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Abstract

Let R be a commutative Noetherian ring of prime characteristic p, and M be an

R-module. We may endow M with a new R-module structure given by r.m = rp
e
m,

and we denote this new module with F e
∗M , where e is a positive integer.

An e-th Frobenius map on M is an R-linear map from M to F e
∗M . When

R is a formal power series ring and M is Artinian, given φ ∈ HomR(M,F e
∗M) it

is known that there are only finitely many annihilators of R-submodules N of M

where φ(N) ⊆ F e
∗N and φ restricts to a non nilpotent map on N . A dual notion of

this fact shows that there are only finitely many ideals of R which are annihilators

of Rα/W for some submodules W with some non degeneracy conditions, where α

is a positive integer. There also is an algorithm to find such ideals. In the first

part of the thesis, we study these annihilator ideals of R and generalize the dual

notion of aforesaid result to polynomial rings, and we present a new algorithm for

finding such prime ideals. Further, we provide an application of the new algorithm

to Lyubeznik’s F -finite F -modules.

An e-th Cartier map on M is an R-linear map from F e
∗M to M . When M is

finitely generated, given a surjective Cartier map on M it is again known that there

are only finitely many annihilators of Cartier quotients of M . In the second part of

the thesis, we study finitely generated modules equipped with a Cartier map. We

consider a computational perspective and present an algorithm for finding prime

annihilators of Cartier quotients of a given finitely generated module equipped with

a surjective Cartier map. Moreover, we use this algorithm to find a lower bound for

F -module length of Lyubeznik’s F -finite F -modules.

In the last part of the thesis, when R is a power series ring over a perfect field

of prime characteristic, we present an explicit correspondence between Artinian R-

modules equipped with a Frobenius map and Noetherian R-modules equipped with

a Cartier map.
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Chapter 1

Introduction

Let R be a commutative Noetherian ring of prime characteristic p, and e be a positive

integer. Let f : R → R be the Frobenius homomorphism defined by f(r) = rp for

all r ∈ R, whose e-th iteration is denoted by f e. The ring R is called F -finite if

f e is a finite map for some e. Let R[X; f e] be the skew-polynomial ring. Let M

be an R-module, an e-th Frobenius map on M is an additive map φ : M → M

such that φ(rm) = rp
e
φ(m) for all m ∈ M and r ∈ R. Notice that defining

an e-th Frobenius map on M is equivalent to endowing M with a left R[X; f e]-

module structure extending the rule Xm = φ(m) for all m ∈ M (see Subsection

2.2.2).(When e = 1, we simply drop it from notations.)

The first part of this thesis studies the notion of special ideals. It was introduced

by R. Y. Sharp in [20]. For a left R[X; f e]-module M , when X defines an injective

e-th Frobenius map on M , he defines an ideal of R to be M -special R-ideal if it is

the annihilator of some R[X; f e]-submodule of M (cf. Section 1 of [20]). Later on,

it was generalized by M. Katzman and used to study Frobenius maps on injective

hulls in [10] and [11]. For a left R[X; f e]-module M , Katzman defines an ideal of R

to be M -special if it is the annihilator of some R[X; f e]-submodule of M (cf. Section

6 of [10]). A special case of special ideals is when R is local, M is Artinian, and X

defines an injective e-th Frobenius map on M . In this case, Sharp showed that the

set of M -special ideals is a finite set of radicals, consisting of all intersections of the

finitely many primes in it (Corollary 3.11 in [20]). It was also proved by F. Enescu

and M. Hochster independently (Section 3 in [5]). When R is complete regular local

6



CHAPTER 1. INTRODUCTION 7

and M is Artinian, the notion of special ideals becomes an important device to

study Frobenius maps on injective hulls. In particular, since top local cohomology

module of R is isomorphic to the injective hull of the residue field of R, it provides

an important insight to top local cohomology modules.

In the case that R is a finite dimensional formal power series ring over a field of

prime characteristic p, in [13], M. Katzman and W. Zhang focus on the M -special

ideals when M is Artinian. In this case, they define the special ideals depending on

the R[φ; f e]-module structures on Eα, where E is the injective hull of the residue

field of R and α is a positive integer. They define an ideal of R to be φ-special if

it is the annihilator of an R[φ; f e]-submodule of Eα, where φ = U tT e with T is the

natural Frobenius on Eα and U is an α×α matrix with entries in R (see Section 3.2).

Furthermore, they use Katzman’s ∆e and Ψe functors, which are extensions of Matlis

duality keeping track of Frobenius maps, to define φ-special ideals equivalently to

be the annihilators of Rα/W for some submodule W satisfying UW ⊆ W [pe], where

W [pe] is the submodule generated by {w[pe] = (wp
e

1 , . . . , w
pe

α )t | w = (w1, . . . , wα)t ∈
W} (see Proposition 3.2.2). Katzman and Zhang show that there are only finitely

many φ-special ideals P of R with the property that P is the annihilator of an

R[φ; f e]-submodule M of Eα such that the restriction of φe to M is not zero for all

e, and introduce an algorithm for finding special prime ideals with this property in

[13]. They first present the case α = 1, which was considered by M. Katzman and

K. Schwede in [12] with a geometric language. Then they extend this to the case

α > 1.

In the first part of this thesis, we adapt the equivalent definition of φ-special

ideals above to the polynomial rings, and for an α×α matrix U we define U -special

ideals to be the annihilators of Rα/W for some submodule W of Rα satisfying

UW ⊆ W [pe]. We generalize the results in [13] to the case that R is a finite dimen-

sional polynomial ring over a field of prime characteristic p, and show that there

are only finitely many U -special ideals with some non degeneracy conditions (see

Theorem 3.2.16). We also present an algorithm for finding U -special prime ideals

of polynomial rings. Furthermore, we consider the notion of F -finite F -modules,

which is a prime characteristic extension of local cohomology modules introduced

by G. Lyubeznik in [16], and we show that our new algorithm gives a method for

finding the prime ideals of R such that crk(H i
IRP

(RP )) 6= 0 (see Definition 3.3.2 and

Theorem 3.3.3).

The second part of this thesis studies the notion of Cartier modules. An e-th
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Cartier map on M is an additive map C : M →M such that rC(m) = C(rp
e
m) for

all m ∈M and r ∈ R, which is a dual notion of Frobenius maps. An R-module M is

called a Cartier module if it is equipped with a Cartier map. M. Blickle and G. Böckle

study the notion of nilpotence for finitely generated Cartier modules and present

some finiteness results in [2]. One of the main result of this paper states that if R is

F -finite and M is a finitely generated R-module equipped with a surjective Cartier

map, then the set of annihilators of Cartier quotients of M is a finite set of radical

ideals consisting of all intersections of the finitely many primes in it (see Section 4

in [2]). This generalizes the results in [20] and [5] mentioned above. In the second

part of this thesis, we consider the case that R is a finite dimensional polynomial

ring or a finite dimensional formal power series ring over an F -finite field of prime

characteristic p, we take a computational view of this finiteness result of Blickle

and Böckle, and we give an alternative proof to the result (see Theorem 4.3.13).

We then present an algorithm for finding prime annihilators of Cartier quotients

(see Section 4.4). Moreover, we obtain an explicit correspondence between finitely

generated Cartier modules and Lyubeznik’s F -finite F -modules, which enables us to

show that our algorithm gives a method to find a lower bound for F -module length

of F -finite F -modules.

When R is complete regular local and F -finite, it is shown that there exists a

bijective correspondence between Artininan R-modules equipped with a Frobenius

map and Noetherian R-modules equipped with a Cartier map in [2] and indepen-

dently in [21]. In the last part of this thesis, we obtain an explicit correspondence

between these two sets of R-modules which coincides with the correspondences in

[2] and [21], more importantly, extends to a computational level. To do this, we

define an explicit isomorphism between two modules which are well-known isomor-

phic modules but an isomorphism has not been given explicitly before (see Lemma

5.1.2).

1.1 Outline of Thesis

In Chapter 2, we collect the necessary concepts from commutative algebra which

we need for this thesis as a background. In Section 2.1, we provide brief summaries

of localization and completion of modules and rings, as well as a brief introduction

to injective and local cohomology modules. In Section 2.2, we provide a technical
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background to positive characteristic methods in commutative algebra, which we

use throughout this thesis.

In Chapter 3, we investigate the notion of special ideals. In Section 3.1, we

state the algorithm described in [12] with a more algebraic language and show that

it commutes with localization. In Section 3.2, we generalize the results in [13] to

polynomial rings. In particular, we present a new algorithm which is very similar to

the one defined in [13], and show that it commutes with localization too. Finally, in

Section 3.3, we present a connection between special ideals and Lyubeznik’s F -finite

F -modules using our algorithm. The main result of this chapter, Theorem 3.3.3,

not only reproves Proposition 4.14 in [16] but also gives a method for finding the

desired prime ideals.

In Chapter 4, we investigate the notion of Cartier modules. In Section 4.1 and

4.2, we study finitely generated Cartier modules in a more algebraic language. In

Section 4.3, we prove our technical lemmas which give us computational methods

on finitely generated Cartier modules when R is a polynomial ring or a power series

ring over an F -finite field of prime characteristic p. In particular, we prove the main

result, Theorem 4.3.13, of this chapter using these computational methods which

extends Proposition 4.1 and 4.5 in [2] to a computational level. In Section 4.4, we

introduce a new algorithm which finds the finite set of prime annihilators of Cartier

quotients of a given finitely generated Cartier module. Finally, in Section 4.5, we

obtain an explicit correspondence between finitely generated Cartier modules and

Lyubeznik’s F -finite F -modules which leads us a method for finding a lower bound

for F -module length of F -finite F -modules.

In Chapter 5, when R is a power series ring over a perfect field of prime character-

istic, we introduce an explicit correspondence between Artinian R-modules equipped

with a Frobenius map and Noetherian R-modules equipped with a Cartier map us-

ing our computational techniques. This extends the correspondences introduced in

[2] and [21] to a computational level. In particular, Lemma 5.1.2 gives an explicit

isomorphism for well-known isomorphic modules but was not given explicitly before,

which leads us to our explicit correspondence.
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1.2 Notation

Throughout this thesis, all rings in consideration are assumed to be commutative and

Noetherian with identity, and all modules are assumed to be unital unless otherwise

stated.

We use Z, N, N0 and−N to denote the ring of integers, the set of positive integers,

the set of non negative integers and the set of negative integers, respectively. We

also use (−)t to denote the transpose of vectors and matrices. Let R be a ring, I

be an ideal of R, and M be an R-module. If I is finitely generated by elements

a1, . . . , am ∈ R, we write I = 〈a1, . . . , am〉. Similarly, if M is finitely generated

by elements m1, . . . ,ms ∈ M , we write M = 〈m1, . . . ,ms〉. R is called Noetherian

if it satisfies the ascending chain condition on ideals, i.e. every ascending chain

I1 ⊆ I2 ⊆ · · · of ideals in R stabilizes, or equivalently every ideal of R is finitely

generated. R is called Artinian if it satisfies the descending chain condition on ideals,

i.e. every descending chain I1 ⊇ I2 ⊇ · · · of ideals in R stabilizes. Analogously, M

is called Noetherian (Artinian) if it satisfies ascending (descending) chain condition

on its submodules.

We say that an ideal P of R is a prime ideal if for any a, b ∈ R, ab ∈ P ⇒
a ∈ P or b ∈ P . The radical of I is the set {r ∈ R | rn ∈ I for some n ∈ N},
or equivalently is the intersection of all prime ideals which contains I, and denoted

by
√
I. I is said to be primary if for any a, b ∈ R, ab ∈ I ⇒ a ∈ I or bn ∈

I for some n ∈ N. If P =
√
I, then I is called P -primary. A primary decomposition

of I is an expression I = Q1 ∩ · · · ∩ Qs with each Qi is a primary ideal, and it is

called minimal if no Qi can be omitted in the expression and if
√
Qi 6=

√
Qj for all

i 6= j. In Noetherian rings, there always exist minimal primary decompositions of

ideals. In this case, if I = Q1 ∩ · · · ∩ Qs is a minimal primary decomposition, the

prime ideals Pi =
√
Qi are called associated primes of I.

The set of all prime ideals of R is denoted by SpecR, and V (I) denotes the set

{P ∈ SpecR | I ⊆ P}. The collection {V (I) | I is an ideal of R} defines a topology

on SpecR that is called the Zariski topology in which V (I) is a closed set. The

Krull dimension or simply the dimension of R is the supremum of the lengths of all

chains of prime ideals in R, and denoted by dimR. We also define the dimension of

a finitely generated module M over R to be the dimension of the ring R/AnnRM

where AnnRM = {r ∈ R | rM = 0}, and denote it by dimRM .

A sequence · · · →Mi
fi−→Mi+1

fi+1−−→ · · · of R-modules and R-homomorphisms is
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called exact if Ker fi+1 = Im fi for all i. An exact sequence of the form

0→M1 →M2 →M3 → 0

is called a short exact sequence. A sequence

C : 0→ C0 d0−→ C1 d1−→ · · · d
i−1

−−→ Ci di−→ · · ·

of R-modules and R-homomorphisms is called a cochain complex if di ◦ di−1 = 0,

and the module H i(C) := Ker di/ Im di−1 is called the i-th cohomology module of C.
A sequence

C : 0← C0
d0←− C1

d1←− · · · di−1←−− Ci
di←− · · ·

of R-modules and R-homomorphisms is called a chain complex if di−1 ◦ di = 0, and

the module Hi(C) := Ker di−1/ Im di is called the i-th homology module of C.
We say that R is local if it has only one maximal ideal, and we write (R,m) to

mean that R is a local ring with the unique maximal ideal m. If (R,m) is a local ring,

then we call R/m the residue field of R. A local ring is called regular if the minimal

number of generators of its maximal ideal is equal to its dimension. In general, R

is called regular if its localization at every prime ideal is a regular local ring. The

regular locus RegR of R is the set of prime ideals P such that the localization of

R with respect to P is a regular local ring, and SpecR \RegR is the singular locus

of R and denoted by SingR. Furthermore, the characteristic of R is the smallest

integer n such that
∑n

1 1 = 0, and if no such integer n exists, then the characteristic

of R is zero.



Chapter 2

Preliminaries

In this chapter, we provide a brief introduction to the background and some technical

commutative algebra tools that we need for the latter chapters. Section 2.1 contains

general background without proofs, and section 2.2 contains some basic tools of

positive characteristic methods in commutative algebra and a technical background

that is essential for the main results of this thesis. As a reminder, we will always

assume all rings are Noetherian even though some of general concepts provided in

this chapter are true for the non-Noetherian case.

2.1 General Background

In this section, we provide brief summaries on the concepts of localization and

completion of modules and rings. We also provide a brief introduction to injective

and local cohomology modules.

2.1.1 Presentations of Finitely Generated Modules

In this subsection, we give a matrix presentation of finitely generated modules using

free modules.

An R-module F is called a free module if F is isomorphic to a direct sum of

copies of R; that is, there is an index set B with F =
⊕

b∈B Rb where Rb = 〈b〉 ∼= R

12
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for all b ∈ B. We call B is a basis of F and the cardinality of B is called the rank of

F . For each element m ∈ F , we have a unique expression of the form m =
∑

b∈B′ rbb

where B′ is a finite subset of B, and rb ∈ R for all b ∈ B′.

Theorem 2.1.1. [19, Theorem 2.35] Every R-module M is a quotient of a free R-

module F . Moreover, M is finitely generated if and only if F can be chosen to be

finitely generated.

Let F and G be free R-modules. Let B = {b1, . . . , bn} be a basis of F and

C = {c1, . . . , cm} be a basis of G. Let φ ∈ HomR(F,G) such that for each bj,

φ(bj) =
∑m

i=1 aijci for some aij ∈ R. Let A be the m× n matrix whose ij-th entry

is aij. Then for each element f =
∑n

j=1 rbjbj ∈ F , we have φ(f) =
∑m

i=1 rcici where
rc1
...

rcm

 = A


rb1
...

rbn

 .

Therefore, for any map φ ∈ HomR(F,G) we can associate a matrix A with entries

in R.

In particular, any R-linear map ϕ : Rn → Rm can be represented with an m× n
matrix A with entries in R. In this case, for any element (r1, . . . , rn)t ∈ Rn, we have

ϕ


r1

...

rn

 = A


r1

...

rn

 .

Then we write Rn A−→ Rm to denote ϕ, ImA to denote image of ϕ, KerA to denote

kernel of ϕ, and CokerA to denote cokernel of ϕ.

Remark 2.1.2. Let M be a finitely generated R-module. Then there exist an exact

sequence

Rβ A−→ Rα →M → 0

where CokerA = Rα/ ImA ∼= M .
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2.1.2 Localization of Modules and Rings

In this subsection, we give a brief summary of localization of modules and rings and

its properties which we use throughout this thesis. For the proofs and more details

we refer to chapter 3 of [1].

LetR be a ring andM be anR-module. LetW be a multiplicatively closed subset

of R, i.e. 1 ∈ W and ws ∈ W for all w, s ∈ W . For some (w,m), (s, n) ∈ W ×M , we

define the equivalence relation ∼ on W ×M by (w,m) ∼ (s, n) if and only if there

is an element t ∈ W such that t(wn− sm) = 0 in M and we denote the equivalence

class of (w,m) ∈ W ×M by
m

w
. We define the localization of M at W to be the

set of all such equivalence classes and denote it by W−1M = {m
w
| m ∈M,w ∈ W}.

If we apply the definition in the case M = R, the resulting localization is a

commutative ring with addition and multiplication defined respectively by

a

w
+
b

s
=
sa+ wb

ws
and

a

w
.
b

s
=
ab

ws

for all
a

w
,
b

s
∈ W−1R.

Furthermore, W−1M is an W−1R-module with addition and scalar multiplication

defined respectively by

m

w
+
n

s
=
sm+ wn

ws
and

a

t

m

w
=
am

tw

for all
m

w
,
n

s
∈ W−1M and

a

t
∈ W−1R.

Remarks 2.1.3. 1. If P is a prime ideal of R, then W = R \ P is a multi-

plicatively closed set and we write MP to denote W−1M and RP to denote

W−1R.

2. If f ∈ R \ {0}, then W = {1, f, f 2, . . . } is a multiplicatively closed set and we

write Mf to denote W−1M and Rf to denote W−1R.

3. If φ : M → N is an R-module homomorphism, then we have an W−1R-module

homomorphism W−1φ : W 1M → W−1N given by (W−1φ)(
m

w
) =

φ(m)

w
.

Next we will collect some important properties of localization whose proofs can

be found in chapter 3 of [1].
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Remarks 2.1.4. Let M and N be R-modules and W be a multiplicatively closed

subset of R.

1. The operation W−1 is exact.

2. The operation W−1 commutes with formation of finite sums, products, inter-

sections and quotients and radicals.

3. W−1M ∼= W−1R⊗RM as W−1R-modules.

4. W−1M ⊗W−1RW
−1N ∼= W−1(M ⊗R N) as W−1R-modules.

5. The prime ideals of W−1R are in one-to-one correspondence with the prime

ideals of R which do not intersect W .

6. If M is finitely generated, then W−1(AnnRM) = AnnW−1RW
−1M .

7. If M is finitely generated, then W−1(N :R M) = (W−1N :W−1R W
−1M).

8. When M is finitely generated, W−1M = 0 if and only if there is an element

w ∈ W such that wM = 0.

Proposition 2.1.5. [1, Proposition 3.9] Let φ : M → N be an R-module homo-

morphism. Then the following are equivalent:

1. φ is injective(surjective),

2. φP : MP → NP is injective(surjective) for each prime ideal P of R,

3. φm : Mm → Nm is injective(surjective) for each maximal ideal m of R.

Definition 2.1.6. The support of M is the set of all prime ideals P of R such that

Mp 6= 0 and it is denoted by SuppM , i.e. SuppM = {P ∈ SpecR |MP 6= 0}.

Remark 2.1.7. Let M be a finitely generated R-module with M = 〈m1, · · · ,mn〉,
and let P ∈ SpecR. Then

P ∈ SuppM ⇔mi 6= 0 in MP , i.e. AnnRmi ⊆ P for some i

⇔I := AnnRM =
n⋂
i=1

AnnRmi ⊆ P.

This means that SuppM = V (AnnRM), and so SuppM is a Zariski closed subset

of SpecR.
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2.1.3 Completion of Modules and Rings

In this subsection, we give a brief summary of completion of modules and rings and

its properties which we use throughout this thesis. For the proofs and more details

we refer to chapter 8 of [22] and section 7 of [6].

Let R be a ring and M be an R-module. A sequence {In}n≥0 of ideals is called

a filtration if I0 = R, In ⊇ In+1 and InIm ⊆ In+m for all n,m ∈ N. Let {In}n≥0

be a filtration on R, a sequence {Mn}n≥0 of submodules of M is called a filtration

on M if M0 = M , Mn ⊇ Mn+1 and ImMn ⊆ Mm+n for all n,m ∈ N. In this case,

for the condition ImMn ⊆ Mm+n we say that {Mn}n≥0 is compatible with {In}n≥0.

The most important case is when the filtration is given by In = In for all n ≥ 1 and

I0 = R. This is called I-adic filtration on R. Analogously, the filtration given by

Mn = InM for all n ≥ 1 and M0 = M is called I-adic filtration on M .

Definition 2.1.8. Let A = {In}n≥0 be a filtration, and let F = {Mn}n≥0 be a

filtration on M compatible with A.

1. We define the completion of R with respect to the filtration A as

R̂A = lim←−R/In = {(a1, a2, . . . ) ∈
∏
n≥1

R/In | an+1 − an ∈ In,∀n ≥ 1}

and denote it by R̂A.

2. We define the completion of M with respect to the filtration F as

M̂F = lim←−M/Mn = {(m1,m2, . . . ) ∈
∏
n≥1

M/Mn | mn+1 −mn ∈Mn, ∀n ≥ 1}

and denote it by M̂F .

If A and F are I-adic filtrations, then the I-adic completion of R is denoted by R̂I

and the I-adic completion of M is denoted by M̂I . If there is no ambiguity, we just

drop I from notations, and denote the I-adic completions as R̂ and M̂ .

Remark 2.1.9. Since each R/In is a ring, it is easy to see that R̂ is a ring with

addition

(a1, a2, . . . ) + (b1, b2, . . . ) = (a1 + b1, a2 + b2, . . . )

and multiplication

(a1, a2, . . . )(b1, b2, . . . ) = (a1b1, a2b2, . . . )
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for all (a1, a2, . . . ), (b1, b2, . . . ) ∈ R̂.

Similarly, M̂ is an R̂-module with addition

(m1,m2, . . . ) + (m′1,m
′
2, . . . ) = (m1 +m′1,m2 +m′2, . . . )

and scalar multiplication

(a1, a2, . . . )(m1,m2, . . . ) = (a1m1, a2m2, . . . )

for all (m1,m2, . . . ), (m
′
1,m

′
2, . . . ) ∈ M̂ and (a1, a2, . . . ) ∈ R̂.

Example 2.1.10. [6, Section 7.1] If R = A[x1, . . . , xn] is a polynomial ring over a

ring A. If m = 〈x1, . . . , xn〉, then the completion of R with respect to m is the formal

power series ring A[[x1, . . . , xn]], i.e. R̂m
∼= A[[x1, . . . , xn]].

Theorem 2.1.11. [6, Theorem 7.2] Let M be a finitely generated R-module and I

be an ideal of R. Then:

1. M̂I
∼= M ⊗R R̂I as R̂I-modules.

2. R̂I is flat as an R-module.

Lemma 2.1.12. [6, Lemma 7.14] Let A = {In}n≥0 be a filtration, and F = {Mn}n≥0

and H = {Nn}n≥0 be two compatible filtrations on an R-module M , which are cofinal,

i.e. for each Mi there is an Nj such that Mi ⊂ Nj and, for each Ni there is an Mj

such that Ni ⊂Mj. Then M̂F
∼= M̂H as R̂I-modules.

When the natural map R → R̂I is an isomorphism, we call R to be complete

with respect to I, and if I is a maximal ideal, R is said to be a complete local

ring. Next we recall the Cohen structure theorem which states that any complete

local ring containing a field is a homomorphic image of a power series ring in finitely

many variables over a field.

Theorem 2.1.13. [6, Theorem 7.7] Let (R,m) be a complete local ring with residue

field K. If R contains a field, then R ∼= K[[x1, . . . , xn]]/I for some n ∈ N and ideal

I of R.
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2.1.4 Injective Modules and Matlis Duality

In this subsection, we give a brief summary of Injective modules and their important

properties which we use throughout this thesis. For the proofs and more details we

refer to [6], [4] and Appendix of [9].

Definition 2.1.14. An R-mdoule E is called injective if it satisfies following equiv-

alent conditions

1. HomR(−, E) is an exact functor,

2. for any injection of R-modules N ↪→ M the R-linear map HomR(M,E) →
HomR(N,E) is surjective.

Theorem 2.1.15. [6, Corollary A3.9] Any R-module M can be embedded in an

injective R-module E.

Definition 2.1.16. The injective hull of an R-module M is the smallest injective

R-module containing M which will be denoted by ER(M).

Following Appendix of [9] we alternatively define injective hulls using essential

extensions. Let M be an R-module and N ⊆ M an R-submodule. M is called an

essential extension of N if every non zero R-submodule L of M has non zero

intersection with N . If also M has no proper essential extension, we say that M

is a maximal essential extension of N . By Zorn’s Lemma there always exist a

maximal essential extension of N , and it is unique up to non-canonical isomorphism.

The injective hull of N is also defined to be the maximal essential extension of it.

Definition 2.1.17. Let M be an R-module. An injective resolution of M is a

complex of injective R- modules

E : 0→ E0 d0−→ E1 d1−→ E2 d2−→ · · ·

with the cohomology modules H0(E) = M and H i(E) = 0 for all i ≥ 1. It is called

minimal injective resolution if E0 = ER(M) and Ei = ER(Coker di−1) for each i ≥ 1

and the length of minimal injective resolution of M is called injective dimension of

M denoted by inj. dimRM .

An R-module M is called a Gorenstein module if and only if M has finite

injective dimension. If R is a Gorenstein R-module, then we call R a Gorenstein

ring.
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Proposition 2.1.18. [9, Theorem A.21, Proposition A.22] Let E be an injective

R-module. Then

1. E ∼=
⊕

P∈SpecRER(R/P )µP where the numbers µP are independent of the de-

composition,

2. ER(R/P ) ∼= ERP (RP/PRP ).

Proposition-Definition 2.1.19. [9, Theorem A.24] Let M be an R-module and E

be its minimal injective resolution. Then for each i,

Ei ∼=
⊕

P∈SpecR

ER(R/P )µi(P,M)

where µi(P,M) = rankκ ExtiRP (κ,MP ) and κ = RP/PRP . The number µi(P,M) is

called the i-th Bass number of M with respect to P .

Lemma 2.1.20. [9, Theorem A.25] Let R → S be a local homomorphism and

suppose that S is module finite over R. Let ER and ES be the injective hulls of

residue fields of R and S, respectively. Then, HomR(S,ER) ∼= ES as S-modules.

Remark 2.1.21. A consequence of Lemma 2.1.20 is that if S = R/I, where I is

an ideal of R, then ES ∼= HomR(R/I,ER). On the other hand, the elements of

HomR(R/I,ER) are the elements of HomR(R,ER) which sends I to zero. Since a

map from HomR(R,ER) is completely determined by where it sends 1 ∈ R, we get

HomR(R/I,ER) ∼= AnnER I, and so ES ∼= AnnER I.

Definition 2.1.22. Let R be local and ER(or just E if there is no ambiguity) be

the injective hull of its residue field. The functor HomR(−, E) is called the Matlis

duality functor and denoted by (−)∨.

Theorem 2.1.23. [9, Theorem A.21] Let (R,m) be a local ring and R̂ its m-adic

completion of R. Let ER and ER̂ be the injective hulls of residue fields of R and R̂,

respectively. Then

1. ER ∼= ER̂,

2. the map R̂ → HomR(ER, ER) defined by r 7→ (e 7→ re) for any r ∈ R̂ and

e ∈ ER, is an isomorphism of R̂-modules. In particular, if R is complete, then

R ∼= HomR(ER, ER).



CHAPTER 2. PRELIMINARIES 20

Theorem 2.1.24. (Matlis Duality Theorem) Let R be a complete local ring and E

be the injective hull of its reside field. Then

1. if M is a Noetherian R-module, then M∨ is Artinian and (M∨)∨ ∼= M ,

2. if M is Artinian R-module, then M∨ is Noetherian and (M∨)∨ ∼= M .

Remark 2.1.25. Let the situation and notation be as in the Matlis Duality Theorem.

Let M ⊆ E be an R-submodule. If we apply the Matlis dual functor to the natural

injection M ↪→ E, we get the surjection HomR(E,E) � M∨. The kernel of this

map is just the set of elements of HomR(E,E) that restrict to 0 on M . On the other

hand, by Theorem 2.1.23 2, any map from HomR(E,E) is just a multiplication by

an element of R. Therefore, M∨ ∼= R/J where J = AnnRM . Moreover, by Remark

2.1.21, (M∨)∨ ∼= AnnE J , and so M ∼= AnnE J . Hence, the set of R-submodules of

E is {AnnE J | J is an ideal of R}.

Corollary 2.1.26. Let R be a local ring and E be the injective hull of its residue

field. Then E is Artinian.

Corollary 2.1.27. [4, 10.2.8 Corollary] Let R be a local ring, E be the injective

hull of its residue field and M be an R-module. Then M is Artinian if and only if

M is isomorphic to a submodule of Eα for some α ∈ N.

2.1.5 Local Cohomology Modules

In this subsection, we summarize topics of local cohomology which are used through-

out this thesis and provide some important properties. For proofs and more details,

we refer to [4] and [9].

Definition 2.1.28. For an ideal I of R and an R-module M , we define ΓI(M) to

be

ΓI(M) =
⋃
n∈N

(0 :M In) = {m ∈M | mIn = 0 for some n ∈ N}.

If φ : M → N is an R-module homomorphism, then ΓI(φ) is the restriction map

ΓI(M)→ ΓI(N). That is to say that ΓI(−) is a functor on the category of R-modules

which is called I-torsion functor.
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Definition 2.1.29. Let M be an R-module. Take an injective resolution

E : 0→ E0 d0−→ E1 d1−→ E2 d2−→ · · ·

of M , so that there is an R-module homomorphism M −→ E0 such that the sequence

0→M → E0 d0−→ E1 d1−→ E2 d2−→ · · ·

is exact. Then apply the functor ΓI to the complex E to obtain

0→ ΓI(E
0)

ΓI(d0)−−−→ ΓI(E
1)

ΓI(d1)−−−→ ΓI(E
2)

ΓI(d2)−−−→ · · ·

The i-th cohomology of this complex is called the i-th local cohomology module of

M with respect to I and denoted by H i
I(M), which is independent of the choice of

injective resolution E up to isomorphism.

Remark 2.1.30. The I-torsion functor is left exact, and so H0
I (M) ∼= ΓI(M).

Another characterization of local cohomology modules is the following:

Theorem 2.1.31. [4, 1.2.11 Theorem, 1.3.8 Theorem] Let M be an R-module and

I be an ideal of R. Then

ΓI(M) ∼= lim−→
n∈N

HomR(R/In,M) and H i
I(M) ∼= lim−→

n∈N
ExtiR(R/In,M).

Theorem 2.1.32. [4, 4.3.2 Flat Base Change Theorem] Let M be an R-module, I

be an ideal of R and ν : R→ S be a flat ring homomorphism. Then

H i
I(M)⊗R S ∼= H i

IS(M ⊗R S)

for each i ∈ N0.

Corollary 2.1.33. Let W be a multiplicatively closed subset of R and let J be an

ideal of R. Then for each i ∈ N

W−1H i
I(M) ∼= H i

IW−1R(W−1M),

and

Ĥ i
I(M)J

∼= H i
IR̂J

(M̂J).
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Lemma 2.1.34. [4, 11.2.3 Lemma] Let (R,m) be a Gorenstein local ring of dimen-

sion n and E be the injective hull of its residue field. Then E ∼= Hn
m(R).

An alternative definition of local cohomology modules is via use of C̆ech complex.

Notation 2.1.35. For postive integers k ≤ n, I(k, n) will denote the set of k-

tuples {i = (i(1), . . . , i(k)) | 1 ≤ i(1) < i(2) < · · · < i(k) ≤ n}. For an element

j ∈ I(k+1, n), j ŝ will denote the element (j(1), . . . , j(s−1), j(s+1), . . . , j(k+1)) ∈
I(k, n), and by a1, . . . , âi, . . . , an we mean a1, . . . , ai−1, ai+1, . . . , an.

Proposition-Definition 2.1.36. [4, 5.1.5 Proposition and Definition] The C̆ech

complex of an R-module M with respect to an ideal I = 〈a1, . . . , an〉 ⊆ R is the

following

C : 0→ C(M)0 d0−→ C(M)1 d1−→ C(M)2 d2−→ · · · → C(M)n−1 dn−1

−−−→ C(M)n → 0

where

1. C(M)0 := M

2. for each k ∈ {1, . . . , n}, C(M)k :=
⊕

i∈I(k,n) Mai(1)...ai(k)

3. d0 : C(M)0 → C(M)1 is to be such that the composition C(M)0 d0−→ C(M)1 ρj−→
Maj is just the natural map from M to Maj , where ρj is the canonical projec-

tion.

4. for 1 ≤ k < n, i ∈ I(k, n) and j ∈ I(k + 1, n) the composition

Mai(1)...ai(k) → C(M)k
dk−→ C(M)k+1 →Maj(1)...aj(k+1)

(in which the first map is the canonical injection and the third map is the

canonical projection) is the natural map from Mai(1)...ai(k) to Maj(1)...aj(k+1)
mul-

tiplied by (−1)s−1 if i = j ŝ for an s ∈ {1, . . . , k + 1}, and it is zero map

otherwise.

Theorem 2.1.37. [4, 5.1.20 Theorem] Let M be an R-module and C be its C̆ech

complex with respect to ideal I = 〈a1, . . . , an〉 ⊆ R. Then H i(C) ∼= H i
I(M).
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Example 2.1.38. [4, 13.5.3 Example] Let R = k[x1, . . . , xn] or R = k[[x1, . . . , xn]]

(the ring of polynomials or the ring of formal power series over a field k) with

maximal ideal m = 〈x1, . . . , xn〉. Then the top local cohomology module Hn
m(R) can

be computed using the C̆ech complex of R with respect to m. Therefore,

Hn
m(R) ∼= Coker

( n⊕
i=1

Rx1...x̂i...xn
dn−1

−−−→ Rx1...xn

)
In addition, Rx1...xn is a k-vector space with base {xα1

1 . . . xαnn | α1, . . . , αn ∈ Z}
and Rx1...x̂i...xn is a k-vector space with base {xα1

1 . . . xαnn | α1, . . . , αn ∈ Z, αi ≥ 0}.
Thus, Coker dn−1 is the k-vector space with base {xα1

1 . . . xαnn | α1, . . . , αn ∈ −N},
which is the module of inverse polynomials k[x−1 , . . . , x

−
n ] whose R-module structure

is extended from the following rule

(λxα1
1 . . . xαnn )(µx−ν11 . . . x−νnn ) =


λµx−ν1+α1

1 . . . x−νn+αn
n if αi < νi for all i

0 if αi ≥ νi for any i

for all λ, µ ∈ k and αi ≥ 0, νi > 0. Consequently, if R = k[[x1, . . . , xn]], by Lemma

2.1.34, E ∼= k[x−1 , . . . , x
−
n ].

2.2 Modules over Rings of Prime Characteristic

Throughout this section all rings are of prime characteristic p. If R is a ring of prime

characteristic p, then (r+s)p
e

= rp
e
+sp

e
for all r, s ∈ R and e ∈ N. Consequently, the

Frobenius map f : R → R defined by f(r) = rp becomes a ring homomorphism,

and so does its e-th iteration f e : R→ R defined by f e(r) = rp
e

for any e ∈ N.

2.2.1 General Prime Characteristic Tools

In this subsection, we provide some basics of positive characteristics techniques in

commutative algebra which we use throughout this thesis. We also provide some

well-known properties with proofs.

Definition 2.2.1. Let M be an R-module and e ∈ N. F e
∗M = {F e

∗m | m ∈
M} denotes the Abelian group M with the induced R-module structure via the e-th

iterated Frobenius map and it is given by
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rF e
∗m = F e

∗ r
pem for all m ∈M and r ∈ R

In particular, F e
∗R is the Abelian group R with the induced R-module structure

rF e
∗ s = F e

∗ r
pes for all r, s ∈ R.

Definition 2.2.2. Let I ⊆ R be an ideal and e ∈ N, I [pe] denotes the ideal generated

by the set {rpe | r ∈ I}. Consequently, if I = 〈r1, . . . , rn〉, then I [pe] = 〈rp
e

1 , . . . , r
pe

n 〉.

One can easily observe the following properties.

Remarks 2.2.3. Let M and N be R-modules, I be an ideal of R and e ∈ N.

1. F e
∗ (F

d
∗M) = F e+d

∗ M for all d ∈ N.

2. F e
∗R is a ring itself with an addition given by F e

∗ r + F e
∗ s = F e

∗ (r + s), and a

multiplication given by F e
∗ r · F e

∗ s = F e
∗ rs for all r, s ∈ R, i.e. F e

∗R
∼= R as

rings.

3. F e
∗M is an F e

∗R-module and the F e
∗R-module structure on F e

∗M is given by

F e
∗ r · F e

∗m = F e
∗ rm for all m ∈M and r ∈ R.

4. IF e
∗M = F e

∗ (I
[pe]M).

5. If N is a submodule of M , then F e
∗N is a submodule of F e

∗M and F e
∗M/F e

∗N

and F e
∗ (M/N) are isomorphic as R-modules.

6. If φ : M → N is an R-module homomorphism, then the map F e
∗φ : F e

∗M →
F e
∗N given by (F e

∗φ)(F e
∗m) = F e

∗ (φ(m)) for all m ∈ M is an F e
∗R-module

homomorphism.

7. F e
∗ (−) is an exact functor on the category of R-modules.

8. If {Mi}i∈I is a family of R-modules, then we have F e
∗ (
∏

i∈IMi) ∼=
∏

i∈I F
e
∗Mi

and F e
∗ (
⊕

i∈IMi) ∼=
⊕

i∈I F
e
∗Mi as R-modules.

Proposition 2.2.4. Let M be an R-module, W be a multiplicatively closed subset

of R and I be a finitely generated ideal of R.

1. F e
∗ (W

−1M) ∼= W−1(F e
∗M) as W−1R-modules.

2. If M̂I is the I-adic completion of M , then F e
∗ (M̂I) ∼= F̂ e

∗M I as R̂I-modules.
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Proof. For 1. we define φ : F e
∗W

−1M → W−1F e
∗M by φ

(
F e
∗
(m
w

))
=
F e
∗w

pe−1m

w
for all

m

w
∈ W−1M , and we claim that it is an isomorphism of W−1R-modules.

Assume that F e
∗
(m
w

)
= F e

∗
(n
s

)
for some

n

s
∈ W−1M . Then

m

w
=
n

s
, which implies

that tms = tnw for some t ∈ W . Therefore, (tws)p
e−1(tms) = (tws)p

e−1(tnw),

and so tsF e
∗w

pe−1m = twF e
∗ s

pe−1n. This means that
F e
∗w

pe−1m

w
=
F e
∗ s

pe−1n

s
, i.e.

φ
(
F e
∗
(m
w

))
= φ

(
F e
∗
(n
s

))
. This shows that φ is well defined. Now for any element

r

s
∈ W−1R, we have

φ
(r
s
F e
∗
(m
w

))
= φ

(
F e
∗
(rpem
spew

))
=
F e
∗ (s

pe−1)p
e
wp

e−1rp
e
m

spew

=
sp
e−1rF e

∗w
pe−1m

spew
=
rF e
∗w

pe−1m

sw

=
r

s

F e
∗w

pe−1m

w
=
r

s
φ
(
F e
∗
(m
w

))
,

i.e. φ is W−1R-linear. Notice also that for any element
F e
∗m

w
∈ W−1F e

∗M , we have

F e
∗m

w
=
wp

e−1F e
∗m

wpe
=
F e
∗ (w

pe)p
e−1m

wpe
= φ

(
F e
∗
( m
wpe
))
.

If also φ
(
F e
∗
(m
w

))
=
F e
∗w

pe−1m

w
= 0, then there exist an element s ∈ W such that

sF e
∗w

pe−1m = 0. Thus, F e
∗ s

pewp
e−1m = 0, and so sp

e
wp

e−1m = 0. This means that
m

w
= 0, i.e. F e

∗
(m
w

)
= 0. Hence, φ is surjective and injective.

For 2. since the filtrations {F e
∗ I

nM}n≥0 and {F e
∗ (I

n)[pe]M}n≥0 are cofinal by

Lemma 2.1.12,

F̂ e
∗M I = lim←−

F e
∗M

InF e
∗M

= lim←−
F e
∗M

F e
∗ (I

n)[pe]M

∼= lim←−
F e
∗M

F e
∗ I

nM
= F e

∗ lim←−
M

InM
= F e

∗ M̂I .

2
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Proposition 2.2.5. Let C be a subset of R. Then

1. R is a free Rpe := {rpe | r ∈ R}-module with basis C if and only if F e
∗R is a

free R-module with basis F e
∗C = {F e

∗λ | λ ∈ C}.

2. If R is a free Rpe-module with basis C and S is the polynomial ring R[x1, . . . , xn],

then F e
∗S is a free S-module with basis

B = {F e
∗λx

α1
1 . . . xαnn | λ ∈ C and 0 ≤ α1, . . . , αn ≤ pe − 1}.

3. If R is a free Rpe-module with a finite basis C, and S is the power series ring

R[[x1, . . . , xn]], then F e
∗S is a free S-module with basis

B = {F e
∗λx

α1
1 . . . xαnn | λ ∈ C and 0 ≤ α1, . . . , αn ≤ pe − 1}.

Proof. For any finite subset Λ of C, and for any r ∈ R, we have r =
∑

λ∈Λ r
pe

λ λ⇔
F e
∗ r =

∑
λ∈Λ rλF

e
∗λ where rλ ∈ R for all λ ∈ Λ. Then the proof of 1. follows.

For the proof of 2. we shall show that it holds for S = R[x], then the result follows

by induction. Assume that R is free as an Rpe-module with basis C. Since every

n ∈ N can be written as n = upe + α where u, α ∈ N and 0 ≤ α < pe, any term rxn

has a unique expression
∑

λ∈Λ r
pe

λ λ(xu)p
e
xα for some finite subset Λ of C and for some

rλ ∈ R. Then F e
∗ rx

n can be written uniquely as
∑

λ∈Λ rλx
uF e
∗λx

α. Therefore, since

every polynomial in S is a finite linear combination of monomials with coefficients in

R, any element in F e
∗S can be written uniquely as S-linear combination of elements

from {F e
∗λx

α | λ ∈ C and 0 ≤ α < pe}, i.e. this set generates F e
∗S as an S-module

freely.

For the proof of 3. we will similarly show that it holds for S = R[[x]], and the

result follows by induction. Assume that R is free as an Rpe-module with basis

C. Let C = {λ1, · · · , λm} and g =
∑∞

i=0 rix
i ∈ R[[x]]. Since every n ∈ N can be

written as n = upe + α where u, α ∈ N and 0 ≤ α < pe, every term rnx
n of g has

a unique expression
∑m

j=1 r
pe

(n,λj)
λj(x

u)p
e
xα, and so F e

∗ rnx
n is uniquely expressed as∑m

j=1 r(n,λj)x
uF e
∗λjx

α for some r(n,λj) ∈ R. Then F e
∗ g can be written uniquely as∑pe−1

k=0

∑m
j=1 gkλjF

e
∗λjx

k where gkλj =
∑∞

i=0 r(ipe+k,λj)x
i ∈ S. This shows that any

element in F e
∗S can be written uniquely as S-linear combination of elements from

{F e
∗λjx

α | 1 ≤ j ≤ m and 0 ≤ α < pe}, i.e. this set generates F e
∗S as an S-module

freely. 2
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In general, if S is the power series ring R[[x1, . . . , xn]], the set B in Proposition

2.2.5 3. does not have to generate F e
∗S freely as an S-module. The following example

shows that why we need the finiteness condition of the basis set C.

Example 2.2.6. Let S = k[[x]] be the power series ring over a field k of prime

characteristic p and C be an infinite free basis of k as kp vector space. We claim

that the set B = {F∗λxα | λ ∈ C and 0 ≤ j ≤ p − 1} is not a free basis for F∗S as

an S-module. Let g =
∑∞

n=0 anx
n ∈ S such that ai 6= aj whenever i 6= j. Then for

every an, there exist a finite subset Λn of C such that an can be written uniquely as∑
λ∈Λn

rpλλ. Since every n ∈ N can be written as n = up + α where u, α ∈ N and

0 ≤ α ≤ p − 1, F∗anx
n can be written uniquely as

∑
λ∈Λn

rλx
uF∗λx

α. This means

that F∗g =
∑∞

n=0

∑
λ∈Λn

rλx
unF∗λx

αn where n = unp+ αn for some un, αn ∈ N and

0 ≤ αn < p. On the other hand, since C is infinite we have Λi 6= Λj almost for

all ai 6= aj. Therefore, F∗g is an infinite S-linear combination of elements from B.

Hence, B is not a free basis of F∗S even though it generates F∗S as an S-module.

Definition 2.2.7. R is said to be F -finite if the e-th Frobenius homomorphism

makes R into a finitely generated module over the subring Rpe := {rpe | r ∈ R} (or

equivalently that F e
∗R is a finitely generated R-module) for any e ∈ N.

Proposition 2.2.8. If R is an F -finite ring, then

1. R/I is F -finite for any ideal I of R,

2. any localization of R is F -finite,

3. R[x1, . . . , xn] and R[[x1, . . . , xn]] are F -finite.

Proof. Assume that R is F -finite. Let F∗R is generated by {F∗λ1, . . . , F∗λm} as an

R-module. Notice that F∗(R/I) is generated by {F∗(λ1 + I), . . . , F∗(λm + I)} as an

R/I-module, and so R/I is F -finite. For 2. let W be a multiplicative subset of R.

Then W−1F∗R is generated by {F∗λ1, . . . , F∗λm} as an W−1R-module. However,

W−1F∗R ∼= F∗W
−1R by Proposition 2.2.4, and so any localization of R is F -finite.

And 3. follows from Proposition 2.2.5. 2
One of the most important flavour of rings of prime characteristic p is the regu-

larity criterion of E. Kunz.

Theorem 2.2.9. [15, Corollary 2.7] R is regular if and only if R is reduced and

F∗R is a flat R-module.
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Theorem 2.2.10. [15, Theorem 3.3] R is a regular local ring if and only if

lR(R/m[pe]) = pe dimR for some e ∈ N.

2.2.2 Modules over the Frobenius Skew Polynomial Ring

In this subsection, we will provide a brief description of the Frobenius skew poly-

nomial rings and modules over such rings. For further details we refer to [?] and

[21].

Definition 2.2.11. The Frobenius skew polynomial ring over R is the skew polyno-

mial ring R[X; f ] associated to R and the Frobenius map f in the indeterminate X

over R, whose multiplication is subject to the rule Xr = f(r)X = rpX for all r ∈ R.

Remark 2.2.12. The Frobenius skew polynomial ring R[X; f ] is the free left R-

module
⊕∞

i=0 RX
i, and so consist of all polynomials

∑n
i=0 riX

i, where n ∈ N0 and

r0, · · · , rn ∈ R.

Definition 2.2.13. Let M be an R-module. An e-th Frobenius map on M is an

R-linear map ϕ : M → F e
∗M , or equivalently an additive map φ : M → M such

that φ(rm) = rp
e
φ(m) for all r ∈ R and m ∈ M , where ϕ and φ are related by the

formula ϕ(m) = F e
∗φ(m) for all m ∈M .

Remark 2.2.14. [21, c.f. Discussion 1.6] For given an e-th Frobenius map φ on

an R-module M , we can turn M into a left R[X; f e]-module by extending the rule

Xm = φ(m) for all m ∈ M , where X(rm) = φ(rm) = rp
e
φ(m) = rp

e
Xm =

f e(r)Xm = (Xr)m for all r ∈ R and m ∈ M . Conversely, if an R-module M has

a left R[X; f e]-module structure, then X : M →M is an e-th Frobenius map.

One of the most important examples of modules with Frobenius map is the

following.

Example 2.2.15. Let the situation and notation be as in Example 2.1.38. Then

the map T : E → E defined by T (λx−ν11 . . . x−νnn ) = λpx−pν11 . . . x−pνnn for all λ ∈ k
and ν1, . . . νn ∈ N is a Frobenius map on E, which we call it the natural Frobenius

map, and so E is a left R[T ; f ]-module. We can further extend this to a natural
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R[T ; f ]-module structure on Eα which is given by

T


a1

...

aα

 =


Ta1

...

Taα


Remark 2.2.16. Note that F e

∗R-module structure of HomR(M,F e
∗M) is defined as

follow

(F e
∗ r.Θ)(−) = F e

∗ rΘ(−)

for all r ∈ R and Θ ∈ HomR(M,F e
∗M).

Definition 2.2.17. Let M be an R-module. An e-th Cartier map on M is an R-

linear map ψ : F e
∗M → M , or equivalently an additive map C : M → M such that

C(mrp
e
) = C(m)r for all r ∈ R and m ∈ M , where ψ and C are related by the

formula C(m) = ψ(F e
∗m) for all m ∈M .

Remark 2.2.18. [21, c.f. Discussion 1.7] For given an e-th Cartier map C on an

R-module M , we can turn M into a right R[X; f e]-module by extending the rule

mX = C(m) for all m ∈ M , where (mX)r = C(m)r = C(mrp
e
) = mrp

e
X =

mf e(r)X = m(Xr) for all r ∈ R and m ∈ M . Conversely, if an R-module M has

a right R[X; f e]-module structure, then X : M →M is an e-th Cartier map.

Remark 2.2.19. Note also that the F e
∗R-module structure of HomR(F e

∗M,M) is

defined as follow

F e
∗ r.φ(−) = φ(F e

∗ r.−)

for all r ∈ R and φ ∈ HomR(F e
∗M,M).

2.2.3 The Frobenius Functor

In this subsection, we give definition and some properties of the Frobenius functor

of Peskine and Szpiro introduced in [18].

Definition 2.2.20. Let M be an R-module. The Frobenius functor FR from the

category of R-modules to itself is defined by FR(M) := F∗R ⊗R M where FR(M)
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acquires its R-module structure via the identification of F∗R with R. The resulting

R-module structure on FR(M) satisfies

s(F∗r ⊗m) = F∗sr ⊗m and F∗s
pr ⊗m = F∗r ⊗ sm

for all r, s ∈ R and m ∈ M . The e-th iteration of FR is denoted by F e
R, and it is

clearly given by F e
R(M) = F e

∗R⊗RM .

Remarks 2.2.21. [16, Remarks 1.0]

1. F e
R commutes with arbitrary direct sums because the tensor product does.

2. It is easy to see that the map φ : R → F e
R(R) given by r 7→ F e

∗ r ⊗ 1 is an

R-module isomorphism. If Φ : Rβ → Rα is an R-module homomorphism

represented by an α× β matrix A, then by the isomorphism φ, F e
R(Φ) : Rβ →

Rα is an R-module homomorphism represented by the matrix A[pe] which is

obtained from A by raising its entries to the pe-th power.

3. F e
R commutes with limits because the tensor product does.

4. If I is an ideal of R, then F e
R commutes with the torsion functor ΓI(−).

5. F e
R commutes with localization.

Remarks 2.2.22. [16, Remarks 1.0] When R is regular the Frobenius functor be-

comes a useful tool because of the fact that it is exact by Theorem 2.2.9. In this

case, we have the following.

1. By Remarks 2.2.21 1. and exactness of F e
R, it commutes with arbitrary sums

of submodules and finite intersection of submodules.

2. Using the isomorphism in Remarks 2.2.21 2. and exactness of F e
R, we obtain

F e
R(I) ∼= I [pe] and R/I [pe] ∼= F e

R(R/I) for any ideal I of R.

3. Because of the fact that F e
R is exact, it commutes with the cohomology of com-

plexes.

4. If M and N R-modules with M being finitely generated, then F e
R(ExtiR(M,N)) ∼=

ExtiR(F e
R(M), F e

R(N)) which is induced by the R-module isomorphism

F e
R(HomR(P,N))

1⊗f 7→id⊗f−−−−−−→ HomR(F e
R(P ), F e

R(N))

where P is a finitely generated free R-module.
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2.2.4 The Ie(−) Operation and The ?-closure

In this subsection, we will give definitions of Ie(−) operation and ?-closure, and

some properties of them. To do this we need the property that F e
∗R are intersection

flat R-modules for all e ∈ N.

Definition 2.2.23. An R-module M is intersection flat if it is flat and for all sets

of R-submodules {Nλ}λ∈Λ of a finitely generated R-module N ,

M ⊗R
⋂
λ∈Λ

Nλ =
⋂
λ∈Λ

(M ⊗R Nλ)

Henceforth in this section R will denote a regular ring with the property that

F e
∗R are intersection flat R-modules for all e ∈ N.

Remark 2.2.24. Since intersection flat R-modules include R and closed under ar-

bitrary direct sum, free R-modules are intersection flat. For instance, F e
∗R are inter-

section flat for polynomial rings over a field of prime characteristic p. In addition,

for all complete regular local rings of prime characteristic p, F e
∗R are intersection

flat [10, cf. Proposition 5.3]. Because of regularity, these rings have the property

that for any collection of ideals {Aλ}λ∈Λ of R,

(∩λ∈ΛAλ)
[pe] ∼= F e

R(∩λ∈ΛAλ) ∼= ∩λ∈ΛF
e
R(Aλ) ∼= ∩λ∈ΛA

[pe]
λ ,

and this is enough to define the minimal ideal J ⊆ R with the property A ⊆ J [pe].

Proposition-Definition 2.2.25. Let e ∈ N.

1. For an ideal A ⊆ R there exists a minimal ideal J ⊆ R with the property

A ⊆ J [pe]. We denote this minimal ideal by Ie(A).

2. Let u ∈ R be a non zero element and A ⊆ R an ideal. The set of all ideals

B ⊆ R which contain A and satisfy uB ⊆ B[pe] has a unique minimal element.

We call this ideal the star closure of A with respect to u and denote it by A?
eu.

Proof. We refer to section 5 in [10]. 2

Definition 2.2.26. Let e ∈ N.

1. Given any matrix (or vector) V with entries in R, we define V [pe] to be the

matrix obtained from V by raising its entries to the pe-th power.
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2. Given any submodule K ⊆ Rα, we define K [pe] to be the R-submodule of Rα

generated by {vpe | v ∈ K}.

The Proposition-Definition below extends the Ie(−) operation and ?-closure de-

fined on ideals to submodules of free R-modules.

Proposition-Definition 2.2.27. Let e ∈ N.

1. Given a submodule K ⊆ Rα there exists a minimal submodule L ⊆ Rα for

which K ⊆ L[pe]. We denote this minimal submodule Ie(K).

2. Let U be an α × α matrix with entries in R and V ⊆ Rα. The set of all

submodules K ⊆ Rα which contain V and satisfy UK ⊆ K [pe] has a unique

minimal element. We call this submodule the star closure of V with respect to

U and denote it V ?eU .

Proof. For the proof of 1. we refer to section 3 of [13]. For the proof of 2. we

shall construct a similar method to that in section 3 of [13]. Let V0 = V and

Vi+1 = Ie(UVi) + Vi. Then {Vi}i≥0 is an ascending chain and it stabilizes, since R is

Noetherian, i.e. Vj = Vj+k fo all k > 0 for some j ≥ 0. Therefore, Vj = Ie(UVj) +Vj
implies Ie(UVj) ⊆ Vj, and so UVj ⊆ V

[pe]
j . We show the minimality of Vj by

induction on i. Let Z be any submodule of Rα containing V with the property that

UZ ⊆ Z [pe]. Then we clearly have V0 = V ⊆ Z, and suppose that Vi ⊆ Z for some

i. Thus, UVi ⊆ UZ ⊆ Z [pe], which implies Ie(UVi) ⊆ Z and so Vi+1 ⊆ Z. Hence,

Vj ⊆ Z. 2
For the calculation of Ie(−) operation, we first fix a free basis B for R as an

Rpe-module, then every element v ∈ Rα can be expressed uniquely in the form

v =
∑

b∈B u
[pe]
b b where ub ∈ Rα for all b ∈ B.

Proposition 2.2.28. [14, Proposition 2.3] Let e > 0.

1. For any submodules V1, . . . , Vn of Rα, Ie(V1 + · · ·+ Vn) = Ie(V1) + · · ·+ Ie(Vn).

2. Let B be a free basis for R as Rpe-module. Let v ∈ Rα and v =
∑

b∈B u
[pe]
b b be

the unique expression for v where ub ∈ Rα for all b ∈ B. Then Ie(〈v〉) is the

submodule of Rα generated by {ub | b ∈ B}.

The behaviour of the Ie(−) operation under localization is very crucial for our

results. The following lemma shows that it commutes with localization.
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Lemma 2.2.29. [14, Lemma 2.5] Let R be a localization of R or a completion at

a prime ideal. For all e ∈ N, and all submodules K ⊆ Rα, Ie(K ⊗R R) exists and

equals to Ie(K)⊗R R.

Lemma 2.2.30. Let e ∈ N, U be a non-zero α × α matrix with entries in R and

K ⊆ Rα a submodule. For any prime ideal P ⊆ R,

(K̂P )?
eU = ̂(K?eU)P .

Proof. Define inductively K0 = K and Ki+1 = Ie(UKi)+Ki, and also L0 = K̂P and

Li+1 = Ie(ULi) +Li for all i ≥ 0. Since Ie(−) operation commutes with localization

and completion, an easy induction shows that Li = (̂Ki)P , and the result follows. 2

2.2.5 Lyubeznik’s F -modules

Let R be a regular ring. In this subsection, we will give a brief summary of

Lyubeznik’s F -modules and their properties which we use in upcoming chapters.

For the proofs and details we refer to [16].

Definitions 2.2.31. An F -module is an R-module M equipped with an R-module

isomorphism θ :M→ FR(M) which we call the structure isomorphism of M.

An F -module homomorphism is an R-module homomorphism φ :M→M′ such

that the following diagram commutes

M φ−−−→ M′

θ

y yθ′
FR(M) −−−→

FR(φ)
FR(M′)

where θ and θ′ are the structure isomorphisms of M and M′, respectively.

A generating morphism of an F -module M is an R-module homomorphism β :

M → FR(M), where M is an R-module, such that M is the limit of the inductive

system in top row of commutative diagram

M
β−−−→ FR(M)

FR(β)−−−→ F 2
R(M)

F 2
R(β)
−−−→ · · ·

β

y FR(β)

y F 2
R(β)

y
FR(M) −−−→

FR(β)
F 2
R(M) −−−→

F 2
R(β)

F 3
R(M) −−−→

F 3
R(β)

· · ·
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and the structure isomorphism of M is induced by the vertical arrows in this dia-

gram.

The structure isomorphism of an F -module M is automatically its generating

morphism, and so every F -module has at least one generating morphism.

Definition 2.2.32. An F -module M is called F -finite if it has a generating mor-

phism β : M → FR(M) with M a finitely generated R-module. In addition, if β is

injective, M is called a root of M and β is called a root morphism of M.

Proposition 2.2.33. [16, Proposition 2.3] Let β : M → FR(M) be a generating

morphism of an F -finite F -module M and let βi be the following composition

M
β−→ FR(M)

FR(β)−−−→ F 2
R(M)

F 2
R(β)
−−−→ · · ·

F i−1
R (β)
−−−−→ F i

R(M).

Then:

1. The ascending chain ker β1 ⊆ ker β2 ⊆ · · · stabilizes at the first integer i where

we get ker βi = ker βi+1.

2. Im βi ∼= M/ ker βi is a root of M where ker βi is the stable kernel of the as-

cending chain in 1. and M = 0 if it has a zero root.

Next we gather some important properties of F -finite F -modules which are

proved in [16].

Theorem 2.2.34. [16, Theorem 1.4] Let M be an F -module. Then

inj. dimRM≤ dimR SuppM.

In particular, if dimR SuppM = 0, then M is injective as an R-module.

Remarks 2.2.35. [16, Section 2] LetM be a F -finite F -module. Then we have the

following.

1. Every F -finite module M has a root.

2. If N is an F -submodule of M and M is a root of M then N is F -finite and

N = N ∩M is a root of N . Also, M/N is F -finite and M/N is a root of

M/N .
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3. If M is a root ofM, then there is a one-to-one correspondence between the F -

submodules N of M and the R-submodules N of M such that N corresponds

to M ∩N .

4. If I ⊆ R is an ideal, then the local cohomology module H i
I(M) is F -finite for

any i.

5. All the Bass numbers of M are finite.

6. If R is a finitely generated algebra over a Noetherian local ring of characteristic

p, then M has finite length in the category of F -modules.

Example 2.2.36. Any R-module isomorphism φ : R → FR(R) makes R into an

F -module. In particular, the canonical isomorphism

φ : R→ F∗R⊗R R = FR(R) defined by r 7→ F∗r ⊗ 1.

Furthermore, R is clearly F -finite F -module. This makes local cohomology modules

H i
I(R) with support on an ideal I ⊆ R into F -finite F -modules. Therefore, there

exist a finitely generated module M and an injective map β : M → FR(M) such that

H i
I(R) = lim−→(M

β−→ FR(M)
FR(β)−−−→ F 2

R(M)
F 2
R(β)
−−−→ · · · )

where β : M → FR(M) is a root morphism.

2.2.6 The ∆e and Ψe Functors

In this subsection, we recall the notions of ∆e and Ψe functors which was defined

in Section 3 of [10]. Let R denote a complete local ring and E the injective hull

of its residue field. Let Ce be the category of Artinian R[θ; f e]-modules and De be

the category of R-linear maps M → F e
R(M) where M is Noetherian R-module and

a morphism between M → F e
R(M) and N → F e

R(N) is a commutative diagram of

R-linear maps

M
φ−→ N

↓ ↓

F e
R(M)

F eR(φ)
−→ F e

R(N)
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We define the functor ∆e : Ce → De as follows: given an e-th Frobenius map

θ : M → M , we can obtain an R-linear map φ : F e
∗R ⊗ M → M such that

φ(F e
∗ r ⊗m) = rθ(m) for all r ∈ R, m ∈ M . Applying Matlis duality to this map

gives the R-linear map M∨ → (F e
∗R⊗M)∨ ∼= F e

∗R⊗M∨ where the last isomorphism

is described in Lemma 4.1 in [16].

Conversely, we define the functor Ψe : De → Ce as follows: given a Noetherian R-

module N with an R-linear map N → F e
R(N). Applying Matlis duality to this map

gives the R-linear map ϕ : F e
R(N∨) ∼= F e

R(N)∨ → N∨ where the first isomorphism

is the composition F e
R(N∨) ∼= F e

R(N∨)∨∨ ∼= F e
R(N∨∨)∨ ∼= F e

R(N)∨. Then we define

the action of θ on N∨ by defining θ(n) = ϕ(1⊗ n) for all n ∈ N∨.
The mutually inverse exact functors ∆e and Ψe are extensions of Matlis duality

which also keep track of Frobenius actions. For the details we refer to [10].



Chapter 3

Annihilators of Modules with a

Frobenius Map

Throughout this chapter R will denote a polynomial ring in finitely many variables

over a field k of prime characteristic p, i.e. R = k[x1, . . . , xn]. In this chapter, we

investigate the algorithms described in [12] and [13]. We present our results on these

algorithms, and generalize the algorithm described in [13] to polynomial rings. We

finish the chapter with an application to Lyubeznik’s F -finite F -modules.

3.1 The Katzman-Schwede Algorithm

The purpose of this section is to redefine the algorithm described in [12] with a more

algebraic language and show that it commutes with localization. Let e ∈ N.

Definition 3.1.1. For any R-linear map φ : F e
∗R→ R, we say that an ideal J ⊆ R

is φ-compatible if φ(F e
∗J) ⊆ J .

37
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Given φ which is compatible with J as above definition, there is always a com-

mutative diagram

F e
∗R

φ−→ R

↓ ↓

F e
∗ (R/J)

φ′−→ R/J

where the vertical arrows are the canonical surjections.

Lemma 3.1.2. [12, Lemma 2.4] Assuming a commutative diagram as above, the

φ-compatible ideals containing J are in the bijective correspondence with the φ′-

compatible ideals of R/J , where φ′ is the induced map F e
∗ (R/J)

φ′−→ R/J as in

above diagram.

Next we will explain the F e
∗R-module structure of HomR(F e

∗R,R), which is cru-

cial for our computational techniques in this thesis.

Remark 3.1.3. Let C be a base for k as a kpe-vector space which includes the

identity element of k. By Proposition 2.2.5, F e
∗R is a free R-module with the basis

set

B = {F e
∗λx

α1
1 . . . xαnn | 0 ≤ α1, . . . , αn < pe, λ ∈ C}.

Lemma 3.1.4. [3, cf. Example 3.0.5] Let πe : F e
∗R→ R be the projection map onto

the free summand RF e
∗x

pe−1
1 . . . xp

e−1
n . Then HomR(F e

∗R,R) is generated by πe as an

F e
∗R-module.

Proof. For each basis element F e
∗λx

α1
1 . . . xαnn ∈ B, the projection map onto the

free summand RF e
∗λx

α1
1 . . . xαnn is defined by the rule F e

∗ z.πe(−) = πe(F
e
∗ z.−), where

z = λ−1xp
e−1−α1

1 . . . xp
e−1−αn
n . Since we can obtain all of the projections in this way,

the map

Φ : F e
∗R→ HomR(F e

∗R,R) defined by Φ(F e
∗u) = φu,

where φu : F e
∗R → R is the R-linear map φu(−) = πe(F

e
∗u−), is surjective. On the

other hand, if Φ(F e
∗u) = 0 for some u ∈ R, then we have

φu(F
e
∗ r) = πe(F

e
∗ur) = F e

∗u.πe(F
e
∗ r) = 0 for all r ∈ R.

This means that F e
∗u must be zero, and so Φ is injective. Hence, Φ is an F e

∗R

isomorphism. In other words, πe generates HomR(F e
∗R,R) as an F e

∗R-module. 2



CHAPTER 3. ANNIHILATORS OF MODULES WITH A FROBENIUS MAP 39

Definition 3.1.5. Let the notation and situation be as in Lemma 3.1.4. We call

the map πe in Lemma 3.1.4 the trace map on F e
∗R, or just the trace map when the

content is clear.

Next lemma provides an important property of the trace map πe which gives the

relation between elements of HomR(F e
∗R,R) and Ie(−) operation (cf. Claim 6.2.2

in [3]).

Lemma 3.1.6. Let A and B be ideals of R. Then πe(F
e
∗A) ⊆ B if and only if

A ⊆ B[pe].

Proof. (⇒) Since R is Noetherian, A is finitely generated, and since πe is R-linear

we may assume that A is a principal ideal, i.e. A = aR for some a ∈ R. Now

since F e
∗R is a free R-module with basis B as in Remark 3.1.3, F e

∗a =
∑

i riF
e
∗ gi for

some ri ∈ R and F e
∗ gi ∈ B. On the other hand, by Lemma 3.1.4, πe(F

e
∗ zia) = ri

for some zi ∈ R. This implies that πe(F
e
∗Ra) = 〈ri〉. Then by the assumption

πe(F
e
∗A) = 〈ri〉 ⊆ B, and since F e

∗a = F e
∗
∑

i r
pe

i gi we have a =
∑

i r
pe

i gi ∈ B[pe].

Hence, A ⊆ B[pe].

(⇐) Assume first that A ⊆ B[pe] which implies that F e
∗A ⊆ F e

∗B
[pe]. Therefore,

πe(F
e
∗A) ⊆ πe(F

e
∗B

[pe]) = πe(BF
e
∗R) = Bπe(F

e
∗R) ⊆ B.

2

Corollary 3.1.7. Let A be an ideal of R, and let φ ∈ HomR(F e
∗R,R) be such that

φ(−) = πe(F
e
∗u−) for some u ∈ R. Then φ(F e

∗A) = πe(F
e
∗uA) = Ie(uA) and

?-closure of A gives the smallest φ-compatible ideal containing A.

Proof. Since uA ⊆ Ie(uA)[pe], the first claim follows from Lemma 3.1.6. The second

claim follow from the fact that

A is φ− compatible⇔ φ(F e
∗A) = πe(F

e
∗uA) = Ie(uA) ⊆ A

⇔ uA ⊆ A[pe]

2
Next we recall Fedder’s Lemma which translates the problem of finding compat-

ible ideals of R/I for an ideal I to finding compatible ideals on R. In the case that

R is a Gorenstein local ring, this lemma was proved by R. Fedder in [7].
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Lemma 3.1.8. [7, Lemma 1.6][3, Lemma 6.2.1] Let S = R/I for some ideal I and

πe be the trace map, then for any φ ∈ HomR(F e
∗R,R) satisfies φ(F e

∗ I) ⊆ I if and

only if there exists an element u ∈ (I [pe] : I) such that φ(−) = πe(F∗u−). More

generally, there exists an isomorphism of F e
∗S-modules

HomS(F e
∗S, S) ∼=

(
F e
∗ (I

[pe] : I)
)(

F e
∗ I

[pe]
) .

Proof. By Lemma 3.1.4, for any φ ∈ HomR(F e
∗R,R) there exists an element u ∈ R

such that φ(−) = πe(F∗u−). Then by Lemma 3.1.6,

φ(F e
∗ I) = πe(F

e
∗uI) ⊆ I ⇔ uI ⊆ I [pe] ⇔ u ∈ (I [pe] : I).

For the second claim, we shall show that the map Φ : F e
∗ (I

[pe] : I)→ HomS(F e
∗S, S)

which sends F e
∗ z to the map πe(F

e
∗ z−) is surjective. It is easy to verify that this map

is well-defined and F e
∗R-linear. Since HomR(F e

∗S, S) = HomS(F e
∗S, S), by freeness of

F e
∗R, for any map ϕ ∈ HomS(F e

∗S, S) there always exists a map ψ ∈ HomR(F e
∗R,R)

such that I is ψ-compatible. Namely, Φ is surjective. On the other hand, by

Lemma 3.1.6 again, Ker Φ = (F e
∗ I

[pe]), and the result follows by the first isomorphism

theorem. 2

Lemma 3.1.9. [12, Proposition 2.6.c] If φ is surjective, then the set of φ-compatible

ideals is a finite set of radicals closed under sum and primary decomposition.

For φ-compatible prime ideals P ( Q, we say that Q minimally contains P

if there is no φ-compatible prime ideal strictly between P and Q. For a given φ-

compatible prime ideal P , next proposition shows that how to compute φ-compatible

prime ideals which minimally contain P , and we turn it into an algorithm (cf.

Theorem 4.1 in [13] and Section 4 of [12]).

Proposition 3.1.10. Let φ : F e
∗R→ R be an R-linear map where φ(−) = πe(F

e
∗u−)

for some u ∈ R. Let P and Q be φ-compatible prime ideals such that Q minimally

contains P , and let J be the ideal whose image in R/P defines the singular locus of

R/P . Then:

1. If (P [pe] : P ) ⊆ (Q[pe] : Q) then J ⊆ Q,

2. If (P [pe] : P ) * (Q[pe] : Q) then (uR + P [pe]) : (P [pe] : P ) ⊆ Q.
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Proof. For 1. let Rp be a localization of R at a prime ideal p which contains Q,

and let S = R̂p be the completion of Rp with respect to the maximal ideal pRp.

Since colon ideals, Frobenius powers and singular locus commute with localization

and completion, (P [pe] : P ) ⊆ (Q[pe] : Q) ⇒ (PS[pe] : PS) ⊆ (QS[pe] : QS). Let

Q1, . . . , Qs be the minimal prime ideals of QS in S, and Qi = (QS : si) for some

suitable elements si ∈ S. Then (PS[pe] : PS) ⊆ (Q
[pe]
i : Qi) for each Qi since for any

element a ∈ (QS[pe] : QS),

b ∈ Qi ⇔bsi ∈ QS ⇒ absi ∈ QS[pe] ⇒ absp
e

i ∈ QS[pe]

⇔ ab ∈ (QS[pe] : sp
e

i ) = (QS : si)
[pe] = Q

[pe]
i

Thus, by Theorem 4.1 in [13], JS ⊆ Qi for each i, which implies that JS ⊆ QS,

and so J ⊆ Q. For 2. we refer to Theorem 4.1 in [13]. 2
The following algorithm is the same algorithm described in [12], which we call

it here the Katzman-Schwede algorithm, finds all φ-compatible prime ideals of R

which do not contain Ie(uR). We describe it here in a more algebraic language.

Input:

An R linear map φ : F e
∗R→ R where φ(−) = πe(F

e
∗u−) and u ∈ R.

Output:

Set of all φ-compatible prime ideals which do not contain Ie(uR).

Initialize:

AR = {0} and B = ∅

Execute the following:

While AR 6= B pick any P ∈ AR − B, set S = R/P ;
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1. Find the ideal J ⊆ R whose image in S defines the singular locus of S, and

compute J?
eu,

2. Find the minimal prime ideals of J?
eu, add them to AR,

3. Compute the ideal B := ((uR + P [pe]) : (P [pe] : P )), and compute B?eu,

4. Find the minimal prime ideals of B?eu, add them to AR,

5. Add P to B.

Output AR and stop.

The Katzman-Schwede algorithm produces a list of all φ-compatible prime ideals

which do not contain L := Ie(uR). Because for any prime ideal Q, whenever L ⊆ Q

we have the property that Q is φ-compatible if and only if Q/L is φ′-compatible

where φ′ is the induced map from φ. But Q/L is clearly compatible since φ′ is zero.

Thus, we do not need to assume that φ is surjective.

Discussion 3.1.11. Let Rp be a localization of R at a prime ideal p, and let S = R̂p

be the completion of Rp with respect to the maximal ideal pRp. We know that pR̂p is

the maximal ideal of R̂p. Now let X1, . . . , Xs be minimal generators of pR̂p, and let

K[[X1, . . . , Xs]] be the formal power series ring over the residue field K of Rp. By the

Cohen’s structure theorem S ∼= K[[X1, . . . , Xs]]. Let E = ES(S/m) be the injective

hull of the residue field. Then by Example 2.1.38, E is isomorphic to the module of

inverse polynomials K[X−1 , . . . , X
−
s ]. Let T : E → E be the natural Frobenius map

as in the Example 2.2.15.

We can also view the Katzman-Schwede algorithm from the point of Frobenius

maps on injective hull of residue fields (cf. section 4 of [13]). By Remark 2.1.25,

the set of S-submodules of E is {AnnE J | J is an ideal of R}. Also Theorem 4.3 in

[10] shows that an S-submodule AnnE J ⊆ E is an S[Θ; f e]-submodule if and only if

uJ ⊆ J [pe] where Θ = uT e and u ∈ S. Thus, the Katzman-Schwede algorithm finds

all submodules AnnE P of E which are preserved by the Frobenius map Θ, under the

assumptions that P is a prime ideal of S and the restriction of Θ to AnnE P is not

the zero map (i.e. it finds all the Θ-special prime ideals of S, see Definition 3.2.6).

All of the operations used in the Katzman-Schwede algorithm are defined for

localizations of R. Therefore, we can apply the algorithm to any localization of R at
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a prime ideal. In the rest of this section, we investigate behaviour of the Katzman-

Schwede algorithm under localization. Let Rp be a localization of R at a prime ideal

p. Our next theorem gives the exact relation between the output sets AR and ARp

of the Katzman-Schwede algorithm for R and Rp, respectively.

Theorem 3.1.12. The Katzman-Schwede algorithm commutes with localization: for

a given u ∈ R, if AR and ARp are the output sets of the Katzman-Schwede algorithm

for R and Rp, respectively, then

ARp = {PRp | P ∈ AR and P ⊆ p}

Proof. We shall show that the Katzman-Schwede algorithm commutes with local-

ization step by step. Since the ideal defining singular locus commutes with localiza-

tion, so is step 1. Since Frobenius powers and colon ideals commute with localization

under Noetherian hypothesis, so is step 3. Then by Lemma 2.2.30, ?-closure com-

mutes with localization. Therefore, step 2. and 4. follow from the fact that primary

decomposition commutes with localization.

Let P be a φ-compatible prime ideal of R. Then since uP ⊆ P [pe] ⇔ uPRp ⊆
P [pe]Rp, PRp is a φ-compatible prime ideal of Rp. Since the Katzman-Schwede algo-

rithm commutes with localization, Q is a φ-compatible prime ideal of R minimally

containing P if and only if QRp is a φ-compatible prime ideal of Rp minimally

containing PRp. Hence, ARp = {PRp | P ∈ AR and P ⊆ p}. 2

3.2 A Generalization of the Katzman-Zhang Al-

gorithm

Let Rp be a localization of R at a prime ideal p, and let S = R̂p be the completion of

Rp with respect to the maximal ideal m = pRp. Let E = ES(S/m) be the injective

hull of residue field of S. The purpose of this section is to generalize the algorithm

defined in Section 6 of [13] to R, and show that it commutes with localization.

Remark 3.2.1. Given an Artininan S-module M , by Corollary 2.1.26, we can

embed M in Eα for some positive integer α, we can then embed Coker(M ↪→ Eα) in

Eβ for some positive integer β. Continuing in this way, we get an injective resolution

0→M → Eα At−→ Eβ → · · ·
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of M , where A is an α × β matrix with entries in S since HomS(Eα, Eβ) ∼=
HomS(Sβ, Sα), and so M ∼= KerAt.

Proposition 3.2.2. [13, Proposition 2.1] Let M ∼= KerAt be an Artininan S-module

where A is an α × β matrix with entries in S. For a given e-th Frobenius map on

M , ∆e(M) ∈ HomS(CokerA,CokerA[pe]) and is given by an α × α matrix U such

that U ImA ⊆ ImA[pe], conversely any such U defines an S[Θ; f e]-module structure

on M which is given by the restriction to M of the Frobenius map Θ : Eα → Eα

defined by Θ(a) = U tT e(a) for all a ∈ Eα, where ∆e as in subsection 2.2.6 and T is

the natural Frobenius map on Eα.

Remark 3.2.3. By Proposition 3.2.2, for any Artinian submodule M ∼= KerAt of

Eα with a given S[Θ; f e]-module structure, where Θ = U tT e, there is a submodule

V of Sα such that M = AnnEα V
t := {a ∈ Eα | V ta = 0} and UV ⊆ V [pe], (in fact

V = ImA). For simplicity, for V ⊆ Sα we denote E(V ) = AnnEα V
t.

Lemma 3.2.4. [13, Lemma 3.6, Lemma 3.7] Let Θ = U tT : Eα → Eα be a Frobe-

nius map where U is an α× α matrix with entries in S and let K ⊂ Sα. Then

1. E(Ie(ImU [pe−1]U [pe−2] · · ·U)) = {a ∈ Eα | Θe(a) = 0},

2. E(I1(UK)) = {a ∈ Eα | Θ(a) ∈ E(K)}.

Remark 3.2.5. Let M = AnnEα V
t be as in Remark 3.2.3. Then AnnSM =

AnnS S
α/V because AnnSM ⊆ AnnSM

∨ ⊆ AnnSM
∨∨ ∼= AnnSM .

Definition 3.2.6. Let Θ = U tT e : Eα → Eα be a Frobenius map, where U is an

α × α matrix with entries in S. We call an ideal of S a Θ-special ideal if it is an

annihilator of an S[Θ; f e]-submodule of Eα, equivalently if it is the annihilator of

Sα/W for some W ⊂ Sα with UW ⊆ W [pe].

Notice that the concept of injective hull of the residue field is not available for

polynomial rings. Therefore, we adapt above definition for a more general setting

and define special ideals depending on a given square matrix as follows.

Definition 3.2.7. Let R be R or Rp or S. For a given α×α matrix U with entries

in R, we call an ideal of R a U-special ideal if it is the annihilator of Rα/V for

some submodule V ⊆ Rα satisfying UV ⊆ V [pe].
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Next we will provide some properties of special ideals. The following lemma

gives the most important properties which are actually generalization of Lemma 3.8

and 3.10 in [13] to R with similar proofs.

Lemma 3.2.8. Let R be R or Rp or S. Let U be an α × α matrix with entries in

R and J be a U-special ideal of R. Then

1. Associated primes of J are U-special,

2. V = (JRα)?
eU is the smallest submodule of Rα such that J = AnnRRα/V

and UV ⊆ V [pe].

Proof. For 1. let P be an associated prime of J and J = AnnRRα/V for some

V ⊆ Rα such that UV ⊆ V [pe]. Then for a suitable element r ∈ R we have

P = (J : r). If W = (V :Rα r) = {w ∈ Rα | rw ∈ V } then P = AnnRRα/W since

s ∈ P ⇔ rs ∈ J ⇔ rsRα ⊆ V ⇔ sRα ⊆ W . On the other hand, since UV ⊆ V [pe]

and rW ⊆ V we have rUW ⊆ UV and so rp
e
UW ⊆ rp

e−1UV ⊆ rp
e−1V [pe] ⊆ V [pe].

This means that UW ⊆ (V [pe] :Rα r
pe) = (V :Rα r)

[pe] = W [pe].

For 2. let J = AnnRRα/V for some V ⊆ Rα such that UV ⊆ V [pe]. It is

clear that JRα ⊆ (JRα)?
eU and JRα ⊆ V ⇒ (JRα)?

eU ⊆ V ?eU = V . Therefore,

J ⊆ AnnRRα/(JRα)?
eU ⊆ AnnRRα/V = J , and so J = AnnRR/(JRα)?

eU . 2

Theorem 3.2.9. [13, Theorem 5.1] There are only finitely many Θ-special prime

ideals P of S with the property that for some S[Θ; f ]-submodule M ⊆ Eα with

AnnSM = P and the restriction of Θ to M is not zero.

Theorem 3.2.9 was proved by induction on α using the aid of injective hull of

the residue field of S, and turned into an algorithm in [13], which we call it here

Katzman-Zhang Algorithm. Since injective hulls of residue fields are not available

for polynomial rings, we only use techniques of Ie(−) operation and ?-closure to

generalize the Katzman-Zhang Algorithm to R. Next theorem allows us to prove

polynomial version of Theorem 3.2.9.

Theorem 3.2.10. [14, Theorem 3.2] Let U be an α × α matrix with entries in R

and α ∈ N.

1. If Ie(U
[pe−1]U [pe−2] · · ·URα) = Ie+1(U [pe]U [pe−1] · · ·URα) then

Ie(U
[pe−1]U [pe−2] · · ·URα) = Ie+j(U

[pe+j−1]U [pe+j−2] · · ·URα)

for all j ≥ 0.



CHAPTER 3. ANNIHILATORS OF MODULES WITH A FROBENIUS MAP 46

2. There exists an integer e such that (1) holds.

For the rest of this section, we will fix an α × α matrix U with entries in R,

and K will denote the stable value of {Ie(U [pe−1]U [pe−2] · · ·URα)}e≥1 as in Theorem

3.2.10.

Proposition 3.2.11. If P is a prime ideal of R with the property that K ⊆ PRα

where K = Ie(UeR
α) and Ue = U [pe−1]U [pe−2] · · ·U , then P is Ue-special.

Proof. Let P be a prime ideal of R such that K ⊆ PRα. Then

K ⊆ PRα ⇒ UeR
α ⊆ P [pe]Rα ⇒ UePR

α ⊆ P [pe]Rα ⇒ PRα = (PRα)?Ue .

Therefore, P is Ue-special. 2
By Proposition 3.2.11, any prime ideal containing K is Ue-special. This is equiv-

alent to saying that the action of Ue on submodules PRα containing K with P being

a prime is the same as the action of zero matrix. Henceforth, we will assume that

K 6= 0.

Our next theorem is the generalization of Theorem 3.2.10 to R, and we will prove

it using a very similar method to that in [13, Section 5].

Theorem 3.2.12. The set of all U-special prime ideals P of R with the property

that K * PRα is finite.

We will prove Theorem 3.2.12 by induction on α. Assume that α = 1. For a

prime ideal P being a u-special prime, i.e. P = AnnRR/P
?u, is equivalent to the

property that uP ⊆ P [p]. This means, by Corollary 3.1.7, that P is a φ-compatible

ideal where φ(−) = π(F∗u−). Then the set of all u-special prime ideals are finite

and the Katzman-Schwede algorithm finds such primes. Henceforth in this section,

we will assume that Theorem 3.2.12 holds for α− 1.

For a U -special prime ideal P , we will present an effective method for finding all

U -special prime ideals Q ! P for which there is no U -special prime ideal strictly

between P and Q, and we will call such U -special prime ideals Q as minimally

containing P . The following lemma is a generalization of Lemma 5.2 in [13] to R,

which is our starting point of finding U -special prime ideals minimally containing

P .

Lemma 3.2.13. Let P ( Q be U-special prime ideals of R such that Q contains P

minimally. If a ∈ Q \P , then Q is among the minimal prime ideals of AnnRR
α/W

where W = ((P + aR)Rα)?U .
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Proof. Since PRα ⊆ (P + aR)Rα ⊆ QRα we have

(PRα)?U ⊆ ((P + aR)Rα)?U ⊆ (QRα)?U .

Then by Lemma 3.2.8,

P = AnnR
Rα

(PRα)?U
⊆ AnnR

Rα

W
⊆ AnnR

Rα

(QRα)?U
= Q

which implies that Q contains a minimal prime ideal of AnnRR
α/W . Therefore, by

Lemma 3.2.8 again, this minimal prime is U -special. Since Q contains P minimally,

it has to be Q itself. 2
Next, we will prove a generalization of Lemma 5.3 in [13] to R, which is a crucial

step for proving Theorem 3.2.12.

Lemma 3.2.14. Let Q be a U-special prime ideal of R, where Q = AnnRR
α/W

for some submodule W ⊆ Rα satisfying UW ⊆ W [p]. Let a /∈ Q and X be an

invertible α × α matrix with entries in the localization Ra. Let ν � 0 be such that

U1 = aνX [p]UX−1 has entries in R and W1 = XWa ∩Rα. Then

1. Q is a minimal prime of AnnRR
α/W1 and U1W1 ⊆ W

[p]
1 , i.e. Q is U1-special.

2. If Ie(U
[pe−1]U [pe−2] · · ·URα) * W , then Ie(U

[pe−1]
1 U

[pe−2]
1 · · ·U1R

α) * W1.

Proof. Let J = AnnRR
α/W1. Then

Ja = (AnnRR
α/W1)a = AnnRa R

α
a/(W1)a = AnnRa R

α
a/XWa

∼= AnnRa R
α
a/Wa = (AnnRR

α/W )a = Qa.

Therefore, Q is a minimal prime ideal of J . We also have

U1W1 = aνX [p]UX−1(XWa ∩Rα) ⊆ (aνX [p]UX−1XWa) ∩Rα

⊆ X [p]W [p]
a ∩Rα = (XWa)

[p] ∩Rα = (XWa ∩Rα)[p] = W
[p]
1 .

This means that J is U1-special. Therefore, by Lemma 3.2.8, Q is U1-special.

Assume that

Ie(U
[pe−1]U [pe−2] · · ·URα) * W , i.e. U [pe−1]U [pe−2] · · ·URα * W [pe].
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Now suppose the contrary that

Ie(U
[pe−1]
1 U

[pe−2]
1 · · ·U1R

α) ⊆ W1, i.e. U
[pe−1]
1 U

[pe−2]
1 · · ·U1R

α ⊆ W
[pe]
1 .

Since

U
[pe−1]
1 U

[pe−2]
1 · · ·U1 = (aνX [p]UX−1)[pe−1](aνX [p]UX−1)[pe−2] · · · aνX [p]UX−1

= aν(pe−1)X [pe]U [pe−1](X−1)[pe−1]aν(pe−2)X [pe−1]U [pe−2](X−1)[pe−2] · · · aνX [p]UX−1

= aν(pe−1+pe−2+···+1)X [pe]U [pe−1]U [pe−2] · · ·UX−1,

we have bX [pe]U [pe−1]U [pe−2] · · ·UX−1Rα ⊆ W
[pe]
1 = (XWa∩Rα)[pe] = X [pe]W

[pe]

a ∩Rα,

where b = aν(pe−1+pe−2+···+1). Therefore, X [pe]U [pe−1]U [pe−2] · · ·UX−1Rα
a ⊆ X [pe]W

[pe]

a ,

and so U [pe−1]U [pe−2] · · ·URα
a ⊆ W

[pe]

a . Then U [pe−1]U [pe−2] · · ·URα ⊆ W
[pe]

since a is

not a zero divisor on Rα/W [pe], which contradicts with our assumption. 2
Next, we will give a generalization of Proposition 5.4 in [13] to R, which will give

us an effective method for finding the U -special prime ideals containing a U -special

prime P minimally in an important case.

Proposition 3.2.15. Let P be a U-special prime ideal of R such that K * PRα.

Assume that the α-th column of U is zero and PRα = (PRα)?U . Then the set of

U-special prime ideals minimally containing P is finite.

Proof. Let Q be a U -special prime ideal minimally containing P and W = (QRα)?U .

Let U0 be the top left (α− 1)× (α− 1) submatrix of U . Since PRα = (PRα)?U ⇔
UPRα ⊆ P [p]Rα, all entries of U are in (P : P [p]). Therefore, U0PR

α−1 ⊆ P [p]Rα−1,

and so P is U0-special. LetK0 be the stable value of {Ie(U [pe−1]
0 U

[pe−2]
0 · · ·U0R

α−1)}e>0

as in Theorem 3.2.10. We now split our proof into two parts. Assume first that

K0 ⊆ PRα−1, i.e. Ie(U
[pe−1]
0 U

[pe−2]
0 · · ·U0R

α−1) ⊆ PRα−1 for some e > 0.

1) Let (g1, . . . , gα−1, 0) be the last row of the matrix U [pe−1]U [pe−2] · · ·U . Note

that its top left (α − 1) × (α − 1) submatrix is U
[pe−1]
0 U

[pe−2]
0 · · ·U0. By our

assumption, all entries of U
[pe−1]
0 U

[pe−2]
0 · · ·U0 are in P [pe] ⊆ Q[pe]. Therefore,

Ie(U
[pe−1]
0 U

[pe−2]
0 · · ·U0R

α−1) ⊆ QRα−1. Then by Proposition 3.2.11, P and

Q are U
[pe−1]
0 U

[pe−2]
0 · · ·U0-special, and so the action of U [pe−1]U [pe−2] · · ·U is

the same action of a matrix Ue whose first α− 1 rows are zero and last row is

(g1, . . . , gα−1, 0), and so we replace U [pe−1]U [pe−2] · · ·U with Ue without effecting
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any issues. We now define inductively V0 = QRα and Vi+1 = Ie(UeVi) + Vi for

all i ≥ 0. Since

UeQR
α = {(0, . . . , 0,

α−1∑
i=1

giqi)
t | ∀i, qi ∈ Q},

Ie(UeQR
α) = {(0, . . . , 0, v) | v ∈ Ie(

α−1∑
i=1

giQ)}.

Therefore, the sequence {Vi}i≥0 stabilizes at V1 = Ie(UeQR
α) + QRα. By

definition of ?-closure, we have QRα ⊆ V1 ⊆ W , and so AnnRR
α/V1 = Q.

Furthermore, we have

AnnR
R

Ie(
∑α−1

i=1 giQ)
= AnnR

Rα

Ie(UeQRα)
⊆ Q since Ie(UeQR

α) ⊆ V1,

which implies that

Ie(
α−1∑
i=1

giQ) =
α−1∑
i=1

Ie(giQ) ⊆ Q,

i.e. Ie(giQ) ⊆ Q ⇔ giQ ⊆ Q[pe] for all 1 ≤ i < α. Hence, Q is gi-special for

all 1 ≤ i < α. On the other hand, at least for one gi we must have gi /∈ P [pe]

so that we do not get a contradiction with our assumption K * PRα. We can

now produce all such Q using the Katzman-Schwede algorithm.

Let τ ⊂ R be intersection of the finite set of U0-special prime ideals of R mini-

mally containing P . Let ρ : Rα → Rα−1 be the projection onto first α−1 coordinates,

and let J = AnnRR
α−1/ρ(W ). Then since U0ρ(W ) = ρ(UW ) ⊆ ρ(W [p]) = ρ(W )[p],

J is U0-special. Note that Q ⊆ J , and so P ( J . Assume now that K0 * PRα−1.

2) We now compute (τ [pe]K0)?U0 as the stable value of

L0 = τ [pe]K0

L1 = I1(U0L0) + L0 = τ [pe−1] I1(U0K0) + τ [pe]K0 = τ [pe−1]K0 + τ [pe]K0

...

Le = τK0 + Le−1

...
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and we deduce that τK0 ⊆ Le ⊆ (τ [pe]K0)?U0 . On the other hand, since J is a

U0-special ideal strictly containing P , τ ⊆
√
J . Thus, for all large e ≥ 0, we

have τ [pe] ⊆ J . Therefore,

τK0 ⊂ (τ [pe]K0)?U0 ⊆ (JRα−1)?U ⊆ ρ(W )?U0 = ρ(W ).

where the last equality follows from the fact that UW ⊆ W [p]. Moreover, since

τ * P , we have τK0 * PRα−1.

3) Now we define v̄ = (v1, . . . , vα−1, 0)t for any element v = (v1, . . . , vα−1, vα)t,

and sV = {v̄ | v ∈ V } for any submodule V . Let l : Rα−1 → Rα−1 ⊕ R

be the natural inclusion l(v) = v ⊕ 0. Note that sV = l(ρ(V )). Then we

also define W0 = {w ∈ W | ρ(w) ∈ τK0} and note that (2) implies that

ρ(W0) = τK0. We have W ?U
0 ⊆ W ?U = W and W ?U

0 = I1(UW0)?U +W0. Since

UW0 = U ĎW0 = Ul(τK0), I1(Ul(τK0))?U ⊆ W ?U
0 ⊆ W . On the other hand, if

I1(Ul(τK0))?U ⊆ PRα, then

I1(Ul(τK0)) ⊆ PRα ⇒ Ul(τK0) ⊆ P [p]Rα ⇒ ρ(Ul(τK0)) ⊆ ρ(P [p]Rα)

⇒ U0τK0 ⊆ P [p]Rα−1 ⇒ τ [p]U0K0 ⊆ P [p]Rα−1

⇒ I1(τ [p]U0K0) ⊆ PRα−1 ⇒ τ I1(U0K0) ⊆ PRα−1

⇒ τK0 ⊆ PRα−1

which contradicts with (2). Hence, we also have I1(Ul(τK0))?U * PRα.

4) Let M ′ be a matrix whose columns generate I1(Ul(τK0))?U ⊆ W . Choose an

entry a of M ′ which is not in P . Then

(a) If a ∈ Q, Lemma 3.2.13 shows that Q is among the minimal prime ideals

of AnnRR
α/((P + aR)Rα)?U .

(b) If a /∈ Q, we shall apply Lemma 3.2.14 with the matrix X with entries

in Ra such that the α-th elementary vector eα ∈ W1 = XWa ∩ Rα and

U1 as in Lemma 3.2.14. Then Rα/W1
∼= Rα−1/ρ(W1), and so Q is a

minimal prime AnnRR
α−1/ρ(W1). Let U2 be the top left (α−1)×(α−1)

submatrix of U1. Then since U2ρ(W1) ⊆ ρ(U1W1) ⊆ ρ(W
[p]
1 ) = ρ(W1)[p],

AnnRR
α−1/ρ(W1) is U2-special, and so is Q.
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This shows that in any case Q is an element of a finite set of prime ideals. Hence,

there are only finitely many U -special prime ideals of R which contain P minimally.

2
Next Theorem is a generalization of Theorem 5.5 in [13] to R, and it provides an

effective algorithm for finding all U -special prime ideals P of R with the property

that K * PRα.

Theorem 3.2.16. Let P a U-special prime ideal of R such that K * PRα, and Q be

a U-special prime ideal minimally containing P . Let M be a matrix whose columns

generate (PRα)?U .

1. If PRα ( ImM , then either

(a) all entries of M are in Q, and so there exist an element a ∈ Q \ P and

Q is among the minimal prime ideals of AnnRR
α/((P + aR)Rα)?U , or

(b) there exists an entry of M which is not in Q, and Q is a special prime

over an (α− 1)× (α− 1) matrix.

2. IfPRα = ImM , then there exist an element a1 ∈ R \ P , an element g ∈
(P [p] : P ), and an α× α matrix V such that for some µ� 0, we have aµ1U ≡
gV modulo P [p]. If d = detV , then either

(a) d ∈ P , and Q is a special prime ideal over an (α − 1)× (α − 1) matrix,

or

(b) d ∈ Q \ P , and Q is among the minimal prime ideals of AnnRR
α/((P +

dR)Rα)?U , or

(c) d /∈ Q, and Q is a g-special ideal of R.

Proof. Let W ⊆ Rα be such that UW ⊆ W [p] and Q = AnnRR
α/W . When all

entries of M are in P , ImM ⊆ PRα, i.e., ImM = (PRα)?U = PRα. Thus, if we are

in case 1., we have at least one entry a of M which is not in P . If a ∈ Q, by Lemma

3.2.13, Q is among the minimal primes of AnnRR
α/((P + aR)Rα)?U . If a /∈ Q, by

Lemma 3.2.14, Q is a minimal prime of AnnRR
α/W1 such that U1W1 ⊆ W

[p]
1 , where

U1 and W1 as in Lemma 3.2.14. On the other hand, since a becomes a unit in Ra,

we can choose the invertible matrix X with entries in Ra such that W1 = XWa∩Rα

contains the α-th elementary vector eα. Then we have Rα/W1
∼= Rα−1/ρ(W1), where

ρ : Rα → Rα−1 is the projection onto first α− 1 coordinates. Let U2 be the top left
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(α − 1) × (α − 1) submatrix of U1. Then AnnRR
α/W1 = AnnRR

α−1/ρ(W1) and

U2ρ(W1) ⊆ ρ(U1W1) ⊆ ρ(W
[p]
1 ) = ρ(W1)[p]. Therefore, AnnRR

α/W1 is U2-special,

and so is Q.

Assume now that we are in case 2., by definition of ?-closure UPRα ⊆ P [p]Rα,

i.e., the entries of U are in (P [p] : P ). On the other hand, by Lemma 3.1.8, if

A = R/P , F∗((P
[p] : P )/P [p]) ∼= HomA(F∗A,A) is rank one F∗A-module. This

means that (P [p] : P )/P [p] is rank one A-module, and so we can find an element

g ∈ (P [p] : P )\P [p] such that (P [p] : P )/P [p] is generated by g+P [p] as an A-module.

Also we can find an element a1 ∈ R \ P such that the localization of (P [p] : P )/P [p]

at a1 is generated by g/1 + P
[p]
a1 as an Aa1-module and hence as an Ra1-module. If

a1 ∈ Q, we can find Q as in the case 1.(a), thus, we assume that a1 /∈ Q. Then for

any entry u of U , working in the localization, we have an expression

u

1
+ P [p]

a1
=

r

aw1
1

g

1
+ P [p]

a1

which implies that
u− rg
aw1

1

∈ P [p]
a1 , i.e.,

u− rg
aw1

1

=
r′

aw2
1

, where r ∈ R, r′ ∈ P [p] and

w1, w2 ∈ N. Thus,

aw1+w2
1 u = aw2

1 rg + aw1
1 r′

Therefore, we can write aµ1U = gV + V ′ for some µ� 0 and α× α matrices V and

V ′ with entries in R and P [p], respectively. Then by Proposition 3.2.11, we may

replace V ′ with the zero matrix, since I(V ′Rα) ⊆ PRα. Let d = detV . We now

consider three cases:

1. If d ∈ P , then the determinant of V in the fraction field F of A, say d̄, will

be zero. So we can find an invertible matrix X with entries in F such that

the last column of V X−1 is zero, and so is UX−1. Let a2 is the product of

all denominators of entries of X and X−1, i.e. the entries of X and X−1 are

in Ra2 . If a2 ∈ Q, we can find Q as in the case 1.(a) again, thus, we also

assume that a2 /∈ Q. Let a = a1a2. By Lemma 3.2.14, P and Q are U1-special

prime ideals where U1 = aνX [p]UX−1 whose last column is zero. Then since

PRα = (PRα)?U ⇔ UPRα ⊆ P [p]Rα, we also have

U1PR
α = aνX [p]UX−1PRα ⊆ aνX [p]UPRα ⊆ UPRα ⊆ P [p]Rα

which implies PRα = (PRα)?U1 . Hence, we can produce Q as in Proposition

3.2.15.
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2. If d ∈ Q \ P , then by Lemma 3.2.13, Q is among minimal prime ideals of

AnnRR
α/((P + dR)Rα)?U .

3. If d /∈ Q, let a = da1, W = (QRα)?U and X = Iα be the α×α identity matrix.

Then by Lemma 3.2.14, Q is a minimal prime ideal of AnnRR
α/W1 where

W1 = (QRα)?Ua ∩ Rα. By definition of ?-closure (QRα)?Ua = (QRα
a )?U is the

stable value of the sequence

L0 = QRα
a

L1 = I1(UQRα
a ) +QRα = I1(gV QRα

a ) +QRα
a = I1(gQRα)a +QRα

a

L2 =

...

which also equals to (QRα)?gIα . The third equality for L1 is because of the

fact that Ie(−)-operation commutes with localization and V is invertible. This

implies that AnnRR
α/W1 is gIα-special, and so is Q. Therefore, Q is g-special

and can be computed using the Katzman-Schwede algorithm, since g /∈ P [p].

This method also shows that for a given U -special ideal P , there are only finitely

many U -special prime ideals minimally containing P . 2
For the sake of integrity, we shall give the proof of Theorem 3.2.12. The main

difference between our methods and the methods in [13, Section 5] is that we do not

use the aid of injective hulls of residue fields although our results are identical with

the results in [13, Section 5] over power series rings.

Proof.[Proof of Theorem 3.2.12] The proof is by induction on α. The case α = 1 is

established in section 3.1. Assume that α > 0 and the claim is true for α− 1. Since

zero ideal is always a U -special prime ideal of R, we start with 0 and use Theorem

3.2.16 to find U -special prime ideals minimally containing 0. Continuing this process

recursively gives us bigger U -special prime ideals at each steps. Therefore, since R is

of finite dimension, the number of steps in this process is bounded by the dimension

of R. Hence, there are only finitely many U -special prime ideals with the desired

property. 2
Next we turn Theorem 3.2.16 into an algorithm which gives us a generalization

of the Katzman-Zhang algorithm to R. Note also that over power series rings the

following is identical with the Katzman-Zhang algorithm.



CHAPTER 3. ANNIHILATORS OF MODULES WITH A FROBENIUS MAP 54

Intput:

An α× α matrix U with entries in R such that K 6= 0.

Output:

Set of all U -special prime ideals P of R with the property that K * PRα.

Initialize:

ARα = {0},B = ∅.

Execute the following:

If α = 1, use the Katzman-Schwede Algorithm to find desired primes, put these in

ARα , output ARα and stop.

If α > 1, then while ARα 6= B, pick any P ∈ ARα \ B. If K ⊆ PRα, add P to B, if

not, write W = (PRα)?U as the image of a matrix M and do the following:

1. If there is an entry a of M which is not in P , then;

(a) Find the minimal primes of AnnR
Rα

((P + aR)Rα)?U
, and add them to

ARα ,

(b) Find an invertible α × α matrix X with entries in Ra such that the

α-th elementary vector eα ∈ XWa ∩ Rα, and choose ν � 0 such that

U1 = aνX [p]UX−1 has entries in R. Let U0 be the top left (α−1)×(α−1)

submatrix of U1. Then apply the algorithm recursively to U0 and add

resulting primes to ARα .

2. If ImM = PRα, then find elements a1 ∈ R \ P , g ∈ (P [p] : P ), and an α × α
matrix V , and µ � 0 such that aµ1U ≡ gV modulo P [p]. Compute d = detV

and do the following:

(a) If d ∈ P , find an element a2 ∈ R \ P and an invertible matrix X with

entries in Ra2 such that the last column of UX−1 is zero. Find ν � 0

such that the entries of U1 = (a1a2)νX [p]UX−1 are in R. Let U0 be the
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top left (α− 1)× (α− 1) submatrix of U1, and K0 be the stable value of

{Ie(ImU
[pe−1]
0 U

[pe−2]
0 · · ·U0)}e>0 as in Theorem 3.2.10. Then;

i. If K0 ⊆ PRα−1, write the last row of the matrix U
[pe−1]
1 U

[pe−2]
1 · · ·U1

as (g1, . . . , gα−1, 0) and apply the Katzman-Schwede Algorithm to the

case u = gi for each i, and add resulting primes to ARα ,

ii. If K0 * PRα−1, find recursively all prime ideals for U0 which con-

tain P minimally and denote their intersection with τ . Compute

I1(U1l(τK0))?U1 , and write this as the image of a matrix M ′. Find

an entry a′ of M ′ not in P . Now;

A. Add the minimal primes of AnnR
Rα

((P + a′R)Rα)?U1
to ARα ,

B. Find an invertible matrix X with entries in Ra′ such that the

αth elementary vector eα ∈ X(ImM ′)a′ ∩ Rα. Find ν � 0 such

that U2 = (a′)vX [p]U1X
−1 has entries in R. Let U3 be the top left

(α−1)×(α−1) submatrix of U2. Apply the algorithm recursively

to U3, and add resulting primes to ARα .

(b) If d /∈ P , then;

i. add the minimal primes of AnnR
Rα

((P + dR)Rα)?U
to ARα ,

ii. apply the Katzman-Schwede algorithm to the case u = g, and add

resulting primes to ARα .

3. Add P to B

Output ARα and stop.

Since all the operations used in the above algorithm are defined for localizations

of R, we can apply our algorithm to any localization of R at a prime ideal p. In the

rest of this section, we investigate the relations between output sets of our algorithm

applied to R and Rp.

Lemma 3.2.17. Let R be R or Rp or R̂p. P is a U-special ideal of R not contained

in p if and only if PR is a U-special ideal of R.

Proof. Let P be a prime ideal of R. Then

P is U -special ⇔ P = AnnRR
α/(PRα)?U

⇔ PR = AnnRRα/(PRα)?U ⇔ PR is U -special
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2
Our next theorem gives the exact relation between the output sets ARα and ARαp

of our algorithm for R and Rp, respectively.

Theorem 3.2.18. Let U be an α × α matrix with entries in R. Our algorithm

commutes with localization: if ARα and ARαp are the output sets of our algorithm for

R and Rp, respectively, then

ARαp = {PRp | P ∈ ARα and P ⊆ p}.

Before proving our claim we need a remark which we will use it in step 2. of the

proof.

Remark 3.2.19. Keeping the notations of above theorem, for any prime ideal P of

R, and any submodule K of Rα we have the property that K ⊆ PRα ⇔ Kp ⊆ PRα
p .

We already know that K ⊆ PRα implies Kp ⊆ PRα
p . For the converse, suppose the

contrary that there is an element k = (k1, . . . , kα)t ∈ K \ PRα where ki ∈ R \ P for

some i. Then there exists an element s ∈ R \ p such that sk ∈ PRα, i.e. ski ∈ P .

Since P is prime, ki ∈ P or s ∈ P , which is impossible. Therefore, Kp ⊆ PRα
p

implies that K ⊆ PRα.

Proof. By Theorem 3.1.12, the Katzman-Schwede Algorithm commutes with local-

ization. Therefore, we can, and do, assume α > 1. Let P be the prime ideal of R in

the initial step of our algorithm, and Rp be a localization of R at a prime ideal p con-

taining P . Since ?-closure commutes with localization, whenever we write (PRα)?U

as the image of a matrix M with entries in R, we can write (PRα
p )?U = (PRα)?URp

as the image of same matrix but working in Rp.

1. Since a /∈ P ⇔ a /∈ PRp, a is an entry of M not in (PRα
p )?U . Then, by

Lemma 2.2.30, step 1.(a) commutes with localization. However, for step 1.(b),

we can take the same matrix X with entries in Ra but working in Rp. Then

while we do operations in Rp, we see that eα ∈ X(ImM)a ∩ Rα implies that

eα ∈ (X(ImM)a ∩ Rα)Rp
∼= X(ImM)a ∩ Rα

p . Also U1 = aνX [p]UX−1 has

entries in R (and in Rp) for the same ν � 0. Therefore, we end up with the

same matrix U0.

2. We first note that (PRα)?U = PRα ⇔ (PRα
p )?U = PRα

p . Therefore, if

(PRα
p )?U = PRα

p , we can have the same construction working in Rp, i.e.,

we can take a1 ∈ Rp \PRp, g ∈ ((PRp)
[p] : PRp), α×α matrix V for the same

µ� 0 such that aµ1U = gV modulo (PRp)
[p] and compute d = detV .
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(a) For any r ∈ R, we have the property that r ∈ P ⇔ r ∈ PRp. Thus,

if d ∈ PRp, then we can have the same construction again, and so we

can take a2 ∈ Rp \PRp and the same invertible matrix X with entries in

Ra2 (and in (Rp)a2
∼= (Ra2)p) such that the last column of UX−1 is zero,

working in Rp. We also can take the same ν � 0 such that the entries

of U1 = (a1a2)νX [p]UX−1 are in R (and in Rp), and U0 to be the same

matrix. In addition, since Ie(−) operation commutes with localization, if

we do calculations in Rp, then the stable value of

{Ie(U [pe−1]
0 U

[pe−2]
0 · · ·U0Rp)}e>0

is going to equal to the stable value of {Ie(U [pe−1]
0 U

[pe−2]
0 · · ·U0R)Rp}e>0

which is K0Rp. Now, since K0 ⊆ PRα−1 ⇔ K0Rp ⊆ PRα−1
p , we can do

next:

i. Working in Rp, if K0Rp ⊆ PRα−1
p we can write the last row of the

matrix U
[pe−1]
1 U

[pe−2]
1 · · ·U1 as (g1, . . . , gα−1, 0).

ii. Working in Rp, if K0Rp * PRα−1
p , we can apply our algorithm recur-

sively to U0 and find all prime ideals which contain PRp minimally

and denote their intersection with τ̄ , which is τRp, as we have showed

all steps of algorithm commute with localization. Then we have

I1(U1l̄(τ̄K0Rp))
?U1 = (I1(U1l(τK))?U1)Rp,

where l̄ : Rα−1
p → Rα−1

p ⊕Rp is the extension map induced by l.

All other steps are similar to previous steps, and so all steps of our algorithm com-

mute with localization.

Since our algorithm commutes with localization, by Lemma 3.2.17, the output

set ARαp is the set of all U -special prime ideals of Rp, and hence,

ARαp = {PRp | P ∈ ARα and P ⊆ p}.

2
Let U be an α×α matrix with entries in R, and let ARα and ASα be the output

sets of our algorithm for R and S, respectively. Let P be a U -special prime ideal

of R, i.e. P ∈ ARα . Since PS is not always a prime ideal of S, we do not have a

relation between ARα and ASα like in Theorem 3.2.18. However, by Lemma 3.2.17,

we can say that the minimal prime ideals of PS are in ASα . Therefore, the set of

minimal prime ideals of elements from {PS | P ∈ ARα} is contained in ASα .
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3.3 An Application to Lyubeznik’s F-modules

In this section, we investigate the connections between special ideals and local co-

homology modules using Lyubeznik’s theory of F -finite F -modules.

By Example 2.2.36, the i-th local cohomology module of R with respect to an

ideal I is an F -finite F -module and there exist a finitely generated module M with

an injective map β : M → FR(M) such that

H i
I(R) = lim−→(M

β−→ FR(M)
FR(β)−−−→ F 2

R(M)
F 2
R(β)
−−−→ · · · )

where β : M → FR(M) is a root morphism. Since M is finitely generated, we also

have M ∼= CokerA = Rα/ ImA for some matrix A with entries in R as in subsection

2.1.1. Hence,

H i
I(R) ∼= lim−→(CokerA

U−→ CokerA[p] → · · · )

for some α×α matrix U with entries in R such that U ImA ⊆ ImA[p]. Furthermore,

U defines an injective map on CokerA, since β is a root morphism.

Remark 3.3.1. [16, Section 4] If (R,m) is a local ring, M is an F -finite module

and M′,M′′ ⊂M are two F -submodules with the property that

dimR Supp(M/M′) = dimR Supp(M/M′′) = 0,

then their intersection also has this property, and there exists a smallest F -submodule

N of M with this property, since M is Artinian as an F -module. Since L =M/N
is an F -module, Theorem 2.2.34 implies that it is injective. Since it is also F -finite,

the Bass numbers of it are finite. Hence, L ∼= Ek as R-modules, where k = µ1(m,L)

and E is the injective hull of the residue field of R.

Definition 3.3.2. If R is local, we define the corank of an F -finite F -module M
the number k in Remark 3.3.1, and denote it by crkM = k.

In Section 4 of [16], Lyubeznik uses the theory of corank to shed more light on

the notion of F -depth of a scheme in characteristic p, which is analogous to the

notion of DeRham depth of a scheme in characteristic 0. Following [16, Section 4],

in equicharacteristic 0 one can interpret the DeRham depth in terms of closed points

only. Proposition 4.14 in [16] shows that in characteristic p we can not interpret the

F -depth of a scheme Y in terms of closed points only. To show this Lyubeznik proves

that there are only finitely many prime ideals P of A such that crk(H i
IAP

(AP )) 6= 0.
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Here Y = SpecB, where B is a finitely generated algebra over a regular local ring

S, A = S[x1, · · · , xn] and I is the kernel of the surjection A→ B. Our next theorem

not only reproves this result but also gives us an effective way to compute desired

prime ideals.

Theorem 3.3.3. Let I be an ideal of R and P ⊂ R a prime ideal. If H i
IRP

(RP ) has

non zero corank then P is in the output of our algorithm introduced in section 3.2,

i.e.

crk(H i
IRP

(RP )) 6= 0⇒ P ∈ ARα .

for some α× α matrix U with entries in R.

Proof. Since H i
IRP

(RP ) ∼= Rp ⊗R H i
I(R), we have

H i
IRP

(RP ) ∼= lim−→(CokerAP
UP−→ CokerA

[p]
P → · · · )

where AP and UP are localizations of A and U , respectively. We also have that UP
defines an injective map on CokerAP since U defines a root morphism for H i

I(R).

crk(H i
IRP

(RP )) 6= 0 implies that there exists a proper FRP -submodule N of

H i
IRP

(RP ) such that dimRP Supp(H i
IRP

(RP )/N ) = 0. Since H i
IRP

(RP ) is FRP -finite,

by Remarks 2.2.35 (3), we have

N = lim−→(N → FRP (N)→ F 2
RP

(N)→ · · · )

where N = N ∩ CokerAP is an RP -submodule of CokerAP . Thus, N ∼= V/ ImAP
for some submodule V ⊆ Rα

P such that UPV ⊆ V [p]. Then

H i
IRP

(RP )/N ∼= lim−→(CokerAP/N
UP−→ FRP (CokerAP/N)→ · · · )

∼= lim−→(Rα
P/V

UP−→ Rα
P/V

[p] → · · · ).

Furthermore,

dimRP Supp(H i
IRP

(RP )/N ) = 0⇒ Ass(H i
IRP

(RP )/N ) = {PRP}

⇒ Ass(Rα
P/V ) = {PRP}

⇒ AnnRP (Rα
P/V ) is PRP -primary

Therefore, AnnRP (Rα
P/V ) is UP -special and so is PRP by Lemma 3.2.8, because it is

the only minimal prime ideal of AnnRP (Rα
P/V ), i.e. PRP ∈ ARαP . Then by Theorem

3.2.18, P ∈ ARα 2
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Corollary 3.3.4. CR := {P ∈ ARα | (ImAP + PRα
P )?UP 6= Rα

P} is the set of all

prime ideals of R which satisfy crk(H i
IRP

(RP )) 6= 0

Proof. By Theorem 3.3.3, crk(H i
IRP

(RP )) 6= 0 implies that PRP is a UP -special

prime ideal of RP such that PRP = AnnRP (Rα
p /W ) for some proper submodule W ⊂

Rα
p where ImAP ⊆ W and AP as in Theorem 3.3.3. Since (ImAP +PRα

P )?UP is the

smallest submodule of Rα
P which satisfies PRP = AnnRP (Rα

p /(ImAP + PRα
P )?UP ),

if (ImAP + PRα
P )?UP = Rα

P , then we have a contradiction with the existence of W .

Hence, the set of primes ideals of R which satisfy crk(H i
IRP

(RP )) 6= 0 is the set

{P ∈ ARα | (ImAP + PRα
P )?UP 6= Rα

P}. 2
Corollary 3.3.4 says that if we want to compute the prime ideals of R which

satisfy crk(H i
IRP

(RP )) 6= 0, we pick an element P ∈ ARα and need to check whether

(ImAP + PRα
P )?UP is equal to Rα

P .



Chapter 4

Annihilators of Cartier Quotients

Let R be a ring of prime characteristic p. In this chapter, we investigate finitely

generated Cartier modules over R and present our computational results on these.

In particular, we introduce a new algorithm for finding annihilators of Cartier quo-

tients for a given finitely generated Cartier module. We finish the chapter with the

connections between Cartier modules and Lyubeznik’s F -modules.

4.1 Cartier Modules

In this section, we recall the notion of Cartier modules over R, and we give some

properties of finitely generated Cartier modules which are proven in [2]. We also

provide some technical lemmas with their proofs.

Definition 4.1.1. A Cartier module is an R-module M equipped with an additive

map C : M → M , which we call the structural map of M , such that C(rp
e
m) =

rC(m) for all m ∈M and r ∈ R, i.e. C ∈ HomR(F e
∗M,M).

A map of Cartier modules is a map ϕ : M → N such that the following diagram

commutes
M

ϕ−−−→ N

CM

y yCN
M −−−→

ϕ
N

61
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where CM and CN are the structural maps of M and N , respectively.

We generally fix e = 1, when we take a Cartier module M with the structural

map C as a pair (M,C).

Remark 4.1.2. We can define the composition of Cartier module structures on

M as additive maps. If C1, C2 : M → M are two structural maps on M which

satisfy C1(rp
e1m) = rC1(m) and C2(rp

e2m) = rC2(m) for all m ∈ M and r ∈ R,

respectively, then the composition maps satisfy

(C1 ◦ C2)(rp
e1+e2m) = C1(C2((rp

e1 )e2m)) = C1(rp
e1C2(m))

= rC1(C2(m)) = r(C1 ◦ C2)(m)

and similarly

(C2 ◦ C1)(rp
e1+e2m) = r(C2 ◦ C1)(m),

i.e. C1 ◦ C2, C2 ◦ C1 ∈ HomR(F e1+e2
∗ M,M). In particular, if C ∈ HomR(F∗M,M),

then the e-th iteration Ce defines a Cartier structure on M and Ce ∈ HomR(F e
∗M,M).

Definition 4.1.3. A Cartier module (M,C) is called nilpotent if Ck(M) = 0 for

some k ∈ N, and the smallest k such that Ck(M) = 0 is called the order of nilpotence

of M which is denoted by on(M) = k.

Remark 4.1.4. Let (M,C) be a Cartier module, and W be a multiplicative subset

of R. By Proposition 2.2.4, we know that W−1F∗M ∼= F∗W
−1M . Therefore, lo-

calization of the structural map C : F∗M → M with respect to W gives W−1M a

Cartier module structure over W−1R, which is CW : W−1M → W−1M defined by

CW (m
r

) = C(rp−1m)
r

for all m ∈M and r ∈ W .

Remarks 4.1.5. [2, Section 2.2] Let (M,C) be a finitely generated Cartier module.

1. M is nilpotent if and only if the localization MP is nilpotent for every prime

ideal P .

2. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of finitely generated

Cartier modules. Then M is nilpotent if and only if M ′ and M ′′ are nilpotent.

3. We define Mnil to be the sum of all nilpotent Cartier submodules of M . Then
ĎM := M/Mnil becomes the smallest Cartier quotient of M such that the kernel

of M � ĎM is nilpotent.
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4. By Proposition 2.14 in [2], the descending chain

M ⊇ C(M) ⊇ C2(M) ⊇ · · ·

stabilizes. We denote the stable image by M which is the smallest Cartier

submodule of M such that M/M is nilpotent.

Furthermore, if M has no proper nilpotent quotients, then the structural map

C is surjective. Because, if C is not surjective, M/M becomes a nonzero nilpotent

quotient. It might also be expected that kerCe is a nilpotent Cartier submodule

of M . However, kerCe is not even an R-submodule of M in general, since for any

m ∈ M and r ∈ R, Ce(m) = 0 does not imply Ce(rm) = 0 unless r = sp
e

for some

s ∈ R.

Facts 4.1.6. Let R be F -finite, and (M,C) be a finitely generated Cartier module,

and X = SpecR.

1. By Proposition 4.1 in [2], if X is irreducible, then there is an open subset U
of X such that for all non-minimal prime ideal P ∈ U we have:

(?) All finite length Cartier quotients of MP are nilpotent.

2. By Proposition 4.5 in [2], there is a finite subset S ⊆ X such that for all

P ∈ X\S, M satisfies (?) at P .

3. By Proposition 4.9 in [2], if C is surjective, then the collection of ideals A :=

{AnnRM/N | N is a Cartier submodule of M} is a finite set of radical ideals

consisting of all intersections of the finitely many primes in it.

Next we state two important properties of Cartier modules which we use repeat-

edly in this chapter (cf. footnotes 6 and 7 in [2]).

Lemma 4.1.7. Let (M,C) be a finitely generated Cartier module. If M (or ĎM)

satisfies (?) at any prime ideal P of R, then M satisfies (?) at P .

Proof. Let P be a prime ideal of R. Fix a finite length Cartier quotient MP/N .

Assume that M satisfies (?) P . Then

(MP +N)/N ∼= MP/(N ∩MP )
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has finite length, and so it is nilpotent by our assumption. SinceMP/MP is nilpotent,

we also have

MP/(N + MP ) ∼=
MP/MP

(N + MP )/MP

is nilpotent. On the other hand,

MP/(N + MP ) ∼=
MP/N

(MP +N)/N
.

Hence MP/N is nilpotent by Remarks 4.1.5 2.

Similarly, we assume now that ĎM satisfies (?) at P .

MP/((Mnil)P +N) ∼=
MP/(Mnil)P

((Mnil)P +N)/(Mnil)P

has finite length and it is nilpotent by the assumption. In addition,
(Mnil)P +N

N
∼=

(Mnil)P
(Mnil)P ∩N

has finite length, and so it is nilpotent. On the other hand, we have

MP/((Mnil)P +N) ∼=
MP/N

((Mnil)P +N)/N
.

Therefore, MP/N is nilpotent by Remarks 4.1.5 2. again. 2

Lemma 4.1.8. Let (M,C) be a finitely generated Cartier module with surjective C,

and I be an ideal of R, and M(I) :=
M∑

e≥0C
e(IM)

. If as an R/I-module M(I)

satisfies (?) at any P ∈ V (I), then M as an R-module satisfies (?) at P as well.

Proof. Suppose that M(I) satisfies (?) at any P ∈ V (I), i.e. any finite length

Cartier quotient of M(I)P is nilpotent. Let N ⊆ MP be such that MP/N has

finite length. Thus, (PRP )k(MP/N) = 0 for some k ∈ N. On the other hand,

for some i � 0 we have (PRP )[pi](MP/N) ⊆ (PRP )k(MP/N) which implies that

(PRP )[pi](MP/N) = 0. Then, since C is surjective,

(PRP )[pi](MP/N) = 0⇒ Ci
(
(PRP )[pi](MP/N)

)
= 0

⇒ (PRP )Ci(MP/N) = 0⇒ (PRP )(MP/N) = 0
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and so (PRP )MP ⊆ N . Since P ∈ V (I), IRP ⊆ PRP and we have (IRP )MP ⊆ N .

It follows that K :=
∑

e≥0C
e((IRP )MP ) ⊆ N . Now let N ′ denote the submodule

N/K ⊆ M(I)P . Then M(I)P/N
′ ∼= (MP/K)/(N/K) ∼= MP/N has finite length.

However, sinceM(I) satisfies (?), M(I)P/N
′ is nilpotent. Hence, MP/N is nilpotent.

2

Lemma 4.1.9. Let (M,C) be a finitely generated Cartier module with surjective C.

Let A and S be as in Facts 4.1.6. Then:

1. If an ideal P of R is an element of A, then P = AnnR
M∑

e≥0C
e(PM)

,

2. If also P is a prime ideal in A, then P ∈ S.

Proof. For 1. suppose that P ∈ A, i.e. P = AnnRM/N for some Cartier sub-

module N of M . It is clear that P ⊆ AnnRM(P ), where M(P ) :=
M∑

e≥0C
e(PM)

.

On the other hand, since
∑

e≥0C
e(PM) is the smallest Cartier submodule of M

which contains PM , we also have that AnnRM(P ) ⊆ AnnRM/N . Hence, P ⊆
AnnRM(P ) ⊆ AnnRM/N = P , and so P = AnnRM(P ).

For 2. suppose P = AnnRM/N for some Cartier submodule N ⊆ M . Then

(M/N)P = MP/NP is a non-zero finite length quotient of MP as an RP -module.

Since C is surjective, the structural map of MP is surjective and hence that of

(M/N)P is surjective. Therefore, (M/N)P can not be nilpotent, and so P ∈ S. 2

4.2 Adjoint map to the structural map

In this section, we use the Hom-Tensor adjunction (cf. Theorem 2.75 in [19]) to

define an adjoint map to the structural map of a given Cartier module M , which

will help us to compute the nilpotent Cartier submodule Mnil of M (cf. Section 2.3

of [2]). Let e ∈ N, and M be an R-module. If we consider F e
∗R as an (F e

∗R,R)-

bimodule, then we have the following isomorphism

HomR(F e
∗M ⊗F e∗R F

e
∗R,M) ∼= HomF e∗R(F e

∗M,HomR(F e
∗R,M)).

Thus, for a given Cartier map

C ∈ HomR(F e
∗M,M) ∼= HomR(F e

∗M ⊗F e∗R F
e
∗R,M)
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we have an adjoint map, which is F e
∗R-linear,

κ : F e
∗M → HomR(F e

∗R,M)

given by κ(F e
∗m) = φm where φm(−) = C(F e

∗m−).

Proposition 4.2.1. Let (M,C) be a finitely generated Cartier module and

κi : F i
∗M → HomR(F i

∗R,M)

be the adjoint map to Ci. Let Ki be the R-submodule of M such that F i
∗Ki = kerκi.

Then:

1. Ki is the largest nilpotent Cartier submodule of M such that on(Ki) ≤ i,

2. Mnil =
⋃
iKi,

3. the sequence of nilpotent Cartier submodules K1 ⊆ K2 ⊆ · · · ⊆ Ki ⊆ · · ·
stabilizes at the first integer where we get Ki = Ki+1.

Proof. SinceR is Noetherian, eachKi is finitely generated, and letKi = 〈k1, . . . , ks〉.
Then for each generator kj, κ

i(F i
∗kj) = φkj is a zero map, i.e. Imφkj = φkj(F

i
∗R) =

Ci(F i
∗Rkj) = 0. On the other hand,

Ci(F i
∗Ki) = Ci(F i

∗(Rk1 + · · ·+Rks)) = Ci(F i
∗Rk1) + · · ·+ Ci(F i

∗Rks)

= Imφk1 + · · ·+ Imφks = 0

Now let N be another nilpotent Cartier submodule of M with on(n) ≤ i and let

N = 〈n1, · · · , nk〉. Then

0 = Ci(F i
∗N) = Ci(F i

∗(Rn1 + · · ·+Rnk)) = Ci(F∗Rn1) + · · ·+ Ci(F i
∗Rnk),

and so Ci(F i
∗Rnj) = 0 for each generator nj. However, κi(F i

∗nj) = φnj is an F i
∗R-

linear map where Imφnj = φnj(F
i
∗R) = Ci(F i

∗Rnj) = 0. Thus, F i
∗nj ∈ Kerκi, and

so nj ∈ Ki, i.e. N ⊆ Ki. This proves 1.

We clearly have the following ascending sequence K1 ⊆ K2 ⊆ · · · ⊆ Ki ⊆ · · · of

nilpotent Cartier submodules of M . Therefore, Mnil =
⋃
iKi.

By the Noetherian hypothesis the ascending chain above stabilizes. Assume now

that i is the first integer such that Ki = Ki+1. We shall show that Ki+1 = Ki+2
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and (3) follows by induction. Then Ci+2(Ki+2) = Ci+1(C(Ki+2)) = 0 implies that

C(Ki+2) is a nilpotent Cartier submodule of M with on(C(Ki+2)) ≤ i + 1. Then

since Ki+1 is the largest nilpotent Cartier submodule of M with on(Ki+1) ≤ i + 1,

C(Ki+2) ⊆ Ki+1. Then by assumption C(Ki+2) ⊆ Ki, and so Ci(C(Ki+2)) = 0.

Therefore, Ci+1(Ki+2) = 0 which implies that Ki+2 ⊆ Ki+1. Hence, Ki+1 = Ki+2.

2

4.3 The Polynomial case and computations

In this section, we prove some technical lemmas which will be used to compute M

and ĎM for a given Cartier module M . Moreover, we prove the main theorem of

this chapter using our computational methods. Henceforth, we will assume that

R = k[x1, . . . , xn] is a polynomial ring (or R = k[[x1, . . . , xn]] a power series ring)

over an F -finite field k of prime characteristic p.

Lemma 4.3.1. For any Φ ∈ HomR(F e
∗R

α, Rα), there exists an α×α matrix U with

entries in R such that Φ(−) = Πe(F
e
∗U−) where

Πe


F e
∗ v1

...

F e
∗ vα

 =


πe(F

e
∗ v1)

...

πe(F
e
∗ vα)


for all (F∗v1, . . . , F

e
∗ vα)t ∈ F e

∗R
α, and πe ∈ HomR(F e

∗R,R) is the trace map.

Proof. If α = 1, by Lemma 3.1.4, HomR(F e
∗R,R) is generated as an F e

∗R-module

by the trace map πe. If α > 1, we first need to describe elements of HomR(F e
∗R,R

α).

Since HomR(F e
∗R,R

α) ∼= HomR(F e
∗R,R)α, any R-linear map ϕ ∈ HomR(F e

∗R,R
α)

can be expressed as a direct sum of elements of HomR(F e
∗R,R). Therefore, we have

ϕ(−) = (φ1(−), . . . , φα(−))t for some φi ∈ HomR(F e
∗R,R) where 1 ≤ i ≤ α, and by

Lemma 3.1.4, ϕ(−) = (πe(F
e
∗u1−), . . . , πe(F

e
∗uα−))t for some u1, . . . , uα ∈ R.

Since HomR(F e
∗R

α, Rα) ∼= HomR(F e
∗R,R

α)α, any Φ ∈ HomR(F e
∗R

α, Rα) can be

expressed as a direct sum of elements of HomR(F e
∗R,R

α). Therefore, for any element

(v1, . . . , vα)t ∈ Rα, we have

Φ((F e
∗ v1, . . . , F

e
∗ vα)t) =

∑
1≤j≤α

ϕj(F
e
∗ vj)
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for some ϕj ∈ HomR(F e
∗R,R

α). By the previous observation of HomR(F e
∗R,R

α), for

each j, we also have ϕj(F
e
∗ vj) = (πe(F

e
∗u1jvj), . . . , πe(F

e
∗uαjvj))

t for some elements

u1j, . . . , uαj ∈ R. Thus,

Φ


F e
∗ v1

...

F e
∗ vα

 =
∑

1≤j≤α


πe(F

e
∗u1jvj)

...

πe(F
e
∗uαjvj)

 .

Hence, for any Φ ∈ HomR(F e
∗R

α, Rα), there exist an α × α matrix U with entries

uij ∈ R such that Φ(−) = Πe(F
e
∗U−) where Πe takes the components of elements

in F e
∗R

α to their images under the trace map πe. 2

Definition 4.3.2. Let the notation and situation be as in Lemma 4.3.1. We call

the map Πe in Lemma 4.3.1 the trace map on F e
∗R

α, or just the trace map when the

content is clear.

The following lemma extends Lemma 3.1.6 to submodules of free modules, and

gives a way to connect Ie(−) operation to the images of elements in HomR(F e
∗R

α, Rα).

Lemma 4.3.3. Let V and W be submodules of Rα. Then Πe(F
e
∗V ) ⊆ W if and

only if V ⊆ W [pe].

Proof. Assume that Πe(F
e
∗V ) ⊆ W . Then by the Noetherian hypothesis V and

W are finitely generated, and since Πe is R-linear, we may assume that V = 〈v〉
for some element v = (v1, . . . , vα)t ∈ V . Additionally, since F e

∗R is a free R-module

with basis B as in Remark 3.1.3, for each vi, we have

F e
∗ vi =

∑
F e∗ g∈B

rigF
e
∗ g for some rig ∈ R and F e

∗ g ∈ B.

Then F e
∗ v = (F e

∗ v1, . . . , F
e
∗ vα)t can be expressed uniquely in the form

F e
∗ v =

∑
F e∗ g∈B

ugF
e
∗ g where ug = (r1g, . . . , rαg)

t.

Since Πe(F
e
∗ v) = (πe(F

e
∗ v1), . . . , πe(F

e
∗ vα))t, a similar way in the proof of Lemma

3.1.6 implies that Πe(F
e
∗V ) = 〈ug〉 for ug’s from the above expression of F e

∗ v. Then

by the assumption, we have Πe(F
e
∗V ) = 〈ug〉 ⊆ W , and since

F e
∗ v =

∑
F e∗ g∈B

ugF
e
∗ g = F e

∗ (
∑
F e∗ g∈B

u[pe]
g g)
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we also have v =
∑

g u
[pe]
g g ∈ W [pe]. Therefore, V ⊂ W [pe].

For the converse, we first note that

V ⊆ W [pe] ⇒ F e
∗V ⊆ F e

∗W
[pe] ⇒ Πe(F

e
∗V ) ⊆ Πe(F

e
∗W

[pe]).

If W = 〈w1, · · · , ws〉 for some wi ∈ W , then W [pe] = 〈w[pe]
1 , . . . , w

[pe]
s 〉. Now take an

element z =
∑

i riw
[pe]
i ∈ W [pe] for some ri ∈ R. Then Πe(F

e
∗ z) =

∑
iwiπe(F

e
∗ ri) ∈

W , and so Πe(F
e
∗V ) ⊆ W . 2

Corollary 4.3.4. Let V be a submodule of Rα and let C : F e
∗R

α → Rα be a Cartier

map such that C(−) = Πe(F
e
∗U−) for some α×α matrix U with entries in R. Then

C(F e
∗V ) = Πe(F

e
∗UV ) = Ie(UV ) and the ?-closure of V gives the smallest C Cartier

submodule of Rα which contains V .

Proof. Since UV ⊆ Ie(UV )[pe], Πe(F
e
∗UV ) ⊆ Ie(UV ) by Lemma 4.3.3. On the other

hand, we have UV ⊆ Πe(F
e
∗UV )[pe] by Lemma 4.3.3 again. Then by minimality of

Ie(UV ), we must have Ie(UV ) = Πe(F
e
∗UV ). The second claim follows from the fact

that

V is C Cartier submodule of Rα ⇔ C(F e
∗V ) = Πe(F

e
∗UV ) ⊆ V

⇔ UV ⊆ V [pe].

2

Lemma 4.3.5. Let C : F e
∗R

α → Rα be a Cartier map with the α×α matrix U such

that C(−) = Πe(F
e
∗U−). If C is surjective, then detU is not zero.

Proof. We will assume detU = 0 and try to get a contradiction to our assumption.

In this case, there exist an invertible matrix V with entries in the fraction field F
of R such that UV has a zero column. If f is the multiplication of denominators

of entries of the matrix V , then V is an invertible matrix with entries in Rf . On

the other hand, since C is surjective, the localization map Cf : F e
∗R

α
f → Rα

f is

surjective. Then Cf (F
e
∗R

α
f ) = Πe(F

e
∗UR

α
f ) = Πe(F

e
∗UV R

α
f ) ⊆ Rα−1

f since UV has a

zero column. But this contradicts with the surjectivity, and so detU must be non

zero. 2
Next we investigate how Cartier structures behave on finitely generated R-

modules.
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Proposition 4.3.6. Let (M,C) be a finitely generated Cartier module and let M ∼=
Rα/ ImA as in Subsection 2.1.1. Then there exist a Cartier module structure C ′ on

Rα such that the diagram below is commutative

F∗R
α C′−−−→ Rαy y

F∗(R
α/ ImA) −−−→

C̃
Rα/ ImA

(4.1)

where the vertical arrows are natural surjections and C̃ is isomorphic to C. In

particular, if C is surjective then C ′ is surjective.

Proof. Since F∗R is a free R-module, there exist an R-linear map C ′ : F∗R
α → Rα

such that the diagram 4.1 is commutative. In the case that C is surjective, let

{m1, · · · ,mα} be a minimal generating set for M and let ρ : Rα � M be the

projection which sends each elementary vector ei to mi. Since C is surjective, the

composition F∗R
α � F∗M

C−→ M is surjective, and so is the composition F∗R
α C′−→

Rα � M . Therefore, there exists F∗ai ∈ F∗Rα such that ρ(C ′(F∗ai)) = mi for each

mi. Thus, ei = C ′(F∗ai) + bi for some bi ∈ ker ρ. On the other hand, we claim that

the set {e1 − b1, . . . , eα − bα} generates Rα freely. Otherwise, we would be able to

write one of ei − bi’s as an R-linear combination of others, i.e.

ei − bi = r1(e1 − b1) + · · ·+ ri−1(ei−1 − bi−1) + ri+1(ei+1 − bi+1) + · · ·+ rα(eα − bα)

for some i and r1, . . . , ri−1, ri+1, . . . , rα ∈ R. This means that

mi = ρ(ei − bi)

= ρ
(
r1(e1 − b1) + · · ·+ ri−1(ei−1 − bi−1) + ri+1(ei+1 − bi+1) + · · ·+ rα(eα − bα)

)
= r1ρ(e1 − b1) + · · ·+ ri−1ρ(ei−1 − bi−1) + ri+1ρ(ei+1 − bi+1) + · · ·+ rαρ(eα − bα)

= r1m1 + · · ·+ ri−1mi−1 + ri+1mi+1 + · · ·+ rαmα.

However, this contradicts with the minimality of {m1, . . . ,mα}. Hence, our claim is

true, and so C ′ is surjective. 2

Notation 4.3.7. By Proposition 4.3.6, for a given finitely generated Cartier module

(M,C), there exist a Cartier module structure C ′ on Rα such that C ′(F∗ ImA) ⊆
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ImA. Then by Lemma 4.3.1, there exist an α× α matrix U with entries in R such

that C ′(−) = Πe(F∗U−), and by Corollary 4.3.4, U ImA ⊆ ImA[p]. Therefore, by

(CokerA,U) we mean a finitely generated Cartier module with a square matrix U

defining the structural map on it.

We now start explaining how to compute the Cartier modules M and ĎM for a

finitely generated R-module M . First we need to discuss how to define a composition

of trace maps.

Notation 4.3.8. Let k, k1, k2 ∈ Z. We will write

1. x̄ to denote x1 . . . xn,

2. ᾱ, ᾱ + β̄ and kᾱ to denote the n-tuples (α1, . . . , αn), (α1 + β1, . . . , αn + βn)

and (kα1, . . . , kαn), respectively,

3. x̄ᾱ to denote xα1
1 . . . xαnn , and x̄k to denote xk1 . . . x

k
n,

4. k1 < ᾱ < k2 to mean that k1 < αi < k2 for each i,

5. rᾱ and rk̄ to denote the elements of R indexed with the n-tuples ᾱ and (k, . . . , k),

respectively.

Lemma 4.3.9. Let Πe ∈ HomR(F e
∗R

α, Rα) be the trace map as in Lemma 4.3.1.

1. For any α× α matrix U with entries in R, UΠe(−) = Πe(F
e
∗U

[pe]−).

2. The trace map Πe1+e2 is equal to following compositions

F e1+e2
∗ Rα F

e2
∗ Πe1−−−−→ F e2

∗ R
α Πe2−−→ Rα and F e1+e2

∗ Rα F
e1
∗ Πe2−−−−→ F e1

∗ R
α Πe1−−→ Rα.

Proof. For 1. if (uij)1≤i,j≤α are the entries of U , for any v = (v1, . . . , vα)t ∈ Rα,

UΠe(F
e
∗ v) = U(πe(F

e
∗ v1), . . . , πe(F

e
∗ vα))t

=


∑α

j=1 u1jπe(F
e
∗ vj)

...∑α
j=1 uαjπe(F

e
∗ vj)

 =


πe(F

e
∗
∑α

j=1 u
pe

1jvj)

...

πe(F
e
∗
∑α

j=1 u
pe

αjvj)


= Πe

((
F e
∗

α∑
j=1

up
e

1jvj, · · · , F e
∗

α∑
j=1

up
e

αjvj
)t)

= Πe(F
e
∗U

[pe]v)
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For (2), since Πe takes the components of elements in F e
∗R

α to their images under

the trace map πe, it is enough to show that the assumption is satisfied for πe. To

do that we shall show π(F∗π(F∗−)) = π2(F 2
∗−) and the result follows inductively.

Since for any e > 0, F e
∗R is a free R-module, for any r ∈ R, there is a unique

expression F∗r =
∑

0≤ᾱ≤p−1 rᾱF∗x̄
ᾱ for some rᾱ ∈ R. Also for each rᾱ there is a

unique expression rᾱ =
∑

0≤β̄≤p−1(sᾱ)β̄F∗x̄
β̄ for some (sᾱ)β̄ ∈ R, which implies that

we have the following unique expression of F 2
∗ r

F 2
∗ r =

∑
0≤ᾱ≤p−1

( ∑
0≤β̄≤p−1

(sᾱ)β̄F
2
∗ x̄

pβ̄+ᾱ

)

= (s
Ęp−1)

Ęp−1F
2
∗ x̄

p2−1 +
∑

0≤ᾱ<p−1

( ∑
0≤β̄<p−1

(sᾱ)β̄F
2
∗ x̄

pβ̄+ᾱ

)
Hence, π(F∗π(F∗r)) = π(F∗rĘp−1) = (s

Ęp−1)
Ęp−1 = π2(F 2

∗ r). 2

Lemma 4.3.10. Let (M,C) be a finitely generated Cartier module isomorphic to

(CokerA,U), and let κi be the adjoint map to Ci. Then:

1. M =
Ii(U

[pi−1]U [pi−2] · · ·URα) + ImA

ImA
, and i is the first integer where we get

Ii(U
[pi−1]U [pi−2] · · ·URα) = Ii+1(U [pi]U [pi−1] · · ·URα).

2. ĎM =
Rα

{m ∈ Rα | U [pi−1]U [pi−2] · · ·Um ∈ ImA[pi]}
, and i is the first integer

where we get Kerκi = Kerκi+1.

Proof. An easy application of Lemma 4.3.9 shows that if Π(F∗U−) defines the

Cartier structure on CokerA, then Πi(F
i
∗U

[pi−1]U [pi−2] · · ·U−) defines the composi-

tion map Ci on CokerA.

Hence, by Corollary 4.3.4, the stable image M of C is

Ii(U
[pi−1]U [pi−2] · · ·URα) + ImA

ImA

for some i. Furthermore, by Theorem 3.2.10, i is the first integer where we get the

equality Ii(U
[pi−1]U [pi−2] · · ·URα) = Ii+1(U [pi]U [pi−1] · · ·URα).

By Proposition 4.2.1, to compute ĎM , we need to find kernels of adjoint maps

κi to Ci(−) = Πi(F
i
∗U

[pi−1]U [pi−2] · · ·U−), which give us the following sequence of

nilpotent submodules Ki = {m ∈M | F i
∗m ∈ Kerκi} of M ,

K1 ⊆ K2 ⊆ · · · ⊆ Ki ⊆ · · ·
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By Proposition 4.2.1 again, if i is the first integer where we have Ki = Ki+1, then

the sequence above stabilizes at Ki, and so Mnil = Ki. Therefore, to compute ĎM

we need to compute Kerκi.

m ∈ Ki ⇔ F i
∗m ∈ Kerκi

⇔ φm(F i
∗R) = Ci(F i

∗mR) = Πi(F
i
∗U

[pi−1]U [pi−2] · · ·UmR)

= Ii(U
[pi−1]U [pi−2] · · ·UmR) ⊆ ImA

⇔ (U [pi−1]U [pi−2] · · ·UmR) ⊆ ImA[pi]

⇔ m ∈ {w ∈ Rα | U [pi−1]U [pi−2] · · ·Uw ∈ ImA[pi]}

Hence, Mnil = Ki = {w ∈ Rα | U [pi−1]U [pi−2] · · ·Uw ∈ ImA[pi]}, and so

ĎM =
Rα

{w ∈ Rα | U [pi−1]U [pi−2] · · ·Uw ∈ ImA[pi]}
.

Alternatively, see Corollary 4.5.3. If βi is the map U [pi−1]U [pi−2] · · ·U : CokerA →
CokerA[pi], then Mnil = ker βi where ker βi is the stable kernel. 2

Lemma 4.3.11. Let (M,C) be a finitely generated Cartier module isomorphic to

(CokerA,U). If U is invertible, then the adjoint map κ : F∗M → HomR(F∗R,M)

is surjective.

Proof. Since F∗R is a free R-module, any map Φ ∈ HomR(F∗R,CokerA) can be

written as a composition F∗R
ϕ−→ Rα � CokerA for a map ϕ ∈ HomR(F∗R,R

α),

where the last map is the natural surjection. We know that any ϕ ∈ HomR(F∗R,R
α)

can be written as ϕ(−) = (π(F∗v1−), · · · , π(F∗vα−))t for some v1, · · · , vα ∈ R. On

the other hand, invertibility of the matrix U implies that κ(F∗U
−1v̄) = φU−1v̄ ∈

HomR(F∗R,CokerA) where v̄ is the image of v = (v1, · · · , vα)t in CokerA. However,

for any r ∈ R, we have φU−1v̄(F∗r) = C(F∗U
−1v̄r). Therefore,

C(F∗U
−1v̄r) = Π(F∗UU

−1vr) + ImA = Π(F∗vr) + ImA

= (π(F∗v1r), · · · , π(F∗vαr))
t + ImA

= ϕ(F∗r) + ImA = Φ(F∗r).



CHAPTER 4. ANNIHILATORS OF CARTIER QUOTIENTS 74

This shows that κ(F∗U
−1v̄) = Φ, and so κ is surjective. 2

Before proving the main theorem of this chapter, we need to recall a crucial

property of finite length modules (cf. footnote 8 in [2]).

Lemma 4.3.12. Let S be regular local F -finite ring of prime characteristic p, and

let m be the maximal ideal of S. Let N be a finite length S-module. Then

lF∗S(HomS(F∗S,N)) = pdimSlS(N).

Proof. Let 0 = N0 ( N1 ( · · · ( Nm = N be a maximal chain of submodules of

N . Since F∗S is finitely generated and flat S-module, HomS(F∗S,−) is exact, and

we get the following chain of F∗S-modules

HomS(F∗S,N0) ( HomS(F∗S,N1) ( · · · ( HomS(F∗S,Nm).

Therefore, for each j, we need to check the length of HomS(F∗S,Nj+1/Nj) over F∗S.

Furthermore, since Nj+1/Nj is a simple S-module,

HomS(F∗S,Nj+1/Nj) ∼= HomS(F∗S, S/m).

We also have HomS(F∗S, S/m) = HomS/m(F∗(S/m
[p]), S/m) since for any x ∈ m we

have 0 = xϕ(F∗s) = ϕ(xF∗s) = ϕ(F∗x
ps) for all ϕ ∈ HomS(F∗S, S/m). By Theorem

2.2.10, lS(S/m[p]) = pdimS. This means that S/m[p] is free of dimension pdimS as an

S/m module. Therefore,

HomS/m(F∗(S/m
[p]), S/m) ∼= HomS/m(F∗(S/m), S/m)p

dimS

.

Then since HomS/m(F∗(S/m), S/m) ∼= F∗(S/m) as F∗(S/m) modules, length of

HomS/m(F∗(S/m
[p]), S/m) over F∗(S/m) is pdimS. Hence the length of HomS(F∗S, S/m)

over F∗S is pdimS, and so

lF∗S(HomS(F∗S,N)) = pdimSlS(N).

2
Next theorem gives a computational proof of Facts 4.1.6 2. in a more algebraic

language. We will use the proof to provide an effective algorithm for finding the

finite set S.

Theorem 4.3.13. [2, cf. Proposition 4.1 and Proposition 4.5] Let (M,C) be a

finitely generated Cartier module. There is a finite subset S ⊆ SuppM such that

for all prime ideals P ∈ SuppM\S
(?) All finite length Cartier quotients of MP are nilpotent.
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Proof. If dimM = 0, then we take S = SuppM and we are done. Therefore, we

suppose that dimM > 0 and prove the claim by induction on dimM . By Lemma

4.1.7, we can replace M with M and assume that the structural map C is surjective.

Let P1, . . . , Pm be the minimal primes of AnnRM . Then, by Lemma 4.1.8, (?)

condition for M(Pi) :=
M∑

e≥0C
e(PiM)

at any prime P ∈ V (Pi) implies that (?)

condition holds for M at P . For each i, by Lemma 4.1.7 again, we can replace M(Pi)

with Mi := ĞM(Pi). We now claim to show that for each i, there exists a finite subset

Si such that (?) condition holds for Mi at any prime ideal P ∈ SuppMi \ Si, and

we choose S =
⋃
Si. If dimMi = 0 we take Si = SuppMi. Otherwise, to find Si

for which dimMi > 0, we will then show that there is an open set Ui such that (?)

condition holds for Mi at every prime in Ui \ {Pi}.
Let (CokerAi, Ui) be the Cartier module (Mi, CMi

) where Ui is the square matrix

with entries in R such that CMi
(−) = Π(F∗Ui−), and di be the determinant of Ui.

Then by Lemma 4.3.5 and Proposition 4.3.6, di is a non-zero element of R. Now let

Ui be the open set Xdi∩RegR/Pi where RegR/Pi denotes the regular locus of R/Pi
and Xdi denotes the complement of V (diR). On the other hand, by Proposition

4.2.1, the adjoint map κi : F∗Mi → HomR(F∗R,Mi) to the structural map CMi
is

injective. Next we take any prime ideal Q ∈ Ui which properly contains Pi and

localize the adjoint map κi at Q. Then the map

(κi)Q : F∗(Mi)Q → HomRQ(F∗RQ, (Mi)Q)

is an isomorphism by Lemma 4.3.11, since di is an invertible element of RQ. There-

fore, we have a natural surjective map of F∗S-modules

ψ : F∗(Mi)Q � HomS(F∗S, (Mi)Q)

where S = RQ/PiRQ. Now let N is a finite length Cartier quotient of (Mi)Q. Since

Pi is contained in Q properly, S is a regular local ring of dimension ≥ 1. Moreover,

HomS(F∗S,−) is exact, since F∗S is a finitely generated flat S-module. Therefore,

the map F∗N → HomS(F∗S,N) induced from ψ is surjective, and so lF∗S(F∗N) ≥
lF∗S(HomS(F∗S,N)). On the other hand, by Lemma 4.3.12, lF∗S(HomS(F∗S,N)) =

pdimSlS(N). Therefore, since lS(N) = lF∗S(F∗N), we have lS(N) ≥ pdimSlS(N).

This only happens when N = 0 or dimS = 0. However, since dimS > 0, we must

have N = 0, in particular, N is nilpotent. If it was in the case that Q = Pi, we would

have dimS = 0, and lS(N) ≥ pdimSlS(N) would hold. Therefore, Si = S ′i ∪ {Pi}
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where S ′i is a finite subset contained in the complement of Ui. Hence, we will find

the set S ′i in the complement of Ui.
Let Ii be the ideal of R whose image in R/Pi defines the complement of Ui.

Then, by Lemma 4.1.8 again, (?) condition for M(Ii) :=
M∑

e≥0C
e(IiM)

at any

prime P ∈ V (Ii) implies that (?) condition holds for M at P , and since Pi $ Ii,

dimM > dimM(Ii) for each i. If dimM(Ii) = 0, then we choose S ′i = SuppM(Ii).

Otherwise, by induction, we find S ′i in SuppM(Ii). Therefore, by the induction, S
consists of such Pi’s which are finitely many, and supports of finitely many Cartier

quotients of M whose dimension is zero. 2

4.4 An Algorithm for Finding Annihilators of

Cartier Quotients

In this section, we introduce a new algorithm for finding explicitly determining a

finite set of prime ideals S satisfying the hypothesis of Theorem 4.3.13 by following

its proof. Suppose that R = k[x1, . . . , xn] is a polynomial ring (or R = k[[x1, . . . , xn]]

a power series ring) over an F -finite field k of prime characteristic p. Given a finitely

generated Cartier module (M,C), here are steps of the algorithm.

Input

A finitely generated Cartier R-module (M,C).

Output

Prime annihilators of Cartier quotients of M .

Initialize

S = ∅, M = {M} and M′ = ∅.
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Execute the following:

While M\M′ 6= ∅, pick an element M ∈M \M′ and do the following:

1. If dimM = 0, then add the ideals from SuppM to S and add M to M′.

2. If dimM > 0, do the following:

(a) Replace M by M.

(b) Find the minimal prime ideals P1, . . . , Pm in X := V (AnnRM) and add

them to S.

(c) For each i, find the modulesMi := ĞM(Pi) whereM(Pi) =
M∑

e≥0C
e(PiM)

.

(d) For each Mi with dimMi = 0, add the ideals from SuppMi to S.

(e) For each Mi with dimMi > 0, find the square matrix Ui which gives the

Cartier module structure on Mi, and compute its determinant di = detUi,

and do the following:

i. Find the open set Ui := Xdi

⋂
RegR/Pi.

ii. Find the ideal Ii ⊆ R whose image in R/Pi defines the complement

of Ui
iii. Add the modules

M∑
e≥0C

e(IiM)
to M and add M to M′.

3. Output S, and stop.

Theorem 4.4.1. Given a finitely generated Cartier module (M,C), the algorithm

described above terminates and the output set S is a finite set of primes ideals such

that M satisfies (?) condition on the complement of S.

Proof. To prove the claim, we shall explain how the steps of the algorithm work.At

step 1. we choose S to be SuppM , since supports of zero dimensional modules are

finite.

The main idea of step 2. is to divide SuppM into irreducible components and

find an open set for each irreducible component on which M satisfies (?) condition.

By Lemma 4.1.7, at step 2.(a) we can reduce our assumptions to the surjective case.

Then by Lemma 4.1.8, we can look for the desired ideals for M(Pi) =
M∑

e≥0C
e(PiM)

where Pi’s are minimal prime ideals in SuppM computed at step 2.(b).
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By Lemma 4.1.7 again, at step 2.(c) we can replace M(Pi) with Mi. At step 2.(d),

we eliminate Mi’s with zero dimension for the sake of induction. Afterwards, at step

2.(e) we find the square matrix Ui which represents the Cartier module structure

on Mi whose dimension is strictly bigger than zero, and surjectivity guaranties that

the determinant of Ui is not zero. Then at step 2.(e)i. we find the open set Ui on

which Mi satisfies (?) condition except Pi. Since S := (R/Pi)Pi is a local ring of

dimension 0, by Lemma 4.3.12, lF∗S(HomS(F∗S,N)) = lS(N) for any finite length

S-module N . However, this is not enough to say that anything about nilpotency of

N . Therefore, we put Pi’s in S at step 2.(b).

The crucial step of the algorithm is step 2.(e)ii. We find the ideals Ii, because

we want to apply same process to the modules M(Ii) :=
M∑

e≥0C
e(IiM)

inductively

and find such open sets on which M(Ii) satisfies (?) condition. By Lemma 4.1.8

again, we know that if M(Ii) satisfies (?) condition at a prime ideal P ∈ V (Ii) then

M satisfies (?) condition at P . Hence, at step 2.(e)iii., we add M(Ii) to M. The

most important point here is that dimM > dimM(Ii) since Pi $ Ii. Therefore,

since the dimension drops, the algorithm terminates.

After all the output set S is a finite set of prime ideals and on the complement

of S, by Theorem 4.3.13, M satisfies (?) condition as desired. 2

If the structural map of M is surjective, it is easy to find prime ideals in the

collection A := {AnnRM/N | N is a Cartier submodule of M}. By Lemma 4.1.9,

prime ideals of A is also in S, and for any prime ideal P ∈ S to decide whether

P ∈ A we just need to check that if the annihilator of the module
M∑

e≥0C
e(PM)

is equal to P .

4.5 An Application to Lyubeznik’s F -modules

In this section, we investigate the connections between finitely generated Cartier

modules and Lyubeznik’s F -finite F -modules. We start with an important observa-

tion.

Discussion 4.5.1. Let M be an F -finite F -module with a generating morphism

β : M → FR(M) and let M be presented by a matrix A as in subsection 2.1.1, and
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M ∼= CokerA. Then we can write the generating morphism of M as CokerA
U−→

CokerA[p] where U is an α×α matrix with entries in R such that U ImA ⊆ ImA[p].

By Lemma 4.3.3, we have U ImA ⊆ ImA[p] ⇔ I1(U ImA) ⊆ ImA, and by Corollary

4.3.4 we have I1(U ImA) ⊆ ImA ⇔ Π(F∗U ImA) ⊆ ImA. Therefore, we can

use the matrix U to define a Cartier module structure on M given by the map

C : F∗M →M where C(−) = ΠR(F∗U−).

Conversely, let (N,C ′) be a finitely generated Cartier R-module represented by

a matrix B and denoted by (CokerB, V ) where C ′(F∗V ImB) = Π(F∗V ImB) ⊆
ImB, which implies V ImB ⊆ ImB[p]. Then, we can define a generating morphism

CokerB
V−→ CokerB[p] for an F -finite F -module

N = lim−→(CokerB
V−→ CokerB[p] V [p]

−−→ CokerB[p2] V [p2]

−−−→ · · · ).

Proposition 4.5.2. Let (M,C) be a finitely generated Cartier module isomorphic

to (CokerA,U) and let M be the F -finite F -module

M = lim−→(CokerA
U−→ CokerA[p] U [p]

−−→ CokerA[p2] U [p2]

−−−→ · · · )

Then M is nilpotent if and only if M is zero.

Proof. Let βi denote the composition

M
β−→ FR(M)

FR(β)−−−→ F 2
R(M)

F 2
R(β)
−−−→ · · ·

F i−1
R (β)
−−−−→ F i

R(M).

Then we can write βi as the composition

CokerA
U−→ CokerA[p] U [p]

−−→ CokerA[p2] U [p2]

−−−→ · · · U
[pi−1]

−−−−→ CokerA[pi].
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Therefore, βi is the map U [pi−1]U [pi−2] · · ·U : CokerA→ CokerA[pi].

M is nilpotent⇔ Ce(M) = 0 for some e > 0

⇔ Πe(F
e
∗U

[pe−1] · · ·URα) ⊆ ImA

⇔ Ie(U
[pe−1] · · ·URα) ⊆ ImA

⇔ U [pe−1] · · ·URα ⊆ ImA[pe]

⇔ Im(U [pe−1] · · ·U) ⊆ ImA[pe]

⇔ U [pe−1] · · ·U is a zero map on M , i.e. Im βe = 0

⇔M = 0 by Proposition 2.2.33 .

2

Corollary 4.5.3. Let M be a non-zero F -finite F -module with a generating mor-

phism β : M → FR(M) where M = CokerA and U is the square matrix for which

the map CokerA
U−→ CokerA[p] is isomorphic to the generating morphism. Let

C : F∗M → M be the Cartier structure given by U , and N a Cartier submodule

of M . Then

1. N is nilpotent if and only if N ⊆ ker βi for some i, where βi is the composition

map M
β−→ FR(M)

FR(β)−−−→ F 2
R(M)

F 2
R(β)
−−−→ · · ·

F i−1
R (β)
−−−−→ F i

R(M).

2. Mnil = ker βi, where ker βi is the stable kernel of the ascending chain ker β1 ⊆
ker β2 ⊆ . . . , and so ĎM is a root of M.

3. If M′ is the F -finite F -module whose generating morphism is βM : M →
FR(M), then M∼=M′.

Proof. For (1), since N is nilpotent, there exist an integer i such that Ci(F i
∗N) =

Πi(F
i
∗U

[pe−1] · · ·UN) ⊆ ImA which implies that U [pe−1] · · ·UN ⊆ ImA[pi]. Thus,

N ⊆ ker βi.

By (1), Mnil ⊆ ker βi. Also Ci(F i
∗ ker βi) = Πi(F

i
∗U

[pe−1] · · ·U ker βi) = Πe(0) = 0

implies that ker βi is nilpotent for each i, and so ker βi ⊆Mnil. It shows part (2).
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Since M/M is nilpotent, the F -finite F -module M/M′ whose generating mor-

phism M/M → FR(M/M), which is induced from β, is zero, and so M ∼= M′

2
When R = k[[x1, . . . , xn]] is a power series ring over a perfect field k of prime

characteristic p and R → S is a surjective ring homomorphism, for any N ∈ C, we

write ∆(N) = (M
β−→ FR(M)), and we define the functor HR,S to be

HR,S(N) = lim−→(M
β−→ FR(M)

FR(β)−−−→ F 2
R(M)

F 2
R(β)
−−−→ · · · )

where C is the category of Artininan R[θ; f ]-modules and ∆ is the functor as in

Subsection 2.2.6. The functor HR,S and some of its useful properties are introduced

in [16, Theorem 4.2]. One can use the correspondence in Theorem 5.2.3 and reprove

Theorem 4.2 in [16] using Proposition 4.5.2 and Corollary 4.5.3.

Definition 4.5.4. Let (M,C) be a finitely generated Cartier R-module. M is called

minimal if C is surjective and Mnil = 0.

Discussion 4.5.1 and Corollary 4.5.3 gives us next Theorem.

Theorem 4.5.5. There is a bijective correspondence between the category of F -finite

F -modules and the category of finitely generated minimal Cartier modules.

Remark 4.5.6. Let (M,C) be a finitely generated Cartier R-module denoted by

(CokerA,U). By Lemma 4.3.10, (ĎM) and Ě(M) are clearly equal to

Ii(U
[pi−1]U [pi−2] · · ·URα) + ImA

{m ∈ Rα | U [pi−1]U [pi−2] · · ·Um ∈ ImA[pi]}
,

which is a minimal Cartier module, and so we denote it by Mmin.

Theorem 4.5.7. Let (M,C) be a finitely generated Cartier R-module and let M
be the corresponding F -finite F -module. Then the maximum length of a chain of

ideals in the collection A := {AnnRMmin/N | N is a Cartier submodule of Mmin}
is a lower bound for the F -module length of M.

Proof. Let J0 $ J1 $ · · · $ Jm be a chain of ideals in the collection A with

maximum length. Then by Lemma 4.1.9, we have a chain of Cartier submodules

of Mmin, N0 $ N1 $ · · · $ Nm where Ni is the smallest Cartier submodule of

Mmin containing JiM , i.e. Ni =
∑

e≥0C
e(JiM). Then by Corollary 4.5.3, Mmin is
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a root for M, and by Remarks 2.2.35, we have a bijective correspondence between

F -submodules of M and R-submodules of Mmin. Therefore, each Ni corresponds

an F -submodule Ni of M where Ni = lim−→(Ni
γi−→ FR(Ni)

FR(γi)−−−−→ F 2
R(Ni)

F 2
R(γi)−−−−→ · · · )

and γi defines the Cartier structure on Ni induced by C, and so m is a lower bound

for F -module length of M. 2
Theorem 4.5.7 shows that the algorithm described in section 4.4 gives a method

to find a lower bound for F -module length of M.



Chapter 5

An Explicit Correspondence

Let R be a formal power series ring over a perfect field k of prime characteristic p, i.e.

R = k[[x1, . . . , xn]], and let E = ER(R/m) be the injective hull of its residue field.

In this chapter, we introduce our computational correspondence between finitely

generated Cartier modules and Artininan modules equipped with a Frobenius map

over R, and we show that it coincides with the correspondences introduced in [2]

and [21].

5.1 An Explicit Isomorphism

Let k[x−1 , . . . , x
−
n ] denote the module of inverse polynomials. By Example 2.1.38,

we know that E ∼= k[x−1 , . . . , x
−
n ]. In the rest of this section, we identify E with

k[x−1 , . . . , x
−
n ], and we will write −ν̄ to denote n-tuples (−ν1, . . . ,−νn) in addition

to Notation 4.3.8.

Since F∗E is the injective hull of residue field of F∗R, an application of Lemma

2.1.20 with S = F∗R gives us the following corollary.

Corollary 5.1.1. HomR(F∗R,E) ∼= F∗E as F∗R-modules

By Proposition 2.2.5, we know that F∗R is a free R-module with a basis set

B = {F∗x̄ᾱ | 0 ≤ αi ≤ p − 1 for all i = 1, . . . , n}. Therefore, an R-linear map from

F∗R to any other R-module is simply a choice of where to send these basis elements.

83
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Next we fix an explicit F∗R isomorphism between HomR(F∗R,E) and F∗E which

we use repeatedly in this chapter.

Lemma 5.1.2. The map Φ : HomR(F∗R,E)→ F∗E given by

Φ(g) =
∑

0≤ᾱ<p

F∗[x̄
p−1−ᾱT (g(F∗x̄

ᾱ))] (5.1)

for all g ∈ HomR(F∗R,E), where T is the natural Frobenius map on E, is an F∗R-

isomorphism.

Proof. By the definitions of T and g, it can easily be seen that Φ is well-defined

and additive. For any r ∈ R, we further have the following

rΦ(g) =
∑

0≤ᾱ<p

F∗[x̄
p−1−ᾱrpT (g(F∗x̄

ᾱ))]

=
∑

0≤ᾱ<p

F∗[x̄
p−1−ᾱT (rg(F∗x̄

ᾱ))] = Φ(rg)

which means that Φ is R-linear. Thus, for F∗R-linearity of Φ, since F∗R is a free

R-module, it is enough to show that F∗x̄
β̄Φ(g) = Φ(F∗x̄

β̄g) for any basis element

F∗x̄
β̄ ∈ B, and so we will show that the right hand sides of following equations are

equal.

F∗x̄
β̄Φ(g) =

∑
0≤ᾱ<p

F∗[x̄
p−1−ᾱ+β̄T (g(F∗x̄

ᾱ))], (5.2)

Φ(F∗x̄
β̄g) =

∑
0≤ᾱ<p

F∗[x̄
p−1−ᾱT (g(F∗x̄

ᾱ+β̄))]. (5.3)

Moreover, since F∗x̄
β̄ = F∗x

β1
1 · · ·F∗xβnn , it is enough to show that

F∗x
βi
i Φ(g) =

∑
0≤ᾱ<p

F∗[x
p−1−α1

1 . . . xp−1−αi+βi
i . . . xp−1−αn

n T (g(F∗x̄
ᾱ))]

=
∑

0≤ᾱ<p

F∗[x̄
p−1−ᾱT (g(F∗x

α1
1 . . . xαi+βii . . . xαnn ))] = Φ(F∗x

βi
i g)
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for each F∗x
βi
i . To do that we will show the following sets are the same

S1 = {F∗[x̄p−1−ᾱT (g(F∗x
α1
1 . . . xαi+βii . . . xαnn ))] | 0 ≤ αi < p},

S2 = {F∗[xp−1−α1

1 . . . xp−1−αi+βi
i . . . xp−1−αn

n T (g(F∗x̄
ᾱ))] | 0 ≤ αi < p}.

In the case that αi + βi < p,

{F∗[x̄p−1−ᾱT (g(F∗x
α1
1 . . . xαi+βii . . . xαnn ))] | 0 ≤ αi < p− βi} =

{F∗[xp−1−α1

1 . . . xp−1−αi+βi
i . . . xp−1−αn

n T (g(F∗x̄
ᾱ))] | βi ≤ αi < p}

since substituting αi with αi + βi in the latter set gives us the former set. On the

other hand, in the case that αi + βi ≥ p,

{F∗[x̄p−1−ᾱT (g(F∗x
α1
1 . . . xαi+βii . . . xαnn ))] | p− βi ≤ αi < p} =

{F∗[xp−1−α1

1 . . . xp−1−αi+βi
i . . . xp−1−αn

n T (g(F∗x̄
ᾱ))] | 0 ≤ αi < βi}

since for each k ∈ {0, . . . , βi − 1}, where αi + βi = p+ k (i.e. p− αi = βi − k),

F∗[x̄
p−1−ᾱT (g(F∗x

α1
1 . . . xαi+βii . . . xαnn ))] =

F∗[x
p−1−α1

1 . . . xp−1−αi+p
i . . . xp−1−αn

n T (g(F∗x
α1
1 . . . xki . . . x

αn
n ))] =

F∗[x
p−1−α1

1 . . . xp−1−k+βi
i . . . xp−1−αn

n T (g(F∗x
α1
1 . . . xki . . . x

αn
n ))].

Therefore, S1 = S2, and so the right hand sides of 5.2 and 5.3 are equal.

For injectivity of Φ, we first need the following. For any g ∈ HomR(F∗R,E),

we have g(F∗x̄
ᾱ) ∈ k[x−1 , . . . , x

−
n ], and so g(F∗x̄

ᾱ) is a finite k-linear combina-

tion of monomials x−ν11 . . . x−νnn , where νi’s are positive integers. Therefore, for

each F∗x̄
ᾱ ∈ B, F∗[x̄

p−1−ᾱT (g(F∗x̄
ᾱ))] is a finite k-linear combination of monomials

F∗x
p−1−α1−pν1
1 . . . xp−1−αn−pνn

n . This means that

Φ(g) =
∑

0≤ᾱ<p

F∗[x̄
p−1−ᾱT (g(F∗x̄

ᾱ))] =
∑

0≤ᾱ<p

( ∑
0<ν̄<∞

λνF∗x̄
p−1−ᾱ−pν̄

)
Therefore, Φ(g) = 0 if and only if λν = 0 for all ν̄ > 0 since p − 1 − ᾱ < p implies

that p− 1− ᾱ− pν̄ < 0 and the terms F∗x̄
p−1−ᾱ−pν̄ 6= F∗x̄

p−1−β̄−pµ̄ unless ᾱ = β̄ and

µ̄ = ν̄ at the same time. Hence,

Φ(g) = 0⇔ T (g(F∗x̄
ᾱ)) = 0 for all 0 ≤ ᾱ < p

⇔ g(F∗x̄
ᾱ) = 0 for all 0 ≤ ᾱ < p

⇔ g = 0.
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For surjectivity of Φ, we take an element F∗e of F∗k[x−1 , . . . , x
−
n ]. We know that

it can be written as a finite sum of terms F∗µx
−ν1
1 . . . x−νnn , where µ ∈ k, and these

terms can be written as

F∗µx
−ν1
1 . . . x−νnn = F∗x

k1
1 . . . xknn F∗λ

px−pβ11 . . . x−pβnn

= F∗x
k1
1 . . . xknn F∗T (λx−β11 . . . x−βnn )

where µ = λp, and for each i, ki = pβi − νi and 0 ≤ ki < p. Now we rewrite F∗e as

a finite sum ∑
0≤k1,...,kn<p

F∗x
k1
1 . . . xknn F∗T (ek1,...,kn)

where ek1,...,kn ∈ k[x−1 , . . . , x
−
n ], and we choose a map g ∈ HomR(F∗R,E) which sends

F∗x
p−1−k1
1 . . . xp−1−kn

n to ek1,...,kn . This means that Φ(g) = F∗e, i.e. Φ is surjective.

Hence, it is an isomorphism of F∗R-modules. 2

5.2 The Correspondence

Proposition 5.2.1. Let α be a non negative integer. There is a bijective correspon-

dence between HomR(F∗R
α, Rα) and HomR(Eα, F∗E

α) such that the trace map Π on

F∗R
α corresponds to the natural Frobenius map T on Eα and Π(F∗U−) corresponds

to U tT for any α× α matrix U with entries in R.

Proof. We start by identifying HomR(F∗R,E) with F∗E using the isomorphism Φ

defined in Lemma 5.1.2. Then we first assume that α = 1 and let φ : F∗R→ R be a

Cartier map. We know that there is an element u ∈ R such that φ(−) = π(F∗u−).

Applying Matlis duality to this map gives us HomR(R,E)
f 7→f◦φ−−−−→ HomR(F∗R,E).

Next we use the isomorphism E
e7→fe−−−→ HomR(R,E), where fe(1) = e, to get the

following composition

E → HomR(R,E)→ HomR(F∗R,E)→ F∗E

e 7→ fe 7→ fe ◦ φ 7→ Φ(fe ◦ φ)
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Φ(fe ◦ φ) = Φ(fe ◦ π(F∗u−)) (by F∗R-linearity of Φ)

= F∗uΦ(fe ◦ π) = F∗u
∑

0≤ᾱ<p

F∗[x̄
p−1−ᾱT (fe ◦ π(F∗x̄

ᾱ))]

= F∗u[F∗T (fe ◦ π(F∗x̄
p−1))] = F∗u[F∗T (fe(1))]

= F∗uF∗T (e) = F∗uT (e)

Therefore, the composition above gives us the Frobenius map uT on E. In particular,

if u = 1 we get the natural Frobenius T on E.

We now assume that α > 1 and let φ : F∗R
α → Rα be a Cartier map. We

know that there is an α × α matrix U with entries (uij)1≤i,j≤α in R such that

φ(−) = Π(F∗U−). Applying Matlis duality to this map gives HomR(Rα, E)
f 7→f◦φ−−−−→

HomR(F∗R
α, E). Then we get the following composition

Eα 99K 99K F∗E
α

a = (a1, . . . , aα)t (Φ(fa ◦ φ ◦ ε1), . . . ,Φ(fa ◦ φ ◦ εα))t

7→

7→

(fa1 , . . . , faα)t 7→ fa 7→ fa ◦ φ 7→ (fa ◦ φ ◦ ε1, . . . , fa ◦ φ ◦ εα)t

HomR(R,E)α → HomR(Rα, E)→ HomR(F∗R
α, E)→ HomR(F∗R,E)α

where a ∈ Eα and we use the following obvious isomorphisms

Eα → HomR(R,E)α given by (a1, . . . , aα)t 7→ (fa1 , . . . , faα)t

such that fai(1) = ai for each i,

HomR(R,E)α → HomR(Rα, E) given by (g1, . . . , gα)t 7→ g

such that g(ei) = gi(1) for each elementary vector ei, and

HomR(F∗R
α, E)→ HomR(F∗R,E)α given by h 7→ (h ◦ ε1, . . . , h ◦ εα)t

such that the map εi : F∗R → F∗R
α given by F∗r 7→ F∗rF∗ei is the canonical

injection for each i. Then for a fixed i where 1 ≤ i ≤ α, we have

Φ(fa ◦ φ ◦ εi) =
∑

0≤ᾱ<p

F∗

[
x̄p−1−ᾱT

(
fa

(
Π
(
F∗Uεi(F∗x̄

ᾱ)
)))]
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Since

fa

(
Π
(
F∗Uεi(F∗x̄

ᾱ)
))

= fa

(
Π
(
(F∗u1ix̄

ᾱ, . . . , F∗uαix̄
ᾱ)t
))

= fa

((
π(F∗u1ix̄

ᾱ), . . . , π(F∗uαix̄
ᾱ)
)t)

=
∑

1≤j≤α

faj
(
π(F∗ujix̄

ᾱ)
)
,

we have

Φ(fa ◦ φ ◦ εi) =
∑

1≤j≤α

( ∑
0≤ᾱ<p

F∗

[
x̄p−1−ᾱT

(
faj
(
π(F∗ujix̄

ᾱ)
))])

.

Then by definition of Φ,

Φ(fa ◦ φ ◦ εi) =
∑

1≤j≤α

F∗ujiΦ(faj ◦ π)

=
∑

1≤j≤α

F∗ujiF∗T
(
faj
(
π(x̄p−1)

))
=
∑

1≤j≤α

F∗ujiT (aj) = F∗
[ ∑

1≤j≤α

ujiT (aj)
]
.

Therefore, for 1 ≤ i ≤ α
Φ(fa ◦ φ ◦ ε1)

...

Φ(fa ◦ φ ◦ εα)

 =


F∗
[∑

1≤j≤α uj1T (aj)
]

...

F∗
[∑

1≤j≤α ujαT (aj)
]


which is equal to

F∗[U
t(T ((a1, . . . , aα)t)] = F∗[U

tT (a)].

Hence, the composition above gives us the Frobenius map U tT on Eα. In particular,

if U is the identity matrix we get the natural Froebenius T on Eα.

The construction above gives us a map Ω : HomR(F∗R
α, Rα)→ HomR(Eα, F∗E

α)

defined by Ω(φ) = Θ such that φ(−) = Π(F∗U−) and Θ(−) = F∗U
tT (−). We

claim that this map actually is an F∗R-linear isomorphism. Let Ω(F∗r.φ) = Θ′ for

any r ∈ R. Then since (F∗r.φ)(−) = φ(F∗r−) = Π(F∗Ur−), we have Θ′(−) =
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F∗(Ur)
tT (−) = F∗rF∗U

tT (−) = F∗rΘ(−), i.e. Ω(F∗r.φ) = Θ′ = F∗rΘ = F∗rΩ(φ),

and so Ω is F∗r-linear. Surjectivity of Ω is clear since for any Frobenius map

Θ(−) = F∗U
tT (−) we can define a Cartier map φ(−) = Π(F∗U−). We also have

Ω(φ) = 0 ⇒ U tT = 0 ⇒ U = 0 ⇒ φ = 0, because if any entry of U was non zero

there would be non zero elements in the image of U tT , i.e. Ω is injective. This

means that we get the promised bijective correspondence. 2
Next we see that the Matlis duality functor (−)∨ = HomR(−, E) commutes with

F∗(−) (cf. Lemma 5.1 in [2]).

Lemma 5.2.2. Let M be a finitely generated or an Artinian R-module. Then

F∗M
∨ ∼= (F∗M)∨.

Proof. We first assume that M is finitely generated. Then M has a presentation

· · · → Rβ A−→ Rα � M → 0 where A is an α × β matrix with entries in R. If we

apply the Matlis dual to this presentation we get 0 → M∨ ↪→ Eα At−→ Eβ → . . . .

So M∨ = KerAt = AnnEα A
t. On the other hand, F∗M has the presentation

· · · → F∗R
β F∗A−−→ F∗R

α � F∗M → 0. Then if we apply the Matlis dual again and

identify HomR(F∗R,E) with F∗E using the isomorphism Φ defined in Lemma 5.1.2,

we get 0 → (F∗M)∨ ↪→ F∗E
α F∗At−−−→ F∗E

β → . . . , and so (F∗M)∨ = KerF∗A
t =

AnnF∗Eα F∗A
t = F∗(AnnEα A

t) = F∗M
∨.

If now M is Artinian, we know that M∨ is Noetherian and M ∼= M∨∨. Then it

follows from first assumption, F∗M
∨ ∼= (F∗M

∨)∨∨ ∼= (F∗M
∨∨)∨ ∼= (F∗M)∨ 2

Next theorem extends Proposition 5.2 in [2] to a computational level.

Theorem 5.2.3. Matlis duality induces a bijective correspondence between finitely

generated Cartier modules and Artinian modules equipped with Frobenius maps given

as follows: if M is a finitely generated Cartier module with a square matrix U

defining the Cartier module structure on M , then the corresponding Artinian module

is M∨ with the corresponding Frobenius map U tT , which preserves the nilpotency.

Proof. Let (M,C) be a finitely generated Cartier module with a square matrix

U defining Cartier module structure on M . Then we have a presentation of M as

follows · · · → Rβ A−→ Rα � M → 0 and the following commutative diagram with

exact rows
F∗R

α −−−→ F∗M −−−→ 0

Π(F∗U−)

y yC
Rα −−−→ M −−−→ 0
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where C is induced by Π(F∗U−) on M . If we apply the Matlis dual to the diagram

above and if we use Lemma 5.1.2, Proposition 5.2.1 and Lemma 5.2.2 we get

0 −−−→ M∨ −−−→ Eα

θ

y yF∗UtT
0 −−−→ F∗M

∨ −−−→ F∗E

where θ is the restriction of F∗U
tT on M∨. The same construction follows the

converse. We also have

M is nilpotent ⇔ Ce(M) = 0

⇔ Ie(U
[pe−1] · · ·URα) ⊆ ImA by Lemma 4.3.10

⇔ θ is a nilpotent Frobenius map on M∨ by Lemma 3.2.4.

Hence, this construction preserves nilpotency. 2
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