when and how the
considered diversity mechanism is crucial to obtain a good approximation of the Pareto front
of the given problem.

When the number of Pareto-optimal objective vectors grows exponentially with the
problem size, it is not possible to obtain the whole front efficiently. In this case, one may be
interested in the time to obtain a good approximation of the Pareto front and to examine in
which situations the use of a diversity mechanism can help to achieve this goal.

To judge the quality of an approximation, Horoba and Neumann (2010) use the additive
ε-dominance measure (see Laumanns et al., 2002). A set of objective vectors T (or a set of
corresponding search points) is called an ε-approximation of f if and only if, there is for
each objective vector v ∈ f ({0,1}n) at least one objective vector u ∈ T that ε-dominates v. If
it is just required an approximation of the Pareto front, it might be beneficial to avoid storing
similar individuals in the population of GSEMO. The objective search space is divided into
boxes and each box stores at most one individual.

An individual x is mapped to a box index vector b(x) = (b1(x), · · · ,bm(x)) with bi(x) :=
⌊ fi(x)/δ⌋ where δ ∈ R+ determines the size of the boxes. This idea is incorporated into the
plain GSEMO resulting into the Global Diversity Evolutionary Multi-Objective Optimiser
(GDEMO) (see Algorithm 21). The population of GDEMO constitutes an δ -approximation
of the so far sampled decision vectors, the dominance with respect to the box index vector
indices δ -dominance b(x)≽ b(y) then x ≽δ y (see Horoba and Neumann, 2010 for a detailed
definition).

Algorithm 21 GDEMO
1: Choose an initial solution s ∈ {0,1}n uniformly at random.
2: Determine f (s) and initialize P := {s}.
3: while stopping criterion not met do
4: Choose s uniformly at random from P.
5: Define s′ by flipping each bit in s independently with probability 1/n.
6: if s′ is not dominated or ε-approximation dominated by any individual in P then
7: Add s′ to P, and remove all individuals weakly ε-approximation dominated by s′

from P.
8: end if
9: end while

98 Population Diversity in Evolutionary Algorithms

Also, Horoba and Neumann (2010) investigate a simplified version of the algorithm
SPEA2 (Zitzler et al., 2001), which relies on a so-called density estimator. Let Q be a given
set of search points. The rankQ(x) of a search point x ∈ Q is given by the number of search
points in Q that dominate x, i. e., rankQ(x) := |{y ∈ Q | y ≻ x}|. Additionally, a metric on
the objective space is taken into account. In Horoba and Neumann (2010) the maximum
metric d(u,v) := maxi∈{1,...,m}|ui − vi| where u and v are objective vectors is used. Let

dQ(x) := (d0
Q(x), . . . ,d

|Q|−1
Q (x)) where dk

Q(x) denotes the distance d(f (x), f (y)) from x ∈ Q
to its k-th nearest neighbour y ∈ Q with respect to d. The archive truncation selects a search
point x ∈ Q with the lowest dQ(x) value with respect to the lexicographic order from the
search points with the highest rankQ(x) value for removal (Algorithm 22).

Algorithm 22 Selection for Removal
Require: Set of search points Q.
Ensure: Search point z ∈ Q.

1: Set Q′ = argmaxx∈Q rankQ(x).
2: Set Q′′ = argminx∈Q′ dQ(x).
3: return z ∈ Q′′ chosen uniformly at random.

Using this procedure, the simplified version of the SPEA2 is named Rank- And Dis-
tance-based Evolutionary Multi-Objective Optimiser (RADEMO) (see Algorithm 23). Now
the goal for any algorithmic approach is to achieve an additive ε-approximation of a given
problem where ε ∈ R+. All the problems examined depend on a parameter ε and the goal is
to examine whether the algorithm is able to achieve an ε-approximation of the Pareto-optimal
set in polynomial time.

Algorithm 23 RADEMO
1: Initialise P with µ individuals chosen uniformly at random.
2: while stopping criterion not met do
3: Choose s uniformly at random from P.
4: Define s′ by flipping each bit in s independently with probability 1/n.
5: Choose an individual z ∈ P∪ s′ for removal using Algorithm 22
6: Let P = P\{z}∪{s′}.
7: end while

3.5.1.1 Large Pareto Fronts

Horoba and Neumann (2010) discuss how diversity mechanisms can be helpful to achieve
an ε-approximation of an exponentiallly large Pareto front. The authors considered the bi-
objective example function LFε (see Section 3 from Horoba and Neumann, 2010 for a formal

3.5 Diversity for Multi-Objective Optimisation 99

definition and for a sketch of the function), where both objectives behave complementary.
The results show that both diversity mechanisms may help to achieve a good approximation
of an exponentially large Pareto front.

For the case of the plain GSEMO on LFε , the algorithm produces many Pareto-optimal
objective vectors with roughly n/4 1-bits in the first half of the bitstring. However, to achieve
an ε-approximation it is necessary that for each i, 0 ≤ i ≤ n/2, a solution with i 1-bits in
the first half on the bitstring is obtained. This implies that at least n/2+1 search points are
necessary to achieve an ε-approximation.

Theorem 3.30 (Theorem 1 in Horoba and Neumann, 2010). The time until GSEMO has
reached an ε-approximation of LFε is 2Ω(n1/4) with probability 1−2−Ω(n1/4).

With GDEMO, an ε-approximation can be obtained efficiently when choosing δ (the size
of the boxes) value properly. This has the effect that the algorithm keeps for each fixed 1-bit
in the first half exactly one individual in the population. On the contrary, if δ is defined small,
GDEMO becomes GSEMO which shows that the right choice of δ is crucial for dealing with
large Pareto fronts.

Theorem 3.31 (Theorem 2 in Horoba and Neumann, 2010). Choosing δ = ε as box size, the
algorithm GDEMO achieves an ε-approximation of LFε in expected time O

(
n2 logn

)
.

For RADEMO, the density estimator ensures in a natural way a spread over the Pareto
front of LFε . To achieve an ε-approximation of LFε , (n/2)+1 points are necessary. There-
fore, with a population size of at least n/2+1, RADEMO constructs an ε-approximation
efficiently.

Theorem 3.32 (Theorem 3 in Horoba and Neumann, 2010). Choosing µ ≥ n/2+ 1 as
population size, the algorithm RADEMO achieves an ε-approximation of LFε in expected
time O(µn logn).

3.5.1.2 On the Choice of δ

From the previous results, it is observed that the behaviour of GDEMO varies with respect
to δ . Horoba and Neumann (2010) then analyse the right choice of δ and the ability of
GDEMO to achieve a good approximation by using the bi-objective function small front SFε

(see Section 4.1 from Horoba and Neumann, 2010 for a formal definition and for a sketch of
the function).

For the case of GSEMO on SFε , the algorithm is able to compute the Pareto front
efficiently. The proof idea is simply based on the number of b mutations needed to create an
individual on the Pareto front.

100 Population Diversity in Evolutionary Algorithms

Theorem 3.33 (Theorem 6 in Horoba and Neumann, 2010). The expected time until GSEMO
has computed the Pareto front of SFε is O

(
n2 logn

)
.

The proof idea for GDEMO on SFε is based on the phenomenon that an individual x
with |x|1 < n/2 (|x|1 > n/2) tends to have more (less) 1-bits inducing a drift towards the
middle section of the front. Since GDEMO is limited to at most one individual per box,
it takes a long time to reach the outskirts of the Pareto front, which are necessary for an
ε-approximation (Horoba and Neumann, 2008).

Theorem 3.34 (Theorem 4 in Horoba and Neumann, 2010). Choosing δ ≥ ε as box size,
the time until the algorithm GDEMO has achieved an ε-approximation of SFε is 2Ω(n) with
probability 1−2−Ω(n).

For the middle part of the Pareto front of SFε it holds that all distances between neigh-
bouring objective vectors are equal. In addition, the objective vectors corresponding to the
search points 0n and 1n have a large distance to all other objective vectors. This helps the
algorithm RADEMO to achieve an ε-approximation of SFε as the density estimator enforces
the algorithm to produce solutions that have a large distance in the objective space. The next
theorem shows that RADEMO obtains an ε-approximation efficiently if the population size
is at least 2.

Theorem 3.35 (Theorem 5 in Horoba and Neumann, 2010). Choosing µ ≥ 2 as popula-
tion size, the algorithm RADEMO has achieved an ε-approximation of in expected time
O(µn logn).

3.5.1.3 Distance Measure of the Density Estimator

Now, the size of the population is analysed for the case of RADEMO; if the size of the
population is not large enough, the optimisation time can be affected negatively. For this
case the bi-objective example function TFε is analysed (see Section 4.2 from Horoba and
Neumann (2010) for a formal definition and for a sketch of the function).

GSEMO with quite small Pareto front of TFε can be efficiently computed. Again,
the proof consists of the time needed to reach the Pareto front (in expected optimisation
time O

(
n3)). After the first Pareto-optimal individual is added to the population, it takes

into consideration the time until the last Pareto-optimal search point is found in exptected
optimisation time O

(
n3).

Theorem 3.36 (Theorem 9 in Horoba and Neumann, 2010). The expected time until the
GSEMO has computed the Pareto front of TFε is O

(
n3).

3.5 Diversity for Multi-Objective Optimisation 101

With GDEMO, if there is no solution of 1i0n−i in the population, the population size is 1
and the algorithm maximises the number of 0-bits. No steps increasing the number of 0-bits
are accepted in this case as such search points are dominated by the current one constituting
the population. This implies that after an expected number of O(n logn) steps the population
consists of an individual from 1i0n−i. Afterwards, the individual starts a random walk on
1i0n−i. The population has converged to an ε-approximation if an individual of the second
box has been obtained. This happens after an expected number of O

(
n3) steps (Jansen and

Wegener, 2001).

Theorem 3.37 (Theorem 8 in Horoba and Neumann, 2010). Choosing δ = ε as box size, the
algorithm GDEMO has achieved an ε-approximation of TFε in expected time O

(
n3).

The next theorem shows that RADEMO does not achieve an ε-approximation of TFε

within polynomial time w. h. p. if the size of the population is not too large. The main idea of
the proof is that the individuals spread out over {(ε/4+ i ·2ε/n,ε/4− i ·ε/n) | 0 ≤ i ≤ n/4}
in an almost equally spaced manner before the Pareto front is reached. Thereafter RADEMO’s
diversity mechanism prevents the algorithm from spreading out on the Pareto front. Hence,
RADEMO does not obtain the objective vectors in the top left part of the Pareto front, which
are necessary to achieve an ε-approximation.

Theorem 3.38 (Theorem 7 in Horoba and Neumann, 2010). Choosing 2 ≤ µ = O
(

n1/3−c
)

as population size where 0 ≤ c ≤ 1/3 is a constant, the time until the algorithm RADEMO
has achieved an ε-approximation of TFε is 2Ω(nc) with probability 1−2−Ω(nc).

We conclude this section by providing an overview of the results mentioned previously.
Table 3.3 shows how the different diversity strategies used by the MOEAs can help to achieve
a good approximation of the Pareto-optimal set.

Table 3.3: Overview over the main results from Horoba and Neumann (2010). All exponential
times hold w. o. p. The bounds come with restrictions on the population size µ and the size
of the boxes δ .

Function GSEMO GDEMO RADEMO

LFε 2Ω(n1/2) O
(
n2 logn

)
O(µn logn)

SFε O
(
n2 logn

)
2Ω(n) O(µn logn)

TFε O
(
n3) O

(
n3) 2Ω(nc)

102 Population Diversity in Evolutionary Algorithms

3.6 Conclusions

In this chapter we have shown many theoretical results where the performance of an EA
can be enhanced by promoting diversity into the population by means of explicit and/or
implicit diversity mechanisms in different kind of ploblems (global exploration in static and
dynamics optimisation problems, and multi-objective optimisation problems). As mentioned
at the beginning of the chapter, balancing between diversity and intensification is a very
complicated and important task. Surveys on diversity mechanisms (Blum and Roli, 2003;
Črepinšek et al., 2013; Liu et al., 2009; Shir, 2012; Squillero and Tonda, 2016; Sudholt,
2018; Talbi, 2002) reveal a multitude of approaches to enhance and promote diversity, yet it
is often unclear which of these mechanisms perform well, and why.

The explicit mechanisms reviewed here range from simple ones like avoiding genotype
of phenotypes (when used as a tie breaking rule or selection for survival), dividing the
population into islands or niching mechanisms like deterministic crowding or fitness sharing
(in 3 different variants), ageing and many others.

All the mechanisms reviewed here have been compared with its plain version (when
available) and we have seen that diversity can be beneficial for enhancing the global explo-
ration capabilities of EAs. In many cases diversity mechanisms can be highly effective for
the considered problems, speeding up the expected or typical optimisation time by constant
factors, polynomial factors, or even exponential factors. Nevertheless, results from the
example functions reviewed here, have shown that some mechanisms that work for one
function may not work on other functions, and vice versa.

Another interesting result shown by these results is that crossover can make use of a
diverse population to work effectively. This diversity can be provided by the methods men-
tioned before or emerge naturally through independent mutations (this includes different
mutation rates). Finally, all these theoretical results provide a detailed description of how
these diversity mechanisms work well (or not) and why these mechanisms are able to over-
come certain problems while their plain versions struggle, or are not able to find satisfactory
solutions to the analysed example problems.

Part II

Runtime Analysis of Diversity
Mechanisms on Multimodal

Optimisation

Chapter 4

Runtime Analysis of Niching
Mechanisms on TWOMAX

This chapter is based on the following publications:

1. Covantes Osuna, E. and Sudholt, D. (2017). Analysis of the Clearing Diversity-Preserv-
ing Mechanism. In Proceedings of the 14th ACM/SIGEVO Conference on Foundations
of Genetic Algorithms, FOGA ’17, pages 55–63. ACM.

2. Covantes Osuna, E. and Sudholt, D. (2018b). On the Runtime Analysis of the Clearing
Diversity-Preserving Mechanism. Evolutionary Computation. To appear. Preprint
available from http://arxiv.org/abs/1803.09715.

3. Covantes Osuna, E. and Sudholt, D. (2018c). Runtime Analysis of Probabilistic Crowd-
ing and Restricted Tournament Selection for Bimodal Optimisation. In Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO ’18, pages 929–936.
ACM. Nominated for a best paper award in the track ‘Genetic Algorithms’.

One particular way for diversity maintenance are niching methods, based on the me-
chanics of natural ecosystems (Shir, 2012). A niche can be viewed as a subspace in the
environment that can support different types of life. A specie is defined as a group of individ-
uals with similar features capable of interbreeding among themselves but that are unable to
breed with individuals outside their group. Species can be defined as similar individuals of
a specific niche in terms of similarity metrics. In EAs the term niche is used for the search
space domain, and species for the set of individuals with similar characteristics.

Niching methods have been developed to reduce the effect of genetic drift resulting from
the selection operator in standard EAs, to maintain the population diversity, and allow the EA
to investigate many peaks in parallel, thus avoiding getting trapped in local optima (Sareni

http://arxiv.org/abs/1803.09715

106 Runtime Analysis of Niching Mechanisms on TWOMAX

and Krahenbuhl, 1998). Premature convergence is one of the major difficulties in evolutionary
algorithms, the population converging to a sub-optimal individual before the fitness landscape
is explored properly. Real optimisation problems often lead to multimodal domains and so
require the identification of multiple optima, either local or global (Sareni and Krahenbuhl,
1998; Singh and Deb, 2006). In multimodal optimisation problems, there exist many attractors
for which finding a global optimum can become a challenge to any optimisation algorithm.
A diverse population can deal with these multimodal problems as it can explore several hills
in the fitness landscape simultaneously.

Niching methods often try to promote diversity by modifying the selection process
of individuals, taking into account not only the value of the fitness function but also the
distribution of individuals in the space of genotypes or phenotypes (Glibovets and Gulayeva,
2013). Many niching techniques have been introduced to form and maintain multiple, diverse,
final solutions for an exponential to infinite time period with respect to population size,
whether these solutions are of identical fitness or of varying fitness (Črepinšek et al., 2013;
Glibovets and Gulayeva, 2013; Shir, 2012; Squillero and Tonda, 2016). Given such a variety
of mechanisms to choose from, it is often not clear which mechanism is the best choice for a
particular problem.

Most of the analyses and comparisons made between niching methods are assessed by
means of empirical investigations using benchmark functions (Sareni and Krahenbuhl, 1998;
Singh and Deb, 2006). Theoretical runtime analyses have been performed that rigorously
quantify the expected time needed to find one or several global optima (Covantes Osuna and
Sudholt, 2017, 2018b,c; Oliveto et al., 2014). Both approaches are important to understand
how these mechanisms impact the EA runtime and if they enhance the search for good
individuals. These different expectations imply where EAs and which niching mechanism
should be used and, perhaps even more importantly, where they should not be used.

Previous theoretical studies (Covantes Osuna and Sudholt, 2017, 2018b,c; Friedrich et al.,
2009; Oliveto et al., 2014) compared the expected runtime of different diversity mechanisms
when embedded in a simple baseline EA, the (µ+1) EA (see Algorithm 5). All mechanisms
were considered on the well-known bimodal function TWOMAX (see Definition 2.11)1.

TWOMAX was chosen because it is simply structured, hence facilitating a theoretical
analysis, and it is hard for EAs to find both optima as they have the maximum possible
Hamming distance. The results allowed for a fair comparison across a wide range diversity

1In Friedrich et al. (2009) an additional fitness value for 1n was added to distinguish between a local
optimum 0n and a unique global optimum. There the goal was to find the global optimum, and all approaches
had a baseline probability of 1/2 of climbing up the right branch by chance. We use the same approach
as Covantes Osuna and Sudholt (2017, 2018b,c); Oliveto et al. (2014), and consider the original definition
of TWOMAX and the goal of finding both global optima. The discussion and presentation of previous work
from Friedrich et al. (2009) is adapted to our setting. We refer to Sudholt (2018) for details.

107

mechanisms, revealing that some mechanisms like fitness diversity or avoiding genotype du-
plicates, perform badly, while other mechanisms like fitness sharing, clearing or deterministic
crowding perform surprisingly well. Table 4.1 summarises previous work for the (µ+1) EA
with diversity mechanisms on TWOMAX (details can be found in Section 3.2). Some mecha-
nisms succeed in finding both optima on TWOMAX efficiently, that is, in (expected) time
O(µn logn). Others have a very low success probability.

Table 4.1: Overview of runtime analyses for the (µ+1) EA with different diversity mecha-
nisms on TWOMAX. The success probability is the probability of finding both optima within
(expected) time O(µn logn). Conditions include restrictions on the population size µ , the
sharing/clearing radius σ , the niche capacity κ , window size w, and µ ′ := min(µ, logn).
Results adapted from Covantes Osuna and Sudholt (2018c).

Diversity Mechanism Success prob. Conditions

PL Plain (µ+1) EA o(1) µ = o(n/logn)
NGD No Genotype Duplicates o(1) µ = o(

√
n)

NFD No Fitness Duplicates o(1) µ = poly(n)
PC Probabilistic Crowding 2−Ω(n) all µ

DC Deterministic Crowding 1−2−µ+1 all µ

RTS Restricted Tournament Selection ≥ 1−2−µ ′+3 w ≥ 2.5µ lnn
PFS Population-based Fitness Sharing (σ = n/2)1 1 µ ≥ 2
FS Individual-based Fitness Sharing (σ = n/2)1 1 µ ≥ 3
CL Clearing (σ = n/2) 1 µ ≥ κn2

1 Fitness sharing uses phenotypic sharing based on the number of ones.

We contribute to this line of work by studying the performance of three classical niching
mechanisms, probabilistic crowding, restricted tournament selection and clearing. The
three methods are well-known techniques as covered in tutorials and surveys for diversity-
preserving mechanisms (Črepinšek et al., 2013; Glibovets and Gulayeva, 2013; Shir, 2012;
Squillero and Tonda, 2016) and compared in empirical investigations (Sareni and Krahenbuhl,
1998; Singh and Deb, 2006). However, we are lacking a good understanding of when and
why they perform well and how they compare to diversity mechanisms analysed previously.

In probabilistic crowding, the offspring compete against their most similar parent and the
survivor is chosen with a probability proportional to their fitness. The idea is to use a low
selection pressure to prevent the loss of niches of lower fitness (Mengsheol and Goldberg,
1999). Probabilistic crowding has been used for multimodal optimisation (Ballester and
Carter, 2004; Mengsheol and Goldberg, 1999; Mengshoel et al., 2014; Mengshoel and
Goldberg, 2008), in its plain form as well as in variants in which a scaling factor has been
introduced into the replacement policy.

108 Runtime Analysis of Niching Mechanisms on TWOMAX

Restricted tournament selection (RTS) is a modification of the classical tournament
selection for multimodal optimisation that exhibits niching capabilities. RTS selects two
elements from the population uniformly at random (u. a. r.) to undergo recombination
and mutation to produce two new offspring. The offspring compete with their closest
individual from w (window size) more individuals selected u. a. r. from the population, and
the best individual is selected. This form of tournament restricts an entering individual from
competing with others too different from it (Harik, 1995). RTS has been analysed empirically
for the classical comparison between crowding mechanisms for multimodal optimisation
as a replacement strategy (García-Martínez et al., 2012; Qu and Suganthan, 2010). Recent
applications for engineering problems with multimodal domains include facility layout
design (García-Hernández et al., 2015) and the design of product lines (Tsafarakis, 2016)
with reported better results compared to the other variants without RTS.

Clearing preserves the fitness of the best individuals in each niche (called winners), while
resetting the fitness of all the other individuals of the same niche to the minimum fitness
value possible (Pétrowski, 1996) and has been analysed empirically for both of its existing
variants (Sareni and Krahenbuhl, 1998; Singh and Deb, 2006).

Our contribution is to provide a rigorous theoretical runtime analysis for the three
niching mechanisms in the context of the (µ+1) EA on TWOMAX, to rigorously assess their
performance in comparison to other diversity mechanisms. In addition, our goal is to provide
insights into the working principles of these mechanisms to enhance our understanding of
their strengths and weaknesses.

For the (µ+1) EA with probabilistic crowding, we show in Section 4.1 that the mecha-
nism is unable to evolve solutions of significantly higher fitness than that obtained during
initialisation (or, equivalently, through random search), even when given exponential time.
The reason is that fitness-proportional selection between parent and offspring results in an
almost uniform choice as both have very similar fitness, hence fitness-proportional selection
degrades to uniform selection for replacement. For the (µ+1) EA with restricted tournament
selection, we show in Section 4.2 that the mechanism succeeds in finding both optima of
TWOMAX in the same way as deterministic crowding, provided that the window size w
is chosen large enough. However, if the window size is too small then it cannot prevent
one branch taking over the other, leading to exponential runtimes with high probability.
In Section 4.3 we show that, for the case of small niches, the (µ+1) EA with clearing can
optimise all functions of unitation when the distance function and parameters like the clearing
radius σ , the niche capacity κ (how many winners a niche can support) and µ are chosen
appropriately. In the case of large niches, that is, with a clearing radius of σ = n/2, it is able
to find both optima of TWOMAX.

4.1 Probabilistic Crowding 109

Before we start with the runtime analysis for the three niching mechanisms, let us show
the following time bound, which assumes that the (µ+1) EA never decreases the best fitness
on a considered branch of TWOMAX. This bound defines the expected time until an optimum
is found when an individual is initialised on one branch. This bound is used in the following
theoretical analysis, we will show in the proof of Theorem 4.4 that this assumption is met
with high probability. We also use this time bound for experimental analysis as a stopping
criterion.

Lemma 4.1. Consider one branch of TWOMAX and a (µ+1) EA with a replacement
selection where the best fitness of all individuals on this branch never decreases. If the
(µ+1) EA is initialised with at least one individual on the branch then the optimum of the
branch is found within time 2eµn lnn with probability at least 1−1/n and in expectation.

Proof. We apply the multiplicative drift theorem with tail bounds (Theorem 2.31) to random
variables Xt that describe the Hamming distance of the closest individual to the targeted
optimum. Note that X0 ≤ n/2 as we start with an individual on the considered branch and
the optimum has been found once Xt = 0.

The probability of selecting an individual with Hamming distance Xt is at least 1/µ . In
order to create a better individual, it is sufficient that one of the Xt differing bits is flipped and
the other bits remain unchanged. Each bit flip has a probability of being mutated of 1/n and
the remaining bits remain unchanged with probability (1−1/n)n−1. Hence, the probability
of creating an individual with a smaller Hamming distance is bounded as follows:

Prob(Xt+1 < Xt | Xt)≥
1
µ
· Xt

n
·
(

1− 1
n

)n−1

≥ Xt

µen
.

This implies

E[Xt+1 | Xt]≤
(

1− 1
eµn

)
Xt .

Applying the multiplicative drift theorem yields that the time till the optimum is found is at
most eµn · (ln(n/2)+ lnn)≤ 2eµn lnn with probability at most 1/n and in expectation.

4.1 Probabilistic Crowding

We start by presenting the (µ+1) EA using probabilistic crowding in the same fashion as
deterministic crowding in Friedrich et al. (2009). Recall that in probabilistic crowding, the
offspring compete against the most similar parent according to a distance metric and the
survivor wins proportionally according to their fitness. Without crossover, this means that

110 Runtime Analysis of Niching Mechanisms on TWOMAX

the mutant y competes against its parent x using fitness-proportional selection. Then the
probability of the mutant y winning is given by f (y)

f (x)+ f (y) , where f is the fitness function. The
resulting (µ+1) EA is shown in Algorithm 24.

Algorithm 24 (µ+1) EA with probabilistic crowding
1: Let t := 0 and initialise P0 with µ individuals chosen uniformly at random.
2: while stopping criterion not met do
3: Choose x ∈ Pt uniformly at random.
4: Create y by flipping each bit in x independently with probability 1/n.
5: Choose r ∈ [0,1] uniformly at random.
6: if r ≤ f (y)

f (y)+ f (x) then Pt+1 = Pt \{x}∪{y} else Pt+1 = Pt end if
7: Let t := t +1.
8: end while

There are several related theoretical analyses for fitness-proportional selection for the
case of the ONEMAX function. The Simple Genetic Algorithm (SGA) has been analysed with
fitness-proportional selection for parent selection (Neumann et al., 2009; Oliveto et al., 2014;
Oliveto and Witt, 2015).

Most relevant to this work is the work by Happ et al. (2008), who analysed a variant of
the (1+1) EA using fitness-proportional selection and showed that it needs exponential time
to evolve a fitness of at least (1+ ε)n/2 on ONEMAX with high probability. Their algorithm
can be seen as a special case of the (µ+1) EA with probabilistic crowding for µ = 1. Our
result is similar to the result in Happ et al. (2008), but it holds for arbitrary population sizes µ

and it applies to both ONEMAX and TWOMAX. The proof uses more modern techniques
from drift analysis (Oliveto and Witt, 2011) that were not available to Happ et al. (2008). In
the following lemma we define in expectation how the individual accepted for replacement
moves away from the individual selected for mutation.

Lemma 4.2. Let x be the selected parent, y be the offspring, and z ∈ {x,y} be the individual
selected for survival. For f = ONEMAX if f (x) ≥ (1+δ)n/2 for some positive δ = δ (n)
that may depend on n then

E[f (z)− f (x) | x]≤−δ

2
+Θ

(
1
n

)
.

The statement also holds for TWOMAX if f (x)≥ n/2+ logn.

Proof. We first analyse the expected fitness of the mutant y before survival selection. Com-
pared to its parent x, in expectation at least (1+δ)n/2 ·1/n = (1+δ)/2 bits flip from 1 to

4.1 Probabilistic Crowding 111

0, and at most (1−δ)n/2 ·1/n = (1−δ)/2 bits flip from 0 to 1. Hence

E[f (y)− f (x) | x]≤ (1−δ)/2− (1+δ)/2 =−δ . (4.1)

We now use this inequality to analyse the fitness difference f (z)− f (x) after survival selection.
Observe that this difference is 0 in case z = x. Hence only generations where y is selected for
survival contribute to E[f (z)− f (x) | x]. The latter can be written as follows.

E[f (z)− f (x) | x] =
∞

∑
d=−∞

Prob(f (y)− f (x) = d | x) ·d · f (y)
f (x)+ f (y)

Using that with d = f (y)− f (x),

f (y)
f (x)+ f (y)

=
(f (x)+ f (y))/2+d/2

f (x)+ f (y)
=

1
2
+

d/2
f (x)+ f (y)

=
1
2
+Θ

(
d
n

)
,

we get

E[f (z)− f (x) | x] =
∞

∑
d=−∞

Prob(f (y)− f (x) = d | x) ·d ·
(

1
2
+Θ

(
d
n

))
=

1
2

∞

∑
d=−∞

Prob(f (y)− f (x) = d | x) ·d

+Θ

(
1
n

)
∞

∑
d=−∞

Prob(f (y)− f (x) = d | x) ·d2.

The first sum is E[f (y)− f (x)]/2 by definition of the expectation, and we already know
from (4.1) that E[f (y)− f (x)]/2 ≤ −δ/2. The second sum is at most Prob(f (y)− f (x) =
d | x) ≤ 1/(|d|!) as it is necessary to flip at least |d| bits, which has probability at most(n
|d|
)
(1/n)|d| ≤ 1/(|d|!). Thus

E[f (z)− f (x) | x]≤ − δ

2
+Θ

(
1
n

)
∞

∑
d=−∞

1
|d|!

·d2

≤ − δ

2
+Θ

(
1
n

)
·2

∞

∑
d=1

1
d!

·d2

= − δ

2
+Θ

(
1
n

)
as ∑

∞
d=1

1
d! · d

2 = ∑
∞
d=1

d
(d−1)! = ∑

∞
d=0

d+1
d! = ∑

∞
d=0

d
d! +∑

∞
d=0

1
d! = ∑

∞
d=1

1
(d−1)! +∑

∞
d=0

1
d! =

2∑
∞
d=0

1
d! = 2e.

112 Runtime Analysis of Niching Mechanisms on TWOMAX

The statement also holds for TWOMAX if f (x)≥ n/2+ logn as the algorithm only ever
notices a difference to ONEMAX in case at least logn bits flip in one mutation. Since this
only occurs with probability at most 1/(logn)!= n−Ω(log logn), and the fitness difference
between ONEMAX and TWOMAX is at most n/2, this only accounts for an additive error
term of n/2 ·n−Ω(log logn) = n−Ω(log logn) in the expectation for ONEMAX, and this error term
is absorbed in the Θ(1/n) term.

Lemma 4.2 gives an important lesson. Assume that the survivalist z was chosen uniformly
between x and y, then we would have

E[f (z)− f (x) | x]≤ 1
2
·E[f (y)− f (x) | x]+

1
2
·E[f (x)− f (x) | x] =−δ

2

using (4.1) and E[f (x)− f (x) | x] = 0. Lemma 4.2 states that compared to this setting, a
fitness-proportional selection of z only gives a vanishing bias of Θ(1/n). In other words,
Lemma 4.2 quantifies the observation that in the considered context, fitness-proportional
selection is very similar to uniform selection. We now use Lemma 4.2 to prove a strong
negative result on the performance of the (µ+1) EA with probabilistic crowding. To this end,
we will use the negative drift theorem (Oliveto and Witt, 2011, 2012, also called simplified
drift theorem, see Theorem 2.35).

Note that the expected ONEMAX value of a search point chosen uniformly at random is
n/2. We also show in Section 4.2.1 that the expected TWOMAX value of a uniform random
search point is n/2±Θ(

√
n). These values also represent equilibrium states for sequences of

mutations in the absence of selection. The following theorem shows that the (µ+1) EA with
probabilistic crowding does not evolve any solutions of significantly higher fitness than these
values, even given exponential time.

Theorem 4.3. With probability 1− 2−Ω(n) the (µ+1) EA with probabilistic crowding on
either f = ONEMAX or f = TWOMAX will not have found a search point with fitness at
least (1+ ε)n/2 in 2cn function evaluations, for every population size µ , every constant
ε > 0 and a small enough constant c > 0 that may depend on ε .

Proof. We assume that f = ONEMAX as TWOMAX can be handled in the same way. We
may also assume that µ = 2o(n) as if µ ≥ 2c′n for any constant 0 < c′ < 1, the statement
follows immediately (for c := c′) as the first 2c′n search points contain an optimal search
point only with probability at most 2 ·2−n ·2c′n = 2−Ω(n) as c′ < 1. Note that in the absence
of crossover, probabilistic crowding evolves µ independent lineages as any offspring only
competes directly with its parent. We show that the probability of any fixed lineage reaching
a fitness of at least (1+ ε)n/2 in 2cn generations is 2−Ω(n). Taking the union bound over

4.1 Probabilistic Crowding 113

all lineages yields that the probability of reaching such a fitness is bounded by µ ·2−Ω(n) =

2o(n) ·2−Ω(n) = 2−Ω(n), which implies the claim.
Now focus on one lineage. By standard Chernoff bounds (see Lemma A.15), the proba-

bility of initialising the lineage with an initial search point of fitness at least (1+ ε/2)n/2
is 2−Ω(n). If this rare failure event does not happen, the lineage needs to increase an initial
fitness from a value at most (1+ ε/2)n/2 to a value at least (1+ ε)n/2 in order to achieve
a fitness of (1+ ε)n/2. We apply the negative drift theorem to the fitness of the current
individual in our lineage to show that this does not happen in 2cn generations with probability
1−2−Ω(n). The interval chosen will be from a := (1+ε/2)n/2 to b := (1+ε)n/2; note that
it has length εn/4.

Let x be the selected parent, y be the offspring, and z ∈ {x,y} be the individual selected
for survival. We establish the two conditions of the negative drift theorem. The first condi-
tion (2.3) for search points with fitness at least a := (1+ ε/2)n/2 follows from Lemma 4.2
with δ := ε/2, yielding a drift of at most −ε/4+Θ(1/n) = −Ω(1). The second condi-
tion (2.4) follows easily from properties of standard bit mutation: the fitness difference
| f (z)− f (x)| is clearly bounded by the number of flipping bits. The probability of flipping d
bits in a standard bit mutation is at most 1/(d!)≤ 2/2d for all d ≥ 1. This proves the second
condition when choosing r := 2 and δ := 1. Invoking the negative drift theorem yields that
the probability of one lineage reaching a search point with fitness at least (1+ε)n/2, starting
with a fitness at most (1+ ε/2)n/2, in 2c′εn/2 steps, for some constant c′ > 0, is at most
2−Ω(εn/4) = 2−Ω(n). Choosing c := c′ε/4 completes the proof for ONEMAX.

The same proof can be used for TWOMAX with minor modifications: note that if the
number of ones is k ≤ n/2, a fitness difference of d can be achieved by increasing or
decreasing the number of ones by d, provided k+d ≤ n/2 or by creating an offspring with
n− k−d ones on the opposite branch. Since k+d ≤ n/2 ≤ n− k−d, the probability for the
latter event is no larger than that of the former. The same holds symmetrically for k ≥ n/2.
Hence all transition probabilities are bounded by twice the previous bound for ONEMAX

and the second condition can be fulfilled by doubling r and choosing c := c′ε/8. Then the
result follows as for ONEMAX.

4.1.1 Experimental Analysis

We provide an experimental analysis as well in order to see how closely the theory matches
the empirical performance for reasonable problem sizes. Our analysis is focused on the
(µ+1) EA with probabilistic crowding for the TWOMAX function. We consider exponentially
increasing population sizes µ ∈ {2,4,8, . . . ,1024} for a problem size n = 100 and for 100
runs.

114 Runtime Analysis of Niching Mechanisms on TWOMAX

Since we are interested in proving how good/bad this mechanism is, we define the
following outcomes and stopping criteria for each run. Success, both optima of TWOMAX

have been reached, i. e., the run is stopped if the population contains both 0n and 1n. Failure,
once the run has reached 10µn lnn generations and the population does not contain both
optima. By Lemma 4.1, this time period is long enough to allow any reasonable (µ+1) EA
variant to find one or two global optima with high probability (unless the best fitness on a
branch drops frequently). We report the mean of successes and failures for the 100 runs.

For probabilistic crowding (Algorithm 24), and as proved in Theorem 4.3, for all µ sizes,
the method is not able to optimise TWOMAX. In all runs the algorithm failed to reach even
one optimum, let alone reaching both. Since the algorithm is not able to find any optimum of
TWOMAX, we ran additional experiments for n ∈ {32,64,128, . . . ,16384} and population
size µ = 32 to observe how far the best lineages evolve from n/2 and/or how close the best
individuals get to reach an optimum. In Figure 4.1, we show the best individuals obtained in
each of the 100 runs and its variance. As soon as n increases, the best fitness in the population
starts to concentrate around n/2 and reaching a fitness of (1+ ε)n/2 becomes very difficult
for all constants ε > 0 as n grows. Even the best outliers start to get closer and closer to the
average of the population.

32 64 12
8

25
6

51
2
10

24
20

48
40

96
81

92
16

38
4

0.5

0.6

0.7

0.8

0.9

1

n (logscale)

T
W

O
M

A
X
(y
)

n

Figure 4.1: The normalised best fitness TWOMAX/n reached among 100 runs at the time
both optima were found or the t = 10µn lnn generations have been reached on TWOMAX

for n ∈ {32,64,128, . . . ,16384} by the (µ+1) EA with probabilistic crowding with µ = 32.

4.2 Restricted Tournament Selection 115

4.1.2 Conclusions

We rigorously proved that probabilistic crowding fails miserably; it is not even able to evolve
search points that are significantly better than those found by random search, even when
given exponential time. The reason is that fitness-proportional selection for survival selection
works very similar to uniform selection, and then the algorithm performs an almost blind
search on µ independent lineages.

Our results highlight the importance of scaling the fitness, as done in Ballester and Carter
(2004); Mengshoel et al. (2014); Mengshoel and Goldberg (2008). An open question is
whether fitness scaling would enable probabilistic crowding to find both optima on TWO-
MAX, and if so, how much the fitness needs to be scaled. A proof where fitness scaling has
helped for a variant of the Simple GA on ONEMAX was given in Neumann et al. (2009). We
are confident that the proof arguments used here can also be used to analyse more advanced
versions of crowding (Galan and Mengshoel, 2010; Mengshoel et al., 2014).

4.2 Restricted Tournament Selection

In restricted tournament selection (RTS) a new offspring competes with the closest element
from w (window size) more members selected uniformly at random from the population,
and the better individual from this competition is selected. The (µ+1) EA with RTS (Al-
gorithm 25) is defined in a similar way as deterministic crowding in Section 3.2.4 and as
probabilistic crowding in Section 4.1.

In Algorithm 25 an individual x is selected uniformly at random as a parent and a new
individual y is created in the mutation step. Since we are not considering crossover and only
one individual is created, w individuals are selected uniformly at random with replacement
and stored in a temporary population P∗

t . Then in Line 6 an individual z is selected from
population P∗

t with the minimum distance from y (ties are broken uniformly at random), and
if the individual y has a fitness at least as good as z, y replaces z.

As distance functions d(y,z) we consider genotypic distance (H(x,y) := ∑
n
i=1|xi − yi|),

and phenotypic distances (d(x,y) := ||x|1 −|y|1 |) as in Covantes Osuna and Sudholt (2017);
Friedrich et al. (2009); Oliveto et al. (2014).

4.2.1 Large Window Sizes Are Effective

Now, let us start with the theoretical analysis for TWOMAX with a positive result for RTS.
The following shows that, if w is chosen very large, the (µ+1) EA with RTS behaves almost
like the (µ+1) EA with deterministic crowding.

116 Runtime Analysis of Niching Mechanisms on TWOMAX

Algorithm 25 (µ+1) EA with restricted tournament selection
1: Let t := 0 and initialise P0 with µ individuals chosen uniformly at random.
2: while stopping criterion not met do
3: Choose x ∈ Pt uniformly at random.
4: Create y by flipping each bit in x independently with probability 1/n.
5: Select w individuals uniformly at random from Pt and store them in P∗

t .
6: Choose z ∈ P∗

t with minumum distance to y.
7: if f (y)≥ f (z) then Pt+1 = Pt \{z}∪{y} else Pt+1 = Pt end if
8: Let t := t +1.
9: end while

Theorem 4.4. If µ = o(
√

n/logn) and w ≥ 2.5µ lnn then the (µ+1) EA with restricted
tournament selection using genotypic or phenotypic distance finds both optima on TWOMAX

in time O(µn logn) with probability at least 1−2−µ ′+3, where µ ′ := min(µ, logn).

Note that the probability 1−2−µ ′+3 is close to the success probability 1− 2−µ+1 for
deterministic crowding, if µ ≤ logn, apart from a constant factor in front of the 2−µ ′+3 =

4 · 2−µ ′+1 term. For both, the success rate converges to 1 very quickly for increasing
population sizes. For restricted tournament selection our probability bound is capped at
1− 2− logn+3 = 1− 8/n as there is always a small probability of an unexpected takeover
occurring.

In order to prove Theorem 4.4, we first analyse the probability of initialising a population
such that there are individuals on each branch with a safety gap of σ to the border between
branches. This safety gap will be used to exclude the possibility that the best individual on
one branch creates offspring on the opposite branch.

Lemma 4.5. Consider the population of the (µ+1) EA on TWOMAX and for some µ and
safety gap σ = n. The probability of having at least one initial search point with at most
n/2−σ ones and one search point with at least n/2+σ ones is at least

1−2

(
1+2σ ·

√
2/n

2

)µ

≥ 1−2−µ+1(1+o(1))

where the inequality holds if σ µ = o(
√

n).

Proof. Using (Doerr, 2018, Lemma 4.9) for binomial coefficients, a random variable X with
binomial distribution Bin(n,1/2), for all z ∈ [0,n] we have

Prob(X = z)≤ Prob(X = ⌊n/2⌋)≤ 2−n ·
(

n
⌊n/2⌋

)
≤
√

2/n.

4.2 Restricted Tournament Selection 117

So the probability that an individual x is initialised inside the safety gap is at most

pσ := Prob(n/2−σ < |x|1 < n/2+σ)≤ 2σ ·
√

2/n.

Now let us define the probability that an individual x is initialised on the outer regions with
|x|1 ≤ n/2−σ ones (0n branch) or |x|1 ≤ n/2+σ ones (1n branch) as p0 and p1, respectively.
Note that both p0 and p1 are symmetric, and p0 + p1 := 1− pσ , and by rewriting we obtain
p0 := 1−pσ

2 (the same for p1) with its complement being 1− 1−pσ

2 = 1+pσ

2 .
So the probability of having no individual with at most n/2−σ ones is (1− p1)

µ =(
1+pσ

2

)µ

, and the same holds for having no individual with at least n/2+σ ones. Hence the
probability of being initialised as stated in the statement of the lemma is at least

1−2
(

1+ pσ

2

)µ

= 1−2−µ+1 · (1+ pσ)
µ .

Plugging in pσ and using the inequality 1+ x ≤ ex as well as σ µ = o(
√

n) we simplify the
last term as

(1+ pσ)
µ ≤ e2σ µ

√
2/n = eo(1) =

1
e−o(1)

≤ 1
1−o(1)

= 1+o(1),

and by plugging all together we have 1−2−µ+1(1+o(1)).

Using Lemmas 4.5 and 4.1, we can now prove Theorem 4.4.

Proof of Theorem 4.4. According to Lemma 4.5, with probability 1−2−µ+1(1+o(1)) the
initial population contains at least one search point with at most n/2− logn ones and at
least one search point with at least n/2+ logn ones. We assume in the following that this
has happened. The probability of mutation flipping at least logn bits is at most 1/(logn)!=
n−Ω(log logn). Taking the union bound over O(µn logn) steps still gives a superpolynomially
small error probability. In the following, we work under the assumption that mutation never
flips more than logn bits.

We call two search points close if their genotypic distance is at most logn. Due to our
assumption on mutations, every newly created offspring is close to its parent. Note that on
TWOMAX the phenotypic distance of any two search point is bounded from above by the
genotypic distance, hence close search points also have a phenotypic distance of at most logn.
Note that, whenever the tournament contains a search point that is close to the new offspring,
either the offspring or a close search point will be removed. If this always happens, the best
individual on any branch cannot be eliminated by an offspring on the opposite branch; recall

118 Runtime Analysis of Niching Mechanisms on TWOMAX

that initially, the best search points on the two branches have phenotypic distance at least
2 logn, and this phenotypic distance increases if the best fitness on any branch improves.
When genotypic distances are being used, the genotypic distance is always at least 2 logn.

Since each offspring has at least one close search point (its parent), the probability that
the tournament does not contain any close search point is at most (1− 1/µ)w ≤ e−w/µ =

e−2.5lnn = 1/n2.5. So long as the best individual on any branch does not get replaced by
any individuals on the opposite branch, the conditions of Lemma 4.1 are met. Applying
Lemma 4.1 to both branches, by the union bound the probability of both optima being found
in time 2eµn lnn is at least 1−2/n. The probability that in this time a tournament occurs that
does not involve a close search point is O(µn logn) ·1/n2.5 = o(1/n) as µ = o(

√
n/logn).

All failure probabilities sum up to (assuming n large enough)

2
n
+o
(

1
n

)
+2−µ+1(1+o(1))+

O(µn logn)
n−Ω(log logn)

≤ 4
n
+2−µ+2 ≤ 2−µ ′+3

where the last inequality follows as 2−µ ≤ 2−µ ′
and 1/n ≤ 2−µ ′

.

In Theorem 4.4 we chose w so large that every tournament included the offspring’s parent
with high probability. Then the (µ+1) EA behaves like the (µ+1) EA with deterministic
crowding (Friedrich et al., 2009), leading to similar success probabilities (see Table 4.1).

A success probability around 1−2−µ+1 is best possible for many diversity mechanisms as
with probability 2−µ+1 the whole population is initialised on one branch only (for odd n), and
then it is likely that only one optimum is reached. Methods like fitness sharing and clearing
obtain success probabilities of 1 by more aggressive methods that can force individuals to
travel from one branch to the other by accepting worse search points along the way. The
performance of restricted tournament selection is hence best possible amongst all mechanisms
that do not allow worse search points to enter the population.

4.2.2 Small Window Sizes Can Fail

We now turn our attention to small w. If the w is small in comparison to µ , the possibility
emerges that the tournament only contains individuals that are far from the offspring. In
that case even the closest individual in the tournament will be dissimilar to the offspring,
resulting in a competition between individuals from different “niches” (i. e., sets of similar
individuals). The following theorem and its proof show that this may result in one branch
taking over the other branch, even when the branch to get extinct is very close to a global
optimum. The resulting expected optimisation time is exponential.

4.2 Restricted Tournament Selection 119

Theorem 4.6. Let µ ≤ n/8. The probability that the (µ+1) EA with restricted tournament
selection with w ≥ 2 and either genotypic or phenotypic distances finds both optima on TWO-
MAX in time nn−1 is at most O(µw/n). If µ ≤ εn1/w for a sufficiently small constant ε > 0
then the expected time for finding both optima is Ω(nn).

Note that the probability of finding both optima in nn−1 generations is o(1) if w =

O(1) and µ grows slower than the polynomial n1/w. It also holds if w ≤ c(lnn)/ln lnn for
some constant 0 < c < 1 and µ = O(logn) as then n1/w = e(lnn)/w ≥ e(ln lnn)/c = (lnn)1/c =

ω(logn), which shows µw/n = o(1).

Proof of Theorem 4.6. The analysis follows the proof of (Friedrich et al., 2009, Theorem 1).
We assume that the initial population contains at most one global optimum as the probability
of both optima being found during initialization is at most µ ·2−n = O(µw/n).

We consider the first point of time at which the first optimum is being bound. Without
loss of generality, let us assume that this is 0n. Then we show that with high probability
copies of 0n takeover the population before the other optimum 1n is found.

Let i be the number of copies of the 0n individuals in the population, then a good event Gi

(good in a sense of leading towards extinction as we are aiming at a negative result) is to
increase this number from i to i+1. For this it is just necessary to create copies of one of
the i individuals. For n ≥ 2 we have Prob(Gi)≥ i

µ
·
(
1− 1

n

)n ·
(

µ−i
µ

)w
≥ i

4µ
·
(

µ−i
µ

)w
since

it suffices to select one out of i individuals and to create a copy of the selected individual, and
to select w times individuals from the remaining µ − i individuals. On the other hand, a bad
event Bi is to create an 1n individual in one generation. This probability is clearly bounded
by Prob(Bi)≤ 1

n as every individual with at least one zero bit has to flip said bit to create 1n.
Together, the probability that the good event Gi happens before the bad event Bi is

Prob(Gi | Gi ∪Bi)≥
Prob(Gi)

Prob(Gi)+Prob(Bi)
≥

i
4µ

·
(

µ−i
µ

)w

i
4µ

·
(

µ−i
µ

)w
+ 1

n

= 1−
1
n

i
4µ

·
(

µ−i
µ

)w
+ 1

n

≥ 1− 4µ

in · ((µ − i)/µ)w .

The probability that the i individuals takeover the population before 1n is found is therefore
at least

µ

∏
i=1

Prob(Gi | Gi ∪Bi)≥
µ

∏
i=1

(
1− 4µ

in · ((µ − i)/µ)w

)
.

120 Runtime Analysis of Niching Mechanisms on TWOMAX

Using 4µ

n ≤ 1
2 and 1− x ≥ e−2x for x ≤ 1

2 , we obtain

µ

∏
i=1

(
1− 4µ

in · ((µ − i)/µ)w

)
≥

µ

∏
i=1

exp
(
− 8µ

in · ((µ − i)/µ)w

)
= exp

(
−8µ

n
·

µ−1

∑
i=1

1
i · ((µ − i)/µ)w

)

= exp

(
−8µ

n
·µ

w
µ−1

∑
i=1

1
i · (µ − i)w

)
.

Note that the summands are non-increasing with w. So the worst case is having the
smallest possible w ≥ 2, so we can bound this sum from above in the following way:

µ−1

∑
i=1

1
i · (µ − i)2 ≤

⌊µ/2⌋

∑
i=1

1
i · (µ − i)2 +

µ−1

∑
i=⌈µ/2⌉

1
i · (µ − i)2

≤
⌊µ/2⌋

∑
i=1

1
i · (µ/2)2 +

µ−1

∑
i=⌈µ/2⌉

1
µ/2 · (µ − i)2

≤ 4
µ2

⌊µ/2⌋

∑
i=1

1
i
+

2
µ

∞

∑
i=1

1
i2

= O
(

1
µ

)

as ∑
⌊µ/2⌋
i=1

1
i = O(log µ) and ∑

∞
i=1 1/i2 = π2/6. Together we have

µ

∏
i=1

Prob(Gi | Gi ∪Bi)≥ exp
(
−8µ

n
·µ

w ·O
(

1
µ

))
≥ 1−O

(
µw

n

)
.

Once the population consists only of copies of 0n, a mutation has to flip all n bits to find
the 1n optimum. This event has probability n−n and, by the union bound, the probability
of this happening in a phase consisting of nn−1 generations is at most 1

n = O(µw/n). The
sum of all failure probabilities is O(µw/n), which proves the first claim. For the second
claim, observe that the conditional expected optimization time is nn once the population
has collapsed to copies of 0n individuals. As this situation occurs with probability at least
1−O(µw/n) = Ω(1) if the constant ε in µ ≤ εn1/w is sufficiently small, the unconditional
expected optimization time is Ω(nn).

4.2.3 Experimental Analysis

We provide an experimental analysis as well in order to see how closely the theory matches
the empirical performance for reasonable problem sizes, and to investigate a wider range

4.2 Restricted Tournament Selection 121

of parameters, where the theoretical results are not applicable. Here we focus our analysis
on the (µ+1) EA with restricted tournament selection for the TWOMAX function. We
consider the same experimental setting defined for probabilistic crowding: population sizes
µ ∈ {2,4,8, . . . ,1024}, problem size n = 100 and for 100 runs. The same outcomes and
stopping criteria defined in Section 4.1.1. Success, the population contains both 0n and 1n in
the population. Failure, once the run has reached 10µn lnn generations and the population
does not contain both optima. We report the mean of successes and failures for the 100 runs.

In the case of RTS (Algorithm 25), we ran experiments for w ∈ {1,2,4,8, . . . ,1024},
however we only plot results up to w = 128 as the results for large w were very similar.
Figure 4.2 shows that for small values of w and µ the algorithm is not able to maintain indi-
viduals on both branches of TWOMAX for a long period of time, as predicted by Theorem 4.6.
It is only when the population size is set to µ = 1024 (where Theorem 4.6 does not apply any
more since µ > n/8) the algorithm is able to maintain individuals on both branches before
the takeover happens. When setting, for example, w ≥ 8 and µ ≥ 32 the algorithm was able
to find both optima with both genotypic and phenotypic distances. It is possible to observe a
trade-off between w and µ: larger w allow for a smaller population size µ to be used. Such
a trade-off was also indicated by the probability bound O(µw/n) from Theorem 4.6. Our
experiments show that RTS works well for much smaller window sizes than those required
in Theorem 4.4. As a final remark, the method seems to behave fairly similarly with respect
to both distance functions.

2 4 8 16 32 64 12
8

25
6

51
2
10

24

0

20

40

60

80

100

µ (logscale)

(a) Genotypic

2 4 8 16 32 64 12
8

25
6

51
2
10

24

0

20

40

60

80

100

µ (logscale)

w = 1
w = 2
w = 4
w = 8
w = 16
w = 32
w = 64
w = 128

(b) Phenotypic

Figure 4.2: The number of successful runs measured among 100 runs at the time both
optima were found on TWOMAX or t = 10µn lnn generations have been reached for n = 100
with the (µ+1) EA with restricted tournament selection with µ ∈ {2,4,8, . . . ,1024},
w ∈ {1,2,4,8, . . . ,128}, genotypic and phenotypic distance.

122 Runtime Analysis of Niching Mechanisms on TWOMAX

4.2.4 Conclusions

The performance of restricted tournament selection seems to vary a lot with the parameters
involved. We have shown that if µ and w are set too small, one subpopulation may get extinct.
But if w is large enough then RTS behaves similarly to deterministic crowding. For both the
probability of finding both optima is close to 1−2−µ+1, hence converging to 1 very quickly
as µ grows. It still an open problem to theoretically analyse the population dynamics of RTS
for intermediate values for w. Our experiments show that RTS can optimise TWOMAX for
smaller w than the one required in Theorem 4.4.

4.3 Clearing

Clearing is a niching method inspired by the principle of sharing limited resources within a
niche (or subpopulation) of individuals characterised by some similarities. Instead of evenly
sharing the available resources among the individuals of a niche, the clearing procedure
supplies these resources only to the best individual of each niche: the winner. The winner
takes all rather than sharing resources with the other individuals of the same niche as it is
done with fitness sharing (Pétrowski, 1996).

Like in fitness sharing, the clearing algorithm uses a dissimilarity measure given by a
threshold called clearing radius σ between individuals to determine if they belong to the
same niche or not. The basic idea is to preserve the fitness of the individual that has the best
fitness (also called dominant individual), while it resets the fitness of all the other individuals
of the same niche to zero2. With such a mechanism, two approaches can be considered. For
a given population, the set of winners is unique. The winner and all the individuals that it
dominates are then fictitiously removed from the population. Then the algorithm proceeds
in the same way with the new population which is then obtained. Thus, the list of all the
winners is produced after a certain number of steps.

On the other hand, the population can be dominated by several winners. It is also possible
to generalise the clearing algorithm by accepting several winners chosen among the niche
capacity κ (best individuals of each niche defined as the maximum number of winners that
a niche can accept). Thus, choosing niching capacities between one and the population
size offers intermediate situations between the maximum clearing (κ = 1) and a standard
EA (κ ≥ µ).

2We tacitly assume that all fitness values are larger than 0 for simplicity. In case of a fitness function f with
negative fitness values we can change clearing to reset fitness to fmin −1, where fmin is the minimum fitness
value of f , such that all reset individuals are worse than any other individuals.

4.3 Clearing 123

Empirical investigations made in Pétrowski (1996, 1997a,b); Sareni and Krahenbuhl
(1998); Singh and Deb (2006) mentioned that clearing surpasses all other niching methods
because of its ability to produce a great quantity of new individuals by randomly recombining
elements of different niches, controlling this production by resetting the fitness of the poor
individuals in each different niche. Furthermore, an elitist strategy prevents the rejection of
the best individuals.

We incorporate the clearing method into Algorithm 5, resulting in Algorithm 26. The idea
behind Algorithm 26 is: once a population with µ individuals is generated, an individual x
is selected and changed according to mutation. A temporary population P∗

t is created from
population Pt and the offspring y, then the fitness of each individual in P∗

t is updated according
to the clearing procedure shown in Algorithm 27.

Algorithm 26 (µ+1) EA with clearing
1: Let t := 0 and initialise P0 with µ individuals chosen uniformly at random.
2: while stopping criterion not met do
3: Choose x ∈ Pt uniformly at random.
4: Create y by flipping each bit in x independently with probability 1/n.
5: Let P∗

t = Pt ∪{y}.
6: Update f (P∗

t) with the clearing procedure (Algorithm 27).
7: Choose z ∈ Pt with worst fitness uniformly at random.
8: if f (y)≥ f (z) then Pt+1 = P∗

t \{z} else Pt+1 = P∗
t \{y} end if

9: Let t := t +1.
10: end while

Each individual is compared with the winner(s) of each niche in order to check if it belongs
to a certain niche or not, and to check if its a winner or if it is cleared. Here d(P[i],P[j])
is any dissimilarity measure (distance function) between two individuals P[i] and P[j] of
population P. Finally, we keep control of the niche capacity defined by κ . For the sake of
clarity, the replacement policy will be the one defined in Witt (2006): the individuals with
best fitness are selected (set of winners) and individuals coming from the new generation are
preferred if their fitness values are at least as good as the current ones (novelty is rewarded).

Finally, as dissimilarity measures, we consider genotypic or Hamming distance (see
Definition 2.5). As TWOMAX is a function of unitation, we have adopted the same approach
as in previous work (Friedrich et al., 2009; Oliveto et al., 2014) for the phenotypic distance
function (see Definition 2.13).

124 Runtime Analysis of Niching Mechanisms on TWOMAX

Algorithm 27 Clearing
Require: Set of search points P.
Ensure: Set of winners and cleared individuals in P.

1: Sort P according to fitness of individuals by decreasing values.
2: for i := 1 to |P| do
3: if f (P[i])> 0 then
4: winners := 1
5: for j := i+1 to |P| do
6: if f (P[j])> 0 and d(P[i],P[j])< σ then
7: if winners < κ then winners := winners+1 else f (P[j]) := 0 end if
8: end if
9: end for

10: end if
11: end for
12: return P.

4.3.1 Small Niches

In this section we prove that the (µ+1) EA with phenotypic clearing and a small niche
capacity is not only able to achieve both optima of TWOMAX but is also able to optimise
all functions of unitation with a large enough population, while genotypic clearing fails
in achieving such a task (hereinafter, we will refer as phenotypic or genotypic clearing to
Algorithm 27 with phenotypic or genotypic distance function, respectively).

4.3.1.1 Phenotypic Clearing

First it is necessary to define a very important property of clearing, which is its capacity
of preventing the rejection of the best individuals in the (µ+1) EA, and once µ is defined
large enough, clearing and the population size pressure will always optimise any function of
unitation.

Note that on functions of unitation all search points with the same number of ones have
the same fitness, and for phenotypic clearing with clearing radius σ = 1 all search points
with the same number of ones form a niche. We refer to the set of all search points with i
ones as niche i. In order to find an optimum for any function of unitation, it is sufficient to
have all niches i, for 0 ≤ i ≤ n, being present in the population.

In the (µ+1) EA with phenotypic clearing with σ = 1, κ ∈N and µ ≥ (n+1) ·κ , a niche i
can only contain κ winners with i ones. The condition on µ ensures that the population is
large enough to store individuals from all possible niches.

4.3 Clearing 125

Lemma 4.7. Consider the (µ+1) EA with phenotypic clearing with σ = 1, κ ∈ N and
µ ≥ (n+ 1) · κ on any function of unitation. Then winners are never removed from the
population, i. e., if x ∈ Pt is a winner then x ∈ Pt+1.

Proof. After the first evaluation with clearing, individuals dominated by other individuals
are cleared and the dominant individuals are declared as winners. Cleared individuals are
removed from the population when new winners are created and occupy new niches. Once an
individual becomes a winner, it can only be removed if the size of the population is not large
enough to maintain it, as the worst winner is removed if a new winner reaches a new better
niche. Since there are at most n+1 niches, each having at most κ winners, if µ ≥ (n+1) ·κ
then there must be a cleared individual amongst the µ +1 parents and offspring considered
for deletion at the end of the generation. Thus, a cleared individual will be deleted, so winners
cannot be removed from the population.

The behaviour described above means that with the defined parameters and sufficiently
large µ to occupy all the niches, we have sufficient conditions for the furthest individuals
(individuals with the minimum and maximum number of ones in the population) to reach the
opposite edges. Now that we know that a winner cannot be removed from the population by
Lemma 4.7, it is just a matter of finding the expected time until 0n and 1n are found.

Because of the elitist approach of the (µ+1) EA, winners will never be replaced if we
assume a large enough population size. In particular, the minimum (maximum) number of
ones of any search point in the population will never increase (decrease). We first estimate
the expected time until the two most extreme search points 0n and 1n are being found, using
arguments similar to the well-known fitness-level method (Section 2.3.5).

Lemma 4.8. Let f be a function of unitation and σ = 1, κ ∈ N and µ ≥ (n+1) ·κ . Then,
the expected time for finding the search points 0n and 1n with the (µ+1) EA with phenotypic
clearing on f is O(µn logn).

Proof. First, we will focus on estimating the time until the 1n individual is found (by
symmetry, the same analysis applies for the 0n individual). If the current maximum number
of ones in any search point is i, it has a probability of being selected of at least 1/µ . In order
to create a niche with j > i ones, it is sufficient that one of the n− i zeroes is flipped into a
1-bit and the other bits remain unchanged. Each bit flip has a probability of being changed
(mutated) of 1/n and the probability of the other bits remaining unchanged is (1−1/n)n−1.
Hence, the probability of creating some niche with j > i ones is at least

1
µ
· n− i

n
·
(

1− 1
n

)n−1

≥ n− i
µen

.

126 Runtime Analysis of Niching Mechanisms on TWOMAX

The expected time for increasing the maximum number of ones, i, is hence at most µen
n−i

and the expected time for finding 1n is at most

n−1

∑
i=0

µen
n− i

= µen
n

∑
i=1

1
i
≤ µen lnn = O(µn logn).

Where Hn = ∑
n
i=1 1/i is known as the harmonic number (Lemma A.17). Adding the

same time for finding 0n proves the claim.

Once the search points 0n and 1n have been found, we can focus on the time required for
the algorithm until all intermediate niches are discovered.

Lemma 4.9. Let f be any function of unitation, σ = 1, κ ∈ N and µ ≥ (n+ 1) · κ , and
assume that the search points 0n and 1n are contained in the population. Then, the expected
time until all niches are found with the (µ+1) EA with phenotypic clearing on f is O(µn).

Proof. According to Lemma 4.7 and the elitist approach of (µ+1) EA, winners will never be
replaced if we assume a large enough population size and by assumption we already have
found both search points 0n and 1n. As long as the algorithm has not yet found all niches
with at least n/2 ones, then there must be an index i ≥ n/2 such that the population does not
cover the niche with i ones, but it does cover the niche with i+1 ones. We can mutate an
individual from niche i+1 to populate niche i. The probability of selecting an individual
from niche i+1 is at least 1/µ , and since it is just necessary to flip one of at least n/2 0-bits
with probability 1/n, we have a probability of at least 1/2 to do so, and a probability of
leaving the remaining bits untouched of (1− 1/n)n−1 ≥ 1/e. Together, the probability is
bounded from below by 1/(2µe). Using the level-based argument used before for the case
of the niches, the expected time to occupy all niches with at least n/2 ones is bounded by

n−1

∑
i=n/2

2µe
1

≤ 2µen = O(µn).

A symmetric argument applies for the niches with fewer than n/2 ones, leading to an
additional time of O(µn).

Theorem 4.10. Let f be a function of unitation and σ = 1, κ ∈N and µ ≥ (n+1) ·κ . Then,
the expected optimisation time of the (µ+1) EA with phenotype clearing on f is O(µn logn).

Proof. Now that we have defined and proved all conditions where the algorithm is able to
maintain every winner in the population (Lemma 4.7), to find the extreme search points
(Lemma 4.8) and intermediate niches (Lemma 4.9) of the function f , we can conclude that
the total time required to optimise the function of unitation f is O(µn logn).

4.3 Clearing 127

4.3.1.2 Genotypic Clearing

In the case of genotypic clearing with σ = 1, the (µ+1) EA behaves like the diversity-
preserving mechanism called no genotype duplicates. The (µ+1) EA with no genotype
duplicates rejects the new offspring if the genotype is already contained in the population.
The same happens for the (µ+1) EA with genotypic clearing and σ = 1 if the population
is initialised with µ mutually different genotypes (which happens with probability at least
1−
(

µ

2

)
2−n). In other words, conditional on the population being initialised with mutually

different search points, both algorithms are identical. In Friedrich et al. (2009, Theorem 2), it
was proved that the (µ+1) EA with no genotype duplicates and µ = o

(
n1/2

)
is not powerful

enough to explore the landscape and can be easily trapped in one optimum of TWOMAX.
Adapting Friedrich et al. (2009, Theorem 2) to the goal of finding both optima and noting
that

(
µ

2

)
2−n = o(1) for the considered µ yields the following.

Corollary 4.11. The probability that the (µ+1) EA with genotypic clearing, σ = 1 and
µ = o

(
n1/2

)
finds both optima on TWOMAX in time nn−2 is at most o(1). The expected

time for finding both optima is Ω
(
nn−1).

As mentioned before, the use of a proper distance is really important in the context of
clearing. In our case, we use phenotypic distance for functions of unitation, which has been
proved to provide more significant information at the time it is required to define small
differences (in our case small niches) among individuals in a population, so the use of that
knowledge can be taken into consideration at the time the algorithm is set up. Otherwise, if
there is no more knowledge related to the specifics of the problem, genotypic clearing can be
used but with larger niches as shown in the following section.

4.3.2 Large Niches

While small niches work with phenotypic clearing, Corollary 4.11 showed that with genotypic
clearing small niches are ineffective. This makes sense as for phenotypic clearing with σ = 1
a niche with i ones covers

(n
i

)
search points, whereas a niche in genotypic clearing with

σ = 1 only covers one search point. In this section we turn our attention to larger niches,
where we will prove that cleared search points are likely to spread, move, and climb down a
branch.

We first present general insights into these population dynamics with clearing. These
results capture the behaviour of the population in the presence of only one winning geno-
type x∗ (of which there may be κ copies). We estimate the time until in this situation the
population evolves a search point of Hamming distance d from said winner, for any d ≤ σ ,

128 Runtime Analysis of Niching Mechanisms on TWOMAX

or for another winner to emerge (for example, in case an individual of better fitness than x∗ is
found).

These time bounds are very general as they are independent of the fitness function. This
is possible since, assuming the winners are fixed at x∗, all other search points within the
clearing radius receive a fitness of 0 and hence are subject to a random walk. We demonstrate
the usefulness of our general method by an application to TWOMAX with a clearing radius of
σ = n/2, where all winners are copies of either 0n or 1n. The results hold both for genotypic
clearing and phenotypic clearing as the phenotypic distance of any point x to 0n (1n, resp.)
equals the Hamming distance of x to 0n (1n, resp.).

4.3.2.1 Large Population Dynamics with Clearing

We assume that the population contains only one winner genotype x∗, of which there are κ

copies. For any given integer 0 ≤ d ≤ σ , we analyse the time for the population to reach a
search point of Hamming distance at least d from x∗, or for a winner different from x∗ to
emerge. To this end, we will study a potential function ϕ that measures the dynamics of the
population. Let

ϕ(Pt) = ∑
x∈Pt

H(x,x∗)

be the sum of all Hamming distances of individuals in the population to the winner x∗. The
following lemma shows how the potential develops in expectation.

Lemma 4.12. Let Pt be the current population of the (µ+1) EA with genotypic clearing on
any fitness function such that the only winners are κ copies of x∗ and H(x,x∗)< σ for all
x ∈ Pt . Then if no winner different from x∗ is created, the expected change of the potential is

E[ϕ(Pt+1)−ϕ(Pt) | Pt] = 1− ϕ(Pt)

µ

(
2
n
+

κ

µ −κ

)
.

Before proving the lemma, let us make sense of this formula. Ignore the term κ

µ−κ
for

the moment and consider the formula 1− ϕ(Pt)
µ

· 2
n . Note that ϕ(Pt)/µ is the average distance

to the winner in Pt . If the population has spread such that it has reached an average distance
of n/2 then the expected change would be 1− ϕ(Pt)

µ
· 2

n = 1− n
2 ·

2
n = 0. Moreover, a smaller

average distance will give a positive drift (expected value in the decrease of the distance after
a single function evaluation) and an average distance larger than n/2 will give a negative
drift. This makes sense as a search point performing an independent random walk will attain
an equilibrium state around Hamming distance n/2 from x∗.

4.3 Clearing 129

The term κ

µ−κ
reflects the fact that losers in the population do not evolve in complete

isolation. The population always contains κ copies of x∗ that may create offspring and may
prevent the population from venturing far away from x∗. In other words, there is a constant
influx of search points descending from winners x∗. As the term κ

µ−κ
indicates, this effect

grows with κ , but (as we will see later) it can be mitigated by setting the population size µ

sufficiently large.

Proof of Lemma 4.12. We use the notation from Algorithm 26, where x is the parent, y is its
offspring, and z is the individual considered for removal from the population. If an individual
x ∈ Pt is selected as parent, the expected distance of its mutant to x∗ is

E[H(y,x∗) | x] = H(x,x∗)+
n−H(x,x∗)

n
− H(x,x∗)

n
= 1+H(x,x∗)

(
1− 2

n

)
.

Hence after a uniform parent selection and mutation, the expected distance in the offspring
is

E[H(y,x∗) | Pt] = ∑
x∈Pt

1
µ
·
(

1+H(x,x∗)
(

1− 2
n

))
= 1+

ϕ(Pt)

µ

(
1− 2

n

)
. (4.2)

After mutation and clearing procedure, there are µ individuals in Pt , including κ winners,
which are copies of x∗. Let C denote the multiset of these κ winners. As all µ −κ non-winner
individuals in Pt have fitness 0, one of these will be selected uniformly at random for deletion.
The expected distance to x∗ in the deleted individual is

E[H(z,x∗) | Pt] = ∑
x∈Pt\C

1
µ −κ

·H(x,x∗) = ∑
x∈Pt

1
µ −κ

·H(x,x∗) =
ϕ(Pt)

µ −κ
. (4.3)

Recall that the potential is the sum of Hamming distances to x∗, hence adding y and
removing z yields ϕ(Pt+1) = ϕ(Pt)+H(y,x∗)−H(z,x∗). Along with (4.2) and (4.3), the
expected change of the potential is

E[ϕ(Pt+1)−ϕ(Pt) | Pt] = E[H(y,x∗) | Pt]−E[H(z,x∗) | Pt]

= 1+
ϕ(Pt)

µ

(
1− 2

n

)
− ϕ(Pt)

µ −κ
.

Using that

ϕ(Pt)

µ
− ϕ(Pt)

µ −κ
=

(µ −κ)ϕ(Pt)

µ(µ −κ)
− µϕ(Pt)

µ(µ −κ)
=− κϕ(Pt)

µ(µ −κ)
,

130 Runtime Analysis of Niching Mechanisms on TWOMAX

the above simplifies to

E[ϕ(Pt+1)−ϕ(Pt) | Pt] = 1− 2ϕ(Pt)

µn
− κϕ(Pt)

µ(µ −κ)

= 1− ϕ(Pt)

µ

(
2
n
+

κ

µ −κ

)
.

The potential allows us to conclude when the population has reached a search point of
distance at least d from x∗. The following lemma gives a sufficient condition.

Lemma 4.13. If Pt contains κ copies of x∗ and ϕ(Pt)> (µ −κ)(d−1) then Pt must contain
at least one individual x with H(x,x∗)≥ d.

Proof. There are at most µ −κ individuals different from x∗. By the pigeon-hole principle,
at least one of them must have at least distance d from x∗.

In order to bound the time for reaching a high potential given in Lemma 4.13, we will
use the Theorem 2.33, a straightforward extension of the variable drift theorem (Johannsen,
2010) towards reaching any state smaller than some threshold a. It can be derived with
simple adaptations to the proof in Rowe and Sudholt (2014).

The following lemma now gives an upper bound on the first hitting time (the random
variable that denotes the first point in time to reach a certain point) of a search point with
distance at least d to the winner x∗.

Lemma 4.14. Let Pt be the current population of the (µ+1) EA with genotypic clearing and
σ ≤ n/2 on any fitness function such that Pt contains κ copies of a unique winner x∗ and
H(x,x∗) < d for all x ∈ Pt . For any 0 ≤ d ≤ σ , if µ ≥ κ · dn−2d+2

n−2d+2 then the expected time
until a search point x with H(x,x∗)≥ d is found, or a winner different from x∗ is created, is
O(µn log µ).

Proof. We pessimistically assume that no other winner is created and estimate the first hitting
time of a search point with distance at least d. As ϕ can only increase by at most n in one
step, hmax := (µ −κ)(d −1)+n is an upper bound on the maximum potential that can be
achieved in the generation where a distance of d is reached or exceeded for the first time.

In order to apply drift analysis, we define a distance function that describes how close
the algorithm is to reaching a population where a distance d was reached. We consider the
random walk induced by Xt := hmax −ϕ(Pt), stopped as soon as a Hamming distance of at
least d from x∗ is reached. Due to our definition of hmax, the random walk only attains values
in {0, . . . ,hmax} as required by the variable drift theorem.

4.3 Clearing 131

By Lemma 4.12, abbreviating α := 1
µ

(
2
n +

κ

µ−κ

)
, Xt decreases in expectation by at

least h(Pt) := 1−αϕ(Pt) = 1−αhmax +αh(Pt), provided h(Pt)> 0. By definition of h and
Lemma 4.13, the population reaches a distance of at least d once the distance hmax −ϕ(Pt)

has dropped below n. Using the generalised variable drift theorem, the expected time till this
happens is at most

n
1−αhmax +αn

+
∫ hmax

n

1
1−αhmax +αx

dx.

Using
∫ 1

ax+b dx = 1
a ln |ax+b| (Abramowitz, 1974, Equation 3.3.15), we get

n
1−αhmax +αn

+

[
1
α

ln(1−αhmax +αx)
]hmax

n

=
n

1−αhmax +αn
+

1
α
· (ln(1)− ln(1−αhmax +αn))

=
n

1−αhmax +αn
+

1
α

ln((1−αhmax +αn)−1).

We now bound the term 1−αhmax +αn from below as follows.

1−αhmax +αn = 1− (µ −κ)(d −1) · 1
µ

(
2
n
+

κ

µ −κ

)
= 1− 2(µ −κ)(d −1)+κ(d −1)n

µn

=
µn−2µd +2κd −κdn+2µ −2κ +κn

µn

=
κ

µ
+

n−2d +2
n

− κdn−2κd +2κ

µn

≥ κ

µ
+

n−2d +2
n

− n−2d +2
n

=
κ

µ

where in the penultimate step we used the assumption µ ≥ κ · dn−2d+2
n−2d+2 . Along with α ≥

2/(µn), the expected time bound simplifies to

n
1−αhmax +αn

+
1
α

ln((1−αhmax +αn)−1)≤ n
κ/µ

+
µn
2

ln(µ/κ) = O(µn log µ).

The minimum threshold κ · dn−2d+2
n−2d+2 for µ contains a factor of κ . The reason is that the

fraction of winners in the population needs to be small enough to allow the population to

132 Runtime Analysis of Niching Mechanisms on TWOMAX

escape from the vicinity of x∗. The population size hence needs to grow proportionally to the
number of winners κ the population is allowed to store.

Note that the restriction d ≤ σ ≤ n/2 is necessary in Lemma 4.14. Individuals evolving
within the clearing radius, but at a distance larger than n/2 to x∗ will be driven back towards x∗.
If d is significantly larger than n/2, we conjecture that the expected time for reaching a
distance of at least d from x∗ becomes exponential in n.

4.3.2.2 Upper Bound for TWOMAX

It is now easy to apply Lemma 4.14 in order to achieve a runtime bound on TWOMAX.
Putting d = σ = n/2, the condition on µ simplifies to

µ ≥ κ · dn−2d +2
n−2d +2

= κ · n2/2−n+2
2

,

which is implied by µ ≥ κn2/4. Lemma 4.14 then implies the following. Recall that for
x∗ ∈ {0n,1n}, genotypic distances H(x,x∗) equal phenotypic distances, hence the result
applies to both genotypic and phenotypic clearing.

Corollary 4.15. Consider the (µ+1) EA with genotypic or phenotypic clearing, κ ∈ N,µ ≥
κn2/4 and σ = n/2 on TWOMAX with a population containing κ copies of 0n (1n). Then the
expected time until a search point with at least (at most) n/2 ones is found is O(µn log µ).

Theorem 4.16. The expected time for the (µ+1) EA with genotypic or phenotypic clearing,
µ ≥ κn2/4, µ ≤ poly(n) and σ = n/2 finding both optima on TWOMAX is O(µn logn).

Proof. We first estimate the time to reach one optimum, 0n or 1n. The population is elitist as
it always contains a winner with the best-so-far fitness. Hence we can apply the level-based
argument as follows. If the current best fitness is i, it can be increased by selecting an
individual with fitness i (probability at least 1/µ) and flipping only one of n− i bits with
the minority value (probability at least (n− i)/(en)). The expected time for increasing the
best fitness i is hence at most µ · en/(n− i) and the expected time for finding some optimum
x∗ ∈ {0n,1n} is at most

n−1

∑
i=n/2

µ · en
n− i

= eµn
n/2

∑
i=1

1
i
≤ eµn lnn.

In order to apply Corollary 4.15, we need to have κ copies of x∗ in the population. While
this isn’t the case, a generation picking x∗ as parent and not flipping any bits creates another
winner x∗ that will remain in the population. If there are j copies of x∗, the probability to

4.3 Clearing 133

create another winner is at least j/µ · (1−1/n)n ≥ j/(4µ) (using n ≥ 2). Hence the time
until the population contains κ copies of x∗ is at most

κ

∑
j=1

4µ

j
= O(µ logκ) = O(µ logn)

as κ ≤ µ ≤ poly(n).
By Corollary 4.15, the expected time till a search point on the opposite branch is created

is O(µn log µ) = O(µn logn). Since the best individual on the opposite branch is a winner
in its own niche, it will never be removed. This allows the population to climb this branch as
well. Repeating the arguments from the first paragraph of this proof, the expected time till
the second optimum is found is at most eµn lnn. Adding up all expected times proves the
claim.

One limitation of Theorem 4.16 is the steep requirement on the population size: µ ≥
κn2/4. The condition on µ was chosen to ensure a positive drift of the potential for all
populations that haven’t reached distance d yet, including the most pessimistic scenario
of all losers having distance d − 1 to x∗. Such a scenario is unlikely as we will see in
Sections 4.3.4.1 and 4.3.4.2 where experiments suggest that the population tends to spread
out, covering a broad range of distances. With such a spread, a distance of d can be reached
with a much smaller potential than that indicated by Lemma 4.13. We conjecture that the
(µ+1) EA with clearing is still efficient on TWOMAX if µ = O(n). However, proving this
theoretically may require new arguments on the distribution of the κ winners and losers
inside the population.

4.3.2.3 On the Choice of the Population Size for TWOMAX

To get further insights into what population sizes µ are necessary, we show in the following
that the (µ+1) EA with clearing becomes inefficient on TWOMAX if µ is too small, that
is, smaller than n/polylog(n). The reason is as follows: assume that the population only
contains a single optimum x∗, and further individuals that are well within a niche of size
σ = n/2 surrounding x∗. Due to clearing, the population will always contain a copy of x∗.
Hence there is a constant influx of individuals that are offspring, or, more generally, recent
descendants of x∗. We refer to these individuals informally as young; a rigorous notation will
be provided in the proof of Theorem 4.17. Intuitively, young individuals are similar to x∗,
and thus are likely to produce further offspring that are also young, i. e., similar to x∗ when
chosen as parents.

134 Runtime Analysis of Niching Mechanisms on TWOMAX

We will show in the following that if the population size µ is small, young individuals
will frequently takeover the whole population, creating a population where all individuals are
similar to x∗. This takeover happens much faster than the time the algorithm needs to evolve
a lineage that can reach a Hamming distance n/2 to the optimum.

The following theorem shows that if the population size is too small, the (µ+1) EA is
unable to escape from one local optimum, assuming that it starts with a population of search
points that have recently evolved from said optimum.

Theorem 4.17. Consider the (µ+1) EA with genotypic or phenotypic clearing on TWOMAX

with µ ≤ n/(4log3 n), κ = 1 and σ = n/2, starting with a population containing only search
points that have evolved from one optimum x∗ within the last µn/32 generations. Then the
probability that both optima are found within time n(logn)/2 is n−Ω(logn).

The following lemma describes a stochastic process that we will use in the proof of
Theorem 4.17 to model the number of “young” individuals over time. We are interested in
the first hitting time of state µ as this is the first point in time where young individuals have
taken over the whole population of size µ . The transition probabilities for states 1 < Xt < µ

reflect the evolution of a fixed-size population containing two species (young and old in
our case): in each step one individual is selected for reproduction, and another individual is
selected for replacement. If they stem from the same species, the size of both species remains
the same. But if they stem from different species, the size of the first species can increase or
decrease by 1, with equal probability.

This is similar to the Moran process in population genetics (Ewens, 2004, Section 3.4)
which ends when one species has evolved to fixation (i. e. has taken over the whole population)
or extinction. Our process differs as state 1 is reflecting, hence extinction of young individuals
is impossible. Notably, we will show that, compared to the original Moran process, the
expected time for the process to end is larger by a factor of order log µ . Other variants of
the Moran process have also appeared in different related contexts such as the analysis of
Genetic Algorithms (Lemma 6 in Dang et al., 2016a) and the analysis of the compact Genetic
Algorithm (Lemma 7 in Sudholt and Witt, 2016). The following lemma gives asymptotically
tight bounds on the time young individuals need to evolve to fixation.

Lemma 4.18. Consider a Markov chain {X}t≥0 on {1,2, . . . ,µ} with transition probabilities
for 1 ≤ Xt < µ

Prob(Xt+1 = Xt +1 | Xt) = Xt(µ −Xt)/µ
2

for 1 < Xt < µ ,
Prob(Xt+1 = Xt −1 | Xt) = Xt(µ −Xt)/µ

2

4.3 Clearing 135

and Xt+1 = Xt with the remaining probability. Let T be the first hitting time of state µ , then
for all starting states X0,

1
2
· (µ −X0)µ ln(µ −1)≤ E[T | X0]≤ 4(µ −X0)µHn(µ/2)≤ 4µ

2 ln µ.

In addition, if µ ≤ n then Prob
(
T ≥ 8µ2 log3 n

)
≤ n− logn.

Proof. Let us abbreviate Ei =E[T | Xt = i], then Eµ = 0, E1 =
µ2

µ−1 +E2, and for all 1< i< µ

we have

Ei = 1+
i(µ − i)

µ2 ·Ei+1 +
i(µ − i)

µ2 ·Ei−1 +

(
1− 2i(µ − i)

µ2

)
·Ei

⇔ 2i(µ − i)
µ2 ·Ei = 1+

i(µ − i)
µ2 ·Ei+1 +

i(µ − i)
µ2 ·Ei−1

⇔ 2Ei =
µ2

i(µ − i)
+Ei+1 +Ei−1

⇔ Ei −Ei+1 =
µ2

i(µ − i)
+Ei−1 −Ei.

Introducing Di := Ei −Ei+1, this is

Di =
µ2

i(µ − i)
+Di−1.

For D1 we get

D1 = E1 −E2 =

(
µ2

µ −1
+E2

)
−E2 =

µ2

µ −1
.

More generally, we expand Di to get

Di =
i

∑
j=1

µ2

j(µ − j)
= µ

2
i

∑
j=1

1
j(µ − j)

Now we can express Ei in terms of Di variables as follows. For all 1 ≤ i < µ ,

Ei = (Ei −Ei+1)︸ ︷︷ ︸
Di

+(Ei+1 −Ei+2)︸ ︷︷ ︸
Di+1

+ · · ·+(Eµ−1 −Eµ)︸ ︷︷ ︸
Dµ−1

+ Eµ︸︷︷︸
0

hence

Ei = Di + . . .+Dµ−1 = µ
2

µ−1

∑
k=i

k

∑
j=1

1
j(µ − j)

136 Runtime Analysis of Niching Mechanisms on TWOMAX

We now bound this double-sum from above and below.

µ
2

µ−1

∑
k=i

k

∑
j=1

1
j(µ − j)

≤ µ
2

µ−1

∑
k=i

(
⌊µ/2⌋

∑
j=1

1
j(µ − j)

+
k

∑
j=⌊µ/2⌋+1

1
j(µ − j)

)

≤ µ
2

µ−1

∑
k=i

(
⌊µ/2⌋

∑
j=1

1
j(µ − j)

+
⌊µ/2⌋

∑
j=1

1
j(µ − j)

)

≤ µ
2

µ−1

∑
k=i

4
µ
·Hn(⌊µ/2⌋) = 4(µ − i)µHn(⌊µ/2⌋).

The final inequality follows from (µ − i) ·Hn(⌊µ/2⌋)≤ µ ln µ .
The lower bound follows from

µ
2

µ−1

∑
k=i

k

∑
j=1

1
j(µ − j)

≥ µ

µ−1

∑
k=i

k

∑
j=1

1
j
≥ µ

µ−1

∑
k=i

ln(k) = µ ln

(
µ−1

∏
k=i

k

)
≥ µ ln

(
(µ −1)(µ−i)/2

)
=

1
2
· (µ − i)µ ln(µ −1).

where in the last inequality we used that (µ − 1− j)(i+ j) ≥ µ − 1 for all 0 ≤ j ≤ µ − 1,
allowing us to group factors in ⌊(µ − i)/2⌋ pairs whose product is at least µ −1, leaving a
remaining factor of at least µ/2 ≥ (µ −1)1/2 if (µ − i) is odd.

For the second statement, we use standard arguments on independent phases. By
Markov’s inequality, the probability that takeover takes longer than 2 · (4µ2 ln µ) is at most
1/2. Since the upper bound holds for any X0, we can iterate this argument log2 n times. Then
the probability that we do not have a takeover in 2 · (4µ2 ln µ · log2 n) ≤ 8µ2 log3 n steps
(using µ ≤ n) is 2− log2 n = n− logn.

Now we prove that the time required to reach a new niche with σ = n/2 is larger than
the time required for “young” individuals to takeover the population. In other words, once a
winner x∗ is found and assigned to an optimum, with a small µ , the time for a takeover is
shorter than the required time to find a new niche. This will imply that the algorithm needs
superpolynomial time to escape from the influence of the winner x∗ and in consequence it
needs superpolynomial time to find the opposite optimum.

We analyse the dynamics within the population by means of so-called family trees from
Section 2.3.7. Here we make use of Lemma 1 in Sudholt (2009) (which is an adaptation from
Lemma 2 and proof of Theorem 4 in Witt, 2006) to show that the individuals in T(r∗) are

4.3 Clearing 137

still concentrated around r∗. If the distance from r∗ to all optima is not too small, then it is
unlikely that an optimum has been found after t steps.

Lemma 4.19 (Adapted from Lemma 1 in Sudholt, 2009). For the (µ+1) EA with or without
clearing, let r∗ be an individual entering the population in some generation t∗. The probability
that within the following t generations some y∗ ∈ T (r∗) emerges with H(r∗,y∗) ≥ 8t/µ is
2−Ω(t/µ).

Lemma 1 in Sudholt (2009) applies to (µ+λ) EA without clearing. We recap Witt’s basic
proof idea to make this section self-contained and also to convince the reader why the result
also applies to the (µ+1) EA with clearing.

The analysis is divided in two parts. In the first part it is shown that family trees are
unlikely to be very deep. Since every individual is chosen as parent with probability 1/µ ,
the expected length of a path in the family tree after t generations is bounded by t/µ . Large
deviations from this expectation are unlikely. Lemma 2 in Witt (2006) shows that the
probability that a family tree has depth at least 3t/µ is 2−Ω(t/µ). This argument only relies
on the fact that parents are chosen uniformly at random, which also holds for the (µ+1) EA
with clearing.

For family trees whose depth is bounded by 3t/µ , all path lengths are bounded by 3t/µ .
Each path corresponds to a sequence of standard bit mutations, and the Hamming distance
between any two search points on the same path can be bounded by the number of bits
flipped in all mutations that lead from one search point to the other. By applying Chernoff
bounds (see Lemma A.15) with respect to the upper bound 4t/µ on the expectation instead
of the expectation itself (cf. page 75 in Witt, 2006), we obtain that the probability of an
individual of Hamming distance at least 8t/µ to r∗ emerging on a particular path is at most
e−4t/(3µ). Taking the union bound over all possible paths in the family tree still gives a failure
probability of 2−Ω(t/µ). Adding the failure probabilities from both parts proves the claim.

Now, Lemma 4.19 implies the following corollary.

Corollary 4.20. The probability that, starting from a search point x∗, within µn/16 genera-
tions the (µ+1) EA with clearing evolves a lineage that reaches Hamming distance at least
n/2 to its founder x∗ is 2−Ω(n).

Now we put Lemma 4.18 and Corollary 4.20 together to prove Theorem 4.17.

Proof of Theorem 4.17. By assumption, all individuals in the population are descendants of
individuals with genotype x∗, and this property will be maintained over time. This means that
every individual x in the population Pt at time t will have an ancestor that has genotype x∗

(our notion of ancestor and descendant includes the individual itself). Tracing back x’s

138 Runtime Analysis of Niching Mechanisms on TWOMAX

ancestry, let t∗ ≤ t be the most recent generation where an ancestor of x has genotype x∗.
Then we define the age of x as t − t∗. Informally, the age describes how much time a search
point has had to evolve differences from the genotype x∗. Note that the age of x∗ itself is
always 0 and as the population always contains a winner x∗, it always contains at least one
individual of age 0.

Now assume that a new search point x is created with H(x,x∗)≥ n/2. If x has age at most
µn/16 then there exists a lineage from a copy of x∗ to x that has emerged in at most µn/16
generations. This corresponds to the event described in Corollary 4.20, and by said corollary
the probability of this event happening is at most 2−Ω(n). Taking the union bound over all
family trees (of which there are at most µ in every generation) and the first nlogn generations,
the probability that such a lineage does emerge in any family tree and at any point in time
within the considered time span is still bounded by µnlogn ·2−Ω(n) = 2−Ω(n).

We now show using Lemma 4.18 that it is very unlikely that individuals with age larger
than µn/16 emerge. We say that a search point x is T -young if it has genotype x∗ or if its
most recent ancestor with genotype x∗ was born during or after generation T . Otherwise, x is
called T -old. We omit the parameter “T ” whenever the context is obvious. A key observation
is that youth is inheritable: if a young search point is chosen as parent, then the offspring is
young as well. If an old search point is chosen as parent, then the offspring is old as well,
unless mutation turns the offspring into a copy of x∗.

Let Xt be the number of young individuals in the population at time t, and pessimistically
ignore the fact that old individuals may create young individuals through lucky mutations.
Then in order to increase the number of young individuals, it is necessary and sufficient
to choose a young individual as parent (probability Xt/µ) and to select an old parent for
replacement. The probability of the latter is (µ−Xt)/µ as there are µ−Xt old parents and the
individual to be removed is chosen uniformly at random among µ individuals whose fitness
is cleared. Hence, for 1 ≤ Xt < µ , Prob(Xt+1 = Xt +1 | Xt) = Xt(µ −Xt)/µ2. Similarly,
the number of old individuals increases if and only if an old individual is chosen as parent
(probability (µ −Xt)/µ) and a young individual is chosen for replacement (probability
Xt/µ), hence for 1 < Xt < µ we have Prob(Xt+1 = Xt −1 | Xt) = Xt(µ −Xt)/µ2. Otherwise,
Xt+1 = Xt . Note that Xt ≥ 1 since the winner x∗ is young and will never be removed. This
matches the Markov chain analysed in Lemma 4.18.

Now consider a generation T where all individuals in the population have ages at most
µn/32. By assumption, this property is true for the initial population. At time T , the
population contains at least one T -young individual: the winner x∗. By Lemma 4.18, with
probability at least 1− n− logn, within the next 8µ2 log3 n ≤ µn/32 generations, using the
condition µ ≤ n/(4log3 n), the population will reach a state where Xt = µ , that is, all

4.3 Clearing 139

individuals are T -young. Assuming this does happen, let T ′ ≤ T +µn/32 denote the first
point in time where this happens. Then at time T ′ all individuals have ages at most µn/32,
and we can iterate the above arguments with T ′ instead of T .

Each such iteration carries a failure probability of at most n− logn. Taking the union bound
over failure probabilities n− logn over the first n(logn)/2 generations yields that the probability
of an individual of age larger than µn/16 emerging is only n(logn)/2 ·n− logn = n−(logn)/2.

Adding failure probabilities 2−Ω(n) and n−(logn)/2 completes the proof.

We conjecture that a population size of µ = O(n) is sufficient to optimise TWOMAX in
expected time O(µn logn), that is, that the conditions in Theorem 4.16 can be improved.

4.3.3 Generalisation to Other Example Landscapes

Note that, in contrast to previous analyses of fitness sharing (Friedrich et al., 2009; Oliveto
et al., 2014), our analysis of the clearing mechanism does not make use of the specific fitness
values of TWOMAX. The main argument of how to escape from one local optimum only
depends on the size of its basin of attraction. Our results therefore easily extend to more
general function classes that can be optimised by leaving a basin of attraction of width at
most n/2. We consider more general classes of examples landscapes introduced by Jansen
and Zarges (2016) addressing the need for suitable benchmark functions for the theoretical
analysis of evolutionary algorithms on multimodal functions (see Section 2.1.1.2).

4.3.3.1 Nearest Peak Functions

We first argue that our results easily generalise to nearest peak functions with two comple-
mentary peaks p2 = p1, arbitrary slopes a1,a2 ∈ R+, and arbitrary offsets bi ∈ R+

0 . The
generalisation from peaks 0n,1n as for TWOMAX to peaks p2 = p1 is straightforward: we can
swap the meaning of zeros and ones for any selection of bits without changing the behaviour
of the algorithm, hence the (µ+1) EA with clearing will show the same stochastic behaviour
on peaks 0n,1n as well as on arbitrary peaks p2 = p1. As for TWOMAX, if only one peak x∗

has been found, the basin of attraction of the other peak is found once a search point with
Hamming distance at least n/2 to x∗ is generated. If the clearing radius is set to σ = n/2,
the (µ+1) EA with clearing will create a new niche, and from there it is easy to reach the
complementary optimum x∗. In fact, our analyses from Section 4.3.2 never exploited the
exact fitness values of TWOMAX; we only used information about basins of attraction, and
that it is easy to locate peaks via hill climbing. We conclude our findings in the following
corollary.

140 Runtime Analysis of Niching Mechanisms on TWOMAX

Corollary 4.21. The expected time for the (µ+1) EA with genotypic clearing, κ ∈ N, µ ≥
κn2/4, µ ≤ poly(n) and σ = n/2 finding both peaks on any nearest peak function JZ1 with
two complementary peaks p2 = p1 is O(µn logn).

If µ ≤ n/(4log3 n), κ = 1 and σ = n/2, and the (µ+1) EA starts with a population
containing only search points that have evolved from one optimum x∗ within the last µn/32
generations, the probability that both optima are found within time n(logn)/2 is n−Ω(logn).

4.3.3.2 Weighted Nearest Peak Functions

For JZ2 things are different: the larger the peak, the larger is its influence area of the search
space in comparison to smaller peaks and thus will have a larger basin of attraction. These
asymmetric variants with suboptimal peaks with smaller basin of attraction and peaks with
larger basin of attraction are similar to the analysis made in Section 4.3.3.1, as long as the
parameter σ is set as the maximum distance between the peaks necessary to form as many
niches as there are peaks in the solution, and the restriction 0 ≤ d ≤ n/2 of Lemma 4.14 is
met, the same analysis can be applied for this instance of the family of landscapes benchmark.

According to JZ2 in Definition 2.14, the bigger the height of the peak, the bigger its
influence on the search space in comparison to the smaller peaks. Let Bi denote the basin
of attraction of the highest peak pi, as long as 0 ≤ Bi ≤ n/2 from Lemma 4.14 it will be
possible to escape from the influence of pi and create a new winner from a new niche with
distance H(x, pi)≥ Bi. Jansen and Zarges show (Jansen and Zarges, 2016, Theorem 2) that
for two complementary peaks p2 = p1 the basin of attraction of p1 contains all search points
x with

n−H(x, p1)<
a2

a1 +a2
·n+ b2 −b1

a1 +a2
.

Using that the peaks are complementary, a symmetric statement holds for B2. Note that in
the special case of a1 = a2 and b1 = b2 the right-hand side simplifies to n/2.

Along with our previous upper bound on TWOMAX from Theorem 4.16 it is easy to
show the following result for a large class of weighted nearest peak functions JZ2.

Theorem 4.22. For all weighted nearest peak functions JZ2 with two complementary peaks
p2 = p1 meeting the following conditions on a1,a2 ∈ R+ and b1,b2 ∈ R+

0 and the clearing
radius σ

JZ2(p1)≤ JZ2(p2) ⇒ a1

a1 +a2
·n+ b1 −b2

a1 +a2
≤ σ ≤ n

2

JZ2(p2)≤ JZ2(p1) ⇒ a2

a1 +a2
·n+ b2 −b1

a1 +a2
≤ σ ≤ n

2

4.3 Clearing 141

the expected time for the (µ+1) EA with genotypic clearing, κ ∈ N, µ ≥ κ · σn−2σ+2
n−2σ+2 ,

µ ≤ poly(n) and clearing radius σ finding all global optima of JZ2 is O(µn logn).

Note that in case JZ2(p1) ̸= JZ2(p2) there is only one global optimum: the fitter of the
two peaks. Then the respective condition (where the left-hand side inequality is true) implies
that the basin of attraction of the less fit peak must be bounded by n/2. If this condition is
not satisfied, the function is deceptive as the majority of the search space leads towards a
non-optimal local optimum.

In case JZ2(p1) = JZ2(p2) both peaks are global optima and the conditions require that
both basins of attraction have size n/2:

σ =
a1

a1 +a2
·n+ b1 −b2

a1 +a2
=

a2

a1 +a2
·n+ b2 −b1

a1 +a2
=

n
2
.

Proof of Theorem 4.22. The proof is similar to the proof of Theorem 4.16. Assume without
loss of generality that JZ2(p1)≤ JZ2(p2). Using the same arguments as in said proof (with
straightforward changes to the fitness-level calculations), the (µ+1) EA finds one peak in
expected time O(µn logn). If this is p1, the (µ+1) EA still needs to find p2. By the same
arguments as in the proof of Theorem 4.16, the (µ+1) EA’s population will contain κ copies
of p1 in expected time O(µ logn). Applying Lemma 4.14 with d = σ yields that the expected
time to find a search point x with Hamming distance at least σ to p1 is O(µn logn). Since

a1
a1+a2

·n+ b1−b2
a1+a2

≤ σ , by Theorem 2 in Jansen and Zarges (2016), x is outside the basin of
attraction of p1. As it is also a winner in a new niche, this new niche will never be removed,
and p2 can be reached by hill climbing on a ONEMAX-like slope from x. By previous
arguments, p2 will then be found in expected time O(µn logn).

As a final remark, the analysis has shown that it is possible to escape of the basin of
attraction of the higher peak with B ≤ n/2, this does not mean that the analysis cannot
be applied to B ≥ n/2. We need to remember that the current investigation considers a
distance d ≤ n/2 because any distance larger than n/2 may lead to a exponential expected
time in n for reaching a distance of at least d from x∗. One way to avoid this limitation is
by dividing the distance d into several niches by setting the parameter σ ≤ n/2 properly.
In this analysis we just considered the population dynamics and its ability of escaping a
basin of attraction of at most n/2 or escaping from a niche with radius at most n/2 but it
may be possible to generalise the population dynamics for more than 2 niches with sizes
≤ n/2 by changing/adapting our definition of the potential function. For the time being we
rely on experiments in Section 4.3.4.3 to show that the population can jump from niches
with σ ≤ n/2 allowing to find both optimum in different variants of TWOMAX from the

142 Runtime Analysis of Niching Mechanisms on TWOMAX

classes of example functions and leave the generalisation of the population dynamics for
future theoretical work.

4.3.4 Experimental Analysis

The experimental approach is focused on the analysis of the (µ+1) EA with clearing (Al-
gorithm 26) and is divided in 3 experimental frameworks. Section 4.3.4.1 is focused on
an empirical analysis for the general behaviour of the algorithm, the relationship between
the parameters σ , κ , and µ , and how these parameters can be set. The main objective is to
compare our asymptotic theoretical results with empirical data for concrete parameter values.

For the second empirical analysis (Section 4.3.4.2), we focus our attention on the popula-
tion size for small (n = 30) and large (n = 100) problem sizes. The objective is to observe
whether smaller population sizes than µ = κn2/4 are capable of optimising TWOMAX and
observe if the quadratic dependence on n is an artefact of our approach. Also we compare
two different forms of initialising the population: the standard uniform random initialisation
against a biased initialisation where the whole population is initialised with copies of one
peak (0n for TWOMAX). Biased initialisation is used in order to observe how clearing is able
to escape from a local optimum and how fast it is compared to a random initialisation.

Finally, for the third analysis (Section 4.3.4.3), we show that it is possible to escape from
different basin of attractions for weighted peak functions with two peaks in cases where the
two peaks are not complementary, but have different Hamming distances.

4.3.4.1 General Behaviour

We are interested in observing if the (µ+1) EA with clearing is able to find both optima on
TWOMAX, so we consider exponentially increasing population sizes µ ∈ {2,4,8, . . . ,1024}
for just one size of n = 30 and perform 100 runs with different settings of parameters σ and κ ,
so for this experimental framework, we have defined σ ∈ {1,2,

√
n,n/2}, κ ∈ {1,

√
µ,µ/2,µ}

with phenotypic distance since it has been proven that this distance metric works for both
cases, small and large niches (when the genotypic distance is used it will be explicitly
mentioned).

Since we are interested in proving how good/bad clearing is, we define the following
outcomes and stopping criteria for each run. Success, the run is stopped if the population
contains both 0n and 1n in the population. Failure, once the run has reached 1 million
generations and not all optima are not contained in the population. All the results are shown
in Table 4.2.

4.3 Clearing 143

Table 4.2: Success rate measured among 100 runs for the (µ+1) EA with phenotypic clearing
on TWOMAX for n = 30 for the different parameters clearing radius σ , niche capacity κ and
population size µ .

σ = 1

κ
µ

2 4 8 16 32 64 128 256 512 1024

1 0.0 0.05 0.96 1.0 1.0 1.0 1.0 1.0 1.0 1.0√
µ 0.0 0.0 0.0 0.38 0.89 1.0 1.0 1.0 1.0 1.0

µ/2 0.0 0.0 0.0 0.0 0.04 0.20 0.42 0.77 0.97 0.98
µ 0.0 0.0 0.0 0.0 0.01 0.13 0.24 0.55 0.75 0.94

σ = 2

κ
µ

2 4 8 16 32 64 128 256 512 1024

1 0.02 0.88 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0√
µ 0.01 0.03 0.55 0.99 1.0 1.0 1.0 1.0 1.0 1.0

µ/2 0.0 0.0 0.0 0.0 0.07 0.18 0.48 0.67 0.93 0.99
µ 0.0 0.0 0.0 0.0 0.00 0.04 0.25 0.60 0.80 0.97

σ =
√

n

κ
µ

2 4 8 16 32 64 128 256 512 1024

1 0.33 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0√
µ 0.35 0.67 0.97 1.0 1.0 1.0 1.0 1.0 1.0 1.0

µ/2 0.40 0.78 0.95 1.0 1.0 1.0 1.0 1.0 1.0 1.0
µ 0.0 0.0 0.0 0.0 0.0 0.07 0.28 0.50 0.80 0.93

σ = n/2

κ
µ

2 4 8 16 32 64 128 256 512 1024

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0√
µ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

µ/2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
µ 0.0 0.0 0.0 0.0 0.02 0.12 0.29 0.60 0.81 0.98

144 Runtime Analysis of Niching Mechanisms on TWOMAX

With sufficiently many individuals µ = (n/2+1) ·κ , and for small values of σ ∈ {1,2}
and κ = 1, every individual can create its own niche, and since only one individual is allowed
to be the winner, the individuals are spread in the search space reaching both optima with
1.0 success rate. In this scenario, since we are allowing sufficiently many individuals in the
population, individuals can be initialised in any of both branches, climbing down the branch
reaching the opposite branch and reaching the other extreme optima as shown in Figure 4.3
(in this case we only show the behaviour of the population with µ ∈ {8,16,32}, since µ ≥ 8
have the same behaviour).

|x|1n/2
0

n

n/2 n

(a) µ = 8

|x|1n/2
0

n

n/2 n

(b) µ = 16

|x|1n/2
0

n

n/2 n

(c) µ = 32

Figure 4.3: Snapshot of a population at the time both optima were reached, showing the
spread of individuals in branches of TWOMAX for n = 30, σ = 1 and κ = 1. Where the red
(extreme) points represent optimal individuals, blue points represent niche winners. The rows
on the grid represents the fitness value of an individual and its position on TWOMAX and the
vertical lines represent the partitioned search space (niches) created by the parameter σ .

The previous experiment set-up confirms what is mentioned in Section 4.3.1.1: with
a small clearing radius, niche capacity and large enough population size, the algorithm is
able to exhaustively explore the search space without losing the progress reached so far.
The population size provides enough pressure to optimise TWOMAX. In this scenario the
small differences between individuals allow the algorithm to discriminate between the two
branches or optima, this enforces having individuals on both branches or occupy all niches
supporting the statement of Theorem 4.10. Individuals with the same phenotype may have a
large Hamming distance, creating winners with the same fitness (as proved by Corollary 4.11
in Section 4.3.1.2).

It is mentioned in Pétrowski (1996) that while the value of the niche capacity κ > µ/2
approaches the size of the population, the clearing effect vanishes and the search becomes a
standard EA. This effect is verified in the present experimental approach. For a large κ and
σ ∈ {1,2}, one branch takes over, removing the individuals on the other branch reducing the
performance of the algorithm. In order to avoid this, it is necessary to define µ ≥ (n+1) ·κ
to occupy all the winners slots and create new winners in other niches (Theorem 4.10) or

4.3 Clearing 145

increase the clearing radius to
√

n ≤ σ ≤ n/2 in order to let more individuals participate in
the niche. A reduced niche capacity 1 ≤ κ ≤√µ seems to have a better effect exploring both
branches.

Now that theory and practice have shown that a small clearing radius, niche capacity
and large enough population size are able to optimise TWOMAX, and in order to avoid
the takeover of a certain branch due to a large niche capacity it is necessary to either have:
(1) a large enough population, or (2) to increase the clearing radius. For (1) we already
have defined and proved that one way to overcome this scenario is to define µ according to
Theorem 4.10.

In the case of large niches (2), with σ ∈ {
√

n,n/2} it is possible to divide the search space
in fewer niches. Here the individuals have the opportunity to move, change inside the niche,
reach other niches allowing the movement between branches, reaching the opposite optimum.
Since it is possible to reach other niches, defining the niche capacity κ =

√
µ will allow to

have more winners in each niche but will still allow to move inside the niche.
For example, with σ =

√
n, κ =

√
µ and µ ≥ 8, the algorithm is able to reach both optima

with at least 0.97 success rate. In Figure 4.4 the effect of κ can be seen with sufficiently
many individuals. With a restrictive niche capacity (Figure 4.4a), the population is scattered
across the search space but when the niche capacity is increased, the spread is reduced as we
allow more individuals to be part of each niche (Figure 4.4b and 4.4c). This behaviour can
be generalised and is more evident for larger values of µ .

|x|1n/2
0

n

n/2 n

(a) κ = 1

|x|1n/2
0

n

n/2 n

(b) κ =
√

µ

|x|1n/2
0

n

n/2 n

(c) κ = µ/2

Figure 4.4: Snapshot of a population at the time both optima were reached, showing the
spread of individuals in branches of TWOMAX for n = 30, σ =

√
n and µ = 8. Where the red

(extreme) points represent optimal individuals, blue points represent niche winners, and the
green points represent cleared individuals. The rows on the grid represents the fitness value
of an individual and its position on TWOMAX and the columns represent the partitioned
search space (niches) created by the parameter σ .

The theoretical results described in Section 4.3.2 are confirmed by the previous exper-
imental results; a large enough population is necessary in order to fill the positions of the

146 Runtime Analysis of Niching Mechanisms on TWOMAX

winner x∗ with κ winners, then force those κ winners with the rest of the population to be
subject to a random walk, where it is just necessary for at least one individual to reach the
next niche as mentioned in Section 4.3.2.1. In the case of TWOMAX, it is after the repetition
of moving, climbing down through different niches for a certain period of time when some
individual is able to reach both optima as mentioned in Theorem 4.16 and confirmed by the
experiments.

Now we have defined the conditions where the algorithm is able to optimise TWO-
MAX, we can set-up the parameters in a more informed/smart way. With µ ≥ 2 it is
possible to optimise TWOMAX if σ and κ are chosen appropriately. For example, with
σ = n/2 (as the minimum distance required to distinguish between one branch and the other),
κ ∈ {1,

√
µ,µ/2} and µ ≥ 2, the algorithm is able to optimise TWOMAX because there is

always an individual moving around that is able to reach a new niche (Figure 4.5), and finally
achieve 1.0 success rate.

|x|1n/2
0

n

n/2 n

(a) µ = 8

|x|1n/2
0

n

n/2 n

(b) µ = 16

|x|1n/2
0

n

n/2 n

(c) µ = 32

Figure 4.5: Snapshot of a population at the time both optima were reached, showing the
spread of individuals in branches of TWOMAX for n = 30, σ = n/2 and κ = 1. Where the
red (extreme) points represent optimal individuals, blue points represent niche winners, and
the green points represent cleared individuals. The rows on the grid represents the fitness
value of an individual and its position on TWOMAX and the columns represent the partitioned
search space (niches) created by the parameter σ .

4.3.4.2 Population Size

In this section we address the limitation of Theorem 4.16 related to the steep requirement of
the population size: µ ≥ κn2/4. As observed from Section 4.3.4.1, experiments suggest that
a smaller population size is able to optimise TWOMAX. So for the analysis of the population
size we have considered the population size 2 ≤ µ ≤ κn2/4 in order to observe what is
the minimum population size below the threshold κn2/4 able to optimise TWOMAX. With
σ = n/2, and κ = 1 for n ∈ {30,100} with phenotypic clearing, we report the average of
generations of 100 runs. The run is stopped if both optima have been found or the algorithm

4.3 Clearing 147

has reached a maximum of 1 million generations, this is enough time for the algorithms to
converge on one or both optima.

Figure 4.6a shows the average number of generations among 100 runs with n = 30. Even
for µ = 2 the average runtime is below the 1 million threshold, hence some of the runs were
able to find both optima on TWOMAX in fewer than 1 million generations. The reason for
this high average runtime is because once both individuals have reached one optimum, it will
be one winner, and one loser subjected to a random walk until it gets replaced by an offspring
of the winner. This process will continue until the loser reaches a Hamming distance of
n/2 from the optimum to escape of the basin of attraction. Once this is achieved, it is just
necessary for the individual to climb the other branch.

2 4 8 16 32 64 128 256

0

0.2

0.4

0.6

0.8

1
·105

µ (logscale)

t

(a) n = 30

2 4 8 16 32 64 12
8

25
6

51
2
10

24
20

48
0

0.2

0.4

0.6

0.8

1

·106

µ (logscale)

t

(b) n = 100

Figure 4.6: The average number of generations measured among 100 runs at the time both
optima were found on TWOMAX or t = 1 million generations have been reached for n = 30
and n = 100, σ = n/2, κ = 1 and 2 ≤ µ ≤ κn2/4 for the populations with randomised and
biased initialisation (blue and red line, respectively).

Most importantly, all population sizes in the interval 2 ≤ µ ≤ κn2/4 are able to optimise
TWOMAX; this experimental setting shows that with a smaller population size for a relatively
small n = 30 the algorithm is able to optimise TWOMAX. Another interesting characteristic
of the algorithm is its capacity for escaping from a local optimum.

For n = 100, in Figure 4.6b it is more evident that with a small population size, it is not
possible to escape from the basin of attraction of a peak, and the takeover happens before
the population has the chance to evolve a distance of at least n/2 confirming the theoretical
arguments described in Section 4.3.2.3. Once the population size is increased, the population
is able to escape of the basin of attraction. The most interesting result shown in Figure 4.6

148 Runtime Analysis of Niching Mechanisms on TWOMAX

is that even with a population size µ ≤ κn2/4 the algorithm is able to find both optima
on TWOMAX (even if runs require more than 1 million generations), indicating that the
quadratic dependence on n in κn2/4, is an artefact of our approach.

Finally, for larger µ sizes and n = 100 it can be seen that biased initialisation is noticeably
faster than random initialisation, and as the population grows the difference between the
means grows. One reason could be simply because one peak has already been found, and the
algorithm only needs to find the remaining peak.

4.3.4.3 Escaping from Different Basins of Attraction

Finally, in this section we show that the runtime analysis used in Section 4.3.2.1, and used
to prove the theoretical analysis on the general classes of example landscapes functions in
Section 4.3.3 can be used for the Jansen-Zarges weighted peak functions (see Definition 2.14)
with two peaks of different Hamming distances. For simplicity we restrict our attention to
equal slopes and heights: a1 = a2 = 1 and b1 = b2 = 0.

We can simplify this class of JZ2 functions by using that the (µ+1) EA is unbiased as
defined by Lehre and Witt (2012): simply speaking, the algorithm treats all bit values and
all bit positions in the same way. Hence we can assume without loss of generality that
p1 = 0n. We can further imagine shuffling all bits such that p2 = 0n−H(p1,p2)1H(p1,p2), which
again does not change the stochastic behaviour of the (µ+1) EA. Then all JZ2 functions
with a1 = a2 = 1 and b1 = b2 = 0 are covered by choosing p1 = 0n and p2 from the set
{0n,0n−11,0n−212, . . . ,1n}. As can be seen the peaks p1 and p2 can be as close as 0n and
0n−11, or as far as 0n and 1n.

It contrast to the simple setting of TWOMAX where σ = n/2 makes most sense, in this
more general setting it is necessary to define the clearing radius σ according to the Hamming
distance between peaks. In particular, the following conditions should be satisfied.

1. σ ≤ H(p1, p2) as otherwise one peak is contained in the clearing radius around the
other peak,

2. σ ≤ n/2 as otherwise a niche can contain the majority of search points in the search
space, leading to potentially exponential times to escape from the basin of attraction of
a local optimum if σ ≥ (1+Ω(1)) ·n/2, and

3. σ ≥ H(p1, p2)/2 as this is the minimum distance that distinguishes the two peaks.

In the following we study two different choices of σ : the maximum value that satisfied
the above constraints, σ = min{H(p1, p2),n/2}, and the minimum feasible value, σ =

H(p1, p2)/2. These two choices allow us to investigate the effect of choosing large or small

4.3 Clearing 149

niches in this setting. We use genotypic clearing with κ = 1 and we make use of the results
from Section 4.3.4.2 to define µ = 32 as a population size able to optimise TWOMAX for
large n = 100. We report the average number of generations of 100 runs, with the same
stopping criterion: both optima have been found or the algorithm has reached a maximum of
1 million generations.

For the case of large clearing radius, σ = min{H(p1, p2),n/2}, Figure 4.7a shows that it
is possible to find both optima efficiently across the whole range of H(p1, p2). For random
initialisation there are hardly any performance differences, except for a drop in the runtime
when the two peaks get very close. For the case of biased populations we see differences by
a small constant factor: the closer the peaks, the more difficult it is to escape (or find the new
niche) since it requires to flip a specific number of bits to find the other optima. But as the
two peaks move away both initialisation methods seem to behave the same indicating that
the arguments used in Sections 4.3.2.1 and 4.3.3 reflect correctly how the algorithm behaves.

Figure 4.7b shows that with the smallest feasible clearing radius σ = H(p1, p2)/2 the
algorithm is still able to find both optima for all H(p1, p2), but the average runtime for biased
initialisation is much higher compared to σ = min{H(p1, p2),n/2}. From observing the
actual population dynamics during a run, it seems that the reason for this high number of
generations is because several niches are created around both peaks, i. e., once a peak has
been found (and a niche is formed around the peak), the population spreads out by forming
many niches between p1 and p2. In the case of biased initialisation it is necessary to jump
between specific niches to reach the opposite peak, or make several jumps between different
niches in order to escape from its basin of attraction, which leads to this high number of
generations.

4.3.5 Conclusions

The presented theoretical and empirical investigation has shown that clearing possesses
desirable and powerful characteristics. We have used rigorous theoretical analysis related
to its ability to explore the landscape in two cases, small and large niches, and provide an
insight into the behaviour of this diversity-preserving mechanism.

In the case of small niches, we have proved that clearing can exhaustively explore the
landscape when the proper distance and parameters like clearing radius, niche capacity and
population size µ are set. Also, we have proved that clearing is powerful enough to optimise
all functions of unitation. In the case of large niches, clearing has been proved to be as strong
as other niching mechanisms like deterministic crowding and fitness sharing since it is able
to find both optima of the test function TWOMAX.

150 Runtime Analysis of Niching Mechanisms on TWOMAX

0 20 40 60 80 100

0

0.5

1

·105

H(p1, p2)

(a) σ = min{H(p1, p2),n/2} (large niches)

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1
·106

H(p1, p2)

(b) σ = H(p1, p2)/2 (small niches)

Figure 4.7: The average number of generations measured among 100 runs at the time both
peaks p1 = 0n and p2 ∈ {0n,0n−11,0n−212, . . . ,1n} were found with a1 = a2 = 1 and b1 =
b2 = 0 on the fitness landscape defined by JZ2 or have reached t = 1 million generations for
n = 100, with genotypic clearing with σ =min{H(p1, p2),n/2} and σ =H(p1, p2)/2, κ = 1
and µ = 32 for populations with randomised (blue line) and biased (red line) initialisation.

The analysis made has shown that our results can be easily extended to more general
classes of examples landscapes. The analysis done for TWOMAX can easily be applied to
different classes of bimodal problems using arguments based on how to escape the basin of
attraction of one local optimum. We demonstrated this for functions with two complementary
peaks and asymmetric variants of TWOMAX, consisting of a suboptimal peak with a smaller
basin of attraction and an optimal peak with a larger basin of attraction.

Our experimental results suggest that the same efficient performance also applies to
bimodal functions where the two peaks have varying Hamming distances. Here clearing
is able to escape from local optima with different basins of attractions by moving/jumping
between niches formed by the clearing radius. Defining σ as the smallest possible value that
allows to distinguish between peaks creates several small niches, forcing the individuals in the
population to make several jumps between niches until an individual can reach the basin of
attraction of the other peak. This means that the algorithm requires more generations to find
both peaks. But if σ is defined as the maximum feasible value, σ = min{H(p1, p2),n/2},
the (µ+1) EA is faster and remarkably robust with respect to the Hamming distances between
the two peaks. Nevertheless, both approaches allow the population to escape from different
basin of attractions.

4.3 Clearing 151

It remains an open problem to theoretically analyse the population dynamics of clearing
with more than 2 niches and to prove rigorously that clearing is effective across a much
broader range of problems, including problems with more than 2 peaks. This involves obtain-
ing more detailed insights into the dynamics of the population, including the distribution and
evolution of the losers across multiple niches.

Chapter 5

Empirical Analysis of Diversity
Mechanisms for Multimodal
Optimisation

This chapter is based on the following publication:

1. Covantes Osuna, E. and Sudholt, D. (2018a). Empirical Analysis of Diversity-
Preserving Mechanisms on Example Landscapes for Multimodal Optimisation. In
Parallel Problem Solving from Nature – PPSN XV, pages 207–219. Springer Interna-
tional Publishing.

As mentioned in the previous chapter, finding global optima or high-quality local optima
can become a challenge for any optimisation algorithm in multimodal problems (Sareni and
Krahenbuhl, 1998; Singh and Deb, 2006). So the use of a diverse population on an EA can be
useful to explore several hills in the fitness landscape simultaneously and offer several good
solutions to the user, a feature desirable for decision making, in multi-objective optimisation
and in dynamic optimisation. In this chapter we turn to an empirical analysis.

Previous empirical analyses have considered real-parameter multimodal optimisation
problems (Das et al., 2011) like the 4 one-dimensional, five-peaked, sinusoidal, multimodal
functions called M1−4 defined in (Mahfoud, 1995, Section 5.3). The single variable x is
restricted to the real-value range [0,1] encoded using binary representation and decoded by
interpreting the bitstring as unsigned binary integer and dividing it by 2n − 1, where n is
the length of the bit string. Other studies used Gray codes (Sareni and Krahenbuhl, 1998).
The drawback of real-valued encodings is that it is not obvious how phenotypic features
such as local optima appear in genotype space; for example what Hamming distance local
optima have and how likely it is that mutation jumps from one basin of attraction to another.

154 Empirical Analysis of Diversity Mechanisms for Multimodal Optimisation

This makes the analysis of the population dynamics a very challenging task for theoretical
analysis.

Previous theoretical studies on the TWOMAX function led to insights into the capabilities
and weaknesses of various diversity mechanisms, however a question left open is how
diversity mechanisms deal with many local optima. The main goal in this chapter is to
provide insights into the working principles of these mechanisms by testing their ability to
find and maintain many local optima in the population as well as their ability to escape from
local optima with different basins of attraction. We use previous theoretical results to inform
the choice of algorithm parameters and to discuss in how far our empirical results agree or
disagree with theoretical results obtained for TWOMAX.

5.1 Jansen-Zarges Multimodal Function Classes

In the same way we use the Jansen-Zarges multimodal function classes in Section 4.3.3 for
the case of runtime analysis of clearing, we use these function classes for our empirical
analysis. Recall that for these functions it is necessary to define the following parameters:
number of peaks (each i-th peak is defined by its position in the search space pi ∈ {0,1}n), its
offset (bi ∈ R+

0) and its slope (ai ∈ R+). The general idea is that the fitness of an individual
depends on the peaks in its vicinity. The function JZ1 called nearest peak function, has
the fitness of a search point x determined by the closest peak, and the function JZ2 called
weighted nearest peak uses the height of the peaks to set the fitness of an individuals, the
higher the peak, higher its influence on the search space in comparison to smaller peaks.

Note that, in case of equal slopes a1 = · · · = ak and equal heights b1 = · · · = bk, both
functions JZ1 and JZ2 using parameters a1, . . . ,ak,b1, . . . ,bk are identical as for JZ2 the
maximum over all terms ai ·G(x, pi)+ bi for all 1 ≤ i ≤ k is attained for the closest peak
i = cp(x).

Theorem 5.1. For JZ1 and JZ2 using the same parameters a1 = · · ·= ak and b1 = · · ·= bk

we have JZ1 = JZ2.

In the case of two peaks p1 and p2, if these peaks are complementary, that is, p2 = p1,
then JZ1 and JZ2 generalise the TWOMAX function, with TWOMAX being the special case
of p1 = 0n, p2 = 1n,a1 = a2 = 1 and b1 = b2 = 0 (Jansen and Zarges, 2016). Theoretical and
empirical results for the (µ+1) EA with clearing on two complementary peaks are given in
Section 4.3.

We consider peaks being placed independently and uniformly at random, as this strategy
is simple, fair, and it scales towards an arbitrary number of peaks. The slopes are chosen

5.1 Jansen-Zarges Multimodal Function Classes 155

equal to 1 for all peaks for the sake of simplicity. Even though the peaks are placed randomly,
if the peaks have moderately similar heights, the resulting fitness landscape has a clear
structure: with high probability all peaks are local optima, and all search points within a
Hamming ball of radius Ω(n) belong to a peak’s basin of attraction. This holds for both
functions JZ1 and JZ2 as they have equal fitness values within the mentioned Hamming balls
(but may have different values on other search points).

Theorem 5.2. Assume k peaks p1, . . . , pk chosen independently and uniformly at random
from {0,1}n. If a1 = · · ·= ak = 1 and max1≤i≤k bi−min1≤i≤k bi ≤ cn for a constant c < 1/2
then with probability 1− k2e−Ω(n) for radius r := (1/2− c)/3 ·n we have:

1. all k peaks p1, . . . , pk are local optima in both JZ1 and JZ2,

2. for all 1 ≤ i ≤ k, all search points in Bi := {x | H(x, pi) ≤ r}, a Hamming ball of
radius r around pi, belong to the basin of attraction of pi with respect to both JZ1 and
JZ2, that is, there is a Hamming path from x to pi on which the values of JZ1 and JZ2

are strictly increasing, and

3. for all search points x ∈
⋃k

i=1 Bi, JZ1(x) = JZ2(x).

Proof. Assume without loss of generality min1≤i≤k bi = 0 (as adding a fixed value does not
affect the problem structure), hence bi ≤ cn for all 1 ≤ i ≤ k.

By Chernoff bounds (see Lemma A.15), the probability that two different peaks will have
Hamming distance at most n/2− r is e−Ω(n). By the union bound, the probability that this
holds for any pair of peaks is at most k2 · e−Ω(n). We assume in the following that every two
peaks have a Hamming distance larger than n/2− r.

Now consider a search point x∈Bi, that is, H(x, pi)≤ r. Since r ≤ n/6 we have n/2≥ 3r,
and thus for all j ̸= i we have H

(
x, p j

)
≥ H

(
pi, p j

)
−H(x, pi)> n/2− r− r ≥ r ≥ H(x, pi).

So pi is a unique closest peak, cp(x) = i. By definition of JZ1, the second statement follows
for JZ1 as on every shortest Hamming path from x to pi, subsequently decreasing the
Hamming distance to pi increases the fitness by ai = 1. Since r ≥ 1 if n is large enough, pi is
a local optimum for JZ1.

It only remains to show the third statement as then the first two statements also apply
to JZ2. To prove that JZ2(x) = JZ1(x) for x ∈ Bi, we need to show that the maximum over
terms a j ·G

(
x, p j

)
+b j = n−H

(
x, p j

)
+b j from the definition of JZ2 is attained for j = i. We

have n−H(x, pi)+bi ≥ n−r as H(x, pi)≤ r and bi ≥ 0. For j ̸= i we have n−H
(
x, p j

)
+b j <

n/2+ 2r + cn as b j ≤ cn and H
(
x, p j

)
≥ H

(
pi, p j

)
−H(x, pi) > n/2− r − r = n/2− 2r.

Noting that n/2+2r+cn= n/2+3r+cn−r = n/2+(n/2−cn)+cn−r = n−r establishes

156 Empirical Analysis of Diversity Mechanisms for Multimodal Optimisation

n−H
(
x, p j

)
+ b j ≤ n−H(x, pi)+ bi and hence JZ2(x) = max1≤ j≤k(n−H

(
x, p j

)
+ b j) =

n−H(x, pi)+bi = JZ1(x).

5.2 Experimental Analysis

For the experimental analysis we test each of the algorithms from Table 4.1 on Jansen-Zarges
multimodal function classes. We consider a problem size n = 100, genotypic distance for
all algorithms that require a dissimilarity measure and stop runs after 10µn lnn generations
as done previously in Sections 4.1.1 and 4.2.3. This time limit is motivated by Lemma 4.1
stating that, loosely speaking, 2eµn lnn ≈ 5.44µn lnn generations are sufficient to perform
hill climbing on two peaks with high probability (Lemma 4.1).

The experimental framework is divided in 3 experimental set-ups. In Section 5.2.1
we assess the ability of each mechanism to find many peaks with equal height, and in
Section 5.2.2, we assess the ability of each mechanism to maintain the population diversity
when considering peaks with different heights to yield global and local optima. For both
sections, the number of peaks was increased exponentially as k = {2,4,8, . . . ,64}. For each k,
we generated 100 different instances choosing k peaks uniformly at random from {0,1}n. In
each experiment, all algorithms are tested on the same set of 100 instances to ensure a fair
comparison. The challenge for each mechanism is to find and maintain as many peaks as
possible before reaching the 10µn lnn generations; we record the fraction of the peaks found.
The population size is chosen large enough (µ = 100) to be able to accommodate all peaks.

The analysis in Section 5.2.3 is inspired by Section 4.3.4.3 and focusses on landscapes
with two peaks. In this section we take a closer look at the ability of the diversity mechanisms
to deal with different basins of attraction, including a wider range of two-peaked landscapes
than the ones likely to be generated by placing peaks uniformly at random. The goal is
to observe which mechanisms are able to escape from local optima by tunnelling through
the fitness valley that separates two peaks. We choose µ = 32 as in Section 4.3.4.3 and
also consider the same two initialisations: the standard uniform random initialisation and
biased initialisation where the whole population is initialised with copies of one peak (0n for
TWOMAX). Biased initialisation is used in order to observe how the mechanisms are able to
escape from a local optimum and how fast it is compared to a random initialisation.

Based on the theoretical analysis in Section 4.2.1, we define the window size w= 2.5µ lnn
for RTS. We know from Friedrich et al. (2009) and Oliveto et al. (2014) that both fitness
sharing approaches with phenotypic sharing and σ = n/2 are always efficient on TWOMAX

but no theory for genotypic sharing is available. Preliminary experiments for genotypic
sharing and σ = n/2 on TWOMAX yielded poor results; however with σ = n (which implies

5.2 Experimental Analysis 157

that all individuals always share fitness) both peaks were found in most runs. This makes
sense on other landscapes as well as if σ is set smaller than the radius or basin of attraction
around a local optimum, then fitness sharing is unable to push individuals away from said
local optimum. Thus it seems best to err on the side of choosing σ too large rather than too
small.

For clearing the situation is different. If σ is chosen too large, such that there are several
optima within a distance of σ , then global optima may be cleared, making it impossible to
maintain many optima in the population. So for clearing it seems best to err on the side of
choosing σ too small rather than too large. We choose σ = n/3 for Sections 5.2.1 and 5.2.2 as
with high probability every two different peaks will have a Hamming distance larger than n/3
(cf. Theorem 5.2). For Section 5.2.3, we use the recommendation σ = min{H(p1, p2),n/2}
from Section 4.3.4.3.

5.2.1 Finding Peaks of Equal Height

We consider the JZ1 function with equal slopes a1 = · · ·= ak = 1 and offsets b1 = · · ·= bk = 0.
We know from Theorem 5.1 that with equal parameters JZ1 = JZ2. In Figure 5.1, we show
the fraction of peaks obtained in each of the 100 instances and its variance for each choice
of k.

As can be seen, the the plain (µ+1) EA, no genotype duplicates and no fitness duplicates
perform poorly; these have already been proven to perform poorly on TWOMAX (Friedrich
et al., 2009). Probabilistic crowding as predicted in Section 4.1 is not able to find even one
peak. Fitness sharing performs best for an intermediate number of peaks, k ∈ {4,8,16}, but
still far worse than the best mechanisms. This is in contrast to theoretical results (Friedrich
et al., 2009; Oliveto et al., 2014) where fitness sharing in both variants was shown to be
very effective on TWOMAX. These differences may be down to the differences between
TWOMAX and JZ1 with random peaks and/or they may be caused by the differences between
phenotypic and genotypic sharing. Interestingly, population-based fitness sharing performs
far worse than the conventional fitness sharing. This is surprising as population-based
fitness sharing uses a significant amount of computation time to search for the best possible
population (in terms of shared fitness) it can create out of all parents and offspring, hence
we would have expected it to perform better than fitness sharing. A possible explanation for
the poor performance of fitness sharing is that even when the population is able to locate
basins of attraction of several peaks, we found several individuals scattered around each peak,
apparently repelling each other and preventing each other from reaching the peak.

Finally, deterministic crowding, RTS and clearing perform surprisingly well: they find all
optima most of the time for k ≤ 16, and find most optima for k = 32. Only for a large number

158 Empirical Analysis of Diversity Mechanisms for Multimodal Optimisation

PL
NGD

NFD PC DC
RTS

PFS FS CL

0

0.2

0.4

0.6

0.8

1

(a) k = 2

PL
NGD

NFD PC DC
RTS

PFS FS CL

0

0.2

0.4

0.6

0.8

1

(b) k = 4

PL
NGD

NFD PC DC
RTS

PFS FS CL

0

0.2

0.4

0.6

0.8

1

(c) k = 8

PL
NGD

NFD PC DC
RTS

PFS FS CL

0

0.2

0.4

0.6

0.8

1

(d) k = 16

PL
NGD

NFD PC DC
RTS

PFS FS CL

0

0.2

0.4

0.6

0.8

1

(e) k = 32

PL
NGD

NFD PC DC
RTS

PFS FS CL

0

0.2

0.4

0.6

0.8

1

(f) k = 64

Figure 5.1: Fraction of peaks found on JZ1 with peaks of equal slopes a1 = · · · = ak = 1
and offsets b1 = · · ·= bk = 0 for all (µ+1) EA variants from Table 4.1 among 100 instances
generated uniformly at random for each number of peaks k = {2,4,8, . . . ,64}, µ = 100 and
n = 100, stopping runs after 10µn lnn generations. Squares indicate median values.

5.2 Experimental Analysis 159

of k = 64 peaks, performance deteriorated to around 80% of peaks found. This deterioration
is not surprising as the population size was fixed to µ = 100. RTS with w = 2.5µ lnn seems
to behave similarly to deterministic crowding as predicted in Section 4.2.1.

5.2.2 Finding Peaks with Different Height

For this case we make use of the JZ2 function with a1 = · · ·= ak = 1 and b1 · · ·bk chosen
independently and uniformly at random from [0,1, . . . ,n/3]. This range is motivated by
Theorem 5.2, as here two peaks differ in their heights by at most n/3, choosing the leading
constant c := 1/3 as the simplest constant smaller than 1/2. Theorem 5.2 then yields that all
search points within Hamming balls of radius n/18 centred at a peak are located in the peak’s
basin of attraction. Figure 5.2 (blue/left box plots) shows the fraction of peaks obtained
in each of the 100 instances and its variance for each k = {2,4,8, . . . ,64} peaks. To gauge
the quality of the peaks found, we also plot the normalised best fitness found (red/right box
plots), formally f ∗i /opti where f ∗i is the fitness of the best peak found on instance i and opti
is the optimal value of instance i.

In this setting the plain (µ+1) EA, no genotype duplicates and no fitness duplicates
manage to find the global optimum in up to 80% of instances. This suggests that on this
function class it is fairly easy to find a global optimum. However, they rarely find more than
one peak, hence they seem to suffer from premature convergence. Probabilistic crowding
continues to show the worst performance of all mechanisms. Population-based fitness sharing
and fitness sharing find fewer peaks on JZ2 compared to JZ1. This makes sense since the
former setting is more difficult than the latter; both mechanisms seem to suffer from the
issues mentioned in Section 5.2.1.

Finally, deterministic crowding, RTS and clearing also find fewer peaks due to the
difficulty of this setting, but still show the best performance of all mechanisms analysed in
this paper and they manage to find the global optimum in all instances. For k ≤ 8 is not
possible to always find all peaks any more, but they still manage to find at least 50% of the
peaks. Then, for k ≥ 16 the performance deteriorates in such a way that it is not possible to
reach any more 50% of the peaks but still the mechanisms manage to find some of the peaks.
The general cause of the drop in the performance seems to be that all mechanisms struggle to
escape from the optimum found, also that low-quality optimums are being dropped when
better peaks have been found.

160 Empirical Analysis of Diversity Mechanisms for Multimodal Optimisation

PL
NGD

NFD PC DC
RTS

PFS FS CL

0

0.2

0.4

0.6

0.8

1

(a) k = 2

PL
NGD

NFD PC DC
RTS

PFS FS CL

0

0.2

0.4

0.6

0.8

1

(b) k = 4

PL
NGD

NFD PC DC
RTS

PFS FS CL

0

0.2

0.4

0.6

0.8

1

(c) k = 8

PL
NGD

NFD PC DC
RTS

PFS FS CL

0

0.2

0.4

0.6

0.8

1

(d) k = 16

PL
NGD

NFD PC DC
RTS

PFS FS CL

0

0.2

0.4

0.6

0.8

1

(e) k = 32

PL
NGD

NFD PC DC
RTS

PFS FS CL

0

0.2

0.4

0.6

0.8

1

(f) k = 64

Figure 5.2: Experimental results for all (µ+1) EA variants from Table 4.1 among 100
instances generated uniformly at random for each number of peaks k = {2,4,8, . . . ,64},
µ = 100 and n = 100, stopping runs after 10µn lnn generations. Blue/left: fraction of
peaks found on JZ2 with peaks with different heights, b1 . . .bk chosen uniformly at random
from {0,1, . . . ,n/3}. Red/right: normalised best fitness found on JZ2 experiments. Squares
indicate median values.

5.2 Experimental Analysis 161

5.2.3 Escaping from Local Optima

Theorem 5.2 and its proof suggest that when peaks are chosen uniformly at random, they
will have a Hamming distance close to n/2. We would like to investigate how the diversity
mechanisms behave if peaks have different Hamming distances. Following Section 4.3.4.3,
we focus on two peaks and vary their Hamming distance between 1 and n by choosing p1 = 0n

and p2 ∈ {0n−11,0n−212, . . . ,1n}, along with a1 = a2 = 1 and b1 = b2 = 0. As argued in
Section 4.3.4.3, this captures the performance across all possible JZ1 functions with two
complementary peaks and the given slopes and offsets. In particular, it includes many
functions that only have an exponentially small probability to be generated when choosing
peaks independently and uniformly at random with biased initialisation, the algorithms have
to find the other optimum by tunnelling through the fitness valley that separates these two
peaks. This is a much harder task compared to hill climbing on various hills, where the aim
is for the population to maintain a good spread over the search space.

We use the set-up and empirical data for clearing from Section 4.3.4.3 and report the
average number of generations of 100 runs, with two stopping criteria: both optima have been
found or t = 10µn lnn generations were reached. We also apply the two-sided Mann-Whitney
U tests with a significance level of 0.05 on the data obtained from the 100 generations for
each H(p1, p2).

From Figure 5.3a all mechanisms are effective when the Hamming distance is so small
that the peaks are very close together such that the second peak can be found by a mutation of
the first peak found (except for probabilistic crowding, that is not able to reach a single peak).
But as the distance increases, the time for some mechanisms increases rapidly; they are
inefficient on all non-trivial settings. Deterministic crowding and RTS seem to be agnostic
of Hamming distances as they show a very stable and equal performance across the whole
range of Hamming distances. This make sense as deterministic crowding climbs up both
peaks with equal probability (cf. the analysis on TWOMAX in Friedrich et al., 2009) and RTS
behaves similarly to deterministic crowding. Clearing is very effective and only mildly worse
than deterministic crowding and RTS. Remember that the data for clearing corresponds to
the one shown previously in Section 4.3.4.3, in that section, 1 million generations were used,
greater than the one defined in this section (10µn lnn). Let us note that in any run of the
clearing algorithm, the 1 million and the 10µn lnn generations threshold are never reached.
We see that for fitness sharing with genotypic sharing is only effective if the peaks have a
Hamming distance that is very close to n or trivially small. For intermediate values, fitness
sharing fails badly.

With biased initialisation (Figure 5.3b), clearing is the only mechanism able to escape
from local optima with different basins of attraction. As shown theoretically in Section 4.3,

162 Empirical Analysis of Diversity Mechanisms for Multimodal Optimisation

1 20 40 60 80 100
0

0.5

1

1.5

·105

H(p1, p2)

(a) Random Initialisation

1 20 40 60 80 100

0

0.5

1

1.5

·105

H(p1, p2)

PL
NGD
NFD
PC
DC
RTS
PFS
FS
CL

(b) Biased Initialisation

Figure 5.3: The average number of generations among 100 runs for finding both peaks
p1 = 0n and p2 = {0n−11,0n−212, . . . ,1n} on the fitness landscape defined by JZ2 with
a1 = a2 = 1 and b1 = b2 = 0 or t = 10µn lnn generations were reached, for all (µ+1) EA
variants mentioned in Table 4.1, using n = 100 and µ = 32. Results for both random and
biased initialisation are shown.

this is because cleared individuals are able to explore the fitness landscape by performing a
random walk. In this case, clearing in few occasions uses more generations than the 10µn lnn
allowed, we choose to leave the data untouched since we know that the other algorithms
are not able to escape of the basing of attraction and in a certain point clearing is able to
escape of the basin of attraction of the peaks, so it is not an unfair comparison and still can
be used to show the better performance of clearing. We know from Friedrich et al. (2009)
and Oliveto et al. (2014) that both fitness sharing approaches with phenotypic sharing and
sharing radius σ = n/2 are able to escape from local optima as well, if the two peaks are
complementary. With genotypic sharing both fitness sharing approaches perform very poorly
and seem unable to escape from local optima. Also the other mechanisms fail as they are
unable to accept worse search points.

The analysis of the algorithms with the Mann-Whitney U test are divided into 2 categories,
“good” and “bad” algorithms. From Figure 5.3a, it is clear that the good algorithms are
deterministic crowding, RTS and clearing since the three have a better performance than the
rest of the algorithms, so it makes sense to compare them aside from the other algorithms that
behave poorly. In the case of the bad algorithms we have the plain (µ+1) EA, no genotype
and phenotype duplicates, probabilistic crowding and both fitness sharing approaches. Let
us concentrate on the bad algorithms without both fitness sharing methods. The Mann-
Whitney U tests confirm that when the 6 ≤ H(p1, p2)≤ 100, the performance of the plain

5.3 Conclusions 163

(µ+1) EA, no genotype and fitness duplicates are significantly worst than the good ones.
Now, if we introduce the population-based fitness sharing into the bad algorithms, the range
gets reduced to 6 ≤ H(p1, p2)≤ 94. And by introducing individual-based fitness sharing we
get the following range: 17 ≤ H(p1, p2)≤ 86.

As can be seen, the fitness sharing methods have better performance than the rest of
the bad individuals when the peaks can be reached by mutation or the peaks have a dis-
tance closer to n. For example, individual-based fitness sharing has significantly better
performance than the good algorithms when 1 ≤ H(p1, p2)≤ 7 and 97 ≤ H(p1, p2)≤ 100,
and the population-based fitness sharing starts working and showing significantly better
performance than the good algorithms when 97 ≤ H(p1, p2)≤ 100. Now for the case of the
good algorithms, there is a significant differences in the performance of clearing and the
crowding methods: deterministic crowding and RTS while no significant difference between
deterministic crowding and RTS.

For biased initialisation, and as mentioned previously, some of the algorithms are able
to reach the second peak using mutation, but once the peaks begin to move away, the
performance of most of the algorithms start to deteriorate. Only clearing shows a significant
difference in its performance compared to the other algorithms with 3 ≤ H(p1, p2)≤ 100.

5.3 Conclusions

We have performed an extensive empirical study involving 9 common diversity mechanisms
on Jansen-Zarges multimodal function classes, covering various degrees of multimodality
from 2 to 64 peaks and peaks having equal or different heights, reflected in their basins of
attraction.

Our results show that the plain (µ+1) EA, the simple mechanisms: avoiding genotype
and fitness duplicates cannot maintain subpopulations on several peaks; once a peak has
been found it seems impossible to escape from such a peak. Probabilistic crowding shows a
terrible performance as it is unable to locate even a single peak. These findings are in line
with theoretical results on TWOMAX (Section 4.1 and Friedrich et al., 2009).

Previous theoretical results have shown that both fitness sharing approaches are always
efficient on TWOMAX if phenotypic distances are being used and parameters are set appro-
priately (Friedrich et al., 2009; Oliveto et al., 2014). This includes the ability to climb down
a peak and to tunnel through fitness valleys to reach other niches. Unfortunately this is not
the case for fitness sharing with genotypic distance. Only when the peaks have a Hamming
distance that is trivially small or very close to n they seem to be effective; for any other
intermediate case they show a poor performance.

164 Empirical Analysis of Diversity Mechanisms for Multimodal Optimisation

Deterministic crowding, restricted tournament selection and clearing perform well for
peaks with the same slope and height, much better than all other diversity mechanisms.
Only for large numbers of peaks (k = 64) and different heights the performance starts to
deteriorate. Finally, only clearing has shown the ability to escape from local optima since all
other mechanisms seem unable to accept worse search points or unable to tunnel through
fitness valleys.

Part III

Runtime Analysis of Diversity
Mechanisms on Multi-Objective

Optimisation

Chapter 6

Diversity-based Parent Selection for
Evolutionary Multi-objective
Optimisation

This chapter is based on the following publications:

1. Covantes Osuna, E., Gao, W., Neumann, F., and Sudholt, D. (2017). Speeding Up
Evolutionary Multi-objective Optimisation Through Diversity-based Parent Selection.
In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17,
pages 553–560. ACM.

2. Covantes Osuna, E., Gao, W., Neumann, F., and Sudholt, D. (2018). Design and
analysis of diversity-based parent selection schemes for speeding up evolutionary
multi-objective optimisation. Theoretical Computer Science. To appear. Preprint
available from http://arxiv.org/abs/1805.01221.

In Chapters 4 and 5 we focussed on diversity through refining environmental selection (or
survival selection). Based on the diversity mechanism, the EA chooses individuals to survive
to the next generation. In this chapter we use diversity through refining parent selection,
parents are chosen to generate offspring.

Selection plays a crucial role in the use of EAs as it sets the direction of the evolutionary
process. Let us remember that an EA consists of two parts where selection of individuals is
carried out. Parent selection decides on which individuals of the current population produce
offspring, whereas survival selection selects the population for the next generation from the
current set of parents and offspring after the offspring population has been produced.

The area of EMO designs population-based EAs where the population is used to approxi-
mate the so-called Pareto front. Given that EAs use a population which is a set of solutions

http://arxiv.org/abs/1805.01221

168 Diversity-based Parent Selection for Evolutionary Multi-objective Optimisation

to a given problem, EAs are suited in a natural way for computing trade-offs with respect to
two (or more) conflicting objective functions.

Well established MOEAs such as NSGA-II (Deb et al., 2002), SPEA2 (Bleuler et al.,
2001), IBEA (Zitzler and Künzli, 2004) have two basic principles driven by selection. First
of all, the goal is to push the current population close to the “true” Pareto front. The second
goal is to “spread” the population along the front such that it is well covered. The first goal is
usually achieved by dominance mechanisms between the search points or indicator functions
that prefer non-dominated points. The second goal involves the use of diversity mechanisms.
Alternatively, indicators such as the hypervolume indicator play a crucial role to obtain a
good spread of the different solutions of the population along the Pareto front.

In the context of EMO, parent selection is often uniform whereas survival selection is
based on dominance and the contribution of an individual to the diversity of the population.
In this paper, we explore the use of different parent selection mechanisms in EMO. The goal
is to speed up the optimisation process of an EMO algorithm by selecting individuals that
have a high chance of producing beneficial offspring. To our knowledge the use of different
parent selection schemes has not been widely studied and there are only a few algorithms
placing emphasis on selecting good parents for reproduction.

NSGA-II (Deb et al., 2002) and SPEA2 (Bleuler et al., 2001) focus on survival selection.
However, both use tournament selection based on Pareto ranking and their incorporated
diversity measure to select the parents. We establish a similar ranking of the individuals in
the parent population and examine a wide range of parent selection distributions and their
impact on the performance of our studied algorithms. In Phan et al. (2011) a MOEA with
parent selection using a so-called prospect indicator is used to improve SMS-EMOA. The
prospect indicator evaluates the potential (or prospect) of an individual to reproduce offspring
that dominates itself. Their experimental results show improvement over classical MOEAs.

The parent selection mechanisms studied in this paper use the diversity contribution of an
individual in the parent population to select promising individuals for reproduction. The main
assumption is that individuals with a high diversity score are located in poorly explored or less
dense areas of the search space, so the chances of creating new non-dominated individuals
are better than in areas where there are several individuals. In this sense we have designed
parent selection schemes for MOEAs that let the MOEA focus on individuals where the
neighbourhood is not fully covered and in consequence, force the reproduction in those areas
and to the spread of the population along the search space.

In our investigations, we focus on parent selection mechanisms that favour individuals
having a high hypervolume contribution (HVC) or high crowding distance contribution
(CDC). HVC plays a crucial role in the survival selection of hypervolume-based EMO

169

algorithms whereas the crowding distance measure is used in popular algorithms such as
NSGA-II. We propose several different parent selection mechanisms that take one of these
two measures and then select individuals according to their diversity contribution. The
different selection mechanisms differ in their selection strength, from mild preferences for
more appealing parents to more aggressive schemes that yield a quite drastic change of
behaviour. Specifically, we propose schemes based on the ranks of the individuals according
to their diversity contribution, selecting according to an exponential, power law, or harmonic
distribution. Furthermore, we consider tournament selection, selecting the individuals with
the highest diversity contribution (HDC) as well as a ranking scheme called Non-Minimum
Uniform at Random (NMUAR) which ignores the individuals with the minimum diversity
contribution.

We show by means of rigorous runtime analysis that the use of diversity-based parent
selection mechanisms can significantly improve the performance of MOEAs. The area
of runtime analysis has contributed significantly to the theoretical understanding of EMO
algorithms (Friedrich et al., 2011; Giel and Lehre, 2010; Horoba and Neumann, 2010; Qian
et al., 2016) and allows to study different components of EMO methods from a rigorous
perspective. In order to gain insights into the potential benefits of the diversity-based parent
selection mechanisms, we study the functions ONEMINMAX and LOTZ (Definition 2.16
and 2.17, respectively). ONEMINMAX generalizes the well-known ONEMAX function and
LOTZ generalizes the well-known LEADINGONES problem to the multi-objective case.
Both functions have been examined in a wide range of theoretical studies for variants of
the SEMO algorithm. Other studies in the area of runtime analysis of MOEAs consider
hypervolume-based algorithms (Doerr et al., 2016; Nguyen et al., 2015), namely a variant
of IBEA, and MOEAs incorporating other diversity mechanisms for survival selection (see
Section 3.5.1).

We show that the use of various diversity-based parent selection mechanisms speeds up
SEMO by factors of order n or n/logn for ONEMINMAX and LOTZ with regards to the
expected time for finding the whole Pareto front. For LOTZ the use of rank-based parent
selection can reduce the expected time to compute the whole Pareto front from Θ

(
n3) to

O
(
n2) (see Definition 2.2 for the asymptotic notation). Studying ONEMINMAX, we show a

similar effect, i. e., that the expected time reduces from Θ
(
n2 logn

)
to O(n logn) for our best

performing rank-based parent selection methods. The results for ONEMINMAX also hold
for GSEMO which uses standard bit mutations where every bit in the mutation step is flipped
with probability 1/n.

We provide an analysis for SEMO and a modified version of GSEMO on LOTZ as the
analysis of GSEMO was too challenging. This modified GSEMO uses a feature we call

170 Diversity-based Parent Selection for Evolutionary Multi-objective Optimisation

L-dominant attribute, which ensures that individuals closest to the front are selected in the
parent selection step. Furthermore, we provide additional experimental results. This includes
a detailed experimental investigation on the stagnation probabilities for parent selection
methods that are in some cases not able to obtain the whole Pareto front. These experimental
results motivate new additional theoretical analyses of the stagnation probability for very
greedy schemes for GSEMO with the L-dominant attribute on LOTZ as well as SEMO and
GSEMO on ONEMINMAX provided in Section 6.7.

We point out situations for LOTZ where using parent selection to focus on the highest
diversity contribution can lead to stagnation if global mutations are being used. However, the
same parent selection mechanism is effective for SEMO where only local mutations are being
used. Investigating ONEMINMAX and NMUAR in the parent selection step, we show that
the choice of the reference point for hypervolume-based selection can make the difference
between stagnation and an expected polynomial time. Namely, we show that choosing the
reference point as (−n−1,−1) for NMUAR has a positive probability of reaching stagnation
whereas any symmetric reference point (−r,−r), r ≥ 1, leads to an expected time of O

(
n2).

Finally, we discuss our findings and conclude that the use of a power-law distribution
within the parent selection provides the best trade-off between speed and the risk of stagna-
tion.

The outline of the chapter is as follows. In Section 6.1 establishes the algorithmic
framework used in the theoretical and experimental analysis. Section 6.3 establishes some
general properties that enable speed-ups through diversity-based parent selection. Our
rigorous runtime results for ONEMINMAX and LOTZ are presented in Section 6.4 and 6.5,
respectively. An experimental study complementing the theoretical results is presented in
Section 6.6 and additional experimentally motivated theoretical studies on the effectiveness
of greediness in parent selection are presented in Section 6.7. Finally, we finish with some
discussion and concluding remarks.

6.1 Preliminaries

We consider ONEMINMAX and LOTZ (see Definition 2.16 and 2.17) which are benchmark
functions that facilitate the theoretical analysis. These functions have previously been used
in the theoretical analysis of evolutionary algorithms and our choice therefore allows for
comparisons with previous approaches such as the ones investigated in Giel (2003); Giel and
Lehre (2010); Laumanns et al. (2004).

We focus our analysis on two simple MOEAs, SEMO and its variant GSEMO because of
their simplicity and suitability for a rigorous theoretical analysis. SEMO starts with an initial

6.1 Preliminaries 171

solution s ∈ {0,1}n chosen uniformly at random. All non-dominated solutions are stored in
the population P. Then, it selects a solution s uniformly at random from P, and a new search
point s′ is produced by the mutation step which flips one bit of s chosen uniformly at random.
The new population contains for each non-dominated fitness vector f (s), s ∈ P∪{s′}, one
corresponding search point (dominated individuals are removed from the population), and in
the case where f (s′) is not dominated, s′ is added to P (see Algorithm 6).

For SEMO, we know that the expected runtime on ONEMINMAX is at most O
(
n2 logn

)
(Giel and Lehre, 2010). We prove that this upper bound is asymptotically tight.

Theorem 6.1. The expected time for SEMO to cover the whole Pareto front on ONEMINMAX

is Θ
(
n2 logn

)
.

Proof. The upper bound was shown in Giel and Lehre (2010). For the lower bound, let
|x|1 denote the number of 1-bits and |x|0 denote the number of 0-bits in x. Define Xt :=
minx∈Pt{|x|1} if for the initial search point x0 we have |x0|1 ≥ n/2, and Xt := minx∈Pt{|x|0}
otherwise. Note that, by definition, X0 ≥ n/2. Now, Xt = 0 is a necessary requirement for
covering the whole Pareto front at time t. Hence we lower-bound the sought time by the
expected time for Xt to reach value 0.

Since only local mutations are used, Xt can only decrease by 1. In order to decrease Xt

we have to select a parent with Hamming distance Xt to 0n or 1n, respectively, which happens
with probability 1/|Pt |. Note that |Pt |≥ n/2−Xt as the population contains individuals with
Xt ,Xt +1, . . . ,⌈n/2⌉ ones. Moreover, mutation needs to flip one of the Xt bits differing to 0n

or 1n, respectively. Hence

Prob(Xt+1 = Xt −1 | Xt)≤
1

n/2−Xt
· Xt

n
.

The total expected time to decrease Xt to 0 is thus at least

n/2

∑
j=1

(n
2
− j
) n

j
=

n/2

∑
j=1

n2

2 j
−

n/2

∑
j=1

n ≥ n2 lnn
2

−O
(
n2)

as ∑
n/2
j=1 1/ j ≥ lnn/2 = lnn− ln2.

The reason for the relatively high runtime is that the growing population slows down
exploration. The population can only expand on the Pareto front in case search points with the
current highest or lowest number of ones are chosen (corresponding to a minimum Xt-value
in the proof of Theorem 6.1). Once the population has grown to a size of µ = Θ(n), the
probability that this happens has decreased to Θ(1/n). This means that only a ∼ 1/n-th

172 Diversity-based Parent Selection for Evolutionary Multi-objective Optimisation

fraction of the time the algorithm has a chance to expand on the Pareto front! Uniform parent
selection means that most steps are spent idling. The same effect occurs for SEMO on LOTZ
as proved in Laumanns et al. (2004).

Theorem 6.2 (Lemma 2 in Laumanns et al., 2004). The expected time for SEMO to cover
the whole Pareto front on LOTZ is Θ

(
n3).

In the case of GSEMO, a new solution s′ is created by flipping each bit from a so-
lution s independently with probability 1/n, then it proceeds in the same way as SEMO
(see Algorithm 7). For GSEMO we have upper bounds of the same order, O

(
n2 logn

)
for

ONEMINMAX (Giel and Lehre, 2010) and O
(
n3) for LOTZ (Giel, 2003), though no lower

matching bound is available in the literature for the case of GSEMO on LOTZ.
We remark that LOTZ can also be optimised more efficiently, in time O

(
n2), by a tailored

algorithm that uses local search along individual objectives during initialisation to locate both
extreme points of the Pareto front, 0n and 1n, and then uses crossover to produce the whole
Pareto front from these points (Qian et al., 2013). Incorporating a fairness mechanism which
makes sure that each individual produces roughly the same number of offspring into SEMO
leads to the algorithm FEMO. For FEMO a runtime bound of Θ

(
n2 logn

)
has been given

in Laumanns et al. (2004). The runtime analysis provided for IBEA in Nguyen et al. (2015)
gives an upper bound of O

(
n2 logn

)
and O

(
n3) for ONEMINMAX and LOTZ, respectively,

if the population size is set to n+1 and therefore does not improve on the results for SEMO
given in Laumanns et al. (2004).

Our aim is to develop rigorous runtime bounds of SEMO and GSEMO introducing
different diversity-based parent selection. We want to study how these mechanisms help to
improve the performance of the MOEAs.

6.2 Diversity-Based Parent Selection

Hypervolume-based EAs have become very popular in recent years for multi-objective
optimisation where the hypervolume indicator is used as a measurement of the coverage of
the population (Auger et al., 2012; Zitzler and Künzli, 2004). The hypervolume indicator
measures a set of elements corresponding to images of the individuals with the volume of
the dominated portion of the objective space. It is calculated based on the selection of a
reference point. In particular, given a reference point r ∈ Rm, the hypervolume indicator is
defined on a set P ⊂ S as

IH(P) = λ

(⋃
x∈P

[f1(x),r1]× [f2(x),r2]×·· ·× [fm(x),rm]

)

6.2 Diversity-Based Parent Selection 173

where λ (S) denotes the Lebesgue measure of a set S and [f1(a),r1]× [f2(a),r2]× ·· · ×
[fm(a),rm] is the orthotope with f (a) and r in opposite corners. We define the contribution
of an element x ∈ P to the hypervolume of a set of elements P as

HVC(x,P) = IH(P)− IH(P\{x}).

The calculation of hypervolume indicator and the calculation of the contribution are both
NP-hard when the number of objectives m is a parameter (Bringmann and Friedrich, 2010,
2012). However, both can be computed in polynomial time if m is fixed. In the following,
for bi-objective problems like ONEMINMAX and LOTZ, we can directly calculate the
contribution of an element by taking into account the two direct neighbours in the objective
space as follows.

Definition 6.3 (Hypervolume contribution). For a given reference point r = (r1,r2), we
set f1(x0) = r1 and f2(xµ+1) = r2 where x0 and xµ+1 are individuals used to estimate the
hypervolume contribution, and hereinafter µ denotes the size of the current population in
SEMO/GSEMO. Furthermore, we assume that r1 = f1(x0)< f1(x1), r2 = f2(xµ+1)< f2(xµ).
Let the population be sorted according to the value of f1(xi) such that

f1(x0)< f1(x1)< f1(x2)< · · ·< f1(xµ).

The contribution of an individual xi to the hypervolume of a population P is then given by

HVC(xi,P) = (f1(xi)− f1(xi−1)) · (f2(xi)− f2(xi+1)).

Another diversity metric applied to our framework is the crowding distance used in
NSGA-II (Deb et al., 2002). The crowding distance operator measures the density of
solutions surrounding a particular solution in the population. A solution with a lower
crowding distance value implies that the region occupied by this solution is crowded by
other solutions. The solutions with a higher crowding distance value are chosen/preferred for
reproduction.

Since both SEMO and GSEMO use a population of non-dominated individuals, i. e.,
all individual have the minimum non-domination rank possible, we can directly apply the
crowding distance as our diversity metric (Algorithm 28). First, each i individual in the
population P is able to store the distance from its neighbours denoted by P[i].distance. The
population is sorted for each m-th objective function in ascending order. Thereafter, for
each objective function value, the boundary solutions (solutions with smallest and largest
function values) are assigned an infinite distance value (P[1].distance := P[l].distance := ∞). All

174 Diversity-based Parent Selection for Evolutionary Multi-objective Optimisation

other intermediate solutions are assigned a distance value equal to the absolute normalised
difference of the function values of two adjacent solutions (see Line 9 of Algorithm 28,
here P[i+1].m and P[i−1].m denote the function value of individuals i+1 and i−1 from
population P respectively and f max

m and f min
m are the maximum and minimum values of the

m-th objective function).

Algorithm 28 Crowding Distance Operator
Require: Set of search points P.
Ensure: Crowding distance contribution for each individual in P.

1: Let l := |P|.
2: for all i individuals ∈ P do
3: Set P[i].distance := 0
4: end for
5: for all m objectives do
6: Sort P according to m objective function value in ascending order.
7: P[1].distance := P[l].distance := ∞.
8: for i = 2 to l −1 do
9: P[i].distance := P[i].distance +

P[i+1].m−P[i−1].m
f max
m − f min

m
10: end for
11: end for
12: return P.

As in previous theoretical studies, we measure the runtime as the number of function
evaluations needed to fully cover the Pareto front. This common practice is motivated by
the fact that function evaluations are often the most time-consuming operations. Note that
for SEMO and GSEMO the number of function evaluations coincides with the number
of generations needed as each generation only creates one new offspring whose fitness is
evaluated.

For the hypervolume contribution (HVC), according to Definition 6.3, the reference point
can be defined so that the current extreme individuals in the population and individuals in
intermediate empty areas have a high diversity score, and a strong influence for the algorithm.
In the case of the crowding distance contribution (CDC) the same behaviour applies, extreme
points in the search space receive a high distance while intermediate individuals surrounded
by empty areas receive a higher distance than the ones where the area is more crowded.

With this information we can define selection mechanisms capable of selecting those
extreme points and pushing the spread of the population toward the outer areas of the search
space. However, as our theoretical analysis will show, in case the population already contains
the extreme points of the Pareto front (0n and 1n for ONEMINMAX and LOTZ), we need to

6.2 Diversity-Based Parent Selection 175

be flexible enough to ignore those points and select intermediate individuals surrounded by
empty areas in the search space to fully cover the Pareto front.

The selection mechanisms defined in this paper use the previous diversity contribution
metrics but any other metric can be easily applied that follows the behaviour mentioned
before. Firstly, we define 3 different rank-based selection schemes in which the probability
of selecting individuals with a high diversity score is higher than for individuals with a lower
diversity score (see Definition 6.4). The first is called exponential; it is a rather aggressive
scheme that strongly favours the best-ranked individuals and has a very small tail. The
second is called power law as it follows a power law distribution; it is much less aggressive
with a fat tail and yet a constant probability of selecting the first constant ranks. And finally,
the third ranking scheme is called harmonic; it is the least aggressive scheme with a fat tail
and only a probability of O(1/(log µ)) for selecting the best few individuals.

Definition 6.4 (Rank-based selection schemes). The probability of selecting the i-th ranked
individual is

2−i

µ

∑
j=1

2− j
,

1/i2
µ

∑
j=1

1
j2

,
1/i
µ

∑
j=1

1
j

for the exponential, power law, and harmonic ranking scheme (see Figure 6.1), respectively.

2 4 6 8 10
0

0.2

0.4

0.6

Rank of diversity metric

Se
le

ct
io

n
pr

ob
ab

ili
ty

Exponential: ∼ 2−i

Power law: ∼ 1/i2

Harmonic: ∼ 1/i

Figure 6.1: Rank-based selection schemes and its selection probabilities.

Secondly, we use the classical tournament selection, but with a specific tournament size
of µ , the current size of the population. This means we choose µ individuals uniformly at

176 Diversity-based Parent Selection for Evolutionary Multi-objective Optimisation

random with replacement from the population and then select the individual with the highest
diversity contribution from this multi-set. Selection with replacement implies that there is
a chance of not selecting particular individuals, while other individuals might be picked
multiple times.

Now we introduce the diversity-based parent selection into SEMO (see Algorithm 29)
and GSEMO (see Algorithm 30). Instead of using uniform parent selection, we estimate
the diversity contribution for all the individuals in the population, and a parent is selected
according to the diversity-based parent selection method. Then we continue as in the original
algorithms. Our parent selection mechanisms are not limited to these algorithms and may
prove useful on a much broader class of MOEAs.

Algorithm 29 SEMO with diversity-based parent selection
1: Choose an initial solution s ∈ {0,1}n uniformly at random.
2: Determine f (s) and initialize P := {s}.
3: while stopping criterion not met do
4: Estimate diversity contribution ∀s ∈ P.
5: Choose s ∈ P according to the parent selection mechanism.
6: Choose i ∈ {1, . . . ,n} uniformly at random.
7: Define s′ by flipping the i-th bit of s.
8: if s′ is not dominated by any individual in P then
9: Add s′ to P, and remove all individuals weakly dominated by s′ from P.

10: end if
11: end while

Algorithm 30 GSEMO with diversity-based parent selection
1: Choose an initial solution s ∈ {0,1}n uniformly at random.
2: Determine f (s) and initialize P := {s}.
3: while stopping criterion not met do
4: Estimate diversity contribution ∀s ∈ P.
5: Choose s ∈ P according to the parent selection mechanism.
6: Create s′ by flipping each bit in s independently with probability 1/n.
7: if s′ is not dominated by any individual in P then
8: Add s′ to P, and remove all individuals weakly dominated by s′ from P.
9: end if

10: end while

6.3 On Diversity-Based Progress 177

6.3 On Diversity-Based Progress

We show that diversity-based parent selection mechanisms can achieve a fast spread on
the Pareto front. The following arguments and analyses consider the situation where the
population is located on the Pareto front. This is trivially the case for ONEMINMAX as all
search points are Pareto-optimal. For LOTZ we later supply a separate analysis that covers
the process of reaching the Pareto front.

For ONEMINMAX and LOTZ the most promising parents are those that have a Hamming
neighbour that is on the Pareto set, but not yet contained in the population. We call these
search points good:

Definition 6.5 (good individuals). With reference to a population P and a fitness function
with Pareto front F∗ and corresponding Pareto set X∗, we call a search point x ∈ P∩X∗

good if there is a Hamming neighbour y of x such that y ∈ X∗ but f (y) ̸∈ f (P) where f (P)
denotes the set of objective vectors of population P. Otherwise, x is called bad.

A diversity measure should encourage the selection of such good individuals.

Definition 6.6 (diversity-favouring). We call a measure C (x,P) diversity-favouring on
S ⊆ {0,1}n with respect to a fitness function with Pareto front F∗ if for all populations P and
all x,y ∈ P∩X∗∩S we have the following: if x is bad and y is good then C (x,P)< C (y,P).

Note that the definition is restricted to a subset S of the search space. The reason is to
allow the exclusion of certain search points for which the property is not true. For ONEMIN-
MAX and LOTZ, the property does not hold for the extreme points on the Pareto front, 0n

and 1n. We show that both HVC and CDC are both diversity-favouring on all other search
points. For HVC we assume that the reference point is dominated by (−1,−1). In other
words, the reference point can be any point (r1,r2) with r1 ≤−1 and r2 ≤−1.

Lemma 6.7. The hypervolume contribution HVC(x,P) is diversity-favouring on {0,1}n \
{0n,1n} for both ONEMINMAX and LOTZ if the reference point is dominated by (−1,−1).

Proof. Let us consider an individual xi /∈ {0n,1n} of the sorted population according to f1,
using the notation from Definition 6.3. If xi is bad, then there are Hamming neighbours xi−1

and xi+1 of xi in P, the HVC(xi,P) is the minimum possible, since f1(xi)− f1(xi−1) = 1 and
f2(xi)− f2(xi+1) = 1 yielding HVC(xi,P) = (f1(xi)− f1(xi−1)) · (f2(xi)− f2(xi+1)) = 1.

Now, let us consider a good search point yi, that is, yi−1 or yi+1 is not a Hamming
neighbour of yi. Then we have f1(yi)− f1(yi−1)> 1 or f2(yi)− f2(yi+1)> 1 and in any case
HVC(yi,P) = (f1(yi)− f1(yi−1)) · (f2(yi)− f2(yi+1))> 1. Thus HVC(yi,P)> HVC(xi,P),
which completes the proof.

178 Diversity-based Parent Selection for Evolutionary Multi-objective Optimisation

Lemma 6.8. The crowding distance contribution CDC(x,P) is diversity-favouring on
{0,1}n \{0n,1n} for both ONEMINMAX and LOTZ.

Proof. By Algorithm 28 the search points with the minimum and maximum f1 score in the
population are going to have infinite diversity score, regardless of the objective chosen to
sort the population.

Let us say that there is a bad individual xi with Hamming neighbours xi−1 and xi+1

contained in P. According to the numerator of Line 9 of Algorithm 28, the difference
between the f1(xi−1) (or f2(xi−1)) and f1(xi+1) is the minimum possible, which means the
minimum CDC(xi,P) is assigned to the individual xi.

In the case of a good search point yi, that is, yi−1 or yi+1 are not Hamming neighbours of
yi, the difference between the next contained search points in P is higher. If the difference
between f1(yi) (or f2(yi)) is higher than the minimum possible, this means CDC(xi,P)<
CDC(yi,P) which completes the proof.

Note that in both above measures 0n and 1n, if contained in the population, will always
receive a high score, regardless of whether they are good or bad. If they are bad, there is
a high chance that a bad individual will be selected as parent in a diversity-based parent
selection mechanism. With this in mind, the probability of selecting a good individual can be
bounded from below as follows.

Lemma 6.9. Let C (x,P) be a diversity-favouring measure on {0,1}n \{0n,1n}. Consider
either ONEMINMAX or LOTZ and assume the population P is a subset of the Pareto set,
P ⊆ X∗. Imagine P being sorted according to non-increasing C (x,P) values. Consider a
parent selection mechanism based on C (x,P) such that ri is the probability of selecting the
i-th element of P in the sorted sequence. Then the probability of selecting a good individual
is at least min{r1,r2,r3} unless P already covers the Pareto front.

Proof. Before the whole Pareto front is covered by the population P, there exists at least one
good individual x in population P with no corresponding Hamming neighbour s in the Pareto
set X∗. Then the individuals which correspond to the Hamming neighbours of the missing
point s are good search points.

Since C (x,P) is defined as a diversity-favouring measure on {0,1}n \{0n,1n}, the good
search points have higher contribution than bad search points that are neither 0n nor 1n.
Therefore, among the top three ranked elements in P, there exists at least one good individual.
The probability of selecting this good individual is at least min{r1,r2,r3}.

The parent selection mechanisms thus have the following probability of selecting good
individuals.

6.3 On Diversity-Based Progress 179

Lemma 6.10. In the setting described in Lemma 6.9, the probability pgood of selecting a
good individual is

1. Ω(1) for the exponential and power law ranking schemes,

2. Ω(1/log µ) for the harmonic ranking scheme,

3. Ω(1) for tournament selection with tournament size µ .

Proof. For the parent selection with the exponential ranking scheme, the probability follows
from Lemma 6.9, which fulfils

r1 ≥ r2 ≥ r3 =
2−3

µ

∑
j=1

2− j
≥ 2−3 = Ω(1).

For the power law ranking scheme, since ∑
µ

j=1
1
j2 ≤ ∑

∞
j=1

1
j2 = π2/6, the probability

fulfils

r1 ≥ r2 ≥ r3 =
1/32

µ

∑
j=1

1
j2

≥ 2
3 ·π2 = Ω(1).

In the case of the harmonic ranking scheme, since ∑
µ

j=1
1
j ≤ ln µ + 1, the probability

fulfils
r1 ≥ r2 ≥ r3 =

1/3
µ

∑
j=1

1
j

≥ 1
3 · (ln µ +1)

= Ω(1/log µ).

For tournament selection, the probability of selecting a good individual is at least
min{r1,r2,r3} and r1 ≥ r2 ≥ r3. In order for the individual with the 3rd maximum con-
tribution to be selected in the tournament selection, the individuals with the 1st and 2nd
maximum contribution should never be selected in the µ times (probability of (1−2/µ)µ).
And, conditional on this happening, the individual with the 3rd maximum contribution
has to be chosen at least once amongst the other µ − 2 individuals in the µ times with

probability 1−
(

1− 1
µ−2

)µ

. Hence, the probability of selecting a good individual is at least

pgood ≥
(

1−
(

1− 1
µ −2

)µ)
·
(

1− 2
µ

)µ

≥
(

1− 1
e

)
·
(

1− 2
µ

)µ

using
(
1− 1

x

)x ≤ 1/e for x > 1. Since f (x) =
(
1− 1

x

)x
is non-decreasing when x ≥ 1, with

µ ≥ 3,
(

1− 2
µ

) µ

2 ≥
(
1− 2

3

) 3
2 ≥ 0.19. Therefore, pgood ≥

(
1− 1

e

)
·0.192 = Ω(1).

180 Diversity-based Parent Selection for Evolutionary Multi-objective Optimisation

6.4 Speedups on ONEMINMAX

For any parent selection mechanism defined before, the parent selection is focused on
selecting an individual with a high diversity score. In the case of HVC or CDC, having a
high diversity contribution means that, apart from the possible exceptions of 0n and 1n, the
parent will be good, i. e., located in a less populated area of the Pareto front. We show that
by preferring good individuals in the parent selection, SEMO and GSEMO can quickly find
the whole Pareto front for ONEMINMAX.

Lemma 6.11. Suppose that the probability of selecting a good individual as a parent is at
least pgood. Then the expected runtime for SEMO or GSEMO to find all solutions in the
Pareto front on ONEMINMAX is bounded above by O

(
(n logn)/pgood

)
.

Proof. We call a step a relevant step if the algorithm selects a good parent on the Pareto
front. We show in the following that O(n logn) relevant steps are sufficient for covering the
whole Pareto front of ONEMINMAX, regardless of irrelevant steps performed. This shows
the claim as the expected time for a relevant step is 1/pgood.

We use the accounting method (see, Section 2.3.2 or Section 17.2 in Cormen et al., 2009)
to bound the number of relevant steps. As mentioned in Section 2.3.2 we use this method
to bound the time required to create desired offspring, i. e., count the expected number
of mutations needed to create an individual from a parent selected for mating (this is our
definition of relevant steps). Specifically, we count the number of relevant steps spent in
selecting a good parent with i ones. Summing up (upper bounds on) all these times across
all 0 ≤ i ≤ n will imply the claim.

Note that, once potential gaps at i−1 and i+1 are filled, there can be no more relevant
steps at i ones, due to the definition of a relevant step. Hence the expected number of
relevant steps at i ones is bounded by the expected number of mutations from i needed
to fill both these gaps. If an individual with i ones, 0 < i < n, is selected as parent, the
probability of mutation creating an individual with i−1 ones is at least i/n · (1−1/n)n−1 ≥
i/(en), and the probability of mutation creating an individual with i+ 1 ones is at least
(n− i)/n · (1−1/n)n−1 ≥ (n− i)/(en) (this holds both for SEMO and GSEMO; for SEMO
the factor 1/e can be removed). The time for filling both gaps is at most en/i+ en/(n− i).
Hence there are at most en/i+ en/(n− i) relevant steps selecting a parent with i ones. In the
special cases of i = 0 or i = n the time to fill the neighbouring gaps simplifies to en/n = e.

Summing over all i, the expected total number of relevant steps is hence at most

2e+
n−1

∑
i=1

(
en
i
+

en
n− i

)
= 2e+2

n−1

∑
i=1

en
i
= 2

n

∑
i=1

en
i
≤ 2en(logn+1).

6.5 Speedups on LOTZ 181

Where the summation Hn = ∑
n
i=1 1/i is known as the harmonic number and satisfies Hn =

lnn+Θ(1) this completes the proof.

Combining Lemma 6.10 and Lemma 6.11, we have proved the following results. Note
that the population size µ is always at most n+1 on ONEMINMAX and LOTZ, hence for
the harmonic ranking scheme, pgood = Ω(1/log µ) = Ω(1/logn).

Theorem 6.12. Consider SEMO and GSEMO with diversity-based parent selection using
any diversity measure that is diversity-favouring on {0,1}n \{0n,1n} (e. g., HVC or CDC).
Then the expected time to find the whole Pareto front on ONEMINMAX is bounded by
O(n logn) for the exponential and power law ranking schemes, and for tournament selection
with tournament size µ . It is bounded by O

(
n log2 n

)
for the harmonic ranking scheme.

As both SEMO and GSEMO with the classical uniform parent selection need time
Θ
(
n2 logn

)
on ONEMINMAX, our parent selection schemes lead to speedups of order Θ(n)

and Θ(n/logn), respectively.

6.5 Speedups on LOTZ

We now turn to the function LOTZ. In contrast to ONEMINMAX, where all individuals
are Pareto optimal, for LOTZ we have to estimate the time for the population to reach the
Pareto front. For SEMO the approach to the Pareto front can be estimated easily since SEMO
keeps only one individual in the population. For local mutations as used in SEMO, whenever
an offspring is created, either the offspring dominates the parent, or the parent dominates
the offspring (or both, if they have the same function values). The population size remains
unchanged before there is a solution on the Pareto front. For any parent on the Pareto front,
SEMO only accepts its offspring if it is also on the Pareto front, otherwise the offspring is
dominated by the parent.

Lemma 6.13. The expected time for SEMO to reach the Pareto front is O
(
n2). Assume that

afterwards the probability of selecting a good individual in the population is at least pgood.
The expected runtime for SEMO to reach a population covering the whole Pareto front on
LOTZ is bounded above by O

(
n2/pgood

)
.

Proof. The time for the population to find the first Pareto-optimal point is O
(
n2) and has

already been proved in Lemma 1 in Laumanns et al. (2004). So we can focus on the time
required to find the whole Pareto front. By the accounting method used to prove Lemma 6.11
and the definition of relevant step: the algorithm selects a good parent on the Pareto front, we

182 Diversity-based Parent Selection for Evolutionary Multi-objective Optimisation

count the number of relevant steps spent selecting a good parent with i leading ones, 1i0n−i,
and sum up all these times across all 0 ≤ i ≤ n to prove the claim.

The potential gaps consist of non-existing non-dominated individuals at i−1 and i+1
(1i−10n−i+1 and 1i+10n−i−1, respectively). It is necessary to fill those gaps by including these
search points in the population. Once this has happened, there can be no more relevant steps
at i leading ones. So the expected number of mutations at i leading ones is bounded by the
expected number of mutations from i needed to fill i−1 and i+1. If 1i0n−i is selected as
parent, the probability of mutation creating 1i−10n−i+1 or 1i+10n−i−1 is 1/n, respectively.
The time for filling both gaps (if existent) is at most n+n. Hence there are in expectation at
most 2n relevant steps selecting a parent with i leading ones.

Summing over all i, the expected total number of relevant steps is hence at most

n

∑
i=0

2n = 2n(n+1) = O
(
n2).

Noting that the expected waiting time for a relevant step is 1/pgood. Thus the overall
expected runtime for SEMO to achieve a population covering the whole Pareto front on
LOTZ is upper bounded by O

(
n2)+O

(
n2/pgood

)
= O

(
n2/pgood

)
.

Combining Lemma 6.10 and Lemma 6.13, we now have proved the following results.

Theorem 6.14. Consider SEMO with diversity-based parent selection using any diversity
measure that is diversity-favouring on {0,1}n \ {0n,1n} (e. g., HVC or CDC). Then the
expected time to find the whole Pareto front on LOTZ is bounded by O

(
n2) for the exponential

and power law ranking schemes, and for tournament selection with tournament size µ . It is
bounded by O

(
n2 logn

)
for the harmonic ranking scheme.

The analysis of GSEMO turns out to be more difficult than the analysis of SEMO. The
reason is that the approach to the Pareto front becomes harder to analyse. With global
mutations, GSEMO can create incomparable search points while approaching the Pareto
front. This means that the population can expand in size while approaching the Pareto front,
and even after the whole population has reached the Pareto front, it is possible to create
search points off the Pareto front that are accepted in the population.

Experiments in Section 6.6 indicate that this behaviour does not slow down the algorithm
by more than a constant factor. However, proving that the bound O(n2) for SEMO also holds
for GSEMO turns out to be very challenging. We therefore take a different approach and
analyse a modified variant of GSEMO that is easier to analyse. Experiments presented in
Section 6.6 confirm that this modification does not significantly change the average runtime
(inspecting Tables 6.3 and 6.4, the quotients of average times for the modified GSEMO

6.5 Speedups on LOTZ 183

Algorithm 31 Modified Global SEMO with diversity-based parent selection
1: Choose an initial solution s ∈ {0,1}n uniformly at random.
2: Determine f (s) and initialize P := {s}.
3: while stopping criterion not met do
4: Let P′ ⊆ P be the set of all search points with a maximum L-dominant attribute in P.
5: Estimate diversity contribution ∀s ∈ P′ w. r. t. the population P′.
6: Choose s ∈ P′ according to parent selection mechanism.
7: Create s′ by flipping each bit of s independently with probability 1/n.
8: if s′ is not dominated by any individual in P then
9: Add s′ to P, and remove all individuals weakly dominated by s′ from P.

10: end if
11: end while

and those for the original GSEMO across all parent selection mechanisms are 0.88 for
HVC(−1,−1), 1.19 for HVC(−n,−n), and 1.27 for CDC, averaging to 1.1 are close to 1
in many settings and always in the interval [0.48,2.03]).

The idea behind this modification is to simplify the approach to the Pareto front by restrict-
ing parent selection to search points that are maximal with regards to a linear combination of
both objectives.

Definition 6.15 (L-dominant attribute). Let L(x) = LO(x)+TZ(x), where LO(x) and TZ(x)
denotes the total number of leading ones and the total number of trailing zeros of a certain
individual x, respectively.

We modify GSEMO in such a way that it only picks parents with maximal L-dominant
attribute in the population (see Algorithm 31), and also the computation of the diversity
contribution is restricted to these search points. This has two effects: it simplifies and
facilitates the analysis of the individuals while they are approaching the Pareto front. While
the original GSEMO can store incomparable search points with different L-values in the
population, the modified GSEMO only considers incomparable search points with maximum
L-value. In addition, since all x individuals on the Pareto front have the largest possible value
of L(x) = n, once the Pareto front is reached, the algorithm only selects individuals on the
Pareto front as parents according to their diversity contribution.

Lemma 6.16. The expected time for the modified GSEMO to reach the Pareto front is
bounded above by O

(
n2).

Proof. According to Definition 6.15, before reaching the Pareto front, the solution with
maxx∈P(L(x)) is selected to generate an offspring. Consider the event of only flipping the
first 0-bit or the last 1-bit of the selected individual. Since the offspring from this event

184 Diversity-based Parent Selection for Evolutionary Multi-objective Optimisation

has a higher value of one of the objectives than its parent which is of the maximum L(x) in
the population, the offspring is non-dominated by any individuals in the population and is
accepted by the algorithm. Hence, the probability of increasing maxx∈P(L(x)) is at least

2 · 1
n
·
(

1− 1
n

)n−1

≥ 2
en

.

Throughout the process, the value of maxx∈P(L(x)) in the population never goes down.
Therefore, the overall expected runtime for GSEMO with this selection scheme to reach the
Pareto front is at most

n−2

∑
Lmax=0

en
2

= O
(
n2).

Lemma 6.17. Assume that the probability of selecting a good individual in the population is
at least pgood. The expected time for the modified GSEMO to reach a population covering
the whole Pareto front on LOTZ is bounded above by O

(
n2/pgood

)
.

Proof. As for SEMO, before the population covers the whole Pareto front, the optimisation
process of the modified GSEMO can be divided into two stages. The first stage focusses on
obtaining the first individual on the Pareto front and the second one focusses on covering the
Pareto front. As proved in Lemma 6.16, the expected time for the modified GSEMO to reach
the Pareto front is at most O

(
n2).

In the second stage, by following the definition of relevant step, the parent to be selected
is a good search point on the Pareto front with the maximum L(x) dominant attribute. The
algorithm will select individuals on the Pareto front with the maximum L(x) dominant
attribute according to their diversity contribution. So now we can apply the accounting
method used to prove previous lemmas to bound the number of relevant steps spent selecting
the good parent.

As in Lemma 6.13, we define a good parent with i leading ones with possible gaps on
i−1 and/or i+1 across all 0 ≤ i ≤ n. And by introducing the factor 1/e to the analysis in
Lemma 6.13, we now have the time for filling both gaps is at most 1/(en)+1/(en). Hence
there are at most en+ en = 2en relevant steps selecting a good parent with i leading ones.
Summing over all i, the expected total number of relevant steps is hence at most

n

∑
i=0

2en = 2e
n

∑
i=0

n = O
(
n2)

The overall runtime for the modified GSEMO on LOTZ to reach a population covering the
whole Pareto front is bounded above by O

(
n2/pgood

)
.

6.6 Experimental Analysis 185

As mentioned on the proof of the previous lemma, once the individual with the maximum
L(x) dominant attribute has reached the Pareto front, the algorithm will always select good
individuals on the Pareto front (with the maximum L(x) dominant attribute) according to
their diversity contribution. This characteristic allows us to apply Lemma 6.10, and by
Lemma 6.17, we now have proved the following results.

Theorem 6.18. Consider the modified GSEMO with diversity-based parent selection using
any diversity measure that is diversity-favouring on {0,1}n \{0n,1n} (e. g., HVC or CDC).
Then the expected time to find the whole Pareto front on LOTZ is bounded by O

(
n2) for the

exponential and power law ranking schemes, and for tournament selection with tournament
size µ . It is bounded by O

(
n2 logn

)
for the harmonic ranking scheme.

6.6 Experimental Analysis

The experimental approach is focused on the analysis of SEMO, GSEMO and the modified
GSEMO and their performance with and without the diversity-based parent selection mecha-
nisms. We are interested in observing if we can speed up the performance from the classical
approaches. For the case of the modified GSEMO, we measure its performance only on
LOTZ and we compare its performance to GSEMO in order to observe the impact of the
L-dominant attribute on the performance of the algorithm.

Experiments also allow for a more detailed comparison of the HVC, CDC, and the
parent selection methods. In the case of the HVC, we have defined two settings for the
reference points, (−1,−1) and (−n,−n). For the first reference point, a slight preference
to the extreme points is provided while with the second, the influence of the extreme points
becomes very strong. This particular characteristic became an interesting feature to observe
in the case of the ranking-based selection schemes, and exposes a potential flaw for the case
of HVC with low (or high in the case of minimisation) reference point or CDC (since it
assigns infinite value to the extreme points) and the parent selection mechanisms that focus
very aggressively toward the extreme points, as we shall see below.

Since we are interested in the time required to find the Pareto front, we report the
following outcomes and stopping criteria for each run. Success, the whole Pareto front has
been covered, i. e., the run is stopped if the population contains all individuals on the Pareto
front. Failure/Stagnation, once the run has reached 1 million generations and the Pareto front
has not been fully covered, this is enough time for the algorithms to create new individuals
and fill the gaps on the Pareto front. We repeat the experimental framework for 100 runs
with problem size n = 100 for all algorithmic approaches and report the mean and standard
deviation (STD) as our metrics of interest.

186 Diversity-based Parent Selection for Evolutionary Multi-objective Optimisation

Table 6.1: Mean (first rows) and STD (second rows) of generations required to find the Pareto
front for SEMO and GSEMO on ONEMINMAX and LOTZ with n = 100.

Algorithms ONEMINMAX LOTZ

SEMO
4.16E+04 3.17E+05
1.15E+04 5.34E+04

GSEMO
1.06E+05 6.58E+05
3.47E+04 1.12E+05

Table 6.1 shows the mean and STD of generations required to find the Pareto front for
the classic SEMO and GSEMO that use uniform parent selection for both test functions.
Table 6.2 and 6.3 refer to the mean and standard deviation of generations required to find
the Pareto front for SEMO and GSEMO with the different diversity-based parent selection
schemes for ONEMINMAX and LOTZ, respectively. Finally, Table 6.4 shows the mean and
standard deviation of generations required to find the Pareto front for the modified GSEMO
on LOTZ.

As we mentioned before, a parent selection mechanisms that is extremely focused on the
extreme points can be potentially dangerous, and to exemplify this, we have introduced a
deterministic selection mechanism which we have named Highest Diversity Contribution
(HDC): always select an individual with the highest diversity contribution (break ties uni-
formly at random if there are several such points). We also have defined a modified version
of the uniform random selection used by SEMO and GSEMO, that we call Non-Minimum
Uniform at Random (NMUAR), where the individuals with the minimum diversity contri-
bution in the population are ignored (provided that the population does contain multiple
diversity contribution values) and one individual is selected uniformly at random from all
remaining individuals. In this sense individuals with high diversity contributions have better
probabilities to be selected and the approach is flexible enough to choose between extreme
and intermediate individuals.

As it can be observed in Table 6.2 and 6.3, HDC fails to find the Pareto front for ONE-
MINMAX and LOTZ in the case of GSEMO for both diversity-based metrics. For the case of
GSEMO with HDC selection mechanism with HVC and CDC on ONEMINMAX the failure
rate was 0.94 and 0.93, respectively. On LOTZ, the failure rate was 1.0 for both diversity
metrics.

The reason for these bad results for GSEMO (and the modified GSEMO) on ONE-
MINMAX is due to the mutation operator. Both algorithms can create gaps by creating an
offspring that may differ from its parent with more than one bit. In the case of GSEMO on
LOTZ, the algorithm can create incomparable search points and the population expands

6.6 Experimental Analysis 187

Table 6.2: Mean (first rows) and STD (second rows) of generations required to find the
Pareto front for SEMO and GSEMO with diversity-based parent selection methods on
ONEMINMAX with n = 100. “Stagnation” indicates a failure rate larger than 0.

Algorithms HVC(−1,−1) HVC(−n,−n) CDC

SEMO & HDC
9.14E+02 8.90E+02 1.05E+03
1.76E+02 1.65E+02 2.40E+02

GSEMO & HDC
2.12E+03 Stagnation Stagnation
4.28E+02 Stagnation Stagnation

SEMO & NMUAR
8.92E+02 1.05E+03 1.03E+03
1.81E+02 2.72E+02 2.59E+02

GSEMO & NMUAR
2.14E+03 2.54E+03 2.58E+03
4.97E+02 6.57E+02 7.86E+02

SEMO & exponential
1.28E+03 1.27E+03 1.36E+03
2.72E+02 2.71E+02 3.44E+02

GSEMO & exponential
3.21E+03 3.18E+03 3.24E+03
9.35E+02 9.12E+02 7.72E+02

SEMO & harmonic
3.05E+03 3.24E+03 3.28E+03
6.97E+02 8.63E+02 8.03E+02

GSEMO & harmonic
7.89E+03 7.26E+03 8.03E+03
1.90E+03 1.69E+03 2.09E+03

SEMO & power law
1.15E+03 1.24E+03 1.34E+03
2.48E+02 2.89E+02 3.00E+02

GSEMO & power law
2.87E+03 2.85E+03 3.32E+03
6.35E+02 6.22E+02 1.07E+03

SEMO & tournament(µ)
1.05E+03 1.08E+03 1.21E+03
2.24E+02 2.18E+02 3.09E+02

GSEMO & tournament(µ)
2.58E+03 2.60E+03 2.81E+03
5.48E+02 7.91E+02 7.34E+02

188 Diversity-based Parent Selection for Evolutionary Multi-objective Optimisation

Table 6.3: Mean (first rows) and STD (second rows) of generations required to find the Pareto
front for SEMO and GSEMO with diversity-based parent selection methods on LOTZ with
n = 100. “Stagnation” indicates a failure rate larger than 0.

Algorithms HVC(−1,−1) HVC(−n,−n) CDC

SEMO & HDC
1.24E+04 1.25E+04 1.41E+04
9.79E+02 1.22E+03 1.80E+03

GSEMO & HDC
3.06E+04 Stagnation Stagnation
2.62E+03 Stagnation Stagnation

SEMO & NMUAR
1.25E+04 1.38E+04 1.41E+04
1.10E+03 1.49E+03 1.52E+03

GSEMO & NMUAR
3.17E+04 3.50E+04 3.58E+04
3.13E+03 3.85E+03 3.75E+03

SEMO & exponential
1.57E+04 1.58E+04 1.78E+04
1.31E+03 1.33E+03 2.47E+03

GSEMO & exponential
3.45E+04 4.00E+04 5.87E+04
2.87E+03 8.60E+03 1.63E+04

SEMO & harmonic
3.14E+04 3.08E+04 3.53E+04
3.60E+03 3.24E+03 5.68E+03

GSEMO & harmonic
6.69E+04 6.33E+04 6.73E+04
7.23E+03 7.40E+03 1.02E+04

SEMO & power law
1.54E+04 1.51E+04 1.69E+04
1.26E+03 1.36E+03 2.13E+03

GSEMO & power law
3.40E+04 5.03E+04 5.73E+04
3.30E+03 1.24E+04 1.43E+04

SEMO & tournament(µ)
1.38E+04 1.41E+04 1.55E+04
1.25E+03 1.12E+03 1.94E+03

GSEMO & tournament(µ)
3.16E+04 6.53E+04 7.87E+04
2.88E+03 2.15E+04 2.57E+04

6.6 Experimental Analysis 189

Table 6.4: Mean (first rows) and STD (second rows) of generations required to find the Pareto
front for the modified GSEMO and diversity-based parent selection methods on LOTZ with
n = 100. “Stagnation” indicates a failure rate larger than 0.

Algorithms HVC(−1,−1) HVC(−n,−n) CDC

HDC
3.06E+04 Stagnation Stagnation
2.78E+03 Stagnation Stagnation

NMUAR
3.19E+04 3.60E+04 3.55E+04
2.92E+03 4.50E+03 4.92E+03

Exponential
3.95E+04 3.99E+04 4.55E+04
3.65E+03 3.62E+03 6.00E+03

Harmonic
8.13E+04 8.11E+04 9.49E+04
8.37E+03 8.53E+03 1.50E+04

Power law
3.81E+04 3.81E+04 4.32E+04
3.62E+03 3.66E+03 5.75E+03

Tournament(µ)
3.46E+04 3.49E+04 3.88E+04
2.95E+03 3.42E+03 5.50E+03

in size while approaching the Pareto front. This implies that the Pareto front is reached in
different areas at different times during the run, leaving intermediate unexplored regions.
Once the Pareto front has been reached, the algorithm can create gaps by creating an offspring
by flipping more than one leading one or trailing zero. Then it will continue selecting those
individuals ignoring the intermediate ones, leaving the population in a stagnation state. This
observation also justifies why we introduced parent selection schemes of varying degree of
aggressiveness. We analyse this process rigorously in Section 6.7.1.

For all other parent selection schemes defined in this paper, we have achieved a significant
speed up in the performance of SEMO and GSEMO of around one order of magnitude. As
it can be observed in Table 6.2 and 6.3, SEMO and GSEMO with diversity-based parent
selection mechanisms are able to find the Pareto front faster than its classical counterparts,
i. e., fewer generations are required for both test functions. Note that the problem size n= 100
is relatively moderate; as our theoretical results prove, speedups over the original algorithms
will grow further when the problem size is increased.

In the case of the modified GSEMO, the same stagnation state was reached (see Table 6.4).
For the modified GSEMO with HDC selection mechanism with HVC and CDC on ONE-
MINMAX the failure rate was 0.97 and 1.0, respectively. On LOTZ the failure rate for the
modified GSEMO with HVC and CDC decreases considerably, reaching 0.37 and 0.33,
respectively.

190 Diversity-based Parent Selection for Evolutionary Multi-objective Optimisation

The modified GSEMO on LOTZ achieved a considerably lower failure rate compared
to the original GSEMO, where it was 1.0. We believe that there are two reasons for this.
Firstly, for the modified GSEMO it is not possible to reach the Pareto front in different areas,
avoiding the creation of gaps while approaching the Pareto front; the individual with the
largest L-dominant attribute will always reach the Pareto front. Secondly, after the Pareto
front has been reached, the algorithm will select individuals on the Pareto front as parents
according to their diversity contribution. Here, from the i individual, the mutation operator
needs to flip 1i−10n−i+1 or 1i+10n−i−1 to create a new individual. In this sense it is more
difficult to leave an empty space between points leading to this better performance but it is
always possible for the algorithm to flip multiple consecutive bits to create a gap, resulting in
the mentioned failure rates.

The modified GSEMO can also achieve a significant speed up in performance on LOTZ.
With this preliminary analysis we can see that the introduction of the L-dominant attribute
does not drastically change the average runtime and it can be used as an approximation or
first step towards the definition of a bound for GSEMO with diversity-based parent selection
on LOTZ.

6.7 Comparing Selection Schemes: How Much Greed is
Good?

In this section we focus our attention on the Highest Diversity Contribution (HDC) and the
Non-Minimum Uniformly at Random (NMUAR) methods. In Section 6.7.1 we discuss in
detail how HDC seems to be the fastest selection mechanism for SEMO, but the worst for
GSEMO as it leads to stagnation. We show by means of rigorous runtime analysis how this
is a rare and natural example where multi-bit flips do a lot of harm by leading the population
into a stagnation state.

Finally in Section 6.7.2 we discuss the results obtained regarding the NMUAR mechanism.
As shown in Section 6.6, NMUAR performs experimentally well for SEMO and GSEMO
with no stagnation outcome. We show that for a particular choice of the reference point
NMUAR can lead the population into a stagnation state. On the positive side, we show that
NMUAR is able to efficiently optimise both LOTZ and ONEMINMAX for common choices
of the reference point.

6.7 Comparing Selection Schemes: How Much Greed is Good? 191

6.7.1 Why Highest Diversity Contribution Stagnates

In this section we theoretically examine the stagnation results of Section 6.6 related to
GSEMO with the HDC selection strongly favouring the extreme points. As it can be
observed from Tables 6.2 and 6.3, a greedy approach seems to be the best for SEMO. SEMO
can find all individuals on the Pareto front but also is the fastest in doing so. This is because
for SEMO on ONEMINMAX, all individuals are part of the Pareto front and the algorithm
starts with one individual on the Pareto front. In the case of LOTZ the algorithm always
reaches the Pareto front with just one individual. Once on the Pareto front, the spread of the
population to outer areas can only be achieved by individuals that differ from its parent in
just one bit, i. e., no gaps or empty spaces are left between points.

In the following we show by means of rigorous runtime analysis why the previous
experimental results occur for the modified GSEMO on LOTZ. Let the reference point be
dominated by (−n2,−n2) for the HVC in order to simplify the analysis for proving that
focusing on extreme points can lead to undesired results. Our main result of this section is
the following.

Theorem 6.19. Consider the modified GSEMO with Highest Diversity Contribution, choos-
ing as diversity metric either CDC or HVC with a reference point dominated by (−n2,−n2)

on the function LOTZ. Then at the first point in time the population Pt contains both 0n and
1n, Pt equals the whole front with probability Ω(1) and 1−Ω(1). The expected time to find
the whole Pareto front is nΩ(n).

The remainder of this subsection is devoted to the proof of Theorem 6.19. First, we define
what a gap means and transition probabilities for mutations on the Pareto front that will be
used in the remainder of this section.

Definition 6.20 (Gap). We say that a population Pt has a gap at position i if 1i0n−i /∈ Pt , but
1 j0n− j ∈ Pt and 1k0n−k ∈ Pt for j < i < k.

Definition 6.21 (Transition probabilities). We define

pk = n−k ·
(

1− 1
n

)n−k

=

(
1− 1

n

)n

· (n−1)−k.

as the probability of jumping from any search point 1i0n−i to 1i+k0n−i−k and 1i−k0n−i+k (if
existent).

Next, we show that, once the Pareto front has been reached, the Highest Diversity
Contribution selection will always choose a parent x with an extreme number of ones. The

192 Diversity-based Parent Selection for Evolutionary Multi-objective Optimisation

following lemma applies to a population P containing only search points on the Pareto front.
This setting applies for the modified GSEMO once the Pareto front has been reached as
then parent selection is only based on search points with a maximum L-dominant attribute,
corresponding to points on the Pareto front.

Lemma 6.22. Consider the Highest Diversity Contribution (HDC) selection mechanism,
choosing as diversity metric either HVC(x,P) with reference point dominated by the point
(−n2,−n2) or CDC(x,P) on the function LOTZ, for a population P containing only search
points on the Pareto front. Then the parent chosen by HDC will always either have a minimum
or a maximum number of ones among all search points in P.

Proof. Let us consider an individual xi of the sorted population according to f1, using the
notation from Definition 6.3, and let us define f1(x0)≤−n2 and f2(xµ+1)≤−n2 as reference
point. For any point xi = 1 j0n− j where 1 < i < µ , the highest possible contribution that the
point xi can achieve is if it has as neighbours the points x1 = 0n and xµ = 1n, so we have
f1(xi) = j, f1(xi−1) = f1(x1) = 0 and f2(xi) = n− j, f2(xi+1) = f2(xµ) = 0. In this sense, by
Definition 6.3, the highest possible contribution for xi is HVC(xi,P)≤ (j−0) · (n− j−0)≤
j · (n− j) and since j is restricted to 0 < j < n, the maximum contribution possible for xi is
when j = n/2 and n− j = n/2 achieving HVC(xi,P)≤ n2/4 < n2.

For the case of points x1 = 0n or xµ = 1n, the hypervolume contribution of any of the these
two points is at least n2, since the lowest possible contribution for these points is obtained
when the individuals x2 or xµ−1 are contained in the population, then HVC(x1,P)≤ n2 ·1 (the
same for xµ). So we have that HVC(x1,P)> HVC(xi,P) and HVC

(
xµ ,P

)
> HVC(xi,P)

for all 1 < i < µ .
For the case of CDC, both extreme points are always assigned an infinite diversity score,

the highest possible score given by the CDC metric. So all intermediate individuals are
ignored by the selection mechanism and HDC only selects the individual with the highest
number of zeroes or ones in the population.

We further show that gaps emerge and remain with constant probability.

Lemma 6.23. In the setting of Theorem 6.19, with probability Ω(1) the modified GSEMO
will evolve a population with a gap at position n/4 ≤ i ≤ 3n/4.

The probability that this gap will remain at the first generation where the population
contains both 0n and 1n is Ω(1).

Proof. In the following, we identify a search point 1i0n−i with its index i. Note that, as long
as no gap at index n/4 ≤ i ≤ 3n/4 is being created, the population spreads on this subset of
the Pareto front as one Hamming path. This Hamming path is likely to start at some index

6.7 Comparing Selection Schemes: How Much Greed is Good? 193

n/4 ≤ i ≤ 3n/4 and then spread towards lower and higher indices, but it could also start at
an index i < n/4 and spread towards higher indices, or start at i > 3n/4 and spread towards
lower indices. This means that, for every index n/4+1 ≤ j ≤ 3n/4−1 there will eventually
be a search point 1 j0n− j that will be chosen as parent, and (depending on the direction of
the spread) at least one Hamming neighbour from {1 j−10n− j+1,1 j+10n− j−1} will not be
contained in the population. Without loss of generality let this be 1 j−10n− j+1 (the other case
is symmetric). Then with probability at least p2 a mutation of 1 j0n− j will create a search
point with smaller index than j−1, creating a gap at position j−1. With probability p1 the
modified GSEMO will create 1 j−10n− j+1, and there will never be a gap at position j− 1.
Considering these two events, the conditional event of creating a gap, given that another
search point on the front with smaller index is created, is at least

p2

p1 + p2
≥ p2

p1
=

1
n−1

.

The probability that at least one index n/4+1 ≤ j ≤ 3n/4−1 (of which there are n/2−O(1)
many) will lead to the creation of a gap is at least

1−
(

1− 1
n−1

)n/2−O(1)

= 1−
(

1− 1
n−1

)(n−1)/2

·
(

1− 1
n−1

)O(1)

≥ 1− e−1/2 −O(1/n) = Ω(1)

where the inequality used
(
1− 1

n−1

)n−1 ≤ 1/e and Bernoulli’s inequality.
Now assume that a gap has been created at position g with n/4 ≤ g ≤ 3n/4. From here

on, every index 1 ≤ i ≤ n−1 has a chance to fill the gap if the population contains 1i0n−i,
this search point is being chosen as parent, and mutation flips |g− i| bits to create 1g0n−g,
hence filling the gap. Note that, if 1i0n−i is picked as parent, and without loss of generality
i < g, if mutation creates an offspring 1 j0n− j with j < i then 1i0n−i will never be selected as
parent again, and the gap at g will never be filled from index i. Considering these two events,
the conditional probability of not filling the gap from index i < g is at least

p1

p1 + pg−i
=

(n−1)−1

(n−1)−1 +(n−1)i−g =
1

1+(n−1)1+(i−g)
.

The above is 1/2 if i = g−1 and at least 1−(n−1)1−|i−g| for i < g−1. The same probability
bounds hold for i = g+1 and i > g+1, respectively. Note that mutations from index i are
independent from mutations on other indices, hence we can multiply probability bounds for

194 Diversity-based Parent Selection for Evolutionary Multi-objective Optimisation

all indices i ̸= g. Hence, the probability that the gap is not filled from any index i ̸= g is at
least

1
2
· ∏

1≤i<g−1

(
1− (n−1)1−|i−g|

)
· 1

2
· ∏

g+1<i≤n−1

(
1− (n−1)1−|i−g|

)

≥ 1
4
·

(
∞

∏
d=2

(
1− (n−1)1−d

))2

≥ 1
4
·

(
1−

∞

∑
d=2

(n−1)1−d

)2

=
1
4
·

(
1−

∞

∑
d=1

(n−1)−d

)2

=
1
4
·
(

1− 1
n−2

)2

= Ω(1).

Now we can make use of Lemma 6.23 to prove Theorem 6.19.

Proof of Theorem 6.19. A sufficient condition for finding all points on the Pareto front in
the setting of Theorem 6.19 is to always create a new point on the Pareto front via 1-bit
mutations. Because global mutations are used, it is possible to create a new search point on
the Pareto front by making a k-bit jump, for k ≥ 2, with probability pk.

Let E be the event that a new point is created on the Pareto front via 1-bit flip, and let
B be the event of creating a new point on the Pareto front. We have Prob(E)≥ p1, where
the inequality becomes an equality if there is only one possible 1-bit flip applicable. The
probability of event B is at most Prob(B) ≤ Prob(E)+ 2p2 + 2p3 + · · ·+ 2pn, taking into
account all possible jump lengths, and the fact that it may be possible to make jumps in both
directions. The conditional probability of event E is at least

6.7 Comparing Selection Schemes: How Much Greed is Good? 195

Prob(E | B)≥ p1

p1 +2p2 +2p3 + . . .+2pn

=

(
1− 1

n

)n · (n−1)−1(
1− 1

n

)n · ((n−1)−1 +2(n−1)−2 + . . .+2(n−1)−n)

=
1

1+2(n−1)−1 + . . .+2(n−1)n−1

≥ 1

1+2
∞

∑
i=1

(n−1)−i

=
1

1+ 2
n−2

= 1−
2

n−2

1+ 2
n−2

= 1− 2
n
.

Now, the same probability bounds hold for all i on the Pareto front. Mutations from point
i are independent from mutations on other indices, hence we can multiply the probability for
all indices i. Hence, the probability of creating a new point due to 1-bit mutation is at least

n

∏
i=1

(
1− 2

n

)
=

(
1− 2

n

)n

= Ω(1).

Now we have proved that the modified GSEMO is able to find all points on the Pareto
front via 1-bit mutation, and by Lemma 6.23, the modified GSEMO will create a gap at
position n/4 ≤ i ≤ 3n/4 via more than 1-bit flip and this gap will remain after the points 0n

and 1n have been found with probability Ω(1). At this point it will be necessary to flip at
least n/4 specific number of bits from one of the extreme points in order to “fill” a gap. By
Definition 6.21, the probability of making a n/4 jump from any extreme point is at most

pn/4 =

(
1− 1

n

)n

· (n−1)−n/4 = n−Ω(n).

Since the above probability bound holds for all current n/4 ≤ i ≤ 3n/4 gaps, we get that
the algorithm requires at least exponential runtime nΩ(n) to fill all the remaining i gaps.

Note that the poor performance of the modified GSEMO is down to the choice of mutation
operator, and the possibility of flipping multiple bits in one mutation. In contrast, SEMO
using local mutations finds the Pareto front efficiently when HDC is used.

196 Diversity-based Parent Selection for Evolutionary Multi-objective Optimisation

Theorem 6.24. Consider SEMO with Highest Diversity Contribution, choosing as diversity
metric either CDC or HVC with a reference point (−r,−r) for r ≥ 1 on the function LOTZ.
Then the expected time for finding the whole Pareto front is O

(
n2).

Proof. We already know that SEMO reaches the Pareto front in expected time O
(
n2). After-

wards, the population spreads on the Pareto front as one Hamming path. Let P = {1i0n−i,

1i+10n−i−1, . . . ,1 j−10n− j+11 j0n− j} be the current population sorted according to the number
of ones, with i, j being the minimum and maximum number of ones, respectively.

Then for any k with i< k < j we have HVC
(
1k0n−k,P

)
= 1 in addition to the contribution

of the points HVC
(
1i0n−i,P

)
= i+r and HVC

(
1 j0n− j,P

)
= n− j+r. The latter two values

simplify to r if i = 0 or j = n, respectively, that is, for 0n and 1n. For all values i > 0 we have
HVC

(
1i0n−i,P

)
≥ r+ 1 and the same holds for j < n implying HVC

(
1i0n− j,P

)
≥ r+ 1.

This implies that the highest diversity contribution is always attained for a good search point,
as long as the whole Pareto front has not been found yet. In other words, pgood = 1 and we
obtain an upper bound of O

(
n2) by following the arguments from Section 6.5.

For CDC, we have pgood ≥ 1/2 as both 1i0n−i and 1 j0n− j have a crowding distance
contribution of ∞, and at least one of them must be different from 0n and 1n. The upper
bound of O

(
n2) follows as before.

6.7.2 NMUAR is Fast but Brittle

As mentioned previously and based on the results of Table 6.2, 6.3 and 6.4, NMUAR
empirically performs well for SEMO, GSEMO and the modified GSEMO with any diversity
metric in its different variants. No stagnation was detected during the experimental analysis
made in Section 6.6. It seems that the selection mechanism performs better compared with
the other selection approaches. Nevertheless, as an observant reviewer for Covantes Osuna
et al. (2017) pointed out, it is possible to find populations where the probability of selecting a
good parent is 0, and the analytical framework used in Sections 6.4 and 6.5 breaks down.

Two such populations are shown in Figure 6.2. In Figure 6.2a, 1n is bad as it can not
produce yet unseen points with local mutations on the Pareto front. However, depending
on the choice of reference point, it may have the highest hypervolume contribution. The
remaining point, while being good has the minimum hypervolume contribution. So, it is
never picked as a parent by the NMUAR scheme. This means that the algorithm will never
select a good search point, which leads to a stagnation state. Furthermore, Figure 6.2b shows
that for the case of certain problem sizes, more points can be added on the Pareto front, such
that all non-boundary points feature the same, minimum hypervolume contribution, and all

6.7 Comparing Selection Schemes: How Much Greed is Good? 197

of these points are ignored by NMUAR, leaving only bad search points 0n and 1n that may
be selected as parents. This also shows that the example from Figure 6.2a is not unique.

f2

f10

n/2

n

0 n/2 n

F∗
n

(a) n = 8

f2

f10

n/2

n

0 n/2 n

F∗
n

(b) n = 7

Figure 6.2: Examples of populations where NMUAR with CDC or HVC may only select
bad individuals from {0n,1n} on ONEMINMAX and/or LOTZ, depending on the choice of
reference point (all non-extreme points have the same score, NMUAR only selects extreme
points).

In the following we show that, despite these risks, NMUAR is able to efficiently optimise
both ONEMINMAX and LOTZ. First we define the following probability of selecting good
individuals by providing some additional arguments on how to deal with different situations
for pgood.

Lemma 6.25. Let P denote the current population and P′ ⊆ P denote the population from
which NMUAR selects uniformly at random. Consider ONEMINMAX or LOTZ and assume
that the Pareto front has been reached, but P does not cover the whole front. The probability
pgood of selecting a good individual using CDC or HVC with any reference point dominated
by (−1,−1) and NMUAR selection is pgood = Ω(1) if one of the following conditions is met:

1. P contains neither 0n nor 1n,

2. P contains a search point x ∈ {0n,1n} and x is good, or

3. P contains individuals with f1-values i, i+1, and i+2, for some value 0 ≤ i ≤ n−2.

Proof. For HVC, note that any potential bad search points from {0,1}n \{0n,1n} will have
the same diversity score of 1, which is minimal amongst all possible HVC values. All good

198 Diversity-based Parent Selection for Evolutionary Multi-objective Optimisation

search points have a larger diversity score. This means that NMUAR will never choose a
parent with minimum HVC score. The same applies to CDC where the minimum value
depends on values f min

m and f max
m .

The only risk is that NMUAR may choose a bad search point from {0n,1n}. While the
population does not contain any such points, pgood = 1. As long as the population contains
a search point x ∈ {0n,1n} and x is good, we have pgood ≥ 1/2 as there can only be one
potential bad search point, namely x, that has a chance to be selected.

The third condition implies that the individual with f1-value i + 1, which is a bad
individual, has a minimum diversity contribution. Hence NMUAR will only remove bad
individuals and all good individuals will remain. There will be at least one good search point
x ∈ P as long as the population does not cover the whole front; it can be found by scanning
the Pareto front, starting at i and moving towards smaller f1-values and starting at i+2 in
the direction of larger f1 values. In both directions either a search point from {0n,1n} or a
good search point will be found. As the whole front has not been covered yet, at least one
direction will result in a good search point. As there can be at most two bad search points in
P′ (0n and 1n), pgood ≥ 1/3.

Now we can prove the following theorem.

Theorem 6.26. The expected time for SEMO and GSEMO to find the whole Pareto front on
ONEMINMAX is bounded by O(n logn) for the NMUAR selection scheme with either CDC
or HVC with a reference point defined as (−r,−r) for r ≥ 1.

Proof. Let P and P′ be as in Lemma 6.25. Whenever pgood = Ω(1) we can apply the
arguments from Section 6.4, but we need to provide additional arguments to deal with
possible settings where pgood is not guaranteed to be Ω(1). In order for pgood /∈ Ω(1) to hold,
we must have P′ ⊆ {0n,1n} with all members of P′ being bad. This implies that, if 1n ∈ P′,
the population must contain a search point with n−1 ones (as otherwise 1n would be good)
and it cannot contain any search point with n−2 ones (as otherwise the third condition of
Lemma 6.25 would be true). The same logic applies to 0n and its neighbours.

We show that such a pathological case where pgood /∈ Ω(1) is impossible for SEMO, due
to our assumptions on the choice of reference point (−r,−r). For ONEMINMAX all points
are in the Pareto front, and because local mutations are being used, the population always
contains all possible f1 values in some integer range. Hence the population can only be
P = {1n,x} where x has n−1 ones, or P = {0n,x′} where x′ has a single one. W. l. o. g. the
former is the case. Then CDC assigns value ∞ to both search points, hence pgood = 1/2. For
HVC we have HVC(1n) = r and HVC(x) = n−1+ r, hence P′ = {x} and pgood = 1.

6.7 Comparing Selection Schemes: How Much Greed is Good? 199

For GSEMO, if P′ ⊆ {0n,1n} and w. l. o. g. 1n ∈ P′, 1n is selected as parent with proba-
bility at least 1/2. Any mutation of 1n flipping two arbitrary bits will create a search point
with n−2 ones, which then fulfils the third condition from Lemma 6.25 for the next and all
future populations. The expected waiting time for making this mutation is O(1). Afterwards,
pgood = Ω(1) by Lemma 6.25 and we obtain an upper bound for both SEMO and GSEMO
of O(n logn) following the previous analyses from Section 6.4.

Similar arguments can be used to prove that SEMO and the modified GSEMO can
optimise LOTZ efficiently.

Theorem 6.27. The expected time for SEMO and the modified GSEMO to find the whole
Pareto front on LOTZ is bounded by O

(
n2) for the NMUAR selection scheme with either

CDC or HVC with a reference point defined as (−r,−r) for r ≥ 1.

Proof. By the same arguments as in the proof of Theorem 6.26, in order to have pgood /∈ Ω(1)
the population must contain 1n and 1n−10, but not 1n−200, or the symmetric constellation
involving 0n, 10n−1, and 110n−2. For SEMO, arguing as in the proof of Theorem 6.26
the choice of reference point then implies that HVC

(
1n−10

)
> HVC (1n), hence we must

always have pgood = Ω(1).
For the modified GSEMO, if P′ ⊆ {0n,1n} and w. l. o. g. 1n ∈ P′, 1n is selected as parent

with probability at least 1/2. The probability of a mutation turning 1n into 1n−200 is at
least 1/(en2), and once it occurs, it fulfils the third condition from Lemma 6.25 for the next
and all future populations. The expected waiting time for making this mutation is O

(
n2).

Afterwards, pgood = Ω(1) by Lemma 6.25 and we obtain an upper bound for both SEMO
and the modified GSEMO of O

(
n2) following the previous analyses from Section 6.5.

Note that NMUAR is not robust to the choice of the reference point. The proof of
Lemma 6.25 has revealed a scenario where, with an asymmetric choice of the reference point,
SEMO can get stuck.

Theorem 6.28. There is a choice of reference point in the area dominated by (−1,−1) such
that SEMO with HVC and NMUAR selection has a positive probability of stagnating on
ONEMINMAX and LOTZ.

Proof. Choose the reference point as (−n− 1,−1). With positive probability, SEMO is
initialised with 1n. Then only offspring with an f1 value of n− 1 are accepted. Once
the population equals P = {1n,x}, where f1(x) = n− 1, we have HVC (1n) = n+ 1 and
HVC (x) = n, hence NMUAR will always choose 1n as parent, leading to stagnation.

200 Diversity-based Parent Selection for Evolutionary Multi-objective Optimisation

6.8 Conclusions

Diversity plays a crucial role in the area of EMO. So far, diversity-based parent selection
has not been the main focus on algorithm design. We have proposed a range of diversity-
based parent selection schemes, aiming to speed up the spread on the Pareto front. We
have demonstrated for two example functions, ONEMINMAX and LOTZ, that our new
selection schemes can significantly speed up EMO algorithms. Our theoretical results show
that a linear factor can be saved for the investigated settings and this is confirmed by our
experimental results showing a speedup of one magnitude for problems of size n = 100.

We have analysed different selection schemes with different preference toward the
individual’s diversity contribution, from aggressive schemes that put a strong emphasis on
individuals with the highest diversity contribution to more relaxed schemes that introduce a
bias for more diversity, but still give all individuals a chance to be selected as parents.

The analysis has shown that very extreme schemes can lead to undesired results. For
selection mechanisms that entail a rather extreme change of behaviour, such as Highest
Diversity Contribution (HDC) and Non-Minimum Uniformly at Random (NMUAR), search
may stagnate. On the other hand, our rank-based approaches as well as tournament selection
are successful for ONEMINMAX and LOTZ, for both SEMO and GSEMO. Among these,
the power law selection scheme is the fastest, hence we recommend this scheme as having
the best trade-off between speed and risk. We believe the power law selection to also be
beneficial for other problems as it has a high probability of selecting parents with the highest
diversity contribution, but it also has a fat tail, allowing any individual to still be selected as
parent with a reasonable probability.

Our theoretical analysis of stagnation behaviour has further revealed an interesting and
quite natural setting where standard bit mutations are detrimental in MOEAs, compared to
local mutations flipping only one bit. The performance difference is very drastic as the choice
of the mutation operator decides between an expected polynomial time and exponential time
for finding the whole Pareto front.

For future work, it would be interesting to study the benefit of diversity-based parent
selection on more complex problems. From a theoretical perspective, combinatorial optimisa-
tion problems such as the travelling thief problem where our ranked-based approaches have
already been used in Wu et al. (2018) or minimum spanning tress and covering problems for
which SEMO has already been studied would be natural candidates. On the experimental side,
it would be interesting to integrate the presented diversity-based parent selection methods
into state-of-the-art EMO algorithms and to evaluate their performance on well-established
benchmark sets.

Part IV

Conclusions and Outlook

Chapter 7

Conclusion

Looking back at the topics addressed in this thesis, its main goal was devoted to narrowing
the gap between theory and practice by providing insights into the working principles of
diversity-preserving mechanisms by testing their ability to find and maintain many local
optima in the population, as well as their ability to escape from local optima with different
basins of attraction by means of rigorous runtime analysis and empirical investigations.

In Chapter 1 we introduced the reader to the field of EAs and we motivated not only
the importance of studying diversity-preserving mechanisms using theory and practice in-
dependently but also using both approaches together. Then, in Chapter 2, we introduce
the mathematical techniques for the runtime analysis of randomised search heuristics (Sec-
tion 2.3). In Chapter 3 we have surveyed rigorous runtime analyses of EAs with explicit or
implicit diversity mechanisms. Here, we have seen that by comparing results for different ex-
ample functions, the performance of the algorithms may lead to different results, mechanisms
may work efficiently for one problem and may be ineffective for other problems, and vice
versa. In any case, this review has shown that diversity can be beneficial for enhancing the
global exploration capabilities of an EA. It is possible to improve the performance of implicit
operators like crossover, improve the performance and robustness in dynamic optimisation,
and improving the performance of MOEAs by speeding up the expected optimisation time by
constant factors, polynomial factors, or even exponential factors. Finally, explicit diversity
mechanisms can help to escape from local optimum as in the case of ageing and clearing.
All these results increase our understanding of the effects certain mechanisms have on the
performance of EAs, and the fact that exist many mechanisms that have been analysed show
the interest for trying to understand how these mechanisms work. Proof of this is that our
work has been published in high rated conferences and top journals (Section 1.1)

Chapter 4 covered three classical niching mechanisms, probabilistic crowding, restricted
tournament selection and clearing. There, we presented rigorous theoretical runtime analyses

204 Conclusion

for these niching mechanisms in the context of the (µ+1) EA on TWOMAX, we assessed
their performance in comparison to other diversity mechanisms. In addition, we provided
insights into the working principles of these mechanisms. In Section 4.1 we rigorously
proved that probabilistic crowding is a complete disaster; fitness-proportional selection for
survival selection resembled uniform selection, consequently, it is not even able to evolve
search points that are significantly better than those found by random search. This result
highlights the importance of scaling the fitness to enable probabilistic crowding to find both
optima on TWOMAX. We also think that the proof arguments used for probabilistic crowding
can also be used to analyse more advanced versions of crowding (Galan and Mengshoel,
2010; Mengshoel et al., 2014). We choose to leave this analysis for future work.

Section 4.2 presented the results for restricted tournament selection. The results have
shown that the behaviour of this niching technique varies a lot depending on how the popula-
tion size and the window size are set. If µ and w are set too small, one subpopulation may
takeover the individuals in other subpopulations. But if w is large enough, restricted tourna-
ment selection behaves similarly to deterministic crowding, in which case the probability of
finding both optima converges to 1 very quickly as µ grows (1−2−µ+1). We leave as future
work the theoretical analysis of the population dynamics of restricted tournament selection
for intermediate values for w. Experimental results have shown that restricted tournament
selection can optimise TWOMAX for smaller w than the one required in our positive result.

The performance of the clearing mechanism was analysed in Section 4.3. For the results
obtained in this section alone, we can conclude that the mechanism possesses desirable and
powerful characteristics. For the case of small niches, clearing can exhaustively explore the
landscape when the proper distance and parameters like clearing radius σ , niche capacity
κ and population size µ are set and optimise all functions of unitation. In the case of
large niches, clearing has been proved to be as strong as other niching mechanisms like
deterministic crowding, restricted tournament selection and fitness sharing since it is able to
find both optima of the test function TWOMAX. Another important attribute from clearing is
that is able to escape from local optima with different basins of attractions by moving/jumping
between niches formed by the clearing radius.

It remains an open problem to theoretically analyse the population dynamics of clearing
with more than 2 niches and to prove rigorously that clearing is effective across a much
broader range of problems, including problems with more than 2 peaks. This involves obtain-
ing more detailed insights into the dynamics of the population, including the distribution and
evolution of the losers across multiple niches.

Chapter 5 covered an extensive empirical study involving 9 common diversity mecha-
nisms on the Jansen-Zarges multimodal function classes. We have covered various degrees of

205

multimodality from 2 to 64 peaks, with peaks having equal or different heights, reflected in
their basins of attraction. The results have shown that the plain (µ+1) EA, avoiding genotype
and fitness duplicates cannot maintain several individuals distributed across the search space.
And as mentioned in Section 4.1, probabilistic crowding showed the worst performance at it
is unable to locate even a single peak.

Both fitness sharing approaches with genotypic distance showed a poor performance
unlike its versions with phenotypic distance that showed an efficient performance on TWO-
MAX; this included the ability to climb down a peak and to tunnel through fitness valleys
to reach other niches. Deterministic crowding, restricted tournament selection and clearing
perform well for peaks with the same slope and height, much better than all other diversity
mechanisms. Only for large numbers of peaks (k = 64) and different heights the performance
starts to deteriorate. Finally, only clearing has shown the ability to escape from local optima
since all other mechanisms are unable to accept worse search points or unable to tunnel
through fitness valleys.

Finally, in Chapter 6 we have demonstrated for two example functions, ONEMINMAX

and LOTZ, that our ranking-based diversity selection mechanisms can significantly speed
up EMO algorithms. Our theoretical results show that a linear factor can be saved for the
investigated settings and this is confirmed by our experimental results showing a speedup
of one magnitude for problems of size n = 100. Our analysis has shown that very extreme
schemes can lead to undesired results. For selection mechanisms that entail a rather extreme
change of behaviour, such as highest diversity contribution and non-minimum uniformly at
random, the search may stagnate. This analysis has revealed an interesting and quite natural
setting where standard bit mutations are detrimental in MOEAs, compared to local mutations.
The performance difference is very drastic as the choice of the mutation operator decides
between an expected polynomial time and exponential time for finding the whole Pareto
front. On the other hand, our rank-based approaches as well as tournament selection are
successful for ONEMINMAX and LOTZ, for both SEMO and GSEMO.

For future work, it would be interesting to study the benefit of diversity-based parent
selection on more complex problems. From a theoretical perspective, combinatorial op-
timisation problems such as minimum spanning tress and covering problems for which
SEMO has already been studied would be natural candidates. On the experimental side, it
would be interesting to integrate the presented diversity-based parent selection methods into
state-of-the-art EMO algorithms like the NSGA-II or a steady-state variant of the NSGA-II
and to evaluate their performance on well-established benchmark sets.

As general overview, this thesis has yielded many contributions for theory and practice.
The main contribution of this thesis was the plethora of results for diversity-preserving

206 Conclusion

mechanisms. We show that maintaining and promoting diversity in an EA is a very important
task. Diversity is crucial in EAs to enable global exploration and to avoid poor performance
due to premature convergence. This research has also revealed that some of the mechanisms
may be helpful for some cases and not for others by providing a detailed description of the
population dynamics and parameters settings by rigorous theoretical runtime analysis and
experimental supplements. Aside from all the answers and insides provided in this thesis
where we define when/why/how diversity is key in the evolutionary process, we recognise
that there is still an open question: which mechanisms perform well for certain problem and
more important why (if we take into consideration that this thesis focusses in a fraction of
them as mentioned in Section 3.1 from Chapter 3). This open question lead to the conclusion
that the analysis of diversity mechanisms and the population dynamics remains an interesting,
challenging, and fruitful research area.

References

Abramowitz, M. (1974). Handbook of Mathematical Functions, With Formulas, Graphs, and
Mathematical Tables. Dover Publications, Incorporated.

Alba, E. and Dorronsoro, B. (2005). The exploration/exploitation tradeoff in dynamic cellular
genetic algorithms. IEEE Transactions on Evolutionary Computation, 9(2):126–142.

Arora, S., Hazan, E., and Kale, S. (2012). The Multiplicative Weights Update Method: a
Meta-Algorithm and Applications. Theory of Computing, 8(6):121–164.

Auger, A., Bader, J., Brockhoff, D., and Zitzler, E. (2012). Hypervolume-based multiobjective
optimization: Theoretical foundations and practical implications. Theoretical Computer
Science, 425:75–103.

Auger, A. and Doerr, B., editors (2011). Theory of Randomized Search Heuristics — Foun-
dations and Recent Developments, volume 1 of Theoretical Computer Science. World
Scientific Publishing Co., Inc.

Bäck, T., Fogel, D. B., and Michalewicz, Z., editors (1997). Handbook of Evolutionary
Computation. IOP Publishing Ltd., 1st edition.

Ballester, P. J. and Carter, J. N. (2004). An Effective Real-Parameter Genetic Algorithm
with Parent Centric Normal Crossover for Multimodal Optimisation. In Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO ’04, pages 901–913.
Springer Berlin Heidelberg.

Battiti, R. (1996). Reactive Search: Toward Self-Tuning Heuristics. In Modern Heuristic
Search Methods, chapter 4, pages 61–83. John Wiley & Sons, Inc.

Beyer, H.-G. and Schwefel, H.-P. (2002). Evolution strategies – A comprehensive introduc-
tion. Natural Computing, 1(1):3–52.

Birattari, M., Paquete, L., Stützle, T., and Varrentrapp, K. (2001). Classification of Meta-
heuristics and Design of Experiments for the Analysis of Components. Technical Report
AIDA-01-05, Intellektik Darmstadt University of Technology Darmstadt, Germany.

Bleuler, S., Brack, M., Thiele, L., and Zitzler, E. (2001). Multiobjective genetic programming:
reducing bloat using SPEA2. In IEEE Congress on Evolutionary Computation, volume 1,
pages 536–543.

Blum, C. and Roli, A. (2003). Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison. ACM Comput. Surv., 35(3):268–308.

208 References

Boussaïd, I., Lepagnot, J., and Siarry, P. (2013). A survey on optimization metaheuristics.
Information Sciences, 237:82 – 117.

Bremermann, H. J. (1962). Optimization Through Evolution and Recombination. In Self-
organizing Systems, pages 93–106. Pergamon Press, Oxford.

Briest, P., Brockhoff, D., Degener, S., Englert, M., Gunia, C., Heering, O., Jansen, T.,
Leifhelm, M., Plociennik, K., Röglin, H., Schweer, A., Sudholt, D., Tannenbaum, S., and
Wegener, I. (2004a). Evolutionäre Algorithmen zwischen experimenteller und theoretischer
Analyse – Endbericht der Projektgruppe 427. Technical report, Universität Dortmund.

Briest, P., Brockhoff, D., Degener, S., Englert, M., Gunia, C., Heering, O., Jansen, T.,
Leifhelm, M., Plociennik, K., Röglin, H., Schweer, A., Sudholt, D., Tannenbaum, S.,
and Wegener, I. (2004b). FrEAK – Free Evolutionary Algorithm Kit. Available from
http://sourceforge.net/projects/freak427/.

Bringmann, K. and Friedrich, T. (2010). An Efficient Algorithm for Computing Hypervolume
Contributions. Evolutionary Computation, 18(3):383–402.

Bringmann, K. and Friedrich, T. (2012). Approximating the least hypervolume contributor:
NP-hard in general, but fast in practice. Theoretical Computer Science, 425:104–116.

Brockhoff, D. (2012). Theoretical Aspects of Evolutionary Multiobjective Optimization.
In Theory of Randomized Search Heuristics — Foundations and Recent Developments,
volume 1, chapter 4, pages 101–139. World Scientific Publishing.

Castrogiovanni, M., Nicosia, G., and Rascuná, R. (2007). Experimental Analysis of the Aging
Operator for Static and Dynamic Optimisation Problems. In Knowledge-Based Intelligent
Information and Engineering Systems, pages 804–811. Springer Berlin Heidelberg.

Chaiyaratana, N., Piroonratana, T., and Sangkawelert, N. (2007). Effects of diversity control
in single-objective and multi-objective genetic algorithms. Journal of Heuristics, 13(1):1–
34.

Chiong, R., editor (2009). Nature-Inspired Algorithms for Optimisation, volume 193 of
Studies in Computational Intelligence. Springer-Verlag Berlin Heidelberg, 1 edition.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
Algorithms. The MIT Press, 3rd edition.

Corus, D. and Oliveto, P. S. (2017). Standard Steady State Genetic Algorithms Can Hillclimb
Faster than Mutation-only Evolutionary Algorithms. IEEE Transactions on Evolutionary
Computation. Early Access.

Cotta-Porras, C. (1998). A study of hybridisation techniques and their application to the
design of evolutionary algorithms. AI Communications, 11(3/4).

Covantes Osuna, E., Gao, W., Neumann, F., and Sudholt, D. (2017). Speeding Up Evo-
lutionary Multi-objective Optimisation Through Diversity-based Parent Selection. In
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17,
pages 553–560. ACM.

http://sourceforge.net/projects/freak427/

References 209

Covantes Osuna, E., Gao, W., Neumann, F., and Sudholt, D. (2018). Design and analysis
of diversity-based parent selection schemes for speeding up evolutionary multi-objective
optimisation. Theoretical Computer Science. To appear. Preprint available from http:
//arxiv.org/abs/1805.01221.

Covantes Osuna, E. and Sudholt, D. (2017). Analysis of the Clearing Diversity-Preserving
Mechanism. In Proceedings of the 14th ACM/SIGEVO Conference on Foundations of
Genetic Algorithms, FOGA ’17, pages 55–63. ACM.

Covantes Osuna, E. and Sudholt, D. (2018a). Empirical Analysis of Diversity-Preserving
Mechanisms on Example Landscapes for Multimodal Optimisation. In Parallel Problem
Solving from Nature – PPSN XV, pages 207–219. Springer International Publishing.

Covantes Osuna, E. and Sudholt, D. (2018b). On the Runtime Analysis of the Clearing
Diversity-Preserving Mechanism. Evolutionary Computation. To appear. Preprint available
from http://arxiv.org/abs/1803.09715.

Covantes Osuna, E. and Sudholt, D. (2018c). Runtime Analysis of Probabilistic Crowding
and Restricted Tournament Selection for Bimodal Optimisation. In Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO ’18, pages 929–936. ACM.

Črepinšek, M., Liu, S.-H., and Mernik, M. (2013). Exploration and Exploitation in Evolu-
tionary Algorithms: A Survey. ACM Comput. Surv., 45(3):35:1–35:33.

Cutello, V., Nicosia, G., and Pavone, M. (2003). A Hybrid Immune Algorithm with Informa-
tion Gain for the Graph Coloring Problem. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’03, pages 171–182. Springer Berlin Heidelberg.

Cutello, V., Nicosia, G., and Pavone, M. (2007a). An immune algorithm with stochastic
aging and kullback entropy for the chromatic number problem. Journal of Combinatorial
Optimization, 14(1):9–33.

Cutello, V., Nicosia, G., Romeo, M., and Oliveto, P. S. (2007b). On the Convergence
of Immune Algorithms. In 2007 IEEE Symposium on Foundations of Computational
Intelligence, FOCCI 2007, pages 409–415.

Dang, D.-C., Friedrich, T., Kötzing, T., Krejca, M. S., Lehre, P. K., Oliveto, P. S., Sudholt,
D., and Sutton, A. M. (2016a). Emergence of Diversity and Its Benefits for Crossover
in Genetic Algorithms. In Parallel Problem Solving from Nature – PPSN XIV, pages
890–900. Springer International Publishing.

Dang, D.-C., Friedrich, T., Kötzing, T., Krejca, M. S., Lehre, P. K., Oliveto, P. S., Sudholt,
D., and Sutton, A. M. (2016b). Escaping Local Optima with Diversity Mechanisms and
Crossover. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’16, pages 645–652. ACM.

Dang, D. C., Friedrich, T., Kötzing, T., Krejca, M. S., Lehre, P. K., Oliveto, P. S., Sudholt,
D., and Sutton, A. M. (2017a). Escaping Local Optima Using Crossover with Emergent
Diversity. IEEE Transactions on Evolutionary Computation, 22(3):484–497.

Dang, D.-C., Jansen, T., and Lehre, P. K. (2017b). Populations Can Be Essential in Tracking
Dynamic Optima. Algorithmica, 78(2):660–680.

http://arxiv.org/abs/1805.01221
http://arxiv.org/abs/1805.01221
http://arxiv.org/abs/1803.09715

210 References

Das, S., Maity, S., Qu, B.-Y., and Suganthan, P. (2011). Real-parameter evolutionary
multimodal optimization — A survey of the state-of-the-art. Swarm and Evolutionary
Computation, 1(2):71–88.

de Castro, L. N. and Timmis, J. (2002). Artificial Immune Systems: A New Computational
Intelligence Approach. Springer-Verlag London, 1st edition.

De Felice, M., Meloni, S., and Panzieri, S. (2011). Effect of topology on diversity of spatially
structured evolutionary algorithms. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’11, pages 1579–1586. ACM.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–
197.

Doerr, B. (2012). Analyzing Randomized Search Heuristics: Tools from Probability Theory.
In Theory of Randomized Search Heuristics, chapter 1, pages 1–20. World Scientific.

Doerr, B. (2018). Probabilistic Tools for the Analysis of Randomized Optimization Heuristics.
ArXiv e-prints. Preprint available from http://arxiv.org/abs/1801.06733.

Doerr, B., Fouz, M., and Witt, C. (2011). Sharp Bounds by Probability-generating Func-
tions and Variable Drift. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’11, pages 2083–2090. ACM.

Doerr, B., Gao, W., and Neumann, F. (2016). Runtime Analysis of Evolutionary Diver-
sity Maximization for ONEMINMAX. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’16, pages 557–564. ACM.

Doerr, B. and Goldberg, L. A. (2010). Drift Analysis with Tail Bounds. In Parallel Problem
Solving from Nature – PPSN XI, pages 174–183. Springer Berlin Heidelberg.

Doerr, B., Hebbinghaus, N., and Neumann, F. (2007a). Speeding Up Evolutionary Algorithms
through Asymmetric Mutation Operators. Evolutionary Computation, 15(4):401–410.

Doerr, B. and Johannsen, D. (2007). Adjacency List Matchings: An Ideal Genotype for
Cycle Covers. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’07, pages 1203–1210. ACM.

Doerr, B., Johannsen, D., and Winzen, C. (2012). Multiplicative Drift Analysis. Algorithmica,
64(4):673–697.

Doerr, B., Klein, C., and Storch, T. (2007b). Faster Evolutionary Algorithms by Superior
Graph Representation. In 2007 IEEE Symposium on Foundations of Computational
Intelligence, pages 245–250.

Droste, S., Jansen, T., and Wegener, I. (2002). On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science, 276(1):51–81.

Eiben, A. E. and Smith, E. (2003). Introduction to Evolutionary Computing. Natural
Computing Series. Springer-Verlag Berlin Heidelberg, 2nd edition.

http://arxiv.org/abs/1801.06733

References 211

Ewens, W. (2004). Mathematical Population Genetics 1: Theoretical Introduction. Interdis-
ciplinary Applied Mathematics. Springer New York.

Fischer, S. and Wegener, I. (2005). The one-dimensional Ising model: Mutation versus
recombination. Theoretical Computer Science, 344(2):208–225.

Floreano, D. and Mattiussi, C. (2008). Bio-Inspired Artificial Intelligence Theories, Methods,
and Technologies. Intelligent Robotics and Autonomous Agents. MIT Press.

Fogel, D. B. (1995). Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. Wiley-IEEE Press, 3rd edition.

Fogel, D. B. (1997). The Advantages of Evolutionary Computation. In Biocomputing and
Emergent Computation: Proceedings of BCEC97, pages 1–11. World Scientific Press.

Fogel, L. J. (1999). Intelligence Through Simulated Evolution: Forty Years of Evolutionary
Programming. John Wiley & Sons, Inc.

Fonseca, C. M. and Fleming, P. J. (1995). An Overview of Evolutionary Algorithms in
Multiobjective Optimization. Evolutionary Computation, 3(1):1–16.

Friedrich, T., Hebbinghaus, N., and Neumann, F. (2007). Rigorous Analyses of Simple
Diversity Mechanisms. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’07, pages 1219–1225. ACM.

Friedrich, T., Horoba, C., and Neumann, F. (2011). Illustration of fairness in evolutionary
multi-objective optimization. Theoretical Computer Science, 412(17):1546–1556.

Friedrich, T., Kötzing, T., and Wagner, M. (2017). A Generic Bet-and-Run Strategy for
Speeding Up Stochastic Local Search. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, pages 801–807.

Friedrich, T., Oliveto, P. S., Sudholt, D., and Witt, C. (2009). Analysis of Diversity-preserving
Mechanisms for Global Exploration. Evolutionary Computation, 17(4):455–476.

Galan, S. F. and Mengshoel, O. J. (2010). Generalized Crowding for Genetic Algorithms.
In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’10,
pages 775–782. ACM.

Gao, W. and Neumann, F. (2014). Runtime Analysis for Maximizing Population Diver-
sity in Single-objective Optimization. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’14, pages 777–784. ACM.

García-Hernández, L., Palomo-Romero, J. M., Salas-Morera, L., Arauzo-Azofra, A., and
Pierreval, H. (2015). A novel hybrid evolutionary approach for capturing decision maker
knowledge into the unequal area facility layout problem. Expert Systems with Applications,
42(10):4697–4708.

García-Martínez, C., Lozano, M., and Rodríguez-Díaz, F. (2012). A simulated annealing
method based on a specialised evolutionary algorithm. Applied Soft Computing, 12(2):573–
588.

212 References

Gendreau, M. and Potvin, J.-Y., editors (2010). Handbook of Metaheuristics, volume 146
of International Series in Operations Research & Management Science. Springer US, 2
edition.

Ghosh, A., Tsutsui, S., and Tanaka, H. (1996). Individual aging in genetic algorithms. In
Proceedings of the Australian New Zealand Conference on Intelligent Information Systems,
ANZIIS 96, pages 276–279.

Giacobini, M., Tomassini, M., and Tettamanzi, A. (2005). Takeover Time Curves in Random
and Small-world Structured Populations. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’05, pages 1333–1340. ACM.

Giel, O. (2003). Expected runtimes of a simple multi-objective evolutionary algorithm. In
IEEE Congress on Evolutionary Computation, volume 3, pages 1918–1925.

Giel, O. and Lehre, P. K. (2010). On the Effect of Populations in Evolutionary Multi-objective
Optimisation. Evolutionary Computation, 18(3):335–356.

Giel, O. and Wegener, I. (2003). Evolutionary Algorithms and the Maximum Matching
Problem. In STACS 2003, pages 415–426. Springer Berlin Heidelberg.

Glibovets, N. N. and Gulayeva, N. M. (2013). A Review of Niching Genetic Algorithms for
Multimodal Function Optimization. Cybernetics and Systems Analysis, 49(6):815–820.

Glover, F. and Laguna, M. (1997). Tabu Search. Springer US, 1 edition.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., 1st edition.

Goldberg, D. E. and Richardson, J. (1987). Genetic Algorithms with Sharing for Multimodal
Function Optimization. In Proceedings of the Second International Conference on Genetic
Algorithms on Genetic Algorithms and Their Application, pages 41–49. L. Erlbaum
Associates Inc.

Hajek, B. (1982). Hitting-Time and Occupation-Time Bounds Implied by Drift Analysis
with Applications. Advances in Applied Probability, 14(3):502–525.

Happ, E., Johannsen, D., Klein, C., and Neumann, F. (2008). Rigorous Analyses of Fitness-
proportional Selection for Optimizing Linear Functions. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO ’08, pages 953–960. ACM.

Harik, G. R. (1995). Finding Multimodal Solutions Using Restricted Tournament Selection.
In Proceedings of the 6th International Conference on Genetic Algorithms, pages 24–31.
Morgan Kaufmann Publishers Inc.

He, J. and Yao, X. (2001). Drift analysis and average time complexity of evolutionary
algorithms. Artificial Intelligence, 127(1):57 – 85.

He, J. and Yao, X. (2003). Towards an analytic framework for analysing the computation
time of evolutionary algorithms. Artificial Intelligence, 145(1):59 – 97.

He, J. and Yao, X. (2004). A study of drift analysis for estimating computation time of
evolutionary algorithms. Natural Computing, 3(1):21–35.

References 213

Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials. SIAM Journal
on Computing, 2(2):88–105.

Horoba, C., Jansen, T., and Zarges, C. (2009). Maximal Age in Randomized Search Heuristics
with Aging. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’09, pages 803–810. ACM.

Horoba, C. and Neumann, F. (2008). Benefits and Drawbacks for the Use of Epsilon-
dominance in Evolutionary Multi-objective Optimization. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO ’08, pages 641–648. ACM.

Horoba, C. and Neumann, F. (2010). Approximating Pareto-Optimal Sets Using Diversity
Strategies in Evolutionary Multi-Objective Optimization. In Advances in Multi-Objective
Nature Inspired Computing, pages 23–44. Springer Berlin Heidelberg.

Hoyweghen, C. V., Goldberg, D. E., and Naudts, B. (2002). From TwoMax to the Ising Model:
Easy and Hard Symmetrical Problems. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’02, pages 626–633. Morgan Kaufmann Publishers Inc.

Hutter, M. and Legg, S. (2006). Fitness uniform optimization. IEEE Transactions on
Evolutionary Computation, 10(5):568–589.

Ising, E. (1925). Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik, 31(1):253–
258. Translation to english available: https://goo.gl/sj4ibn.

Jägersküpper, J. (2007). Algorithmic analysis of a basic evolutionary algorithm for continuous
optimization. Theoretical Computer Science, 379(3):329 – 347.

Jansen and Wegener (2002). The Analysis of Evolutionary Algorithms—A Proof That
Crossover Really Can Help. Algorithmica, 34(1):47–66.

Jansen, T. (2002). On the analysis of dynamic restart strategies for evolutionary algorithms.
In Parallel Problem Solving from Nature – PPSN VII, pages 33–43. Springer Berlin
Heidelberg.

Jansen, T. (2013). Analyzing Evolutionary Algorithms: The Computer Science Perspective.
Natural Computing Series. Springer-Verlag Berlin Heidelberg, 1 edition.

Jansen, T. and Wegener, I. (2001). Evolutionary algorithms - how to cope with plateaus
of constant fitness and when to reject strings of the same fitness. IEEE Transactions on
Evolutionary Computation, 5(6):589–599.

Jansen, T. and Wegener, I. (2005). Real royal road functions–where crossover provably is
essential. Discrete Applied Mathematics, 149(1):111–125.

Jansen, T. and Zarges, C. (2009). Comparing Different Aging Operators. In Artificial Immune
Systems, pages 95–108. Springer Berlin Heidelberg.

Jansen, T. and Zarges, C. (2010a). Aging Beyond Restarts. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO ’10, pages 705–712. ACM.

Jansen, T. and Zarges, C. (2010b). On the Benefits of Aging and the Importance of Details.
In Artificial Immune Systems, pages 61–74. Springer Berlin Heidelberg.

https://goo.gl/sj4ibn

214 References

Jansen, T. and Zarges, C. (2011a). Analyzing different variants of immune inspired somatic
contiguous hypermutations. Theoretical Computer Science, 412(6):517–533.

Jansen, T. and Zarges, C. (2011b). On the role of age diversity for effective aging operators.
Evolutionary Intelligence, 4(2):99–125.

Jansen, T. and Zarges, C. (2014). Evolutionary Algorithms and Artificial Immune Sys-
tems on a Bi-stable Dynamic Optimisation Problem. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’14, pages 975–982. ACM.

Jansen, T. and Zarges, C. (2016). Example Landscapes to Support Analysis of Multimodal
Optimisation. In Parallel Problem Solving from Nature – PPSN XIV, pages 792–802.
Springer International Publishing.

Johannsen, D. (2010). Random Combinatorial Structures and Randomized Search Heuristics.
PhD thesis, Universität des Saarlandes, Saarbrücken, Germany and the Max-Planck-Institut
für Informatik.

Kazarlis, S., Papadakis, S., Theocharis, J., and Petridis, V. (2001). Microgenetic algo-
rithms as generalized hill-climbing operators for GA optimization. IEEE Transactions on
Evolutionary Computation, 5(3):204–217.

Kötzing, T., Lissovoi, A., and Witt, C. (2015). (1+1) EA on Generalized Dynamic OneMax.
In Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII,
FOGA ’15, pages 40–51. ACM.

Kötzing, T. and Molter, H. (2012). ACO Beats EA on a Dynamic Pseudo-Boolean Function.
In Parallel Problem Solving from Nature – PPSN XII, pages 113–122. Springer Berlin
Heidelberg.

Kötzing, T., Sudholt, D., and Theile, M. (2011). How Crossover Helps in Pseudo-Boolean
Optimization. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’11, pages 989–996. ACM.

Koumousis, V. and Katsaras, C. (2006). A saw-tooth genetic algorithm combining the effects
of variable population size and reinitialization to enhance performance. IEEE Transactions
on Evolutionary Computation, 10(1):19–28.

Koza, J. R. (1994). Genetic programming as a means for programming computers by natural
selection. Statistics and Computing, 4(2):87–112.

Kubota, N. and Fukuda, T. (1997). Genetic algorithms with age structure. Soft Computing,
1(4):155–161.

Lässig, J. and Sudholt, D. (2010). The Benefit of Migration in Parallel Evolutionary Al-
gorithms. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’10, pages 1105–1112. ACM.

Lässig, J. and Sudholt, D. (2013). Design and analysis of migration in parallel evolutionary
algorithms. Soft Computing, 17(7):1121–1144.

References 215

Lässig, J. and Sudholt, D. (2014). Analysis of speedups in parallel evolutionary algorithms
and (1+λ) EAs for combinatorial optimization. Theoretical Computer Science, 551:66–83.

Laumanns, M., Thiele, L., Deb, K., and Zitzler, E. (2002). Combining Convergence and Diver-
sity in Evolutionary Multiobjective Optimization. Evolutionary Computation, 10(3):263–
282.

Laumanns, M., Thiele, L., and Zitzler, E. (2004). Running time analysis of multiobjective
evolutionary algorithms on pseudo-Boolean functions. IEEE Transactions on Evolutionary
Computation, 8(2):170–182.

Laumanns, M., Zitzler, E., and Thiele, L. (2001). On The Effects of Archiving, Elitism, and
Density Based Selection in Evolutionary Multi-objective Optimization. In Evolutionary
Multi-Criterion Optimization, pages 181–196. Springer Berlin Heidelberg.

Lee, K. Y. and El-Sharkawi, M. A., editors (2008). Modern Heuristic Optimization Tech-
niques: Theory and Applications to Power Systems. IEEE Press Series on Power Engineer-
ing. Wiley - IEEE Press.

Lehre, P. K. and Witt, C. (2012). Black-Box Search by Unbiased Variation. Algorithmica,
64(4):623–642.

Li, J.-P., Balazs, M. E., Parks, G. T., and Clarkson, P. J. (2002). A Species Conserving
Genetic Algorithm for Multimodal Function Optimization. Evolutionary Computation,
10(3):207–234.

Li, J.-P., Balazs, M. E., Parks, G. T., and Clarkson, P. J. (2003). Erratum: A species conserving
genetic algorithm for multimodal function optimization. Evolutionary Computation,
11(1):107–109.

Li, X., Engelbrecht, A., and Epitropakis, M. G. (2013). Benchmark Functions for CEC’2013
Special Session and Competition on Niching Methods for Multimodal Function Optimiza-
tion. Technical report, Evolutionary Computation and Machine Learning Group, RMIT
University, Australia.

Liang, Y. and Leung, K.-S. (2011). Genetic Algorithm with adaptive elitist-population
strategies for multimodal function optimization. Applied Soft Computing, 11(2):2017–
2034. The Impact of Soft Computing for the Progress of Artificial Intelligence.

Lissovoi, A. and Witt, C. (2015). On the Utility of Island Models in Dynamic Optimization.
In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’15,
pages 1447–1454. ACM.

Lissovoi, A. and Witt, C. (2017). A Runtime Analysis of Parallel Evolutionary Algorithms
in Dynamic Optimization. Algorithmica, 78(2):641–659.

Liu, S.-H., Mernik, M., and Bryant, B. R. (2009). To Explore or to Exploit: An Entropy-
driven Approach for Evolutionary Algorithms. Int. J. Know.-Based Intell. Eng. Syst.,
13(3,4):185–206.

216 References

Lozano, M. and García-Martínez, C. (2010). Hybrid metaheuristics with evolutionary
algorithms specializing in intensification and diversification: Overview and progress report.
Computers & Operations Research, 37(3):481–497.

Lozano, M., Herrera, F., and Cano, J. R. (2005). Replacement Strategies to Maintain Useful
Diversity in Steady-State Genetic Algorithms. In Soft Computing: Methodologies and
Applications, volume 32 of Advances in Soft Computing, pages 85–96. Springer Berlin
Heidelberg.

Lozano, M., Herrera, F., Krasnogor, N., and Molina, D. (2004). Real-coded Memetic
Algorithms with Crossover Hill-climbing. Evolutionary Computation, 12(3):273–302.

Mahfoud, S. W. (1995). Niching methods for genetic algorithms. PhD thesis, University of
Illinois at Urbana-Champaign.

Mann, H. B. and Whitney, D. R. (1947). On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. The Annals of Mathematical Statistics,
18(1):50–60.

Mengsheol, O. and Goldberg, D. (1999). Probabilistic Crowding: Deterministic Crowd-
ing with Probabilistic Replacement. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’99, pages 409–416.

Mengshoel, O. J., Galán, S. F., and de Dios, A. (2014). Adaptive generalized crowding for
genetic algorithms. Information Sciences, 258:140–159.

Mengshoel, O. J. and Goldberg, D. E. (2008). The Crowding Approach to Niching in Genetic
Algorithms. Evolutionary Computation, 16(3):315–354.

Mitchell, M. (1998). An Introduction to Genetic Algorithms. MIT Press.

Mitzenmacher, M. and Upfal, E. (2005). Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press.

Motwani, R. and Raghavan, P. (1995). Randomized Algorithms. Cambridge University Press.

Naudts, B. and Naudts, J. (1998). The effect of spin-flip symmetry on the performance of the
simple GA. In Parallel Problem Solving from Nature – PPSN V, pages 67–76. Springer
Berlin Heidelberg.

Neumann, F. (2008). Expected runtimes of evolutionary algorithms for the Eulerian cycle
problem. Computers & Operations Research, 35(9):2750–2759.

Neumann, F., Oliveto, P. S., Rudolph, G., and Sudholt, D. (2011). On the Effectiveness
of Crossover for Migration in Parallel Evolutionary Algorithms. In Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO ’11, pages 1587–1594. ACM.

Neumann, F., Oliveto, P. S., and Witt, C. (2009). Theoretical Analysis of Fitness-proportional
Selection: Landscapes and Efficiency. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’09, pages 835–842. ACM.

References 217

Neumann, F. and Witt, C. (2010). Bioinspired Computation in Combinatorial Optimization:
Algorithms and Their Computational Complexity. Natural Computing Series. Springer-
Verlag Berlin Heidelberg, 1 edition.

Nguyen, A. Q., Sutton, A. M., and Neumann, F. (2015). Population size matters: Rigorous
runtime results for maximizing the hypervolume indicator. Theoretical Computer Science,
561:24–36.

Noman, N. and Iba, H. (2008). Accelerating Differential Evolution Using an Adaptive Local
Search. IEEE Transactions on Evolutionary Computation, 12(1):107–125.

Oliveto, P. S., He, J., and Yao, X. (2008). Analysis of population-based evolutionary
algorithms for the vertex cover problem. In IEEE Congress on Evolutionary Computation,
pages 1563–1570.

Oliveto, P. S. and Sudholt, D. (2014). On the Runtime Analysis of Stochastic Ageing
Mechanisms. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’14, pages 113–120. ACM.

Oliveto, P. S., Sudholt, D., and Zarges, C. (2014). On the Runtime Analysis of Fitness
Sharing Mechanisms. In Parallel Problem Solving from Nature – PPSN XIII, pages
932–941. Springer International Publishing.

Oliveto, P. S. and Witt, C. (2011). Simplified Drift Analysis for Proving Lower Bounds in
Evolutionary Computation. Algorithmica, 59(3):369–386.

Oliveto, P. S. and Witt, C. (2012). Erratum: Simplified Drift Analysis for Proving Lower
Bounds in Evolutionary Computation. ArXiv e-prints.

Oliveto, P. S. and Witt, C. (2015). Improved time complexity analysis of the Simple Genetic
Algorithm. Theoretical Computer Science, 605:21–41.

Oliveto, P. S. and Zarges, C. (2015). Analysis of diversity mechanisms for optimisation in
dynamic environments with low frequencies of change. Theoretical Computer Science,
561:37–56.

Pelikan, M. and Goldberg, D. E. (2000). Genetic Algorithms, Clustering, and the Breaking of
Symmetry. In Parallel Problem Solving from Nature – PPSN VI, pages 385–394. Springer
Berlin Heidelberg.

Pérez Heredia, J. (2017). A Computational View on Natural Evolution: On the Rigorous
Analysis of the Speed of Adaptation. PhD thesis, University of Sheffield.

Pétrowski, A. (1996). A clearing procedure as a niching method for genetic algorithms.
In Proceedings of IEEE International Conference on Evolutionary Computation, pages
798–803.

Pétrowski, A. (1997a). A New Selection Operator Dedicated to Speciation. In Proceedings
of the Seventh International Conference on Genetic Algorithms (ICGA97), pages 144–151.
Morgan Kaufmann.

218 References

Pétrowski, A. (1997b). An Efficient Hierarchical Clustering Technique for Speciation. In
Artificielle-1997, pages 22–29.

Phan, D. H., Suzuki, J., and Boonma, P. (2011). SMSP-EMOA: Augmenting SMS-EMOA
with the Prospect Indicator for Multiobjective Optimization. In 2011 IEEE 23rd Interna-
tional Conference on Tools with Artificial Intelligence, pages 261–268.

Preuss, M. (2015). Multimodal Optimization by Means of Evolutionary Algorithms. Natural
Computing Series. Springer International Publishing, 1st edition.

Qian, C., Tang, K., and Zhou, Z.-H. (2016). Selection Hyper-heuristics Can Provably Be
Helpful in Evolutionary Multi-objective Optimization. In Parallel Problem Solving from
Nature – PPSN XIV, pages 835–846. Springer International Publishing.

Qian, C., Yu, Y., and Zhou, Z.-H. (2013). An analysis on recombination in multi-objective
evolutionary optimization. Artificial Intelligence, 204:99–119.

Qu, B. Y. and Suganthan, P. N. (2010). Novel multimodal problems and differential evolution
with ensemble of restricted tournament selection. In IEEE Congress on Evolutionary
Computation, pages 1–7.

Rai, D. and Tyagi, K. (2013). Bio-inspired Optimization Techniques: A Critical Comparative
Study. SIGSOFT Softw. Eng. Notes, 38(4):1–7.

Rohlfshagen, P., Lehre, P. K., and Yao, X. (2009). Dynamic Evolutionary Optimisation:
An Analysis of Frequency and Magnitude of Change. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’09, pages 1713–1720. ACM.

Rowe, J. E. and Sudholt, D. (2014). The choice of the offspring population size in the (1,λ)
evolutionary algorithm. Theoretical Computer Science, 545:20–38.

Sareni, B. and Krahenbuhl, L. (1998). Fitness sharing and niching methods revisited. IEEE
Transactions on Evolutionary Computation, 2(3):97–106.

Scharnow, J., Tinnefeld, K., and Wegener, I. (2005). The analysis of evolutionary algorithms
on sorting and shortest paths problems. Journal of Mathematical Modelling and Algorithms,
3(4):349–366.

Schwefel, H.-P. and Rudolph, G. (1995). Contemporary evolution strategies. In Advances in
Artificial Life, pages 891–907. Springer Berlin Heidelberg.

Shir, O. M. (2012). Niching in Evolutionary Algorithms. In Handbook of Natural Computing,
pages 1035–1069. Springer Berlin Heidelberg.

Singh, G. and Deb, K. (2006). Comparison of Multi-modal Optimization Algorithms Based
on Evolutionary Algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’06, pages 1305–1312. ACM.

Smith, R. E., Forrest, S., and Perelson, A. S. (1993). Searching for Diverse, Cooperative
Populations with Genetic Algorithms. Evolutionary Computation, 1(2):127–149.

References 219

Squillero, G. and Tonda, A. (2016). Divergence of character and premature convergence: A
survey of methodologies for promoting diversity in evolutionary optimization. Information
Sciences, 329:782–799.

Storch, T. and Wegener, I. (2004). Real royal road functions for constant population size.
Theoretical Computer Science, 320(1):123 – 134.

Storn, R. and Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic for
global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4):341–
359.

Stützle, T. G. (1999). Local search algorithms for combinatorial problems - analysis,
improvements, and new applications, volume 220 of DISKI. Dissertationen zur Künstlichen
Intelligenz [Dissertations on Artificial Intelligence]. Infix, Sankt Augustin.

Sudholt, D. (2005). Crossover is Provably Essential for the Ising Model on Trees. In
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’05,
pages 1161–1167. ACM.

Sudholt, D. (2008). Computational Complexity of Evolutionary Algorithms, Hybridizations,
and Swarm Intelligence. PhD thesis, Technische Universität Dortmund.

Sudholt, D. (2009). The impact of parametrization in memetic evolutionary algorithms.
Theoretical Computer Science, 410(26):2511–2528.

Sudholt, D. (2011a). Hybridizing Evolutionary Algorithms with Variable-Depth Search to
Overcome Local Optima. Algorithmica, 59(3):343–368.

Sudholt, D. (2011b). Using Markov-chain Mixing Time Estimates for the Analysis of Ant
Colony Optimization. In Proceedings of the 11th Workshop Proceedings on Foundations
of Genetic Algorithms, FOGA ’11, pages 139–150. ACM.

Sudholt, D. (2012). Crossover Speeds Up Building-block Assembly. In Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO ’12, pages 689–702. ACM.

Sudholt, D. (2015). Parallel Evolutionary Algorithms. In Springer Handbook of Computa-
tional Intelligence, pages 929–959. Springer Berlin Heidelberg.

Sudholt, D. (2017). How Crossover Speeds up Building Block Assembly in Genetic Algo-
rithms. Evolutionary Computation, 25(2):237–274.

Sudholt, D. (2018). The Benefits of Population Diversity in Evolutionary Algorithms: A
Survey of Rigorous Runtime Analyses. ArXiv e-prints. http://arxiv.org/abs/1801.10087.

Sudholt, D. and Witt, C. (2016). Update Strength in EDAs and ACO: How to Avoid
Genetic Drift. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’16, pages 61–68. ACM.

Talbi, E.-G. (2002). A Taxonomy of Hybrid Metaheuristics. Journal of Heuristics, 8(5):541–
564.

Talbi, E.-G. (2009). Metaheuristics: From Design to Implementation, volume 74 of Wiley
Series on Parallel and Distributed Computing. John Wiley & Sons.

http://arxiv.org/abs/1801.10087

220 References

Talbi, E.-G. and Bachelet, V. (2006). COSEARCH: A Parallel Cooperative Metaheuristic.
Journal of Mathematical Modelling and Algorithms, 5(1):5–22.

Tsafarakis, S. (2016). Redesigning product lines in a period of economic crisis: a hybrid
simulated annealing algorithm with crossover. Annals of Operations Research, 247(2):617–
633.

Turing, A. M. (1948). Intelligent machinery. Technical report, National Physical Laboratory
(NPL).

Ursem, R. K. (2002). Diversity-Guided Evolutionary Algorithms. In Parallel Problem
Solving from Nature – PPSN VII, pages 462–471. Springer Berlin Heidelberg.

Watson, R. A. and Jansen, T. (2007). A Building-block Royal Road Where Crossover
is Provably Essential. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’07, pages 1452–1459. ACM.

Wegener, I. (2002). Methods for the Analysis of Evolutionary Algorithms on Pseudo-Boolean
Functions. In Evolutionary Optimization, pages 349–369. Springer US.

Wegener, I. and Witt, C. (2005). On the Optimization of Monotone Polynomials by Sim-
ple Randomized Search Heuristics. Combinatorics, Probability and Computing, 14(1-
2):225–247.

Witt, C. (2006). Runtime Analysis of the (µ+1) EA on Simple Pseudo-Boolean Functions.
Evolutionary Computation, 14(1):65–86.

Wu, J., Polyakovskiy, S., Wagner, M., and Neumann, F. (2018). Evolutionary Computation
Plus Dynamic Programming for the Bi-objective Travelling Thief Problem. In Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO ’18, pages 777–784.
ACM.

Yagiura, M. and Ibaraki, T. (2001). On metaheuristic algorithms for combinatorial optimiza-
tion problems. Systems and Computers in Japan, 32(3):33–55.

Yang, X. (2010). Engineering Optimization: An Introduction with Metaheuristic Applications.
John Wiley & Sons, 1 edition.

Yin, X. and Germay, N. (1993). A Fast Genetic Algorithm with Sharing Scheme Using
Cluster Analysis Methods in Multimodal Function Optimization. In Artificial Neural Nets
and Genetic Algorithms, pages 450–457. Springer Vienna.

Yu, E. and Suganthan, P. (2010). Ensemble of niching algorithms. Information Sciences,
180(15):2815–2833.

Yu, X. and Gen, M. (2012). Introduction to Evolutionary Algorithms. Springer Publishing
Company, Incorporated, 1st edition.

Zitzler, E. and Künzli, S. (2004). Indicator-Based Selection in Multiobjective Search. In
Parallel Problem Solving from Nature – PPSN VIII, pages 832–842. Springer Berlin
Heidelberg.

References 221

Zitzler, E., Laumanns, M., and Thiele, L. (2001). SPEA2: Improving the strength pareto
evolutionary algorithm for multiobjective optimization. In Proceedings of the EURO-
GEN ’2001 Conference, pages 95–100. International Center for Numerical Methods in
Engineering.

Appendix A

Mathematical Background

This section is devoted to some mathematical material that is used throughout this report.
We start by reviewing box and whiskers plots. Then we give a review of basic ideas
from probability theory from the following main sources: Motwani and Raghavan (1995),
Mitzenmacher and Upfal (2005) and Doerr (2018).

A.1 Box and Whiskers Plots (Box Plots)

Box and whisker plots are a form of representing statistical data. They provide the median
together with upper and lower quartiles as well as the minimum and maximum value of the
data. We use an extended variant where additionally outliers are identified. Box plots are
non-parametric: they display variation in samples of a statistical population without making
any assumptions of the underlying statistical distribution. The spacings between the different
parts of the box indicate the degree of dispersion (spread) and skewness in the data, and show
outliers.

An example for a box and whiskers plot as used in this thesis is depicted in Figure A.1.
The lower and upper (from left to right) quartiles form a rectangle (box). The bottom and
top of the box plot are always the first and third quartiles (Q1 and Q3, respectively), and the
band inside the box is the second quartile or the median (M). Two lines attached to the box
indicate the extreme values of the data (whiskers). The length of these whiskers is at most
1.5 times the so-called interquartile range (IQR), which is defined as the difference of the
upper and lower quartile. More extreme points are considered outliers and drawn as circles.

224 Mathematical Background

MQ1MIN Q3 MAX

IQR

1.5 · IQR 1.5 · IQR

Figure A.1: Visualisation of a box and whisker plot.

A.2 Probability Theory

This section contains some formal mathematical settings for analysing the randomized
algorithm. All statements, some proofs can be found in Mitzenmacher and Upfal (2005).

A.2.1 Axioms of Probability

Any probabilistic statement must refer to the underlying probability space.

Definition A.1 (Probability Space). A probability space has three components:

1. a sample space Ω, which is the set of all possible outcomes of the random process
modelled by the probability space;

2. a family of sets F representing the allowable events, where each set in F is a subset
of the sample space Ω; and

3. a probability function Prob : F → R satisfying Definition A.2.

An element of Ω is called a simple or elementary event.

Definition A.2 (Probability Function). A probability function is any function Prob : F → R
that satisfies the following conditions:

1. for any event E, 0 ≤ Prob(E)≤ 1;

2. Prob(Ω) = 1; and

3. for any finite or countable infinite sequence of pairwise mutually disjoint (no element
in common or they cannot occur at the same time, another word that means mutually
disjoint is exclusive) events E1,E2,E3, . . . ,

A.2 Probability Theory 225

Prob

(⋃
i≥1

Ei

)
= ∑

i≥1
Prob(Ei).

Lemma A.3 (Union Bound). For any finite or countably infinite sequence of events
E1,E2, . . . ,

Prob

(⋃
i≥1

Ei

)
≤ ∑

i≥1
Prob(Ei).

Notice that Lemma A.3 differs from the third part of Definition A.2 in that Definition A.2 is
an equality and requires the events to be pairwise mutually disjoint.

Definition A.4 (Independent Events). Two events E and F are independent (the occurrence
of one does not affect the probability of the other) if and only if

Prob(E ∩F) = Prob(E) ·Prob(F)

More generally, events Ei,E2, . . . ,Ek are mutually independent if and only if, for any subset
I ⊆ [1,k],

Prob

(⋂
i∈I

Ei

)
= ∏

i∈I
Prob(Ei).

Definition A.5 (Conditional Probability). The conditional probability that event E occurs
given that event F occurs is

Prob(E | F) =
Prob(E ∩F)

Prob(F)
.

The conditional probability is well-defined only if Prob(F)> 0.

Intuitively, we are looking for the probability of E ∩F within the set of events defined
by F . Because F defines our restricted sample space, we normalize the probabilities by
dividing by Prob(F), so that the sum of the probabilities of all events is 1. When Prob(F)> 0,
the definition can also be written in the useful form

Prob(E | F)Prob(F) = Prob(E ∩F).

Notice that, when E and F are independent and Prob(F) ̸= 0, we have

Prob(E | F) =
Prob(E ∩F)

Prob(F)
=

Prob(E)Prob(F)

Prob(F)
= Prob(E).

226 Mathematical Background

This is a property that conditional probability should have; intuitively, if two events are
independent, then information about one event should not affect the probability of the second
event.

Theorem A.6 (Law of Total Probability). Let E1,E2, . . . ,En be mutually disjoint events in
the sample space Ω, and let

⋃n
i=1 Ei = Ω. Then

Prob(B) =
n

∑
i=1

Prob(B∩Ei) =
n

∑
i=1

Prob(B | Ei)Prob(Ei).

A.2.2 Random Variables and Expectation

When studying a random event, we are often interested in some value associated with the
random event rather than in the event itself. For example, in tossing two dice we are often
interested in the sum of the two dice rather than the separate value of each die.

Definition A.7 (Random Variable). A random variable X on a sample space Ω is a real-value
function on Ω; that is, X : Ω → R. A discrete random variable is a random variable that
takes on only a finite or countably infinite number of values

For a discrete random variable X and a real value a, the event “X = a” includes all the
basic events of the sample space in which the random variable X assumes the value of a.
That is, “X = a” represents the set {s ∈ Ω | X(s) = a}. We denote the probability of that
event by

Prob(X = a) = ∑
s∈Ω:X(s)=a

Prob(s).

Definition A.8 (Expectation of a Discrete Random Variable). The expectation of a discrete
random variable X, denoted by E[X], is given by

E[X] =
∞

∑
i

Prob(X ≥ i),

if X takes values in (−∞,0]∪N, then E[X]≤ ∑
∞
i=1 Prob(X ≥ i) still holds.

Theorem A.9 (Linearity of Expectations). For any finite collection of discrete random
variables X1,X2, . . . ,Xn with finite expectations.

E

[
n

∑
i=1

Xi

]
=

n

∑
i=1

E[Xi].

A.2 Probability Theory 227

Definition A.10 (Binomial Random Variable). A binomial random variable X with param-
eters n and p, denoted by Bin(n, p), is defined by the following probability distribution on
j = 0,1,2, . . . ,n:

Prob(X = j) =
(

n
j

)
p j(1− p)n− j.

That is, the binomial random variable X equals j when there are exactly j successes and
n− j failures in n independent experiments, each of which is successful with probability p.
This independent experiment need to satisfy these four conditions:

• A fixed number of trials.

• Each trial is independent of the others.

• There are only two outcomes.

• The probability of each outcome remains constant from trial to trial.

Definition A.11 (Expectation of a Binomial Random Variable). Let X be a binomial random
variable describing n trials with success probability p. Then E[X] = pn.

Theorem A.12 (Law of Total Expectation).

E[Y] = E[E[Y | Z]]

Definition A.13 (Geometric Random Variable). A geometric random variable X with pa-
rameter p is given by the following probability distribution on n = 1,2, . . .:

Prob(X = n) = (1− p)n−1 p.

That is, for the geometric random variable X to equal n, there must be n−1 failures, following
by a success (counts the number of attempts needed to obtain the first success).

Definition A.14 (Expectation of a Geometric Random Variable). Let X be a geometric
random variable with success probability p. Then E[X] = 1/p.

A.2.3 Chernoff Bounds

Lemma A.15 (Chernoff Bounds). Let X = X1 + . . .+Xn be the sum of independent random
variable with Xi ∈ {0,1} for all 1 ≤ i ≤ n. Then

228 Mathematical Background

Prob(X ≥ (1+δ)E[X])<
(

eδ

(1+δ)1+δ

)E[X]
for δ > 0

Prob(X ≤ (1−δ)E[X])≤
(

e−δ

(1−δ)1−δ

)E[X]
for 0 < δ < 1

Prob(X ≥ (1+δ)E[X])≤ e−E[X]δ 2/3 for 0 < δ < 1
Prob(X ≤ (1−δ)E[X])≤ e−E[X]δ 2/2 for 0 < δ < 1

A.3 Useful Combinatorial Inequalities

Lemma A.16. For all n ∈ N,(
1− 1

n

)n

≤ 1
e
≤
(

1− 1
n

)n−1

.

Lemma A.17 (Harmonic Number). For any n ∈ N,the nth Harmonic number Hn is defined
as follows:

Hn = 1+
1
2
+ · · ·+ 1

n
=

n

∑
i=1

1
i
.

For any n ∈ N, the nth Harmonic number is

Hn = lnn+Θ(1).

Lemma A.18 (Stirling’s approximation). For n ∈ N,

√
2πn ·

(n
e

)n
≤ n!≤

√
2πn ·

(n
e

)n
· e1/(12n).

In particular,
n!≥

(n
e

)n
.

The following estimations are well known; the last inequality follows from Stirling’s
approximation.

Lemma A.19 (Binomial coefficients). For k,n ∈ N with k ≤ n,

nk

kk ≤
(

n
k

)
≤ nk

k!
≤
(ne

k

)k
.

	Table of contents
	List of figures
	List of tables
	List of Algorithms
	Nomenclature
	I Introduction and Background
	1 Introduction
	1.1 Underlying Publications

	2 Runtime Analysis of Evolutionary Algorithms
	2.1 Fitness Functions
	2.1.1 Single-objective Functions
	2.1.2 Multi-objective Functions

	2.2 Randomised Search Heuristics
	2.2.1 Single-Objective Algorithms
	2.2.2 Multi-Objective Algorithms

	2.3 Methods for the Analysis of Evolutionary Algorithms
	2.3.1 Standard Mutations
	2.3.2 Accounting Method
	2.3.3 Typical Run Investigations
	2.3.4 Coupon Collector Problem
	2.3.5 Fitness-based Partitions
	2.3.6 Markov Chains
	2.3.7 Family Trees
	2.3.8 Drift Analysis
	2.3.9 Experimental Supplements

	3 Population Diversity in Evolutionary Algorithms
	3.1 A Review of Diversity Mechanism on Evolutionary Algorithms
	3.2 Diversity Mechanisms for the
	3.2.1 Plain
	3.2.2 No Genotype Duplicates
	3.2.3 No Fitness Duplicates
	3.2.4 Deterministic Crowding
	3.2.5 Fitness Sharing
	3.2.6 Ageing

	3.3 Diversity Benefits Crossover
	3.3.1 Escaping Local Optima with Diversity Mechanisms and Crossover
	3.3.2 Escaping Local Optima with High Mutation Rates and Crossover

	3.4 Diversity in Island Models
	3.5 Diversity for Multi-Objective Optimisation
	3.5.1 Diversity for Approximating Pareto-Optimal Sets

	3.6 Conclusions

	II Runtime Analysis of Diversity Mechanisms on Multimodal Optimisation
	4 Runtime Analysis of Niching Mechanisms on TwoMax
	4.1 Probabilistic Crowding
	4.1.1 Experimental Analysis
	4.1.2 Conclusions

	4.2 Restricted Tournament Selection
	4.2.1 Large Window Sizes Are Effective
	4.2.2 Small Window Sizes Can Fail
	4.2.3 Experimental Analysis
	4.2.4 Conclusions

	4.3 Clearing
	4.3.1 Small Niches
	4.3.2 Large Niches
	4.3.3 Generalisation to Other Example Landscapes
	4.3.4 Experimental Analysis
	4.3.5 Conclusions

	5 Empirical Analysis of Diversity Mechanisms for Multimodal Optimisation
	5.1 Jansen-Zarges Multimodal Function Classes
	5.2 Experimental Analysis
	5.2.1 Finding Peaks of Equal Height
	5.2.2 Finding Peaks with Different Height
	5.2.3 Escaping from Local Optima

	5.3 Conclusions

	III Runtime Analysis of Diversity Mechanisms on Multi-Objective Optimisation
	6 Diversity-based Parent Selection for Evolutionary Multi-objective Optimisation
	6.1 Preliminaries
	6.2 Diversity-Based Parent Selection
	6.3 On Diversity-Based Progress
	6.4 Speedups on OneMinMax
	6.5 Speedups on LOTZ
	6.6 Experimental Analysis
	6.7 Comparing Selection Schemes: How Much Greed is Good?
	6.7.1 Why Highest Diversity Contribution Stagnates
	6.7.2 NMUAR is Fast but Brittle

	6.8 Conclusions

	IV Conclusions and Outlook
	7 Conclusion
	References
	Appendix A Mathematical Background
	A.1 Box and Whiskers Plots (Box Plots)
	A.2 Probability Theory
	A.2.1 Axioms of Probability
	A.2.2 Random Variables and Expectation
	A.2.3 Chernoff Bounds

	A.3 Useful Combinatorial Inequalities

