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Abstract

This thesis concerns the development and implementation of novel error analyses

for ubiquitous Nyström-type methods used in approximating the solution in 1-D of

both Fredholm integral- and integro-differential equations of the second-kind, (FIEs)

and (FIDEs). The distinctive contribution of the present work is that it offers a

new systematic procedure for predicting, to spectral accuracy, error bounds in the

numerical solution of FIEs and FIDEs when the solution is, as in most practical

applications, a priori unknown.

The classic Legendre-based Nyström method is extended through Lagrange in-

terpolation to admit solution of FIEs by collocation on any nodal distribution, in

particular, those that are optimal for not only integration but also differentiation.

This offers a coupled extension of optimal-error methods for FIEs into those for

FIDEs. The so-called FIDE-Nyström method developed herein motivates yet an-

other approach in which (demonstrably ill-conditioned) numerical differentiation is

bypassed by reformulating FIDEs as hybrid Volterra-Fredholm integral equations

(VFIEs). A novel approach is used to solve the resulting VFIEs that utilises La-

grange interpolation and Gaussian quadrature for the Volterra and Fredholm com-

ponents respectively.

All error bounds implemented for the above numerical methods are obtained

from novel, often complex extensions of an established but hitherto-unimplemented

theoretical Nyström-error framework. The bounds are computed using only the

available computed numerical solution, making the methods of practical value in,

e.g., engineering applications. For each method presented, the errors in the nu-

merical solution converge (sometimes exponentially) to zero with N , the number

of discrete collocation nodes; this rate of convergence is additionally confirmed via

large-N asymptotic estimates. In many cases these bounds are spectrally accurate

approximations of the true computed errors; in those cases that the bounds are not,

the non-applicability of the theory can be predicted either a priori from the kernel

or a posteriori from the numerical solution.
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Chapter 1

Introduction

“An approximate answer to the right problem is worth a good deal more

than an exact answer to an approximate problem.”

– John Tukey

1.1 Background and Motivation

Many problems arising in applied sciences, engineering and social sciences can be

modelled by mathematical equations. However, due to the complexity of modelling

real-life problems, it is in practice difficult, if not impossible, to solve the correspond-

ing equations analytically, so their solutions must be approximated using so-called

numerical methods. Accordingly, a vast literature exists on the development of nu-

merical methods for “solving” problems whose closed-form analytical solutions lie

beyond the reach of mathematical techniques. Moreover, even in those cases for

which closed-form solutions are attainable, the complexity of the resulting solutions

and the actual cost of evaluating them may be sufficiently high as to render them

little more than an academic exercise; a Pyrrhic victory, so to speak. This being

said, numerical methods themselves are useful only if the errors in the approximate

solutions they yield can be quantified; in engineering terms, it is essential to know

the tolerances of the output. Therefore, the development of computable and ac-

curate error estimates and bounds thereon is a subject of considerable importance

in its own right, and the subject of error analysis is a crucial component in the
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1. INTRODUCTION

application of numerical methods to all problems whose exact solution is unknown.

It is within this broad area that this thesis is focussed.

Specifically considered herein are two widely encountered, important classes of

numerical methods, namely those for approximating the solutions of integral equa-

tions (IEs) and integro-differential equations (IDEs), both of which are ubiquitous in

the modelling of many real-life problems. IEs, which are characterised by containing

the integral of an unknown function, arise in the modelling of, for example, heat

conduction [56], population dynamics [81], electromagnetism [123] and acoustics

[127]. Similarly, IDEs, characterised by containing both the integral and deriva-

tive(s) of an unknown function, can be used to model, for example, water waves

[101], viscoelasticity [86] and option pricing [36].

The examples cited comprise but a few of the diverse practical applications

contained within the plethora of literature on the development of numerical methods

for IEs and IDEs. However, despite this ubiquity of application, relatively little

attention has been paid to the important matter of analysing the errors incurred

in the approximations. Accordingly, the main goal of this thesis is to address this

scarcity; specifically, to analyse, to develop and to implement closed-form predictions

of errors that are highly distinctive insofar as they can be computed relatively easily,

and to high degree of accuracy, using only the approximate solution computed by the

numerical method. This aspect will be revisited in more detail below.

Many well-known approximation techniques have been deployed in numerical

solvers for both IEs and IDEs, for example, within the context of IEs, methods

are based on Taylor-series expansions [91, 70], discrete product integration [76],

Adomian decomposition [11, 58], multigrids [63] and Haar wavelets [13]. Similarly,

within the context of IDEs, commonly used methods are Taylor-series expansions

[137], the Tau method [69], sine-cosine wavelets [121], Sinc methods [106], Shannon

wavelets [92] and a reproducing-kernel Hilbert space approach [6]. The diversity

of and time-span covered by this literature bear testimony to the importance of

obtaining accurate solutions of both IEs and IDEs.

IEs and IDEs can be classified in many ways, the most general being based upon

the limits of integration. There are two fundamental forms: Volterra IEs/IDEs con-

tain an integral with a variable limit of integration whereas Fredholm IEs/IDEs con-

tain an integral with fixed limits of integration. Volterra and Fredholm IEs/IDEs are

respectively associated with the reformulation of initial-value and boundary-value
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problems. This thesis is concerned with the solution of only Fredholm IEs (FIEs)

and Fredholm IDEs (FIDEs), whose reformulation from the boundary-value prob-

lem (BVP) format is often beneficial. For example, the reformulation of a two-point

second-order BVP to an FIE has the welcome advantage that all associated bound-

ary conditions (BCs) are subsumed into the single IE, rather than imposed externally

on the differential equation. Similarly, the FIDE reformulation of higher-order two-

point BVPs, e.g. the fourth-order Euler-Bernoulli beam-deflection problem with

varying flexural rigidity [54], explicitly incorporates all BCs imposed upon the BVP.

The one-dimensional FIEs studied in this thesis can be written in the canonical

form

u(x)− λ

∫ 1

−1

K(x, y) u(y) dy = f(x), x ∈ [−1, 1], (1.1.1)

and, similarly, the one-dimensional FIDEs studied have the canonical form

u(x)− µ(x)
du

dx
− λ

∫ 1

−1

K(x, y) u(y) dy = f(x), x ∈ [−1, 1], (1.1.2)

in both of which forms the kernel K : [−1, 1] × [−1, 1] → R, source function

f : [−1, 1] → R and constant λ ∈ R are known functions and u(x) is the unknown

function to be determined on [−1, 1]. The coefficient function µ : [−1, 1] → R
in (1.1.2) is also known and, because of the first-order differential term, the FIDE

(1.1.2) must be augmented by a single BC. Note that the rescaling of many practical

problems leads to the canonical forms (1.1.1) and (1.1.2). This thesis considers only

FIEs and FIDEs with non-singular kernels; the former of which arise in applica-

tions such as electrostatics [88] and current flow [96], and the latter of which have

applications in engineering [54] and aerodynamics [49].

Many numerical methods have been developed for the solution of FIEs, including

well-known approaches based on interpolation, projection, collocation and quadra-

ture detailed in [10, 14, 60, 83]. However, perhaps the most widely used approach is

the Nyström method [98], which provides the foundations for the numerical meth-

ods developed in this thesis. The Nyström method employs Gaussian quadrature

[9] and discrete collocation for determining approximate solutions of FIE (1.1.1) for

all x ∈ [−1, 1]. In general, if the FIE kernel is smooth and non-singular, then the

Nyström solution is a spectrally accurate approximation of the exact solution.
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However, solving FIEs with a singular kernel requires modifications to the Nyström

method. For example: [100] uses a smoothing change of variables and product-

integration techniques; [80] incorporates an error estimate into the Nyström method

a priori in order to accommodate kernels with challenging end-point singularities;

[8] presents iterative variants of the Nyström method that can be applied to FIEs

with singular kernels; and [77] develops a new discretisation technique based on

Clenshaw-Curtis quadrature that is used for FIEs whose kernel is discontinuous

along the main diagonal, e.g. the kernel K(x, y) = K̃(|x − y|) arising in the mod-

elling of radiative transfer. The new analysis developed in this thesis quantifies

the problem-dependent level of accuracy that can be expected from the Nyström

method. This analysis confirms that, for smooth continuously differentiable kernels

and solutions, spectral accuracy can be achieved. Not only does this analysis high-

light the merits of the Nyström method, but it also enables (sometimes spectrally

accurate) estimates to be computed of the error in the resulting numerical solutions.

Despite their demonstrable ubiquity in solving FIEs, Nyström-type numerical

methods appear less frequently in the literature on FIDEs which, as stated in [77],

“are usually solved by iterative finite difference methods, or by orthogonal func-

tion expansion methods”. For example: [7] uses backward-difference and repeated-

trapezoidal formulae; a Chebyshev finite difference scheme is proposed in [42]; [136]

uses a Chebyshev series expansion whose coefficients are found iteratively; [12] de-

termines the coefficients of a Chebyshev-polynomial expansion via a fast Galerkin

scheme; [55] approximates FIDE solutions by a finite expansion of Legendre ba-

sis functions whose coefficients are determined by a Galerkin-Legendre system; a

Legendre-polynomial expansion is used in [138], in which the coefficients are de-

termined by matrix collocation; and, [24] compares a variational iteration method

to the Legendre-polynomial approximation given in [138]. These methods, which

are of varying degrees of efficiency and accuracy, can be used to approximate not

only the solution of (1.1.2) but also the solution of its extension to FIDEs involving

higher-order derivatives.

Although Nyström-type methods rarely appear in the existing literature within

the context of solving FIDEs, [12] states that the Nyström method does “gener-

alise readily” when solving IDEs as “it is natural to introduce a finite difference

approximation for the derivative term(s)”. By contrast, [108] demonstrates how a

higher-order-derivative extension of (1.1.2) can be discretised using a combination
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of Lagrange interpolation and Gauss-Legendre quadrature to form a system of alge-

braic equations in which the unknowns are nodal values of the FIDE solution. The

system in [108] is numerically solved by Newton’s method and the resulting nodal

values are Lagrange-interpolated to approximate the FIDE solution throughout the

domain.

As alluded to above, and despite ongoing research, exemplified above, into ap-

proximation methods for solving FIEs and FIDEs, techniques for determining corre-

sponding computable error bounds remain relatively scarce. This scarcity is partic-

ularly notable for the Nyström method, for which it is acknowledged in [83, p. 188]

that “these bounds will be difficult to evaluate in applications”, and noted in [9,

p. 282] that “it is difficult to estimate the error”. Moreover, the frequently stated

bound on the Nyström error [10, Eq. 4.1.33] is dependent upon the exact solution,

which in practice is not only invariably unknown, but also contains a component

that is purely theoretical. Other analyses of the Nyström error notably focus on

only convergence rates, see e.g. [45, 113, 117]. Similarly, computable error bounds

are rare in the error analyses of numerical methods for the solution of IDEs. For

example, in the above-cited literature, [136, 121, 106, 137, 42, 24, 7, 108] strikingly

contain no discussion whatsoever of errors; [92] gives an error bound for only the

first derivative of the solution; the error estimates in [69, 138, 55] are themselves

subject to an unquantified error; [6] proves only a convergence theorem; and [12]

develops error estimates that do not always exceed the true computed error and so

cannot be used as reliable error bounds.

Consequently, the aims of this thesis are twofold: to develop and to implement

numerical methods that yield spectrally accurate approximations to the solutions

of FIEs and FIDEs, and to derive corresponding error bounds that are explicitly

computable using only the numerical solution, so that they require no knowledge

of the exact solution. Achieving these goals requires a thorough understanding

of the numerical techniques used in both FIE- and FIDE-approximation methods.

Therefore, the initial focus of this thesis is on the establishment of the foundations

required for approximating a function, its derivatives and its integral, including a

comprehensive study of the resulting errors. Using this initial framework, novel

numerical methods and implementable error analyses are then developed for both

FIEs and FIDEs.

5



1. INTRODUCTION

1.2 Thesis Overview

The numerical methods developed in this thesis are based upon the widely used

Nyström method [98], which is presently extended through incorporation of inter-

polation and numerical differentiation. Additionally, the existing theoretical error

analysis of the Nyström method is used as the basis for novel error analyses that

yield spectrally accurate error predictions for the newly derived methods. The de-

velopment of these numerical methods and error predictions requires analysis of not

only the Nyström method and the numerical quadrature used therein, but also anal-

ysis of the implementation of interpolation techniques and numerical differentiation.

Accordingly, the structure of the remainder of this thesis is as follows.

Chapter 2 presents the framework required for performing interpolation and

differentiation of discrete data. This includes a thorough analysis of Lagrange inter-

polation [85], the foundation upon which the numerical techniques in all subsequent

chapters rely, along with its more stable barycentric counterpart [22], whose im-

plementation is computationally less expensive. The errors are analysed for both

forms of interpolation through the derivation of error bounds and convergence rates

that enable the accuracy of each approach to be predicted and quantified. Since

the accuracy of interpolation is dependent on the nodal distribution upon which it

is based, a variety of interpolating-node distributions are examined and compared.

These nodal distributions include those that are optimal for numerical differentia-

tion along with those that are optimal for numerical integration, since both of these

are required when implementing IE and IDE numerical methods. For completeness,

Tikhonov regularisation [26] is considered in order to demonstrate how to overcome

the limitations of Lagrange and barycentric interpolation.

Chapter 3 develops the tools required for solving IEs and IDEs numerically.

The interpolation techniques introduced in Chapter 2 are extended to methods for

implementing numerical quadrature and numerical differentiation. The former is

required for solving both IEs and IDEs, whilst the latter is required for solving

only IDEs. In order to implement the numerical differentiation outlined in Chapter

2 efficiently and accurately, differentiation matrices [19, 116] are introduced and

analysed. These use the nodal data of a function to approximate its derivative,

at those nodes, in a way that bypasses the need for any intermediate interpolation.

Chapter 3 also presents an overview of Gaussian quadrature [9], i.e. the fundamental
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component of the Nyström method. Gaussian quadrature offers a spectrally accurate

method for approximating the definite integral of a function using discrete nodal

data. Accordingly, Chapter 3 provides methods for approximating the derivative

and integral of a function using only its nodal data. These techniques comprise the

foundation of the IE and IDE numerical methods used and developed in Chapters

4 and 5 respectively.

Overviews of IEs and the Nyström method are presented in Chapter 4. An

extension is then developed of the Nyström method which uses the interpolation

techniques described in Chapter 2 to approximate the solution of IEs on any set

of nodes, for example those optimal for differentiation. This is done in preparation

for a further extension, described in Chapter 5, for solving IDEs with the goal of

minimising the overall error by projecting between optimal quadrature and optimal

differentiation nodes. Error analyses are presented for both the Nyström method

and its interpolated counterpart. These error analyses are founded upon the exist-

ing fundamental operator theory that underpins the Nyström method. The error

bounds and asymptotic error estimates derived from this theoretical framework are

explicitly computable using only the numerical IE solution. As discussed above, this

constitutes a novel aspect of this thesis.

In Chapter 5, IDEs are introduced and two distinct methods are developed for

approximating their solution. First, the Nyström methods used to solve IEs in

Chapter 4 are extended by incorporating the numerical differentiation outlined in

Chapters 2 and 3. The error analysis for this newly extended Nyström approach

develops the operator theory used in the IE error analyses to obtain spectrally accu-

rate error bounds and predictions that are explicitly computable without knowledge

of an exact solution. This Nyström method is expanded upon in [54] to solve a

novel IDE formulation of an Euler-Bernoulli beam-deflection problem in which the

flexural rigidity varies along the beam. Since no exact solution is attainable for this

engineering problem, [54] provides concrete corroboration of the practical relevance

of the novel Nyström approach and error analysis developed in this thesis.

Second, a method is developed in which IDE solutions are obtained by first

transforming the IDE into a hybrid Volterra-Fredholm integral equation (VFIE).

The resulting VFIE is solved by a novel method that uses a combination of the

Lagrange interpolation introduced in Chapter 2 and Gaussian quadrature introduced

in Chapter 3. An approximate IDE solution is then recovered from the approximate
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VFIE solution. This approach bypasses the need for differentiation matrices, used

in the extended Nyström methods, which are well-known to be ill-conditioned [18,

29, 46]. Similar operator theory as that used for the Nyström approaches is used to

develop spectrally accurate error bounds and estimates, for the VFIE reformulation

method, that require no knowledge of the exact solution. Consequently, since both

of the newly developed numerical methods yield error bounds that are computable

in the absence of an exact solution, they differ distinctively from all related methods

in the existing literature.

In summary, Chapters 2 and 3 present an overview of existing approximation

techniques required for solving IEs and IDEs numerically, and these approxima-

tion techniques are incorporated into novel numerical methods for solving IEs and

IDEs in Chapters 4 and 5 respectively. Correspondingly, the errors incurred in the

approximation techniques considered in Chapters 2 and 3 are analysed and incor-

porated into novel error analyses for the newly developed numerical IE and IDE

methods. General summaries of the numerical methods and error analyses are given

in Chapter 6.

In addition to the novel work contained in the main chapters of this thesis, the

appendices contain novel work that is hitherto unpublished.

In Appendix A, a proof is presented, of explicit formulae for the derivatives of

Lagrange polynomials, that does not appear to have been considered in the previous

literature.

Appendix C presents a non-trivial proof of the complex Legendre-polynomial

expression used to derive interpolation error bounds in Chapter 2, quoted in [1] but

not proved.

In Appendix D, ab initio derivations are given for two methods of converting a

BVP to a FIE. The first method initially follows the conversion in [104]; however, the

approach in [104] is incorrect, despite apparently never before having been recognised

as such. Therefore, the conversion in Appendix D is augmented with an example

that demonstrates not only the correctness of the new approach but also the source

of the error in [104]. The second conversion method in Appendix D derives the FIE

given in [75], whose derivation from a BVP is not shown therein.

Finally, Appendix E proves the assertion, used in the Nyström method analysis

in Chapter 4, that all but one of the eigenvalues of the (separable kernel) Nyström

method matrices are equal to 0.
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Only Appendix B contains work that is not original; however, the non-intuitive

proof therein of a bound on monic polynomials based upon regularly spaced nodes

is provided for completeness.
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Chapter 2

Interpolation of Discrete Data

A first step towards the main goal of this thesis – the development and error analysis

of numerical methods for finding approximate solutions of both integral equations

(IEs) and integro-differential equations (IDEs) – is the establishment of the foun-

dations and framework required for performing stable and reliable interpolation

and differentiation of discrete data. With this framework established, it is used in

subsequent chapters both to understand and to explain the errors incurred in the

numerical techniques used in both IE and IDE scenarios.

Accordingly, Lagrange interpolation [85, 120] is introduced in Section 2.1 along

with its more stable (and perhaps lesser-known) counterpart, barycentric interpola-

tion [22]; for both approaches, error bounds and convergence rates are derived so

that the accuracy of both forms of interpolation may be predicted and quantified.

The Lagrange interpolation in Section 2.1 provides the foundation on which the nu-

merical differentiation and numerical quadrature methods, in Sections 3.1 and 3.2

respectively, are established.

A variety of interpolating-node distributions are examined in order to demon-

strate, through numerical experiments on the different nodal sets, the advantages –

e.g. uniform distribution of error – of so-called clustered distributions [124, 57]. Such

nodal distributions include those that are optimal for both numerical differentiation

and for numerical integration (NB these sets are generally different), since these are

used to minimise the error within the IE and IDE numerical approximations. Finally,

Tikhonov regularisation [129, 26] is also considered in order to demonstrate how to

overcome the limitations of Lagrange and barycentric interpolation: for example,

11



2. INTERPOLATION OF DISCRETE DATA

the Runge phenomenon, [107, 27] which results from interpolation using regularly

spaced nodes.

Throughout this chapter, unless otherwise stated, i, j = 1(1)N .

2.1 Interpolation Methods

2.1.1 Lagrange Interpolation

The action of Nth-order Lagrange-interpolation [85, 120] on a function u : [a, b] → R
that is N -times continuously differentiable on the interval [a, b], at data nodes xj,N

ordered so that a ≤ x1,N < x2,N < ... < xN,N ≤ b, is defined by the numerical

operator LN as

LNu = (LNu)(x) ≡
N∑

j=1

Lj,N(x) u(xj,N), (2.1.1)

wherein the Lagrange basis functions are defined by

Lj,N(x) ≡
N∏

k=1
k≠j

x− xk,N

xj,N − xk,N
. (2.1.2)

The Lagrange approximation LNu in (2.1.1) is therefore a polynomial of degree

N − 1 in x. Let the Nth-degree monic polynomial whose N distinct real roots are

the interpolation nodes xj,N be defined by

pN(x) ≡
N∏

j=1

(x− xj,N), (2.1.3)

which is equivalently

pN(x) = (x− xj,N) qN(x), (2.1.4)

wherein

qN(x) ≡
N∏

k=1
k≠j

(x− xk,N). (2.1.5)

Differentiation of (2.1.4) gives

p ′
N(x) = qN(x) + (x− xj,N) q

′
N(x), (2.1.6)

12



2.1 Interpolation Methods

in which setting x = xj,N yields

p ′
N(xj,N) = qN(xj,N). (2.1.7)

Therefore the Lagrange basis function Lj,N(x), defined in (2.1.2), can also be written

in the more succinct form

Lj,N(x) =
pN(x)

(x− xj,N) p ′
N(xj,N)

. (2.1.8)

2.1.2 Barycentric Interpolation

The Lagrange interpolation formula (2.1.1), in which Lj,N(x) is henceforth con-

structed using (2.1.8), can be expressed in an alternative, so-called barycentric form.

This has computational advantages over the Lagrange form such as reduced work-

load and increased stability [109]. The barycentric form is derived as follows. Equa-

tions (2.1.1) and (2.1.8) can together be written as the first form of the barycentric

interpolation formula [67] which is

(B(1)
N u)(x) = pN(x)

N∑

j=1

Wj,Nu(xj,N)

x− xj,N
, (2.1.9)

wherein the weights Wj,N are defined by

Wj,N =
1

p ′
N(xj,N)

(2.1.10)

so that, by construction,

(B(1)
N u)(x) = (LNu)(x). (2.1.11)

If the constant function u(x) ≡ 1 is approximated in this way then u(xj,N) = 1 for

all values of j, hence (2.1.9) can be written as

1 = pN(x)
N∑

j=1

Wj,N

x− xj,N
, (2.1.12)

and so (2.1.9) and (2.1.12) together yield the second form of the barycentric inter-

polation formula as

(B(2)
N u)(x) =

N∑

j=1

Wj,Nu(xj,N)

x− xj,N

N∑

j=1

Wj,N

x− xj,N

. (2.1.13)

13



2. INTERPOLATION OF DISCRETE DATA

By construction, (2.1.1), (2.1.9) and (2.1.13) are equivalent approximations of the

function u(x) so that

(LNu)(x) = (B(1)
N u)(x) = (B(2)

N u)(x). (2.1.14)

2.2 Differentiation of Interpolation Formulae

The derivative u′(x) of a function can also be approximated using the nodal data

u(xj,N). By first defining the differential operator D by

Du = (Du)(x) ≡ u′(x), (2.2.1)

wherein a prime denotes differentiation with respect to x, the numerical differential

operator DN is defined as

DN ≡ DLN. (2.2.2)

Therefore, differentiating (2.1.1) with respect to x yields

DNu = (DNu)(x) ≡
N∑

j=1

L ′
j,N(x) u(xj,N) (2.2.3)

in which differentiation with respect to x of (2.1.8) gives

L ′
j,N(x) =

p ′
N(x) (x− xj,N)− pN(x)

(x− xj,N)2 p ′
N(xj,N)

. (2.2.4)

In a similar way, higher derivatives of u(x) are approximated by defining

D
(M)
N ≡ DMLN, M ≥1, (2.2.5)

so that the Mth derivative u(M)(x) is approximated by differentiating LNu(x) in

(2.1.1) M times to give

D
(M)
N u = (D(M)

N u)(x) ≡
N∑

j=1

L(M)
j,N (x) u(xj,N). (2.2.6)

Since LNu(x) is a polynomial of degree N−1 in x, the right-most term in (2.2.6) is a

polynomial of degree N − 1−M in x for M ≤ N − 1. For M ≥N , (2.2.6) therefore
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2.3 Nodal Distributions

gives D
(M)
N u ≡ 0. A formula for the functions L(M)

j,N (x) is found by differentiating

(2.2.4) to give

L ′′
j,N(x) =

p ′′
N(x)(x− xj,N)2 − 2p ′

N(x)(x− xj,N) + 2pN(x)

(x− xj,N)3 p ′
N(xj,N)

, (2.2.7)

and

L ′′′
j,N(x) =

p ′′′
N(x)(x− xj,N)3 − 3p ′′

N(x)(x− xj,N)2 + 6p ′
N(x)(x− xj,N)− 6pN(x)

(x− xj,N)4 p ′
N(xj,N)

,

(2.2.8)

from which the general formula for the Mth derivative of Lj,N(x) is postulated to

be

L(M)
j,N (x) =

M∑

k=0

(−1)M+k M !

k!
(x− xj,N)

k p(k)N (x)

(x− xj,N)M+1 p ′
N(xj,N)

, (2.2.9)

which is proved by induction on M in Appendix A. This establishes the framework

by which numerical differentiation can be implemented for finding approximate so-

lutions of ODEs and IDEs. It is shown in Section 2.5 that this differentiation is

readily achieved to spectral accuracy for sufficiently smooth solutions.

2.3 Nodal Distributions

The Lagrange and barycentric interpolation formulae (2.1.1) and (2.1.13) and the

derivative interpolation formulae (2.2.3) and (2.2.6) apply to any nodal distribution

xj,N. In this section, several nodal distributions are defined on the interval [−1, 1]

and, where possible, explicit forms of the barycentric weights (2.1.10) are given.

A regularly spaced distribution is introduced along with a range of clustered dis-

tributions [57, 124]; these are later shown, in Section 2.4, to yield more accurate

approximations than the regularly spaced distribution. Due to their intended use

within the numerical methods for IEs and IDEs, the clustered nodal distributions

considered include those that are optimal for numerical differentiation and those

that are optimal for numerical integration. For consistency, all of the nodal dis-

tributions are defined such that −1 ≤ x1,N < x2,N < ... < xN,N ≤ 1; this ordering

admits direct comparisons between the distributions and also simplifies comparisons

between the numerical methods for IDEs in Chapter 5.
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2. INTERPOLATION OF DISCRETE DATA

2.3.1 Specific Nodal Distributions

Regular Nodes

Regularly spaced nodal locations on [−1, 1] are given by

xj,N = −1 +
2 (j − 1)

N − 1
, (2.3.1)

using which the barycentric weights Wj,N are derived from (2.1.10) as

Wj,N =
(−1)N−j

(N − 1)!

(
N − 1

j − 1

)(
2

N − 1

)N−1

, (2.3.2)

wherein the middle term in brackets denotes a binomial coefficient. However, since

Wj,N occurs in both the numerator and denominator of the barycentric interpolation

formula (2.1.13), any factor common to all weights Wj,N that is independent of j

cancels out and so it is sufficient to define the weights as [22, Eq. 5.1]

Wj,N = (−1)j−1

(
N − 1

j − 1

)
. (2.3.3)

Note that, for the same reasoning, the subsequent barycentric weights defined in

(2.3.8), (2.3.11), (2.3.17), (2.3.24), (2.3.25) and (2.3.28) do not contain any common

factors that are independent of j.

Chebyshev Nodes

The Chebyshev nodes on [−1, 1] are the roots of the Chebyshev polynomial of the

first kind of degree N [93, Eq. 1.1], defined by

TN(x) ≡ cos(N cos−1 x), (2.3.4)

which satisfies Chebyshev’s differential equation

(1− x2) T ′′
N(x)− xT ′

N(x) +N2TN(x) = 0. (2.3.5)

The monic polynomial pN(x) in (2.1.3) with roots at the Chebyshev nodes is therefore

given by

pN(x) =
TN(x)

2N−1
(2.3.6)
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2.3 Nodal Distributions

and the Chebyshev nodes are given by

xj,N = cos
2N − 2j + 1

2N
π. (2.3.7)

The barycentric weights Wj,N in (2.1.10) are given explicitly [22, Eq. 5.3] as

Wj,N = (−1)j sin
2j − 1

2N
π. (2.3.8)

Chebyshev-Gauss-Lobatto Nodes

The Chebyshev-Gauss-Lobatto nodes are located at the endpoints ± 1 and the ex-

trema in (−1, 1) of the Chebyshev polynomial TN−1(x) defined in (2.3.4). The monic

polynomial with roots at these nodes is

pN(x) =
(x2 − 1) T ′

N−1(x)

2N−2 (N − 1)
, (2.3.9)

giving

xj,N = cos
N − j

N − 1
π. (2.3.10)

The barycentric weights Wj,N in (2.1.10) are given [22, Eq. 5.4] as

Wj,N =
(−1)j

1 + δ1j + δNj
, (2.3.11)

wherein the Kronecker delta δij is defined by

δij ≡

⎧
⎨

⎩

1 i = j

0 i ̸= j.
(2.3.12)

Legendre Nodes

The Legendre nodes on [−1, 1] are the roots of the Legendre polynomial of degree

N that is expressed using Rodrigues’ formula [2, Eq. 8.6.18] as

PN(x) =
1

2NN !

dN

dxN
(x2 − 1)N, (2.3.13)

which satisfies Legendre’s differential equation [133, p. 304]

(1− x2)P ′′
N(x)− 2xP ′

N(x) +N(N + 1)PN(x) = 0. (2.3.14)
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2. INTERPOLATION OF DISCRETE DATA

The monic polynomial with roots at the Legendre nodes is given by

pN(x) =
2N(N !)2

(2N)!
PN(x) (2.3.15)

and the nodes are then defined by PN(xj,N) = 0, i.e.

xj,N = jth zero of PN(x). (2.3.16)

The barycentric weights Wj,N in (2.1.10) follow from (2.3.15) as

Wj,N =
1

P ′
N(xj,N)

. (2.3.17)

Legendre-Gauss-Radau Nodes

Legendre-Gauss-Radau distributions [68] are non-symmetric nodal distributions that

include only one of the interval endpoints; x = 1 or x = −1. The monic polynomial

pN(x) in (2.1.3) with these roots is

p−N(x) =
2N(N !)2

(2N)!

(
PN(x) + PN−1(x)

)
(2.3.18)

when x = −1 is included, or

p+N(x) =
2N(N !)2

(2N)!

(
PN(x)− PN−1(x)

)
(2.3.19)

when x = +1 is included; here PN(x) is the Legendre polynomial of degree N

given in (2.3.13). The two nodal distributions (2.3.18) and (2.3.19) are reflections

of each other about the y-axis, hence their monic polynomials satisfy the symmetry

relationship

p−N(x) = (−1)N p+N(−x). (2.3.20)

The nodal distributions are hereafter named as the “Left-Gauss-Radau” (LGR)

distribution when x = −1 is included, and the “Right-Gauss-Radau” (RGR) distri-

bution when x = 1 is included. The LGR nodes are given by

x−
j,N =

⎧
⎪⎨

⎪⎩

−1 j = 1

(j − 1)st zero of PN(x)−
x− 1

N
P ′

N(x) j = 2(1)N,
(2.3.21)
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2.3 Nodal Distributions

wherein the expression for the nodes xj,N for j = 2(1)N is derived using the rela-

tionship [65, Eq. 6.42]

PN−1(x) = xPN(x)−
x2 − 1

N
P ′

N(x), (2.3.22)

and the RGR nodes are given by

x+
j,N =

⎧
⎪⎨

⎪⎩

jth zero of PN(x)−
x+ 1

N
P ′

N(x) j = 1(1)N − 1

1 j = N.

(2.3.23)

The LGR barycentric weights Wj,N in (2.1.10) follow from (2.3.18) as

W−
j,N =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(−1)N+1

N
j = 1

1

P ′
N(x

−
j,N) + P ′

N−1(x
−
j,N)

j = 2(1)N,

(2.3.24)

and the RGR barycentric weights follow from (2.3.19) as

W+
j,N =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

P ′
N(x

+
j,N)− P ′

N−1(x
+
j,N)

j = 1(1)N − 1

1

N
j = N.

(2.3.25)

Legendre-Gauss-Lobatto Nodes

The Legendre-Gauss-Lobatto nodes are located at the endpoints ± 1 and the ex-

trema in (−1, 1) of the Legendre polynomial PN−1(x) defined in (2.3.13). The monic

polynomial with these roots is

pN(x) =
2N (N !)2 (2N − 1)

(2N)!N (N − 1)
(x2 − 1)P ′

N−1(x) (2.3.26)

which gives the nodes

xj,N =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−1 j = 1

1 j = N

(j − 1)st zero of P ′
N−1(x) j = 2(1)N − 1.

(2.3.27)
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2. INTERPOLATION OF DISCRETE DATA

The barycentric weights Wj,N in (2.1.10) are found from (2.3.26) as

Wj,N =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(−1)N−1 j = 1

1 j = N

1

PN−1(xj,N)
j = 2(1)N − 1.

(2.3.28)

2.3.2 Comparison of Nodal Distributions

It is now shown that, as N increases, the different nodal distributions presented in

Section 2.3.1 converge in an identical sense that can be quantified. Consider the

number of points n[a,b] in the subset interval [a, b] ⊆ [−1, 1] as the integral

n[a,b] = N

∫ b

a

ρ(x)dx (2.3.29)

wherein ρ(x) is the nodal density distribution function with, by definition,

∫ 1

−1

ρ(x)dx = 1. (2.3.30)

The density function can be derived explicitly for the Chebyshev-Gauss-Lobatto

nodes xj,N defined in (2.3.10) since they are projections onto the x-axis of points

that are equally spaced along the upper half of a unit circle. Let Ca and Cb be the

projections of points a and b onto the upper half of the unit circle, and let l be the

length of the arc between Ca and Cb; these positions are illustrated in Figure 2.3.1.

Figure 2.3.1: Positions of Ca, Cb, a, b, θj,N and xj,N (see text).
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2.3 Nodal Distributions

The probability of a point on the half unit circle with polar angle θj,N lying

between Ca and Cb, and hence (by direct projection) the probability of the corre-

sponding node xj,N lying in [a, b], is clearly

p(θj,N) =
l

π
. (2.3.31)

Therefore, of the total N nodes, Nl/π lie in the interval [a, b]. By direct calculation,

l is given by

l =

∫ b

a

dx√
1− x2

(2.3.32)

so that the number of points n[a,b] in the interval [a, b] of the total N in [−1, 1] is

n[a,b] =
N

π

∫ b

a

dx√
1− x2

. (2.3.33)

That is, by comparison with (2.3.29), the probability density function ρ(x) is given

by

ρ(x) =
1

π
√
1− x2

. (2.3.34)

Thus the points are distributed with the density per unit length

density ∼ N

π
√
1− x2

, N → ∞, (2.3.35)

as given in [124, p. 42], in which it is asserted that this is a common property

for various clustered nodal distributions upon which polynomial interpolation is

effective. In particular, the density function (2.3.34) is common to not only all

Jacobi polynomials [57, p. 26] but also other grids associated with the zeros and

extrema of orthogonal polynomials such as Legendre polynomials [125, p. 91]. If

xj,N represent the Chebyshev-Gauss-Lobatto nodes and yj,N represent the nodes of

an alternative distribution then, for a given N , the maximum difference between the

corresponding nodes of each distribution is

dN = max
1≤j≤N

|yj,N − xj,N|. (2.3.36)

This nodal difference is plotted against N in Figure 2.3.2.

Since the nodal difference dN in (2.3.36) is seen in Figure 2.3.2 to be a decreasing

function of N for each of the clustered nodal distributions as N → ∞, the density
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2. INTERPOLATION OF DISCRETE DATA

Figure 2.3.2: Logarithmic plot showing the decrease with N of the maximum dif-

ference, dN in (2.3.36), between the Chebyshev-Gauss-Lobatto distribution and the

other clustered nodal distributions considered in Section 2.3.1.

(2.3.35) is observed to be true for not only the Chebyshev-Gauss-Lobatto distribu-

tion but also for the other distributions whose nodes are contained within dN, as as-

serted in [124, p. 42]. Figure 2.3.2 also shows that the Legendre-Gauss-Lobatto nodes

are located the closest to the Chebyshev-Gauss-Lobatto nodes; this observation is

augmented by the fact that asymptotic estimates of Legendre-Gauss-Lobatto nodes

(for the purposes of Gauss quadrature) can be initiated on the Chebyshev-Gauss-

Lobatto grid [128]. Furthermore, the convergence of the Legendre-Gauss-Lobatto

grid to the Chebyshev-Gauss-Lobatto grid can be anticipated from the result in

[30, Lemma 1, p. 23] and the visual comparison in [57, p. 24], in which it is stated

that “there is hardly any noticeable difference”; a similar visual comparison in [125,

p. 128] of the Legendre and Chebyshev distributions demonstrates the convergence

of their respective nodes, which are stated to cluster near ± 1 with the same density

as N → ∞.

The convergence of the nodal distributions can also be shown by considering
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2.3 Nodal Distributions

contours of the potential function of the monic polynomials pN(x) in (2.1.3). These

are given by different values of C, in the level sets of pN(z) computed from [124,

MATLAB “Program 10”]

C =

√(
ℜ(pN(z))

)2
+
(
ℑ(pN(z))

)2
= |pN(z)|, (2.3.37)

where z = x+ iy is a field-point in the complex potential plane. Figure 2.3.3 shows

the constant value C = 1 for each of the nodal distributions based upon various

values of N .

(a) N = 5 (b) N = 10

(c) N = 14 (d) N = 21

Figure 2.3.3: Contours C = 1 given by (2.3.37) for different nodal distributions and

number of nodes N .
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2. INTERPOLATION OF DISCRETE DATA

Figure 2.3.3 shows (visually) that, as N increases, the disparity between the con-

tours of the different nodal distributions reduces, with the exception of the regular-

nodes contour which remains “rounded”. The orthogonal polynomial nodal distri-

butions show an approximately uniform potential field for C = 1 and have been

shown, as in Figure 2.3.2, to converge to the Chebyshev-Gauss-Lobatto distribution

as N → ∞. That is, the density function given by (2.3.35) applies to all of the clus-

tered nodal distributions considered in Section 2.3.1, thus verifying the assertion in

[124, p. 42].

Now that the interpolation techniques have been introduced, along with a se-

lection of nodal distributions upon which the techniques can be applied, the corre-

sponding interpolation-error formulae can be determined.

2.4 Error Analysis

2.4.1 Interpolation-Error Bounds

Without loss of generality it is assumed that x ∈ [−1, 1] and that interpolation is

based upon the nodes summarised in Section 2.3.1 and analysed in Section 2.3.2.

The error between a function u and its Lagrange interpolant LNu in (2.1.1) is

[27, p. 85]

u(x)− LNu(x) =
u(N)(ξ)

N !
pN(x), (2.4.1)

for some ξ ∈ [−1, 1] that depends on x. That is, for any x ∈ [−1, 1] there is some

value ξ for which (2.4.1) is satisfied. In (2.4.1) pN(x) is the monic polynomial given

by (2.1.3) and u(N)(ξ) is the Nth derivative of u(x) evaluated at x = ξ. Note that

the exact solution u cannot be replaced by its Lagrange interpolant LNu on the

right-hand side of (2.4.1) since LNu is a polynomial of degree N − 1 (see comment

below (2.1.2)) and therefore its Nth derivative is 0. A bound on the interpolation

error follows from (2.4.1) as

||u− LNu|| ≤
∣∣∣∣u(N)

∣∣∣∣
N !

||pN|| , (2.4.2)

which is finite when u(x) is N -times continuously differentiable. Here, and through-

out this thesis, it is assumed that ||·|| is the infinity norm ||·||∞ defined on [−1, 1].
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The error between the derivative of a function (2.2.1) and its numerical approx-

imation (2.2.3) is given by [9, Eq. 5.7.5]

(D−DN)u(x) ≤
u(N)(ξ1)

N !
p ′

N(x) +
u(N+1)(ξ2)

(N + 1)!
pN(x), (2.4.3)

in which ξ1, ξ2 ∈ [−1, 1] both depend on x. The error in (2.4.3) is therefore bounded

by

||(D−DN)u|| ≤
∣∣∣∣u(N)

∣∣∣∣
N !

||p ′
N||+

∣∣∣∣u(N+1)
∣∣∣∣

(N + 1)!
||pN|| , (2.4.4)

the left-hand side of which is henceforth referred to as the differentiation error.

The error formulae (2.4.1) and (2.4.2) demonstrate that the interpolation error is

dependent on the monic polynomial pN, whilst the error formulae (2.4.3) and (2.4.4)

demonstrate that the differentiation error is dependent on not only pN, but also

its first derivative. In a similar way, for higher values of M , the error between

u(M)(x) and its numerical approximation (2.2.6) depends upon p(k)N for k = 0(1)M .

Knowledge of how the maximum value of the monic polynomial and its derivatives

behave therefore enables predictions of the corresponding bounds.

A comparison of
∣∣∣
∣∣∣p(M)

N

∣∣∣
∣∣∣ for each of the nodal distributions for M = 0(1)2 is pre-

sented in Figure 2.4.1, which shows a hierarchy of norms in a decreasing sequence

of magnitude, the smallest of which reveals those nodal distributions giving the

most accurate interpolation results. For example, the best interpolation approxi-

mation of a function u(x) is predicted on the Chebyshev nodes, and the worst on

the regular nodes. The minimality of ||pN|| based on the Chebyshev nodes can be

anticipated from [89, Thm. 1, p.303] which states that, of all monic polynomials of

degree N , that with the smallest (infinity) norm in [−1, 1] is the Chebyshev poly-

nomial 21−NTN(x), as given in (2.3.6). Of all orthogonal polynomial distributions,

the Gauss-Radau distributions are predicted to give the least accurate interpola-

tion approximations since ||pN|| is seen to be approximately 10 times larger than on

the Chebyshev nodes. When the derivatives u′(x) and u′′(x) are approximated, it

is the Chebyshev-Gauss-Lobatto nodes that are now predicted to be the best, and

the Gauss-Radau distributions are again predicted to be the worst of the clustered

grids. The hierarchy of nodal distributions is seen to be preserved for both ||p ′
N|| and

||p ′′
N||. It is also apparent that, for all distributions, the convergence of

∣∣∣
∣∣∣p(M)

N

∣∣∣
∣∣∣ with

increasing N is faster the lower that M is. Therefore, for a given value of N , the
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2. INTERPOLATION OF DISCRETE DATA

(a) Norms ||pN|| (b) Norms ||p ′
N||

(c) Norms ||p ′′
N||

Figure 2.4.1: Logarithmic plot of norms ||pN||, ||p ′
N|| and ||p ′′

N||, plotted against N for

pN(x) in (2.1.3) based upon various nodal distributions. The logarithmic vertical

scales indicate spectral convergence of all norms with N .
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approximation of a function is predicted to be more accurate than the approxima-

tion of its first derivative, which in turn is predicted to be more accurate than the

approximation of its second derivative. For each M the rate of convergence, with

increasing N , of the norm
∣∣∣
∣∣∣p(M)

N

∣∣∣
∣∣∣ is seen to be the same for each of the clustered

nodal distributions; this rate is derived for each nodal distribution in Section 2.4.2.

The second derivatives have been included herein as these are commonly used in

elliptic, parabolic and hyperbolic problems arising in mathematical physics.

The accuracy of interpolation on each nodal distribution can also by examined by

considering potential fields generated by level sets (constant values of C in (2.3.37))

for each of the monic polynomials. Figures 2.4.2–2.4.8 show the monic polynomial

pN(x) in (2.1.3) and the corresponding level sets of C in (2.3.37) for each of the

nodal distributions so far considered.

The definition of C in (2.3.37) is equivalent to [124, Eqns. 5.3–5.4]

C ≡ eNφN(z), (2.4.5)

Figure 2.4.2: Monic polynomial (2.1.3) (left) for N = 17 on regularly spaced nodes,

and corresponding level sets of potential (right) for C = 10−k for k = 0(1)6. Note

“angular” contours as C → 0.
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2. INTERPOLATION OF DISCRETE DATA

Figure 2.4.3: As for Figure 2.4.2, on Chebyshev nodes. Note disappearance of

“angularity” in contours as C → 0, in noteworthy contrast to Figure 2.4.2.

Figure 2.4.4: As for Figure 2.4.2, on Chebyshev-Gauss-Lobatto nodes. Note “opti-

mality” of contours as C → 0: equipotentials remain smooth and “flatten out”.
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Figure 2.4.5: As for Figure 2.4.2, on Legendre nodes. Note that these contours

appear more angular than those for the Chebyshev nodes in Figure 2.4.3.

Figure 2.4.6: As for Figure 2.4.2, on Left-Gauss-Radau nodes. Note that these

contours are more angular on the right-hand side: that is, towards the end with no

fixed node.
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2. INTERPOLATION OF DISCRETE DATA

Figure 2.4.7: As for Figure 2.4.2, on Right-Gauss-Radau nodes. Note that these

contours are more angular on the left-hand side

Figure 2.4.8: As for Figure 2.4.2, on Legendre-Gauss-Lobatto nodes. Note that

these contours appear to be smooth and flat as C → 0.
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in which

φN(z) = N−1
N∑

j=1

log |z − xj,N| (2.4.6)

is the potential at z due to point charges at the nodes xj,N. If φN(z) varies along

[−1, 1] then |pN(z)| grows exponentially with N . However, if φN(z) is approximately

constant for z ∈ [−1, 1], then so is pN(z) [124, p.45]. In this case, the corresponding

contours C (2.3.37) are generated by points z that have approximately the same

imaginary part; these contours therefore appear to be flatter. Consequently, the

flatter the contour C is, the closer to an equipotential curve pN(x) is. As ||pN|| is
used to bound the interpolation error in (2.4.2), the roundedness of the contours in

Figure 2.4.2 supports the prediction based on Figure 2.4.1 that interpolation on the

regular nodes is the least accurate as N increases. Note also that, within the region

bounded by the smallest contour containing ± 1, if a function u(x) is analytic then

it may be approximated by polynomial interpolation (2.1.1) with spectral accuracy

[124, p. 48]. When |pN(x)| increases for x at, or near to, ± 1 to a magnitude that

is much larger than any of the oscillations in the interior of [−1, 1], e.g. as on the

regular, Legendre and Gauss-Radau distributions, the corresponding contours are

angular at the end(s) at which this increase occurs. The distributions without this

phenomenon have contours that are flatter in shape, which suggests that the most

accurate interpolation possible is on those distributions is when pN(x) oscillates be-

tween near-equal and opposite values. Specifically, the optimality of interpolation

using the Chebyshev nodes, for which pN(x) oscillates between exactly-equal and op-

posite values, can effectively be anticipated from the Chebyshev alternation theorem

[93, Thm. 3.4].

Expanded details of Figures 2.4.2–2.4.8 are presented in Figures 2.4.9–2.4.15

respectively, in each of which the zoomed regions are centered on x = −1 (left) and

on x = 0 (right): that is, the nodes in each of the plots are respectively x1,N and

x2,N (left) and x9 ,N (right) because N = 17. Note that the zoom factor in the first

figure is half of that in the remaining six.

The contours represent equipotential field strengths generated by equal charges

placed at the nodes. For larger values of |z|, the corresponding value of C dictated

by (2.3.37) forms a closed convex contour in the complex plane that is influenced by

all of the charges. The smaller values of C correspond to smaller values of |z| in the

neighbourhood of a node xi,N say, for some i = 1(1)N , whereat the charge at that

31



2. INTERPOLATION OF DISCRETE DATA

Figure 2.4.9: Expanded view of contours in Figure 2.4.2 in the neighbourhood of

x = −1 and x = 0 for N = 17 (regular nodes).

Figure 2.4.10: Expanded view of contours in Figure 2.4.3 in the neighbourhood of

x = −1 and x = 0 for N = 17 (Chebyshev nodes).
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Figure 2.4.11: Expanded view of contours in Figure 2.4.4 in the neighbourhood of

x = −1 and x = 0 for N = 17 (Chebyshev-Gauss-Lobatto nodes).

Figure 2.4.12: Expanded view of contours in Figure 2.4.5 in the neighbourhood of

x = −1 and x = 0 for N = 17 (Legendre nodes).
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2. INTERPOLATION OF DISCRETE DATA

Figure 2.4.13: Expanded view of contours in Figure 2.4.6 in the neighbourhood of

x = −1 and x = 0 for N = 17 (Left-Gauss-Radau nodes).

Figure 2.4.14: Expanded view of contours in Figure 2.4.7 in the neighbourhood of

x = −1 and x = 0 for N = 17 (Right-Gauss-Radau nodes).
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Figure 2.4.15: Expanded view of contours in Figure 2.4.8 in the neighbourhood of

x = −1 and x = 0 for N = 17 (Legendre-Gauss-Lobatto nodes).

node is dominant and the influence of the others weaker so that C forms a contour

that is local (looped around one node). The smallest contours in Figures 2.4.9–

2.4.15 correspond to C = 10−6 and so correspond to the weakest of the potential

fields. Comparison of the Legendre and Legendre-Gauss-Lobatto contours about

the outer nodes x1,N and x2,N in Figures 2.4.12 and 2.4.15 shows that the contours

with C = 10−5 are local about each Legendre node but enclose both of the outer

Legendre-Gauss-Lobatto nodes. This is because the outer two nodes are further

apart in the Legendre distribution than in the Legendre-Gauss-Lobatto distribution

and so the charges from the Legendre nodes are not strong enough to interact over

that distance. The same can be said for the contour corresponding to C = 10−5

for the Chebyshev and Chebyshev-Gauss-Lobatto distributions in Figures 2.4.10

and 2.4.11. It is clear that, for all nodal distributions, the right-hand figures are

symmetric, or near-symmetric in the Gauss-Radau cases, although the size of the

contours vary around the central node x9 ,N. This suggests that, on all distributions,

interpolants are most accurate towards the centre of the interval [−1, 1].

Figures 2.4.1–2.4.15 demonstrate the accuracy that can be expected from inter-

polation on each nodal distribution. Specifically Figure 2.4.1 presents a hierarchy of
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2. INTERPOLATION OF DISCRETE DATA

norms that illustrates which nodal distributions give the best interpolation results;

this hierarchy is consolidated by the contours in Figures 2.4.2–2.4.15, from which the

most accurate interpolants are expected to be on those distributions whose contours

are approximately the level curves discussed above. The accuracy of each distribu-

tion can now be determined explicitly via exact formulae for the interpolation-error

bounds in (2.4.2) and (2.4.4).

2.4.2 Theoretical Interpolation- and Differentiation-Error

Bounds

In this section explicit formulae for bounding the interpolation error (2.4.2) and dif-

ferentiation error (2.4.4) are found for the nodal distributions introduced in Section

2.3. Asymptotic convergence rates of the bounds as N → ∞ are computed using

Stirling’s formula [9, p.279]. Many of the results presented here are new, or at least

not given so explicitly elsewhere.

Regular Nodes

When the interpolation nodes in (2.1.1) are the regularly spaced nodes (2.3.1), the

bound on ||pN|| is given as [41, 103]

||pN|| ≤
(N − 1)!

4
hN, (2.4.7)

in which

h =
2

N − 1
(2.4.8)

is the equal spacing between the nodes. A proof of (2.4.7) is given in Appendix B.

Substitution of (2.4.7) into (2.4.2) gives the interpolation-error bound as

||u− LNu|| ≤
(

2

N − 1

)N
∣∣∣∣u(N)

∣∣∣∣
4N

. (2.4.9)

By the product rule, differentiating the monic polynomial pN(x) in (2.1.3) yields

p ′
N(x) =

N∑

j=1

⎛

⎜⎝
N∏

i=1
i≠j

(x− xi,N)

⎞

⎟⎠, (2.4.10)
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which is equivalently

p ′
N(x) =

N∑

j=1

pN(x)

x− xj,N
. (2.4.11)

By inspection, |p ′
N(x)| for the regular nodes is maximised at x = ± 1 and so

||p ′
N|| = |p ′

N(± 1)|. (2.4.12)

Substitution of x = x1,N = −1 into (2.4.10) gives

p ′
N(−1) =

N∏

i=2

(x1,N − xi,N) (2.4.13)

which, by expressing the nodes in (2.3.1) using h in (2.4.8) as

xj,N = −1 + (j − 1) h, (2.4.14)

is equivalently

p ′
N(−1) =

N∏

i=2

(
− 1− (−1 + (i− 1) h)

)

=
N∏

i=2

(
− (i− 1) h

)

= (−h)N−1 (N − 1)! . (2.4.15)

Substitution of (2.4.15) into (2.4.12) then gives

||p ′
N|| = hN−1 (N − 1)! (2.4.16)

which is substituted into (2.4.4) with (2.4.7) to give the differentiation-error bound

as

||(D−DN)u|| ≤
(

2

N − 1

)N−1 1

N

(
∣∣∣∣u(N)

∣∣∣∣ +
∣∣∣∣u(N+1)

∣∣∣∣
2 (N − 1)(N + 1)

)
. (2.4.17)
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Chebyshev Nodes

By definition (2.3.4), ||TN|| = 1 and therefore (2.3.6) gives

||pN|| =
1

2N−1
, (2.4.18)

so that the interpolation-error bound (2.4.2) becomes

||u− LNu|| ≤
∣∣∣∣u(N)

∣∣∣∣
2N−1N !

∼
( e

2N

)N

√
2

πN

∣∣∣∣u(N)
∣∣∣∣ , N → ∞. (2.4.19)

Differentiating (2.3.6) and using the property [2, Eq. 22.14.5]

||T ′
N|| = N2 (2.4.20)

gives the differentiation-error bound (2.4.4), via (2.4.18), as

||(D−DN)u|| ≤ 1

2N−1N !

(

N2
∣∣∣∣u(N)

∣∣∣∣ +
∣∣∣∣u(N+1)

∣∣∣∣
N + 1

)

(2.4.21)

∼
( e

2N

)N

√
2

πN

(
N2
∣∣∣∣u(N)

∣∣∣∣+
∣∣∣∣u(N+1)

∣∣∣∣
N + 1

)
, N → ∞.

Chebyshev-Gauss-Lobatto Nodes

Using the substitution x = cos θ the Chebyshev polynomial (2.3.4) is rewritten as

TN(x) = TN(cos θ) = cosNθ (2.4.22)

which, when differentiated with respect to x, yields

T ′
N(x) =

−1

sin θ

d

dθ
TN(cos θ) =

N sinNθ

sin θ
. (2.4.23)

Therefore, defining

ΨN(x) ≡ (x2 − 1) T ′
N−1(x) (2.4.24)

and setting x = cos θ gives

ΨN(cos θ) = −(N − 1) sin θ sin(N − 1)θ (2.4.25)

so that

||ΨN|| ≤ N − 1. (2.4.26)
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Together (2.3.9), (2.4.24) and (2.4.26) give

||pN|| ≤
1

2N−2
, (2.4.27)

and so the interpolation-error bound (2.4.2) becomes

||u− LNu|| ≤
∣∣∣∣u(N)

∣∣∣∣
2N−2N !

∼
( e

2N

)N

√
8

πN

∣∣∣∣u(N)
∣∣∣∣ , N → ∞. (2.4.28)

Differentiating (2.3.9) gives

p ′
N(x) =

1

2N−2(N − 1)

(
(x2 − 1) T ′′

N−1(x) + 2xT ′
N−1(x)

)
(2.4.29)

which is simplified using Chebyshev’s differential equation (2.3.5) to give

p ′
N(x) =

1

2N−2(N − 1)

(
(N − 1)2 TN−1(x) + xT ′

N−1(x)
)
. (2.4.30)

As TN−1(x), x and T ′
N−1(x) attain their maximum moduli at x = 1, (2.4.30) is

maximised at x = 1 so that

||p ′
N|| = p ′

N(1) =
1

2N−2(N − 1)

(
(N − 1)2 + (N − 1)2

)
=

N − 1

2N−3
. (2.4.31)

Therefore, by (2.4.27) and (2.4.31), the differentiation-error bound (2.4.4) becomes

||(D−DN)u|| ≤ 1

2N−2N !

(

2(N − 1)
∣∣∣∣u(N)

∣∣∣∣+
∣∣∣∣u(N+1)

∣∣∣∣
N + 1

)

(2.4.32)

∼
( e

2N

)N

√
8

πN

(

2(N − 1)
∣∣∣∣u(N)

∣∣∣∣+
∣∣∣∣u(N+1)

∣∣∣∣
N + 1

)

, N → ∞.

Legendre Nodes

As ||PN|| = 1 [2, Eq. 22.14.7], (2.3.15) gives

||pN|| =
2N(N !)2

(2N)!
, (2.4.33)

which gives the interpolation-error bound (2.4.2) as

||u− LNu|| ≤
2NN !

∣∣∣∣u(N)
∣∣∣∣

(2N)!
∼
( e

2N

)N

∣∣∣∣u(N)
∣∣∣∣

√
2

, N → ∞. (2.4.34)
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Differentiating (2.3.15) and using the definition [2, Eq. 22.14.8]

||P ′
N|| =

N(N + 1)

2
(2.4.35)

gives the differentiation-error bound (2.4.4), via (2.4.33), as

||(D−DN)u|| ≤ 2NN !

(2N)!

(
N(N + 1)

∣∣∣∣u(N)
∣∣∣∣

2
+

∣∣∣∣u(N+1)
∣∣∣∣

N + 1

)

(2.4.36)

∼
( e

2N

)N 1√
2

(
N(N + 1)

∣∣∣∣u(N)
∣∣∣∣

2
+

∣∣∣∣u(N+1)
∣∣∣∣

N + 1

)

, N → ∞.

Legendre-Gauss-Radau Nodes

The Gauss-Radau bounds are derived using the Left-Gauss-Radau nodal distribu-

tion; as the Right-Gauss-Radau distribution is a reflection of this about the y-axis,

both distributions have the same norms ||pN|| and ||p ′
N||.

Legendre polynomials attain their maximum modulus of 1 at x = 1 [59, p. 162]

so that

||PN−1 + PN|| = PN(1) + PN−1(1) = 2 (2.4.37)

and hence, from (2.3.18),

||pN|| =
2N+1(N !)2

(2N)!
. (2.4.38)

Substitution of (2.4.38) into the interpolation-error bound (2.4.2) gives

||u− LNu|| ≤
2N+1N !

∣∣∣∣u(N)
∣∣∣∣

(2N)!
∼
( e

2N

)N√
2
∣∣∣∣u(N)

∣∣∣∣ , N → ∞. (2.4.39)

Differentiating (2.3.18) gives

p ′
N(x) =

2N(N !)2

(2N)!

(
P ′

N(x) + P ′
N−1(x)

)
, (2.4.40)

so that

||p ′
N|| =

2N(N !)2

(2N)!

∣∣∣∣P ′
N + P ′

N−1

∣∣∣∣ . (2.4.41)

Given [27, p. 500] that

||P ′
N|| = |P ′

N(± 1)| = P ′
N(1) =

N(N + 1)

2
(2.4.42)
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it follows that

∣∣∣∣P ′
N−1

∣∣∣∣ = |P ′
N−1(± 1)| = P ′

N−1(1) =
(N − 1)N

2
, (2.4.43)

and therefore

∣∣∣∣P ′
N + P ′

N−1

∣∣∣∣ = P ′
N(1) + P ′

N−1(1) =
N

2
(N + 1 +N − 1) = N2. (2.4.44)

Substitution of (2.4.38), (2.4.41) and (2.4.44) into the differentiation-error bound

(2.4.4) then gives

||(D−DN)u|| ≤ 2NN !

(2N)!

(

N2
∣∣∣∣u(N)

∣∣∣∣+
2
∣∣∣∣u(N+1)

∣∣∣∣
N + 1

)

(2.4.45)

∼
( e

2N

)N 1√
2

(

N2
∣∣∣∣u(N)

∣∣∣∣+
2
∣∣∣∣u(N+1)

∣∣∣∣
N + 1

)

, N → ∞.

Legendre-Gauss-Lobatto Nodes

To evaluate the interpolation-error bound first define

ψN(x) ≡ (x2 − 1)P ′
N−1(x) (2.4.46)

so that, via (2.3.26),

||pN|| =
2N (N !)2 (2N − 1)

(2N)!N (N − 1)
||ψN|| . (2.4.47)

Note that ψN(± 1) = 0 and so the maximum of |ψN(x)| occurs when ψ ′
N(x) = 0 for

some x ∈ (−1, 1). Differentiating (2.4.46) and using Legendre’s differential equation

(2.3.14) yields

ψ ′
N(x) = (N − 1)NPN−1(x) (2.4.48)

so that ||ψN|| is attained at an (internal) root of PN−1(x). By inspection, ||ψN|| occurs
at x = 0 when N is even and at the root of PN−1(x) that is closest to x = 0 when

N is odd. Therefore

||ψN|| =

⎧
⎪⎨

⎪⎩

|P ′
N−1(0)| N even

∣∣∣P ′
N−1(yN−1

2 ,N−1)
(
(yN−1

2 ,N−1)
2 − 1

)∣∣∣ N odd
(2.4.49)
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wherein yN−1
2

,N−1 is the N−1
2 -th root of PN−1(x). The Legendre polynomial can be

written in the form (derived in Appendix C)

PN(x) = 2N

N∑

k=0

(
N

k

)(N+k−1
2

N

)
xk (2.4.50)

so that differentiation of (2.4.50) yields

P ′
N(x) = 2N

N∑

k=0

k

(
N

k

)(N+k−1
2

N

)
xk−1. (2.4.51)

When N is even, this form of P ′
N(x) can be used to find an explicit expression for

|P ′
N−1(0)| and hence ||ψN||. When x = 0 in (2.4.51) the only non-zero term in the

sum is when k = 1, whence (2.4.51) becomes

P ′
N(0) = 2N

(
N

1

)(N
2

N

)

= 2NN
N
2 !

N !(−N
2 )!

. (2.4.52)

Half-integer factorials are evaluated as (see Appendix C)
(
−1

2
+ n

)
! =

(2n)!

4Nn!

√
π (2.4.53)

and (
−1

2
− n

)
! =

(−4)Nn!

(2n)!

√
π, (2.4.54)

for n ∈ N. To evaluate N
2 ! let n = N+1

2 in (2.4.53) so that
(
N

2

)
! =

(N + 1)!

4
N+1

2

(
N+1
2

)
!

√
π (2.4.55)

and to evaluate (−N
2 )! let n = N−1

2 in (2.4.54) so that

(
−N

2

)
! =

(−4)
N−1

2

(
N−1
2

)
!

(N − 1)!

√
π. (2.4.56)

Substituting (2.4.55) and (2.4.56) into (2.4.52) gives

P ′
N(0) = 2N N

N !
· (N + 1)!

√
π

4
N+1

2

(
N+1
2

)
!
· (N − 1)!

(−4)
N−1

2

(
N−1
2

)
!
√
π

=
(N + 1)!(−1)

N−1
2

2N
(
N+1
2

)
!
(
N−1
2

)
!

(2.4.57)
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and so

P ′
N−1(0) =

N !(−1)
N−2

2

2N−1
(
N
2

)
!
(
N−2
2

)
!
. (2.4.58)

Therefore, by (2.4.49) and (2.4.58),

||ψN|| =
N !N

2N
( (

N
2

)
!
)2 , N even, (2.4.59)

and so (2.4.47) becomes

||pN|| =
(N !)3 (2N − 1)

(2N)! (N − 1)
( (

N
2

)
!
)2 , N even. (2.4.60)

Substitution of (2.4.60) into (2.4.2) then gives the interpolation-error bound as

||u− LNu|| ≤
(N !)2 (2N − 1)

∣∣∣∣u(N)
∣∣∣∣

(2N)! (N − 1)
( (

N
2

)
!
)2 ∼

( e

2N

)N (2N − 1)
∣∣∣∣u(N)

∣∣∣∣
√
πN(N − 1)

,

N even → ∞. (2.4.61)

It is evident from Figure 2.4.1(a) that ||pN|| on the Legendre-Gauss-Lobatto nodes

decreases at a constant rate with N , therefore the convergence rate in (2.4.61) is

postulated to hold for N odd as well as N even.

Differentiation of (2.3.26) gives

p ′
N(x) =

2N (N !)2 (2N − 1)

(2N)!N (N − 1)

(
(x2 − 1)P ′′

N−1(x) + 2xP ′
N−1(x)

)
(2.4.62)

which, by Legendre’s differential equation (2.3.14), simplifies to

p ′
N(x) =

2N (N !)2 (2N − 1)

(2N)!
PN−1(x). (2.4.63)

As ||PN|| = 1, (2.4.63) gives

||p ′
N|| =

2N (N !)2 (2N − 1)

(2N)!
(2.4.64)

which is substituted into (2.4.4) with (2.4.60) to give the differentiation-error bound

||(D−DN)u|| ≤ N ! (2N − 1)

(2N)!

(

2N
∣∣∣∣u(N)

∣∣∣∣+
N !
∣∣∣∣u(N+1)

∣∣∣∣

(N2 − 1)
( (

N
2

)
!
)2

)

, N even

(2.4.65)

∼
( e

2N

)N

(2N − 1)

(∣∣∣∣u(N)
∣∣∣∣

√
2

+

∣∣∣∣u(N+1)
∣∣∣∣

√
πN (N2 − 1)

)
, N → ∞.
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2.4.3 Comparison of Error Bounds Calculated So Far

The interpolation-error and differentiation-error bounds determined in Section 2.4.2

on each of the nodal distributions are now compared.

For simplicity, denote the nodally-dependent bound on ||pN|| /N ! by σN so that

||pN||
N !

≤ σN (2.4.66)

and that on ||p ′
N|| /N ! by φN so that

||p ′
N||

N !
≤ φN. (2.4.67)

Then (2.4.2) becomes

||u− LNu|| ≤ σN

∣∣∣∣u(N)
∣∣∣∣ (2.4.68)

and (2.4.4) becomes

||(D−DN)u|| ≤ φN

∣∣∣∣u(N)
∣∣∣∣+

σN

∣∣∣∣u(N+1)
∣∣∣∣

N + 1
. (2.4.69)

Additionally, let σ̃N and φ̃N respectively be the asymptotic formulae for σN and φN

as N → ∞, so that

||u− LNu|| ∼ σ̃N

∣∣∣∣u(N)
∣∣∣∣ , N → ∞, (2.4.70)

and

||(D−DN)u|| ∼ φ̃N

∣∣∣∣u(N)
∣∣∣∣+

σ̃N

∣∣∣∣u(N+1)
∣∣∣∣

N + 1
., N → ∞. (2.4.71)

Formulae for σN, φN, σ̃N and φ̃N derived in Section 2.4.2 for the various nodal

distributions are summarised in Table 2.1.

As seen from Table 2.1, the values of σ̃N and φ̃N for all orthogonal-polynomial

distributions have a leading-order term of
(

e
2N

)N
whereas σN and φN for the reg-

ular nodes have leading-order terms of
(

2
N−1

)N
and

(
2

N−1

)N−1
respectively. This

reveals why ||pN|| and ||p ′
N|| converge at approximately the same rate on each of the

orthogonal-polynomial distributions as N → ∞, as observed in Figure 2.4.1. The

accuracy of the bounds and convergence rates predicted in this section are now

verified on a test problem.
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σN φN σ̃N φ̃N

Regular
(

2
N−1

)N 1
4N

(
2

N−1

)N−1 1
N - -

Chebyshev
1

2N−1N !
N

2N−1(N−1)!

(
e

2N

)N√ 2
πN

(
e
2N

)N√2N3

π

Chebyshev-

Gauss-
1

2N−2N !
N−1

2N−3N !

(
e

2N

)N√ 8
πN

(
e

2N

)N√ 32
πN (N−1)

Lobatto

Legendre
2NN !
(2N)!

2N−1N(N+1)!
(2N)!

(
e

2N

)N 1√
2

(
e

2N

)N N(N+1)√
8

Legendre-

Gauss-
2N+1N !
(2N)!

2NN2 N !
(2N)!

(
e

2N

)N√
2

(
e

2N

)N N2
√
2

Radau

Legendre-

Gauss-
(N !)2 (2N−1)

(2N)!(N−1)((N
2 )!)

2
2NN ! (2N−1)

(2N)!

(
e
2N

)N (2N−1)√
πN(N−1)

(
e

2N

)N (2N−1)√
2

Lobatto

Table 2.1: The coefficients σN, φN, σ̃N and φ̃N that scale the bounds on both inter-

polation and differentiation errors, and respective asymptotic convergence rates, for

various nodal distributions.

2.5 Numerical Experiments

In the previous section, explicit bounds and convergence rates were found for the

interpolation error and differentiation error on various nodal distributions. The

error bounds and convergence rates for the interpolation error are now validated by

comparison with the true error computed using both Lagrange interpolation (2.1.1)

and barycentric interpolation (2.1.13) on the smooth test function

u(x) = cosx− 2x+ 1, x ∈ [−1, 1]; (2.5.1)
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2. INTERPOLATION OF DISCRETE DATA

a more challenging test function is considered later in this section. The interpolation

errors, bounds (2.4.68) and convergence rates (2.4.70) are computed for each nodal

distribution with the corresponding values of σN and σ̃N found in Table 2.1 and the

results are presented in Figures 2.5.1–2.5.3.

Since the barycentric formula (2.1.13) is simply an exact algebraic manipulation

of the standard Lagrange formula (2.1.1), identical errors are achieved by both

methods on a given set of nodes. For each distribution the bounds and convergence

rates are found to be spectrally accurate with respect to the true computational

errors. The vertical scales of the plots in Figures 2.5.1–2.5.3 show that a similar

error is achieved for each value of N on the clustered distributions; convergence on

the regular nodes is seen to be slower.

Figure 2.5.1: Logarithmic plots of the Lagrange interpolation errors eN = ||u− LNu||
and barycentric interpolation errors eN =

∣∣∣
∣∣∣u−B

(2)
N u
∣∣∣
∣∣∣, for u(x) given by (2.5.1),

computed using the regular nodes (left) and Chebyshev nodes (right). Error bounds

(bN, +) and asymptotic convergence rates (solid lines) derived in Section 2.4 are

compared to the true (computed) Lagrange (×) and barycentric (◦) errors. The

Lagrange and barycentric errors are indistinguishable, as expected from the con-

struction of the barycentric formula.
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2.5 Numerical Experiments

Figure 2.5.2: As for Figure 2.5.1 on the Chebyshev-Gauss-Lobatto nodes (left) and

Legendre nodes (right).

Figure 2.5.3: As for Figure 2.5.1 on the Legendre-Gauss-Radau nodes (left) and

Legendre-Gauss-Lobatto nodes (right).
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2. INTERPOLATION OF DISCRETE DATA

As stated in Section 2.1.2, one advantage of using barycentric interpolation

(2.1.13) rather than standard Lagrange interpolation (2.1.1) is a reduction in com-

putational work required to obtain solutions of comparable accuracy. Using the

time() command in Maple to quantify the workload required by each method, a

comparison can be made for test example (2.5.1); the results are presented in Figure

2.5.4.

Figure 2.5.4: Logarithmic plot of workloads, given in seconds (s), associated with

different interpolation methods on different node sets, for example (2.5.1). The

barycentric implementation (2.1.13) (circles and squares) is clearly more economical

than the Lagrange implementation (2.1.1) (crosses).

On each node set, and for each N , more CPU is required to compute an approx-

imation using the standard Lagrange form of interpolation. This is consistent with

the results and findings in [22], which states that there are O(N2) additions and mul-

tiplications required to obtain a Lagrange interpolant, whereas by using barycentric

interpolation this is reduced to O(N). A more detailed breakdown of the respective

sub-costs in terms of N , of both set-up and evaluation, associated with Lagrange

and barycentric interpolation is given in [135]; this breakdown includes estimates of

the costs associated with floating-point operations.

48



2.5 Numerical Experiments

Bounds and convergence rates for the differentiation error are now considered

for example (2.5.1), for which the derivative is

u′(x) = − sin x− 2. (2.5.2)

The true computational errors, bounds (2.4.69) and convergence rates (2.4.71) are

computed for each nodal distribution with the corresponding values of φN, σN, φ̃N

and σ̃N found in Table 2.1; results are presented in Figures 2.5.5–2.5.7.

The vertical scales of the plots in Figures 2.5.5–2.5.7 show that the smallest

differentiation errors arise on either of the Gauss-Lobatto distributions, whilst the

regular nodes again yield the largest errors. On all nodal distributions the error

bounds and convergence rates are seen to be an accurate prediction of the true

computed errors, and so may be used to predict the error for higher values of N .

Note that, irrespective of whether or not Lagrange or barycentric interpolation

is used, the convergence of the computed errors to zero, as N increases, is not

Figure 2.5.5: Logarithmic plot of the differentiation error eN = ||(D−DN)u|| for
u(x) given by (2.5.1), using the regular nodes (left) and Chebyshev nodes (right).

Error bounds (bN, +) and convergence rates (solid lines) derived in Section 2.4 are

compared to the actual computational errors (×).
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Figure 2.5.6: As for Figure 2.5.5 on the Chebyshev-Gauss-Lobatto nodes (left) and

the Legendre nodes (right).

Figure 2.5.7: As for Figure 2.5.5 on the Legendre-Gauss-Radau nodes (left) and the

Legendre-Gauss-Lobatto nodes (right).
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guaranteed for certain node distributions. This is illustrated by the following well-

known “Runge-phenomenon” example [27, Eq. 4.9]

u(x) =
1

1 + 25x2
, x ∈ [−1, 1], (2.5.3)

for which the errors resulting from both Lagrange interpolation (2.1.1) and barycen-

tric interpolation (2.1.13) are shown in Figures 2.5.8–2.5.10.

Interpolation polynomials based on regular nodes oscillate with increasing mod-

ulus towards the edges of the interval as the degree of the interpolation polynomial

increases: this is known as the Runge Phenomenon [27]. Figure 2.5.8 shows that

both Lagrange and barycentric interpolation on regularly spaced nodes yield expo-

nentially divergent errors with increasing N , which is an illustration of the Runge

phenomenon. This can be explained by considering the contours shown in Figure

2.4.2, for which [124, p. 48] states that, if a function u(x) is analytic within the

region bounded by the smallest contour containing [−1, 1], then it may be approx-

imated by polynomial interpolation (2.1.1) with spectral accuracy. Comparison of

Figures 2.4.2 and 2.4.9 shows that the contour with C = 10−3 is approximately the

Figure 2.5.8: Logarithmic plots of the Lagrange interpolation errors eN = ||u− LNu||
and barycentric interpolation errors eN =

∣∣∣
∣∣∣u−B

(2)
N u
∣∣∣
∣∣∣, for u(x) given by (2.5.3),

computed using the regular nodes (left) and Chebyshev nodes (right). Note the

exponential divergence of the error arising on the regularly spaced nodes.
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2. INTERPOLATION OF DISCRETE DATA

Figure 2.5.9: As for Figure 2.5.8 on the Chebyshev-Gauss-Lobatto nodes (left) and

Legendre nodes (right).

Figure 2.5.10: As for Figure 2.5.8 on the Legendre-Gauss-Radau nodes (left) and

Legendre-Gauss-Lobatto nodes (right).
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2.5 Numerical Experiments

smallest contour containing [−1, 1]; however, this contour also contains the poles of

the function u(x) in (2.5.3) which are at ± i
5 , and hence polynomial interpolation of

(2.5.3) is expected to be inaccurate. Regarding the regular-nodal distribution, [125,

p. 99] states that, in the limit N → ∞, the smallest contour that contains [−1, 1],

known as the “Runge region” [28], crosses the real axis at ± 1 and the imaginary

axis at ± 0.52552491457i; it is within this Runge region that a function must be

analytic for polynomial interpolation to be convergent. Figures 2.4.3–2.4.7 show

that, for the clustered nodal distributions, the smallest contours containing ± 1 are

approximately C = 10−4; on each of these distributions, the poles ± i
5 lie outside

this contour and so spectrally accurate interpolation errors are obtained that con-

verge to zero as N increases. That is, by interpolating on a set of nodes that cluster

more densely towards the ends of the interval, the Runge phenomenon is averted

when using both Lagrange and barycentric interpolation. However, a comparison

of the vertical scales of Figures 2.5.8–2.5.10 with Figures 2.5.1–2.5.3 shows that,

although the clustered nodal distributions yield convergent errors with increasing

N when approximating the Runge function, convergence is much slower than when

approximating a smooth function.

The error bounds and convergence rates have been omitted in Figures 2.5.8–

2.5.10 as, for this example, the term
∣∣∣∣u(N)

∣∣∣∣ diverges rapidly with N . Specifically,

any function of the form

ũ(x) =
1

1 + (β x)2
, (2.5.4)

wherein β ∈ R is a constant, satisfies [50, p. 93]

∣∣∣∣ũ(N)
∣∣∣∣ ≤ N ! βN ∼

√
2πN

(
βN

e

)N

. (2.5.5)

Table 2.1 shows that the orthogonal polynomial nodal distributions have σ̃N ∼
(

e
2N

)N
which, when combined with (2.4.70) and (2.5.5), gives the asymptotic error

estimate

||ũ− LNũ|| ∼
(
β

2

)N

, (2.5.6)

and hence the interpolation-error prediction diverges for β > 2 and converges for

β < 2 as N → ∞. Since β = 5 in Example (2.5.3), the error bounds given by

(2.4.70) and Table 2.1 diverge and hence fail to predict the convergence of the true

computed errors. This is because the value of ξ in the formula (2.4.1) that gives the

53



2. INTERPOLATION OF DISCRETE DATA

true error is unknown and so the error bound (2.4.2), and those given explicitly for

the different node sets, maximises |u(N)| for all possible choices of ξ. This example

shows a limitation on the applicability of the error formulae for certain “badly

behaved” functions.

Note that (2.5.4) has poles at ± i
β and so, when β = 2, the poles lie approximately

on the boundary of the Runge region. In addition, if β > 2 the poles lie within the

Runge region and if β < 2 the poles lie outside the Runge region. That is, the values

of β that cause the error estimate (2.5.6) to diverge also cause the true interpolation

error on the regular nodes to diverge.

Figure 2.5.8 shows that interpolation of (2.5.3) on the regular nodes has divergent

errors due to the Runge phenomenon. To circumvent this apparent shortfall, a

method is now considered which uses the nodal data of a function at the regular

nodes but in which, even for the test function (2.5.3), the Runge phenomenon is

averted.

2.6 Tikhonov Regularisation

It is shown above that, when interpolating u(x) in (2.5.3), the Runge phenomenon

can be averted simply by choosing clustered nodes. However, the question posed

in [26] is whether or not the spectral accuracy of Chebyshev interpolation can be

achieved by using regularly spaced nodes. This question is answered in the af-

firmative by employing Tikhonov regularisation [129]. The Tikhonov polynomial

approximating a function u(x) on the interval [−1, 1] is given as

uN(x;α) =
N∑

j=1

bj,NCj,N(x), (2.6.1)

wherein the functions Cj,N(x) are the standard Chebyshev cardinal functions, which

are equivalent to the Lagrange basis functions Lj,N(x), defined in (2.1.2), computed

on Chebyshev nodes (2.3.7). For the remainder of this section, the Chebyshev nodes

(2.3.7) are relabelled as yk,N, and the regular nodes (2.3.1) are denoted by xk,N for

k = 1(1)N . The Tikhonov approximation is not an interpolant since the constants

bj,N in (2.6.1) are chosen in such a way as to minimise the sum

ρ = R + αS, (2.6.2)
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in which the interpolation residual R is computed on the regular nodes as

R =
N∑

k=1

(
u(xk,N)− uN(xk,N)

)2
(2.6.3)

whereas the accompanying smoothness norm S is computed on the Chebyshev nodes

as

S =
N∑

k=1

(
d2uN

dx2
(yk,N)

)2

. (2.6.4)

In (2.6.2), α is a constant, known as the Tikhonov parameter, that is to be deter-

mined as part of the regularisation process.

The constants bj,N in (2.6.1) must be chosen so as to minimise the sums implicit

in (2.6.2). Therefore, to determine these constants, (2.6.2) is partially differentiated

with respect to each of the bi,N. First, ρ in (2.6.2) is written explicitly in terms of

the constants bj,N as

ρ =
N∑

k=1

(
u(xk,N)− uN(xk,N)

)2
+ α

N∑

k=1

(
d2uN

dx2
(yk,N)

)2

=
N∑

k=1

(
u(xk,N)−

N∑

j=1

bj,NCj,N(xk,N)
)2

+ α
N∑

k=1

(
N∑

j=1

bj,NC ′′
j,N(yk,N)

)2

,

(2.6.5)

thereby giving

∂ρ

∂bi,N
= 2

N∑

k=1

(
− Ci,N(xk,N)

)(
u(xk,N)−

N∑

j=1

bj,NCj,N(xk,N)
)

+2α
N∑

k=1

N∑

j=1

bj,NC
′′
i,N(yk,N)C

′′
j,N(yk,N). (2.6.6)

The stationary value of ρ, here a minimum due to ρ being a sum of squares, is found

by setting
∂ρ

∂bi,N
= 0 so that

2
N∑

k=1

(
− Ci,N(xk,N)

)(
u(xk,N)−

N∑

j=1

bj,NCj,N(xk,N)
)

+2α
N∑

k=1

N∑

j=1

bj,NC ′′
i,N(yk,N)C

′′
j,N(yk,N) = 0, (2.6.7)
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which is equivalently

N∑

j=1

(
N∑

k=1

Ci,N(xk,N)Cj,N(xk,N) + α
N∑

k=1

C ′′
i,N(yk,N)C

′′
j,N(yk,N)

)

bj,N

=
N∑

k=1

Ci,N(xk,N) u(xk,N). (2.6.8)

That is, (2.6.8) is a system of N linear equations

HNbN = gN (2.6.9)

in which

{HN}i,j =
N∑

k=1

Ci,N(xk,N)Cj,N(xk,N) + α
N∑

k=1

C ′′
i,N(yk,N)C

′′
j,N(yk,N), (2.6.10)

and

{gN}i =
N∑

k=1

Ci,N(xk,N) u(xk,N) (2.6.11)

are known, whilst

{bN}i = bi,N (2.6.12)

is yet to be determined.

Knowing the function u(x), the cardinal functions Ci,N(x), and the sets of regular

and Chebyshev nodes, system (2.6.9) can be solved for the required coefficients bj,N

in (2.6.1). It remains only to determine the Tikhonov constant α in (2.6.2), which

can be done only experimentally using the so-called L-shaped curve method [61].

This involves evaluating uN(x;α) for a fixed value of N and a range of values α.

The log of the residual R is then plotted against the log of the smoothness norm S

which gives a curve in an L-shape (see Figure 2.6.1). The Tikhonov constant α is

then chosen so that it is the value corresponding to the elbow of the curve, where the

residual and the smoothness norm are both low values. The example approximated

in [26] is

u(x) =
1

1 + x2
x ∈ [−5, 5], (2.6.13)

using Chebyshev and regular nodes scaled onto the interval [−5, 5]; this is equiva-

lent to approximating (2.5.3) using nodes on [−1, 1]. The advantage of scaling onto
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[−1, 1] is that standard second-order Chebyshev differentiation matrices (see Chap-

ter 3) can be used to construct the matrices HN. The L-shaped curve for N = 31 is

shown in Figure 2.6.1.

Figure 2.6.1: L-shaped curve for N = 31 and u(x) as given by (2.5.3). From top-

left to bottom-right the dots correspond to (S,R) pairs obtained using α = 10−k,

k = 2(1)10. The elbow of the curve is obtained for α ∈ (10−6 , 10−4), in accordance

with [26].

The error of the scaled Tikhonov approximation (2.6.1) for N = 31 and α = 10−6

is shown in Figure 2.6.2; it is compared with the errors of the Chebyshev and regular

Lagrange interpolation polynomials (2.1.1) also computed with N = 31.

Figure 2.6.2 shows that the error of the Tikhonov approximation (2.6.1) on reg-

ularly spaced nodes is of comparable size with the error of Lagrange interpola-

tion (2.1.1) on Chebyshev nodes. The minimal difference between the errors of the

Tikhonov approximation and the Chebyshev Lagrange interpolant is also seen in

[26, Fig.1b] which shows the errors (not on a logarithmic scale) on [−5, 5]; note that

N = 30 in [26] as the nodes are labeled xk,N, yk,N for k = 0(1)N . In contrast, the er-

ror of Lagrange interpolation on regular nodes is seen in Figure 2.6.2 to be orders of

magnitude larger than both the Tikhonov and Chebyshev Lagrange approximations
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Figure 2.6.2: The Tikhonov approximation (2.6.1) error e31(x) = u(x)−u31(x; 10−6 )

on regularly spaced nodes (solid line) is compared with the Lagrange interpolation

errors e31(x) = u(x) − L31u(x) on Chebyshev nodes (dashed line) and on regular

nodes (dash-dot line).

towards the ends of the interval [−1, 1]; this is expected from Figure 2.5.8, which

shows that the regular Lagrange errors are divergent with increasing N .

2.7 Summary

The purpose of this chapter was to introduce accurate numerical methods, for inter-

polating a function and its derivative, that can later be incorporated into numerical

methods for solving both IEs and IDEs. The Lagrange interpolation introduced in

Section 2.1 provides the basis on which all of the component numerical methods re-

quired to solve IEs and IDEs are founded. Specifically, it is shown in Chapter 3 how

the Lagrange interpolation formula and basis functions can be used to implement,

respectively, spectrally accurate numerical differentiation and numerical quadrature.
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2.7 Summary

By considering interpolation on a variety of nodal distributions, including those that

are optimal for numerical differentiation and numerical quadrature, the numerical

methods derived in Chapters 4 and 5 may be implemented in such a way that the

overall IE and IDE error can be minimised. Furthermore, by analysing and compar-

ing on each of the node sets considered in this chapter the errors incurred through

interpolation of a function and its derivative, a framework has been accordingly

provided from which the IE and IDE error analyses can be built. Barycentric in-

terpolation was additionally implemented in order to offer advantages in terms of

both workload and stability, and Tikhonov regularisation was considered in order

to overcome the limitations of standard Lagrange interpolation for certain classes of

functions.
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Chapter 3

Spectrally Accurate Numerical

Differentiation and Numerical

Quadrature

The techniques developed in Chapter 2 are now extended to numerical methods for

robust quadrature and differentiation of discrete data, the former of which is required

for solving both integral equations (IEs) and integro-differential equations (IDEs),

and the latter of which is required for solving IDEs. It is therefore necessary to have

a comprehensive understanding of the errors incurred in both numerical quadrature

and differentiation.

In Chapter 2 several nodal distributions were considered on which both inter-

polation and differentiation errors were analysed and, germane to the goals of this

thesis, quantified. In this chapter, an efficient and accurate means of implement-

ing the numerical differentiation studied in Section 2.2 is considered. Specifically,

differentiation matrices [19, 116] are used to perform spectrally accurate [27] dif-

ferentiation of discrete data in a way that effectively bypasses initial interpolation

of that data. Furthermore, this chapter introduces Gaussian quadrature [9] which

uses discrete nodal data to accurately approximate the definite integral of a func-

tion; it is included herein as the numerical methods introduced in later chapters are

based upon the well-known Nyström method [98, 10] which utilises several forms of

Gaussian quadrature.

In Section 3.1, simplified entries for differentiation matrices based upon a variety

of nodal distributions are derived and properties of differentiation matrices based
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upon symmetric nodal distributions are discussed. Theoretically and computation-

ally determined eigenvalues of the differentiation matrices are then considered. In

Section 3.2 Gaussian quadrature rules based upon three of the nodal distributions

examined in Chapter 2 are introduced, and the errors associated with each rule are

compared by determining theoretical bounds on each.

Unless otherwise stated, throughout Section 3.1, i, j = 1(1)N and, throughout

Section 3.2, i, j = 1(1)M .

3.1 Differentiation Matrices

In Chapter 2 it was shown, by (2.2.3) and (2.2.4), how the derivative of a function

can be approximated for all x ∈ [−1, 1] by differentiating the Lagrange interpolation

formula (2.1.1). Now suppose that the derivative is required at only the nodal values,

rather than throughout the interval [−1, 1], which is exactly what is required for the

subsequent collocation of a discretised IDE in Chapter 5, as only the nodal data of a

function is needed in order to form an interpolating polynomial. By setting x = xi,N

in (2.2.3) and (2.2.4), the nodal data of the derivative u′(x) can be approximated

by

u′(xi,N) = (Du)(xi,N) ≈ (DNu)(xi,N) =
N∑

j=1

L ′
j,N(xi,N) u(xj,N), (3.1.1)

in which

L ′
j,N(xi,N) =

p ′
N(xi,N)(xi,N − xj,N)− pN(xi,N)

(xi,N − xj,N)2 p ′
N(xj,N)

. (3.1.2)

The summation in (3.1.1) effectively defines a matrix-vector product in which the

N ×N matrix DN has elements

{DN}i,j = L ′
j,N(xi,N). (3.1.3)

Using (3.1.3) a matrix-vector form of (3.1.1) is

u′
N = DNu (3.1.4)

wherein the vectors containing differentiated and original nodal data are respectively

{u′
N}i = (DNu)(xi,N) and {u}i = u(xi,N). (3.1.5)
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The matrix DN evaluated using (3.1.3) is then, by (3.1.4), the so-called N ×N

differentiation matrix. That is, the matrix-vector multiplication (3.1.4) clearly ap-

proximates discrete differentiation without first having to construct the interpolating

polynomial (2.2.3).

The right-hand side of (3.1.2), which by (3.1.3) defines the entries of the differ-

entiation matrix, can be simplified for both i = j and i ̸= j. Since pN(xi,N) = 0 by

(2.1.3), when i ̸= j (3.1.2) simplifies to

L ′
j,N(xi,N) =

p ′
N(xi,N)

(xi,N − xj,N) p ′
N(xj,N)

, i ̸= j. (3.1.6)

When i = j the definition (2.2.4), from which (3.1.2) originates, must be used along

with L’Hôpital’s rule, which is represented by the symbol
LH
= . Letting x → xj,N in

(2.2.4) therefore gives

L ′
j,N(xj,N) = lim

x→xj,N

p ′
N(x)(x− xj,N)− pN(x)

(x− xj,N)2 p ′
N(xj,N)

,

LH
= lim

x→xj,N

p ′′
N(x)(x− xj,N) + p ′

N(x)− p ′
N(x)

2 (x− xj,N) p ′
N(xj,N)

,

=
p ′′

N(xj,N)

2 p ′
N(xj,N)

. (3.1.7)

By (3.1.6) and (3.1.7), the entries of the differentiation matrix (3.1.3) are therefore

given by

{DN}i,j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p ′
N(xi,N)

(xi,N − xj,N) p ′
N(xj,N)

i ̸= j

p ′′
N(xj,N)

2 p ′
N(xj,N)

i = j.

(3.1.8)

Nodal data of higher derivatives of u(x) can be approximated in a similar way.

Consider multiplying (3.1.4) by DM−1
N , which yields

DM−1
N u′

N = DM
N u (3.1.9)

wherein, by (3.1.5) and (2.2.5), the ith element on the left-hand side of (3.1.9) is

equivalently

{DM−1
N u′

N}i = D
(M−1)
N (DNu)(xi,N) = (D(M)

N u)(xi,N). (3.1.10)
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3. SPECTRALLY ACCURATE NUMERICAL DIFFERENTIATION
AND NUMERICAL QUADRATURE

Therefore, the nodal data of the Mth derivative of u(x) can be found from (3.1.9)

as

u(M)
N = DM

N u, M ≥1, (3.1.11)

wherein

{u(M)
N }i = (D(M)

N u)(xi,N). (3.1.12)

That is, the product of the Mth power of a differentiation matrix with an N -vector

containing nodal data of a function yields an N -vector whose elements are the nodal

data of the Mth derivative of the original function. Comparison of (3.1.11) with

(2.2.6), in which x = xi,N in the latter gives the entries of the matrix DM
N as

{DM
N}i,j = L(M)

j,N (xi,N), (3.1.13)

which avoids the computational expense of raisingDN to theMth power. Evaluating

L(M)
j,N (x), in (2.2.9), at the nodes gives

L(M)
j,N (xi,N) =

M∑

k=1

(−1)M+k M !

k!
(xi,N − xj,N)

k−1 p(k)N (xi,N)

(xi,N − xj,N)M p ′
N(xj,N)

, i ̸= j (3.1.14)

and

L(M)
j,N (xj,N) =

p(M+1)
N (xj,N)

(M + 1) p ′
N(xj,N)

, (3.1.15)

proofs of which are in Appendix A. Together, (3.1.13), (3.1.14) and (3.1.15) can be

used to construct Mth-order N ×N differentiation matrices using any set of nodes

xi,N for i = 1(1)N .

The matrix-vector product in (3.1.11) effectively emulates the differentiation of

a continuous function at discrete points in the interval [−1, 1]. The specific effect

of changing those points is now examined by looking at the nodal distributions

considered in Chapter 2. Since only first-order IDEs are studied in this thesis, only

the specific properties of the first-order differentiation matrix, defined by (3.1.8), are

considered. The entries of the differentiation matrix in (3.1.8) can, for some nodal

distributions, be simplified further to yield explicit forms; for example, simplified

forms of the entries of differentiation matrices based upon Chebyshev, Chebyshev-

Gauss-Lobatto and Legendre-Gauss-Lobatto distributions are given in [27, Appx.

F.8,F.9,F.10] and those for Legendre and Legendre-Gauss-Radau distributions are
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given in [78, p. 67]. It is now shown how these entries are derived from (3.1.6) and

(3.1.7). The regular nodal distribution is omitted from this chapter due to its limited

interpolation accuracy highlighted in Chapter 2. The next few subsections, which

detail the derivation of the differentiation-matrix entries, are unavoidably repetitive

in structure although not in detailed content.

3.1.1 Chebyshev Nodes

The entries of the differentiation matrix based upon Chebyshev nodes are first con-

sidered. The derivatives of pN(x) as defined by (2.3.6) are substituted into (3.1.6)

and (3.1.7) respectively to give

L ′
j,N(xi,N) =

T ′
N(xi,N)

(xi,N − xj,N)T ′
N(xj,N)

, i ̸= j, (3.1.16)

and

L ′
j,N(xj,N) =

T ′′
N(xj,N)

2 T ′
N(xj,N)

. (3.1.17)

Therefore, to simplify the differentiation-matrix entries, the values of T ′
N(xj,N) and

T ′′
N(xj,N) are required. To evaluate T ′

N(xj,N) the substitution x = cos θ is used to

rewrite the Chebyshev polynomial defined by (2.3.4) as

TN(x) = TN(cos θ) = cosNθ (3.1.18)

and the nodes, defined by (2.3.7), as

xj,N = cos θj,N wherein θj,N =
2N − 2j + 1

2N
π. (3.1.19)

Differentiating both sides of (3.1.18) with respect to x yields

T ′
N(x) =

−1

sin θ

d

dθ
TN(cos θ) =

N sinNθ

sin θ
(3.1.20)

which, upon substitution of (3.1.19), gives

T ′
N(xj,N) =

N sinNθj,N
sin θj,N

. (3.1.21)

Since

sin θj,N =
√

1− cos2 θj,N =
√
1− x2

j,N, (3.1.22)

65



3. SPECTRALLY ACCURATE NUMERICAL DIFFERENTIATION
AND NUMERICAL QUADRATURE

and, by simple algebra,

sinNθj,N = sin
(
N − j + 1

2

)
π = (−1)N−j, (3.1.23)

then (3.1.21) can be rewritten as

T ′
N(xj,N) =

(−1)N−j N√
1− x2

j,N

. (3.1.24)

To evaluate T ′′
N(xj,N), the Chebyshev differential equation (2.3.5) is rewritten as

T ′′
N(x) =

xT ′
N(x)−N2 TN(x)

1− x2
(3.1.25)

which, when evaluated at the nodes, yields

T ′′
N(xj,N) =

xj,NT ′
N(xj,N)

1− x2
j,N

=
(−1)N−j xj,NN

(1− x2
j,N)

3/2
(3.1.26)

since, by construction, TN(xj,N) = 0. Therefore, by (3.1.3), (3.1.16), (3.1.17),

(3.1.24) and (3.1.26), the explicit forms of the entries for the N ×N differentia-

tion matrix based upon the Chebyshev nodes are

{DN}i,j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(−1)i+j

xi,N − xj,N

√
1− x2

j,N

1− x2
i,N

i ̸= j

xj,N

2 (1− x2
j,N)

i = j,

(3.1.27)

in accordance with [27, Eq. F.50].

3.1.2 Chebyshev-Gauss-Lobatto Nodes

The entries of the differentiation matrix based upon Chebyshev-Gauss-Lobatto nodes

are now considered. Substitution of the derivatives of pN(x) defined by (2.3.9), the

first of which is given by (2.4.30), into (3.1.6) and (3.1.7) respectively yields

L ′
j,N(xi,N) =

(N − 1)2 TN−1(xi,N) + xi,NT ′
N−1(xi,N)

(xi,N − xj,N)
(
(N − 1)2 TN−1(xj,N) + xj,NT ′

N−1(xj,N)
) , i ̸= j,

(3.1.28)
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and

L ′
j,N(xj,N) =

(
(N − 1)2 + 1

)
T ′

N−1(xj,N) + xj,NT ′′
N−1(xj,N)

2
(
(N − 1)2 TN−1(xj,N) + xj,NT ′

N−1(xj,N)
) . (3.1.29)

The values of TN−1(xj,N), T ′
N−1(xj,N) and T ′′

N−1(xj,N) are therefore required to sim-

plify the differentiation-matrix entries. The values of TN−1(xj,N) are considered first.

Using the substitution x = cos θ the nodes xj,N defined by (2.3.10) become

xj,N = cos θj,N wherein θj,N =
N − j

N − 1
π. (3.1.30)

Evaluating the Chebyshev polynomial TN(x) defined by (2.3.4) at the nodes therefore

yields

TN−1(xj,N) = cos((N − j)π) = (−1)N−j . (3.1.31)

The values of T ′
N−1(xj,N) are now found. By definition, the interior nodes, xj,N with

j = 2(1)N − 1, satisfy

T ′
N−1(xj,N) = 0, j = 2(1)N − 1, (3.1.32)

and so it remains to find T ′
N−1(x) evaluated at the exterior nodes x1,N = −1 and

xN,N = 1. By (3.1.20), the substitution x = cos θ yields

T ′
N−1(x) =

(N − 1) sin(N − 1)θ

sin θ
(3.1.33)

which, upon substitution of (3.1.30) for j = 1, yields, by L’Hôpital’s rule,

T ′
N−1(x1,N) = lim

j→1

(
(N − 1) sin(N − j)π

sin N−j
N−1π

)

LH
= lim

j→1

(
−(N − 1) π cos(N − j)π

− π
N−1 cos

N−j
N−1π

)
= (−1)N (N − 1)2.

(3.1.34)

Similarly, substitution of (3.1.30) into (3.1.33) for j = N yields, by L’Hôpital’s rule,

T ′
N−1(xN,N) = (N − 1)2. (3.1.35)
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The nodal values of T ′′
N−1(x), which by (3.1.25) is given by

T ′′
N−1(x) =

xT ′
N−1(x)− (N − 1)2 TN−1(x)

1− x2
, (3.1.36)

must now be found. Substitution of the interior nodes xj,N, j = 2(1)N − 1, into

(3.1.36) yields, via (3.1.31) and (3.1.32),

T ′′
N−1(xj,N) =

(−1)N−j+1 (N − 1)2

1− x2
j,N

, j = 2(1)N − 1. (3.1.37)

To evaluate T ′′
N−1(x) at the exterior nodes, x = −1 is substituted into (3.1.36) to

yield, by L’Hôpital’s rule,

T ′′
N−1(−1) = lim

x→−1

(
xT ′

N−1(x)− (N − 1)2 TN−1(x)

1− x2

)

LH
= lim

x→−1

⎛

⎝
xT ′′

N−1(x) +
(
1− (N − 1)2

)
T ′

N−1(x)

−2x

⎞

⎠

=
−T ′′

N−1(−1) +
(
1− (N − 1)2

)
T ′

N−1(−1)

2
(3.1.38)

which, using (3.1.34), is rearranged to give

T ′′
N−1(x1,N) = T ′′

N−1(−1) =
(−1)N(N − 1)2

(
1− (N − 1)2

)

3
. (3.1.39)

Similarly, substitution of x = 1 into (3.1.36) yields, by L’Hôpital’s rule and (3.1.35),

T ′′
N−1(xN,N) = T ′′

N−1(1) =
(N − 1)2

(
(N − 1)2 − 1

)

3
. (3.1.40)

Together, (3.1.3) and (3.1.28)–(3.1.40) provide the explicit entries of the N ×N

differentiation matrix based upon the Chebyshev-Gauss-Lobatto distribution as

{DN}i,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)i+j(1 + δi1 + δiN)

(xi,N − xj,N)(1 + δj1 + δjN)
i ̸= j

−xj,N

2(1− x2
j,N)

i = j = 2(1)N − 1

−2(N − 1)2 + 1

6
i = j = 1

2(N − 1)2 + 1

6
i = j = N,

(3.1.41)
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wherein δij is the Kronecker delta defined in (2.3.12); these entries are in agreement

with [27, Eq. F.45].

3.1.3 Legendre Nodes

The entries of the differentiation matrix based upon Legendre nodes are now con-

sidered. The derivatives of pN(x) defined by (2.3.15) are substituted into (3.1.6) and

(3.1.7) respectively to give

L ′
j,N(xi,N) =

P ′
N(xi,N)

(xi,N − xj,N)P ′
N(xj,N)

, i ̸= j, (3.1.42)

and

L ′
j,N(xj,N) =

P ′′
N(xj,N)

2P ′
N(xj,N)

. (3.1.43)

Since P ′
N(xj,N) cannot be further simplified, only the diagonal entries of the differ-

entiation matrix can be simplified by finding P ′′
N(xj,N). By Legendre’s differential

equation (2.3.14), the second derivative of the Legendre polynomial is

P ′′
N(x) =

2 xP ′
N(x)−N(N + 1)PN(x)

1− x2
(3.1.44)

which, when evaluated at the nodes xj,N, gives

P ′′
N(xj,N) =

2 xj,NP ′
N(xj,N)

1− x2
j,N

(3.1.45)

since, by definition (2.3.16), PN(xj,N) = 0. Therefore (3.1.3), (3.1.42), (3.1.43) and

(3.1.45) give the entries of the N×N differentiation matrix based upon the Legendre

nodes as

{DN}i,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P ′
N(xi,N)

(xi,N − xj,N)P ′
N(xj,N)

i ̸= j

xj,N

1− x2
j,N

i = j,

(3.1.46)

as stated in [78, p. 67].

3.1.4 Legendre-Gauss-Radau Nodes

The entries of the differentiation matrix based upon the Left-Gauss-Radau distri-

bution, whose nodes including x1,N = −1 are defined in (2.3.21), are considered
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first. The entries of the differentiation matrix based upon the Right-Gauss-Radau

distribution are then found through the anti-symmetry of the two Gauss-Radau

distributions. Let

ΨN(x) = PN(x) + PN−1(x) (3.1.47)

so that pN(x) defined by (2.3.18) is given by

pN(x) =
2N(N !)2

(2N)!
ΨN(x). (3.1.48)

Substituting the derivatives of (3.1.48) into (3.1.6) and (3.1.7) respectively gives

L ′
j,N(xi,N) =

Ψ ′
N(xi,N)

(xi,N − xj,N)Ψ ′
N(xj,N)

, i ̸= j, (3.1.49)

and

L ′
j,N(xj,N) =

Ψ ′′
N(xj,N)

2Ψ ′
N(xj,N)

, (3.1.50)

hence Ψ ′
N(xj,N) and Ψ ′′

N(xj,N) are required to simplify the differentiation matrix

entries; the former is considered first. Using (2.3.22), ΨN(x) in (3.1.47) can be

written in terms of only PN(x) as

ΨN(x) = (1 + x)PN(x)−
x2 − 1

N
P ′

N(x) (3.1.51)

which is differentiated to give

Ψ ′
N(x) = PN(x) + (1 + x)P ′

N(x)−
1

N

(
(x2 − 1)P ′′

N(x) + 2xP ′
N(x)

)
. (3.1.52)

By Legendre’s differential equation (2.3.14), Ψ ′
N(x) in (3.1.52) simplifies to

Ψ ′
N(x) = PN(x) + (1 + x)P ′

N(x)−
1

N

(
N (N + 1)PN(x)

)

= (1 + x)P ′
N(x)−N PN(x). (3.1.53)

The Legendre polynomial derivative in (3.1.53) can be eliminated by noting that,

by (2.3.22),

(1 + x)P ′
N(x) =

N xPN(x)−N PN−1(x)

x− 1
(3.1.54)
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hence (3.1.53) becomes

Ψ ′
N(x) =

N xPN(x)−N PN−1(x)−N (x− 1)PN(x)

x− 1

=
N
(
PN(x)− PN−1(x)

)

x− 1
, (3.1.55)

which is equivalently

Ψ ′
N(x) =

N
(
2PN(x)−ΨN(x)

)

x− 1
(3.1.56)

wherein ΨN(x) is given by (3.1.47). Since by (3.1.48) ΨN(xj,N) = 0, (3.1.56) gives

Ψ ′
N(xj,N) =

2N PN(xj,N)

xj,N − 1
, (3.1.57)

which for j = 1 simplifies to

Ψ ′
N(x1,N) = (−1)N+1N. (3.1.58)

To find Ψ ′′
N(xj,N) (3.1.56) is differentiated to give

Ψ ′′
N(x) =

N
(
2P ′

N(x)−Ψ ′
N(x)

)

x− 1
−

N
(
2PN(x)−ΨN(x)

)

(x− 1)2
. (3.1.59)

The second term on the right-hand side of (3.1.59) can be rewritten using (3.1.56)

to give

Ψ ′′
N(x) =

N
(
2P ′

N(x)−Ψ ′
N(x)

)

x− 1
− Ψ ′

N(x)

x− 1
, (3.1.60)

which simplifies to

Ψ ′′
N(x) =

2NP ′
N(x)− (N + 1)Ψ ′

N(x)

x− 1
. (3.1.61)

Therefore, by (3.1.57), the nodal values of (3.1.61) are given by

Ψ ′′
N(xj,N) =

2N
(
(xj,N − 1)P ′

N(xj,N)− (N + 1)PN(xj,N)
)

(xj,N − 1)2
. (3.1.62)

Since [27, Eq. A.31]

PN(−1) = (−1)N and P ′
N(−1) = (−1)N+1 N(N + 1)

2
, (3.1.63)
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when j = 1 (3.1.62) readily yields

Ψ ′′
N(x1,N) =

2N
(
(−1)NN(N + 1)− (−1)N(N + 1)

)

4

=
(−1)NN(N + 1)(N − 1)

2
. (3.1.64)

When j = 2(1)N (2.3.21) gives

(xj,N − 1)P ′
N(xj,N)−N PN(xj,N) = 0, (3.1.65)

which when substituted into (3.1.62) yields

Ψ ′′
N(xj,N) = −2N PN(xj,N)

(xj,N − 1)2
. (3.1.66)

By (3.1.3), and (3.1.49)–(3.1.66), the entries of the N ×N differentiation matrix

based upon the Left-Gauss-Radau distribution are therefore

{DN}i,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(xj,N − 1)PN(xi,N)

(xi,N − xj,N) (xi,N − 1)PN(xj,N)
i ̸= j

−(N − 1)(N + 1)

4
i = j = 1

1

2 (1− xj,N)
i = j ̸= 1

(−1)N(xj,N − 1)

2 (xj,N + 1)PN(xj,N)
i = 1, j ̸= 1

2 (−1)NPN(xi,N)

1− x2
i,N

j = 1, i ̸= 1,

(3.1.67)

the last two of which are simplified specific forms of i ̸= j entries, and the first three

of which are in agreement with the entries given by [78, p. 67], since by (2.3.18)

PN(xj,N) = −PN−1(xj,N). (3.1.68)

Since the LGR and RGR distributions are reflections of each other about the

y-axis their monic polynomials satisfy

p−(r)
N (x) = (−1)N+r p+(r)

N (−x), r ≥0, (3.1.69)
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wherein a ‘−’ superscript refers to the LGR distribution and a ‘+’ superscript refers

to the RGR distribution and in which a bracketed superscript r ∈ N denotes the rth

derivative of a function, with r = 0 corresponding to the original, non-differentiated

function. Furthermore, the Gauss-Radau nodes satisfy

x−
j,N = −x+

N+1−j,N. (3.1.70)

Substitution of (3.1.69) into (3.1.6) yields

L−′

j,N(x
−
i,N) =

p −′
N (x−

i,N)

(x−
i,N − x−

j,N) p
−′
N (x−

j,N)

=
−p +′

N (x+
N+1−i,N)

(x+
N+1−i,N − x+

N+1−j,N) p
+′
N (x+

N+1−j,N)

= −L+′

N+1−j,N(x
+
N+1−i,N), i ̸= j, (3.1.71)

and substitution of (3.1.69) into (3.1.7) yields

L−′

j,N(x
−
j,N) =

p −′′
N (x−

j,N)

2 p −′
N (x−

j,N)

=
p +′′

N (x+
N+1−j,N)

−2 p +′
N (x+

N+1−j,N)

= −L+′

N+1−j,N(x
+
N+1−j,N). (3.1.72)

Therefore, by (3.1.71) and (3.1.72), the LGR and RGR differentiation matrices

satisfy the relationship

{D−
N}i,j = −{D+

N}N+1−i,N+1−j . (3.1.73)

By the anti-symmetry arguments (3.1.69)–(3.1.73) applied to the analysis leading

up to (3.1.67), the entries of the N×N differentiation matrix based upon the Right-
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Gauss-Radau distribution are

{DN}i,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(xj,N + 1)PN(xi,N)

(xi,N − xj,N) (xi,N + 1)PN(xj,N)
i ̸= j

(N − 1)(N + 1)

4
i = j = N

− 1

2 (1 + xj,N)
i = j ̸= N

1 + xj,N

2 (1− xj,N)PN(xj,N)
i = N, j ̸= N

2PN(xi,N)

x2
i,N − 1

j = N, i ̸= N,

(3.1.74)

the last two of which are again simplified specific forms of i ̸= j entries.

3.1.5 Legendre-Gauss-Lobatto Nodes

To evaluate the entries of the differentiation matrix based upon the Legendre-Gauss-

Lobatto nodes, the derivatives of pN(x) defined by (2.3.26), the first of which is given

by (2.4.63), are substituted into (3.1.6) and (3.1.7) respectively to give

L ′
j,N(xi,N) =

PN−1(xi,N)

(xi,N − xj,N)PN−1(xj,N)
, i ̸= j, (3.1.75)

and

L ′
j,N(xj,N) =

P ′
N−1(xj,N)

2PN−1(xj,N)
. (3.1.76)

To simplify the differentiation-matrix entries, the values of PN−1(xj,N) and P ′
N−1(xj,N)

are therefore required; the former of which can only be simplified for j = 1 and

j = N . Trivially, [27, Eq. A.31] gives

(−1)NPN−1(x1,N) = PN−1(xN,N) = 1, (3.1.77)

and so it remains to find P ′
N−1(xj,N). By their definition (2.3.27), the interior nodes,

xj,N with j = 2(1)N − 1, yield the property

P ′
N−1(xj,N) = 0, j = 2(1)N − 1 (3.1.78)
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and, by definition [27, Eq. A.31], the exterior nodes x1,N = −1 and xN,N = 1 yield

(−1)N+1 P ′
N(x1,N) = P ′

N(xN,N) =
N(N + 1)

2
. (3.1.79)

Therefore, (3.1.3) and (3.1.75)–(3.1.79) give the entries of the N ×N differentiation

matrix based upon the Legendre-Gauss-Lobatto distribution as

{DN}i,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PN−1(xi,N)

(xi,N − xj,N)PN−1(xj,N)
i ̸= j

(1−N)N

4
i = j = 1

0 i = j = 2(1)N − 1

(N − 1)N

4
i = j = N,

(−1)N

2
i = 1, j = N

(−1)N−1

2
i = N, j = 1

(−1)N

(1 + xj,N)PN−1(xj,N)
i = 1, j ̸= 1

1

(1− xj,N)PN−1(xj,N)
i = N, j ̸= N

(−1)N−1PN−1(xi,N)

(xi,N + 1)
j = 1, i ̸= 1

PN−1(xi,N)

(xi,N − 1)
j = N, i ̸= N,

(3.1.80)

the first four of which are given in [27, Eq. F.55] and the last six of which are

simplified specific forms of i ̸= j entries.

3.1.6 Differentiation-Matrix Properties

The previous sections have shown how differentiation matrices are structured. Prop-

erties of differentiation matrices are now examined in order to facilitate the ex-
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planation of errors when differentiation matrices are incorporated into numerical

methods for integro-differential equations. First, a property is considered for differ-

entiation matrices based upon nodal distributions that are symmetrically distributed

about the origin; these include the above-considered Chebyshev, Chebyshev-Gauss-

Lobatto, Legendre and Legendre-Gauss-Lobatto distributions, whose nodes all sat-

isfy

xi,N = −xN+1−i,N. (3.1.81)

The monic polynomials pN(x), defined in (2.1.3), are therefore odd functions of x if

N is odd and even functions of x if N is even and so

p(r)N (xi,N) = (−1)N+r p(r)N (xN+1−i,N), r ≥0, (3.1.82)

wherein a bracketed superscript r ∈ N denotes the rth derivative of a function, with

r = 0 corresponding to the original, non-differentiated function. By (3.1.3), (3.1.6),

(3.1.81) and (3.1.82) the non-diagonal entries of DN satisfy

{DN}i,j =
p ′

N(xi,N)

(xi,N − xj,N)p ′
N(xj,N)

=
p ′

N(xN+1−i,N)

−(xN+1−i,N − xN+1−j,N)p ′
N(xN+1−j,N)

= −{DN}N+1−i,N+1−j, i ̸= j, (3.1.83)

and, by (3.1.3), (3.1.7) and (3.1.82), the diagonal entries satisfy

{DN}j,j =
p ′′

N(xj,N)

2p ′
N(xj,N)

= −p ′′
N(xN+1−j,N)

p ′
N(xN+1−j,N)

= −{DN}N+1−j,N+1−j , (3.1.84)

and so combining (3.1.83) and (3.1.84) gives

{DN}i,j = −{DN}N+1−i,N+1−j . (3.1.85)

The next property to note is that, for all differentiation matrices,

N∑

j=1

{DN}i,j = 0, (3.1.86)

which follows from approximating the constant function ũ(x) ≡ 1 by Lagrange

interpolation (2.1.1). In this case ũ(xj,N) = 1 for all j = 1(1)N , whence (2.1.1)

becomes

(LNũ)(x) =
N∑

j=1

Lj,N(x). (3.1.87)
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As ũ(N)(x) = 0 for N ≥1, the Lagrange interpolation error formula (2.4.1) gives

ũ(x)− LNũ(x) = 0 (3.1.88)

so that
N∑

j=1

Lj,N(x) = 1. (3.1.89)

Differentiating (3.1.89) then gives

N∑

j=1

L ′
j,N(x) = 0, (3.1.90)

which is equivalent to (3.1.86) when x = xi,N.

3.1.7 Eigenvalue Analysis

It is well-known [18, 29, 46] that differentiation matrices are ill-conditioned. This

is illustrated by Figure 3.1.1 in which the Chebyshev-Gauss-Lobatto differentiation

matrices D15, D2
15, D20 and D2

20 are plotted. The behaviour exhibited by the differ-

entiation matrices in Figure 3.1.1 portends ill-conditioning and so it is clear that the

second-order differentiation matrices are more ill-conditioned than the first-order dif-

ferentiation matrices. Comparison of the vertical scales in Figure 3.1.1 demonstrates

that both DN and D2
N become more ill-conditioned as N increases. In particular it

is the moduli |{DN}1,2| = |{DN}N,N−1| and |{D2
N}1,2| = |{D2

N}N,N−1| that are the

greatest, the former of which can be evaluated from (3.1.41) as

{DN}1,2 =
2

1− cos π
N−1

= O(N2). (3.1.91)

Similarly, it is clear from (3.1.41) that |{DN}1,1| = |{DN}N,N| = O(N2) and hence, in

general, the largest entries ofDM
N areO(N2M). This behaviour is qualitatively similar

for differentiation matrices based upon the other nodal distributions discussed.

The eigenvalues of a differentiation matrix can be analysed in order to quantify

its ill-conditioning. A detailed analysis of the eigenvalues of differentiation matrices

with and without the imposition of a boundary condition is performed in [126], in

the former of which DN is reduced to an N − 1 ×N − 1 matrix by removing the

row and column that correspond to the location of the boundary condition, i.e. for
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Figure 3.1.1: Plots of the Chebyshev-Gauss-Lobatto differentiation matrices D15

(top left), D2
15 (top right), D20 (bottom left) and D2

20 (bottom right).

a boundary condition given at point xj,N the jth row and jth column of DN are

removed. It is shown in [126] that the differentiation matrix DN, in the absence of

boundary conditions, is nilpotent whence all eigenvalues of DN are zero. This can be

shown by considering the matrix-vector equation (3.1.11). As stated below (2.2.6),
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D
(M)
N u ≡ 0 when M ≥N , therefore setting M = N in (3.1.11) gives, for arbitrary

u,

0 = DN
Nu (3.1.92)

and so

DN
N = 0, (3.1.93)

in which 0 denotes the zero vector in (3.1.92) and the zero matrix in (3.1.93).

By (3.1.93), DN is nilpotent and so its eigenvalues are all zero: equivalently, its

characteristic polynomial is

λN = 0. (3.1.94)

However, due to rounding errors, the computed characteristic polynomial (3.1.94)

is in practice augmented by lower-order terms whose coefficients are the order of

the machine precision: that is, the computed eigenvalues of DN are not all iden-

tically zero. Instead, the eigenvalues lie on a circle centered at the origin in the

complex eigenvalue plane. This is a similar effect to that seen for the ill-conditioned

20th-order Wilkinson polynomial [20] whose roots are perturbed by O(1) when the

coefficient of the x19 term is perturbed by 10−9 . Here, the displacement from the

origin of the computed eigenvalues is dependent upon the value of N and also the

machine precision. This is illustrated in Figures 3.1.2–3.1.4, in which plots of the

eigenvalues are shown for differentiation matrices with N = 15 and N = 20, both

of which are evaluated for machine precisions set at both 20 and 40 digits.

Figures 3.1.2–3.1.4 show, cf. [126], that the computed eigenvalues lie on a circle

about the origin due to rounding errors of the machine, hence the differentiation

matrices are ill-conditioned rather than singular. Furthermore, the figures demon-

strate that the computed eigenvalues are most accurate when N is low and when a

high number of digits are used in computations. This is quantified in [126], which

states that, when the lower-order coefficients of the characteristic polynomial are

perturbed by ϵ, the computed eigenvalues move distances of order ϵ1/N. Therefore,

since the coefficients of the lower-order terms are the order of machine precision, i.e.

O(ϵ), a high number of digits used in computations yields a smaller perturbation to

the eigenvalues, as does a low value of N .

It is noted [29] that, although exact formulae cf. (3.1.8) are used to compute

a differentiation matrix, its entries {DN}1,2 and {DN}N,N−1 are computed with an
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Figure 3.1.2: Computed eigenvalues of differentiation matrices based upon the

Chebyshev nodes (left) and the Chebyshev-Gauss-Lobatto nodes (right) are plot-

ted in the complex eigenvalue plane. Theoretically all eigenvalues should lie at zero,

and so the plots show that the accuracy of the computed eigenvalues decreases with

increasing N and with decreasing machine precision.

Figure 3.1.3: As for Figure 3.1.2 for matrices based upon the Legendre nodes (left)

and Legendre-Gauss-Lobatto nodes (right).
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Figure 3.1.4: As for Figure 3.1.2 for matrices based upon the Left-Gauss-Radau

nodes (left) and Right-Gauss-Radau nodes (right).

O(N4ϵ) error due to the difference xi,N−xj,N in the denominator of the non-diagonal

entries; this is a result of the roundoff error ϵ in the computed nodes and the O(N−2)

nodal spacing near the boundaries of [−1, 1] [116] for the orthogonal polynomials

whose nodes are distributed with density (2.3.35). For a second-order differentiation

matrix the error in {D2
N}1,2 and {D2

N}N,N−1 increases to O(N 6 ϵ) [29]. Several meth-

ods have been considered to overcome the loss of accuracy incurred by the error in

the differentiation-matrix entries. In [29] a preconditioning technique is employed

so that the function that the differentiation matrix is acting upon vanishes at the

boundaries, hence the error in the differentiation matrix is suppressed. In order to

avoid the errors within the differentiation matrix itself, when the nodal distribution

is either Chebyshev or Chebyshev-Gauss-Lobatto, trigonometric identities can be

used [15, 46, 47] to decrease the error incurred when subtracting two numbers that

are very close together. Specifically, the identities

xi,N − xj,N = cos θi,N − cos θj,N = −2 sin

(
θi,N + θi,N

2

)
sin

(
θi,N − θi,N

2

)
(3.1.95)

and

1− x2
j,N = 1− cos2 θj,N = sin2 θj,N, (3.1.96)
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in which the nodes are either Chebyshev (3.1.19) or Chebyshev-Gauss-Lobatto

(3.1.30), can be used to alleviate the above-mentioned O(N4ϵ) error incurred through

computing the reciprocals of xi,N − xj,N and 1 − x2
j,N. Using (3.1.95) and (3.1.96),

the Chebyshev differentiation matrix (3.1.27) is rewritten as

{DN}i,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)i+j+1 sin

(
2N − 2j + 1

2N
π

)

2 sin

(
2N − i− j + 1

2N
π

)
sin

(
j − i

2N
π

)
sin

(
2N − 2i+ 1

2N
π

) i ̸= j

cos

(
2N − 2j + 1

2N
π

)

2 sin2

(
2N − 2j + 1

2N
π

) i = j,

(3.1.97)

and the Chebyshev-Gauss-Lobatto differentiation matrix (3.1.41) is rewritten as

{DN}i,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)i+j+1(1 + δi1 + δiN)

2 (1 + δj1 + δjN) sin

(
2N − i− j

2(N − 1)
π

)
sin

(
j − i

2(N − 1)
π

) i ̸= j

− cos

(
N − j

N − 1
π

)

2 sin2

(
N − j

N − 1
π

) i = j = 2(1)N − 1

−2(N − 1)2 + 1

6
i = j = 1

2(N − 1)2 + 1

6
i = j = N.

(3.1.98)

For any differentiation matrix, if the ratio p ′
N(xi,N)/p ′

N(xj,N) cannot be simplified

within the non-diagonal terms of (3.1.8) e.g. as in the Legendre (3.1.46), Legendre-

Gauss-Radau (3.1.67), (3.1.74) and Legendre-Gauss-Lobatto (3.1.80) matrices, it

accumulates error due to the product of terms given by (2.1.5) and (2.1.7); to reduce

this build up of roundoff error the ratio can be computed as [37]

p ′
N(xi,N)

p ′
N(xj,N)

= (−1)i+jebi−bj wherein bi =
N∑

k=1
k≠i

ln |xi,N − xk,N|. (3.1.99)
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To reduce the roundoff errors for higher values of N , a method is presented in

[18, 15, 37] for preserving property (3.1.86) by computing diagonal entries using

{DN}i,i = −
N∑

j=1
j≠i

{DN}i,j, (3.1.100)

which clearly enforces the property in (3.1.86). Furthermore, this technique can be

extended to higher powers of DN since differentiation of (3.1.90), and comparison

with (3.1.13), yields
N∑

j=1

{DM
N}i,j = 0. (3.1.101)

A similar technique can also be used to replace the entry that has the largest mag-

nitude in a row of DN, however this is found to have no significant improvement

on (3.1.100) [18]. It has also been found [46] that the error in matrix entries corre-

sponding to nodes near x = −1 is larger than that in entries corresponding to nodes

near x = 1. To overcome this, the anti-symmetry relation (3.1.85) can be used so

that the more accurate bottom half of the differentiation matrix (3.1.3) can be used

to populate the less accurate top half [16, 46] using

{DN}i,j = −{DN}N+1−i,N+1−j , i = 1(1)
N

2
. (3.1.102)

This method can be extended to higher powers of DN since, for symmetrically dis-

tributed nodal sets, one finds [37]

{DM
N}i,j = (−1)M {DM

N}N+1−i,N+1−j , M ≥1. (3.1.103)

Other techniques for improving the accuracy of differentiation matrices include an

even-odd decomposition algorithm [37, 46, 115], which exploits the anti-symmetry

(3.1.85) of DN; a recursive formula for computing higher-order differentiation matri-

ces [37, 132] utilizing barycentric representations cf. (2.1.13) [15, 16]; pre-conditioning

schemes [39, 40]; a coordinate transformation [47, 82]; and, in [48], the accuracy of

higher-order Chebyshev-Gauss-Lobatto differentiation matrices is improved by us-

ing the periodic properties of the cosine function. Figure 3.1.5 shows a comparison

of the eigenvalues of Chebyshev and Chebyshev-Gauss-Lobatto differentiation ma-

trices computed using the original formulae (3.1.27) and (3.1.41), the trigonometric
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Figure 3.1.5: Eigenvalues of Chebyshev (left) and Chebyshev-Gauss-Lobatto (right)

differentiation matrices, computed using the original formulae (3.1.27) and (3.1.41),

are compared to the eigenvalues of the altered differentiation matrices, computed

using the trigonometric identities (3.1.97) and (3.1.98), the negative-sum for the

diagonal entries (3.1.100), and the anti-symmetry relation (3.1.102). Eigenvalues

are computed with N = 20 and 20 digits.

identities (3.1.97) and (3.1.98), the negative-sum for the diagonal entries (3.1.100),

and the anti-symmetry relation (3.1.102).

Figure 3.1.5 reveals that there is a negligible effect on the eigenvalues when the

anti-symmetry relation is used, however using either the trigonometric identities

or the negative-sum technique moves the eigenvalues so that they lie on a circle

whose radius is slightly smaller than that of the eigenvalues computed using the

original differentiation-matrix formulae (3.1.27) and (3.1.41). Therefore, the differ-

entiation matrices computed using the trigonometric identities and the negative-sum

technique are better representations of the theoretical differentiation matrix whose

eigenvalues are all zero, and hence these yield the most accurate differentiation errors

for a given N .

Although the eigenvalue analysis in this section has highlighted that the differen-
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tiation matrix DN is singular, and so theoretically not invertible, this is not so [126]

when the differentiation matrix is amended to include a boundary condition; this is

done by effectively replacing one row and one column of DN, yielding a matrix that

has non-zero eigenvalues and so is invertible. It is an analogy of this procedure that

is used in Chapter 5 to circumvent the presence of the unbounded differential opera-

tor D, defined in (2.2.1), in the error analysis for integro-differential equation (IDE)

methods. Furthermore, the simplified differentiation matrices introduced in this

section will, for all nodal distributions, significantly reduce the computational work-

load required when implementing differentiation matrices into numerical methods

for IDEs in Chapter 5. Now that the framework for spectrally accurate numeri-

cal differentiation has been established, it remains to consider a spectrally accurate

method for the numerical quadrature required in Chapters 4 and 5.

3.2 Gaussian Quadrature

There are many well-known numerical methods for computing a definite integral;

the trapezoidal rule [134], Simpson’s rule [14], Boole’s rule [2], Clenshaw-Curtis

quadrature [35], and Gaussian quadrature [9], the last two of which are generally

the most accurate. For this reason, Gaussian quadrature is commonly used in the

Nyström method [98, 10], which is introduced in Chapter 4 and developed in Chapter

5. Accordingly, this section introduces the fundamentals of Gaussian quadrature.

An M-point Gaussian quadrature rule on the interval [−1, 1] is defined by [68,

Eq. 8.4.6]
∫ 1

−1

ω(x)f(x)dx =
M∑

j=1

wj,Mf(yj,M) + EM (3.2.1)

for a suitable set of quadrature abscissae yj,M ∈ [−1, 1] and corresponding weights

wj,M computed as [68, Eq. 8.4.8]

wj,M =

∫ 1

−1

ω(x)Lj,M(x) dx, (3.2.2)

in which the functions Lj,M(x) are the Lagrange basis functions (2.1.8) computed

using the nodes yj,M . The error EM is given by [68, Eq. 8.4.7]

EM =
f (2M)(ξ)

(2M)!

∫ 1

−1

ω(x)
(
pM(x)

)2
dx, (3.2.3)
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in which ξ ∈ (−1, 1) is an unknown constant and pM(x) is the monic polynomial

(2.1.3) with roots at nodes yj,M . Since ξ in (3.2.3) is unknown, in practice f (2M)(ξ)

must be replaced by
∣∣∣∣f (2M)

∣∣∣∣ in order to bound EM . Although the quadrature rule

(3.2.1) and (3.2.2) can be obtained by integrating the Lagrange interpolation formula

(2.1.1), the error term EM in (3.2.3) does not result from integrating the Lagrange

interpolation error (2.4.1). This is because Gaussian quadrature is derived from

integrating a Hermite interpolation formula [105] with the necessary condition that

pM(x) is orthogonal to all polynomials of inferior degree over [−1, 1], relative to ω(x)

[68, p. 388].

Gaussian quadrature has a degree of precision 2M − 1 when M nodes are used,

this degree being reduced by one [68, p. 402] for each arbitrarily prescribed abscissa;

that is, if there are ν arbitrarily prescribed nodes, the degree of precision is 2M−1−
ν. Since an IDE is augmented by a boundary condition, a nodal distribution that

contains a prescribed node at an interval endpoint simplifies the implementation of

that boundary condition within the numerical methods in Chapter 5. Therefore, in

view of the ultimate goal of solving IDEs, three types of Gaussian quadrature are

considered which can be used when the weight function ω(x) equals 1 and in which

the nodes include ν endpoints. Specifically ν = 0, 1, 2 respectively correspond to the

Gauss-Legendre, Legendre-Gauss-Radau and Legendre-Gauss-Lobatto distributions

defined in Section 2.3; the following subsections present the nodes, weights and error

functions that are required to implement Gaussian quadrature on these node sets.

3.2.1 Gauss-Legendre Quadrature

Gauss-Legendre quadrature uses abscissae yj,M at the Legendre nodes (2.3.16) so

that

PM(yj,M) = 0. (3.2.4)

Standard theory on orthogonal polynomials [105] determines the weights wj,M in

(3.2.2) as

wj,M =
−2

(M + 1)P ′
M(yj,M)PM+1(yj,M)

, (3.2.5)

and the error term (3.2.3) as

EM =
22M+1 (M !)4

(2M + 1) ((2M)!)3
f (2M)(ξ), −1 < ξ < 1. (3.2.6)
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That is, Gauss-Legendre quadrature integrates f(x) exactly on [−1, 1] if f(x) is a

polynomial in x of degree less than or equal to 2M−1, since on the Gauss-Legendre

nodes ν = 0 are arbitrarily prescribed.

3.2.2 Legendre-Gauss-Radau Quadrature

Quadrature based upon the Left-Gauss-Radau nodes defined in (2.3.21) uses abscis-

sae given by

yj,M =

⎧
⎨

⎩

−1 j = 1

(j − 1)st zero of PM−1(x) +
x−1
M P ′

M−1(x) j = 2(1)M
(3.2.7)

and weights wj,M in (3.2.2) given by [68, p. 407–408]

wj,M =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2

M2
j = 1

1− yj,M

M2
(
PM−1(yj,M)

)2 j = 2(1)M.

(3.2.8)

Quadrature based upon the Right-Gauss-Radau nodal distribution has nodes ỹj,M =

−yM+1−j,M and weights w̃j,M = wM+1−j,M in which yj,M and wj,M are given by (3.2.7)

and (3.2.8). The error term EM in (3.2.3) for Legendre-Gauss-Radau quadrature is

the same for both the LGR and RGR distributions and is given [68, Eq. 8.11.15] as

EM =
22M−1M ((M − 1)!)4

((2M − 1)!)3
f (2M−1)(ξ), −1 < ξ < 1. (3.2.9)

Since on the Legendre-Gauss-Radau nodes ν = 1 are arbitrarily prescribed, M-node

Legendre-Gauss-Radau quadrature integrates f(x) on [−1, 1] exactly if f(x) is a

polynomial in x of degree less than or equal to 2M − 2.

3.2.3 Legendre-Gauss-Lobatto Quadrature

Quadrature based upon the Legendre-Gauss-Lobatto nodes defined in (2.3.27) uses

abscissae

yj,M =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−1 j = 1

1 j = M

(j − 1)st zero of P ′
M−1(x) j = 2(1)M − 1

(3.2.10)

87



3. SPECTRALLY ACCURATE NUMERICAL DIFFERENTIATION
AND NUMERICAL QUADRATURE

and weights wj,M in (3.2.2) given [68, Eqns. 8.12.7–8.12.8] by

wj,M =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2

M(M − 1)
j = 1,M

2

M(M − 1)
(
PM−1(yj,M)

)2 j = 2(1)M − 1.

(3.2.11)

The error term EM in (3.2.3) for Legendre-Gauss-Lobatto quadrature is given [68,

Eq. 8.12.9] as

EM = −22M−1M (M − 1)3 ((M − 2)!)4

(2M − 1) ((2M − 2)!)3
f (2M−2)(ξ), −1 < ξ < 1, (3.2.12)

so that if f(x) is a polynomial in x of degree less than or equal to 2M − 3, M-node

Legendre-Gauss-Lobatto quadrature integrates f(x) on [−1, 1] exactly, since on the

Legendre-Gauss-Lobatto nodes ν = 2 are arbitrarily prescribed.

3.2.4 Quadrature Error Bounds

The error terms EM (3.2.6), (3.2.9) and (3.2.12) can be written in the general form

EM = (−1)ν(ν−1)/2 ψ(ν)
M f (2M−ν)(ξ), −1 < ξ < 1, (3.2.13)

in which ν = 0, 1, 2 correspond to Gauss-Legendre, Legendre-Gauss-Radau and

Legendre-Gauss-Lobatto quadrature respectively and the error factors ψ(ν)
M are found

from simplifying (3.2.6), (3.2.9) and (3.2.12) to be

ψ(0)
M =

22M+1 (M !)4

(2M + 1) ((2M)!)3
, (3.2.14)

ψ(1)
M =

22M+2(M !)4

((2M)!)3
(3.2.15)

and

ψ(2)
M =

22M+2(2M − 1)2(M !)4

(M − 1)((2M)!)3
. (3.2.16)

Bounding EM in (3.2.13) then gives

||EM || ≤ B(ν)
M ≡ ψ(ν)

M F2M−ν (3.2.17)

wherein

F2M−ν ≡ max
x∈[−1,1]

∣∣f (2M−ν)(x)
∣∣ . (3.2.18)

88



3.2 Gaussian Quadrature

As M → ∞ (3.2.14), (3.2.15) and (3.2.16) reveal that

ψ(ν)
M ≃ 22(M+ν)Mν−1(M !)4

((2M)!)3
, (3.2.19)

which is exact for ν = 1 and in error by less than 10−10 for M ≥7 when ν = 0, 2.

By Stirling’s formula [9, p.279],

ψ(ν)
M ∼ ψ̃(ν)

M =
22ν−1

√
π

M (1−2ν)/2

( e

4M

)2M
, M → ∞, (3.2.20)

and therefore the asymptotic convergence rate for the quadrature error is

||EM || ∼ ψ̃(ν)
M F2M−ν , M → ∞. (3.2.21)

It is clear from (3.2.20) that ψ̃(ν)
M ∼ O(M−2M) and so, by (3.2.21), the error is

predicted to converge to zero provided that F2M−ν ∼ o(M2M) as M → ∞.

3.2.5 Numerical Experiments

The three discussed quadrature methods are tested on the example

f(x) = cos(x) + sin(x), (3.2.22)

for which the computational errors eM = ||EM || =
∣∣∣
∣∣∣
∫ 1
−1 f(x)dx−

∑M

j=1wj,Mf(yj,M)
∣∣∣
∣∣∣,

the error bounds B(ν)
M given by (3.2.17), and the convergence rates given by (3.2.21),

are shown in Figure 3.2.1 for ν = 0, 1, 2.

Figure 3.2.1 shows that, as expected from the number of assigned abscissae,

Gauss-Legendre is the most accurate quadrature method and Legendre-Gauss-Lobatto

quadrature is the least accurate. On each node set, the bounds yield accurate ap-

proximations of the true errors; moreover the convergence rate (3.2.21) provides

accurate approximations of the bounds for relatively low values of M . All calcu-

lations were performed on Maple using 50 digits, i.e. with a machine precision of

10−50. The ratio between the bounds, B(ν)
M in (3.2.17), for ν = 0 and ν = 2 can be

written, via (3.2.14) and (3.2.16), as

B(0)
M

B(2)
M+1

=
22M+1 (M !)4 F2M

(2M + 1) ((2M)!)3
· M ((2M + 2)!)3

22M+4 (2M + 1)2 ((M + 1)!)4 F2M

=
M

M + 1
∼ 1 as M → ∞. (3.2.23)
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Figure 3.2.1: Logarithmic plot of the errors, bounds and predicted convergence rates

associated with Gauss-Legendre (“Legendre”), Legendre-Gauss-Radau (“Radau”)

and Legendre-Gauss-Lobatto (“Lobatto”) quadrature rules. The errors, bounds

and convergence rates are, for this example, in close agreement due to the infinite

differentiability of the test function in (3.2.22).

Therefore B(0)
M ≃ B(2)

M+1 as M → ∞, which corroborates the results presented in

Figure 3.2.1, in which it is clear that Gauss-Legendre quadrature with M nodes

and Legendre-Gauss-Lobatto quadrature with M +1 nodes yield approximately the

same error.

3.3 Summary

Spectrally accurate numerical methods for differentiation and integration have been

presented, and their inherent errors analysed. The error analyses in both Chapters

2 and 3 provide a framework from which the error analyses of numerical methods for

integral and integro-differential equations (IEs and IDEs) are developed in Chapters

4 and 5 respectively.

It is well-known that the differentiation matrices of Section 3.1 are an efficient and
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accurate way of implementing the spectrally accurate differentiation introduced in

Chapter 2; their accuracy can be improved further through the use of the techniques

described in Section 3.1.7. The differentiation matrices have been introduced here

with the goal of incorporating them into numerical methods for IDEs; by using

the simplified matrix entries derived for the various nodal distributions in Sections

3.1.1–3.1.5, the required setup workload in the IDE methods in Chapter 5 is reduced.

Additionally, a comparison of the eigenvalue analyses in Section 3.1.7 and [126]

provides the arguments from which the error analyses for the IDE numerical methods

in Chapter 5 are based.

The framework of Gaussian quadrature introduced in Section 3.2 is expanded

upon in Chapters 4 and 5 in order to implement numerical methods for approx-

imating the solution of IEs and IDEs. Although the Gauss-Legendre quadrature

rule is, due to its maximal degree of precision, predicted to be the most accu-

rate theoretically (and confirmed computationally), the Legendre-Gauss-Radau and

Legendre-Gauss-Lobatto rules have computational advantages when incorporated

into IDE numerical methods for which the governing IDE is augmented by a bound-

ary condition at x = ± 1.
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Chapter 4

Integral Equations

An integral equation (IE) is an equation that contains the integral of an unknown

function. Many problems arising in the physical sciences can be modelled using

IEs. For example, IEs can be used to model population growth [81], biological sys-

tems [119], elastohydrodynamic lubrication [66], quantum scattering [17], and heat

transfer [95]. Furthermore, ordinary and partial differential equations (ODEs and

PDEs), which also arise in a wide range of physical problems, can be reformulated as

IEs. The advantage of the IE reformulation is that associated boundary and initial

conditions (BCs and ICs) are incorporated within the IE, in contrast to ODEs and

PDEs on which BCs and ICs are imposed.

This chapter begins with an overview of integral equations: Section 4.1 intro-

duces and classifies IEs and gives the IE representations of both initial and boundary

value problems (IVPs and BVPs); Section 4.2 then presents an analytical method

for solving IEs. However, since in general IEs cannot be solved analytically, the

main focus of this chapter is numerical methods for finding approximate solutions.

In Section 4.3 the well-known Nyström method [98, 10] is introduced which builds

upon the Gaussian quadrature presented in Section 3.2. The Nyström method is

then extended to incorporate the interpolation techniques introduced in Chapter 2

so that integral equations can be solved using any of the nodal distributions exam-

ined in Section 2.3. Specifically, the interpolation in the new interpolated Nyström

method can be used to project between optimal quadrature and optimal differentia-

tion nodes; when extended to solve integro-differential equations (IDEs) in Chapter

5 this enables the total error to be minimised.
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Despite the wide use of the Nyström method, the development of computable, er-

ror bounds that require no knowledge of an exact solution remains relatively scarce.

For example, the standard form of the Nyström error, see [10, Eq. 4.1.33] and [60,

Eq. 4.7.16d], is dependent upon the exact solution and also contains a component

that is bounded theoretically, see [10, Eq. 4.1.32] and [60, Eq. 4.7.16b]. Further-

more, the error analysis in, for example, [45, 113, 117] focuses on only convergence

rates. Thus motivated, and in accordance with the goal of this thesis, in Section 4.4

there follow error analyses for both the Nyström method and its new interpolated

counterpart. Error bounds are derived for both methods that are computable using

only the numerical solution, therefore requiring no knowledge of the exact solution.

The error analysis is founded on existing operator theory; specifically, the theoretical

bound [60, Eq. 4.7.17b] on a component inherent in the Nyström error is developed

into a computable quantity. Asymptotic error estimates are then developed from

the interpolation and quadrature error analyses respectively detailed in Sections 2.4

and 3.2; these analyses quantify the disparity between the standard and interpolated

Nyström-error accuracies.

The numerical methods and error analyses are validated on a diverse range of

test problems with known solutions, some of which are designed to be challenging

to approximation methods.

4.1 Classification of Integral Equations

An equation in which an unknown function (to be determined) appears under an

integral sign is known as an integral equation (IE); this can be classified in many

ways. IEs that have a variable limit of integration are classified as Volterra integral

equations (VIEs) and those with fixed limits of integration are classified as Fredholm

integral equations (FIEs) [10]. Additionally, IEs are classified as linear/nonlinear

depending on whether the unknown function appears linearly or nonlinearly. An IE

is of the first kind if the unknown function appears only inside the integral, whereas

if the unknown function also appears outside the integral then the IE is of the second

kind. For example,

λ

∫ x

a

K(x, y) u(y) dy = f(x), a ≤ x ≤ b, (4.1.1)
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is a linear Volterra integral equation of the first kind (VIE1);

u(x)− λ

∫ x

a

K(x, y) u(y) dy = f(x), a ≤ x ≤ b, (4.1.2)

is a linear Volterra integral equation of the second kind (VIE2);

λ

∫ b

a

K(x, y) u(y) dy = f(x), a ≤ x ≤ b, (4.1.3)

is a linear Fredholm integral equation of the first kind (FIE1); and

u(x)− λ

∫ b

a

K(x, y) u(y) dy = f(x), a ≤ x ≤ b (4.1.4)

is a linear Fredholm integral equation of the second kind (FIE2). In each of the

integral equations (4.1.1)–(4.1.4) the function K : [a, b] ×[a, b] → R is the kernel,

f : [a, b] → R is the source function, a, b,λ ∈ R are constants, and u(x) is the

unknown function to be determined on [a, b]. Nonlinear IEs corresponding to their

linear counterparts in (4.1.1)–(4.1.4) have the integrand K(x, y) u(y) replaced by

K(x, y, u(y)) or K(x, y, u(x), u(y)).

Volterra integral equations commonly arise from the reformulation of initial value

problems (IVPs); this is advantageous since the VIE reformulation incorporates the

initial conditions (ICs) directly. For example, the first-order IVP

du

dx
= F

(
x, u(x)

)
, u(a) = α, x ≥a (4.1.5)

can be reformulated as

u(x) = α +

∫ x

a

F
(
y, u(y)

)
dy, x ≥a, (4.1.6)

and the second order IVP

u′′(x) + A(x) u′(x) + B(x) u(x) = g(x), u(a) = α, u′(a) = β, x ≥a

(4.1.7)

can be written as [75]

u(x) = f(x) +

∫ x

a

K(x, y) u(y) dy, x ≥a, (4.1.8)

in which the kernel K(x, y) is given by

K(x, y) = (y − x)
(
B(y)−A′(y)

)
− A(y), (4.1.9)
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and the source function f(x) is given by

f(x) =

∫ x

a

(x− y) g(y) dy+ (x− a)
(
A(a)α + β

)
+ α. (4.1.10)

Fredholm integral equations arise frequently in the reformulation of two-point

boundary value problems (BVPs) and eigenvalue problems (EVPs). For example,

the BVP

y′′(x) + A(x) y′(x) +B(x) y(x) = g(x), y(a) = α, y(b) = β, (4.1.11)

can be solved in the integral form (note the Volterra-type variable limit on the

integral)

y(x) = α + (x− a) y′(a) +

∫ x

a

(x− t) y′′(t) dt (4.1.12)

by converting the BVP (4.1.11) to the FIE2

u(x) = f(x) +

∫ b

a

K(x, t) u(t) dt (4.1.13)

wherein

u(x) = y′′(x), (4.1.14)

the source function is given by

f(x) = g(x)− αB(x)− β − α

b− a

(
A(x) + (x− a)B(x)

)
(4.1.15)

and the kernel is given by

K(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a− t

b− a

(
A(x) + (x− b)B(x)

)
a ≤ t ≤ x,

b− t

b− a

(
A(x) + (x− a)B(x)

)
x ≤ t ≤ b.

(4.1.16)

The details of the conversion from the BVP (4.1.11) to the FIE2 (4.1.13), following

the approach in [104], are in Appendix D. It is noted in passing that the approach

presented in [104] is in error, which is corrected in Appendix D. Alternatively, the

BVP (4.1.11) can be rewritten in terms of y(x) as the FIE2 [75]

y(x) = f(x) +

∫ b

a

K(x, t) y(t) dt (4.1.17)
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with source function

f(x) = α +

∫ x

a

(x− t) g(t) dt+
x− a

b− a

(
β − α−

∫ b

a

(b− t) g(t) dt

)
, (4.1.18)

and kernel

K(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x− b

b− a

(
A(t)− (a− t)

(
A′(t)− B(t)

))
a ≤ t ≤ x,

x− a

b− a

(
A(t)− (b− t)

(
A′(t)− B(t)

))
x ≤ t ≤ b.

(4.1.19)

The derivation of (4.1.17)–(4.1.19), which is not presented in [75], is given in Ap-

pendix D.

The remainder of this chapter considers only Fredholm integral equations of the

second kind (FIE2s). Integral equations of this form arise in many scientific ap-

plications [131] including electrostatics [88], polymer physics [102] and astrophysics

[32]; however, FIE2s most commonly arise from reformulating a BVP as shown in

(4.1.11)–(4.1.19).

4.2 Degenerate Kernel: Analytical Solution

An integral equation has a degenerate kernel [75, p. 123], otherwise known as a

separable kernel, if it is of the form

K(x, y) =
m∑

j=1

Pj(x)Qj(y), (4.2.1)

in which case the IE (4.1.4) can be solved analytically by rewriting it as

u(x)− λ
m∑

j=1

Pj(x)

∫ b

a

Qj(y) u(y) dy = f(x). (4.2.2)

By defining constants Ci as

Ci ≡
∫ b

a

Qi(y) u(y) dy, i = 1(1)m, (4.2.3)

the integral equation (4.2.2) becomes

u(x) = f(x) + λ
m∑

j=1

Pj(x)Cj (4.2.4)
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which is substituted into (4.2.3) to give

Ci =

∫ b

a

Qi(y) f(y) dy+ λ
m∑

j=1

Cj

∫ b

a

Qi(y)Pj(y) dy. (4.2.5)

In matrix-vector form (4.2.5) is

(I− λQm)C = F (4.2.6)

wherein the elements, for i, j = 1(1)m, are given by

{C}i = Ci, {F}i =
∫ b

a

Qi(y) f(y) dy, {Qm}i,j =
∫ b

a

Qi(y)Pj(y) dy. (4.2.7)

Now denote by λ0 the singular value of λ in (4.2.6) for which

det(I− λ0Qm) = 0, (4.2.8)

i.e. for which I−λQm in (4.2.6) is not invertible: then the integral equation (4.2.2)

has either an infinite number of solutions or no solution. In general, there is a

maximum of m singular values associated with the degenerate kernel (4.2.1). If

λ ̸= λ0 then the system (4.2.6) can be inverted to give

C = (I− λQm)−1F. (4.2.9)

Using (4.2.9) the unique solution of the integral equation (4.2.2) is found from (4.2.4)

as

u(x) = f(x) + λP (I− λQm)−1F (4.2.10)

wherein the row vector P is computed by

{P}j = Pj(x), j = 1(1)m. (4.2.11)

For example, when m = 1 in (4.2.1) the kernel can be written as

K(x, y) = P (x)Q(y), (4.2.12)

the simplest degenerate kernel. In this case, the system (4.2.6) is equivalently

(
1− λ

∫ b

a

P (y)Q(y) dy

)
C =

∫ b

a

Q(y) f(y) dy, (4.2.13)
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wherein

C ≡
∫ b

a

Q(y) u(y) dy, (4.2.14)

and the singular value λ0 is therefore

λ0 =
1

∫ b

a

K(y, y) dy

. (4.2.15)

If
∫ b

aQ(y) f(y) dy ̸= 0 and λ = λ0 then (4.2.13) becomes C · 0 ̸= 0 which is inconsis-

tent and so there are no solutions. If λ = λ0 and
∫ b

aQ(y) f(y) dy = 0 then (4.2.13)

becomes C · 0 = 0 which has an infinite number of solutions for C and hence for

u(x). Finally, if λ ̸= λ0 then the unique solution is found from (4.2.10) as

u(x) = f(x) +
λP (x)

∫ b

a

Q(y) f(y)dy

1− λ

∫ b

a

P (y)Q(y)dy

. (4.2.16)

When λ ≈ λ0 it is clear from (4.2.13) that |C| ≫ 1, hence the FIE2 with kernel

(4.2.12) is ill-conditioned. This is also the case for non-separable kernel FIE2s whose

associated singular values λ0 will not, in general, be explicitly derivable [79].

4.3 Numerical Methods

Since it is not always possible to solve integral equations analytically, numerical

methods must be used to determine approximate numerical solutions. The numeri-

cal solution of an FIE2 of the form (4.1.4) is considered in a large body of literature;

some of the most well-known approximation techniques based upon interpolation,

quadrature, projection and collocation are covered in [10, 14, 60, 83]. Other nu-

merical methods developed for the solution of an FIE2 include a degenerate-kernel

approach [114] in which the FIE2 kernel is approximated by a kernel of the form

(4.2.1), a multiple-grid method [63], a Taylor-series expansion [70, 91], Adomian

decomposition [11], a Chebyshev-series expansion [102], Haar wavelets [13], and a

discrete product-integration scheme [76].

This section presents an overview of the ubiquitous Nyström method [98, 10, 60]

which utilises the Gaussian quadrature presented in Section 3.2. The well-known

99



4. INTEGRAL EQUATIONS

classical version of the Nyström method is presented in Section 4.3.1, which is then

extended in Section 4.3.2 to form a new interpolated version that uses the interpo-

lation techniques from Chapter 2 to project between the Nyström quadrature nodes

and, for example, optimal differentiation nodes. The interpolated Nyström method

is developed in preparation for extension into a form that computes approximate

solutions of integro-differential equations (IDEs) with the aim of minimising the

combined error incurred through the approximation of both integral and derivative

components. In Section 4.3.3 the Nyström methods are validated and analysed on

a range of test problems with known solutions.

It is henceforth assumed that the FIE2 (4.1.4) has been scaled onto the interval

[−1, 1] so that it is of the canonical form

u(x)− λ

∫ 1

−1

K(x, y) u(y) dy = f(x), −1 ≤ x ≤ 1. (4.3.1)

For simplicity, (4.3.1) can be written in symbolic form as

u− λK u = f (4.3.2)

in which the action of the linear integral operator K on u is defined by

K u = (K u)(x) ≡
∫ 1

−1

K(x, y) u(y) dy. (4.3.3)

4.3.1 Classical Nyström Method

In the Nyström method the action of the integral operator K in (4.3.3) is approxi-

mated by the numerical operator KM defined by

K u ≈ KM u = (KM u)(x) ≡
M∑

j=1

wj,M K(x, yj,M) u(yj,M) (4.3.4)

which represents anM-node quadrature rule with weights wj,M and nodes yj,M . Since

the weighting function in the integral in (4.3.3) is unity, the quadrature rule can be

any of those defined in Section 3.2, namely Gauss-Legendre, Legendre-Gauss-Radau

and Legendre-Gauss-Lobatto; the Nyström method is most commonly based upon

Gauss-Legendre quadrature due to its maximal degree of precision.
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Using (4.3.4), the approximate solution uM(x) of the FIE2 (4.3.1) satisfies the

discrete equation

uM(x)− λ
M∑

j=1

wj,M K(x, yj,M) uM(yj,M) = f(x), x ∈ [−1, 1], (4.3.5)

which has the corresponding symbolic form

uM − λKM uM = f. (4.3.6)

Collocation of (4.3.5) at the M quadrature nodes yields

uM(yi,M)− λ
M∑

j=1

wj,M K(yi,M , yj,M) uM(yj,M) = f(yi,M), i = 1(1)M, (4.3.7)

which is an M ×M linear system for the nodal values uM(yi,M), i = 1(1)M , of the

approximate solution. That is, (4.3.7) can be written in matrix-vector form as

(IM − λKM)uM = fM (4.3.8)

wherein, for i, j = 1(1)M ,

{uM}i = uM(yi,M), {fM}i = f(yi,M), {KM}i,j = wj,M K(yi,M , yj,M) (4.3.9)

and IM is the M ×M identity matrix. Inversion of the system (4.3.8) yields the

nodal values uM(yi,M), i = 1(1)M , which are substituted into (4.3.5) to give the

Nyström inversion formula

uM(x) = f(x) + λ
M∑

j=1

wj,M K(x, yj,M) uM(yj,M), x ∈ [−1, 1], (4.3.10)

that approximates u(x) for all x ∈ [−1, 1]. Note that (4.3.10) recovers u(x) exactly

if K(x, y) u(y) is a polynomial in y of degree less than or equal to 2M−1−ν, where
ν = 0, 1, 2 respectively correspond to quadratures based upon Legendre, Legendre-

Gauss-Radau and Legendre-Gauss-Lobatto nodes. This method will hereafter be

referred to as the classical Nyström method (CNM).
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4.3.1.1 Matrix and Singular-Value Analysis

To determine the vector of nodal values uM for use in (4.3.10), the system matrix

IM −λKM in (4.3.8) must be inverted. It is therefore useful to understand the linear

algebra of the sub-matrices within that system. Specifically, by investigating the

eigenvalues of the matrices KM the singular values λ0 can be determined. Here the

separable kernel of the form K(x, y) = P (x)Q(y) is considered where, for simplicity,

the entries of the matrix KM in (4.3.9) are denoted by Ki,j such that

Ki,j = {KM}i,j = wj,M K(yi,M , yj,M) = wj,M P (yi,M)Q(yj,M). (4.3.11)

The matrix entries therefore satisfy

Ki,j Kl,m = wj,M wm,M P (yi,M)P (yl,M)Q(yj,M)Q(ym,M) = Ki,mKl,j. (4.3.12)

Inspection of the matrix KM leads to the assertion that its eigenvalues, denoted by

Λ, satisfy

det(KM − ΛIM) = (−Λ)M−1

(
M∑

i=1

Ki,i − Λ

)
= 0 (4.3.13)

wherein IM is the M×M identity matrix. Using property (4.3.12), assertion (4.3.13)

is proved by induction in Appendix E. It is clear from (4.3.13) that all but one of

the eigenvalues of KM are equal to 0 and the non-zero eigenvalue is equivalent to the

trace of KM . Therefore the matrix KM based upon the kernel K(x, y) = P (x)Q(y)

is singular, hence

det(KM) = 0. (4.3.14)

It follows from (4.3.13) that the eigenvalues of the system matrix IM − λKM ,

denoted by Λ̃, satisfy

det(IM − λKM − Λ̃IM) = (1− Λ̃)
M−1

(
1− Λ̃− λ

M∑

i=1

Ki,i

)
= 0, (4.3.15)

hence one eigenvalue of IM − λKM is equal to 1 − λTr (KM) whilst all others are

equal to unity. The matrix IM −λKM is therefore singular only when λ = λ̃0 defined

by

λ̃0 ≡
1

Tr (KM)
(4.3.16)

in which case the Nyström method will fail.
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Section 4.2 showed that an FIE2 with a separable kernel of the form (4.2.12) has

no solution when λ = λ0 as given by (4.2.15). The singular value λ0 of the FIE2 is

related to the singular value λ̃0 of the system matrix IM − λKM by

1

λ0
=

1

λ̃0
+ EM , (4.3.17)

wherein EM is the quadrature error term (3.2.13), since (4.2.15) gives

1

λ0
=

∫ b

a

K(y, y)dy =
M∑

i=1

wi,M K(yi,M , yi,M) + EM (4.3.18)

and (4.3.16) gives

1

λ̃0
= Tr (KM) =

M∑

i=1

wi,M K(yi,M , yi,M). (4.3.19)

Therefore λ0 = λ̃0 when K(y, y) is a polynomial in y of degree less than or equal to

2M−1−ν, where ν = 0, 1, 2 correspond to Gauss-Legendre, Legendre-Gauss-Radau

and Legendre-Gauss-Lobatto quadratures respectively.

To quantify the effect on the exact solution of an FIE2 with kernel (4.2.12) as

λ→ λ0 first define

P ≡
∫ b

a

P (y)Q(y)dy (4.3.20)

and

Q ≡
∫ b

a

Q(y) f(y)dy (4.3.21)

so that (4.2.16) can be written as

u(x) =
λP (x)Q
1− λP + f(x). (4.3.22)

Now let

λ = λ0 + ϵ, 0 < |ϵ| ≪ 1 (4.3.23)

which, by (4.2.15), is equivalently

λ =
1

P + ϵ. (4.3.24)
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Substitution of (4.3.24) into (4.3.22) yields

u(x) =

(
1

P + ϵ

)
P (x)Q

1− (1 + ϵP) + f(x)

=

P (x)Q
P + ϵP (x)Q

−ϵP + f(x)

= f(x)− P (x)Q
P − P (x)Q

ϵP2

= f(x)− P (x)Q
P +O(ϵ−1), (4.3.25)

which demonstrates that ||u|| → ∞ as |ϵ| → 0.

The effect of λ→ λ0 on the numerical solution uM(x) in (4.3.10) can be similarly

considered. Substituting λ, as given by (4.3.24), into the CNM numerical solution

(4.3.10) yields

uM(x) = f(x) +

(
1

P + ϵ

) M∑

j=1

wj,M K(x, yj,M) uM(yj,M)

= f(x) +
1

P

M∑

j=1

wj,M K(x, yj,M) uM(yj,M) + ϵ
M∑

j=1

wj,M K(x, yj,M) uM(yj,M)

= f(x) +
1

P

M∑

j=1

wj,M K(x, yj,M) uM(yj,M) +O(ϵ). (4.3.26)

Subtraction of (4.3.26) from (4.3.25) yields the error

u(x)−uM(x) = − 1

P

(
P (x)Q+

M∑

j=1

wj,M K(x, yj,M) uM(yj,M)
)
+O(ϵ)+O(ϵ−1) (4.3.27)

which, as |ϵ| → 0, gives

||u− uM || ∼O(ϵ−1). (4.3.28)

Therefore the error between the exact and numerical solutions of the integral equa-

tion (4.3.1) satisfies

||u− uM || → ∞ as λ→ λ0. (4.3.29)
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4.3.2 Interpolated Nyström Method

Since the integral weighting function in (4.3.1) is unity, the CNM utilises Legendre,

Legendre-Gauss-Radau or Legendre-Gauss-Lobatto nodes. To approximate integra-

tion using a different set of nodes, for example in the context of an integro-differential

equation that uses Chebyshev-Gauss-Lobatto points to optimise the differentiation

error (see Figure 2.4.1), the Nyström method can be combined with Lagrange in-

terpolation (2.1.1) to yield a new interpolated Nyström method (INM). Existing

methods for solving FIE2s using Chebyshev-Gauss-Lobatto points are discussed in

[31, 93].

In the INM, K u is approximated by Lagrange interpolating the nodal values

u(yj,M) in the quadrature rule (4.3.4) through a distinct set of nodes xj,N, j = 1(1)N ,

so that

K u ≈ KM LN u = (KM LNu)(x) ≡
M∑

j=1

N∑

k=1

wj,M K(x, yj,M)Lk,N(yj,M) u(xk,N)

(4.3.30)

wherein the actions of the operators KM and LN are respectively defined by (4.3.4)

and (2.1.1). Using (4.3.30), the approximate solution ũM,N(x) of the FIE2 (4.3.1)

satisfies

ũM,N(x)− λ
M∑

j=1

N∑

k=1

wj,M K(x, yj,M)Lk,N(yj,M) ũM,N(xk,N) = f(x), x ∈ [−1, 1],

(4.3.31)

which can be written in symbolic form as

ũM,N − λKM LN ũM,N = f. (4.3.32)

Collocating (4.3.31) at the N interpolation nodes xi,N, i = 1(1)N and interchanging

the subscripts j and k yields the matrix-vector equation

(IN − λ K̃M,N) ũM,N = f̃N, (4.3.33)

wherein

{ũM ,N}i = ũM,N(xi,N), {f̃N}i = f(xi,N),

{K̃M,N}i,j =
M∑

k=1

wk,M K(xi,N, yk,M)Lj,N(yk,M), i, j = 1(1)N, (4.3.34)
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and IN is the N ×N identity matrix. Inversion of (4.3.33) yields the nodal values

ũM,N(xi,N), i = 1(1)N , which are substituted into (4.3.31) to give the INM inversion

formula

ũM,N(x) = f(x) + λ
M∑

k=1

N∑

j=1

wk,M K(x, yk,M)Lj,N(yk,M) ũM,N(xj,N), (4.3.35)

that approximates u(x) for all x ∈ [−1, 1]. The nodal values recovered from (4.3.33)

can alternatively be substituted into the Lagrange interpolation formula (2.1.1)

yielding the Lagrange-INM approximation

ũM,N(x) =
N∑

j=1

Lj,N(x) ũM,N(xj,N), (4.3.36)

that also approximates u(x) for all x ∈ [−1, 1]. The double sum in (4.3.35) indicates

that the INM inversion formula is O(M) times more computationally expensive than

the Lagrange-INM approximation and O(N) times more computationally expensive

than the CNM (4.3.10) for a given M .

Since Lagrange interpolation, and its associated error, is inevitable in the INM

it is, as yet, unknown whether the INM inversion formula (4.3.35) or Lagrange-

INM approximation (4.3.36) is the most accurate. However, it is clear from the

error formulae in Table 2.1 and (3.2.20) that a CNM equivalent to the Lagrange-

INM approximation, i.e. Lagrange interpolating the nodal values obtained from

inversion of the CNM system (4.3.8), yields a greater error than that of the CNM

inversion formula (4.3.10). This is because the error of M-node Lagrange interpo-

lation is O(M−M) (see Table 2.1), and the error of M-node quadrature is O(M−2M)

(see (3.2.20)), provided the derivatives u(M)(x) and ∂ M

∂yM K(x, y) u(y) do not grow

exponentially with M . A Lagrange-CNM approximation is therefore not pursued

further.

Note that, if M = N and xj,N = yj,N, for all j = 1(1)N , i.e. the quadrature

nodes are also the interpolation nodes, then the INM inversion formula (4.3.35) is

equivalent to the CNM approximation (4.3.10) since Lj,N(yk,N) = δjk where δjk is

the Kronecker delta defined in (2.3.12).
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4.3.2.1 Matrix and Singular Value Analysis

Let K̃i,j denote the entries of the matrix K̃M,N in (4.3.34) based upon the separable

kernel K(x, y) = P (x)Q(y) such that

K̃i,j = {K̃M,N}i,j =
M∑

k=1

wk,M K(xi,N, yk,M)Lj,N(yk,M)

=
M∑

k=1

wk,M P (xi,N)Q(yk,M)Lj,N(yk,M). (4.3.37)

Therefore, cf. (4.3.12),

K̃i,j K̃l,m =
M∑

k=1

M∑

n=1

wk,M wn,M P (xi,N)P (xl,N)Q(yk,M)Q(yn,M)Lj,N(yk,M)Lm,N(yn,M)

= K̃l,j K̃i,m. (4.3.38)

Since the entries of K̃M,N satisfy the same relationship as those of KM,N, the eigen-

values of K̃M,N, denoted by Λ, are given by (cf. (4.3.13))

det(K̃M,N − ΛIN) = (−Λ)N−1

(
N∑

i=1

K̃i,i − Λ

)
= 0 (4.3.39)

and the eigenvalues of IN − λK̃M,N, denoted by Λ̃, are given by (cf. (4.3.15))

det(IN − λK̃M,N − Λ̃IN) = (1− Λ̃)
N−1

(
1− Λ̃− λ

N∑

i=1

K̃i,i

)
= 0. (4.3.40)

The effect on the numerical solution ũM,N(x) in (4.3.35) as λ→ λ0 follows in the

same way as shown for the CNM by (4.3.20)–(4.3.29). Therefore, for λ given as in

(4.3.23), the INM error satisfies

||u− ũM,N|| ∼O(ϵ−1), as |ϵ| → 0, (4.3.41)

so that

||u− ũM,N|| → ∞, as λ→ λ0. (4.3.42)
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4.3.2.2 Barycentric Interpolated Nyström Method

Figures 2.5.1–2.5.4 demonstrate that, when Lagrange interpolation (2.1.1) is re-

placed by its barycentric counterpart (2.1.13), approximations of equivalent accu-

racy are obtained whilst the computational workload is significantly reduced. The

computational efficiency of the INM can therefore be improved by replacing LN in

(4.3.30) by the barycentric operator B(2)
N , defined in (2.1.13), so that K u is approx-

imated by

K u ≈ KM B
(2)
N u = (KM B

(2)
N u)(x) =

M∑

j=1

⎛

⎜⎜⎜⎜⎜⎝

N∑

k=1

wj,M Wk,NK(x, yj,M) u(xk,N)

yj,M − xk,N

N∑

l=1

Wl,N

yj,M − xl,N

⎞

⎟⎟⎟⎟⎟⎠

(4.3.43)

using which (4.3.31) is adjusted to

ũM,N(x)− λ
M∑

j=1

⎛

⎜⎜⎜⎜⎜⎝

N∑

k=1

wj,M Wk,NK(x, yj,M) ũM,N(xk,N)

yj,M − xk,N

N∑

l=1

Wl,N

yj,M − xl,N

⎞

⎟⎟⎟⎟⎟⎠
= f(x). (4.3.44)

Collocating (4.3.44) at the interpolation nodes xi,N, i = 1(1)N , and interchanging

the subscripts j and k then gives the matrix-vector equation

(IN − λ K̃B
M,N) ũM,N = f̃N, (4.3.45)

wherein ũM,N and f̃N are given by (4.3.34) and K̃B
M,N is computed by

{K̃B
M,N}i,j =

M∑

k=1

⎛

⎜⎜⎜⎜⎜⎝

wk,M Wj,NK(xi,N, yk,M)
N∑

l=1

Wl,N (yk,M − xj,N)

yk,M − xl,N

⎞

⎟⎟⎟⎟⎟⎠
(4.3.46)

which is implicitly dependent on M and N . Note that, by construction, (4.3.34)

and (4.3.46) yield K̃M,N ≡ K̃B
M,N. Inversion of (4.3.45) yields the nodal elements
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ũM,N(xj,N), j = 1(1)N , which are used to form the barycentric INM inversion formula

ũM,N(x) = f(x) + λ
M∑

k=1

⎛

⎜⎜⎜⎜⎜⎝

N∑

j=1

wk,M Wj,NK(x, yk,M) ũM,N(xj,N)

yk,M − xj,N

N∑

l=1

Wl,N

yk,M − xl,N

⎞

⎟⎟⎟⎟⎟⎠
, (4.3.47)

and the barycentric Lagrange-INM approximation

ũM,N(x) =

N∑

j=1

Wj,N ũM,N(xj,N)

x− xj,N

N∑

j=1

Wj,N

x− xj,N

. (4.3.48)

Since (4.3.45)–(4.3.48) are undefined if yk,M = xj,N for any k = 1(1)M and

j = 1(1)N , the interpolation nodes and quadrature nodes must be chosen so that

they do not coincide. Table 4.1 shows the common nodes between the quadrature

and interpolation distributions, and hence demonstrates the combination of node

sets that cannot be used within the barycentric INM.

xj,N

yk,M
Gauss-Legendre Legendre-Gauss-Radau Legendre-Gauss-Lobatto

xN+1
2 ,N = yM+1

2 ,M x1,N = y1,M = −1 x1,N = y1,M = −1

Regular = 0, or xN,N = yM,M = 1 and xN,N = yM,M = 1

∀M, N odd ∀M, N ∀M, N

xN+1
2 ,N = yM+1

2 ,M xN+1
2 ,N = yM+1

2 ,M

Chebyshev = 0, xj,N ̸= yk,M = 0,

∀M, N odd ∀j, k, M, N ∀M, N odd

Chebyshev- xN+1
2 ,N = yM+1

2 ,M x1,N = y1,M = −1 x1,N = y1,M = −1

Gauss- = 0, or xN,N = yM,M = 1 and xN,N = yM,M = 1

Lobatto ∀M, N odd ∀M, N ∀M, N

Table 4.1: Summary of coincident nodes between the quadrature and interpolation

distributions; when there is a node in common the distributions cannot be used

together within the barycentric INM.
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Table 4.1 shows that, if Gauss-Legendre quadrature is used, M andN must either

both be even or of different parity. When Legendre-Gauss-Radau quadrature is used

only the Chebyshev nodes can be used for interpolation and, when Legendre-Gauss-

Lobatto quadrature is used, only the Chebyshev nodes can be used for interpolation

and M and N must either both be even or of different parity.

4.3.3 Numerical Experiments

The CNM, INM and Lagrange-INM thus described are now validated on a quartet

of test problems with known solutions, three of which are chosen to test the theory

on problems with potentially challenging solutions. The components of the FIE2

(4.3.1) for the test problems are summarised in Table 4.2.

Problem Name Solution u(x) Kernel K(x, y) λ

1 Smooth cos x− 2x+ 1 (3x+ 2)(y + 1) 1
10

2 Runge 1
1+25x2 3x+ 2 + (2x− 1)(25y2 + 1) 1

10

3 Steep e12x 5xy + 2x+ y −1
5

4 Oscillatory sin 10x (x3 − 1)(y5 + 2) −1
3

Table 4.2: Test problems with solutions of four qualitatively distinct forms. The

Runge function [27, Eq. 4.9] in problem 2 has been shown in Figures 2.5.8–2.5.10

to be challenging to approximate and the extreme gradient and highly oscillatory

solutions of problems 3 and 4 also offer well-documented challenges to approximation

methods (see e.g. [21, 72]). The source function f(x) is readily computed directly

from (4.3.1).

In order for systems of the same dimension to be compared, in the following

examplesM = N in both the CNM and INM so that both methods useN quadrature

nodes and N collocation nodes. Gauss-Legendre quadrature is used within the INM

due to its maximal degree of precision and Lagrange interpolation is used since the

barycentric INM implementation is restricted; see Table 4.1.

Figure 4.3.1 shows the CNM errors eN = ||u− uN|| computed using a selection of

quadrature nodes and the INM and Lagrange-INM errors eN = ||u− ũN,N|| computed

using a selection of interpolation nodes.
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Figure 4.3.1: Spectral convergence of the CNM errors eN = ||u− uN||, INM and

Lagrange-INM errors eN = ||u− ũN,N|| for Problems (a) 1 (“smooth”), (b) 2

(“Runge”), (c) 3 (“steep”) and (d) 4 (“oscillatory”) using a variety of node sets.

The disparate vertical scales of the sub-plots in Figure 4.3.1 demonstrate that,

as expected, the error convergence is fastest for the smooth problem and slowest for

the Runge problem, whilst the steep and oscillatory problems have errors of similar

magnitude. The superior performance of the CNM is evident; however, contrary to

the asymptotic convergence rate (3.2.21) for the quadrature error, the magnitudes
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of the CNM errors do not always increase with ν for a given N . For example, it

is the Gauss-Radau CNM that is the most accurate for problems 2 and 4. The

errors obtained by the CNM for problem 1 are seen to increase slowly for N > 17

as calculations reach the roundoff plateau of the machine, wherein the marginally

positive gradient reflects an accumulation of rounding errors as larger matrices are

processed.

It was noted, following (4.3.36), that the error in a numerical solution of an FIE2

is increased by the introduction of Lagrange interpolation, therefore the convergence

of the INM is slower than that of the CNM. However, despite being slower, spectral

convergence with increasing N is achieved for the INM, as required by its intended

extension to solve IDEs. Lagrange interpolation is inevitable in the extension to

IDEs since it is the basis of the differentiation matrices introduced in Section 3.1.

Figure 4.3.1 also shows that for each problem, and on each node set, the INM is

uniformly more accurate than the Lagrange-INM, demonstrating that a Nyström-

type inversion formula is more accurate than the standard Lagrange interpolation

formula. Whether or not the INM or Lagrange-INM is used, the Runge phenomenon

always plagues the solution of problem 2 on the regular nodes, causing divergence

of the errors with increasing N ; this is expected from the divergent errors shown in

Figure 2.5.8 for Lagrange interpolation of the Runge function. Although the CNM,

INM and Lagrange-INM on the orthogonal-polynomial nodal distributions do not

fail to approximate the Runge function, the resulting errors are greater in magnitude

than those of the other test problems; this is demonstrated by comparing the vertical

scales of the subplots in Figure 4.3.1. Furthermore, Figure 4.3.1(b) shows that,

when approximating the Runge function, the Gauss-Legendre CNM and Legendre-

Gauss-Lobatto CNM no longer have superiority over the INM on the Chebyshev and

Chebyshev-Gauss-Lobatto distributions; an explanation for this observation, based

on asymptotic error estimates, is given in Section 4.4.3.

The error distribution in [−1, 1] of the numerical methods is now considered. The

errors incurred in the numerical solutions of problems 3 and 4 are compared against

x; observations for problems 1 and 2 are qualitatively similar. The subsequent error

analysis in Section 4.4.1 shows that the CNM error can be written in the form

u(x)− uN(x) =
N∑

j=1

Aj,NK(x, yj,N) +BN

∂ 2N−ν

∂y 2N−ν

[
K(x, y)u(y)

]

y=ξ
, (4.3.49)
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in which ξ ∈ (−1, 1) is an unknown constant and Aj,N, j = 1(1)N and BN are also

constants. For problem 3, (4.3.49) gives

u(x)− uN(x) = (5x+ 1)
N∑

j=1

Aj,N yj,N + 2x
N∑

j=1

Aj,N

+BNx
∂ 2N−ν

∂y 2N−ν

[
(5y + 2) e12y

]

y=ξ
+BN

∂ 2N−ν

∂y 2N−ν

[
y e12y

]

y=ξ

= aNx+ bN, (4.3.50)

for constants |aN| ≪ 1 and |bN| ≪ 1, whilst for problem 4 (4.3.49) gives

u(x)− uN(x) = (x3 − 1)
N∑

j=1

Aj,N (y5j,N + 2)

+BN(x
3 − 1)

∂ 2N−ν

∂y 2N−ν

[
(y5 + 2) sin 10y

]

y=ξ

= cN(x
3 − 1), (4.3.51)

for the constant |cN| ≪ 1. Therefore, (4.3.50) and (4.3.51) show that the variation

of the error against x for the CNM is dependent upon the x component of the kernel

K(x, y). The error formulae (4.3.50) and (4.3.51) are verified in Figure 4.3.2.

The ensuing error analysis in Section 4.4.2 shows that the INM error can be

written in the form

u(x)− ũN,N(x) =
N∑

j=1

Ãj,N,NK(x, yj,N) + B̃N

∂ 2N−ν

∂y 2N−ν

[
K(x, y)u(y)

]

y=ξ
, (4.3.52)

in which ξ ∈ (−1, 1) is an unknown constant and Ãj,N,N, j = 1(1)N and B̃N are also

constants. Comparison of (4.3.52) with (4.3.49) shows that for problem 3 the INM

error is also a linear function of x so that

u(x)− ũN,N(x) = ãNx+ b̃N, (4.3.53)

for the unknown constants |ãN| ≪ 1 and |̃bN| ≪ 1, and for problem 4 the INM error

is of the form

u(x)− ũN,N(x) = c̃N(x
3 − 1) (4.3.54)
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Figure 4.3.2: The CNM errors u(x) − uN(x) on the interval [−1, 1] for problem 3

(left) and problem 4 (right) evaluated with N = 15. The error for problem 3 is

linear, as predicted by (4.3.50) in which aN ≈ 3.51 ·10−7 and bN ≈ 6.30 ·10−8 , whilst

the problem 4 error, by comparison to the dotted line, is proportional to (x3 − 1)

as predicted by (4.3.51) in which cN ≈ 1.74 · 10−8 . The magnitudes of the constants

aN, bN, cN are therefore confirmed to be much smaller than 1. Such accurate and

informative error predictions are possible through the subsequent theory of Section

4.4.1.

for the constant |c̃N| ≪ 1. Therefore the INM error is also shown to be dependent

upon the x component of the kernelK(x, y). The error formulae (4.3.53) and (4.3.54)

are verified in Figure 4.3.3.

The Lagrange-INM error is now considered. Since, through inversion of the

system (4.3.33), the nodal values satisfy ũN,N(xi,N) ≈ u(xi,N), Lagrange interpolation

of the exact and numerical nodal values yields LNũN,N ≈ LNu. Therefore u −
LNũN,N ≈ u − LNu and hence, by (2.4.1), the x dependence of the Lagrange-INM

error is proportional to a perturbation of the monic polynomial pN(x) in (2.1.3) with

roots at the interpolation nodes xj,N, j = 1(1)N . This is verified in Figure 4.3.4

wherein the Lagrange-INM error is plotted along with the monic polynomial pN(x)

for comparison.
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Figure 4.3.3: Result as per caption of Figure 4.3.2, for INM errors u(x) − ũN,N(x)

and predictions (4.3.53) and (4.3.54), in which ãN ≈ −0.018, b̃N ≈ −0.0028 and

c̃N ≈ −2.8 ·10−5 thereby confirming |ãN|, |̃bN|, |c̃N| ≪ 1. These error predictions are

possible through the theory of Section 4.4.2.

The numerical experiments conducted thus far are computed withM = N within

the INM. It has been shown that the errors ||u− ũN,N|| decrease with increasing

N ; the exception to this is the regular nodes INM for problem 2. The INM errors

||u− ũM,N|| are now considered forM ̸= N to determine the extent to which the errors

are dependent upon the M quadrature nodes and N interpolation nodes. Figure

4.3.5 shows the problem 1 errors eM ,N = ||u− ũM,N|| against M for fixed values of N

solved on the Chebyshev-Gauss-Lobatto nodes; the results are qualitatively similar

using alternative interpolation node sets.

Figure 4.3.5 demonstrates that, provided M is sufficiently high, the INM er-

rors are dictated by N , since for each N the errors are approximately constant for

M ≥ N
2 . This is consistent with the M-node quadrature and N -node Lagrange

interpolation errors which, by (3.2.20) and Table 2.1, are seen to have leading-order

terms of order
(

e
4M

)2M
and

(
e
2N

)N
respectively, provided that the derivatives of u(x)

and K(x, y) u(y) do not grow exponentially. Therefore when M = N
2 the quadrature

error and the interpolation error are of comparable accuracy and so the magnitudes
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Figure 4.3.4: The Lagrange-INM errors u(x) − ũN,N(x) on the interval [−1, 1] for

problem 3 (left) and problem 4 (right) evaluated with N = 15. The errors are

shown to be oscillatory with roots near those of the scaled monic polynomial pN(x),

where the scaling factors are respectively C = −1 (left) and C = 0.001 (right). The

Lagrange-INM error is seen to be approximately 0 at the interpolation nodes; its

greatest magnitude at a node is |u(xN,N) − ũN,N(xN,N)| ≈ 0.021 for problem 3 and

|u(x1,N)− ũN,N(x1,N)| ≈ 5.6 · 10−5 for problem 4.

of the INM errors are predominantly dependent upon M for M < N
2 , and upon N

for M > N
2 ; this verifies that it is sufficient to set M = N in the INM.

The INM (4.3.35) and Lagrange-INM (4.3.36) are now compared to their barycen-

tric counterparts (4.3.47) and (4.3.48). Problem 1 is solved using Gauss-Legendre

quadrature nodes and Chebyshev-Gauss-Lobatto interpolation nodes which, by Ta-

ble 4.1, requires M and N to be of different parity. Therefore, M = N − 1 is chosen

and the resulting errors eN = ||u− ũN−1,N|| and workloads, in seconds (s), are shown

in Figure 4.3.6. For comparison, the Legendre CNM workloads are also shown in

Figure 4.3.6. Observations are qualitatively similar when different quadrature and

interpolation nodes are chosen.

As expected from the results shown in Figures 2.5.1–2.5.4, incorporating the

barycentric implementation into the INM and Lagrange-INM has an imperceptible
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Figure 4.3.5: A logarithmic plot of the INM errors eM,N = ||u− ũM,N|| for varying M

and fixed N for problem 1 using Chebyshev-Gauss-Lobatto interpolation nodes.

Figure 4.3.6: A comparison of errors eN = ||u− ũN−1,N|| (left) and computational

workloads, in seconds (s), (right) for the INM (4.3.35), Lagrange-INM (4.3.36) and

their barycentric counterparts (4.3.47) and (4.3.48) for problem 1 solved using Gauss-

Legendre quadrature nodes and Chebyshev-Gauss-Lobatto interpolation nodes. The

Legendre CNM workloads are included for comparison (right).
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effect on the errors whereas the workload for each N is significantly reduced. De-

spite this reduction, the CNM remains the most computationally efficient method as

shown by the comparison of workloads in Figure 4.3.6. This is also expected since

the double summation within the INM formulation causes the INM to be O(N)

times more computationally expensive than the CNM; this is seen by comparing

(4.3.4) with (4.3.30). Figure 4.3.6 shows that the barycentric INM and barycentric

Lagrange-INM have computational advantages in terms of workload over the INM

and Lagrange-INM; however, since the quadrature and interpolation node combi-

nations are limited, as shown in Table 4.1, the barycentric methods are less widely

applicable.

Finally, to validate the “divergent” predictions (4.3.28) and (4.3.41), the errors

as λ → λ0 are considered for problem 1 for which the singular value, computed

from (4.2.15), is λ0 = 1
6 . Figure 4.3.7 shows the CNM errors eN = ||u− uN|| and

INM errors eN = ||u− ũM,N||, in which M = N = 11, plotted on a logarithmic scale

against ϵ ≡ λ− λ0.

Figure 4.3.7: A logarithmic plot of the CNM errors eN = ||u− uN|| and INM errors

eN = ||u− ũN,N|| with N = 11 against ϵ = λ − λ0 . Here the dotted line shows a

gradient of −1 thereby validating the O(ϵ−1) predictions of (4.3.28) and (4.3.41).

The error formulae (4.3.28) and (4.3.41) predict that both the CNM and INM

errors diverge as O(ϵ−1) as ϵ → 0 and so, on a logarithmic scale, the errors should

decrease with gradient −1 as |ϵ| increases; this is verified in Figure 4.3.7.
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4.4 Error Analysis

In this section error predictions for both the classical and interpolated Nyström

method are developed from existing theoretical Nyström error bounds. These error

predictions differ from those given in literature which, although being theoretical,

require the exact solution to be known; for example [10, Eq. 4.1.33] and [60, Eq.

4.7.16d]. That is, existing error estimates are based upon the unknown exact solu-

tion whereas in the present approach error estimates are based upon the available,

numerical solution.

4.4.1 Classical Nyström Method

Subtraction of the CNM numerical solution (4.3.6) from the exact solution (4.3.2)

yields the error in the form

u− uM = λ (K u−KM uM) (4.4.1)

which, by the addition of λ (KM u−KM u) = 0, is equivalently

u− uM = λKM (u− uM) + λ (K−KM) u. (4.4.2)

The quadrature-error term in (3.2.13) gives

(K−KM) u (x) = (−1)ν(ν−1)/2 ψ(ν)
M

∂ 2M−ν

∂y 2M−ν

[
K(x, y)u(y)

]

y=ξ
, −1 < ξ < 1,

(4.4.3)

whilst the action of the operator KM on the error u− uM gives

KM (u− uM) (x) =
M∑

j=1

wj,M K(x, yj,M)
(
u(yj,M)− uM(yj,M)

)
. (4.4.4)

Therefore combining (4.4.2)–(4.4.4) gives the CNM error, as seen in (4.3.49), as

u(x)− uM(x) =
M∑

j=1

Aj,M K(x, yj,M) +BM

∂ 2M−ν

∂y 2M−ν

[
K(x, y)u(y)

]

y=ξ
, (4.4.5)

wherein

Aj,M = λwj,M

(
u(yj,M)− uM(yj,M)

)
, j = 1(1)M (4.4.6)
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and

BM = λ (−1)ν(ν−1)/2 ψ(ν)
M , (4.4.7)

which demonstrates that the x dependence of the error is dictated by the x compo-

nent of the kernel K(x, y). Rearranging (4.4.2) yields

u− uM = λ (I− λKM)
−1 (K−KM) u (4.4.8)

hence the CNM error is bounded according to

||u− uM|| ≤ |λ|
∣∣∣∣(I− λKM)

−1
∣∣∣∣ ||(K−KM) u|| , (4.4.9)

which is the standard form of the Nyström error given by [10, Eq. 4.1.33] and [60,

Eq. 4.7.16d].

The immediate problem is that the error bound (4.4.9) is dependent upon the

exact solution u; however, since the present work aims to develop computable error

bounds based upon the numerical solution uM , the error (4.4.1) must be manipulated

in an alternative way. To this end, addition of λ (K uM −K uM) = 0 to (4.4.1) yields,

instead of (4.4.2),

u− uM = λK (u− uM) + λ (K−KM) uM , (4.4.10)

which can be rearranged to

u− uM = λ (I− λK)−1 (K−KM) uM . (4.4.11)

Therefore the CNM error is bounded in terms of the numerical solution uM according

to

||u− uM || ≤ |λ|
∣∣∣∣(I− λK)−1

∣∣∣∣ ||(K−KM) uM || (4.4.12)

which, by (4.3.6), is equivalently

||u− uM || ≤
∣∣∣∣(I− λK)−1

∣∣∣∣ ||uM − λK uM − f || . (4.4.13)

Since u is the unique solution of the FIE (4.3.2), the operator (I−λK)−1 in (4.4.12)

and (4.4.13) exists and is bounded [83, Thm. 3.4]. The bound in (4.4.13) avoids the

need to compute KM uM and also demonstrates, by comparison with (4.3.2), that

the error is proportional to the degree to which the numerical solution uM fails to
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satisfy the exact FIE. The bound in (4.4.12) is the basis of an asymptotic analysis

in Section 4.4.3.

A bound FM for the theoretical term ||(I− λK)−1|| in (4.4.12) and (4.4.13) is

given [60, Eq. 4.7.17b] as

∣∣∣∣(I− λK)−1
∣∣∣∣ ≤ FM ≡ 1 + |λ| ||(I− λKM)−1|| ||K||

1− λ2 ||(I− λKM)−1|| ||(K−KM)K|| , (4.4.14)

in which both the numerator and denominator are by construction positive (cf.

[10, Thm. 4.1.1]) since the bound is derived via the geometric series theorem [14,

Thm. 1.1]. Additionally, since the quadrature scheme (4.3.4) is convergent for

all continuous functions then, for sufficiently large M , (I − λKM)−1 exists and is

uniformly bounded [10, Thm. 4.1.2]. Although (4.4.14) is given by [60, Eq. 4.7.17b],

and in an alternative form by [10, Thm. 4.1.1], it is in neither case developed into a

computable quantity. Thus motivated, computable estimates are now developed for

the three normed sub-terms in FM defined by (4.4.14). In supremum-norm-definition

form, (4.4.14) is rewritten as

FM =

1 + |λ| sup
q∈[−1,1]

||(I− λKM)−1 q||
||q|| sup

r∈[−1,1]

||K r||
||r||

1− λ2 sup
q∈[−1,1]

||(I− λKM)−1 q||
||q||

sup
s∈[−1,1]

||(K−KM)K s||
||s||

, (4.4.15)

in which unknown functions q̃, r̃, s̃ ∈ [−1, 1] give the required suprema, so that

FM =

(
||q̃|| ||r̃||+ |λ| ||(I− λKM)−1 q̃|| ||K r̃||

)
||s̃||(

||q̃|| ||s̃||− λ2 ||(I− λKM)−1 q̃|| ||(K−KM)K s̃||
)
||r̃||

. (4.4.16)

Since q̃, r̃ and s̃ are unknown, (4.4.16) must instead be computed using near-suprema

functions q, r, s ∈ [−1, 1] such that

∣∣∣∣(I− λKM)
−1
∣∣∣∣ ≡ ||(I− λKM)−1 q̃||

||q̃|| =
||(I− λKM)−1 q||

||q|| + α ϵ, (4.4.17)

||K|| ≡ ||K r̃||
||r̃|| =

||K r||
||r|| + β ϵ, (4.4.18)

and

||(K−KM)K|| ≡ ||(K−KM)K s̃||
||s̃|| =

||(K−KM)K s||
||s|| + γ ϵ, (4.4.19)
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wherein α, β, γ ∈ R are O(1) constants and 0 < ϵ≪ 1. By (3.2.17), ||(K−KM)K s||
is bounded by

||(K−KM)K s|| ≤ ψ(ν)
M S2M−ν , (4.4.20)

in which (cf. (3.2.18))

SM ≡ max
x,y∈[−1,1]

|SM(x, y)| (4.4.21)

where

SM(x, y) ≡
∂ M

∂yM

(
K(x, y)

∫ 1

−1

K(y, z) s(z) dz

)
. (4.4.22)

Therefore, for sufficiently large M , provided S2M−ν ∼ o(M2M), (4.4.20) reveals that

||(K−KM)K|| = O(ϵ). (4.4.23)

Sometimes this condition is not met: for example, for the Runge-type kernel

K(x, y) =
y − x

1 + (α x)2
, (4.4.24)

the norm of successive derivatives increases rapidly (see (2.5.4)–(2.5.5)). Despite

this divergence, (4.4.23) holds since [10, Eq. 4.1.19] states that ||(K−KM)K|| → 0

as M → ∞, provided K(x, y) is continuous. That is, the right-hand side of (4.4.20)

may diverge whilst the left-hand side converges; this is a result of SM(x, y) being

maximised over all y ∈ [−1, 1] within SM whilst the true error ||(K−KM)K s|| is
given by some unknown intermediate y = ξ ∈ [−1, 1], as given in (3.2.13). Hence

(4.4.16)–(4.4.23) yield

FM = 1 +
|λ| ||(I− λKM)−1 q|| ||K r||

||q|| ||r|| +O(ϵ), M → ∞. (4.4.25)

Therefore, for appropriate near-suprema functions q and r, the computable leading-

order bound FM is

FM = 1 +
|λ| ||QM || ||K r||

||q|| ||r||
, (4.4.26)

wherein QM , the solution of

QM − λKM QM = q, (4.4.27)

can be found via the CNM, i.e. uM and f are replaced by QM and q respectively in

(4.3.8)–(4.3.10).
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It remains to choose suitable norm-maximising functions q and r. The norm

||K r|| is considered first; this term results from approximating ||K|| in (4.4.14). The

norm ||K|| has previously been defined [10, Eq. 1.2.21] as

||K|| = max
x∈[−1,1]

∫ 1

−1

|K(x, y)| dy (4.4.28)

which differs from the standard form

||K|| ≈ ||K 1||
1

= max
x∈[−1,1]

∣∣∣∣

∫ 1

−1

K(x, y) dy

∣∣∣∣ . (4.4.29)

The definition (4.4.28) is therefore based on the assumption that r = 1 and also

gives a looser bound than (4.4.29) due to the modulus signs being on the integrand

rather than the integral. Thus motivated, the ratio ||K r|| / ||r|| is computed using

r = 1, which is compared to alternative choices of readily available functions r = f

and r = uM in Table 4.3 for the four test problems outlined in Table 4.2. In the

following results, the norms ||K r|| in (4.4.26) have been computed using the standard

“external” form

||K r|| = max
x∈[−1,1]

∣∣∣∣

∫ 1

−1

K(x, y) r(y) dy

∣∣∣∣ , (4.4.30)

rather than an “internal” form suggested by (4.4.28).

Problem r = 1 r = f r = u10 r = u15 r = u20

1 10.00 1.245 3.318 3.318 3.318

2 58.00 10.77 6.470 6.560 6.547

3 4.000 1.000 0.6250 0.6250 0.6250

4 8.000 0.04385 0.1739 0.1765 0.1765

Table 4.3: Comparison of the magnitude of ||K r|| / ||r|| computed using trial func-

tions r = 1, r = f and r = uM , computed using Gauss-Legendre nodes, for

M = 10, 15, 20. For all problems ||K r|| / ||r|| is maximised using r = 1.

Table 4.3 shows that ||K r|| / ||r|| is maximised for all four test problems when

r = 1 and so this choice of r is used in the error factor FM in (4.4.26); in this case,

||K|| is computed by (4.4.29) directly.

The remaining unknown norm ||QM || ≡ ||(I− λKM)−1 q|| in (4.4.26) is approxi-

mated in a similar way. The M-dependent ratio ||QM || / ||q|| is computed using q = 1,
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q = f and q = uM for the four test problems outlined in Table 4.2. Note that

when q = f , (4.3.6) and (4.4.27) are equivalent and so QM = uM . The computed

ratios ||QM || / ||q|| for various functions q, using Gauss-Legendre nodes, i.e. ν = 0,

are presented in Table 4.4 for M = 10, 15, 20; results for ν = 1, 2 are qualitatively

similar.

M = 10 M = 15 M = 20

Problem q = 1 q = f q = uM q = 1 q = f q = uM q = 1 q = f q = uM

1 3.500 0.9378 0.9048 3.500 0.9378 0.9048 3.500 0.9378 0.9048

2 2.162 0.9132 0.9642 2.162 0.9148 0.9652 2.162 0.9146 0.9651

3 1.581 0.8889 0.9306 1.581 0.8889 0.9306 1.581 0.8889 0.9306

4 9.286 0.9586 1.167 9.286 0.9581 1.169 9.286 0.9581 1.169

Table 4.4: Comparison of the magnitude of ||QM || / ||q|| computed via (4.4.27) and

the CNM using Gauss-Legendre nodes, for various choices of q. For all problems,

||QM || / ||q|| is maximised using q = 1; the dependence on M is moreover observed to

be minimal.

Table 4.4 shows that ||QM || / ||q|| converges with increasing M for a given q, al-

though the change withM is minimal. It is also evident that ||QM || / ||q|| is maximised

when q = 1 therefore this is henceforth used within the error factor FM .

Since Tables 4.3 and 4.4 have shown q = 1 and r = 1 are suitable bound-

maximising functions to use within the error factor FM , (4.4.26) becomes

FM = 1 + |λ| ||QM || ||K (1)|| , (4.4.31)

wherein QM is the solution of

QM − λKM QM = 1. (4.4.32)

The theoretical bound (4.4.13) for the CNM has therefore been developed into the

computable bound

||u− uM || ≤ FM ||uM − λK uM − f || , (4.4.33)

wherein FM is computed by (4.4.31) and the term it multiplies can be computed

directly from only the numerical solution uM . The advantage of (4.4.33) over existing

error bounds is that it does not depend upon the exact solution u, which is the very

objective of error estimates.
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4.4.2 Interpolated Nyström Method

The error analysis for the INM follows in a similar way to that of the CNM. Sub-

traction of the INM numerical solution (4.3.32) from the exact solution (4.3.2) gives

the error as

u− ũM,N = λ (K u−KM LN ũM,N) (4.4.34)

which, by the addition of λ (KM u−KM u+KM LN u−KM LN u) = 0, can be rewritten

as

u− ũM,N = λKM LN (u− ũM,N) + λKM (I− LN) u+ λ (K−KM) u. (4.4.35)

The quadrature error (K−KM) u is given by (4.4.3), whilst the action of the operator

KM in (4.3.4) acting upon the Lagrange interpolation error (2.4.1) is given by

KM (I− LN) u (x) =
u(N)(ξ)

N !

M∑

j=1

wj,M K(x, yj,M) pN(yj,M), ξ ∈ (−1, 1). (4.4.36)

The action of the combined operator KM LN acting upon the error u− ũM,N is given

by (4.3.30) as

KM LN (u− ũM,N) (x) =
M∑

j=1

N∑

k=1

wj,M K(x, yj,M)Lk,N(yj,M)
(
u(xk,N)− ũM,N(xk,N)

)
.

(4.4.37)

Therefore, by (4.4.3), (4.4.36) and (4.4.37), the INM error (4.4.35) can be written,

as seen in (4.3.52), as

u(x)− ũM,N(x) =
M∑

j=1

Ãj,M,NK(x, yj,M) + B̃M

∂ 2M−ν

∂y 2M−ν

[
K(x, y)u(y)

]

y=ξ
, (4.4.38)

wherein, for j = 1(1)M ,

Ãj,M,N = λwj,M

(
u(N)(ξ) pN(yj,M)

N !
+

N∑

k=1

Lk,N(yj,M)
(
u(xk,N)− ũM,N(xk,N)

)
)

(4.4.39)

and

B̃M = λ (−1)ν(ν−1)/2 ψ(ν)
M , (4.4.40)
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which shows that the x component of the kernel K(x, y) fully determines the x

dependence of the INM error. Rearranging (4.4.35) yields the error as

u− ũM,N = λ (I− λKM LN)
−1
(
KM (I− LN) u+ (K−KM) u

)
, (4.4.41)

with bound given by

||u− ũM,N|| ≤ |λ|
∣∣∣∣(I− λKM LN)

−1
∣∣∣∣ ||KM (I− LN) u+ (K−KM) u|| , (4.4.42)

which simplifies to

||u− ũM,N|| ≤ |λ|
∣∣∣∣(I− λKM LN)

−1
∣∣∣∣ ||(K−KM LN) u|| . (4.4.43)

To develop a different bound to (4.4.43) that is independent of the exact solution

u, λ (K ũM,N −K ũM,N +KM ũM,N −KM ũM,N) = 0 is added to (4.4.34) to give

u− ũM,N = λK (u− ũM,N) + λ (K−KM) ũM,N + λKM (I− LN) ũM,N (4.4.44)

which can be rearranged to

u− ũM,N = λ (I− λK)−1
(
(K−KM) ũM,N +KM (I− LN) ũM,N

)
. (4.4.45)

Therefore (4.4.45) yields the INM error bound

||u− ũM,N|| ≤ |λ|
∣∣∣∣(I− λK)−1

∣∣∣∣ ||(K−KM) ũM,N +KM (I− LN) ũM,N|| (4.4.46)

which simplifies to

||u− ũM,N|| ≤ |λ|
∣∣∣∣(I− λK)−1

∣∣∣∣ ||(K−KM LN) ũM,N|| (4.4.47)

which, by (4.3.32), is equivalently

||u− ũM,N|| ≤
∣∣∣∣(I− λK)−1

∣∣∣∣ ||ũM,N − λK ũM,N − f || . (4.4.48)

The bound (4.4.48) avoids computation of KM LN ũM,N and is interpreted in the

same way as the CNM bound (4.4.13); that is, by comparison with (4.3.2), the INM

error is directly proportional to the degree to which ũM,N fails to satisfy the exact

FIE. The bound (4.4.46) is used in the asymptotic analysis of Section 4.4.3.
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The theoretical term ||(I− λK)−1|| within (4.4.46)–(4.4.48) is bounded by F̃M,N,

which is found by replacing KM with KM LN throughout (4.4.14) to yield

∣∣∣∣(I− λK)−1
∣∣∣∣ ≤ F̃M,N ≡ 1 + |λ| ||(I− λKM LN)−1|| ||K||

1− λ2 ||(I− λKM LN)−1|| ||(K−KM LN)K|| . (4.4.49)

The development of the theoretical bound (4.4.49) into a computable quantity is

analogous to the analysis shown for the CNM in Section 4.4.1 for the bound (4.4.31).

Therefore F̃M,N is computed as

F̃M,N = 1 + |λ|
∣∣∣
∣∣∣Q̃M ,N

∣∣∣
∣∣∣ ||K (1)|| , (4.4.50)

wherein Q̃M,N is the solution of

Q̃M ,N − λKM LN Q̃M,N = 1 (4.4.51)

which is found via the INM, i.e. ũM,N and f are replaced by Q̃M ,N and 1 respectively

within (4.3.33)–(4.3.35). The derivation of (4.4.50) from (4.4.49) is based upon the

assumption that the sub-terms within (4.4.49) can be approximated in the same way

as the sub-terms in (4.4.14) since, by (2.4.2), KM u ≈ KM LN u for all continuously

differentiable functions u ∈ [−1, 1].

Therefore the theoretical bound (4.4.48) for the INM has been developed into

the computable bound

||u− ũM,N|| ≤ F̃M,N ||ũM,N − λK ũM,N − f || (4.4.52)

in which F̃M,N is computed by (4.4.50); this bound is computable using the numerical

solution ũM,N and so it requires no knowledge of the exact solution u.

4.4.3 Asymptotic Convergence Rates

Although (4.4.33) and (4.4.52) are used to bound the CNM and INM errors respec-

tively, the bounds (4.4.12) and (4.4.46) can be used to estimate the CNM and INM

convergence rates as M,N → ∞. An asymptotic convergence rate for the CNM is

derived from (4.4.12) by noting that, via (3.2.17), the quadrature error term satisfies

||(K−KM) uM|| ≤ ψ(ν)
M K2M−ν , (4.4.53)
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wherein

KM ≡ max
x,y∈[−1,1]

∣∣∣∣
∂ M

∂yM

(
K(x, y) uM(y)

)∣∣∣∣ . (4.4.54)

Therefore comparison of (4.4.12) with (4.4.53) yields the asymptotic CNM error-

convergence rate

||u− uM || ∼ ψ(ν)
M K2M−ν , M → ∞ (4.4.55)

which, by (3.2.20), is convergent provided K2M−ν ∼ o(M2M).

An asymptotic convergence rate for the INM is derived from (4.4.46) by first

defining δM,N as

δM ,N ≡ ||(K−KM) ũM,N +KM (I− LN) ũM,N|| (4.4.56)

which is bounded by

δM ,N ≤ ||(K−KM) ũM,N||+ ||KM (I− LN) ũM,N|| . (4.4.57)

The first term on the right-hand side of (4.4.57) is bounded (cf. (4.4.53)) by

||(K−KM) ũM,N|| ≤ ψ(ν)
M K̃2M−ν (4.4.58)

in which

K̃M ≡ max
x,y∈[−1,1]

∣∣∣∣
∂M

∂yM

(
K(x, y) ũM,N(y)

)∣∣∣∣ . (4.4.59)

The second term on the right-hand side of (4.4.57) is bounded by

||KM (I− LN) ũM,N|| ≤ ||KM || ||(I− LN) ũM,N|| , (4.4.60)

wherein (I− LN) ũM,N is the Lagrange interpolation error (cf. (2.4.1)) and

||KM || ≡ sup
t∈[−1,1]

||KM t||
||t|| =

||KM t||
||t|| + α̃ ϵ, (4.4.61)

where α̃ ∈ R is an O(1) constant, 0 < ϵ ≪ 1, and t is a norm-maximising function.

Following the approach in Section 4.4.1 for finding the norm-maximising functions

q and r in (4.4.17) and (4.4.18) respectively, ||KM t|| / ||t|| in (4.4.61) is found to be

maximised when t = 1, so that ||KM || is computed by

||KM || = max
x∈[−1,1]

∣∣∣∣∣

M∑

j=1

wj,M K(x, yj,M)

∣∣∣∣∣ . (4.4.62)
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This again differs, see (4.4.28)–(4.4.29), from the existing definition [10, Eq. 4.1.11]

||KM || ≡ max
x∈[−1,1]

M∑

j=1

|wj,M K(x, yj,M)| , (4.4.63)

in which the modulus signs are within the sum rather than outside it. Substitution

of (4.4.62) and the Lagrange interpolation bound (2.4.68) into (4.4.60) then yields

the bound

||KM (I− LN) ũM,N|| ≤ σN ||KM (1)||
∣∣∣
∣∣∣ũ(N)

M,N

∣∣∣
∣∣∣ (4.4.64)

wherein the node dependent σN is given explicitly in Table 2.1. Combining (4.4.57),

(4.4.58) and (4.4.64) gives the bound on δM ,N in (4.4.56) as

δM,N ≤ ψ(ν)
M K̃2M−ν + σN ||KM (1)||

∣∣∣
∣∣∣ũ(N)

M,N

∣∣∣
∣∣∣ . (4.4.65)

By (3.2.20) ψ(ν)
M has a leading-order term of

(
e

4M

)2M
and, by Table 2.1, σN has a

leading-order term of
(

e
2N

)N
(or
(

2
N−1

)N
for the regular nodes). Therefore, provided

K̃2M−ν ∼ o(M2M) and
∣∣∣
∣∣∣ũ(N)

M,N

∣∣∣
∣∣∣ ∼ o(NN), M,N → ∞, (4.4.66)

the asymptotic convergence of δM,N is given by

δM ,N ∼

⎧
⎪⎨

⎪⎩

ψ(ν)
M K̃2M−ν , M < N

2 ,

σN

∣∣∣
∣∣∣ũ(N)

M,N

∣∣∣
∣∣∣ , M > N

2

(4.4.67)

which, by comparison with (4.4.46) and (4.4.56), yields the asymptotic INM error-

convergence rate

||u− ũM,N|| ∼

⎧
⎪⎨

⎪⎩

ψ(ν)
M K̃2M−ν , M < N

2 ,

σN

∣∣∣
∣∣∣ũ(N)

M,N

∣∣∣
∣∣∣ , M > N

2 .
(4.4.68)

The dependence upon M and N of the INM convergence shown by (4.4.68)

corroborates the observations from Figure 4.3.5 that the INM error is predominantly

dependent upon M for M < N
2 and upon N for M > N

2 , provided the conditions in

(4.4.66) are not violated. Furthermore, setting M = N in both the CNM and INM

convergence rates, (4.4.55) and (4.4.68) respectively, yields

||u− uN|| ≪ ||u− ũN,N|| (4.4.69)
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since ψ(ν)
N ≪ σN. The norms in (4.4.66) can be approximated by

K̃2M−ν ≈
∣∣∣∣(K u)(2M−ν)

∣∣∣∣ and
∣∣∣
∣∣∣ũ(N)

M,N

∣∣∣
∣∣∣ ≈

∣∣∣∣u(N)
∣∣∣∣ , (4.4.70)

wherein the bracketed superscripts denote the order of partial differentiation with re-

spect to y. Using the approximations in (4.4.70) it is possible to determine whether

the conditions in (4.4.66) have been met and hence determine whether (4.4.67)–

(4.4.69) hold. Table 4.5 shows the leading-order asymptotic limits of
∣∣∣∣(K u)(2M)

∣∣∣∣ /M2M

and
∣∣∣∣u(N)

∣∣∣∣ /NN as M,N → ∞ for the four test problems outlined in Table 4.2.

Without loss of generality ν = 0 has been fixed in
∣∣∣∣(K u)(2M−ν)

∣∣∣∣ since this does not

affect the ratio as M → ∞.

Problem
∣∣∣∣(K u)(2M)

∣∣∣∣ /M2M
∣∣∣∣u(N)

∣∣∣∣ /NN

1 10M/M2M (1/N)N

2 2
√
πM (10/e)2M

√
2 πN (5/e)N

3 (M + 8) e12 (12/M)2M e12 (12/N)N

4 (2M)5 (10/M)2M (10/N)N

Table 4.5: Leading-order asymptotic limits as M,N → ∞ of the problem-specific

ratios determining, via the approximations in (4.4.70), whether or not the conditions

in (4.4.66) are met.

The ratios in Table 4.5 for problems 1, 3 and 4 tend to 0 as M,N → ∞. There-

fore, for these problems, the conditions (4.4.66) are met and so (4.4.67)–(4.4.69)

hold. Hence, by (4.4.69), when M = N the INM errors in problems 1, 3 and 4

are much greater than those of the CNM, as shown in Figure 4.3.1 (a), (c) and

(d). In contrast, both ratios for problem 2 are divergent with increasing M and N

and so (4.4.68) does not hold. Figure 4.3.1 (b) shows that the CNM and INM are

convergent with increasing M = N , with the exception of the INM on the regular

nodes, which demonstrates that (4.4.55) and (4.4.65) are inaccurate over-estimates

of the true errors. This is a result of the terms in (4.4.54), (4.4.59) and
∣∣∣
∣∣∣ũ(N)

M,N

∣∣∣
∣∣∣

in (4.4.64) being maximised over y ∈ [−1, 1] when in practice, it is some unknown

intermediate value y = ξ ∈ [−1, 1] that gives the true error. In contrast to the other

three problems, the problem 2 ratios satisfy
∣∣∣∣(K u)(2M)

∣∣∣∣ /M2M ≫
∣∣∣∣u(N)

∣∣∣∣ /NN when

M = N , hence the problem 2 INM error is dictated by the quadrature error. For
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this reason the problem 2 CNM and INM errors converge at the same rate, as seen

in Figure 4.3.1 (b).

4.4.4 Numerical Results

The CNM bound (4.4.33) and INM bound (4.4.52) are tested on the four problems

summarised in Table 4.2. Figure 4.4.1 presents the newly predicted bounds, denoted

by bN; the true CNM errors eN = ||u− uN|| using different quadrature-node distribu-

tions; and the true INM errors eN = ||u− ũN,N|| using Gauss-Legendre quadrature

and different interpolation-node distributions.

Figure 4.4.1 shows that the error bounds (4.4.33) and (4.4.52) yield spectrally

accurate approximations of the true errors for all four problems, three of which are

designed to be challenging to approximation methods; the tightest bounds are ob-

served for the non-challenging problem 1. For each problem the bounds converge

at the same rate as the computational errors and therefore are predicted to provide

accurate approximations of the true error as N → ∞. The CNM and INM conver-

gence rates (4.4.55) and (4.4.68) can also be used to predict the errors as N → ∞;

the errors presented in Figure 4.4.1 are compared to these asymptotic convergence

rates in Figure 4.4.2.

It is evident from Figure 4.4.2 that (4.4.55) and (4.4.68) accurately predict the

convergence rates of the errors for problems 1, 3 and 4 as N → ∞. For problem 2

the predicted rates are divergent and hence fail to portray the convergent errors, as

discussed in the text following Table 4.5.

Problems 3 and 4 have been designed to demonstrate the accuracy of the CNM,

the INM, and both their error predictions on problems whose solutions are chal-

lenging to approximate. Modified problems 3 and 4 with solutions u(x) = eβx and

u(x) = sin βx respectively are now considered to determine the accuracy of the

CNM, INM and their bounds as β increases, yielding steeper and more oscillatory

solutions. Figure 4.4.3 shows the CNM and INM errors and bounds for M = N = 15

and M = N = 30 with varying β; since Figure 4.4.1 has demonstrated that results

are qualitatively similar using each of the collocation-node sets, for simplicity only

the CNM Gauss-Legendre and INM Chebyshev results are displayed.

Figure 4.4.3 shows that the accuracy of the CNM and INM is reduced when

approximating steeper and more oscillatory solutions; however, despite this, the
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Figure 4.4.1: Semilog plots of the true, computational CNM and INM errors

eN = ||u− uN|| and eN = ||u− ũN,N|| with their respective newly predicted bounds

bN computed using (4.4.33) and (4.4.52) for problems (a) 1 (“smooth”), (b) 2

(“Runge”), (c) 3 (“steep”) and (d) 4 (“oscillatory”) collocated on a variety of node

sets.
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Figure 4.4.2: Semilog plots of the true, computational CNM and INM errors eN =

||u− uN|| and eN = ||u− ũN,N|| with newly predicted convergence rates (4.4.55) and

(4.4.68), scaled by appropriate constants, for problems (a) 1 (“smooth”), (b) 2

(“Runge”), (c) 3 (“steep”) and (d) 4 (“oscillatory”) collocated on a variety of node

sets.
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Figure 4.4.3: Semilog plots of the true, computational CNM and INM errors eN =

||u− uN|| and eN = ||u− ũN,N|| with respective bounds bN for N = 15 and N =

30 computed using (4.4.33) and (4.4.52) for (a) modified problem 3 with solution

u(x) = eβx and (b) modified problem 4 with solution u(x) = sin βx, in which β is

varied. The observed “elbow” in the CNM results for N = 30 at β = 7 (left) and

β = 5 (right) is due to rounding errors for the 50-digits arithmetic used.

error bounds remain accurate approximations of the true errors. The loss of accuracy

of the CNM and INM as β increases is not a limitation since the accuracy can be

improved simply by increasing M and N .

4.5 Summary

In this chapter, methods have been developed for solving integral equations both

analytically and numerically. The well-known Nyström method has been analysed

and extended by incorporating the interpolation techniques introduced in Chapter 2.

Both Lagrange and barycentric interpolation have been considered within the new

interpolated Nyström method; however, despite offering a computational advantage

in terms of workload, the barycentric implementation is restricted in terms of the

freedom of nodes on which it can be based. The interpolated Nyström method has
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been developed in preparation for an extension, in Chapter 5, for solving integro-

differential equations, in which the error can be minimised by using those nodes

that minimise the differentiation error, which is orders of magnitude greater than

the Gaussian quadrature error.

The integral-equation numerical methods in this chapter have been fully vali-

dated on a diverse set of test problems, some of which were designed to be chal-

lenging, and both the classical and interpolated Nyström methods were shown to be

spectrally accurate. However, it has been shown that the accuracy of the classical

Nyström method is far superior to that of the interpolated Nyström method, since

the accuracy of the former is dictated by the error in Gaussian quadrature, and

the accuracy of the latter is dictated by the, much larger, error in Lagrange inter-

polation. Since interpolation is unavoidable in the spectral differentiation detailed

in Chapter 3, the larger errors incurred in the interpolated Nyström method are

not considered a disadvantage in its intended ultimate application: that of solving

integro-differential equations (in Chapter 5).

Novel error analyses have been developed from an existing, theoretical frame-

work for both the classical Nyström method and its new interpolated counterpart.

Specifically, the theoretical bound [60, Eq. 4.7.17b] forms the basis of new com-

putable error bounds that provide spectrally accurate approximations of the true

error on a range of qualitatively diverse problems; this contradicts the statement in

[9, p. 282] that the Nyström error is “difficult to estimate”, and the assertion in [83,

p. 188] that computable error bounds “will be difficult to evaluate in applications”.

Furthermore, the newly derived error bounds are explicitly computable using only

the numerical solution, and so require no knowledge of the exact solution. This

is a distinctive feature of the present approach since many existing Nyström error

bounds, for example [60, Eqns. 4.7.16c–4.7.16d] and [10, Eq. 4.1.33], are based upon

the exact solution, and those based on the numerical solution, for example [4, Eq.

5.15, p. 15] and [60, Eq. 4.7.17c], have never before been developed into computable

quantities.

In addition to the error bounds, asymptotic error estimates have been developed

from the interpolation and quadrature error analyses examined in Chapters 2 and 3.

The asymptotic error analysis quantifies the observed disparity between the errors

of the classical and interpolated Nyström methods.
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Chapter 5

Integro-Differential Equations

An integro-differential equation (IDE) is an equation that contains both the inte-

gral and derivative(s) of an unknown function. Due to their inherent differential

components, IDEs must be augmented by boundary conditions (BCs). As for in-

tegral equations, IDEs arise in the modelling of a wide range of physical problems

such as, inter alia, neural networks [73]; the dynamics of an elastic aircraft [71]; op-

tion pricing [36]; the response of a population of tumor cells to periodic treatment

with chemotherapy [74]; the spread of diseases [94]; and glucose-insulin dynamics of

diabetes [90].

Due to the many applications of IDEs, there has been much research into their

solution, which most commonly is determined numerically due to the complexity

invited by the modelling of realistic applications. The diverse range of numerical

methods for obtaining the approximate solution of an IDE includes Tau methods

with Chebyshev and Legendre bases [69]; approximation in terms of Taylor polyno-

mials [137]; piecewise-linear and polynomial collocation using Gaussian quadrature

on an infinite interval of integration [73]; Legendre-polynomial solutions whose coef-

ficients are found via a Legendre collocation matrix method [138]; Legendre spectral

collocation using a combination of Gaussian quadrature and Lagrange interpolation

[108]; use of sine-cosine wavelets to reduce an IDE to a system of algebraic equations

[121]; a Galerkin scheme [12] that is a generalisation of IE methods [43, 44]; and a

Sinc method that reformulates an IDE into a discrete system [106].

Despite the considerable literature devoted to the numerical solution of IDEs,

the development of corresponding error analyses continues to be relatively rare. For

example, in the aforementioned numerical approaches, only [69, 138, 12] contain a
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brief discussion of errors, not a single one of which offer a method for obtaining

spectrally accurate computable error bounds. In [69] the error estimate is itself sub-

ject to an unquantified error; in [138] the error is estimated throughout the domain

but only bounded at the Legendre collocation nodes; and, in [12] it is stated that

“for large values of λ [the parameter that multiplies the integral term] the computed

error is sometimes larger than the estimated error”.

Accordingly, the aim of this chapter is to develop not only spectrally accurate

numerical methods for approximating the solution of an IDE, but also spectrally

accurate error predictions for its numerical solution that are explicitly computable

in the absence of an exact solution. Since error bounds of this form are, as discussed

above, absent from the existing literature this is a unique and distinctive feature of

the present work.

In this thesis, only Fredholm Integro-Differential Equations (FIDEs) are consid-

ered; these are introduced in Section 5.1. The analytical solution of an FIDE with a

degenerate kernel is then considered in Section 5.2; this follows the integral-equation

approach of Section 4.2. In Section 5.3, both the classical and interpolated Nyström

methods, introduced in Sections 4.3.1 and 4.3.2 respectively, are extended by incor-

porating the spectral-differentiation methods outlined in Section 2.2 and the result-

ing differentiation matrices presented in Section 3.1. Two distinct sub-procedures

are considered for implementing the associated FIDE boundary condition, and the

resulting errors are compared. In the error analyses of Section 5.4, error bounds and

asymptotic error estimates are developed, for both Nyström-type methods, that are

computable using only the numerical solution. This enables the accuracy of the

numerical solution to be quantified in the absence of an exact solution.

An alternative numerical method for approximating the solution of FIDEs is

developed in Section 5.5, in which FIDEs are first converted into hybrid Volterra-

Fredholm integral equations (VFIEs) following the approach in [87]. This procedure

is expected to improve upon the accuracy achieved in Section 5.3 by circumventing

the need for the ill-conditioned numerical differentiation matrices, which are dis-

cussed in Section 3.1. The solution of VFIEs can be approximated in many ways:

for example, by collocation and Galerkin methods [64]; moving-least-square methods

and Chebyshev polynomials [84]; Taylor-expansion methods [34]; shifted Legendre

polynomials [97]; and iterative methods [25]. The present approach uses a novel
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method to solve the resulting VFIE that employs a combination of Lagrange in-

terpolation and Gaussian quadrature, thereby building on the methods introduced

in Sections 2.1 and 3.2 respectively. By incorporating these spectrally accurate ap-

proximation techniques into the VFIE solution, this new approach will dramatically

improve upon the accuracy achieved in [87], in which the VFIE is solved to only

quadratic order in the number N of Simpson’s-rule panels used. The recovery of an

approximate FIDE solution from the approximate VFIE solution is then discussed.

In the error analysis that follows, error bounds and asymptotic error estimates are

derived for the error in the numerical FIDE solution that are explicitly computable

using only the numerical VFIE solution, and so require no knowledge of the exact

solution.

All of the newly developed numerical methods and error bounds are tested and

validated on a range of test problems with qualitatively distinct solutions. The

errors incurred in the Nyström-type method and the VFIE reformulation method,

presented in Sections 5.3 and 5.5 respectively, are compared both theoretically and

numerically, and the advantages of each method are discussed.

5.1 Fredholm Integro-Differential Equations

Integro-differential equations can be classified in a similar way to integral equations;

IDEs with a variable limit of integration are known as Volterra IDEs and those with

fixed limits of integration are known as Fredholm IDEs. An IDE is said to be of nth

order when the highest derivative of its unknown function is of order n.

In this Chapter, only Fredholm first-order integro-differential equations of the

second kind (hereafter IDEs) are considered: when scaled onto the interval [−1, 1],

these have the canonical form

u(x)− µ(x)
du

dx
− λ

∫ 1

−1

K(x, y) u(y) dy = f(x), x ∈ [−1, 1], (5.1.1)

in which the kernel K : [−1, 1] ×[−1, 1] → R, coefficient function µ : [−1, 1] →
R, source function f : [−1, 1] → R and constant λ ∈ R are known and u(x) is

the unknown function to be determined on [−1, 1]. Additionally, IDE (5.1.1) is

augmented by the boundary condition (BC)

u(ξ) = ζ , (5.1.2)
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which contains known constants ξ ∈ [−1, 1] and ζ ∈ R. The corresponding symbolic

form of (5.1.1) is

u− µD u− λK u = f, (5.1.3)

wherein the operators D and K are defined by (2.2.1) and (4.3.3) respectively. It is

convenient to define the linear operator A as

A ≡ µD+ λK (5.1.4)

so that the IDE (5.1.3) can be written in the more succinct form

u−Au = f. (5.1.5)

As discussed above, many problems arising in engineering, biology and medicine

can be modelled by an equation of this form [23]. In addition to these, the most

well-known incarnation of a Fredholm IDE is the neutron-transport equation of

particle physics [3, 111], in which u(x) is the angular flux and K(x, y) the angular

distribution of scattered neutrons [122].

5.2 Degenerate Kernel: Analytical Solution

In the specific case that the coefficient function µ(x) is a constant, i.e. µ(x) = µ,

and K(x, y) is the simplest degenerate kernel of the form K(x, y) = P (x)Q(y), the

IDE (5.1.1) can be solved analytically following a similar method to that shown in

Section 4.2. The constant C is first defined as

C ≡
∫ 1

−1

Q(y) u(y) dy, (5.2.1)

using which IDE (5.1.1) can then be written as

du

dx
− 1

µ
u(x) = −1

µ

(
f(x) + λP (x)C

)
. (5.2.2)

When multiplied by the integrating factor e−x/µ, (5.2.2) becomes

d

dx

(
e−x/µ u(x)

)
= −e−x/µ

µ

(
f(x) + λP (x)C

)
, (5.2.3)
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5.2 Degenerate Kernel: Analytical Solution

integration of which gives the solution

u(x) = ex/µ
(
α− 1

µ

∫ x

−1

e−t/µ
(
f(t) + λP (t)C

)
dt

)
, (5.2.4)

wherein α is a constant of integration. Equivalently, (5.2.4) can be written as

u(x) = ex/µ
(
α− I(x)

µ

)
, (5.2.5)

in which I(x) is defined as the integral

I(x) ≡
∫ x

−1

e−t/µ g(t) dt (5.2.6)

and

g(t) = f(t) + λP (t)C. (5.2.7)

In certain cases it will be possible to evaluate I(x) exactly so that (5.2.5) yields the

exact IDE solution, in which α is determined by the BC in (5.1.2) and C is found

from substitution of (5.2.5) into (5.2.1). However, in general I(x) must be approxi-

mated, and methods are now presented for approximating this integral, whereafter

an approximate semi-analytical solution of the IDE can be constructed.

5.2.1 Integration by parts: method 1

Integrating (5.2.6) by parts gives

I(x) =
[
−µ e−t/µ g(t)

]x
−1

+ µ

∫ x

−1

e−t/µ g′(t) dt

=
[
−µ e−t/µ g(t)− µ2 e−t/µg′(t)

]x
−1

+ µ2

∫ x

−1

e−t/µ g′′(t) dt

=
[
−µ e−t/µ g(t)− µ2 e−t/µg′(t)− µ3 e−t/µ g′′(t)

]x
−1

+ µ3

∫ x

−1

e−t/µ g(3)(t) dt,

(5.2.8)

continuation of which process yields

I(x) = β − e−x/µ
∞∑

k=0

µk+1 g(k)(x), (5.2.9)
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wherein g(k)(x) refers to the kth derivative of g(x) and

β = e1/µ
∞∑

k=0

µk+1 g(k)(−1). (5.2.10)

The series in (5.2.9) and (5.2.10) are uniformly convergent provided, via the Weier-

strass M-test [5, p. 278] and ratio test [5, p. 264],

|µ| < lim
k→∞

∣∣∣∣g(k)
∣∣∣∣

||g(k+1)|| , (5.2.11)

in which case (5.2.9) can be substituted into (5.2.5) to yield

u(x) = γ ex/µ +
∞∑

k=0

µk g(k)(x), (5.2.12)

wherein γ = α− β/µ. Setting x = ξ in (5.2.12) yields, via the BC (5.1.2),

γ = e−ξ/µ

(
ζ −

∞∑

k=0

µk g(k)(ξ)

)
(5.2.13)

which, when substituted into (5.2.12), yields the IDE solution

u(x) =

(
ζ −

∞∑

k=0

µk g(k)(ξ)

)
e(x−ξ)/µ +

∞∑

k=0

µk g(k)(x). (5.2.14)

Provided the convergence condition (5.2.11) holds, the IDE solution can be found

explicitly from (5.2.14). To find the constant C in g(x), (5.2.14) is substituted into

(5.2.1) and g(x) is expanded using (5.2.7) to give

C =

(

ζ −
∞∑

k=0

µk
(
f (k)(ξ) + λC P (k)(ξ)

))

σ +
∞∑

k=0

µk
(
φk + λC ψk

)
, (5.2.15)

wherein

φk =

∫ 1

−1

Q(y) f (k)(y) dy, ψk =

∫ 1

−1

Q(y)P (k)(y) dy, k ≥0, (5.2.16)

and

σ =

∫ 1

−1

Q(y) e(y−ξ)/µ dy. (5.2.17)
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Rearranging (5.2.15) then gives

C =

σ ζ +
∞∑

k=0

µk
(
φk − σ f (k)(ξ)

)

1− λ
∞∑

k=0

µk
(
ψk − σ P (k)(ξ)

) . (5.2.18)

Provided the denominator of (5.2.18) is non-zero, (5.2.7), (5.2.14) and (5.2.18) to-

gether give the unique IDE solution. The solution (5.2.14) is made up of two parts:

the (separable) particular integral

∞∑

k=0

µk g(k)(x), (5.2.19)

which by itself will satisfy the ODE (5.2.2); and the (separable) complementary

function (
ζ −

∞∑

k=0

µk g(k)(ξ)

)
e(x−ξ)/µ, (5.2.20)

which satisfies the homogeneous version of the ODE (5.2.2). However, since both

the complementary function and the particular integral are contained within C in

(5.2.18), the particular integral (5.2.19) will not alone satisfy the IDE (5.1.1).

If the functions f(x), P (x) and Q(y) are finitely differentiable, then the infinite

sums within u(x) and C, (5.2.14) and (5.2.18) respectively, will terminate for some

m < ∞. However, if these functions are infinitely differentiable, then provided

the convergence condition (5.2.11) holds, the solution u(x) can be approximated by

uM(x), in which the latter terminates each of the infinite sums at k = M . The

approximate IDE solution is therefore given by

uM(x) =

(
ζ −

M∑

k=0

µk g(k)M (ξ)

)
e(x−ξ)/µ +

M∑

k=0

µk g(k)M (x), (5.2.21)

wherein

gM(x) = f(x) + λP (x)

σ ζ +
M∑

k=0

µk
(
φk − σ f (k)(ξ)

)

1− λ
M∑

k=0

µk
(
ψk − σ P (k)(ξ)

) , (5.2.22)
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which converges to the exact solution u(x) provided (5.2.11) holds. Since (5.2.11)

provides an upper limit on |µ| then, for fixed functions P (x), Q(y) and f(x), the

solution uM(x) will be accurate only for sufficiently small |µ|.
An alternative integration by parts method is now presented for IDEs whose

components do not satisfy the condition (5.2.11).

5.2.2 Integration by parts: method 2

In this method, I(x) in (5.2.6) is again integrated by parts; however, in each step,

e−x/µ is now differentiated and g(x) integrated. Let

G0(x) = g(x) and Gk+1(x) =

∫ x

−1

Gk(t) dt, k ≥0, (5.2.23)

so that Gk(x) is g(x) integrated k times, then I(x) is evaluated as

I(x) = e−x/µG1(x) +
1

µ

∫ x

−1

e−t/µ G1(t) dt

= e−x/µG1(x) +
1

µ
e−x/µG2(x) +

1

µ2

∫ x

−1

e−t/µ G2(t) dt

= e−x/µG1(x) +
1

µ
e−x/µG2(x) +

1

µ2
e−x/µG3(x) +

1

µ3

∫ x

−x

e−t/µ G3(t)dt.

(5.2.24)

Continuing to integrate by parts then yields

I(x) =
∞∑

k=1

µ1−k e−x/µGk(x), (5.2.25)

which is uniformly convergent provided

lim
k→∞

||Gk+1||
||Gk||

< |µ|. (5.2.26)

Let the functions Fk(x), Pk(x) and Qk(x) respectively denote f(x), P (x) and Q(x)

integrated k times such that, for k ≥0,

Fk+1(x) =

∫ x

−1

Fk(t) dt, F0(x) = f(x), (5.2.27)
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Pk+1(x) =

∫ x

−1

Pk(t) dt, P0(x) = P (x), (5.2.28)

and

Qk+1(x) =

∫ x

−1

Qk(t) dt, Q0(x) = Q(x). (5.2.29)

Additionally, let

φ̃k =

∫ 1

−1

Q(y)Fk(y) dy, ψ̃k =

∫ 1

−1

Q(y)Pk(y) dy, k ≥0, (5.2.30)

and let σ be defined as in (5.2.17). Then, using (5.2.27)–(5.2.30), an approximate

semi-analytical solution uM(x) is found from (5.2.25) following a similar method to

that shown in Section 5.2.1. Provided the convergence condition (5.2.26) holds, then

the approximate solution uM(x) is given by

uM(x) =

(
ζ +

M∑

k=1

µ−k Gk,M(ξ)

)
e(x−ξ)/µ −

M∑

k=1

µ−k Gk,M(x), (5.2.31)

in which

Gk+1,M(x) =

∫ x

−1

Gk,M(t) dt, k ≥0, (5.2.32)

and

G0,M(x) = f(x) + λP (x)

σ̃M ζ +
M∑

k=1

µ−k
(
σ̃M Fk(ξ)− φ̃k

)

1− λ
M∑

k=1

µ−k
(
σ̃M Pk(ξ)− ψ̃k

) . (5.2.33)

In contrast to the method in Section 5.2.1, the convergence condition (5.2.26) pro-

vides a lower limit on |µ|. Hence, for given functions P (x), Q(y) and f(x), the

solution uM(x) will be accurate only for sufficiently large |µ|.

5.2.3 Taylor-Series Expansion

An alternative approach is now considered in which the integral I(x) in (5.2.6) is

approximated using a Taylor-series expansion. The Taylor series for I(x) about

x = 0 is given by

I(x) =
∞∑

n=0

xn

n!
I(n)(0), (5.2.34)
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wherein I(n)(0) denotes the nth derivative of I(x) evaluated at x = 0. Differentiating

I(x) in (5.2.6) yields

I(1)(x) = e−x/µ g(x), (5.2.35)

I(2)(x) = −1

µ
e−x/µ g(x) + e−x/µ g ′(x) (5.2.36)

and

I(3)(x) =

(
−1

µ

)2

e−x/µ g(x)− 2

µ
e−x/µ g ′(x) + e−x/µ g ′′(x) (5.2.37)

which, when evaluated at x = 0, give

I(1)(0) = g(0), (5.2.38)

I(2)(0) = −1

µ
g(0) + g ′(0) (5.2.39)

and

I(3)(0) =

(
−1

µ

)2

g(0)− 2

µ
g ′(0) + g ′′(0). (5.2.40)

Therefore, the general expression for I(n)(0) is given by

I(n)(0) =
n−1∑

k=0

(
n− 1

k

)(
−1

µ

)n−k−1

g(k)(0), n > 0. (5.2.41)

Substituting (5.2.41) into (5.2.34) yields

I(x) = I(0) +
∞∑

n=1

n−1∑

k=0

xn

n!

(n− 1)!

k! (n− k − 1)!

(
−1

µ

)n−k−1

g(k)(0) (5.2.42)

which is convergent for x ∈ [−1, 1] provided

lim
n→∞

∣∣∣∣
I(n+1)(0)

(n+ 1) I(n)(0)

∣∣∣∣ < 1. (5.2.43)

By (5.2.41) the convergence condition (5.2.43) is equivalently

lim
n→∞

∣∣∣∣∣∣∣∣∣∣

n
n∑

k=0

(−µ)k g(k)(0)

k! (n− k)!

(n + 1)
n−1∑

k=0

(−µ)k g(k)(0)

k! (n− k − 1)!

∣∣∣∣∣∣∣∣∣∣

< |µ|, (5.2.44)
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the left-hand side of which satisfies

lim
n→∞

∣∣∣∣∣∣∣∣∣∣

n
n∑

k=0

(−µ)k g(k)(0)

k! (n− k)!

(n+ 1)
n−1∑

k=0

(−µ)k g(k)(0)

k! (n− k − 1)!

∣∣∣∣∣∣∣∣∣∣

< 1 (5.2.45)

provided

(−µ)n g(n)(0) ∼ o(nn), n → ∞. (5.2.46)

Therefore, given (5.2.46), a sufficient condition for convergence of (5.2.42) is

1 < |µ|. (5.2.47)

If (5.2.44) holds then (5.2.42) can be substituted into (5.2.5) to give the general

solution

u(x) = ex/µ
(
α̃ +

∞∑

n=1

n−1∑

k=0

xn

n k! (n− k − 1)!

(
−1

µ

)n−k

g(k)(0)

)
, (5.2.48)

wherein α̃ = α− I(0)/µ. Setting x = ξ in (5.2.48) and using the BC (5.1.2) gives

α̃ = ζ e−ξ/µ −
∞∑

n=1

n−1∑

k=0

ξn

n k!(n− k − 1)!

(
−1

µ

)n−k

g(k)(0) (5.2.49)

which, upon substitution into (5.2.48), yields the IDE solution as

u(x) = ζ e(x−ξ)/µ + ex/µ
∞∑

n=1

n−1∑

k=0

xn − ξn

n k!(n− k − 1)!

(
−1

µ

)n−k

g(k)(0). (5.2.50)

To find the constant C within g(x) in (5.2.7), the solution (5.2.50) is substituted

into (5.2.1) and g(x) expanded, to give

C = ζ σ e−ξ/µ +
∞∑

n=1

n−1∑

k=0

σ̃n − ξn σ

n k!(n− k − 1)!

(
−1

µ

)n−k (
f (k)(0) + λC P (k)(0)

)
,

(5.2.51)

wherein

σ =

∫ 1

−1

Q(y) ey/µ dy, and σ̃n =

∫ 1

−1

Q(y) ey/µ yn dy, n > 1. (5.2.52)
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The right-hand side of (5.2.51) is convergent if (5.2.44) holds, in which case (5.2.51)

can be rearranged to give

C =

ζ σ e−ξ/µ +
∞∑

n=1

n−1∑

k=0

(σ̃n − ξn σ) f (k)(0)

n k!(n− k − 1)!

(
−1

µ

)n−k

1− λ
∞∑

n=1

n−1∑

k=0

(σ̃n − ξn σ)P (k)(0)

n k!(n− k − 1)!

(
−1

µ

)n−k
. (5.2.53)

Together, (5.2.7), (5.2.50) and (5.2.53) give the IDE solution, provided the conver-

gence condition (5.2.44) holds, in which case the solution u(x) in (5.2.50) can again

be approximated by uM(x), in which the infinite sums in the latter are terminated

at n = M . Therefore, the approximate IDE solution is given by

uM(x) = ζ e(x−ξ)/µ + ex/µ
M∑

n=1

n−1∑

k=0

xn − ξn

n k!(n− k − 1)!

(
−1

µ

)n−k

g(k)M (0), (5.2.54)

wherein

gM(x) = f(x) + λP (x)

ζ σ e−ξ/µ +
M∑

n=1

n−1∑

k=0

(σ̃n − ξn σ) f (k)(0)

n k!(n− k − 1)!

(
−1

µ

)n−k

1− λ
M∑

n=1

n−1∑

k=0

(σ̃n − ξn σ)P (k)(0)

n k!(n− k − 1)!

(
−1

µ

)n−k
. (5.2.55)

Since the convergence condition for (5.2.54), like that in Section 5.2.2, provides a

lower limit for |µ|, (5.2.54) will be accurate only for sufficiently large |µ|.

5.2.4 Numerical Experiments

The integration by parts approximations in (5.2.21) and (5.2.31), and the Taylor-

series approximation in (5.2.54) are validated on an IDE with components

P (x) = cos x, Q(y) = y sin y, λ = −1

2
, u(x) = ea x, a ∈ R, (5.2.56)

using which f(x) is computed directly from (5.1.1) for varying values of µ and a.

The test IDE with components (5.2.56) is augmented by a boundary condition at

ξ = −1.
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First, the convergence conditions must be checked. By (5.2.2), (5.2.7) and

(5.2.56), g(x) is given by

g(x) = f(x) + λP (x)C = u(x)− µ u′(x) = (1− a µ) eax, (5.2.57)

which is differentiated to give

g(k)(x) = ak (1− a µ) eax. (5.2.58)

Therefore, the convergence condition (5.2.11) for “method 1” yields

|µ| < 1

|a| . (5.2.59)

To check the “method 2” condition (5.2.26) it is first noted that, by the Cauchy

formula for repeated integration [99, Eq. 2.7.2], Gk(x) in (5.2.23) is equivalently

Gk(x) =
1

(k − 1)!

∫ x

−1

(x− t)k−1 g(t) dt, k ≥1, (5.2.60)

which, for g(x) given by (5.2.57), yields

Gk(x) =
1− a µ

ak

(
ea x − e−a

k−1∑

n=0

(x+ 1)n an

n!

)
. (5.2.61)

Since the sum in (5.2.61) is the Maclaurin series expansion for ea (x+1), (5.2.61) can

be written as

Gk(x) =
1− α µ

ak

(
ea x − e−a

(
ea (x+1) +Rk−1(x)

))

=
a µ− 1

ak

(
e−aRk−1(x)

)
, (5.2.62)

in which the remainder Rk−1(x) is computed using the mean-value theorem [62,

p. 29] as

Rk−1(x) =
(a x)k eax

∗

k!
, x∗ ∈ (−1, 1). (5.2.63)

Therefore,
||Gk+1||
||Gk||

=
||Rk||

||aRk−1||
=

1

k + 1
, (5.2.64)

and so the convergence condition (5.2.26) for “method 2” yields

0 < |µ|. (5.2.65)
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Finally, the convergence condition (5.2.44) is checked for the Taylor-series method.

Substituting g(k)(0), found from (5.2.58), into (5.2.44) yields

lim
n→∞

∣∣∣∣∣∣∣∣∣∣

n
n∑

k=0

(−µ a)k

k! (n− k)!

(n + 1)
n−1∑

k=0

(−µ a)k

k! (n− k − 1)!

∣∣∣∣∣∣∣∣∣∣

< |µ|. (5.2.66)

Since the binomial theorem [130, p. 145] gives

(1− µ a)n =
n∑

k=0

n!

k! (n− k)!
(−µ a)k, (5.2.67)

the left-hand side of (5.2.66) is equivalently

lim
n→∞

∣∣∣∣∣∣∣∣

n (1− µ a)n

n!
(n+ 1) (1− µ a)n−1

(n− 1)!

∣∣∣∣∣∣∣∣
= lim

n→∞

∣∣∣∣
1− µ a

n + 1

∣∣∣∣ = 0, (5.2.68)

hence (5.2.66) becomes

0 < |µ|. (5.2.69)

Therefore, solving the IDE with components (5.2.56) using integration by parts

“method 2” and the Taylor-series expansion method results in solutions that are

convergent for all values of µ. However, integration by parts “method 1” is only

convergent for |µ| < 1/|a|. These assertions are validated for various µ and fixed

a = 4 in Figure 5.2.1.

Figure 5.2.1 demonstrates that, as predicted by (5.2.59), the errors eM = ||u− uM ||
for uM given by (5.2.21) diverge when |µ| > 1/|a| and converge for |µ| < 1/|a| as
M → ∞; the rate of convergence/divergence is shown to be slower as |µ| → 1/|a|.
Figure 5.2.1 also demonstrates that both approximate solutions (5.2.31) and (5.2.54)

are convergent for all µ, as predicted by (5.2.65) and (5.2.69); however, convergence

for uM given by (5.2.31) is slower as µ → 0. Provided the convergence conditions

are met, the accuracy of the approximate solution uM increases with increasing M ;

this is expected since, by construction, uM → u as M → ∞.

Figure 5.2.1 shows that the semi-analytical methods are accurate for the test IDE

with non-challenging components (5.2.56). However, the convergence conditions
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5.2 Degenerate Kernel: Analytical Solution

Figure 5.2.1: Semilog plots of the error eM = ||u− uM || as M increases for the IDE

(5.1.1) with components (5.2.56) in which a = 4 and (a) µ = 1
5 , (b) µ = 1

3 , (c) µ = 1
10

and (d) µ = 2. The approximate solution uM is computed by integration by parts

method 1 (5.2.21), integration by parts method 2 (5.2.31), and the Taylor-series

expansion (5.2.54).
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(5.2.11), (5.2.26) and (5.2.44) can in practice be difficult to check for IDEs with

more complex components. Furthermore, since the semi-analytical methods are

only valid for the subset of IDEs with constant differentiation coefficient µ(x) ≡ µ

and separable kernel K(x, y) = P (x)Q(y), it is necessary to develop methods for

solving IDEs numerically.

5.3 Numerical Methods

The previous section demonstrates that even the simplest IDE, with a constant

differentiation coefficient µ(x) ≡ µ and separable kernel K(x, y) = P (x)Q(y), is not

straightforward to solve analytically. Therefore, in general, the solution of an IDE

must be approximated numerically. Many different numerical methods have been

developed in order to solve the IDE (5.1.1). In addition to the methods discussed

in this chapter’s introduction, these include a differential-transform method [38],

variational-iteration methods [24], a backward-difference and repeated-trapezoidal

formulae [7], Shannon wavelets [92], a reproducing-kernel Hilbert-space approach

[6], and iteration with a Chebyshev series [136]. Each of the methods listed here

achieve varying degrees of accuracy on simple degenerate kernel test problems with

smooth, non-challenging solutions; however, only [92] is augmented by a brief error

analysis, in which error bounds are given for only the first derivative of the solution

rather than the solution itself.

Therefore, this work has two aims which set it apart from the existing literature.

Firstly, to develop a numerical method that improves upon the accuracy and effi-

ciency of the existing methods, not only for problems with simple smooth solutions,

but also for those with solutions that are designed to be challenging. Secondly, to

implement an explicit error analysis that yields computable error bounds in terms

of only the numerical solution.

In this section, Nyström-type numerical methods are developed that build upon

the spectrally accurate FIE Nyström methods presented in Section 4.3. The FIE

methods are presently extended by incorporating the Lagrange differentiation ap-

proximation (2.2.3) and the differentiation matrices introduced in Section 3.1. Since

the Nyström method and Lagrange differentiation both converge exponentially with

increasing collocation points, the Nyström-type IDE methods are expected to be
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spectrally accurate. Furthermore, since both the Nyström method and Lagrange

differentiation admit spectrally accurate and explicitly computable error bounds, so

too will the Nyström-type IDE methods.

5.3.1 Extended Classical Nyström Method

Let the differential operator D in (5.1.3) be approximated by the Lagrange dif-

ferentiation operator DM , defined by (2.2.3), and let the integral operator K be

approximated by the Gaussian integral operator KM , defined by (4.3.4). Then, the

approximate solution uM of the IDE (5.1.3) satisfies

uM − µDM uM − λKM uM = f, (5.3.1)

which is equivalently

uM(x)− µ(x)
M∑

j=1

L ′
j,M(x) uM(yj,M)− λ

M∑

j=1

wj,M K(x, yj,M) uM(yj,M) = f(x). (5.3.2)

Since the integral in the IDE (5.1.1) has unit weight function, the integral operator

KM in (5.3.1) dictates that the nodes yj,M are Legendre, Legendre-Gauss-Radau or

Legendre-Gauss-Lobatto. For simplicity, the linear operator AM is defined by

AM ≡ µDM + λKM , (5.3.3)

and the functions αj,M(x) defined by

αj,M(x) ≡ µ(x)L ′
j,M(x) + λwj,M K(x, yj,M), j = 1(1)M, (5.3.4)

so that

AM uM = (AM uM)(x) ≡
M∑

j=1

αj,M(x) uM(yj,M). (5.3.5)

Since (2.4.4) and (4.4.3) yield DMu ≈ Du and KMu ≈ Ku respectively, if u is con-

tinuously differentiable then, by construction, AMu ≈ Au, for A defined by (5.1.4).

Using (5.3.3)–(5.3.5), the IDE approximations (5.3.1) and (5.3.2) are equivalently

uM −AM uM = f, (5.3.6)
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and

uM(x)−
M∑

j=1

αj,M(x) uM(yj,M) = f(x). (5.3.7)

Collocating (5.3.7) at nodes x = yi,M yields the M ×M linear system

M∑

j=1

(
δij − αj,M(yi,M)

)
uM(yj,M) = f(yi,M), i = 1(1)M, (5.3.8)

which in matrix form is

(IM −AM)uM = fM , (5.3.9)

wherein

{IM}i,j = δij, {AM}i,j = αj,M(yi,M), {uM}i = uM(yi,M)

(5.3.10)

{fM}i = f(yi,M), i, j = 1(1)M.

It is noted that the matrix AM is equivalent to the linear combination

AM = diag{µ(yi,M)}DM + λKM , (5.3.11)

where DM is given by (3.1.8) and KM is given by (4.3.9), and in which, when µ(x)

is constant, diag{µ(yi,M)} can simply be replaced by the constant µ. By computing

AM from (5.3.11), rather than from (5.3.10), the computational setup workload can

be decreased by utilising the explicit forms of the differentiation matrices for the

various node sets derived and discussed in Section 3.1.

The BC can be incorporated into (5.3.8) in one of two ways, depending on

whether ξ in (5.1.2) coincides with a quadrature node. This reduces (5.3.8) to an

(M − 1)×(M − 1) system. For clarity, the notation in (5.3.5) is amended to

AM u∗
M(x) ≡

M∑

j=1

αj,M(x) u
∗
M(yj,M), (5.3.12)

in which u∗
M(yj,M) indicates a nodal value used only for the purposes of collocation,

rather than a nodal value recovered from the numerical solution uM(x).
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5.3.1.1 Case 1: Boundary condition enforced at collocation stage

When ξ coincides with a node, i.e. ξ = yk,M for some 1 ≤ k ≤ M , the BC u(ξ) = ζ

can be incorporated directly by assigning

u∗
M(yk,M) = ζ . (5.3.13)

Substituting (5.3.13) into (5.3.8), and omitting the redundant equation collocated

at x = yk,M gives

M∑

j=1
j≠k

(
δij − αj,M(yi,M)

)
u∗

M(yj,M) = f(yi,M) + ζ αk,M(yi,M), i = 1(1)M, i ̸= k,

(5.3.14)

so that the reduced (M − 1)×(M − 1) system is given by

(̌IM − ǍM)ǔ
∗
M = f̌M , (5.3.15)

in which the checked quantities are obtained by removing the kth rows, (and also

the kth columns for the matrices) of the matrices and vectors in (5.3.9) and f̌M is

adjusted in accordance with the right-hand side of (5.3.14). The matrix system

(5.3.15) is solved for the solution vector ǔ∗
M which, via (5.3.7) and (5.3.13), gives

the numerical solution for x ∈ [−1, 1] via the inversion formula

uM(x) = f(x) + ζ αk,M(x) +
M∑

j=1
j≠k

αj,M(x) u
∗
M(yj,M). (5.3.16)

Setting x = yi,M with i ̸= k in (5.3.16) gives, by comparison with (5.3.14), uM(yi,M) =

u∗
M(yi,M); however, since (5.3.14) is not collocated at i = k, setting x = yk,M = ξ in

the inversion formula (5.3.16) does not recover the implemented BC, i.e.

uM(ξ) ̸= u∗
M(ξ) = ζ . (5.3.17)

5.3.1.2 Case 2: Boundary condition recovered in numerical solution

This BC implementation can be used whether or not ξ coincides with a node. Sub-

stituting the BC u(ξ) = ζ into (5.3.7) and rearranging for the nodal value u∗
M(yk,M),
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for some chosen 1 ≤ k ≤ M , yields

u∗
M(yk,M) = ζ̂ ≡ 1

αk,M(ξ)

⎛

⎜⎜⎝ζ − f(ξ)−
M∑

j=1
j≠k

αj,M(ξ) uM(yj,M)

⎞

⎟⎟⎠, (5.3.18)

which gives a pseudo-BC that can be enforced in a similar way as in case 1. Sub-

stituting (5.3.18) into (5.3.8) and omitting the redundant equation collocated at

x = yk,M gives

M∑

j=1
j≠k

(
δij − αj,M(yi,M)

)
u∗

M(yj,M) − αk,M(yi,M)

αk,M(ξ)

⎛

⎜⎜⎝ζ − f(ξ)−
M∑

j=1
j≠k

αj,M(ξ) u
∗
M(yj,M)

⎞

⎟⎟⎠

= f(yi,M), i = 1(1)M, i ̸= k, (5.3.19)

which rearranges to

M∑

j=1
j≠k

(

δij − αj,M(yi,M) +
αk,M(yi,M)

αk,M(ξ)
αj,M(ξ)

)

u∗
M(yj,M)

(5.3.20)

= f(yi,M) +
αk,M(yi,M)

αk,M(ξ)

(
ζ − f(ξ)

)
, i = 1(1)M, i ̸= k.

In matrix form, (5.3.20) can be written as the (M − 1)×(M − 1) system

(̂IM − ÂM)û
∗
M = f̂M (5.3.21)

in which ÎM and ûM are obtained by removing the kth rows (and columns) of the

matrices in (5.3.9) and the entries of ÂM and f̂M are computed in accordance with

the information in (5.3.20). Solving the system (5.3.21) yields the vector û∗
M which

is used, along with (5.3.18), to form the numerical solution for x ∈ [−1, 1] via the

inversion formula

uM(x) = f(x) + ζ̂ αk,M(x) +
M∑

j=1
j≠k

αj,M(x) u
∗
M(yj,M). (5.3.22)
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Setting x = yi,M with i ̸= k in (5.3.22) gives, by comparison with (5.3.20), uM(yi,M) =

u∗
M(yi,M) and in this case, via (5.3.18), setting x = ξ in (5.3.22) recovers the BC, i.e.

uM(ξ) = ζ . (5.3.23)

However, by an argument analogous to that following (5.3.16), since (5.3.20) is not

collocated at x = yk,M , the pseudo-BC (5.3.18) is not recovered, i.e.

uM(yk,M) ̸= u∗
M(yk,M) = ζ̂. (5.3.24)

The methods in Sections 5.3.1.1 and 5.3.1.2 will hereafter be referred to respectively

as the case-1 and case-2 extended classical Nyström method (ECNM).

5.3.2 Extended Interpolated Nyström Method

In order to solve the integral component of an IDE using optimal quadrature nodes,

and the differential component using optimal differentiation nodes, the INM, pre-

sented in Section 4.3.2, can be extended in a similar way to the extension shown for

the CNM in Section 5.3.1. It was for this purpose that the INM was developed, since

by combining optimal numerical integration and differentiation, the overall error in

the IDE solution can be minimised.

Let the IDE approximation (5.3.1) be adjusted so that the integral operator K

in (5.1.3) is now approximated by KM LN, as in the INM approximation (4.3.30).

Therefore, the approximate solution ũM,N of the IDE (5.1.3) satisfies

ũM,N − µDN ũM,N − λKM LN ũM,N = f, (5.3.25)

which is equivalently

ũM,N(x) − µ(x)
N∑

j=1

L ′
j,N(x) ũM,N(xj,N)

− λ
M∑

k=1

N∑

j=1

wk,MK(x, yk,M)Lj,N(yk,M) ũM,N(xj,N) = f(x), (5.3.26)

wherein the integration nodes yk,M are Legendre, Legendre-Gauss-Radau or Legendre-

Gauss-Lobatto, and the interpolation nodes xj,N are optimal differentiation nodes
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such as Chebyshev or Chebyshev-Gauss-Lobatto. The linear operator ÃM,N is now

defined by

ÃM,N ≡ µDN + λKM LN, (5.3.27)

and the functions α̃j,M,N(x) defined by

α̃j,M,N(x) ≡ µ(x)L ′
j,N(x) + λ

M∑

k=1

wk,MK(x, yk,M)Lj,N(yk,M), j = 1(1)N, (5.3.28)

so that

ÃM,N ũM,N(x) ≡
N∑

j=1

α̃j,M,N(x) ũM,N(xj,N). (5.3.29)

By an argument analogous to the one following (5.3.5), ÃM,Nu ≈ Au when u is

continuously differentiable. By (5.3.27)–(5.3.29) the IDE approximations (5.3.25)

and (5.3.26) are equivalently

ũM,N − ÃM,N ũM,N = f (5.3.30)

and

ũM,N(x)−
N∑

j=1

α̃j,M,N(x) ũM,N(xj,N) = f(x). (5.3.31)

The derivation of the extended INM now follows in the same way as that of the

ECNM, in which AM is replaced by ÃM,N and αj,M(x) replaced by α̃j,M,N(x) through-

out. This yields the case-1 numerical solution

ũM,N(x) = f(x) + ζ α̃k,M,N(x) +
N∑

j=1
j≠k

α̃j,M,N(x) ũ
∗
M,N(xj,N), (5.3.32)

and the case-2 numerical solution

ũM,N(x) = f(x) + ζ̃ α̃k,M,N(x) +
N∑

j=1
j≠k

α̃j,M,N(x) ũ
∗
M,N(xj,N), (5.3.33)

wherein

ζ̃ ≡ 1

α̃k,M,N(ξ)

⎛

⎜⎜⎝ζ − f(ξ)−
N∑

j=1
j≠k

α̃j,M,N(ξ) ũM,N(xj,N)

⎞

⎟⎟⎠. (5.3.34)
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The solutions (5.3.32) and (5.3.33) are found by solving (N − 1)×(N − 1) systems,

cf. (5.3.15) and (5.3.21). This method will hereafter be referred to as the extended

interpolated Nyström method (EINM).

5.3.3 Numerical Experiments

The ECNM and EINM are now tested on four problems with known solutions, three

of which are designed to be challenging; discussion of problems with challenging

kernels is deferred to Section 5.4. The components of the IDE (5.1.1) for the test

problems are summarised in Table 5.1.

Problem Name Solution u(x) µ(x) Kernel K(x, y) λ

1 Smooth sin x+ x x3 − 3 x3 y cos y 1
2

2 Runge 1
1+25x2 −x2 + 3x (x2 + 3)(y − 2) 1

3

3 Steep e10x x+ 2 e2x y −1
4

4 Oscillatory cos 12x − sin x sin x2 y2 −1

Table 5.1: Test problems with known solutions of four qualitatively distinct forms.

The Runge function, extreme gradient and highly oscillatory solutions of problems

2, 3 and 4 respectively are known to be challenging to approximation methods. For

each problem, the source function f(x) is readily computed directly from (5.1.1).

For the remainder of this chapter, Gauss-Legendre quadrature is used in the

EINM since, when the weight function in an integral is unity, it is theoretically

the most accurate quadrature method of those considered in Section 3.2.4. Addi-

tionally, since the regular nodes have been shown, through numerical experiments

and a theoretical error analysis, to yield the least accurate results when used in the

INM and numerical differentiation, these nodes will not be used within the EINM.

Furthermore, the ECNM and EINM solutions are computed with M = N , so that

both methods are implemented with N quadrature nodes and N collocation nodes,

which enables systems of the same dimension to be compared.

Figure 5.3.1 presents the ECNM errors eN = ||u− uN|| and EINM errors eN =

||u− ũN,N||, with case-1 and case-2 BCs on a variety of nodal distributions. For each

test problem the BC is given for ξ = −1, and so the case-1 implementation is not
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possible on all nodal distributions. The case-2 implementation, which is enforceable

on any nodal distribution, is implemented with k = 1 in (5.3.18) and (5.3.34).

Figure 5.3.1: Logarithmic plots of the ECNM errors (Legendre, Left- and Right-

Radau, and Legendre-Gauss-Lobatto) eN = ||u− uN||, and EINM errors (Chebyshev

and Chebyshev-Gauss-Lobatto) eN = ||u− ũN,N||, for Problems (a) 1 (“smooth”),

(b) 2 (“Runge”), (c) 3 (“steep”) and (d) 4 (“oscillatory”), summarised in Table 5.1.

Note that N is taken twice as large for problem 2.
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The vertical scales of the sub-plots in Figure 5.3.1 show that convergence is fastest

for the smooth problem and slowest for the Runge problem; this is expected from the

errors shown in Figure 4.3.1 for the IE numerical methods. The steep and oscillatory

problems are seen to have errors of approximately the same magnitude for higher

values ofN ; however, the former has large errors for low values ofN which shows that

the steep gradient of the exact solution cannot be approximated well if the number of

collocation nodes is insufficient. For each problem, the ECNM and EINM are shown

to converge at the same rate, which demonstrates that the superiority of the CNM

over then INM, shown in Figure 4.3.1, is lost in the extended counterparts. Moreover,

despite the combination of optimal quadrature and optimal differentiation in the

EINM, it has no clear advantage over the ECNM in terms of accuracy, contradicting

its intended purpose. Therefore, the EINM is superfluous since not only is it no more

accurate than the ECNM, but it is also computationally more expensive due to the

intermediate interpolation in its quadrature term. Whether the case-1 or case-2 BC

enforcement is more accurate is clearly problem-dependent; the most pronounced

difference between case-1 and case-2 errors is observed for problem 2. However,

whether the case-1 or case-2 BC enforcement is more accurate cannot be determined

a priori because of the complexity of the matrix constructions used to compute the

numerical solutions.

The effect of the BC implementation on the absolute-error distribution in [−1, 1]

is shown in Figure 5.3.2 for problem 1, solved using Legendre-Gauss-Lobatto nodes

in the ECNM and Chebyshev-Gauss-Lobatto nodes in the EINM. Results are qual-

itatively similar for problems 2, 3 and 4 and for different nodal distributions. The

results shown in Figure 5.3.2 confirm the predictions (5.3.17) and (5.3.23) regarding

which case recovers the true BC in the inversion formula.

The effect of changing k in the case-2 BCs (5.3.18) and (5.3.34) is shown in Figure

5.3.3; the ECNM and EINM errors are shown for various k between 1 and N for

problem 1. The ECNM is again computed using Legendre-Gauss-Lobatto nodes and

the EINM using Chebyshev-Gauss-Lobatto nodes; results are qualitatively similar

for the other nodal distributions and for problems 2, 3 and 4. The vertical scales in

Figure 5.3.3 show that the effect of changing k in (5.3.18) and (5.3.34) is minimal.

When N is odd the errors are shown to be largest when the BC is implemented at

an end node, whilst when N is even the errors are minimised/maximised when the

implementation node is in the vicinity of the BC location.
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Figure 5.3.2: Plots showing the effect of the case-1 and case-2 BC implementation

on the absolute errors |eN(x)| = |u(x)− uN(x)| of the ECNM and |eN(x)| = |u(x)−
ũN,N(x)| of the EINM for problem 1. The results shown use Legendre-Gauss-Lobatto

nodes in the ECNM and Chebyshev-Gauss-Lobatto nodes in the EINM with (a,b)

N = 15 and (c,d) N = 16; the error profiles are qualitatively similar on other nodal

distributions and for other values of N odd and N even. The expanded plots (b)

and (d) around the BC location ξ = −1 confirm the prediction (5.3.17) that the

case-1 approximation fails to recover the true BC and the prediction (5.3.23) that

the case-2 approximation recovers the exact BC.
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Figure 5.3.3: Logarithmic plots show the effect of varying k in the case-2 pseudo-BCs

(5.3.18) and (5.3.34). The horizontal axes show the location of the ECNM node yk,N
and EINM node xk,N, both denoted by Xk,N, that the pseudo-BC is implemented

and the vertical axes show the ECNM errors eN = ||u− uN|| and the EINM errors

eN = ||u− ũN,N||. The errors are shown for problem 1 with (a,b) N = 20 and (c,d)

N = 21 and with BC at (a,c) ξ = −1 and (b,d) ξ = −1/π, the latter irrational

number ensuring a case-2 BC implementation. The BC locations are marked by

black squares and piecewise-linear curves join the nodal data generated by varying

k from 1 to N in (5.3.22) and (5.3.33).
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5.4 Error Analysis

With the numerical methods now validated on a range of problems, it remains to

find accurate error bounds. The theoretical framework for the error analyses of the

extended Nyström methods is based upon the IE error analyses presented in Section

4.4; however, the IE error analyses must be extended to account for the presence of

the unbounded differential operator D. Computable error bounds based upon the

numerical IDE solution are now derived which circumvent the unboundedness of D

by “puncturing” it at the location of the BC; this is analogous to the procedure

noted at the end of Section 3.1 that reduces by one the dimension of the singular

differentiation matrix DN to account for a BC, thereby yielding a non-singular,

invertible matrix.

5.4.1 Extended Classical Nyström Method

The case-1 and case-2 numerical solutions, (5.3.16) and (5.3.22) respectively, can

both be written as

uM(x) = f(x) +
M∑

j=1

αj,M(x) u
∗
M(yj,M), (5.4.1)

wherein u∗
M(yk,M) = ζ for case 1 and u∗

M(yk,M) = ζ̂ for case 2. In operator form

(5.4.1) is equivalently

uM(x) = f(x) +AM u∗
M(x), (5.4.2)

wherein the action of AM on u∗
M(x), which is defined by (5.3.5), is to be interpreted

as AM u∗
M(x) ≡ (AM u∗

M)(x); this notation is adopted for the action of all linear

operators throughout this section. It is noted that the difference between AM uM(x)

in (5.3.5) and AM u∗
M(x) in (5.3.12) is

AM uM(x)−AM u∗
M(x) =

M∑

j=1

αj,M(x)
(
uM(yj,M)− u∗

M(yj,M)
)

= αk,M(x)
(
uM(yk,M)− u∗

M(yk,M)
)
, (5.4.3)

since j = k is the only index for which, by (5.3.17) and (5.3.24), the collocated nodal

value u∗
M(yj,M) is not equal to the solution value uM(yj,M). Therefore, by defining
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the residual as

ρM(x) ≡ αk,M(x)
(
uM(yk,M)− u∗

M(yk,M)
)
, (5.4.4)

the operator form of (5.4.2) that incorporates the BC u∗
M(yk,M) = ζ or u∗

M(yk,M) = ζ̂

is

uM(x) = f(x) +AM uM(x)− ρM(x). (5.4.5)

However, the operator form of the exact IDE in (5.1.5) does not incorporate the BC

u(ξ) = ζ . Since the operator A contains the unbounded differentiation operator D,

the IDE (5.1.5) admits multiple solutions in the absence of a BC, i.e. two different

solutions u ̸= v may satisfy (I − A) u = f and (I − A) v = f . Therefore, unlike

I− λK in the integral equation analysis of Section 4.4, I−A is neither one-to-one

nor invertible and so the operator theory used for the IE error analysis cannot be

applied in the IDE case. To reformulate the problem in terms of bounded operators,

the action of the punctured identity operator Ī is defined by

Ī v(x) ≡ v̄(x) =

{
v(x) x ̸= ξ
0 x = ξ.

(5.4.6)

Acting upon (5.1.5) with Ī and defining Ā = ĪA yields

(Ī− Ā) u(x) = f̄(x), (5.4.7)

and acting upon (5.4.5) with Ī and defining ĀM = ĪAM gives

(Ī− ĀM) uM(x) = f̄(x)− ρ̄M(x). (5.4.8)

Subtraction of (5.4.8) from (5.4.7) yields the error

Ī
(
u(x)− uM(x)

)
= Āu(x)− ĀM uM(x) + ρ̄M(x) (5.4.9)

which, by the addition of ĀuM(x)− ĀuM(x) = 0 to the right-hand side, is equiva-

lently

(Ī− Ā)
(
u(x)− uM(x)

)
= (Ā− ĀM) uM(x) + ρ̄M(x). (5.4.10)

The error formula (5.4.10) shows that the error is a combination of the residual

incurred by implementing the BC, and the truncation error associated with the

discretisation of the differential and integral operators.

Since the BC (5.1.2) is incorporated, (5.4.10) has a unique solution and so,

unlike I−A, the operator Ī− Ā is both one-to-one and invertible. This is analogous
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to the procedure detailed in Section 3.1.7 which reduces a non-invertible N ×N

differentiation matrix to an invertible N − 1×N − 1 matrix by removing the row

and column that correspond to the location of the given BC. In the context of the

present operator theory, this reduction is implemented by puncturing the operator

equations at the value of x at which the BC is assigned. Therefore, the inverse of

Ī− Ā exists and

u− uM = (Ī− Ā)−1 Ī
(
(A−AM) uM + ρM

)
. (5.4.11)

By (5.4.8), the error (5.4.11) is equivalently

u− uM = (Ī− Ā)−1 Ī (AuM − uM + f). (5.4.12)

Therefore, the IDE error can be bounded by either

||u− uM || ≤
∣∣∣∣(Ī− Ā)−1

∣∣∣∣ ||(A−AM)uM + ρM || (5.4.13)

or

||u− uM || ≤
∣∣∣∣(Ī− Ā)−1

∣∣∣∣ ||uM −AuM − f || , (5.4.14)

the latter of which reveals that the error is proportional to the residual obtained by

substituting the numerical solution uM(x) into the exact IDE (5.1.5). The bound

(5.4.14) also avoids the need to compute AMuM and ρM explicitly. In both (5.4.13)

and (5.4.14) the second term on the right-hand side is computable; however, the

first term is not and so must thus be bounded. Since, by (5.1.4) and (5.3.3), Ā and

ĀM are linear operators within which the numerical differentiation and integration

schemes are convergent for all continuously differentiable functions, the error theory

applied to K and KM in Section 4.4 can be extended such that for sufficiently large

M , the inverse (Ī− Ā)−1 exists and is bounded by [10, Thm. 4.1.1]

∣∣∣∣(Ī− Ā)−1
∣∣∣∣ ≤

1 +
∣∣∣∣(Ī− ĀM)−1

∣∣∣∣ ∣∣∣∣Ā
∣∣∣∣

1−
∣∣∣∣(Ī− ĀM)−1

∣∣∣∣ ∣∣∣∣(Ā− ĀM)Ā
∣∣∣∣ . (5.4.15)

Following the approach in [10, Eqns. 4.1.13–4.1.17], which was verified for the IE

case in Section 4.4, the sub-elements of (5.4.15) can be computed as

∣∣∣∣(Ī− ĀM)
−1
∣∣∣∣ =

∣∣∣∣(Ī− ĀM)
−1(1)

∣∣∣∣ , (5.4.16)

∣∣∣∣Ā
∣∣∣∣ =

∣∣∣∣Ā(1)
∣∣∣∣ = |λ|

∣∣∣∣K̄(1)
∣∣∣∣ (5.4.17)
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and ∣∣∣∣(Ā− ĀM)Ā
∣∣∣∣ =

∣∣∣∣(Ā− ĀM)Ā(1)
∣∣∣∣ = |λ|

∣∣∣∣(Ā− ĀM)K̄(1)
∣∣∣∣ . (5.4.18)

To compute (Ī− ĀM)−1(1) first define

ḡM ≡ (Ī− ĀM)
−1(1), (5.4.19)

such that ḡM(x) satisfies the punctured IDE

ḡM − ĀM gM = 1̄, (5.4.20)

and gM satisfies the the non-punctured IDE

gM −AM gM = 1, (5.4.21)

for which there is no specified BC. Imposing a BC and solving the IDE (5.4.21) by ei-

ther of the methods in Section 5.3 would result in a residual ρ̃M(x) = αk,M(x)
(
gM(yk,M)−

g∗M(yk,M)
)
(cf. (5.4.4)) such that

gM −AM gM = 1− ρ̃M . (5.4.22)

Comparison of (5.4.21) and (5.4.22) shows that the residual must vanish; this re-

quires g∗M(yk,M) = gM(yk,M) which occurs only if (5.4.21) is collocated at all nodes,

including x = yk,M . Therefore, (5.4.21) must be solved without imposing a BC; since

only a solution gM(x) of (5.4.21) is required, this is sufficient. The resulting matrix

system is

(IM −AM)gM = 1, (5.4.23)

in which IM is the M ×M identity matrix, AM is defined in (5.3.11), and

{gM}i = gM(yi,M) and {1}i = 1. (5.4.24)

Solving (5.4.23) yields the nodal values gM(yi,M) from which gM(x) is then computed

by the interpolation formula

gM(x) = 1 +
M∑

j=1

αj,M(x) gM(yj,M). (5.4.25)

Therefore, the theoretical bound on
∣∣∣∣(Ī− Ā)−1

∣∣∣∣ in (5.4.15) can be approximated

by the computable bound

∣∣∣∣(Ī− Ā)−1
∣∣∣∣ ≤

1 + |λ| ||ḡM ||
∣∣∣∣K̄(1)

∣∣∣∣

1− |λ| ||ḡM ||
∣∣∣∣(Ā− ĀM)K̄(1)

∣∣∣∣ . (5.4.26)
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Substitution of (5.4.26) into (5.4.13) gives the ECNM error bound

||u− uM || ≤
1 + |λ| ||ḡM ||

∣∣∣∣K̄(1)
∣∣∣∣

1− |λ| ||ḡM ||
∣∣∣∣(Ā− ĀM)K̄(1)

∣∣∣∣ ||(A−AM)uM + ρM || , (5.4.27)

whilst substitution of (5.4.26) into (5.4.14) gives the ECNM error bound, which is

equivalent to (5.4.27), as

||u− uM|| ≤
1 + |λ| ||ḡM ||

∣∣∣∣K̄(1)
∣∣∣∣

1− |λ| ||ḡM ||
∣∣∣∣(Ā− ĀM)K̄(1)

∣∣∣∣ ||uM −AuM − f || . (5.4.28)

Both (5.4.27) and (5.4.28) are explicitly computable using only the numerical solu-

tion and functions that are readily available from the original IDE (5.1.5).

5.4.2 Extended Interpolated Nyström Method

The error analysis for the EINM is analogous to that of the ECNM. The resulting

equivalent, computable error bounds (cf. (5.4.27), (5.4.28)) are

||u− ũM,N|| ≤
1 + |λ|

∣∣∣∣¯̃gM,N

∣∣∣∣ ∣∣∣∣K̄(1)
∣∣∣∣

1− |λ|
∣∣∣∣¯̃gM,N

∣∣∣∣
∣∣∣
∣∣∣(Ā− ¯̃

AM,N)K̄(1)
∣∣∣
∣∣∣

∣∣∣
∣∣∣(A− ÃM,N)ũM,N + ρ̃M,N

∣∣∣
∣∣∣

(5.4.29)

and

||u− ũM,N|| ≤
1 + |λ|

∣∣∣∣¯̃gM,N

∣∣∣∣ ∣∣∣∣K̄(1)
∣∣∣∣

1− |λ|
∣∣∣∣¯̃gM ,N

∣∣∣∣
∣∣∣
∣∣∣(Ā− ¯̃

AM ,N)K̄(1)
∣∣∣
∣∣∣
||ũM,N −AũM,N − f || , (5.4.30)

wherein the residual ρ̃M ,N is computed by

ρ̃M,N(x) ≡ α̃k,M,N(x)
(
ũM,N(xi,N)− ũ∗

M,N(xi,N)
)
, (5.4.31)

and in which g̃M,N is the solution of

g̃M,N − ÃM,N g̃M,N = 1. (5.4.32)

The solution g̃M,N in (5.4.32) is found by solving the matrix system

(IN − ÃM,N) g̃M,N = 1 (5.4.33)

wherein, for i, j = 1(1)N ,

{ÃM,N}i,j = α̃j,M,N(xi,N), {g̃M,N}i = g̃M,N(xi,N), {1}i = 1 (5.4.34)
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and IN is the N ×N identity matrix. The nodal values g̃M,N(xi,N) found by solving

(5.4.33) are then used to compute g̃M,N(x) using the interpolation formula

g̃M,N(x) = 1 +
N∑

j=1

α̃j,M,N(x) g̃M,N(xi,N). (5.4.35)

Note that g̃M,N(x) is punctured at x = ξ in (5.4.29) and (5.4.30) yielding ¯̃gM,N(x).

The ECNM bound (5.4.27) and EINM bound (5.4.29) are used for asymptotic

error analyses in Section 5.4.3.

5.4.3 Asymptotic Convergence Rates

An asymptotic convergence rate for the ECNM can be derived from the bound

(5.4.27). The final term on the right-hand side of (5.4.27) is first bounded by

||(A−AM)uM + ρM || ≤ ∆M + ||ρM || , (5.4.36)

wherein ∆M is defined (and bounded) by

∆M ≡ ||(A−AM)uM || ≤ ||µ|| ||(D−DM)uM ||+ |λ| ||(K−KM)uM || . (5.4.37)

By (2.4.69) and (4.4.53) the bound (5.4.37) yields

∆M ≤ ||µ||

⎛

⎝φM

∣∣∣
∣∣∣u(M)

M

∣∣∣
∣∣∣ +

σM

∣∣∣
∣∣∣u(M+1)

M

∣∣∣
∣∣∣

M + 1

⎞

⎠+ |λ|ψ(ν)
M K2M−ν , (5.4.38)

wherein φM and σM are given for different node sets in Table 2.1, ψ(ν)
M is given by

(3.2.14)–(3.2.16) for ν = 0, 1, 2, and KM is defined in (4.4.54). Since asymptotic

limits in Table 2.1 and (3.2.20) yield

φM → φ̃M ∼
( e

2M

)M

, σM → σ̃M ∼
( e

2M

)M

and ψ(ν)
M → ψ̃(ν)

M ∼
( e

4M

)2M
,

M → ∞, (5.4.39)

and since Table 2.1 additionally shows that φM > σM then, provided

∣∣∣
∣∣∣u(M)

M

∣∣∣
∣∣∣ ∼ o(MM) and K2M−ν ∼ o(M2M), M → ∞, (5.4.40)
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the bound in (5.4.38) can be approximated by

∆M ∼ φM UM , M ≫ 1. (5.4.41)

wherein

UM = max
(∣∣∣
∣∣∣u(M)

M

∣∣∣
∣∣∣ ,
∣∣∣
∣∣∣u(M+1)

M

∣∣∣
∣∣∣
)
. (5.4.42)

Since both uM(yk,M) and u∗
M(yk,M) in the residual ρM defined in (5.4.4) are given

by a Nyström process whose convergence rate is given by (5.4.41), the difference

uM(yk,M)− u∗
M(yk,M) is proportional to the same rate, and so

ρM ∼ φM UM , M → ∞. (5.4.43)

Therefore, (5.4.27) and (5.4.36)–(5.4.43) together yield the asymptotic ECNM error-

convergence rate

||u− uM || ∼ φM UM , M → ∞, (5.4.44)

provided conditions (5.4.40) are met. By defining

κ(x) ≡
∫ 1

−1

K(x, y) dy and LM ≡ max
x,y∈[−1,1]

∣∣∣∣
∂M

∂yM

(
K(x, y) κ(y)

)∣∣∣∣ (5.4.45)

and using the arguments leading to (5.4.40) it is seen that, provided

∣∣∣∣κ(M)
∣∣∣∣ ∼ o(MM) and L2M−ν ∼ o(M2M), M → ∞, (5.4.46)

then (5.4.18) and a modified (5.4.41) reveal that the denominator in (5.4.26) behaves

as 1+O(M−M) as M → ∞. Therefore the bound in (5.4.26) is positive, as required

by the theory from which it is constructed, see [10, Thm. 4.1.1].

The convergence rate of the EINM can be derived from the bound (5.4.29), whose

final term on the right-hand side is bounded by
∣∣∣
∣∣∣(A− ÃM,N)ũM,N + ρ̃M,N

∣∣∣
∣∣∣ ≤ ∆̃M ,N + ||ρ̃M,N|| , (5.4.47)

wherein ∆̃M,N is defined (cf. (5.4.37)) by

∆̃M ,N ≡
∣∣∣
∣∣∣(A− ÃM,N)ũM,N

∣∣∣
∣∣∣ (5.4.48)

and bounded by

∆̃M ,N ≤ ||µ|| ||(D−DN)ũM,N||+ |λ|
(
||(K−KM)ũM,N||+ ||KM(I− LN)ũM,N||

)
.

(5.4.49)
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By (2.4.69), (4.4.58) and (4.4.64), the bound in (5.4.49) yields

∆̃M,N ≤ ||µ||

⎛

⎝φN

∣∣∣
∣∣∣ũ(N)

M,N

∣∣∣
∣∣∣ +

σN

∣∣∣
∣∣∣ũ(N+1)

M,N

∣∣∣
∣∣∣

N + 1

⎞

⎠+|λ|
(
ψ(ν)

M K̃2M−ν + σN ||KM (1)||
∣∣∣
∣∣∣ũ(N)

M,N

∣∣∣
∣∣∣
)
,

(5.4.50)

wherein the node-dependent φN and σN are given explicitly in Table 2.1, ψ(ν)
M is given

by (3.2.14)–(3.2.16) for ν = 0, 1, 2, and K̃M is defined in (4.4.59). The asymptotic

limits in Table 2.1 and (3.2.20) give

φN → φ̃N ∼
( e

2N

)N

, σN → σ̃N ∼
( e

2N

)N

and ψ(ν)
M → ψ̃(ν)

M ∼
( e

4M

)2M
,

M,N → ∞, (5.4.51)

and Table 2.1 shows also that φN > σN. Therefore, provided

∣∣∣
∣∣∣ũ(N)

M,N

∣∣∣
∣∣∣ ∼ o(NN) and K̃2M−ν ∼ o(M2M), M,N → ∞, (5.4.52)

∆̃M,N can be approximated by

∆̃M,N ∼

⎧
⎨

⎩

ψ(ν)
M K̃2M−ν ,

N
2 > M ≫ 1,

φN ŨM,N, M > N
2 ≫ 1,

(5.4.53)

wherein

ŨM,N = max
(∣∣∣
∣∣∣ũ(N)

M,N

∣∣∣
∣∣∣ ,
∣∣∣
∣∣∣ũ(N+1)

M,N

∣∣∣
∣∣∣
)
. (5.4.54)

For the reasons following (5.4.40), ||ρ̃M ,N|| in (5.4.47) also converges at the rates

given in (5.4.53). Therefore, (5.4.29) and (5.4.47)–(5.4.53) yield the asymptotic

EINM error-convergence rates

||u− ũM,N|| ∼

⎧
⎨

⎩

ψ(ν)
M K̃2M−ν ,

N
2 > M ≫ 1,

φN ŨM ,N, M > N
2 ≫ 1,

(5.4.55)

provided conditions (5.4.52) are met. Finally, by arguments analogous to those

following (5.4.45), provided

∣∣∣∣κ(N)
∣∣∣∣ ∼ o(NN) and L2M−ν ∼ o(M2M), M,N → ∞, (5.4.56)
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wherein κ(x) and L2M−ν are defined by (5.4.45), then the bounds in (5.4.29) and

(5.4.30) are positive by construction.

When M = N , as in the numerical experiments in Section 5.3.3, the asymptotic

rate in (5.4.55) reduces to

||u− ũN,N|| ∼ φN ŨN,N, N → ∞. (5.4.57)

Therefore, when M = N , comparison of the numerical differentiation error (2.4.69)

with the error-convergence rates (5.4.44) and (5.4.57) shows that both the ECNM

and EINM errors are dictated by the error in the numerical differentiation. Further-

more, comparison of the ECNM error-convergence rate in (5.4.44) with the EINM

error-convergence rate in (5.4.57) corroborates the observations from Figure 5.3.1;

that the ECNM and EINM errors converge at the same rate since, as outlined in

Table 2.1, φN ∼
(

e
2N

)N
for all clustered-node distributions. Since the EINM enables

IDEs to be solved using nodes that are optimal for differentiation, theoretically it

should yield errors that converge at the same rate as those of the ECNM but which

are smaller in magnitude; it was for this reason that the EINM was developed.

However, Figure 5.3.3 shows that computationally this is not necessarily the case.

That is, despite the inclusion of both optimal differentiation and optimal integration

nodes, there is no advantage in solving an IDE by the EINM; moreover, the compu-

tationally expensive interpolation between the nodes in the EINM means that the

ECNM is favourable.

5.4.4 Numerical Results

The ECNM bound (5.4.28) and EINM bound (5.4.30) are tested on the problems

summarised in Table 5.1; the newly predicted bounds bN are presented along with

the true computational case-1 and case-2 errors in Figure 5.4.1. Also shown is the

quantity φN

∣∣∣∣u(N)
∣∣∣∣ that approximates both case-1 and case-2 asymptotic conver-

gence rates, given by (5.4.44) and (5.4.57) for the ECNM and EINM respectively;

the problem 2 convergence rate is omitted since
∣∣∣∣u(N)

∣∣∣∣ is divergent when u(x) is

the Runge function (see (2.5.4) – (2.5.5)). The ECNM is solved on Legendre-Gauss-

Lobatto nodes, and the EINM is solved with M = N on Chebyshev-Gauss-Lobatto

nodes, with the BC enforced at ξ = −1; results using other nodal distributions were

found to be qualitatively similar.
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Figure 5.4.1: Logarithmic plots of the ECNM errors eN = ||u− uN|| using Legendre-

Gauss-Lobatto nodes, and the EINM errors eN = ||u− ũN,N|| using Chebyshev-

Gauss-Lobatto nodes, for both case-1 and case-2 BC implementations, and respec-

tive bounds bN given by (5.4.28) and (5.4.30) for Problems (a) 1 (“smooth”), (b)

2 (“Runge”), (c) 3 (“steep”) and (d) 4 (“oscillatory”), summarised in Table 5.1.

The errors and bounds are compared to φN

∣∣∣∣u(N)
∣∣∣∣, scaled by an appropriate con-

stant, which approximates the asymptotic convergence rates of both the ECNM and

EINM errors, (5.4.44) and (5.4.57) respectively. Note the extended range of N in

(b) invited by the slower convergence.
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Figure 5.4.1 shows spectrally accurate agreement between the true computational

errors and the newly computed error bounds; the strongest agreement is shown for

the smooth problem and the weakest for the Runge problem. This is expected since

larger errors in the numerical solution are magnified in the right-most term of the

bounds (5.4.28) and (5.4.30). Despite the varying levels of agreement, the bounds

capture well the rate of convergence to zero of the true errors. The agreement be-

tween the true errors and bounds validates the proposition that the sub-elements

of (5.4.15) can be accurately computed by (5.4.16)–(5.4.18). This is additionally

supported by further experiments which revealed that, in some cases, if (5.4.16)–

(5.4.18) were computed with “1” replaced by some other function, then the resulting

bounds do not necessarily exceed, as required, the errors. The bounds remain ac-

curate when the location k of the case-2 BC is changed (see Figure 5.3.3), since the

minor perturbations in the errors are reflected in the corresponding bounds: that

is, the errors and bounds either increase or decrease together so that the relative

accuracy of the bounds is maintained. Figure 5.4.1 also shows that the asymptotic

estimates accurately predict the rate of convergence of the errors with increasing N ;

the exceptions to this are the (omitted) asymptotic rates, for the Runge problem,

which are divergent (cf. Figure 4.4.2(b)).

The problems analysed in this section, which are summarised in Table 5.1, were

designed to have challenging solutions and smooth kernels. Problems which have a

smooth solution and a challenging kernel pose a potential limitation to the ECNM

and EINM theory. For example, the numerical experiments were repeated on prob-

lems with smooth solutions but challenging kernels, these were: (a) K(x, y) =

eω (x−y)2 (isolated peak along the diagonal for ω ∈ R+); (b) K(x, y) = y2/(1 + 25x2)

(Runge); (c) K(x, y) = x2 e20y (steep), and; (d) K(x, y) = x2 cos 20 y (highly oscil-

latory). For each of the challenging-kernel problems the ECNM and EINM errors

converge with increasing N ; however, the bound theory fails for problems (a) and

(c), though for different reasons. The bound for problem (a) cannot be computed

due to the term Ā K̄(1) in (5.4.26)–(5.4.30), since it is not possible to perform the

double integration in Ā K̄(1) as a closed-form function of x. The bound for problem

(c) is negative due to the denominator in (5.4.26) and its EINM counterpart; this is

because the condition cf. [10, Eq. 4.1.22]

∣∣∣∣(Ā− ĀM)Ā
∣∣∣∣ < 1∣∣∣∣(Ī− ĀM)−1

∣∣∣∣ (5.4.58)
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that is required for (5.4.15) to hold is violated by using the approximation (5.4.18).

Although in (a) it is possible to bound the uncomputable term in the ECNM bound

by a modified (5.4.38) and the uncomputable term in the EINM bound by a modified

(5.4.50), this also yields negative error predictions since the second condition in

(5.4.46) and (5.4.56) is violated. Despite the kernel in problem (b) yielding a value

of κ(x) of a “Runge” form thus violating the first condition in (5.4.46) and (5.4.56),

e.g.

κ(x) =
2

3(1 + 25x2)

∣∣∣∣κ(M)
∣∣∣∣ = O(MM), (5.4.59)

the ECNM and EINM bounds are in fact computable and positive. This is because

the denominators in (5.4.26)–(5.4.30) are computed exactly rather than bounded cf.

(5.4.38) and (5.4.50).

5.5 Conversion from Fredholm Integro-Differential

Equation to Volterra-Fredholm Integral Equa-

tion

The asymptotic error analysis in Section 5.4.3 revealed that the ECNM and EINM

both have a global error that is dominated by the error in the numerical differenti-

ation procedure. In order to circumvent the need for numerical differentiation, and

hence to minimise the error in numerical IDE solutions, a method is now presented

that first transforms an IDE into a Volterra-Fredholm integral equation (VFIE).

This can be done when the BC (5.1.2) augmenting the IDE (5.1.1) is given for

ξ = ± 1; the details of this conversion for ξ = −1 follow a method in [87] and are as

follows. Let

u′(x) = v(x) (5.5.1)

so that

u(x) = ζ +

∫ x

−1

v(y) dy, (5.5.2)

using which the IDE (5.1.1) becomes

ζ +

∫ x

−1

v(y) dy − µ(x) v(x)− λ

∫ 1

−1

K(x, y)

(
ζ +

∫ y

−1

v(z) dz

)
dy = f(x). (5.5.3)
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The order of double integration in the final term on the left-hand side of (5.5.3) can

be changed so that (5.5.3) can be written as the VFIE

v(x) = g(x) +
1

µ(x)

∫ x

−1

v(y) dy − λ

∫ 1

−1

k(x, y) v(y) dy, (5.5.4)

in which the modified source function g(x) is given by

g(x) =
1

µ(x)

(
ζ − λ ζ

∫ 1

−1

K(x, y) dy − f(x)

)
, (5.5.5)

and the modified kernel k(x, y) by

k(x, y) =
1

µ(x)

∫ 1

y

K(x, z) dz. (5.5.6)

In symbolic form, the VFIE (5.5.4) is written as

v = g +
V v

µ
− λF v, (5.5.7)

in which the action of the Volterra integral operator V on a function v : [−1, 1] → R
is defined by

V v = (V v)(x) ≡
∫ x

−1

v(y) dy, (5.5.8)

and the action of the Fredholm integral operator F on v : [−1, 1] → R is defined by

F v = (F v)(x) ≡
∫ 1

−1

k(x, y) v(y) dy. (5.5.9)

The conversion of an IDE with a BC for ξ = +1 to a VFIE follows analogously by

replacing integrals
∫ x

−1 with
∫ 1

x in (5.5.2), (5.5.3), (5.5.4) and (5.5.8) and replacing
∫ 1
y with

∫ y
−1 in (5.5.6).

5.5.1 Numerical Solution of the VFIE

Using N -node Lagrange interpolation (2.1.1), the VFIE solution v(x) can be ap-

proximated by

v(x) ≈ (LNv)(x) ≡
N∑

j=1

Lj,N(x)v(yj,N). (5.5.10)
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Therefore, by defining the Volterra-Lagrange operator VN ≡ VLN, application of the

operator V to both sides of (5.5.10) yields

(Vv)(x) ≈ (VNv)(x) ≡
N∑

j=1

τj,N(x)v(yj,N), (5.5.11)

in which the functions τj,N(x) are defined by

τj,N(x) ≡ VLj,N(x). (5.5.12)

This differs from the approach in [87], in which the Volterra integral is approximated

using Simpson’s rule, and hence to only inverse-quadratic order in the number N of

Simpson’s-rule panels used.

The Fredholm integral in (5.5.4) can be approximated using the Fredholm-Gauss

operator FN that represents N -node Gaussian quadrature, i.e.

Fv ≈ FNv = (FNv)(x) ≡
N∑

j=1

wj,Nk(x, yj,N) v(yj,N), (5.5.13)

in which wj,N and yj,N are respectively the weights and abscissae of the rule, as

detailed in Section 3.2. Since the weight function in the integral in F v is unity,

the nodes yj,N can be Legendre, Legendre-Gauss-Radau or Legendre-Gauss-Lobatto.

Note that the nodal values v(yj,N) in (5.5.13) do not need to be expressed in terms of

the Lagrange interpolant (5.5.10) since, by construction, (2.1.2) gives Lj,N(yi,N) =

δij , wherein δij is the Kronecker delta defined in (2.3.12); as a result, v(yi,N) ≡
(LNv)(yi,N) for i = 1(1)N .

Using (5.5.11) and (5.5.13), a discrete approximation to the VFIE (5.5.4) is

obtained as

vN(x) = g(x) +
1

µ(x)

N∑

j=1

τj,N(x)vN(yj,N)− λ
N∑

j=1

wj,Nk(x, yj,N) vN(yj,N), (5.5.14)

which is collocated at nodes x = yi,N to yield the matrix system

(IN −MN)vN = gN, (5.5.15)

wherein matrix and vector entries are given by

{IN}i,j = δij , {MN}i,j =
τj,N(yi,N)

µ(yi,N)
− λwj,Nk(yi,N, yj,N),

{vN}i = vN(yi,N) and {gN}i = g(yi,N). (5.5.16)
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Inversion of (5.5.15) yields the N nodal values vN(yi,N) which, when substituted

back into the inversion formula (5.5.14), give the approximate solution vN(x) of the

VFIE (5.5.4), whose symbolic form is

vN = g +
VN vN

µ
− λFN vN. (5.5.17)

Since [50, Fig. 10.1] and Figure 4.3.1 both demonstrated that an inversion formula

is more accurate, the numerical solution vN is computed via the inversion formula

(5.5.14) instead of the Lagrange interpolant (5.5.10).

By (5.5.2), the exact solutions of the VFIE and IDE satisfy, in symbolic form,

u = ζ + Vv. (5.5.18)

Therefore, there are two cases to consider when recovering the numerical IDE solu-

tion uN from its derivative vN. Firstly, if vN(x) is integrable (case 1), the numerical

IDE solution is computed as

ũN = ζ + VvN. (5.5.19)

Second, if functions µ(x), K(x, y) and f(x) in IDE (5.1.1) yield a function vN in

(5.5.17) that is not integrable (case 2), then the numerical IDE solution must be

computed as

ûN = ζ + VNvN, (5.5.20)

which, note, gives the solution ûN(x) as a polynomial of degree N in x. Here,

non-integrable means that the integral of vN is not expressible directly in terms of

elementary functions; for example, if µ(x) =
∑m

j=0 aj x
j , m > 0 and either f(x) or

K(x, y) contains a trigonometric or exponential function of x. Note that the case-2

solution can be found without computing vN(x) in (5.5.17), since, via (5.5.11), only

its nodal values, given by the solution vector vN of (5.5.15), are required to compute

ûN(x). The fact that vN may not be integrable is no more restrictive than solving

an ODE by the integrating-factor method.

5.5.2 Error Analysis

A brief error analysis is presented for the VFIE approach in [87], which considers

only the convergence rate of the error ||v − vN|| in the VFIE solution (and not the

error in the IDE solution); even then, it requires knowledge of an exact solution.
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In the following analysis, bounds are developed for the error in the numerical IDE

solutions ũN and ûN that are explicitly computable without knowledge of an exact

solution. The error analyses for the case-1 (5.5.19) and case-2 (5.5.20) solutions are

now presented.

5.5.2.1 Case 1: vN(x) integrable

Let the linear operators S and SN be respectively defined as

S ≡ V

µ
− λF (5.5.21)

and

SN ≡ VN

µ
− λFN, (5.5.22)

so that the exact inversion formula (5.5.7) for the VFIE (5.5.4) can be written as

v = g + S v, (5.5.23)

and the numerical inversion formula (5.5.17) can be written as

vN = g + SN vN. (5.5.24)

Subtraction of (5.5.24) from (5.5.23) yields the error

v − vN = S v − SN vN (5.5.25)

which, through the addition of S vN−S vN = 0 to the right-hand side, is equivalently

v − vN = S (v − vN) + (S− SN) vN. (5.5.26)

Since v = D u by (5.5.1) and vN = D ũN by (5.5.19), the error (5.5.26) can be

rearranged as

(I− S)D (u− ũN) = (S− SN) vN, (5.5.27)

inversion of which yields the IDE error in terms of the computed vN as

u− ũN = (D− SD)−1 (S− SN) vN. (5.5.28)

Therefore, a bound on (5.5.28) is

||u− ũN|| ≤
∣∣∣∣(D− SD)−1

∣∣∣∣ ΦN (5.5.29)
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wherein

ΦN = ||(S− SN) vN|| . (5.5.30)

By (5.5.24), ΦN is equivalently

ΦN = ||S vN − vN + g|| , (5.5.31)

which demonstrates that the IDE error is proportional to the residual obtained when

the numerical VFIE solution vN(x) is inserted into the exact VFIE (5.5.4). Since

ΦN is computable using the numerical VFIE solution vN, it remains only to find a

bound on ||(D− SD)−1||, which is equivalent to

∣∣∣∣(D− SD)−1
∣∣∣∣ =

∣∣∣∣

∣∣∣∣
(
(I− S)D

)−1
∣∣∣∣

∣∣∣∣ =
∣∣∣∣D−1 (I− S)−1

∣∣∣∣ =
∣∣∣∣V (I− S)−1

∣∣∣∣ , (5.5.32)

and hence bounded by

∣∣∣∣(D− SD)−1
∣∣∣∣ ≤ ||V||

∣∣∣∣(I− S)−1
∣∣∣∣ . (5.5.33)

Since (5.5.8) yields

V(1) =

∫ x

−1

dy = x+ 1, (5.5.34)

using the approach of [10, Eqns. 4.1.13–4.1.17], which was verified in Section 4.4,

||V|| is computed as

||V|| = ||V(1)|| = 2. (5.5.35)

By (5.5.21) and (5.5.22), S and SN are linear operators. Therefore, the error the-

ory applied to K and KM in Section 4.4 can be extended to S and SN. Since the

Lagrangian interpolation and Gaussian quadrature upon which S and SN are based

are, by the error definitions (2.4.2) and (3.2.17), convergent for all continuous func-

tions then, for sufficiently large N , (I − S)−1 exists and is uniformly bounded [10,

Thm. 4.1.1] by

∣∣∣∣(I− S)−1
∣∣∣∣ ≤ 1 + ||(I− SN)−1|| ||S||

1− ||(I− SN)−1|| ||(S− SN) S||
, (5.5.36)

which has to be positive by construction, cf. [10, Eq. 4.1.22]. Let s = S(1) such

that, by (5.5.9), (5.5.21) and (5.5.34),

s(x) =
x+ 1

µ(x)
− λ

∫ 1

−1

k(x, y) dy, (5.5.37)
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using which the sub-elements on the right-hand side of (5.5.36) are computed by

again using the approach in [10, Eqns. 4.1.13–4.1.17] as

||S|| = ||S(1)|| = ||s|| , (5.5.38)

||(S− SN) S|| = ||(S− SN) S(1)|| = ||(S− SN) s|| (5.5.39)

and
∣∣∣∣(I− SN)

−1
∣∣∣∣ =

∣∣∣∣(I− SN)
−1(1)

∣∣∣∣ = ||rN|| , (5.5.40)

wherein rN(x) in (5.5.40) is the solution of

rN − SN rN = 1. (5.5.41)

Therefore, by (5.5.16), the nodal values of rN(x) are found by solving the linear

system

(IN −MN) rN = 1, (5.5.42)

in which IN and MN are given by (5.5.16) and the entries of the vectors rN and 1

are given by

{rN}i = rN(yi,N) and {1}i = 1. (5.5.43)

Solving (5.5.42) gives the nodal values rN(yi,N) that are substituted into the inversion

formula

rN(x) = 1 +
1

µ(x)

N∑

j=1

τj,N(x) rN(yj,N)− λ
N∑

j=1

wj,Nk(x, yj,N) rN(yj,N), (5.5.44)

from which ||rN|| in (5.5.40) can be computed. By (5.5.35)–(5.5.44), the theoretical

bound (5.5.33) can be replaced by the computable bound

∣∣∣∣(D− SD)−1
∣∣∣∣ ≤ 2 (1 + ||rN|| ||s||)

1− ||rN|| ||(S− SN) s||
, (5.5.45)

whence (5.5.29) and (5.5.45) give the case-1 error bound as

||u− ũN|| ≤
2 (1 + ||rN|| ||s||)

1− ||rN|| ||(S− SN) s||
||S vN − vN + g|| , (5.5.46)

which is explicitly computable in terms of only the derivative vN of the numerical

case-1 IDE solution ũN.
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5.5.2.2 Case 2: vN(x) not integrable in terms of elementary functions

Subtraction of (5.5.20) from (5.5.19) yields

ũN − ûN = (V− VN) vN, (5.5.47)

which, by the addition of u− u = 0 to the right-hand side, gives

ũN − u+ u− ûN = (V− VN) vN. (5.5.48)

Therefore, the case-2 error is bounded by

||u− ûN|| ≤ ||u− ũN||+ ||(V− VN) vN|| , (5.5.49)

which, by (5.5.46), gives

||u− ûN|| ≤
2 (1 + ||rN|| ||s||)

1− ||rN|| ||(S− SN) s||
||S vN − vN + g||+ ||(V− VN) vN|| . (5.5.50)

By (5.5.11), ||(V− VN) vN|| is equivalent to the Volterra operator V acting upon the

standard Lagrange interpolation error (2.4.1), so that

(V− VN) vN(x) = V(I− LN) vN(x) =
V pN(x)

N !
v(N)
N (η), η ∈ (−1, 1), (5.5.51)

in which pN is the monic polynomial (2.1.3) whose roots are the N integration

abscissae yi,N. Therefore, (5.5.51) yields

||(V− VN) vN|| ≤ QN

∣∣∣
∣∣∣v(N)

N

∣∣∣
∣∣∣ (5.5.52)

in which

QN ≡ ||V pN||
N !

. (5.5.53)

As the case-2 solution is computed when vN(x) is not integrable in terms of elemen-

tary functions, S vN in the bound (5.5.50) is not computable since the operator S con-

tains the integral operator V. Furthermore, for the same reason, S s in (5.5.50) will

also in general be uncomputable. Therefore, ΦN = ||S vN − vN + g|| and ||(S− SN) s||
within (5.5.50) must be bounded. Together, (5.5.21), (5.5.22) and (5.5.30) yield the

bound on ΦN as

ΦN ≤ ||(V− VN) vN||
||µ|| + |λ| ||(F − FN) vN|| , (5.5.54)
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wherein ||(V− VN) vN|| is bounded by (5.5.52). Additionally, by (3.2.17), ||(F − FN) vN||
is bounded by

||(F − FN)vN|| ≤ ψ(ν)
N F̃2N−ν , (5.5.55)

in which ψ(ν)
N is given by (3.2.14)–(3.2.16) for ν = 0, 1, 2 and F̃M is defined by

F̃M = max
x,y∈[−1,1]

∣∣∣∣
∂M

∂yM

(
k(x, y) vN(y)

)∣∣∣∣ . (5.5.56)

Substitution of (5.5.52) and (5.5.55) into (5.5.54) then gives

ΦN ≤
QN

∣∣∣
∣∣∣v(N)

N

∣∣∣
∣∣∣

||µ|| + |λ|ψ(ν)
N F̃2N−ν (5.5.57)

and, similarly, a bound on ||(S− SN) s|| can be found as

||(S− SN) s|| ≤
QN

∣∣∣∣s(N)
∣∣∣∣

||µ||
+ |λ|ψ(ν)

N S2N−ν , (5.5.58)

in which

SM = max
x,y∈[−1,1]

∣∣∣∣
∂M

∂yM

(
k(x, y) s(y)

)∣∣∣∣ . (5.5.59)

Therefore, a computable case-2 error bound is given by

||u− ûN|| ≤
2 (1 + ||rN|| ||s||)

(
QN

∣∣∣
∣∣∣v(N)

N

∣∣∣
∣∣∣+ |λ| ||µ|| ψ(ν)

N F̃2N−ν

)

||µ||− ||rN||
(
QN ||s(N)||+ |λ| ||µ|| ψ(ν)

N S2N−ν

) +QN

∣∣∣
∣∣∣v(N)

N

∣∣∣
∣∣∣ .

(5.5.60)

Exact formulae for computingQN in the bound (5.5.60) are derived in Section 5.5.2.3.

5.5.2.3 Explicit Formulae for QN

The factor QN defined in (5.5.53) can be found explicitly for all of the Legendre,

Legendre-Gauss-Radau (Radau) and Legendre-Gauss-Lobatto (Lobatto) nodal dis-

tributions using which the VFIE method is implemented.

Let ν again correspond to the number of endpoints included in the distribution,

i.e. ν = 0, 1, 2 for Legendre, Radau and Lobatto distributions respectively. Then

the monic polynomials associated with each distribution are

p(0)N (x) =
2N(N !)2

(2N)!
PN(x), (5.5.61)
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p(1)N (x) =
2N(N !)2

(2N)!

(
PN−1(x)− PN(x)

)
, (5.5.62)

and

p(2)N (x) =
2N(N !)2

(2N)!

2N − 1

N(N − 1)
(x2 − 1)P ′

N−1(x), (5.5.63)

in which only the Left-Gauss-Radau distribution is considered since both Left- and

Right-Radau distributions yield the same QN. Using the Legendre-polynomial re-

lationship (2.3.22), along with Bonnet’s recursion formula (see Appendix (C.0.13)),

p(2)N (x) in (5.5.63) can be rewritten as

p(2)N (x) =
2N(N !)2

(2N)!

(
PN(x)− PN−2(x)

)
, (5.5.64)

and hence the monic polynomials (5.5.61), (5.5.62) and (5.5.64) can all be expressed

in the general form

p(ν)N (x) =
2N(N !)2

(2N)!

(
(1 + ν − ν2)PN−ν(x) +

ν (3− (−1)ν)

4
PN(x)

)
. (5.5.65)

The integral V pN in (5.5.53), in which pN ≡ p(ν)N is given by (5.5.65), is computed

using the Legendre-polynomial relationship [65, Eq. 6.41]

(2N + 1)PN(x) =
d

dx

(
PN+1(x)− PN−1(x)

)
, (5.5.66)

so that QN ≡ Q(ν)
N in (5.5.53) yields

Q(ν)
N ≤ 2N(N !)

(2N)!

(
||PN+1−ν − PN−1−ν ||

2 (N − ν) + 1
+
ν(3− (−1)ν)

4

||PN+1 − PN−1||
2N + 1

)
. (5.5.67)

By inspection,

||PN − PN−2|| = |PN(0)− PN−2(0)|, N even, (5.5.68)

in which, by the Legendre-polynomial definition (2.4.50), PN(0) is computed as

PN(0) =
2N
(
N−1
2

)
!(

−(N+1)
2

)
!N !

. (5.5.69)

By the half-integer factorial definitions (2.4.53) and (2.4.54), (5.5.69) is equivalently

PN(0) =
(−1)N/2N !

2N
( (

N
2

)
!
)2 , (5.5.70)
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and hence (5.5.68) and (5.5.70) yield

||PN − PN−2|| =
(2N − 1)N !

(N − 1) 2N
( (

N
2

)
!
)2 , N even, (5.5.71)

which, by Stirling’s formula [9, p.279], becomes

||PN − PN−2|| ∼
2N − 1

N − 1

√
2

πN
, N (even) → ∞. (5.5.72)

Although there is no closed form for ||PN − PN−2|| when N is odd, Figure 5.5.1 shows

that (5.5.72) provides a good approximation for ||PN − PN−2|| for all N .

Figure 5.5.1: Logarithmic plot of the exact value of ||PN − PN−2|| (crosses) and its

asymptotic approximation (5.5.72) (circles). The asymptotic approximation clearly

holds for both N odd and even.

Together, (5.5.67) and (5.5.72) give the asymptotic formula for Q(ν)
N as

Q(ν)
N ∼ 1√

π

( e

2N

)N ( 1

(N − ν)
√
N + 1− ν

+
ν(3− (−1)ν)

4N
√
N + 1

)
, (5.5.73)

which is shown in Figure 5.5.2 to be an extremely accurate approximation for ν = 0, 1

and 2, for all N .
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Figure 5.5.2: Logarithmic plot of the exact Q(ν)
N and its asymptotic approximation

(5.5.73) for ν = 0, 1, 2. The asymptotic approximation is accurate for even low

values of N .

5.5.2.4 Asymptotic Convergence Rates

The convergence rate of the case-1 error is found by considering that of ΦN, which

is defined in (5.5.31) and bounded, using ψ(ν)
N and Q(ν)

N , in (5.5.57). The asymptotic

rates for ψ(ν)
N and Q(ν)

N , (3.2.20) and (5.5.73) respectively, yield the ratio

ψ(ν)
N

Q(ν)
N

∼
π (4N)(2ν+1)/2 (N − ν)

√
(N + 1)2 − ν(N + 1)

4N
√
N + 1 + ν(3− (−1)ν) (N − ν)

√
N + 1− ν

( e

8N

)N

(5.5.74)

as N → ∞, which reveals that ψ(ν)
N /Q(ν)

N ∼ O(N−N). Therefore, since Q(ν)
N ≫ ψ(ν)

N

as N → ∞, provided that

∣∣∣
∣∣∣v(N)

N

∣∣∣
∣∣∣ ∼ o(NN) and F̃2N−ν ∼ o(N2N), (5.5.75)
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the bound (5.5.57) can be approximated by

ΦN ≤
Q(ν)

N

∣∣∣
∣∣∣v(N)

N

∣∣∣
∣∣∣

||µ|| , N ≫ 1, (5.5.76)

and hence, by (5.5.29), the asymptotic convergence rate of the case-1 error is

||u− ũN|| ∼Q(ν)
N

∣∣∣
∣∣∣v(N)

N

∣∣∣
∣∣∣ , N → ∞. (5.5.77)

By (5.5.49), (5.5.52) and (5.5.77), the asymptotic convergence rate for the case-2

error is given by

||u− ûN|| ∼Q(ν)
N

∣∣∣
∣∣∣v(N)

N

∣∣∣
∣∣∣ , N → ∞, (5.5.78)

so that, irrespective of how the numerical IDE solution is recovered from the nu-

merical VFIE solution, the error-convergence rate is

Q(ν)
N

∣∣∣
∣∣∣v(N)

N

∣∣∣
∣∣∣ , N → ∞. (5.5.79)

The asymptotic rate (5.5.79) can be used to compare the errors of the VFIE

approach to those of the ECNM approach, whose asymptotic convergence rate is

given by (5.4.44). The factor φN in (5.4.44), which is given explicitly for different

node sets in Table 2.1, has the asymptotic form

φ(ν)
N ∼ 2ν−3/2

N (ν2−ν−4)/2

( e

2N

)N

, (5.5.80)

in which ν = 0, 1, 2 again refer to the Legendre, Radau and Lobatto distributions

respectively. The asymptotic forms (5.5.73) and (5.5.80) show that, as N → ∞, φ(ν)
N

and Q(ν)
N are of order O(N−N). Additionally, the asymptotic forms yield the ratio

Q(ν)
N

φ(ν)
N

∼ N (ν2−ν−4)/2

2ν−3/2
√
π

(
1

(N − ν)
√
N + 1− ν

+
ν(3− (−1)ν)

4N
√
N + 1

)

∼ N (ν2−ν−7)/2, (5.5.81)

which demonstrates that φ(ν)
N > Q(ν)

N . Therefore, provided the VFIE norm
∣∣∣
∣∣∣v(N)

N

∣∣∣
∣∣∣

and ECNM norm
∣∣∣
∣∣∣u(N)

N

∣∣∣
∣∣∣ are of the same order, the errors of both the VFIE approach

and the ECNM are expected to converge at the same rate, with the former uniformly

lower than the latter.
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5.5.3 Numerical Examples

The methods and bounds are now validated on four test problems which again

feature solutions that are challenging to approximation methods; the test problems

are summarised in Table 5.2.

Problem Name Solution u(x) µ(x) Kernel K(x, y) λ

1 Smooth cosx+ x3 sec x (x+ 2) sin y −1

2 Runge 1
1+25x2

1
x−3 (x+ 2)(y2 − 3) 1

3

3 Steep e−13x ex ex−y 1

4 Oscillatory sin 14x 1
x2+2 cosx (y5 + 1) −1

Table 5.2: Test problems with solutions of four qualitatively distinct forms. The

source function f(x) can be computed directly from the IDE (5.1.1).

Figure 5.5.3 shows the case-1 and case-2 errors, corresponding respectively to

bounds (5.5.46) and (5.5.60), and convergence rate (5.5.79); the ECNM errors are

also included for comparison. Since results are qualitatively similar using each nodal

distribution, only the Legendre results, for which ν = 0, are shown.

Figure 5.5.3 shows that the case-1 errors are uniformly lower than the case-2

errors, which demonstrates that, as expected, it is more accurate to obtain the nu-

merical IDE solution by integrating the numerical VFIE solution vN exactly, rather

than by integrating its Lagrange interpolant. Furthermore, both the case-1 and

case-2 errors are lower than the ECNM errors, as predicted at the end of Section

5.5.2.4; this demonstrates that a more accurate IDE solution can be obtained when

the need for numerical differentiation is avoided. The case-1 error bound is shown to

be accurate for all four test problems, whilst the case-2 error bound is less accurate

for each problem. In particular, it is noted that the case-2 bound is divergent for

problem 2, whilst the true errors are convergent. This divergence, and the large

discrepancy between the case-2 errors and bounds for problems 1, 3 and 4, is due

to the terms F̃2N−ν and
∣∣∣
∣∣∣v(N)

N

∣∣∣
∣∣∣ within (5.5.60), which may over-estimate the terms

that they bound. Specifically, since (5.5.51) is derived via the mean-value theorem,

the truncation parameter η ∈ (−1, 1) that gives the true value of (V − VN) vN is

unknown, so |v(N)
N (η)| must be replaced by

∣∣∣
∣∣∣v(N)

N

∣∣∣
∣∣∣ in the bound (5.5.52), the latter
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Figure 5.5.3: Logarithmic plots of the case-1 (5.5.19) and case-2 (5.5.20) errors (small

symbols) eN = ||u− uN||, corresponding bounds (large symbols) bN (5.5.46) and

(5.5.60), and asymptotic convergence rate (dashed lines) (5.5.79), for Problems (a)

1 (“smooth”), (b) 2 (“Runge”), (c) 3 (“steep”) and (d) 4 (“oscillatory”), summarised

in Table 5.2. The ECNM errors are shown for comparison; these are uniformly higher

than the case-1 and case-2 errors.
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of which can be much larger than the former. The same argument applies to F̃2N−ν

in (5.5.55), which is computed by maximising over x, y ∈ [−1, 1] in (5.5.56) as the

true values of x and y that give the true quadrature error are unknown. Since the

asymptotic rate (5.5.79) also contains the term
∣∣∣
∣∣∣v(N)

N

∣∣∣
∣∣∣, this over-estimation causes

the asymptotic rate to be greater than the true case-1 and case-2 errors, as shown

in Figure 5.5.3; it is moreover divergent for problem 2. Despite the discrepancy in

magnitude between the asymptotic rate and the true errors, the asymptotic rate

accurately predicts the rate at which the problem 1, 3 and 4 errors converge with

increasing N .

The numerical experiments were repeated on the challenging kernel problems

discussed at the end of Section 5.4.4, these were: (a) K(x, y) = eω (x−y)2 (isolated

peak along the diagonal for ω ∈ R+); (b) K(x, y) = y2/(1 + 25x2) (Runge); (c)

K(x, y) = x2 e20y (steep), and; (d) K(x, y) = x2 cos 20 y (highly oscillatory). Similar

results as discussed for the ECNM and EINM methods were observed for these prob-

lems using the VFIE reformulation method; for each problem the errors converged

with increasing N and the error bounds for problems (b) and (d) were computable

and provided accurate estimates of the true errors. However, the case-1 bound for

problem (a) cannot be computed due to the terms S vN and S s in (5.5.46), since it

is not possible to perform the required integrations as closed-form functions of x;

the case-2 bound for problem (a), which by (5.5.49) also bounds the case-1 error, is

negative due to the denominator in the first term on the right-hand side of (5.5.60).

The denominator is negative since the condition cf. [10, Eq. 4.1.22]

||(S− SN) S|| <
1

||(I− SN)−1||
(5.5.82)

required for (5.5.36) to hold is violated by using the approximation (5.5.58). Simi-

larly, the case-1 and case-2 bounds for problem (c) are negative since the condition

(5.5.82) is violated by the approximation (5.5.39).

5.6 Summary

The two main goals of this chapter were to develop and to implement novel numerical

methods for solving IDEs that converge exponentially with an increasing number of

collocation nodes; and, to develop corresponding error predictions that are explicitly
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computable in terms of only the available numerical solution. The accomplishment

of the latter goal is a novel aspect of the present work since, in the considerable

literature on numerical methods for solving IDEs, not only are computable error

bounds scarce, but also even mere discussion of errors is relatively rare. For example,

of the aforementioned work in this chapter, [7, 121, 24, 38, 73, 106, 108, 136, 137]

contain no discussion of errors, [87, 92] give error bounds for only the first derivative

of the solution rather than the solution itself, [69] computes the error as a solution

of an IDE that is itself subject to error, [138] estimates the error function which is

then not developed into an error bound, [6] proves a convergence theorem which is

not used explicitly to analyse errors, and [12] develops computable error estimates

which are noted, in some cases, to be exceeded by the true computed error and so

cannot be used as error bounds.

The first step towards achieving the goals of this chapter was to extend and to

adapt the numerical methods for solving IEs in Section 4.3 into numerical methods

for solving IDEs through incorporation of the numerical differentiation detailed in

Sections 2.2 and 3.1. It was for this very purpose that the interpolated Nyström

method was developed in Section 4.3.2, since the integral in the interpolated Nyström

method can be approximated through collocation at any set of nodes. This has

enabled the IDE to be solved using nodes that are optimal for differentiation in

the extended interpolated Nyström method. However, despite combining optimal

quadrature with optimal differentiation, the extended interpolated Nyström method

was shown, through numerical examples, to have no clear advantage over the ex-

tended classical Nyström method.

Novel error analyses for the extended Nyström methods have been presented in

Section 5.4, in which the operator theory from the pure-IE error analyses of Section

4.4 has been extended and developed to account for the presence of the unbounded

differential operator D inherent in the extended Nyström approach. The resulting

error bounds are explicitly computable using only the numerical IDE solution and

hence require no knowledge of the exact solution. A corresponding asymptotic error

analysis revealed that the error in the numerical IDE solution is dependent upon

the error in numerical differentiation which, due to the ill-conditioned differentiation

matrices inherent to the formulation, is considerably less accurate than the use of

numerical quadrature alone. Furthermore, the asymptotic analysis confirmed that,

since Legendre and Chebyshev distributions yield differentiation errors of the same
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order, there is no advantage in extending the computationally expensive interpolated

Nyström method, as opposed to extending the classical Nyström method.

Since the asymptotic analysis of the extended Nyström methods revealed that

the global IDE error is dictated by the numerical differentiation rather than the

numerical integration, this motivated an alternative approach in Section 5.5, which

bypasses numerical differentiation by first converting the IDE into a VFIE. Although

this conversion was previously considered in [87], the resulting VFIE therein was

only ever solved to quadratic order in N ; additionally, its so-called “error analysis”

demanded knowledge of an exact solution. By implementing the new method devel-

oped herein, the VFIE can be solved to spectral accuracy in N , thus improving on

the results in [87], and this enables a spectrally accurate IDE solution to be recov-

ered. It has been shown theoretically and numerically on a variety of test problems

that the errors in this VFIE approach are smaller in magnitude than those in the

extended Nyström approaches of Section 5.3. Therefore, a more accurate numerical

IDE solution can be found when the need for numerical differentiation is bypassed

by VFIE reformulation. However, the advantage of the extended Nyström methods

over the VFIE approach is that they may easily be extended to solve higher-order

IDEs by incorporating higher-order differentiation matrices; in contrast, by its con-

struction, the VFIE approach can be used for only first-order IDEs.

The errors incurred in the VFIE approach have been analysed and bounded in

Section 5.5.2; unlike the error analysis in [87], the error analysis in the present work

yields spectrally accurate error bounds that use only the numerical VFIE solution

and so are computable without knowledge of the exact solution.

The numerical methods developed in this chapter are both flexible and widely

applicable and have yielded spectrally accurate IDE solutions on a range of test

problems. Furthermore, the newly predicted error bounds for both the extended

Nyström and VFIE approaches have provided spectrally accurate representations of

the true errors. These error bounds are explicitly computable in the absence of an

exact solution which, as discussed above, is a novel and distinctive aspect of this

work.
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Chapter 6

Conclusions

6.1 Motivation

This thesis has been concerned with the numerical solution of Fredholm integral-

and integro-differential equations of the second kind (respectively FIE2s and FIDEs)

which, as stated in Chapter 1, arise frequently in the modelling of many real-life

problems in applied sciences and engineering. Accordingly, since the accurate ap-

proximation of their solution is of practical importance, and since exact solutions

to such problems are invariably unknown, there is a genuine need not only to un-

derstand but also to quantify the errors incurred in the computation of such ap-

proximate solutions. Thus motivated, the development of accurate and computable

error estimates and bounds has been the main focus of this thesis. Specifically con-

sidered herein has been the analysis and implementation thereof of both spectrally

accurate numerical methods for approximating the solution of not only FIE2s and

FIDEs but also their respective error analyses, the main focus in the establishment

of which was for all error bounds and estimates to be explicitly computable in —

a distinctive element of the present work — the absence of an exact solution. This

objective was motivated not only by the practical relevance mentioned above, but

also by the apparent paucity of existing literature on the prediction of errors for

realistically motivated (rather than model) problems. Since detailed summaries are

already provided for each chapter, the following conclusions are based only upon the

key results and outcomes.
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6.2 Summary and Discussion

Chapters 2 and 3 introduced and analysed the fundamental constituent techniques

demanded of Nyström methods for approximating the solution of FIE2s and FIDEs

to spectral accuracy: interpolation, numerical differentiation and numerical quadra-

ture. Additionally, Chapter 2 provided an overview of a variety of nodal distributions

upon which the approximation techniques can be based. A novel detailed compar-

ison of these distributions revealed that interpolation and numerical differentiation

are most accurate when collocated on Chebyshev-based distributions, thus confirm-

ing the well-known optimality [124] of Chebyshev spectral differentiation. However,

Chapter 3 demonstrated that the Gauss-Legendre nodal distribution is invariably

used when implementing quadrature to approximate a definite integral whose weight

function is unity. Therefore, one of the aims of this thesis was to develop a numeri-

cal method that combined the optimality of Chebyshev differentiation with that of

Gauss-Legendre quadrature and so to minimise the total error in approximation of

FIDE solutions. This aim was achieved by first considering the projection between

optimal-quadrature nodes and optimal-differentiation nodes within the context of

numerical methods for FIE2s.

By studying the errors associated with each approximation technique in Chapters

2 and 3, it was possible to determine how these errors contributed to the overall

error in numerical solutions of FIE2s and FIDEs. Specifically, the explicit node-

dependent formulae derived for the errors in interpolation, numerical differentiation,

and numerical quadrature provided the basis for asymptotic error analyses of the

FIE2 and FIDE methods in the subsequent chapters. Thus, the analysis presented

in Chapters 2 and 3, elements of which have never appeared elsewhere despite their

fundamental nature, provided the essential framework for the numerical methods

and error analyses developed and implemented for FIE2s in Chapter 4 and for FIDEs

in Chapter 5.

Chapter 4 introduced the ubiquitous Nyström method for the solution of FIE2s;

this was then extended by incorporating Lagrange interpolation into the Nyström-

quadrature term in order to solve FIE2s using any set of collocation nodes, rather

than only those dictated by the weighting function in the integral term in the FIE2.

Since the error analyses in the initial two chapters demonstrated that Lagrange
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interpolation is considerably less accurate than Gaussian quadrature, the new inter-

polated Nyström method was not expected to improve upon the accuracy achieved

by the classical Nyström method; this was confirmed both numerically and theo-

retically. However, by enabling FIE2s to be collocated on any node set, the inter-

polated Nyström method facilitated a natural extension for solving FIDEs by the

incorporation of optimal numerical differentiation. The larger errors attributed to

Lagrange interpolation in the interpolated Nyström method were not considered a

disadvantage to the intended FIDE extension, since interpolation is inevitable in the

numerical differentiation outlined in Chapters 2 and 3.

The most significant achievement of Chapter 4 was the development of novel

implementable error analyses for both the classical and interpolated Nyström meth-

ods. These error analyses were founded on an existing, theoretical framework that,

despite frequent citation in the literature, does not appear to have been developed

into computable error bounds before now; moreover, it has even been claimed that

[83, p. 188] “these bounds will be difficult to evaluate in applications”. Contrary

to this assertion, the error bounds derived in this thesis are explicitly computable

using only the available numerical solution and other known quantities from the

FIE2; this feature is highly distinctive and effectively absent from the literature.

For practical problems wherein the exact solution is unknown, these bounds

are an improvement upon the existing Nyström bounds, e.g. [10, Eq. 4.1.33] and

[60, Eq. 4.7.16d] that not only contain theoretical terms, but also depend upon

the exact solution. Despite the Nyström errors being [9, p. 282] “difficult to esti-

mate”, these new error bounds were shown to agree with the true, computed errors

with spectral accuracy on a range of test problems. Additionally, spectrally accurate

asymptotic error estimates were derived for FIE2s whose solutions are infinitely con-

tinuously and boundedly differentiable. These were derived from the interpolation-

and quadrature-error formulae presented in Chapters 2 and 3.

In Chapter 5 two novel and distinct methods were developed for the solution of

FIDEs. The first approach extended both the classical and interpolated Nyström

methods by incorporating the numerical differentiation detailed in Chapters 2 and 3.

Although the extended interpolated Nyström method combines optimal numerical

differentiation with optimal numerical quadrature, it was shown both theoretically

and computationally to have no clear advantage in terms of accuracy over the ex-

tended classical Nyström method, but to have a large disadvantage in terms of
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computational workload. Thus it was shown to be sufficient to approximate FIDEs

using optimal quadrature and near-optimal differentiation in order to preclude com-

putationally expensive interpolation between nodal distributions. The discretisation

of an FIDE in the extended Nyström methods has similarities to the approach in

[108], in which higher-order FIDEs are discretised using a combination of Gauss-

Legendre quadrature and Lagrange interpolation. However, the approach in [108]

and the FIDE-Nyström methods differ substantially thereafter, since the former de-

termines the unknown nodal values of the FIDE solution using Newton’s method,

and the latter uses a matrix-inversion system. Furthermore, the FIDE solution is

approximated in [108] by Lagrange-interpolating the recovered nodal values: as dis-

cussed for the FIE2 numerical methods in Chapter 4, this approach does not achieve

the spectral accuracy of the inversion formulae used in this thesis.

An asymptotic analysis of the extended Nyström method errors revealed that the

error is dictated by the error in numerical differentiation, which is orders of magni-

tude larger than the error in numerical quadrature, as demonstrated in Chapters 2

and 3. This motivated the second FIDE approach, in which numerical differentia-

tion is bypassed by transforming an FIDE into a Volterra-Fredholm integral equation

(VFIE), following the method in [87]. A new method was presented for solving the

resulting VFIE that combines Gaussian quadrature with Lagrange interpolation in

order to obtain a spectrally accurate VFIE solution, from which the FIDE solution

is recovered. The spectral accuracy of this new approach is far superior to that in

[87], in which the VFIE is solved to only quadratic order in N .

Asymptotic error analyses and numerical experiments confirmed that the VFIE

approach yields errors smaller than those of the Nyström-type methods. However,

despite offering advantages in terms of accuracy, the VFIE approach is less flexible

than the Nyström-type methods, since the VFIE approach requires a given bound-

ary condition at x = ± 1, whereas the Nyström-type methods can be implemented

when the boundary condition is given anywhere in the domain. Additionally, the

VFIE approach, by its very construction, can only solve first-order FIDEs, whilst

the Nyström-type methods can be extended easily to solve higher-order FIDEs by

incorporating higher-order differentiation matrices. The flexibility, and practical

relevance, of the FIDE-Nyström method is demonstrated in [54] on a novel FIDE

formulation of a fourth-order, Euler-Bernoulli beam-deflection boundary-value prob-

lem with varying flexural rigidity. Therefore, both of the new FIDE approaches
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developed in this thesis offer different advantages, hence together they provide a

useful framework for approximating the solutions of FIDEs.

Novel error analyses were developed for both the Nyström-type methods and

the VFIE approach; in keeping with those presented in Chapter 4 for FIE2s, these

error analyses were founded on the fundamental operator theorem [10, Thm. 4.1.1]

that underpins the Nyström method error. However, due to the presence of the un-

bounded differential operatorD, the theoretical bound resulting from [10, Thm. 4.1.1]

had to be adjusted for the FIDE-Nyström methods. Therefore, a novel “punctured”

operator was introduced that is an analogy of the procedure that reduces a singular

differentiation matrix, by the removal of one row and column, to yield an invertible

matrix that accounts for a given boundary condition, see e.g. [124, p. 125]. For

both FIDE approaches, the error bounds derived are explicitly computable with-

out knowledge of the exact solution: the FIDE-Nyström bounds are based upon

the numerical FIDE solution, whilst the VFIE-approach bounds are based upon

the numerical VFIE solution. Therefore, the error analyses developed are notably

different from those in existing literature since, as for FIE2s, error bounds of this

form appear to be absent from all literature on FIDEs. For example, existing er-

ror estimates for FIDE numerical methods include those that only bound the first

derivative of the solution [87, 92], those that are themselves subject to an unquanti-

fied error [69, 138, 55], those that prove only convergence [6], and those that do not

exceed the true computed errors [12], i.e. they are not bounds in the proper sense.

6.3 Future Work

The FIDE error bounds have been shown to provide spectrally accurate error pre-

dictions on a range of test problems with challenging solutions. However, there

is scope for further developments to the error bounds for FIDEs with challenging

kernels since, as discussed in Chapter 5, some kernels violate the condition [10,

Eq. 4.1.22] required for the theorem [10, Thm. 4.1.1] to hold. Additionally, since the

Nyström method requires modifications for FIE2s with singular kernels, as consid-

ered in e.g. [100, 80, 8, 77], further research could also be conducted into adapting

the FIDE numerical methods to account for singular-kernel FIDEs.
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6.4 Final Remarks

The numerical methods developed in this thesis were shown to deliver spectrally

accurate solutions of FIE2s and FIDEs on a range of problems. In addition to

this, novel error bounds and asymptotic estimates were derived that predict the

true computed errors to spectral accuracy. Although the test problems considered

in this thesis all had known solutions, this was not a restriction per se and was

only done to demonstrate the accuracy of the error bounds computed using only

the numerical solution. The agreement between the predicted and computed errors

suggests that, in practice, the methods developed in this thesis can be used to

approximate the solution, and to predict the error therein, of many problems arising

in the mathematical modelling of a host of practical problems whose exact solutions

lie beyond the reach of analysis.
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Appendix A

Proof of explicit formulae for

derivatives of Lagrange

polynomials

The general formula for L(M)
j,N (x) given by (2.2.9) is proved by induction and the

nodal values L(M)
j,N (xi,N) are derived for both i = j and i ̸= j. It is first noted, from

(2.2.4), that (2.2.9) is true for M = 1. Assume now that (2.2.9) is true for M = m,

whence L(m+1)
j,N (x) is found by differentiating L(m)

j,N (x) to give

L(m+1)
j,N (x) =

m∑

k=0

(−1)m+k m!

k!
(x− xj,N)

k
(
k (x− xj,N)

−1 p(k)N (x) + p(k+1)
N (x)

)

(x− xj,N)m+1 p ′
N(xj,N)

+

m∑

k=0

(−1)m+k+1 (m+ 1)!

k!
(x− xj,N)

k p(k)N (x)

(x− xj,N)m+2 p ′
N(xj,N)

(A.0.1)
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which is equivalently

L(m+1)
j,N (x) =

m∑

k=0

(−1)m+k m!

k!
(x− xj,N)

k k p(k)N (x)

(x− xj,N)m+2 p ′
N(xj,N)

+

m∑

k=0

(−1)m+k m!

k!
(x− xj,N)

k+1 p(k+1)
N (x)

(x− xj,N)m+2 p ′
N(xj,N)

+

m∑

k=0

(−1)m+k+1 (m+ 1)!

k!
(x− xj,N)

k p(k)N (x)

(x− xj,N)m+2 p ′
N(xj,N)

. (A.0.2)

The k = 0 term vanishes in the first sum in (A.0.2), and the second sum in (A.0.2)

is rewritten with k′ = k + 1 so that (A.0.2) becomes

L(m+1)
j,N (x) =

m∑

k=1

(−1)m+k m!

k!
(x− xj,N)

k k p(k)N (x)

(x− xj,N)m+2 p ′
N(xj,N)

+

m+1∑

k′=1

(−1)m+k′−1 m!

(k′ − 1)!
(x− xj,N)

k′ p(k
′)

N (x)

(x− xj,N)m+2 p ′
N(xj,N)

+

m∑

k=0

(−1)m+k+1 (m+ 1)!

k!
(x− xj,N)

k p(k)N (x)

(x− xj,N)m+2 p ′
N(xj,N)

, (A.0.3)
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which is equivalently

L(m+1)
j,N (x) =

m∑

k=1

(−1)m+k m!

(k − 1)!
(x− xj,N)

k p(k)N (x)

(x− xj,N)m+2 p ′
N(xj,N)

−

m∑

k′=1

(−1)m+k′ m!

(k′ − 1)!
(x− xj,N)

k′ p(k
′)

N (x)

(x− xj,N)m+2 p ′
N(xj,N)

−
(−1)2m+1 m!

m!
(x− xj,N)

m+1 p(m+1)
N (x)

(x− xj,N)m+2 p ′
N(xj,N)

+

m∑

k=0

(−1)m+k+1 (m+ 1)!

k!
(x− xj,N)

k p(k)N (x)

(x− xj,N)m+2 p ′
N(xj,N)

. (A.0.4)

The first two sums in (A.0.4) now cancel to give

L(m+1)
j,N (x) =

(x− xj,N)m+1 p(m+1)
N (x) +

m∑

k=0

(−1)m+k+1 (m+ 1)!

k!
(x− xj,N)

k p(k)N (x)

(x− xj,N)m+2 p ′
N(xj,N)

(A.0.5)

which simplifies to

L(m+1)
j,N (x) =

m+1∑

k=0

(−1)m+k+1 (m+ 1)!

k!
(x− xj,N)

k p(k)N (x)

(x− xj,N)m+2 p ′
N(xj,N)

. (A.0.6)

Therefore if (2.2.9) is true for M = m then it is also true for M = m + 1: by

induction, it is proved that it is also true for all integers M > 1, a proof that does

not appear to have been explicitly presented in the previous literature.

Having proved (2.2.9), (3.1.14) follows by setting x = xi,N in (2.2.9) to yield

L(M)
j,N (xi,N) =

M∑

k=0

(−1)M+k M !

k!
(xi,N − xj,N)

k p(k)N (xi,N)

(xi,N − xj,N)
M+1 p ′

N(xj,N)
, (A.0.7)
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which expands to

L(M)
j,N (xi,N) =

(−1)M M ! pN(xi,N) +
M∑

k=1

(−1)M+k M !

k!
(xi,N − xj,N)

k p(k)N (xi,N)

(xi,N − xj,N)
M+1 p ′

N(xj,N)
.

(A.0.8)

By definition, pN(xi,N) ≡ 0 for all i = 1(1)N so that, upon cancellation of (xi,N−xj,N)

from both numerator and denominator, (A.0.8) becomes

L(M)
j,N (xi,N) =

M∑

k=1

(−1)M+k M !

k!
(xi,N − xj,N)

k−1 p(k)N (xi,N)

(xi,N − xj,N)M p ′
N(xj,N)

, (A.0.9)

proving (3.1.14).

Finally, (3.1.15) is proved by taking the limit x → xj,N in (2.2.9) and using

L’Hôpital’s rule to yield

L(M)
j,N (xj,N) = lim

x→xj,N

M∑

k=0

(−1)M+k M !

k!
(x− xj,N)

k p(k)N (x)

(x− xj,N)M+1 p ′
N(xj,N)

LH
= lim

x→xj,N

⎛

⎜⎜⎜⎜⎜⎝

M∑

k=0

(−1)M+k M !

k!
k (x− xj,N)

k−1 p(k)N (x)

(M + 1) (x− xj,N)M p ′
N(xj,N)

+

M∑

k=0

(−1)M+k M !

k!
(x− xj,N)

k p(k+1)
N (x)

(M + 1) (x− xj,N)M p ′
N(xj,N)

⎞

⎟⎟⎟⎟⎟⎠
. (A.0.10)

Since the k = 0 term vanishes in the first sum in (A.0.10), the sum is rewritten with
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k′ = k − 1 so that (A.0.10) becomes

L(M)
j,N (xj,N) = lim

x→xj,N

⎛

⎜⎜⎜⎜⎜⎝

M−1∑

k′=0

(−1)M+k′+1 M !

k′!
(x− xj,N)

k′ p(k
′+1)

N (x)

(M + 1) (x− xj,N)M p ′
N(xj,N)

+

M∑

k=0

(−1)M+k M !

k!
(x− xj,N)

k p(k+1)
N (x)

(M + 1) (x− xj,N)M p ′
N(xj,N)

⎞

⎟⎟⎟⎟⎟⎠
(A.0.11)

wherein the two sums cancel leaving only the k = M term of the second sum, so

that

L(M)
j,N (xj,N) = lim

x→xj,N

p(M+1)
N (x)

(M + 1) p ′
N(xj,N)

=
p(M+1)
N (xj,N)

(M + 1) p ′
N(xj,N)

, (A.0.12)

which proves (3.1.15).

203



A. PROOF OF EXPLICIT FORMULAE FOR DERIVATIVES OF
LAGRANGE POLYNOMIALS

204



Appendix B

Proof of bound on monic

polynomial based upon regularly

spaced nodes

The bound on ||pN|| given by (2.4.7) for the regular nodes is derived by following the

proof given in [41]. It is included here not only for completeness, but also because

it is not intuitively obvious. Let x be a point such that xj,N < x < xj+1,N, for any

j = 1(1)N − 1, then

|x− xj,N| |x− xj+1,N| = (x− xj,N)(xj+1,N − x)

= −x2 + (xj+1,N + xj,N) x− xj,Nxj+1,N . (B.0.1)

By differentiating the right-hand side of (B.0.1) it is clear that |x− xj,N| |x− xj+1,N|
is maximised when

x = X ≡ 1

2
(xj,N + xj+1,N), (B.0.2)

so that

|x− xj,N| |x− xj+1,N| ≤ |X − xj,N| |X − xj+1,N| . (B.0.3)

By expressing the regular nodes as in (2.4.14), X in (B.0.2) is equivalently

X =
1

2

(
− 1 + (j − 1) h− 1 + jh

)
= −1 +

(
j − 1

2

)
h (B.0.4)
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which, when substituted into (B.0.3) with (2.4.14), yields

|x− xj,N| |x− xj+1,N|

≤
∣∣∣∣

(
j − 1

2

)
h− (j − 1) h

∣∣∣∣

∣∣∣∣

(
j − 1

2

)
h− jh

∣∣∣∣ =
∣∣∣∣
h

2

∣∣∣∣

∣∣∣∣−
h

2

∣∣∣∣ (B.0.5)

and so

|x− xj,N| |x− xj+1,N| ≤
h2

4
, j = 1(1)N − 1. (B.0.6)

Now consider a node xi,N for which xi,N < xj,N < x < xj+1,N; this gives

|x− xi,N| ≤ |xj+1,N − xi,N| = −1 + jh + 1− (i− 1) h = (j − i+ 1) h. (B.0.7)

Similarly, a node xi,N for which xj,N < x < xj+1,N < xi,N, gives

|x− xi,N| ≤ |xi,N − xj,N| = −1 + (i− 1) h+ 1− (j − 1) h = (i− j) h. (B.0.8)

The monic polynomial pN(x) in (2.1.3) satisfies

|pN(x)| ≤
N∏

i=1

|x− xi,N|

=

(
j−1∏

i=1

|x− xi,N|
)
|x− xj,N| |x− xj+1,N|

(
N∏

i=j+2

|x− xi,N|
)
(B.0.9)

which, by (B.0.6)–(B.0.8), is bounded by

|pN(x)| ≤
(

j−1∏

i=1

(j − i+ 1) h

)
h2

4

(
N∏

i=j+2

(i− j) h

)
, (B.0.10)

wherein
j−1∏

i=1

(j − i+ 1) h = j! hj−1 (B.0.11)

and
N∏

i=j+2

(i− j) h = (N − j)! hN−j−1. (B.0.12)

Therefore, combining (B.0.10)– (B.0.12) yields the bound, for x ∈ (xj,N, xj+1,N),

|pN(x)| ≤ j! (N − j)!
hN

4
. (B.0.13)
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The bound on |pN(x)| for x ∈ [−1, 1], equivalently ||pN||, is determined as the max-

imum value of the right-hand side of (B.0.13) for j = 1(1)N − 1. The binomial

coefficient (
N

j

)
=

N !

j! (N − j)!
≥1 (B.0.14)

can be rearranged to give

N ! ≥j! (N − j)! (B.0.15)

whose right-hand side is maximised when j = 0 and j = N . In the context of this

example, j cannot be 0 or N and so j! (N−j)! is maximised at j = 1 and j = N−1,

i.e. |pN(x)| = ||pN|| for some x ∈ (x1,N, x2,N) and x ∈ (xN−1,N, xN,N) as shown in

Figure 2.4.2, whence

j! (N − j)! ≤ (N − 1)!. (B.0.16)

Substitution of (B.0.16) into (B.0.13) then gives

||pN|| ≤ (N − 1)!
hN

4
(B.0.17)

as asserted in (2.4.7).
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Appendix C

Legendre Polynomials

There are many different forms by which the Legendre polynomials can be expressed;

when expressed in the form

PN(x) =
N∑

k=0

ak,Nxk, (C.0.1)

the coefficient of each power of x can be simply found. Although the Legendre

polynomial PN(x) is expressed in this form in (2.4.50), this form does not appear to

be given anywhere other thanWikipedia [1] where it is not proved. For completeness,

a proof of this form and the explicit derivation of the coefficients ak,N in terms of N

and k will now be given.

Substitution of (C.0.1) into Legendre’s differential equation (2.3.14) yields

(1−x2)
N∑

k=0

k(k−1)ak,Nxk−2−2x
N∑

k=0

k ak,Nxk−1+N(N+1)
N∑

k=0

ak,Nxk = 0 (C.0.2)

which is expanded to

N∑

k=0

k(k − 1)ak,Nxk−2 −
N∑

k=0

k(k − 1)ak,Nxk −
N∑

k=0

2kak,Nxk

+N(N + 1)
N∑

k=0

ak,Nx
k = 0. (C.0.3)

The terms with k = 0 and k = 1 vanish in the first sum in (C.0.3) and so the sum

is rewritten using the substitution k′ = k − 2; the remaining sums combine to give

N−2∑

k′=0

(k′+2)(k′+1)ak′+2,Nxk′−
N∑

k=0

(
k(k−1)+2k−N(N+1)

)
ak,Nxk = 0. (C.0.4)
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Noting that k(k− 1) + 2k−N(N + 1) factorises to (k−N)(N + k+ 1), the second

sum in (C.0.4) has non-zero terms for only k = 0(1)N − 1. Therefore, (C.0.4) is

rewritten as

N−2∑

k=0

(
(k+2)(k+1) ak+2,N+(N−k)(N+k+1) ak,N

)
xk−2NaN−1,NxN−1 = 0. (C.0.5)

Equating powers of x gives

aN−1,N = 0 (C.0.6)

and

ak+2,N = −(N − k)(N + k + 1)

(k + 2)(k + 1)
ak,N, k = 0(1)N − 2, (C.0.7)

equivalently

ak,N = −(N − k + 2)(N + k − 1)

k(k − 1)
ak−2,N, k = 2(1)N. (C.0.8)

Evaluating (C.0.8) recursively for even k gives

ak,N =
(−1)k/2N !! (N + k − 1)!!

k! (N − k)!! (N − 1)!!
a0,N, k = 2(2)N, (C.0.9)

and for odd k (C.0.8) gives

ak,N =
(−1)(k−1)/2(N − 1)!! (N + k − 1)!!

k! (N − k)!!N !!
a1,N, k = 3(2)N, (C.0.10)

in which the double factorial of a non-negative integer n represents the product of

all integers from 1 to n that are of the same parity as n [5, p. 530]. Hence for an

even positive integer n = 2k where k ≥0, the double factorial is expressed as

n!! = 2kk! = 2n/2
(n
2

)
! (C.0.11)

and for an odd positive integer n = 2k − 1 with k ≥ 1, the double factorial is

expressed as

n!! =
(2k)!

2kk!
=

(n+ 1)!

2(n+1)/2(n+1
2 )!

. (C.0.12)

As (C.0.9) and (C.0.10) are dependent upon a0,N and a1,N, these values must

now be found. Bonnet’s recursion formula [118, Eq. 3.27] is a three-term recursion

formula given by

(N + 1)PN+1(x) = (2N + 1)xPN(x)−NPN−1(x) (C.0.13)
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which is equivalently

PN(x) =
2N − 1

N
xPN−1(x)−

N − 1

N
PN−2(x). (C.0.14)

Substituting (C.0.1) into (C.0.14) gives

N∑

k=0

ak,Nxk =
2N − 1

N

N−1∑

k=0

ak,N−1 x
k+1 − N − 1

N

N−2∑

k=0

ak,N−2 x
k, (C.0.15)

in which the second sum is rewritten with k′ = k + 1 to give

N∑

k=0

ak,Nx
k =

2N − 1

N

N∑

k′=1

ak′−1,N−1x
k′ − N − 1

N

N−2∑

k=0

ak,N−2x
k, (C.0.16)

so that the sums on the right-hand side of (C.0.16) combine to give

N∑

k=0

ak,Nx
k =

N−2∑

k=1

(2N − 1

N
ak−1,N−1 −

N − 1

N
ak,N−2

)
xk

(C.0.17)

+
2N − 1

N

(
aN−1,N−1x

N + aN−2,N−1x
N−1
)
− N − 1

N
a0,N−2.

Equating the coefficients of x0 and xN then gives

a0,N = −N − 1

N
a0,N−2 (C.0.18)

and

aN,N =
2N − 1

N
aN−1,N−1. (C.0.19)

Evaluating (C.0.18) recursively gives

a0,N = −N − 1

N
·−N − 3

N − 2
·−N − 5

N − 4
· · ·− 1

2
a0,0, N even (C.0.20)

and

a0,N = −N − 1

N
·−N − 3

N − 2
·−N − 5

N − 4
· · ·− 2

3
a0,1, N odd. (C.0.21)

Since P0(x) = 1 and P1(x) = x give a0,0 = 1 and a0,1 = 0, (C.0.20) and (C.0.21)

become

a0,N =

⎧
⎪⎨

⎪⎩

(−1)
N
2
(N − 1)!!

N !!
N even

0 N odd.

(C.0.22)
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Therefore (C.0.9) and (C.0.22) give

ak,N =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)(N−k)/2(N + k − 1)!!

k!(N − k)!!
k even, N even

0 k even, N odd,

(C.0.23)

which, by comparison with (C.0.22), holds for all k = 0(2)N . Evaluating (C.0.19)

recursively gives

aN,N =
2N − 1

N
· 2N − 3

N − 1
· · · 1

2
a0,0 =

(2N − 1)!!

N !
a0,0 =

(2N − 1)!!

N !
, (C.0.24)

since a0,0 = 1. When N is odd, setting k = N in (C.0.10) gives

aN,N =
(−1)(N−1)/2(N − 1)!! (2N − 1)!!

N !N !!
a1,N (C.0.25)

which, upon substitution of (C.0.24), yields

(2N − 1)!!

N !
=

(−1)(N−1)/2(N − 1)!! (2N − 1)!!

N !N !!
a1,N. (C.0.26)

Rearranging (C.0.26) then gives

a1,N =
(−1)(N−1)/2N !!

(N − 1)!!
, N odd. (C.0.27)

When N is even, setting k = N − 1 in (C.0.10) gives

aN−1,N =
(−1)(N−2)/2(N − 1)!! (2N − 2)!!

(N − 1)!N !!
a1,N (C.0.28)

which rearranges to

a1,N =
(−1)(N−2)/2(N − 1)!N !!

(N − 1)!! (2N − 2)!!
aN−1,N = 0, N even, (C.0.29)

since, by (C.0.6), aN−1,N = 0. Now substituting (C.0.27) and (C.0.29) into (C.0.10)

gives,

ak,N =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)(N−k)/2(N + k − 1)!!

k!(N − k)!!
k odd, N odd

0 k odd, N even,

(C.0.30)
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which, by comparison with (C.0.27) and (C.0.29), holds for all k = 1(2)N . The

expressions (C.0.23) and (C.0.30) combine to give

ak,N =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)(N−k)/2(N + k − 1)!!

k!(N − k)!!
k +N even

0 k +N odd,

(C.0.31)

wherein, by (C.0.11),

(N − k)!! = 2(N−k)/2

(
N − k

2

)
! (C.0.32)

and, by (C.0.12),

(N + k − 1)!! =
(N + k)!

2(N+k)/2
(
N+k
2

)
!
. (C.0.33)

Therefore, combining (C.0.31)–(C.0.33) yields

ak,N =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)(N−k)/2(N + k)!

2N k!
(
N+k
2

)
!
(
N−k
2

)
!

for N + k even

0 for N + k odd,

(C.0.34)

which can be written as the single expression

ak,N = ℜ
(

(−1)(N−k)/2 (N + k)!

2Nk!
(
N+k
2

)
!
(
N−k
2

)
!

)

, k = 1(1)N, (C.0.35)

where ℜ denotes the real part.

The Gamma function [2, p. 255] is used to find half-integer factorials as [110,

p. 5]

Γ

(
1

2
+ n

)
=

(
−1

2
+ n

)
! =

(2n− 1)!!

2n
√
π (C.0.36)

and

Γ

(
1

2
− n

)
=

(
−1

2
− n

)
! =

(−2)n

(2n− 1)!!

√
π (C.0.37)

for n ∈ N which, by (C.0.12), equivalently give
(
−1

2
+ n

)
! =

(2n)!

4nn!

√
π (C.0.38)

and (
−1

2
− n

)
! =

(−4)nn!

(2n)!

√
π. (C.0.39)
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Rearranging (C.0.38) gives

n! =
(2n)!

4n
(
−1

2 + n
)
!

√
π (C.0.40)

and rearranging (C.0.39) gives

n! =
(2n)!

(
−1

2 − n
)
!

(−4)n
√
π

. (C.0.41)

For N + k even, let n = N+k
2 in (C.0.40) and n = N−k

2 in (C.0.41), respectively

giving (
N + k

2

)
! =

(N + k)!
√
π

4(N+k)/2
(
N+k−1

2

)
!

(C.0.42)

and (
N − k

2

)
! =

(N − k)!
(
−N−k+1

2

)
!

(−4)(N−k)/2
√
π

. (C.0.43)

Substituting (C.0.42) and (C.0.43) into (C.0.35) gives

ak,N = ℜ
(
(−1)(N−k)/2(N + k)!

2Nk!
·
4(N+k)/2

(
N+k−1

2

)
!

(N + k)!
√
π

· (−4)(N−k)/2
√
π

(N − k)!
(
−N−k+1

2

)
!

)

(C.0.44)

which simplifies to

ak,N = ℜ
(

4N
(
N+k−1

2

)
!

2N k! (N − k)!
(
−N−k+1

2

)
!

)
= 2N N !

k! (N − k)!
· ℜ
( (

N+k−1
2

)
!

N !
(
−N−k+1

2

)
!

)

= 2N

(
N

k

)(N+k−1
2

N

)
. (C.0.45)

Therefore substituting (C.0.45) into (C.0.1) gives an expression for the Legendre

polynomials as

PN(x) = 2N

N∑

k=0

(
N

k

)(N+k−1
2

N

)
xk. (C.0.46)

The factors that multiply the Legendre polynomial and its derivatives within the

monic polynomials (2.3.15), (2.3.18), (2.3.19) and (2.3.26) can be readily determined

by considering the coefficient of xN in (C.0.46).
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Appendix D

Conversion of BVP to FIE

It is now shown how the FIEs (4.1.13) and (4.1.17) can be derived from the BVP

(4.1.11). For convenience, the two-point BVP (4.1.11) is repeated here as

y′′(x) + A(x) y′(x) +B(x) y(x) = g(x), y(a) = α, y(b) = β. (D.0.1)

D.1 Derivation of (4.1.13)

The details of the derivation of the FIE (4.1.13) are now given, which are noted to

differ from those in the incorrect approach – apparently never before recognised as

such – in [104]. Therefore, the resulting proof is augmented with an example that

demonstrates the correctness of the present analysis and the error of that presented

in [104].

The derivation of FIE (4.1.13) begins with the conversion

y′′(x) = u(x), (D.1.1)

integration of which yields

y′(x) = y′(a) +

∫ x

a

u(t) dt. (D.1.2)

Integrating (D.1.2) then yields

y(x) = y(a) + (x− a) y′(a) +

∫ x

a

∫ t

a

u(s) ds dt (D.1.3)
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D. CONVERSION OF BVP TO FIE

which, upon substituting the boundary condition y(a) = α and evaluating the double

integral using integration by parts, is equivalently

y(x) = α + (x− a) y′(a) +

∫ x

a

(x− t) u(t) dt. (D.1.4)

Note that (D.1.4) is equivalent to (4.1.12), wherein the latter gives the integral in

terms of y′′(t). Substitution of (D.1.1), (D.1.2) and (D.1.4) into the original BVP

(D.0.1) yields

u(x) + A(x)

(
y′(a) +

∫ x

a

u(t) dt

)

+ B(x)

(
α+ (x− a) y′(a) +

∫ x

a

(x− t) u(t) dt

)
= g(x), (D.1.5)

which is rearranged to

u(x) + αB(x) +
(
A(x) + (x− a)B(x)

)
y′(a)

+ A(x)

∫ x

a

u(t) dt+B(x)

∫ x

a

(x− t) u(t) dt = g(x). (D.1.6)

The unknown constant y′(a) is found by setting x = b in (D.1.4), imposing the

boundary condition y(b) = β and rearranging to give

y′(a) =
β − α

b− a
− 1

b− a

∫ b

a

(b− t) u(t) dt (D.1.7)

which, when substituted into (D.1.6), yields

u(x) + αB(x) +
β − α

b− a

(
A(x) + (x− a)B(x)

)

− 1

b− a

(
A(x) + (x− a)B(x)

)∫ b

a

(b− t) u(t) dt+ A(x)

∫ x

a

u(t) dt

+ B(x)

∫ x

a

(x− t) u(t) dt = g(x). (D.1.8)
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D.1 Derivation of (4.1.13)

Rearranging (D.1.8) then gives

u(x) = g(x)− αB(x)− β − α

b− a

(
A(x) + (x− a)B(x)

)

+

∫ x

a

(
b− t

b− a

(
A(x) + (x− a)B(x)

)
− A(x)− (x− t)B(x)

)

u(t) dt

+

∫ b

x

(
b− t

b− a

(
A(x) + (x− a)B(x)

)
u(t) dt, (D.1.9)

in which the kernel in the first integral can be re-expressed as

b− t

b− a

(
A(x) + (x− a)B(x)

)
− A(x)− (x− t)B(x)

=

(
b− a

b− a
− 1

)
A(x) +

(
(b− t)(x− a)

b− a
− (x− t)

)
B(x)

=
b− t− (b− a)

b− a
A(x) +

(b− t)(x− a)− (x− t)(b− a)

b− a
B(x)

=
a− t

b− a

(
A(x) + (x− b)B(x)

)
. (D.1.10)

Therefore (D.1.9) can be written as the FIE

u(x) = f(x) +

∫ b

a

K(x, t) u(t) dt (D.1.11)

wherein

f(x) = g(x)− αB(x)− β − α

b− a

(
A(x) + (x− a)B(x)

)
(D.1.12)

and

K(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a− t

b− a

(
A(x) + (x− b)B(x)

)
a ≤ t ≤ x,

b− t

b− a

(
A(x) + (x− a)B(x)

)
x ≤ t ≤ b,

(D.1.13)

equivalently (4.1.13), (4.1.15) and (4.1.16), thereby completing the derivation. Upon

solving the FIE (D.1.11), the solution is substituted into (D.1.7) to find y′(a) which

is then substituted, with the FIE solution, into (D.1.4) to recover the solution of the

BVP (D.0.1).
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D. CONVERSION OF BVP TO FIE

In the case that a = 0 and b = 1 then the kernel (D.1.13) becomes

K(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

−t
(
A(x) + (x− 1)B(x)

)
0 ≤ t ≤ x,

(1− t)
(
A(x) + xB(x)

)
x ≤ t ≤ 1

(D.1.14)

which differs from the kernel given by [104, Eq. 1.30]

K(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

(1− x)
(
A(x) + t B(x)

)
0 ≤ t ≤ x,

(1− t)
(
A(x) + xB(x)

)
x ≤ t ≤ 1,

(D.1.15)

that augments the FIE (D.1.11) with f(x) defined by (D.1.12). The following ex-

ample with given quantities y(x), A(x), B(x), from which α, β and g(x) are readily

recovered from the BVP (D.0.1), demonstrates that (D.1.14) is correct and (D.1.15)

is incorrect. Substitution of the given quantities y(x), A(x), B(x) into the FIE

(D.1.11) should yield a source function f(x) that is consistent with the recovered

quantities α, β and g(x). Let

y(x) = cos x, A(x) = x5, and B(x) = x2 (D.1.16)

which, upon substitution into the BVP (D.0.1), yields

g(x) = y′′(x) + A(x) y′(x) +B(x) y(x)

= − cosx− x5 sin x+ x2 cosx. (D.1.17)

Additionally α and β are found from (D.1.16) as

α = y(a) = 1 and β = y(b) = cos 1. (D.1.18)

By (D.1.1) and (D.1.14), the FIE solution and kernel are now found from (D.1.16)

as

u(x) = y′′(x) = − cosx (D.1.19)

and

K(x, t) =

⎧
⎨

⎩

−t (x5 + x3 − x2) 0 ≤ t ≤ x,

(1− t) (x5 + x3) x ≤ t ≤ 1
(D.1.20)
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D.1 Derivation of (4.1.13)

which, upon substitution into the FIE (D.1.11), yields

f(x) = u(x)−
∫ b

a

K(x, t) u(t) dt

= − cosx− (x5 + x3 − x2)

∫ x

0

t cos t dt− (x5 + x3)

∫ 1

x

(t− 1) cos t dt

= − cosx− (x5 + x3 − x2) (cosx+ x sin x− 1)

−(x5 + x3)
(
(1− x) sin x− cosx+ cos 1

)

= (x2 − 1) cosx− x5 sin x− (x5 + x3) cos 1 + x5 + x3 − x2. (D.1.21)

Substitution of (D.1.16)–(D.1.18) into the definition of the source function (D.1.12)

gives

f(x) = g(x)− αB(x)− β − α

b− a

(
A(x) + (x− a)B(x)

)

= − cosx− x5 sin x+ x2 cos x− x2 − (cos 1− 1) (x5 + x3)

= (x2 − 1) cosx− x5 sin x− (x5 + x3) cos 1 + x5 + x3 − x2

(D.1.22)

which is clearly consistent with (D.1.21), thereby validating the FIE representation

(D.1.11)–(D.1.13) of the BVP (D.0.1). In contrast, substitution of A(x) and B(x)

defined by (D.1.16) into (D.1.15) yields

K(x, t) =

⎧
⎨

⎩

(1− x) (x5 + t x2) 0 ≤ t ≤ x,

(1− t) (x5 + x3) x ≤ t ≤ 1
(D.1.23)
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D. CONVERSION OF BVP TO FIE

which, upon substitution into the FIE (D.1.11) with (D.1.19), gives

f(x) = u(x)−
∫ b

a

K(x, t) u(t) dt

= − cosx+ (1− x) x5

∫ x

0

cos t dt+ (1− x) x2

∫ x

0

t cos t dt

−(x5 + x3)

∫ 1

x

(t− 1) cos t dt

= − cosx+ (1− x) x5 sin x+ (1− x) x2(cosx+ x sin x− 1)

−(x5 + x3)
(
(1− x) sin x− cosx+ cos 1

)

= (x5 + x2 − 1) cosx− (x5 + x3) cos 1 + x3 − x2. (D.1.24)

Therefore as the source function derived from its definition (D.1.22) is inconsistent

with the source function derived from the FIE (D.1.24), the kernel (D.1.15) must

be incorrect. The analysis in [104] does not include the intermediate steps between

the correct equivalent forms of (D.1.7) and (D.1.8) with [a, b] = [0, 1] and the FIE2

(D.1.11) with correct source function (D.1.12) and incorrect kernel (D.1.15). It is

therefore assumed that the error occurs in one of the omitted steps.

D.2 Derivation of (4.1.17)

The BVP (D.0.1) can be rearranged to

y′′(x) = g(x)− A(x) y′(x)−B(x) y(x) (D.2.1)

which, when integrated, yields

y′(x) = y′(a) +

∫ x

a

g(t) dt− A(x) y(x) + A(a) y(a)

+

∫ x

a

A′(t) y(t) dt−
∫ x

a

B(t) y(t) dt (D.2.2)
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D.2 Derivation of (4.1.17)

wherein A(x) y′(x) has been integrated by parts. Integrating (D.2.2) then gives

y(x) = y(a) +(x− a)
(
y′(a) + A(a) y(a)

)
+

∫ x

a

∫ t

a

g(s) ds dt

−
∫ x

a

A(t) y(t) dt+

∫ x

a

∫ t

a

(
A′(s)−B(s)

)
y(s) ds dt (D.2.3)

which, upon substituting the boundary condition y(a) = α and evaluating the double

integrals using integration by parts, is equivalently

y(x) = α + (x− a)
(
y′(a) + αA(a)

)
+

∫ x

a

(x− t) g(t) dt

−
∫ x

a

A(t) y(t) dt+

∫ x

a

(x− t)
(
A′(t)− B(t)

)
y(t) dt. (D.2.4)

By setting x = b in (D.2.4) and imposing the boundary condition y(b) = β, the

unknown constant y′(a) is found as

y′(a) = −αA(a) +
1

b− a

(
β − α−

∫ b

a

(b− t) g(t) dt

)

+
1

b− a

∫ b

a

(
A(t)− (b− t)

(
A′(t)−B(t)

))
y(t) dt (D.2.5)

which, when substituted into (D.2.4), yields

y(x) = α +
x− a

b− a

(
β − α−

∫ b

a

(b− t) g(t) dt

)
+

∫ x

a

(x− t) g(t) dt

+
x− a

b− a

∫ b

a

(
A(t)− (b− t)

(
A′(t)− B(t)

))
y(t) dt

−
∫ x

a

(
A(t)− (x− t)

(
A′(t)−B(t)

))
y(t) dt. (D.2.6)
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Rearranging (D.2.6) then gives

y(x) = α +
x− a

b− a

(
β − α−

∫ b

a

(b− t) g(t) dt

)
+

∫ x

a

(x− t) g(t) dt

+

∫ x

a

x− a

b− a

(
A(t)− (b− t)

(
A′(t)− B(t)

))
y(t) dt

−
∫ x

a

(
A(t)− (x− t)

(
A′(t)− B(t)

))
y(t) dt

+

∫ b

x

x− a

b− a

(
A(t)− (b− t)

(
A′(t)− B(t)

))
y(t) dt (D.2.7)

in which the kernels in the integrals on the interval [a, x] can be combined as

x− a

b− a

(
A(t) −(b− t)

(
A′(t)− B(t)

))
−
(
A(t)− (x− t)

(
A′(t)−B(t)

))

=

(
x− a

b− a
− 1

)
A(t)−

(
(x− a)(b− t)

b− a
− (x− t)

)(
A′(t)−B(t)

)

=
x− a− (b− a)

b− a
A(t)− (x− a)(b− t)− (x− t)(b− a)

b− a

(
A′(t)−B(t)

)

=
x− b

b− a

(
A(t)− (a− t)

(
A′(t)− B(t)

))
. (D.2.8)

Therefore (D.2.7) can be written as the FIE

y(x) = f(x) +

∫ b

a

K(x, t) y(t) dt (D.2.9)

wherein

f(x) = α +

∫ x

a

(x− t) g(t) dt+
x− a

b− a

(
β − α−

∫ b

a

(b− t) g(t) dt

)
, (D.2.10)

and

K(x, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x− b

b− a

(
A(t)− (a− t)

(
A′(t)−B(t)

))
a ≤ t ≤ x,

x− a

b− a

(
A(t)− (b− t)

(
A′(t)−B(t)

))
x ≤ t ≤ b,

(D.2.11)

equivalently (4.1.17), (4.1.18) and (4.1.19), and so the derivation is complete.
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Appendix E

Proof of Nyström-Matrix

Eigenvalues

The formula (4.3.13) for the eigenvalues of the Nyström matrix KM based upon

the separable kernel K(x, y) = P (x)Q(y) is proved by induction using the property

(4.3.12).

When M = 2 the characteristic polynomial of a 2×2 matrix yields

det(K2 − ΛI2) = Λ2 − ΛTr (K2) + det(K2), (E.0.1)

in which by (4.3.12)

det(K2) = K1,1K2,2 −K1,2K2,1 = 0. (E.0.2)

Therefore, since (E.0.1) is equivalently

det(K2 − ΛI2) = −Λ (Tr (K2)− Λ), (E.0.3)

assertion (4.3.13) is true for M = 2. Assume now that (4.3.13) is true for M = m

so that

det(Km − ΛIm) = (−Λ)m−1

(
m∑

i=1

Ki,i − Λ

)

= 0, (E.0.4)

using which the M = m+ 1 case is considered. The matrix Km+1 − ΛIm+1 can be

written in block form [112] as

Km+1 − ΛIm+1 =

⎡

⎢⎢⎣
Km − ΛIm l

k Km+1,m+1 − Λ

⎤

⎥⎥⎦ (E.0.5)
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E. PROOF OF NYSTRÖM-MATRIX EIGENVALUES

wherein k and l are respectively the row vector and column vector, each of length

m, with entries

{k}i,j = Km+1, j, {l}i,j = Ki,m+1, i, j = 1(1)m. (E.0.6)

Now, noting that

k (Km+1,m+1 − Λ) Im = (Km+1, m+1 − Λ)k (E.0.7)

and

(Km − ΛIm) (Km+1, m+1 − Λ) Im = (Km+1, m+1 − Λ) (Km − ΛIm), (E.0.8)

it is clear that (E.0.5) satisfies the matrix equation

(Km+1 − ΛIm+1) K̃m+1 = L̃m+1 (E.0.9)

in which

K̃m+1 =

⎡

⎢⎢⎣
(Km+1,m+1 − Λ)Im 0

−k 1

⎤

⎥⎥⎦ and L̃m+1 =

⎡

⎢⎢⎣
L l

0 Km+1, m+1 − Λ

⎤

⎥⎥⎦ ,

(E.0.10)

wherein

L = (Km+1,m+1 − Λ) (Km − ΛIm)− lk. (E.0.11)

By (4.3.12), the entries of the product lk in (E.0.11) are

{lk}i,j = Km+1, j Ki,m+1 = Km+1, m+1Ki,j. (E.0.12)

Therefore,

lk = Km+1, m+1Km (E.0.13)

and so the matrix L in (E.0.11) is equivalently

L = −Λ (Km − (Λ−Km+1, m+1) Im). (E.0.14)

Since K̃m+1 and L̃m+1 respectively contain a zero column vector and a zero row

vector, by Leibniz formula for determinants [33] their determinants are equal to the

product of determinants of the blocks on the leading diagonal, so that

det(K̃m+1) = (Km+1, m+1 − Λ)m and det(L̃m+1) = det(L) (Km+1,m+1 − Λ)

(E.0.15)
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in which det(L) is computed from (E.0.4) and (E.0.14) as

det(L) = (−Λ)m (Km+1, m+1 − Λ)m−1

(
m+1∑

i=1

Ki,i − Λ

)
. (E.0.16)

Combining (E.0.9), (E.0.15) and (E.0.16) then yields

det(Km+1 − ΛIm+1) = (−Λ)m
(

m+1∑

i=1

Ki,i − Λ

)
(E.0.17)

and so (4.3.13) holds for m = M +1. Since (4.3.13) is true for M = 2 it is therefore

also true for all integers M > 2.
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