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Abstract

Let R be a commutative Noetherian ring of prime characteristic p, and M be an
R-module. We may endow M with a new R-module structure given by r.m = r?“m,
and we denote this new module with F¢M, where e is a positive integer.

An e-th Frobenius map on M is an R-linear map from M to F¢M. When
R is a formal power series ring and M is Artinian, given ¢ € Hompg(M, FEM) it
is known that there are only finitely many annihilators of R-submodules N of M
where ¢(N) C F¢N and ¢ restricts to a non nilpotent map on N. A dual notion of
this fact shows that there are only finitely many ideals of R which are annihilators
of R*/W for some submodules W with some non degeneracy conditions, where «
is a positive integer. There also is an algorithm to find such ideals. In the first
part of the thesis, we study these annihilator ideals of R and generalize the dual
notion of aforesaid result to polynomial rings, and we present a new algorithm for
finding such prime ideals. Further, we provide an application of the new algorithm
to Lyubeznik’s F-finite F-modules.

An e-th Cartier map on M is an R-linear map from F°M to M. When M is
finitely generated, given a surjective Cartier map on M it is again known that there
are only finitely many annihilators of Cartier quotients of M. In the second part of
the thesis, we study finitely generated modules equipped with a Cartier map. We
consider a computational perspective and present an algorithm for finding prime
annihilators of Cartier quotients of a given finitely generated module equipped with
a surjective Cartier map. Moreover, we use this algorithm to find a lower bound for
F-module length of Lyubeznik’s F-finite F-modules.

In the last part of the thesis, when R is a power series ring over a perfect field
of prime characteristic, we present an explicit correspondence between Artinian R-
modules equipped with a Frobenius map and Noetherian R-modules equipped with
a Cartier map.
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Chapter 1

Introduction

Let R be a commutative Noetherian ring of prime characteristic p, and e be a positive
integer. Let f : R — R be the Frobenius homomorphism defined by f(r) = r? for
all » € R, whose e-th iteration is denoted by f¢. The ring R is called F-finite if
f€ is a finite map for some e. Let R[X; f¢] be the skew-polynomial ring. Let M
be an R-module, an e-th Frobenius map on M is an additive map ¢ : M — M
such that ¢(rm) = r?"¢(m) for all m € M and r € R. Notice that defining
an e-th Frobenius map on M is equivalent to endowing M with a left R[X; f¢]-
module structure extending the rule Xm = ¢(m) for all m € M (see Subsection
2.2.2)).(When e = 1, we simply drop it from notations.)

The first part of this thesis studies the notion of special ideals. It was introduced
by R. Y. Sharp in [20]. For a left R[X; f¢]-module M, when X defines an injective
e-th Frobenius map on M, he defines an ideal of R to be M-special R-ideal if it is
the annihilator of some R[X; f¢]-submodule of M (cf. Section 1 of [20]). Later on,
it was generalized by M. Katzman and used to study Frobenius maps on injective
hulls in [I0] and [1I]. For a left R[X; f¢]-module M, Katzman defines an ideal of R
to be M-special if it is the annihilator of some R[X; f¢]-submodule of M (cf. Section
6 of [10]). A special case of special ideals is when R is local, M is Artinian, and X
defines an injective e-th Frobenius map on M. In this case, Sharp showed that the
set of M-special ideals is a finite set of radicals, consisting of all intersections of the
finitely many primes in it (Corollary 3.11 in [20]). It was also proved by F. Enescu
and M. Hochster independently (Section 3 in [5]). When R is complete regular local
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and M is Artinian, the notion of special ideals becomes an important device to
study Frobenius maps on injective hulls. In particular, since top local cohomology
module of R is isomorphic to the injective hull of the residue field of R, it provides
an important insight to top local cohomology modules.

In the case that R is a finite dimensional formal power series ring over a field of
prime characteristic p, in [13], M. Katzman and W. Zhang focus on the M-special
ideals when M is Artinian. In this case, they define the special ideals depending on
the R[¢; f¢]-module structures on E“ where F is the injective hull of the residue
field of R and « is a positive integer. They define an ideal of R to be ¢-special if
it is the annihilator of an R[¢; f¢]-submodule of E*, where ¢ = U'T*® with T is the
natural Frobenius on E* and U is an « X o matrix with entries in R (see Section [3.2).
Furthermore, they use Katzman’s A¢ and W¢ functors, which are extensions of Matlis
duality keeping track of Frobenius maps, to define ¢-special ideals equivalently to
be the annihilators of R*/W for some submodule W satisfying UW C Wl where
W is the submodule generated by {wlPl = (W, ... wE) | w = (wy,...,wa)" €
W} (see Proposition [3.2.2). Katzman and Zhang show that there are only finitely
many ¢-special ideals P of R with the property that P is the annihilator of an
R[¢; f¢]-submodule M of E* such that the restriction of ¢¢ to M is not zero for all
e, and introduce an algorithm for finding special prime ideals with this property in
[13]. They first present the case o« = 1, which was considered by M. Katzman and
K. Schwede in [12] with a geometric language. Then they extend this to the case
a > 1.

In the first part of this thesis, we adapt the equivalent definition of ¢-special
ideals above to the polynomial rings, and for an a x a matrix U we define U-special
ideals to be the annihilators of R*/W for some submodule W of R® satisfying
UW C WPl We generalize the results in [I3] to the case that R is a finite dimen-
sional polynomial ring over a field of prime characteristic p, and show that there
are only finitely many U-special ideals with some non degeneracy conditions (see
Theorem . We also present an algorithm for finding U-special prime ideals
of polynomial rings. Furthermore, we consider the notion of F-finite F-modules,
which is a prime characteristic extension of local cohomology modules introduced
by G. Lyubeznik in [16], and we show that our new algorithm gives a method for
finding the prime ideals of R such that crk(Hjg,(Rp)) # 0 (see Definition and
Theorem .

The second part of this thesis studies the notion of Cartier modules. An e-th
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Cartier map on M is an additive map C' : M — M such that rC(m) = C(r*"m) for
allm € M and r € R, which is a dual notion of Frobenius maps. An R-module M is
called a Cartier module if it is equipped with a Cartier map. M. Blickle and G. Bockle
study the notion of nilpotence for finitely generated Cartier modules and present
some finiteness results in [2]. One of the main result of this paper states that if R is
F-finite and M is a finitely generated R-module equipped with a surjective Cartier
map, then the set of annihilators of Cartier quotients of M is a finite set of radical
ideals consisting of all intersections of the finitely many primes in it (see Section 4
in [2]). This generalizes the results in [20] and [5] mentioned above. In the second
part of this thesis, we consider the case that R is a finite dimensional polynomial
ring or a finite dimensional formal power series ring over an F-finite field of prime
characteristic p, we take a computational view of this finiteness result of Blickle
and Bockle, and we give an alternative proof to the result (see Theorem [£.3.13).
We then present an algorithm for finding prime annihilators of Cartier quotients
(see Section . Moreover, we obtain an explicit correspondence between finitely
generated Cartier modules and Lyubeznik’s F-finite F-modules, which enables us to
show that our algorithm gives a method to find a lower bound for F-module length
of F-finite F-modules.

When R is complete regular local and F-finite, it is shown that there exists a
bijective correspondence between Artininan R-modules equipped with a Frobenius
map and Noetherian R-modules equipped with a Cartier map in [2] and indepen-
dently in [21]. In the last part of this thesis, we obtain an explicit correspondence
between these two sets of R-modules which coincides with the correspondences in
[2] and [21], more importantly, extends to a computational level. To do this, we
define an explicit isomorphism between two modules which are well-known isomor-
phic modules but an isomorphism has not been given explicitly before (see Lemma
5.1.2)).

1.1 Outline of Thesis

In Chapter [2, we collect the necessary concepts from commutative algebra which
we need for this thesis as a background. In Section [2.1] we provide brief summaries
of localization and completion of modules and rings, as well as a brief introduction
to injective and local cohomology modules. In Section [2.2] we provide a technical
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background to positive characteristic methods in commutative algebra, which we
use throughout this thesis.

In Chapter [3] we investigate the notion of special ideals. In Section [3.0] we
state the algorithm described in [I2] with a more algebraic language and show that
it commutes with localization. In Section [3.2] we generalize the results in [13] to
polynomial rings. In particular, we present a new algorithm which is very similar to
the one defined in [13], and show that it commutes with localization too. Finally, in
Section [3.3] we present a connection between special ideals and Lyubeznik’s F'-finite
F-modules using our algorithm. The main result of this chapter, Theorem (3.3.3]
not only reproves Proposition 4.14 in [I6] but also gives a method for finding the
desired prime ideals.

In Chapter [4 we investigate the notion of Cartier modules. In Section [4.1] and
4.2, we study finitely generated Cartier modules in a more algebraic language. In
Section [4.3) we prove our technical lemmas which give us computational methods
on finitely generated Cartier modules when R is a polynomial ring or a power series
ring over an F-finite field of prime characteristic p. In particular, we prove the main
result, Theorem [4.3.13] of this chapter using these computational methods which
extends Proposition 4.1 and 4.5 in [2] to a computational level. In Section [£.4] we
introduce a new algorithm which finds the finite set of prime annihilators of Cartier
quotients of a given finitely generated Cartier module. Finally, in Section [£.5] we
obtain an explicit correspondence between finitely generated Cartier modules and
Lyubeznik’s F-finite F-modules which leads us a method for finding a lower bound
for F-module length of F-finite F-modules.

In Chapter [5, when R is a power series ring over a perfect field of prime character-
istic, we introduce an explicit correspondence between Artinian R-modules equipped
with a Frobenius map and Noetherian R-modules equipped with a Cartier map us-
ing our computational techniques. This extends the correspondences introduced in
[2] and [2I] to a computational level. In particular, Lemma gives an explicit
isomorphism for well-known isomorphic modules but was not given explicitly before,
which leads us to our explicit correspondence.
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1.2 Notation

Throughout this thesis, all rings in consideration are assumed to be commutative and
Noetherian with identity, and all modules are assumed to be unital unless otherwise
stated.

We use Z, N, Ny and —N to denote the ring of integers, the set of positive integers,
the set of non negative integers and the set of negative integers, respectively. We
also use (—)' to denote the transpose of vectors and matrices. Let R be a ring, [
be an ideal of R, and M be an R-module. If I is finitely generated by elements
ai,...,a, € R, we write I = (aj,...,a,). Similarly, if M is finitely generated
by elements my,...,mg € M, we write M = (mq,...,mg). R is called Noetherian
if it satisfies the ascending chain condition on ideals, i.e. every ascending chain
I; C I, C --- of ideals in R stabilizes, or equivalently every ideal of R is finitely
generated. R is called Artinian if it satisfies the descending chain condition on ideals,
i.e. every descending chain I; D Iy O --- of ideals in R stabilizes. Analogously, M
is called Noetherian (Artinian) if it satisfies ascending (descending) chain condition
on its submodules.

We say that an ideal P of R is a prime ideal if for any a,b € R, ab € P =
a € Porb € P. The radical of I is the set {r € R | ™ € I for some n € N},
or equivalently is the intersection of all prime ideals which contains 7, and denoted
by vI. I is said to be primary if for any a,b € R, ab € [ = a € Torb" €
I for some n € N. If P = /I, then I is called P-primary. A primary decomposition
of I is an expression I = Q1 N--- N Q, with each Q); is a primary ideal, and it is
called minimal if no Q; can be omitted in the expression and if \/Q; # \/Q_J for all
1 # j. In Noetherian rings, there always exist minimal primary decompositions of
ideals. In this case, if I = Q1 N --- N Qs is a minimal primary decomposition, the
prime ideals P; = \/Q); are called associated primes of I.

The set of all prime ideals of R is denoted by Spec R, and V' (I) denotes the set
{P € Spec R | I C P}. The collection {V(I) | I is an ideal of R} defines a topology
on Spec R that is called the Zariski topology in which V' (I) is a closed set. The
Krull dimension or simply the dimension of R is the supremum of the lengths of all
chains of prime ideals in R, and denoted by dim R. We also define the dimension of
a finitely generated module M over R to be the dimension of the ring R/ Anng M
where Anng M = {r € R | rM = 0}, and denote it by dimpg M.

A sequence --- — M; £> M;. 4 % .-+ of R-modules and R-homomorphisms is
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called exact if Ker f;11 = Im f; for all i. An exact sequence of the form
00— M — My — M;—0

is called a short exact sequence. A sequence

dO dl di71 .di
cosc' Lo L ol

of R-modules and R-homomorphisms is called a cochain complex if d* o d'=! = 0,
and the module H(C) := Ker d’/Im d'~! is called the i-th cohomology module of C.
A sequence

d d dif di
CZO(—O()(—Ocl(—l"'<—1 Cz<—

of R-modules and R-homomorphisms is called a chain complex if d;_; od; = 0, and
the module H;(C) := Kerd"~!/Imd' is called the i-th homology module of C.

We say that R is local if it has only one maximal ideal, and we write (R, m) to
mean that R is a local ring with the unique maximal ideal m. If (R, m) is a local ring,
then we call R/m the residue field of R. A local ring is called regular if the minimal
number of generators of its maximal ideal is equal to its dimension. In general, R
is called regular if its localization at every prime ideal is a regular local ring. The
regular locus Reg R of R is the set of prime ideals P such that the localization of
R with respect to P is a regular local ring, and Spec R \ Reg R is the singular locus
of R and denoted by Sing R. Furthermore, the characteristic of R is the smallest
integer n such that Y} 1 = 0, and if no such integer n exists, then the characteristic
of R is zero.



Chapter 2

Preliminaries

In this chapter, we provide a brief introduction to the background and some technical
commutative algebra tools that we need for the latter chapters. Section contains
general background without proofs, and section contains some basic tools of
positive characteristic methods in commutative algebra and a technical background
that is essential for the main results of this thesis. As a reminder, we will always
assume all rings are Noetherian even though some of general concepts provided in
this chapter are true for the non-Noetherian case.

2.1 General Background

In this section, we provide brief summaries on the concepts of localization and
completion of modules and rings. We also provide a brief introduction to injective
and local cohomology modules.

2.1.1 Presentations of Finitely Generated Modules

In this subsection, we give a matrix presentation of finitely generated modules using
free modules.

An R-module F' is called a free module if F' is isomorphic to a direct sum of
copies of R; that is, there is an index set B with F' = @,z Ry where R, = (b)) = R

12
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for all b € B. We call B is a basis of F' and the cardinality of B is called the rank of
F. For each element m € F, we have a unique expression of the form m = »~, 5 b
where B’ is a finite subset of B, and r, € R for all b € B'.

Theorem 2.1.1. [19, Theorem 2.35] Every R-module M is a quotient of a free R-
module F. Moreover, M is finitely generated if and only if F' can be chosen to be
finitely generated.

Let F' and G be free R-modules. Let B = {by,...,b,} be a basis of F' and
C = {c1,...,cm} be a basis of G. Let ¢ € Hompg(F,G) such that for each b;,

o(bj) = >0, aijc; for some a;; € R. Let A be the m x n matrix whose ¢j-th entry
is a;;. Then for each element f =" 7,,b; € I, we have ¢(f) = > ", rc,c; where

Therefore, for any map ¢ € Hompg(F, G) we can associate a matrix A with entries
in R.
In particular, any R-linear map ¢ : R"™ — R™ can be represented with an m x n

matrix A with entries in R. In this case, for any element (rq,...,7,)" € R", we have
1 1
@ =A
Tn Tn

Then we write R 25 R™ to denote ¢, Im A to denote image of ¢, Ker A to denote
kernel of ¢, and Coker A to denote cokernel of .

Remark 2.1.2. Let M be a finitely generated R-module. Then there exist an exact
sequence
R4 R = M =0

where Coker A = R*/Im A = M.
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2.1.2 Localization of Modules and Rings

In this subsection, we give a brief summary of localization of modules and rings and
its properties which we use throughout this thesis. For the proofs and more details
we refer to chapter 3 of [1J.

Let R be aring and M be an R-module. Let W be a multiplicatively closed subset
of R,ie. 1 € Wand ws € W for all w,s € W. For some (w,m), (s,n) € W x M, we
define the equivalence relation ~ on W x M by (w,m) ~ (s,n) if and only if there
is an element ¢ € W such that t(wn — sm) = 0 in M and we denote the equivalence
class of (w,m) € W x M by g We define the localization of M at W to be the

set of all such equivalence classes and denote it by WM = {m |me M,we W}
w

If we apply the definition in the case M = R, the resulting localization is a
commutative ring with addition and multiplication defined respectively by

a b sa+wb a
—+ - = and —
w S ws w

b ab
S ws
forall &2 cwiR,

w s

Furthermore, WM is an W~ R-module with addition and scalar multiplication
defined respectively by

m
—+—=———and — = —
w

forall 2 2 c w10 and £ e WIR.
w' s t

Remarks 2.1.3. 1. If P is a prime ideal of R, then W = R\ P is a multi-
plicatively closed set and we write Mp to denote WM and Rp to denote
W-IR.

2. If f € R\ {0}, then W = {1, f, f?,...} is a multiplicatively closed set and we
write My to denote WM and Ry to denote W-IR.

3. If g : M — N is an R-module homomorphism, then we have an W' R-module
homomorphism W=t¢ : WIM — W=IN given by (W*1¢)(@) = M
w

w

Next we will collect some important properties of localization whose proofs can
be found in chapter 3 of [IJ.
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Remarks 2.1.4. Let M and N be R-modules and W be a multiplicatively closed
subset of R.

1. The operation W' is exact.

2. The operation W= commutes with formation of finite sums, products, inter-
sections and quotients and radicals.

3 WM 2WR®r M as W 'R-modules.
4. WM Quy-g WIN 2 WY M @z N) as WL R-modules.

5. The prime ideals of W~'R are in one-to-one correspondence with the prime
1deals of R which do not intersect W.

6. If M is finitely generated, then W= (Anng M) = Anny g WM.
7. If M is finitely generated, then W=Y(N :g M) = (W™IN 1yy1g WIM).

8. When M is finitely generated, W—*M = 0 if and only if there is an element
w e W such that wM = 0.

Proposition 2.1.5. [1, Proposition 3.9] Let ¢ : M — N be an R-module homo-
morphism. Then the following are equivalent:

1. ¢ is injective(surjective),
2. ¢p: Mp — Np is injective(surjective) for each prime ideal P of R,
3. Gm : My, — Ny, is injective(surjective) for each mazximal ideal m of R.

Definition 2.1.6. The support of M 1is the set of all prime ideals P of R such that
M, # 0 and it is denoted by Supp M, i.e. Supp M = {P € Spec R | Mp # 0}.

Remark 2.1.7. Let M be a finitely generated R-module with M = (mq,--- ,m,),
and let P € Spec R. Then

P eSuppM <m; #0 in Mp,i.e. Anngm; C P for some 1

& :=Anng M = ﬂAnnR m; C P.
i=1
This means that Supp M = V(Anng M), and so Supp M is a Zariski closed subset
of Spec R.
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2.1.3 Completion of Modules and Rings

In this subsection, we give a brief summary of completion of modules and rings and
its properties which we use throughout this thesis. For the proofs and more details
we refer to chapter 8 of [22] and section 7 of [6].

Let R be a ring and M be an R-module. A sequence {I,},>¢ of ideals is called
a filtration if Iy = R, I, 2 I,y and 1,1, C I,4,, for all n,m € N. Let {I,},>0
be a filtration on R, a sequence {M,},>o of submodules of M is called a filtration
on M it My = M, M, O M,y and I,,M,, C M,,., for all n,m € N. In this case,
for the condition I,,,M,, C M+, we say that {M, },>0 is compatible with {,},>o.
The most important case is when the filtration is given by I, = I" for all n > 1 and
Iy = R. This is called [-adic filtration on R. Analogously, the filtration given by
M, = I"M for all n > 1 and My = M is called I-adic filtration on M.

Definition 2.1.8. Let A = {I,}n>0 be a filtration, and let F' = {M,},>0 be a
filtration on M compatible with A.

1. We define the completion of R with respect to the filtration A as

Ry =lmR/I, = {(a1,05,...) € [[ R/ 1o | tns1 — a € L, ¥n > 1}

n>1
and denote it by ﬁA.
2. We define the completion of M with respect to the filtration F' as

My = 1im M/M,, = {(my,ma,...) € [[ M/My | mnss —m, € My, ¥n > 1}

n>1
and denote it by ]/\/[\F.

If A and F are I-adic filtrations, then the I-adic completion of R is denoted by ]?i]
and the I-adic completion of M is denoted by M. If there is no ambiguity, we just
drop I from notations, and denote the I-adic completions as R and M.

Remark 2.1.9. Since each R/I, is a ring, it is easy to see that Risa ring with
addition
(al,ag,...)+(b1,b2,...) = (a1+b1,a2+b2,...)

and multiplication

(al,ag, e )(bl,bg, .. ) = (albl,asz, .. )
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for all (ay,as,...),(by,be,...) € R.
Stmilarly, M is an R-module with addition

(m1,ma,...)+ (my,my,...) = (my +m),mg+mb,...)
and scalar multiplication

(Cll,ag, Ce )(ml,mg, .. ) = (alml,ang, .. )
for all (my,ma,...),(m},mh, ...) € M and (a1,a,...) € R.

Example 2.1.10. [6, Section 7.1] If R = Alxy,...,x,] is a polynomial ring over a
ring A. If m = (xq,...,x,), then the completion of R with respect to m is the formal
power series ring Alxy, ..., z,], i.e. Ry = Alxq,. .., x,].

Theorem 2.1.11. [0, Theorem 7.2] Let M be a finitely generated R-module and I
be an ideal of R. Then:

1. ]\/4\1 =M Qg ﬁl as ﬁl—modules.
2. E; is flat as an R-module.

Lemma 2.1.12. [6, Lemma 7.14] Let A = {1, },,>0 be a filtration, and F = {M,} >0
and H = {N, }n>0 be two compatible filtrations on an R-module M, which are cofinal,
i.e. for each M; there is an N; such that M; C N; and, for each N; there is an M;
such that N; C M;. Then ]\//TF = J\/ZH as ﬁl—modules.

When the natural map R — F/E\I is an isomorphism, we call R to be complete
with respect to I, and if [ is a maximal ideal, R is said to be a complete local
ring. Next we recall the Cohen structure theorem which states that any complete
local ring containing a field is a homomorphic image of a power series ring in finitely
many variables over a field.

Theorem 2.1.13. [0, Theorem 7.7] Let (R,m) be a complete local ring with residue
field K. If R contains a field, then R = K[z, ...,x,]/I for some n € N and ideal
I of R.
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2.1.4 Injective Modules and Matlis Duality

In this subsection, we give a brief summary of Injective modules and their important
properties which we use throughout this thesis. For the proofs and more details we
refer to [6], [4] and Appendix of [9].

Definition 2.1.14. An R-mdoule E is called injective if it satisfies following equiv-
alent conditions

1. Hompg(—, E) is an exact functor,

2. for any injection of R-modules N — M the R-linear map Hompg(M, E) —
Hompg(N, E) is surjective.

Theorem 2.1.15. [6, Corollary A3.9] Any R-module M can be embedded in an
injective R-module E.

Definition 2.1.16. The injective hull of an R-module M 1is the smallest injective
R-module containing M which will be denoted by Er(M).

Following Appendix of [0] we alternatively define injective hulls using essential
extensions. Let M be an R-module and N C M an R-submodule. M is called an
essential extension of N if every non zero R-submodule L of M has non zero
intersection with N. If also M has no proper essential extension, we say that M
is a maximal essential extension of N. By Zorn’s Lemma there always exist a
maximal essential extension of N, and it is unique up to non-canonical isomorphism.
The injective hull of N is also defined to be the maximal essential extension of it.

Definition 2.1.17. Let M be an R-module. An injective resolution of M is a
complex of injective R- modules

E: 0 B S ptdop s

with the cohomology modules H*(E) = M and H'(E) = 0 for all i > 1. It is called
minimal injective resolution if E° = Ex(M) and E* = Er(Coker d'™1) for eachi > 1
and the length of minimal injective resolution of M is called injective dimension of
M denoted by inj. dimp M.

An R-module M is called a Gorenstein module if and only if M has finite
injective dimension. If R is a Gorenstein R-module, then we call R a Gorenstein
ring.
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Proposition 2.1.18. [9, Theorem A.21, Proposition A.22] Let E be an injective
R-module. Then

1. E = @ pespec g Er(R/P)'? where the numbers pp are independent of the de-
composition,

2. Ex(R/P) = Ep,(Rp/PRp).

Proposition-Definition 2.1.19. [9, Theorem A.24] Let M be an R-module and E
be its minimal injective resolution. Then for each ,

Fi o @ ER(R/P)‘“(P’M)

PeSpec R

where p;(P, M) = rank, Ext}, (k, Mp) and k = Rp/PRp. The number 11;(P, M) is
called the i-th Bass number of M with respect to P.

Lemma 2.1.20. [9, Theorem A.25] Let R — S be a local homomorphism and
suppose that S is module finite over R. Let Er and Es be the injective hulls of
residue fields of R and S, respectively. Then, Homg(S, Er) = Eg as S-modules.

Remark 2.1.21. A consequence of Lemma is that if S = R/I, where I is
an ideal of R, then Eg = Hompg(R/I,ERr). On the other hand, the elements of
Hompg(R/I, ER) are the elements of Homg(R, Er) which sends I to zero. Since a

map from Homg(R, ER) is completely determined by where it sends 1 € R, we get
Homg(R/I, Eg) = Anng, I, and so Es = Anng,, I.

Definition 2.1.22. Let R be local and Eg(or just E if there is no ambiguity) be
the injective hull of its residue field. The functor Homg(—, E) is called the Matlis
duality functor and denoted by (—)V.

Theorem 2.1.23. [9, Theorem A.21] Let (R, m) be a local ring and R its m-adic
completion of R. Let Er and Eg be the injective hulls of residue fields of R and R,
respectively. Then

1. Er = Ep,

2. the map R — Hompg(Eg, Eg) defined by r — (e — re) for any r € R and

~

e € Eg, is an isomorphism of R-modules. In particular, if R is complete, then
R= HomR(ER, ER)
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Theorem 2.1.24. (Matlis Duality Theorem) Let R be a complete local ring and E
be the injective hull of its reside field. Then

1. if M is a Noetherian R-module, then M"Y is Artinian and (MY)Y = M,
2. if M is Artinian R-module, then M" is Noetherian and (MY)Y = M.

Remark 2.1.25. Let the situation and notation be as in the Matlis Duality Theorem.
Let M C E be an R-submodule. If we apply the Matlis dual functor to the natural
injection M — E, we get the surjection Homg(E, E) — MY. The kernel of this
map is just the set of elements of Homg(FE, E) that restrict to 0 on M. On the other
hand, by Theorem 2, any map from Hompg(E, F) is just a multiplication by
an element of R. Therefore, MY = R/.J where J = Anng M. Moreover, by Remark
2.1.21, (MY)Y = Anng J, and so M = Anng J. Hence, the set of R-submodules of
E is {Anng J | J is an ideal of R}.

Corollary 2.1.26. Let R be a local ring and E be the injective hull of its residue
field. Then E is Artinian.

Corollary 2.1.27. [4, 10.2.8 Corollary] Let R be a local ring, E be the injective
hull of its residue field and M be an R-module. Then M is Artinian if and only if
M is isomorphic to a submodule of E¢ for some o € N.

2.1.5 Local Cohomology Modules

In this subsection, we summarize topics of local cohomology which are used through-
out this thesis and provide some important properties. For proofs and more details,
we refer to [4] and [9].

Definition 2.1.28. For an ideal I of R and an R-module M, we define I'y(M) to
be
Iy(M) = U(O v ") ={m e M |mI" =0 for some n € N}.
neN
If ¢ : M — N is an R-module homomorphism, then U'1(¢) is the restriction map
I'/(M) — T'(N). That is to say that T';(—) is a functor on the category of R-modules
which s called I-torsion functor.
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Definition 2.1.29. Let M be an R-module. Take an injective resolution
o d° 1 dt 9 d?
E:0=-L" —FE — E — -
of M, so that there is an R-module homomorphism M — E° such that the sequence
0 1 2
0o-M—-E S S s

1s exact. Then apply the functor I'; to the complex E to obtain

I'r(d°)
T

r;(d") I;(d?)
—) —> .« ..

0 — [(E°) r/(EY I (E?)

The i-th cohomology of this complex is called the i-th local cohomology module of
M with respect to I and denoted by H:(M), which is independent of the choice of
mjective resolution E up to isomorphism.

Remark 2.1.30. The I-torsion functor is left exact, and so HY(M) = T'1(M).
Another characterization of local cohomology modules is the following:

Theorem 2.1.31. [/, 1.2.11 Theorem, 1.3.8 Theorem/] Let M be an R-module and
I be an ideal of R. Then

Lr(M) = lig Homp(R/I", M) and Hj(M) = @Extg(}z/f”, M).

neN neN

Theorem 2.1.32. [/, /.3.2 Flat Base Change Theorem] Let M be an R-module, T
be an ideal of R and v : R — S be a flat ring homomorphism. Then

Hi(M)®p S = Hjg(M ®rS)
for each i € Nj.

Corollary 2.1.33. Let W be a multiplicatively closed subset of R and let J be an
tdeal of R. Then for each i € N

W H (M) = Hiyyo g(WIM),

and

—

H}(M)J = Hjﬁj(MJ)-
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Lemma 2.1.34. [, 11.2.3 Lemma/ Let (R, m) be a Gorenstein local ring of dimen-
sion n and E be the injective hull of its residue field. Then E = H(R).

An alternative definition of local cohomology modules is via use of Cech complex.

Notation 2.1.35. For postive integers k < n, I(k,n) will denote the set of k-
tuples {i = (i(1),...,i(k)) | 1 < i(1) < i(2) < --- < i(k) < n}. For an element
j € I(k+1,n), 35 will denote the element (j(1),...,5(s—1),5(s+1),...,j(k+1)) €
I(k,n), and by ay,...,a;, ..., G, We MEAN A1, ..., Qi_1, Aitly - - Ay

Proposition-Definition 2.1.36. [/, 5.1.5 Proposition and Definition] The Cech
complez of an R-module M with respect to an ideal I = (ay,...,a,) C R is the
following

C:0—= ML ot L oL o ot L o) 0
where
1. C(M)°:=M

2. for each k € {1,...,n}, C(M)" := @icrphn) Mayry-aie)

3..d°: C(M)? — C(M)" is to be such that the composition C(M)° &, (M)
M, is just the natural map from M to M,,, where p; is the canonical projec-
tion.

4. for1 <k <mn,ie€l(k,n)andje I(k+1,n) the composition

S oMY L oM M

@j (1) (k+1)

M,

(1) ®i(k)

(in which the first map is the canonical injection and the third map is the
canonical projection) is the Tzatuml map from Mai(l)mai(k) to Maj<1>~~~a]-(k+1> mul-
tiplied by (—=1)*71 if i = 5% for an s € {1,...,k + 1}, and it is zero map

otherwise.

Theorem 2.1.37. [{, 5.1.20 Theorem] Let M be an R-module and C be its Cech
complex with respect to ideal I = {(ay,...,a,) C R. Then H(C) =~ Hi(M).
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Example 2.1.38. [/, 15.5.3 Example] Let R = Kk[z1,...,x,] or R = K[xq,...,z,]
(the ring of polynomials or the ring of formal power series over a field k) with
mazimal ideal m = (x1,...,x,). Then the top local cohomology module H]'(R) can
be computed using the Cech complex of R with respect to m. Therefore,

dn—l

H}(R) = Coker (€D Rey..5,.00 > Ruy.,)
=1

In addition, R, ., is a k-vector space with base {z{'...2%" | ai,...,an, € Z}
and Ry, ..z, 1S a k-vector space with base {x{*...z0" | aq,...,ap € Z,a; > 0}.
Thus, Cokerd™™! is the k-vector space with base {x{*...2%" | ay,...,qa, € —N},
which is the module of inverse polynomials k[xy, ..., x, ] whose R-module structure

1s extended from the following rule

AT ptenif ap < vy for all

Aoy (pay ™ x) =

0 if oy > vy for any 1

for all A\, € k and o; > 0,v; > 0. Consequently, if R = k[z1,...,x,], by Lemma
2.1.34), E = klx],...,x,].

rn

2.2 Modules over Rings of Prime Characteristic

Throughout this section all rings are of prime characteristic p. If R is a ring of prime
characteristic p, then (r+s)P" = r?"+s? forall r, s € R and e € N. Consequently, the
Frobenius map f : R — R defined by f(r) = r? becomes a ring homomorphism,
and so does its e-th iteration f¢: R — R defined by f¢(r) = r*" for any e € N.

2.2.1 General Prime Characteristic Tools

In this subsection, we provide some basics of positive characteristics techniques in
commutative algebra which we use throughout this thesis. We also provide some
well-known properties with proofs.

Definition 2.2.1. Let M be an R-module and e € N. F¢M = {F‘m | m €
M} denotes the Abelian group M with the induced R-module structure via the e-th
iterated Frobenius map and it is given by
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rEém = Fér?"m for allm € M andr € R
In particular, FER is the Abelian group R with the induced R-module structure
rFes = Fer®s for allr,s € R.

Definition 2.2.2. Let I C R be an ideal and e € N, Il denotes the ideal generated
by the set {r*" | r € I}. Consequently, if I = (ry, ..., 1), then TP = (7P rP%).

One can easily observe the following properties.
Remarks 2.2.3. Let M and N be R-modules, I be an ideal of R and e € N.
1. F&(FAM) = FeM for all d € N.

2. F¢R is a ring itself with an addition given by Ffr + Ffs = F&(r + s), and a
multiplication given by Ffr - F¢s = Férs for all r,s € R, i.e. FfR = R as
Tings.

3. F¢M is an FS¢R-module and the F¢R-module structure on FEM is given by
Ffr - Fém = Ffrm for allm e M and r € R.

4. IF¢M = Fe(IP1M),

5. If N is a submodule of M, then F¢N is a submodule of FEM and FEM/F¢N
and F¢(M/N) are isomorphic as R-modules.

6. If  : M — N is an R-module homomorphism, then the map Ff¢ : FEM —
FEN given by (Ffp)(Ffm) = F¢(p(m)) for all m € M is an F¢R-module
homomorphism.

7. F¢(—) is an ezxact functor on the category of R-modules.

8. If {M;}ier is a family of R-modules, then we have F([[,c; M;) = [Lie; FEM,
and F(B,c; M;) = @,c; FEM; as R-modules.

Proposition 2.2.4. Let M be an R-module, W be a multiplicatively closed subset
of R and I be a finitely generated ideal of R.

1. FEWIM) =2 W-HF¢M) as W~ R-modules.

2. If MI is the I-adic completion of M, then Ff(]\/jl) = @I as El—modules.
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Fe pe—1
Proof. For 1. we define ¢ : F*W M — W~1F¢M by (b(Ff(E)) W M
w w
for all 2 € WM, and we claim that it is an isomorphism of W~!R-modules.

w
Assume that Ff(ﬁ) = Ff(ﬁ) for some — € WM. Then = = ﬁ, which implies
w s s s

w
that tms = tnw for some t € W. Therefore, (tws)? ~t(tms) = (tws)’ ~(tnw),
. . Fe,wpe—lm Fespe—ln
and so tsFfwP 'm = twF°s? "'n. This means that —* = = , i.e.
w s

qﬁ(Ff(g)) = ng(Ff(g)) This shows that ¢ is well defined. Now for any element

,
- € W™IR, we have
s

*

o(CFE(™)) = o Fe(Bmy) = E P

sP°w SPw
e_ e__ € __
P FewP " im o rFewP " im
sPw sw
e, p°—1
_rhwtm e ™
- - * )
s w S w
Ffm

i.e. ¢ is W~!R-linear. Notice also that for any element —— € W~1F°¢M, we have
w

Fem  wP 7 'Fem Fe(wP )P ~im o, m
- pe = pe :¢<F*( pe)>'
w w w w
m Few? ~Im
If also qu(Ff(—)) = —~——— =0, then there exist an element s € W such that
w w
sEFewP"~lm = 0. Thus, F¢s? w? ~'m = 0, and so s? w? ~!m = 0. This means that

m m
— =0, Le. Ff(—) = 0. Hence, ¢ is surjective and injective.
w w

For 2. since the filtrations {F¢I"M},>o and {F¢(I")PIM}, 5o are cofinal by
Lemma [2.1.12]

. FeM FeM

FeM, = lim —* " = lim —

oMy = T = M e e
FeM

*

. e M e
S gy~ gy T M
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Proposition 2.2.5. Let C be a subset of R. Then

1. Ris a free R := {r?" | r € R}-module with basis C if and only if F°R is a
free R-module with basis FEC = {FfA | A € C}.

2. If R is a free RP"-module with basis C and S is the polynomial ring R|xy, ..., x,)],
then F2S is a free S-module with basis

B={FX e?" ... | AeCand0< ay,...,0, < p° — 1},

3. If R is a free RP" -module with a finite basis C, and S is the power series ring
R[zy,...,x,], then FES is a free S-module with basis

B={F z{"...azp" | AeCand 0 < ay,...,a, <p°—1}

Proof. For any finite subset A of C, and for any r € R, we have r = ), _, r§e>\ &
Fer =37 ca ™ F X where ry € R for all A € A. Then the proof of 1. follows.

For the proof of 2. we shall show that it holds for S = R]xz]|, then the result follows
by induction. Assume that R is free as an RP"-module with basis C. Since every
n € N can be written as n = up® + a where v, € N and 0 < a < p°©, any term rz"”
has a unique expression ) _, 2 \(z*)P" 2 for some finite subset A of C and for some
rx € R. Then F{raz™ can be written uniquely as ), 7az" F Az®. Therefore, since
every polynomial in S is a finite linear combination of monomials with coefficients in
R, any element in F¢S can be written uniquely as S-linear combination of elements
from {FfAz* | A € C and 0 < a < p°}, i.e. this set generates FFS as an S-module
freely.

For the proof of 3. we will similarly show that it holds for S = R[z], and the
result follows by induction. Assume that R is free as an RP"-module with basis
C. Let C = {M\i, -+, Ap} and g = > o iz’ € R[z]. Since every n € N can be
written as n = up® + a where u,a € N and 0 < a < p°, every term r,z" of g has
a unique expression Z;n:l T](J;,/\j)/\j ()P 2%, and so Fér,a™ is uniquely expressed as
Z;n:l )T FEA 2 for some T,y € R. Then Ffg can be written uniquely as

Z:ol > Gir, FENja% where gox, = 3020 P(ipesna)@’ € S. This shows that any
element in F£S can be written uniquely as S-linear combination of elements from
{FeXjz* |1 <j<mand 0 <a <p}, ie. thisset generates F£S as an S-module
freely. a
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In general, if S is the power series ring R[z1,...,z,], the set B in Proposition
3. does not have to generate ¢S freely as an S-module. The following example
shows that why we need the finiteness condition of the basis set C.

Example 2.2.6. Let S = k[z] be the power series ring over a field k of prime
characteristic p and C be an infinite free basis of k as kP vector space. We claim
that the set B = {F. x®* | A € C and 0 < j < p — 1} is not a free basis for F.S as
an S-module. Let g = > 7 ja,z™ € S such that a; # a; whenever i # j. Then for
every a,, there exist a finite subset A,, of C such that a, can be written uniquely as
> A, . Since every n € N can be written as n = up + a where u,a € N and
0 <a<p-—1, F.ax™ can be written uniquely as EAGAH ' F A x®. This means
that Fog =", > en, AT F AT where n = unp + vy, for some u,, a, € N and
0 < a, < p. On the other hand, since C is infinite we have A; # A; almost for
all a; # a;. Therefore, F.g is an infinite S-linear combination of elements from B.
Hence, B is not a free basis of F,.S even though it generates F,S as an S-module.

Definition 2.2.7. R is said to be F-finite if the e-th Frobenius homomorphism
makes R into a finitely generated module over the subring RP" = {r?" | r € R} (or
equivalently that FER is a finitely generated R-module) for any e € N.

Proposition 2.2.8. If R is an F-finite ring, then
1. R/I is F-finite for any ideal I of R,
2. any localization of R is F'-finite,
3. Rlxy,...,x,] and R[xq,. .., x,] are F-finite.

Proof. Assume that R is F-finite. Let F, R is generated by {Fi\1,..., Fi\,} as an
R-module. Notice that F,(R/I) is generated by {F.(A +1),..., F.(A,+ 1)} as an
R/I-module, and so R/I is F-finite. For 2. let W be a multiplicative subset of R.
Then W™'F,R is generated by {F.\y,...,F.\,} as an W~!R-module. However,
W='F,R = F,W~'R by Proposition 2.2.4] and so any localization of R is F-finite.
And 3. follows from Proposition [2.2.5] a

One of the most important flavour of rings of prime characteristic p is the regu-
larity criterion of E. Kunz.

Theorem 2.2.9. [15, Corollary 2.7] R is regular if and only if R is reduced and
F.R is a flat R-module.
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Theorem 2.2.10. [15, Theorem 3.3] R is a regular local ring if and only if

Ir(R/mlPly = pedim B £ some e € N.

2.2.2 Modules over the Frobenius Skew Polynomial Ring

In this subsection, we will provide a brief description of the Frobenius skew poly-

nomial rings and modules over such rings. For further details we refer to [?] and
[21].

Definition 2.2.11. The Frobenius skew polynomial ring over R is the skew polyno-
mial ring R[X; f] associated to R and the Frobenius map f in the indeterminate X
over R, whose multiplication is subject to the rule Xr = f(r)X = r?X for allr € R.

Remark 2.2.12. The Frobenius skew polynomial ring R[X; f] is the free left R-
module @;°, RX", and so consist of all polynomials > ;. X", where n € Ny and
To, " ,Tn € R.

Definition 2.2.13. Let M be an R-module. An e-th Frobenius map on M is an
R-linear map ¢ : M — F¢M, or equivalently an additive map ¢ : M — M such
that ¢(rm) = r*"¢(m) for all™ € R and m € M, where @ and ¢ are related by the
formula o(m) = Ffp(m) for allm € M.

Remark 2.2.14. [2], c.f. Discussion 1.6] For given an e-th Frobenius map ¢ on
an R-module M, we can turn M into a left R[X; f¢]-module by extending the rule
Xm = ¢(m) for all m € M, where X(rm) = ¢(rm) = r*"¢(m) = " Xm =
fe(r)Xm = (Xr)m for allr € R and m € M. Conversely, if an R-module M has
a left R[X; f¢]-module structure, then X : M — M is an e-th Frobenius map.

One of the most important examples of modules with Frobenius map is the
following.

Example 2.2.15. Let the situation and notation be as in FExample |2.1.538. Then
the map T : E — E defined by T(Axy™ ...x,"") = NPa P L ox, P for all X € k
and vy, ...v, € N is a Frobenius map on E, which we call it the natural Frobenius

map, and so E is a left R[T; f]-module. We can further extend this to a natural
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R[T; f]-module structure on E* which is given by

aq T(Zl

Ao, Ta,

Remark 2.2.16. Note that FfR-module structure of Hompg(M, F¢M) is defined as
follow
(Fir©)(=) = Foro(-)

for allr € R and © € Hompg(M, F£M).

Definition 2.2.17. Let M be an R-module. An e-th Cartier map on M is an R-
linear map ¢ : FEM — M, or equivalently an additive map C' : M — M such that
C(mr?") = C(m)r for all v € R and m € M, where ¢ and C are related by the
formula C(m) = (Ffm) for allm € M.

Remark 2.2.18. [2]], c.f. Discussion 1.7] For given an e-th Cartier map C on an
R-module M, we can turn M into a right R[X; f¢|-module by extending the rule
mX = C(m) for all m € M, where (mX)r = C(m)r = C(mr?") = mr’"X =
mfe(r)X = m(Xr) for all € R and m € M. Conversely, if an R-module M has
a right R[X; f¢]-module structure, then X : M — M 1is an e-th Cartier map.

Remark 2.2.19. Note also that the FfR-module structure of Homg(F¢M, M) is
defined as follow

Forg(=) = o(For—)
for allr € R and ¢ € Hompg(F¢M, M).

2.2.3 The Frobenius Functor

In this subsection, we give definition and some properties of the Frobenius functor
of Peskine and Szpiro introduced in [I§].

Definition 2.2.20. Let M be an R-module. The Frobenius functor Fg from the
category of R-modules to itself is defined by Fr(M) := F.R ®gr M where Fr(M)
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acquires its R-module structure via the identification of FyR with R. The resulting

R-module structure on Fr(M) satisfies

s(Fuir @ m) = Fosr @ m and Fius'r @ m = For @ sm

for allr,s € R and m € M. The e-th iteration of Fg is denoted by Fg, and it is
clearly given by Fg(M) = FfR®pr M.

Remarks 2.2.21. [16, Remarks 1.0]

1.

2.

/.
5.

Ff, commutes with arbitrary direct sums because the tensor product does.

It is easy to see that the map ¢ : R — F5(R) given by r — Ffr ® 1 is an
R-module isomorphism. If ® : R® — R® is an R-module homomorphism
represented by an o x 3 matriz A, then by the isomorphism ¢, F&(®) : RF —
R® is an R-module homomorphism represented by the matriz APl which is
obtained from A by raising its entries to the p°-th power.

F§ commutes with limits because the tensor product does.
If I is an ideal of R, then F§ commutes with the torsion functor I'y(—).

F§ commutes with localization.

Remarks 2.2.22. [16, Remarks 1.0] When R is regular the Frobenius functor be-
comes a useful tool because of the fact that it is exact by Theorem [2.2.9. In this
case, we have the following.

1.

By Remarks|2.2.21] 1. and exactness of Fy,, it commutes with arbitrary sums
of submodules and finite intersection of submodules.

Using the isomorphism in Remarks [2.2.21) 2. and exactness of Fy,, we obtain
Fe(I) = 1P and R/IP) = Fg(R/I) for any ideal I of R.

Because of the fact that Iy, is exact, it commutes with the cohomology of com-
plexes.

If M and N R-modules with M being finitely generated, then Fg(Ext'y(M, N)) =
Ext’(F&(M), F&(N)) which is induced by the R-module isomorphism

1@ fr—=id® f
S

Fi(Homp(P, N)) Homg(F§(P), F4(NV))

where P is a finitely generated free R-module.
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2.2.4 The I.(—) Operation and The *-closure

In this subsection, we will give definitions of I.(—) operation and *-closure, and
some properties of them. To do this we need the property that F¢R are intersection
flat R-modules for all e € N.

Definition 2.2.23. An R-module M is intersection flat if it is flat and for all sets
of R-submodules {N\}xea of a finitely generated R-module N,

M @g () Ny = [ (M &g Ny)
AEA AEA

Henceforth in this section R will denote a regular ring with the property that
F?R are intersection flat R-modules for all e € N.

Remark 2.2.24. Since intersection flat R-modules include R and closed under ar-
bitrary direct sum, free R-modules are intersection flat. For instance, F¢R are inter-
section flat for polynomial rings over a field of prime characteristic p. In addition,
for all complete reqular local rings of prime characteristic p, FR are intersection
flat [10, cf. Proposition 5.3]. Because of regularity, these rings have the property
that for any collection of ideals {Ax}ren of R,

(MaeaAn)PT 22 Fa(Maeadn) = NaeaFi(Ay) ﬂAeAA[fe]7
and this is enough to define the minimal ideal J C R with the property A C JP.
Proposition-Definition 2.2.25. Let e € N.

1. For an ideal A C R there exists a minimal ideal J C R with the property
A C JPl. We denote this minimal ideal by 1,(A).

2. Let u € R be a non zero element and A C R an ideal. The set of all ideals
B C R which contain A and satisfy uB C BP has a unique minimal element.
We call this ideal the star closure of A with respect to u and denote it by A*".

Proof. We refer to section 5 in [10]. O
Definition 2.2.26. Let e € N.

1. Given any matriz (or vector) V with entries in R, we define VPl to be the
matriz obtained from V' by raising its entries to the p®-th power.
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2. Given any submodule K C R, we define Kl to be the R-submodule of R®
generated by {v*" | v € K}.

The Proposition-Definition below extends the I.(—) operation and -closure de-
fined on ideals to submodules of free R-modules.

Proposition-Definition 2.2.27. Let e € N.

1. Given a submodule K C R there exists a minimal submodule L C R* for
which K C LIPYl. We denote this minimal submodule 1,(K).

2. Let U be an o X o matriz with entries in R and V. C R*. The set of all
submodules K C R* which contain V' and satisfy UK C K" has a unique

minimal element. We call this submodule the star closure of V' with respect to
U and denote it V*°U,

Proof. For the proof of 1. we refer to section 3 of [13]. For the proof of 2. we
shall construct a similar method to that in section 3 of [13]. Let V5 = V and
Vie1 = 1.(UV;) + Vi. Then {V;};>0 is an ascending chain and it stabilizes, since R is
Noetherian, i.e. V; = Vjy fo all k > 0 for some j > 0. Therefore, V; = I.(UV;) +V;
implies [.(UV;) C V;, and so UV; C Vj[pe]. We show the minimality of V; by
induction on 7. Let Z be any submodule of R* containing V' with the property that
UZ C ZP1, Then we clearly have V) =V C Z, and suppose that V; C Z for some
i. Thus, UV; C UZ C ZP°, which implies I.(UV;) € Z and so V41 C Z. Hence,
V;C Z. O

For the calculation of I.(—) operation, we first fix a free basis B for R as an
R -module, then every element v € R® can be expressed uniquely in the form
V= e ul”lb where w, € R for all b € B.

Proposition 2.2.28. [T/, Proposition 2.3] Let e > 0.
1. For any submodules Vi, ..., V, of R*, I.(Vi+---+V,) =L(V))+ -+ L(V,).

2. Let B be a free basis for R as R -module. Let v € R* and v =, ug’e]b be
the unique expression for v where w, € R* for all b € B. Then L1.((v)) is the
submodule of R* generated by {u, | b € B}.

The behaviour of the I.(—) operation under localization is very crucial for our
results. The following lemma shows that it commutes with localization.
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Lemma 2.2.29. [1J, Lemma 2.5] Let R be a localization of R or a completion at
a prime ideal. For all e € N, and all submodules K C R*, I.(K ®g R) ezists and
equals to I.(K) ®g R.

Lemma 2.2.30. Let e € N, U be a non-zero o X o matriz with entries in R and
K C R a submodule. For any prime ideal P C R,

(Kp)*V = (K*U)p.

Proof. Define inductively Ky = K and K;.; = L(UK;)+K;, and also Ly = Kp and
Liy1 = 1.(UL;) + L; for all ¢ > 0. Since I.(—) operation commutes with localization

and completion, an easy induction shows that L; = (K;)p, and the result follows. O

2.2.5 Lyubeznik’s F-modules

Let R be a regular ring. In this subsection, we will give a brief summary of
Lyubeznik’s F-modules and their properties which we use in upcoming chapters.
For the proofs and details we refer to [16].

Definitions 2.2.31. An F-module is an R-module M equipped with an R-module
isomorphism 6 : M — Fr(M) which we call the structure isomorphism of M.

An F-module homomorphism is an R-module homomorphism ¢ : M — M’ such
that the following diagram commutes

MLM’

el le'
Fp(M) —— Fr(M)
Fr(#)
where 6 and 0" are the structure isomorphisms of M and M’, respectively.
A generating morphism of an F-module M is an R-module homomorphism [ :
M — Fgr(M), where M is an R-module, such that M is the limit of the inductive
system in top row of commutative diagram

M L Fp(M)

Bl mel Fgml

Fr(M) —— F3(M) —— F3(M) — ---
r(M) Fr(8) il )Pym w(M) F3(8)

F2
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and the structure isomorphism of M is induced by the vertical arrows in this dia-
gram.

The structure isomorphism of an F-module M is automatically its generating
morphism, and so every F-module has at least one generating morphism.

Definition 2.2.32. An F-module M is called F-finite if it has a generating mor-
phism B : M — Fr(M) with M a finitely generated R-module. In addition, if (5 is
injective, M is called a root of M and 3 is called a root morphism of M.

Proposition 2.2.33. [16, Proposition 2.3] Let 5 : M — Fr(M) be a generating
morphism of an F-finite F-module M and let §; be the following composition

2 i—1 .
M Ly mp(an) 220 2 any B0 S O i,

Then:

1. The ascending chain ker 81 C ker 8y C - -+ stabilizes at the first integer ¢ where
we get ker 8; = ker 3;11.

2. Im B; = M/ ker f5; is a root of M where ker (; is the stable kernel of the as-
cending chain in 1. and M = 0 if it has a zero root.

Next we gather some important properties of F-finite F-modules which are
proved in [16].

Theorem 2.2.34. [16, Theorem 1.4] Let M be an F-module. Then
inj. dimz M < dimpg Supp M.
In particular, if dimg Supp M = 0, then M is injective as an R-module.

Remarks 2.2.35. [16, Section 2] Let M be a F-finite F-module. Then we have the
following.

1. Every F-finite module M has a root.

2. If N is an F-submodule of M and M is a root of M then N is F-finite and
N =NNM is aroot of N. Also, M/N is F-finite and M/N s a root of
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3. If M 1is a root of M, then there is a one-to-one correspondence between the F'-
submodules N of M and the R-submodules N of M such that N corresponds
to MNN.

4. If I C R is an ideal, then the local cohomology module HY(M) is F-finite for
any t.

5. All the Bass numbers of M are finite.

6. If R is a finitely generated algebra over a Noetherian local ring of characteristic
p, then M has finite length in the category of F-modules.

Example 2.2.36. Any R-module isomorphism ¢ : R — Fg(R) makes R into an
F-module. In particular, the canonical isomorphism

¢:R— F,R®gr R = Fg(R) defined by r — F.r ® 1.

Furthermore, R is clearly F-finite F'-module. This makes local cohomology modules
HY(R) with support on an ideal I C R into F-finite F-modules. Therefore, there
exist a finitely generated module M and an injective map 5 : M — Fr(M) such that
GN

H(R) = lim(M 2 Fr(M) 25 F3(0) )

where f: M — Fr(M) is a root morphism.

2.2.6 The A° and V¢ Functors

In this subsection, we recall the notions of A¢ and V¢ functors which was defined
in Section 3 of [I0]. Let R denote a complete local ring and E the injective hull
of its residue field. Let €° be the category of Artinian R[f; f¢]-modules and D¢ be
the category of R-linear maps M — F§5(M) where M is Noetherian R-module and
a morphism between M — Ff{(M) and N — F§(N) is a commutative diagram of
R-linear maps
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We define the functor A¢ : €¢ — ¢ as follows: given an e-th Frobenius map
0 : M — M, we can obtain an R-linear map ¢ : FFR ® M — M such that
O(Ffr @ m) = rf(m) for all r € R, m € M. Applying Matlis duality to this map
gives the R-linear map MY — (FFRQM)Y = FER® MY where the last isomorphism
is described in Lemma 4.1 in [16].

Conversely, we define the functor U¢ : ¢ — €¢ as follows: given a Noetherian R-
module N with an R-linear map N — F§(N). Applying Matlis duality to this map
gives the R-linear map ¢ : F5(NY) = F5(N)Y — NV where the first isomorphism
is the composition Fg(NY) = F(NY)VY = FE(NYY)Y = F5(N)Y. Then we define
the action of # on NV by defining 6(n) = p(1 ®n) for all n € NV.

The mutually inverse exact functors A® and W¢ are extensions of Matlis duality
which also keep track of Frobenius actions. For the details we refer to [10].



Chapter 3

Annihilators of Modules with a

Frobenius Map

Throughout this chapter R will denote a polynomial ring in finitely many variables
over a field k of prime characteristic p, i.e. R = k[z1,...,2,]. In this chapter, we
investigate the algorithms described in [12] and [13]. We present our results on these
algorithms, and generalize the algorithm described in [13] to polynomial rings. We
finish the chapter with an application to Lyubeznik’s F-finite F-modules.

3.1 The Katzman-Schwede Algorithm

The purpose of this section is to redefine the algorithm described in [I12] with a more
algebraic language and show that it commutes with localization. Let e € N.

Definition 3.1.1. For any R-linear map ¢ : FER — R, we say that an ideal J C R
is ¢-compatible if p(FJ) C J.

37
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Given ¢ which is compatible with J as above definition, there is always a com-

mutative diagram

R % R

! \
F(R)J) -5 RJJ
where the vertical arrows are the canonical surjections.

Lemma 3.1.2. [12, Lemma 2.4] Assuming a commutative diagram as above, the
¢-compatible ideals containing J are in the bijective correspondence with the ¢'-
compatible ideals of R/J, where ¢' is the induced map FE(R/J) N R/J as in
above diagram.

Next we will explain the F¢ R-module structure of Homg(F¢R, R), which is cru-
cial for our computational techniques in this thesis.

Remark 3.1.3. Let C be a base for k as a kP -vector space which includes the
identity element of k. By Proposition [2.2.3, F¢R is a free R-module with the basis
set

B={F z{"...x0" |0 < ay,...,an <p° A €C}.

Lemma 3.1.4. [3, ¢f. Example 3.0.5] Let w, : FER — R be the projection map onto

c_1 1

the free summand RESzY ~ ... aF =1, Then Homp(F°R, R) is generated by m. as an

EF¢R-module.

Proof. For each basis element FfAz{" ... x50 € B, the projection map onto the
free summand RFEAx{" ... xS is defined by the rule Ffz.m.(—) = m.(Ffz.—), where
z= )\_1561’1’6_1_0‘1 ...xP*717an Since we can obtain all of the projections in this way,
the map

O : FPR — Hompg(F¢R, R) defined by ®(Fiu) = ¢y,

where ¢, : FR — R is the R-linear map ¢, (—) = m.(Ffu—), is surjective. On the
other hand, if ®(Ffu) = 0 for some u € R, then we have

Ou(Fer) = mo(Ffur) = Féu.m (Fr) =0 for all r € R.

This means that Ffu must be zero, and so ® is injective. Hence, ® is an FF'R
isomorphism. In other words, 7. generates Homg(F¢R, R) as an FfR-module. O
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Definition 3.1.5. Let the notation and situation be as in Lemma [3.1.4 We call
the map m, in Lemma the trace map on FER, or just the trace map when the
content is clear.

Next lemma provides an important property of the trace map . which gives the
relation between elements of Hompg(FSR, R) and I.(—) operation (cf. Claim 6.2.2
in [3]).

Lemma 3.1.6. Let A and B be ideals of R. Then w.(FfA) C B if and only if
A C BPFL.

Proof. (=) Since R is Noetherian, A is finitely generated, and since 7, is R-linear
we may assume that A is a principal ideal, i.e. A = aR for some a € R. Now
since FER is a free R-module with basis B as in Remark Ffa =Y. riFfg for
some r; € R and Ffg; € B. On the other hand, by Lemma [.1.4] 7 (Ffza) = r;
for some z; € R. This implies that 7.(FfRa) = (r;). Then by the assumption
Te(FeA) = (r;) C B, and since Ffa = F*Y., 17" g; we have a = 3,7 ¢g; € B,
Hence, A C BIPY.

(<=) Assume first that A C Bl which implies that F¢A C F¢BP. Therefore,

Te(F¢A) C m (FBP) = 7, (BF*R) = Br.(F°R) C B.
O

Corollary 3.1.7. Let A be an ideal of R, and let ¢ € Homg(FfR, R) be such that
d(—) = m(Ffu—) for some w € R. Then ¢(FfA) = m(FfuA) = I.(uA) and
*-closure of A gives the smallest ¢-compatible ideal containing A.

Proof. Since uA C I, (uA)P the first claim follows from Lemma The second
claim follow from the fact that

A is ¢ — compatible & ¢(FFA) = m.(FfuA) = I.(uA) C A
& uA C Al

O

Next we recall Fedder’s Lemma which translates the problem of finding compat-

ible ideals of R/I for an ideal I to finding compatible ideals on R. In the case that
R is a Gorenstein local ring, this lemma was proved by R. Fedder in [7].
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Lemma 3.1.8. [7, Lemma 1.6][3, Lemma 6.2.1] Let S = R/I for some ideal I and
Te be the trace map, then for any ¢ € Homg(FSR, R) satisfies ¢(FEI) C I if and
only if there exists an element u € (IP : I) such that ¢(—) = w(Fou—). More
generally, there exists an isomorphism of F¢S-modules

(Fe(1v 2 1))

Homg(F¢S, S) = ()

Proof. By Lemma 3.1.4} for any ¢ € Homg(F¢R, R) there exists an element u € R
such that ¢(—) = m(Fiu—). Then by Lemma [3.1.6]

G(FCI) = mo(Feul) C I < ul C IV oy e (1P 1).

For the second claim, we shall show that the map ® : F¢(IP] : ) — Homg(F¢S, S)
which sends F¢z to the map 7. (F¢z—) is surjective. It is easy to verify that this map
is well-defined and F¢ R-linear. Since Hompg(F¢S, S) = Homg(F£S, S), by freeness of
F¢R, for any map ¢ € Homg(F¢S, S) there always exists a map ¢ € Homg(FCR, R)
such that [ is i-compatible. Namely, ® is surjective. On the other hand, by
Lemma again, Ker ® = (F¢IP]), and the result follows by the first isomorphism
theorem. a

Lemma 3.1.9. [12, Proposition 2.6.c] If ¢ is surjective, then the set of p-compatible
1deals is a finite set of radicals closed under sum and primary decomposition.

For ¢-compatible prime ideals P C @), we say that () minimally contains P
if there is no ¢-compatible prime ideal strictly between P and (). For a given ¢-
compatible prime ideal P, next proposition shows that how to compute ¢-compatible
prime ideals which minimally contain P, and we turn it into an algorithm (cf.
Theorem 4.1 in [13] and Section 4 of [12]).

Proposition 3.1.10. Let ¢ : FER — R be an R-linear map where ¢p(—) = m.(Ffu—)
for some u € R. Let P and Q) be ¢-compatible prime ideals such that Q) minimally

contains P, and let J be the ideal whose image in R/P defines the singular locus of
R/P. Then:

1. If (PP P) C (QF: Q) then J C Q,

2. If (PP : Py ¢ (QF: Q) then (uR + PPy . (PP P) C Q.
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Proof. For 1. let R, be a localization of R at a prime ideal p which contains @,
and let S = ?{\p be the completion of R, with respect to the maximal ideal pR,.
Since colon ideals, Frobenius powers and singular locus commute with localization
and completion, (PP : P) C (QF71 : Q) = (PSPl : PS) C (QSPT : QS). Let
@1, ...,Qs be the minimal prime ideals of @S in S, and @Q; = (QS : s;) for some
suitable elements s; € S. Then (PSP : PS) C (QEPE] : ;) for each Q); since for any
element a € (QSP: QS),

be Q; <bs; € QS = abs; € QS[pe] = absfe c Qs[pe]
S abe QS s)) = (QS 1 s)P = Q"

Thus, by Theorem 4.1 in [13], JS C Q; for each ¢, which implies that JS C QS,
and so J C Q. For 2. we refer to Theorem 4.1 in [13]. O
The following algorithm is the same algorithm described in [12], which we call
it here the Katzman-Schwede algorithm, finds all ¢-compatible prime ideals of R
which do not contain I.(uR). We describe it here in a more algebraic language.

Input:
An R linear map ¢ : F*R — R where ¢(—) = m.(Ffu—) and u € R,

Output:

Set of all ¢-compatible prime ideals which do not contain I.(uR).

Initialize:

Ar={0} and B=10

Execute the following:

While Ag # B pick any P € A — B, set S = R/P;
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1. Find the ideal J C R whose image in S defines the singular locus of S, and
compute J*¢,

2. Find the minimal prime ideals of J**, add them to Ag,
3. Compute the ideal B := ((uR + PPy (PP P)), and compute B**,
4. Find the minimal prime ideals of B*“, add them to Ag,

5. Add P to B.

Output Ag and stop.

The Katzman-Schwede algorithm produces a list of all ¢-compatible prime ideals
which do not contain L := I.(uR). Because for any prime ideal @), whenever L C @
we have the property that @ is ¢-compatible if and only if Q/L is ¢'-compatible
where ¢’ is the induced map from ¢. But Q/L is clearly compatible since ¢’ is zero.
Thus, we do not need to assume that ¢ is surjective.

Discussion 3.1.11. Let R, be a localization of R at a prime ideal p, and let S = ]/%;
be the completion of R, with respect to the mazimal ideal pR,. We know that pff\p 18
the mazimal ideal of Z/%\p. Now let Xy, ..., X, be minimal generators of pl/%\p, and let
K[X1,..., X;] be the formal power series ring over the residue field K of R,. By the
Cohen’s structure theorem S = K[Xy,...,X]. Let E = Eg(S/m) be the injective
hull of the residue field. Then by Ezample[2.1.38, E is isomorphic to the module of
inverse polynomials K[ X[ ,..., X, ]. Let T : E — E be the natural Frobenius map
as in the Example[2.2.15

We can also view the Katzman-Schwede algorithm from the point of Frobenius
maps on injective hull of residue fields (cf. section 4 of [13]). By Remark
the set of S-submodules of E is {Anng J | J is an ideal of R}. Also Theorem 4.3 in
[10] shows that an S-submodule Anng J C E is an S[O; f¢]-submodule if and only if
uJ C JP where © = uT® and u € S. Thus, the Katzman-Schwede algorithm finds
all submodules Anng P of E which are preserved by the Frobenius map ©, under the
assumptions that P is a prime ideal of S and the restriction of © to Anng P is not
the zero map (i.e. it finds all the ©-special prime ideals of S, see Definition .

All of the operations used in the Katzman-Schwede algorithm are defined for
localizations of R. Therefore, we can apply the algorithm to any localization of R at
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a prime ideal. In the rest of this section, we investigate behaviour of the Katzman-
Schwede algorithm under localization. Let R, be a localization of R at a prime ideal
p. Our next theorem gives the exact relation between the output sets Ag and Ag,
of the Katzman-Schwede algorithm for R and R,, respectively.

Theorem 3.1.12. The Katzman-Schwede algorithm commutes with localization: for
a givenu € R, if Ap and Ag, are the output sets of the Katzman-Schwede algorithm
for R and R,, respectively, then

Ap, ={PR,| P € A and P C p}

Proof. We shall show that the Katzman-Schwede algorithm commutes with local-
ization step by step. Since the ideal defining singular locus commutes with localiza-
tion, so is step 1. Since Frobenius powers and colon ideals commute with localization
under Noetherian hypothesis, so is step 8. Then by Lemma [2.2.30] *-closure com-
mutes with localization. Therefore, step 2. and 4. follow from the fact that primary
decomposition commutes with localization.

Let P be a ¢-compatible prime ideal of R. Then since uP C PP & uPR, C
P¥IR,, PR, is a ¢-compatible prime ideal of R,. Since the Katzman-Schwede algo-
rithm commutes with localization, @) is a ¢-compatible prime ideal of R minimally
containing P if and only if R, is a ¢-compatible prime ideal of R, minimally
containing PR,. Hence, Ag, = {PR, | P € Ar and P C p}. O

3.2 A Generalization of the Katzman-Zhang Al-

gorithm

Let R, be a localization of R at a prime ideal p, and let S = f%\p be the completion of
R, with respect to the maximal ideal m = pR,. Let £ = Eg(S/m) be the injective
hull of residue field of S. The purpose of this section is to generalize the algorithm
defined in Section 6 of [I3] to R, and show that it commutes with localization.

Remark 3.2.1. Given an Artininan S-module M, by Corollary we can
embed M in E for some positive integer o, we can then embed Coker(M — E%) in
EP for some positive integer 3. Continuing in this way, we get an injective resolution

0 M= B2 B8 ..
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~

of M, where A is an o x [ matriz with entries in S since Homg(E*, EP)
Homg(S?,5%), and so M = Ker A.

Proposition 3.2.2. [13, Proposition 2.1] Let M = Ker A* be an Artininan S-module
where A is an o« X 8 matriz with entries in S. For a given e-th Frobenius map on
M, A*(M) € Homg(Coker A, Coker APl) and is given by an a x o matriz U such
that UIm A C Im APl conversely any such U defines an S[O; f¢]-module structure
on M which is given by the restriction to M of the Frobenius map © : E* — E“
defined by ©(a) = U'T%(a) for all a € E*, where A° as in subsection[2.2.6] and T is

the natural Frobenius map on E“.

Remark 3.2.3. By Proposition for any Artinian submodule M = Ker A of
E* with a given S[O©; f¢]-module structure, where © = U'T*®, there is a submodule
V of S* such that M = Annga V* .= {a € E* | Vla =0} and UV C VPl (in fact
V =ImA). For simplicity, for V C S* we denote E(V) = Annga V*.

Lemma 3.2.4. [I3, Lemma 3.6, Lemma 3.7] Let © = U'T : E* — E* be a Frobe-
nius map where U is an o X o matriz with entries in S and let K C S“. Then

1. B(L.(Im UP-Uyk=2l... 1)) = {a € E*| ©°(a) = 0},
2. E(IL(UK)) ={a € E*|O(a) € E(K)}.

Remark 3.2.5. Let M = Anng. V' be as in Remark [3.2.3 Then Anng M =
Anng S*/V because Anng M C Anng MY C Anng MY = Anng M.

Definition 3.2.6. Let © = U'T® : E* — E“ be a Frobenius map, where U is an
a X o matriz with entries in S. We call an ideal of S a ©-special ideal if it is an

annihilator of an S[O; f¢]-submodule of E®, equivalently if it is the annihilator of
Se /W for some W C S with UW C WP,

Notice that the concept of injective hull of the residue field is not available for
polynomial rings. Therefore, we adapt above definition for a more general setting
and define special ideals depending on a given square matrix as follows.

Definition 3.2.7. Let R be R or R, or S. For a given o X o matriz U with entries
in R, we call an ideal of R a U-special ideal if it is the annihilator of R*/V for
some submodule V- C RY satisfying UV C VP,
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Next we will provide some properties of special ideals. The following lemma
gives the most important properties which are actually generalization of Lemma 3.8
and 3.10 in [I3] to R with similar proofs.

Lemma 3.2.8. Let R be R or R, or S. Let U be an a X o matriz with entries in
R and J be a U-special ideal of R. Then

1. Associated primes of J are U-special,

2.V = (JRY*U is the smallest submodule of R® such that J = Anng R*/V
and UV C VP,

Proof. For 1. let P be an associated prime of J and J = Anng R*/V for some
V C R* such that UV C VIPl. Then for a suitable element r € R we have
P=J:r) W= (Vigar)={weR*|rweV} then P = Anng R*/W since
sePerseJersR*CV < sR* CW. On the other hand, since UV C VP
and rW C V we have rUW C UV and so r?*" UW C r?" UV C rp"- 1yl C VI,
This means that UW C (VP pa 12%) = (V iga r)PT = WP,

For 2. let J = Anng R®/V for some V' C R* such that UV C VPl Tt is
clear that JR® C (JR®)*Y and JR® C V = (JR*)*Y C V*U = V. Therefore,
J C Anng RY/(JR*)*Y C Anng R*/V = J, and so J = Anng R/(JR*)*Y. O

Theorem 3.2.9. [13, Theorem 5.1] There are only finitely many O-special prime
ideals P of S with the property that for some S[O; f]-submodule M C E* with
Anng M = P and the restriction of © to M is not zero.

Theorem [3.2.9] was proved by induction on « using the aid of injective hull of
the residue field of S, and turned into an algorithm in [I3], which we call it here
Katzman-Zhang Algorithm. Since injective hulls of residue fields are not available
for polynomial rings, we only use techniques of I.(—) operation and x-closure to
generalize the Katzman-Zhang Algorithm to R. Next theorem allows us to prove
polynomial version of Theorem [3.2.9]

Theorem 3.2.10. [74, Theorem 3.2] Let U be an o X « matriz with entries in R
and o € N.

1 If LU gl URYY = 1, (UPIUPT ... UR®) then
Ie<U[pe—1]U[pe—2} o URa) — Ie+j(U[Pe+j—1]U[pe+j—2} . URa)

for all j > 0.
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2. There exists an integer e such that (1) holds.

For the rest of this section, we will fix an o X a matrix U with entries in R,
and K will denote the stable value of {I,(UF"1UP*...UR*)},5; as in Theorem
0. 2. 10l

Proposition 3.2.11. If P is a prime ideal of R with the property that K C PR*
where K = 1,(U.R*) and U, = U IUP1... U then P is U,-special.

Proof. Let P be a prime ideal of R such that L C PR“. Then
IC g PRa = UeRa g P[Pe}Ra = UePRa g P[pe]Ra = PRa — (PRQ)*UE.

Therefore, P is U.-special. O
By Proposition [3.2.11] any prime ideal containing IC is U.-special. This is equiv-
alent to saying that the action of U, on submodules PR* containing IC with P being
a prime is the same as the action of zero matrix. Henceforth, we will assume that
I # 0.
Our next theorem is the generalization of Theorem to R, and we will prove
it using a very similar method to that in [13], Section 5].

Theorem 3.2.12. The set of all U-special prime ideals P of R with the property
that K ¢ PR is finite.

We will prove Theorem by induction on a. Assume that o = 1. For a
prime ideal P being a u-special prime, i.e. P = Anngr R/P*", is equivalent to the
property that uP C PPl. This means, by Corollary that P is a ¢-compatible
ideal where ¢(—) = m(F,u—). Then the set of all u-special prime ideals are finite
and the Katzman-Schwede algorithm finds such primes. Henceforth in this section,
we will assume that Theorem holds for oo — 1.

For a U-special prime ideal P, we will present an effective method for finding all
U-special prime ideals () 2 P for which there is no U-special prime ideal strictly
between P and (), and we will call such U-special prime ideals () as minimally
containing P. The following lemma is a generalization of Lemma 5.2 in [I3] to R,

which is our starting point of finding U-special prime ideals minimally containing
P.

Lemma 3.2.13. Let P C @ be U-special prime ideals of R such that Q) contains P
minimally. If a € Q\ P, then Q is among the minimal prime ideals of Anng R*/W
where W = ((P + aR)R*)*".
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Proof. Since PR* C (P + aR)R* C QR™ we have
(PR € (P4 aR)R™) € QR

Then by Lemma [3.2.8],

f gAnnRR—gAnnRR—:Q

A D S CLON

which implies that @) contains a minimal prime ideal of Anng R*/W. Therefore, by
Lemma [3.2.8| again, this minimal prime is U-special. Since ) contains P minimally,
it has to be @ itself. O

Next, we will prove a generalization of Lemma 5.3 in [13] to R, which is a crucial

step for proving Theorem [3.2.12]

Lemma 3.2.14. Let Q) be a U-special prime ideal of R, where Q = Anng R*/W
for some submodule W C R® satisfying UW C WP, Let a ¢ Q and X be an

wvertible o X o« matriz with entries in the localization R,. Let v > 0 be such that
Uy = a* XPUX ™ has entries in R and Wy, = XW, N R*. Then

1. Q is a minimal prime of Anng R*/W; and UyW; C Wl[p], i.e. Q 1s Uy-special.

5—2}

2. FL(UWP UV ... URY) ¢ W, then I (UF" 0P ... UyR*) ¢ Wy

Proof. Let J = Anng R*/W;. Then

Jo = (Anng R*/W1), = Anng, RS/ (W1), = Anng, Ry /X W,
=~ Anng, RY/W, = (Anng R*/W), = Q..

Therefore, () is a minimal prime ideal of J. We also have

UWy = e’ XPIUX"HXW, N RY) C (e XPUXXW,) N R®
C XPIWwF N R = (XW,)P 0 R* = (XW, N R*)P = Wl

This means that .J is U;-special. Therefore, by Lemma |3.2.8 ) is U;-special.
Assume that

5—2} 5—2}

LUV Iy URY) ¢ W, de. U UL g RY ¢ WP,
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Now suppose the contrary that

6—2] )

Lo u Ry Wy e U IO g R c W

Since

e—l]

Ul[p Ul[pe_z} . Ul — (aVX[p]UXfl)[Pe_l](aVX[p]UXfl)[pﬁ_z] . aux[p]UXfl
= /") Xy X e ) X gl e L g x Pl X

= @/ ) Xl et gt

we have bXPIUP Pl yx—1Re ¢ WP = (XW,NRY)PT = XPTW"" n Re,
where b = qv®° "+ * 41 Therefore, X1y 1yl ... yx-1re C Xl
and so UP"IUP ... URY C W™, Then U U ™. UR* C W™ since a is
not a zero divisor on R*/WPl which contradicts with our assumption. O

Next, we will give a generalization of Proposition 5.4 in [I3] to R, which will give
us an effective method for finding the U-special prime ideals containing a U-special
prime P minimally in an important case.

Proposition 3.2.15. Let P be a U-special prime ideal of R such that K ¢ PR®.
Assume that the a-th column of U is zero and PR® = (PR*)*V. Then the set of
U-special prime ideals minimally containing P is finite.

Proof. Let Q be a U-special prime ideal minimally containing P and W = (QR*)*V.

Let Uy be the top left (o — 1) x (o — 1) submatrix of U. Since PR® = (PRY)*"Y
UPR* C PIPIR®  all entries of U are in (P : PI). Therefore, UyPR*~' C PPIRo1,
and so P is Uy-special. Let Ky be the stable value of {Ie(U(Epefl]UO L UgR* Y} eso
as in Theorem We now split our proof into two parts. Assume first that
Ko C PR ie. TL(UF 0P ™. UyRo"1) € PR for some e > 0.

1) Let (g,...,ga-1,0) be the last row of the matrix UP* 1UPl... /. Note
that its top left (o — 1) X (o — 1) submatrix is U(gpe*qU(gpk?] ---Up. By our
assumption, all entries of UP" 'UP"1... Uy are in PP C Q). Therefore,
Ie(U(gpeillU[p%Z} - UgR*™Y) € QR>'. Then by Proposition m, P and
Q are ngefl]UO[p%Q} .- Up-special, and so the action of UF* ' TUF ... is
the same action of a matrix U, whose first o — 1 rows are zero and last row is
(915 Ga1,0), and so we replace UP*1UP?) ... U with U, without effecting
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any issues. We now define inductively Vo = QR and V1 = L.(U.V;) + V; for
all ¢ > 0. Since

a—1
UeQRa = {(07 e 507 Z.%%)t | vzan € Q}a

i=1

LUQR) = {(0,...,0,0) [0 € 1.(Y_ 4@}

Therefore, the sequence {V;};>o stabilizes at V} = [ (U.QRY) + QR“. By
definition of x-closure, we have QR* C Vi C W, and so Anng R*/V; = Q.

Furthermore, we have

S L S R G
L3205 9:Q) L(U.QR?)
which implies that

Anngp C @ since [ (U.QR*) C V7,

a—1 a—1
LO Q) =) 1(9:Q) € @,
=1 =1

e L(¢:Q) C Q< ¢Q C QP forall 1 <i < . Hence, Q is g;-special for
all 1 <i < a. On the other hand, at least for one g; we must have g; ¢ PP
so that we do not get a contradiction with our assumption K ¢ PR We can
now produce all such @) using the Katzman-Schwede algorithm.

Let 7 C R be intersection of the finite set of Uy-special prime ideals of R mini-
mally containing P. Let p : R — R®~! be the projection onto first a—1 coordinates,
and let J = Anng R*~'/p(W). Then since Uyp(W) = p(UW) C p(WP)) = p(W)lF,
J is Up-special. Note that @ C J, and so P C J. Assume now that Ko ¢ PR

2) We now compute (7P1kC5)*Y0 as the stable value of
LO = T[pe]]CO

Ll = II(UOLO) + LO = T[peil} 11<U0]C0) + T[pe]lco — T[peil]lco + T[pe]’CO

Le = TICO + Le—l
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n

and we deduce that 7XCy C L. C (7P1Ky)*Y. On the other hand, since J is a
Up-special ideal strictly containing P, 7 C v/J. Thus, for all large e > 0, we
have 7IP} C J. Therefore,

Ko C (TPKCo) o C (JRO)Y C p(W)*Po = p(W).

where the last equality follows from the fact that UW C WP!. Moreover, since
T ¢ P, we have 7Ky £ PR*™*.

Now we define o = (vy,...,v4_1,0)" for any element v = (v1,...,V0_1,0a),
and V = {0 | v € V} for any submodule V. Let [ : R*! - R @ R
be the natural inclusion /(v) = v @ 0. Note that V = I(p(V)). Then we
also define Wy = {w € W | p(w) € 7Ky} and note that (2) implies that
p(Wy) = 7Ko. We have W3V C W*Y = W and WiV = 1, (UW,)*Y +W,. Since
UWy = UW,y = Ul(TKy), L (UL(TKo))*Y € WV € W. On the other hand, if
L (UI(rKo))*Y € PR®, then

L(Ul(TKo)) € PR* = Ul(rKy) € PPIR* = p(Ul(7Ky)) C p(PPR®)
= UytKy € PP R = 7Pl K, € PPIR!
= 1 (FPUKy) € PRO! = 71, (UpK,) € PR
= 7Ky C PR

which contradicts with (2). Hence, we also have I; (Ul(7K))*Y € PR®.

Let M’ be a matrix whose columns generate I, (Ul(7Ky))*Y € W. Choose an
entry a of M’ which is not in P. Then

(a) If a € @, Lemma [3.2.13| shows that ) is among the minimal prime ideals
of Anng R®/((P + aR)R*)*Y.

(b) If a ¢ Q, we shall apply Lemma with the matrix X with entries
in R, such that the a-th elementary vector e, € Wy, = XW, N R* and
U, as in Lemma [3.2.14 Then R*/W; = R*/p(W;), and so Q is a
minimal prime Anng R*~!/p(W;). Let Uy be the top left (a—1) x (a—1)
submatrix of U;. Then since Usp(W1) C p(UyW7) € p(W) = p(W)P),
Anng R /p(W,) is Us-special, and so is Q.
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This shows that in any case () is an element of a finite set of prime ideals. Hence,
there are only finitely many U-special prime ideals of R which contain P minimally.
O

Next Theorem is a generalization of Theorem 5.5 in [13] to R, and it provides an
effective algorithm for finding all U-special prime ideals P of R with the property
that £ € PR".

Theorem 3.2.16. Let P a U-special prime ideal of R such that K ¢ PR®, and Q be
a U-special prime ideal minimally containing P. Let M be a matrix whose columns
generate (PR*)*V.

1. If PR* C Im M, then either

(a) all entries of M are in Q, and so there exist an element a € Q \ P and
Q is among the minimal prime ideals of Anng R*/((P + aR)R*)*Y, or

(b) there exists an entry of M which is not in Q, and Q is a special prime
over an (a« — 1) X (o — 1) matrix.

2. IfPR* = Im M, then there exist an element a; € R\ P, an element g €
(PPl P), and an o x a matriz V such that for some p > 0, we have a{U =
gV modulo PP\, If d = det'V, then either

(a) d € P, and Q is a special prime ideal over an (o — 1) x (o — 1) matriz,
or

(b) d e Q\ P, and Q is among the minimal prime ideals of Anng R*/((P +
dR)R*)*Y | or

(c) d ¢ Q, and Q is a g-special ideal of R.

Proof. Let W C R® be such that UW C WP and Q = Anng R*/W. When all
entries of M are in P, Im M C PR?, i.e.,Im M = (PR*)*Y = PR®. Thus, if we are
in case 1., we have at least one entry a of M which is not in P. If a € ), by Lemma
B.2.13] Q is among the minimal primes of Anng R*/((P 4+ aR)R*)*V. If a ¢ Q, by
Lemma w, () is a minimal prime of Anng R*/W; such that U;W; C Wl[p ], where
U; and Wy as in Lemma [3.2.14] On the other hand, since a becomes a unit in R,,
we can choose the invertible matrix X with entries in R, such that W; = XW, N R*
contains the a-th elementary vector e,. Then we have R*/W; & R*~!/p(W;), where
p: R® — R !is the projection onto first & — 1 coordinates. Let Uy be the top left
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(a — 1) x (a — 1) submatrix of U;. Then Anng R*/W; = Anng R*'/p(W;) and
Usp(W7) C p(U;W7) C p(Wl[p]) = p(W)Pl. Therefore, Anng R*/W, is Us-special,
and so is ().

Assume now that we are in case 2., by definition of x-closure UPR* C PPIR?,
i.e., the entries of U are in (PPl : P). On the other hand, by Lemma , if
A = R/P, F,((P? : P)/PPF) = Homy(F,A, A) is rank one F,A-module. This
means that (PP : P)/PP is rank one A-module, and so we can find an element
g € (PP P)\ PP such that (PP : P)/P"! is generated by g+ PP as an A-module.
Also we can find an element a; € R\ P such that the localization of (P! : P)/PIl
at aj is generated by g/1 + PP as an A, -module and hence as an R,,-module. If
a; € @, we can find @ as in the case 1.(a), thus, we assume that a; ¢ . Then for
any entry u of U, working in the localization, we have an expression

u r g
T_’_Pa[];] = @IJFPE]
u—r u—r !
which implies that —- J € Pg’], ie., o g _ —&;» Where r € R, 1’ € PPl and
ay ay 1
wi,wy € N. Thus,
A = arg +

Therefore, we can write afU = gV + V"’ for some p > 0 and o X o matrices V' and
V' with entries in R and PP, respectively. Then by Proposition , we may
replace V'’ with the zero matrix, since I(V'R*) C PR®. Let d = detV. We now
consider three cases:

1. If d € P, then the determinant of V in the fraction field F of A, say d, will
be zero. So we can find an invertible matrix X with entries in I such that
the last column of VX~! is zero, and so is UX . Let ay is the product of
all denominators of entries of X and X!, i.e. the entries of X and X! are
in R,,. If as € @, we can find @ as in the case 1.(a) again, thus, we also
assume that ay ¢ Q. Let a = ajas. By Lemma[3.2.14] P and @ are U;-special
prime ideals where U; = a? XPIUX ! whose last column is zero. Then since
PR* = (PR*)*Y <& UPR® C PPIR™, we also have

U PR* = ¢’ XPUX'PR* C o XPUPR* C UPR® C PPIR*

which implies PR® = (PR*)*V1. Hence, we can produce @ as in Proposition
0.2, 10l
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2. If d € @\ P, then by Lemma [3.2.13] @) is among minimal prime ideals of
Anng R*/((P + dR)R*)*Y.

3. Ifd ¢ Q,let a=day, W = (QR*)*Y and X = I, be the a X o identity matrix.
Then by Lemma , @) is a minimal prime ideal of Anng R*/W; where
Wy = (QR*):Y N R®. By definition of x-closure (QR*)*Y = (QRY)*Y is the
stable value of the sequence

Lo = QR
L1 =L(UQRy) + QR* = Li(gVQRY) + QR; = Li(9QR")a + QRZ

L2:

which also equals to (QR¥)*'«. The third equality for L, is because of the
fact that I.(—)-operation commutes with localization and V' is invertible. This
implies that Anng R*/W) is gl,-special, and so is (). Therefore, @ is g-special
and can be computed using the Katzman-Schwede algorithm, since g ¢ PP,

This method also shows that for a given U-special ideal P, there are only finitely
many U-special prime ideals minimally containing P. O
For the sake of integrity, we shall give the proof of Theorem [3.2.12] The main
difference between our methods and the methods in [13] Section 5] is that we do not
use the aid of injective hulls of residue fields although our results are identical with
the results in [13, Section 5] over power series rings.
Proof.[Proof of Theorem The proof is by induction on . The case a =1 is
established in section [3.1l Assume that o > 0 and the claim is true for o — 1. Since
zero ideal is always a U-special prime ideal of R, we start with 0 and use Theorem
to find U-special prime ideals minimally containing 0. Continuing this process
recursively gives us bigger U-special prime ideals at each steps. Therefore, since R is
of finite dimension, the number of steps in this process is bounded by the dimension
of R. Hence, there are only finitely many U-special prime ideals with the desired
property. O
Next we turn Theorem [3.2.16|into an algorithm which gives us a generalization
of the Katzman-Zhang algorithm to R. Note also that over power series rings the
following is identical with the Katzman-Zhang algorithm.
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Intput:

An a x a matrix U with entries in R such that IC # 0.

Output:
Set of all U-special prime ideals P of R with the property that K ¢ PR*.

Initialize:

Ape = {0}, B = 0.

Execute the following:

If « = 1, use the Katzman-Schwede Algorithm to find desired primes, put these in
Ape, output Az« and stop.

If @ > 1, then while Aga # B, pick any P € Ar \ B. If X C PR®, add P to B, if
not, write W = (PR*)*V as the image of a matrix M and do the following:

1. If there is an entry a of M which is not in P, then;

(a) Find the minimal primes of Anng T }; TRy and add them to
a ROé *
AR“?

(b) Find an invertible a@ x o matrix X with entries in R, such that the
a-th elementary vector e, € XW, N R*, and choose v > 0 such that
U, = a’ XPIU X! has entries in R. Let Uy be the top left (a—1) x (a—1)
submatrix of U;. Then apply the algorithm recursively to U, and add

resulting primes to Aga.

2. If Im M = PR, then find elements a; € R\ P, g € (PP : P), and an a x «
matrix V, and g > 0 such that ¢’U = gV modulo PP, Compute d = det V'
and do the following:

(a) If d € P, find an element as € R\ P and an invertible matrix X with
entries in R,, such that the last column of UX ™! is zero. Find v > 0
such that the entries of U; = (aya9)? XPIUX ! are in R. Let Uy be the
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top left (v — 1) X (o — 1) submatrix of Uy, and Ky be the stable value of
{I(Im U([]pbl} U([)ped] -+ Up)}eso as in Theorem . Then;

i. If Ko € PR !, write the last row of the matrix Ul[pc_l]Ul[p Uy
as (g1, ---,9a-1,0) and apply the Katzman-Schwede Algorithm to the
case u = g; for each i, and add resulting primes to Aga,

ii. If Ko € PR*, find recursively all prime ideals for Uy which con-
tain P minimally and denote their intersection with 7. Compute

L (Ul(TK))*Yr, and write this as the image of a matrix M’. Find
an entry a’ of M’ not in P. Now;

6—2] )

A. Add the minimal primes of Annp (P al’QR)Ra)*Ul to Aga,

B. Find an invertible matrix X with entries in R, such that the
o™ elementary vector e, € X(Im M’), N R*. Find v > 0 such
that U, = (a’)* XPIU; X! has entries in R. Let Us be the top left
(a—1) x (a—1) submatrix of Us. Apply the algorithm recursively

to Us, and add resulting primes to Aga.
(b) If d ¢ P, then;

Ra
i. add the minimal primes of Anng (P + dR)Ro)T to Aga,
ii. apply the Katzman-Schwede algorithm to the case u = g, and add

resulting primes to Aga.

3. Add P to B

Output Age and stop.

Since all the operations used in the above algorithm are defined for localizations
of R, we can apply our algorithm to any localization of R at a prime ideal p. In the
rest of this section, we investigate the relations between output sets of our algorithm
applied to R and R,.

Lemma 3.2.17. Let R be R or R, or _?%\p P is a U-special ideal of R not contained
mn p if and only if PR is a U-special ideal of R.

Proof. Let P be a prime ideal of R. Then
P is U-special < P = Anng R*/(PR*)*Y

& PR = Anng R*/(PR*)*Y & PR is U-special
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O
Our next theorem gives the exact relation between the output sets Ags and Agg
of our algorithm for R and R,, respectively.

Theorem 3.2.18. Let U be an o X a matriz with entries in R. Qur algorithm
commutes with localization: if Ara and AR? are the output sets of our algorithm for
R and R,, respectively, then

ARSZ{PRp|PE.ARa cmdng}

Before proving our claim we need a remark which we will use it in step 2. of the
proof.

Remark 3.2.19. Keeping the notations of above theorem, for any prime ideal P of
R, and any submodule K of R* we have the property that K C PR* < K, C PRy
We already know that K € PR* implies Ky, C PRy. For the converse, suppose the
contrary that there is an element k = (k1,...,ko)" € K\ PR* where k; € R\ P for
some i. Then there exists an element s € R\ p such that sk € PR®, i.e. sk; € P.
Since P is prime, k; € P or s € P, which is impossible. Therefore, K, C PRy
implies that K C PR®.

Proof. By Theorem [3.1.12] the Katzman-Schwede Algorithm commutes with local-
ization. Therefore, we can, and do, assume « > 1. Let P be the prime ideal of R in
the initial step of our algorithm, and R, be a localization of R at a prime ideal p con-
taining P. Since x-closure commutes with localization, whenever we write (PR*)*V
as the image of a matrix M with entries in R, we can write (PRy)*Y = (PR*)*"V R,

as the image of same matrix but working in R,,.

1. Since a ¢ P < a ¢ PR,, ais an entry of M not in (PR$)*V. Then, by
Lemma [2.2.30] step 1.(a) commutes with localization. However, for step 1.(b),
we can take the same matrix X with entries in R, but working in R,. Then
while we do operations in R,, we see that e, € X(Im M), N R* implies that
o € (X(ImM), N R*)R, = X(ImM), N Re. Also Uy = a*XPIUX! has
entries in R (and in R,) for the same v > 0. Therefore, we end up with the
same matrix Uy.

2. We first note that (PR*)*Y = PR* & (PRy)* = PR{Y. Therefore, if
(PR?)*U = PRy, we can have the same construction working in Ry, i.e.,
we can take a; € R, \ PRy, g € (PR,)P! : PR,), a x a matrix V for the same
> 0 such that afU = gV modulo (PR,)P! and compute d = det V.
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(a) For any r € R, we have the property that r € P < r € PR,. Thus,
if d € PR,, then we can have the same construction again, and so we
can take ay € R, \ PR, and the same invertible matrix X with entries in
R,, (and in (Rp)a, = (Ra,)p) such that the last column of UX ™! is zero,
working in R,. We also can take the same v > 0 such that the entries
of Uy = (a1a9)" XPIUX ™! are in R (and in R,), and Uy to be the same
matrix. In addition, since I.(—) operation commutes with localization, if
we do calculations in R,, then the stable value of

- UoRp)}eso
is going to equal to the stable value of {Ie(Uépeil]U[pkz} - UpR)Rp}eso0
which is KoR,. Now, since Ky € PR*" & KoR, C PR}, we can do
next:
i. Working in R, if KoR, C PR;“_1 we can write the last row of the
matrix U1[1°671]U1 L Uy as (g1, -+, 9a-1,0).
ii. Working in Ry, if KCoR, € PRy, we can apply our algorithm recur-
sively to Uy and find all prime ideals which contain PR, minimally

572] )

L.y oy

and denote their intersection with 7, which is 7Ry, as we have showed
all steps of algorithm commute with localization. Then we have

L (Ui (TR, ) )™ = (Li(UhU(TK))*")R,,
where [ : Rg‘*l — Rff*l @ R, is the extension map induced by (.

All other steps are similar to previous steps, and so all steps of our algorithm com-
mute with localization.

Since our algorithm commutes with localization, by Lemma [3.2.17, the output
set AR;; is the set of all U-special prime ideals of Ry, and hence,

.AR;L:{PRP|P€AR& andng}

O

Let U be an a X o matrix with entries in R, and let A and Age be the output

sets of our algorithm for R and S, respectively. Let P be a U-special prime ideal

of R, i.e. P € Aga. Since PS is not always a prime ideal of S, we do not have a

relation between Age and Age like in Theorem [3.2.18] However, by Lemma [3.2.17]

we can say that the minimal prime ideals of PS are in Ag«. Therefore, the set of
minimal prime ideals of elements from {PS | P € Ago} is contained in Aga.
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3.3 An Application to Lyubeznik’s F-modules

In this section, we investigate the connections between special ideals and local co-
homology modules using Lyubeznik’s theory of F-finite F-modules.

By Example the i-th local cohomology module of R with respect to an
ideal I is an F-finite F-module and there exist a finitely generated module M with
an injective map (8 : M — Fr(M) such that
),

Hi(R) = lim(M 2 Fr(M) =% F2(M) )

where §: M — Fr(M) is a root morphism. Since M is finitely generated, we also
have M = Coker A = R*/Im A for some matrix A with entries in R as in subsection

211 Hence,
H}(R) = M(Cokerz‘l Y, Coker AP — .. 2

for some o X a matrix U with entries in R such that UIm A C Tm AP Furthermore,
U defines an injective map on Coker A, since [ is a root morphism.

Remark 3.3.1. [16, Section 4] If (R,m) is a local ring, M is an F-finite module
and M' . M" C M are two F-submodules with the property that

dimg Supp(M /M) = dimg Supp(M/M") =0,

then their intersection also has this property, and there exists a smallest F'-submodule
N of M with this property, since M is Artinian as an F-module. Since L= MJN
is an F-module, Theorem [2.2.534 implies that it is injective. Since it is also F-finite,
the Bass numbers of it are finite. Hence, £ = E* as R-modules, where k = jy(m, L)
and E is the injective hull of the residue field of R.

Definition 3.3.2. If R is local, we define the corank of an F-finite F-module M
the number k in Remark and denote it by cck M = k.

In Section 4 of [16], Lyubeznik uses the theory of corank to shed more light on
the notion of F-depth of a scheme in characteristic p, which is analogous to the
notion of DeRham depth of a scheme in characteristic 0. Following [16], Section 4],
in equicharacteristic 0 one can interpret the DeRham depth in terms of closed points
only. Proposition 4.14 in [16] shows that in characteristic p we can not interpret the
F-depth of a scheme Y in terms of closed points only. To show this Lyubeznik proves
that there are only finitely many prime ideals P of A such that crk(Hj,,(Ap)) # 0.
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Here Y = Spec B, where B is a finitely generated algebra over a regular local ring
S, A= S[xy1, - ,x,] and [ is the kernel of the surjection A — B. Our next theorem
not only reproves this result but also gives us an effective way to compute desired
prime ideals.

Theorem 3.3.3. Let I be an ideal of R and P C R a prime ideal. If Hip (Rp) has
non zero corank then P is in the output of our algorithm introduced in section
1.€.
crk(Hjg, (Rp)) #0= P € Ago.
for some a X o matrix U with entries in R.
Proof. Since Hjp (Rp) = R, ®r Hj(R), we have
Hip. (Rp) = liﬂ(Coker Ap 22 Coker A[Pp] — )

where Ap and Up are localizations of A and U, respectively. We also have that Up
defines an injective map on Coker Ap since U defines a root morphism for H(R).

crk(Hjp, (Rp)) # 0 implies that there exists a proper Fpg,-submodule N of
Hip,(Rp) such that dimpg, Supp(Hjy,(Rp)/N) = 0. Since Hj (Rp) is Fg,-finite,
by Remarks [2.2.35| (3), we have

N =1m(N = Fgo(N) = Fg(N) = ---)

where N = N N Coker Ap is an Rp-submodule of Coker Ap. Thus, N = V/Im Ap
for some submodule V' C R% such that UpV C VPl Then

Hip, (Rp)/N = lim(Coker Ap/N =25 Fi, (Coker Ap/N) — --+)
= Jim(Rp/V <2 Ryp/VI — ),
Furthermore,
dimp, SUPP<H;RP(RP)/N) =0= ASS<H;RP(RP)/N) ={PRp}
= Ass(R%/V) ={PRp}
= Anng,(R%/V) is PRp-primary

Therefore, Anng, (R%/V) is Up-special and so is PRp by Lemma [3.2.8| because it is
the only minimal prime ideal of Anng,(R%/V), i.e. PRp € Age. Then by Theorem

B2I8, P € Age 0
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Corollary 3.3.4. Cr := {P € Aga | (Im Ap + PR%)*VP £ R%} is the set of all
prime ideals of R which satisfy crk(Hjp,(Rp)) # 0

Proof. By Theorem , crk(Hjg,(Rp)) # 0 implies that PRp is a Up-special
prime ideal of Rp such that PRp = Anng, (R5 /W) for some proper submodule W' C
Ry where Im Ap C W and Ap as in Theorem . Since (Im Ap + PR$®)*YF is the
smallest submodule of R which satisfies PRp = Anng, (RS /(Im Ap + PR3)*VP),
if (Im Ap + PR®)*Yr = R%, then we have a contradiction with the existence of WW.
Hence, the set of primes ideals of R which satisfy crk(Hjp,(Rp)) # 0 is the set
{P € Agpe | Ilm Ap + PR%:)*VP £ RS} O

Corollary says that if we want to compute the prime ideals of R which
satisfy crk(Hjp, (Rp)) # 0, we pick an element P € Age and need to check whether
(Im Ap + PR$)*UP is equal to R%.



Chapter 4

Annihilators of Cartier Quotients

Let R be a ring of prime characteristic p. In this chapter, we investigate finitely
generated Cartier modules over R and present our computational results on these.
In particular, we introduce a new algorithm for finding annihilators of Cartier quo-
tients for a given finitely generated Cartier module. We finish the chapter with the
connections between Cartier modules and Lyubeznik’s F-modules.

4.1 Cartier Modules

In this section, we recall the notion of Cartier modules over R, and we give some
properties of finitely generated Cartier modules which are proven in [2]. We also
provide some technical lemmas with their proofs.

Definition 4.1.1. A Cartier module is an R-module M equipped with an additive
map C : M — M, which we call the structural map of M, such that C(r*"m) =
rC(m) for allm e M andr € R, i.e. C € Homg(FSM,M).

A map of Cartier modules is a map ¢ : M — N such that the following diagram

commutes
M —25 N

C]\/[l J{CN

M —— N
[

61
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where Cyy and C are the structural maps of M and N, respectively.

We generally fix e = 1, when we take a Cartier module M with the structural
map C as a pair (M, ().

Remark 4.1.2. We can define the composition of Cartier module structures on
M as additive maps. If C1,Cy : M — M are two structural maps on M which
satisfy C1(r’" m) = rCy(m) and Co(r?*m) = rCy(m) for allm € M and r € R,
respectively, then the composition maps satisfy

(Cy o Co)(r" " m) = C1(Co((r")2m)) = C1(r"" Ca(m))
= rC1(Ca(m)) = r(Cy o Ca)(m)

and similarly
(G0 O™ m) = r(Cy 0 C1)(m),

i.e. C10Cy CyoCy € Homg(F2 M, M). In particular, if C' € Homg(F.M, M),
then the e-th iteration C¢ defines a Cartier structure on M and C¢ € Hompg(FfM, M).

Definition 4.1.3. A Cartier module (M,C) is called nilpotent if C*(M) = 0 for
some k € N, and the smallest k such that C*(M) = 0 is called the order of nilpotence
of M which is denoted by on(M) = k.

Remark 4.1.4. Let (M,C) be a Cartier module, and W be a multiplicative subset
of R. By Proposition we know that WE,M = FW=IM. Therefore, lo-
calization of the structural map C : F,M — M with respect to W gives WM a
Cartier module structure over W—'R, which is Cy : WM — WM defined by
Cw (%) = w forallme M andr e W.

Remarks 4.1.5. [2, Section 2.2] Let (M, C) be a finitely generated Cartier module.

1. M 1is nilpotent if and only if the localization Mp is nilpotent for every prime
1deal P.

2. Let 0 > M' — M — M" — 0 be a short exact sequence of finitely generated
Cartier modules. Then M is nilpotent if and only if M' and M" are nilpotent.

3. We define M,;; to be the sum of all nilpotent Cartier submodules of M. Then
M = M /M, becomes the smallest Cartier quotient of M such that the kernel
of M — M is nilpotent.
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4. By Proposition 2.1} in [2], the descending chain
M2CM)DC*(M)D---

stabilizes. We denote the stable image by M which is the smallest Cartier
submodule of M such that M /M is nilpotent.

Furthermore, if M has no proper nilpotent quotients, then the structural map
C' is surjective. Because, if C' is not surjective, M /M becomes a nonzero nilpotent
quotient. It might also be expected that ker C¢ is a nilpotent Cartier submodule
of M. However, ker C¢ is not even an R-submodule of M in general, since for any
m € M and r € R, C*(m) = 0 does not imply C°(rm) = 0 unless r = s for some
s € R.

Facts 4.1.6. Let R be F-finite, and (M,C) be a finitely generated Cartier module,
and X = Spec R.

1. By Proposition 4.1 in [2], if X is irreducible, then there is an open subset U
of X such that for all non-minimal prime ideal P € U we have:
(x) All finite length Cartier quotients of Mp are nilpotent.

2. By Proposition 4.5 in [2], there is a finite subset S C X such that for all
P e X\S, M satisfies (x) at P.

3. By Proposition 4.9 in [2], if C is surjective, then the collection of ideals A :=
{Anng M/N | N is a Cartier submodule of M} is a finite set of radical ideals
consisting of all intersections of the finitely many primes in it.

Next we state two important properties of Cartier modules which we use repeat-
edly in this chapter (cf. footnotes 6 and 7 in [2]).

Lemma 4.1.7. Let (M,C) be a finitely generated Cartier module. If M (or M)
satisfies (x) at any prime ideal P of R, then M satisfies (x) at P.

Proof. Let P be a prime ideal of R. Fix a finite length Cartier quotient Mp/N.
Assume that M satisfies (x) P. Then

(Mp 4+ N)/N = Mp/(N N Mp)
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has finite length, and so it is nilpotent by our assumption. Since Mp/Mp is nilpotent,

we also have
Mp/Mp

(N +Mp)/Mp

Mp/(N +Mp) =
is nilpotent. On the other hand,

Mp/N

Mp/(N +Mp) = O, + NN

Hence Mp/N is nilpotent by Remarks [4.1.5] 2.
Similarly, we assume now that M satisfies (x) at P.

MP/(Mnil>P
M M,i)p + N) =
PAr 8 = g 3) (L)
M, N
has finite length and it is nilpotent by the assumption. In addition, —( l?\l; RPN
M.
w has finite length, and so it is nilpotent. On the other hand, we have
(Mpa)p NN
Mp/N
P/(( l)P ) ((Mm‘l)P n N)/N
Therefore, Mp/N is nilpotent by Remarks 2. again. O

Lemma 4.1.8. Let (M, C) be a finitely generated Cartier module with surjective C,

and I be an ideal of R, and M(I) == —=———=. If as an R/I-module M(I)
2 ex0 C(IM)
satisfies (x) at any P € V(I), then M as an R-module satisfies (x) at P as well.

Proof. Suppose that M(I) satisfies (%) at any P € V(I), i.e. any finite length
Cartier quotient of M(I)p is nilpotent. Let N C Mp be such that Mp/N has
finite length. Thus, (PRp)*(Mp/N) = 0 for some k € N. On the other hand,
for some i > 0 we have (PRp)P}(Mp/N) C (PRp)*(Mp/N) which implies that
(PRp)P1(Mp/N) = 0. Then, since C' is surjective,

(PRp)P/(Mp/N) = 0= C'((PRp)P)(Mp/N)) = 0

= (PRp)C"(Mp/N) =0 = (PRp)(Mp/N) =0
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and so (PRp)Mp C N. Since P € V(I), IRp C PRp and we have (IRp)Mp C N.
It follows that K := > ., C°((IRp)Mp) C N. Now let N’ denote the submodule
N/K C M(I)p. Then M(I)p/N' = (Mp/K)/(N/K) = Mp/N has finite length.
However, since M (1) satisfies (x), M (I)p/N'is nilpotent. Hence, Mp/N is nilpotent.
O

Lemma 4.1.9. Let (M, C) be a finitely generated Cartier module with surjective C.
Let A and S be as in Facts[{.1.6. Then:

M

1. If an ideal P of R is an element of A, then P = Anng S Ce(PM)’
e>0

2. If also P is a prime ideal in A, then P € S.

Proof. For 1. suppose that P € A, i.e. P = Anng M /N for some Cartier sub-

M
module N of M. It is clear that P C Anng M(P), where M(P) := S Ce(PM)’
e>0

On the other hand, since ) ., C°(PM) is the smallest Cartier submodule of M
which contains PM, we also have that Anng M(P) C Anng M/N. Hence, P C
Anng M(P) C Anng M/N = P, and so P = Anng M (P).

For 2. suppose P = Anng M/N for some Cartier submodule N C M. Then
(M/N)p = Mp/Np is a non-zero finite length quotient of Mp as an Rp-module.

Since C' is surjective, the structural map of Mp is surjective and hence that of
(M/N)p is surjective. Therefore, (M/N)p can not be nilpotent, and so P € S. O

4.2 Adjoint map to the structural map

In this section, we use the Hom-Tensor adjunction (cf. Theorem 2.75 in [19]) to
define an adjoint map to the structural map of a given Cartier module M, which
will help us to compute the nilpotent Cartier submodule M,; of M (cf. Section 2.3
of [2]). Let e € N, and M be an R-module. If we consider FFR as an (F{R, R)-
bimodule, then we have the following isomorphism

HOIDR(F:M ®FER F*eR, M) = HOmeR(F:M, HOIDR(F:R, M))
Thus, for a given Cartier map

C € HOHIR(F:M, M) -t HOHIR(F*eM ®FfR F*eR, M)
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we have an adjoint map, which is F?R-linear,
k: FM — Hompg(F{R, M)

given by k(Ffm) = ¢, where ¢, (—) = C(Ffm—).

Proposition 4.2.1. Let (M, C) be a finitely generated Cartier module and
k' F'M — Hompg(F!R, M)

be the adjoint map to C'. Let K; be the R-submodule of M such that F'K; = ker x°.
Then:

1. K is the largest nilpotent Cartier submodule of M such that on(K;) <1,
2. Mnil = Uz Ki;

3. the sequence of milpotent Cartier submodules K1 C Ky C --- C K; C ---
stabilizes at the first integer where we get K; = K;y1.

)

Proof. Since R is Noetherian, each K; is finitely generated, and let K; = (kq,..., k
Then for each generator k;, x'(F}k;) = ¢y, is a zero map, i.e. Im ¢y, = ¢, (FIR)
C(F!Rk;) = 0. On the other hand,

CYF'K;) = C'(F(Rky + -+ + Rk,)) = C'(F'Rky) + - - + C*(F'Rk,)
=Im¢y, + - +Imepg, =0

Now let N be another nilpotent Cartier submodule of M with on(n) < i and let
N = (nq,--- ,ng). Then

0=CYF!N)=C"(F(Rny +---+ Rny,)) = C"(F.Rny) + - - + C"(F'Rny,),

and so C'(F}Rn;) = 0 for each generator n;. However, x'(F/n;) = ¢y, is an F}R-
linear map where Im ¢,,, = ¢y, (F/R) = C'(F}Rn;) = 0. Thus, F/n; € Kerx’, and
son; € K, i.e. N C K;. This proves 1.

We clearly have the following ascending sequence K1 C Ko C--- C K; C --- of
nilpotent Cartier submodules of M. Therefore, M,; = |, K.

By the Noetherian hypothesis the ascending chain above stabilizes. Assume now
that ¢ is the first integer such that K; = K, ;. We shall show that K;,; = K;,»
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and (3) follows by induction. Then C""2(K;,5) = C*"(C(K,,2)) = 0 implies that
C(Kit2) is a nilpotent Cartier submodule of M with on(C(K;12)) < i+ 1. Then
since K41 is the largest nilpotent Cartier submodule of M with on(K;1) < i+ 1,
C(Ki2) C Kiyq. Then by assumption C(K;15) C K;, and so C*(C(K;12)) = 0.
Therefore, C*"1(K; o) = 0 which implies that K;,» C K,,;. Hence, K;;1 = K;o.
O

4.3 The Polynomial case and computations

In this section, we prove some technical lemmas which will be used to compute M
and M for a given Cartier module M. Moreover, we prove the main theorem of
this chapter using our computational methods. Henceforth, we will assume that
R = k[zy,...,z,] is a polynomial ring (or R = k[zy,...,x,] a power series ring)
over an F-finite field k of prime characteristic p.

Lemma 4.3.1. For any ® € Homg(FfRY, R*), there exists an o x o matriz U with
entries in R such that ®(—) = II.(FU—) where

Ffuy Te(Ffvy)

Ffu, Te(Fv,)
for all (Fyvy,...,Ffv,)" € FER*, and 7. € Homg(F¢R, R) is the trace map.

Proof. If & = 1, by Lemma [3.1.4, Homp(F¢R, R) is generated as an F¢R-module
by the trace map 7. If & > 1, we first need to describe elements of Homg(F¢R, R*).
Since Homp(FER, R*) = Hompg(FER, R)®, any R-linear map ¢ € Hompg(F¢R, R)
can be expressed as a direct sum of elements of Homg(F¢R, R). Therefore, we have
o(=) = (P1(=), ..., Pa(—))" for some ¢; € Homg(FER, R) where 1 <i < o, and by
Lemma 3.1.4] o(—) = (me(Ffui—), ..., me(Ffu,—))" for some uy,...,u, € R.

Since Hompg(FfR*, R*) = Hompg(FfR, R*)*, any ® € Hompg(FfR*, R*) can be
expressed as a direct sum of elements of Homg(F¢ R, R*). Therefore, for any element
(V1,...,04)" € R*, we have

O((Fvr,... . Fova)') = > @i(Fovy)

1<j<a
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for some ¢; € Homp(F¢R, R*). By the previous observation of Hompg(F¢ R, R), for
each j, we also have ¢;(Ffv;) = (me(Ffui v)), ..., me(Ffuq;v;))t for some elements
Uj, .-, Uqj € R. Thus,

Ffuy Te(Fiu0;)

d : = E
1<j<a
Fiva 71'tE(Fquéjvj)

Hence, for any ® € Hompg(FfR*, R), there exist an o X o matrix U with entries
u;; € R such that ®(—) = II.(FfU—) where II. takes the components of elements
in F¢R* to their images under the trace map .. O

Definition 4.3.2. Let the notation and situation be as in Lemma [{.53.1. We call
the map 11, in Lemma the trace map on FZR®, or just the trace map when the
content is clear.

The following lemma extends Lemma to submodules of free modules, and
gives a way to connect I.(—) operation to the images of elements in Homg(F¢ R, R%).

Lemma 4.3.3. Let V and W be submodules of R*. Then I (FfV) C W if and
only if V. C W,

Proof. Assume that II.(FfV) C W. Then by the Noetherian hypothesis V' and
W are finitely generated, and since II, is R-linear, we may assume that V' = (v)
for some element v = (vy,...,v,)" € V. Additionally, since F¢R is a free R-module
with basis B as in Remark for each v;, we have

Fiv; = Z rigFs g for some r;y € R and Fg € B.

FegeB
Then Ffv = (Ffuy,..., Ffv,)" can be expressed uniquely in the form
Ffv = Z uyFg where u, = (r1g, ..., Tag)".
FegeB
Since II.(Ffv) = (me(Ffvy), ..., me(Ffv,))t, a similar way in the proof of Lemma

implies that II.(FfV) = (uy) for u,’s from the above expression of Ffv. Then
by the assumption, we have II.(FfV') = (u,) C W, and since

Fio= Y uFig=F( ) ullg)

FegeB FegeB
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we also have v = 37 ullg € Wl Therefore, V c W,
For the converse, we first note that

V c Wkl = pev € FWP = 11 (FEV) C T (FewT).

If W = (wy, - ,w,) for some w; € W, then WP = (wl"? .. wPh). Now take an
element z =), riwl[pel € WP for some r; € R. Then II.(F¢2) = Y, wim(Fer;) €
W, and so Il (FfV) C W, O

Corollary 4.3.4. Let V be a submodule of R* and let C' : F¢R* — R be a Cartier
map such that C(—) = I .(FfU—) for some o x o matriz U with entries in R. Then
C(FeV) = (FeUV) =1.(UV) and the x-closure of V' gives the smallest C' Cartier
submodule of R* which contains V.

Proof. Since UV C L (UV)P T (FeUV) C 1,(UV) by Lemma4.3.3, On the other
hand, we have UV C I, (FeUV)P by Lemma again. Then by minimality of
[.(UV), we must have I.(UV) = II.(FfUV). The second claim follows from the fact
that

V is C Cartier submodule of R* < C(F{V) =1l (FUV) CV
& UV C VL
O

Lemma 4.3.5. Let C': F¢R® — R® be a Cartier map with the o X o matriz U such
that C(—) =1L (FfU—). If C is surjective, then det U is not zero.

Proof. We will assume det U = 0 and try to get a contradiction to our assumption.
In this case, there exist an invertible matrix V' with entries in the fraction field F
of R such that UV has a zero column. If f is the multiplication of denominators
of entries of the matrix V, then V is an invertible matrix with entries in Ry. On
the other hand, since C' is surjective, the localization map Cy : F{R} — Rf is
surjective. Then Cy(FYR$) = [I.(FFURS) = I (FfUVRS) C R;‘c‘_l since UV has a
zero column. But this contradicts with the surjectivity, and so det U must be non
zZero. O

Next we investigate how Cartier structures behave on finitely generated R-
modules.
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Proposition 4.3.6. Let (M, C) be a finitely generated Cartier module and let M =
R*/Im A as in Subsection |2.1.1. Then there exist a Cartier module structure C' on
R® such that the diagram below is commutative

FR 9, R

| | (4.1)

F.(R*/ImA) —— R*/ImA
¢

where the vertical arrows are natural surjections and C is isomorphic to C. In
particular, if C' is surjective then C' is surjective.

Proof. Since F,R is a free R-module, there exist an R-linear map C’ : F,R* — R"
such that the diagram is commutative. In the case that C' is surjective, let
{mi, -+ ,ms} be a minimal generating set for M and let p : R* — M be the
projection which sends each elementary vector e; to m;. Since C' is surjective, the
composition F,R* — F,.M Y Mis surjective, and so is the composition F,R* <,
R* — M. Therefore, there exists F,a; € F,R* such that p(C’(F.a;)) = m; for each
m;. Thus, e; = C'(F.a;) + b; for some b; € ker p. On the other hand, we claim that
the set {€1 — b1, ...,eq — by} generates R* freely. Otherwise, we would be able to

write one of e; — b;’s as an R-linear combination of others, i.e.

ei —bi=ri(er —by) + -+ rica(eir — bis1) +rigi(ein — biy1) + -+ ralea — ba)

for some ¢ and ry,...,7;_1,7i11,...,7¢ € R. This means that

m; = p(e; — b;)
=p(riler = by) + -+ rica(eir — bim1) + s (€ip1 — biv1) + - + ral€a — ba))
=ripler —by) + -+ rimip(€ir — bima) + rivapleirs — bipa) + - +rap(ea — ba)
=Tmy A T 1My o Ta .

However, this contradicts with the minimality of {my, ..., m,}. Hence, our claim is
true, and so C’ is surjective. O

Notation 4.3.7. By Proposition[{.3.6, for a given finitely generated Cartier module
(M, C), there ezist a Cartier module structure C' on R* such that C'(F,Im A) C
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Im A. Then by Lemmal[{.3.1], there exist an o X o matriz U with entries in R such
that C'(—) = H (F.U-), and by C’omllary Ulm A C Im AP, Therefore, by
(Coker A,U) we mean a finitely generated Cartier module with a square matriz U
defining the structural map on it.

We now start explaining how to compute the Cartier modules M and M for a
finitely generated R-module M. First we need to discuss how to define a composition
of trace maps.

Notation 4.3.8. Let k, ki, ko € Z. We will write

1. T to denote x;...x,,

2. &, a+ B and ka to denote the n-tuples (ay, ..., o), (a1 + B1,..., 0 + Bn)
and (kaq, ... kay,), respectively,
3. % to denote x* ... 1%, and T¥ to denote xf ... xF

n 7 n’

4. k1 < a < kg to mean that ki < a; < kg for each 1,

5. rg andry, to denote the elements of R indexed with the n-tuples & and (k, ... k),
respectively.

Lemma 4.3.9. Let I, € Hompg(FfR*, R*) be the trace map as in Lemma|4.3.1|
1. For any a x o matriz U with entries in R, UTl,(—) = I (FeUP1-).

2. The trace map g, e, s equal to following compositions

perrerge B0 pe o Loy pa g peveer g 20y e pa Iy
Proof. For 1. if (u;;)1<i j<a are the entries of U, for any v = (v1,...,v,)" € RY,
Ul (Ffv) = U(me(Ffv1), ..., me(Fvy))"
Z?:l ur;me (Fv;) e (FY Z] 1“13“])
2?21 UajTe(FE0;) T (FY Z; 1“04”])

_He<(Fqu}1’;vj,-- FeZuajvj >— (FeUP )
=1
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For (2), since II. takes the components of elements in F°R* to their images under
the trace map m,, it is enough to show that the assumption is satisfied for 7.. To
do that we shall show m(F,m(F,—)) = m(F?—) and the result follows inductively.
Since for any e > 0, FFR is a free R-module, for any r € R, there is a unique
expression F,r = Zogagp—l raFx® for some r5; € R. Also for each r; there is a
unique expression 7 = Yo z<,_1(5a)5F@” for some (s5)5 € R, which implies that
we have the following unique expression of F2r

Fir= ) ( > (saﬁFfW*@)

0<a<p—1 *0<B<p-1

(P2 Y ( 3 <s@>ﬁF3w‘+a)

0<a<p-1 *o0<B<p-1

Hence, m(Fir(Fyr)) = m(Fury=1) = (sp=1)p—1 = ma(F2r). O

p—1 —
Lemma 4.3.10. Let (M,C) be a finitely generated Cartier module isomorphic to
(Coker A, U), and let K" be the adjoint map to C*. Then:

(Ut o
, o B UR®) +Im A
i—1 i—2 Im A ; i1
LUP Iy URY) = [, (UPIUPT ... UR®).
RCY
{m € Re | UPIUP™] ... Um € Tm AP}’
where we get Ker k' = Ker k1.

, and i 1s the first integer where we get

2. M =

and i 1s the first integer

Proof. An easy application of Lemma [£.3.9 shows that if II(F,U—) defines the
Cartier structure on Coker A, then IL(FiUP ' 1UP™)... U—) defines the composi-
tion map C* on Coker A.

Hence, by Corollary [£.3.4] the stable image M of C'is

LU Pl URY) +Tm A
Im A
for some . Furthermore, by Theorem [3.2.10} 7 is the first integer where we get the
equality L(UP WPl . URY) = [, (U] ... UR).
By Proposition to compute M, we need to find kernels of adjoint maps
k' to CF(—) = IL(FIUP U™l ... =), which give us the following sequence of
nilpotent submodules K; = {m € M | F!m € Ker '} of M,

Ky CKyC o CK;Coee
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By Proposition again, if ¢ is the first integer where we have K; = K; ., then
the sequence above stabilizes at K;, and so M,; = K;. Therefore, to compute M
we need to compute Ker &'.

m € K; & F'm € Ker &'
& ¢n(FIR) = C(FimR) = IL;(FIUP 1Pl . UmR)
= LU gl UmR) CIm A
& (UYL UmR) C Im AP
sme{weR | UM IUPT...Uw e Im AP}

Hence, M,; = K; = {w € R* | UP TPl . Uw € Im AP}, and so
Ra

M = : , —.
{we R | UPIUP. .. Uw € Tm AP}

Alternatively, see Corollary [4.5.3] If ; is the map UP' 1UP ... U : Coker A —
Coker AP, then M,,; = ker 3; where ker §3; is the stable kernel. O

Lemma 4.3.11. Let (M,C) be a finitely generated Cartier module isomorphic to
(Coker A, U). If U is invertible, then the adjoint map  : F.M — Hompg(F,.R, M)
18 surjective.

Proof. Since F.R is a free R-module, any map & € Hompg(F,R, Coker A) can be
written as a composition F,R % R* — Coker A for a map ¢ € Hompg(F.R, R*),
where the last map is the natural surjection. We know that any ¢ € Hompg(F, R, R%)
can be written as p(—) = (7(Fyvi—), -+, 7(Fiva—))" for some vy, -+ , v, € R. On
the other hand, invertibility of the matrix U implies that x(F.U'0) = ¢p-15 €
Hompg(F,R, Coker A) where ¥ is the image of v = (v1, - -+ ,v,4)" in Coker A. However,
for any r € R, we have ¢y-15(F,r) = C(F,U'or). Therefore,

C(F,U'or) = I(F.UU  or) + Tm A = [I(FLur) +Im A
= (r(Fyor), -, 7(Fuwar))' + Im A

= @(Fr)+1ImA = ®(F,r).
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This shows that x(F,U'0) = @, and so & is surjective. O
Before proving the main theorem of this chapter, we need to recall a crucial
property of finite length modules (cf. footnote 8 in [2]).

Lemma 4.3.12. Let S be regular local F-finite ring of prime characteristic p, and
let m be the maximal ideal of S. Let N be a finite length S-module. Then

lp.s(Homg(F.S, N)) = p™51g(N).

Proof. Let 0 = Ny C N; € --- € N,, = N be a maximal chain of submodules of
N. Since F.S is finitely generated and flat S-module, Homg(F.,S, —) is exact, and
we get the following chain of F,S-modules

HOII15<F*S, No) g HOIIls(F*S, Nl) g cee g HOIIls(F*S, Nm)

Therefore, for each j, we need to check the length of Homg(F.S, N;1+1/N;) over F.S.
Furthermore, since N;11/N; is a simple S-module,

Homg(F.S, Nj+1/N;) = Homg(F,S, S/m).

We also have Homg(F,S, S/m) = Homg/m(F.(S/mlP), S/m) since for any x € m we
have 0 = zp(F.s) = p(xF.s) = o(F,aPs) for all ¢ € Homg(F,S,S/m). By Theorem
2.2.10] i5(S/mll) = pd™ S This means that S/m is free of dimension p™ 5 as an
S/m module. Therefore,

Homgm (F.(S/m), S/m) = Homg/m(F,(S/m), S/m)P""".

Then since Homg/w(F.(S/m),S/m) = F.(S/m) as F.(S/m) modules, length of
Homg/w(F(S/ml), S/m) over F,(S/m) is p™ 5. Hence the length of Homg(F.S, S/m)

dim S

over F,S is p , and so

lF*S(HomS(F*S, N)) = pdimsls(N).

([

Next theorem gives a computational proof of Facts 2. in a more algebraic

language. We will use the proof to provide an effective algorithm for finding the
finite set S.

Theorem 4.3.13. [2, ¢f. Proposition 4.1 and Proposition 4.5] Let (M,C') be a
finitely generated Cartier module. There is a finite subset S C Supp M such that
for all prime ideals P € Supp M\S

(x) All finite length Cartier quotients of Mp are nilpotent.
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Proof. If dim M = 0, then we take § = Supp M and we are done. Therefore, we
suppose that dim M > 0 and prove the claim by induction on dim M. By Lemma
M.1.7, we can replace M with M and assume that the structural map C' is surjective.
Let Pi,..., P, be the minimal primes of Anng M. Then, by Lemma m (%)

condition for M(P;) :=
ZGZO CG(PZM)
condition holds for M at P. For each ¢, by Lemma again, we can replace M (P;)

with M; := M(P;). We now claim to show that for each 7, there exists a finite subset
S; such that (%) condition holds for M; at any prime ideal P € Supp M; \ S;, and
we choose § = |JS;. If dim M; = 0 we take S; = Supp M;. Otherwise, to find S;
for which dim M; > 0, we will then show that there is an open set U; such that (x)
condition holds for M; at every prime in U; \ {P;}.

Let (Coker A;, U;) be the Cartier module (M;, Cyy,) where U; is the square matrix
with entries in R such that Cy,(—) = II(F.U;—), and d; be the determinant of U;.
Then by Lemma and Proposition [1.3.6] d; is a non-zero element of R. Now let
U; be the open set Xy NReg R/P; where Reg R/ P; denotes the regular locus of R/ P,
and Xy, denotes the complement of V(d;R). On the other hand, by Proposition
, the adjoint map k; : F.M; — Hompg(F.R, M;) to the structural map Cyy, is
injective. Next we take any prime ideal ) € U; which properly contains P; and

at any prime P € V(P;) implies that (x)

localize the adjoint map k; at (). Then the map
(ki)q : Fu(M;)q — Homg, (FLRg, (M;)q)

is an isomorphism by Lemma [4.3.11] since d; is an invertible element of Rg. There-
fore, we have a natural surjective map of F,S-modules

’(/) : F*(MZ)Q —» HomS(F*Sa (MZ)Q)

where S = Rg/P;Rg. Now let N is a finite length Cartier quotient of (M;)q. Since
P, is contained in @) properly, S is a regular local ring of dimension > 1. Moreover,
Homg(F.S,—) is exact, since F,S is a finitely generated flat S-module. Therefore,
the map F.N — Homg(F.S, N) induced from 9 is surjective, and so lp,s(FiN) >
lr,s(Homg(F.S, N)). On the other hand, by Lemma [4.3.12] I5, s(Homg(F.S, N)) =
pdmS]g(N). Therefore, since Ig(N) = lp,s(F.N), we have Ig(N) > piimSig(N).
This only happens when N = 0 or dim S = 0. However, since dim S > 0, we must
have N = 0, in particular, N is nilpotent. If it was in the case that ) = P;, we would
have dim S = 0, and Ig(N) > pi™5]g(N) would hold. Therefore, S; = S/ U {P;}
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where S/ is a finite subset contained in the complement of ;. Hence, we will find
the set S! in the complement of U;.
Let I; be the ideal of R whose image in R/P; defines the complement of U;.

M
Then, by Lemma [4.1.8 again, (x) condition for M(I;) := at any
Zezo Ce([iM )
prime P € V(I;) implies that (x) condition holds for M at P, and since P; & I;

dim M > dim M(I;) for each . If dim M (I;) = 0, then we choose S; = Supp M (1;).
Otherwise, by induction, we find S! in Supp M (I;). Therefore, by the induction, S
consists of such P,’s which are finitely many, and supports of finitely many Cartier
quotients of M whose dimension is zero. O

4.4 An Algorithm for Finding Annihilators of

Cartier Quotients

In this section, we introduce a new algorithm for finding explicitly determining a
finite set of prime ideals S satisfying the hypothesis of Theorem by following
its proof. Suppose that R = k|[x1, ..., z,] is a polynomial ring (or R = k[z1, ..., x,]
a power series ring) over an F-finite field k of prime characteristic p. Given a finitely
generated Cartier module (M, C), here are steps of the algorithm.

Input
A finitely generated Cartier R-module (M, C').

Output

Prime annihilators of Cartier quotients of M.

Initialize

S=0, M={M} and M’ = 0.
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Execute the following:

While M\ M’ # (), pick an element M € M \ M’ and do the following:
1. If dim M = 0, then add the ideals from Supp M to S and add M to M’.
2. It dim M > 0, do the following:

(a) Replace M by M.

(b) Find the minimal prime ideals P, ..., P,, in X := V(Anng M) and add
them to S.

(c) Foreach i, find the modules M; := M (P;) where M (P;) =

M
D eso C(BM)
(d) For each M; with dim M; = 0, add the ideals from Supp M; to S.

(e) For each M; with dim M; > 0, find the square matrix U; which gives the
Cartier module structure on M;, and compute its determinant d; = det U,

and do the following:

i. Find the open set U; := X, (| Reg R/P;.
ii. Find the ideal I; C R whose image in R/P; defines the complement
of Ul

M
iii. Add the modules to M and add M to M'.
ZeZO Ce(]ZM)

3. Output S, and stop.

Theorem 4.4.1. Given a finitely generated Cartier module (M,C'), the algorithm
described above terminates and the output set S is a finite set of primes ideals such
that M satisfies (x) condition on the complement of S.

Proof. To prove the claim, we shall explain how the steps of the algorithm work.At
step 1. we choose S to be Supp M, since supports of zero dimensional modules are
finite.

The main idea of step 2. is to divide Supp M into irreducible components and
find an open set for each irreducible component on which M satisfies (x) condition.
By Lemma/4.1.7} at step 2.(a) we can reduce our assumptions to the surjective case.

M
Then by Lemmal4.1.8) we can look for the desired ideals for M (P;) = S Ce(PM)
e>0 i

where P;’s are minimal prime ideals in Supp M computed at step 2.(b).
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By Lemmall.1.7]again, at step 2.(c) we can replace M (P;) with M;. At step 2.(d),
we eliminate M;’s with zero dimension for the sake of induction. Afterwards, at step
2.(e) we find the square matrix U; which represents the Cartier module structure
on M; whose dimension is strictly bigger than zero, and surjectivity guaranties that
the determinant of U; is not zero. Then at step 2.(e)i. we find the open set U; on
which M; satisfies (x) condition except P;. Since S := (R/P;)p, is a local ring of
dimension 0, by Lemma [1.3.12] I, s(Homg(F.S, N)) = lg(N) for any finite length
S-module N. However, this is not enough to say that anything about nilpotency of
N. Therefore, we put P;’s in S at step 2.(b).

The crucial step of the algorithm is step 2.(e)ii. We find the ideals I;, because

we want to apply same process to the modules M (I;) :

= inductively
Zezo Ce([ M )
and find such open sets on which M (I;) satisfies (x) condition. By Lemma

again, we know that if M (I;) satisfies (x) condition at a prime ideal P € V (I;) then
M satisfies (x) condition at P. Hence, at step 2.(e)iii., we add M(I;) to M. The
most important point here is that dim M > dim M(I;) since P; ; I;. Therefore,
since the dimension drops, the algorithm terminates.

After all the output set S is a finite set of prime ideals and on the complement

of S, by Theorem 4.3.13] M satisfies () condition as desired. 0

If the structural map of M is surjective, it is easy to find prime ideals in the
collection A := {Anng M/N | N is a Cartier submodule of M}. By Lemma |4.1.9]
prime ideals of A is also in S, and for any prime ideal P € S to decide whether

M
P € A we just need to check that if the annihilator of the module
ZeZO CE<PM>

is equal to P.

4.5 An Application to Lyubeznik’s F-modules

In this section, we investigate the connections between finitely generated Cartier
modules and Lyubeznik’s F-finite F-modules. We start with an important observa-
tion.

Discussion 4.5.1. Let M be an F'-finite F-module with a generating morphism
B : M — Fr(M) and let M be presented by a matriz A as in subsection and
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M = Coker A. Then we can write the generating morphism of M as Coker A LN
Coker AP where U is an o X o matriz with entries in R such that UIm A C Im APl
By Lemma we have Ulm A C Im APl & [ (UIm A) C Im A, and by Corollary
we have [[(UImA) C Im A < I(F.UImA) C ImA. Therefore, we can
use the matriz U to define a Cartier module structure on M given by the map
C: F.M — M where C(—) = HUgr(F.U-).

Conversely, let (N,C") be a finitely generated Cartier R-module represented by
a matriz B and denoted by (Coker B, V') where C'(F,V Im B) = II(F,VImB) C
Im B, which implies V Im B C Im B!, Then, we can define a generating morphism
Coker B % Coker B! for an F-finite F-module

2
N = @(CokerB Yy Coker BP Y2 Coker BP) Y .. -).

Proposition 4.5.2. Let (M,C) be a finitely generated Cartier module isomorphic
to (Coker A,U) and let M be the F-finite F-module

D 2 P2
M = lim(Coker A Yy Coker AP U7 Coker AP Y7 .. -)

Then M is nilpotent if and only if M is zero.

Proof. Let 3; denote the composition

2 i—1 .
Then we can write 3; as the composition
(] v?] [ i
Coker A & Coker AP Y255 Coker AP1 L2 .0 22 Coker AP,
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Therefore, §; is the map UP1UP™1... U : Coker A — Coker APl

M is nilpotent < C°(M) = 0 for some e > 0

671] .

& (FUP™ ... URY) CIm A
& LU URY) CIm A

o P URY C Im AP

& Im(UP .. U) C Im AP

& UV U is a zero map on M, ie. Im B, =0

< M = 0 by Proposition [2.2.33] .
O

Corollary 4.5.3. Let M be a non-zero F'-finite F'-module with a generating mor-
phism : M — Fgr(M) where M = Coker A and U is the square matrixz for which
the map Coker A Y Coker AP s isomorphic to the generating morphism. Let
C : F.M — M be the Cartier structure given by U, and N a Cartier submodule
of M. Then

1. N s nilpotent if and only if N C ker 5; for some i, where (; is the composition
3 Fr(B) o FZ(8) FiTYB).
map M — Fr(M) —— F5(M) REE > Fp(M).

2. M,y = ker 3;, where ker B; is the stable kernel of the ascending chain ker 81 C
ker B, C ..., and so M is a root of M.

3. If M' is the F-finite F'-module whose generating morphism is By @ M —
FR(M; then M = M'.

Proof. For (1), since N is nilpotent, there exist an integer i such that C*(F'N) =
IL(FiUP'...UN) C Im A which implies that UP*1...UN C Im APl Thus,
N C ker f3;.

By (1), My C ker ;. Also C'(Fiker 3;) = IL(FIUP ... Uker ;) = IL.(0)

=0
implies that ker 3; is nilpotent for each i, and so ker 5; C M,;. It shows part (2).
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Since M /M is nilpotent, the F-finite F’-module M /M’ whose generating mor-
phism M/M — Fgr(M/M), which is induced from g, is zero, and so M = M’
O

When R = k[zy,...,2,] is a power series ring over a perfect field k of prime
characteristic p and R — S is a surjective ring homomorphism, for any N € €, we
write A(N) = (M 5 Fr(M)), and we define the functor Hpg to be

Hrs(N) = lim(M 2 Fp(ar) 29 p2(ar) 22, )
where € is the category of Artininan R[f; f]-modules and A is the functor as in

Subsection m The functor Hp s and some of its useful properties are introduced
in [16, Theorem 4.2]. One can use the correspondence in Theorem and reprove

Theorem 4.2 in [16] using Proposition and Corollary [4.5.3]

Definition 4.5.4. Let (M, C) be a finitely generated Cartier R-module. M is called
manimal if C is surjective and M,; = 0.

Discussion and Corollary gives us next Theorem.

Theorem 4.5.5. There is a bijective correspondence between the category of F'-finite
F-modules and the category of finitely generated minimal Cartier modules.

Remark 4.5.6. Let (M,C) be a finitely generated Cartier R-module denoted by
(Coker A,U). By Lemma |4.3.10, (M) and (M) are clearly equal to

IZ(U[phl]U[pliﬂ e URO‘) + Im A
{m € R | UPTIUP™) ... Um € Tm AP}’

which s a minimal Cartier module, and so we denote it by M,in.

Theorem 4.5.7. Let (M,C) be a finitely generated Cartier R-module and let M
be the corresponding F-finite F'-module. Then the maximum length of a chain of
ideals in the collection A := {Anng My, /N | N is a Cartier submodule of My, }
is a lower bound for the F-module length of M.

Proof. Let Ju & J1 & --- & Ju be a chain of ideals in the collection A with
maximum length. Then by Lemma [4.1.9) we have a chain of Cartier submodules
of Mipin, No & N1 G --- & Ny, where Nj is the smallest Cartier submodule of
M,,;n, containing J; M, i.e. N; = 2820 C¢(J;M). Then by Corollary , M, in 18
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a root for M, and by Remarks [2.2.35 we have a bijective correspondence between
F-submodules of M and R-submodules of M,,;,. Therefore, each N; corresponds
an F-submodule N of M where N; = lim(N; X5 Fr(Ny) LLISON FA(N;) Fa, )
and ~; defines the Cartier structure on N; induced by C, and so m is a lower bound
for F-module length of M. a

Theorem shows that the algorithm described in section |4.4] gives a method

to find a lower bound for F-module length of M.



Chapter 5

An Explicit Correspondence

Let R be a formal power series ring over a perfect field k of prime characteristic p, i.e.
R = K[z1,...,2,], and let E = Er(R/m) be the injective hull of its residue field.
In this chapter, we introduce our computational correspondence between finitely
generated Cartier modules and Artininan modules equipped with a Frobenius map
over R, and we show that it coincides with the correspondences introduced in [2]
and [21].

5.1 An Explicit Isomorphism

Let klzy,...,z,] denote the module of inverse polynomials. By Example [2.1.38|
we know that F = klzy,...,z,]. In the rest of this section, we identify F with

rn

k[z7,...,x;], and we will write — to denote n-tuples (—v1,...,—1,) in addition

rrn

to Notation 4.3.8
Since F,FE is the injective hull of residue field of F, R, an application of Lemma
2.1.20| with S = F, R gives us the following corollary.

Corollary 5.1.1. Homg(F.R, E) = F.E as F.R-modules

By Proposition [2.2.5, we know that F,R is a free R-module with a basis set
B={Fz*|0< o <p—1foralli=1,...,n}. Therefore, an R-linear map from
F. R to any other R-module is simply a choice of where to send these basis elements.

83
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Next we fix an explicit F,R isomorphism between Hompg(F.R, E) and F,E which
we use repeatedly in this chapter.

Lemma 5.1.2. The map ¢ : Homg(F.R, E) — F.E given by

O(g)= > Rl T(g(F.z%))] (5.1)

0<a<p

for all g € Homg(F, R, E), where T is the natural Frobenius map on E, is an F,R-
1somorphism.

Proof. By the definitions of 7" and g, it can easily be seen that & is well-defined
and additive. For any r € R, we further have the following

rd(g) = Y F[z T (g(Fa®))]

0<a<p

= 3 R T(rg(F.a%)] = B(rg)

o<a<p

which means that ® is R-linear. Thus, fo_r F, R-linearity _of ®, since F.R is a free
R-module, it is enough to show that F,.z2°®(g) = ®(F,z°g) for any basis element
F.z% € B, and so we will show that the right hand sides of following equations are

equal.
F.2®(g) = Z F [z =T (g(F.a%))), (5.2)
®(F.2’g) = Z F [z T (g(F.a™*7))). (5.3)

Moreover, since F*:EB = F*:z:f1 . F*xg", it is enough to show that

Fal®(g)= Y Flay 7o a7t gplmenr(g(Fa))

0<a<p
= > RO (g(Fatt L a L aln))] = B(F.alg)
0<a<p
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for each F,z?". To do that we will show the following sets are the same
Sy = {F[z" 0T (g(Foas .. a7 P 2 )] |0 < oy < p},
Sy = {F,[ap7 170 g imith | gprlman P (g(F2%))] | 0 < a; < p).

(2

In the case that a; + 3; < p,
{F,[zP 7T (g(Fa8" .. .x?ﬁﬁ" N 0< oy <p—pi} =
{F,Jab7 1700 b~ imeathi | gpmlmenp(g(Fz))] | B < oy < p}

)

since substituting a; with a; + ; in the latter set gives us the former set. On the
other hand, in the case that a; + 3; > p,

{Fz7 0T (g(Faf . ad ™ af)] [ p— i < ou < p} =
(B a0 g motB | pplmanp(g(RLE)] ] 0 < s < B}

)

Sjnce fOI" each k - {0, . ,61' — 1}, Where a; + ﬁz :p+ k (16 p—o; = 51 - k)a
F [z 70T (g(Food .. .x?ﬁﬁi cxtm))) =

F a0 gt gprlmenp(g(Falt L ak L at))] =

Flabmimon g kB gpmlmenp(g(Fat gk o).

Therefore, S; = Ss, and so the right hand sides of [5.2] and [5.3] are equal.
For injectivity of ®, we first need the following. For any ¢ € Hompg(F.R, E),
we have g(F.z%) € klzi,...,z,], and so g(F,z%) is a finite k-linear combina-

Un

tion of monomials x;" ...z * where v;’s are positive integers. Therefore, for

each F,z% € B, F.[77717°T(g(F,z%))] is a finite k-linear combination of monomials

S e .
Fo— 77 o gb=1=on=pn  This means that

Og)= Y RT(g(Fa%)]= ) ( 2. AVF*fp_l_d_pD)

0<a<p 0<a<p \0<P<oo
Therefore, ®(g) = 0 if and only if A, = 0 for all # > 0 since p — 1 — & < p implies
that p— 1 —a—pi < 0 and the terms F,zP~ 1P o F, 77~ 1=F=pi ypless & = 3 and
it = v at the same time. Hence,

D(g) =0« T(g(F.z%) =0forall0<a<p
S g(Fz)=0forall0<a<p

& g=0.
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,x, ]. We know that
it can be written as a finite sum of terms F.uxz"" ...z, ", where u € k, and these

For surjectivity of ®, we take an element F.e of F.k[z],...

terms can be written as

- —Vn _ k1 kn p,.—pP1 —pPn
coxym = Fayt ooy E e T

Fopx]

= Faf BT O a)

n

where p = NP, and for each i, k; = pf8; — v; and 0 < k; < p. Now we rewrite F,e as
a finite sum

> Faf. b FT(en...k,)
0<k1,..., kn<p
where eg, x, € k[zy,...,z,], and we choose a map g € Hompg(F.R, E) which sends
Fab™' 7k a1k to e, . This means that ®(g) = Fie, i.e. ® is surjective.
Hence, it is an isomorphism of F, R-modules. a

5.2 The Correspondence

Proposition 5.2.1. Let a be a non negative integer. There is a bijective correspon-
dence between Homp(F.R*, R*) and Hompg(E*, F.E®) such that the trace map I1 on
F.R® corresponds to the natural Frobenius map T on E® and II(F.U—) corresponds
to U'T for any a X o matriz U with entries in R.

Proof. We start by identifying Homg(F, R, F) with F,FE using the isomorphism ®
defined in Lemma 5.1.2, Then we first assume that « = 1 and let ¢ : F,R — R be a
Cartier map. We know that there is an element v € R such that ¢(—) = m(F,u—).

Applying Matlis duality to this map glves us Hompg(R, E) LRzl Hompg(F.R, E).
Next we use the isomorphism F ot Hompg (R, E), where f.(1) = e, to get the
following composition

E — Homg(R,E) - Homg(F.R,E)—  F.E
e fer= feod— O(feo9)
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O(f.o¢p) = O(f. om(Fou—)) (by FiR-linearity of ®)

= Fau®(f.or) = Fau Y F[#7°T(f. o n(F.2%))]

0<a<p

= FalF.T(f. o m(Fa?™"))] = FaulF.T(f(1))]
= F.uF,T(e) = FuT(e)

Therefore, the composition above gives us the Frobenius map 7" on E. In particular,
if u =1 we get the natural Frobenius T on E.

We now assume that o > 1 and let ¢ : F,R* — R be a Cartier map. We
know that there is an « x « matrix U with entries (u;j)1<;j<o in R such that
o(—) = II(F.U—-). Applying Matlis duality to this map gives Hompg(R", F) LRzl
Hompg(F,R*, E). Then we get the following composition

E° . s F.E®
a=(a,... a,) (D(faodoer),....0(fa0does))
I T
(fars -y fau)' P Ja fao o (faodoer,...,facdoe,)
Homp(R, E)* — Hompg(R*, E) — Hompg(F,R*, E) — Homp(F,R, E)*

where a € E* and we use the following obvious isomorphisms
E* — Homg(R, E)* given by (a1, ...,a4)" — (fay, - fa,)"
such that f, (1) = a; for each i,
Homg(R, E)* — Hompg(R", E) given by (g1,...,9a)" — ¢
such that g(e;) = g;(1) for each elementary vector e;, and
Hompg(F.R*, E) — Hompg(F.R, E)* given by h — (hoe,...,hoe,)

such that the map ¢; : FyR — F,R* given by F,r — F,rF.e; is the canonical
injection for each ¢. Then for a fixed ¢ where 1 < i < o, we have

O(foodoe)= Y F {IP_I_QT(f“(H(F*UEi(F*x%)))}

0<a<p
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Since
fa((EVa(RY) ) = fo((Fuia®, ., Fauir®)))
= a((W(F*uhfa)a > 77T<F*“Mja))t)
:12 fo, (m(Foujiz®)),
<j<a
we have

B(foopoe)= 3 ( S F [ﬂ*ﬂT(faj(W(F*uﬂxa)))D.

Then by definition of ®,

O(faopoe)= Y  Fau®(fo, o)

1<j<a
= Z F*u]zF*T<faJ (W(Sz’p71>))
1<j<a
= Y FuT(a)=F[ ) wiT(a)].
1<j<a 1<j<a
Therefore, for 1 <i < «
(I)(fa ogo 61) F. [Z1§jga ule(aj)}
O(foopoe,) F [ Z1§j§a ujaT(aj)]

which is equal to
FJUYT((a1,...,a.)")] = F.JU'T(a)].

Hence, the composition above gives us the Frobenius map U'T on E®. In particular,
if U is the identity matrix we get the natural Froebenius 7" on E“.

The construction above gives us a map 2 : Homg(F.RY, R*) — Homg(E®*, F.E*)
defined by Q(¢) = © such that ¢(—) = I[I(F,.U—) and O(—) = F.U"T(—). We
claim that this map actually is an F, R-linear isomorphism. Let Q(F,r.¢) = ©’ for
any r € R. Then since (Fyr.¢)(—) = ¢(Fur—) = I(F.Ur—), we have ©'(—) =
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F.(Ur)'T(=) = FurF,U'T(—) = ForO(—), ie. Q(Fur.¢) =0 = FrO = FrQ(e),
and so () is Fiyr-linear. Surjectivity of 2 is clear since for any Frobenius map
O(—) = F.U'T(—) we can define a Cartier map ¢(—) = II(F,U—). We also have
Qp)=0=U'T=0= U =0= ¢ =0, because if any entry of U was non zero
there would be non zero elements in the image of U'T, i.e. Q is injective. This
means that we get the promised bijective correspondence. O

Next we see that the Matlis duality functor (=) = Homg(—, E') commutes with
F.(=) (cf. Lemma 5.1 in [2]).

Lemma 5.2.2. Let M be a finitely generated or an Artinian R-module. Then
F.MY = (F.M)V.

Proof. We first assume that M is finitely generated. Then M has a presentation
o 5> R4 RY - M — 0 where A is an a x [ matrix with entries in R. If we

apply the Matlis dual to this presentation we get 0 — MY — E¢ A—t> Ef — ...
So MV = Ker A' = Anng. A®. On the other hand, F,M has the presentation
oo > FL.R8 LLEN F.R* - F,M — 0. Then if we apply the Matlis dual again and

identify Hompg(F, R, E) with F,E using the isomorphism ® defined in Lemma|5.1.2}

we get 0 — (FLM)Y — F.E* B4 pps 5 . and so (F.M)Y = Ker FLA' =

Anng, po F, A" = F,(Annge AY) = F,.M".
If now M is Artinian, we know that MV is Noetherian and M = MVV. Then it
follows from first assumption, F,M" = (F,MY)VV = (F.MYV)V = (F.M)" O
Next theorem extends Proposition 5.2 in [2] to a computational level.

Theorem 5.2.3. Matlis duality induces a bijective correspondence between finitely
generated Cartier modules and Artinian modules equipped with Frobenius maps given
as follows: if M is a finitely generated Cartier module with a square matriz U
defining the Cartier module structure on M, then the corresponding Artinian module
is MY with the corresponding Frobenius map U'T, which preserves the nilpotency.

Proof. Let (M,C) be a finitely generated Cartier module with a square matrix
U defining Cartier module structure on M. Then we have a presentation of M as
follows --- — R? 2 R® — M — 0 and the following commutative diagram with

exact rows
FRY —— FM —— 0

H(F*Uf)l lc
R —— M —— 0
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where C'is induced by II(F,U—) on M. If we apply the Matlis dual to the diagram
above and if we use Lemma |5.1.2] Proposition and Lemma [5.2.2| we get

0O — MY —— FE©

GJ( J{F*UtT

0 — FLMY —— F.FE

where 0 is the restriction of F,U'T on M. The same construction follows the

converse. We also have
M is nilpotent < C¢(M) =0
o L(UP...URY) C Im A by Lemma
& 0 is a nilpotent Frobenius map on M" by Lemma .

Hence, this construction preserves nilpotency. O
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