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Abstract

Array signal processing is based on using an array of sensors to receive the impinging

signals. The received data is either spatially filtered to focus the signals from a desired

direction or it may be used for estimating a parameter of source signal like direction of ar-

rival (DOA), polarization and source power. Spatial filtering also known as beamforming

and DOA estimation are integral parts of array signal processing and this thesis is aimed

at solving some key probems related to these two areas. Wideband beamforming holds

numerous applications in the bandwidth hungry data traffic of present day world. Sev-

eral techniques exist to design fixed wideband beamformers based on traditional arrays

like uniform linear array (ULA). Among these techniques, least squares based eigenfil-

ter method is a key technique which has been used extensively in filter and wideband

beamformer design. The first contribution of this thesis comes in the form of critically

analyzing the standard eigenfilter method where a serious flaw in the design formulation

is highlighted which generates inconsistent design performance, and an additional con-

straint is added to stabilize the achieved design. Simulation results show the validity and

significance of the proposed method.

Traditional arrays based on ULAs have limited applications in array signal processing

due to the large number of sensors required and this problem has been addressed by the

application of sparse arrays. Sparse arrays have been exploited from the perspective of

their difference co-array structures which provide significantly higher number of degrees

of freedoms (DOFs) compared to ULAs for the same number of sensors. These DOFs

(consecutive and unique lags) are utilized in the application of DOA estimation with the

help of difference co-array based DOA estimators. Several types of sparse arrays include

minimum redundancy array (MRA), minimum hole array (MHA), nested array, prototype

coprime array, conventional coprime array, coprime array with compressed interelement

spacing (CACIS), coprime array with displaced subarrays (CADiS) and super nested

array. As a second contribution of this thesis, a new sparse array termed thinned coprime

array (TCA) is proposed which holds all the properties of a conventional coprime array

but with
⌈
M
2

⌉
fewer sensors where M is the number of sensors of a subarray in the
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conventional structure. TCA possesses improved level of sparsity and is robust against

mutual coupling compared to other sparse arrays. In addition, TCA holds higher number

of DOFs utilizable for DOA estimation using variety of methods. TCA also shows lower

estimation error compared to super nested arrays and MRA with increasing array size.

Although TCA holds numerous desirable features, the number of unique lags offered

by TCA are close to the sparsest CADiS and nested array and significantly lower than

MRA which limits the estimation error performance offered by TCA through (compressive

sensing) CS-based methods. In this direction, the structure of TCA is studied to explore

the possibility of an array which can provide significantly higher number of unique lags

with improved sparsity for a given number of sensors. The result of this investigation is

the third contribution of this thesis in the form of a new sparse array, displaced thinned

coprime array with additional sensor (DiTCAAS), which is based on a displaced version

of TCA. The displacement of the subarrays generates an increase in the unique lags but

the minimum spacing between the sensors becomes an integer multiple of half wavelength.

To avoid spatial aliasing, an additional sensor is added at half wavelength from one of

the sensors of the displaced subarray. The proposed placement of the additional sensor

generates significantly higher number of unique lags for DiTCAAS, even more than the

DOFs provided by MRA. Due to its improved sparsity and higher number of unique lags,

DiTCAAS generates the lowest estimation error and robustness against heavy mutual

coupling compared to super nested arrays, MRA, TCA and sparse CADiS with CS-based

DOA estimation.
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Chapter 1

Introduction

1.1 Introduction

Humans perceive the outside world with the aid of sensors. The natural sensor organs in

the shape of eyes, nose, ears, tongue and skin bring to life the classic five senses of sight,

smell, hearing, taste and touch respectively. As ancient as this natural mechanism of per-

ception, humans have carried the same principles to solve complex problems of modern

times. Different types of sensors have been developed to sense different signals. Appli-

cations of these sensors include the likes of medical diagnosis, communication, RADAR,

SONAR, seismology and radio astronomy [1–8].

Placing a group of sensors together in a particular configuration paves the way for an

array of sensors. These arrays of sensors offer certain desirable characteristics compared

to the application of a single sensor. First of all, an element of redundancy is available

in the scenario of a sensor failure. Secondly, the received data from the array can be

combined together to improve the signal to noise ratio (SNR) of the received signal by

averaging out the noise. Another attractive property of arrays is their ability to work

as a spatial filter. This implies that the overall reponse of the array is directional and

focuses on an intended drection while rejecting the signals/interferences from unwanted

directions [1]. This has the same effect as boosting the SNR of the received signal and is

termed as beamforming.

The concept of beamforming is shown with the help of a simple beamformer in Fig.

1



Figure 1.1: A simple beamformer with the output as linear combination of weighted

received array signals.

1.1 where the beamformer output y[n] is a linear combination of the received array signals

x0[n], x1[n], . . . , xM−1[n] weighted with the coefficients w0, w1, . . . , wM−1, where n is the

discrete time index, M is the number of sensors in the array and θ is the angle of arrival

(AOA) of the impinging signal. The values of these coefficients depend on the required

directional response and objective based on maximizing the signal to interference plus

noise ratio (SINR). Depending on the channel conditions, the values of these weights can

be fixed or altered leading to fixed and adaptive beamformers where adaptive beamform-

ers perform significantly better than fixed beamformers in adverse channel conditions at

the cost of extra computations [1]. Depending on the bandwidth of the impinging signal,

beamforming is divided into narrowband and wideband beamforming. As wideband sig-

nals are commonplace in the bandwidth hungry applications of today, the importance of

wideband beamforming can never be under estimated.

To design fixed wideband beamformers, several techniques exist in the literature like

convex optimization [9] and standard least squares [10]. Another technique based on least

squares is the eigenfilter technique, which is desirable for fixed wideband beamformer de-

sign in comparison to convex optimization and least squares due to its low computational

requirements and numerical stability [11]. However, the design formulation has a serious

flaw resulting in the design method being error-prone and providing inconsistent results.

2



As the first contribution of this thesis, we propose a correction to the design formulation

and show the improved wideband beamformer design with the help of simulation results.

Arrays can also be used to extract certain useful parameters embedded in the signals

like direction of arrival (DOA). A particular signal originating from a specific direction

may fall at different sensors of the array at different times creating inter-sensor delays.

Then by analyzing the received array output with the help of different DOA estimators,

the DOA of the impinging source can be estimated [2, 6, 7]. In addition to wideband

beamformer design, the DOA estimation aspect is also a key subject of this thesis.

A lot of literature is dedicated to developing DOA estimators which determine the

DOA of signals with high resolution utilizing a finite number of snapshots from array

outputs. These snapshots refer to the number of samples of received signals taken at each

sensor to measure the array output [2, 6, 7]. Some key DOA estimators like Bartlett beam-

former [12], the Capon beamformer [13], the pisarenko harmonic decomposition [14], the

minimum-norm method [15], multiple signal classification (MUSIC) [16, 17], estimation

of signal parameters via rotational invariance techniques (ESPRIT) [18], maximum like-

lihood estimator [19, 20], methods of DOA estimation (MODE) [21] and sparse iterative

covariance based estimation (SPICE) [22], have been developed for this purpose.

Figure 1.2: Array signal processing based on traditional arrays.

Conventional array processing involves the use of traditional arrays for beamforming,
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DOA estimation and other array signal processing tasks. These traditional arrays have

the nature of a uniform linear array (ULA) with inter-sensor spacing d where d = λ
2
, and λ

corresponds to the wavelength of the impinging signal. In this thesis, the impinging signals

are always represented by plane waves, i.e. the array is assumed to be located in the far

field of the sources generating the waves and the received signals have a planar wavefront

[1]. Such an array is presented in Figure 1.2, which shows a source signal impinging on

a ULA with an angle θi with the dashed line perpendicular to the plane of the array or

broadside of the array as y-axis. The output of this sensor array is processed by different

signal processing algorithms depending on the objective to be acheived. These different

objectives range from extracting the source information like the distance between source

and the array, DOA of the source, source power to determining the polarization of the

impinging wave. In this figure, x-axis represents the plane of the array where the sensors

are placed, while y-axis represents the broadside of the array. It can be noticed that the

ULA has the inter-sensor spacing of d = λ
2

as increasing d beyond λ
2

generates spatial

ambiguity. The spatial ambiguity in this case is analogous to aliasing in time domain

according to the sampling theorem [2, 7]. Spatial ambiguity manifests itself as multiple

source signals having different DOA’s corresponding to the same array output which will

result in erroneous DOA estimation.

The search to optimize the resources for best possible performance has been a long

standing human endeavour. In the context of modern technology, there has been a con-

stant struggle from the array signal processing perspective to explore new horizons and

target diversified set of applications with resources that are usually limited e.g. power,

bandwidth and number of sensors. With the ever decreasing cost of computing power,

this challenge has been addressed in the domain of sparse sensing. The concept of sparse

sensing revolves around exploiting prior konowledge about signals, through which a small

chunk of high-dimensional big data is delivered to the signal processing algorithms to

extract the low-dimensional information of interest. This technique makes it possible to

deliver sophisticated novel set of applications with limited resources.

The domain of sparse sensing has two key elements in the shape of sparse sampling

and information extraction. By considering the prior knowledge about signals and the
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information of interest, sparse sampling gathers low-dimensional sparse samples from the

big data while the information extraction element efficiently brings out the information of

interest from the sparse samples. For applications dependent on the sparse representation

of data, a relatively recent phenomenon termed compressed sensing has shown the ability

to recover the original signal of interest from sparse samples under certain conditions

[23, 24].

Compressed sensing or CS is a novel sensing/sampling paradigm that goes against

the common wisdom in data acquisition which states that the sampling rate must be

atleast twice the maximum frequency present in the signal (the so-called Nyquist rate).

CS theory asserts that certain signals and images can be recovered from far fewer samples

or measurements than traditional methods use. To make this possible, CS relies on two

conditions/principles : sparsity, which pertains to the signal of interest, and incoherence,

which pertains to the sensing modality.

Sparsity expresses the idea that the “information rate” of a continuous time signal

may be much smaller than suggested by its bandwidth. More precisely, CS exploits the

fact that many natural signals are sparse or compressible in the sense that they have

concise representations when expressed in the proper basis Ψ.

Incoherence extends the duality between time and frequency and expresses the idea

that objects having a sparse representation in Ψ must be spread out in the domain in

which they are acquired, just as a Dirac or a spike in the time domain is spread out in

the frequency domain. Incoherence means that unlike the signal of interest, the sam-

pling/sensing waveforms have an extremely dense representation in Ψ.

For a signal f(t) which is sparse in a certain basis Ψ where f ∈ Rn, the representation

of this signal in a sparse basis is given as

f(t) =
n∑
i=1

xiψi(t) , (1.1)

where x is the coefficient sequence of f . It is convenient to express f as Ψx (where Ψ is the

n × n matrix with ψ1, . . . , ψn as columns). When the signal has sparse expansion, small

coefficients corresponding to less information can be discarded without much perceptual

loss. The coefficient vector xs then will have all but the S largest coefficents set to zero.
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This vector will be sparse in a strict sense and termed S−sparse with at most S non-zero

entries.

Then sparse sensing involves linear functionals measuring the signal using a suitable

sensing basis Φ

yk = fϕk, k = 1, . . . ,m , (1.2)

where the object to be acquired is correlated with the waveforms ϕk(t). This is an

undersampled situation where the number m of available measurements is significantly

smaller than the dimension n of the signal f . For signals of interest satisfying sparsity

and sensing matrices/basis Φ incoherent with the representation basis Ψ, the S−sparse

vector of coefficients can be easily recovered by posing the recovery problem as a l1−norm

minimization problem and solving using methods like convex optimization.

For CS to be powerful, it needs to deal with both nearly sparse signals and with noise.

First, general objects of interest are not exactly sparse but approximately sparse. The

main challenge is to obtain accurate reconstructions of such objects from highly under-

sampled measurements. Secondly, in any real application measured data will invariably

be corrupted by at least a small amont of noise as sensing devices do not have infinite

precision. It is therefore imperative that CS be robust with such nonidealities. At the

very least, small perturbations in the data should cause small perturbations in the recon-

struction. To make understanding simpler, the problem of recovering a vector x ∈ Rn

from data is posed as follows.

y = Ax+ z , (1.3)

where A is an m× n “sensing matrix” giving information about x, and z is a stochastic

or deterministic unknown error term. As f = Ψx and y = Φf (Φ is the m × n matrix

extracting the m samples), y can be written as y = Ax, where A = ΦΨ and x is the

coefficient sequence of the object in a proper basis.

For a robust CS, a very useful property exists called as the restricted isometry property

(RIP). For each integer S = 1, 2, . . . , for a S−sparse x, isometry constant δs of a matrix

A is defined as the smallest number such that

(1− δS) ‖x‖2
l2
≤ ‖Ax‖2

l2
≤ (1 + δS) ‖x‖2

l2
(1.4)
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holds for all S−sparse vectors x. A matrix A is loosely said to obey the RIP of order S if

δS is not too close to one. When this property holds, matrix A approximately preserves

the Euclidean length of S−sparse signals.

It has been shown in the literature [25] that x is exactly recovered provided 1) x is

sufficiently sparse and 2) the sensing basis Φ obeys RIP. In this context, the reconstruction

of x is given as the solution to the following convex optimization problem

minx̃∈Rn ‖x̃‖l1 subject to ‖y − Φx̃‖l2 ≤ ε , (1.5)

where ‖.‖l2 is the Euclidean norm and ε is an upper bound on the size of the noisy

distribution.

A number of state of the art sparse sensing schemes include nested sampling [26],

coprime sampling [27], power spectrum sensing [28], and quadratic sampling [29], which

provide applications in the areas of source localization, cognitive radio, and optical imag-

ing, with significantly reduced data rate but comparable performance to the classical

methods. Sparse arrays are a perfect example of sparse sensing with their characteristic

sparse sampling of the incoming data. As opposed to a traditional array shown in Figure

1.2, which represents a 6-sensor ULA with an aperture of 5d, sparse arrays tend to have

significantly fewer number of sensors for the same aperture compared to a ULA.

In the last 50 years of radio astronomy, human curiosity has inspired the mankind

to explore the universe and solve its underlying mysteries. To see our own solar system,

distant stars, galaxies and black holes in an unprecedented detail and accuracy, large

arrays of radio telescopes have been deployed like the Very Large Array (VLA) in USA [30],

Atacama Large Millimeter/submillimeter Array (ALMA) in Chile [31], and the very recent

Square Kilometer Array (SKA) in Australia and South Africa [32]. Due to the significance

of arrays and their functionality, a key challenge in array signal processing deals with

reducing the cost of these projects. As a practical signal processing scenario will always

be aimed at lowering the costs, minimizing the number of sensors while maintaining the

required performance is an appealing prospect. Sparse arrays which offer the possibility

of arranging sensors in diverse configurations with different performance characteristics,

while minimizing the required number of sensors, are the perfect candidate to overcome

this challenge.
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In array signal processing, the nature of electromagnetic waves results in mutual cou-

pling between sensors and causes the individual sensor response to interfere with the

other sensors [33], [34]. This interference adversely affects parametric estimation like

DOA, signal power and polarization. Due to the practical application of sparse sensing,

a significant part of this thesis is aimed at investigating the design of novel sparse array

configurations from the perspective of DOA estimation with special focus on sparse ar-

rays robust against mutual coupling. These kinds of sparse arrays have applications in

the fields of communication, RADAR, SONAR, medical imaging, seismic engineering and

radio astronomy [2, 34–37].

ULA holds the ability to resolve at most N− 1 sources with N physical sensors,

irrespective of the algorithm deployed [2]. However, recent progress in the state of the

art has shown that, under specific conditions, it is possible to identify more sources than

the number of sensors using sparse arrays. This result is possible because multiple time-

domain snapshots are available.

A comparison of DOA estimation scenario for a 6-sensor ULA and sparse array is

shown in Figure 1.3, where it can be seen that sparse arrays do not have uniform spacing

λ
2
. Under mild assumptions, the array output of the sparse arrays can be converted to the

samples on the difference co-array. In particular, the difference co-array D for an array S

irrespective of being a ULA or a sparse array, is defined as the set of differences between

sensor locations:

D = {n1 − n2 : n1, n2 ∈ S} , (1.6)

where the integer S represents the sensor locations of an array normalized by d. A number

of co-array based DOA estimators utilizing the difference co-array structure of a particular

array have been developed in the past few decades including the augmented covariance

matrix [38, 39], Toeplitz completion [40, 41], co-array MUSIC or spatial smoothing MUSIC

[42], [26], [43], co-array interpolation [44–46], and Khatri Rao methods [47–49]. Some

of the algorithms mentioned above are also applicable to ULA as long as their specific

requirements are met by the structure of the difference co-array.

Sparse arrays are superior to ULA due to their ability to resolve more uncorrelated

sources than sensors [26, 27, 40, 41, 50]. In addition to that, with sufficient amount of
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Figure 1.3: ULA and sparse array for DOA estimation.

data, sparse arrays typically provide better estimation performance and resolution than

ULA [26, 27, 40, 41]. The key to these benefits of sparse arrays lies in the structure of their

difference co-array. The differences contained in the difference co-array of a physical array

correspond to the different lags at which the autocorrelation can be computed and are

regarded as the degrees of freedom (DOF) provided by the array, which can be utilized by

co-array based DOA estimators. The set of these lags in the difference co-array which are

consecutive are of special interest to spatial smoothing based MUSIC. As will be shown

later in Chapter 5, the array output from different sensors is used to build the covariance

marix which is used for different parametric estimations.

Utilizing the difference co-array requires an extra step which involves vectorization of

the covariance matrix [43] to achieve a virtual array. Then, the consecutive portion of the

lags is extracted and the spatial smoothing technique [51–53] is applied for decorrelation to

build a new covariance matrix, on which MUSIC based algorithms can be applied for DOA

estimation. The more the set of consecutive lags resulting from the difference co-array,

the more the number of sources estimated from spatial smoothing MUSIC. Although the

use of a virtual array increases the DOFs and thereby the source detection capacity of an

array, the application of spatial smoothing halves the utilizable DOFs [54]. An alternate

approach is through sparse signal reconstruction by taking advantage of the fact that
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the spatial spectra of signals is usually sparse. The application of recently developed

compressive sensing (CS) techniques enables such sparse signal reconstruction [55], [56].

A number of sparse arrays have been proposed in the literature like minimum redun-

dancy array (MRA) [50, 57], minimum hole array (MHA) [58], nested array [26] and its

variant super nested array [59, 60], which have hole-free difference co-arrays implying dif-

ference co-arrays without any missing lags. As a co-array based DOA estimator like spatial

smoothing MUSIC depends on the consecutive lags generated from the difference co-array,

the above mentioned sparse arrays enjoy great application for this method. Another class

of sparse arrays are proposed on the coprime nature of numbers termed coprime arrays

[27]. The basic coprime array called prototype coprime array, its variant conventional

coprime array [43] and generalized coprime array configurations [54] resulting in coprime

array with compressed inter-element spacing (CACIS) and coprime array with displaced

subarrays (CADiS), all share difference co-arrays with holes resulting in a combination of

consecutive lags and total lags (consecutive and non consecutive) represented as unique

lags. The unique lags of all kinds of arrays can be fully utilized with the application of

CS based techniques. The sparse arrays mentioned above will all be covered in detail in

Chapter 4. In the light of all this discussion on beamforming, DOA estimation, traditional

arrays and sparse arrays, the original contributions of this thesis are presented in the next

section.

1.2 Original Contributions

1. The classic eigenfilter method for fixed wideband beamformer design based on tra-

ditional arrays has been critically analyzed. It has been shown that the performance

of the designed wideband beamformer is inconsistent with different scenarios. This

inconsistency is then tracked down to a fault in the design formulation of the pass-

band/look direction part of the cost function. The passband part of the cost function

provides a mechanism for the desired flat passband response by minimizing the rela-

tive variation of the response between the reference frequency and other frequencies

in the passband. However, it fails to control the absolute value of the passband/look
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direction response of the beamformer, which is desired to be equal to unity gain. As

a result, the designed wideband beamformer often takes a zero response at the pass-

band/look direction which satisfies the original formulation, resulting in an overall

design failure. A solution is proposed by adding a linear constraint which reinforces

the designed passband/look direction response at the reference frequency point to

achieve the desired response. As a result, the designed response consistently matches

the desired response. To show a wider perspective, results are provided for differ-

ent design scenarios based on FIR filter design and wideband beamformer design

to demonstrate the crucial issue of the original formulation and the satisfactory

performance by the proposed one [61].

2. Coprime arrays are a class of sparse arrays which have been used effectively for beam-

forming and DOA estimation under the difference co-array model. The flexibility to

construct coprime arrays for arbitrary number of sensors, the inherent sparsity to

tackle mutual coupling and provision of DOFs make these sparse arrays very excit-

ing especially for parametric estimation. Different versions of coprime arrays exist

with varying characteristics suitable for a specific design scenario. In this direction,

a new sparse array termed thinned coprime array (TCA) is proposed, which retains

all the properties of the conventional coprime array like aperture, consecutive lags

and unique lags, but with
⌈
M
2

⌉
fewer sensors where M and N are coprime numbers

and the conventional coprime array has a total of 2M + N−1 sensors [62]. For

the same number of sensors, they possess greater number of unique lags than the

hole-free structure of the nested array and nested CADiS, and comparable number

of unique lags to the sparsest CADiS. The number of consecutive lags of the TCAs

are around 75 percent to those of nested arrays which showcases their application

in both spatial smoothing (SS) MUSIC and CS-based DOA estimation methods.

Moreover, they can be easily constructed for an arbitrary number of sensors. TCAs

have a significantly sparser array structure with robustness against severe mutual

coupling especially when using CS-based DOA estimation. With the increasing ar-

ray size, TCAs also offer better error performance in parameter estimates compared

to super nested arrays and MRA for both CS and SS-MUSIC based methods in the
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presence of mutual coupling.

3. The more the DOFs generated by a sparse array through its difference co-array, the

lesser the parametric estimation error. In this direction, the structure of proposed

TCA is investigated from the perspective of increasing unique lags which can be

utilized by CS-based DOA estimation methods. The result is a new sparse array

termed displaced thinned coprime array with additional sensor (DiTCAAS). The

construction of DiTCAAS from TCA takes place in a two-step process where the

second and third subarrays of TCA are displaced from their original position in the

first step. This displacement of the subarrays generates an increase in the unique

lags but the minimum spacing between the sensors becomes an integer multiple of

half wavelength. To avoid spatial aliasing, an additional sensor is added at half

wavelength from one of the sensors of the displaced third subarray in the second

step. Two strategic locations are proposed for the placement of this additional sensor

which generates significantly higher number of unique lags for DiTCAAS, even more

than the DOFs provided by MRA. Due to its improved sparsity and higher number

of unique lags, DiTCAAS shows the lowest estimation error and robustness to heavy

mutual coupling compared to super nested arrays, MRA, proposed TCA and sparse

CADiS. If a signal processing scenario allows for a relatively larger aperture, then

DiTCAAS is the ideal sparse array for CS-based DOA estimation.

1.3 Scope and Outline of the Thesis

This thesis is divided into two major parts based on the contributions related to traditional

arrays and sparse arrays. The first part includes Chapters 2 and 3, where Chapter 2 covers

the underlying theory of traditional arrays, beamforming and different methods for fixed

wideband beamformer design, and Chapter 3 presents the first contribution of this thesis

on eigenfilters. The second part of the thesis revolves around sparse arrays and includes

Chapters 4, 5 and 6. Chapter 4 reviews the different types of sparse arrays while Chapters

5 and 6 present the other two contributions of this thesis in the shape of two proposed

sparse arrays, TCA and DiTCAAS, respectively. In the next section, the scope of each
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Chapter will be introduced.

In Chapter 2, different techniques for fixed wideband beamformer design are reviewed.

The chapter starts with some basics of wideband beamforming followed by a discussion

on fixed and adaptive wideband beamformers. Fixed wideband beamformer design tech-

niques like traditional methods, convex optimization and standard least squares are pre-

sented with a touch of least squares based eigenfilter design technique at the end.

In Chapter 3, the least squares based eigenfilter method is revisited for the design of

FIR filter and wideband beamformer, where a critical analysis of the method is presented

highlighting the problem with the formulation of the cost function in the passband/look

direction followed by a proposed solution. Design examples are provided to show the

problem with the original formulation and the consistent design performance achieved

with the proposed solution for both FIR filters and wideband beamformers.

In Chapter 4, the discussion moves from the perspective of traditional arrays to sparse

arrays. A brief introduction to sparse arrays is followed by definitions related to the

concept of difference co-array model and underlying DOFs for consecutive and unique lags.

Some perspective on mutual coupling and the concept of sparsity is presented followed

by a detailed review of state of the art on sparse arrays like MRA, MHA, nested arrays,

prototype coprime array, conventional coprime array, CACIS, CADiS, nested versions of

CACIS and CADiS, and super nested arrays along with a discussion on each of their

characteristics with examples.

In Chapter 5, TCA is proposed by analyzing the difference co-array model of conven-

tional coprime array and proving the presence of a series of
⌈
M
2

⌉
redundant sensors. It

has been shown that TCA enjoys the same properties (aperture and difference co-array)

as that of a conventional coprime array with significantly fewer sensors. A systematic

procedure to construct a TCA for an arbitrary number of sensors is also presented. A

detailed comparison of the DOFs (both consecutive and unique lags) provided by TCA in

relation to other sparse arrays is presented to show the increased consecutive and unique

lags for a given number of sensors, making TCA feasible for both SS-MUSIC and CS-

based DOA estimation. The sparsity of TCA is investigated and it has been proved that

TCA has very few sensor pairs with small separations (λ
2
, λ, 3λ

2
), which shows the desir-
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able trait of TCA to counter mutual coupling. The DOA performance of TCA in high

levels of mutual coupling is investigated along with the error performance for a variety

of scenarios in comparison to sparse arrays like super nested array, MRA and CADiS to

show the superior performance of TCA.

In Chapter 6, the difference co-array structure of TCA proposed in Chapter 5 is

further investigated to construct an array which can provide more DOFs for the same

number of sensors. A detailed analysis paves the way for a new sparse array termed

DiTCAAS based on the displacement of subarrays of TCA. An appropriate displacement

of the two subarrays from their original position maximizes the possible unique lags for

a given number of sensors. However, the minimum inter-element spacing becomes an

integer multiple of half wavelength and makes the new structure vulnerable to spatial

aliasing. By carefully adding another sensor at half wavelength from one of the sensors in

the displaced subarray at any one of the two proposed locations, it has been shown that

the number of unique lags can be significantly increased. DiTCAAS generates the highest

number of unique lags for a given number of sensors compared to other sparse arrays as

shown in the DOF comparison. Through the help of proven properties and simulation

results, it is shown that DiTCAAS is much sparser than TCA and also achieves the lowest

DOA estimation error among other sparse arrays in the presence of mutual coupling when

CS-based DOA estimation is employed.

Finally, conclusions are drawn in Chapter 7 with recommended directions for future

work.
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Chapter 2

Review of Fixed Wideband

Beamforming

2.1 Introduction

In this chapter, a general overview of wideband beamforming is presented followed by

reviewing the existing design techniques for fixed wideband beamformers which include

iterative optimization based methods and least squares based approaches. This chapter

is organized as follows. Wideband beamforming is covered in Section 2.2 followed by the

review of fixed wideband beamformer design methods in Section 2.3.

2.2 Wideband Beamforming

Wideband beamforming refers to the beamforming architecture deployed for processing

wideband signals. Wideband signals are significant in our day to day communications.

As the need for increased data capacity and high speeds arises with more and more con-

sumers using bandwidth hungry applications based on video processing, wideband signals

stand to answer this challenge. The increased bandwidth of wideband signals directly

offers their application in high data rate provision to consumers. The task of perform-

ing beamforming on such signals requires the application of frequency dependent weights.

The frequency dependent weights can be achieved with different types of architectures like
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Figure 2.1: A general structure for wideband beamforming.

sensor delay-lines (SDL) [63]. Traditionally, an easy way to form such a set of frequency

dependent weights is to use a series of tapped delay-lines(TDLs) or FIR/IIR filters in its

discrete form [1]. Both TDLs and FIR/IIR filters perform a temporal filtering process to

form a frequency dependent response for each of the received wideband sensor signals to

compensate for the phase difference for different frequency components.

A wideband beamformer based on a TDL architecture is shown in Figure 2.1. This

beamformer samples the propagating wave field in both space and time. The output of

such a wideband beamformer can be expressed as

y(t) =
M−1∑
m=0

J−1∑
i=0

xm(t− iTs)× w∗m,i , (2.1)

where J − 1 is the number of delay elements associated with each of the M sensor channels

in Figure 2.1 and Ts is the delay between adjacent taps of the TDLs. In vector form (2.1)

can be written as

y(t) = wHx(t) (2.2)

The weight vector w holds all MJ sensor coefficients with:
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w = [w0 w1. . .wJ−1]H , (2.3)

where each vector wi, i = 0, 1, . . . , J − 1, contains the M complex conjugate coefficients

found at the ith tap position of the M TDLs and is expressed as:

wi = [w0,iw1,i . . . wM−1,i]
T (2.4)

Similarly, the input data are also accumulated in a vector form x as follows:

x = [x0(t) x1(t− Ts). . .xJ−1(t− (J − 1)Ts)]
T , (2.5)

where xi(t − iTs), i = 0, 1, . . . , J − 1, holds the ith data slice corresponding to the ith

coefficient vector wi:

x(t− iTs) = [x0(t− iTs)x1(t− iTs) . . . xM−1(t− iTs)]T (2.6)

For an impinging complex plane wave signal ejωt, assume x0(t) = ejωt. Then we have:

xm(t− iTs) = ejω(t−(τm+iTs)) (2.7)

with m = 0, 1, . . . , J − 1. The array output is given by

y(t) = ejωt
M−1∑
m=0

J−1∑
i=0

e−jω(τm+iTs).w∗m,i , (2.8)

= ejωt × P (θ, ω) , (2.9)

where P (θ, ω) is the beamformer’s angle and frequency dependent response. It can be

expressed in vector form as:

P (θ, ω) = wHd(θ, ω) , (2.10)

where d(θ, ω) is the steering vector for the wideband beamformer and its elements corre-

spond to the complex exponentials e−jω(τm+iTs):
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d(θ, ω)

= [e−jωτ0 . . . e−jωτM−1 e−jω(τ0+Ts) . . . e−jω(τM−1+Ts) . . . e−jω(τ0+(J−1)Ts) . . . e−jω(τM−1+(J−1)Ts)]T

(2.11)

For an equally spaced linear array with an inter-element spacing d, τm = mτ1 and

ωτm = m(2πdsinθ)/λ for m = 0, 1, . . . , M − 1. To avoid aliasing, d < λmin/2, where

λmin is the wavelength of the signal component with the highest frequency ωmax. Assume

the operating frequency of the array is ω ∈ [ωmin ωmax] and d = αλmin/2 with α ≤ 1. In

its discrete form, Ts is the temporal sampling period of the system and should be no more

than half the period Tmin of the signal component with the highest frequency according

to the Nyquist sampling theorem, i.e. Ts ≤ Tmin/2 .

With the normalized frequency Ω = ωTs, ω (mτ1 + iTs) changes to mµΩ sin θ + iΩ

with µ = d/(cTs), and then the steering vector d(θ, ω) changes to:

d(θ, ω)

= [1 . . . e−j(M−1)µΩsinθ e−jΩ . . . e−jΩ(µsinθ(M−1)+1) . . . e−j(J−1)Ω . . . e−jΩ(µ sin θ(M−1)+J−1)]T

(2.12)

Finally, the wideband beamformer’s response as a function of angle and frequency is

given as:

P (θ, ω) =
M−1∑
m=0

J−1∑
i=0

e−jΩ(mµ sin θ+i) × w∗m,i (2.13)

Wideband beamformers depending upon the channel conditions can be classifed into

fixed wideband beamformers and adaptive wideband beamformers. Fixed wideband

beamformers have fixed values of weight coefficients irrespective of the channel condi-

tions and the resultant beamformer will always maintain a fixed response independent of

the signal/interference scenarios. Although such a beamformer may not be able to achieve

a high output signal to interference plus noise ratio (SINR) as in the adaptive case, it has

a lower computational complexity and can be implemented easily in real time. Addition-

ally, for some very complicated situations, such as multipath, the adaptive beamformer

may not work well [1] and a fixed beamformer may be the only viable choice when the

main direction of the desired source signal is known.
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Adaptive wideband beamformers on the other hand are statistically optimum beam-

formers where the weight coefficients are updated based on the statistics of the array data.

When the data statistics are unknown or time varying, adaptive optimization is required

where according to different signal environments and application requirements, different

beamforming techniques may be employed [1].

This thesis will be focus on fixed wideband beamformers and will explore the methods

used to design fixed wideband beamformers in the next section.

2.3 Fixed Wideband Beamformer Design Techniques

The fixed beamformer design problem is also called an array pattern synthesis problem

and there are mainly two classes of design approaches for a fixed wideband beamformer.

The first one is the iterative optimization approach, where many iterative optimization

methods can be applied directly; the second one is the analytical approach, which includes

the classical least squares formulation and the eigenfilter based solutions. The iterative

optimization based design methods covered in this Chapter include traditional methods

and convex optimization which will be discussed in the following section.

2.3.1 Traditional Methods

Given the desired beam pattern Pd(Ω, θ), the design of a wideband beamformer meeting

the desired response can be considered as a general optimization problem and solved by

all kinds of iterative optimization methods. For example, the design can be formulated

as a weighted Chebyshev approximation problem or a minmax problem [1]:

min
w
{max

Ω,θ
v(Ω, θ) | wHd(Ω, θ)− Pd(Ω, θ) |} , (2.14)

where v(Ω, θ) is the weighting function with real positive values applied to the difference

between the desired response Pd(Ω, θ) and the designed response P (Ω, θ) = wHd(Ω, θ).

The cost function is evaluated on all values of Ω and θ within the frequency range

of interest and the direction range of the impinging signals. Although it may not be

necessary for some algorithms [1], in practice, Ω and θ can be discretized and the cost
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function can be evaluated on a finite number of grid points as an approximation and the

design problem is then changed to

min
w
{max
∀i,j

v(Ωi, θj) | wHd(Ωi, θj)− Pd(Ωi, θj) |} , (2.15)

where the frequency range of interest is discretized into IΩ points, Ωi, i = 0, 1, . . . , IΩ−

1 and the direction range into Jθ points, j = 0, 1, . . . , Jθ− 1.

The weight coefficients w can be obtained by a sequential quadratic programming

method [1].

2.3.2 Convex Optimization

Recently, with the development of convex optimization techniques, especially the interior-

point methods [9], convex optimization has become a popular and efficient tool for solving

the wideband array pattern synthesis problem [64], [65]. An optimization problem is

considered to be convex when both its objective function and its constraint functions are

convex, expressed in the following general form:

min
w
f0(w)

Subject tofi(w) ≤ bi

i = 1, . . . ,m ,

where the vector w represents a set of real-valued variables, fi(w), i = 0, 1, . . . , m, are

convex functions and bi is the upper bound for the corresponding constraint function. A

function is said to be convex if it satisfies:

fi(αw1 + (1− α)w2) ≤ αfi(wi) + (1− α)fi(w2) (2.16)

for all real-valued α and real-valued vectors w1 and w2, which lie in the same space as w,

i.e. w1 and w2 are all of the possible values of w. Examples of convex functions include

the norms |w|, |w|2 of the vector w, and the quadratic vector function wTRw, where R

is a symmetric positive semi-definite matrix.
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It has been mentioned in [1] that most of the wideband array pattern synthesis prob-

lem can be reformulated into the convex form shown above and therefore can be solved

efficiently employing the interior-point methods or other appropriate convex optimization

algorithms.

For a design scenario, consider the design of a wideband linear array. Suppose the

frequency range of interest is represented by Ωpb = [Ωmin Ωmax] and the sidelobe area of

the beamformer is denoted by Θsl. The look direction of the beamformer is θ0 and the

sidelobe area Θsl is discretized into into Jθ− 1 points (θj, j = 1, . . . , Jθ− 1) and the

frequency range Ωpb into IΩ points (Ωi, i = 0, 1, . . . , IΩ− 1). The aim is to minimize the

maximum value of the beamformer response at the sidelobe area Θsl within the frequency

range Ωpb subject to the constraints that it has a distortion-less response at the look

direction θ0 over the whole frequency range Ωpb i.e. a pure delay of T0 which can be

written as

C(Ω, θ0)Tw = f(Ω), (2.17)

where C(Ω, θ0)T is the steering matrix for the look direction and f(Ω) is the desired

distortion-less response vector with a pure delay T0. Moreover, with a known direction θk

of the possible interfering signals, the response of the beamformer can also be constrained

at the direction θk to be smaller than a very small constant δk. Then this design problem

can be formulated as

min
w
{max |C(Ωi, θj)

Tw|}

i = 0, . . . , IΩ − 1

j = 1, . . . , Jθ − 1

Subject to C(Ωi, θ0)Tw = f(Ωi), i = 0, . . . , IΩ − 1

|C(Ωi, θk)
Tw|< δk, i = 0, . . . , IΩ − 1

It can be solved conveniently using existing convex optimization toolboxes. It is also

possible to design a wideband beamformer employing adaptive array techniques. The
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basic idea is to simulate an environment with many interfering signals from different di-

rections and then the optimum array coefficients with the desired pattern can be obtained

after array adaptation to form a beam in the desired direction and low sidelobes at the

interfering directions. Relevant work done in this regard can be found in [66] and [67].

2.3.3 Least Squares Approach

Although the fixed beamformer design problem can be solved using the iterative opti-

mization approaches, they become less efficient for the case with a very large number

of coefficients and cannot provide a closed form solution to the problem. There are two

classes of analytical approaches which can provide such a closed-form solution: the least

squares approach and the eigenfilter approach.

The least squares problem is a traditional subject and has been well-studied in the past

[10] and [68]. Given the desired beam pattern Pd(Ω, θ), the design mechanism tends to

minimize the sum of the squares of the error between Pd(Ω, θ) and the designed response

P(Ω, θ) over the frequency range Ωpb and the range of signal arrival angle Θ:

Min
w

∫
Ωpb

∫
Θ

|P (Ω, θ)− Pd(Ω, θ)|2dΩdθ (2.18)

Weighting function can be added to v(Ω,θ) to form a weighted least squares problem

Min
w

∫
Ωpb

∫
Θ

v(Ω, θ)|P (Ω, θ)− Pd(Ω, θ)|2dΩdθ (2.19)

This cost function can be expanded into the following form

Jls(w) =

∫
Ωpb

∫
Θ

v(Ω, θ)|P (Ω, θ)− Pd(Ω, θ)|2dΩdθ (2.20)

=

∫
Ωpb

∫
Θ

v(Ω, θ)(P (Ω, θ)− Pd(Ω, θ))(P (Ω, θ)− Pd(Ω, θ))HdΩdθ (2.21)

=

∫
Ωpb

∫
Θ

v(Ω, θ)(|(P (Ω, θ)|2+|Pd(Ω, θ)|2−2Re[P (Ω, θ)P ∗d (Ω, θ)])dΩdθ (2.22)
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= wHGlsw −wHg−ls − g−Hls w + gls (2.23)

For real valued w,

= wHGlsw − 2wHgls + gls (2.24)

where

Gls =

∫
Ωpb

∫
Θ

v(Ω, θ)(d(Ω, θ)dH(Ω, θ))dΩdθ (2.25)

=

∫
Ωpb

∫
Θ

v(Ω, θ)D(Ω, θ)dΩdθ (2.26)

g−ls =

∫
Ωpb

∫
Θ

v(Ω, θ)(d(Ω, θ)P ∗d (Ω, θ))dΩdθ (2.27)

gls =

∫
Ωpb

∫
Θ

v(Ω, θ)(dR(Ω, θ)Pd,R(Ω, θ) + dI(Ω, θ)Pd,I(Ω, θ))dΩdθ (2.28)

gls =

∫
Ωpb

∫
Θ

v(Ω, θ)|Pd(Ω, θ)|2dΩdθ (2.29)

where dR(Ω, θ) and Pd,R(Ω, θ) are real parts of d(Ω, θ) and Pd(Ω, θ), while dI(Ω, θ) and

Pd,I(Ω, θ)) denote imaginary parts of d(Ω, θ) and Pd(Ω, θ).

For real-valued w, Gls changes to

Gls =

∫
Ωpb

∫
Θ

v(Ω, θ)DR(Ω, θ)dΩdθ (2.30)

The solution to minimize the cost function Jls with respect to the weight vectors w is

given by standard least squares solution

wopt = G−1
ls gls (2.31)

For the frequency range of interest, Ωpb, if the desired response Pd(Ω, θ) is e−j(T0/Ts)Ω

for the mainlobe area Θml, zero for the sidelobe area Θsl, and the weighting function is α

for the mainlobe and (1 −α) for the sidelobe, then the cost function changes to:
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Gls = α

∫
Ωpb

∫
Θml

DR(Ω, θ)dΩdθ + (1− α)

∫
Ωpb

∫
Θsl

DR(Ω, θ)dΩdθ (2.32)

gls = α

∫
Ωpb

∫
Θml

(
dR(Ω, θ) cos

(
T0

Ts
Ω

)
− dI(Ω, θ) sin

(
T0

Ts

))
dΩdθ (2.33)

gls = α

∫
Ωpb

∫
Θml

1dΩdθ (2.34)

It is also possible to add linear constraints to constrain the response of the beamformer

at some specific directions or frequencies. These constraints can be either of equality or

inequality. For linear equality constraints applied to the standard least squares method,

a derivation for the closed-form expression of the solution is provided in [1].

2.3.4 Eigenfilter Approach

The solution to the standard least squares cost function involves matrix inversion to ob-

tain the required weight vector. Since matrix inversion poses numerical instability with

long filters [11] and is computationally intensive, another method was proposed which

was termed as eigenfilter method. The term eigenfilter is referred to as a filter with its

coefficients being the elements of an eigenvector [1]. The method is also based on the

least squares approach and works by performing eigenvector decomposition of the cost

function to extract the required weight vector in the form of an eigenvector.

This method has been explored for designing different types of filters and beamform-

ers [69–74]. Moreover, this method has been specifically used for the design of linear-

phase FIR Hilbert transformers and arbitrary order digital differentiators by Pei and Shyu

[75, 76], who also investigated the design of arbitrary complex coefficient nonlinear-phase

filters [77, 78]. Two-dimensional (2-D) extension to the eigenfilter method was proposed

by Nashashibi and Charalambous [79], and later considered by Pei [80, 81]. Eigenfilters

have also been used to design infinite impulse response (IIR) and all-pass filters [82, 83].
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2.4 Summary

The general idea of wideband beamforming was reviewed in this chapter. First the gen-

eral structure of wideband beamforming based on TDL was presented followed by detailed

derivation of the wideband beamformer’s response which will be used later in Chapter 3.

Then fixed wideband beamformer design methods are reviewed based on iterative opti-

mization and least squares. It has been shown that iterative optimization based methods

like convex optimization become computationally intensive with increasing number of

weight coefficients. This long computation time required by convex optimization also

makes it non-practical for real time signal processing scenarios. These methods are also

unable to provide closed form solutions/analytical solutions for the design problem. A

solution to these limitations comes in the form of least squares based design, where the

designed weight vector is achievable through an analytical solution. As the solution to

the standard least squares based design involves matrix inversion to obtain the weight

vector, this inversion poses the issue of numerical instability with increasing number of

weight coefficients. Eigenfilter method is a least squares based method which provides

the benefit of an analytical solution along with inversion-free expressions. This method

will be reviewed in detail in Chapter 3 where a critical analysis of the design method is

provided along with a solution to the observed problem.
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Chapter 3

Critical Analysis of Eigenfilter

Method for the Design of FIR Filter

and Wideband Beamformer

3.1 Introduction

FIR filters and wideband beamformers have numerous applications ranging from SONAR,

RADAR, audio processing, ultrasound imaging, radio astronomy, earthquake prediction,

medical diagnosis, to communications, etc [1, 2]. Many optimization methods have been

employed in the past to design FIR filters and wideband beamformers with required

specifications [84, 85]. Iterative optimization based methods like convex optimization and

least squares based methods have also been used for this purpose with their respective

drawbacks as shown in Chapter 2. In this chapter, the least squares based eigenfilter

method for designing FIR filters and wideband beamformers is revisited and a serious

performance issue is revealed in the passband of the designed FIR filters and the mainlobe

of the designed wideband beamformers in the light of an inherent design formulation flaw.

An overall critical analysis of the performance of this approach is presented with the

suggested modification for tackling this issue [86]. In particular, an additional constraint

is imposed at the passband/mainlobe of the system to control the resultant responses.

This chapter is organized as follows. The eigenfilter based design formulation for FIR
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filters and wideband beamformers along with the critical analysis is presented in Section

3.2. The proposed solution to the highlighted problem is given in Section 3.3. Design

examples for different types of FIR filters and wideband beamformers affected by the

problem are provided in Section 3.4 followed by results using the proposed solution.

3.2 Least Squares Based Design and Critical Analy-

sis

In this section, the eigenfilter based design of FIR filter and wideband beamformer is

presented and critical analysis is performed to highlight the underlying problem in the

design formulation.

3.2.1 FIR Filter Design

Consider an N−tap FIR filter. Its frequency response W (ejω) is given by

W (ejω) =
N−1∑
n=0

wne
−jnω , (3.1)

where wn is the n−th tap/coefficient of the filter. In vector form, it can be expressed as

W (ejω) = wHc(ω) , (3.2)

where w is the N × 1 weight vector holding the coefficients wn, n = 0, 1, . . . , N − 1, and

c(ω) = [1, e−jω, · · · , e−j(N−1)ω]
T
. (3.3)

Now consider designing a lowpass filter as an example. The desired response D(ω) is

given by

D(ω) =

e
−jωN−1

2 , 0 ≤ ω ≤ ωp

0, ωs ≤ ω ≤ π

(3.4)

where e−jω
N−1

2 represents the desired linear phase at the passband with a delay of N−1
2

samples along with the desired stopband response equal to zero.
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The design process involves formulating the cost function in the standard eigenfilter

form, based on the Rayleigh-Ritz principle which states that for any Hermitian matrix

R, its Rayleigh-Ritz ratio is given by

wHRw

wHw
. (3.5)

This ratio reaches its maximum/minimum when w is the eigenvector corresponding to

the maximum/minimum eigenvalue of R. The maximum and minimum values of this

ratio are respectively the maximum and minimum eigenvalues. For FIR filter design, a

reference frequency point was introduced by Nguyen in the passband region of the cost

function to help represent it into the quadratic form as desired by (3.5) [70]. The cost

function with the reference frequency point incorporated is given as

E =
1

π

∫
ω

v(ω)

∣∣∣∣ D(ω)

D(ωr)
W (ejωr)−W (ejω)

∣∣∣∣2 dω , (3.6)

where v(ω) is the weighting function and D(ωr) and W (ejωr) represent the desired and

designed responses at reference frequency, respectively. This expression can also be written

as

E =
1

π

∫
ω

v(ω)

(
D(ω)

D(ωr)
W (ejωr)−W (ejω)

)
(
D(ω)

D(ωr)
W (ejωr)−W (ejω)

)H
dω

(3.7)

For stopband, the desired response D(ω) = 0. Substituting this value into the expression

above

Es =
1

π

∫ π

ωs

v(ω)W (ejω)W (ejω)Hdω . (3.8)

Substituting the expression in (3.2) into (3.8), the expression further simplifies to

Es =
1

π

∫ π

ωs

v(ω)wHc(ω)c(ω)Hwdω . (3.9)

Then (3.9) can be expressed as

Es = wHPsw , (3.10)

where Ps is a symmetric, positive definite matrix of order N x N given by

Ps =
1

π

∫ π

ωs

v(ω)c(ω)c(ω)Hdω . (3.11)
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The passband cost function is derived by incorporating the desired passband response

D(ω) = e−jω
N−1

2 into (3.7)

Ep =
1

π

∫ ωp

0

v(ω)

(
e−jω

N−1
2

e−jωr
N−1

2

W (ejωr)−W (ejω)

)
(
e−jω

N−1
2

e−jωr
N−1

2

W (ejωr)−W (ejω)

)H

dω .

(3.12)

After simplification,

Ep =
1

π

∫ ωp

0

v(ω)wH
(
e−j

N−1
2

(ω−ωr)c(ωr)− c(ω)
)

(
e−j

N−1
2

(ω−ωr)c(ωr)− c(ω)
)H

wdω .

(3.13)

This expression can also be written as

Ep = wHPpw , (3.14)

where Pp is a symmetric, positive definite matrix of order N x N given by

Pp =
1

π

∫ ωp

0

v(ω)
(
e−j

N−1
2

(ω−ωr)c(ωr)− c(ω)
)

(
e−j

N−1
2

(ω−ωr)c(ωr)− c(ω)
)H

dω .

(3.15)

The total cost function is a combination of the passband and stopband cost functions

with a trade-off factor α

E = αEp + (1− α)Es , 0 ≤ α ≤ 1 , (3.16)

which can be transformed into

E = wHPw , (3.17)

where

P = αPp + (1− α)Ps, 0 ≤ α ≤ 1 . (3.18)

The weighting function v(ω) is a frequency dependent weighting function for passband

and stopband part of the cost function of filter design. It is interchangable with the trade-

off parameter α which varies in the range 0 ≤ α ≤ 1, where a value of α for passband will

correspond to a value of 1−α for the stopband. As a result, this parameter α provides a

trade-off between the flatness in the passband of a filter and attenuation in the stopband.
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Combining (3.11) and (3.15) in (3.18) and taking the real part

P = α

∫ ωp

0

Re[
(
e−j

N−1
2

(ω−ωr)c(ωr)− c(ω)
)

(
e−j

N−1
2

(ω−ωr)c(ωr)− c(ω)
)H

]dω

+(1− α)

∫ π

ωs

Re[c(ω)c(ω)H ]dω .

(3.19)

The solution rests in finding the eigenvector w corresponding to the minimum eigenvalue

of P which minimizes E. The norm constraint wHw = 1 is also incorporated to avoid

trivial solution. The final expression of solution for the eigenfilter based FIR filter design

problem is given by

Min
w

wHPw

wHw
(3.20)

After investigating the designed filter’s performance, it is found that although the design

performs well for most of the cases with varying specifications for short filters, it produces

ever increasingly inconsistent results as the number of filter taps increases for the same

set of specifications. With those longer filters, the passband performance starts varying

and switches from one case with flatness around near unity gain to another case with

flatness achieved at almost zero magnitude.

This unstable performance can be attributed to the formulation in (3.19) where the

first part of the cost function measures the difference between the filter’s response at the

reference frequency ωr and those at the other frequencies ω in the passband. The term

e−j
N−1

2
(ω−ωr) compensates for different phase shifts of the response at different frequencies.

This expression minimizes the relative variation of the filter’s response at different pass-

band frequencies and ensures a flat passband response. However, there is no control over

the absolute value of the filter’s response in passband, allowing any type of flat passband

response with arbitrary absolute magnitude leading to inconsistent design performance.

3.2.2 Wideband Beamformer Design

Consider a wideband beamformer with TDLs or FIR filters as previously shown in Figure

2.1, where J is the number of delay elements associated with each of the M sensors. Its

response as a function of signal angular frequency ω and direction of arrival θ is given by
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[1]

P (ω, θ) =
M−1∑
m=0

J−1∑
k=0

wm,ke
−jω(τm+kTs) , (3.21)

where Ts is the delay between adjacent taps of the TDL and τm is the spatial propagation

delay between the m− th sensor and the reference sensor. (3.21) can be expressed as

P (ω, θ) = wTd(ω, θ) , (3.22)

where w is the coefficient vector

w = [w0,0, · · ·wM−1,0, · · ·w0,J−1, · · · , wM−1,J−1]T (3.23)

and d(ω, θ) is the M x J steering vector

d(ω, θ) = dTs(ω)⊗ dτm(ω, θ) , (3.24)

with ⊗ denoting the Kronecker product. The terms dTs(ω) and dτm(ω, θ) are defined as

dTs(ω) = [1, e−jωTs , · · · , e−j(J−1)ωTs ]
T

(3.25)

dτm(ω, θ) = [e−jωτ0 , e−jωτ1 , · · · , e−jωτM−1 ]
T
. (3.26)

For a uniform linear array (ULA) with an inter-element spacing d, and angle θ measured

from the broadside, the spatial propagation delay τm is given by τm = mτ1 = md sin θ
c

.

With normalized angular frequency, Ω = ωTs, and µ = d
cTs

, the steering vector is given

by

d(Ω, θ) = dTs(Ω)⊗ dτm(Ω, θ) (3.27)

dTs(Ω) = [1, e−jΩ, · · · , e−j(J−1)Ω]
T

(3.28)

dτm(Ω, θ) = [1, e−jµΩsinθ, · · · , e−j(M−1)µΩsinθ]
T

(3.29)

Then (3.22) is represented as a function of Ω and θ, given by

P (Ω, θ) = wTd(Ω, θ) (3.30)

The desired response for the wideband beamformer is represented by Pd(Ω, θ). Then,

the eigenfilter based cost function can be expressed as

Jef (w) =

∫
Ωpb

∫
Θ

v(Ω, θ)∣∣∣∣P (Ω, θ)− P (Ωr, θr)
Pd(Ω, θ)

Pd(Ωr, θr)

∣∣∣∣2dΩdθ

(3.31)
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where (Ωr, θr) is the reference point. This expression can be changed into

Jef (w) = wHGefw , (3.32)

where

Gef =

∫
Ωpb

∫
Θ

v(Ω, θ)(
d(Ω, θ)− d(Ωr, θr)

Pd(Ω, θ)

Pd(Ωr, θr)

)
(

d(Ω, θ)− d(Ωr, θr)
Pd(Ω, θ)

Pd(Ωr, θr)

)H
dΩdθ

(3.33)

Consider a typical design case with desired sidelobe response equal to zero and response

at look direction θ0 given by e−j
J
2

Ω equal to a pure delay; Ωr and Ωpb represent the reference

frequency and passband frequency range, respectively, and α is the weighting factor for

the mainlobe. The expression in (3.33) is modified accordingly for real-valued beamformer

coefficients and given by

Gef = α

∫
Ωpb

Re[
(
d(Ω, θ0)− e−j

J
2

(Ω−Ωr)d(Ωr, θr)
)

(
d(Ω, θ0)− e−j

J
2

(Ω−Ωr)d(Ωr, θr)
)H

]dΩ

+(1− α)

∫
Ωpb

∫
Θsl

Re[d(Ω, θ)d(Ω, θ)H ]dΩdθ

(3.34)

Then, the solution to the wideband beamformer design problem is given by

Min
w

wHGef (Ω, θ)w

wHw
(3.35)

Similar to the FIR filter design case, testing of the designed wideband beamformer

through the eigenfilter method showed an inconsistent design performance. The design

performed well for some look directions, while attained a very poor response for other

look directions.

This variable nature of look direction response for the same set of specifications can

again be traced back to the design formulation in (3.34), where the first part of the expres-

sion calculates the difference between the beamformer response at reference point (Ωr, θr)

and those at other frequencies in the look direction θ0 . The term e−j
J
2

(Ω−Ωr) compensates

for the different phase shifts experienced by the wideband signal at different frequencies.
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The formulation ensures minimzation of the relative error at the look direction for differ-

ent frequencies, thus providing flat response at θ0. However, just like the FIR filter case,

there is a lack of control for exact response in the look direction which can lead to design

failure.

3.3 Proposed Solution with an Additional Constraint

As shown in our analysis of the eigenfilter design for both FIR filters and wideband

beamformers in Section 3.2, the key issue is its lack of control of the achieved response

at the passband/look direction compared to the desired one in the formulation. To solve

this problem, an additional constraint is added to the formulation to specify the required

response explicitly at the reference point. Since the original formulation will minimize the

variation of the achieved response in the passband/look direction, the explicit control of

the response of the designed filter/beamformer at one reference point of the passband/look

direction will guarantee the design reaches the desired response for the whole considered

passband/look direction region with a minimum overall error.

Now, constraining the reference frequency response to unity by adding a linear con-

straint to (3.20) gives us the following modified design formulation

Min
w

wHPw Subject to CHw = f , (3.36)

where the constraint matrix C and the response vector f provide the required constraint

on the weight vector w, so that the resultant design can have the required exact response

at the reference frequency. The constraint matrix C in its most basic form corresponds to

the real and imaginary parts of the reference frequency vector, where the response for this

reference frequency vector in the passband of a filter or the look direction of a wideband

beamformer is constrained to a fixed desired response with its real and imaginary parts

contained in the response vector f.

For example, consider the design of a lowpass filter. In order to provide correction

for the original formulation flaw, a constraint is imposed for the filter passband response

at the reference frequency to be equal to the desired response with unity gain magnitude
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and linear phase. For a reference frequency ωr = 0, c(ω) in (3.3) changes to

c(ωr) = [1, 1, · · · , 1]T . (3.37)

Then, the constraint matrix C just becomes a constraint vector with C = c(ωr) with the

response vector f containing the desired unity gain as the response of the filter at ωr = 0

represented by

c(ωr)
Hw = f , (3.38)

which is simply

[1, 1, · · · , 1]w = 1 . (3.39)

This constraint will make sure that the designed response of the filter at the reference

frequency in the passband is equal to the desired response. As the original formulation

will minimize the variation in the response achieved at other frequencies in the passband

with respect to the reference frequency, the overall designed response in the passband will

be equal to the desired response, thus solving the original formulation problem.

Note that other constraints can also be added to the formulation of C and f so that

more flexible constraints can be imposed on the design. For example, a constraint can

be added to make sure the resultant design has an exact zero response at some stopband

frequencies.

The solution to (3.36) can be obtained by the Lagrange multipliers method and it is

given by

wopt = P−1C(CHP−1C)−1f (3.40)

For the wideband beamformer design, the modified problem is given by

Min
w

wHGefw Subject to CHw = f , (3.41)

where C and f again correspond to the constraint matrix and response vector, respectively.

For the wideband beamformer case, just like the filter design scenario, this constraint

matrix will correspond to the reference frequency steering vector, where C = d(Ωr, θr).

By constraining the response of the wideband beamformer at this reference frequency

steering vector equal to the desired response e−j
J
2

Ωr as

d(Ωr, θr)
Hw = e−j

J
2

Ωr , (3.42)
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the overall response of the wideband beamformer at the look direction for different fre-

quencies will be equal to the desired response, thus mitigating the initial formulation

problem. The solution to (3.41) is then given by

wopt = G−1
ef C(CHG−1

ef C)−1f (3.43)

Note that there are matrix inversion operations in (3.40) and (3.43), which can be

computationally intensive for larger filters and beamformers. However, there are other

approaches available in literature e.g. null space based methods to solve (3.36) and (3.41)

avoiding the need to compute matrix inversion [1].

Now, the null space method is presented to solve the proposed constrained eigenfilter

problem. Here the wideband beamformer perspective is considered to solve (3.41). The

same concept can be applied to solve the FIR filter design case for the proposed method

in (3.36). The solution of constrained eigenfilter problem in (3.41) can be obtained by

first transforming the constraint CHw = f into the form

Ĉ
H

w = 0 (3.44)

with:

Ĉ = C− d(Ωr, θr)

P (Ωr, θr)
fH (3.45)

To meet this constraint equation, w must lie in the null space of Ĉ. Suppose C̃ is a

unitary matrix with its columns being the bases of the null space. Then w = C̃w̃ and

the problem is reduced to finding the new unknown vector w̃ in the following minimizing

problem:

Min
w̃

w̃HC̃
H

GefC̃w̃ (3.46)

This is again a standard eigenfilter problem and the optimum w̃ is the eigenvector

corresponding to the smallest eigenvalue of the matrix C̃
H

GefC̃. By obtaining w̃, the

required weight vector is given by w = C̃w̃.
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3.4 Design Examples

In this section, design examples are provided to show the inconsistent performance pro-

duced by the original unconstrained eigenfilter design method. The examples are then

re-designed through the proposed constrained eigenfilter method to show the improve-

ment.

3.4.1 Unconstrained Eigenfilter Design

First, the lowpass filter design scenario is considered where the whole frequency range

from [0, π] was discretized into 400 points. The design specifications include the passband

from [0, 0.5π] and stopband from [0.8π, π]. A 70-tap filter with trade-off parameter α =

0.97 and reference frequency at 0.35π is then designed using the original formulation. The

result is shown in Fig. 3.1 in blue colour (solid curve) with a clearly satisfactory design

performance showing a passband to stopband ratio of 140 dB.

In the second case, the number of taps is changed to 76, while keeping all the other

specifications the same as the first case. The result is shown in Fig. 3.1, highlighted in

dashed curve with red colour. It can be seen that the passband response is out of control,

with a flat response of around -118 dB, and the resulting ratio between passband and

stopband is just around 19 dB (if ignoring the unacceptable response at the transition

band), clearly highlighting the problem with the original formulation.

For highpass filters, again two cases are presented. For the first case, an 81-tap filter is

considered, where the design specifications include a stopband from [0, 0.4π] and passband

from [0.7π, π]. The tradeoff factor α = 0.71 and the reference frequency is set to 0.74π.

The result is depicted in Fig. 3.2 with solid curve and blue colour, where a very satisfactory

design performance can be observed with a passband to stopband ratio of 150 dB.

For the second case, the reference frequency is changed to 0.94π and the result is

shown in Fig. 3.2 with dashed red colour, which is without any doubt unacceptable, with

a passband response at around -130 dB leaving a passband to stopbad ratio of only 15

dB. The results for lowpass and highpass filter design examples clearly demonstrate the

magnitude of the problem at hand for different arbitrary design scenarios.
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Figure 3.1: The designed lowpass FIR filters using the original formulation.

Now this observation can be extended to the design of bandpass filters to see if the

same problem can be observed in those filters as well.

Figure 3.2: The designed highpass FIR filters using the original formulation.

For the bandpass filter design scenario, again two cases are considered for comparison.

For the first case, 91 taps are considered, where the design specifications include the first

stopband from [0, 0.15π], passband from [0.35π, 0.65π] and the second stopband from

[0.85π, π]. The tradeoff factor α = 0.96 and the reference frequency is set to 0.55π. The
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Figure 3.3: The designed bandpass FIR filters using the original formulation.

satisfactory design result is shown in Fig. 3.3 with solid curve and blue colour, where a

suitable passband to stopband ratio of 145 dB can be observed.

For the second case, the reference frequency is changed to 0.49π, while keeping the

remaining specifications similar to the first case and the result is shown with dashed

red colour, where it can be seen that the flat passband again has dropped to a very

low unacceptable magnitude of -80 dB with a passband to stopband ratio of 36 dB,

providing further evidence for the kind of inconsistent results caused by the flawed design

formulation.

For the wideband beamformer design, an array with 10 sensors is considered with

a TDL length of 10 taps. The look direction is chosen as an off-broadside direction of

θ0 = 10◦ with the desired response equal to e−j5Ω. The considered wideband signal has a

frequency range of Ωpb = [0.4π, π] with the reference frequency Ωr = 0.7π and θr = 10◦

chosen as the reference point. The weighting function is set to α = 0.6 at the look

direction and 0.4 at the sidelobe region, which runs from −900 to −100 and 300 to 900.

The frequency range is discretized into 20 points, while the angle range is divided into

360 points.

The result is shown in Fig. 3.4(a), where a satisfactory design performance is achieved

with the look direction to sidelobe ratio around 20 dB. The same scenario is again tested
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(a) θ0 = 100 (b) θ0 = 00

Figure 3.4: The designed wideband beamformer using the original formulation with 10

sensors and 10 taps.

(a) θ0 = 00 (b) θ0 = 100

Figure 3.5: The designed wideband beamformer using the original formulation with 11

sensors and 10 taps.
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by changing the look direction to the broadside of θ0 = 00 with the sidelobe region ranging

from −900 to −200 and 200 to 900 with the remaining specifications unchanged. The result

is shown in Fig. 3.4(b), where it can be observed that the look direction response plunges

to -40 dB with a flat response attained, which is even lower than the sidelobes.

Another example is provided for a scenario where an 11-sensor array is considered

with a TDL structure of 10 taps. For the first case, the look direction is chosen as the

broadside direction with θ0 = 0◦ and the desired response equal to e−j5Ω. For the design

specifications, the considered wideband signal has a frequency range of Ωpb = [0.4π, π]

with the reference frequency Ωr = 0.7π and θr = 10◦ chosen as the reference point. The

weighting function is the same as the previous example and the sidelobe region is from

−900 to −300 and 300 to 900. The result is shown in Fig. 3.5(a), where a satisfactory

design response is achieved with a look direction to sidelobe response ratio of 40 dB. For

the second case, the look direction is changed to an off-broadside direction of θ0 = 10◦ with

the sidelobe ranging from −900 to −200 and 400 to 900 with the remaining specifications

unchanged. The result is shown in Fig. 3.5(b), where the look direction response again has

no absolute control and achieves flatness around -30 dB with the resulting look direction

response even lower than the sidelobes, again demonstrating the presence of this problem

in a wide range of design scenarios.

It is worth noting that the reference points in the eigenfilter based FIR filter and

wideband beamformer design simulations are chosen by searching out the entire passband

frequency range and different look directions (in the case of wideband beamformer) while

observing any anomalies in the design results with no control in the magnitude of passband

response.

3.4.2 Constrained Eigenfilter Design

Now the constrained eigenfilter formulation in (3.36) is applied to design the lowpass,

highpass and bandpass filters presented using unconstrained design formulation. The

new results are presented in Figs. 3.6, 3.7 and 3.8. Although there is still a noticeable

bump in the transition band for the design results in Figs. 3.6 and 3.7 for lowpass and

highpass, respectively, the overall response has improved significantly compared to the
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results in Figs. 3.1 and 3.2. The bandpass filter designed with the new formulation in

Fig. 6.3(c) achieves a very satisfactory response compared to the result in Fig. 3.3.

Figure 3.6: Lowpass FIR filter using the constrained design

The beamformer designs presented in Figs. 3.4(b) and 3.5(b) are re-designed using

the constrained formulation in (3.41) and the result is provided in Figs. 3.9 and 3.10,

where the look direction response has improved significantly with a decent look direction

to sidelobe ratio achieved as per the desired specifications.

Various designs for different types of filters and wideband beamformers have been tried

with varying design specifications and the proposed method has been found to perform

consistently well in different scenarios.

3.5 Summary

The classic eigenfilter approach has been revisited and critically analyzed, where a for-

mulation problem is highlighted in the passband/look direction part of the cost function

which leads to an inconsistent design performance. A solution was then proposed by

adding a linear constraint, explicitly setting the designed passband response at the refer-
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Figure 3.7: Highpass FIR filter using the constrained design

Figure 3.8: Bandpass FIR filter using the constrained design

42



Figure 3.9: The designed wideband beamformer with θ0 = 00.

Figure 3.10: The designed wideband beamformer with θ0 = 100.
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ence frequency point to the desired one. Results have been provided for different design

scenarios based on FIR filter and wideband beamformer design to demonstrate the crucial

issue of the original formulation and the satisfactory performance by the proposed one.

In the next chapter, the focus will be shifted from fixed wideband beamformer design

with traditional arrays containing fixed inter-element spacing to sparse arrays where the

inter-element spacing can vary from sensor to sensor and can be significantly larger than

the spacing in traditional arrays. Such arrays have numerous applications especially in

the area of DOA estimation where extensive research is being carried out. Although

sparse arrays are a relatively little explored territory from the beamforming perspective,

many types of sparse arrays with efficient difference co-arrays have been proposed for

their application in DOA estimation. In Chapter 4, an overview of the difference co-

array model, concepts of sparsity and a detailed review of existing sparse arrays will be

presented.

44



Chapter 4

Review of Sparse Arrays and

Difference Co-array Model

4.1 Introduction

Data received by the sensor arrays is very significant from signal processing perspec-

tive and can be used to compute different characteristics of the source signals like DOA

and number of source signals [6]. DOA estimation determines the spatial spectra of the

impinging electromagnetic waves on the sensor array. Different methods exist in the lit-

erature which are used to estimate the respective DOA of the impinging signals. The

conventional subspace-based DOA estimation methods like MUSIC and ESPRIT resolve

upto N − 1 sources with an N -element array [17, 18]. The idea of detecting more sources

than the number of sensors holds numerous applications and has received tremendous

interest by the research community recently [87].

Towards that goal, higher number of degree of freedoms(DOFs) have been achieved by

exploiting sparse arrays through their equivalent difference co-array model. In this chap-

ter, difference co-array model and related terminologies stemming from it are explained in

Section 4.2 with a perspective on mutual coupling in Section 4.3, followed by an extensive

literature review on sparse arrays in Section 4.4.
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4.2 Preliminaries of Difference Co-array Model

In this section, sparse arrays will be discussed from the point of view of difference co-array

model and related terminologies will be defined for a better understanding of the concept.

4.2.1 Sparse Arrays

Sparse arrays differentiate themselves from the traditional arrays from the standpoint of

inter-element spacing. Traditional arrays are defined by an inter-element spacing of d = λ
2

between the sensors, where λ is the minimum wavelength corresponding to maximum

frequency content present in the incoming signal. This sensor spacing is aimed at avoiding

the grating lobes, which start to appear in the beam pattern of the array in the form of

peaks at spatial locations other than the main lobe if the inter-sensor spacing is greater

than λ
2
. An example of a 10-sensor normalized traditional ULA is provided with its sensor

positions given by

STULA = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} (4.1)

Applications of traditional arrays are limited by the low aperture attained because of

this closely packed arrangement of sensors in addition to mutual coupling problems. In

comparison, sparse arrays work around this problem by having an increased sensor spacing

much greater than λ/2 and achieve an increased aperture and enhanced degrees of freedom

which can be utilized in applications like DOA estimation through their difference co-array

model. For the ease of concept, a 10-sensor prototype coprime array, a type of sparse array

which will be discussed in subsequent sections, has its sensor positions given by

SCSA = {0, 5, 6, 10, 12, 15, 18, 20, 24, 25} (4.2)

which clearly shows the increased aperture and sparsity achieved by the array.
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4.2.2 Difference Co-array Model

Definition 4.1 (Difference co-array D). Considering a sparse array with the position of

its sensors specified by an integer set S, its difference co-array D is defined as [88]

D = {n1 − n2 | n1, n2 ∈ S}

The difference co-array is based on computing the difference in position of one sensor

relative to the remaining sensors in the sparse array. This difference is termed as lag

and this process is repeated for every sensor in the array followed by constructing a

set of lags for the whole array. These lags represent the points in the array at which

the autocorrelation can be computed and represent degrees of freedoms (DOFs) of the

difference co-array where autocorrelation is the correlation of the signal with a delayed

copy of itself as a function of delay. It is the similarity between the observations as a

function of time/spatial lag between them.

The difference co-array for the sparse array in (4.2) is given by

DCSA = {−25,−24,−20,−19,−18,−15,−14,−13,−12,−10,−9,−8,−7,−6,−5,−4,−3,

−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 19, 20, 24, 25}

4.2.3 Degrees of Freedom

Definition 4.2 (Degrees of freedom). The number of degrees of freedom (DOF) of a

sparse array is the cardinality of the difference co-array D. [88]

The example shown above has 39 DOFs as per the number of entries in the corre-

sponding difference co-array. For the sake of simplicity, DOF will be addressed as lag in

the remaining part of this thesis.

4.2.4 Consecutive Lags

Definition 4.3 (Consecutive lags). Given the difference co-array array D, the largest

set of consecutive entries in D identifies the number of consecutive lags provided by the

difference co-array D.
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For consecutive lags of a sparse array equal to x, the number of uncorrelated signals

that can be identified by SS-MUSIC is given by x−1
2

. For the sparse array under consid-

eration, it has consecutve entries from -10 to 10, thus providing 21 consecutive lags.

4.2.5 Unique Lags

Definition 4.4 (Unique lags). Given the difference co-array D, the number of distinct

entries in D identifies the number of unique lags provided by the difference co-array D.

The number of unique lags of a sparse array represents the number of uncorrelated

signals that can be identified using compressive sensing (CS) based methods. The more

the number of lags generated from the difference co-array, the more the available lags

which can be exploited for DOA estimation. Again there are 39 distinct entries in the

difference co-array for sparse array representing 39 unique lags.

4.2.6 Holes

Definition 4.5 (Holes). Given a difference co-array D, the missing points among the

entries of the difference co-array D are termed as holes.

The holes represent the points in the difference co-array at which autocorrelation

cannot be computed and represent the missing lags. It can be seen that the sparse array

has holes at

HCSA = {−23,−22,−21,−17,−16,−11, 11, 16, 17, 21, 22, 23}

4.2.7 Restricted Arrays

Definition 4.6 (Restricted arrays). A restricted array is an array whose difference co-

array D is a ULA with adjacent elements separated by λ/2. In other words, there are

no holes in the co-array domain. Thus the phrase “restricted array” is equivalent to “an

array with a hole-free difference co-array.” [88]
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4.2.8 General Arrays

Definition 4.7 (General arrays). If the difference co-array D of a sparse array S is not a

ULA with inter-element spacing λ/2, then it is a general array. [88]

4.3 Mutual Coupling and Sparsity

The performance and output of sensors in an array are affected by their neighbouring

sensors and this effect appears in the form of mutual electromagnetic coupling. The closer

the sensors placed in the array, the more this scenario plays its part and affects the sensor

output severely. Different methods in the literature target the decoupling or removal of

effect of mutual coupling from the received data by incorporating mutual coupling models

[89–98].

This effect is quantized in arrays with the help of weight functions which define the

number of sensor pairs in the array with a certain value of inter-element spacing. This

definition of weight functions is explained as follows.

Definition 4.8 (Weight functions). The weight function w(m) of an array p refers to

the number of sensor pairs corresponding to a particular value of coarray index m (which

is an indication of the separation between the underlined sensor pair), and is given by [88]

W (m) = {(n1, n2) ∈ X2 | n1 − n2 = md} , (4.3)

w(m) = Card(W (m)) , (4.4)

where md ∈ CP, (n1, n2) are the ordered pairs contributing to the co-array index m and

Card(A) returns the cardinality of the set A which is the number of elements in set A.

The first 3 weights i.e. w(1), w(2) and w(3) represent the number of sensor pairs in a

sparse array having d, 2d and 3d inter-element spacing. These weights are very critical

and point to the degree of sparsity achieved by the array and the potential of array to

counter mutual coupling. Lower values of these weights lead to a sparser array design and

better performance against mutual coupling.
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4.4 Types of Sparse Arrays

In this section, different types of sparse arrays available in the literature will be reviewed.

First in this line is the minimum redundancy array.

4.4.1 Minimum Redundancy Array

Minimum redundancy array (MRA) is a type of sparse array that maximizes the number of

consecutive lags in the difference co-array for a fixed number of sensors [50]. The method

of finding MRA’s for a given number of sensors rests in minimizing the redundancy factor

R which is a ratio of the number of possible pairs for a given number of sensors to the

maximum available spacing that is the total aperture achieved by the array. The method

involves exhaustive search to find the optimal arrays from the perspective of highest

number of consecutive lags with a hole free co-array for a given number of sensors. The

MRAs achieved thus have a hole-free co-array and belong to restricted arrays. A useful

contribution on MRAs is provided by Ishiguro where MRAs for arbitrary number of

antennas have been found after exhaustive search through different methods [57].

Although MRA for a given number of sensors is optimal from the perspective of highest

number of consecutive lags, hole-free co-arrays and sparse structure, they are difficult to

find. Extracting MRAs involves combinatorial search and table lookup, which is not

scalable for a scenario especially where an array with a greater number of sensors has to

be designed.

An example of a 12-sensor MRA is provided in Figure 4.1 with 49d aperture and R =

1.347 [57]. This array generates 99 lags from −49 to 49 with a hole-free co-array and able

to detect and estimate 49 sources using the SS-MUSIC algorithm.

Figure 4.1: MRA with 12 sensors

The weight function plot of MRA is shown in Figure 4.2, where w(1) = w(3) = 1 and
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w(2) = 4 indicating a very sparse structure.
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Figure 4.2: MRA weight functions

4.4.2 Minimum Hole Array

Another type of sparse array is a minimum hole array (MHA) which minimizes the number

of holes in the difference co-array for a given number of sensors [58]. MHA’s hold this

property that all of differences in their co-array occur at most with a frequency of 1

except the difference of 0 which is a very desired characteristic from the mutual coupling

perspective. Like MRA, MHA offers optimal array characteristics from the perspective

of highest number of unique lags along with weight frequency of 1 for any lag for a given

number of sensors but generating the sensor locations for an arbitrary number of sensors is

an extremely complicated task [50, 99]. It doesn’t have closed form expressions/analytical

solutions for the array geometry and the sensor positions are normally extracted from the

tabulated entries [50].

4.4.3 Nested Array

Another recently developed sparse array is the nested array. Nested arrays are composed

of two uniform linear subarrays (ULAs) where one subarray is dense with unit inter-

element spacing compared to the other one which is more sparsely spaced [26]. It has the
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ability to resolve O(N2) sources with N sensors where O(.) is the order of the function,

and possess hole-free co-arrays. For given parameters N1 and N2, where N1 denotes the

number of sensors in the 1st densely packed ULA with unit inter-element spacing d = λ
2

and

N2 denotes the number of sensors in the 2nd ULA with sensors separated by (N1 + 1)d,

nested arrays obtain an aperture of ((N1 + 1)N2 − 1)d and produce 2(N1 + 1)N2 − 1

consecutive lags from −(N1 + 1)N2 − 1 to (N1 + 1)N2 − 1. The total number of sensors

in nested array is given by N1 + N2. In comparison to MRA and MHA, nested array is

simple to construct and exact expressions are available for sensor locations and computing

lags for a given number of sensors [26].

The drawback with the simple nested array design lies in the fact that as the sen-

sor locations in one subarray are separated only by unit inter-element spacing, mutual

coupling between neighbouring antennas becomes significant and affects DOA estimation

performance [100]. An example of a nested array for N1 = 6 and N2 = 6 is shown in

Figure 4.3.

Figure 4.3: Nested array for N1 = N2 = 6

The weight function plot of the nested array in Figure 4.3 is shown in Figure 4.4,

where w(1) = 6, w(2) = 5 and w(3) = 4, indicating significantly higher weight function

values which make the array vulnerable to mutual coupling.

It can be seen that 6 pairs of sensors are separated from each other just by unit inter-

element spacing which can significantly increase mutual coupling and increase estimation

error. This array generates 83 consecutive lags available to be utilized for DOA estimation.
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Figure 4.4: Nested array weight functions

4.4.4 Coprime Array/ Prototype Coprime Array

Coprime arrays are the sparse arrays developed to counter the mutual coupling problem

present in the nested array with a much sparser array structure. There are a lot of

configurations that have been proposed based on the coprime array structure. The very

basic coprime array structure is called as prototype coprime array.

Prototype coprime arrays are composed of a pair of uniform linear subarrays where

one subarray has M sensors separated by an inter-element spacing of N units, whereas the

other subarray has N sensors separated by an inter-element spacing of M units where M

and N are coprime integers. This coprime array structure is referred to as the prototype

coprime array with M+N − 1 sensors where the zeroth position sensor is shared between

the two arrays [27]. These arrays possess holes in their co-arrays and therefore the analysis

of their lags is based on the number of consecutive lags and unique lags present in the

co-array. For a given M and N , these arrays possess 2(M +N)− 1 consecutive lags from

−M −N + 1 to M +N − 1 and MN +M +N − 2 unique lags. These arrays are able to

resolve O(MN) sources with M +N − 1 sensors. The aperture obtained by these arrays

is given by ((M − 1)N + 1)d.

An example of a 12-sensor prototype coprime array is provided for M = 6 and N =

7 in Figure 4.5. The weight function plot of prototype coprime array is shown in Figure
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Figure 4.5: Prototype coprime array for M = 6 and N = 7
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Figure 4.6: Prototype coprime array weight functions
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4.6, where w(1) = w(2) = w(3) = 2. This array generates 25 consecutive lags from −12

to 12 and 53 unique lags which can be utilized appropriately for DOA estimation. In

comparison to nested arrays for the same 12 sensors in Figure 4.3, the prototype coprime

array only contains 2 pairs of sensors with unit inter-element spacing which is a great

improvement to counter mutual coupling from neighbouring sensors. However, it lags the

nested array in the provision of lags and aperture where the nested array is able to get

an aperture of 41d and 83 lags. The prototype coprime array structure was improved by

the introduction of conventional coprime array which provide a significant increase in the

consecutive lags for application in SS-MUSIC based DOA estimation as shown later.

Figure 4.7: Conventional coprime array for M = 4 and N = 5
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Figure 4.8: Conventional coprime array weight functions
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4.4.5 Conventional Coprime Array

A modification to the prototype coprime array structure was proposed in [43] by doubling

the number of elements in one subarray from M sensors to 2M sensors. It was shown by

the authors that this structure of 2M + N− 1 sensors resulted in increased consecutive

lags in the difference co-array compared to the prototype coprime array of same number of

sensors. For a given M and N , the co-array of 2M+N− 1 sensors generated 2MN+2M−

1 consecutive lags from −MN −M + 1 to MN +M − 1.

An example of a 12-sensor conventional coprime array is presented for M = 4 and

N = 5 in Figure 4.7. The weight function plot of conventional coprime array is shown

in Figure 4.8, where w(1) = w(2) = w(3) = 2, similar to the case of prototype coprime

arrays. This array possesses 47 consecutive lags from −23 to 23 and 59 unique lags,

which is a significant improvement over the prototype coprime array in Figure 4.5 which

provides 25 consecutive lags. The conventional coprime array has 2 sensor pairs with unit

inter-element spacing as prototype coprime and achieves nearly the same aperture but

compared to nested arrays it still lags in consecutive lags and aperture.

Although the conventional coprime array provided improvement in the lags over pro-

totype copirme array and more sparsity compared to nested array, it still had couple of

sensor pairs separated by just the unit inter-element spacing. To suit the application of

coprime arrays for the scenarios where the physical size of sensors is increased for larger

directivity and are normally greater than half wavelength, another array configuration

of coprime arrays was proposed in [101], where the minimum inter-element spacing was

much greater than the typical half wavelength requirement. This configuration will be

termed for our analysis as coprime arrays wih displaced subarrays (CADiS) version 1.

4.4.6 CADiS Version 1

This version of CADiS has the same 2M+N− 1 sensors as the conventional coprime array.

It is different in the sense that the 2M− 1 sensor subarray is displaced from the N -sensor

subarray by a spacing of Ld where L ≥ M . The minimum inter-element spacing for this

array is Md in comparison to d for the prototype and conventional coprime array. The
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aperture obtained by the array for a fixed M and N was given by (3MN −M −2N +L)d

which was considerably larger than the conventional coprime array.

It was shown in [101] that with an appropriate choice of L = M + N , this array was

able to provide MN + 2M + N − 1 consecutive lags between MN − M − N + 1 and

2MN +M − 1 which was slightly larger than half the conventional coprime array lags for

SS-MUSIC to be exploited. Due to the displacement between the two subarrays in CADiS

version 1, this array was able to provide increased unique lags given by 4MN + 2M − 1

compared to 3MN +M −N of conventional coprime array.

To show the concept, a 12-sensor CADiS version 1 array for M = 4 and N = 5 is

presened in Figure 4.9. The weight function plot of CADiS version 1 is shown in Figure

4.10, where w(1) = w(2) = w(3) = 0, providing good sparsity. This array possesses 32

consecutive lags compared to 47 lags for the conventional coprime array in Figure 4.7, but

provides 87 unique lags compared to 59 for the conventional coprime case. It has a much

longer aperture of 55d and contains the sparsest structure with minimum inter-element

spacing equal to 4d.

Figure 4.9: CADiS version 1 for M = 4 and N = 5

The authors presented generalizations of coprime arrays in [54] based on two different

configurations. The 1st configuration was based on compressing one subarray of prototype

coprime array by an integer factor, resulting in a coprime array with compressed inter-

element spacing (CACIS). The 2nd type was based on applying the same compression

principle in the 1st type but on a CADiS structure with subarrays displaced from each

other. These two configurations will be explored in detail in the following section.
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Figure 4.10: CADIS version1 weight functions

4.4.7 CACIS

Consider two subarrays with M and N sensors, where M and N are coprime integers.

Unlike the prototype coprime array where coprime numbers are used for inter-element

spacing of the respective subarrays, an integer compression factor p is introduced for

changing the inter-element spacing of one subarray. Assuming that M can be expressed

as a product of two positive integers p and M
′

i.e.

M = pM
′

(4.5)

where p takes a value between 2 and M . It can be easily confirmed that M
′

and N

are also coprime since M and N do not have common factors other than unity. In this

CACIS structure, the M -element subarray has an inter-element spacing of Nd whereas

the N -element subarray is compressed by an inter-element spacing of M
′
d rather than

Md which was the case in prototype coprime. All the CACIS arrays consist of the same

M +N− 1 physical sensors and provide (M − 1)N aperture irrespective of the value of p.

The authors showed that for a given M , N and M
′
, CACIS provides 2MN − (M

′
+

1)(N − 1)− 1 unqiue lags, out of which there are 2MN − 2M
′
(N − 1)− 1 consecutive

lags from −MN + M
′
(N − 1) + 1 to MN −M ′

(N − 1)− 1. An example of CACIS for

M = 6 and N = 7 is presented in Figure 4.11. For M = 6, there are 3 possible structures
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of CACIS available to be explored respectively for p = 2, 3 and 6.

For p = 2, M
′

= 3 which corresponds to a spacing of 3d for the N -element subarray

as depicted in Figure 4.11 (a). This is the sparsest structure possible for M = 6 and

provides 47 consecutive lags and 59 unique lags. There are 2 sensor pairs each with d and

2d spacing and 7 sensor pairs with 3d spacing.

Figure 4.11: CACIS for M = 6 and N = 7

For p = 3, M
′

= 2 which corresponds to a spacing of 2d for the N -element subarray
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Figure 4.12: CACIS p = 2 weight functions

-40 -20 0 20 40
Coarray Location m

0

2

4

6

8

10

12

w
(m

)

Figure 4.13: CACIS p = 3 weight functions
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Figure 4.14: CACIS p = 6 (nested) weight functions

as depicted in Figure 4.11 (b). This structure provides 59 consecutive lags and 65 unique

lags. There are 2 sensor pairs with d and 3d spacing and 7 sensor pairs with 2d spacing.

By increasing the compression factor p, there is a noticeable increase in the consecutive

and unique lags; however it comes at the cost of closer spacing among the elements of the

array.

For p = 6, M
′

= 1 with a nested CACIS structure, where the N -element subarray

becomes a nested array for 7 sensors with d inter-element spacing as shown in Figure

4.11 (c). This structure provides the highest number of consecutive lags equal to 71 and

provides a hole-free co-array. There are 7 sensor pairs with d spacing, 6 sensor pairs

with 2d spacing and 5 sensor pairs with 3d spacing showing a visible problem of mutual

coupling.

The weight function plots for p = 2, 3 and 6 for this CACIS configuration are shown

in Figures 4.12, 4.13 and 4.14, respectively. The drawbacks of this CACIS structure are in

its minimum unit inter-element spacing, higher frequency of sensor pairs with d, 2d and

3d spacing and lot of overlapping in self and cross lags which occurs due to collocation

of the two subarrays. To counter this, a 2nd version of CADiS was proposed in [54]

by introducing displacement between two subarrays of a prototype coprime array with

the compression of one subarray resulting in an array with larger minimum inter-element

spacing and higher number of unique lags. In this case, the number of consecutive lags
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was reduced because the positive and negative lags were no longer connected due to larger

minimum inter-element spacing. This array was termed as coprime array with displaced

subarrays (CADiS) version 2.

4.4.8 CADiS Version 2

Consider two collinearly located uniform linear subarrays where one subarray consists of

N sensors and the other subarray consists of M− 1 sensors. The total number of sensors

in the array is again M + N− 1. Similar to CACIS, the sensors in N -element subarray

are separated by inter-element spacing of M
′
d while the M -element subarray is separated

by an inter-element spacing of Nd. The inter subarray displacement is represented by Ld

where the authors showed that the choice of L = M
′
+ N gives 2MN + 2M

′ − 1 unique

lags and the highest number of consecutive lags from (M
′ − 1)(N − 1) to MN + M

′ −

1, while the choice of L > N(M − 2) yields the highest number of unique lags given by

2MN + 2M− 5. For illustrative purpose, L = M
′

+N is used for analysis. An example

of CADiS for M = 6 and N = 7 is presented in Figure 4.15. For M = 6, again there are

3 possible structures of CADiS available to be explored respectively for p = 2, 3 and 6.

Figure 4.15: CADiS version 2 for M = 6 and N = 7
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For p = 2, M
′

= 3 which corresponds to a spacing of 3d for the N -element subarray

as depicted in Figure 4.15 (a). This is the sparsest CADiS structure possible for M = 6.

This structure provides 33 consecutive lags and 89 unique lags, a big increase from the

CACIS structure. There are no sensor pairs with d and 2d spacing and 6 sensor pairs

with 3d spacing proving to be a very good sparse structure to counter mutual coupling.

For p = 3, M
′

= 2 which corresponds to a spacing of 2d for the N -element subarray

as depicted in Figure 4.15 (b). This structure provides 48 consecutive lags and 87 unique

lags. There are no sensor pairs with d and 3d spacing and 6 sensor pairs with 2d spacing.

Finally for p = 6, M
′
= 1 for a nested CADiS structure, where the N -element subarray

becomes a nested array for 7 sensors with d inter-element spacing as shown in Figure 4.15

(c). This structure provides the highest number of consecutive lags equal to 85 and

provides a hole-free co-array. There are 6 sensor pairs with d spacing, 5 sensor pairs with

2d spacing and 4 sensor pairs with 3d spacing.

The weight function plots for p = 2, 3 and 6 for this CADIS configuration are shown

in Figures 4.16, 4.17 and 4.18, respectively.
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Figure 4.16: CACIS p = 2 weight functions

It was shown that CADiS structure yielded the highest number of unique lags which

were all exploited using compressive sensing (CS) based DOA estimation method. In

order to apply subspace based DOA estimation methods like SS-MUSIC, nested CADiS

offered the highest number of consecutive lags and performed better than nested CACIS.
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Figure 4.17: CADIS p = 3 weight functions
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Figure 4.18: CADIS p = 6 (nested) weight functions
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Although the nested CADiS offered the highest number of consecutive lags with a hole-free

co-array, the mutual coupling problem still affected the DOA estimation performance.

The sparsest version of CADiS outperforms previously proposed sparse arrays from

the perspective of high unique lags which can all be utilized by CS-based methods. Also

the degree of sparsity achieved by these arrays is advantageous to counter the effects

of mutual coupling along with an aperture with very decent resolution but it lacks in

provision of consecutive lags which limits its use for SS-MUSIC based DOA estimation.

The nested structures of CACIS and CADiS are able to provide hole-free co-arrays but

at the cost of increased number of sensor pairs with d, 2d and 3d inter-element spacing.

4.4.9 Super Nested Array

An improvement to nested array design was proposed in [88], where the author showed

that a hole-free co-array was achieved with a much sparser array structure. This array was

called the super nested array (second order) [59] along with the higher order super nested

arrays which were proposed later on [60]. It worked on the idea of a nested array where

one subarray was densely packed with unit inter-element spacing while the other subarray

was sparsely spaced. The author showed that by proper rearrangement of some of the

sensors in the densely packed subarray, the overall array maintained all the properties of

its parent nested array. The super nested array thus achieved had the same aperture,

same hole-free co-array (number of consecutive lags) with lower number of sensor pairs

with d, 2d and 3d spacing for reduced mutual coupling. The concept of super nested

arrays is demonstrated with the help of an example as follows.

Consider N1 and N2 as integers satisfying N1 ≥ 4 and N2 ≥ 3. A second order super

nested array is specified by the integer set S(2) defined by

S(2) = X(2)
1 ∪ Y(2)

1 ∪ X(2)
2 ∪ Y(2)

2 ∪ Z(2)
1 ∪ Z(2)

2 ,
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where

X(2)
1 = {1 + 2l | 0 ≤ l ≤ A1},

Y(2)
1 = {(N1 + 1)− (1 + 2l) | 0 ≤ l ≤ B1},

X(2)
2 = {(N1 + 1) + (2 + 2l) | 0 ≤ l ≤ A2},

Y(2)
2 = {2(N1 + 1)− (2 + 2l) | 0 ≤ l ≤ B2},

Z(2)
1 = {l(N1 + 1) | 2 ≤ l ≤ N2},

Z(2)
2 = {N2(N1 + 1)− 1},

The parameters A1, B1, A2 and B2 are defined as

(A1, B1, A2, B2) =



(r, r − 1, r − 1, r − 2), if N1 = 4r,

(r, r − 1, r − 1, r − 1), if N1 = 4r + 1,

(r + 1, r − 1, r, r − 2), if N1 = 4r + 2,

(r, r, r, r − 1), if N1 = 4r + 3,

where r is an integer.

Consider a 12-sensor nested array for N1 = 6 and N2 = 6 from Figure 4.3 for the super

nested array scenario. Setting N1 = N2 = 6, yields A1 = 2, B1 = 0, A2 = 1 and B2 = −1,

and X(2)
1 = {1, 3, 5}, Y(2)

1 = {6}, X(2)
2 = {9, 11}, X(2)

1 = {}, Z(2)
1 = {14, 21, 28, 35, 42},

Z(2)
2 = {41}.

Another second order super nested array is considered for N1 = 5 and N2 = 7. Putting

these values gives us parameters A1 = 1, B1 = 0, A2 = 0 and B2 = 0, and X(2)
1 = {1, 3},

Y(2)
1 = {5}, X(2)

2 = {8}, X(2)
1 = {10}, Z(2)

1 = {12, 18, 24, 30, 36, 42}, Z(2)
2 = {41}, which are

the positions of the 12-sensor second order super nested arrays. The nested array and the

two second order super nested arrays are shown for comparison in Figure 4.19 (a), (b)

and (c) respectively. The respective weight function plots for nested array and two super

nested arrays are presented in Figure 4.20, 4.21 and 4.22.

As evident in Figure 4.19, all the arrays attain equal aperture and their co-arrays also

produce 83 consecutive lags but second order super nested arrays achieve much sparser

configuration from the nested array among sensor spacing. The nested array has 6 sensor

pairs with d spacing, 5 sensors pairs with 2d spacing and 4 sensor pairs with 3d spacing.
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Figure 4.19: Comparison of 12 sensor nested and super nested array
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Figure 4.20: Nested array weight functions
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Figure 4.21: Super nested array N1 = N2 = 6 weight functions
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Figure 4.22: Super nested array N1 = 5 , N2 = 7 weight functions

68



On the other hand, the first of the second order super nested arrays with even value

of N1 reduces the number of sensor pairs with 2 sensor pairs separated by d spacing, and

3 sensor pairs each with 2d and 3d spacing which is a significant improvement from the

perspective of mutual coupling. The 2nd super nested array with odd value of N1 further

improves the number of sensor pairs with d spacing by allowing just 1 sensor pair to have

unit spacing followed by 4 sensor pairs with 2d spacing and 1 sensor pair with 3d spacing.

4.5 Summary

The foundations of difference co-array model have been laid down along with a mutual

coupling perspective and its relationship to sparsity. This is followed by a detailed critical

analysis of different types of sparse arrays. MRA’s and MHA’s are optimal arrays from

the perspective of lags and their sparsity, but they are very difficult to obtain for a given

design scenario. Nested arrays provide the ease of use with easy to follow closed form

expression for its construction and provide hole-free co-array, but contain a lot of sensors

packed densely with unit inter-element spacing which makes it vulnerable for mutual

coupling.

Coprime arrays provide better response to mutual coupling with their sparse structure

but possess holes in their co-arrays. Conventional coprime arrays are shown to have better

performance with more consecutive and unique lags than prototype coprime arrays. The

generalized configurations of coprime arrays provide very interesting results, where CADiS

structure provided increased unique lags, aperture and sparsity while the nested CADiS

provided the highest number of consecutive lags. However, the CADiS structure provided

hole-free co-array at the cost of a nested structure with increased chances for mutual

coupling.

Super nested arrays solve the problem of nested arrays with a hole-free co-array using

a sparser structure than nested array, to provide a better line of defense against mutual

coupling. Although super nested arrays and the CADiS structure of coprime array hold

the best properties of sparse arrays at present, there is a need to investigate a sparse array

design that maximizes the aperture, provides an increase in both consecutive and unique
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lags along with an array structure that has the lowest number of sensor pairs with d, 2d

and 3d spacing for the fixed number of sensors. Keeping these requirements in mind, a

contribution in the shape of novel sparse array termed thinned coprime array which is

based on conventional coprime array is presented in Chapter 5.
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Chapter 5

Thinned Coprime Array for

Second-Order Difference Co-Array

Generation with Reduced Mutual

Coupling

5.1 Introduction

As well known already, higher number of lags can be achieved by exploiting sparse arrays

through the equivalent model of difference co-array [2, 87, 102]. These DOFs resulting

from the difference in positions among different sensors represent the different lags at

which the autocorrelation can be computed from the received data.

Two of the classic sparse array structures are the minimum redundancy array [50, 57]

and, the minimum hole array [58]. However, MRA and MHA have a severe drawback

in the sense that they do not possess closed-form expressions for the array geometry

and the sensor positions are normally extracted from tabulated entries where closed form

expression in the context of sparse arrays means that the positions of sensors for a given

set of parameters or array size can be generated analytically (with the help of a formula)

in a straight forward manner. Nested arrays in comparison are simple to construct and

exact expressions are available for sensor locations and computing lags for a given number
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of sensors but due to a densely packed subarray, they are prone to the effect of mutual

coupling [100]. Another class of sparse arrays called coprime arrays can address this

problem through a much sparser array design [27, 43]. Coprime and nested arrays offer

certain advantages over MRAs and some other sparse array geometries. For example,

depending on how they are processed, coprime arrays allow reduced peak sidelobe level

compared to MRAs and MHAs [103].

A basic coprime array is a prototype coprime array with M + N − 1 sensors and

provides 2(M + N)− 1 consecutive lags. To increase the number of consecutive lags, a

modification was proposed in [43] by increasing the number of elements in one subarray

from M sensors to 2M sensors. This structure of 2M + N − 1 sensors termed as con-

ventional coprime array resulting in 2MN + 2M − 1 consecutive lags can be exploited

using subspace based DOA estimation methods such as MUSIC [17, 42, 43], where the

number of sources should be estimated in advance [104, 105]. Generalized coprime array

configurations exist in the form of CACIS and CADiS where it was shown that the CADiS

structure performed much better than the CACIS structure for DOA estimation, and the

compressive sensing (CS) based method can be employed for underdetermined DOA esti-

mation without knowing the number of sources by forcing the sparsity across the potential

incident angles based on the l0 norm (which can be replaced by l1 norm) [49, 54, 102, 106],

where the non-zero entries are the detected DOAs based on the predefined search grids.

However, the main drawback is the computational cost.

One factor not considered in many of the sparse array design schemes is the mutual

coupling effect [33, 34]. As a result, performance degradation will result when this effect

is strong. Two approaches can be adopted to tackle this problem. The first one tends

to estimate the mutual coupling parameters along with the DOAs to get an improved

estimate at the cost of extra computation and reduced lags [90, 96, 97, 107]. The second

route tries to reduce mutual coupling by designing sparser arrays. In this direction, super

nested arrays were developed recently which hold all the advantages of nested arrays

[59, 60]. It was shown that the third order super nested array was most robust to the

effects of mutual coupling and performed better than the second order one and other

sparse arrays using MUSIC based DOA estimation methods. Most recently, an augmented
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nested array structure was proposed with enhanced number of lags and reduced mutual

coupling [108]. However, the mutual coupling of this structure could increase significantly

with the increasing sensor number and even cause more mutual coupling than the super

nested arrays.

As illustrated in [109], redundancy reduction in array structures require more snap-

shots to achieve a similar performance. Therefore, tradeoff has to be made between these

two factors in sparse array design in different applications. In this chapter, main focus is

on reducing the redundancy to improve the number of lags with reduced mutual coupling

for a given number of sensors, and propose a new structure called thinned coprime array

(TCA) by exploiting the redundancy in the difference co-array model of the conventional

coprime array. As proved later in the chapter, the lag contribution from some of the

sensors in the 2M -element subarray of the conventional coprime array is generated by

the rest of the sensors in the array and these sensors can therefore be removed without

affecting the properties of the parent array. The proposed TCA holds the same number

of consecutive lags, unique lags and aperture as the conventional coprime array, but with⌈
M
2

⌉
fewer sensors where dxe returns the least integer greater than or equal to x. For

a fixed number of sensors, thinned coprime array achieves more number of unique lags

than the total lags (hole-free co-array) of a nested array, while generating close to 75

percent consecutive lags of those of a nested array, producing a much larger and sparser

aperture than the nested array. The work presented here is a further extension of our

conference publication [62] and investigates the performance of the new structure from the

perspective of mutual coupling. As an indication of the mutual coupling effect, the weight

functions are also derived along with the proof and some new properties, which shows

that the proposed TCA is robust to high levels of mutual coupling. The performance of

TCA is thoroughly investigated in comparison to MRA, super nested arrays and CADiS

for DOA estimation in the presence of mutual coupling using CS-based DOA estimation

method and spatial smoothing (SS)-MUSIC.

This chapter is organized as follows. The conventional coprime array model is reviewed

in Section 5.2. The proposed TCA is detailed in Section 5.3. A comparison in terms of

lags and mutual coupling between the TCA and other sparse arrays is provided in Sections
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5.4 and 5.5 respectively. Simulations results are provided in Section 5.6.

5.2 Conventional Coprime Array Model

Consider a conventional coprime array with 2M + N − 1 sensors as shown in Fig. 5.1,

where M and N are coprime integers. The array sensors are positioned at

P = {Mnd | 0 ≤ n ≤ N − 1} ∪ {Nmd | 0 ≤ m ≤ 2M − 1}. (5.1)

The positions of the sensors are given by the set p = [p0, . . . , p2M+N−2]T where pi ∈

P, i = 0, . . . , 2M +N− 2. The zeroth sensor in both subarrays is co-located at the zeroth

position with p0 = 0.

Consider the scenario where Q uncorrelated signals are impinging on the array from

angles Θ = [θ1, θ2, . . . , θQ] and their sampled baseband waveforms are expressed as

sq(t), t = 1, . . . , T , for q = 1, . . . , Q. Then, the data vector received by the coprime

array is given by

x(t) =

Q∑
q=1

a(θq)sq(t) + n(t) = As(t) + n(t), (5.2)

where

a(θq) = [1, e−j
2πp2
λ

sin(θq), . . . , e−j
2πp2M+N−1

λ
sin(θq)]T (5.3)

is the steering vector of the array corresponding to θq, A = [a(θ1), . . . , a(θQ)] and

s(t) = [s1(t), . . . , sQ(t)]T . The entries of the noise vector n(t) are white Gaussian with

a covariance matrix given by σ2
nI2M+N−1, where σ2

n is the noise variance. The covariance

matrix of data vector x(t) is given by

Rxx = E[x(t)xH(t)] = ARssA
H + σ2

nI2M+N−1

=

Q∑
q=1

σ2
qa(θq)a

H(θq) + σ2
nI2M+N−1, (5.4)

where Rss = E[s(t)sH(t)] = diag([σ2
1, . . . , σ

2
Q]) is the source covariance matrix, with σ2

q

denoting the signal power of the qth source. In practice, the covariance matrix is estimated

from the T available samples.

R̂xx =
1

T

T∑
t=1

[x(t)xH(t)]. (5.5)
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Figure 5.1: Conventional coprime array.

From the antennas located at themth and nth positions in p, the correlation E[xm(t)x∗n(t)]

results in the (m,n)th entry in Rxx with lag pm− pn. All the values of m and n, where 0

≤ m,n ≤ 2M+N − 2, yield the lags or virtual sensors of the following difference co-array:

CP = {z | z = u− v, u ∈ P, v ∈ P} . (5.6)

5.3 Thinned Coprime Array

In this section it will shown that all of the sensors in the 2M -element subarray enclosed

within the dashed rectangle in Fig. 5.1 are redundant and therefore can be removed with-

out affecting the lags of the difference co-array, leading to the proposed TCA structure.

Theorem 1. The number of redundant sensors in a conventional coprime array with

M ≥ 2 for even M and M ≥ 5 for odd M respectively are given by

Sred =

⌈
M

2

⌉
, (5.7)

where the starting index of these Sred contiguous redundant sensors in the (2M− 1)-

element subarray is given by
⌊
M
2

⌋
+ 1.

Proof. The structure of the difference co-array can be divided into self difference i.e.

diff(A, A) and diff(B, B) and cross difference i.e. diff(A, B) and diff(B, A), where A and

B contain the sensor positions Mnd and Nmd respectively for the two subarrays with

0 ≤ n ≤ N − 1 and 0 ≤ m ≤ 2M − 1 while the diff operator stands for the difference

between the positions of the sensors contained in the second set from the first set. In
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detail,

diff(A,A) = {Mn1d−Mn2d | 0 ≤ n1, n2 ≤ N − 1},

diff(B,B) = {Nm1d−Nm2d | 0 ≤ m1,m2 ≤ 2M − 1},

diff(A,B) = {(Mn−Nm)d | 0 ≤ n ≤ N − 1, 0 ≤ m ≤ 2M − 1},

diff(B,A) = {(Nm−Mn)d | 0 ≤ n ≤ N − 1, 0 ≤ m ≤ 2M − 1},

Since all the self difference co-arrays are included in the cross difference co-arrays [110],

only the redundancies in diff(A, B) need to be checked. For the cross difference diff(A, B),

the index (n, m) is used to represent the lag entry Mn−Nm. It was shown in [110] that

the entries in the cross correlation matrix associated with indices (n1, m1) and (n2, m2)

in diff(A, B) are complex conjugate of each other when the indices satisfy the following

relationship

(n1 + n2)M = (m1 +m2)N (5.8)

with the sufficient condition for (5.8) given by

(n1 + n2 = N) ∩ (m1 +m2 = M). (5.9)

This condition dictates that if an index (n1, m1) with 0 ≤ m1 ≤
⌊
M
2

⌋
(bxc returns the

largest integer less than or equal to x) and 1 ≤ n1 ≤ N − 1 is considered, then it will have

a corresponding index (n2, m2) with m2 = M −m1 in the range M −bM
2
c ≤ m2 ≤M and

n2 = N − n1 from 1 ≤ n2 ≤ N − 1 with both indices satisfying (5.8). The corresponding

entries of cross difference co-arrays with indices (n1, m1) and (n2, m2) satisfy the following

relationship.

diff(A,B)n1,m1 = −diff(B,A)m1,n1 = −diff(A,B)n2,m2

= −diff(A,B)N−n1,M−m1 . (5.10)

It thus follows that the lag entry corresponding to the index (n2, m2) of diff(A, B)

will be found in lag entry corresponding to index (m1, n1) of diff(B, A), making the

contribution of these lags from index (n2, m2) redundant.

Note that for index (n1, m1) with m1 =
⌊
M
2

⌋
= M

2
when M is even, the corresponding

redundant index (n2, m2) where 1 ≤ n1, n2 ≤ N − 1, will also have m2 = M
2

with

indices satisfying (5.8) and (5.10) respectively, and therefore m = M
2

for even M is not

76



a redundant sensor. As a result, for arbitrary M and 1 ≤ n ≤ N − 1 , the redundant

sensor indices in the second sub-array are φr = {bM
2
c+ 1, . . . ,M}.

Then, the redundant sensors for n = 0 are considered in the cross difference co-arrays

and only the positive co-arrays are analyzed due to its symmetric property. For any even

M ≥ 2, the lags from (M
2

+1)N to MN associated with φr can be generated by taking the

self difference of the (M+1)th sensor from the sensor indices 1 to M
2

in B. Therefore, after

removing the sensors in φr for even M , all the lags can be generated by the remaining

sensors which proves the existence of
⌈
M
2

⌉
redundant sensors shown by dashed rectangle

in Fig. 5.1.

For the scenario where M is odd, the value of n is set to 0 and to ensure the set φr

still consists of redundant sensors, the lags from M+1
2
N to MN , related to the set φr

are assumed to be generated by the remaining sensors. Considering the self difference

of the (M + 1)th sensor from sensor indices 1 to M−1
2

, lags from M+3
2
N to MN can be

generated. The M+1
2
N lag can be generated by taking difference of the (M + 1)th sensor

from the (2M − M−3
2

)th sensor where (2M − M−3
2

) = 3M+1
2

th sensor. Then the following

relationship should be satisfied to ensure the existence of the 3M+1
2

th sensor:

3
(M + 1)

2
≤ 2M − 1, (5.11)

which solves for M ≥ 5. This result also proves the existence of the redundant sensor set

φr with dM
2
e = M+1

2
sensors shown by dashed rectangle in Fig. 5.1.

Instead of thinning redundant sensors from the conventional coprime array as men-

tioned in the proof, the TCA can be developed independently by a combination of three

uniform linear subarrays in a straightforward way as follows.

Definition 5.1 (Thinned coprime arrays). Assume M and N are coprime integers with

M ≥ 2 for even M and M ≥ 5 for odd M respectively, then the thinned coprime arrays

are specified by the integer set X, defined by

X = X1 ∪ X2 ∪ X3,
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Figure 5.2: Thinned coprime sensor array for M = 5, N = 6.

where 
X1 = {nMd | 0 ≤ n ≤ N − 1},

X2 = {mNd | 1 ≤ m ≤ bM
2
c},

X3 = {(m+M + 1)Nd | 0 ≤ m ≤M − 2}.

(5.12)

The sets X1, X2 and X3 represent the positions of sensors in the 1st, 2nd and 3rd subarrays,

respectively, which constitute the TCA. The total number of sensors is given by

Stcsa = M +N + bM
2
c − 1. (5.13)

An example of the TCA with parameters M = 5 and N = 6 is shown in Fig. 5.2, where

X1 = {0, 5, 10, 15, 20, 25}d, X2 = {6, 12}d and X3 = {36, 42, 48, 54}d. The 3rd subarray is

displaced from the 1st subarray by a spacing of (M + N)d which in our case is 11d and

is composed of M − 1 = 4 sensors separated by Nd = 6d . By combining these three

subarrays, the total number of sensors in the TCA is given by M +N + bM
2
c − 1 = 12.

5.4 Comparison of Number of Lags for Sparse Arrays

In this section the number of lags provided by the proposed TCA are compared to nested

arrays, CADiS and its special cases for a fixed number of total sensors, where lags pre-

sented here represent two sided lags generated from the co-array structure of a sparse

array.

Nested arrays for a given N1 and N2, where N1 and N2 represent the number of sensors

in the two constituent subarrays, provide a hole-free co-array of 2N2(N1 + 1)− 1 lags for
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a total of N1 +N2 sensors. The CADiS structure in [54] brings two changes to the existing

prototype coprime array. In the first change, the first subarray of N sensors is compressed

by a factor p where M = pM ′ for 2 ≤ p ≤M with 1 ≤M ′ < M (M ′ = 1 is a special case

for nested CADiS which will be discussed later). The resulting factors M ′ and N are still

coprime. The elements of the first subarray then possess an inter-element spacing of M ′d,

while the second subarray of M sensors retains the original inter-element spacing of Nd.

For the second change, it displaces the two subarrays by a factor Ld. It was shown in [54]

that the CADiS configuration for M ′ > 1 achieves a maximum number of unique lags

equal to 2MN+2M− 5 when L > N(M − 2), while the maximum number of consecutive

lags is achieved when L = M ′ + N with MN − (M ′ − 1)(N − 2) + 1 consecutive lags

and 2MN + 2M ′− 1 unique lags. The number of unique lags increases with increasing

M ′ while the consecutive lags decrease. Nested CADiS with M ′ = 1 provides a hole-free

co-array of 2MN + 1 lags. The proposed thinned coprime array retains all the properties

of conventional coprime array, but with
⌈
M
2

⌉
fewer sensors.

In the next step, the number of lags including consecutive and unique lags are gener-

ated for the sparse arrays under consideration. To further compare the sparsity of these

array structures, the lag capacity beyond the redundancy [50] is defined as

γ(S) =
S2

DOFs
(5.14)

where S represents the total number of sensors in an array and DOFs represents the

number of lags measured by the number of consecutive lags or unique lags. The smaller

the value of γ(S), the higher the lag capacity with a specific number of sensors for that

particular sparse array. Then the unique lags capacity for sparsest CADiS (M ′ > 1 with

highest value of M ′ less than M and different cases of L), nested array, nested CADiS

and TCA are plotted in Fig. 5.3, while the consecutive lags capacity are plotted in Fig.

5.4 with respect to the number of sensors from 12 to 40.

One potential problem in generating sparsest CADiS for any fixed number of sensors

lies in the fact that sometimes the value of M available in combination with N to generate

CADiS is a prime number itself (no factors for M other than 1), thus only offering the

possibility of generating nested CADiS with M ′ = 1. For the analysis, all the available

sparsest CADiS have been extracted, while nested arrays, nested CADiS and TCAs all
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Figure 5.3: Unique lags capacity comparison for sparse arrays.
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Figure 5.4: Consecutive lags capacity comparison for sparse arrays.
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can be generated for the considered range of sensors. The combinations of parameters

have been chosen to produce the highest possible number of lags. It can be seen in Fig.

5.3 that the unique lags of TCA are comparable to the unique lags of the sparsest CADiS

with L = M ′ + N , while the sparsest CADiS with L > N(M − 2) generates the highest

number of unique lags. The number of unique lags of TCA are greater than the hole-free

structure of nested array and nested CADiS as depicted in Fig. 5.3. It is further examined

by taking the ratio of the number of unique lags produced by TCA to the lags produced

by nested array for each sensor size scenario and then taking the mean which comes out

as 1.0283. For the case of consecutive lags in Fig. 5.4, nested array and nested CADiS

produce the highest number of consecutive lags. The number of consecutive lags of TCA

are around 75 percent to those of nested array which is calculated by taking the ratio of

consecutive lags for TCA to the number of lags produced by nested array for each scenario

of fixed number of sensors in the considered range of sensor array size and then calculating

the mean of the ratio which comes out to be 0.7414, thus close to 75 percent. The sparse

versions of CADiS produce the lowest number of consecutive lags in comparison to the

TCA, nested array and nested CADiS.

Another interesting thing is the non-availability of sparsest CADiS for 4 different cases

of fixed number of sensors i.e. 17, 23, 29 and 35 due to reasons mentioned earlier. The

points in the lags curve where there is a spike in the value of γ(S) corresponds to a

relatively lower increase in the lags for that specific number of sensors and is attributed

to the value of M ′. A larger M ′ available for one scenario will generate lower number

of lags with resulting increase in the value of γ(S). If a smaller M ′ is available for the

next sensor array size, it will generate higher number of lags with a smaller γ(S), giving

the presence of a spike in γ(S) for the former case. On the whole, sparse versions of

CADiS cannot be generated for any arbitrary number of sensors and possess very low

number of consecutive lags to be exploited by MUSIC based DOA estimation methods.

Their application lies directly in the CS-based methods, where their unique lags can be

utilized. TCAs can be generated for any arbitrary number of sensors and the number of

unique lags are much higher than most of the sparse arrays and even the consecutive lags

generated by TCA are on average around 75 percent of the hole-free co-array generated
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by nested arrays, which proves their application in both SS-MUSIC and CS-based DOA

estimation methods.

5.5 Mutual Coupling Perspective

5.5.1 Mutual Coupling Model

Equation (5.2) of the received signal at the array assumes an interference free scenario

between the sensors. In practice, the electromagnetic radiation received at each sensor is

affected by the radiation from the neighbouring sensors. The closer the sensors spaced, the

more significant the effect of this coupled radiation. Mutual coupling can be incorporated

into the received signal as follows.

x(t) = CAs(t) + n(t) (5.15)

where C is the mutual coupling matrix, which for uniform linear arrays can be modelled

by a B-banded symmetric Toeplitz matrix [59, 60, 97], where B is chosen to be a suitable

inter-sensor spacing beyond which the effect of mutual coupling can be deemed negligible.

The entries of the coupling matrix C in this case can be written as

〈C〉n1,n2 =

c|n1−n2|, if |n1 − n2|≤ B,

0, otherwise

(5.16)

where n1, n2 ∈ p and coupling coefficients c0, c1, . . . , cB satisfy 1 = c0 > |c1|> |c2|>

. . . |cB|. The magnitudes of coupling coefficients are assumed to be inversely proportional

to their sensor separations [90] given by

|ck
cl
|= l

k
(5.17)

5.5.2 Mutual Coupling and Thinned Coprime Array

The effect of mutual coupling can be quantified with the help of weight function parameter

defined in [59]. The weight function w(m) of an array p refers to the number of sensor
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pairs corresponding to a particular value of co-array index m (which is an indication of

the separation between the underlined sensor pair), given by

w(m) = {(n1, n2) ∈ X2 | n1 − n2 = md}, md ∈ CP

The weight function values corresponding to small values of m would be of great interest as

they contribute primarily towards mutual coupling in the array due to sensors separated

by small multiples of inter-element spacing. In this subsection, the weight functions of

TCA are presented along with the proof.

Theorem 2. Let X be a thinned coprime array with M ≥ 2 for even M and M ≥ 5

for odd M respectively. Its weight functions w(m) for m = 1, 2 and 3 are given by

w(1) =

2, M = 2,

1, M ≥ 4,

w(2) =



N − 1, if M = 2,

3M−5
2

, if N = 2,

2, if M = 4,

1, otherwise,

w(3) =



3M−4
2

, if N = 3 for any even M,

3M−5
2

, if N = 3 for any odd M,

2, if (M = 2, N ≥ 5) or M = 6,

1, otherwise,

(5.18)

Proof. It is clear that the displacement between the third sub-array of the TCA and the

others is at least more than 5d since M and N are coprime. Then only the case when bM
2
c

sensors of X2 interact with N sensors of X1 is considered. For any sensor of X2, there will

be two sensors of X1 on either side of this sensor, resulting in 2 interactions per sensor

with 2 lags less than the spacing Md for X1. For bM
2
c sensors of X2, this will result in
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a total of 2bM
2
c lags contributed to the cross-difference set. Consider an arbitrary sensor

of X2 located at iNd (d is ignored in the following analysis for simplification), where 1

≤ i ≤
⌊
M
2

⌋
, and then the distance of this sensor relative to the nearest sensor of X1 lesser

in value than iN is given by

Si = mod(iN,M), 1 ≤ i ≤
⌊
M

2

⌋
(5.19)

where mod refers to the modulo operator and returns the remainder of iN
M

. Likewise,

the distance of any arbitrary sensor of X2 relative to the nearest sensor of X1 greater in

value than iN is given by

Ŝi = M − mod(iN,M), 1 ≤ i ≤
⌊
M

2

⌋
(5.20)

The lags generated from the interaction of any arbitrary sensor of X2 relative to two

sensors of X1 surrounding it take the form (Si, Ŝi). It can be shown that the lags in sets

Si and Ŝi repeat with a period of M . Substituting i with i+M in (5.19)

Si+M = mod((i+M)N,M)

= mod (iN,M) + mod(MN,M) = mod(iN,M) (5.21)

Similarly for Ŝi,

Ŝi+M = M − mod((i+M)N,M)

= M − mod(iN,M)− mod(MN,M)

= M − mod(iN,M) (5.22)

As each lag in sets Si and Ŝi repeats with a period M , this proves the unique nature of

lags present within both sets Si and Ŝi for 1 ≤ i ≤ bM
2
c. To analyze the scenario when

the lag from one set also appears in the other set, the condition is found when Si = Ŝj

mod (iN,M) = M − mod(jN,M), 1 ≤ i, j ≤
⌊
M

2

⌋
(5.23)

mod (iN,M) + mod(jN,M) = M (5.24)
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Applying modulo on both sides yields

mod (iN + jN,M) = mod(M,M) = 0 (5.25)

Since M and N are coprime, the solution is given by

(i+ j) = kM, k ∈ Z (5.26)

Since 1 ≤ i, j ≤
⌊
M
2

⌋
, the condition (i + j) = kM cannot be satisfied for odd M . Then

for even M , there exists i = j = M
2

that satisifes (5.26) with only one replicate lag at the

M
2

th sensor. As the lag values are of the form (Si, Ŝi), this corresponds to values of these

lags given as (k,M − k), where 1 ≤ k ≤ M− 1. For k =
⌊
M
2

⌋
, the lag pair will be equal

to (
⌊
M
2

⌋
,
⌈
M
2

⌉
). For even M , i = j = M

2
which implies that the repitition of lag for even

M will occur at index M
2

. To find the repeated value of lag pair at index M
2

, this sensor

in X2 is assumed to be displaced from its corresponding two sensors of X1 by M
2

. This

corresponds to the position of the outer sensor of X1 relative to the M
2

th sensor of X2

at MN
2

+ M
2

= M(N+1)
2

. Then the condition is found when N+1
2
≤ N − 1 (the outermost

index of X1), which solves for N ≥ 3. This proves that the repeated lag pair for even

M occuring at index M
2

has a value equal to M
2

. This value of repeated lag can also be

alternatively checked by analyzing the case when for even M , lag pair (
⌊
M
2

⌋
,
⌈
M
2

⌉
) reduces

to (M
2
, M

2
). As a result w(M

2
) = 2 for even M .

Now different weight scenarios for even M ≥ 4 and N > 3 are considered. Starting

with M = 4, two sensors in X2 contribute four lags in total with values 1, 3 and two

lags with values 2 proving w(2) = 2 and w(1) = w(3) = 1. For M = 6, three sensors in

X2 contribute six lags in total with vaules 1, 5, 2, 4 and two lags with values 3 proving

w(3) = 2 and w(1) = w(2) = 1. For M > 6 and N > 3, w(1) = w(2) = w(3) = 1 as the

repeated lag for even M i.e. M
2
> 3. For odd valued M with N > 3, the resulting lag

pairs are all unique as shown above.

Now some special cases of weight functions are considered starting with the case when

N = 3 and M is even. It is clear that M
2
− 1 pairs of sensors in X2 will be separated by

a spacing of 3 in adddition to M− 2 pairs of sensors in X3. Adding the one unique lag

equal to 3 from the interaction between the zeroth sensor of X1 and the first sensor of X2,
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then for any even M and N = 3, w(3) = 3M−4
2

. For the case of odd M and N = 3, the

only difference is that M−1
2
− 1 = M−3

2
pairs of sensors in X2 separated by 3 which will

give an overall w(3) = 3M−5
2

. The case of odd M with N = 2 will also have w(2) = 3M−5
2

.

Finally the weights scenario is considered when M = 2, resulting in one sensor con-

tained in X2. This sensor through interaction with two sensors of X1 that are separated

by a spacing of 2, contributes two lags in total with values 1 proving w(1) = 2. The value

w(2) depends on N as N − 1 sensor pairs in the N -element subarray will be separated

by inter-element spacing of 2 generating w(2) = N − 1. For w(3), the case is considered

when N ≥ 5, then one sensor in X2 generating w(1) = 2 by falling in the middle of the

two sensors of X1 will always be at a distance of 3 from the outer two sensors surrounding

the two sensors of X1 on each side that generated w(1), yielding w(3) = 2 for M = 2,

N ≥ 5.

As arrays with odd M provide 2
⌊
M
2

⌋
= 2M−1

2
= M − 1 unique lags and the even valued

M provide M − 2 unique and two same valued lags with value M
2

, it implies w(1) = 1 for

M ≥ 4. As w(2) = 2 only for M = 4, it proves w(2) = 1 otherwise. Likewise, w(3) =

2 for M = 2, N ≥ 5 and M = 6 while w(3) = 1 otherwise, thus completing the proof.

It is interesting to note that for odd M ≥ 5 and M > 6 for even M , with N > 3, TCA

possesses w(1) = w(2) = w(3) = 1.

5.5.3 Array Profile Comparison and Mutual Coupling

In this subsection different types of sparse arrays are considered in the presence of mutual

coupling. For that purpose, the consdered 12-sensor sparse arrays comprise of two second

order super nested arrays for the parameters N1 = N2 = 6 and N1 = 5, N2 = 7, one 3rd

order super nested array for N1 = 5, and N2 = 7, MRA as

{0, 1, 6, 14, 22, 30, 38, 40, 42, 45, 47, 49}d

[57], sparse versions of CADiS for M = 6, N = 7, p = 2 and 3, and TCA for M = 5

and N = 6. The mutual coupling model is based on (5.16) with c1 = 0.4ejπ/3, B = 10

and cl = c1e
−j(l−1)π/8/l for 2 ≤ l ≤ B. The analysis of these sparse arrays from different

perspectives is provided in Fig. 5.5 where the weight functions w(m) are provided in the

86



Array (a) SNA6,6,2 (b) SNA5,7,2 (c) SNA5,7,3 (d) MRA

w(m)

-20 -10 0 10 20

Coarray Location m

0

2

4

6

8

10

12

-20 -10 0 10 20

Coarray Location m

0

2

4

6

8

10

12

-20 -10 0 10 20

Coarray Location m

0

2

4

6

8

10

12

-20 -10 0 10 20

Coarray Location m

0

2

4

6

8

10

12

C

P (θ)

-60 -40 -20 0 20 40
θ

0

0.5

1

-60 -40 -20 0 20 40
θ

0

0.5

1

-60 -40 -20 0 20 40
θ

0

0.5

1

-60 -40 -20 0 20 40
θ

0

0.5

1

Array (d) CADiS6,7,3 (e) CADiS6,7,2 (f) TCA5,6

w(m)

-20 -10 0 10 20

Coarray Location m

0

2

4

6

8

10

12

-20 -10 0 10 20

Coarray Location m

0

2

4

6

8

10

12

-20 -10 0 10 20

Coarray Location m

0

2

4

6

8

10

12

C

P (θ)

-60 -40 -20 0 20 40
θ

0

0.5

1

-60 -40 -20 0 20 40
θ

0

0.5

1

-60 -40 -20 0 20 40
θ

0

0.5

1

Figure 5.5: Comparison among 12 sensors 2nd order super nested array, 3rd order super

nested array, MRA, sparse CADiS and TCA in the presence of mutual coupling.
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Array SNA6,6,2 SNA5,7,2 SNA5,7,3 CADiS6,7,2 CADiS6,7,3 TCA5,6 MRA

Aperture 41 41 41 49 56 54 49

Uni. Lags 83 83 83 87 89 89 99

Con. Lags 83 83 83 38 33 69 99

Max. sources

SS-MUSIC
41 41 41 18 16 34 49

w(1) 2 1 1 0 0 1 1

w(2) 3 4 3 6 0 1 4

w(3) 3 1 3 0 6 1 1

Table 5.1: Sparse array characteristics for 12 sensors.

second and sixth row of Fig. 5.5 and |[C]i,j|2 is shown on log scale in the third and seventh

row. The regions in dark indcate less energy for that particular entry and it is important

to note that the off-diagonal entries of the matrix, i.e, the entries showing the interaction

between different sensors characterize the amount of mutual coupling for the sparse array.

The darker these off-diagonal entries, the less the mutual coupling experienced by the

particular sparse array. Looking at the coupling matrix structure, it is visible that the

TCA and CADiS have less off-diagonal energy and more sparsity than the super nested

arrays.

The array profile for these arrays is shown in Table 5.1, highlighting different array

characteristics like aperture, unique and consecutive lags, maximum number of detectable

sources using SS-MUSIC and number of smaller weight functions like w(1), w(2) and w(3).

It is clear that the MRA contains the highest number of lags with a hole-free co-array of

99 lags. Sparsest CADiS for p = 2 and thinned coprime array both attain unique lags

equal to 89 which can all be used in CS-based DOA estimation techniques followed by

sparse CADiS for p = 3 with 87 lags and then the super nested arrays with 83 lags for

a hole-free structure. Talking from the SS-MUSIC perspective which halves the available

number of consecutive lags for application in DOA estimation, the sparsest structure of

CADiS with p = 2 results in the lowest number of consecutive lags with only 16 number

88



of sources able to be identified and resolved. As the segment of consecutive lags for

CADiS are not centered around zero, for application of SS-MUSIC, the largest portion

of consecutive lags is extracted from the available segments of consecutive lags in the

co-array followed by the spatial smoothing technique to generate the covariance matrix

based on the extracted co-array segment before applying MUSIC. In comparison to sparse

CADiS, thinned coprime array, super nested arrays and MRA have a capacity to solve up

to 34, 41 and 49 sources respectively.

5.6 Simulation Results for DOA Estimation

In this section, the considered sparse arrays are investigated with respect to their DOA

estimation performance under the effect of mutual coupling. For the analysis, both the

CS-based DOA estimation technique as well as the subspace based SS-MUSIC will be

used.

The DOA estimation results in this Chapter are obtained by modelling narrowband

uncorrelated sources impinging on an array comprising of a number of sensors with mutual

coupling model incorporated. The covariance matrix is constructed by using the received

data on the array for a number of snapshots. As the performance of considered sparse

arrays is investigated from the perspective of DOA estimation using both compressive

sensing (CS) based method and spatial smoothing (SS) based MUSIC, different steps are

required to obtain the DOA spectrum.

The power received at the array from different sources is concentrated at few locations

given by the source DOAs which implies that the received signal power is sparse in the

angular domain. It is also supported by the fact that the DOA spectrum of signals is

usually sparse. This motivates the use of compressive sensing (CS) for DOA estimation.

DOA estimation is usually done by constructing the covariance matrix from the received

data. The covariance matrix is vectorized to simulate a longer virtual array used to

received the data. A sensing matrix/dictionary consisting of searching steering vectors is

constructed for the virtual array on a finite grid and the sparse DOA spectrum with peaks

corresponding to the DOA of the estimated sources is obtained by solving the l1-norm
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minimization problem which balances the sparsity of the spectrum with the parameter

estimation error. This technique makes it possible to utilize all unique lags generated

from the difference co-array of a sparse array. The details of CS-based DOA estimation

method will be presented later in this Chapter.

To utilize the lags originating from the difference co-array of a particular array, the

covariance matrix is vectorized. However, the vectorization step makes the received data

from uncorrelated sources impinging on a physical array appear as data received by a

longer virtual array from correlated sources which unables the application of MUSIC

algorithm to find DOA. To utilize the MUSIC algorithm [17], rank enhancement is required

for the matrix constructed from the vectorized data. Spatial smoothing is one such step

which creates a positive semidefinite matrix with suitable rank [42, 43]. To perform spatial

smoothing, all the consecutive lags resulting from the difference co-array are extracted

and the vectorized covariance matrix is processed and sorted so that all the consecutive lag

entries are available in the right sequence. Then the spatial smoothing step is performed

to create a new covariance matrix with full rank on which MUSIC algorithm can be

performed. The resulting peaks in the MUSIC spectrum correspond to the estimated

peaks of the source DOAs. Then the error performance for both CS-based and SS-MUSIC

based DOA estimation is evaluated by calculating the respective root mean square error

(RMSE) for the parameter estimates for different sparse arrays.

To make use of all unique lags provided by the difference co-array of a sparse array,

the CS-based DOA estimation method is utilized [62] which is briefly reviewed as follows.

Referring to (5.4), CS-based DOA estimation method involves vectorizing the covari-

ance matrix Rxx given by

z = vec(Rxx) = Ãb + σ2
nĨ = Br , (5.27)

where Ã = [ã(θ1), ..., ã(θQ)], ã(θq) = a∗(θq)
⊗

a(θq), b = [σ2
1, ..., σ

2
Q]T , Ĩ = vec(IS).

The distinct rows of Ã behave like the steering vector of a longer array whose sensor

locations are given by the difference in positions of the sensors of the physical array

which corresponds to the difference co-array of the physical array. The matrix IS has a

dimension equal to the number of sensors in the array. Additionally, B = [Ã, Ĩ] while
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r = [bT , σ2
n]T = [σ2

1, ..., σ
2
Q, σ

2
n]T .

Estimating the DOA spectrum of sources r which represents the power of Q sources

in addition to the noise power estimate in (5.27) can be achieved by solving the following

optimization problem:

min ‖r◦‖1 s.t. ‖z−B◦r◦‖2< ε (5.28)

Although the signal model is sparse in a continuous angular domain, to apply the

CS framework we need to construct a finite dictionary by sampling this domain with a

predefined sampling grid i.e., the angle space is divided into a large number of sampling

points (grids) where the source directions of interest are assumed to exactly lie on some of

the grids. In the optimization problem, B◦ is the dictionary composed of searching steering

vectors and Ĩ, whereas r◦ is a vector of sparse entries to be determined from the search grid.

The sensing matrix/dictionary B◦ and the DOA spectrum estimate vector r◦ are defined

over a finite grid θg1, ..., θ
g
G where G� Q. The last entry of r◦ represents the estimate of σ2

n,

whereas the positions and values of the nonzero entries in other elements of r◦ represent

the estimated DOAs and the corresponding signal powers, respectively. The sensing

matrix/dictionary composed of searching steering vectors satisfies the restrictive isometry

property (RIP) and incoherence required for successful recovery of DOA spectrum.

The regularisation/trade-off parameter in the optimization problem is given by ε or

the λ function where this regularisation parameter is a user specific bound which is chosen

after repeated trials as the best value for a particular simulation scenario which gives a

clean DOA spectrum (good sparsity) along with a reasonable parameter estimation error.

The value of the trade-off parameter ε can be increased to provide more sparsity (less

number of non-zero entries) at the cost of increased least square error in the estimates.

It is worth mentioning the difference between the trade-off parameter ε or the λ func-

tion and the weight function used in sparsity. The weight function w(m) is used to

quantify the sparsity of an array by showing the number of sensor pairs for a certain

degree of separation (lag). The lower the value of weight functions like w(1), w(2) and

w(3) corresponding to smaller separation between sensors d, 2d and 3d, where d is the

wavelength of the signal for the highest frequency component, the sparser an array. This

91



sparsity also leads to reduced mutual coupling between sensors. Overall, ε or the λ func-

tion deals with the sparsity of the DOA spectrum while the weight function quantifies the

sparsity of an array.

For simulation, the parameters considered here are 5 dB SNR (signal to noise ratio

which measures signal strength relative to background noise and is given by 10 ∗ log S
N

where S and N represent signal and noise voltages in volts respectively), 1000 snapshots,

12 uncorrelated sources evenly spaced between −60◦ and 60◦ with ε chosen empirically

for a clear and fine DOA estimate. A search grid of 3601 angles is formed in the full angle

range with a step size of 0.05◦. The estimation results are shown in the fourth and eighth

rows of Fig. 5.5.

It can be seen that the 2nd order super nested array with N1 = N2 = 6 is missing 3

sources while the 2nd and 3rd order super nested array with N1 = 5 and N2 = 7 and MRA

are all missing at least one source with the other two sources at extremely low powers

and being buried under the accompanying noise in the spectrum. Sparse CADiS with p =

3 has a noisy spectrum with the power of three sources being degraded while both the

sparsest CADiS with p = 2 and thinned coprime array are able to resolve the 12 sources

with a fine DOA spectrum in the presence of mutual coupling.

The three missing peaks for the 2nd order super nested array with N1 = N2 = 6 are

attributed to a higher w(1) i.e. w(1) = 2 compared to w(1) = 1 for the other two super

nested arrays and MRA which limits the use of this particular super nested array for

lower values of |c1|. The sparser structure of TCA and sparsest CADiS hold promising

potential to counter mutual coupling using CS-based DOA estimation techniques.

To give a better understanding of the benefits of the proposed TCA, another scenario

is considered with different set of parameters to check the performance of these arrays

under the effect of mutual coupling. Here a signal processing case is encountered where a

17 sensor array is required for DOA estimation of 20 incoming signals in an environment

with moderate SNR and heavy mutual coupling. All of the 20 sources considered here

are narrowband uncorrelated sources with a peak amplitude of unity. The paremeters

set for such a scenario are modeled as 10 dB SNR, 1000 snapshots and a mutual cou-

pling coefficient with its magnitude |c1| assumed to be equal to 0.4 with the remaining
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Figure 5.6: Comparison among 17 sensors 2nd order super nested array, 3rd order super

nested array, MRA and thinned coprime array in the presence of mutual coupling.

parameters the same as above. It is obvious that for a 17 sensor array, it is not possible

to generate sparse CADiS as described in Section 5.4. For other sparse arrays, second

and third order super nested arrays for the choice of N1 = 9 and N2 = 8, MRA as

{0, 1, 8, 18, 28, 38, 48, 58, 68, 78, 80, 82, 84, 87, 89, 91, 93}d [57], and thinned coprime array

for M = 7 and N = 8 can be generated.

MRA and super nested arrays have hole-free co-arrays with 187 and 159 consecutive

lags respectively, while thinned coprime array generates 125 consecutive lags and 167

unique lags respectively. The critical part of the analysis is the weight functions for these

arrays. The second order super nested array has the highest w(2) among all the arrays

equal to 8 with w(1) = w(3) = 1, while w(1) = 1, w(2) = 6, w(3) = 1 for MRA, and

w(1) = 1, w(2) = 5, w(3) = 2 for the 3rd order super nested array. Thinned coprime

array again provides attractive set of weight functions with w(1) = w(2) = w(3) = 1. The

estimation results are shown in Fig. 5.6, where it can be clearly seen that the super nested

arrays and MRA are unable to distinguish all 20 sources and have a degraded spectrum

with missing sources and lots of spurious peaks, while the TCA, due to its improved

sparsity, is able to detect all sources with a fine spectrum showcasing its potential to

counter heavy mutual coupling when other sparse arrays are simply not available or not

able to cope with the conditions.

In the previous scenarios, the DOAs of all sources were assumed to be evenly spaced

between -60 and 60 degrees with sufficient separation between them. However, there can

be many practical scenarios where the source DOAs are quite close to each other. To

investigate the DOA estimation of sources with close spacing, 20 sources considered in
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Figure 5.7: Comparison among 17 sensors 2nd order super nested array, 3rd order super

nested array, MRA and thinned coprime array in the presence of mutual coupling with

closely spaced sources.

Figure 5.6 are evenly spaced between -30 and 30 degrees with half the source spacing

as the previous case and the estimation results using same parameters as Figure 5.6 are

shown in Figure 5.7. It can be seen that the second order super nested array, third order

super nested array and MRA are all missing sources with lots of spurious peaks in a heavy

mutual coupling scenario with |c1|= 0.4 due to a higher w(2) while the thinned coprime

array is able to estimate all 20 sources with a clean spectrum.

In the next step, a comparison of weight functions for these sparse arrays is provided

in Table 5.2 as mentioned in [54, 59, 60]. Although super nested arrays (both second order

and higher orders) have smaller w(1) and w(3), their w(2) is dependent on N1 and thus

increases with the array size, which ia a significant challenge in tackling mutual coupling.

Sparse CADiS on the other hand has a zero-valued w(1) and depending on the value of

M , subsequently M
′
, can have either w(2) or w(3) equal to N− 1 which will also increase

with increasing array size but overall maintain good level of sparsity. The proposed TCA

has its weights w(1), w(2) and w(3) independent of the array size and maintains w(1) =

w(2) = w(3) = 1 for odd M ≥ 5 and N > 3, which makes it a promising array structure

in combating the ills of mutual coupling.

Investigating the DOA estimation error performance of sparse arrays involves testing

the considered arrays under a different range of scenarios with a number of variables.

The more the diverse range of scenarios considered, the better the overall analysis of the

strengths and weaknesses of different arrays. As mutual coupling is inevitable between

the sensors of an array, there is a need to model the mutual coupling intensity which
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Array
SNA Q = 2 N1 ≥ 4,

N2 ≥ 3

SNA Q ≥ 3, (Odd N1)

N1 ≥ 3 × 2Q− 1, N2 ≥

3Q− 4

SNA Q ≥ 3, (Even N1)

N1 ≥ 2 × 2Q+ 2,

N2 ≥ 3Q− 4

w(1)

2, N1 is even,

1, N1 is odd,
1 2

w(2)

N1 − 3, N1 is even,

N1 − 1, N1 is odd,
2 bN1

4
c+ 1



N1

2
+ 1, N1 = 8k − 2,

N1

2
− 1, N1 = 8k + 2,

N1

2
, otherwise, k ∈ Z

w(3)


3, N1 = 4, 6,

4, N1 is even, N1 ≥ 8,

1, N1 is odd,

2 5

Array
Sparse CADiS M = pM

′
, 2 ≤ p ≤M ,

1 ≤M ′ < M
TCA M ≥ 2 (even M), M ≥ 5 (odd M)

w(1) 0

2, M = 2

1, M ≥ 4,

w(2)

N − 1, if M
′
= 2,

0, otherwise,



N − 1, if M = 2,

3M−5
2

, if N = 2,

2, if M = 4,

1, otherwise

w(3)

N − 1, if M
′
= 3,

0, otherwise,



3M−4
2

, if N = 3 for any even M.

3M−5
2

, if N = 3 for any odd M.

2, if (M = 2, N ≥ 5) or M = 6,

1, otherwise,

Table 5.2: Weight functions comparison for sparse arrays.
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can be done by varying the mutual coupling coefficient for different strengths of mutual

coupling by fixing other variables like signal-to-noise ratio (SNR), number of snapshots

and then checking the error in the parameter estimation. Investigating the performance

of arrays in changing channel conditions for different noise levels also gives a clear picture

of how different structures cope with the noisy channel. This can be done by varying

SNR and fixing other variables like mutual coupling intensity and number of snapshots.

Number of snapshots is a significant variable and in practical scenarios, often few number

of snapshots are available due to limited hardware and processing capabilities. Thus an

investigation with varying number of snapshots gives an idea of the robustness and the

practical capability of the arrays. This can be achieved by varying snapshots while fixing

mutual coupling intensity and SNR.

From the perspective of mutual coupling, most of the well-known sparse arrays like

MRA and super nested arrays show an increase in the number of sensor pairs with smaller

multiples of inter-element spacing like d, 2d and 3d with increased array size. These

weight functions w(1), w(2) and w(3) contribute directly to the intensity of mutual cou-

pling experienced by a particular sparse array. As a result, it is important to evaluate

the performance of the proposed thinned coprime array with these sparse arrays for an

increased array size.

The simulation scenarios in this Chapter are designed to investigate the RMSE per-

formance of the considered sparse arrays from the perspective of both CS and SS-MUSIC

based DOA estimation methods. As the CS-based DOA estimation method is able to

utilize all available lags (unique lags) resulting from the difference co-array of the arrays,

the increased range of parameter values for which these arrays can be tested provides

for more diverse simulation scenarios. In comparison, the SS-MUSIC method due to the

application of spatial smoothing halves the number of extracted consecutive lags which

limits the range of simulation scenarios. For a fair comparison of the performance of the

sparse arrays in these two methods, different set of simulation scenarios will be chosen to

assess RMSE for varying mutual coupling intensity, SNR and number of snapshots.

To investigate the DOA estimation error performance of these sparse arrays under the

effect of mutual coupling, the root mean square error (RMSE) curves are calculated for
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varying intensity of mutual coupling coefficient |c1|, varying number of snapshots T and

across a range of different values of SNR where the accuracy of DOA estimation in this

thesis is quantified by root mean square error (RMSE) which is given by

RMSE =

√√√√√ I∑
i=1

Q∑
q=1

(
θ̂q(i)− θq

)2

IQ
(5.29)

where I independent simulation runs are performed to calculate the root mean square

error between the estimate θ̂q(i) and the actual DOA θq for each of the Q sources.

For the RMSE analysis, 10 narrowband sources impinge on a 12-sensor array where

the considered sparse arrays include MRA, super nested array, TCA and sparse CADiS.

First, the CS-based results are presented and the performance from the perspective of

varying mutual coupling intensity is investigated where for CS-based DOA estimation,

all the unique lags offered by the arrays are utilized. The parameters considered are 5

dB SNR, 1000 snapshots and |c1| varied from 0 to 0.7 which model a practical noisy

channel with varying mutual coupling and moderate number of snapshots. The results

are presented in Fig. 5.8 where each point is an average of 200 independent simulation

runs. It can be observed that although MRA and super nested arrays possess lower error

than CADiS and TCA, they are only capable of detecting all the sources in low to medium

level of mutual coupling. For higher levels of mutual coupling, super nested arrays suffer

heavily from missing sources, spurious peaks and degraded spectrum. Sparsest CADiS

and TCA are able to tolerate severe mutual coupling with minimum loss to the spectrum.

Thinned coprime array detects all sources till |c1|= 0.7 while sparsest CADiS suffers from

two source peaks degraded by the severe mutual coupling, making TCA the most robust

of all the arrays due to its improved sparsity.

The RMSE results against the number of snapshots and SNR for |c1|= 0.3 with re-

maining parameters same as before are shown in Figs. 5.9 and 5.10, respectively, where

it can be seen that the MRA possesses the lowest RMSE due to high number of lags.

MRA and super nested arrays with w(1) = 1 are able to tolerate medium levels of mutual

coupling and achieve better estimation performance compared to sparse CADiS and the

TCA. As the mutual coupling gets stronger, these arrays start missing sources, having the
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spectrum contaminated with spurious peaks and eventually lose their applicability and

that is where sparse CADiS and TCA come into play as shown by the results in Fig. 5.8.

Next, the SS-MUSIC based results are presented. Fig. 5.11 shows the RMSE for

varying mutual coupling intensity in the range of |c1|= 0 to 0.2 with 10 dB SNR and

1000 snapshots. The shorter range of mutual coupling is assumed relative to the CS case

keeping in mind the corresponding reduction in the number of lags when using SS-MUSIC.

It can be observed that the TCA, despite having lower number of lags compared to MRA

and super nested arrays, matches the performance of these arrays as the mutual coupling

levels rise. This is entirely made possible due to the attractive levels of sparsity offered by

their structure. Sparse CADiS suffers from an increased error due to a dramatic reduction

in the available number of lags for SS-MUSIC with only 18 and 16 for the sparse versions

of CADiS considered. For RMSE curves against the number of snapshots and SNR, |c1|=

0.1 is considered and the results are presented in Figs. 5.12 and 5.13 respectively, where

it can be seen that the TCA possesses a lower RMSE than super nested arrays and MRA

especially at low to medium levels of mutual coupling due to a relatively sparser array

structure.

Speaking from a practical point of view, assuming equal SNR for all the sources

is unrealistic. In real world, different sources impinging on an array are coming from

different directions and from different distances with varying channel conditions, resulting

in different SNR values for each of the sources. The way forward is to assume a 10 dB

dynamic range of SNR for the considered sources for DOA estimation in the presence

of mutual coupling where the SNR of each source is uniformly distributed in the range

[0,10] dB. The RMSE curves against varying mutual coupling for CS and SS-MUSIC in

Figs. 5.8 and 5.11 are reproduced for dynamic range of SNR in Fig. 5.14 and Fig. 5.15

respectively. Analyzing Fig. 5.14, due to the 10 dB dynamic range of SNR with more

noisy conditions compared to fixed 5 dB in the previous case, the overall operational range

of mutual coupling in the new results has reduced from |c1| = 0.7 to 0.6. The results again

show the robust nature of the proposed TCA. Although the array incurs increased error

compared to super nested arrays and MRA, it is able to outperform all other sparse arrays

in tackling heavy levels of mutual coupling. Further more, even the sparsest among sparse
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Figure 5.8: RMSE versus mutual coupling coefficient |c1| for CS.

CADiS loses its application at |c1| = 0.5. In Fig. 5.15, it is clear that the error for sparse

CADiS has increased a lot. It is directly in line with the use of dynamic range SNR as

the low SNR for certain sources increases the overall error in the estimates and this effect

is magnified by the lower number of lags available for sparse CADiS for SS-MUSIC. TCA

again shows that it can match the performance of super nested arrays and MRA at low

to medium levels of mutual coupling using SS-MUSIC.

In the light of the findings above, a general character comparison of the considered

sparse arrays is presented in Table 5.3 where certain characteristics like availability for any

array size, compatibility with CS, SS-MUSIC and relationship of critical weights functions

with array size are described. Sparse CADiS finds its limitations in the use of SS-MUSIC

as a few number of lags are left for use. It is also not available for any array size as

mentioned before, although it is good at tackling mutual coupling. Super nested arrays

and MRA are good at SS-MUSIC and CS but both have a problem of increasing critical

weight w(2) with array size, even for the sparsest of them, the third order super nested

array as a function of N1 which can create challenges to tackle heavy levels of mutual

coupling. MRA is also limited by the fact that arrays for more than 20 sensors are still

not defined in [50, 57] due to the increase in complexity of the search mechanism and

longer computation time to obtain MRA. The proposed TCA is available for any array
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Figure 5.9: RMSE versus number of snapshots for CS with |c1|= 0.3.
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Figure 5.10: RMSE versus SNR for CS with |c1|= 0.3.
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Figure 5.11: RMSE versus mutual coupling coefficient |c1| for MUSIC.
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Figure 5.12: RMSE versus number of snapshots for MUSIC with |c1|= 0.1.
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Figure 5.13: RMSE versus SNR for MUSIC with |c1|= 0.1.
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Figure 5.14: RMSE versus mutual coupling coefficient |c1| with 10 dB dynamic range

SNR for CS.
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Figure 5.15: RMSE versus mutual coupling coefficient |c1| with 10 dB dynamic range

SNR for MUSIC.
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Figure 5.16: RMSE versus mutual coupling coefficient |c1| with 17 sensors for CS.
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Figure 5.17: RMSE versus mutual coupling coefficient |c1| with 17 sensors for MUSIC.

size, applicable to both CS and SS-MUSIC as it provides a decent balance of consecutive

and unique lags. This is further complimented by the fact that for M ≥ 5 and N > 3,

w(1) = w(2) = w(3) = 1, which makes them good at tackling even heavy levels of mutual

coupling when other sparse arrays fail.

To investigate the estimation performance with large array size, 17-sensor sparse arrays

are considered, the same as the scenario shown in Fig. 5.6. For this array size, all the

sparse arrays are available except for sparse CADiS. For CS-based scenario, the considered

simulation parameters include 20 sources, 10 dB SNR and 1000 snapshots with mutual

coupling coefficient |c1| varied from 0 to 0.45 and the result is presented in Fig. 5.16. It

can be seen that TCA achieves the lowest RMSE and is also able to tolerate high levels

of mutual coupling. In comparison the operation range of super nested arrays is limited

to |c1|= 0.25 where the third order super nested array has the lowest error compared to

second order super nested array and MRA due to its sparsity. This result shows that

the error performance trend in the presence of mutual coupling varies significantly with

increasing array size. As the lags rise in accordance with the array size, so do the critical

weights for super nested arrays, MRA and even sparse CADiS. Thinned coprime array

due to its consistent critical weights of w(1) = w(2) = w(3) = 1 being independent of the

array size is able to estimate sources with the best performance as the array size increases
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Array SNA CADiS TCA MRA

Availability Yes

Not available for

17, 23, 29 and

35 sensors

Yes

Not available

for more than

20 sensors

SS-MUSIC

Compatibility
Yes No Yes Yes

CS

Compatibility
Yes Yes Yes Yes

Relationship

between

weights and

array size

w(2)

increases

with array

size

w(2) or w(3)

increases with

array size but

w(1) = 0

w(1) = w(2) =

w(3) = 1 for odd

M ≥ 5 and even

M > 6 with N > 3

w(2) increases

with array size

Table 5.3: Character comparison of sparse arrays.

while relatively higher errors are incurred by the super nested arrays and MRA due to a

significant increase in w(2).

Then the performance of these arrays is investigated for SS-MUSIC. The considered

simulation parameters include 10 sources, 10 dB SNR, 1000 snapshots, |c1| varied from

0 to 0.375 with the result presented in Fig. 5.17. It can be seen again that the TCA

despite havng 63 lags to estimate 10 sources in comparison with 80 and 94 for super

nested arrays and MRA respectively, is able to estimate the sources with the lowest error

with increasing mutual coupling levels. This result compliments the results acheived with

CS and shows the real application of TCA.

The simulations used in the thesis involved assuming the source signals evenly spaced

between -60 and 60 degrees. For the endfire zone, where source signals impinge on the

array from directions close to the axis of the array, it has been observed that the root

mean square error (RMSE) generally increases for all the considered sparse arrays like

MRA, sparse CADiS, super nested arrays and thinned coprime array. For source signals

impinging from directions close to -70 and 70 degrees, there is not much difference in the
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error compared to -60 and 60 degrees. However, as the source signal DOAs reach -80

degrees and 80 degrees, significant error increase has been observed for all sparse arrays.

Overall, the results have shown that the TCA offers a set of desirable properties

compared to other sparse arrays. The most important advantage is that, the TCA is

able to tolerate heavy levels of mutual coupling compared to super nested arrays, MRA

and sparse CADiS. Due to consistent availability of few sensor pairs with d, 2d and 3d

spacing, the TCA provides better error performance than super nested arrays and MRA

with increasing array size especially using CS based method. Although MRA and super

nested arrays have hole-free co-arrays with high DOFs which can be efficiently utilized

using subspace based methods like SS-MUSIC, the increased value of weights w(1), w(2)

and w(3) with array size increases their estimation error in the presence of mutual coupling

using both SS-MUSIC and CS based methods. TCA has shown some attractive traits and

promise in scenarios of heavy mutual coupling, DOA estimation with arbitrary array size

where certain sparse arrays like CADiS are not available and estimation with large number

of sensors required for increase aperture to provide better resolution while mitigating the

effects of mutual coupling at the same time. Among all the extensions based on coprime

array proposed till now, the proposed TCA is a better solution that can be effectively used

with both CS and SS-MUSIC based DOA estimation in the presence of mutual coupling.

5.7 Summary

Thinned coprime array has been proposed, which retains all the properties of the con-

ventional coprime array, but with dM
2
e fewer sensors. For the same number of sensors,

TCAs possess greater number of unique lags than the hole-free structure of the nested

array and nested CADiS, and comparable number of unique lags to the sparsest CADiS.

The number of consecutive lags of the TCAs are around 75 percent to those of nested

arrays which showcases their application in both subspace and CS-based DOA estimation

methods. Moreover, they can be easily constructed for an arbitrary number of sensors.

TCAs have a significantly sparser array structure with robustness against severe mu-

tual coupling especially when using CS-based DOA estimation. With increasing array
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size, TCAs also offer better error performance in parameter estimates compared to su-

per nested arrays and MRA for both CS and SS-MUSIC based methods in the presence

of mutual coupling. The key characteristic of TCA is the consistency in its attractive

sparsity available for any array size compared to other sparse arrays, which implies that

TCAs remain robust against mutual coupling irrespective of the array size.

Although TCA has good sparsity and robustness to mutual coupling, the number of

unique lags provided by TCA remains close to the sparsest CADiS, hole-free co-array of

nested arrays and significantly low compared to the co-array of MRA raising an intrigu-

ing question. How can the structure of TCA be exploited to increase the unique lags

while maintaining or improving the sparsity offered by TCA to further reduce the DOA

estimation error? Chapter 6 investigates the design of such a novel sparse array termed

displaced thinned coprime array with additional sensor.
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Chapter 6

Displaced Thinned Coprime Arrays

with Additional Sensor for DOA

Estimation

6.1 Introduction

In Chapter 5, TCA was proposed which showed robustness against mutual coupling

through an attractive sparse structure. TCA provides weight functions w(1) = w(2) =

w(3) = 1 for odd M ≥ 5 and even M > 6, with N > 3. TCA is applicable for a variety

of DOA estimation methods due to increased consecutive and unique lags and available

for arbitrary array size with closed-form expressions. It was shown that TCA achieves

lower RMSE compared to super nested arrays and MRA with increasing array size for

SS-MUSIC and CS-based DOA estimation methods. Although TCA holds numerous

desirable features, the number of unique lags offered by TCA are close to the sparsest

CADiS and nested array and significantly lower than MRA which limits the estimation

error performance offered by TCA through CS-based methods. With the continued search

for improved sparse arrays, the structure of TCA is studied to explore the possibility of

an array which can provide significantly higher number of unique lags with improved

sparsity while maintaining a minimum inter-element spacing of half-wavelength to avoid

spatial aliasing. An array of sensors can detect a plane wave signal at a wrong bear-
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ing/direction of arrival if the signal wavelength is shorter than twice the distance between

the closest adjacent sensors. In other words, when the minimum inter-sensor spacing

is more than half-wavelength where wavelength corresponds to the shortest wavelength

present in the incident signal, it can result in spatial ambiguities causing estimation error

in the bearing/direction-of-arrival of the signal. This phenomenon is termed as spatial

aliasing and it is recommended to keep the minimum inter-element spacing of the array

to half-wavelength [111].

In this chapter, displaced thinned coprime array with additional sensor (DiTCAAS)

is proposed based on TCA with a two-step design, where the first step involves a displac-

ment of (2M − 2)N of subarrays X2 and X3 spaced by Nd, from their original positions

[112]. This displacement results in the maximum number of unique lags possible for dis-

placed TCA. Due to a significantly larger minimum inter-element spacing equal to integer

multiples of half-wavelength which can cause spatial aliasing, an additional sensor at a

distance of half-wavelength from one of the sensors of displaced subarray X3 is added in

the second stage. Two locations are proposed for the placement of the additional sensor

with significantly higher number of unique lags obtained. The resulting structure has

more unique lags than the hole-free co-array of MRA for the same number of sensors. It

will be shown that DiTCAAS due to its higher unique lags and sparsity has the best esti-

mation error performance among other sparse arrays in the presence of mutual coupling

when CS-based DOA estimation is applied.

This chapter is organized as follows. Theoretical foundations for DiTCAAS are devel-

oped in Section 6.2. The comparison of number of lags of DiTCAAS with other sparse

arrays is presented in Section 6.3. The sparsity of DiTCAAS is discussed in Section 6.4.

Simulations results using the CS-based DOA estimation method are provided in Section

6.5.

109



Figure 6.1: Displaced conventional coprime array and TCA

6.2 Theoretical Foundations for DiTCAAS

6.2.1 Stage 1 - Displaced Thinned Coprime Array

Definition 1 (Displaced thinned coprime arrays). Assume M and N are coprime integers

with M ≥ 4 and N ≥ 3, then the displaced thinned coprime arrays are specified by the

integer set X, defined by

X = X1 ∪ Y2 ∪ Y3,

where 
X1 = {nMd | 0 ≤ n ≤ N − 1},

Y2 = {(2M − 2 +m)Nd | 1 ≤ m ≤ bM
2
c},

Y3 = {(3M − 1 +m)Nd | 0 ≤ m ≤M − 2}.

(6.1)

where Y2 and Y3 represent the displaced versions of X2 and X3 in TCA respectively. Next

some properties of displaced thinned coprime arrays are presented.

Lemma 1. For displaced TCA, no repitition in cross lags exist between the 1st sub-

array and the latter two subarrays at displacement L = (2M − 2)N .

Proof. First, the displaced coprime array is considered as shown in the left half of Fig.

6.1. By displacing the 2M− 1 element subarray by L = (2M − 2)Nd, the new sensor

positions of displaced coprime array are given by

F = C ∪ D (6.2)

110



C = {Mnd | 0 ≤ n ≤ N − 1} (6.3)

D = {(2M − 2 +m)Nd | 1 ≤ m ≤ 2M − 1} (6.4)

As shown in [62, 110], the repeated lags in the cross difference co-arrays Diff(D, C)

are additive inverses of each other, where Diff(D, C) represents the differences in sensor

positions of C from D. These repeated lags exist due to colocation of the two subarrays.

By displacing the 2nd subarray sufficiently, the conjugate pairs of cross lags cease to exist

and the only repitition of lags occurs when some cross lags equal to self lags.

Only the positive lags ae analyzed for convenience. The self lags of the two subarrays

C and D themselves are of the form

Diff(C,C) = nM (6.5)

Diff(D,D) = m′N (6.6)

where 0 ≤ n ≤ N− 1 and 0 ≤ m′ ≤ 2M− 2. Then the cross differences of the last two

sensors of C from the first two sensors of D is taken, expressed as

Diff((2M − 1)N, (N − 1)M) = (M − 1)N +M (6.7)

Diff((2M − 1)N, (N − 2)M) = (M − 1)N + 2M (6.8)

Diff(2MN, (N − 1)M) = M(N + 1) (6.9)

Diff(2MN, (N − 2)M) = M(N + 2) (6.10)

With (6.7) and (6.8), cross differences of sensor at (2M − 1)N with sensors in C are of

the form (M − 1)N + sM , 1 ≤ s ≤ N . As the two coprime numbers M and N cannot be

a factor of (M − 1)N + sM , self lags in (6.5) and (6.6) are not generated. Similarly, for

lags in (6.9) and (6.10), cross differences related to the sensor at 2MN are of the form

M(N+s), which proves that all cross lags from sensors beyond 2MN in the 2nd subarray

with sensors in C will be greater than the aperture of subarray C and therefore are unique

compared with the self lags in (6.5) and (6.6), proving the unique nature of cross lags. As

TCA is a redundant version of coprime array, Lemma 1 is equally applicable to displaced

TCA, thus completing the proof.
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Theorem 1. The total number of unique lags for a displaced TCA with M ≥ 4 and

N ≥ 3 is given by

Tumax =

3MN + 4M − 5, for even M

3MN + 4M −N − 5, for odd M

(6.11)

Proof. Consider displaced TCA as shown in the right half of Fig. 6.1 where the first

sensor of Y2 starts from (2M − 1)Nd. For even M , X1 has N sensors while Y2 and Y3

have a total of M
2

+ M − 1 = 3M−2
2

sensors. A total of N sensors in X1 generate N−1

unique self positive lags for non-zero positions. As shown in [62], 3M−2
2

sensors of Y2 and

Y3 are able to generate all of the 2M− 2 unique lags like the (2M− 1)-element subarray

in conventional coprime array. As the cross lags between displaced subarrays Y2, Y3 and

X1 are all unique as per Lemma 1, the total number of positive unique lags for displaced

TCA with even M are given by

Tulep = (N − 1) + (2M − 2) +
3M − 2

2
N =

3MN

2
+ 2M − 3 (6.12)

Then the total number of unique lags (adding negative lags and zero lag) for a displaced

TCA with even M is

Tule = 3MN + 4M − 5 (6.13)

which proves the first part of (6.11).

For odd M , the the total number of sensors in Y2 and Y3 is given by M−1
2

+M − 1 =

3M−3
2

. Like even M case, the total number of positive unique lags for displaced TCA with

odd M is

Tulop =
3MN

2
+ 2M − N

2
− 3 (6.14)

Then the total number of unique lags (adding negative lags and zero lag) for a displaced

TCA with odd M is

Tulo = 3MN + 4M −N − 5 (6.15)
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6.2.2 Stage 2 - Additional Sensor at Half-Wavelength

Although displaced TCA results in increased unique lags, the minimum interelement spac-

ing becomes an integer multiple of half-wavelength, leading to the well-known spatial alias-

ing problem. To mitigate this problem, the addition of another sensor at half-wavelength

from a sensor in the displaced TCA is investigated to make sure that the minimum in-

terelement spacing of displaced TCA remains λ
2
. The additional sensor also needs to be

placed so that the overall structure has significantly higher number of unique lags. The

new structure will be termed as displaced thinned coprime array with an additional sensor

(DiTCAAS).

First, the conventional coprime array is analyzed to find out the positions of sensors

in one subarray which are separated from their nearest sensor in the other subarray by a

given distance for an arbitrary M and N . A general result in this direction is presented

in Lemma 2.

Lemma 2. The sensor of (2M − 1)-element subarray leading/lagging the nearest

sensor of N−element subarray by distance n where 1 ≤ n ≤M − 1, is located at index i

and k, given by the relationships (6.16) and (6.17) respectively

i mod (N,M) = n+ jM (6.16)

M − k mod (N,M) = n− jM (6.17)

where 1 ≤ i, k ≤ 2M− 1, j ≥ 0 and mod(N,M) refers to the modulo operator and

returns the remainder of N
M

.

Proof. The distance between a sensor of (2M− 1)-element subarray located at iN and

its nearest sensor of N -element subarray lesser in value than iN is given by

Si = mod(iN,M) = mod(i mod (N,M),M) (6.18)

As mod(n,M) = mod(n + jM,M) where 1 ≤ n ≤ M − 1 and j ≥ 0, index i for a

particular n can be found by solving

i mod (N,M) = n+ jM (6.19)
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Similarly, the distance of a sensor of (2M− 1)-element subarray located at kN relative to

the nearest sensor of N -element subarray greater in value than kN is given by

Ŝk = M − mod(kN,M) = M − mod(k mod (N,M),M) (6.20)

As mod(n,M) = mod(n− jM,M), index i for a particular n can be found by solving

M − k mod (N,M) = n− jM (6.21)

Please note that for TCA, (6.16) and (6.17) represent index of physical sensors for

index range 1 ≤ i, k ≤
⌊
M
2

⌋
. For n = 1 corresponding to half-wavelength distance, (6.16)

and (6.17) change to

i mod (N,M) = 1 + jM (6.22)

M − k mod (N,M) = 1− jM (6.23)

It will be shown now that index i and k are related to each other. Equating Si with Ŝk

and rearranging the terms,

mod (iN,M) + mod(kN,M) = M (6.24)

Applying modulo on both sides yields

mod (iN + kN,M) = mod(M,M) = 0 (6.25)

Since M and N are coprime, the solution is given by

i+ k = pM, p ∈ Z (6.26)

where p =1 since 1 ≤ i, k ≤
⌊
M
2

⌋
:

i+ k = M (6.27)

In the next step, two suitable locations for the additional sensor are presented which can

significantly increase unique lags.

Theorem 2. The total number of unique lags for DiTCAAS with additional sensor

located at 3M − 2 + iN − 1 or 3M − 2 + kN + 1 with M ≥ 4 and N ≥ 3 is given by

Tumax =

3MN + 7M + 2N − 9, for even M

3MN + 7M +N − 10, for odd M

(6.28)

114



Proof. For the two proposed locations (3M − 2)N + iN− 1 and (3M − 2)N + kN+

1, (3M − 2)N represents the redundant sensor at MN in TCA after displacement of

(2M − 2)N . This reference position is chosen to maximize the number of unique lags for

additional sensor as shown later.

The starting sensor of Y2 at (2M − 1)N is equidistant from the additional sensor and

a respective sensor of X1 which will be shown as follows. The differences in position of

the additional sensor placed at (3M − 2)N + iN− 1 or (3M − 2)N + kN+ 1 relative to

(2M − 1)N (the first sensor in Y2) denoted by S1 and S2 are given by

S1 = (M + i− 1)N − 1 (6.29)

S2 = (M + k − 1)N + 1 (6.30)

Then by taking the difference of S1 and S2 from (2M − 1)N , denoted by S3 and S4

respectively and according to (6.27),

S3 = (M − i)N + 1 = kN + 1 (6.31)

S4 = (M − k)N − 1 = iN − 1 (6.32)

For index i and k corresponding to n = 1, iN− 1 and kN+ 1 represent the positions

of the sensors of X1 in TCA which proves that the sensor at (2M − 1)N is equidistant

from the additional sensor and sensor of X1. The additional sensor will contribute the

same set of lags by interacting with Y2 and Y3 as the sensor in (6.31) or (6.32) of X1 will

do with X2 and X3 in TCA. As TCA and displaced TCA differ from each other only by

the displacement (2M − 2)N for the displaced subarrays, their cross difference coarrays

also differ from each other by a factor of (2M − 2)N . As a result, with the exception of

one repitition of the equidistant lag, the interaction between the additional sensor and

Y2 and Y3 will generate unique lags. Now, the interaction of additional sensor with X1

is considered. As the additional sensor is placed at iN − 1orkN + 1 respectively from

(3M − 2)N , and represents displacement equal to multiples of M , it will generate part of

the set of lags generated by the position (3M − 2)N relative to X1 given by

S5 = (3M − 2)N − lM, 0 ≤ l ≤ N − 1 (6.33)
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in addition to i or k lags equal to S5 +qM where 1 ≤ q ≤ i or 1 ≤ q ≤ k. Since (3M−2)N

in displaced TCA represents the displaced position of a redundant sensor in conventional

coprime array at MN , missing in TCA, all the set of lags generated by the additional

sensor through interaction with X1 will be unique. This proves that the additional sensor

at these two locations through interaction with the displaced TCA generates only one

repeated lag with all remaining lags as unique lags. As a result, this extra sensor brings

2(H−1) new unique lags for a displaced TCA with H sensors, for a total number of H+1

sensors for DiTCAAS. Now the total number of unique lags for DiTCAAS for cases of

even and odd M are calculated. For even M , the total number of sensors for displaced

TCA is given by 3M
2

+N− 1. The contribution of unique lags for additional sensor is

Saddeven = 2× (
3M

2
+N − 2) = 3M + 2N − 4

Then, the total number of unique lags for DiTCAAS with even M for 3M+2N
2

sensors is

given by

SDiTCAASeven = 3MN + 7M + 2N − 9 (6.34)

Similarly for odd M , the total number of sensors for displaced TCA is given by 3M+2N−3
2

.

The contribution of unique lags for additional sensor is given by

Saddodd = 2× (
3M + 2N − 3

2
− 1) = 3M + 2N − 5

Then the total number of unique lags for DiTCAAS with odd M for 3M+2N−1
2

sensors is

SDiTCAASodd = 3MN + 7M +N − 10 (6.35)

6.2.3 Demonstration of DiTCAAS with an Example

In this subsection, the concept of DiTCAAS is presented with the help of an example. For

this scenario, a 15-sensor DiTCAAS is chosen for parameters M = 5 and N = 8, which

will be constructed in a three-step process. The first step involves the construction of a

TCA for the chosen M and N , which will comprise of 14 sensors with three subarrays X1,
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Figure 6.2: DiTCAAS for M = 5 and N = 8

X2 and X3, respectively, where X1 consists of 8 sensors spaced by 5d. On the other hand,

the subarrays X2 and X3 consist of 2 and 4 sensors respectively with spacing 8d. The

second step involves displacing X2 and X3 by (2M −2)Nd = 64d. The resulting structure

is a displaced TCA. In the third and final step, an additional sensor is placed at half

wavelength from one of the sensors of the displaced X3, selected from the two suitable

choices with positions given by (3M − 2)N + iN− 1 or (3M − 2)N + kN+ 1.

For M = 5 and N = 8, index i and k are calculated. To find i,

i mod (N,M) = 1 + jM (6.36)

Plugging in the known parameters,

3i = 1 + 5j (6.37)

which can be solved for i = 2 and j = 1. Using Lemma 6, k = M−i = 5−2 = 3. The index

values i = 2 and k = 3, for a conventional coprime array represent the index of sensors of

2M−element subarray which exceed or lag their nearest sensor from N− element subarray

by distance equal to 1. For TCA, i = 2 represents the index of a physical sensor belonging

to X2 while k = 3 which is greater than
⌊
M
2

⌋
=
⌊

5
2

⌋
= 2, represents the redundant sensor

position. In both cases of conventional coprime and TCA, iN− 1 and kN+ 1 represent
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sensors of N−element subarray and X1, respectively. Now, the two available locations for

the additional sensor are given by (3M − 2)N + iN− 1 and (3M − 2)N + kN+ 1, which

come out to be 104 + 15 = 119 and 104 + 25 = 129, respectively. It can be seen that the

first sensor of displaced X2 given by (2M − 1)N = 72 is equidistant from 119 and 25 as

well as from 129 and 15, as proved in Theorem 2. These three steps of construction of

DiTCAAS with two possible solutions are shown in Fig. 6.2.

6.3 Comparison of Number of Lags for Sparse Arrays

In this section the number of lags are compared, specifically the number of unique lags of

different sparse arrays for a fixed number of total sensors.

For comparison, the proposed DiTCAAS, TCA, nested array, nested CADiS, MRA

and sparse CADiS are considered. Nested array, nested CADiS and MRA generate hole-

free co-arrays, while sparse CADiS, TCA and DiTCAAS, all generate co-arrays with holes

resulting in consecutive and unique lags. Here the focus is on the applicability of these

sparse arrays for CS-based DOA estimation which utilizes all the unique lags generated by

a sparse array. As far as the availability of sparse arrays for arbitrary number of sensors is

concerned, MRA in literature is available for a maximum of 20 sensors [57], while sparse

CADiS maye not be available for a specific number of sensors. On the other hand, nested

array, nested CADiS, TCA and DiTCAAS can all be generated for any number of sensors.

In this analysis, the unique lags for a fixed number of sensors in the range 13 to 40 sensors

are generated. Sparse CADiS with two variants depending on the separation parameter

L between the two subarrays which maximizes either consecutive lags or unique lags are

both inlcuded in the analysis.

Then, the unique lags capacity for sparse CADiS for different cases of L, nested array,

nested CADiS, MRA, TCA and DiTCAAS utilizing (5.14) are plotted in Fig. 6.3 for

the number of sensors from 13 to 40. It is clear from the plot that DiTCAAS has the

highest lag capacity with a big difference compared to other sparse arrays, thus generating

the highest number of unique lags for a fixed number of sensors. Only for the case of 17

sensors, MRA has more lags than DiTCAAS, as DiTCAAS derived from a 16 sensor TCA
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generates relatively lower number of unique lags for the respective M and N . Overall, the

proposed DiTCAAS holds strong potential to achieve significantly lower DOA estimation

error with CS based methods than other sparse arrays, even better than the MRA [112].

6.4 DiTCAAS - Sparsity and Weight Functions

In this section, the sparsity of DiTCAAS is analyzed and critical weight functions are

provided with the help of a proof.

Theorem 3. For a DiTCAAS with M ≥ 4 and N ≥ 3, its weight functions w(m) for

m = 1, 2 and 3 are given by

w(1) = 1,

w(2) =

1, if N = 3,

0, otherwise,

w(3) =



3M−6
2

, if N = 3 for any even M,

3M−7
2

, if N = 3 for any odd M,

1, if N = 4,

0, otherwise,

(6.38)

Proof. DiTCAAS for M ≥ 4 is a displaced version of TCA with one additional sensor

placed at half wavelength spacing from its neighbouring sensor in the displaced X3 on

any one of the two available locations, and is able to significantly increase the number

of unique lags for a given number of sensors. Due to the displacement of X2 and X3 by

(2M − 2)N , the distance between X1 and displaced X2 is given by

Ssubdist = (2M − 1)N − (N − 1)M (6.39)

Ssubdist = MN +M −N (6.40)

Then the condition is found when MN + M − N > M or N . First, the condition is

found when MN + M − N > M , which solves for M > 1. For the condition when
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Figure 6.3: Unique lags capacity comparison for sparse arrays

MN + M − N > N , M > 2N
N+1

which also solves for M > 1 for any value of N . As

M ≥ 4 and N ≥ 3 for DiTCAAS, MN + M − N will always be greater than M or N .

As X1 is separated by Md spacing and the displaced X2 and X3 are separated by Nd

spacing, then by placing an additional sensor at d distance from the sensors of displaced

X3, two lags equal to 1 and N− 1 are generated respectively. This implies that for

M ≥ 4 and N ≥ 5, the weight functions are given by w(1) = 1, w(2) = w(3) = 0, which

shows the improved sparsity of DiTCAAS compared to TCA, where TCA at best provides

w(1) = w(2) = w(3) = 1. Now some specific cases are discussed for different values of N .

For N = 3, the additional sensor will generate lags equal to 1 and 2 through interaction

with surrounding sensors of displaced X3, resulting in w(2) =1. For the case of even M

and N = 3, it is clear that M
2
−1 pairs of sensors in displaced X2 will be separated by

a spacing of 3 in adddition to M− 2 pairs of sensors in displaced X3. Then, w(3) =

M
2
− 1 + M − 2 = 3M−6

2
. For the case of odd M and N = 3, the only difference is that

M−1
2
− 1 = M−3

2
pairs of sensors in displaced X2 are separated by 3, which will give an

overall w(3) = 3M−7
2

. For the case when N = 4, the additional sensor through interaction

with surrounding sensors of displaced X3 will generate lags equal to 1 and 3 resulting in

w(3) = 1, which completes the proof.
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Array SNA SNA MRA CADiS TCA DiTCAAS

Parameters (7, 8, 2) (7, 8, 3) (9, 7, 3) (5, 9) (5, 8)

Aperture 63 63 73 77 81 136

Con. Lags 127 127 147 54 99 20

Uni. Lags 127 127 147 131 131 153

w(1) 1 1 1 0 1 1

w(2) 6 3 4 0 1 0

w(3) 1 2 1 6 1 0

Table 6.1: Sparse array characteristics for 15 sensors.

6.5 Simulation Results with CS-Based DOA Estima-

tion

In this section the performance of DiTCAAS is investigated in comparison with other

sparse arrays in the presence of mutual coupling. For DOA estimation, CS-based method

is employed, details of which can be found in [62]. For performance analysis, 15-sensor

sparse arrays including the second and third order super nested array N1 = 7, N2 = 8,

TCAM = 5, N = 9, sparse CADiSM = 9, N = 7, p = 3, MRA as {0, 1, 6, 14, 22, 30, 38, 46

54, 62, 64, 66, 69, 71, 73}d [57] and DiTCAAS M = 5, N = 8 with additional sensor at

(3M−2)N+kN+ 1 where k = 3 and represented as {0, 5, 10, 15, 20, 25, 30, 35, 72, 80, 112,

120, 128, 129, 136}d are considered. The characteristics of these sparse arrays including

aperture, conseuctive lags, unique lags and weight functions w(1), w(2) and w(3) are

shown in Table 6.1.

Although DiTCAAS generates the lowest number of consecutive lags at 20 compared

to other sparse arrays, it generates the highest number of unique lags at 153, even more

than the MRA and is well suited for application in CS-based DOA estimation. Analyzing

the weight functions, the second order super nested array has a very high w(2) = 6

compared to the third order super nested array, which has w(2) = 3. Sparse CADiS with

only non zero w(3) = 6 has the sparsest structure of all the sparse arrays, with unique
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Figure 6.4: Comparison among 15 sensors 2nd order SNA, 3rd order SNA, MRA, TCA,

DiTCAAS and sparse CADiS in the presence of mutual coupling with |c1|=0.4.

lags equal to TCA with 131 unique lags while DiTCAAS with only non zero w(1) = 1 is

second in sparsity only to sparse CADiS.

For the simulation, mutual coupling model is incorporated from the work in [88].

First the DOA spectrum for 13 sources is presented with considered parameters as 1000

snapshots, 10 dB SNR and mutual coupling coefficient |c1|= 0.4 in Figure 6.4, where it

can be clearly seen that the second order super nested array fails to resolve the sources

and is severely affected by mutual coupling. Although MRA is significantly sparser than

the second order super nested array, it still suffers from a degraded spectrum with lots of

spurious peaks. The third order super nested array is able to resolve all the sources but

with a degraded spectrum for two sources. On the other hand, TCA, sparse CADiS and

DiTCAAS detect all the 13 peaks with a clean spectrum.

In the next step, the DOA estimation error performance of these sparse arrays is

analyzed with the help of RMSE curves in a variety of scenarios in the presence of mutual

coupling. First, the RMSE performance is investigated for varying intensity of mutual

coupling coefficient |c1|. The parameters chosen for this simulation are 13 sources with 10
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dB SNR each impinging on an array and processed with 1000 snapshots at each sensor.

The mutual coupling coefficient |c1| is varied from 0 to 0.55 and the result is presented

in Figure 6.5, where each point on the curve is an average of 200 independent simulation

runs. It can be seen that the TCA initially has a higher error among other sparse arrays

in low mutual coupling conditions, but as the mutual coupling intensity increases, super

nested arrays suffer from increased error in their estimates due to relatively less number

of lags and higher weights w(2) compared to other sparse arrays. As the second order

super nested array has the highest w(2), its operation range and resistance to mutual

coupling significantly reduces and starts missing sources beyond |c1|= 0.3. MRA has a

lower error compared to super nested array and sparse CADiS, but due to a higher w(2),

its operation range is also limited to |c1|= 0.35. With increasing mutual coupling, TCA

achieves lower error than sparse CADiS and MRA due to a higher w(2) for MRA and

higher w(3) for sparse CADiS, introducing error in the estimates. In comparison to all

these sparse arrays, DiTCAAS has the lowest error with a significant difference compared

to all other sparse arrays due to its desirable sparsity and higher number of unique lags.

Even at |c1|= 0.55, DiTCAAS incurs half the error of TCA, which showcases the potential

of DiTCAAS.

For the second case, RMSE is investigated for varying SNR from 0 to 20 dB with a
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step of 2.5 dB, for each of the 13 sources. The number of snapshots and mutual coupling

coefficient are fixed at 1000 and |c1|= 0.25, respectively and the result is shown in Figure

6.6. It can be seen again that DiTCAAS has the lowest error among all the sparse arrays

and shows robustness in low SNR conditions. MRA has the second lowest RMSE among

other sparse arrays in low SNR conditions and TCA matches its error performance in

moderate SNR conditions.

Assuming equal SNR for all the sources is unrealistic as different sources originate from

different directions and encounter different channel conditions to reach their destination.

As a result all the sources arriving at the destination have different SNR and a more

realistic and practical way to model them is to assume a dynamic range of SNR for

different sources. Keeping this in mind, a 10 dB dynamic range is chosen for the 13

sources with 1000 snapshots and the RMSE performance is investigated with varying

intensity of mutual coupling. Due to dynamic range assumption, the operation range of

the sparse arrays considered for Figure 6.5 will be reduced and the operation range of

|c1| is considered from 0 to 0.45. The result is shown in Figure 6.7, where it can be seen

that the operation range of all the sparse arrays is reduced to a relatively lower value of

|c1| compared to the results of Figure 6.5. TCA in the 10 dB dynamic range assumption

suffers from an increased error compared to other sparse arrays and is only overtaken by
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Figure 6.7: RMSE versus mutual coupling coefficient with 10 dB dynamic range

the third order super nested array beyond |c1|= 0.3. Again the proposed DiTCAAS has

the lowest error among all the sparse arrays in the considered range and has less than

half the error compared to sparse CADiS despite its sparsest structure.

Finally, the RMSE performance of these sparse arrays is considered in a tough envi-

ronment, where the processing power at the destination is limited and only few snapshots

are available for the analysis and parameter estimation. A moderate level of mutual cou-

pling is assumed along with a dynamic range for the SNR to simulate a very practical

communication scenario. The considered simulation parameters include 10 dB dynamic

range of SNR, mutual coupling coefficient |c1|= 0.2 and number of snapshots varied from

500 to just 25 which is relatively closer to the 15 sensors assumed for the simulation.

Such a model will investigate the robustness of the considered sparse arrays. The result

is presented in Figure 6.8. It can be seen that the second order super nested array only

operates within a narrow range of snapshots from 500 to 300, beyond which it starts miss-

ing the sources. MRA and third order super nested array are able to sustain themselves

till 50 and 75 snapshots, respectively. All other sparse arrays like TCA, sparse CADiS

and DiTCAAS are able to function in the full considered range of snapshots as low as 25.

DiTCAAS again proves that it is the most robust array of all the sparse arrays and has

the lowest error of them all. DiTCAAS beats MRA which has the second lowest RMSE,
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by a big margin especially in extremely low number of snapshots environment.

Overall, DiTCAAS has proved itself to be a very robust array for CS-based DOA

estimation. Due to its good sparsity and very high number of unique lags resulting from

its co-array, it not only tolerates heavy mutual coupling, but also achieves the lowest error

among all the main types of sparse arrays by a big margin. If a relatively larger aperture

is allowed for an array in a signal processing scenario, then DiTCAAS is the best sparse

array for CS-based DOA estimation.

6.6 Summary

In this chapter, a new sparse array called DiTCAAS has been proposed based on the TCA.

The construction of DiTCAAS from TCA is a two-step process, where the subarrays X2

and X3 of TCA are displaced by a factor of (2M−2)N in the first step. This displacement

of the subarrays leads to an increase in unique lags, but the minimum spacing between

the sensors becomes an integer multiple of half wavelength. To avoid spatial aliasing, an

additional sensor is added at half wavelength from one of the sensors of the displaced X3

in the second step. Two locations are proposed for the placement of this additional sensor,

which generates significantly higher number of unique lags for DiTCAAS, even more than
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the lags provided by MRA. Due to a very sparse structure with the only non-zero weight

being w(1) = 1 and higher number of unique lags, DiTCAAS has shown the lowest RMSE

and highest robustness against heavy mutual coupling compared to super nested arrays,

MRA, TCA and sparse CADiS. Overall, DiTCAAS is an ideal sparse array for CS-based

DOA estimation.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, several contributions are presented for array signal processing based on tra-

ditional and sparse arrays. Beamforming and DOA estimation are integral parts of array

signal processing and this thesis was aimed at solving some key probems related to them.

Wideband beamforming holds numerous applications in the bandwidth hungry data traf-

fic of present day world. Several techniques exist to design fixed wideband beamformers

based on traditional arrays and least squares based eigenfilter method is one of the key

methods (Chapter 2). The standard eigenfilter method was revisited in this thesis and it

was shown that the design formulation of the cost function suffers from a serious flaw due

to which the achieved design generates unacceptable passband/look direction response.

This problem was studied from the perspective of both FIR filter design as well as the

fixed wideband beamformer design. The problem was clearly highlighted with the help of

several design examples and an additional constraint was added to stabilize the achieved

design so that consistent design performance according to the desired response can be

achieved. Simulation results show the validity and significance of the proposed method

(Chapter 3).

Traditional arrays based on ULAs have limited applications in array signal processing

due to the large number of sensors required for a particular signal processing scenario

and this problem has been addressed by the application of sparse arrays which reduce the
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cost of the signal processing projects. Sparse arrays have been exploited from the per-

spective of their difference co-array structures which provide significantly higher number

of lags compared to ULAs for the same number of sensors. These lags are the consecutive

and unique lags utilized in the application of DOA estimation with the help of difference

co-array based DOA estimators like SS-MUSIC and CS-based methods. Several types of

sparse arrays exist including MRA, MHA, nested array, prototype coprime array, conven-

tional coprime array, CACIS, CADiS and super nested array. Coprime arrays generally

have better sparsity than nested arrays, which brings their application in countering mu-

tual coupling but MRA and nested arrays provide hole-free co-arrays with more lags for

DOA estimation (Chapter 4).

A new sparse array TCA based on a conventional coprime array has been proposed

which holds all the properties of a conventional coprime array but with
⌈
M
2

⌉
redundant

sensors. For the same number of sensors, TCAs possess greater number of unique lags

than the hole-free structure of the nested array and nested CADiS, and comparable num-

ber of unique lags to the sparsest CADiS. The number of consecutive lags of the TCAs are

around 75 percent to those of nested arrays which showcases their application in both sub-

space and CS-based DOA estimation methods. Moreover, they can be easily constructed

for an arbitrary number of sensors. TCAs have a significantly sparser array structure with

robustness against severe mutual coupling especially when using CS based DOA estima-

tion. With increasing array size, TCAs also offer better error performance in parameter

estimates compared to super nested arrays and MRA for both CS and SS-MUSIC based

methods in the presence of mutual coupling, as shown by the simulation results. TCAs

maintain desirable levels of sparsity related to their weight functions irrespective of the

array size unlike other sparse arrays (Chapter 5).

Although TCA holds numerous desirable features, the number of unique lags offered by

TCA are close to the sparsest CADiS and nested array and significantly lower than MRA ,

which limits the estimation error performance offered by TCA through CS-based methods.

In this direction, the structure of TCA was studied to explore the possibility of an array

which can provide significantly higher number of unique lags with improved sparsity for a

given number of sensors. The result of this investigation is a new sparse array DiTCAAS
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based on a TCA. The construction of DiTCAAS from TCA takes place in a two-step

process where the subarrays X2 and X3 of TCA are displaced by a factor of (2M − 2)N

in the first step. This displacement of the subarrays generates an increase in the unique

lags but the minimum spacing between the sensors becomes an integer multiple of half

wavelength. To avoid spatial aliasing, an additional sensor is added at half wavelength

from one of the sensors of the displaced X3 in the second step. Two strategic locations are

proposed for the placement of this additional sensor, which generates significantly higher

number of unique lags for DiTCAAS, even more than the number of lags provided by

MRA. Due to its sparse structure with the only non-zero weight being w(1) = 1 and higher

number of unique lags, DiTCAAS has shown the lowest RMSE and highest robustness

against heavy mutual coupling than super nested arrays, MRA, TCA and sparse CADiS.

DiTCAAS has proved its potential in a very practical scenario with limited snapshots,

varying channel conditions and mutual coupling by achieving the lowest estimation error

(Chapter 6).

The two key contributions of this thesis are TCA and DiTCAAS which hold distinct

potential in the application of DOA estimation with mutual coupling. TCA can be utilized

for both subspace based methods like SS-MUSIC and CS-based methods. On the other

hand, DiTCAAS is specifically designed for the application of CS-based methods and

performs significantly better than TCA from the perspective of estimation error. In the

event of a signal processing scenario, where space for deployment of sensors is limited,

TCA with relatively smaller aperture as compared to DiTCAAS is the ideal candidate

while DiTCAAS is the perfect candidate where space constraints are not a major issue.

7.2 Future Work

For the future work, some possible directions are as follows.

In this thesis, the characteristics of TCA and DiTCAAS have been studied from

the perspective of DOA estimation. Utilizing their difference co-array for application

in beamforming would be of a special interest along with a comparative study of their

performance with other sparse arrays.
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TCA has shown its application for both SS-MUSIC and CS-based DOA estimation

methods due to a decent combination of consecutive and unique lags. The sparsity factor

of TCA with w(1) = w(2) = w(3) = 1 is attractive to counter mutual coupling. One

future direction can be aimed at maintaining the sparsity of TCA and investigating an

increase of consecutive lags through the addition of another sensor.

As most of the work in this thesis was aimed at designing 1-D sparse arrays, the

structure of TCA and DiTCAAS can be explored for a 2-D sparse array design, which

is aimed at increased number of lags with reduced mutual coupling in comparison with

recently proposed 2-D sparse arrays such as the hourglass arrays [113].

Recently, higher order statistics of data have been utilized for DOA estimation. In

this direction, sparse arrays with efficient fourth order difference co-arrays have been

developed [106], [114]. A possible direction is to utilize a combination of coprime arrays

to search for an enhanced fourth-order difference co-array.
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