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ABSTRACT

Trying to accurately predict results of fusion experiments by means of computer
simulations has long been a formidable challenge in both inertial and magnetic
con�nement approaches. ¿is thesis evaluates and builds on three di�erent mod-
els suggested for approximating ‘nonlocal’ corrections to electron heat transport
that arise due to presence of steep temperature gradients: Schurtz, Nicolaï and
Busquet’s multigroup di�usion model (snb), Ji and Held’s moment based ap-
proach (eic), and the non-Fourier Landau-�uid model of Dimits, Joseph and
Umansky (nflf). It is found that, while the eic and nflf models are most
successful in matching fully kinetic behaviour for small relative temperature
perturbations to high degrees of nonlocality, they overestimate the peak heat �ow
by as much as 35% and fail to predict preheat in more realistic test problems where
relative temperature di�erences are large. Instead, the popular snb model proves
to be more reliable in such situations with the caveat that its optimal implementa-
tion is found to di�er signi�cantly in its predictions from that typically used in
rad-hydro codes. ¿ese conclusions are supported by a number of test problems
benchmarked against Vlasov-Fokker-Planck simulations as well as a thorough
mathematical analysis of the damping of low-amplitude temperature sinusoids.
¿e majority of test problems presented will be more relevant to indirect drive in-
ertial fusion, but consequences ofmodelling nonlocality in tokamak heat exhausts
shall also be brie�y considered. Furthermore, the consequence of incorporat-
ing the identi�ed optimal implementation of the snb model in the llnl code
hydra is considered. Finally, a simple method to incorporate nonlocal e�ects
on the Nernst advection of magnetic �elds down steep temperature gradients
is presented, based on the assumption that the relationship between the Nernst
velocity and the heat �ow velocity is una�ected by nonlocality. ¿e e�ectiveness
of this method is demonstrated in a number of inertial fusion scenarios.
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To James and Liora,
May the world you grow up into become a better place than the one in which you

were born.

“All models are wrong, but only some are useful"
—George Box
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1
INTRODUCTION

Global energy consumption is expected to rise approximately 28% between 2015
and 2040 with no sign of slowing; this is mostly as a result of continuing economic
growth in non-oecd Asian countries including China and India (Energy In-
formation Administration 2017). Encouragingly, the use of dangerously polluting
coal is predicted to peak in the mid-2020’s, with the demand for liquid fuels also
anticipated to grow more slowly than that from other sources. However, a more
substantial long-term reduction of the relative contribution of fossil fuels to the
global energy mix is thought to be necessary to avert potentially catastrophic en-
vironmental consequences, such as eventual average temperature rises exceeding
3 ○C (Cox et al. 2018).
With almost 50% of the world’s oil consumption currently being used by non-

air transport, (Energy InformationAdministration 2017), a key player on the route
to decarboni�cation will undoubtedly be widespread adoption of the electric
automobile. ¿is process is being expedited by countries such as Norway and
France aiming to abolish the sale of non-hybrid petrol and diesel cars by 2025
and 2040 respectively (¿e Guardian 7th July 2017). However, without the correct
infrastructure in place such a revolutionary transition could feasibly be limited
to a geographical restructuring of carbon emissions (Drax 2017). While falling
unit costs should lead to intermittent renewables like solar and wind forming a
greater part of our electricity supply (Coren 2017), nuclear power could still play

U.S. Energy Information Administration www.eia.gov/ieo#IEO2017U.S. Energy Information Administration

World energy consumption by energy source
quadrillion Btu

Energy consumption increases over the projection for all fuels other 
than coal in the Reference case—
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• Use of all fuels except coal grows throughout the Reference case.  Although renewable energy and 
nuclear power are the world’s fastest growing forms of energy, fossil fuels are expected to continue to 
meet much of world’s energy demand. 

• Petroleum and other liquids remains the largest source of energy, but its share of world marketed energy 
declines from 33% in 2015 to 31% in 2040. On a worldwide basis, liquids consumption increases in the 
industrial and transportation sectors, and declines in the electric power sector. 

• Natural gas is the world’s fastest growing fossil fuel, increasing by 1.4%/year, compared with liquid’s 
0.7%/year growth and virtually no growth in coal use (0.1%/year). 

• Compared with the strong growth in coal use in the early 2000s, worldwide coal use is projected to 
remain flat—with declines in OECD regions and China offsetting growth in India and the other non-OECD 
Asian nations.  Coal is increasingly replaced by natural gas, renewables, and nuclear power (in the case 
of China) in electricity generation.  Industrial demand for coal also weakens.

—with renewables being the fastest-growing energy source

20

figure 1.1: Historical and projected global energy demand by energy source, reproduced
from International Energy Outlook (Energy Information Administration 2017).

15



introduction 16

a vital role in load balancing a low-carbon economy, especially if users decide to
charge their cars at peak times (such as the early evening) (Brown 2018).
Despite nuclear �ssion as a whole being far safer for both the environment and

humanity than all other non-renewables (¿e International Energy Administra-
tion 2002), it has been increasingly falling out of favour since the earthquake at
Fukushima. Furthermore, some of the radioactive waste produced by �ssion has
extremely long half-lives (up to many thousands of years) and are becoming ever
more expensive to store. An alternative source of nuclear power is to harness
the power of the stars through nuclear fusion: producing energy through the
combination of isotopes of the universe’s lightest and most common element,
hydrogen, to form more stable nuclei such as helium.
¿e most feasible fusion reaction is that between deuterium and tritium, 21D +

3
1TÐÐ→ 4

2He + 1
0n + 17.65MeV, due to its high cross section and reaction energy

(Boyd and Sanderson 2003, Chap. 1 pp. 2–3). ¿e two fuels are relatively abundant
and a commonly quoted elucidation is that one bathtub of sea water (typically
consisting of 156 ppm deuterium, Hornberger n.d.) combined with the lithium
(used to breed tritium) in a standard laptop battery would provide enough energy
for one human’s lifetime energy needs. More importantly, a careful choice of
reactor �rst wall and structural materials could limit the radioactive waste created
by reactionswith escaping neutrons to a small volume that could be safely recycled
on the order of decades (Ongena and Oost 2012) and there is no risk of a nuclear
meltdown.
While jet may have come close with its record-breaking attempts in 1997, the

elusive goal of net energy gain has not yet been achieved. ¿is is largely due
to the di�culty in meeting the restrictive conditions on fuel density nDT and
con�nement time τ required for ignition known as the Lawson criterion: nDTτ ⪆
1020 sm−3 (Boyd and Sanderson 2003, Chap. 1, pp. 3–4). ¿ere are currently two
mainstream routes for meeting this requirement: magnetic con�nement fusion
(mcf) using donut-shaped devices known as tokamaks which contain the plasma
on timescales of up to a minute or more with strong magnetic �elds at relatively
low densities of 1019–20 m−3, and inertial con�nement fusion (icf) which instead
relies on reaching extremely high densities exceeding 1 × 1026m−3 by compressing
small millimetre-scale capsules using lasers. ¿ese lasers can shine either directly
on to the capsule surface or onto a surrounding metal cylinder called a hohlraum
which then radiates x-rays back on to the capsule through the helium gas-�ll (see
�g. 1.2); it is the latter of these that shall be the main (but not only) focus of this
thesis.
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figure 1.2: ¿e iter tokamak (le ) is currently under construction in Cadarache,
France (image reproduced from www.iter.org/news/galleries). An alternative ap-
proach being explored at nif at llnl in California is indirect drive icf (right) (image
reproduced from lasers.llnl.gov/media/video-gallery/ride-the-beamline).

Due to the high, kilo-electronvolt temperatures necessary for fusion to be
viable, it is inevitable that very large temperature di�erences will be realised in
fusion experiments. ¿ese can o en occur on scalelengths that are comparable to
the mean free path for perpendicular scattering (mfp) of more energetic electrons
with ions

λei = (є/keV)2
ZlogΛeine/1020 m−3 × 1.5 × 103m (1.0.1)

where є = 1⁄2meυ2 is the energy of the electron, Z is the ionisation of the plasma,
logΛei is the Coulomb logarithm (introduced in section 2.1 and typically taking
values around 5–15) and ne is the electron density. As a result, energetic electrons
can escape hot regions for cold ones with minimal collisions, causing the plasma
to dri out of local equilibrium (meaning the distribution of electron velocit-
ies would no longer be Gaussian) and invalidating many of the assumptions
governing ‘classical’ heat transport.
¿e most dominant contribution to the classical electron heat �ux #»Q is from

electrons travelling at about 2.6 times the thermal velocity υ2T =√2kBTe/me.
Due to the υ4 scaling of the appropriate mfp’s, these suprathermals can travel
almost � y times further than thermal electrons enabling excess heat to be
deposited beyond the steepest part of the temperature pro�le (o en referred to as
‘preheat’ in the literature—Epperlein and Short 1991) as shown in �g. 1.3. A reduced
population of suprathermals is le behind in the region of steep temperature
gradient, contributing to a reduction in the heat �ux. ¿ese ‘nonlocal’ e�ects

www.iter.org/news/galleries
lasers.llnl.gov/media/video-gallery/ride-the-beamline


figure 1.4:
¿e expansion of
the gold bubble
caused by the outer
beams can block
the pathway of the
inner beams and
a�ect implosion
symmetry. (Image
reproduced from
Callahan et al.
2018).

figure 1.5:
Weakened inner
beams can lead to
‘pancaking’ of the
capsule implosion.
A recalibration
of the beams
can restore the
symmetry (below).
(Image reproduced
from str.llnl.

gov/AprMay10/

damkroger.html.)

1.1 nonlocal effects in inertial fusion 18

υ = υ2T ⇒ λ(B)ei = λ(0)ei

υ ≈ 2.6υ2T ⇒ λ(B)ei ≈ 50λ(0)ei

Contributes
most to #»Q LT

x

Te

[ 17th July 2018 at 0:53 – Jonathan Brodrick ¿esis version 0.2 ]

figure 1.3: Suprathermal electrons travelling at 2.6υ2T can escape steep temperature
gradients before thermalising due to their mean free paths being almost 50 times that of
thermal electrons. ¿e resultant displacement of suprathermal electrons leads to ‘preheat’
at the foot of the temperature gradient along with a reduction of the peak heat �ux.
(Colors are simply to indicate warmer and cooler regions.)

can become important even for temperature scalelengths as long as ∼100 thermal
mfp’s (Schurtz et al. 2000).
While the short, sub-millimetre scalelengths involved in inertial fusion make

the importance of nonlocal transport self-evident (and this has been known
for a long time), the low densities present in tokamaks, particularly along the
scrape-o� layer where excess heat is exhausted, means that nonlocality can also
play a role in mcf. ¿e way this interplay of �ux reduction and preheat plays out
within these two conventional fusion routes is detailed in the next two sections.
Following this, an outline of the research that will be presented in this thesis is
provided.

1.1 nonlocal effects in inertial fusion

For the case of indirect-drive inertial fusion, steep temperature gradients of less
than 100 µm (corresponding to values of λ(B)ei /LT ⪆ 10–20% (Schurtz et al. 2000))
can be set up near the surface of the gold bubble ablated by outer beams. As
illustrated in �g. 1.4, the expansion of the gold bubble can impede the course of
the inner beams (Callahan et al. 2018) which balance the symmetry of the implo-
sion. With the electron temperature greatly a�ecting the inverse bremsstrahlung
absorption mechanism inside the gold bubble, it is critical to model thermal
transport accurately.
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Magnetised liner
inertial fusion or
Maglif is an altern-
ative approach to
icf that essentially
involves running a
sub-microsecond
pulse of high cur-
rent (10–70MA)
through a thin
hohlraum contain-
ing heated fusion
fuel. ¿e aximuthal
�elds generated by
the current creates
a compressional ‘Z-
pinch’ e�ect which
could achieve the
Lawson criterion
at lower densities
than typical icf
by providing longer
con�nement times
(Slutz and Vesey
2012).
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A simple, popular method to account for the �ux reduction aspect of non-
locality is the �ux-limiter approach (detailed in section 2.3.1). However, there
is no universally optimal value for such a �ux-limiter fQ ; it needs to be tuned
to experiments. Use of what appeared to be an overly restrictive �ux-limiter of
fQ = 0.05 in the nif radiation-hydrodynamics code hydra led to predictions of
a very hot > 5 keV gold bubble. Optimising the experimental set up according to
the restrictive model, however, resulted in an undesirable ‘pancaked’ implosion
better matched by a higher �ux-limiter of fQ = 0.15 that would allow for increased
cooling, and thus increased ability to impede the inner beams, of the gold bubble
(Rosen et al. 2011). ¿is was not the last time the recommended �ux-limiter was
changed: in order to eliminate previously necessary ad hoc multipliers on the
radiation drive (which would otherwise be overestimated by 30%) that arose a er
multiple to changes to the atomic physics model in hydra the �ux-limiter was
lowered again, this time to 0.03 (Jones et al. 2016).
Nonlocality can also play a role in magnetised transport, which is important

in a variety of icf scenarios: Self-generated �elds in the megagauss (∼100 tesla)
range have been observed to occur near laser hotspots on direct-drive capsule
shells (Séguin et al. 2012; Igumenshchev et al. 2014), and hohlraum walls (Li et al.
2009). ¿ese �elds have the ability to inhibit thermal transport and raise plasma
temperatures (Stamper 1991; Farmer et al. 2017). Furthermore, the potential
of an externally-imposed �eld to improve performance and potentially cross
the ignition barrier has been demonstrated in magnetised liner inertial fusion
(Maglif, see margin) (Slutz et al. 2010; Slutz and Vesey 2012; Sefkow et al. 2014;
Gomez et al. 2014), plasma-liner-driven magneto-inertial fusion (mif) (Knapp
and Kirkpatrick 2014; Ryzhkov 2014; Hsu et al. 2017), direct-drive icf (Gotchev
et al. 2008; Chang et al. 2011; Hohenberger et al. 2012) and indirect-drive icf
(Montgomery et al. 2015; Strozzi et al. 2015; Perkins et al. 2017).
Over thirty years ago, Brackbill and Goldman (1983) were the �rst to demon-

strate that the �ux-limiting of all transport coe�cents more accurately captured
features predicted by a kinetic code. Much later, Davies et al. (2015) found that
�ux-limiting corrections to the classical Nernst velocity, which concerns the
advection of magnetic �eld down steep temperature gradients, are necessary
for matching simulated yield and ion temperature to a direct-drive experiment
with an externally imposed �eld. ¿is explanation is supported in a recent work
by Hill and Kingham (2017), where a signi�cant reduction of the peak Nernst
velocity compared to the Braginskii prediction is observed in a 2d kinetic simula-
tion of a non-uniformly irradiated ch-foil. Additionally, the authors observed
an enhancement of the Nernst velocity inside the foil where the temperature
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figure 1.6:
Due to low densit-
ies, parallel heat
transport in the
scrape-o� layer can
be very nonlocal.
(Image modi�ed
from euro-fusion.

org.)
Nucl. Fusion 52 (2012) 123002 B. Lipschultz et al

available. The outer divertor views indicate a peak at or above
the melted tile location. The inner divertor brightness profile
is consistent with further movement of the droplet(s) upwards
as they move toroidally. The angle of the movement with
respect to horizontal (assuming a constant ratio of toroidal
and vertical velocities) is ∼9◦. Further assuming that the
droplet is moving in the counter-clockwise direction then the
angle of movement with respect to the plasma flow (counter-
clockwise and moving downwards along a flux tube) along
the field is ∼12◦. Given the poor time resolution of the
spectrograph monitoring the W I emission we cannot determine
the velocity of the droplets, nor can we determine whether
the droplets are moving counter-clockwise or clockwise. We
believe that clockwise movement of droplets is less likely given
that droplets would be moving against the plasma flow and that
they would need to move vertically upwards first and then,
upon reaching the spectroscopic views at the inner divertor,
back down.

Towards the end of the campaign, an experiment was
tried where the ICRF heating was brought up very slowly
over a sequence of discharges in contrast to the beginning
of the campaign when the ICRF power was of order 4 MW
(the Ohmic power is ∼1 MW). The result was even more
problematic than earlier in the campaign. Injections started
at very low powers—600 to 1200 kW. Several times the
injections led to disruptions, even in L-mode where the
impurity confinement is low. There was clearly no healing
of the melt. The evidence indicates the opposite.

4. Post-campaign analysis of tungsten loss

Based on closer examination of the tungsten tile row after the
2009 run campaign there were several reasons for enhanced
heat loads and melting. First, it was found that one tile had
become so loose that it had fallen out of the divertor, creating
a leading edge on the next remaining tile. A leading edge is
a surface perpendicular to a field line that experiences the full
heat load parallel to the magnetic field as opposed to being
spread out by the small field line angle of incidence to the
surface. Figure 7 shows the gap where the missing tile was as
well as the remaining four (out of the eight lamellae that made
up the tile) that were significantly melted. The second reason
for enhanced heat loads on the leading edge of the remaining
tile in addition to the gap is that it was also loose; this created
a space between the tile and its mounting surface of ∼1–2 mm
and thus the front of the tile was beyond the normal front
surface of the divertor.

A third reason for the tungsten tile intercepting additional
heat flux is the apparent melt layer motion of tungsten. After
the 2009 campaign the tungsten lamellae were removed from
the machine and divertor module. The parts for the tile that
had remained attached to the divertor through the run campaign
were then analysed for changes in grain size, lamellae shape
and melt layer characteristics. The results of that analysis
are given elsewhere [29]. Here we show in figure 8 the
profilometry measurements of two individual melted lamellae.
The line corresponding to 20 mm of height in the figure
indicates what had been the nominal front surface of the
lamellae. An arrow gives the poloidal direction downwards
which is the motion of the melted tungsten. ‘Hills’, or

Figure 7. Second melted tile that remained in place, having lost
four out of eight lamellae. The direction of the incoming plasma
flux along a field line is shown.
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Figure 8. Profile of the plasma-facing surface of two (of eight)
lamella farthest from the leading edge. The machined surface
location is shown as a dotted line.

prominent regions, are formed that extend up to 3 mm into
the plasma from the nominal front surface of the divertor.

Taking together the looseness of the tile (1–2 mm), the
added height of the lamella (3 mm) and the missing tile, we
can make an estimate of the additional heat load on the melted
tile and the period during a RF-heated discharge needed to
reach a melting condition. At the end of the run period, when
we could make the above measurements of the tiles, the overall
location of the leading edge of the lamella was 4–5 mm into
the plasma, combined with a field line angle with respect to
the nominal surface of ∼0.6◦, means that the remaining part
of a lamella tile shadowed and received the heat load intended
for of order 14 of the following tiles, each tile’s width being
∼3 cm wide in the toroidal direction. The area on the damaged
tile where the heat was deposited probably varied over the run
period from the first 1–2 mm of the side of a single lamella
(∼0.3 cm2) to, of order 4 cm2, where the heat would be spread
out over a number of the remaining lamellae as the melting
proceeded. Taking the ratio of those melting areas to that of

5

figure 1.7: High
heat loads on the
divertor plates can
lead to signi�cant
material damage.
(Image reproduced
from Lipschultz
et al. 2012)
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gradient is relatively �at. Similar to the phenomena of nonlocal preheat which is
important in directly-driven icf capsules, such an e�ect could not be captured
by �ux-limiters.

1.2 nonlocal effects in the scrape-off layer

In tokamaks, the dominant transport mechanism occurs perpendicular to �eld
lines, where the electrons are almost completely relocalised by the short Larmor
radius. However, parallel transport becomes important in the scrape-o� layer
(sol), which exhausts energy from the core plasma to the ‘divertor’ depicted
in �g. 1.6 (Chodura 1990). ¿ermal electrons entering the sol at the separatrix
have mfp’s ranging from 1% (C-Mod) to 20% (diii-d/Tokamak de Varennes
(TdeV)) of the distance to the divertor target (connection length). For iter this
is estimated to be 8%. In fact, the ratio of λei to the local temperature scalelength
LT = 1/∇∥ logTe tends to vary along the SOL from approximately 1 (TdeV) or
0.1 (diii-d) at the separatrix, to 0.01 near the colder divertor (Batishchev et al.
1997). ¿ese ratios are almost two orders of magnitude higher for suprathermal
electrons, rendering the heat transport inherently nonlocal. Furthermore, transi-
ent events, such as edge localised modes (elm’s), disruptions and �laments, can
create even higher temperatures and steeper gradients, with which the associated
suprathermals would be almost collisionless (Omotani and Dudson 2013).
Current state of the art codes, such as solps (Schneider et al. 1992; Reiter 1992)

and uedge (Rognlien et al. 1994), have been shown to signi�cantly underestim-
ate the outer divertor target electron temperature and overestimate its density
compared to experiment in existing tokamaks, which in turn a�ects other plasma
parameters. Chankin and Coster (2009) have suggested that nonlocal e�ects in
addition to inadequate treatment of neutrals (which was largely ruled out by a
sensitivity analysis) and inappropriate use of time-averaging could explain this
discrepancy. ¿e plausibility of this hypothesis is supported by recent gyrokinetic
simulations performed by Churchill et al. (2016). Another important factor is
the e�ect of the enhanced suprathermal population on Langmuir probe char-
acteristics(Horacek et al. 2003; Jaworski et al. 2012, 2013; Izacard 2016): Ďuran
et al. (2015) have shown that a more sophisticated interpretation of probe results
can reduce but not eliminate the discrepancy. Resolution of this discrepancy is
critical as excessive heat loads could erode and severely limit the lifetimes of the
divertor target plates (Turnyanskiy et al. 2015) as shown in Fig. 1.7.

euro-fusion.org
euro-fusion.org
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1.3 thesis outline

Due to the important uncertainties laid out above concerning the accuracy of
standard heat transport modelling tools there is demand for a more complete
approach that is not too computationally intensive. ¿ese sophisticated altern-
atives are referred to as reduced nonlocal models with one of the most popular
being the ‘snb’ multigroup di�usion model (Schurtz et al. 2000). Validation and
improvement of such models shall be the main focus of this thesis.
A detailed description of various relevant nonlocal models is provided in the

next chapter, particularly of the snb, eigenvector integral closure (eic) (Ji et al.
2009) and non-Fourier Landau-�uid (nflf) (Dimits et al. 2014) models which
shall be explored in detail throughout the remainder of the thesis. First principles
(i.e. kinetic) approaches such as Vlasov-Fokker-Planck that will be used as valu-
able benchmarks for the nonlocal models will also be described in this chapter
along with its relation to the standard classical transport formulation for �uid-
based plasma simulation. Following this the exact numerical implementation of
the codes and models used in this thesis will be outlined in chapter 3.
Testing of the nonlocal models in unmagnetised regimes shall be presented in

chapters 4 to 6. Firstly, the performance of the models in predicting the damping
of a low-amplitude temperature sinusoid (o en referred to as the Epperlein
Short test), where valuable analytical progress can be made, shall be evaluated
in great detail in chapter 4. While this is far from the �rst time such a study
has taken place, a number of new insights are unveiled through the step-by-
step process that is taken, such as how to tune some of the nonlocal models to
capture limiting behaviour more accurately. More relevant test problems with
large relative temperature di�erences will then be presented in chapter 5. ¿e
�nding here will be that, given that care is taken with implementation, the snb
model is the most successful at replicating kinetic results. However, it will be
shown that the model still has some failings such as overestimating both thermal
conduction in the low density hohlraum gas �ll and preheat. Chapter 6 then
shows the impact of incorporating the implementation suggested by this thesis
in a number of important inertial fusion code.
Finally, Chapter 7 explores the crossover between nonlocality and magnetised

transport by studying fully-kinetic magnetised Vlasov-Fokker-Planck (vfp)
simulations. ¿e snb model will again be investigated as a potentially accurate
and e�cient way to account for nonlocal modi�cations to the ‘Nernst’ advection
of magnetic �elds down temperature gradients.
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Conclusions will be presented in chapter 8, with appendices to follow. ¿e
�rst of these, appendix a, will contain suggested coe�cients for the nflf model
while the seconds consists of various derivations and proofs that were too lengthy
or distracting to provide in the main body. De�nitions of various symbols, terms
and abbreviations can be found beyond this, while bibliographic references are
provided at the very end.



2
THEORETICAL BACKGROUND

¿e long-range nature of the Coulomb interaction between charged particles,
means that plasmas are inherently a complex state of matter to model. ¿ings
get even more complicated if an attempt is made to actually predict the various
ionisation and energy states of the ions, which generally requires sophisticated
reduced models based on quantum mechanics. Fortunately, the de�ning ability
of a plasma to screen out localised charge imbalances over the scale of the Debye
length provides some degree of simpli�cation. ¿e Debye length is de�ned as

λD =
√
ε0kBTe
nee2

(2.0.1)

and is usually much smaller than length scales of interest. ¿is ‘Debye screening’
is possible if the number of electrons within a Debye sphere neλ3D ≫ 1 and
allows long-range collective interactions to be treated separately from short-range
‘collisional’ interactions within the Debye sphere.
As the focus of this thesis concerns the interplay of electron heat transport

with magnetic �elds, the ionisation, density and Coulomb logarithm pro�les
shall generally be imposed and kept constant rather than simulated. For this
reason, equations for ion motion and transport shall be neglected, except in
some simulations performed by collaborators at llnl with the hydra code.
Furthermore, all forms of plasma-neutral interaction are neglected in this thesis.
Of course it is unfeasible to simulate individual particles, as even in tokamaks

electron number densities can exceed 1013 cm−3 (Boyd and Sanderson 2003, p. 10,
�g 1.4). ¿ere are therefore two main levels of simpli�cation used in modelling
plasmas: kinetic and hydrodynamic. Kinetic approaches takes into account
some of the �ne-scale features of the plasma at di�erent points in space, most
importantly the distinct behaviour of electrons with di�erent velocities at a single
spatial location, while the hydrodynamic assumes a local equilibrium and thus
expects each species to follow a Maxwell-Boltzmann distribution. ¿e method
most applicable to accurately predicting the evolution of the electron distribution
function directly for the moderately collisional transport problems of interest in
this thesis is the Vlasov-Fokker-Planck (vfp) approach .
Another method of modelling plasmas kinetically is o�ered by particle-in-cell

(pic) codes, which simulate a large number of macroparticles (typically between
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104 and 106) in each cell of a spatial grid. ¿e net electric charge and current in
each cell is calculated and used to obtain macroscopic electromagnetic �elds by
solving Maxwell’s equations. Acceleration of the particles is then provided by
these �elds. Particle-in-cell codes are particularly e�ective on extremely short
timescales where local collisions are not so important and provide a natural
way of modelling laser-plasma interactions. However, incorporating an accurate
collisional model to capture the interactions between particles in the same cell
that lead to equilibration can be very challenging. One popular solution is to use
Monte Carlo collisions by only sampling a limited number of interactions per cell
(Takizuka and Abe 1977). Nevertheless, this signi�cantly increases computational
time and place more stringent requirements on the number of particles per cell
required to provide accurate statistics.

2.1 the vlasov-fokker-planck equation

‘One-particle’ here
refers to the
neglection of
simultaneous
multi-particle
interactions giving
rise to lasting
correlations
between the
involved particles.
As long as the
collision frequency
is su�ciently slower
than the plasma
frequency
ωpe = υ1T/λD these
should not be
important and the
plasma can be
treated as
Markovian (Boyd
and Sanderson
2003, chap. 12).

¿e Vlasov-Fokker-Planck equation takes a less memory intensive continuum
approach that instead considers the evolution of the (one-particle) electron velo-
city distribution function (edf) fe representing the number density of electrons
with a given velocity at each spatial location. ¿is is much more e�cient at cap-
turing the important physics associated with more energetic electrons that is so
important to heat transport. ¿e evolution of the edf is given by

∂ fe
∂t

+ #»υ ⋅ #»∇ fe − e
me

(
#»E + #»υ × #»B

) ⋅ ∂ fe
∂ #»υ

= Ce( fe), (2.1.1)

where Ce = Cee + Cei is the collision operator describing both electron-electron
and electron-ion collisions (Boyd and Sanderson 2003, chap. 8) . An intuitive un-
derstanding of the vfp equation is formed by viewing it as a continuity equation
(such as typical �uid equations) in seven dimensions; speci�cally, the quantity
of electrons with a given velocity at a single spatial location increases when the
number of electrons with that velocity travelling into that cell is greater than
the amount travelling out of it, or when more electrons are being accelerated
towards that velocity than away from it. ¿e collision operator makes sure that
the edf will relax towards a Maxwellian over time and always preserves number
density; desirably, collisions with like particles additionally preserve total energy
and momentum. ¿e Trubnikov-Rosenbluth (Trubnikov 1965; Rosenbluth et al.
1957) expression for the collision operator can be derived by considering the net
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e�ect of the Coulomb collisions between the edf and a test particle and is given
by

Ceβ( fe, fβ) = −Γeβ ∂
∂υi

(
me
mβ

fe
∂
∂υi ∫

fβ∣#»υ − #»u ∣ d3 #»u− 1
2
∂ fe
∂υ j

∂2

∂υi∂υ j ∫ fβ ∣#»υ−#»u ∣d3 #»u
)

(2.1.2)

(applying standard Einstein summation over repeated indices). Here we have
de�ned

Γeβ = 4π(ZeZβe24πmeε0

)2
logΛeβ , (2.1.3)

where Z i = Z is the average ionisation and Ze = −1, along with mi the ion mass.
¿e Coulomb logarithm is a measure of the importance of small-angle colli-

sions over large-angle and is o en given as the logarithmic ratio of the Debye
length to impact parameter for perpendicular de�ection b90 = ∣ZeZ ie2/4πε0meβυ21T∣
(where meβ = memβ/(memβ)). Strictly speaking, logΛ should be velocity de-
pendent (Cooper and Herman 1973) but this feature is not considered in the
derivation of most transport and always neglected in the vfp codes used in this
thesis. Many texts provide di�erent expressions for the Coulomb logarithm o en
taking into account that use of the de Broglie wavelength λB = ħ/2meβυ1T is
necessary in place of the impact parameter for fast moving electrons (with energy
є ⪆ 10Z2 eV), and four examples (for cold ions Ti < meTe/mi) are provided here
for comparison,

logΛeβ = log(λD/b90), (Boyd and Sanderson 2003)

logΛei = log(3λD/max(b90, λB)), (nrl, Huba 2016)

logΛei = log(λD/2√2πλB) + 1⁄2(log(16π) − γE − 1), (bps, Brown et al. 2005)

logΛei = 1
2
log
(
1 +
√

λ2D + R2i
λ2B + b290

)
. (gms, Gericke et al. 2002)

where γE = 0.5772 . . . is the Euler-Mascheroni constant and Ri = 3
√
3/4πni is the

e�ective ion radius. A brief scan of the literature (Ma et al. 2014; Kodanova et al.
2014; Zhao 2017) seems to suggest that it is still inconclusive whether the bps or
gms formula is more accurate. For a more involved approach also see Mulser
et al. 2014. However, deliberations on the Coulomb logarithm are not relevant
to the conclusions of this thesis as a constant Coulomb logarithm is generally
imposed and calibrated for comparison tests.
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In vfp codes, the associated ion distribution function fi is typically assumed
to be Maxwellian, and all codes used in this thesis, except for kipp, assume a
cold ion population and neglect terms of order me/mi (eliminating electron-ion
energy equilibration), simplifying the electron-ion collision operator to:

Cei( fe, niδ(υ)) = niΓei ∂∂υi
(

�
�
�
��>
0

me
mi

υi
υ3
fe + υ2δi j − υiυ j

2υ3
∂ fe
∂υ j

)
, (2.1.4)

where δ(υ) is the Dirac delta function and δi j is the Kronecker delta tensor. Note
that if there are multiple ion species with a combined density ni then the total
e�ect on electrons colliding with each species can be obtained by replacing Z i
with the root mean square ionisation Z∗ = √〈Z2〉. ¿roughout this thesis, Z
will simply be used as a shorthand for Z∗ in cases when multiple ionisation states
are present.
¿e collision operator only considers small-angle scattering, which is valid

as long as the Coulomb logarithm is su�ciently greater than unity. As a rule of
thumb, the vfp approach is only accurate to within 1/logΛ, but so are all methods
derived from it, such as hydrodynamics. Plasmas with small Coulomb logarithms
are typically high temperature or low density and referred to as strongly coupled.
Examples relevant to icf include the cooler part of the partially ionised hohlraum
wall or the stagnation phase of capsule implosions. In such situations quantum
e�ects such as degeneracy o en come into play and therefore require more novel
modelling approaches (Sijoy et al. 2017).
In retaining details of �ne scale structure and predicting deviations from

a Maxwellian, the edf is a very powerful tool that allows many macroscopic
features of interest to be calculated directly by taking moments in velocity space—
for example, the electron number density ne = ∫ fe d3υ, the electric current
density #»j = −e ∫ #»υ fe d3υ (as the ions are assumed to be stationary in this
thesis), the electron pressure Pe = 1⁄3me ∫ υ2 fe d3υ and the electron heat �ow
#»Q = 1⁄2me ∫ υ2 #»υ fe d3υ. ¿e calculation of the magnetic and electric �elds appear-
ing in the vfp equation can be determined through Faraday’s law and theAmpère-
Maxwell law respectively. For the latter case, the displacement current is o en re-
moved to eliminate transient features occurring at the plasma frequency, greatly in-
creasing the minimum viable timestep for explicit codes. Nevertheless, Ampère’s
law still provides a su�cient closure for obtaining the electric �eld through an
integral constraint on the electric current #»j = −e ∫ υ fe d3υ = #»∇ × #»B /µ0 which
can be applied to the vfp equation itself.
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2.1.1 Gyro-averaging

Due to the high dimensionality of the vfp equation it is o en not computationally
tractable to solve without some simpli�cation, o en through taking advantage of
symmetry. For the case where variations only occur along magnetic �eld lines,
symmetry in the perpendicular direction allows for elimination of the magnetic
�eld by ‘gyro-averaging’ (integrating azimuthally around the υ∥ axis, this process
is still valid even in the absence ofmagnetic �elds by instead using the axis parallel
to gradients in macroscopic plasma parameters such as density and temperature;
this yields the 1d2v (one-dimensional in space, two-dimensional in velocity) ‘dri 
kinetic equation’ (dke)

∂ fe
∂t

+ υ∥ ∂ fe∂s∥ −
eE∥
me

∂ fe
∂υ∥ = Ce( f ), (2.1.5)

where fe and Ce now represent their gyro-averaged forms, and ∥ denotes compon-
ents of vectors parallel to the magnetic �eld. While the gyro-averaged collision
operator can be derived quite straightforwardly from eq. (2.1.2) by using cyl-
indrical coordinates and assuming azimuthal symmetry, its exact form is fairly
cumbersome and the reader is referred to (Xiong et al. 2008; Chankin et al. 2012)
for more details.

2.1.2 Cartesian Tensor/Spherical Harmonics expansion

Sometimes the strong symmetry appropriate for gyro-averaging is broken by
spatial gradients perpendicular to the magnetic �eld, or in more than one direc-
tion in the absence of magnetic �eld. Furthermore, even the use of two velocity
dimensions can be restrictive, mainly because a Cartesian grid does not capture
the more egg-shaped nature typical of the edf at higher collisionalities. An
alternative way to reduce the dimensionality of the vfp equation is to perform
an expansion in increasing degrees of anisotropy, this is convenient for problems
of high and moderate collisionality as collisions reduce the degree of anisotropy.
Two di�erent bases that take advantage of the structure of the electron-ion col-
lision operator have been used to perform this expansion—Cartesian tensors

fe(#»υ ) = f0(υ) + υi
υ
f1i(υ) + υiυ j

υ2
f2i j(υ) + . . . (2.1.6)
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and (unnormalised) spherical harmonics.

fe(#»υ ) = ∑
l

l∑
m=−l f

l
m(υ)Pml (cos θ)e

imϕ , (2.1.7)

in spherical coordinates where Pml are the associated Legendre polynomials. Both
conventions lead to a reduction of the number of velocity dimensions to one and
have been shown to be essentially equivalent to each other by Johnston (1960).
¿e �rst few terms in the expansion can be quite easily understood by analogy
with a more familiar �uid treatment—the isotropic part of the edf corresponds
to �eld quantities and can be used to calculate the macroscopic variables

ne = 4π ∫ ∞
0
υ2 f0 dυ, P(Isotropic)e = 4π

3 ∫ ∞
0
meυ4 f0 dυ, (2.1.8)

while the �rst order anisotropy
#»

f 1 pertains to �ow quantities

#»j = 4π
3 ∫ ∞

0

#»

f 1 dυ,
#»Q = 4π

3 ∫ ∞
0
meυ2

#»

f 1 dυ. (2.1.9)

As a �nal example, the second order anisotropy plays a role in determining the
anisotropic pressure tensor

P(Anisotropic)ei j = 1⁄3me ∫ ∞
0
υiυ j fe d3υ = 4π

3 ∫ ∞
0
meυ4

(δi j
3
f0 + 2

5
f2i j
)
dυ (2.1.10)

by invoking the fact that
»»

f 2 is traceless.
¿e equations for the evolution of the �rst three terms are given by

∂ f0
∂t

+ υ
3

#»∇ ⋅ #»

f 1 − e #»E
3meυ2

⋅ ∂υ2 #»

f 1
∂υ

= C0(2.1.11)
∂

#»

f 1
∂t

+ υ #»∇ f0 + 2
5
υ #»∇ ⋅ »»

f 2 − e #»E
me

∂ f0
∂υ

− e #»E
3meυ3

⋅ ∂υ3 »»

f 2
∂υ

− e
me

(#»B × #»

f 1) = C1(2.1.12)
∂

»»

f 2
∂t

+ υ »#∇ #»

f 1 − υ
3

#»∇ ⋅ #»

f 1 − υe
me

∂
∂υ

( »#E
#»

f 1 − 1⁄3 #»E ⋅ #»

f 1
»»I

υ

)− e
me

(#»B × »»

f 2) = C2(2.1.13)
and so on (¿omas et al. 2012), where »»I is the identity tensor, (#»B × »»

f 2)i j =
Bk(єikn f2 jn + є jkn f2in) and ( »#A #»B )i j = (AiB j + A jBi)/2. Additionally, the contri-
bution of the third order anisotropy f3i jk to the

»»

f 2 equation (2.1.13) has been
neglected. ¿is truncation of the expansion beyond the desired degree of an-
isotropy is generally referred to as a ‘polynomial’ closure, and the equation set
presented here corresponds to what is called a p2 closure.
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While the isotropic part of the distribution function is only directly a�ected
by electron-electron collisions,

C0 = Cee0 = 4πΓee
υ2

∂
∂υ

(
∫ υ

0
f0u2 du f0 + 1

υ ∫
υ

0
u2 ∫ ∞

u
f0w dw du

∂ f0
∂υ

)
(2.1.14)

both electron-electron and electron-ion collisions contribute at higher orders of
anisotropy

Cn = −n(n + 1)2
νei fn + Ceen (2.1.15)

to zeroth order in the electron-ion mass ratio, where

νei = niΓei
υ3

= ( e2

meε0

)2 ZnelogΛei

4πυ3
(2.1.16)

is the velocity-dependent electron-ion collision frequency.

2.1.3 ¿e Collision Fix

¿eoperators describing the consequence of electron-electron collisions onhigher
order anisotropies, Ceen, are unfortunately quite cumbersome to represent, and
can be very challenging to solve in implicit vfp codes such as impact. As
e-e collisions are a factor of Z less frequent than e-i, their e�ect at very high
ionisation charges (i.e. the Lorentz limit where Z ≫ 1) can be neglected. At
moderate collisions their e�ect is o en approximated by simply modifying the
e-i frequency to ν∗ei = νei/ξ, where the collision �x ξ is o en used to recover the
correct ionisation dependence of the parallel thermal conductivity in the local
limit. A popular choice for the collision �x is ξes = (Z+0.24)/(Z+4.2) (Epperlein
and Short 1991). One particular issue with this approach that is explored in more
detail in section 2.4, is that it can sometimes get other transport coe�cients wrong;
of signi�cance to the work in this thesis, Nernst advection (formalised below in
section 2.2.2) in low-Z plasmas can be overestimated by factor exceeding two
when using the naïve collision �x approach. ¿erefore, simulating magnetised
transport e�ects at low ionisations it is imperative to use the full electron-electron
collision operators Ceen.
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2.1.4 An ‘Entropic’ Closure

One particular issue with both the Cartesian tensor and spherical harmonic
expansion, is that truncation at a �nite order allows for parts of the distribution
to be negative, typically at higher velocities. As this is clearly unphysical an altern-
ative method of expansion, denoted by mn (e.g. m1, m2, etc.), which guarantees
positive-de�niteness has been suggested and is given by

fe = exp(α0 + υi
υ
α1i + υiυ j

υ2
α2i j + . . .). (2.1.17)

¿is conveniently coincides with the form for the edf obtained by maximising
the local angular entropy given the �rst N + 1 moments
Hυ[ fe] = − ∫ fe log fe − fe d2Ω, (2.1.18)

where integration is performed over all solid angle for a given speed υ. For the
case of truncation a er the �rst-order anisotropy, i.e. an mn expansion, the alpha
coe�cients (which are in fact Lagrange multipliers) fortunately do not need to
be solved for directly and the Cartesian tensor eqs. (2.1.11) and (2.1.12) can still be
used with the new ‘entropic’ approach merely providing a new closure for

»»

f 2 ≈ 15
4
ς2(1 + ς2)( »#

f 1
#»

f 1
∣#»f 1∣2 −

»»I
3

)
, (2.1.19)

where ς = ∣#»f 1/ f0∣. (For more details on the mn approach see Dubroca et al. 2010;
Del Sorbo et al. 2015; Del Sorbo 2015; Touati et al. 2014).

2.2 classical transport theory

A much simpler approach to modelling quasineutral plasmas is to treat them as
electrically conducting �uids. For a cold stationary ion background, continuity
equations charge density ρ = e(ni − ne), electric current and electron pressure
can be obtained by taking moments of vfp equation.

∂ρ
∂t

+ #»∇ ⋅ #»j = 0 (2.2.1)

∂#»j
∂t

− e
me

#»∇Pe = e
me

(
nee

#»E − #»j × #»B − #»R ei

)
(2.2.2)

3
2
∂Pe
∂t

+ #»∇ ⋅ #»Q − #»E ⋅ #»j = 0 (2.2.3)
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where #»R ei is a dissipative friction term arising from electron-ion collisions, #»Q is
the heat �ow and #»E ⋅ #»j term is known as Joule heating. ¿e electron pressure has
here been assumed isotropic by enforcing the p1 closure, and the mean electron
�ow velocity #»u e = −#»j /ene is assumed to be much smaller than the thermal velo-
city υ2T =√2kBTe/me so that it does not contribute signi�cantly to the pressure
moment. To further simplify the �uid model the electron inertia term ( ∂

#»j
∂t ) is

o en neglected along with the displacement current in the Ampère-Maxwell
law, this is justi�ed for cases when the electric �eld varies on a similar timescale
to the macroscopic plasma parameters but relinquishes the ability of directly
capturing the e�ect of electromagnetic waves on the plasma. Consequently, the
electric current adapts instantaneously to changes in the electric and magnetic
�elds according to

#»j = #»∇ × #»B
µ0

. (2.2.4)

As the electric current is now guaranteed to be divergence free, it is impossible for
charge imbalance to arise and eq. (2.2.1) can be neglected. ¿erefore, it is only the
evolution of the electron temperature along with the magnetic �eld that remain
as true evolution equations of interest. (Ohm’s law is still relevant but should no
longer be considered an ‘evolution’ equation due to the neglection of electron
inertia and is now a simple equality.)

∂Te
∂t

= 2
3nekB

(−#»∇ ⋅ #»Q + #»E ⋅ #»j ), (2.2.5)

∂ #»B
∂t

= −#»∇ × #»E . (2.2.6)

2.2.1 ¿e Chapman-Enskog approach to deriving transport coe�cients

While an evolution equation for the heat �ow could of course be obtained by
taking the appropriate moment of the vfp equation, this would again correspond
to an even higher moment of the edf. ¿is hierarchy of equations needs to be
closed somewhere, and the classical approach chooses to do so by �nding an
expression for #»Q (and #»R ei) in terms of lower order moments (ne,

#»j , Te). ¿e
method used to obtain this ‘closure’ is the Chapman-Enskog expansion (Chapman
et al. 1953).
Central to the Chapman-Enskog method is the idea that, in the limit of high

collisionality, the distribution function can be expanded about a Maxwellian in
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increasing degrees of nonlocality (indicated by theKnudsen numberKn∼λ(B)ei /LT)
based solely on its macroscopic parameters

fe = f (mb)e +Kn f (1)e +Kn2 f (2)e + . . . (2.2.7)

¿e expansion is performed sequentially by substituting the n-th order expansion
into the le -hand side of the vfp equation, to obtain to the n+1-th term by invert-
ing the collision operator. ¿e nature of f (1)e is best understood by considering the
Cartesian tensor (or spherical harmonic) expansion of the vfp equation laid out
in eqs. (2.1.11) to (2.1.13); the base Maxwellian term will clearly contribute on the
le -hand side of the

#»

f 1 equation (2.1.12) meaning that the �rst correction f (1)e will
contain an anisotropic component related to

#»

f 1. ¿e only other place where an
isotropic Maxwellian would contribute is through the ∂ f0

∂t term in eq. (2.1.11), but
as this is second order in Kn we can conclude that f (1)e only contributes towards
the �rst-order anisotropy

#»

f 1. Labelling the anisotropy and electric �eld arising
with this �rst correction as

#»

f (mb)1 and respectively #»E (mb), the equation that must
be solved is

e
me

(#»B × #»

f (mb)1 )− νei #»

f (mb)1 +Cee1 [ f (mb)e ,
#»

f (mb)1

] = υ #»∇ f (mb)e − e #»E (mb)

me

∂ f (mb)e
∂υ

.

(2.2.8)

A number of methods have been used to solve this equation, Spitzer and Härm
(1953) tackled the zero magnetisation limit using �nite di�erencing, while many
other authors, including Braginskii (1965), used a polynomial expansion for

#»

f 1
to incorporate magnetic �eld e�ects. Epperlein and Haines (1986) provide a
thorough review of the di�erent approaches in the introduction to their paper,
which provides signi�cant accuracy improvements upon Braginskii by using a
�nite di�erencing method. As an illustration of how various transport e�ects
arise, Epperlein (1984) provided an analytic derivation in the Lorentz limit (where
Cee1 can be removed). ¿is is summarised here for the case where spatial gradients
are perpendicular to the magnetic �eld and begins by inverting combination of
collision operate on the le -hand side giving

#»

f (mb)1 = −νei + #»ω ce×
νei2 + ω2ce

( #»∇ne
ne

+ ( meυ2

2kBTe
− 3
2

) #»∇Te
Te

+ e #»E (mb)

kBTe

)
υ f (mb)e , (2.2.9)
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where #»ω ce = e #»B /me is the cyclotron frequency directed in the direction of the
magnetic �eld. Expressions for the electric current and heat �ow can be found by
taking the appropriate moment,

Γei
#»j

ene
= 〈υ5〉

3

#»∇Pe
Pe

+ 5〈υ5〉 −me〈υ7〉/kBTe
6

#»∇Te
Te

+ 〈υ5〉
3

e #»E (mb)

kBTe
(2.2.10)

+ #»Ω
υ32T

× (〈υ8〉
3

#»∇Pe
Pe

+ 5〈υ8〉 −me〈υ10〉/kBTe
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#»∇Te
Te

+ 〈υ8〉
3

e #»E (mb)

kBTe

)

Γei
#»Q

ne
= −〈υ7〉

6

#»∇Pe
Pe

− 5〈υ7〉 −me〈υ9〉/kBTe
12

#»∇Te
Te

− 〈υ7〉
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e #»E (mb)

kBTe
(2.2.11)

− #»Ω
υ32T

× (〈υ10〉
3

#»∇Pe
Pe

+ 5〈υ10〉 −me〈υ12〉/kBTe
6

#»∇Te
Te

+ 〈υ10〉
3

e #»E (mb)

kBTe

)

where #»Ω = #»ω ce/ν(0)ei (with ν(0)ei = νei(υ2T)) and 〈υn〉 = 4π ∫∞0 υn+2 f (mb)e dυ/ne.
¿e �nal step is to rearrange eq. (2.2.10) for the electric �eld and then substitute
into eq. (2.2.11) resulting in

#»Q = − »»κ ⋅ #»∇kBTe − kBTe
e

»»

β ⋅ #»j , (2.2.12)

ene
#»E = −#»∇Pe − ne »»

β ⋅ #»∇kBTe + »»α
ene

⋅ #»j + #»j × #»B (2.2.13)

#»R ei = − ne »»

β ⋅ #»∇kBTe + »»α
ene

⋅ #»j , (2.2.14)

where »»κ ,
»»

β , »»α are the thermal conductivity, thermoelectric and resistivity tensors
respectively. ¿ese tensors are best understood using a basis aligned to the
magnetic �eld and the driving force (either the temperature gradient or current
density, denoted generally by #»s ) consisting of the parallel direction ‘∥’ pointing in
the direction of the magnetic �eld, the perpendicular direction ‘⊥’ corresponding
to the component of driving force that is perpendicular to the magnetic �eld, and
the wedge direction ‘∧’ perpendicular to both (i.e. parallel to #»B × #»s ). In this basis,
the action of a transport coe�cient on the parallel component of the driving
force is a simple scaling but an additional rotation towards the ∧ direction is
provided when acting on the perpendicular component . ¿is can be understood
by representing the transport coe�cients »»κ ,

»»

β , »»α generically by

»»A =



A∥ 0 0

0 A⊥ 0

0 A∧ 0,


 (2.2.15)
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although it doesn’t really makes sense to assign values to the third column as the
third component of the driving force is always zero by de�nition. In the absence
of magnetic �elds this formulation can still be applied as long by freely choosing a
‘direction’ for the zero magnetic �eld (thus breaking the symmetry) as all ‘wedge’
transport coe�cients tend to zero and the parallel and perpendicular coe�cient
equalise;
¿e transport coe�cients depend on a number of macroscopic plasma para-

meters. However, the transport coe�cients can be conveniently separated into
dimensional and dimensionless parts. Using the notation of Epperlein andHaines
(1986), the latter is generally denoted by the subscript c depending only on ion-
isation Z and the magnetisation χ = ωceτ(B)ei and

τ(B)ei = 3√π
2

(4πε0
e2
)2 √meTe 3⁄2

4πZnelogΛei
(2.2.16)

is the Braginskii electron-ion collision time (Braginskii 1965). While the ther-
moelectric tensor

»»

β is already in dimensionless form, the other two transport
coe�cients can be represented as

»»κ = neTeτ(B)ei
me

»»κ c , »»α = mene
τ(B)ei

»»α c . (2.2.17)

With respect to dependence on magnetisation, the parallel component always
equals the perpendicular in the absence of any magnetic �elds. As χ increases
both the perpendicular thermal conductivity κ⊥ and thermoelectric coe�cient
β⊥ decrease as a result of the desirable thermal insulating properties of magnetic
�elds, while the resistivity tensor instead increases. On the other hand the wedge
components are zero in the limit of no magnetic �eld and then increase up to a
moderate magnetisation (between 0.1 and 10) before decreasing again. See �g. 1
of (Epperlein and Haines 1986) for a nice illustration of this.
A numerical approximation for the variation of the dimensionless coe�cients

with ionisation and magnetisation can be found in (Epperlein and Haines 1986).
Integral expressions for three transport coe�cients relevant to this thesis are
reproduced here in the Lorentz and low magnetisation limit from (Epperlein
1984),

κc⊥ = 8
9
√
π

(
〈V9〉 − 〈V 7〉2

〈V 5〉
)
, (2.2.18)

κc∧ = 8
9
√
π
Ω
(
〈V 12〉 − 2〈V 10〉〈V 7〉

〈V 5〉
− 〈V 7〉2〈V8〉

〈V 5〉2
)
, (2.2.19)
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βc∧ = Ω(〈V 10〉
〈V 5〉

− 〈V8〉〈V 7〉
〈V 5〉2

)
, (2.2.20)

where the use of capitalV = υ/υ2T nowdenotes 〈V n〉 = 4π ∫∞0 υ32TV n+2 f (mb)e dV/ne.
2.2.2 Common Names for Speci�c Transport Phenomena

While the tensor formulation above for the closure of the heat �ux and electric
�elds encapsulates a number of phenomena in a very compact and convenient
manner, physicists, being physicists, have taken to naming most of the individual
e�ects that arise from these equations. ¿e given names are detailed below (heat
�ux e�ects �rst followed by electric �eld e�ects) and usually originate from
historical experimental discoveries concerning thermoelectric materials other
than plasmas. Due to the mcf part of this thesis being focussed purely on parallel
transport, the relevance of the various transport phenomena discussed here will
only be considered for inertial fusion. ¿e most relevant term for this thesis is
the Nernst e�ect, for which nonlocal e�ects are investigated in detail in chapter 7.

Ettingshausen E�ect

A rather interesting phenomenon involving the transport of heat towards re-
gion of greater magnetic �elds is the Ettingshausen e�ect. ¿is stems from the
contribution of the β∧ coe�cient to the perpendicular heat �ow

Q(Ettingshausen)
#»B× #»j

= kBTe
e

β∧ j. (2.2.21)

¿is term only becomes comparable to thermal conduction when either magnet-
isation or the magnetic �eld gradients become very large and is not important in
conventional inertial fusion. However, one scenario where Ettingshausen could
become signi�cant is magnetised liner inertial fusion (García-Rubio and Sanz
2018) where strong magnetic �elds could help insulate the hot spot.

Righi-Leduc Heat Flow

¿e Righi-Leduc heat �ow simply refers to the heat �ux perpendicular to both
the magnetic �eld and the temperature gradient. ¿is can be thought of as the
partial de�ection of the heat �ux due to the magnetic �eld and is given by

Q(RL)
#»B× #»∇Te = −κ∧∇⊥kBTe (2.2.22)
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¿e potential of the Righi-Leduc heat �ow to inconveniently reduce hot spot
temperatures in indirect drive implosions was demonstrated recently by Walsh
et al. (2017).

Peltier E�ect

¿e heat �ow associated with the electric current is termed the Peltier e�ect

Q(Peltier)
#»j

= kBTe
e

β⊥ j, (2.2.23)

and can also be considered a de�ection of the Ettingshausen heat �ow.

Seebeck E�ect

Perhaps the most simple of the thermoelectric e�ects, the Seebeck e�ect corres-
ponds to the potential di�erence set up along a temperature gradient. ¿is of
course has two separate contributions given by

E(Seebeck)∇∥Te = − 1 + β∥
e

∇∥Te, E(Seebeck)∇⊥Te = − 1 + β⊥
e

∇⊥Te. (2.2.24)

¿e parallel electric �eld will only a�ect the evolution of the magnetic �eld if
ionisation varies perpendicular to the magnetic �eld, potentially causing a very
slight de�ection of the electric �eld. On the other hand the contribution of
the perpendicular Seebeck e�ect to Faraday’s law will exist if the ionisation or
magnetisation vary in either the wedge direction or along the magnetic �eld.

Biermann Battery

Magnetic �elds can be created fromnon-parallel temperature and density gradient
by the Biermann battery e�ect,

E #»∇ne = −kBTeene
#»∇ne Ô⇒ ∂B

∂t

(Biermann) = #»∇Te × #»∇ne
ene

. (2.2.25)

¿is has proven to be important in both conventional approaches to inertial
fusion due to lasers causing temperature gradients that are somewhat normal
to the laser beam, while the ablation of the heat material (either the hohlraum
wall or the capsule surface) results in density gradients that are almost entirely
parallel to the beam. Consequently, magnetic �elds azimuthal to the laser beam
are generated and have been experimentally observed to reach the megagauss
regime (i.e. on the order of ∼100 tesla) on both the capsule surface Séguin et al.
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2012; Igumenshchev et al. 2014, and hohlraum walls Li et al. 2009. Notably, when
plasmas dri out of local equilibrium (i.e. become non-Maxwellian) magnetic
�elds can be generated even in the absence of density gradients (Kingham and
Bell 2002) this is due to the pressure gradient term in the generalised Ohm’s
law being a simpli�cation of the moment of the electron velocity distribution
function that arises from a kinetic approach (see previous section).

Nernst E�ect

One of the most important terms a�ecting the evolution of the magnetic �eld in
the presence of signi�cant temperature gradient is the Nernst e�ect,

E(Nernst)#»∇Te× #»B
= −neβ∧∇⊥kBTe (2.2.26)

¿e dependence of both the Nernst and Ettingshausen e�ects on the coe�cient
β∧ arises from what is known as the Onsager symmetry (Onsager 1931).; however,
this can break down for non-Maxwellian plasmas.
¿e Nernst e�ect manifests itself as the advection of magnetic �eld down

temperature gradients at the Nernst velocity υN = (−)β∧∇⊥kBTe/eB. For the case
of laser-plasmas υN typically lies between the ion sound speed and the electron
thermal velocity (Willingale et al. 2010), resulting in the build-up of magnetic
�eld at the foot of the temperature gradient, a process known as convective
ampli�cation (Nishiguchi et al. 1984). ¿e consequent cavitation of the magnetic
�eld in hot regions of the plasma degrades its desirable insulating properties
(Ridgers et al. 2008a); recent indirect-drive simulations have demonstrated that
neglecting the e�ect of Nernst advection on self-generated �elds can lead to a
1.5 keV overestimation of the plasma temperature (Farmer et al. 2017).

Resistive Di�usion

¿e e�ect of the resistivity tensor is to relax steep magnetic �eld gradients, as

E(Resistive Di�usion)#»j
= α⊥
e2ne2

j (2.2.27)

Ô⇒ ∂ #»B
∂t

(Resistive Di�usion) = −#»∇ × ( α⊥
e2ne2µ0

#»∇ × #»B
)
. (2.2.28)

For the special case where all spatial gradients occur in a single spatial dimension
perpendicular to the direction of the magnetic �eld, this simpli�es to a standard
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di�usion equation. Using z for the direction of the magnetic �elds and x for the
direction of spatial gradients we obtain

∂Bz
∂t

= ∂
∂x

( α⊥
e2ne2µ0

∂
∂x

Bz
)
. (2.2.29)

On the other hand the wedge component of the resistivity tensor will de�ect the
di�usion, allowing steep magnetic �eld gradients to generate magnetic �elds in a
di�erent direction.

Hall E�ect

¿e �nal term in eq. (2.2.14) is the Hall e�ect, #»j × #»B , setting up a potential
di�erence perpendicular to the electric current and the magnetic �eld. Using
vector identities this can be rewritten in terms of the magnetic pressure gradient
and the variation of themagnetic �eld along �eld lines only, #»j × #»B = −∇2B2/2µ0+
(#»B ⋅ #»∇)#»B /µ0. It is only the latterwhich contributes to the evolution of themagnetic
�eld and corresponds to the relaxation of magnetic tension. Clearly this term
only contributes when the magnetic curvature is very high and was calculated to
be negligible for the case of self-generated indirect drive icf (Farmer et al. 2017)
but is of central importance in maglif (Slutz et al. 2010; Slutz and Vesey 2012;
Sefkow et al. 2014; Gomez et al. 2014).

2.2.3 Incorporating Radiation

One �nal element relevant to thermal transport is the heating of plasmas by laser
light. Electromagnetic waves are able to travel almost unimpeded through a
plasma until its electron density exceeds the critical density (where the plasma
frequency equals the laser frequency). Beyond this point the plasma is heated
through the excitation of resonantwaves and the laser energy that is not re�ected is
completely absorbed over the skin depth c/ωpe. Despite the relative transparency
of the underdense plasma, substantial heating can still occur before the critical
surface is reached and the dominant process for this is inverse bremsstrahlung.
Only inverse bremsstrahlung (ib) absorption shall be considered in this thesis.

It is the oscillation of electron in the laser’s electric �eld followed by thermalising
electron-ion collisions that drives ib heating at a rate

3
2
∂Pe
∂t

(ib) = 2πniΓeimeυ2osc
3

f0(υ = 0), where υoscc =
√

Iλ2

1.4 × 1018Wµm2/cm2
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is the maximum quiver velocity corresponding to a laser with intensity I and
wavelength λ. As the energy gain from quivering is most pronounced among
slower electrons, the edf can actually become distorted towards a super-Gaussian,
e−(υ/αυ2T)m (wherem > 2 and α is an energy conserving parameter) and therefore
reduce the heating rate compared to what would be expected from a Maxwellian
(Langdon 1980; Dum 1978b,a). While useful �t functions to approximate this
e�ect have been provided by Matte et al. (1988) and signi�cant modi�cation to
transport coe�cients are observed when m is high (Ridgers et al. 2008b; Ridgers
2008), the edf distortion due to ib is o en neglected and will also be in this
thesis to avoid the possibility of confounding the e�ect with nonlocal transport.
Sensitivity tests have been performed to ensure that such a neglection does not
greatly change observed physics. Instead, all �uid codes will assume that f0 is a
Maxwellian when simulating laser heating e�ects

¿e de�nition of the
Braginskii collision
time τ(B)ei can be
found in eq. (2.2.16)
as well as in the List
of Symbols.

3
2
∂Pe
∂t

(mh) = 1⁄2nemeυ2osc
τ(B)ei

(2.2.30)

while kinetic codes will use the ‘Maxwellian heating operator’, so named for
ensuring the edf remains a Maxwellian in the 0d case (, on the right-hand side
of eq. (2.1.11)

∂ f0
∂t

(mh) = υ2osc
6τ(B)ei υ

2
∂
∂υ

(
υ2 ∂ f0
∂υ

)
(2.2.31)

2.3 nonlocal transport

In the derivation of the transport coe�cients in the previous section the whole
method hinged on the assumption that the isotropic part of the distribution
function was Maxwellian and the Knudsen number was small. However, as we
have seen, this is not always true in fusion plasmas. When the temperature
gradients are steep, suprathermal electrons can �nd themselves in very di�erent
plasma conditions before they are scattered or thermalised. As a consequence
the edf becomes distorted, with a de�cit of suprathermals at the steepest part
of the temperature gradient leading to a reduction in heat �ux and a surplus of
suprathermals at the foot of the temperature allowing heat �ow.
Such distortions in the edf are ideally captured by careful simulation with

vfp codes but of course these are computationally intensive; even in the di�u-
sion approximation the need to keep track of the contribution of electrons of
very di�erent velocities in multiple spatial dimensions is memory intensive and



2.3 nonlocal transport 40

working out how these couple to other ‘multiphysics’ e�ects such as radiation,
material interaction or equation of state is not usually straightforward. A particu-
lar challenge is posed by the rapidity of the plasma oscillation relative to most
other timescales of interest, requiring either a time step that resolves the plasma
frequency or an implicit approach. Both options greatly increase computational
demands, although the explicit treatment can be sped up somewhat by placing
arti�cial multipliers on the plasma permittivity. Furthermore, in icf the extreme
conditions created by the high-energy lasers require a sophisticated mix of Lag-
rangian and Eulerian gridding systems (known as Adaptive Lagrangian Eulerian
or ale) that are even considerably challenging to implement for hydrodynamical
approaches. ¿erefore it is desirable to consider an alternative approach; one that
requires less computational e�ort than solving the vfp equations but provides a
fairly reliable improvement on the local treatment. Such alternative approaches
are more generally known as ‘reduced nonlocal models’ and we shall start with
one of the oldest methods of accounting for some of the e�ects of nonlocality.

2.3.1 Flux-limiters

¿e simplest approach to including the �ux-reducing aspect of nonlocal transport
is the use of �ux-limiters. First incorporated in laser-plasma codes no later than
1975 (Book et al. 1975), the current use of the �ux-limiter is as an arti�cial, numer-
ical upper bound on the heat �ux to some proportion fQ of the free-streaming
limit Qfs = Peυ1T. It is o en argued that it is physically impossible for this limit
to be exceeded, but this can be countered by the simple example of a heat �ux
driven by very energetic electrons represented with a distribution function of

fe = ne − nhot
π3⁄2

exp
( − me(#»υ + #»υ return)2

2kBTcold

) + nhotδ(#»υ − #»υ hot) (2.3.1)

where δ denotes a delta function and the return velocity of the bulk electrons
#»υ return = −nhot #»υ hot/(ne − nhot) ensures that there is no net current. ¿e total
(isotropic) pressure of this system would be

Pe = (ne − nhot)(kBTcold + 1⁄3meυ2return) + 1⁄3menhotυ2hot, (2.3.2)

giving the heat �ow as

#»Q = (ne − nhot)(5⁄2kBTcold + 1⁄2meυ2return)#»υ return + 1⁄2menhotυ2hot
#»υ hot, (2.3.3)
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which would have magnitude greater than Qfs for υhot ≫ υ1T as long as nhot is
not too large. Of course such a situation is quite contrived and would probably
be short-lived due to the e�ect of collisions, but this example illustrates that the
free-streaming limit is not some unbreakable law of physics and reminds us that
we should not immediately discount any theory that predicts heat exceeding the
free-streaming limit.
Nevertheless, the practicality of the �ux-limiter approach has enabled rapid

advancement in plasma simulation capabilities: Firstly, it provides a freely tunable
parameter by which tomatch �uid codes to experimental results or kinetic simula-
tions. Furthermore, the guarantee of amaximumheat �ux also allows for tractable
timesteps when using explicit time-di�erencing due to conversion of the asymp-
totic behaviour of the cfl condition from quadratic to linear ∆t < 2∆xQfs/3Pe.
(Without �ux-limitation the heat �ow velocity υQ = 2#»Q/3Pe is unbounded and
the di�usive form of the heat equation leads to ∆t ∝ ∆x2.) However, the arbitrary
and unpredictive nature of the �ux-limiter is rather unsatisfactory and values
for fQ ranging from 0.03 (Jones et al. 2016) to 0.15 (Rosen et al. 2011) have been
suggested for use in nif design codes and up to 3 for sol modelling (Funda-
menski 2005). Furthermore, the inability of this approach to account for preheat
is a severe handicap.
While popular icf hydro codes (e.g. hydra, lasnex, lasnex, lilac and

draco) o en limit the heat �ow to the minimum of the free-streaming and
local heat �ows (Rosen et al. 2011; Davies et al. 2015), in this thesis the smoother
‘harmonic’ implementation of the �ux-limiter is used

#»Q (�) = #»Q (B)

1 + ∣#»Q (B)/fQQfs∣ . (2.3.4)

In the classical transport code ctc summarised in section 3.2 this is achieved for
the perpendicular component of the heat �ow (as ctc considers a simulation
plane perpendicular to the �eld the parallell component is not considered) by
multiplying the perpendicular thermal conductivity by the �ux-limiting factor
(not an actual �ux-limiter)

θα =
(
1 + κ(B)⊥

fαQfs
∣∂Te
∂x
∣)−1. (2.3.5)

¿is technique is extended also to the Nernst and Righi-Leduc coe�cients (β∧,
κ∧) with independent �ux-limiters fN, fRL. ¿ere are applied by multiplying
the transport coe�cients by the appropriate �ux-limiting factor θ. However,
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the perpendicular thermal conductivity κ⊥ is used in obtaining all �ux-limiting
factors θα for consistency (Bissell 2012), i.e.

β(�)∧ = β∧(B)
1 + ∣#»Q (B)⊥ /fNQfs∣ , κ

(�)∧ = κ∧(B)
1 + ∣#»Q (B)⊥ /fRLQfs∣ , . (2.3.6)

Note that this method used by ctc actually allows for the total magnitude of the
heat �ow to potentially exceed the free-streaming but such considerations are
only relevant when magnetised transport is discussed in chapter 7.

2.3.2 Convolution Models

Due to the failings of the �ux-limiter approach at providing a truly predictive
description of nonlocal transport, more sophistical models are necessary. One
such alternative is based on the idea that the heat �ux at one location depends
on contributions from surrounding regions (see �g. 2.1). ¿e distance at which
nearby electrons could contribute to the heat �ow would surely be on the order
of their mean free path, with the contribution decreasing with distance. Such an
e�ect could be expressed as convolution of the classical heat �ux, #»Q (B) with some
kernelW(x , x′) representing the probability of an electron carrying its energy
from x′ to x without colliding:

#»Q (conv) = ∫ W(x , x′)#»Q (B)(x′) dx′. (2.3.7)

¿e great advantage of such an approach is that it has the ability to predict preheat
from high-energy electrons arriving into cooler areas with �atter temperature
gradients, while also guaranteeing that the local heat �ow will be recovered when
the mfp becomes much shorter than the scalelength.
¿e majority of convolution models that have been put forward are one-

dimensional. ¿is is for good reason: such an approach is �rstly quite awkward
to formulate in multiple dimensions and also computationally intensive to solve
as the integration scales quadratically with total number of cells (unless a Monte
Carlo approach is used). One of the earliest and most well-received convolution
models due to its simple intuitive form was that of lmv, Luciani, Mora and
Virmont (1983)

W (lmv)(x , x′) = 1
2aλ(T)e (x′) exp

( − ∣∫ x
′

x ne(x′′) dx′′∣
2ane(x′)λ(T)e (x′)

)
(2.3.8)
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figure 2.1: Convolution models are based on the idea that the heat �ux at one point
can be a�ected by electrons some distance away.

where a = 32was determined by comparisonwith vfp codes and λ(T)e =√
Z + 1λei(υ1T)

is essentially a geometric average of electron-ion and electron-electron thermal
mfps. Other more complex kernels were calculated either from using a sim-
pli�ed collision operator (Albritton et al. 1986) or from a Fourier analysis (see
section 2.3.6).

2.3.3 Multigroup Di�usion (snb)

Probably the most important and widely used nonlocal model is the multigroup
di�usion or ‘snb’ model named a er the original authors Schurtz, Nicolaï and
Busquet (Schurtz et al. 2000). Implemented in inertial fusion codes such as
Lawrence Livermore National Laboratory’s hydra (Rosen et al. 2011), celia
laboratory’s chic (Breil andMaire 2007) , the University of Rochester Laboratory
for Laser Energetics’ (lle) draco (Cao et al. 2015) and the University of Rome’s
dued (Marocchino et al. 2013), the model originated as a multi-dimensional
extension of the aforementioned lmv convolution approach. In order to achieve
this satisfactorily, slight modi�cations to the 1d kernel were necessary corres-
ponding to

W (snb)(x , x′) = ∫ ∞
0

β4e−β
24

√
3√

Z + 1λei(x′, β) exp
(−√3∣ ∫ x′

x

2√
Z + 1λei(x′′, β) dx′′∣

)
dβ,

(2.3.9)
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where the integrand is considered to represent the contribution from electrons
with di�erent energies (i.e. β = 1⁄2meυ2/kBTe) and λei = υ/νei is the energy-
dependent electron-ion mfp arising from the de�nition of νei given in eq. (2.1.16).
¿e real insight behind the snb model is that the above kernel can be identi�ed

as the weighted integral of Green functions G(x , x′, β) over electron energy,

W (snb)(x , x′) = ∫ ∞
0

β4e−β
24

2G(x , x′, β)√
Z + 1λei(x′, β)dβ (2.3.10)

Ô⇒ G(x , x′, β) = √
3
2
exp
(−√3∣ ∫ x′

x

2√
Z + 1λei(x′′, β) dx′′∣

)
. (2.3.11)

¿ese Green functions are the solutions to a continuum of second-order pde’s,
to which Schurtz et al. suggested a valuable multi-dimensional generalisation as

[
2√

Z + 1λei −
#»∇ ⋅ √Z + 1

6
λei

#»∇]G(#»x , #»x ′, β) = δ(#»x − #»x ). (2.3.12)

Working this into the convolution equation for the heat �ow we obtain

#»Q (snb) = ∫ ∫ ∞
0

β4e−β
24

#»Q (B)
(
δ(x − x′) + #»∇ ⋅ √Z + 1

6
λei

#»∇G)dβ d#»x ′
(2.3.13)

= #»Q (B) − ∫ ∫ ∞
0

(
#»∇ ⋅ β4e−β

24
#»Q (B)

)√
Z + 1
6

λei
#»∇G dβ d

#»

x′ (2.3.14)

= #»Q (B) − ∫ ∞
0

√
Z + 1
6

λei
#»∇Hβ (2.3.15)

using integration by parts, where Hβ is the solution to the inhomogeneous pde

[
2√

Z + 1λei −
#»∇ ⋅ √Z + 1

6
λei

#»∇]Hβ = −#»∇ ⋅ β4e−β
24

#»Q (B) dβ. (2.3.16)

¿e above equation is said to represent a ‘multigroup di�usion of electrons with
di�erent energies and is the key one to be solved for obtaining the snb heat �ow.
Note that the subscript indicates that Hβ is an (in�nitesimal) distribution over
the energy parameter β (H could also be a distribution over velocity and is used
as such later in this thesis, but we will usually not insist upon the formality of the
subscript).
¿e solution of eq. (2.3.16) typically consists of breaking Hβ up into N discrete

energy groups denoted by Hg bounded below by βg−1⁄2 and above by βg+1⁄2 with a
characteristic velocity υg which lies within these bounds (see section 3.3 for more
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details). ¿is can give acceptable convergence for as few as N = 25 groups. ¿e
mfp associated with a particular group and de�ned in eq. (23) of the snb paper
(Schurtz et al. 2000) can be related to the velocity-dependent electron-ion mfp
as

λg =
√
Z + 1
2

λei(υg). (2.3.17)

One particular issue with lmv-type kernels is their asymptotic behaviour
at low degrees of collisionality; such models typically predict the heat �ow to
approach zero as the temperature scalelength decreases while kinetic approaches
reveal that it should reach a constant value proportional to the free-streaming heat
�ow and the amplitude of the perturbation (see section 4.4). Underestimation of
the heat �ux in such regimes could lead to an inability to damp high resolution
features or numerical noise. A novel approach to somewhat circumvent this in
the snb model was suggested by Schurtz et al. (2000); this involves limiting the
di�usive mfp according to the strength of the electric �eld

1
λ(E)g

= 1
λg

+ ∣e #»E (sh)∣
1⁄2meυ2

, where ene
#»E (sh) = −#»∇Pe − neβ(sh)∥ #»∇kBTe (2.3.18)

is the local Spitzer-Härm electric �eld.
¿us, the �nal equation (set) to be solved is

[
1
λg

− #»∇ ⋅ λ(E)g

3
#»∇]Hg = −#»∇ ⋅ ∫ βg+1⁄2

βg−1⁄2

β4e−β
24

dβ #»Q (B) (2.3.19)

with the nonlocal heat �ow now being obtained by a sum

#»Q (snb) = #»Q (B) −∑
g

λ(E)g

3
#»∇H. (2.3.20)

Standard pde numerical algorithms such as alternate-direction implicit (adi)
are typically used for solving eq. (2.3.19), see section 3.3 for the methodology used
in this thesis for the 1d case.

Rederiving from the kinetic equations

Despite having roots in the more phenomenological convolution approach, the
developers of the snb model managed to illustrate a link to the vfp equations
under a number of simpli�cations. Starting from the p1 Cartesian tensor ex-
pansion, neglecting time-derivatives (in order to achieve a stationary model)
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and approximating the e�ect of electron-electron collisions on the anisotropic
part of the edf by incorporating the collision �x into the electron-ion collision
frequency νei, we obtain

υ
3

#»∇ ⋅ #»

f 1 − e #»E
3meυ2

⋅ ∂υ2 #»

f 1
∂υ

= Cee0 [ f0] , (2.3.21)

υ #»∇ f0 − e #»E
me

∂ f0
∂υ

= −ν∗ei #»

f 1. (2.3.22)

¿e authors proceed to perform an expansion about the local form of the dis-
tribution function f (mb)e + #»V ⋅ #»

f (mb)1 /υ. However, they replace the anisotropic
contribution

#»

f (mb)1 = λei∗( meυ2

2kBTe
− 4) f (mb)e

#»∇Te
Te

, with (2.3.23)

#»g (mb)1 = −λei∗ f (mb)e

#»∇Te
Te

(2.3.24)

where λei∗ = ξλei = υ/ν∗ei. ¿ismodi�cation achieves positive-de�niteness without
a�ecting the integral used to calculate the heat �ow, and is argued to be com-
pensated by the further assumption of neglecting the electric �elds (Schurtz et al.
2000). At this point the model now renders as

Cee0
[
δf0
]

υ
+ #»∇ ⋅ λei(E)

3
#»∇δf0 = ∇ ⋅ #»g (mb)1

3
, (2.3.25)

where δf0 = f0 − f (mb)e , with the deviation from the local heat �ow given as

δ #»Q = 2πme
3 ∫ ∞

0
δ

#»

f 1υ5 dυ = −2πme
3 ∫ ∞

0
υ5λei∗ #»∇δf0 dυ, (2.3.26)

where δ
#»

f 1 = #»

f 1 − #»

f (mb)1 . Note that here the electron-ion mfp λei appears sep-
arately from what is essentially the electron-electron mfp λee∼υ/Cee0, and the
use of the geometrically averaged mfp λg∼√λeeλei used by Schurtz et al. (2000)
is only appropriate if the ionisation Z is assumed constant. In chapter 5 it shall
be seen that the ‘separated’ and ‘averaged’ implementations make considerably
di�erent predictions when ionisation gradients are large. To properly recover the
previously given form of the snb model eqs. (2.3.15) and (2.3.16) the phenomen-
ological limitation of the mfp due to the electric �eld must be included, H =
2πmeυ5δf0 dυ identi�ed and the electron-electron collision operator replaced
with a velocity-dependent Krook frequency (bgk) C(bgk)

ee0 [δf0] = −4νeiδf0/Z.
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Note that the incorporation of the collision �x was not suggested until a later
paper (Nicolaï et al. 2006).

Issues with the kinetic link

We shall now take the time to consider the assumptions that have been made
in arriving at the snb from the kinetic equations. To the author of this thesis,
one of the most confusing assumptions is the stationary assumption; for if this
were the only assumption made, then a simple moment-based analysis of the vfp
equations predicts that the heat �ow should be divergence free (i.e. a constant
if spatial gradients only occur in one dimension). However, this is clearly not
always the case as proportionality between the heat �ux and the temperature
gradient should be recovered in the local limit. ¿e introduction of the other
assumptions into the snb model, most prominently that of a model collision
operator, desirably allows for spatial variation in the heat �ow to be predicted,
even in 1d.
Additionally, it is important to understand that the electric �eld in no way

comes from the vfp equation and is only added on with a ‘physics’ justi�cation
that conveniently overcomes inherent numerical issues with stationary nonlocal
models. However, the ‘physics’ justi�cation should be digested with some hesit-
ancy as in reality the electric �eld only limits the mfp of electrons travelling in
the same direction as it, but enhances that of electrons travelling perpendicularly
or in the opposite direction. ¿e snb model does not take the direction of the
electrons into account and instead reduces it in all directions. (¿is criticism was
originally provided by Manheimer et al. 2012)
A �nal consideration about the mean free paths used in the model is the

appropriateness of geometrically averaging the electron-electron and electron-
ion mfp’s to obtain a single group mfp λg . Such an approach would only be
valid in the case of homogeneous ionisation. ¿is seems to have been remedied
by employing distinct electron-electron and electron-ion mfp’s in a later paper
(Nicolaï et al. 2006) but no comment was made at the time as to whether this
turned out to be an important change or not. In section 5.4 we shall see that
separating the mfp’s provides a marked improvement in predicting the heat �ow
in icf relevant scenarios possessing steep ionisation gradients.

Alternative Collision Models

Recall that the derivation of the snb model from the kinetic equation requires that
the collision operator in eq. (2.3.25) is modeled as Cee0[δf0] = −4νeiδf0/Z, which
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is o en referred to as a velocity-dependent Krook (bgk) model collision operator.
However, alternative model collision operator are possible and are investigated in
chapter 4 of this thesis such as that suggested by Albritton, Williams, Bernstein
and Swartz (awbs) (Albritton et al. 1986):

C(awbs)
ee0 [ ⋅ ] = νei

Z
υ ∂
∂υ
[ ⋅ ], (2.3.27)

which attempts to incorporate the slowing down of electrons as a result of colli-
sions, or scaled versions of the bgk operator

C(bgk)
ee0 [ ⋅ ] = −r νei

Z
× ⋅ (2.3.28)

Note that the original snb implementation corresponds to r = 4. However, when
the link to the kinetic equations is presented in the original paper (Schurtz et al.
2000) (III F) as well as in section II of a later publication (Nicolaï et al. 2006) a
simple multiple of r = 1 is indicated. In this thesis it shall be argued that using
the bgk collision operator with a di�erent value (r = 2) along with the Epperlein-
Short collision �x ξes = (Z + 2.4)/(Z + 0.42) gives very good agreement with
vfp simulation across a wide range of problems (and ionisation values).
As for the awbs operator, in spite of its di�erential formulation its use does not

actually require a signi�cant increase in computational time unless an attempt to
parallelise over energy groups is being made. ¿is is because the velocity-space
�rst-order di�erential equation is simply closed from above with the boundary
condition δ f0(υ = ∞) = 0.
Validation Status of the snb Model

Until now, there have only been a few instances where the snb model is compared
directly to vfp simulations. In the original paper (Schurtz et al. 2000) the
damping rate of temperature sinusoids was shown to compare favourably to
kinetic predictions for scalelengths no steeper than

√
Zkλei = 1 and speci�cally

for the case of Z = 4. Schurtz et al. further observed that the snb model was able
to predict qualitatively similar temperature contours to Epperlein et al.’s vfp
code spark (1988a) for a 2d problem that concerned laser heating of a planar
beryllium target (Epperlein et al. 1988b).
Another important work in evaluating the success of the snb model is that

of Marocchino et al. (2013), who compared the implementation of the model
in the University of Rome hydro code dued to vfp simulations carried out
with oshun (Tzoufras et al. 2011; Tzoufras et al. 2013). Again, damping of
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temperature sinusoids was investigated, but this produced the peculiar result that
the agreement between snb and vfp seemed to be very good for Z = 1 and then
became progressively worse as the ionisation increased. Attempting to replicate
such �ndings (presented in section 6.2 of this thesis), it was concluded that the
implementation of the snb model used by Marocchino et al. corresponded to a
multiplier of r = 16 on the electron-electron mfp coupled with a neglection of any
correction to angular scattering as a result of electron-electron collisions (i.e. ξ is
set to one) (Brodrick et al. 2017). ¿e second problem investigated byMarocchino
et al. involved the relaxation of initially Gaussian temperature pro�les. And while
the rapid rate at which the temperature gradient evanesced limited the degree of
nonlocality that could be observed upon reaching a quasistationary state, such a
setup proved quite motivational in assessing preferable benchmarks of the snb
model for this thesis such as by extending the region of hot plasma.
Due to the variety of implementations outlined here and the potential for

these to give materially di�erent predictions for heat �ow that could have signi-
�cant rami�cations for the way a simulated icf experiment could evolve, it is
imperative that a more thorough exploration of these implementation choices
with comparison to vfp codes be carried out in hope of identifying the ‘optimal
implementation’ of the snb.

Magnetised Extension

Of all the models studied in this thesis, the snb is the only one that has been
extended to magnetised regimes (Nicolaï et al. 2006). ¿e authors achieved this
largely through modi�cations to the mfp and introducing a de�ection term, both
stemming from a simpli�ed vfp analysis. Speci�cally, the equation set solved is

C(bgk)
ee0

[
δf0
]

υ
+ #»∇ ⋅ λei(E)

3
1 + V 3 #»Ω×
1 + V6Ω2

#»∇ f0 = ∇ ⋅ #»g (mb)1
3

, (2.3.29)

where V = υ/υ2T, Ω = ωce/ν(0)ei . ¿e same source term #»g (mb)1 is used here as in
the unmagnetised model but the magnetised Braginskii electric �eld is used in
limiting the electron-ion mfp and the correction to the anisotropic part of the
edf

δ
#»

f 1 = − λei(E)3
1 + V 3 #»Ω×
1 + V6Ω2

#»∇ f0 (2.3.30)

is instead applied to a Maxwellian part
#»

f (mb)1 more appropriate for magnetised
conditions (see eq. 22 in Nicolaï et al. 2006). Due to di�culties of implementation
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as well as the importance of �rst validating the unmagnetised model this was also
not attempted in this thesis. One alternative nonlocal model that also includes
magnetic �elds is the ‘mn model’.

2.3.4 ¿e ‘m1 Model’

Inspired by the snb approach, Del Sorbo et al. formulated a stationary model
based on the vfp equations able to deal with magnetic �elds self-consistently
but with considerably fewer assumptions; the only assumptions made were the
neglection of time derivatives and the use of the awbs operators to approximate
isotropic electron-electron collisions. (Recall that, in addition to being more
computationally intensive to solve, if the exact collision operator were used the
model would predict an unrealistic divergence free heat �ow due to the neglection
of the time derivative.) Finally, the authors suggested that the mn closure be used
to ensure that reconstruction of the edf is positive-de�nite making it a stronger
candidate than the snb for assessing the impact of nonlocality on parametric
instabilities that depend on velocity gradients of the edf.
Named quite simply the ‘mnmodel’ it is summarised by the following equation

set (note that this di�ers from that presented by Del Sorbo et al. as we are using
Cartesian tensors rather than spherical harmonics):

υ
3

#»∇ ⋅ #»

f 1 − e #»E
3meυ2

⋅ ∂υ2 #»

f 1
∂υ

= C(awbs)
ee0 [δf0]

(2.3.31)

υ #»∇ f0 + 2
5
υ #»∇ ⋅ »»

f 2 − e #»E
me

∂ f0
∂υ

− e #»E
3meυ3

⋅ ∂υ3 »»

f 2
∂υ

− e
me

(#»B × #»

f 1) = C(awbs)
ee0 [

#»

f 1] − νei #»

f 1,

(2.3.32)

with
»»

f 2 given by the closure in eq. (2.1.19). Additionally, the electric �eld is
obtained by

#»E = −me
6e

1 + β(sh)(Z)
2.5

∫∞0 #»∇ f0υ7 dυ
∫∞0 f0υ5 dυ

, (2.3.33)

which is the ambipolar form resulting from using ν∗ei on the right-hand side of
eq. (2.3.32) (at least when relative temperature gradients are much steep than
relative density gradients). While this model has been shown to perform tangibly
di�erently to the snb, especially in themagnetised regimes (Del Sorbo et al. 2016),
it has not been benchmarked against fully kinetic (i.e. vfp or pic) simulations.
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¿erefore, it is impossible to be sure which model is performing better. However,
due to being discovered at a later date and requiring a non-trivial implementation,
the mn model is not explored further in this thesis.

2.3.5 ¿e cmg velocity-dependent Krook model

Also investigated by Marocchino et al. is the velocity-dependent Krook method
of Colombant, Manheimer and Goncharov (Manheimer et al. 2008; Colombant
and Manheimer 2008), referred to as both the cmg and the vdk model. ¿is
model is somewhat complex and di�cult to describe compactly, but stems from
a replacement of all collision operators with velocity-dependent functions and
then treating electron with velocities above a characteristic velocity as nonlocal.
Furthermore it has a more thorough treatment of the electric �eld than the
snb model using integrals of the approximated edf to ensure zero current
(or alternatively pressure balance). Similarly to the snb model it manifests as a
convolution approachwith a kernel that is an integral over velocity, but nowwith a
lower bound. As themodel appears quite cumbersome to implement, especially in
more than one dimension (Manheimer et al. 2012), andmore importantly exhibits
a curious kink corresponding to the somewhat arbitrary choice of characteristic
velocity (see �g. 1 of Marocchino et al. 2013) this model will not be studied in this
thesis.

2.3.6 Landau Fluid

Another kind of convolution model arises from a linearised analysis, i.e. where
all perturbations are small enough to be independent and can be separated out
into sinusoids of speci�c wavelengths through a Fourier transform. In Fourier
space the vfp equation is greatly simpli�ed and some analytical progress can
be made. While a detailed exploration of this is le until the next chapter, the
qualitative behaviour of the thermal conductivity is to decrease from its local
value monotonically. ¿ere is a large variety of analytic approximations for the
relative reduction of the thermal conductivity (which is independent of spatial
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location for a given wavelength) provided in the literature, a few are outlined
here:

κ∥ = 3⁄2 χ1neυ2TkB/k, (Hammett and Perkins 1990)
κ∥
κ(B)∥

= 1
1 + 50√Zξeskλ(T)ei

(Epperlein and Short 1991)

κ∥
κ(B)∥

= (akλ(B)ei + 1 + bQZk2λ(B)2ei

1 + bQZk2λ(B)2ei /ac1(kλ(B)ei )1−η
)−1

, (Bychenkov et al. 1994)

where k = 2π/λT is the wavenumber associated with the temperature perturb-
ation and other coe�cients will be de�ned in chapter 4. Epperlein and Short
suggested that such closures could be used to construct convolution models by
providing a convolving kernel that is the inverse Fourier transform of the above
expressions, i.e.

W(x , x′) = 1
2π ∫

∞
−∞

κ∥(k)
κ(B)∥

eik(x−x′) dk. (2.3.34)

However, the validity of this approach only holds for the case of relatively small-
amplitude temperature perturbations, considerable relative gradients in tem-
perature or density would introduce nonlinearities into the mfp’s, and it is not
self-evident how tomanage this. For example themfp could be taken as a constant
over the entire domain, or it could be averaged over each distinct interval [x , x′].
Ji andHeld (2014) take the opposite approach to Epperlein and Short, providing

an analytic expression for the kernel in con�guration space

W(s− =, s′) = meTe(s)3⁄2√
2kBTe(s′)5⁄2κ(B)∥c

(d+a exp(−b∣s−s′∣c) log(1−α exp(−β∣s−s′∣γ)),
(2.3.35)

where s(x) = ∫ x0 dx′/√2λ(B)ei (x′) is an integrated distance in mean free paths,
κ∥c = meκ(B)∥ /nekBTeτ(B)ei is the dimensionless thermal conductivity and the nu-
merical coe�cients a, b, c, d , α, β, γ for hydrogen (Z = 1) are given in Table I of Ji
and Held 2014. From this we can obtain the dimensionless thermal conductivity
in Fourier space

κ∥c = 2 ∫ ∞
0

(d + a exp(−b∣s′∣c) log(1 − α exp(−β∣s′∣γ)) cos(√2kλ(B)ei s′) ds′.
(2.3.36)
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¿e validity of some of the �ts presented here will be assessed in section 4.6.1.
Another method of incorporating the above closures for the thermal conduct-

ivity is to actually perform simulations in Fourier space. ¿is is what is usually
meant by the ‘Landau �uid’ approach and is common in �uid simulations of
�uctuations along magnetic �eld lines within the tokamak core, made convenient
by the inbuilt periodic boundary conditions allowing particular resonant modes
to arise. Indeed the amplitude of �uctuations can be relatively small in some scen-
arios such as H-mode. On the other hand, temperature di�erences between the
last-closed �ux-surface and the divertor target are always large and the geometry
and boundary conditions are much more complex than within the core making a
Fourier approach undesirable for simulating sol transport.

2.3.7 Non-Fourier Landau-Fluid (nflf)

Addressing these issues with a Fourier approach to sol transport, the innovation
by Dimits, Joseph and Umansky (Dimits et al. 2014) was to enable direct calcula-
tion of the nonlocal parallel heat �ux in con�guration space by approximating
the Fourier closure as a sum of Lorentzians

κ∥(k)
κ(B)∥

≈ N∑
j=1

p j
q2j + (akλ(B)ei

)2 , (2.3.37)

where a is an ionisation-dependent coe�cient present in the original papers
that parametrises the damping behaviour in the collisionless limit κ∥(k →∞) ∼
κ(B)∥ /akλ(B)ei , N is the number of Lorentzians chosen for the �t and p j, q j are �t
parameters. From this, the heat �ow can be reconstructed as a sum of ‘dummy
contributions’

#»Q (nflf) = N∑
j=1

#»Q j where
#»Q j = p j

#»Q (B)

q2j + (akλ(B)ei
)2 . (2.3.38)

Rearranging the above equation and taking the inverse Fourier transform gives a
set of N second-order ode’s that can be used to calculate the contributions in
con�guration space.

[
q2j − (aλ(B)ei )2k2

]#»Q j = p j #»Q (B) Ð→ [q2j + (aλ(B)ei )2∇2]#»Q j = p j #»Q (B), (2.3.39)

¿is model is arguably one of the most e�cient nonlocal models yet devised
(with the exception of �ux-limiters): able to provide reasonable agreement with
some kinetic simulations with as few as three second-order ode’s—the snb
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model typically requires 25 groups or more. ¿is approach also conveniently
avoids the issue of de�ning the mean free path in reciprocal space. However,
the absence of a direct link to the vfp equation could make it di�cult to devise
ways to improve the model or extend it to varying ionisation or magnetised
regimes. Initial validation work showed that the model performed favourably
against vfp for simple test problems with a hydrogen plasma, but with some
room for improvement. In this thesis signi�cant improvements to the model will
be suggested by calibrating the base analytic �t, calculating new sets of coe�cients
for Z = 1 and Z = 8 and modifying the nonlinear behaviour.
2.3.8 Eigenvector Integral Closure

¿e last nonlocal model to be studied in this thesis is the ‘moment-based’ ap-
proach, here referred to as the ‘Eigenvector Integral Closure’ or eic for short,
originally proposed by Ji et al. (2009) and applied to the scrape-o� layer by
Omotani et al. (2013). Directly derived from simpli�cations of the vfp equation,
the model necessarily neglects the time-derivative term to allow the heat �ow to
be calculated based on input density and temperature pro�les only, rather than
the history of the distribution function; this assumption should be reasonable
over ‘mean’ sol pro�les (i.e. averaged over time to eliminate �ne-scalelength
�uctuations), but could break down for transient events with faster timescales
such as �laments and elms.
¿e eic model expresses the distribution function as fe = f0 + δfe, where

δfe is a perturbation to an initial, usually Maxwellian, guess f0. Assuming the
perturbation δfe is small, the nonlinear collision and electric �eld terms in the
vfp equation are linearised, which (for a Maxwellian f0) yields

∂δfe
∂s∥ − C(L)(δfe)

υ∥ = eE∥
meυ∥

∂ f0
∂υ∥ −

∂ f0
∂s∥ , (2.3.40)

where the linearised collision operator for collisions of electrons with themselves
is given by

C(L)
ee0( fe) = Cee( f̃e, f (mb)e

) + Cee( f (mb)e , f̃e
)

(2.3.41)

because collisions between twoMaxwellians of the same species vanish identically.
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¿e next step is to attempt a separation of variables into s∥ and #»υ /υ2T by
expressing

δfe = ∑
n
wn(s∥)gn(#»υ /υ2T) such that CL(gn)υ∥ = gn

λn
, (2.3.42)

in terms of the eigenfunctions gn of the operator C(L)/υ∥, which depends only on
#»υ /υ2T; the corresponding eigenvalues are denoted by 1/λn. Substituting (2.3.42)
into (2.3.40) and assuming that the dependence of gn on space through υ2T is
negligible (only valid when relative temperature perturbations are small globally)
yields

∑
n

(
gn
∂wn
∂s∥ +

�
�
���

0

wn
∂gn
∂s∥ +

wngn
λn

) = eE∥
meυ∥

∂ f0
∂υ∥ −

∂ f0
∂s∥ . (2.3.43)

By similarly decomposing the right-hand side into (orthogonal) eigenfunction
contributions, a set of independent �rst-order ode’s for wn is formed that can be
solved e�ciently. Consequently, δfe can be reconstructed and the nonlocal correc-
tion to the heat �ux computed through an integral in υ∥ (hence the nomenclature
Eigenvector Integral Closure or eic).
¿e advantage of this approach is that it circumvents the need to solve in

velocity-space at every timestep (as a vfp code must). ¿e main challenge is
identifying a discrete description of the eigenfunctions gn that converges rapidly
for use in a numerical scheme. In practice, this is done by using an orthonormal
polynomial moment-basis to express gn as a vector and the operator C(L)/υ∥ as a
matrix. ¿e original authors (Ji et al. 2009) proposed to use the popular Legendre
polynomials Pl to describe the dependence of δfe on pitch angle cos θ = υ∥/υ
and then the Laguerre polynomials L(l+1⁄2)k for variation with total speed, e.g.

δfe = ∑
l ,k
δ f l ,ke Pl

(υ∥
υ

)
L(l+1⁄2)k

( υ2

υ22T

)e−υ2/υ22T
π3⁄2υ32T

(2.3.44)

¿is converges rapidly in the hydrodynamic limit but slowly in the collisionless
limit. As an alternative, J T Omotani et al. (2015) proposed a Hermite-Laguerre
basis, decoupling parallel and perpendicular velocity components, which allows
for easier implementation of sheath boundary conditions (not investigated in
this thesis). In this basis the perturbation to the distribution function can be
described as

δfe = ∑
p, j
δ f p, je Hep

( υ∥
υ2T

)
L(0)j
( υ2⊥
υ22T

)e−υ2/υ22T
π3⁄2υ32T

(2.3.45)
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2.4 modelling nonlocal transport in magnetic fields

While the majority of nonlocal models are limited to purely unmagnetised re-
gimes, magnetised extensions have been put forward for both the snb (Nicolaï
et al. 2006) and the mn model (Del Sorbo et al. 2016). ¿ese were developed
by further pursuing the identi�ed link to the vfp equation resulting in a mag-
netic modi�cation the snb mfp. Additionally, Luciani et al. Luciani et al. 1985,
developed a convolution model for the Nernst velocity and Righi-Leduc heat �ow
based on simpli�cations to the quasistatic vfp equation. However, the accuracy
of these have not yet been veri�ed against fully kinetic simulations. Furthermore,
the magnetised snb model does not prescribe any method for calculating non-
local corrections to the Nernst velocity, which will be the primary focus of the
magnetised nonlocal transport studies presented in chapter 7.
One possibility for approximating the e�ect of nonlocality on Nernst advection

would involve relying on the relation between the energy group contribution Hg

and the nonlocal perturbation to the isotropic part of the edf δf0. ¿is would
provide a simple method of calculating corrections to the Nernst coe�cient β∧
by taking moments of the edf as shown in eq. (2.2.20). However, the accuracy
with which Hg approximates δf0 has been called into question by Sherlock et al.
(2017) making such an approach somewhat hazardous. An alternative method for
obtaining an approximation of nonlocal Nernst using reduced models designed
only for thermal transport has been explored by Lancia et al. (2014) and is used
as an inspiration for the investigation in chapter 7. Originating from a proof by
Haines (1986a) under the assumption that the electron-ion collision frequency
νei varies arti�cially as 1/υ2 and electron-electron collisions can be neglected,
this method involves the assumption that the ratio between the Nernst and heat
�ow velocities υQ ∝ Q⊥/Pe is una�ected by nonlocality. In reality νei varies as
logΛei(υ)/υ3), leading to β∧ depending on a slightly higher moment than κ⊥
(cf. eqs. (2.2.18) and (2.2.20)). But application of this simple approximation in a
nonlocal model very similar to the snb (Riquier 2016; Fuchs 2017) was able to
reduce discrepancies between modelling and experiments of a planar laser-solid
interaction (Lancia et al. 2014, 2013).
Consequently, a reasonable conclusion would be that both heat �ow andNernst

advection should be �ux-limited by a similar degree. And this was indeed con-
�rmed by Kho and Haines (1985, 1986) using fully-kinetic vfp simulations, al-
though the Righi-Leduc heat �owwas found to requiremore restrictive limitation,
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figure 2.2: ¿e local prediction due to Epperlein and Haines (1986) (see eq. (2.4.1)) for
the dimensionless quantityΨ = Peβ∧/eBκ⊥ in the limit of zero and in�nitemagnetisation.
Dashed lines show the values obtained using the anisotropic collision �x ξes = (Z +
0.24)/(Z+4.2) (Epperlein and Short 1991), which turn out to be independent of ionisation.
mosly likely due to it depending on amuch higher velocitymoment (see eq. 2.2.19).
However, they only considered a plasma of moderate and uniform ionisation
(Z = 10) and neglected anisotropic electron-electron collisions, which can have a
signi�cant e�ect on the Nernst velocity for low-Z plasmas, such as present in the
hohlraum gas-�ll. Furthermore, they did not compare the time-integrated e�ect
of using a �ux-limited hydrodynamic model against vfp simulations on plasma
pro�les.
We can quantify the ratio between theNernst velocity and the heat �ow velocity

by the parameter Ψ = Peβ∧/eBκ⊥. ¿e value of ψ in the limits of zero and in�nite
magnetisation can be calculated using the polynomial coe�cients calculated by
Epperlein and Haines (1986, table III and IV) as

lim
χ→0Ψ = β0∧

γ0
, lim
χ→∞Ψ = (β′′1 = 1.5)

γ′1 . (2.4.1)

If the collision �x is used as an alternative to fully accounting for electron-electron
collisions on vfp codes (dashed lines in �g. 2.2) then the value ofΨ in these limits
becomes independent of ionisation and equal to its Lorentz limit values (0.46 and
0.73 respectively). ¿is is due to cancellation of ξ in the two places it appears: in
the τ(B)ei -dependence of κ⊥ and the χ-dependence of β∧. Consequently, the local
Nernst velocity can be greatly overestimated by this approach at low ionisations
(by a factor greater than two for a low magnetisation hydrogen plasma).
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Two simple, constant approximations for Ψ have been previously suggested
and used: Nishiguchi et al. (1984) �rst suggested that Ψ ≈ 2⁄3 , which obtains the
low magnetisation limit to within 10% for Z > 12 but overestimates the Nernst
velocity at high magnetisation by 40% or more. ¿is was �rst used by Kho and
Haines (1985, 1986) to demonstrate that the link between Nernst advection and
perpendicular heat �owwas not greatly a�ected by nonlocality, andmore recently
by Lancia et al. (2014) who used a reduced nonlocal heat �ow model to provide a
nonlocal prediction of the Nernst velocity as υN ≈ 2#»Q⊥/3Pe. Alternatively, the
simpli�ed analysis performed by Haines (1986a) predicted Ψ = 2⁄5 even if the
isotropic part of the distribution function is far from Maxwellian. ¿is is the
approach employed by Davies et al. (2015) in calculating the �ux-limited Nernst
velocity and works very well for values of Z between 2 and 3, but provides an
underestimate of ∼15–80% at higher ionisations and low magnetisations.
Mostly due to di�culties in implementation, magnetised extensions of the

snb and mnmodels have not been investigated in this thesis. However, a detailed
assessment of the e�ectiveness of using the local ratio approach to obtain the
nonlocal Nernst e�ect from the nonlocal heat �ow is provided in chapter 7.



3
NUMERICAL IMPLEMENTATION

3.1 vlasov-fokker-planck codes

Details are here provided of the equation sets and numerical methods employed
by the cohort of Vlasov-Fokker-Planck codes used in this thesis. As a brief
summary,

• kipp simulates the edf in one spatial and two velocity dimensions by assuming
azimuthal symmetry and using operator splitting methods. It is very computa-
tionally intensive but is ideal for problems where high degrees of anisotropy can
be expected (i.e. at low collisionalities).

• impact is a fully-implicit vfp code able to simulate the interaction between
magnetic and thermal transport. In order to do so e�ciently, a Cartesian tensor
expansion of the edf is truncated a er the �rst-order anisotropy (p1) and the
e�ect of electron-electron collisions on the anisotropic part of the edf is approx-
imated through dividing the electron-ion collision frequency by the collision �x
ξes .

• k2 and oshun are also able to capture magnetised thermal transport e�ects but
can go up to any order of anisotropy in a spherical harmonic expansion while
retaining the full electron-electron collision operator at all orders of anisotropy.
To balance against this added complexity, time-di�erencing is mostly explicit.
Testing of these codes in more than one spatial direction is currently somewhat
limited.

• dill is a Fourier-space vfp code produced speci�cally for this thesis in or-
der to e�ciently simulate the damping of temperature sinusoids under the p1
approximation.

• spring is a rather ancient Fourier-space vfp code developed by Epperlein and
Short (1994) that is able to include arbitrary harmonics.

3.1.1 kipp

¿e 1d2v kipp code (Chankin et al. 2012) is designed to solve the dke derived
in eq. (2.1.5) to describe parallel transport in the scrape-o� layer. In order to

59
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resolve potentially large temperature gradients near the divertor, non-uniform
Cartesian spatial grids as depicted in �g. 3.1 are available; these start with the �rst
cell located at the re�ective ‘stagnation’ point and the exterior boundary of the
�nal cell located at the divertor target/sheath. Note that this setup is signi�cantly
di�erent from the other vfp codes we shall explore shortly, where both le and
right boundaries are instead treated symmetrically with re�ective boundaries
typically placed on a cell face rather than a cell centre. Parallelisation of the code
is such that there is only one spatial cell allocated to each processor, meaning
that the spatial resolution can be limited by the number of cores available on the
cluster.

s0

Stagnation
Point

∆s1⁄2

s1

∆s11⁄2

s2 smax−1
∆smax−1⁄2

smax

Debye
Sheath

figure 3.1: An example of the nonuniform grid structure used in the kipp code. ¿e
edf is de�ned on cell centres denoted by crosses.

Meanwhile, the two-dimensional velocity grid extends from υ∥ = −vmax to
υ∥ = vmax over 2 × mmax + 1 cells in the direction parallel to the simulation axis
and from υ⊥ = 0 to υ⊥ = vmax over mmax + 1 cells (where both vmax and mmax are
user de�ned) in the perpendicular direction. Nonuniformities are also allowed
and are parametrised by the variable EPS de�ning the ratio between adjacent cells;
an example with EPS = 1.1 is illustrated in �g. 3.2. For each velocity grid, unique
�les must be generated containing Green function methods to solve Poisson
equations for the Rosenbluth potentials that appear in the collision operator.
Unfortunately, the code to generate these functions was lost prior to receiving
access to kipp, and therefore only previously generated �les can be used. ¿e
highest available velocity grid thus available for use in this thesis is given by the
coe�cients vmax = 7υ1T, mmax = 256, EPS = 1.01.
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υ∥

υ⊥

figure 3.2: An example kipp velocity grid where the ratio between adjacent cell widths
is given by the parameter EPS = 1.1. Crosses mark the locations at which the edf is
de�ned.

¿e code uses an operator splitting method inspired by Shoucri and Gagne
(1978) that separates the electron free-streaming from the electric �eld and colli-
sion operator terms and is summarised as

f ∗e (s∥, #»υ ) = f (n)e (s∥, #»υ + e #»E (n)∆t/2me), (3.1.1)

f ∗∗e (s∥, #»υ ) = f ∗e (s∥ − υ∥∆t, #»υ ), (3.1.2)

f †e (s∥, #»υ ) − ∆tCe( f †e ) − e #»E (n)∆t
me

∂ f †e
∂υ∥ = f (n)e (s∥, #»υ ), (3.1.3)

f (n+1)e (s∥, #»υ ) = f ∗∗e (s∥, #»υ ) + f †e (s∥, #»υ ) − f ∗e (s∥, #»υ ), (3.1.4)

where the number of timesteps is given by the superscript n and intermediate
steps are indicated by the asterisks. Note that this scheme does di�er somewhat
from that suggested by Shoucri and Gagne (namely a half-step of free-streaming,
followed by a full step of acceleration due to the electric �eld and then a �nal
half-step of free-streming) in order to save computational with negligible loss of
accuracy.
Di�erencing of the distribution function for the initial acceleration due to

the parallel electric �eld is performed by a straightforward three-point stencil
Lax-Wendro� method,

fe
(
υ∥n + eE∥∆t

2me

) = fe(υ∥n) + e #»E∆t
me

fe(υ∥n+1⁄2 ) − fe(υ∥n−1⁄2 )
∆υ∥n+1⁄2 + ∆υ∥n−1⁄2 (3.1.5)



3.1 vlasov-fokker-planck codes 62

All instances of fe
in eqs. (3.1.5)
and (3.1.6) are
evaluated at the
same s∥ and υ⊥.

where the interpolation of the edf to cell boundaries is given by

fe(υ∥n±1⁄2 ) = (2∆υ∥n±1⁄2 − ∆υ∥n∓1⁄2 ) fe(υ∥n) + ∆υ∥n∓1⁄2 fe(υ∥n±1)
2∆υ∥n±1⁄2

± e #»E∆t
2me

fe(υ∥n±1) − fe(υ∥n)
∆υ∥n±1⁄2

(3.1.6)

to ensure that the numerical parallel velocity gradient is accurate to second
order (although the second derivative is only accurate to �rst order when the
grid is nonuniform). Dirichlet boundary conditions, fe(υ∥) = 0, are imposed at∣υ∥∣ = vmax.
Interpolation from the cell-centres s∥ to the o�-centred s∥ − υ∥∆t/2 during

the free-streaming step is instead performed using a sophisticated second-order
explicit upwinding scheme. ¿is is given by LeVeque (2004)

fe(sn − υ∥∆t, #»υ ) = fe(sn∓1, #»υ ) − (±(∆sn∓1⁄2 ) + υ∥∆t)σ(sn∓1), (3.1.7)

where ‘∓’ = ‘−’ if υ∥ > 0 and ‘+’ if υ∥ < 0. ¿e slope σ(sn) is calculated according to
a non-uniform version of LeVeque’s monotonised central-di�erence limiter (mc
limiter), such an approach provides second-order accuracy whenever possible
but also avoids undesirable oscillations that could arise from noisy data or when
the timestep is insu�ciently small. Formally, the mc limiter, which is preferable
to alternatives such as the superbee which has the issue of sometimes arti�cially
steepen smooth slopes (see LeVeque 2004, for more details), de�ned as

σ(sn) = minmod( fe(sn+1) − fe(sn−1)
∆sn+1⁄2 + ∆sn−1⁄2 , 2 fe(sn+1) − fe(sn)

∆sn+1⁄2 ,

2 fe(sn) − fe(sn−1)
∆sn−1⁄2

)
,

(3.1.8)

with ‘minmod’ being a three-argument extension,minmod(a, b, c) = minmod(a, minmod(b, c)),
of the two-argument function

minmod(a, b) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a if ∣a∣ ⩽ ∣b∣ and ab > 0
b if ∣b∣ ⩽ ∣a∣ and ab > 0
0 if ab ⩽ 0

(3.1.9)

¿e above method can be extended quite simply to the stagnation point s0
by invoking a ghost cell s−1 at which the edf is deemed to be fe(s−1, υ∥, υ⊥) =
fe(s1,−υ∥, υ⊥). On the other hand, achieving an acceptable treatment of the
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sheath boundary condition is more challenging. ¿e procedure used by kipp is
to �rstly use Lax-Wendro� inspired schemes (LeVeque 2004) to treat electrons
with υ∥ < 0 travelling from smax to smax−1 and those with υ∥ > 0 travelling from
smax to the target by de�ning the slope

σ(smax) = fe(smax) − fe(smax−1)
∆smax−1⁄2 . (3.1.10)

Subsequently, the �ux coming back from the target to smax is obtained by fully
re�ecting only electrons with energies below the sheath potential drop and ab-
sorbing the rest at the target. ¿e sheath potential drop is calculated such that
the re�ected electron �ux balances the ion �ux ni

√
kBTe/mi.

¿e penultimate step that calculates the combined e�ect of collisions and the
inter-cell acceleration of electrons due to the electric �eld is performed by treat-
ing the Rosenbluth potentials (the integral terms in eq. (2.1.2)) explicitly (i.e. at
timestep n) and the transport terms (�rst/second order velocity derivatives) im-
plicitly. Di�erencing on the velocity grid is performed using a nine-point stencil
of the distribution function and is found to performwith essentially second-order
accuracy (Chankin et al. 2012). Both calculation of the Rosenbluth potentials
(which requires solving Poisson equations) and the combined application of the
Fokker-Planck collisions with the electric �eld are performed using the mumps
sparse matrix solver. ¿is is therefore the most computationally demanding step,
making the chosen parallelisation scheme highly advantageous in avoiding any
unnecessary inter-node communication by dedicating one processor to each
spatial cell.
¿e electric �eld at each timestep is �nally obtained by requiring it to counteract

any di�erences incurred to the net electron �ux. Further intricate rebalancing
steps also occur to ensure other conservation (e.g. energy) laws are obeyed, but
these will not be detailed in this thesis.

3.1.2 impact

A simpli�ed approach that is valid in more collisional regimes is the di�usion
approximation: ¿is consists of expanding the distribution function in Cartesian
tensors and truncating all but the �rst two terms, reducing the number of velocity-
space dimensions to one, and therefore increasing e�ciency. ¿e impact code,
originally developed by Kingham and Bell (2004) (two-dimensional in space)
employs the di�usion approach and makes a further simpli�cation of ignoring
angular scattering due to electron-electron collisions, valid in the Lorentz limit.
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In order to recover the correct local thermal conductivity for lower-Z plasmas the
factor ξ(Z) is used in the electron-ion collision frequency. Comparisons between
impact and kipp suggest that these approximations do not greatly a�ect the
results for unmagnetised thermal ramp relaxation problems studied in section 5.1,
but can overestimate Nernst advection at low ionisations when the degree of
magnetisation becomes appreciable due to reasons outlined in section 2.4. ¿e
equations solved by impact, along with Ampere and Faraday’s Law are thus

∂ f0
∂t

+ υ
3

#»∇ ⋅ #»

f 1 − e #»E
3meυ2

⋅ ∂υ2 #»

f 1
∂υ

= Cee0 [ f0] , (3.1.11)

∂
#»

f 1
∂t

+ υ #»∇ f0 − e #»E
me

∂ f0
∂υ

− e
me

(#»B × #»

f 1) = −νeiξ #»

f 1, (3.1.12)

where

νei = 4πZnee4 logΛei

υ3
(3.1.13)

is the velocity-dependent electron-ion collision frequency in Gaussian units.
¿e impact code is fully implicit and �rst-order in time, and uses �xed-

point/Picard iterations to handle nonlinear terms. ¿e implicit treatment of the
electric �eld enforces charge conservation at every iteration. Detailed notes on
time di�erencing can be found in Kingham and Bell 2004. Note that the option
is o�ered of retaining or neglecting the electron inertia term ∂

#»

f 1
∂t .

3.1.3 k2 & oshun

In order to address the inaccuracies in Nernst advection arising at low ionisations
when using impact, the k2 (Sherlock et al. 2017) and oshun (Tzoufras et al. 2011;
Tzoufras et al. 2013; Joglekar et al. 2018) codes were deployed. Based on the kalos
formalism (Bell et al. 2006), the codes expand the edf in spherical harmonics and
employ a mixture of implicit and explicit time di�erencing, taking advantage of
operator splitting. Both codes use the full anisotropic electron-electron collision
operator, as is necessary to achieve acceptable values of β∧ at low ionisations,
even in the local limit. Comparisons showed reasonable agreement between k2
and oshun with slight discrepancies attributable to the number of harmonics
used and exact implementation of boundary conditions.
A novel approach to increasing the timestep allowed by the restrictive Cour-

ant–Friedrichs–Lewy condition for explicit codes is employed by k2; an arti�cial
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multiplier of 100 is applied to the electric permittivity, e�ectively reducing the
plasma frequency by a factor of 10. Allowing for e�cient explicit solutions to
Maxwell’s equations. On the other hand, oshun o�ers a (somewhat computa-
tionally intensive) implicit electric �eld solve as a means for allowing timesteps
exceeding the plasma frequency. Both approaches are valid as long as the exact
dynamics of plasma �uctuations are not of interest.

3.1.4 dill

In order to e�ciently analyse the implications of the di�usion approximation at
very short wavelengths in chapter 4, I created a Di�usive Implicit code adapted
speci�cally for Linearised problems in the Lorentz (high-Z) limit (dill). ¿e
need for this code was to avoid numerical instabilities that can occur at high
degrees of nonlocality when using codes such as impact as well as enabling a
more e�cient Fourier formulation that completely reduced the spatial resolution
needed for for studying small sinusoidal temperature perturbations from about
500 cells to just one. Results obtained using the dill code are compared to
analytical results in the second part of section 4.4.2 titled Without Electron
Inertia and in section 4.5.1.
¿e code is designed to study small-amplitude sinusoidal perturbations of

a single wavelength, λ, where the isotropic part of the edf takes the form of
f0(x , υ, t) = f (mb)e (υ)+ f̃0(υ, t) cos(kx), with k = 2π/λ and f (mb)e the background
Maxwellian with electron density n0 and electron temperature T0. Currently, a
simpli�ed version of the linearised electron-electron collision operator C(L)

ee0 that
is accurate at low and high velocities (but is only approximate at intermediate
velocities) is used; this is equivalent to employing the �rst term of the iterative
form for C(L)

ee0 presented in section 4.3.1 and appendix b.6. ¿e assumption of no
electron inertia (i.e. ∂ f̃1∂t = 0), allows the equation for the anisotropic part of the
edf, f̃1, to be easily repackaged into the f̃0 equation, giving

∂ f̃0
∂t

+ k2υ2

3ν∗ei
(
f̃0 − eϕ̃

kBT0
f (mb)e

) = Γee kBT0meυ2
∂
∂υ
{ I0( f (mb)e )

υ
f (mb)e

∂
∂υ

f̃0
f (mb)e

},
(3.1.14)

as the equation to be solved by dill along with an additional prescription for
the electric potential. Convenient normalisations for this equation are u =
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ξk2λ(0)ei υ2Tt/3,V = υ/υ2T, F = υ32T f̃0/ne and Φ = eϕ̃/kBT0, transforming
eq. (3.1.14) into

∂F
∂u

+ V 5
(
F − Φ e−V 2

π3⁄2
) = ζ√

π
1
V 2

∂
∂V

γ(3⁄2 ,V 2)
V

e−V 2 ∂
∂V

FeV
2

(3.1.15)

where ζ = 3/ξZk2λ(0)2ei is a normalised coe�cient used to modify the wavelength
of the perturbation.
Performing a uniform cell-centred discretisation in velocity with cell size ∆V

and a �rst-order discretisation in time with timestep ∆u and de�ning the velo-
city di�usion coe�cient D∗ = γ(3⁄2 ,V 2)e−V 2/V√

π allows for the the following
implicit formulation of the equation set,

( 1
∆u

+ V 5 − ζ
V 2

∂
∂V

D∗ ∂
∂V

eV
2)
F(n+1) − V 5e−V 2

π3⁄2
Φ(n+1) = F(n)

∆u
(3.1.16)

along with 4π
k2λD2

∑{V}V 2∆VF(n+1) + Φ(n+1) = 0 (Gauss’ Law)

or π3⁄2 ∑{V}V 7∆VF(n+1) + Φ(n+1) = 0, (Zero Current)

where the superscripts denote timestep. ¿is system can be represented as a
matrix equation




↖ ↑
A B↘ ↓

← C → D







↑
F(n+1)↓
ϕ(n+1)




=



↑
F(n)/∆u↓

0




(3.1.17)

with four submatrices: A a tridiagonal matrix, B a column vector, C a row vector
and D = 1. Right multiplying the top equation by CA−1 and then taking the result
away from the bottom equation provides a formula for the electric potential at
the next timestep Φ(n+1) in terms of the distribution function at the previous
timestep:

Φ(n+1) = P−1SchurF(n)/∆u., (3.1.18)
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Note that PSchur
only needs to be
calculated once for
each simulation.

where we have de�ned the rank zero Schur complement matrix, PSchur = D −
CA−1B. Substituting this into eq. (3.1.16) gives the distribution function at the
next timestep as

F(n+1) = A−1(F(n)/∆u − BΦ(n+1)) (3.1.19)

¿e dill code simply steps forward the electric potential and distribution func-
tion by sequentially solving eqs. (3.1.18) and (3.1.19) and using the ¿omas al-
gorithm to apply A−1. ¿e advantage of the Schur complement approach used
here is that it allows for a very e�cient linear velocity-cell scaling while still being
fully implicit.
¿e speci�c structure of the submatrix A, which captures the evolution of the

distribution function due to di�usion in both con�guration and velocity space, is
given by

Ai j =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
∆u

+ V 5
i + ζ

V 2
i

(D∗
i+1⁄2 + D∗

i−1⁄2 )eV 2
i

∆V 2 if j = i
− ζ
V 2
i

D∗
i±1⁄2eV 2

i±1

∆V 2 , if j = i ± 1
0, otherwise,

(3.1.20)

where D∗
n ≡ D∗(Vn). ¿e boundary conditions used are (1) zero gradient of F at

V = 0, implemented by neglecting any appearance of D∗(0) and (2) an enforced
‘straight line’ behaviour of F at the upper bound of the velocity grid. For an
N-cell velocity grid extending from V1 = ∆V/2 to VN = Vmax − ∆V/2, the latter
boundary condition is summarised as equating the gradient of F at V = VN+1⁄2
and V = VN−1⁄2 leading to the following modi�cation of the �nal two matrix
elements

AN ,N−1 = − ζ
V 2
N

D∗
N−1⁄2eV 2

N−1 − D∗
N+1⁄2eV 2

N

∆V 2 (3.1.21)

AN ,N = 1
∆u

+ V 5
N + ζ

V 2
N

D∗
VN−1⁄2 e

V 2
N − D∗

VN+1⁄2 e
V 2
N+1

∆V 2 . (3.1.22)

A more complete treatment of electron-electron collisions could easily be incor-
porated in the future by treating the more complicated neglected terms explicitly
or iterating within a single timestep as is done with impact.
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3.1.5 spring

Finally, we also include results previously obtained with the spring (Epper-
lein 1994) vfp code which takes a Cartesian expansion to arbitrary order and
does not neglect/approximate anisotropic electron-electron collisions. ¿is code
uses a linearised approach and 1d geometry, i.e. the spatial gradient operator
#»∇ is replaced by ik, making it advantageous for analysing the small-amplitude
sinusoidal temperature perturbations featured in chapter 4, but not problems
with large temperature perturbations. No considerations of magnetic �elds were
included in the code.

3.2 the classical transport code, ctc

Used mostly in chapter 7 to investigate magnetised transport the Classical Trans-
port Code (ctc) developed by Bissell (2011) provides a fully-implicit solution
for the coupled evolution of magnetic �eld and temperature pro�les using the
Epperlein and Haines (1986) polynomial �ts for the transport coe�cients. Ori-
ginally, the code was only written to simulate nitrogen plasmas (Z = 7) but the
author of this thesis extended this to uniformly ionised helium plasmas (Z = 2)
and enabled treatment of inhomogeneous ionisations using the Lorentz limit
(Z = ∞) transport coe�cients with the average collision time τ(B)ei multiplied by
the Epperlein-Short (1991) collision �x ξes . ¿e code also has the potential to
deal with hydrodynamics and super-Gaussian transport coe�cients arising from
inverse bremsstrahlung absorption of laser energy (Ridgers et al. 2008b; Dum
1978b,a), neither of which are investigated in this thesis. Independent Nernst,
Righi-Leduc and thermal �ux-limiters are available and calculated using the
method outlined in section 2.3.1. A number of important works employing this
code include Bissell et al. 2010; Bissell 2012; Read et al. 2016.

3.3 the snb model

¿e implementation of the unmagnetised snb model used in this work is able to
solve eqs. (2.3.19) and (2.3.20) with the velocity-dependent Krook operator in 1d
on a non-uniform grid. A perhaps overly detailed description of the method used
is here provided to facilitate the needs of others who may want to implement the
model themselves. However, a condensed summary in the form of a �owchart is
presented in �g. 3.4 Additionally, a simple test to demonstrate the accuracy of
the nonuniform di�erencing is presented in section 3.3.2.
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3.3.1 Implementation

¿e structure of the non-uniform grid is slightly di�erent from impact. While
the �eld quantities (ne, Te, etc.) are still placed on cell nodes denoted by xn and
�ow quantities (#»Q , #»E ) on cell faces, the nodes are not in the centre of cells but
instead the faces, given by xn+1⁄2 = (xn+1 + xn)/2, are located halfway between cell
nodes. External ghost cells are employed to impose boundary conditions; for a
grid containing N interior cells the two ghost cells are denoted x0 and xN+1. ¿is
is depicted in �g. 3.3 and allows for second-order accuracy in calculating gradient
quantities of scalar �elds (denoted generally here by Φ) on cell faces by

#»∇Φ(xn+1⁄2 ) ≡ Φ(xn+1) −Φ(xn)
∆xn+1⁄2 x̂ , where ∆xn+1⁄2 = xn+1 − xn (3.3.1)

is the node separation and x̂ is a unit vector in the x-direction. However, the
divergence operator is only accurate to �rst-order in general and is de�ned as

#»∇ ⋅ #»A(xn) ≡ #»Ax(xn+1⁄2 ) − #»Ax(xn−1⁄2 )
∆xn

, where ∆xn = xn+1⁄2 − xn−1⁄2 (3.3.2)

is the distance between cell faces and #»Ax is the x-component of vector �eld
#»A.

Other components are not considered in the current 1d implementation.

x0

∆x1⁄2

x1

∆x11⁄2

x2

∆x21⁄2

x3

∆x31⁄2

x4

∆x41⁄2

x5
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figure 3.3: An example of the nonuniform grid structure used in this work’s implement-
ation of the snb model. Flow quantities (red arrows) are placed on cell faces halfway
between cell nodes where �eld quantities (blue crosses) are placed. ¿e separations
between cell nodes is also labelled as ∆x.

¿e inputs required for the model are plasma pro�les for �eld quantities—
electron temperature Te, density ne, average ionisation Z and the Coulomb logar-
ithms logΛei and logΛee (which are typically assumed to be constant and equal)—
along with a speci�cation for the x-grid. While the pro�les can be given in any
units or relative to any reference plasma, the current design of the code requires
the spatial grid be given relative to the reference mfp

λ(0)ei = λei(√2kBT0/me
) = (4πε0

e2

)2 (2kBT0)2

me
2Z0n0 logΛ0

. (3.3.3)



3.3 the snb model 70

Input plasma parameters
xn , ne , Te , Z ,
logΛei , logΛee

Input SNB parameters
Ng , єmax ,

r = 2, ξ = ξes , Emult = 1

Suggested default
snb parameters
appear a er ‘=’
signs.

Calculate local quantities
#»E (B) , #»Q (B) , λ(0)ei , λ

(0)
s

eqs. (3.3.3)
and (3.3.6)
to (3.3.9)

Initialise loop variables

єg = ∆є/2, ∂Te∂t = #»Qsnb = 0
Loop over energy groups

Calculate energy-dependent terms
λee , λei∗ (E) , rhs = ∇ ⋅wg

#»Q (B)
eqs. (3.3.10)
to (3.3.16)

Constuct tridiagonal
matrix and solve for Hg

eq. (3.3.19)

Update #»Qsnb += wg
#»Q (B) − λei∗ (E)

3
#»∇Hg

or ∂Te
∂t

+= Hg

λee
along with єg += ∆є

eqs. (3.3.20)
and (3.3.21)

єg > єmax?

No

End energy group loop
Yes

Output either
∂Te
∂t

or #»Qsnb

figure 3.4: Flowchart outlining the process used to solve the snb model equations.
Details on normalisations are not included (nor strictly necessary) in this �owchart for
reasons of clarity and conciseness.
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All pro�les are subsequently considered dimensionless relative to the reference
plasma when overset by a ‘̃ ’. ¿ese normalised quantities and are related to
their dimensional values by

T̃e = Te
T0
, ñe = ne

n0
, Z̃e = Ze

Z0
, log Λ̃αβ = logΛαβ

logΛ0
, x̃ = x

λ(0)ei
, t̃ = ν(0)ei t, (3.3.4)

where 0 denotes the reference value. Internally computed parameters (including
the nonlocal heat �ow output by the model) are thus also rendered dimensionless.
¿e dimensional forms for energy, electric �eld, and heat �ow can be recovered
using

є̃ = є
kBTe

, #̃»E = λ(0)ei e #»E
kBT0

, #̃»Q = #»Q
n0me(2kBT0/me)3/2 , (3.3.5)

respectively. Note that, in contrast to impact, when the dimensional temperature
equals the reference temperature the dimensionless temperature T̃e = 1 rather than
1⁄2 . However, the same normalisation is used for heat �ow in this implementation
of the snb model as in impact.
¿eunnormalised ionisation Ze = Z0Z̃e is used to approximate the Z-dependence

of the parallel thermoelectric coe�cient β∥ (on the cell boundaries) using the
expression for γ appearing in equation (34) of the original paper (Schurtz et al.
2000):

β∥(xn+1⁄2 ) ≈ 3
2
× Z(xn+1⁄2 ) + 0.477

Z(xn+1⁄2 ) + 2.15 , (3.3.6)

where Z has been linearly interpolated from cell nodes to faces. Additionally the
Z-dependence of the local thermal conductivity, is accounted for on both cell
nodes and cell boundaries:

ξ(xn) ≈ Z(xn) + 0.24
Z(xn) + 4.2 , ξ(xn+1⁄2 ) ≈

Z(xn+1⁄2 ) + 0.24
Z(xn+1⁄2 ) + 2.4 (3.3.7)

¿is ‘collision �x’ is also used to approximate the e�ects of electron-electron
collisions on

#»

f 1 in an identical way to certain vfp codes, such as impact and
spark, by modifying the snb electron-ion mfp.
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¿ese corrections to the transport coe�cients can be used to calculate the
stopping distance of a thermal electron travelling antiparallel to the local electric
�eld,

¿e positioning of
the argument
(xn+1⁄2 ) on the
le -hand side of
eq. (3.3.8) indicates
that it is the inverse
mfp that is
calculated in the
code (the actual
mfp is never used
directly). Similar
notation is used
over the next few
pages.

1
λ̃(0)s

(xn+1⁄2 ) = #̃»E (B)

T̃e
(xn+1⁄2 )

= #̃»∇ log ñe(xn) + (1 + β∥(xn+1⁄2 )) #̃»∇ log T̃e(xn),

(3.3.8)

as well as the local heat �ow

#̃»Q (B)(xn+1⁄2 ) = − 8√
π
ξ(xn+1⁄2 )
Z̃(xn+1⁄2 )

2
7

#̃»∇T̃e7/2(xn) (3.3.9)

Following these local calculations the code loops over energy groups, which
can be modi�ed by the user selecting the total number of groups Ng and the
maximumnormalised energy є̃max. From this the grid spacing is simply calculated
as ∆є̃ = є̃max/Ng . At this point, only uniformly-spaced energy grids have been
investigated. In a similar vein to the spatial grid, each group is denoted є̃g with
upper- and lower-bounds є̃g±1⁄2 such that є̃1⁄2 = 0 and є̃Ng+1⁄2 = є̃max. ¿e �rst
group-dependent calculation that occurs is that of the crucial variable,

βg(xn+1⁄2 ) = є̃g
T̃e(xn+1⁄2 ) , (3.3.10)

which is introduced in the original paper as β (Schurtz et al. 2000) and represents
the relative energy of a group compared to the thermal energy at that location.
Next the mfp’s of each group need to be obtained. However, due to the nature

of the model equations it turns out to be more convenient to �rst calculate the
inverse of the mean free paths.

1
λ̃ei∗ (xn , є̃g) =

ξ(xn)Z̃(xn)ñe(xn)log Λ̃ei(xn)
є̃ 2g

, and (3.3.11)

1
λ̃ee

(xn , є̃g) = rñe(xn)log Λ̃ee(xn)
Z0є̃ 2g

, (3.3.12)

where r can vary but is typically de�ned as 2. In the averaged version of the snb
model both mfp’s are replaced by their geometric average

1
λ̃∗e (xn , є̃g) =

√
rξ(xn)log Λ̃ei(xn)log Λ̃ee(xn)Z̃(xn)/Z0 ñe(xn)є̃g 2 . (3.3.13)
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¿e stopping distance due to the electric �eld is then incorporated into the limited
mfp

λ̃ei∗ (E)(xn+1⁄2 , є̃g) = 1
1
λ̃ei∗ (xn+1⁄2 , є̃g) +

Emult
βg(xn+1⁄2 ) ×

1
λ̃(0)s

(xn+1⁄2 )
, (3.3.14)

where we have de�ned the constant Emult (1 by default) to allow for easy investig-
ation of the e�ect of the electric �eld and 1/λ̃ei∗ has been interpolated on to cell
faces. Once again, the implementation of the averaged version can be achieved
by replacing ei with e.
¿e weighting function for each group is calculated using the analytic form of

the integral

wg(xn+1⁄2 ) = ∫ βg+1⁄2 (xn+1⁄2 )

βg−1⁄2 (xn+1⁄2 )

β4e−β
24

dβ

= [ − (β4 + 4β3 + 12β2 + 24β + 24)
24

e−β
]βg+1⁄2 (xn+1⁄2 )

βg−1⁄2 (xn+1⁄2 )
,

(3.3.15)

where the square brackets denote that the di�erence of the terms inside evaluated
at βg−1⁄2 (xn+1⁄2 ) and βg−1⁄2 (xn+1⁄2 ) is taken. Using wg the source term for the snb
model can be easily obtained as

rhs(xn , є̃g) = − #̃»∇ ⋅ (wg(xn±1⁄2 ) #̃»Q (B)(xn±1⁄2 )
)

(3.3.16)

All these terms can be combined to form the di�erential equation that must
be solved for the contributions H̃g :

[
1
λ̃ee

(xn , є̃g) − #̃»∇ ⋅ λ̃ei∗ (E)(xn±1⁄2 , є̃g)
3

#̃»∇
]
H̃g(xn) = rhs(xn , є̃g). (3.3.17)

¿e di�usive term in the previous equation is di�erenced as

#̃»∇ ⋅ λ̃ei∗ (E)
3

#̃»∇H̃g = λ̃ei∗ (E)(xn+1⁄2 ) #̃»∇H̃g(xn) − λ̃ei∗ (E)(xn−1⁄2 ) #̃»∇H̃g(xn−1)
3∆x̃n

= λ̃ei∗ (E)(xn+1⁄2 )
3∆x̃n∆x̃n+1⁄2

(
H̃g(xn+1) − H̃g(xn)

)

− λ̃ei∗ (E)(xn−1⁄2 )
3∆x̃n∆x̃n−1⁄2

(
H̃g(xn) − H̃g(xn−1)),

(3.3.18)
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where the dependence on є̃g has been dropped for convenience. Substituting
eq. (3.3.18) into (3.3.17) forms the �nite di�erence equation

− λ̃ei∗ (E)(xn−1⁄2 )
3∆x̃n∆x̃n−1⁄2 H̃g(xn−1)

+( 1
λ̃ee

(xn) + λ̃ei∗ (E)(xn+1⁄2 )
3∆x̃n∆x̃n+1⁄2 +

λ̃ei∗ (E)(xn−1⁄2 )
3∆x̃n∆x̃n−1⁄2

)
H̃g(xn)

− λ̃ei∗ (E)(xn+1⁄2 )
3∆x̃n∆x̃n+1⁄2 H̃g(xn+1)

= rhs(xn) (3.3.19)

that resembles a tridiagonal matrix, which can be solved with the ¿omas al-
gorithm (Conte and Boor 1972).
As H̃g is obtained for each energy group these can be combined to compute

either the instantaneous nonlocal heat �ow

#̃»Qsnb(xn+1⁄2 ) = ∑
g
wg(xn+1⁄2 ) #̃»Q (B)(xn+1⁄2 ) − λ̃ei∗ (E)(xn+1⁄2 , є̃g)

3
#̃»∇H̃g(xn) (3.3.20)

or the rate of change of temperature

∂T̃e
∂t̃

(xn) = − 4
3ñe

∇ ⋅ #̃»Qsnb = 4
3ñe
∑
g

1
λ̃ee

(xn , є̃g)H̃g(xn). (3.3.21)

3.3.2 Testing

In order to assess the reliability and accuracy of our treatment of nonuniformgrids
a simple test case was performed to compare the nonlocal heat �ows predicted
when using a nonuniform grid to that with a uniform gird. A fully ionised
nitrogen plasma (Z = 7) of uniform electron density ne = 1.5 × 1019 cm−3 and
Coulomb logarithm logΛei = logΛee = 8.0 with a Gaussian temperature pro�le
Te = 100 + 400 exp(−(x/100 µm)2) eV was analysed over a 500 µm domain. ¿e
uniform grid used a spacing of ∆x = 4µm, while the nonuniform grid chose a
uniformly-distributed random value for the grid spacing between 1 µm and 8 µm.
As a result of randomisation the nonuniform grid consisted of a slightly di�erent
number of cells to the uniform grid (112 internal cells as opposed to 100).
¿e nonlocal heat �ow for both grids, calculated by the snb model using

the default settings, along with the discretisations of the temperature pro�le is
depicted in �g. 3.5. It is observed that both heat �ows lie along the same curve with
no obvious errors or numerical artefacts; this gives con�dence in the nonuniform
di�erencing that is employed here.
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Plasma parameters:
Z = 7
ne =
1.5 × 1019 cm−3
logΛ0 = 8
snb parameters:
r = 2
ξ = ξes
Emult = 1
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figure 3.5: ¿e Gaussian temperature pro�le (top) used to test the �nite di�erencing
of the snb model along with the nonlocal heat �ows predicted (middle and bottom)
when using a uniform (blue crosses) or nonuniform (red dots) grid. ¿e bottom diagram
is simply a zoomed in version of the middle. ¿e simulation domain extends from 0 to
500 µm.
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3.4 non-fourier landau-fluid

¿e original implementation of the Non-Fourier Landau-Fluid model (nflf)
has been extended beyond solving only three modi�ed Helmholtz equations to a
user-de�ned number of these, N . ¿e code now computes the �tting coe�cients
p j, q j at the beginning of each run of the code, allowing for easy adaptation of
the �t function, range and implementation of constraints (see section 3.4.2 and
3.4.4) to �t user requirements.

3.4.1 Finite di�erencing

¿e contributions #»Q j to the nonlocal heat �ow are obtained by solving the N
modi�ed Helmholtz equations

[
q2jD + (aλ(B)ei )2

#»∇ ⋅ D #»∇]W #»Q j = p jDW #»Q (B), (3.4.1)

where a is an ionisation-dependent coe�cient present in the original papers
(Dimits et al. 2014; Umansky et al. 2015) that parametrises the damping behaviour
in the collisionless limit κ∥(k →∞) ∼ κ(B)∥ /akλ(B)ei , D,W are spatially-dependent
weighting pro�le introduced to explore nonlinear improvements to the model, as
they both appear on both sides of the equation they can be of any units (D = 1/ne,
W = Te4 provides noticeable improvement over the original model, D =W = 1,
for low to moderate degrees of nonlocality but can signi�cantly overpredict the
preheat in extremely steep temperature gradients, (see section 5.1.1 for more
details.) and #»Q (B) is the local heat �ow. ¿ese contributions are simply combined
to obtain the nonlocal heat �ow #»Qnflf = ∑N

j=1 #»Q j . Central di�erencing is applied
on a uniform grid such that the �eld and �ow quantities both lie on cell nodes.
¿is transforms eq. (3.4.1) into

−D(xn−1⁄2 )
D(xn)

a2λ(B)ei (xn)2 W(xn−1)Q j(xn−1)

+ (q2j + D(xn−1⁄2 ) + D(xn+1⁄2 )
D(xn)

a2λ(B)ei (xn)2
)
W(xn) Q j(xn)

−D(xn+1⁄2 )
D(xn)

a2λ(B)ei (xn)2 W(xn+1)Q j(xn+1)
= p jW(xn)Q(B)(xn)

where Dx+n±1⁄2 refer to evaluation halfway between nodes. ¿e tridiagona system
is then solved using the ¿omas algorithm (Conte and Boor 1972) with Dirichlet
boundary conditions #»Q j(x0) = #»Q j(xN ) = 0.
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3.4.2 Calculation of coe�cients using separable least squares

¿e coe�cients p j , q j used in the nflf model are obtained by least squares
minimisation such that the sum of Lorentzians

N∑
j=1

p j
q2j + (akλ(B)ei

)2 ≈ κ∥(k)
κ(B)∥

(3.4.2)

is a good approximation over a speci�ed range in k-space for a given N . Here
the right-hand side represents the relative damping rate of a low-amplitude tem-
perature sinusoid compared to that predicted in the local limit. An approximate
analytic form for κ∥(k) given in eq. (4.6.6) is used in calculating the �t coe�cients.
¿e �tting process has been carried out for two ionisations, Z = 1 and 8, optimal
numerical values for these coe�cients are tabulated in appendix a.
Fully-nonlinear �tting routines (e.g. SciPy’s curve_fit) were found to take

a long time to converge as the number of Lorentzians N exceeded about 3 to
6, especially when the initial guess for the coe�cients was poor. Fortunately,
the fact that the coe�cients p j occur linearly in the model allows the variable
projection method for separable nonlinear least squares problems to be used.
¿is method can be applied to any model of the form∑N

i=1 p jϕ j({qα}; k) (where
ϕ j can be any functions depending on any number of nonlinear coe�cients qα)
used to approximate data S(k). Advantage is taken of the fact that the optimal
choice of linear coe�cients can be computed exactly for a given set of nonlinear
coe�cients q j by solving the matrix equation

Ai jp j = ∑{k} ϕi({qα})S(k), where Ai j = ∑{k} ϕi({qα})ϕ j({qα}), (3.4.3)

where {k} represents the set of points in k-space used for �tting and Einstein
summation over repeated indices is implied for this equation only. ¿is allows
the linear coe�cients p j to be eliminated so that the model depends purely on
the nonlinear coe�cients q j, thereby reducing the dimensionality of the �tting
problem by N .
¿e �rst publication on the subject of separable least squares was written by

Lawton and Sylvestre (1971), based on an unpublished manuscript by Norman E
Dahl. However, Golub and Pereyra (1973) suggested a revolutionary improvement
to the solution of such problems by providing a way to use analytic derivatives of
the nonlinear functions ∂ϕ j

∂qk
(speci�ed by the user) in constructing the Jacobian

for the reformulated problem.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
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To calculate the nflf coe�cients in this thesis Alan Miller’s (2004) Fortran 90
translation of the Stanford implementation of the variable projection algorithm,
varpro, was used. Originally written by Golub and Pereyra (1972), this version
contains a number of optimisations and re�nements incorporated by John Bolstad
(2007), particularly a major simpli�cation in computing the necessary derivatives
provided by Kaufman (1975). ¿e code employs Osborne’s modi�cation (1972) of
the Levenberg-Marquardt algorithm in the nonlinear minimisation routine. ¿e
application of constraints in the �tting procedure that I have added myself shall
be outlined in the next subsection. A number of more recent references on the
variable projection algorithm include Golub and Pereyra (2003), Björk (2007),
Osborne (2007) and O’Leary and Rust (2013).

3.4.3 Determining �tting region

¿e�ttingmethod requires a discrete set of locations {k} at which tominimise the
least square error. In order to avoid placing too much weight on the collisionless
regime, these �tting points were chosen to be uniformly spaced on a logarithmic
scale rather than a linear one: Speci�cally, consecutive values of k were related by
a constant ratio of 10−0.2 when �nding coe�cient for Z = 1 and 10−0.1 for Z = 8.
¿e lowest value of k in this region was chosen to be 2 × 10−3/λ(B)ei for Z = 1 and
2 × 10−4/λ(B)ei for Z = 8, at which point the thermal conductivity for hydrogen is
reduced by less than 0.02% from that in the local limit. However, the upper limit
of the �tting region max{k} was varied depending on the number of Lorentzians
being used (N) and the desired accuracy.
Typically, as the wavelength shortens the percentage error between the nflf

model and the analytical approximation for κ∥(k)/κ(B)∥ given in eq. 4.6.6 is ob-
served to oscillate with an increasing amplitude (the number of oscillations
depends on N) before steeply shooting o� to negative 100% as a result of the
nflf asymptote always being proportional to 1/k2 regardless of the number of
Lorentzians used. Of course, the point at which this di�erence in asymptote
becomes important is later if N is increased. Determination of max{k} for a
given N was carried out by �rst specifying a maximum desired percentage error
p.e.max and trying to �nd the largest region in which the error is always less
than this. In general, it was found that increasing max{k} until the percentage
di�erence (using optimal coe�cients for that region) at the last turning point
just reaches p.e.max optimises the maximum degree of nonlocality at which the
desired accuracy is achieved. An illustration of the discussed error oscillation
using di�erent �tting regions for the case N = 3 is provided in �g. 3.6.
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Linear coe�cients
for �tting region{2 × 10−3 . . .1.48}
are given by
p j = 1.736e−3,

5.250e−2,
1.352,

and the nonlinear
coe�cients are
given by
q j = 9.742e−2,

0.321,
2.099,

while for �tting
region{2 × 10−3 . . .1.90}
they are
p j = 2.176e−3,

6.316e−2,
1.682,

q j = 1.020e−1,
3.513e−1,
2.455.
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figure 3.6: A comparison of the percentage error between the analytical approxima-
tion for κ∥(k)/κ(B)∥ given in eq. (4.6.6) and that obtained using nflf model with three
Lorentzians (N = 3) using optimal coe�cients obtained from two di�erent �tting regions.
Both regions begin at 2 × 10−3 and have a constant ratio of 10−0.2 between consecutive
points. It is shown that extending the �tting region until the �nal local maximum reaches
the desired maximal error of 2.5% optimises the region over which such accuracy is
achieved. Both plotted lines extend until the end of their respectibe �tting regions.

3.4.4 Applying constraints

It is desirable
¿e coe�cient bQ
varies with
ionisation and is
discussed in more
detail in the next
chapter.

that the limiting behaviour of the thermal conductivity in the
hydrodynamic and semicollisional regimes κ∥(k → 0)/κ(B)∥ = 1 − bQ(kλ(B)ei

)2 +O(k3λ(B)3ei
)
is preserved by the �tting routine. ¿is is achieved by Taylor expand-

ing the le -hand side of eq. (3.4.2) about k = 0 and matching coe�cients to
achieve summation constraints on the �tting parameters

N∑
j=1

p j
q2j

= 1, N∑
j=1

p j
q4j

= bQ
a2
. (3.4.4)

Each constraint reduces the number of free parameters and can thus be used to
eliminate one of the linear coe�cents p j. A demonstration of this for the �rst
constraint is quite simple, by rearranging we obtain

p1 = q21
(
1 − N∑

j=2
p j
q2j

)
. (3.4.5)

Substituting this into eq. (3.4.1) results in a new optimisation problem that does
not include p1

q21
q21 + k′2 +

N∑
j=2 p j

(
1

q2j + k′2 +
q21
q2j

1
q21 + k′2

) = κ∥(k)
κ(B)∥

(3.4.6)
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Note that the term before the summation is not multiplied by a linear parameter,
making it ‘purely nonlinear’; the variable projection method is easily able to
handle this by incorporating it into the right-hand side (S in eq. (3.4.3)).
¿e second constraint could be incorporated in a similar manner, this time

eliminating p2, but doing this manually could be prone to errors both in its
derivation and its implementation in code form as the �tting functions become
quite complex. Additionally, such an approach precludes the possibility of easily
introducing new constraints or applying constraints on a di�erent separable
nonlinear least squares problem. ¿erefore, a general, iterative approach to
incorporating constraints was implemented. For the moment this only works for
nonlinear functions ϕ j that initially depend on only one nonlinear coe�cient q j.
A change of variables k′ = akλ(B)ei is applied in order to adhere to the notation
given in the original papers (Dimits et al. 2014; Umansky et al. 2015). ¿e model
can then be put in a universal form, where the approximation to be optimised is
given by

ϕ0 + N∑
j=1 p jϕ j(q j; k

′) ≈ S(k′), (3.4.7)

where initially ϕ0 = 0, ϕ j = 1/(q2j + k′2) and S(k′) = κ∥(k)/κ(B)∥ for the case of
the nflf. In addition to this the analytic form of the derivatives need also be
provided, for the nflf this is simply given by ∂ jϕ j = −2q j/(q2j + k′2), where
∂ j here denotes partial di�erentiation with respect to nonlinear coe�cient q j.
One of the terms p jϕ j can then be eliminated for each of the Nc generalised
summation constraints denoted by i and expressed as

η(i)0 + N∑
j=1 p jη

(i)
j (q j; k

′) = 0. (3.4.8)



3.4 non-fourier landau-fluid 81

Each constraint is dealt with in turn, starting with i = 1. First the �tting
functions ϕ j(q j) are updated along with their derivatives by applying the product
and quotient rules for j = 0 and i < j ⩽ N :

ϕ j = ϕ j − η(i)j
η(i)i

ϕi , (3.4.9)

∂ jϕ j = ∂ jϕ j − ∂ jη(i)j
η(i)i

ϕi , (3.4.10)

∂kϕ j = ∂kϕ j − ∂kη(i)j
η(i)i

ϕi − η(i)j
η(i)i

∂kϕi + η(i)j
η(i)2i

ϕi∂kη j , k ⩽ i (3.4.11)

Note that both the �tting functions and the constraint functions gain an extra
dependency (starting with q1) for each constraint incorporated. Following this
ϕi is set to 0.
Additionally, the remaining constraint functions denoted by l > i also need to

be updated by

η(l)j = η(l)j − η(i)j
η(i)i

η(l)i , (3.4.12)

∂ jη(k)j = ∂ jη(k)j − ∂ jη(i)j
η(i)i

η(k)i , (3.4.13)

∂kη(k)j = ∂ jη(k)j − ∂kη(i)j
η(i)i

η(k)i − η(i)j
η(i)i

∂kη(k)i + η(i)j
η(i)2i

η(k)i ∂kη(i)i . (3.4.14)

again for j = 0 and i < j ⩽ N .
Note that, in
practice the iterative
incorporation of
constraints was
coded in a recursive
fashion, and it was
actually the last
linear coe�cients
pN , . . . , pN+1−Nc

rather than the �rst
p1 , . . . pNc

that
were eliminated.

A er repeating this entire process for each constraint i = 2, . . . ,Nc the updated
�tting functions including the purely nonlinear term ϕ0 and their derivatives
are used as inputs to the variable projection algorithm. ¿e �nal model used to
approximate S is thus given by

ϕ0(q1, . . . , qNc
) + N∑

j=Nc

p jϕ j(q j , q1, . . . , qNc
; k′) ≈ S(k′), (3.4.15)

Once the coe�cients for the rewritten version of the model have been obtained,
the values of the eliminated coe�cents p1, . . . , pNc

need to be calculated. While
there are multiple ways of performing this, themethod used here was to rearrange



3.5 eigenvector integral closure 82

the original constraint function to construct a system of linear equations for the
eliminated coe�cients

Nc∑
j=1 p jη

(i)
j = η(i)0 − N∑

Nc+1
p jη(i)j , 1 ⩽ i ⩽ Nc (3.4.16)

that can be solved by matrix methods.

3.4.5 Providing initial guesses

Even with the variable projection method eliminating all the linear coe�cients,
it was still possible to experience lack of convergence for N as low as 5. ¿erefore
a robust method of providing initial guesses for the nonlinear coe�cients q j was
desired. By looking for patterns in the values of nonlinear coe�cients for di�erent
values of N , an approximate trend was observed (see �g. 3.7) that could be used
as a good starting for calculating q j for the majority of N ⩽ 12 for hydrogen and
N ⩽ 10 for oxygen:
q j ≈ 0.16 exp(−0.2(N − j) + 0.8( j − 1)) for Z = 1, (3.4.17)

q j ≈ 0.065 exp(−0.2(N − j) + 0.95( j − 1)) for Z = 8. (3.4.18)

One exception was for N = 6, where the initial conditions proved unstable for
the exact implementation of variable projection used, and the largest nonlinear
coe�cient dri ed o� to in�nity with each iteration. In this case the initial guesses
had to be tweaked manually.

3.5 eigenvector integral closure

¿e bout++ implementation of J T Omotani et al. (2013; 2015) was used to pro-
duce results with the eic model (the main changes to this implementation made
by the author of this thesis were merely choice of units and set up of boundary
conditions). ¿e required eigenfunctions and eigenvalues had to �rst be com-
puted using a Mathematica script, which set up the appropriate collision matrix
to solve, however this only needed to be computed once for a given ionisation
and particular truncation of moments. Both the original Legendre-Laguerre and
the newer Hermite-Laguerre bases are available and periodic/re�ective boundary
conditions are typically used in this thesis.
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figure 3.7: Intersections of the dashed lines indicate initial guesses for the hydrogen
(Z = 1) nonlinear coe�cients q j according to eq. (3.4.17).
3.6 smoothing & interpolation methods

¿ere are two places in this thesis where data from 1d hydra simulations were
used to initialise a vfp simulation: sections 5.4 and 7.4. ¿e impact code was
most o en used to handle these situations. It was observed that, particularly for
the gadolinium hohlraum test in section 5.4, impact had di�culties handling
the coarse nonuniform mesh used by hydra. While hydra is speci�cally set
up to handle large discontinuities over shock fronts by using a Lagrangian mesh,
impact is not, and direct use of the hydra mesh resulted in a prohibitive
amount of nonlinear Picard iterations and eventual convergence failures.
It was found that interpolating (and sometimes also smoothing) the hydra

data onto a re�ned mesh not only eliminated these errors but also sped up the
impact computation by reducing the number of such iterations needed (even
considering the fact that the number of spatial cells has increased). Further
computation time was saved by cropping the data to only contain regions of
interest where nonlocal transport could occur (i.e. regions with large temperature
gradients) and taking care that the electron density did not become overly high.
Crop points were o en chosen to coincide with locations where many pro�les
experience either local maxima or a general �attening in gradient. In this section,
the methods of mesh re�nement, interpolation and smoothing used for the case
of one spatial dimension are presented.
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3.6.1 Mesh re�nement

A new re�ned mesh can be quite simply calculated from a coarse one if a prescrip-
tion is provided as to how much each cell should be reduced in size. However, it
is obtaining an optimal prescription for this that is not completely trivial. While
such a prescription was initially provided manually (by trial and error) for the
gadolinium hohlraum problem, a slightly less hands-on approach was later de-
veloped for use in future comparisons between hydra and impact, such as
the microdot problem. ¿is new method requires user-de�ned values for the
maximum allowable (1) cell size (2) ratio between any speci�ed plasma quantities
(e.g. ne. Te, etc.) in neighbouring cells and (3) ratio between neighbouring cell
widths to calculate how much each cell should be shrunk by. In order for the
mesh re�nement not to a�ect the location of the external boundaries at x1⁄2 and
xN+1⁄2 and to avoid the di�culty of interpolating near a re�ective boundary, the
cells denoted by x0, x1, xN , xN+1 are not a�ected by the algorithm.
In the current implementation, speci�cation (2) is only met approximately

due to linear interpolation of the pro�les (the cubic interpolation outlined in
section 3.6.2 below is only used a er the newmesh is constructed); this is achieved
by reducing the width of each cell by the ratio between the desired and actual
percentage di�erences from its neighbouring cells. If the ratio between the
reduced widths of neighbouring cells then exceeds that speci�ed in (3), the width
of the larger cell is reduced to be equal to the geometric average of that of its
neighbours. Strictly speaking this �nal operation, which proceeds from le to
right, needs to backtrack if it results in a cell becoming signi�cantly smaller than
its right neighbour but this possibility is currently not accounted for. Indeed,
it is not clear whether speci�cation (3) is at all strictly necessary to obtain a
well-behaved mesh, but it is included in the re�nement algorithm (with a default
maximum width ratio of 20) as a precautionary measure. Finally, if the original
width of a cell is not an integer multiple of its reduced width then its width is
further reduced to ensure this is the case; this partly makes up for the potential
drawbacks mentioned in this paragraph but more importantly increases very
slight reductions in cell sizes that could result in incongruously small gaps in
which a new cell must be created.
Once all the reduced cell widths have been obtained, additional cell nodes

need to be placed between the originals. ¿is is done by �rst inserting equally
spaced boundaries in the newly created gaps such that their spacing is similar to
the width of their narrowest neighbour. Speci�cally, this is achieved by rounding
the ratio between is rounded to the nearest integer. As this algorithm was initially
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figure 3.8: An illustration of the mesh re�nement algorithm used to initialise impact
from hydra data. A prescription (labelled ‘Shrink:’) is provided as to how much each
cell should be shrunk; cells that touch the external boundary are never a�ected (their
shrinking factor is always one). Each of the resulting gaps is equally divided so that its
width is similar to that of its narrowest neighbour. Inserted cells are denoted by grey
crosses.

used to create grids for impact the new cell nodes are then simply placed at the
centres of these new boundaries. A simple diagram giving an example of this
procedure is provided in �g. 3.8.
¿is method, while certainly not the simplest imaginable, has the convenience

of guaranteeing that all nodes originally present on the coarse mesh will also exist
on the re�ned mesh. Conversely, with the exception of the external boundaries,
it is not certain that the location of any boundaries on the new grid will coincide
with the original boundaries.

3.6.2 Constrained cubic splines

Once the re�ned mesh has been obtained the original hydra data needs to be
interpolated on to it. However, linear interpolation is not a good candidate for
this task due to discontinuities in the �rst spatial derivative (‘kinks’), which tend
to either persist or go unstable . ¿us, a higher order interpolation method is
desired. Unfortunately, the traditional method of cubic spline interpolation is
prone to large overshoots resulting from the imposition of a continuous second
spatial derivative. An alternative method that relaxes this constraint is that of
‘constrained cubic splines’ (Kruger 2002), which is employed here to achieve
satisfactorily smooth data on the interpolated mesh. ¿is method is depicted
along with the other mentioned interpolation methods and their problematic
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features for the case of the gadolinium hohlraum electron temperature pro�le in
�g. 3.9.
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figure 3.9: A comparison of the interpolation methods discussed in section 3.6.2 for
the gadolinium hohlraum electron temperature pro�le (see section 5.4). Gray vertical
marks denote the location of the original hydra data. It is shown that while traditional
cubic spline interpolation is able to resolve the kinks it introduces undesirably large
oscillatory overshoots in the interpolated data. By relaxing the constraint that the second
order derivative is continuous and providing an alternative method of assigning the
gradient at the original node locations, eq. (3.6.3), Kruger’s method of constrained cubic
splines(2002) manages to overcome both issues.

Any kind of cubic spline interpolation onto a new coordinate x between old
cell nodes xn and xn+1 is most conveniently described using a dimensionless
parameter

x′ = x − xn
∆xn+1⁄2 , for xn < x < xn+1, where, ∆xn+1⁄2 = xn+1 − xn (3.6.1)

is the node separation. ¿e interpolated value of a �eld Φ at x can then be
calculated as

Φ(x) = (1 − x′)Φn + x′Φn+1
+ x′(1 − x′)((1 − x′) ∂Φ

∂x′ ∣n− x′ ∂Φ∂x′ ∣n+1− (1 − 2x′)∆Φn+1⁄2
)
,

(3.6.2)

where Φn = Φ(xn), ∆Φn+1⁄2 = Φn − Φn+1 and ∂Φ
∂x′ ∣n is the spatial derivative of

Φ with respect to x′ evaluated at xn. Typically these �rst order spatial derivat-
ives need to be solved for such that the second order derivatives are continuous.
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Instead, the method of constrained cubic splines simply uses the harmonic av-
erage of the derivatives at the neighbouring boundaries arising from central
di�erencing:

∂Φ
∂x′ ∣n = 1

2

(
∆xn−1⁄2
∆Φn−1⁄2 +

∆xn+1⁄2
∆Φn+1⁄2

)−1
. (3.6.3)

Additionally, the original paper (Kruger 2002) suggested that if these neighbour-

ing derivatives are of opposite sign then ∂Φ
∂x′ ∣n should be set to zero to completely

avoid overshoot; however, this is not found to be necessary as the harmonic aver-
age alone reduces overshoot to a reasonable level for the received hydra data. If
interpolation between the ghost and �rst/last cells were required an alternative
de�nition of the spatial gradient at the ghost cell would be necessary and is indeed
provided by Kruger, however this is not needed here.

3.6.3 Smoothing

On a �nal note, some of the pro�les analysed experienced a strong degree of
noise. ¿is was most notable in the microdot magnetic �eld pro�le (see 7.4),
which oscillated wildly between positive and negative values near the expand-
ing hohlraum wall, but the electron density pro�le for the same problem also
experienced temporary reverses in gradient as it approached its maximum. ¿ere
were three reasons why it was deemed appropriate to remove this noise: (1) sharp
kinks in the data suggested that the initial grid was insu�ciently resolved in the
hohlraumwall, (2) impact is known to currently experience issues while dealing
with change of sign in the magnetic �eld, (3) as hydrodynamics was disabled in
the impact simulations any kinks that might have washed away in the hydra
simulation would persist in their initial state inde�nitely.
¿e method of smoothing used for the microdot magnetic �eld involved

�rst manually selecting the beginning xL and end xR of the noisy region by eye.
Subsequently, a single cubic equation that matched the pro�le at the endpoints
was �tted to the data in this region by minimising the least-squares error. ¿is
approach le two free parameters to be decided by the �tting algorithm. ¿e
optimal values for these parameters were then used to de�ne also the gradient of
the neighbouring spline(s) at xL and xR.
For the case of the electron density pro�le, a similar technique was used with

some additional modi�cations that required signi�cant subjective choices. Firstly,
the electron density in the last �ve cells of the hydra meshwas set equal to that in
the sixth last cell (115.3 × 1020 cm−3). ¿is decision wasmade to accommodate the
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re�ective boundary conditions employed by impact. Additionally, xR was free
to move along with its associated value of the electron density, but the gradient
at this point was enforced to be zero. Consequently, there were three free �tting
parameters in this case. Due to the narrow region in which there was problematic
noise for this pro�le, the �tting region was chosen to extend from two cells le 
of xL all the way to the last internal cell xN ; cells beyond xR were all set to the
best �t value obtained for the electron density at xR itself. Not performing this
extension of the �tting region led to an undesirable degree of overshoot just to
the le of xL.
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figure 3.10: Smoothing of the hydra microdot electron density pro�le at 4 ns used
as an input for impact. Here ne is capped at 115.3 × 1020 cm−3. ¿e smoothed region
is between xL and xR. Extending the �tting region for obtaining the smoothing coe�-
cients from (xL , xN ) to [xL−2 , xN ) reduces the degree of overshoot towards the le of the
smoothed region. Arrows act as a reminder that the location of xR and the associated
electron density are both �tting parameters in addition to the gradient at xL.

Additionally, it was noted that both the electron density and magnetic �eld
pro�les experienced very rapid changes in magnitude and appeared more expo-
nential than polynomial in nature. ¿erefore, it was the log of the pro�le that was
smoothed and interpolated. ¿e results of this smoothing process, along with
the locations of xL and end xR are shown for the magnetic �eld in �g. 3.11 (using
both a linear and a log scale) and the electron density in �g. 3.10.
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figure 3.11: Smoothing of the hydra microdot magnetic �eld pro�le at 4 ns used as
an input for impact on a linear (top) and logarithmic scale (bottom). ¿e smoothed
region is between xL an xR.



4
DAMPING OF A LOW-AMPLITUDE TEMPERATURE SINUSOID

One of the most frequently used and insightful methods for assessing the validity
of nonlocal models is the ‘Epperlein-Short’ test. Named a er the authors of a
seminal paper published in 1991, the test concerns the damping of a sinusoidal
temperature pro�le Te = T0 + T̃e cos(kx), where the temperature perturbation
amplitude T̃e is much less than the background temperature T0, for a plasma with
uniform electron density ne. While such a setupmay not be truly representative of
the large temperature di�erences that can arise in fusion experiments, it enables
the e�ect of nonlocality on heat �ow to be encapsulated with just one single
parameter: the nonlocal reduction of the damping rate γD compared to the local
Braginskii prediction γ(B)D . ¿is relative reduction in damping should be equal
to that in both the heat �ow and thermal conductivity for a given nonlocality
parameter kλ(B)ei , but the nonlocal reduction in the electric �eldwill take a di�erent
value.
Given the amount of literature that already exists on the subject of small sinus-

oidal perturbations, the level of detail on this subject provided in this chapter may
seem surprising. However, such analysis is incredibly powerful in understanding
the regimes in which each of the nonlocal models are valid and justifying certain
calibrations of the models.
¿is chapter begins with an explanation of the methodology used to extract val-

ues for the nonlocal reduction in peak heat �ow and electric �eld values whether
using an analytical framework, the vfp codes impact, kipp and spring or
the nonlocal eic, snb and nflf models. (Flux-limiters are not discussed in
this chapter as they would not predict any �ux reduction whatsoever for an in-
�nitesimal perurbation) Following this is a detailed attempt at characterising
the damping behaviour in four speci�c regimes where analytic progress can be
made (in order of decreasing collisionality these regimes are the hydrodynamic
regime, the semicollisional regime, the regime of collisionless suprathermals
and the collisionless regime) and then making comparisons with the eic and
snb models. As the regime of collisionless suprathermals is an extension of the
collisionless regime it shall be discussed last.
While frequent references will be made to works of earlier authors, especially

that of Bychenkov et al. (1994, 1995), additional insight is o�ered by making
comparisons and outlining alternative derivations. For example, Bychenkov et al.

90
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used a polynomial expansion in the majority of their analysis while here we will
explore a more direct iterative integral approach for analysing the semicollisional
regime. Finally, results from all regimes will be combined to construct a robust
analytic �t for the nonlocal thermal conductivity reduction that is acceptably
accurate for all kλ(B)ei . ¿is will be used to obtain optimal �tting parameters for
the nflf model and be compared to an analytic expression for the performance
snb (using both the bgk and awbs model electron-electron collision operators)
across all collisionalities.

4.1 methodology

4.1.1 Analytical Framework

A signi�cant advantage of studying small sinusoidal perturbations is that it allows
for signi�cant analytical progress to be made through a convenient linearisation
procedure. By extending into the complex numbers, the electron distribution
function can be written as fe(t, x , #»υ ) = f (mb)e (υ)+ f̃e(t, #»υ )eikx , where f (mb)e is the
edf for the backgroundMaxwellian (with temperature T0 and density ne) and f̃e
is the perturbed distribution function with temperature T̃e. Substituting this into
the vfp equation, we can obtain an expression for the evolution of the edf,

∂ f̃e
∂t

+ ikυx f̃e + eẼx
kBT0

υx f (mb)e = Cei( f̃e, fi) + C(L)
ee0( f̃e), (4.1.1)

where ‘̃ ’ represents a Fourier-transformed quantity and the linearised collision
operator C(L)

ee0 de�ned in section 2.3.8 is appropriate in this limit. ¿e ion distri-
bution function fi will also be assumed to be Maxwellian and shall be treated as
a delta function centred at zero in all analysis and with all codes.
¿e linearised vfp equation can be conveniently translated into an eigenvalue

problem by recalling that that the electric �eld depends linearly on the perturbed
edf f̃e through an integral and rearranging into

∂ f̃e
∂t

= −ikυx f̃e − eẼx[ f̃e]
kBT0

υx f (mb)e + Cei( f̃e, fi) + C(L)
ee0( f̃e) ≡ Ak( f̃e), (4.1.2)

where we have de�ned the integro-di�erential velocity-space operator Ak . ¿ere-
fore, the evolution of f̃e according to eq. (4.1.2) is as a sum of independently
evolving eigenfuctions that oscillate at an angular frequency equal to the ima-
ginary part of the eigenvalue and grow at a rate equal to the real part. For most
wavenumbers, k, the real part of the eigenvalue should be negative, correspond-



impact paramet-
ers summary:

nx = 500
vmax = 10υ2T
nv = 200–500
dt = 1.0ν(0)ei

Z = 7
ξ = 1

T̃e/T0 = 10−3
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ing to a damping of the temperature perturbation; otherwise it would persist
inde�nitely or be unstable unless the corresponding eigenfunction is orthogonal
to the initial conditions. ¿e asymptotic damping rate is then given by the slowest
damping mode.
A notable exception is in the very short wavelength regime kλ(B)ei → ∞ (i.e.

where the contributions from Cei and C(L)
ee0 can be neglected), where all eigen-

values have zero real part. Surprisingly, damping of density and temperature
perturbations can still arise in such a situation despite no individual modes decay-
ing in amplitude. ¿is apparent paradox was resolved by Van Kampen (1955) by
analogy with statistical mechanics; perturbations in macroscopic quantities, such
as density and temperature, can be thought of as �uctuations away from equilib-
rium that depend on a contrived amplitude and phase relationship between the
various modes (that would occur naturally with vanishing probability), as these
‘Van Kampen modes’ dri out of phase with each other the macroscopic �uctu-
ations dissipate without any loss of the microscropic information encapsulated
in the edf. To circumvent such complications, a Laplace transform is performed
on the time coordinate as opposed to a Fourier transform when analysing the
collisionless regime in section 4.4.

4.1.2 vfp simulations

impact simulations

Due to the inherently nonstationary nature of vfp codes there is no single unique
heat �ow for any given density and temperature pro�le. ¿is is because these
pro�les do not fully prescribe the underlying distribution function. However,
transient features arising from initial conditions can fade on the timescale of a
few electron-ion collision times and lead to quasi-steady-states involving what
can be considered the ‘correct’ nonlocal heat �ow for a given temperature pro�le.
For the current problem concerning the damping of sinusoidal temperature
perturbations, the transient features are namely all eigenfunctions of Ak that
damp faster than the slowest decaying mode (sdm). And once their amplitude
falls su�ciently below that of the sdm, the asymptotic damping rate mentioned
previously can be obtained. ¿erefore, it was necessary to run integrated vfp
simulations starting from sensible initial conditions for long enough to identify
the damping rate of the sdm.

For the impact simulations, the edf was initialised as a stationary Max-
wellian f0(t = 0) = nee−meυ

2/2 kbTe/√2πkBTe/me,
#»

f 1 = 0. ¿e e�ect of electron
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inertia was investigated by running with and without the ∂
#»

f 1
∂t term. Most simula-

tions were carried out with an initial relative temperature perturbation amplitude
of T̃e = 0.001T0, to achieve a compromise between avoiding precision errors due
to too low an amplitude and nonlinear e�ects due to too high an amplitude, but
there were some simulations carried out with higher amplitudes to investigate
any nonlinear amplitude-dependent e�ects that may arise (such e�ects were only
noticed to have more than a 10% e�ect on the damping rate when the initial amp-
litude exceed about 50% of the background, however by the time it was possible
to make a reliable prediction of this the amplitude had signi�cantly reduced). A
full wavelength was set up and discretised over 500 spatial cells using periodic
boundary conditions, while between 200 and 500 uniformly spaced velocity cells
were used extending to a maximum velocity of 10υ2T, where the speci�c reference
thermal velocity used is υ2T =√2kBT̃e/me.
While impact enabled a thorough treatment of the high ionisation Lorentz

limit due to its neglection of electron-electron collisions in the
#»

f 1 equation, in
practice a fully-ionised nitrogen plasma (Z = 7) was simulated but without includ-
ing the collision �x (i.e. ξ = 1). Under the di�usion approximation (i.e. without
electron inertia) the results could conveniently be translated to any ionisation by
multiplying the wavelength by the square root of the relative ionisation. Simil-
arly, the e�ect of incorporating the collision �x could be obtained by scaling the
wavelength by

√
ξ. However, this useful conversion mechanism was not strictly

applicable if the electron inertia term was retained.
Values for the dimensionless thermal conductivity were obtained using two

methods: (1) by dividing the maximum instantaneous heat �ow at each timestep
by 7⁄2neτ(B)ei (T0)kB

#»∇Te 7⁄2/meT 3⁄2
0 where the gradient term was calculated at the

location of the peak heat �ow using central di�erencing, and (2) by directly
assessing the asymptotic damping rate of the temperature perturbation amplitude
through �tting a straight of log(T̃e) against time using only the last 5–10 points
(see �g. 4.4 for an example with the kipp code). ¿e thermoelectric conductivity
β∥ was calculated using a similar method to (1) but instead dividing the peak
electric �eld by the temperature gradient #»∇Te and then subtracting 1.
kipp simulations

kipp parameters
summary:

nx = 127
vmax = 7υ1T
mmax = 256
EPS = 1.01
Z = 1

T̃e/T0 = 10−3

In order to fully understand the rami�cations of electron-electron collisions for
the anisotropic part of the edf at the low ionisation of Z = 1, the 1d2v vfp code
kipp was used. ¿e best velocity grid available was a non-uniform Cartesian
grid extending to vmax = 7υ1T (where υ1T =√kBT̃e/me is an alternative thermal
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figure 4.1: ¿e kipp spatial thermal conductivity pro�le exhibits an unexpected
asymmetric spike near the sheath region at the right-hand side. Shown here at the �nal
timestep of a simulation with the parameters kλ(T)ei = 10−3 , dt = 2.5 × 10−4τ(0)ei

velocity). characterised by the parameters mmax = 256, and EPS = 1.01 de�ned in
section 3.1.1. ¿e spatial resolution, which was limited by the number of cores
available per simulation, was given by 127 cells uniformly spaced cells over a half
wavelength, and although this seems a little on the low side it is unlikely to be a
convergence bottleneck compared to velocity grid convergence.
Similar methods were used to calculate the transport coe�cients as with im-

pact although it was necessary to use forward di�erencing to calculate the
gradient terms due to the upwinding method used to perform the free-streaming
step in kipp (See section 3.1.1). Applying the instantaneous heat �ow method at
all spatial locations rather than just the peak, unveiled surprising features in the
thermal conductivity spatial pro�le; pictured in �g. 4.1 it is seen that there is an
asymmetric spike near the cooler right hand boundary. ¿is seems unexpected
and is probably a numerical phenomenon arising from the implementation of the
sheath boundary condition. It was found that this artefact persists irrespective
of the timestep and velocity grid and is generally on the order of 0.05%. It is the
assymmetry of this spike that is most concerning as numerical e�ects due to lack
of spatial convergence or dividing by a very small temperature gradient should be
symmetric. Unfortunately, this issue was never fully resolved, and it is hoped that
it does not have an appreciable impact on features in the centre of the domain.
A particular issue with the added dimensionality of kipp was that performing

simulations with su�ciently small timestep until only the sdm remained was
very computationally expensive and time-consuming (even with 128 cores). Two
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solutions were employed to decrease the computational time required (1) an
improved method of initialising the edf so that it more closely resembles that
predicted by kipp and (2) initially using a larger timestep and then restarting
with ever smaller timesteps.

Initial kipp distribution function

One approach to implementing the �rst method of optimising the initial edf
is to start with the local prediction for the �rst-order anisotropy

#»

f 1 expected
in the absence of nonlocality and use this to reconstruct the edf along with an
isotropic Maxwellian f (mb)e . While impact o�ers a convenient in-built method
to achieve this—by performing the �rst timestep with the electron inertia term
switched o�—such an approach is not possible with kipp due to the Cartesian
description of the edf. Admittedly, it should be possible to instead perform this
calculation internally in kipp using the collisions subroutine with an e�ectively
in�nite timestep (to eliminate the time-derivative) before the main loop and �rst
free-streaming step. However, in order to avoid coding complications, a simpler
method of identifying the ‘steady-state’ edf at a low degree of nonlocality given
by kλ(T)ei = 10−3 and then rescaling was investigated.
Due to the non-uniform Cartesian velocity grid not lending itself amenably to

angular integration, the �rst spherical harmonic
#»

f 1 was estimated by equating
it to the part of the total kipp edf that was odd in υx at υ⊥ = 0 (i.e. f1x ≈
( fe(υx , 0) − fe(υx , 0))/2). While the numerical form of

#»

f 1 obtained from this
analysis could have been saved as a �le for kipp to use in reconstructing an initial
distribution by rescaling and interpolating appropriately, it was more convenient
to �nd a simple analytic approximation for

#»

f 1. ¿is was achieved by expanding

#»

f 1(V 2) = −V 2 λ
(0)
ei

#»∇Te
Te

∞∑
n=0 cnL

(2)
n (V 2) f (mb)e , (4.1.3)

in Laguerre polynomials of order 2, L(2)n , where we have de�ned the normal-
ised velocity V = υ/υ2T. ¿e order of the Laguerre polynomials, which di�ers
from the choice of 3⁄2 made by the eic model, was chosen because of the direct
relationship between the �rst/second coe�cient and electric current/di�usive
heat �ow respectively. Furthermore , the Spitzer-Härm (1953) expression for the
�rst-order anisotropy of the edf,

#»

f (sh)1 = −(V 2 − 4)V4 f (mb)e λ(0)ei
#»∇Te/Te, can be
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table 4.1: Coe�cients for the Laguerre expansion of the �rst spherical harmonic of the
distribution function for Z = 1 obtained from kipp results and in the analytical Lorentz
limit (Z = ∞).

Z c0 c1 c2

1 0 −4ξ(1) 3⁄4 ξ(1)∞ 0 −4 2

given exactly by only two terms c1 = −4, c2 = 2. ¿e ‘reconstructed’ expression
for

#»

f 1 that arises from the rounded coe�cients (given in table 4.1) is

#»

f (rec)1 = −(3⁄8V4 − V 2 − 3⁄4)V 2 f (mb)e
λ(0)ei

#»∇T̃e
T̃e

. (4.1.4)

¿e impressive accuracy of this �t is depicted in �g. 4.2.
¿is simple �t of the �rst spherical harmonic f̃1 was used to initialise the

distribution function for kipp simulations as fe(υx , υ⊥) = f (mb)e (υ) + υx
υ f

(rec)
1x (υ).

Figure 4.3 shows the e�ect of the new initialisation on convergence of thermal
and thermoelectric conductivities with time over the course of a simulation
compared to initialising with either a static Maxwellian or the Spitzer-Härm
expression fe(υx , υ⊥) = f (mb)e (υ) + υx

υ ξ f
(sh)
1x (υ) for a simulation with kλ(T)ei =

10−3, dt = 0.01τ(T)ei . While the conductivity encouragingly reaches within 1% of
its �nal value much sooner, the curve still takes a long time to straighten out and
converge to a much higher precision. ¿is could be due to the �t being worst in
the low velocity region and taking a long time to correct.

Timestep convergence

When using the second method of restarting with smaller and smaller timesteps,
the simulation could still take 24–48 hours for the thermal conductivity associ-
ated with the slowest damping mode to be accurately ascertained. As timestep
convergence itself only scales linearly, an extrapolation technique was used to
avoid performing this restart process ad in�nitum. ¿is involved plotting the
thermal conductivity values predicted by both the peak heat �ow and asymptotic
damping rate methods against timestep and �nding the line of best �t. Figure 4.5
shows that the predicted linear convergence is indeed displayed and that the
dimensionless thermal conductivity approaches 3.1779 for kλ(T)ei = 10−3 at zero
timestep. ¿is value is signi�cantly lower than predicted using the formula
κ∥c = 3.203(1 − bQZk2λ(B)2ei ) = 3.20 provided by Bychenkov et al.’s (1994, 1995)
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figure 4.2: Using just two Laguerre modes can provide a very accurate reconstruction
#»

f (rec)
1 of the �rst-order anisotropy of the electron distribution function predicted by

kipp in the local limit (with kλ(T)ei = 10−3, dt = 2.5 × 10−4τ(0)ei ) compared to the standard
Spitzer-Härm prediction

#»

f (sh)
1 even when weighted by the collision �x ξ.

with the coe�cient bQ = 43.5 introduced in section 4.3. ¿e observed discrep-
ancy probably stems from a lack of convergence in the velocity grid, which was
indeed partially con�rmed when comparing with a lower resolved velocity grid
with mmax = 200 predicting an even lower dimensionless thermal conductivity of
κ∥c = 3.123 (recall that a higher resolved velocity was unfortunately not available).
A similar process was carried out for the thermoelectric conductivity β∥.

spring

Results for the thermal conductivity reduction previously obtained by Epperlein
with the spring code (1994; 1994) for Z = 1 and 8 made available by Bychenkov
et al. (1995, Table I) were used to complement the impact and kipp results. ¿e
linearised codes unique use of complex numbers enables directly extraction of
the damping rate even when oscillatory features arise at lower collisionalities.
Although bear in mind, that the values provided by Bychenkov et al. correspond
to the absolute value of the thermal conductivity rather than purely the damping
portion.

4.1.3 Nonlocal model analysis

In contrast to the vfp codes the inherent quasistationarity of the nonlocal mod-
els under study (eic, nflf and eic) makes obtaining thermal conductivity
predictions much simpler; no integrated simulations needed to take place as
the nonlocal heat �ow could be calculated instantaneously without waiting for
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figure 4.3: Imposing the initial edf fe(t = 0) = f (mb)
e + #»υ

υ ⋅ #»

f (rec)
1 that closely resembles

that predicted in the local limit (see �g. 4.2) reduces the kipp simulation time (shown
here for kλ(T)ei = 10−3, dt = 2.5× 10−3τ(0)ei ) compared to using just a stationaryMaxwellian
f (mb)
e or appending the Spitzer-Härm prediction weighted by the collision �x

#»υ
υ ξ

#»

f (mb)
1 .
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figure 4.4: ¿e evolution of the relative temperature amplitude as predicted by the
kipp vfp with a timestep of dt = 2.5 × 10−4τ(0)ei . A constant damping rate is approached
within several collision times τ(0)ei inferring a dimensionless thermal conductivity of
3.1832. Note that the actual damping rate is very large due to the wavelength being
2π × 103λ(T)ei .
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figure 4.5: Fitting a straight line to thermal conductivity calculations using both heat
�ow/temperature gradientmethod and the damping ratemethod con�rms a linear scaling
of numerical error with timestep. Extrapolation indicates that the thermal conductivity
converges to 3.1779 at a high collisionality of kλ(T)ei = 10−3, which is signi�cantly less than
the 3.20 predicted by Bychenkov’s formula given in eq. (4.3.1).
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transient e�ects to die out. As a result of not needing to allow the temperature
pro�le itself to damp, it was possible to impose a lower amplitude of T̃e/T0 = 10−5.
Furthermore, the snb and nflf models had the added advantage of a�ording
an analytic treatment. (Naturally, this was double-checked using the numerical
implementations of the models.)

4.2 hydrodynamic regime

¿e hydrodynamic regime is concerned with the most collisional of plasmas
where typically scalelengths are very large and the isotropic part of the distribution
function f0 can be treated as an exact Maxwellian. ¿is is equivalent to a �uid
treatment where the local Braginskii/Spitzer-Härm theory holds. We can obtain
the damping rate from the equation for the evolution of the electron temperature:

Recall
υ2T =√2kBT0/me3ne

2
∂kBTe
∂t

+ #»∇ ⋅ #»Q (B) = 0 (4.2.1)

Ô⇒ ∂T̃e
∂t

= −2k2
3ne

κ(B)∥ T̃e = − 32
3
√
π
ξk2λ(0)ei υ2TT̃e, (4.2.2)

¿us the temperature perturbation is exponentially damped at a rate of γD =
32ξk2λ(0)ei υ2T/3√π.
4.3 semicollisional regime

As the wavelength of the temperature perturbation decreases, both the thermal
conductivity κ∥ and the thermoelectric coe�cient β∥ are reduced due to nonlocal
e�ects. Bychenkov et al. (1994, 1995) showed that the lowest order reductions in
these coe�cients, occurring in what shall be de�ned here as the semicollisional
limit, are given by

Q̃x(kλ(B)ei → 0)
Q̃(B)
x

= κ∥(kλ(B)ei → 0)
κ(B)∥

= 1 − bQZk2λ(B)2ei , (4.3.1)

and Ẽx(kλ
(B)
ei → 0)
Ẽ(B)x

= β∥(kλ(B)ei → 0)
β∥(B) = 1 − bEZk2λ(B)2ei , (4.3.2)

where bQ ≈ 264 (see paragraph before eq. 14 in Bychenkov et al. 1994) and
bE ≈ 88 (from eq. 3.15 in Brantov et al. 1996 using β∥ = eα/σ) in the Lorentz
limit (Z = ∞). ¿e increased relative importance of electron-electron collisions
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on the anisotropic part of the edf at low ionisations will induce an ionisation
dependence on bQ and bE . Incorporating the collision �x into νei to approximate
this e�ect leads to to the prediction that both coe�cients will scale as ξ, while
Bychenkov et al. instead assumed that they scale as ξ2. Simulations with the eic
model presented in section 4.3.5 will reveal the true dependence of the coe�cients
on ionisation.
To gain a deeper insight on the origins of the coe�cients bQ , bE as well as

the nature of the edf in the semicollisional regime than provided by Bychenkov
et al.’s polynomial based approach we shall explore a perturbative approach that is
more analytically tractable. Speci�cally, the Chapman-Enskog process introduced
in section 2.2.1 is repeated a further two times to include terms of order k3λ(B)3ei

corresponding to the �rst nonlocal perturbation to the heat �ow. In this limit
it is valid to use the Cartesian tensor expansion of the linearised vfp equation
keeping only the �rst three terms:

While f3 is nonzero
at this order it does
not a�ect any terms
contributing to
transport.

∂ f̃0
∂t

+ ikυ
3
f̃1x = C(L)

ee0
(
δf̃0
)

(4.3.3)

∂ f̃1x
∂t

+ ikυ( f̃0 + 2
5
f̃2xx
) + eẼxυ

kBT0
f (mb)e = C(L)

ee1
(
f̃1x
) − νei f̃1x , (4.3.4)

∂ f̃2xx
∂t

+ 2ikυ
3

f̃1x = C(L)
ee2
(
f̃2xx
) − 3νei f̃2xx , (4.3.5)

f̃2yy = f̃2zz = − 12 f̃2xx , (4.3.6)

where δf̃0 = f̃0 − f̃ (mb)e is the deviation of the isotropic part of the distribution
function from a Maxwellian. Here, the Fourier component of the Maxwellian
contribution

Reminder: In this
chapter f (mb)

e
without argument
or ‘̃ ’ always refers
to f (mb)

e (T0) unless
explicitly stated
otherwise.

f̃ (mb)e = ( meυ2

2kBT0
− 3
2

)
f (mb)e (T0)

T̃e
T0

(4.3.7)

Due to the di�culty of treating the electron-electron part of the linearised colli-
sion operator analytically this shall be neglected in all equations except the �rst
(4.3.3) and the e�ect of electron-electron collisions on the anisotropic parts of
the distribution function will be approximated by replacing νei with ν∗ei = νei/ξ.
¿is simpli�cation is completely justi�ed in the Lorentz limit where electron-ion
collisions dominate.
For the current problemof a low-amplitude temperature sinusoid theChapman-

Enskog expansion parameterKn = kλ(B)ei . ¿e expansion of the Fourier-transformed
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distribution thus takes the form of f̃e = f̃ (mb)e + kλ(B)ei f̃ (1)e + k2λ(B)2ei f̃ (2)e + . . ., where
we recall that all corrections f (n) only depend on hydrodynamic variables (e.g.
Te, ne, Z). As seen in section 2.2.1, the �rst term can be obtained by substituting
f̃ (mb)e into eq. (4.3.4) and enforcing zero current (while correctly assuming that
the time-derivative/electron-inertia term can be neglected as it is of higher order):

Remember
λei∗ = υ/ν∗ei

kλ(B)ei f̃ (1)e = υx
υ
f̃ (mb)1x = −υx

υ

( meυ2

2kBT0
− 4)ikλei∗ f (mb)e

T̃e
T0
. (4.3.8)

4.3.1 Correction to isotropic part of the edf

In order to �nd the lowest order deviation from the local heat �ow, the nonlocal
correction to the isotropic part of the distribution function δf̃0must �rst be found
by substituting f̃ (mb)1x into eq. (4.3.3). Due to the temperature amplitude being
the only macroscopic parameter that is not constant in time and space, all terms
in the Chapman-Enskog expansion will damp at the same rate γD. ¿erefore, as
long as δf̃0 is small only the Maxwellian part of the edf needs to be considered
in the time-derivative term

∂ f̃ (mb)e
∂t

= ∂ log(T̃e)
∂t

f̃ (mb)e = − 32
3
√
π
ξk2λ(0)ei υ2T f̃

(mb)
e . (4.3.9)

Introducing a relative velocity compared to the background thermal velocity
V = υ/υ2T the equation that must be solved for δf̃0 is
{− 32

3
√
π

(
V 2 − 3

2

)

Nonstationarity

+ (V 2 − 4)V 5

3
Di�usion

}ξk2λ(0)ei υ2T f (mb)e
T̃e
T0

= C(L)
ee0
(
δf̃0
)
. (4.3.10)

In this thesis, we will use an expression provided by Bychenkov et al. (1994)
for the linearised electron-electron collision operator

C(L)
ee0 = ν(0)ei

ZV 2
∂
∂V

(
f (mb)e
2

L̂
[
∂ψ̃
∂V

] )
(4.3.11)

where L̂
[
∂ψ̃
∂V

] ∶= 2√
π
γ(3⁄2 ,V 2)

V
∂ψ̃
∂V

− 8√
π ∫

V

0
U2 ∫ ∞

U
e−W2 ∂ψ̃

∂W
dW dU , (4.3.12)

de�ning ν(0)ei = νei(υ2T) and ψ̃ = δf̃0/ f (mb)e (see appendix b.1 for a derivation).
¿us all that remains to �nd δf̃0 is to invert C(L)

ee0. By multiplying eq. (4.3.10) by
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υ2, integrating from∞ to υ (which is consistent with the distribution function
vanishing at∞) and rearranging we can obtain

L̂
[
∂ψ̃
∂υ

] = ( 32
3
√
π
V 3

Nonstationarity

− V8

3
Di�usion

)
ξZk2λ(0)2ei

T̃e
T0

≡ S(υ) (4.3.13)

Inverting the operator L̂ to obtain ∂ψ̃
∂υ (and hence δf̃0) is a bit more di�cult but

can be done in a number of ways. Firstly, we can �nd the exact inverse by recasting
L̂ into a second-order di�erential operator and observing that a solution to the
homogeneous part is given by ∂ψ̃1

∂υ = υ. From this we can �nd an independent
solution using theWronskian and then construct a Green’s function that is proven
to give the desired inverse in appendix b.4,

L̂−1∗ [S(V )] =
√
π
2

V S(V )
γ(3⁄2 ,V 2)

− 2√πV ∫ V

∗
Y2 ∫ Y0 S(T)Te−T2

dT
γ(3⁄2 ,Y2)2

dY , (4.3.14)

where ∗ is chosen so that δf̃0 does not a�ect T̃e; i.e. if V 3 ∂ψ̃
∂V e

−V 2 = 0 (see ap-
pendix b.2). Practically, this is achieved here by setting ∗ = 0 and then adding on
a term proportional to V :

L̂−1∗ [S(V )] = L̂−10 [S(V )] − 8V
3
√
π ∫

∞
0

U3L̂−10 [S(V )]e−U2
dU . (4.3.15)

In order to gain some understanding of the behaviour of ∂ψ̃∂υ beyond just an
integral expression, an iterative form of L̂−10 [S(V )]〈N〉 is employed:

L̂−10 [S(V )]〈N〉= √
π
2

V S̄(V )
γ(3⁄2 ,V 2)

− 2√πV N∑
n=1

n!In
[
eV

2
∫V0 S̄ Te

−T2
dT
]

γ(3⁄2 ,V 2)n+1 , (4.3.16)

where I[F(V )] = ∫ V

0
2U2e−U2

F(U) dU (4.3.17)

Ô⇒ ∂ψ̃〈N〉

∂V
= L̂−10 [S̄(V )]〈N〉 − 8V

3
√
π ∫

∞
0
U3L̂−10 [S̄(V )]〈N〉e−U2

dU , (4.3.18)

where S̄(V ) is the original source term S with the nonstationarity term removed,
as it can be shown explicitly that this term plays no role in determining δf̃0
(i.e. L̂−1∗ [V 3] = 0, see appendix b.5). ¿is sequence can proved to converge
(see appendix b.6) and is observed to do so rapidly. Unfortunately, the �nal
energy conserving integral needs to be calculated numerically and Mathematica’s
NIntegrate can sometimes get this wrong due to di�culties in treating the
denominator γ(3⁄2 , 0), which vanishes in the low-velocity limit. In order to avoid
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this, a cuto� Vmin = 0.02 is provided, below which the low-velocity limit of the
denominator is integrated analytically. ¿is process is applied to all numerical
integrals performed with NIntegrate, for example:

∫ ∞
0
U3L̂−10 [S(V )]〈N〉e−U2

dU

≈ ∫ Vmin

0

√
π
3
S(V )
V 2 − 2√πV N∑

n=1
n!In

[
eV

2
∫V0 S Te

−T2
dT
]

( 2
3V

3)n+1 dU

+ ∫ ∞
Vmin

U3L̂−10 [S(V )]〈N〉e−U2
dU

(4.3.19)

¿e �rst two iterations result in the following approximations for ∂ψ̃
∂υ :

∂ψ̃〈0〉

∂V
/ξZk2λ(0)2ei

T̃e
T0

= 74.3V − V9

3
Γ(3⁄2)

γ(3⁄2 ,V 2)
, (4.3.20)

∂ψ̃〈1〉

∂V
/ξZk2λ(0)2ei

T̃e
T0

=
69.7V −(V9

3
+ 2
9
V 3γ(5,V 2) − γ(13⁄2 ,V 2)

γ(3⁄2 ,V 2)

)
Γ(3⁄2)

γ(3⁄2 ,V 2)
,

(4.3.21)

and are plotted against the exact numerical solution in �g. 4.6. ¿e iterative form
of ∂ψ̃∂v is observed to be indistinguishable from the exact form, with the slowest
area of convergence being for υ ≈ 1.5υ2T. ¿e ability to satisfactorily approximate
∂ψ
∂υ with a polynomial of degree 9 explains the need noted by Bychenkov et al.
(1995) to use a large number of Laguerre polynomials to describe this regime.
Additionally, the iterative convergence of ψ̃ and δf̃0 themselves are plotted in

�gs. 4.7 and 4.8, exhibiting similar behaviour as observed with ∂ψ̃
∂υ . (¿e constant

of integration used in obtaining ψ̃ is such that δf̃0 does not contribute to the
electron density.) An illustration of the e�ect of δf̃0 on the total isotropic part
of the distribution function is provided in �g. 4.9 for a nonlocality parameter
of ξZk2λ(0)2ei . As expected, the introduction of nonlocality allows for a de�cit of
suprathermal electrons (υ ⪆ 2.3υ2T) at the peak of the temperature perturbation
which escape to lower temperatures before they have time to collide. Balancing
this out is a surplus of thermal electrons υ ≈ 1.5υ2T to conserve energy and a
greatly reduced number of subthermal electrons υ ⪅ υ2T to conserve the total
number of electrons. One issue that is just about noticeable is that f̃0 is observed
to become negative at υ ≈ 3.5υ2T. While the velocity at which this unphysical
sign change occurs will of course increase with longer wavelengths, this does
reveal an inherent limitation to the Chapman-Enskog expansion (and many
forms of asymptotic expansions in general). As we are mainly interested in
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figure 4.6: Approximations of the �rst derivative of the function ψ̃, (de�ned as ψ̃ =
δf̃0/ f (mb)

e ) at the peak of a sinusoidal temperature perturbation. ¿ose obtained using
the suggested iterative approach, and given explicitly in eqs. (4.3.20) and (4.3.21) for
N = 0 and 1, are compared to a numerical integration “N = ∞” of eq. (4.3.15) performed
by discretising over velocity in steps of ∆V = 0.02.
nonlocal e�ects on macroscopic observables such as the heat �ow rather than
the high-velocity behaviour of the edf, this should not be too much of an issue
as long as the unphysical part of f̃0 provides a negligible contribution to relevant
de�nite integrals (which it will always do for low enough values of ξZk2λ(0)2ei ).
An alternative way to avoid this issue would be to use the mn formulation which
guarantees positive-de�niteness but makes an analytical treatment much more
challenging.

4.3.2 Impact of f0 on the nonlocal heat �ow and electric �eld

¿e nonlocal deviation to the heat �ow can be calculated by continuing the
Chapman-Enskog expansion on eq. (4.3.4) to obtain the correction to the �rst-
order anisotropy of the distribution function δ f̃1x = f̃1x − f̃ (mb)1x . Note that this
depends not only on the nonlocal correction to the isotropic part of the distribu-
tion function δf̃0, but also on electron inertia through the term

∂ f̃1x
∂t and pressure

anisotropy through f̃2xx . Conveniently, in the semicollisional regime all three
terms (δf̃0,

∂ f̃1x
∂t and f̃2xx) act completely independently and we can investigate in

turn the e�ects of these on the distribution function, heat �ow and electric �eld.
We will concentrate �rst on the e�ect of the isotropic part of the distribution

function on f̃1,

δ f̃ (δ f0)1x = −λei∗
(
ikψ̃ + eδẼ(δ f0)x

kBT0

)
f (mb)e , (4.3.22)
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figure 4.7: Approximations of the function ψ̃ itself are obtained by by numerically
integrating the curves plotted in the previous �gure, again using a discretisation in steps
of ∆V = 0.02. Note that the constant of integration is calculated to ensure that δf̃0 does
not contribute to the plasma density.
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figure 4.8: Approximations for the lowest order perturbation to the density integrand
as a result of nonlocality (4πυ2δf̃0υ2T) at the peak of a sinusoidal temperature perturba-
tion. ¿ese are obtained by simply multiplying the expressions for ψ̃ plotted in �g. 4.7 by
4υ2e−V 2/√π.
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figure 4.9: ¿e relative e�ect of nonlocality in the semicollisional regime on the
density integrand is demonstrated by comparing to the Maxwellian perturbation f̃e(mb)

at the peak of a sinusoidal temperature perturbation. A purely numerical calculation
of the distribution function (denoted by N = ∞ elsewhere) was used to calculate this.
Here the modi�ed nonlocality parameter ξZk2λ(0)2ei = 0.01 and the relative temperature
perturbation T̃e/T0, thermal velocity υ2T and electron density ne have all been normalised
to unity.

where the superscript simply denotes that these terms are only due to the contribu-
tion of δf̃0. In fact, it turns out an explicit form for δẼ(δ f0)x is not required to com-
pute the corresponding perturbation to the heat �ow. ¿is can be demonstrated
using the fact that the υ3 (curent) moment of f̃1x is zero due to the requirement
of quasineutrality to rewrite the perturbation to Q̃x due to δf̃0 as

δQ̃(δ f0)
x = 4π

3 ∫ ∞
0

1
2
meυ5δ f̃

(δ f0)
1x dυ (4.3.23)

≡ 2πme
3 ∫ ∞

0
υ3
(
υ2 − 4υ2T2)δ f̃ (δ f0)1x dυ. (4.3.24)

Integrating by parts eliminates the electric �eld, allowing the deviation from the
nonlocal heat �ow to be expressed in terms of the already obtained ∂ψ̃

∂υ only:

δQ̃(δ f0)
x = πmeυ2T2

3
{[ − V4 f̃ (δ f0)1x

]∞
0
− ∫ ∞

0
ikυ4λei∗ ∂ψ̃∂υ f

(mb)
e dυ} (4.3.25)

= −πikmeυ2T2

3 ∫ ∞
0
υ4λei∗ ∂ψ̃∂υ f

(mb)
e dυ (4.3.26)



table 4.2: Con-
vergence of the para-
meter b(δ f0 )Q with it-
erations before (le )
and a er (right) in-
cluding the energy
conserving integral
in eq. (4.3.18).

N b(δ f0 )Q /ξ
0 318.6→ 276.5

1 303.9→ 264.5

2 303.2→ 264.0

3 303.1→ 263.9

⋮ ⋮
∞ 298.5→ 263.9
table 4.3: Con-
vergence of the para-
meter b(δ f0 )E with it-
erations.

N b(δ f0 )E /ξ
0 93.2

1 88.6

2 88.3

⋮ ⋮
∞ 88.3
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where the �rst term vanishes as long as ψ(υ = 0) is �nite. It is useful to express
δQ̃ relative to the local heat �ow Q̃(B) and in terms of the relative velocity V as

δQ̃(δ f0)
x

Q̃(B)
x

= 1
24 ∫

∞
0
V8 ∂ψ̃

∂V
e−V 2

dV/ T̃e
T0
. (4.3.27)

From the above expression the contribution of ψ̃ towards the coe�cient bQ
de�ned in eq. (4.3.1) can be easily obtained. Table 4.2 shows that the coe�-
cients obtained from successive iterations of ∂ψ̃〈N〉

∂V converge to the value given
by Bychenkov et al. (1994, 1995)—264—giving support for the methodology used
here. Additionally, it is shown that using the form of ∂ψ̃〈N〉

∂V prior to enforcing
energy conservation (le of arrow) has a small but non-negligible e�ect decreas-
ing the nonlocal heat �ow. (Note that the results corresponding to N = ∞ were
obtained by performing a numerical integration of eqs. (4.3.15) and (4.3.26) using
a velocity discretisation of ∆V = 0.02.)
While we have conveniently eliminated the electric �eld from the expression

for δQ̃x , one might still be interested in calculating the e�ect of nonlocality on
the electric �eld itself. To do so, we simply need to enforce zero current on the
expression in eq. (4.3.22) and rearrange, giving

eδẼ(δ f0)x
kBT0

= ∫∞0 −ikψ̃V 7e−V 2
dV

∫∞0 V 7e−V 2
dV

(4.3.28)

Ô⇒ b(δ f0)E = −2
9 ∫

∞
0
ψ̃V 7e−V 2

dV/ T̃e
T0
Zk2λ(0)2ei ≈ 88.3ξ (4.3.29)

in agreement with Brantov et al. (1996). Note that this value is almost exactly
three times less than the corresponding coe�cient for heat �ow, illustrating that
nonlocal e�ects on the electric �eld are less important in the semicollisional
regime. For example to achieve a 10% reduction in the heat �ow due to nonlocal
perturbations on f̃0 would require kλ(B)ei ≈ 0.02/√ξZ but an equivalent reduction
in the electric �eld would only occur at kλ(B)ei ≈ 0.03/√ξZ. For the sake of
completeness, table 4.3 shows that using the iterative form of ψ̃ to obtain bE
converges rapidly.
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figure 4.10: Density plots illustrating the qualitative e�ects of the �rst three terms
in the Chapman-Enskog expansion on the edf for an ionisation of Z = 1. (Red denotes
positive values and blue denotes negative values.) ¿e �rst plot refers to the Maxwellian
part of the temperature perturbation, the middle plot is simply the local form of f̃1, while
the last shows the combination of the nonlocal modi�cation to the istotropic part of the
edf δf̃0 with pressure anisotropy

»»

f 2.

4.3.3 ¿e role of pressure anisotropy

Similarly, the e�ect of the higher order anisotropies encapsulated by
»»

f 2 on the
heat �ow can be evaluated. Again we can ignore time-derivative to �nd that

f̃2xx = −29 ikλei∗ f̃ (mb)1x , f̃2yy = f̃2zz = ikλei∗
9

f̃ (mb)1x . (4.3.30)

Combining this with δf̃0 gives

Ô⇒ f̃e(2) =
(

ψ̃
k2λ(B)2ei

− 32
π
(3V 2

x − V 2)(V 2 − 4)V6ξ2 T̃e
T0

)
f (mb)e (4.3.31)

as the total second-order contribution to the distribution function in Chapman-
Enskog theory. It is at lower ionisations that weaker angular scattering allows
for more pronounced anisotropies to develop. ¿ese anisotropies encourage
the reduction of suprathermal electrons already observed at the peak of the
temperature perturbation to be stronger for electrons that are travelling mostly
along the x-axis as illustrated in �g. 4.10.
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¿e sole contribution of
»»

f 2 to the electric �eld and heat �ow is from f̃2xx , and
can be calculated by substituting into the equation for f̃1x .

δ f̃ ( f2)1x = −λei∗
( − 4

45
ik3λei∗2(V 2 − 4) f (mb)e

T̃e
T0

+ eδẼ( f2)x
kBT0

)
(4.3.32)

Ô⇒ eδẼ( f2)x
kBT0

= 4
45

∫∞0 V 15(V 2 − 4)e−V 2
dV

∫∞0 V 7e−V 2
dV

iξ2k3λ(0)2ei
T̃e
T0

(4.3.33)

= 896
3
iξ2k3λ(0)2ei

T̃e
T0
, (4.3.34)

which means that the coe�cient for reduction of the electric �eld due to pressure
anisotropy is given by b( f2)E = 199.1ξ2/Z. Substituting back into eq. (4.3.32)
δ f̃ ( f2)1x = ikλei∗

(
V8(V 2 − 4) 4

45
− 896

3

)
ξ2k2λ(0)2ei f (mb)e

T̃e
T0

(4.3.35)

and integrating gives

δQ̃( f2)
x

Q̃(B)
x

= ∫∞0 V9(V8(V 2 − 4) 445 − 896
3
)
e−V 2

dV

∫∞0 V9(V 2 − 4)e−V 2
dV

ξ2k2λ(0)2ei (4.3.36)

Ô⇒ b(EI)Q = 448ξ2/Z . (4.3.37)

Comparison to m1

¿ese results concerning the form of
»»

f 2 can be compared to those predicted by
the mn model. For a low-amplitude temperature perturbation the anisotropy
parameter #»α 1 used in the mn model is of order T̃e/T0 and can be treated as
small such that the distribution function can be expanded as f̃e = eα0+ #»α 1 ⋅ #̂»υ =
eα0(1 + #»α 1 ⋅ #̂»υ +O(T̃e/T0)2). ¿erefore, to �rst-order in the relative temperature
amplitude the mn model predicts that

»»

f 2 = 0 and is indistinguishable from the
standard p1 approach used in the di�usion approximation. Whether the mn
approach to describing the distribution function is an improvement on p1 for
a larger amplitude perturbation is unclear from this initial analysis due to the
complications of nonlinearities.
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4.3.4 ¿e role of electron inertia

Also providing a contribution to both the heat �ow and electric �eld at third
order in Chapman-Enskog theory is the time-derivative of f̃1. ¿is is simply given
by

∂ f̃ (mb)1x
∂t

= −γD f̃ (mb)1x , (4.3.38)

which accordingly reduces f̃1 itself through electron inertia,

δ f̃ (EI)1x = −λei∗
(
V 3(V 2 − 4) 32

3
√
π
ξ2 ik3λ(0)2ei

T̃e
T0

+ eδẼ(EI)x
kBT0

)
f (mb)e . (4.3.39)

Enforcing zero-current provides the pertubation to the electric �eld,

eδẼ(EI)x
kBT0

= − 32
3
√
π
∫∞0 V 10(V 2 − 4)e−V 2

dV

∫∞0 V 7e−V 2
dV

iξ2k3λ(0)2ei
T̃e
T0

(4.3.40)

= −315
4
iξ2k3λ(0)2ei

T̃e
T0
, (4.3.41)

resulting in a value for the coe�cient b(EI)E = −52.5ξ2/Z that is only appreciable
at low ionisations. Substituting this back into eq. (4.3.39) results in

δ f̃ (EI)1x = −ikλei∗
(
V 3(V 2 − 4) 32

3
√
π
− 315

4

)
ξ2k2λ(0)2ei f (mb)e

T̃e
T0
, (4.3.42)

which is plotted alongside f̃ (mb)1x in �g. 4.11. Note that the relative importance of
electron inertia increases with velocity due to decreasing collisionality. ¿is can
be used to calculate the relative perturbation to the heat �ow

δQ̃(EI)
x

Q̃(B)
x

= ∫∞0 V9(V 3(V 2 − 4) 32
3
√
π − 315

4
)
e−V 2

dV

∫∞0 V9(V 2 − 4)e−V 2
dV

ξ2k2λ(0)2ei (4.3.43)

Ô⇒ b(EI)Q = −3255
32

ξ2/Z = −101.7ξ2/Z . (4.3.44)

Note that the e�ect of electron inertia is to increase both the electric �eld and heat
�ow by holding them back to their values at an earlier time when the amplitude
of temperature perturbation was larger.
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figure 4.11: ¿e relative e�ect of electron inertia and pressure anisotropy working
together on the current integrand. Here the degree of nonlocality is given ξ2⁄3 kλ(0)ei ≈ 0.12
and the relative temperature perturbation, thermal velocity and electron density have all
been normalised to unity.

4.3.5 Comparison to eic

Putting together the previous �ndings of this section we can summarise the
behaviour of the parallel heat �ow and electric �eld in the semicollisional limit
as

bQ = 263.9ξ + 448ξ2/Z − 101.7ξ2/Z , (4.3.45)

bE = 88.3ξ

Di�usion

+ 199.1ξ2/Z
Pressure
Anisotropy

− 52.5ξ2/Z
Electron
Inertia

, (4.3.46)

where we have labelled the core reduction in transport due to the di�usive modi-
�cation of f̃0 derived in sections 4.3.1 and 4.3.2 along with those occurring due to
pressure anisotropy and electron inertia in sections 4.3.3 and 4.3.4. As a result
of these latter terms depending inversely on Z, it is only at lower ionisations
where they become appreciable. Note that while pressure anisotropy and electron
inertia act in opposite directions, the former is almost four times more dominant
and increases the nonlocal reduction to the transport.
¿emost practical tool available to us for testing the accuracy of these �ndings,

particularly at lower ionisations where electron-electron collisions also begin to
a�ect the anisotropic part of the distribution function, is in fact the eic model
whose main assumptions, except for neglection of electron inertia, are valid in
this linearised semicollisional regime. While vfp codes such as kipp, k2 and
oshun do o�er a more complete approach with their ability to evaluate the e�ect



table 4.4: Values
for the coe�cient bQ
for various values of
Z obtained with the
eic model using at
least 4,40 Legendre-
Laguerre moments.

Z bQ

1 43.5

2 73.6

3 96.0

4 113

6 139

8 157

10 170

12 180

14 189

20 206

30 222

500 261
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of electron inertia, their slow (�rst-order) convergence with timestep means
that obtaining high-precision values of heat �ow and thermal conductivity is
computationally expensive. Such precision is very important in calculating the
semicollisional coe�cients due to deviations from the quadratic dependence
expressed in eq. (4.3.1) becoming noticeable at moderately high collisionalities
corresponding to

√
Zkλ(B)ei ≈ 0.005; at this point the predicted reduction of heat

�ow due to nonlocality is less than 1%. Instead, the quasistationary approach
employed by the eic circumvents the need for achieving timestep convergence.
As the implementation of the eic model used for this thesis does not yet

provide values for the nonlocal electric �eld, only the heat �ow coe�cient bQ
could be calculated. ¿is was performed by �tting a straight line on a graph of
dimensionless thermal conductivitymeκ∥/neT̃eτ(B)ei against Zk2λ(B)2ei as illustrated
for Z = 1 in �g. 4.12. ¿e coe�cient bQ is then given by the ratio between the
absolute value of the gradient and the y-intercept of the line of best �t. ¿e �tting
range consisted of all long-wavelength simulations performed corresponding
to

√
Zkλ(B)ei < 10−3; this always included at least six data points with at least

one value of
√
Zkλ(B)ei below 2 × 10−4/√Z. ¿e Legendre-Laguerre basis was

employed due to its relatively rapid convergence in the semicollisional regime;
only 3 Legendre modes are theoretically needed and we �nd that 40–50 Laguerre
modes are su�cient for obtaining the value of bQ up to 3 signi�cant �gures.
Comparing the eic value of bQ at Z = 1 (43.5) to that obtained with kipp (42.1)
gives a discrepancy of only 4%; again the kipp result was considered less accurate
due to timestep and velocity grid convergence issues.
Numerical results for bQ obtained using the eic model for a range of ionisa-

tions are summarised in table 4.4, in all cases at least 4 Legendre moments/40
Laguerre moments were used. Reassuringly, the value predicted by the eic model
at a high ionisation of Z = 500 (261) is close to that predicted by eq. (4.3.45) (262).
However, such impressive agreement does not persist at lower ionisations due to
the inappropriateness of assuming that the e�ect of electron-electron collisions
on the anisotropic parts of the edf can be simply approximated by multiply-
ing the electron-ion frequency by the Epperlein-Short (1991) approximation
ξes = (Z + 0.24)/(Z + 4.2). ¿is discrepancy is illustrated in �g. 4.13 where the
ionisation dependence of the eic bQ values is compared to that given by con-
sidering only the di�usive and anisotropic terms in eq. (4.3.45) ξes(1 + 1.7ξes)
(recall that the eic model neglects electron inertia). Instead we �nd that a �t of
Z/(Z + 11/2) is more appropriate for bQ , approximating the eic results to within
7%. Nevertheless, the implications of this for the validity of using ξes in impact
and the snb model are not as serious as theymay seem because bQ only quanti�es
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figure 4.12: ¿e coe�cients bQ parametrising the nonlocal reduction of heat �ow
in the semicollisional regime were calculated from eic simulations by taking the ratio
between the absolute value of the gradient and the y-intercept of the line of best �t for
dimensionless thermal conductivity meκ∥/neT̃eτ(B)ei against Zk2λ(B)2ei (shown here for
Z = 1) using a �tting region given by Zk2λ(B)2ei < 10−6.
the initial deviation from the local limit, whereas the total heat �ux is not very
sensitive to marginal errors in bQ in the semicollisional regime. Additionally, the
e�ect of neglecting pressure anisotropy is also shown in �g. 4.13 by comparing
eic results using just 2 Legendre moments (but still 40+ Laguerre moments) to
ξes which is the ionisation dependence of the di�usive term in eq. (4.3.45). ¿is
con�rms our analytical �nding that higher-order anisotropies do indeed increase
the degree of nonlocal heat �ow reduction in the semicollisional regime.

4.3.6 Behaviour of snb model in the semicollisional regime

For long wavelength perturbations the di�usive term in the snb pde, eq. (2.3.25),
can be ignored and thus the distribution function and nonlocal heat �ow easily
computed in the semicollisional limit. An outline of the derivation is given
here, which stems from a continuum treatment of the snb model as opposed
to the usual discretised energy groups. For the original bgk collision operator
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figure 4.13: ¿e red dot-dashed line and crosses represent analytic approximations
and eic predictions for the Z-dependence of the coe�cient bQ including the e�ects
of pressure anisotropy but not electron inertia, while the blue dashed line and crosses
neglect both e�ects. ¿e gray line is simply a new �t found to approximate the eic results
well.

C(bgk)
ee0 [ f0] = −rνei f0/Z used by Schurtz et al. (2000) we can rearrange eq. (2.3.25)

to obtain an expression for

H̃(bgk) ≡ 2πmeυ5δf̃0 dυ (4.3.47)

= − iZkλei
12r

V9{1,V 2 − 4}e−V 2
Q̃(B) dV , (4.3.48)

again using the contraction V = υ/υ2T. Here the curly brackets distinguish the
original source term containing

#»

f (mb)1 = −(V 2 − 4)λei∗ f (mb)e
#»∇Te/Te (right) from

the modi�ed source term with #»g (mb)1 = −λei∗ f (mb)e
#»∇Te/Te (le ) used by Schurtz

et al. in the standard implementation of the model. Upon integration we then
�nd that the lowest order perturbation to the heat �ow is given by

δQ̃(bgk)
x = − 32

9π ∫
∞
0

V 17{1,V 2 − 4}e−V 2

36r
dVξZk2λ(B)2ei Q̃(B). (4.3.49)

(¿e extra factor of V8 comes from the velocity dependence of the mfp’s in
eqs. (2.3.26) and (4.3.49)). If instead the awbs operator C(awbs)

ee0 [ f0] = νeiυ ∂ f0∂υ /Z
is used we need to integrate to obtain

H̃(awbs) = V 5

12 ∫ V

∞ iZkλei(U)U3{1,U2 − 4}e−U2
dUQ̃(B) dV (4.3.50)
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table 4.5: Predictions for bQ made by the snb model, depending on choice of collision
operator (columns) and source term (rows).

Model collision operator

rhs C(bgk)
ee0 C(awbs)

ee0
#»∇ ⋅ #»

f (mb)1 3169ξ/r 316.9ξ
#»∇ ⋅ #»g (mb)1 633.8ξ/r 63.38ξ

by applying the boundary condition limV→∞ H̃ = 0. Note that if this integration
is performed explicitly on the original source term

#»

f (mb)1 (second entry in the
curly brackets) we obtain the same expression for H̃ as when using the bgk
collision operator and modi�ed source term #»g (mb)1 (eq. 4.3.49, �rst term in the
curly brackets) with the choice of tunable parameter r = 2. ¿e heat �ow can
then be obtained using integration by parts:

δQ̃(awbs)
x = − 32

9π ∫
∞
0

V 17{1,V 2 − 4}e−V 2

360
dVξZk2λ(B)2ei Q̃(B). (4.3.51)

¿enumerical results of these calculations are outlined in table 4.5. Our analysis
reveals that using the awbs operator and the kinetic source term #»∇ ⋅ #»

f (mb)1 gives
a priori the closest value of bQ = 316.9ξ (top right) to within 20% of that predicted
analytically in the Lorentz limit (264). ¿is ability of the awbs collision operator
to predict the deviation in the hydrodynamic limit fairly accurately might suggest
that it provides an improvement to the original snb model, however we will
later show in section 4.4.3 that coupling it with the original source term

#»

f (mb)1
leads to unphysical negative values of the thermal conductivities at moderate
collisionalities (see section 4.6.3). Nevertheless, this issue does not necessarily
imply that the awbs operator is an inappropriate choice for other nonlocalmodels.
For example, the mn model presented by Del Sorbo et al.(2015, 2016) does not
appear to exhibit this issue of positive-de�nitiveness.
Setting r = 2 exactly in the original implementation of the snb model (bgk

collision operator with the modi�ed source term #»∇ ⋅ #»g (mb)1x ) gives the same value
of bQ = 316.9ξ as with the awbs operator (bottom-le entry in table 4.5) and
the source term #»∇ ⋅ #»

f (mb)1x (top-right). However, to match the kinetic results
for bQ , a value of r = 2.4 is required in the Lorentz limit and r = 3 for Z = 1.
Matching coe�cients to such accuracy does not seem necessary, as using r = 2
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is later found to achieve much better agreement for problems involving large
temperature variations in chapter 5.
It is of great interest to evaluate whether the relationship between H̃ and the

isotropic part of the distribution function, H̃ ≈ 2πmeυ5δf̃0 dυ, suggested in the
original paper is accurate. If this relationship were indeed correct in the high-
velocity limit then f̃0 would scale as V8e−V 2

; however, the actual asymptotic
behaviour inferred by our previous analysis using the iterative form of the lin-
earised collision operator gives the asymptotic behaviour of f̃0 as V 10e−V 2

(this
can be derived by integrating eq. 4.3.20 or 4.3.21). By comparing eq. (4.3.48) and
eq. (4.3.20) we can identify a new relationship between H̃ and f̃0,

H̃ = 2πkBTeυ4 ∂ψ̃∂υ f (mb)e dυ, (4.3.52)

which recovers the correct behaviour of f̃0 at high velocities Notably, this inter-
pretation gives rise to exactly the same prediction for the edf that would arise
from using a more realistic model collision operator,

C(L)
ee0 ≈ kBTe

me

νei
Z
υ ∂
∂υ

f (mb)e
υ

∂
∂υ

f0
f (mb)e

, (4.3.53)

which is simply just the high-velocity limit of the linearised electron-electron
collision operator. Even more impressive is that this interpretation of the edf
justi�es the peculiar removal of the return current in the method used by the
snb model to recover the heat �ow from H (at least for linearised problems),

δ #»Q = − ∫ ∞
0

λei∗
3

#»∇H̃ = −2πkBTe
3 ∫ ∞

0

λei∗
3

#»∇υ4 ∂ψ
∂υ

f (mb)e dυ, (4.3.54)

as it is identical to the expression given in eq. (4.3.26), which was derived using
integration by parts. ¿is explanation is much more satisfactory than the usual
claim of the return current being cancelled out by the purely nonlinear ‘Joule-
heating’ term e #»E

3meυ
2
∂υ2

#»

f 1
∂υ that usually appears in the f0 equation.

Figure 4.14 further illustrates the relative success of this new relationship
between H̃ and the isotropic part of the distribution function compared to the
old in the semicollisional regime. Additionally, a transformed version of H̃ that
should obey the original relationship

H′ ∶= (∫ υ

0

H
υ4 f (mb)e

dυ − ∫ ∞
0 ∫

u

0

H
υ4 f (mb)e

dυ υ2 f (mb)e du
)
meυ5

kBTe
f (mb)e (4.3.55)

≈ 2πmeυ5δf̃0 (4.3.56)
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figure 4.14: Comparison of expressions for the nonlocal modi�cation of the edf
at the peak of a low-amplitude temperature sinusoid in the semicollisional regime in
arbitrary units. ¿is shows that the snb term H̃ (solid back) is better expressed in terms
of ∂ψ

∂υ (blue dot-dashed) instead of δf̃0 directly (red dotted).

is included. Here the double integral is employed to ensure that the nonlocal
perturbation to the distribution function does not a�ect the local electron density.
Excellent agreement is observed for velocities greater than approximately 3υ2T;
however, notable deviations remain at intermediate velocities near 2υ2T. ¿is
suggests that a snb-like model could be applied to provide corrections for e�ects
that have a high phase-velocity such as srs or the Landau damping of Langmuir
waves, but it might not be appropriate for studying the return current instability
(rci) as this depends on the gradient of the edf at zero velocity.

4.4 collisionless regime

When the wavelength of temperature perturbations becomes extremely short,
the le -hand side of the vfp equation begins to dominate over collisions on the
right. Taken to the extreme limit, collisions can be neglected entirely to describe
the evolution of the distribution function by the standard Vlasov equation,

∂ f̃e
∂t

+ ikυx f̃e + eẼx
kBT0

υx f (mb)e = 0. (4.4.1)
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As there is no explicit dependence on velocities perpendicular to the temperature
gradient, it is convenient to integrate over these as well as dividing by the electron
density, resulting in

∂g̃
∂t

+ ikυx g̃ − ikeϕ̃
kBT0

υxe−meυ
2
x/2kBT0

√
2πkBT0/me

= 0, (4.4.2)

where g̃ = ∫ ∞
−∞ ∫ ∞

−∞
f̃e
ne

dυy dυz , and ϕ̃ = Ẽ−ik is the electric potential.
(4.4.3)

¿e long-term behaviour of g̃ is best analysed with the use of a Laplace transform
on the time coordinate:

(p + ikυx)g̃′ − ikeϕ̃′
kBT0

υxe−meυ
2
x/2kBT0

√
2πkBT0/me

= g̃(t = 0), (4.4.4)

where g̃′(p) = ∫ ∞
0

g̃(t)e−pt dt, and ϕ̃′(p) = ∫ ∞
0

ϕ̃(t)e−pt dt (4.4.5)

When deriving the Landau damping of Langmuir waves the standard approach
is to relate the electric potential to the distribution function through Gauss’ Law
(Boyd and Sanderson 2003, pp. 256–258, eq. 7.25), yielding

eϕ̃′
kBT0

= −1
k2λ2D + R( i p

kυ2T

) ∫ ∞
−∞

g̃(t = 0)
p + ikυx dυx , (4.4.6)

where R(ζ) = 1√
π ∫

∞
−∞

te−t2
t − ζ dt = 1 + ζ√

π ∫
∞
−∞

e−t2
t − ζ dt (4.4.7)

= 1 +√
πζe−ζ2(i − Er�(ζ)) (4.4.8)

is the normalised response function given by Hammett and Perkins (1990), λD =
υ1T/ωpe is the (electron) Debye length and Er�(ζ) = −i Erf(iζ) is the imaginary
error function. ¿is is calculated by assuming that the imaginary part of ζ is
greater than 0 (corresponding to the Re(p) > 0 required by the inverse Laplace
transform) and then analytically continuing to the negative imaginary half-plane.
¿e asymptotic behaviour of the electric potential at large times can then be
analysed by considering the residues of its Laplace transform

ϕ̃(t) = ∑
j
lim
p→p j(p − p j)ϕ̃′ep j t , (4.4.9)

where p j represents the poles of ϕ̃′. More precisely, these poles occur at the
zeroes of the denominator k2λ2D + R, and appear symmetrically about the real
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figure 4.15: Zeroes of the response function.

p-axis with a strictly negative imaginary part. In the collisionless yet quasineutral
regime that we are interested in (characterised by kλD ≪ 1≪ kλ(B)ei ) these can
be found numerically (or analytically for the case of p0±):
p0± = ( −√ π

8
1

k3λD
3 e−1/2k2λD2 ± i)ωpe, (4.4.10)

p1± = (−1.22516 ± 2.54723i)kυ2T, (4.4.11)

p2± = (−2.02560 ± 3.16194i)kυ2T, (4.4.12)

p3± = (−2.62887 ± 3.65597i)kυ2T, (4.4.13)

p4± = (−3.13235 ± 4.08338i)kυ2T, (4.4.14)

to lowest order in kλD. ¿ese can be related to the zeroes of the response function
R(ζ) itself by ζ j = i p j/kυ2T, which are illustrate in �g. 4.15.
In order to determine the evolution of the temperature perturbation we need

to take moments of the distribution function:

T̃e′
T0

= 2 ∫ ∞
−∞
(
υ2x
υ22T

− 1
2

)
g̃′ dυx (4.4.15)

= −(1 + 2p2

k2υ22T

)
∫ ∞
−∞

g̃(t = 0)
p + ikυx dυx (4.4.16)

+ eϕ̃′
kBT0

(
1 −(1 + 2p2

k2υ22T

)
R
( i p
kυ2T

))
(4.4.17)

= −k2λ2D + 1 + p2/ωpe2
k2λ2D + R( i p

kυ2T

) ∫ ∞
−∞

g̃(t = 0)
p + ikυx dυx , (4.4.18)

where we have asserted that f̃e(t = 0) has no density or current contribution.
¿e additional terms in the numerator reduce the contribution of the two simple
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poles corresponding to weakly damped Langmuir waves by a factor of ∼k2λD2,
which essentially removes them in the quasineutral regime we are considering.
¿erefore, the temperature perturbation is found to die out much quicker than
the electric �eld, and its long-term behaviour is dominated by the two poles next
closest to the imaginary p-axis: p1±. ¿e normalised damping rate (denoted as
χ1 = γD/kυ2T) is therefore calculated to be 1.22516 in the collisionless regime,
which is a factor 4.91204ξkλ(0)ei less than predicted by a local approximation, cf.
eq. (4.2.2). Both the imaginary part of the heat �ow and the real part of the thermal
conductivity are reduced by the same factor meaning that in the collisionless
regime they asymptotically approach

Im[Q̃x(kλ(B)ei →∞)] = −3⁄2 χ1neυ2TkBT̃e, (4.4.19)

Re[κ∥(kλ(B)ei →∞)] = 3⁄2 χ1neυ2TkB/k, (4.4.20)

respectively, where the extra factor of 3⁄2 is included to take into account the
di�erence between the isotropic de�nition of temperature used here and the
anisotropic one used by Hammett and Perkins (1990). Note that the heat �ow
approaches a constant value while the thermal conductivity decreases with the
wavelength of the temperature perturbation.
Our numerically calculated damping rate is slightly (8%) greater than that

found by Hammett and Perkins (1990), 2/√π = 1.12838, with a three-pole ap-
proximation for the response function. However, Hammett and Perkins’ approx-
imation concludes that the corresponding zero lies directly on the real line and
thus fails to capture the oscillatory aspect of the temperature evolution present at
such low collisionalities.
As for the thermoelectric coe�cient, β∥, this is calculated to be identically

zero in the purely collisionless limit and its true asymptotic behaviour can only
be understood by introducing some form of weak collisionality.

4.4.1 Performance of the eic in the collisionless regime

While the majority of the simpli�cations made by the eic nonlocal model are
justi�ed in the linearised regime, the ‘quasistationary’ assumption that the per-
turbation to the distribution function δf̃e does not depend on time is not. It is
therefore important to understand how this assumption a�ects the predicted
damping rate of our temperature sinusoids. In the collisionless limit, an exact
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expression for δf̃e under the quasistationary assumption can be obtained from
the dke:

ikυxδf̃e = − eẼx
kBT0

υx f (mb)e − ikυx f̃ (mb)e − ∂ f̃ (mb)e
∂t

(4.4.21)

= −( eẼx
kBT0

υx + ik(υx T̃eT0 −
2Q̃x

3nekBT0

)( meυ2

2kBT0
− 3
2

))
f (mb)e , (4.4.22)

We can eliminate δf̃e by recalling that it does not contribute to the temperature
moment and consequently calculate the heat �ow.

∫
(
1⁄2meυ2 − 3⁄2kBT0

)
δf̃e d3 #»υ = 0 (4.4.23)

Ô⇒ 0 = −3
2
nekBT̃e + 2

3
Q̃x ∫

( υ2

υ22T
− 3
2

)2 e−υ2/υ22T
υxπ3/2

d3 #»υ
υ32T

(4.4.24)

However, the last integral is ill-de�ned due to the choice of method to integ-
rate (around) the pole at υx = 0. We choose to follow the standard Landau
approach of taking πi times the residue at υx = 0. A er changing variable to
Vx = υx/υ2T,V 2⊥ = υ2y + υ2z/υ2T, θ = arctan2(υz , υy) and applying orthogonality
we obtain

∫ (V 2 − 3⁄2)2

Vx
e−V 2

π3/2 d
3 #»V = ∫ ∞

−∞
e−V 2

x

Vx
√
π
dVx ∫ ∞

0
(V 2⊥ − 1)2e−V 2

⊥ dV 2⊥

+ ∫ ∞
−∞

(V 2
x − 1⁄2)2

Vx
e−V 2

x
√
π
dVx ∫ ∞

0
e−V 2

⊥ dV 2⊥
(4.4.25)

= 5
√
πi
4

(4.4.26)

Ô⇒ Q̃x = − 9i
5
√
π
neυ2TkBT̃e, χ(eic)1 = 1.2√

π
, (4.4.27)

which is equal to the Chang and Callen (1992) value cited in the original paper
by Ji, Held and Sovinec (2009). Note that this is smaller in magnitude than the
standardHammett-Perkins (1990) value

(
χ(hp)1 = 2√

π

)
previously derived without

the quasistationary assumption (above) by 40% and also does not include predict
any oscillatory behaviour for the temperature perturbation.
¿e electric �eld can be calculated in a similar fashion; by instead taking the

density moment. ¿e result of this is

eẼx = − 9
5
√
π
ikkBT̃e Ô⇒ β∥ = 4

5
√
π
, (4.4.28)
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which does not agree with the correct value of zero derived earlier. ¿is can be
thought of as the quasistationary assumption providing a limit below which the
thermoelectric coe�cient β∥ can not fall. Fortunately, for most of the problems
studied in this thesis an overestimate of β∥ should not in and of itself a�ect any
observable physics phenomena here such as the damping rates. Furthermore, the
quasistationary approach employed by the eic model ensures that the electron
density does not change with time.
Consider now the appropriateness of the Hermite-Laguerre expansion in par-

allel and perpendicular velocities, which is thought to be more e�cient in the
collisionless limit than the Legendre-Laguerre expansion in speed and pitch
angle. Indeed, only two Laguerre modes are needed to describe the dependence
of δf̃e on υ⊥. However, the Hermite basis is not found to be e�ective at capturing
dependence on υx , especially at the υx = 0 singularity. In implementing the
moment decomposition of the collisionless dke the odd and even Hermite poly-
nomials are found to decouple from each other completely, with the heat �ow
only contributing to the odd moments. ¿is is in contradiction with our analysis
above where the heat �ow does contribute to the even density and temperature
moments through the Landau treatment of the singularity, and is explained by
the removal of these moments from the equation set solved by eic. ¿erefore,
the description of the distribution function by the eic is incomplete and the
actual value of the heat �ow near the collisionless limit depends purely on the
small contribution of collisions which recouples the odd and even moments and
the method used to close the set of odd Hermite moments from above (usually
setting to zero).
To illustrate the extent to which this lack of convergence a�ects the stability of

the Hermite-Laguerre basis, the heat �ow predicted by various moment combin-
ations is compared to an accurate �t provided by Ji and Held (2014) in �g. 4.16
(see section 4.6.1 for more details). While maintaining a modest number of four
Legendre moments (more than the two that should be needed in the collisionless
limit), it is seen that doubling the number of Hermite modes from 40 to 80 leads
to signi�cant di�erences in the heat �ow at a range of collisionalities except for
a small window given by 400 < kλ(B)ei < 700. However, a second doubling of
Hermite modes from 80 to 160 makes very little di�erence to the predicted heat
�ow at all wavelengths shown despite the lack of agreement with the analytic �t
and the kinks occurring at kλ(B)ei > 1000 suggesting that convergence has not yet
been achieved. Indeed, if instead the number of Laguerre modes are increased
from 4 to 20 while maintaining the number of Hermite modes at 80 there is again
an appreciable e�ect on all heat �ow values shown, supporting the conclusion
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figure 4.16: ¿e slow convergence of the Hermite-Laguerre basis used by the eic
model to the Chang and Callen collisionless limit is shown by comparisons with an
analytic �t provided by Ji and Held (2014).

that convergence relies on the recoupling of the odd and even Hermite modes
through collisionality, which is only possible when su�cient Laguerre modes are
employed. However, we shall see in the next chapter that it is sometimes possible
for the Hermite-Laguerre basis to converge faster than the Legendre-Laguerre in
regimes with intermediate collisionality and large temperature di�erences.

4.4.2 E�ect of p1 approximation

Vlasov-Fokker-Planck codes that expand the edf according to degrees of aniso-
tropy (e.g. spherical harmonics or Cartesian tensors), such as impact, spark,
k2 and oshun, are not necessarily well suited to capture the �ne-scale and highly
anisotropic features that arise in the collisionless regime. Certainly, a mere p1
or mn would not be su�cient and would never be wisely chosen to accurately
simulate problems of extremely high degrees of nonlocality. Nevertheless, it is an
enlightening, albeit academic, exercise to consider the nature of the errors that
would occur when employing such an early truncation of the Cartesian tensor
expansion.
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With electron inertia

¿e relevant equation to consider here is

p f̃0′ + ikυ
3
f̃ ′1x = f̃0(t = 0) (4.4.29)

eip f̃ ′1x + ikυ f̃0′ + eẼ′x
kBT0

υ f (mb)e = ei f̃1x(t = 0) − ν∗ei f̃1x′ (4.4.30)

where the boolean variable ei takes the value 1 if electron inertia is included in
the code’s equation set and 0 if it is neglected. While the electron-ion collision
term has been retained as it is relatively easy to treat and additionally allows the
equation set to still be solved when electron inertia is neglected, consideration of
the e�ect of the electron-electron collision operator is le until the next section.
If the edf is assumed to be initially isotropic, i.e. f̃1x(t = 0) = 0, then a convenient
rearrangement �nds

p f̃0′ + k2υ2

3
f̃0′ − eϕ̃′

kBT0
f (mb)e

eip + ν∗ei = f̃0(t = 0) (4.4.31)

Gauss’ law can be used to calculate the electric potential

eϕ̃′
kBT0

= − e2ñ′e
k2ε0kBT0

(4.4.32)

= − 4π
nek2λ2D ∫ ∞

0

(eip + ν∗ei)υ2 f̃0(t = 0) + k2υ4
3

eϕ̃′
kBT0

f (mb)e

p(eip + ν∗ei) + k2υ2
3

dυ (4.4.33)

= −4π
k2λ2D + RP1( i p

kυ2T

) ∫ ∞
0

(eip + ν∗ei) f̃0(t = 0)/ne
p(eip + ν∗ei) + k2υ2

3

dυ, (4.4.34)

where the p1 response function

RP1(ζ) = 4
3
√
π ∫

∞
0

t4e−t2
t2
3 − ζ(eiζ + i

t3 ξkλ(0)ei

) dt (4.4.35)

= 1 + 6ζ2R(√3ζ) (4.4.36)

in terms of the original response function introduced in eqs. (4.4.7) and (4.4.8). In
the collisionless limit electron inertia dominates over the electron-ion collisions
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meaning that it is acceptable to neglect the latter. ¿e zeroes of the denominator
k2λ2D + R in the absence of absence of electron-ion collisions are then given by
p0± = ( − 3√ 3π

8
1

k5λD
5 e−3/2k2λD2 ± i)ωpe, (4.4.37)

p1 = −0.26080kυ2T, (4.4.38)

p2± = (−1.12910 ± 2.02122i)kυ2T, (4.4.39)

p3± = (−1.47146 ± 2.29265i)kυ2T, (4.4.40)

p4± = (−1.75897 ± 2.52866i)kυ2T, (4.4.41)

showing that the p1 expansion leads a signicantly larger Landau damping decre-
ment than is observed in the fully anisotropic limit for small values of kλD.

Without Electron Inertia

In the absence of electron inertia the di�erential equation describing the dis-
tribution function becomes simpler, but �nding the asymptotic behaviour by
means of a Laplace transform is less straightforward. ¿e di�culty stems from
the presence of fractional poles in ϕ̃′(p) (the term in the denominator becomes
pν(0)ei + k2υ5/υ32T which induces singularities at �ve points in the complex plain
given by υ = 5

√
pν(0)ei gl sv2T[

3]/k2, only one of which is real), leading to an in-
verse power law decay of the temperature perturbation with time as opposed to
an exponential one. Direct analytic treatment of this would require an in-depth
understanding of generalised hypergeometric functions. Instead, we can use a
more direct approach employing an integrating factor; starting from the Vlasov
equation under the di�usive approximation we can rearrange to obtain

∂
∂t
(
f̃0ek

2υ2 t/3ν∗ei) = k2υ2

3ν∗ei e
k2υ2 t/3ν∗ei eϕ̃

kBT0
f (mb)e (4.4.42)

Ô⇒ eV
5uF(u) = F(u = 0) + V 5e−V 2

π3⁄2 ∫ u

0
eV

5u′ eϕ̃(u′)
kBT0

du′, (4.4.43)

where we have substituted the dimensionless variables u = ξk2λ(0)ei υ2Tt/3,V =
υ/υ2T, F = υ32T f̃0/ne. In order to obtain the asymptotic behaviour of the electric
potential we can make the ansatz that its asymptotic expansion at u = ∞ is
given by eϕ̃

kBT0
= θ(t − 1)∑{α} cα

uα + O(uγ) where the Heaviside step function θ
is used to avoid singularities at t = 0 when evaluating integrals, γ > max{α},
and the countable set of positive real numbers {α} is to be determined; while
this ansatz may seem like putting the cart before the horse, it is not only backed
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up by considering the Laplace transform of ϕ, but also with simulations using a
purpose-built code dill (see below). Pursuing this route we can calculate the
contribution of each term in the asymptotic series to the inde�nite integral in
eq. (4.4.43) using integration by parts:

e−V 5u ∫ u

1

eV
5u′

uα
du = 1

V 5uα

(
1 + α

V 5u
+ α(α + 1)

V 10u2
+ . . .) (4.4.44)

Note that the lower limit of integration was changed from 0 to 1 to account for the
initial step function θ(t− 1). Unfortunately, this series is divergent andmore prob-
lematically introduces singularities in the distribution atV = 0. Consequently, we
truncate the series a er the �rst term and accept that this only enables calculation
of cα for values of α betweenmin{α} andmin{α}+1. ¿e density moment of the
resulting expression for the distribution function can be substituted into Gauss’
law:

eϕ̃′
kBT0

= − e2ñ′e
k2ε0kBT0

(4.4.45)

Ô⇒ ∑{α}
cα
uα

= − 4π
k2λ2D ∫ ∞

0
V 2e−V 5uF(u = 0) dV (4.4.46)

− 4√
πk2λ2D

∑{α}
cα
uα ∫

∞
0

V 2e−V 2
dV +O(u−min{α}−1) (4.4.47)

= − 4π
1 + k2λ2D ∫ ∞

0
V 2e−V 5uF(u = 0) dV +O(u−min{α}−1). (4.4.48)

All that is needed now is to calculate the asymptotic expansion of the �nal integral
(this can be done using Watson’s Lemma and is detailed in appendix b.7) and
then equate coe�cients. For an initial Maxwellian perturbation F(u = 0) =
(V 2 − 3⁄2)e−V 2

π−3⁄2 T̃e(u = 0)/T0 we �nd
eϕ̃′
kBT0

= 1
1 + k2λ2D

4
5
√
π

(
3Γ[3⁄5]
2u3⁄5 + 4∑

m=1
(−1)m
m!

(m + 3⁄2)
Γ
[ 3+2m

5
]

u(3+2m)/5
)
T̃e(u = 0)

T0
+O(u−8⁄5 ).

(4.4.49)
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figure 4.17: Simulated electric potential and temperature perturbation amplitudes
predicted by the dill code compared to the analytic asymptotic expansion for an initially
Maxwellian perturbation F = (V 2 − 3⁄2e−V 2

π−3⁄2 T̃e(u = 0)/T0. ¿e coe�cient 1.008 ≈
6Γ(3⁄2)/5√π.
Similarly, we can also calculate the evolution of the temperature perturbation

T̃e = 8π
3 ∫ ∞

0
V 2(V 2 − 3⁄2)F dV T0 (4.4.50)

= 8
3
√
π ∫

∞
0

V 2(V 2 − 3⁄2)2e−V 2−V 5u dV T̃e(u = 0) +O(u−8⁄5 ) (4.4.51)

= 4
5
√
π

(
3Γ[3⁄5]
2u3⁄5 − 7

2u
+ . . .

. . .
4∑

m=2
(−1)m
m!

(2⁄3m(m + 1) + 2m + 3⁄2)
Γ
[ 3+2m

5
]

u(3+2m)/5
)
T̃e(u = 0)

+O(u−8⁄5 ). (4.4.52)

For this simulation
the dill code used
Gauss’ law to
calculate the electric
potential with a
normalised Debye
length of
kλD = 0.04, and
employed a 500 cell
velocity grid
extending to 10υ2T
with a normalised
timestep ∆u = 0.01.

¿us, for an initially Maxwellian temperature perturbation both the normalised
electric potential and temperature perturbation amplitude damp asymptotically
at the same rate 1.008/u3⁄5 . ¿is is supported by simulations using the dill
code with the collision term neglected (i.e. ζ = 0), which is purpose-built to
test the di�usion approximation at very short-wavelengths (see section 3.1.4).
¿e simulated electric potential and temperature perturbation amplitudes are
compared to the derived expression in �g. 4.17; showing that this indeed describes
the asymptotic behaviour.
Note that the slowest damping term depends purely on the initial distribution

function. Speci�cally, if the lowest order term in polynomial in front of the
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Gaussian term e−V 2
scales as V n then the corresponding asymptotic would be

proporional to 1/u(3+n)/5. Irrespective of the initial distribution function, we
observe that this inverse power law behaviour means that both the damping
rate γ = − 1

T̃e
∂T̃e
∂t and the heat �ow relative to the temperature amplitude Q̃x/T̃e

decrease to zero over time as 1/u, in contrast to the correct collisionless limit
where these values approach constants respectively (with the damping rate being
proportional to k).
In conclusion, we have shown that intrinsic to the di�usive approximation are

qualitative implications on the behaviour of temperature sinusoids that make it
inappropriate and unreliable in the purely collisionless limit. As we have shown
that exponential damping still occurs both when electron inertia is retained under
a p1 expansion and when it is neglected while accounting for higher degrees of
anisotropy (as shown for the eic model in section 4.4.1), it is therefore understood
that only a combination of these assumptions results in the non-physical inverse
power law damping derived here. Furthermore, we shall see in section 4.5.1 that
even including the smallest amount of electron-electron collisions will also restore
the expected exponential damping (with a consequent asymptotic dependence
of the heat �ow on the nonlocality parameter as Q̃x∼(kλ(B)ei )−1⁄5 ); this is due to
di�usion in velocity space allowing the zero velocity electrons to respond to
modi�cations of the distribution function.

4.4.3 Behaviour of snb model in the collisionless regime

¿e absence of time derivatives in the snb equation eq. (2.3.25) makes analysis of
its behaviour in the collisionless regime a lot simpler. In this limit the collisional
‘screening’ term can be neglected rendering the equation as

#»∇ ⋅ λei∗ (E)
3

#»∇δ f0 = #»∇ ⋅ { f (mb)1 , g(mb)1 }
3

, (4.4.53)

giving the nonlocal contribution to the heat �ow as

δQ̃x = −2πme
3 ∫ ∞

0
υ5{ f (mb)1 , g(mb)1 }dυ = −Q̃(B). (4.4.54)

¿erefore the heat �ow predicted by the snb model in the truly collisionless limit
is identically zero rather than a constant that is proportional to the amplitude
of the temperature sinusoid. ¿is can be thought of as stemming naturally from
the di�usive approximation upon which the snb model is based and can not be
avoided in a physical way without either introducing terms with higher-order
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anisotropies or taking into account electron inertia in some way. It turns out that
as nonlocality increases the heat �ow decreases as ∼1/k (similarly the thermal
conductivity decreases proportional to 1/k2), this is in contradiction to claims
made by Schurtz et al. (2000) that the nonlinear electric �eld modi�cation to the
electron-ion mfp corrects for this. ¿e derivation of this is le until section 4.6.3.

4.5 regime of collisionless suprathermals

¿e rate at which the heat �ow approaches the wavelength-independent value
derived in the previous section (eq. 4.4.19, eq. 4.4.27) with decreasing wavelength
is remarkably slow; even at kλ(B)ei ≈ 100 the percentage di�erence predicted by the
eic model is still greater than 10%. A good approximation for the dependence
of the absolute heat �ow on the nonlocality parameter kλ(B)ei in the collisionless
regime, suggested by Bychenkov et al. (1994), is given by

∣Q̃x(kλ(B)ei →∞)∣ = 3⁄2 χ1neυ2TkBT̃e(1 − c∞/(kλ(B)ei )η), (4.5.1)

where the parameters η = 3⁄7 , c∞ = 9√Z1−η/2π ≈ 3.6Z 2⁄7 were calculated analyt-
ically for the Lorentz limit in a previous work by Maksimov and Silin (1993, 1994),
while Bychenkov et al. found that substituting c∞ with c1 = 1.8Z 2⁄7 gave a better
�t to spring simulations performed by Epperlein (1994).
¿e method used by Bychenkov et al. to derive the above expression involves

retaining a purely di�erential approximation for the originally integro-di�erential
linearised electron-electron collision operator C(L)

ee0 that is valid at low velocities

C(L)
ee0(δf̃0)/ f (mb)e ≈ 2

3
√
π

Γee
neυ2T

1
υ2

∂
∂υ
υ2 ∂ψ̃
∂υ
, (4.5.2)

where ψ̃ = f̃0/ f (mb)e . ¿is is to take into account of the fact that C(L)
ee0 experiences a

divergence at υ = 0. ¿erefore, slow moving electrons will still experience appre-
ciable collisions even at very low degrees of average collisionality where the faster
suprathermal electrons are essentially collisionless. Additionally, Bychenkov et al.
employed the di�usion approximation to simplify the analysis, but replaced the
corrected electron-ion collision frequency ν∗ei appearing in the #»

f 1 equation with
ν∗1 = ν∗eiH(kυ/ν∗ei), where H(x) =√1 + (πx/6)2, to take into account the e�ect of
higher order anisotropies. (¿e approach used byMaksimov and Silin (1993, 1994)
is much more thorough but provides the same �nal result.) Consequently, the
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equation solved by Bychenkov et al. in this regime where only the suprathermal
electrons are considered collisionless is given by

∂ψ̃
∂t

+ k2υ2

3ν∗1
(
ψ̃ − eϕ̃

kBT0

) = 2
3
√
π
neΓee
υ2T

1
υ2

∂
∂υ
υ2 ∂ψ̃
∂υ
. (4.5.3)

¿e characteristic velocity beyond which the collision term becomes negligible
is given by υ∗ = υ2T(2/√πZξk2λ(0)2ei )1/7. Making the substitution w = υ/υ∗ and
rearranging we obtain,

∂
∂w

w2 ∂ψ̃
∂w

− w7

H(kυ/ν∗ei)
(
ψ̃ − eϕ̃

kBT0

) = −3√π
2

Z
ν(0)ei

V 2∗w2 ∂ψ̃
∂t
, (4.5.4)

where V∗ = υ∗/υ2T.
4.5.1 Neglecting the anisotropic correction

As the term approximating the collisions ( ∂
∂ww

2 ∂
∂w ) only contributes at lower

velocities, it is appropriate to �rst solve the second-order ode neglecting the high-
velocity anisotropic correction (i.e. assuming H = 1). Under this simpli�cation
the ode can be converted into a modi�ed Bessel equation of order 1⁄7 , from
which an expression for ψ̃′ = ψ̃ − eϕ̃

kBT0
can be obtained using a Green’s function

approach:

ψ̃′(w) = 3
√
π

7
√
w

Z
ν(0)ei

V 2∗
(
K(B)
1⁄7 (2⁄7w

7⁄2 ) ∫ w

0
w′3⁄2 I(B)1⁄7 (2⁄7w

′7⁄2 )∂ψ̃′
∂t

(w′) dw′

+ I(B)1⁄7 (2⁄7w
7⁄2 ) ∫ ∞

w
w′3⁄2K(B)

1⁄7 (2⁄7w
′7⁄2 )∂ψ̃′

∂t
(w′) dw′

)
.
(4.5.5)

In order to obtain a more intuitive feel for the collisionless suprathermals
without having to deal with integrals of Bessel functions (which had already been
done by Maksimov and Silin), Bychenkov et al. used an approximate form for
ψ̃′ that has identical asymptotic behaviour in the low and high-velocity limits as
that above. As Bychenkov et al. were focussing on ion-acoustic waves, they only
considered a source term corresponding to an oscillating Maxwellian density
perturbation

∂ψ̃′N
∂t

= −iω Ô⇒ ψ̃′N ≈ 3
√
π

2
iωZ
ν(0)ei

V 2∗ cψ
1 + cψw5 , (4.5.6)
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figure 4.18: Comparison of Bychenkov et al.’s approximate expression for the edf in
the collisionless suprathermals given a Maxwellian density perturbation with assumed
imaginary angular frequency ω = −2iν(0)ei υ

2
2T/3√πZυ2x , ψ̃′N ≈ cψ/(1 + cψw5) with the

exact analytic solution given in terms of modi�ed Bessel function form in eq. (4.5.5).

where cψ = Γ(3⁄7)Γ(2⁄7)/73⁄7Γ(1⁄7) in terms of gamma functions or 0.432 numeric-
ally. ¿e success of this approximation compared to the exact solution is shown
in �g. 4.18.
However, we are instead interested in the decay of temperature perturbations

and it is therefore more appropriate to use the form given by the eic model’s
quasistationary assumption

∂ψ̃T
∂t

= −( υ2

υ22T
− 3
2

) 2ikQ̃x
3nekBT0

. (4.5.7)

For su�ciently small υ∗ ≪ υ2T the quadratic term only contributes at higher
velocities and therefore a similar approximation for

ψ̃′T ≈ ikZλ(0)ei 3
√
π

2
cψ(w2V 2∗ − 3⁄2)V 2∗

1 + cψw5
2Q̃x

3neυ2TkBT0
, (4.5.8)
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turns out to be valid. ¿e heat �ow can be obtained by taking the temperature
moment compared to the background

T̃e
T0

= 8π
3ne ∫

∞
0
υ2(meυ2/2kBT0 − 3⁄2)ψ̃′T f (mb)e dυ (4.5.9)

= 8V 3∗
3
√
π ∫

∞
0
w2(w2V 2∗ − 3⁄2)ψ̃′Te−w2V 2

∗ dw (4.5.10)

≈ 8⁄3 ikZλ(0)ei V
5∗ ∫ ∞

0

cψ(w2V 2∗ − 3⁄2)2w2

1 + cψw5 e−w2V 2
∗ dw Q̃x

neυ2TkBT0
. (4.5.11)

In order to evaluate the behaviour of the heat �ow as the collisionless regime is
approached, the asymptotic behaviour of the above expression for small V∗ must
be computed. Unfortunately, naïvely Taylor expanding e−w2V 2

∗ = 1−w2V 2∗ . . . and
evaluating each integral in turn does not reveal the exact nature of the in�nities
that occur. A more careful analysis using the Mellin transform and Oosthuizen’s
(Oosthuizen 2011) converse mapping theorem presented in appendix b.8 reveals
that the asymptotic behaviour of the integrals of concern at V∗ = 0 is given by

∫ ∞
0

w2

1 + cψw5 e
−w2V 2

∗ dw = π
5c 3⁄5ψ sin(3π/5) +O(V 2∗ log(V∗)), (4.5.12)

∫ ∞
0

w4

1 + cψw5 e
−w2V 2

∗ dw = 1
cψ

( − log(V∗) − γE/2) +O(V 2∗ ), (4.5.13)

and ∫ ∞
0

w6

1 + cψw5 e
−w2V 2

∗ dw = 1
c 7⁄5ψ

( − 1
2V 2∗ − π

5 sin(7π/5)
) +O(V 2∗ ). (4.5.14)

¿is con�rms that only the �rst integral is necessary in determining the asymp-
totic behaviour in the short-wavelength limit giving

T̃e
T0

≈ 6π
5
c 2⁄5ψ cosec(3π/5)ikZλ(0)ei V 5∗ Q̃x

neυ2TkBT0
+O(V 7∗ log(V∗)) (4.5.15)

≈ 2.83ikZλ(0)ei V 5∗ Q̃x
neυ2TkBT0

+O(V 7∗ log(V∗)) (4.5.16)

Substituting V∗ with its de�nition and rearranging obtains the heat �ow and
thermal conductivity to be

Q̃x ≈ −0.324 iξ5⁄7 k 3⁄7 λ(0)3⁄7ei

Z 2⁄7 neυ2TkBT̃e, κ∥ ≈ 0.324 ξ5⁄7 λ(0)3⁄7ei

Z 2⁄7 k 4⁄7
neυ2TkB. (4.5.17)

Before better accounting for higher-order anisotropies let us �rst compare
this analysis with corresponding results produced by the eic model using only 2



table 4.6: Coef-
�cients describing
the asymptotic
short-wavelength
behaviour of the
heat �ow under
the quasistationary
assumption when
only two Legendre
moments are used
to describe the edf.
Results with �nite Z
were obtained with
the eic code using
2l,160l moments,
while those in the
Lorentz limit were
derived analytically.

Z η′ c′∞
1 0.385 1.439

8 0.375 0.718

20 0.374 0.535

∞ 0.429 0.316
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figure 4.19: Under the quasistationary assumption and di�usion approximation the
heat �ow increases unboundedly at high degrees of nonlocality as a power law; best �t
coe�cients for the asymptotic behaviour observed when using 2l,160l eic moments are
given in table 4.6.

Legendre moments (i.e. p1). Figure 4.19 shows that the eic heat �ow takes on a
power law behaviour at very high degrees of nonlocality (

√
ξZkλ(B)ei > 100) for

ionisations of Z = 1, 8, 20 with an index that is not too far below the predicted
3⁄7 . For sake of comparison with the above equation modi�ed �tting coe�cients
(denoted by a prime, and given in table 4.6) have been de�ned to describe this
asymptotic behaviour;

√
Z/ξQ̃x = c′∞(√ξZkλ(B)ei )ηneυ2TkBT̃e. (4.5.18)

¿e observed similarity between the eic results and eq. (4.5.17) adds con�d-
ence in the validity of our analysis even at low ionisations where the e�ect of
electron-electron collisions on the anisotropic part of the edf is not signi�cantly
overpowered by electron-ion collisions.
It may seem surprising that the current analysis predicts that the heat �ow

grows unboundedly with decreasing wavelength, contradicting earlier �ndings
presented in section 4.4.2 that the heat �ow in the purely collisionless regime
under the di�usive approximation should be zero. ¿e source of this contradiction
is the quasistationary assumption made here; at high degrees of nonlocality the
time-derivative term ∂ψ̃

∂t will look very di�erent to that assumed by the eic model.
To better understand the e�ect of low-velocity electron-electron collisions

while properly including the time-derivative in the di�usion approximation,
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simpli�ed electron-electron collisions were incorporated in the dill code (see
section 3.1.4 for more details). ¿is revealed that, while nonstationarity plays a
negligible role for low and intermediate values of kλ(B)ei , it becomes increasingly
important at shorter wavelengths leading to an asymptotic damping rate of γD∼4⁄5 .
4.5.2 E�ect of the anisotropic correction

We can go a step further and properly include the e�ects of higher-order aniso-
tropies, which are crucial in the collisionless limit, by reintroducing the correction
H. ¿e relationship between the temperature perturbation and the heat �ow can
be split up into two integrals the di�usive part studied above and the anisotropic
correction.

T̃e
T0

≈ 8
3
V 5∗ ∫ ∞

0

H(kλei∗ )(w2V 2∗ − 3⁄2)2w2

1/cψ +w5 e−w2V 2
∗ dw

iZkλ(0)ei Q̃x
neυ2TkBT0

(4.5.19)

≈ 8
3
V 5∗
(
∫ ∞
0

(√
1 + (πξkλ(0)ei w4V4∗ /6)2 − 1)(w2V 2∗ − 3⁄2)2

w3 e−w2V 2
∗ dw

+ ∫ ∞
0

cψ(w2V 2∗ − 3⁄2)2w2

1 + cψw5 e−w2V 2
∗ dw

)
iZkλ(0)ei Q̃x
neυ2TkBT0

.

(4.5.20)

¿e �rst term in the asymptotic expansion as kλ(0)ei → ∞ arising from the new
integral can be quite simply calculated by taking the high-velocity limit for the
square root and turns out to be proportional to (kλ(0)ei )

3⁄7 . ¿e subsequent terms
are slightly more complicated to derive (again requiring a Mellin transform
approach) but, fortunately, these all decrease with kλ(0)ei rather than increase or
stay constant, and can therefore be neglected when only interested in the �rst
two terms.

∴ T̃e
T0

≈ (5π
18
ξkλ(0)ei V

7∗ + 2.83V 5∗
) iZkλ(0)ei Q̃x
neυ2TkBT0

(4.5.21)

Ô⇒ Q̃x ≈ −3⁄2 i χ1(eic)nemeυ2TkBT̃e
1 + 3.05Z 2⁄7/ξ5⁄7 k 3⁄7 λ(0)3⁄7ei

. (4.5.22)

¿e factor 3.05 appearing in the �nal expression above turns out to be between
the analytic 3.6 and spring-�tted 1.8 given by Bychenkov et al. in eq. 13 of their
1994 paper.
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4.5.3 Comparison to vfp

To explore the accuracy of this analysis, particularly at lower ionisations, we can
compare with vfp simulations . While, it was not possible to obtain meaningful
results at such low collisionalities with kipp or impact due to the oscillatory
behaviour (intrinsic to this system due to the increasing role of electron inertia
at low collisionalities) obscuring the analysis of the damping rate, Epperlein’s
spring results conveniently provided by Bychenkov et al. are fortunately valid
at very short wavelength as the code can distinguish between real and imaginary
contributions to the heat �ow. However, note that the spring thermal con-
ductivity reduction given in the paper are absolute values, while we have mostly
focussed on the real part. Furthermore, the eic model was used as an additional
comparison using at least 40,40 Legendre-Laguerre moment due to the slow
convergence of the Hermite-Laguerre basis explained in section 4.4.1.
Values for η and c∞ were obtained by plotting the relative di�erence between

the actual heat �ow and that predicted in the purely collisionless limit (−3⁄2 i χ1eicneυ2TkBT̃e
for the eic model) against nonlocality parameter kλ(B)ei on a log-log axis and
�tting a straight line (shown in �g. 4.20). ¿e alternative coe�cient c1 used to
reduce errors when �tting over a wide range of collisionalities was obtained us-
ing nonlinear �tting. All coe�cents calculated are summarised in table 4.7 for
Z = 1, 2, 4, 6, 8 (achieving convergence at high degrees of nonlocality with eic at
higher ionisations than Z = 8 requires a prohibitive number of moments). Both
the index η and the coe�cient c∞ were found to vary weakly with Z and have
similar orders of magnitude to those predicted by Bychenkov et al. However, the
value of η obtained from eic data does not seem to be approaching the value, 3⁄7 ,
predicted by Bychenkov et al. with increasing Z but rather something less than
half this value. ¿ere are two possible reasons for this; (1) we have not performed
the �tting process in the correct range but need to go to lower collisionalities that
are beyond the region of convergence for the number of moments used, or (2) the
anisotropic correction H is not su�cient in accounting for all higher-order aniso-
tropic e�ects. ¿e limited numerical results available from the assumingly exact
spring code infer a value for η at Z = 1, 8 within 0.5–1% of the eic prediction,
but the values for c∞ are about twice as big.
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figure 4.20: At high degrees of nonlocality the percentage di�erence between the eic
heat �ow and its value in the collisionless limit, Q̃x (kλ(B)ei →∞) = −3⁄2 χ1 (eic) ineυ1TkBT̃e,
can be well approximated by a power-law dependence on kλ(B)ei . All eic values were
obtained using at least 40 Legendre and 40 Laguerre modes.

table 4.7: Values for coe�cients appearing in equations eq. (4.5.1) and eq. (4.6.6)
obtainedwith eic model (using at least 40,40 Legendre-Laguerremoments) and available
spring data provided in Bychenkov et al. 1994 (in parentheses), the latter is presumed
to be more accurate.

Z η c∞ c1

1 0.32(0.32) 0.62(1.4) 0.83(1.5)
2 0.27 0.64 1.0
4 0.22 0.67 1.3
6 0.21 0.72 1.5
8 0.20(0.20) 0.75(0.92) 1.7(2.8)
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4.6 model comparison at arbitrary collisionality

4.6.1 Optimal �tting functions

So far, we have derived and quanti�ed the wavelength dependence of the thermal
conductivity/heat �ow and thermoelectric coe�cient/electric �eld close to the
local limit to be

Q̃x(kλ(B)ei → 0)
Q̃(B)
x

= κ∥(kλ(B)ei → 0)
κ(B)∥

= 1 − bQ(Z)Zk2λ(B)2ei , (4.6.1)

and Ẽx(kλ
(B)
ei → 0)
Ẽ(B)x

= β∥(kλ(B)ei → 0)
β∥(B) = 1 − bE(Z)Zk2λ(B)2ei , (4.6.2)

while in the collisionless limit the heat �ow was shown to vary as

∣Q̃x(kλ(B)ei →∞)∣ = 3⁄2 χ1neυ2TkBT̃e(1 − c∞/(kλ(B)ei )η), (4.6.3)

Once again, it was the unfortunate absence of values for the thermoelectric
coe�cient from the spring and eic codes that restricted the study of the electric
�eld at very short wavelengths. Additionally, the contributions of various di�erent
terms such as those related to electron inertia and higher-order anisotropies have
also been analysed.
One analytic �t designed to combine these two limits suggested by Bychenkov

et al. (1994 eq. 14, 1995 eq. 57), is given by

κ(Bychenkov)∥
κ(B)∥

= (akλ(B)ei + 1 + bQZk2λ(B)2ei

1 + bQZk2λ(B)2ei /ac1(kλ(B)ei )1−η
)−1

, (4.6.4)

where Bychenkov et al. suggested c1 = 2.1Z 2⁄7 ξ4⁄7 and we have incorporated the
convenient contraction a = κ(B)∥c /(3⁄2√2χ1) . While reproducing the correct beha-
viour in the asymptotic limit this expression unfortunately does not follow the
correct dependence on the nonlocality parameter in the semicollisional regime
and instead gives

κ∥(Bychenkov)(kλ(B)ei → 0)
κ(B)∥

= 1−akλ(B)ei + bQZac1 k2−ηλ(B)2−ηei −(bQZ−a2)k2λ(B)2ei . . .

(4.6.5)
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It was therefore desirable to come up with an alternative interpolation between
the collisional and collisionless regimes that guarantees correct asymptotic beha-
viour. One such possibility is

κ(Brodrick)∥
κ(B)∥

= (1 +( 1
bQZk2λ(B)2ei

+ 1
akλ(B)ei (1 + c1(kλ(B)ei )−η)

)−1)−1
, (4.6.6)

using the values of c1 given in table 4.7, which were obtained by optimising the
�t for kλ(B)ei < 1 . ¿is additionally ensures that the relative thermal conductivity
always falls below both unity and the purely collisionless limit, while always being
above the expressions (4.6.1) and (4.6.2) given at the beginning of this section.
A di�erent approach was suggested by Ji and Held (2014); this involved provid-

ing a closure for the thermal conductivity in con�guration space

Khh(s) = −(d + a exp(−b∣s∣c)) log(1 − α exp(−β∣s∣γ)), (4.6.7)

where s(x) = ∫ x0 dx′/√2λ(B)ei (x′) is an integrated distance in mean free paths and
the numerical coe�cients a, b, c, d , α, β, γ for hydrogen (Z = 1) are given in Table
I of Ji and Held 2014. ¿e heat �ow can then be found by a convolution

Qx(x) = −υ2TkBTe2 ∫ ∞
−∞ Khh(s − s′)ne(s′)∂ log(Te(s′))∂s′ ds′ (4.6.8)

or in our speci�c case of a temperature sinusoid, by means of a Fourier cosine
transform

Q̃x = − ikλ(B)ei neυ2TkBT̃e√
2 ∫ ∞

−∞ Khh(s′) cos(√2kλ(B)ei s′) ds′. (4.6.9)

¿is gives the dimensionless thermal conductivity to be

κ∥c = 2 ∫ ∞
0

Khh(s′) cos(√2kλ(B)ei s′) ds′. (4.6.10)

Ji and Held’s con�guration space �t for hydrogen does very well at reproducing
the asymptotic behaviour described at the beginning of this section; substituting
cos(

√
2kλ(B)ei s′) with the �rst two terms of its Taylor series gives κ(B)∥ = 3.205

and bQ = 50.1, which is not too far from the value calculated by the eic model
appearing in table 4.4 (bQ = 43.5). Behaviour in the collisionless regime can be
assessed using analytical methods suggested by Wong and Lin (1978) and Dai
and Naylor (1992); this essentially involves �rst computing the asymptotic series
for Khh(s) near the origin, changing variables to t = −is and �nally applying
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Watson’s Lemma (Watson 1916). Further details are given in appendix b.10 and
identi�es χ1 = π(d + a)γ/3 ≈ χ1(eic) to the initial precision of three signi�cant
�gures, η = γ = 0.417 which is very close to the predicted 3⁄7 ≈ 0.429, and
c1 = β sin(πγ/2)Γ(γ)/2γ/2π = 0.721.

Recall that the
major di�erence
between the two
codes is the
quasistationary
assumption made
by the eic model.

Let us now compare the success of the three �t functions introduced above,
along with the simpler κ∥/κ(B)∥ = 1/(1 + akλ(B)ei ) (suggested for use with the nflf
model by Dimits et al. (2014)) to actual data from spring simulations and
the eic model for ionisations of Z = 1 (�g. 4.21) and Z = 8 (�g. 4.22). It is
demonstrated that, depending on choice of coe�cients, our new �t given in
eq. (4.6.6) is able to accurately capture the behaviour of either spring or eic
data; thermal conductivity reductions predicted by the eic �t are within just 1%
of simulated values for kλ(B)ei < 6 (hydrogen) and kλ(B)ei < 2 (oxygen). Even up to
the limit of convergence for the number of Legendre-Laguerre moments used,
just beyond kλ(B)ei = 100, the error does not exceed 3% anywhere for hydrogen,
while for oxygen the maximum relative error observed was 13%. When instead
�tting to spring data, larger relative errors of 9% for Z = 1 and up to 25% for
Z = 8, perhaps these errors could be reduced by tuning the index η.
Considering the Ji-Held �t for hydrogen (unfortunately, Ji and Held did not

compute coe�cients for ionisations greater than 1), it is found to be almost
indistinguishable from our new �t to eic with the Ji-Held �t being ever so slightly
more accurate at lower collisionalities. At both ionisations, the �t provided by
Bychenkov et al. (1995) is seen to perform signi�cantly worse at low to moderate
wavenumbers than our new �t or that of Ji and Held. Curiously, the unphysical
increase in thermal conductivity observed here was not apparent in Figure 4
of the 1995 paper, suggesting that perhaps there was an error in transcribing
equation (57) in the paper. Finally, while the simplistic �t 1/(1 + akλ(B)ei ) does not
have the same issues of nonphysicality as the Bychenkov �t, it was still found to
be especially poor at moderate collisionalities predicting relative errors in excess
of 50% for hydrogen and 150% for oxygen in the region of kλ(B)ei ≈ 1.
4.6.2 Using the new �t in the nflf model

Previously, the nflf model used the 1/(1 + akλ(B)ei ) �t to calculate the necessary
coe�cients. But we have just shown that this �t leads to errors exceeding 50%,
even at moderate collisionalities due to it only aiming to �t the special cases of
local and collisionless heat �owwith no regard to intermediate regimes. ¿erefore,
employing the much improved ‘Brodrick’ �t to obtain coe�cents should increase
the accuracy of the model.
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figure 4.21: Comparison of the analytic �ts given in eqs. (4.6.4), (4.6.6) and (4.6.10)
to spring and eic data for hydrogen (Z = 1). ¿e two versions of the new ‘Brodrick’ �t
employ di�erent coe�cients (all given in table 4.7) to recover the trends arising from the
assumptions of each code.



4.6 model comparison at arbitrary collisionality 142

10−3

10−2

10−1

100 Z = 8

¿
er
m
al
co
nd
uc
tiv
ity

re
du
ct
io
n
(κ
∥/κ(

B) ∥)

10−3 10−2 10−1 100 101 102

10−2

10−1

100

kλ(B)ei

Q̃
x/n e

υ 2
T
k B
T̃ e

Bychenkov
1/(1 + akλ(B)ei )
spring
Brodrick (spring)
eic (50l,50l)
Brodrick (eic)

[ 25th May 2018 at 0:02 – Jonathan Brodrick ¿esis version 0.2 ]

figure 4.22: Comparison of the analytic �ts given in eqs. (4.6.4), (4.6.6) and (4.6.10)
to spring and eic data for fully-ionised oxygen (Z = 8). ¿e two versions of the new
‘Brodrick’ �t employ di�erent coe�cients (all given in table 4.7) to recover the trends
arising from the assumptions of each code.
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figure 4.23: Comparison of the new analytic �ts given in eq. (4.6.6) to the newly
calibrated nflf (using coe�cients given in appendix a with p.e.max = 2.5%) and snb
models for hydrogen.

Coe�cients were derived for hydrogen and oxygen using the constrained
variable projectionmethod described in section 3.4 and compared to the analytical
�t in �gs. 4.23 and 4.24 respectively. Choosing to optimise the range in which
the nflf model agrees with the new �t by p.e.max = 2.5%, such accuracy was
achieved up to nonlocalities of kλ(B)ei = 1.6 for hydrogen and 0.3 for oxygen when
using three Lorentzians, while with six Lorentzians this increased to kλ(B)ei = 33
and 5.9 respectively. A detailed table of optimal coe�cients using any number of
Lorentzians between 2 and 12 (inclusive) is provided in appendix a.

4.6.3 Behaviour of the snb model across all collisionalities

So far we have only analysed the snb model in the semicollisional and the colli-
sionless regimes; but in fact the behaviour of the snb model at all collisionalities
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figure 4.24: Comparison of the new analytic �ts given in eq. (4.6.6) to the newly
calibrated nflf (using coe�cients given in appendix a with p.e.max = 2.5%) and snb
models for oxygen.

in the low-amplitude limit can conveniently be obtained completely analytically.
¿is is in part due to the fact that the electric �eld correction to the electron-ion
mfp does not contribute when the amplitude of the temperature sinusoid is truly
in�nitesimal:

1
λei∗(E) =

1
λei∗ +

(1 + β∥)∣#»∇kBTe∣
1⁄2meυ2

(4.6.11)

Ô⇒ λei∗(E) = λei∗(1 − (1 + β∥)k∣sin(kx)∣kBδTe
1⁄2meυ2

λei∗
)
. (4.6.12)

¿us the correction vanishes due to its proportionality to the temperature amp-
litude. For a more formal derivation of this claim see appendix b.9. Note that this
noncontribution of the electric �eld correction was not considered by Schurtz
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et al. (2000) due to their neglecting the amplitude-dependence of the electric
�eld.
Once the electric �eld contribution has been ignored, derivation of the snb

model prediction for δf̃0 is fairly straightforward if a bgk approximation for the
electron-electron collision operator is used. Starting from the continuum form of
the snb model and de�ning the velocity-dependent variable X(υ) = ξZk2λei(υ)2,

H̃(bgk) = − iZkλei
12r

V9{1,V 2 − 4}
1 + X/3r e−V 2

Q̃(B) dV . (4.6.13)

¿e total heat �ow is thus given by

Q̃(bgk)
x

Q̃(B)
x

= ∫ ∞
0

V9{1,V 2 − 4}e−V 2/12
1 + 32X(B)V8/27πr dV , (4.6.14)

where the velocity-independent parameter X(B) = ξZk2λ(B)2ei has been de�ned. As
in section 4.3.6, the curly brackets distinguish the original source term containing
#»

f (mb)1 = −(V 2 − 4)λei∗ f (mb)e
#»∇Te/Te (right) from the modi�ed source term with

#»g (mb)1 = −λei∗ f (mb)e
#»∇Te/Te (le ) used by Schurtz et al. in the standard implement-

ation of the model. While both integrals above can be expressed analytically in
terms of the exponential integral Ei, doing so is not very enlightening.
A similar analysis can be performed for the awbs collision operator, but an

integrating factor method must be used to solve the �rst-order ode in velocity-
space

H̃(awbs) = V 5

12
eX/24 ∫ V

∞ e−X′/24 iZkλei(V ′)V ′3{1,V ′2 − 4}e−V ′2 dV ′Q̃(B) dV .

(4.6.15)

¿e nonlocal correction to the heat �ow can then be found using integration by
parts

Don’t worry, despite
fractional roots of
negative numbers
all expressions
evaluate to purely
real numbers!

δQ̃(awbs)
x

Q̃(B)
x

= ∫ ∞
0

γ
( 5
4 ,

−X
24
)
e−X/24V9{1,V 2 − 4}e−V 2

3(−4X/24)1/4 dV (4.6.16)

Ô⇒ Q̃(awbs)
x

Q̃(B)
x

= ∫ ∞
0

γ
( 1
4 ,

−4X(B)V 8

27π
)
e−4X(B)V 8/27πV9{1,V 2 − 4}e−V 2

12(−4X(B)V8/27π)1/4 dV , (4.6.17)

is the ratio of the nonlocal to the local heat �ow, where γ is the incomplete gamma
function.
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¿ere is less of an
argument that the
awbs operator
should be tuned by
a multiplicative
constant as it is
based more directly
on the actual form
of Cee0 than the
bgk operator.

Recall that the use of the modi�ed source term −#»∇ ⋅ #»g (mb)1 (�rst term in the
curly brackets) with the awbs operator has already been ruled out in section 4.3.6
due to its underestimation of the initial nonlocal deviation of the heat �ow in the
semicollisional regime (parametrised by bQ) by a factor of almost 5. However,
computing the de�nite integral using the kinetic source term −#»∇ ⋅ #»

f 1 (second
term in curly brackets) numerically with Mathematica shows that the awbs
thermal conductivity can become negative for X(B) > 0.0154, which corresponds
to kλ(B)ei > 0.124/√ξZ. Such negative values of thermal conductivity should never
occur in the linearised problem considered here (i.e. decay of a small-amplitude
temperature perturbation) as it would result in instabilities at these wavelengths.
But again, this does not mean in and of itself that the awbs operator can never
be a good approximation for electron-electron collisions in other models, such
as the mn model which ensure positive de�niteness in an alternative way as well
as using a di�erent treatment of the electric �eld and return current
¿e consequences of the choice of collision operator on the performance of

the snb model for ionisations of Z = 1 and 8 are illustrated in �gs. 4.23 and 4.24
respectively. Speci�cally, the awbs snb model with the kinetic source term−#»∇ ⋅ #»

f 1 is compared to the original snb model using the modi�ed source term−#»∇⋅ #»g 1 and the simple bgk collision operator but with the new tuning factor r set
to two di�erent values—one which would recover the correct nonlocal deviation
in the semicollisional regime (r = 3.5 for hydrogen and 2.7 for oxygen) and
another which will be suggested in the next chapter to be the optimal choice for all
ionisations when relative temperature di�erences are large (r = 2).

Remember that the
rapid fall of the snb
heat �ow to zero is
intrinsic to the
di�usive
approximation
rather than some of
the model’s more
confusing
assumptions.

In both cases
the bgk snb is found to perform somewhat worse than the 3 Lorentzian nflf
model, reaching errors. of 30% as early as kλ(B)ei = 0.5(hydrogen)/0.14(oxygen)
with r = 2 and kλ(B)ei 1.1/0.2 when the fully tuned values of r are used. On the other
hand, using the awbs operator is clearly a bad choice due to the unphysical sign
change at rather low degrees of nonlocality.

4.7 conclusions

In this chapter, the behaviour of the electron heat �ow has been extensively
studied under a range of di�erent assumptions for a low-amplitude temperature
sinusoid. Some conclusions have also been made about the e�ect of nonlocality
on the electric �eld in the semicollisional and collisionless regimes. As a result, by
�tting to vfp and eic data we have suggested a new analytic Fourier space closure
eq. (4.6.6) that reproduces the correct asymptotic behaviour and is signi�cantly
more accurate and robust than that previously given by Bychenkov et al. (1995).
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Nevertheless, Ji and Held’s (2014) closure (currently only calculated for Z = 1)
is still found to be slightly more accurate than the new �t at high degrees of
nonlocality while using the same number of free parameters; but its con�guration
space formulation may be less convenient for use in certain nonlocal approaches
such as Fourier-based Landau �uid models (see section 2.3.6).
¿e new analytic �t was used to generate optimal coe�cients for the nflf

model and to calibrate the snb model in the semicollisional regime. Additionally,
a new interpretation of the snb function H was provided that recovered the
correct high-velocity behaviour in the semicollisional regime. By comparing
with vfp and analytic results, we can rank the models in terms of their overall
performance for the problem of a low-amplitude temperature sinusoid as follows:

1. ¿e nflf model,

2. ¿e eic model,

3. ¿e snb model using the bgk collision operator, a modi�ed source term con-
taining #»g (mb)1 , and a tuning factor r between 2 and 3.5

4. ¿e snb model using the awbs collision operator, the original kinetic source
term containing

#»

f (mb)1 , and no tuning factor.

¿is is of course neglecting the fact that the nflf model can surely not be
considered predictive, as it is designed to reproduce the analytic results. It is
only the eic model that is able to provide reasonable results over a wide range
of collisionalities a priori. In the next chapter we shall see whether or not this
ranking holds true for the top three models (we shall here dispense with further
study of the awbs-snb) in a case where the temperature di�erences are anything
but in�nitesimal.



¿e high preci-
sion of the value
of the Coulomb
logarithm here
does not, of
course, re�ect
the certainty to
which this can
be calculated,
but is merely the
value that allowed
a nice conver-
sion between
dimensional and
normalised units
when beginning
collaborative
comparisons
against impact
with the hydra
team in llnl.

5
TEST PROBLEMS WITH LARGE TEMPERATURE DIFFERENCES

Having thoroughly studied the performance of the eic, nflf and snb models
for a temperature sinusoid with a very small amplitude, it is now imperative
to investigate more realistic and fusion-relevant scenarios with large relative
temperature di�erences—such as might be observed between the core and the
divertor or between the hohlraum gas �ll and the hohlraumwall. A large variety of
relevant problems are presented in this chapter including thermal ramp relaxation
and laser heating under uniform ionisations and the relaxation of 1d pro�les taken
from a hydra simulation of a gadolinium hohlraum. However, the nflf and
eic models will only be reviewed for the �rst problem—thermal ramp relaxation
in hydrogen—a er which point they will be discarded due to the �nding that
their performance is signi�cantly worse than the snb model in the presence of
large relative temperature di�erences.
Unless stated otherwise the ‘separated’ version of the snb model using distinct

electron-ion and electron-electron mfp’s will be employed throughout rather
than the original ‘averaged’ version with a geometrically averagedmfp. Recall that
the only di�erence this makes under uniform ionisation is the way the electric
�eld correction a�ects the di�usion part of the snb equation, which can be
amended by use of a multiplier Emult. ¿e ‘separated’ version is explicitly shown
to provide an improvement to the standard ‘averaged’ version in the presence of
steep ionisation gradients in section 5.4 and shown to perform favourably.

5.1 thermal ramp relaxation in hydrogen

¿e �rst set of problems, presented in both this section and the next, concern
the relaxation of simple temperature ramps that �atten out into surrounding hot
and cold baths. ¿is has the advantages of allowing simple re�ective boundary
conditions and not requiring any external heating/cooling mechanisms that
would also need to be carefully calibrated between codes. Furthermore, the
use of large temperature baths increase the time until boundary e�ects become
important and avoid the possibility of the temperature di�erential dying out
completely before a ‘quasistationary’ heat �ux can be identi�ed. In all cases the
electron density and ionisation were homogeneous and �xed in time, with the
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electron-ion and electron-electron Coulomb logarithm both assumed to equal
logΛ = 7.09433.
For the case of hydrogen (fully-ionised with Z = 1), quantities will be discussed

in terms of reference quantities (T0, n0, etc.) encouraging the translation of the
problem to both icf- and mcf-relevant situations. ¿e temperature pro�le,
connecting hot and cold baths of temperatures of T0 and 0.15T0 respectively, was
a cubic ramp given by

Te/T0 =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 n′c ⩽ −75
0.575 − 0.85

300
n′c
(
3 −(n′c

75

)2)
n′c ∈ [−75, 75]

0.15 n′c ⩾ 75,
(5.1.1)

where n′c ∈ [−154, 100] is the cell number counting from the centre of the temper-
ature ramp. Cell size in mfp’s was uniform but varied between simulations to scan
a range of collisionalities. ¿e initial and �nal temperature pro�le is illustrated in
the top panel �g. 5.1 for the smallest cell-size used (∆x = 0.03λ(B)ei (T0)).
¿e vfp simulations performed with kipp predicted a gradual reduction

of the heat �ow from the local (due to using the initialisation method detailed
in section 4.1.2) to the nonlocal over an initial transient phase (over which the
temperature ramp �attened somewhat). Completion of the transient phase was
determined by the ratio of the kipp heat �ow to the expected local heat �ow
reaching a minimum. Upon completion, this ratio begins to slowly increase
as the thermal conduction �attens the temperature ramp and the ratio of the
scalelength to mfp increases (i.e. the thermal transport slowly becomes more
local). ¿is progression is illustrated for the steepest ramp in �g. 5.2, which shows
the evolution of the peak kipp heat �ow compared to the corresponding peak
local �ux as a function of time. ¿e transient is observed to last just under 2
collision times. Inclusion of the r = 2 snb model (which was most successful at
matching kipp data) shows how the quasistationary assumption is only valid
a er the transient period, and the observed convergence of the peak kipp �ux to
the snb is somewhat reminiscent of the ‘slowest damping mode’ interpretation
applied to the damping of a low-amplitude temperature sinusoid in the previous
chapter (see section 4.1.2).
¿e kipp temperature pro�le obtained at the end of the transient phase (for the

∆x = 0.03λ(B)ei (T0) ramp) was fed into the various nonlocal models to calculate
the associated heat �ux for this pro�le. ¿e Hermite-Laguerre basis was chosen
for the eic model as this proved to converge faster for this speci�c problem. Both



5.1 thermal ramp relaxation in hydrogen 150

0

0.2

0.4

0.6

0.8

1
Z = 1

T e
/T 0

Initial
t = 1.9τ(B)ei (T0)

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

r = 3.5
r = 2

x/λ(B)ei (T0)

Q
x/Q

fs
(T

0)

Local
Flux Limited
(f = 0.05–0.7)
eic
nflf
snb
kipp

figure 5.1: ¿e initial and �nal temperature pro�le for the steepest hydrogen cubic
ramp simulated with kipp are depicted in the top panel, while the heat �ow associated
with the kipp temperature pro�le at 1.9 collision times (just at the end of the initial
transient period) as a ratio of the free-streaming limit Qfs = nekBTeυ1T (for electrons
with energy kBT0) is depicted in the bottom panel. ¿ree Lorentzians were used for the
nflf model, and the eic employed 16,4 hl moments.

the eic and nflf models are seen to agree well with each other in �g. 5.1 (to
within 10% almost everywhere for the snapshot shown). Nevertheless, agreement
with kipp is not nearly as good; the models overestimate the peak heat �ux by
30–35% and do not predict the observed preheat into the cold region.
¿e snb model, however, is shown to perform much better here and does in-

deed predict preheat features. Schurtz et al.’s implementation choices (con�rmed
optimal in the previous chapter) of a bgk model electron-electron collision op-
erator with modi�ed source term −#»∇ ⋅ #»g 1 were used. ¿e full range of viable
options for the bgk tuning factor r were investigated, with the observation that
the lowest such value trialled (r = 2) best matched the peak heat �ux, to within
6%, rather than the r = 3.5 previously identi�ed as necessary to reproduce the
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figure 5.2: ¿e evolution of the peak kipp heat �ow is compared to the peak local and
snb heat �ows obtained by postprocessing instantaneous kipp temperature pro�les.

kinetic behaviour for a hydrogen temperature sinusoid in the semicollisional
regime. ¿is suggests that the latter value is not the universally optimal value for
all problems, and later in this chapter a case will be made for the former value
r = 2 to be preferable in a greater range of scenarios.
¿e wide range of heat �ow pro�les resulting from di�erent �ux-limiters

between 0.05 and 0.7 are also shown in �g. 5.1. ¿ese were obtained using the
formula 1/Q� = 1/Q(B) + 1/fQfs. A �ux-limiter of ∼0.25 best matched the peak
kinetic heat �ow, but in this case the peak is shi ed towards the hot rather than
the cold bath as observed in the kipp simulation. Similar results are observed
at all temperature ramp scalelengths investigated as illustrated in �g. 5.3, which
depicts the reduction in the peak heat �ow compared to the local prediction.

5.1.1 Attempting to improve the nflf model

¿ecapability of the nflf model to closelymatch the results of the eic for the case
of homogeneous density and ionisation seems fairly impressive, considering that
only 6 Lorentzians were needed for convergence compared to eic’s 64 moments.
¿is implies that the nflf is about 5 times faster (assuming the nflf’s second-
order ode’s take approximately twice the time to solve as eic’s �rst-order).
However, this result should not be too surprising as both models are based on
some kind of linearisation procedure, causing them to fail in almost exactly
the same way for a ‘nonlinear’ problem. For example, the lack of preheat or
spatial shi in peak location predicted by the models are features also observed
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figure 5.3: Ratio of peak heat �ow to that predicted classically against inverse
scalelength λ(B)ei /LT (calculated at the location of maximum heat �ow predicted by each
model) for snapshots from the hydrogen cubic ramp simulations using di�erent initial
gradients.

in the linear problem studied in the previous chapter. As for the snb model,
convergence was achieved with as few as 25 groups, corresponding to a very
slightly faster computation time than the eic model.
Improving performance of the nflf and eic models for large temperature

variations require approaches that would not a�ect the performance in the lin-
earised limit. For the eic, a simple method is nonlinear iteration; i.e. updating
the right-hand side of equation (2.3.43) by adding on nonlinear terms such as
eE∥
me

∂δfe
∂υ∥ −∑n wn

∂gn
∂s∥ from the initial calculation and repeating until convergence.

However, the computational time to apply the di�erential operators and separate
into eigenvector components would probably increase the computational time
by an undesirably large factor on the order of the number of moments used.
Conversely, a correct approach for improving the nflf model is not imme-

diately apparent, and probably requires deeper analysis of the link between the
model and the vfp equation. Nevertheless, it is conceivable that this could be
done without additional computational expense. One such possibility would be
to multiply both sides of all modi�ed Helmholtz equations by spatially-varying
functions D,W and then commute them with the divergence/Laplacian operat-
ors. Such a procedure would lead to the nflf heat �ow contributions obeying
the equation

[
q2jD + (aλ(B)ei )2

#»∇ ⋅ D #»∇]W #»Q j = p jDW #»Q (B). (5.1.2)
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Comparisonwith the analytical behaviour of the snb model in the semicollisional
regime suggested that D = 1/ne,W = Te4 could be reasonable �rst guesses.
Encouragingly, application of this nonlinear correction, shown in �g. 5.4,

greatly improves the accuracy of the nflf model at high and intermediate col-
lisionalities; in particular preheat is now properly predicted, making the nflf
comparable with the snb model. However, at the lowest collisionalities the degree
of preheat predicted by the new nflf model is far greater than that obtained
by kipp or snb; so much greater in fact that the peak heat �ux is overestimated
by over 30% with the nflf model. ¿is limitation of the simplistic nonlinear
correction trialled here could probably be circumvented by more sophisticated
forms of D andW , perhaps involving the temperature gradient scalelength itself.
But a clear way forward is not apparent.
Coupled with its ability to accurately capture very �ne scale e�ects, the new

ability of the nflf model to predict preheat (even if it can somewhat grossly
overestimate it at very low collisionalities) could arguably make it a powerful
tool for studying the potential e�ect of preheat in the sol on the divertor tem-
perature. However, the critical issue remains of the nflf model being unable
to accurately handle ionisation gradients (which may be important in studying
detached divertors) in its current form.

5.2 thermal ramp relaxation in helium and zirconium

Due to the failure of the eic and improved nflf models at accurately reproducing
vfp results in the presence of large relative temperature gradients, from this
point onwards only the snb model will be investigated. While the snb model
performed fairly satisfactorily for the hydrogen ramp relaxation, it was important
to ascertain whether this accuracy persisted at higher ionisations (values of Z).
Similar ramp relaxation problems were therefore investigated in helium (Z = 2)
and zirconium (Z = 40), ionisations indicative of those found in the hohlraum
gas-�ll and the highly ionised gold bubble .
Both due to higher ionisations beingmore relevant to hohlraum energetics, and

to maintain consistency with the next chapter where comparisons will be made
with other laser-plasma codes, dimensional units were used to re�ect similarity
with typical icf scenarios. Speci�cally, the uniform electron density was taken
to be 5 × 1020 cm−3 (characteristic of typical hohlraum gas �ll) with a Coulomb
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figure 5.4: Comparing the new nflf nonlinear correction D = 1/ne,W = Te4, with
the original D = 1,W = 1 for three di�erent ramp widths. Six Lorentzians were used in
all cases.
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logarithm of logΛ = 7.09433. ¿e reference temperature is taken to be T0 = 1 keV
and a tanh ramp is employed rather than the cubic ramp

Te/eV = 575 − 425 tanh(x/L), (5.2.1)

where L is the ramp half-width (corresponding to a straight line ramp with an
equivalent gradient at x = 0), with L ≈ 50 µm suggested by MMarinak at llnl
as most relevant to indirect drive.
¿e reason for the di�erent choice of ramp studied in the previous section is

merely historical: Initially a straight line ramp was studied (see section 6.3) but
the rapid change of gradient between the bath and the ramp led to unphysical
features in the vfp simulations, particularly at low collisionalities. To avoid this
the rampwas smoothed using the above tanh formula. When later trying to set up
a similar problemwith the kipp code for hydrogen the number of spatial cells was
limited by the number of processors per node available, 256; this meant that the
bath size had to be reduced if resolution in the ramp was not to be compromised.
It was therefore desirable to use a temperature pro�le that �attened out as quickly
as possible, but still in a smooth manner (i.e. continuous second derivative); the
cubic ramp meets this requirement.
Despite its arti�cial treatment of electron-electron collisions in the

#»

f 1 equation,
the impact vfp code was used to perform these simulations as it was the only
one available to the author at the time. Nevertheless, there were bene�ts in this
approach; by eliminating the treatment of anisotropic electron-electron collisions
as a possible source of discrepancy between the vfp code and snb model, other
assumptions could be focussed on. Furthermore, the same problem was later
studied with the k2 code in the presence of magnetic �elds (see section 7.2)
using a more complete treatment of electron-electron collisions, and di�erences
in thermal transport were observed to be not too signi�cant. ¿e simulations
presented here included electron inertia, although this was only switched on
a er the �rst two timesteps for the helium simulations in order for the local
form of

#»

f 1 to be rapidly obtained. Additional simulations were also performed
without any electron inertia but are not presented here. As always, re�ective
boundary conditions were used for scalar parameters such as electron density,
temperature and ionisation (corresponding to zero �ow conditions for the heat
�ux and electric �eld at the boundary) with the spatial grid extending from at
least −9L to 5L, with cell size ∆x = L/50. And the uniform velocity grid was
parametrised by ∆υ = 0.1υ2T(150 eV), υmax = 25υ2T(150 eV) corresponding to
electrons with energy 93.75 keV. ¿e timestep varied with L and Z, examples
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figure 5.5: Helium thermal ramp heat �ow pro�les resulting from the impact tem-
perature pro�le a er 12.1 ps relaxation.

being ∆t = 33.5 fs for the L = 50 µm helium run and ∆t = 17 fs for the L = 17.3 µm
zirconium run.

5.2.1 E�ect of tuning the electric �eld correction

One element of the snb model that can not be obtained by a direct analysis of
the vfp equations is the phenomenological limitation of the di�usive mfp by the
electric �eld

1
λ(E)

= 1
λ
+ ∣e #»E ∣
1⁄2meυ2

(5.2.2)

As demonstrated in section 4.6.3, this is a purely nonlinear correction. In this
chapter we now have the opportunity to explore the e�ect of the electric �eld on
the heat �ow for our test problems.
Recall that when �rst presenting the snb model in section 2.3.3, there were two

versions discussed: the original ‘averaged’ implementation using a geometrically
averaged mfp λe and a newer ‘separated’ model �rst presented by Nicolaï et al. in
2006 using distinct electron-electron and electron-ion mfp’s. In the ‘separated’
version it is the electron-ion mfp that appears in the di�usive part of the snb
equation (2.3.25) and is subject to the electric �eld correction. When converting
from the ‘averaged’ to the ‘separated’ version, the original snb equation (2.3.19)
must be multiplied by a factor

√
λee/λei∗ =√Zξ/r. ¿erefore, in order for the

electric �eld correction to have an identical e�ect in the ‘separated’ and the
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figure 5.6: Zirconium thermal ramp heat �ow pro�les resulting from the impact
temperature pro�le a er 3 ps relaxation.
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scalelength λ(B)ei /LT (calculated at the location of maximum heat �ow predicted by each
model) for snapshots from the helium tanh ramp simulations using di�erent initial
gradients.
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‘averaged’ models, the ‘separated’ electric �eld must be multiplied by this same
factor (represented by the factor Emult). Of course, there is no a priori reason
why it should be the average mfp rather than just the electron-ion part is a�ected,
and so both possibilities Emult =√Zξ/r and Emult = 1 as well as Emult = 0 shall
be trialled.
Comparing these three options for the L = 50 µm helium ramp by postpro-

cessing the 12.1 ps impact temperature pro�le in �g. 5.5 seems to suggest the
electric �eld limitation does not have a large e�ect on the heat �ux. Part of this
�nding is due to the fact that the multiplier for helium

√
2ξes(2)/2 = 0.6 is not

too far from unity. Nevertheless, di�erences are just about discernible for the
peak heat �uxes where both choices of nonzero multiplier show better agreement
than using no electric �eld at all. Note that the increase in peak heat �ux with
Emult is expected due to the relocalising e�ect of the electric �eld.
Looking instead at the zirconium ramp in �g. 5.6, variation with Emult is found

to be much more noticeable due to the
√
Zξ/r multiplier this time being greater

than unity. It is clear that this multiplier now gives a better agreement with vfp
especially for the cooling of the hot bath at x ⪅ −2020µm (although the peak
heat �ux is overestimated slightly). However, we must be careful not to leap to the
conclusion that there is therefore anything inherently ‘correct’ or ‘physical’ in this
particular approach to modifying the di�usive mfp and the success of the

√
Zξ/r

multiplier could be pure coincidence. One particular issue with the general snb
approach to the electric �eld by reducing the mfp noted by Manheimer et al.
(2012) is that it applies equally to electrons travelling in all directions, not taking
into account the fact that electrons travelling antiparallel to the electric �eld
should be accelerated and thus experience an increasedmfp.
Comparisons of snb and vfp peak heat �owswere again extended to a range of

collisionalities (or ramp widths), but only for the helium ramp. ¿is is presented
in �g. 5.7, con�rming that the snb overestimate of the peak heat �ux did not
exceed 10% for any nonlocality parameter λ(B)ei ∇xTe/Te ⪅ 0.3. Another general
observation to be made from the entire heat �ux pro�le comparisons in �gs. 5.5
and 5.6 is that the snb model persistently overestimates the amount of preheat
compared to vfp, a �nding in line with previous research (e.g. Marocchino et al.
2013).
Also worthy of comment is the ‘bump’ on the helium heat �ow pro�le (�g. 5.5)

in the region of −450µm < x < −250µm. ¿is stems from the inclusion of elec-
tron inertia ( ∂

#»

f 1
∂t ) a er the �rst two timesteps in the impact simulations which

introduces advective behaviour on top of the mainly di�usive nature of the vfp
equations at high collisionalities. Electron inertia ‘waves’ are then seen to propag-
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ate to the boundaries as transient e�ects evanesce, and once a ‘quasistationary’
state has been set up the bumps are no longer noticeable. Interestingly, it is only
when using the impact initialisation process of turning electron inertia o� for
the �rst two timesteps that such features are observable as illustrated in �g. 5.8. It
was for this reason that electron inertia was chosen to be present from the very
beginning of the zirconium simulation.

5.3 laser heating

¿us far, only simplistic ramp relaxation problems have been investigated. As the
shape of the ramp does not change much over the simulated timescales it is very
di�cult to critique any di�erences in temperature pro�le when evolving with the
snb model instead of impact. It is therefore worthwhile extending our study to
a greater variety of scenarios. One such possibility is the nitrogen laser heating
experiment carried out by Froula et al. (Froula et al. 2007) and later simulated in
2d with impact by Ridgers et al. (2008a; 2008) for a variety of magnetic �elds.
In this chapter, a simpli�ed 1d version of this problem is studied making it easier
to directly compare heat and temperature pro�les resulting from the di�erent
approaches.
¿e 1d simulation consisted of a fully-ionised nitrogen plasma (Z = 7) with uni-

form electron density 1.5 × 1019 cm−3, initial temperature 20 eV and an assumed
constantCoulomb logarithmof 7.5 being heated by a continuous 6.3 × 1013W/cm2

laser (no time envelope was applied). ¿e intensity pro�le of the laser was uni-
form in the y and z directions and Gaussian in the x-direction with a full width
at half maximum of 150 µm. In order to avoid additional distortions to the edf
due to inverse bremsstrahlung e�ects, the Maxwellian heating operator described
in section 2.2.3 was used. (¿e e�ect of inverse bremstrahlung on the edf and
heat �ow was was previously explored in detail by C P Ridgers (2008)). Due
to the high peak temperatures reached in the simulation in the presence of a
much colder background, the velocity grid was resolved with a total of 250 cells
extending up to υmax = 25υ2T(20 eV), corresponding to electrons with an energy
of 12.5 keV. ¿e spatial domain, consisting of 400 cells, extended to 1000 µm
from the centre of the pulse with re�ective boundary conditions being used. A
timestep of 60 fs was used.
¿e top panel of �g. 5.9 shows that a er 120 ps impact predicted that the

nitrogen plasma heats up to just over 300 eV at the centre of the pulse. It should
not be concerning that this is slightly warmer than that predicted a er 440 ps
in section 5.3 of C P Ridgers’ thesis (2008) as the 1d geometry used here greatly
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figure 5.9: Comparison of temperature pro�les (top) a er 120 ps Maxwellian laser
heating along with either impact or a classical/�ux-limited/snb transport model. ¿e
impact heat �ow pro�le is shown in the bottom panel with snb heat �ow pro�les ob-
tained by postprocessing the impact temperature pro�le above using variousmultipliers
on the electric �eld. ¿e local heat �ow is not shown as it is about four times higher than
the nonlocal.

restrict the avenues through which thermal energy can be conducted away. Res-
ults of postprocessing the impact temperature pro�le with the snb model are
presented in the bottom panel, showing that again the multiplier

√
Zξes/r is best

at replicating the vfp heat �ux. In this case, however, the discrepancy between
the snb and vfp heat �ow is slightly more signi�cant, especially towards the
centre of the laser beam. ¿is discrepancy could be due to the Maxwellian heat-
ing operator providing a constant source of thermal electrons at ever increasing
temperatures to replenish those being conducted away. Due to its quasistationary
presumption, the snb model does not in any way take into account the e�ect
of the heating operator on the edf: all ways of achieving a given temperature
pro�le are considered equal by the snb model. Alternatively, the previous ramp
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relaxation problems could have just been particular cases where the snb model
happens to work very well by coincidence.
Instead of just postprocessing the �nal impact temperature pro�le, the e�ect

of evolving from the initial uniform 20 eV was investigated. Additionally, the
consequence of using simple local and �ux-limited treatments (a �ux-limiter
of f = 0.15 was found to be optimal here) was explored in a similar way. An
exceedingly simple forward Euler method was used to update the temperature
according to the prescribed heating operator and thermal conduction model. It is
seen in the top panel of �g. 5.9 that the agreement between the evolved snb and
impact temperature pro�les is impressively good, with the largest percentage
di�erence being a 36% overestimate of the temperature at the foot of the hot
spot. On the other hand, traditional local and �ux-limited approaches predict
completely di�erent shapes for the temperature pro�le, mostly due to the absence
of preheat. It turns out that the agreement between vfp and snb heat �uxes
a er the same simulation time is better when co-evolving (not pictured) than
when postprocessing. ¿is is due to the heat �ux being compensated by the
developing temperature gradient; e.g. in the centre of the pulse, where the snb
underestimates the heat �ow, higher temperatures are allowed to develop leading
to a higher heat �ux that happens to closely match the vfp heat �ux.

5.4 gadolinium hohlraum

5.4.1 Problem de�nition

While a number of comparisons between the snb model and vfp codes had
previously been performed (Schurtz et al. 2000; Marocchino et al. 2013), none
involved spatially-inhomogeneous ionisation. As inertial fusion experiments
typically involve steep ionisation and density gradients (for example, at the inter-
face between the helium gas-�ll and the ablated gold plasma), it was critical that
the snb model be tested in such an environment. Variations in ionisation may
also be important in the ‘detached’ divertor scenario where a moderate-Z gas is
injected in front of the divertor to radiate excess heat.
¿rough collaboration with researchers at Livermore, a simple test problem,

relevant to indirect drive icf was designed; this involved the laser-heating of
a gadolinium hohlraum containing a typical helium gas-�ll. For simplicity, 1d
spherical geometry was employed in the hydra simulation, including a leak
source with an area equal to the laser entrance hole to achieve a realistic energy
balance. ¿e vfp code chosen to analyse this was impact due to its ability
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to simulate inhomogeneous ionisation pro�les and the k2 and oshun codes
not being available to the author when these simulations were �rst performed.
(¿e correct treatment of electron-electron collisions o�ered by k2 and oshun
but lacking in impact could make it worthwhile to repeat these simulations
in the future. However, the need for this is made somewhat less immediate by
Sherlock et al.’s (2017) qualitatively similar �ndings when using k2 and snb to
analyse another problem.) Electron temperature, density and ionisation pro�les
at 20 ns (shown in the upper panel of �g. 5.10) were extracted and used as the
initial conditions for the impact simulation along with the standard assumption
that the electron distribution function is initially Maxwellian everywhere. At this
point very steep gradients in all three variables were set up with a change from
Te = 2.5 keV, ne = 5×1020 cm−3, Z = 2 to Te = 0.3 keV, ne = 5×1021 cm−3, Z = 39
across approximately 100 µm at the helium-gadolinium interface.
¿emesh re�nement and spline interpolation procedures detailed in section 3.6

were used to increase the spatial resolution near the steep interface for the impact
simulations, helping both numerical stability and runtime due to needing a
reduced number of nonlinear iterations. ¿e impact simulation transformed
the problem onto a simple planar geometry with re�ective boundary conditions.
Electron inertia was neglected in the simulations presented here and a timestep
of 1.334 fs was used with the ne and Z pro�les kept �xed. For simplicity, the
Coulomb logarithm was treated as a constant logΛei = logΛee = 2.1484; note
that in reality the plasma is only strongly coupled in the colder region of the
gadolinium bubble beyond ∼1.7mm with higher values of logΛei ≈ 8 being
reached in the hotter corona corresponding to x ⪅ 1.6mm. While potentially
a�ecting the physics and evolution of plasma pro�les compared to reality this
simpli�cation of constant Coulomb logarithm should not a�ect the conclusions
made on the most successful implementation of the snb model as compared to
impact when both models are using identical treatments of logΛα .

5.4.2 Results

As with vfp simulations in the previous sections, an initial transient phase was
observed where the impact heat �ux gradually reduces from the Braginskii
prediction as the distribution function rapidly moves away from Maxwellian.
Once again this transient phase is considered to be over when the ratio of the peak
heat �ow to the Braginskii prediction stops reducing. ¿is ratio is not observed
to change by more than 5% a er the �rst 5 ps of the 15.7 ps impact simulation.
¿erefore, it should be safe to treat the transient phase as complete a er 5 ps, at
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which point the temperature front has advanced by approximately 8 µm leading
to a maximum temperature change of 41%.
In comparing the impact and snb heat �ow pro�les an important subtlety

concerning the implementation of the model was highlighted. While more re-
cent publications concerning the snb model (Nicolaï et al. 2006; Del Sorbo
et al. 2015) and the results already presented in this chapter use the formula-
tion with separate electron-ion and electron-electron mfp’s/collision frequen-
cies, the original paper (Schurtz et al. 2000) used a geometrically averaged mfp
λe =√λeeλei∗ =√Zξ/rλei. ¿is averaging process, however, is only valid for the
case of homogeneous ionisation, and the potential for signi�cant errors when
the ionisation varies is demonstrated by the overestimate of both the peak heat
�ux by a factor of almost two and the thermal conduction in the corona by a
factor of almost three when using this approach (lower panel of �g. 5.10). Fortu-
nately, using separate electron-ion and electron-electron mfp’s provides a greatly
improved prediction of the preheat into the hohlraum, the peak heat �ow (to
within 16% of the impact simulation) and the thermal conduction in the gas-�ll
region. However, the latter is still too large by a factor of approximately two. ¿is
discrepancy could potentially lead to an overestimate of hohlraum temperatures,
causing issues similar to those arising with using an overly restrictive �ux limiter
(Rosen et al. 2011).
Interestingly, completely neglecting the electric �eld correction to the electron-

ion mfp further improves the accuracy of the separated snb peak heat �ux and
coronal thermal conduction. However, it does not give quite as impressive an
agreement with the preheat into the hohlraum wall. ¿is is the �rst time in this
chapter that using a multiplier of zero gives arguably the best agreement with
vfp, but the electric �eld limitation also has a much larger in�uence here than
elsewhere due to the extremely steep gradients present. Perhaps then it would be
better to dispense with the electric �eld correction altogether due to its lack of
�rst principles justi�cation and the fact that its removal would only lead to minor
losses of accuracy in certain problems. Additionally, this would avoid the overly
strong amplitude dependence caused by the electric on temperature sinusoid
damping, but sacri�ces the purely numerical bene�t of e�ciently removing large
high-frequency noise/grid e�ects alluded to by Schurtz et al. (2000).
It is worthwhile to also consider potential sources of inaccuracy in the impact

simulation itself. As the temperature gradient across the gadolinium bubble is
so steep, the degree of nonlocality can get very high, potentially invalidating the
p1 expansion made by impact. Furthermore, the strong coupling present in
the cooler part of hohlraum wall, represented by the low value of the Coulomb
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logarithm, could render the e�ect of collisions in this region only accurate toO(1/logΛα) ≈ ∼50%. However, as the snb model also uses a p1 expansion and an
identical treatment of the Coulomb logarithm to impact, these simpli�cations
should not a�ect the conclusion that the separated snb model predicts the same
heat �ow into the wall as impact while overpredicting that in the corona. It
has simply been demonstrated that reduced models can be an e�ective stepping
stone between hydrodynamic and vfp approaches. Nevertheless. these consid-
erations do act as a reminder that even a highly sophisticated vfp code could
be faced with challenging inaccuracies in certain regions of the plasma (though
it would surely still be an improvement to a purely hydrodynamic approach
which would experience the same di�culties with strongly coupled plasmas); a
potential method in overcoming this and incorporating large-angle collisions in
a continuum code could be a Monte Carlo based approach (Turrell et al. 2015).
Similar points can be made for other de�ciencies, such as collisions with neutrals
and Fermi degeneracy, although these are probably slightly easier to address and
incorporate into models(Kolobov and Arslanbekov 2006; Brown and Haines
1997).

5.5 summary and conclusions

In this chapter, we have investigated a wide range of test problems with relative
temperature di�erences that are relevant to many potential approaches to fusion
energy. In the very �rst comparison for the hydrogen cubic ramp, the nflf
and eic models were found to overestimate the peak heat �ux by up to 35%
as well as failing to predict preheat. And although a simple improvement to
the nflf model was found to noticeably reduce errors and recover preheat at
moderate collisionalities, the degree of preheat became grossly overestimated
at sol-relevant collisionalities of λ(B)ei /LT > 0.1. ¿erefore these two models
were therefore considered to be less desirable for fusion-relevant scenarios than
the snb model, which performed well for all test problems. As the degree of
collisionalities investigated were all well below unity, even the snb model can
only be considered validated for the case of hohlraum transport and mean sol
pro�les, whereas it could certainly break down at the shorter scalelengths relevant
to transient events such as �laments, elm’s and disruptions. Furthermore, no
sensible way of including sheath boundary conditions has yet been suggested for
applying the snb model to sol transport.
From the problems studied here, it seems that the optimal implementation of

the snb model consists of the modi�ed source term including∇⋅ #»g (mb)1 suggested



5.5 summary and conclusions 165

by Schurtz et al. (2000) and the bgk model electron-electron collision operator
but with a multiplier of r = 2. Separating the electron-electron and electron-
ion collisionalities in this equation further improves agreement with vfp for
the gadolinium hohlraum problem with spatially-varying ionisation. As for the
treatment of electric �elds through mfp limitation, it is not entirely conclusive
whether it is more reasonable to include this phenomenological treatment or
not. If retained, all tests point towards using a multiplier of Emult = √Zξes/r
to ensure consistency with the original averaged model. However, neglecting
the electric �eld correction completely results in much better agreement for the
gadolinium hohlraum problem with respect to the peak and coronal heat �uxes.
One �nal limitation of this study is the focus on postprocessing vfp temperat-

ure pro�les instead of co-evolving them with the snb model. But if, aside from
initial transient features, the snb model is able to to consistently approximate
vfp heat �uxes with an acceptable degree of accuracy on a snapshot-to-snapshot
basis, then the temperature pro�le should evolve similarly with both models. ¿is
reasoning is con�rmed by the one inline test that was done involving nitrogen
laser heating, indicating that slight inaccuracies in the snb heat �ow self-correct
rather than build up over time. Nevertheless, there is more substantial disagree-
ment for the gadolinium hohlraum particularly in the low density gas �ll, and
the manner in which this could a�ect the physics or have knock-on e�ects on
laser-plasma interactions can only be properly understood by simulating over a
longer timescale. For further exploration of the time-integrated e�ect the reader
is referred to work of Sherlock et al. (2017) to which the author of this thesis
contributed.
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figure 5.10: Temperature, density and ionisation pro�les a er 20 ns simulated laser
heating with hydra (marks) are shown in the top panel along with interpolated pro�les
used to initialise impact simulations (curves), as well as the temperature pro�le a er
a further 5 ps. Comparison of heat �ow predictions with the r = 2 snb model using
geometrically averaged (denoted by λe) or separated mfp’s (denoted by λee, λei) based
on temperature pro�le a er 5 ps impact simulation are provided in the lower panel.
¿e separated snb is shown with electric �eld multiplier of both Emult =√Zξes/r and
Emult = 0 on the electric �eld. ¿e maximum local heat �ow is 2.2 × 1015W/cm2.



6
BENCHMARKING THE SNB MODEL IN RAD-HYDRO CODES

6.1 sources of confusion in the original snb paper

In what follows in this chapter we shall �nd that there are signi�cant di�erences
between the snb model in the dued/hydra codes and the ‘optimal’ implement-
ation identi�ed in the previous chapter. ¿ese discrepancies stem notmerely from
the new developments concerning the tuning of the Krook collision frequency,
multipliers on the electric �eld or even the separation of the electron-electron
and electron-ion mfp’s, but from con�icting de�nitions of the thermal velocity
υT used when deriving the snb model from the kinetic equations in sec. III F of
(Schurtz et al. 2000). At �rst glance, the appearance of e−υ2/υ2T on p. 4245 suggests
that the de�nition υT = υ2T =√2kBTe/me has been employed. However, looking
closer, the de�nition of the electron-ion mfp given just a er eq. (56)

λei = ( υ
υT

)4 4πε02(kBTe)2
nee4logΛ

(6.1.1)

(converted from Gaussian to si units) is only consistent with that used in p1 vfp
codes (such as impact) if the thermal velocity is instead de�ned as υT = υ1T =√
kBTe/me. Missing this con�ict, and simply assuming that υT = υ2T throughout,

results in all mfp’s being over estimated by a factor of 4. Rescaling the snb pde so
that all this is wrapped up into the electron-electron mfp, an identical approach
would be achieved by multiplier of r = 16 (ignoring the phenomenological mfp
modi�cation due to the electric �eld).

6.2 the snb model in dued

One of the most thorough comparisons previously presented between the snb
model and vfp codes was performed by Marocchino et al. (2013). However, a
major �nding of this work was that the accuracy of the snb model, implemented
in the University of Rome hydro code dued, worsened as ionisation increased.
¿is seemed rather peculiar as the snb model was derived in the Lorentz limit (i.e.
by neglecting electron-electron collision in the

#»

f 1 equation). Upon inspection,
though, it turned out that this unexpected trend can be explained by two speci�c
implementation details: using a di�erent de�nition of the thermal velocity in the

167
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de�nition of the mfp’s essentially equivalent to using a Krook multiplier of r = 16
(as explained above) and the absence of the collision �x ξ to approximate the e�ect
of anisotropic electron-electron collisions.

Recall ξes =
(Z+0.24)/(Z+4.2)

¿is combination of factors leads the
dued snb to become closer to the r = 2, ξ = ξes implementation suggested in
this thesis at low ionisations (r = 2); in fact for a linearised problem in hydrogen
it performs even better as it is then equivalent to using an r = 16ξes = 3.8, ξ = ξes
implementation (we showed previously that in order to match kinetic behaviour
in the semicollisional regime for sinusoid damping the correct factor should be
r = 3.5).
¿is analysis was con�rmed by reproducing Marocchino et al.’s results for a

damping temperature sinusoid at ionisations of Z = 1, 2 and 4. It is found that im-
plementing the supposed implementation of r = 16, ξ = 1 (pink dashed) matches
the dued results very well at high collisionalities but diverges slightly at shorter
wavelengths. ¿is disagreement could potentially be explained by convergence
issues in the Marocchino et al. paper. On the other hand, the preferability of the
generally optimal r = 2, ξ = ξes implementation (black dot-dashed) at matching
vfp results demonstrably increases with ionisation. No attempt was made to
revisit the ramp relaxation problem also presented by (Marocchino et al. 2013).

6.3 the snb model in hydra

In collaboration with Marty Marinak, Mehul Patel and Gary Kerbel at llnl, the
implementation of the snb model in the Lagrangian rad-hydro code hydra was
compared to both the in-house version used in this thesis and impact. ¿ese
studies found that the hydra snb was implemented in a similar way to that in
dued (i.e. r = 16, ξ = 1). Two test problems were used to arrive at this conclusion:
relaxation of a linear temperature ramp in helium and the nitrogen laser heating
problem studied in section 5.3. ¿e �rst of these was the test problem that later
morphed into the tanh ramp relaxation explored in section 5.2 and used exactly
the same plasma parameters except for the initial temperature pro�le (depicted
in the top panel of �g. 6.2).
In order to be as careful as possible in the benchmarking process, agreement

was �rst sought between local heat �ows. ¿is was done by �rst taking the local
dimensional thermal conductivity provided directly from hydra to obtain the
dimensionless thermal conductivity

κ∥c =
√
2me

12π3⁄2
e4ZlogΛei

ε02kB7⁄2Te 5⁄2
κ∥ (6.3.1)
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figure 6.1: ¿ermal conductivity reduction as a function of nonlocality parameter
for a low-amplitude temperature sinusoid with ionisations Z = 1, 2 and 4. Figures are
reproduced from (Marocchino et al. 2013) with di�erent implementation choices of the
in-house snb model overlaid.
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where the temperature was interpolated from cell centres to boundaries using a
simple arithmetic average. ¿e value of κ(B)∥c inferred from the hydra simulation
was found to be 7–8% higher than that predicted by Epperlein and Haines (1986,
γ0 in Tab. IV). Much more surprising was the variation of κ(B)∥c in space; hydra
predicted it to increase at the lower temperatures found on the right-hand side
(illustrated for helium in themiddle panel of �g. 6.2). A er eliminating di�erences
in numerical di�erencing and the Coulomb logarithm as a potential source
of disagreement, the only explanation remaining for this spatial variation is
intrinsic di�erences in the hydra Lee-More conductivity model compared to
the Epperlein-Haines model.
To avoid discrepancies in local heat �ows propagating through to the nonlocal,

the hydra local heat �ow was fed into the source term of the in-house snb
model. ¿e version of the snb model with the geometrically averaged mfp
λe =√λeiλee was used, in alignment with the implementation of hydra at the
time. Comparing the supposed r = 2, ξes and the suggested r = 2, ξ = ξes for
the helium and nitrogen problems in �gs. 6.2 and 6.3 respectively con�rms that
changing the implementation of the hydra snb accordingly should signi�cantly
improve agreement with kinetic results, reducing the overestimation of peak heat
�ow for the nitrogen heating from 55% to 1.3%. Two possible sources of di�erences
between the hydra snb and the in-house r = 16, ξ = 1 implementation are
treatment of the electric �eld mfp limitation and a special added feature in the
hydra snb model to approximate the slowing down of fast electron due to the
electric �eld; the latter is implemented by including the veloicity derivative of
the edf in the snb pde, thus linking all the groups together and requiring the
equation set to be solved in a cascade from highest to lowest energy group.
While the disagreement between the hydra snb and impact does not

seem overly concerning for these benchmark problems, the error increases at
higher ionisations. Such conditions are o en present in the highly-ionised gold
bubble where ionisations reach up to Z ≈ 40–50. ¿e potential of the previous
implementation of the hydra snb to signi�cantly overpredict the nonlocal heat
�ow by a factor of 2–3 in hohlraum relevant is revealed by applying the r = 16,
ξ = 1 model to the gadolinium hohlraum problem studied in section 5.4.
In response to the observed issues in the hydra snb, llnl implemented

the suggested changes of modifying the multiplier on the electron-electron mfp
and incorporating the Epperlein-Short collision �x ξ and made this available
to the hydra design team through the boolean switch nletc_brodrick_cf.
Furthermore, the ability to separate mfp’s to improve performance in steep ion-
isation gradient was provided by the switch nletc_separate_lgs. ¿e �rst of
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these switches has been con�rmed to agree with the calibrated version of the snb
model (r = 2, ξ = ξes) for the helium thermal ramp relaxation and the nitrogen
laser heating problems as well as a number of low-amplitude sinusoid problems.
However, validation of the mfp separation is still underway

6.4 the snb model in chic

¿e last benchmarking comparison was performed on the snb model in chic,
originally implemented by the developers of the model: Schurtz et al. Since its
creation the model has gone through a number of evolutions, and, by careful
calibration with the in-house snb model and collaboration with researchers at
celia (particularly Philippe Nicolaï and Jean-Luc Feugeas), the chic snb was
found to well replicated by the separated snb’s with a multiplier on the electron-
electron mfp of r = 2

√
2 but with the collision �x neglected (i.e. ξ = 1). ¿is

perhaps surprising choice of multiplier can be explained in two steps: Firstly, the
original snb model incorporated a factor of 1⁄2 into the geometrically average
mfp λe in order to obtain agreement with the lmv kernel (Luciani et al. 1983)
(see �rst eq. on p. 4242 of Schurtz et al. 2000); if the mfp’s are then separated
and all correction factors rolled solely on to the electron-electron mfp then this
is equivalent to using a factor of r = 4. Secondly, the electron-electron collision
frequency is reduced by a factor of

√
2 due to a suggestion of Decoster et al.

(Decoster et al. 1998), giving r = 2√2.
¿e two benchmark problems shown here to support the given interpretation

of the chic snb are the helium tanh thermal ramp relaxation problem (presented
in section 5.2) and, once again, the gadolinium hohlraum problem. ¿e heat �ow
comparisons presented in �gs. 6.5 and 6.6 do not appear too conclusive as to
which implementation is the most accurate. ¿is should not be too surprising
as the chic snb is only a factor of 21⁄4 more local in the Lorentz limit and just
under 1.4 times more nonlocal when Z = 2 (as the estimated degree of nonlocality
is a�ected by the factor

√
ξ/r contained in the geometrically averaged mfp λe).

If we had extended our benchmarking to a hydrogen test case, the di�erences
would have surely increased. Furthermore, it is clearly not desirable to neglect the
collision �x as is done in chic because this would fail to recover the ionisation
dependence of the nonlocal deviation in the semicollisional regime predicted by
the eic model in section 4.3.5.
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figure 6.2: Initial and �nal impact temperature pro�les (top panel) for the helium
linear ramp relaxation problem used to benchmark the hydra snb model, followed
by a comparison of the dimensionless thermal conductivity corresponding to the local
hydra heat �ow with that of Epperlein and Haines (1986). ¿e nonlocal hydra snb
heat �ows at 15 ps are compared to impact and two possible implementations of the
in-house snb model (here using the geometrically averaged mfp λe and using the local
hydra heat �ow in the source term).
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figure 6.4: Comparison of postprocessed heat �ow predictions for the gadolinium
hohlraum problem at 20.005 ns using the current hydra implementation with the
averaged mfp λe and r = 16, ξ = 1 with the suggested r = 2, ξ = ξes snb model using
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figure 6.5: Comparison of the chic snb with the in-house snb model and impact
for the helium tanh ramp relaxation problem presented in section 5.2 at 12.1 ps.
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figure 6.6: Comparison of postprocessed heat �ow predictions for the gadolinium
hohlraum problem at 20.005 ns between chic and the in-house snb with r = 2, ξ = ξes
snb model. Both models here have removed the electric �eld correction the mfp (i.e.
Emult = 0). ¿e kinks in the chic heat �ow are probably due to the speci�c di�erencing
methodology used by chic struggling to handle the very speci�c pro�le supplied to it
on a non-uniform grid.



7
NONLOCAL NERNST ADVECTION

In this chapter, the existing research on the nonlocal Nernst e�ect is consolid-
ated by comparing vfp and �ux-limited transport approaches at high and low
ionisations. A theoretical overview will �rst be presented in section 7.1 to dis-
cuss the dominant terms governing the evolution of temperature and magnetic
�eld pro�les in the following simulations. A wide range of one-dimensional
test problems are considered here including relaxation of a temperature ramp
with an initially uniform imposed magnetic �eld in section 7.2, laser heating of
nitrogen in section 7.3 and a lineout from an indirect-drive hydra simulation
in section 7.4. ¿e main observation is that while both thermal conduction and
Nernst advection can be strongly a�ected by nonlocality, their ratio is not. ¿is
allows for a simple method of extending nonlocal thermal transport models, such
as the snb, to approximate the Nernst velocity.

7.1 magnetised transport in one dimension

For simplicity, the problems considered here will be limited to spatial variation in
one direction (x) only. In particular, this avoids the possibility of self-generated
�elds due to the Biermann battery or other anisotropic e�ects. For a magnetic
�eld pointing solely in the z-direction, the evolution of the magnetic �eld and
temperature pro�le are determined by

∂Bz
∂t

= −∂E y
∂x

, ∂Te
∂t

= − 2
3ne

(∂Qx
∂x

+ E y
µ0

∂Bz
∂x

)
, (7.1.1)

where E y is the electric �eld in the y-direction and Qx is the heat �ow parallel to
the temperature gradient. ¿e �nal term is the Joule heating term, #»E ⋅ #»j , where
the electric current #»j has been substituted with #»∇ × #»B /µ0 using Ampere’s law
with the displacement current neglected. In the vfp simulations presented in
this chapter the magnetic �eld gradients are not very steep, meaning that this
term is not as important as the heat �ow divergence in determining the plasma
temperature.
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Both temperature and magnetic �eld gradients contribute to their own and
each other’s evolution. Only four transport e�ects exist in this 1d geometry under
the assumption of cold ion:

Qx = −κ⊥ ∂kBTe∂x

¿ermal Conduction

+ β∧kBTe
eµ0

∂Bz
∂x

Ettingshausen E�ect

, (7.1.2)

E y = −β∧
e
∂kBTe
∂x

Nernst Advection

− α⊥
e2neµ0

∂Bz
∂x

Resistive Di�usion

. (7.1.3)

Again, the weak magnetic �eld gradients present mean that the Ettingshausen
e�ect and resistive di�usion are small corrections to the Nernst and thermal
conduction terms, and are therefore not discussed in too much detail here. Addi-
tionally, the heat �ow perpendicular to both the magnetic �eld and temperature
pro�le, is given by

Q y = −κ∧ ∂kBTe∂x
Righi-Leduc Heat Flow

+ β⊥kBTe
eµ0

∂Bz
∂x

Peltier E�ect

. (7.1.4)

Once again, only the �rst term is usually dominant in the cases studied here.

7.2 temperature ramp relaxation

7.2.1 Methodology

¿e temperature tanh ramp relaxation problems presented in section 5.2 were
repeated for helium (Z = 2) and zirconium (Z = 40) but with the addition of
an initially uniform magnetic �eld. As a reminder, a �xed and uniform electron
density of 5 × 1020 cm−3. and constant Coulomb logarithm of 7.09433 were used
in both cases. ¿e initial temperature pro�le connecting the two regions of 1 keV
and 150 eV was given by

Te/eV = 575 − 425 tanh(x/L), (7.2.1)

where the initial scalelength L was 50 µm for the helium simulations and 17.3 µm
for the zirconium in order to impose a similar degree of nonlocality. ¿e simu-
lation domains extended to ±7L, and re�ective boundary conditions were used,



7.2 temperature ramp relaxation 177

restricting heat �ow and electric �eld values to be zero at the boundaries. A range
of initial magnetic �elds were considered. For convenience, a formula to calculate
the magnetisation in the hottest and coldest regions of the plasma is provided
here:

χ(1 keV) = 0.54 × (Bz/tesla)/Z , (7.2.2)

χ(150 eV) = 0.031 × (Bz/tesla)/Z . (7.2.3)

¿e helium simulations were performed using the k2 and oshun vfp codes
due to their use of the full anisotropic electron-electron collision operator, which
was necessary to achieve acceptable values of β∧ at low ionisations (recall the
errors arising from instead using the collision �x noted in �g. 2.2). Typically,
the k2 simulations used spherical harmonics up to order 1, and the oshun
simulations up to order 2. ¿e codes showed reasonable agreement with each
other and slight discrepancies were attributable to the number of harmonics
used and exact implementation of boundary conditions, but only k2 simulations
are presented here. An arti�cial multiplier of 100 on the permittivity ε0 was
used in the Ampere-Maxwell law with k2, allowing for manageable timesteps of
0.5 fs. ¿e simulation domain extended from −350 µm to 350 µm over 100 cells
(7 µm in width) and the uniform velocity grid consisted of 240 cells peaking at
9.4 × 106m/s (25 keV).
For the zirconium simulations, impact was used instead, as the percentage

error on the Nernst coe�cient β∧ due to neglecting the e�ect of electron-electron
collisions on the anisotropic part of the edf is below 10% at such high ionisations.
¿e reason for using the collision �x here was the absence of local transport
coe�cients for Z = 40 in the literature to compare with the classical transport
simulations (although these could be derived). ¿e electron inertia term ( ∂ f1∂t )
was retained. ¿e simulation parameters used were a spatial domain extending
from −9L to 7L over 800 cells (each with a width of 3.46 µm), a uniform velocity
grid extending up to 1.8 × 107m/s (94 keV) and a timestep of 3.35 fs.
¿e distribution functions for all vfp simulations were initialised as isotropic

Maxwellians, with the anisotropic part (and thereby the heat �ow) and electric
�eld initially growing from zero. Initial transient e�ects damped within 12 ps in
the helium and 2 ps in the zirconium simulations (equivalent to about 4 corrected
collision times, ξτ(B)ei , of suprathermal 3–4 keV electrons); this was determined by
both Qx and E y reaching a maximum. It is observed that the electric �eld takes
longer to reach its peak than the heat �ow, most likely due to theNernst coe�cient
β∧ depending on higher moments of the edf than κ⊥ (see section 2.2.1), making
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it more sensitive to the dynamics of less collisional high-energy electrons. ¿e
magnetic �eld and temperature pro�les at this point of the simulations (12 ps
for helium, 2 ps for zirconium) were then used to initialise classical transport
simulations with various combinations of Nernst and thermal �ux-limiters.
¿e Classical Transport Code (ctc) (see section 3.2) was used to provide

local and �ux-limited Braginskii comparisons to the kinetic simulations. For
the zirconium simulation the Lorentz limit transport coe�cients were used but
multiplied the average collision time τ(B)ei by the Epperlein-Short collision �x
ξes . Neither hydrodynamics nor super-Gaussian transport coe�cients were
included in the simulation. Independent values of Nernst and thermal �ux-
limiters, implemented as described in section 2.3.1, were investigated.

7.2.2 Results

Instantaneous snapshots of perpendicular heat �ow (Qx), Righi-Leduc heat �ow
(Q y) and the Nernst-relevant out-of-plane electric �eld (E y) at the end of the
initial transient periods are respectively presented in the top, middle and bottom
panels of �gs. 7.1 to 7.4 for selected simulations: Low and high magnetisation
helium runs are presented in �gs. 7.1 and 7.2 corresponding to initial magnetic
�elds of 0.1 tesla and 2 tesla respectively, while zirconium pro�les resulting from
initial magnetic �elds of 1 tesla and 10 tesla respectively are provided in �gs. 7.3
and 7.4. As results from the various simulations are qualitatively similar we shall
discuss them all simultaneously. ¿ese pro�les will �rst be compared to the local
Epperlein and Haines transport theory before considering the instantaneous and
time-integrated e�ects of using �ux-limiters. Finally, section 7.2.3 will feature an
exploration of a simple method of adapting existing reduced nonlocal thermal
transport models such as the snb.
With respect to the local predictions it is clear that there are both �ux-reduction

and preheat e�ects in the Qx and Q y heat �ow pro�les, but these nonlocal e�ects
are much more pronounced for the Righi-Leduc heat �ow due to its dependence
on higher moments of the distribution function (see section 2.2.1). On the other
hand, the transverse electric �eld E y mainly experiences a shi in the peak toward
the cooler region of the plasma with little reduction in its actual value and in fact
an increase of the value of the electric �eld in the colder region of the plasma
where the temperature gradient is relatively �at, which shall be referred to as
‘pre-Nernst.’ ¿ese observations are qualitatively similar to those previously seen
by both Kho and Haines (1985, 1986) and Hill and Kingham (2017).
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figure 7.1: Perpendicular and Righi-Leduc heat �ows Qx (top), Q y (middle) and the
Nernst-dominated out-of-plane electric �eld E y (bottom) a er 15 ps k2 vfp helium
simulation with an initial magnetic �eld of 0.1 tesla. Local, �ux-limited and snb pro�les
were postprocessed using the k2 temperature and magnetisation pro�les. snb E y and Q y

are calculated by multiplying the (unmagnetised) snb Qx pro�le by the corresponding
ratio in the local limit (E y/Qx ,Q y/Qx ).
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out-of-plane electric �eld E y (bottom) a er 12 ps k2 vfp helium simulation with an
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figure 7.4: Perpendicular and Righi-Leduc heat �ows Qx (top), Q y (middle) and
the Nernst-dominated out-of-plane electric �eld E y (bottom) a er 4 ps impact vfp
zirconium simulation with an initial magnetic �eld of 10 tesla. Local and �ux-limited
pro�les were postprocessed using the impact temperature and magnetisation pro�les.



¿e appearance of
the multiplier

√
Z

in the nonlocality
parameter dates
back at least as
far as seminal
work by Luciani,
Mora and Virmont
(1983), and the later
incorporation of
the collision �x
can be traced back
to Epperlein and
Short (1991). To
further understand
this consider the
dependence of
the heat �ow on
ξZk2λ(B)2ei in the
semicollisional
regime given in
eq. (4.3.1).
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It may seem surprising that, despite the similar degrees of nonlocality and
relative �ux-limitation of the helium and zirconium simulations, the actual values
of �ux-limiters deemed optimal which best matched the kinetic heat �ow pro�les
turn out to be quite di�erent (0.5 for helium and 0.15 for zirconium). However,
this is simply due to di�erences in the Z-dependence of the perpendicular thermal
conductivity κ⊥ ∝ ξ/Z and the nonlocality parameter

√
ξZλ(B)ei ∣∇Te∣/Te ∝√

ξ/Z. ¿e maximum nonlocality parameter in both the helium and zirconium
simulations was arranged to be approximately equal to 0.1 by using di�erent
length scales L ∝√ξ/Z. ¿erefore, in order to obtain equivalent �ux-limiting
factors θQ = Q(FL)

x /Q(Local)
x (see eq. (2.3.5)), the thermal �ux-limiters fQ need to

make up a further factor
√
ξ/Z to fully compensate the ionisation-scaling of

the thermal conductivity. ¿is explains the discrepancy in their optimal values:√
40/ξ(40)0.15 ≈ √2/ξ(2)0.5. If di�erent values for L had not been used, the

values of the thermal �ux-limiters would have indeed been similar to each other,
but the resulting �ux-limitation factors θQ would be closer to unity for zirconium
than helium. ¿ese observations suggest that it is worth carefully considering
whether the value of �ux-limiter used in laser-plasma codes should be made
material dependent, perhaps through an inline calculation of the nonlocality
parameter at each point in space.
As magnetic �elds should in theory relocalise the transport it may seem sur-

prising that the optimal �ux-limiter value does not appear to depend greatly on
magnetisation. Nevertheless, the heat �ow does indeed approach its local value
as higher magnetisations are reached. ¿is is possible because of the reduction
of the local heat �ow in the presence of strong magnetic �elds to well below the
free-streaming limit.
Looking at the E y pro�les which determine the evolution of the magnetic

�eld due to Nernst advection, we see that using the same �ux-limiter as for Qx

gets the pro�le about right in the hot region of the plasma. However, doing
so grossly underestimates the peak electric �eld and the �ux-limiter approach
inherently fails to capture any of the prominent pre-Nernst observed. ¿e former
observation in particular suggests that perhaps it would be desirable to use a
larger Nernst �ux-limiter in order to match the peak. Contrastingly, it is clear
that a lower �ux-limiter is necessary on the Righi-Leduc heat �ow to capture its
higher degree of �ux suppression due to nonlocality.
¿e results shown in �gs. 7.1 to 7.4 are su�ciently early in the simulations

that the magnetic �eld pro�le has not evolved signi�cantly. ¿e top panel of
�g. 7.5 shows the magnetic �eld pro�les predicted by k2 and ctc with varying
combinations of �ux-limiters at 200 ps for a helium simulation with an initial
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figure 7.5: Comparison of magnetic �eld pro�les predicted by the Classical Transport
Code ctc with di�erent combinations of thermal and Nernst �ux-limiters fQ , fN respect-
ively. Helium pro�les (top) were evolved independently for a further 188 ps starting from
the k2 Te and Bz pro�les at 12 ps, while the zirconium pro�les (bottom) were simulated
independently for a further 48 ps from the impact pro�les at 2 ps.
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magnetic �eld of 2 T (recall that the classical transport simulationwas started 12 ps
in) and a similar comparison between impact and ctc for the 10 T zirconium
at 50 ps (with ctc starting at 2 ps) in the bottom panel. It is observed that when
using only a thermal �ux-limiter (orange dash-dotted), as is traditional , the
relative ampli�cation of the magnetic �eld is overestimated, by over 30% for the
case of the zirconium simulation. Additionally, the degree of magnetic cavitation
is also slightly overestimated by the traditional approach. Incorporating a Nernst
limiter noticeably improves agreement with vfp but does not account for the
smearing and shi ing of the peak beyond the foot of the temperature gradient.
Despite these noticeable di�erences in the �nal magnetic �eld pro�les these were
not su�cient to cause distinguishable modi�cations on the �nal temperature
pro�les.
Although Nernst advection in the zirconium simulation might be considered

slightly over-constrained by a limiter of 0.15, it still seems that the most sensible
method of limiting Nernst advection is to always use fN = fQ as other choices
are ad hoc and cannot be justi�ed physically. ¿is also conveniently prevents
the undesirable introduction of an additional tunable parameter. Also note that
when instead dispensing with �ux-limiters completely in these simulations (i.e.
fN = fQ = ∞) the best agreement with the vfp magnetic �eld pro�les is achieved
as the cold plasma is allowed to heat up quicker, thereby enhancing the spread of
magnetic �eld. However, it would indeed be preferable to go beyond �ux-limiters
to a more predictive approach, such as a reduced nonlocal model, that could
account for the prominent smearing and delocalisation e�ects of pre-Nernst
observed.

7.2.3 Potential of the snb Model

Previous chapters have demonstrated that the snb model is able to fairly ac-
curately capture both �ux reduction and preheat e�ects for a wide range of
fusion-relevant problems; however, the model traditionally gives no prescription
for nonlocal modi�cations to Nernst advection. Of course, if a relation between
the energy group contribution Hg and the nonlocal perturbation to the isotropic
part of the edf δf0 were proven to be reliable and accurate, this would provide a
simple method of calculating corrections to the Nernst coe�cient β∧ by taking
moments of the edf (see, for example, eq. (2.2.20)). But we have seen in both
chapter 4 and (Sherlock et al. 2017) that the original method of reconstructing
the edf given by Schurtz et al. (2000), Hg = 2πmeυ5gδf0 dυg , does not agree well
with vfp predictions. And while the alternative link identi�ed in section 4.3.6
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does accurately capture the high-velocity behaviour of δf0 for a long-wavelength
temperature sinusoid, it may be less accurate for other problems. ¿erefore, it
would be desirable to come up with a more reliable method of using the snb
model to account for nonlocal Nernst advection.
One such approach of extending the snb model is to use the observation that

the ratio between the Nernst and heat �ow velocities does not depend greatly
on nonlocality (Haines 1986a; Kho and Haines 1985, 1986). Speci�cally, if a good
approximation for the nonlocal heat �ow can be obtained (such as from the snb
model) thenwe should be able to estimate the nonlocal electric �eld by simplymul-
tiplying the former by the ratio expected in the local limit: β(B)∧ /eκ(B)⊥ ≡ BΨ(B)/Pe.
¿at is, E(Nonlocal)y ≈ (BΨ(B)/Pe)Q(Nonlocal)

x . ¿e wide range of problems investig-
ated here provide a perfect opportunity to thoroughly test whether this approx-
imation is indeed accurate and reliable.
Although a magnetised extension of the snb model has been developed and

is implemented in the chic code (Nicolaï et al. 2006), this has not yet been
extensively tested against vfp simulations. ¿erefore, the unmagnetisedmodel is
simply applied to simulations with low magnetisations (χ < 0.03) in which the
heat �ow and degree of nonlocality are not strongly a�ected by the presence of a
magnetic �eld. ¿e speci�c snb implementation used here corresponds with the
optimal one identi�ed in the previous chapter, consisting of (1) imposing a scaling
factor on the Krook electron-electron collision frequency of r = 2, (2) separating
the electron-electron and electron-ion mfp’s, and (3) multiplying the electron-ion
mfp by the collision �x ξ.
¿e bottom panels of �gs. 7.1 and 7.3 include the results of using this approx-

imation for the helium 0.1 tesla and zirconium 1 tesla simulations. Temperature
and magnetic �eld pro�les at 15 ps and 4 ps respectively were used to calculate
the snb heat �ow before converting this to an estimate for E y . It is observed that
this method for obtaining the snb electric �eld exhibits remarkable agreement
with vfp, closely matching both the degree of �ux reduction and the preheat at
very little additional computational cost.
At higher magnetisations, the claim that nonlocality does not a�ect the link

between thermal conduction and Nernst advection was instead tested by mul-
tiplying the vfp heat �ow by the ratio BΨ(Local)/Pe. ¿is is depicted for the 2
tesla helium and the 10 tesla zirconium runs in the bottom panels of �gs. 7.2
and 7.4 respectively. Again, the ratio method provides a good approximation for
E y, with the main discrepancy being a slight underestimate of the pre-Nernst
on the right-hand side. ¿is discrepancy arises due to the dependence of β∧
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on higher-velocity moments of the edf than κ⊥ (see eqs. (2.2.18) and (2.2.20)),
making it more sensitive to nonlocal e�ects.
All �ndings are summarised in �g. 7.6 which presents the nonlocal vfp pre-

diction for the dimensionless ratio Ψ(vfp) = PeE(vfp)y /BQ(vfp)
x as a function of

magnetisation for both helium and zirconium temperature ramp relaxation sim-
ulations. Pro�les were extracted at 25 ps for the helium simulation and 5 ps for
the zirconium. It is shown that Ψ approximately follows the local prediction
indicated by the dashed lines, clearly exhibiting a strong ionisation dependence
that would not be captured by the constant ratio approximations suggested by
other authors (Haines 1986a; Davies et al. 2015; Lancia et al. 2014). ¿e prom-
inent �ick-ups seen at the low magnetisation end (le -hand side) of this �gure
correspond to the increased reach of pre-Nernst as compared to pre-heat arising
from the dependence of β∧ on higher-velocity moments of the edf.
¿e e�ectiveness of using a similar process to estimate the Righi-Leduc heat

�ow as Q(Nonlocal)
y ≈ (Q(B)

x /Q(B)
y )Q(Nonlocal)

x was also investigated in the middle
panel of �gs. 7.1 to 7.4. However, this approach underestimates the degree of �ux-
limitation and does not capture the high degree of preheat arising from the higher
velocity moments used in calculating the Righi-Leduc heat �ow. Nevertheless,
it is still a de�nite improvement on both the local Braginskii and �ux-limiter
approaches at lower magnetisations.

7.3 laser spot heating

As the degree of nonlocality for the temperature ramp relaxation problem at
high magnetisations was not su�cient to cause observable di�erences in the �nal
temperature pro�les, even a er tens of collision times, a laser-heating problem
where the degree of nonlocality continually increases with time was also studied.
¿is included a fully-ionised nitrogen plasma (Z = 7) of uniform electron density
1.5 × 1019 cm−3 and an assumed constant Coulomb logarithm of 7.5 being heated
by a continuous 6.3 × 1013W/cm2 laser (no time envelope was applied here). ¿e
intensity pro�le was essentially uniform in the y and z directions and Gaussian in
the x-direction with a full width at half maximum of 150 µm. Again ion motion
was neglected. ¿is setup is based on an experiment performed by Froula et
al. (2007) that has previously been simulated with impact by Ridgers et al.
(2008a). ¿is time round the k2 code was used to correctly account for the
e�ect of electron-electron collisions on the anisotropic part of the distribution
function and a simpli�ed one-dimensional geometry employed for the sake of
keeping runtimes short. (¿us, the beam pro�le is planar rather than cylindrical.)
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figure 7.6: Solid coloured lines show the variation of Ψ = PeE y/BQx (proportional to
the ratio of nonlocal Nernst and heat �ow velocities) with magnetisation χ a er 25 ps
vfp simulation for the helium runs (bottom) and 5 ps for the zirconium (top). Colors
di�erentiate between values of the initial magnetic �eld, which are labelled in units of
tesla. Dashed lines show the prediction for Ψ in the local limit. ¿e proximity of the
centre of the colored lines to the dashed shows that the ratio between the peak magnetic
and electric �eld is not strongly a�ected by nonlocality (and is in fact more a�ected by
ionisation). ¿e 50% overestimate of the local prediction at low magnetisations shows
that the pre-Nernst advecting magnetic �eld beyond the temperature gradient is more
pronounced than preheat. At higher magnetisations, nonlocality is unimportant at such
early times and the observed dip in the value of Ψ for the 7.5 T run at low temperatures
is simply a numerical feature due to the small values of E y and Qx in these regions.

Furthermore, the plasma had an initially uniform temperature of 50 eV which
was slightly higher than the 20 eV previously simulated by Ridgers et al. to reduce
the number of velocity cells required. A total of 250 velocity cells were used
extending up to υmax = 25υ1T(50 eV), corresponding to electrons with an energy
of 15.6 keV. ¿e spatial domain, consisting of 100 cells, extended to 500 µm from
the centre of the pulse and again re�ective boundary conditions were used, with
a timestep of 2 fs. ¿e initial magnetic �eld was simply a uniform 4 tesla.
Due to the initially uniform temperature pro�le, nonlocality did not begin

to emerge until at least 50 ps. ¿is meant that the ctc simulations could also
be started from t = 0. Despite nonlocality continually increasing, a �ux-limiter
of 0.15 was found be a good match for the heat �ow pro�le throughout most of
the simulation. However, even at the end of the 600 ps simulation the nonlocal
reduction of the heat �ow down the temperature gradient was only about 10%.
as shown in the top panel �g. 7.7 While the electric �eld in the bottom panel
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�ux-limited pro�les were postprocessed using the k2 temperature and magnetisation
pro�les.
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figure 7.8: Comparison of magnetic �eld and temperature pro�les for the nitrogen
heating problem predicted by k2 and ctc with di�erent combinations of thermal and
Nernst �ux-limiters fQ , fN respectively. All pro�les were evolved independently from an
initial temperature of 50 eV and magnetic �eld of 4 T for 600 ps.

experiences a similar reduction near the position of maximum heat �ow, its peak
is actually increased. ¿is may seem surprising but is explained by its occurrence
in a region where preheat naturally occurs (near the foot of the temperature
gradient at 400 µm), thus enhancing the Nernst velocity due to a surplus of
suprathermal electrons coming from the centre of the hot spot.
Comparing to the ctc simulations we again observe that applying only a

thermal �ux-limiter leads to an overampli�cation of the peak magnetic �eld
(�g. 7.8 top panel) at the end of the simulation by over 3 tesla (nearly 50%). In
contrast, including a Nernst limiter reduces this error to less than 10%. However,
there is still a nearly 50 µm discrepancy in the location of the magnetic �eld
crest due to the inability of the �ux-limiter approach to incorporate the e�ect of
pre-Nernst. For this problem, there is a small but observable di�erence between
the e�ect of the di�erent approaches in the �nal temperature pro�les shown in
the bottom panel of �g. 7.8; while inclusion of a Nernst limiter slightly increases
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the peak temperature it noticeably improves the prediction at 200–250 µm. Again
the Righi-Leduc heat �ow was found to experience a much more severe �ux-
limitation (the peak �ux was reduced by a factor of ∼50%).
7.4 lineout from hydra simulation with self-generated fields

¿e e�ectiveness of linkingNernst advection to thermal conduction in amore real-
istic scenario was con�rmed by analysing a recent nif viewfactor shot (MacLaren
et al. 2014) that employed a Mn/Co microdot (Barrios et al. 2016) on the capsule
surface for diagnostic purposes. Radial lineouts were taken from a 5 ns hydra
simulation that used a thermal �ux-limiter of fQ = 0.15 (Farmer et al. 2018, see �g
3 and the bottom panel of �g 9 in); this employed the newly implemented mhd
suite (including Nernst) outlined in (Farmer et al. 2017). ¿ese lineouts were
located 3mm from the centre of the capsule, starting in the low-density gas-�ll
at r = 0 and ending just inside the partially heated hohlraum wall at r = 2.7mm,
and used to initialise a 100 ps vfp relaxation simulation using 1d planar geometry.
Again, only temperature and magnetic pro�les were allowed to evolve while the
density pro�le was �xed by neglecting ion hydrodynamics and using the zero
current constraint. In order to maintain consistency with the rest of this chapter
and to reinforce the fact that planar geometry was used, Cartesian coordinates
x , y, z will be used in place of their cylindrical counterparts r, z, (−)ϕ. ¿e initial
and �nal ionisation, electron density, temperature and magnetic �eld pro�les are
illustrated in �g. 7.9.
For this problem impact was used to simplify treatment of the spatially-

varying ionisation pro�le. When calculating the local/�ux-limited heat �ow
and Nernst pro�les this enabled us to use the Lorentz limit (Z = ∞) transport
coe�cients with a multiplier of ξ on all appearances of the collision time τ(B)ei
instead of trying to interpolate between transport coe�cients at other ionisations.
Note that there is a loss of accuracy incurred by making this simpli�cation,
particularly at low ionisations; this error is worst around x = 1mm where the
ionisation is low and themagnetisation is not too high leading to an underestimate
of theNernst velocity by a factor of approximately two (see �g. 2.2). ¿e simulation
setup included a spatial cell width of 13.8 µm and a geometric velocity grid where
the width in velocity-space of the highest energy cell (located at 225 keV) was 30
times larger than the lowest energy cell. A timestep of 25 fs was used the Coulomb
logarithm taken to be constant at 4.1.
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figure 7.10: ¿e heat �ow (top) and Nernst velocity (bottom) for the hydra lineout
a er 100 ps impact simulation.

¿emagnitude of the magnetisation is illustrated in the bottom panel of �g. 7.9,
but note that this conceals the reversal of the magnetic �eld at about 1.45mm.
It is shown that, despite the magnetic �eld reaching megagauss levels in the
hohlraum wall, the degree of magnetisation is actually quite low due to the very
high collisionality in this region. Conversely, the highest levels of magnetisation
(exceeding unity) are reached near the centre (x = 0) of the lineout, deep in
the hot gas-�ll. ¿erefore, instead of plotting the axial electric �eld E y, which
increases almost linearly withmagnetic �eld andwould be largest in the hohlraum
wall where magnetisation e�ects are unimportant, the Nernst velocity υN = E y/B
itself is featured in the bottom panel of �g. 7.10. Note that the magnetisation
pro�le does not change noticeably over the 100 ps simulation as it is highest in a
region of relatively homogeneous temperature.
Reduction of the Nernst velocity relative to the local prediction between x =

1.6mm and 2.5mm shows that magnetic �eld is advected into the hohlraum
wall at a slower rate than expected, reducing the ampli�cation of the magnetic
�eld in a similar manner to the previous test problems. Relocalisation due to
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the high magnetic �eld means that there is a very low degree of preheat into
the hohlraum beyond x = 2.5mm. Closer to the centre we see a reversal of the
Nernst velocity compared to the local prediction, meaning that the magnetic �eld
is allowed to climb up the temperature gradient. ¿is is again another e�ect that
could not be captured by a �ux-limiter (red dotted). Here a Nernst �ux-limiter of
0.15 (as calculated by postprocessing the 100 ps pro�les with ctc) seems slightly
conservative, and a lower value would be necessary to capture the high degree of
�ux reduction between 1.5mm and 2mm, but is nevertheless an improvement
on the pure Braginskii approach. Using the new method of multiplying the local
Nernst term by the ratio between the nonlocal vfp and local Braginskii heat
�ows is highly accurate within a radius of approximately 2.61mm, at which point
resistive di�usion becomes more important. For the case of the heat �ow shown
in the top panel of �g. 7.10 a �ux-limiter of 0.15 gets the peak about right, but
again misses the nonlocal �ux reversal observed and overestimates the heat �ow
near to x = 2mm.
7.5 discussion

¿e �ndings in this chapter con�rm, generalise and extend a number of previous
observations (Lancia et al. 2014; Haines 1986b; Haines 1986a; Joglekar et al. 2016;
Read et al. 2016; Davies et al. 2015) about the e�ect of nonlocality on Nernst
advection. Nonlocal limitation of the Nernst velocity reduces both the rate at
which the magnetic �eld cavitates from hot regions of the plasma and the associ-
ated convective ampli�cation of the magnetic �eld at the foot of the temperature
gradient. It is the latter e�ect that is especially a�ected by nonlocality due to the
additional e�ect of suprathermal electrons allowing the magnetic �eld to spread
out further than would be expected from a local prediction; a phenomenon that
could never be replicated by a �ux-limiter approach.
By studying awide range of problems and ionisations, the claimmade byHaines

(1986a) that the relationship between thermal conduction and Nernst advection
should not be greatly a�ected by nonlocality is fully con�rmed. ¿is allows
for a simple method of using the prediction from a nonlocal heat �ow model
(such as the snb) to calculate the Nernst velocity υN ≈ Ψ(B)Qx/Pe, where Ψ(B) =
Peβ(B)∧ /eBκ(B)⊥ is calculated using the Epperlein and Haines (1986) coe�cients.
Crucially, this di�ers from previous suggestions that treat Ψ as a constant (either
2⁄5(Davies et al. 2015; Joglekar et al. 2016; Ridgers et al. 2008a; Haines 1986a) or
2⁄3(Lancia et al. 2014)) potentially resulting in errors of up to 80% (see �g. 2.2).
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Our analysis on the e�ects of using di�erent combinations of �ux-limiters,
suggests that if a more sophisticated approach is not available then the recom-
mended conservative approach is to use identical �ux-limiters on heat �ow and
Nernst advection rather the introducing an additional tunable parameter and the
possibility of over�tting. Speci�cally, this should be applied in such a way that
relative reductions in Qx and E y are equivalent.
While it may seem comforting that nonlocal modi�cations to the Nernst velo-

city do not seem to have signi�cant knock-on e�ects (such as on the evolution of
temperature pro�les) in the problems studied, this may not be universally true.
Firstly, the keV-scale reductions in plasma temperature associated with including
Nernst advection in indirect-drive hydra simulations observed by Farmer et al.
(2017) suggest that limiting Nernst should increase the �nal temperature by a
non-negligible amount if applied throughout the entire simulation (as opposed to
the rather limited 100 ps considered in section 7.4). ¿ese increases in the plasma
temperature due to Nernst limitation could reduce the absorption of laser energy
due to inverse bremsstrahlung; if such temperature rises were concentrated in
the gold bubble the resulting ability of the inner beams to deposit their energy
nearer the hohlraum midplane could lead to a more prolate implosion. However,
the mhd simulations performed by Farmer et al. (2017) with the Nernst term
disabled essentially put a bound on the degree to which Nernst limitation could
a�ect the x-ray drive, meaning that nonlocal e�ects are unlikely to fully explain
the drive de�cit. Nevertheless, nonlocality of Nernst advection could be more
important for experiments involving externally imposed �elds, as was the case for
the direct-drive shot studied by Davies et al. (2015) where modifying the Nernst
limiter led to discernible di�erences in the neutron yield and ion temperature.
Finally, the reversal of Nernst advection observed in section 7.4 may have un-
expected e�ects such as pinning the magnetic �eld to the hohlraum wall, and
somewhat reducing the thermal insulation in the interior of the corona.
One omission that was made in all vfp simulations presented in this paper

was the neglection of ion hydrodynamics. ¿is was to simplify the analysis
by focussing only on heat and magnetic �eld transport. Such an assumption is
unlikely to greatly a�ect the resulting physics over the timescales studied here. For
example, rerunning the �ux-limited ctc simulations with ion motion included
for the helium temperature ramp relaxation problem revealed that the resulting
change in the electron density over 300 ps would not exceed 5%. While this
has slight knock-on e�ects for the evolution of the magnetic �eld, decreasing
the degree of ampli�cation and cavitation by up to 5%, the consequence for the
temperature pro�le is negligible.
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It is worth pausing to consider the potential importance of nonlocal e�ects
on other transport phenomena in the magnetised regime. Perhaps the strongest
candidate for further investigation is the Righi-Leduc heat �ow due to its de-
pendence on very high velocity moments of the edf (e.g. 〈V 12〉, as elucidated
in eq. (2.2.19)). Severe �ux-limitation of the Righi-Leduc heat �ow, as observed
here, could potentially alleviate some of the hot spot cooling recently observed
in simulations by Walsh et al. (2017) in the stagnation phase of indirect-drive
implosions (although the degree of nonlocality in their simulations may not
have been su�ciently high enough for a signi�cant alleviation). Also, the �eld
compressing magneto-thermal instability involves the coupling of Righi-Leduc
heat �ow with Nernst advection (Bissell et al. 2010) and the work here could help
achieve a better understanding of how it behaves under non-local conditions
without performing expensive vfp calculations. However, the absence of an
obvious link with the perpendicular heat �ux means that there is no simple way
of accounting for nonlocal e�ects on the Righi-Leduc heat �ow without having to
resort to the addition of a new independent �ux-limiter or a more sophisticated
reduced nonlocal model capable with stronger links to the edf itself (such as as
the mn model (Del Sorbo et al. 2015, 2016) including B-�elds; whose accuracy
has yet to be fully established).
Less a�ected by nonlocality is the usually negligible e�ect of resistive di�u-

sion which relaxes steep magnetic �eld gradients. ¿is is due to the relevant
transport coe�cient α⊥ only depending on the � h velocity moment 〈V 5〉 of the
distribution function (Epperlein 1994).
One phenomena not investigated here is the the self-generation of magnetic

�elds by the Biermann battery e�ect that occurs in presence of transverse density
and temperature gradients. And Kingham and Bell (2002) have shown that
nonlocality can lead to analogous magnetic �eld generation even in the complete
absence of density gradients. Further work is therefore required to consider the
importance of and develop models for these nonlocally generated �elds.

7.6 conclusions

In this chapter we have seen that the advection of magnetic �elds down steep
temperature gradients due to the Nernst e�ect experiences both a nonlocal �ux
reduction as well as a signi�cant degree of ‘pre-Nernst’, which transports magnetic
�eld beyond the temperature gradient. Our simulations show both these e�ects
working together to reduce the build-up of magnetic �eld and smearing it out
into colder regions. If these e�ects are not taken into account it is possible that



7.6 conclusions 197

overampli�cation of themagnetic �eld could lead to unphysical thermal transport
barriers. A simple but e�ective method of obtaining a reliable nonlocal prediction
for the Nernst thermoelectric coe�cient from a nonlocal heat �ow model, one
that does not require developing a new highly sophisticated model capable of
accurately approximating the entire edf, is β(Nonlocal)∧ = κ(Nonlocal)⊥ β(B)∧ /κ(B)⊥ .



8
CONCLUSIONS

So �nally we come to the end of our nonlocal adventure. We have assessed the
accuracy of the snb, nflf and eic models in a wide range of scenarios, some
especially pertinent to inertial fusion. All in all, it is the practical and highly
versatile snb multi-group difusion model that has proven the most robust at
approximating kinetic heat �ows across all test problems. ¿e success of the
snb model over the nflf and eic should be regarded as a testament to the
conceptually physics-based approach taken by the authors Schurtz et al. that is
able to take into account the inherently nonlinear e�ects so prevalent in inertial
fusion especially, such as steep spatial gradients in electron density and ionisation
pro�les in a manner far simpler than that would be possible when starting with
the initial linearised formulation employed by the nflf and eic models. Despite
the numerous questionable assumptionsmade by the snb model when presenting
a derivation from the kinetic equations (Schurtz et al. 2000) the exhibited link to
the vfp formulation ensures that the most important physical e�ects are retained
and provides a powerful angle fromwhich to understand themodel. Nevertheless,
the aforementioned assumptions obscures the link between the snb function
H and the actual electron distribution function limiting the ease to which the
model can be re�ned or extended to include further complexities such as the
presence of magnetic �elds.
Furthermore, it is important to appreciate the computational costs and bene�ts

of the snb model; as the snb model typically exhibits reasonable convergence
with as few as 25 groups, the local heat �ow calculation is only slowed down
by a factor of approximately 25, re�ecting the di�usion of each group which
can be solved for independently in parallel or serial . However, as the heat �ow
calculation is not the (only) bottleneck in these codes, inclusion of the snb
model more typically slows the code down by a factor of approximately only
two (personal communication with Mehul Patel). If instead a two-dimensional
radiation-hydrodynamics code were to be fully replaced by a vfp code in a
similar vein to impact, k2 or oshun (which would be far from a trivial task
considering all the complex multi-physics e�ects that need to be taken into
account such as equation of state, ray-tracing and radiation absorption) the
relative computational cost would be much more signi�cant. At the very least 60
velocity cells are typically needed for sensible behaviour of a vfp code, but this

198



conclusions 199

is usually more on the order of 100 to ensure accurate computation of the heat
�ow moment. Added to this either an intensive matrix solve when employing an
implicit solve , or a timestep on the order of the plasma frequency (at least 100
times smaller than typical ale code timsteps) as well as thememory requirements
for retaining information on the distribution function at every timestep and a
transition to vfp codes could foreseeably lead to a slow down by approximately
104.
¿e speci�c implementation of the snb model deemed optimal from these

studies uses the standard modi�ed source term #»g (mb)1 on the right-hand side,
but with distinct separate electron-ion and electron-electron mfp’s rather than
the original geometrically averaged one. Furthermore, the electron-ion mfp
is found to require an ionisation-dependent multiplier, such as the Epperlein-
Short collision �x ξes (Epperlein and Short 1991), to account for the increasing
importance of electron-electron collisions on the anisotropic part of the edf
at low ionisations. Finally, an additional multiplier was added to the electron-
electron mfp corresponding to r = 2 in the notation introduced in section 2.3.3.
¿e value of the multiplier r was arrived at by �rst quantifying the nonlocal

deviation of the heat �ow in the long-wavelength limit for the linearised prob-
lem (‘semicollisional’ regime, see section 4.3.5) from the local limit at various
ionisations. In fact this initially indicated a value of r ≈ 2.4 in the Lorentz limit,
increasing to r ≈ 3 when Z = 1; however, further benchmarking presented in
chapter 5 indicated that an ionisation independent value of r = 2 was better at
reproducing vfp heat �ow pro�les for thermal relaxation and laser heating test
problems when relative temperature di�erences were large. A convenient bene�t
of this particular multiplier is that it supports the new interpretation of the snb
model H arising from a link to the high-velocity limit of the electron-electron
collision operator identi�ed in section 4.3.6, H ≈ 2πkBTeυ4 ∂δf0/ f (mb)

e
∂υ f (mb)e dυ, in

terms of the the deviation of the isotropic part of the edf from a Maxwellian
δf0 = f0 − f (mb)e . Nevertheless, higher values of r have not been completely ruled
out and if strong arguments for values of r between 2 and 4 were to be presented
in the future these should always be carefully considered.
Despite these implementation adjustments, some inaccuracies of the snb

model concerning overprediction of preheat and coronal heat �ow, particularly
in the presence of steep ionisation gradients still remain. Modi�cations to the
snb electric �eld treatment can make some further progress towards reducing
such discrepancies. Comparisons presented in chapter 5 suggest either using
a multiplier of Emult = √Zξes/r on the electric �eld, in line with the original
model before the separation of mfp’s, or eliminating the electric �eld entirely. No
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other promising improvements to the snb model have been investigated in detail
here but one potential route is to build on the new interpretation of the function
H by attempting to rederive the snb model with a collision operator closer to the
linearised electron-electron collision operator and retain terms that the original
models neglects. Another use for the relation between H and δf0 would be to
assess nonlocal modi�cations to the damping rates of parametric instabilities,
this could be particularly reliable for instabilities with high phase velocities such
as srs or Langmuir waves due to the accuracy of the identi�ed relationship in
the tails of the edf, but probably not so much for other instabilities with lower
phase velocities such as the return current instability where accuracy worsens.
In order to allow for an in-depth understanding and reduce simulation times,

the test problems presented in this thesis have been exclusively limited to 1d. And
while some 2d tests have been performed in other works (Schurtz et al. 2000;
Del Sorbo et al. 2015), these have neither been extensively benchmarked against
vfp nor use the new calibrated version of the snb model. While the natural
multi-dimensional formulation of the snb model suggests that a lot of the core
1d behaviour (fairly accurate prediction of peak heat �ow, sizeable overestimate
of preheat) should follow through to 2d and 3d, the success of the snb model
to accurately estimate inherently anisotropic features such as the �ux rotation
caused by imbalanced temperature gradients should be validated more rigorously.
Furthermore, while the potential of a reducedmodel to capture nonlocal e�ects

on Nernst advection by simply multiplying the nonlocal heat �ow by the local
ratio between the Nernst and heat �ow velocities was con�rmed in chapter 7,
the magnetised snb model itself has not been fully validated. It is imperative in
moving towards a reliable and trustworthy model for the increasingly important
magnetised regime that the risks and inaccuracies associated with the magnetised
snb be fully evaluated and understood. Another important topic of predictively
modelling fusion plasma heat �ows that can be answered using vfp codes is
the additional modi�cations of the edf towards a Dum-Langdon-Matte type
super-Gaussian (Dum 1978b,a; Langdon 1980; Matte et al. 1988) due to inverse
bremsstrahlung absorption of laser energy could provide further alterations to
transport processes (Ridgers et al. 2008b). Perhaps there is a simple modi�cation
to the snb model that could be identi�ed to incorporate this, but current kinetic
simulations suggest that this ib e�ect is not too important for indirect drive
experiments (personal communication with Mark Sherlock).
Less critical to our �ndings are the inaccuracies experienced by vfp codes in

strongly coupled plasmas. While this could play a role in the cooler part of the
hohlraum wall, such as in the gadolinium hohlraum test in section 5.4, where the
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Coulomb logarithm drops to ∼2 (theoretically rendering the e�ect of collisions in
this region only accurate toO(1/logΛα)∼50%) it does not a�ect the conclusion
made that the separated snb model predicts a similar heat �ow into the wall as
impact while overpredicting that in the corona as both use the same treatment
of logΛ. Instead, the results in this thesis have simply shown quantitatively that re-
duced models can be an e�ective stepping stone between hydrodynamic and vfp
approaches. However. this does act as a reminder that even a highly sophisticated
vfp code could be faced with challenging inaccuracies in certain regions of the
plasma (though it would surely still be an improvement to a purely hydrodynamic
approach which would experience the same di�culties with strongly coupled
plasmas); a potential method in overcoming this and incorporating large-angle
collisions in a continuum code could be a Monte Carlo based approach (Turrell
et al. 2015). Similar points can be made for other de�ciencies, such as collisions
with neutrals and Fermi degeneracy, although these are probably slightly easier
to address and incorporate into models (Kolobov and Arslanbekov 2006; Brown
and Haines 1997), with one such approach is suggested by Sijoy et al. (2017)
In addition to identifying snb as the nonlocal model of choice for inertial

fusion simulations and some scrape-o� layer studies a number of other valuable
results have been advanced by the studies in this thesis. Characterisation of the
limiting long- and short-wavelength behaviour of the electron heat �ow for the
case of small perturbations in chapter 4 led to the derivation of a new analytic
approximation to the dependence of the thermal conductivity reduction on the
nonlocality parameter kλ(B)ei (eq. (4.6.6)),

κ∥
κ(B)∥

= (1 +( 1
bQZk2λ(B)2ei

+ 1
akλ(B)ei (1 + c1(kλ(B)ei )−η)

)−1)−1
,

(see section 4.6.1 for more details). ¿is �t was a signi�cant improvement to those
of Hammett and Perkins (1990) and Bychenkov et al. (1994 eq. 14, 1995 eq. 57)
and almost as accurate as Ji’s con�guration space closure. It was this �t that was
used to obtain the �tting coe�cients given in appendix a for the non-Fourier
Landau-�uid model, enabling an accuracy within 2.5% for kλ(B)ei < 1.6 for Z = 1
and kλ(B)ei < 0.29 for Z = 8.
When moving on to more fusion relevant scenarios with large relative temper-

ature di�erences, both the eic and nflf models failed to capture the marked
preheat or peak relocation that was observed. While a nonlinear Picard iteration
scheme in a similar vein to impact could perhaps help the eic model at the
cost of computational time, it was instead a simple improvement to the nflf
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model that was investigated in section 5.1.1. ¿is involved modifying the core
equations in such a way that its predictions would only be altered when relative
temperature perturbations could not be considered small. Inspired by the success
of the snb model these modi�cations render the nflf equations as

[q2j
ne

+ (aλ(B)ei )2
#»∇ ⋅ 1

ne
#»∇]Te4 #»Q j = Te4

ne
p j

#»Q (B).

¿e impact of this was to improve the behaviour of the model in the presence
of mild nonlocalities, now predicting preheat and peak translation, but greatly
overpredicting the preheat when temperature gradients become overly steep
(λ(B)ei ∣#»∇Te∣/Te ⪆ 0.1).
Finally, in chapter 6, we observed that the implementation of the popular snb

model in various inertial fusion codes (hydra, chic and dued) can di�er
greatly. Collaboration with researchers at llnl have resulted in an option (now
set as default) to incorporate the calibrations suggested in this thesis. ¿ese
model adjustments have the potential to play a role in shot design, particularly in
improving implosion symmetry. And sensitivity analysis is being performed to
assess the impact of this. It is hoped that similar amendments might be made to
the snb model in chic, and other codes where necessary.
In conclusion, the signi�cant improvements to the snb model identi�ed in this

thesis should have real consequences that could potentially qualitatively a�ect
the predictions of rad-hydro simulations (particularly with regards to symmetry
predictions). ¿e thorough analysis presented in this thesis provides a high degree
of con�dence in continued use of the model. Additionally, the key current issue
for the snb has been identi�ed as its overprediction of preheat at high degrees
of nonlocality, especially in the low density corona. ¿e possible implications of
this overprediction should be carefully considered by designers when analysing
simulations, although of course it would be ideal if further re�nements to the
model were found. Unfortunately, no validation has here been performed of the
magnetised snb model and completion of this is vital if the role of magnetic �elds
in inertial fusion is to be fully understood. If themagnetised snb were found to be
acceptably accurate the �ndings of chapter 7 would provide nonlocal corrections
to Nernst advection free of charge. For the case of scrape-o� layer transport,
using the unmagnetised snb parallel to �eld lines again seems to be the strongest
candidate due to the large relative temperature di�erences involved, but the
greatest challenge concerns the application of sheath-like boundary conditions at
the plasma exhaust which could have a large impact when mean pro�les evolve
so slowly.



A
NFLF FITTING COEFFICIENTS

table a.1: Coe�cients for the nflf model guaranteeing a percentage error less than
2.5% compared to the analytical approximation (eq. (4.6.6)) of κ∥(kλ(B)ei )/κ(B)∥ for Z = 1
and kλ(B)ei < kmaxλ(B)ei .

N = 2
kmaxλ(B)ei = 0.4
p j

4.859e−3
2.986e−1

q j
1.208e−1
6.690e−1

N = 3
kmaxλ(B)ei = 1.6
p j

2.176e−3
6.316e−2
1.682

q j
1.020e−1
3.513e−1
2.455

N = 4
kmaxλ(B)ei = 5.0
p j

8.623e−4
3.159e−2
3.248e−1
6.311

q j
8.493e−2
2.549e−1
1.088
7.256

N = 5
kmaxλ(B)ei = 13.8
p j

3.102e−4
1.804e−2
1.422e−1
1.195
1.923e1

q j
7.002e−2
2.025e−1
6.866e−1
2.901
1.901e1

N = 6
kmaxλ(B)ei = 33.2
p j

1.036e−4
1.062e−2
7.381e−2
4.851e−1
3.447
4.970e1

q j
5.719e−2
1.686e−1
4.785e−1
1.669
6.867
4.445e1

N = 8
kmaxλ(B)ei = 151.7
p j

1.179e−5
3.457e−3
2.741e−2
1.318e−1
6.487e−1
3.280
1.959e1
2.500e2

q j
3.841e−2
1.251e−1
2.814e−1
7.722e−1
2.307
7.700
3.098e1
1.972e2

N = 10
kmaxλ(B)ei = 363.9
p j

1.169e−6
6.924e−4
1.096e−2
4.488e−2
1.774e−1
6.942e−1
2.730
1.159e1
5.910e1
6.606e2

q j
2.509e−2
9.009e−2
1.859e−1
4.174e−1
1.035
2.704
7.610
2.389e1
8.877e1
5.094e2

N = 12
kmaxλ(B)ei = 914.2
p j

1.604e−7
1.184e−4
4.290e−3
2.067e−2
6.950e−2
2.384e−1
7.985e−1
2.675
9.383
3.630e1
1.690e2
1.773e3

q j
1.734e−2
6.518e−2
1.390e−1
2.711e−1
5.952e−1
1.366
3.265
8.257
2.254e1
6.832e1
2.429e2
1.321e3
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table a.2: Coe�cients for the nflf model guaranteeing a percentage error less than
1.0% compared to the analytical approximation (eq. (4.6.6)) of κ∥(kλ(B)ei )/κ(B)∥ for Z = 1
and k′λ(B)ei < kmaxλ(B)ei .

N = 2
kmaxλ(B)ei = 0.2
p j

2.663e−3
1.893e−1

q j
1.058e−1
4.984e−1

N = 3
kmaxλ(B)ei = 0.9
p j

1.123e−3
3.872e−2
9.644e−1

q j
8.936e−2
2.773e−1
1.647

N = 4
kmaxλ(B)ei = 2.6
p j

4.429e−4
2.170e−2
1.898e−1
3.511

q j
7.483e−2
2.175e−1
7.989e−1
4.616

N = 5
kmaxλ(B)ei = 4.8
p j

9.954e−5
1.043e−2
7.259e−2
4.959e−1
7.385

q j
5.678e−2
1.676e−1
4.736e−1
1.665
8.783

N = 6
kmaxλ(B)ei = 15.2
p j

5.343e−5
7.716e−3
5.291e−2
3.125e−1
1.960
2.603e1

q j
5.066e−2
1.533e−1
3.991e−1
1.280
4.680
2.602e1

N = 8
kmaxλ(B)ei = 66.2
p j

6.471e−6
2.396e−3
2.160e−2
9.736e−2
4.501e−1
2.091
1.096e1
1.273e2

q j
3.440e−2
1.154e−1
2.497e−1
6.489e−1
1.832
5.650
2.023e1
1.105e2

N = 10
kmaxλ(B)ei = 251.8
p j

9.483e−7
5.834e−4
1.004e−2
4.114e−2
1.597e−1
6.153e−1
2.368
9.726
4.733e1
5.130e2

q j
2.413e−2
8.723e−2
1.799e−1
3.974e−1
9.722e−1
2.499
6.887
2.100e1
7.486e1
4.077e2

N = 12
kmaxλ(B)ei = 240.5
p j

2.717e−7
1.941e−4
5.658e−3
2.516e−2
8.800e−2
3.118e−1
1.080
3.796
1.426e1
6.099e1
3.469e2
3.212e3

q j
1.913e−2
7.128e−2
1.497e−1
3.017e−1
6.833e−1
1.616
4.007
1.061e1
3.079e1
1.016e2
4.110e2
2.673e3
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table a.3: Coe�cients for the nflf model guaranteeing a percentage error less than
2.5% compared to the analytical approximation (eq. (4.6.6)) of κ∥(kλ(B)ei )/κ(B)∥ for Z = 8
and k′λ(B)ei < kmaxλ(B)ei .

N = 2
kmaxλ(B)ei = 0.07
p j

1.097e−3
7.561e−2

q j
6.066e−2
3.282e−1

N = 3
kmaxλ(B)ei = 0.29
p j

4.384e−4
1.723e−2
4.053e−1

q j
4.997e−2
1.783e−1
1.198

N = 4
kmaxλ(B)ei = 0.89
p j

1.568e−4
8.535e−3
8.235e−2
1.523

q j
4.064e−2
1.310e−1
5.336e−1
3.590

N = 5
kmaxλ(B)ei = 2.4
p j

5.206e−5
4.647e−3
3.694e−2
2.849e−1
4.681

q j
3.281e−2
1.040e−1
3.367e−1
1.408
9.417

N = 6
kmaxλ(B)ei = 5.9
p j

1.720e−5
2.597e−3
1.990e−2
1.201e−1
8.256e−1
1.279e1

q j
2.656e−2
8.644e−2
2.379e−1
8.170e−1
3.392
2.265e1

N = 7
kmaxλ(B)ei = 12.9
p j

5.751e−6
1.413e−3
1.182e−2
6.103e−2
3.278e−1
2.110
3.147e1

q j
2.158e−2
7.330e−2
1.797e−1
5.372e−1
1.830
7.555
5.023e1

N = 8
kmaxλ(B)ei = 27.0
p j

1.992e−6
7.298e−4
7.454e−3
3.473e−2
1.604e−1
7.979e−1
4.939
7.150e1

q j
1.765e−2
6.267e−2
1.427e−1
3.819e−1
1.140
3.852
1.583e1
1.045e2

N = 10
kmaxλ(B)ei = 109.9
p j

2.835e−7
1.694e−4
3.184e−3
1.421e−2
5.437e−2
2.092e−1
8.504e−1
3.955
2.367e1
3.293e2

q j
1.219e−2
4.625e−2
1.001e−1
2.261e−1
5.686e−1
1.534
4.538
1.527e1
6.267e1
4.137e2
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table a.4: Coe�cients for the nflf model guaranteeing a percentage error less than
1.0% compared to the analytical approximation (eq. (4.6.6)) of κ∥(kλ(B)ei )/κ(B)∥ for Z = 8
and k′λ(B)ei < kmaxλ(B)ei .

N = 2
kmaxλ(B)ei = 0.04
p j

5.624e−4
4.982e−2

q j
5.235e−2
2.504e−1

N = 3
kmaxλ(B)ei = 0.15
p j

2.102e−4
1.057e−2
2.346e−1

q j
4.305e−2
1.423e−1
8.021e−1

N = 4
kmaxλ(B)ei = 0.45
p j

7.530e−5
5.669e−3
4.855e−2
8.275e−1

q j
3.523e−2
1.116e−1
3.900e−1
2.238

N = 5
kmaxλ(B)ei = 1.2
p j

2.548e−5
3.198e−3
2.451e−2
1.637e−1
2.438

q j
2.863e−2
9.203e−2
2.669e−1
9.827e−1
5.598

N = 6
kmaxλ(B)ei = 2.7
p j

8.621e−6
1.781e−3
1.423e−2
7.749e−2
4.614e−1
6.394

q j
2.330e−2
7.783e−2
1.982e−1
6.217e−1
2.275
1.291e1

N = 7
kmaxλ(B)ei = 5.9
p j

2.999e−6
9.512e−4
8.881e−3
4.282e−2
2.088e−1
1.159
1.540e1

q j
1.908e−2
6.660e−2
1.553e−1
4.331e−1
1.355
4.938
2.794e1

N = 8
kmaxλ(B)ei = 12.3
p j

1.093e−6
4.822e−4
5.773e−3
2.594e−2
1.121e−1
5.065e−1
2.706
3.496e1

q j
1.575e−2
5.725e−2
1.269e−1
3.211e−1
9.027e−1
2.810
1.023e1
5.776e1

N = 10
kmaxλ(B)ei = 46.9
p j

1.653e−7
1.071e−4
2.462e−3
1.135e−2
4.171e−2
1.530e−1
5.806e−1
2.438
1.255e1
1.557e2

q j
1.100e−2
4.229e−2
9.177e−2
1.990e−1
4.816e−1
1.242
3.463
1.074e1
3.907e1
2.201e2



B
DERIVATIONS & PROOFS

b.1 explicit form of the linearised electron-electron col-
lision operator

¿e linearised form of the electron-electron collision operator appearing on the
right-hand of the equation for f0, the isotropic part of the distribution func-
tion in a Cartesian tensor expansion, (eq. 2.1.11) is obtained by ignoring terms
proportional to δf02:

C(L)
ee0
(
δf0
) = Γee

υ2
∂
∂υ

(
I0(δf0) f (mb)e + I0( f (mb)e )δf0

+ D(δf0)∂ f (mb)e
∂υ

+ D( f (mb)e )∂δf0
∂υ

) (b.1.1)

= 4πΓee
υ2

∂
∂υ

(
∫ υ

0
ψ f (mb)e u2 du f (mb)e + ∫ υ

0
f (mb)e u2 du ψ f (mb)e

− me
kBTe ∫

υ

0
u2 ∫ ∞

u
ψ f (mb)e w dw du f (mb)e (b.1.2)

+ 1
υ ∫

υ

0
u2 ∫ ∞

u
f (mb)e w dw du

(∂ψ
∂υ

− meυ
kBTe

ψ
)
f (mb)e ,

)

where δf0 has been replaced withψ f (mb)e . Evaluating some of the integrals directly
or by parts gives

C(L)
ee0
(
δf0
) = 4πΓee

υ2
∂
∂υ

(

���
���

��:0
∫ υ

0
ψ f (mb)e u2 du f (mb)e +

���
���

�:0∫ υ

0
f (mb)e u2 du ψ f (mb)e

− ∫ υ

0
u2
(
��

��*
0

ψ f (mb)e + ∫ ∞
u

∂ψ
∂υ

f (mb)e

)
dw du f (mb)e

+ ∫ υ

0
u2 f (mb)e du

(kBTe
meυ

∂ψ
∂υ

− ���0ψ ) f (mb)e

)
(b.1.3)

= neΓee
υ2

∂
∂υ

(
f (mb)e
2

L̂
[
∂ψ
∂υ

] )
(b.1.4)

where L̂
[
∂ψ
∂υ

] ∶= 2kBTe
meυ

I0
(
f (mb)e

)

ne
∂ψ
∂υ

− 8π ∫ υ

0
u2 ∫ ∞

u

f (mb)e
ne

∂ψ
∂w

dw du. (b.1.5)
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Substituting V = υ/√me/2kBTe produces
L̂
[
∂ψ
∂V

] = 2√
π
γ(3⁄2 ,V 2)

V
∂ψ
∂V

− 8√
π ∫

V

0
U2 ∫ ∞

U
e−W2 ∂ψ

∂W
dW dU , (b.1.6)

where γ(n, x) = ∫ x0 xn−1e−x dx is the lower incomplete gamma function.

b.2 application of energy conservation

For a plasma with a given density and temperature pro�le the non-Maxwellian
part of the distribution function δf0 can not contribute to the local density and
temperature as this is already completely provided by the Maxwellian part f (mb)e ,
therefore

4π ∫ ∞
0
υ2δf0 dυ = 0 and 4π ∫ ∞

0

1
2
meυ4δf0 dυ = 0. (b.2.1)

¿ese can be combined to calculate the implication on the derivative of ψ as

∫ ∞
0

(
V4 − 3

2
V 2
)
ψe−V 2

dV = 0 (b.2.2)

Ô⇒ [ − V 3

2
ψe−V 2]∞

0
+ ∫ ∞

0

V 3

2
∂ψ
∂V

e−V 2
dV = 0 (b.2.3)

Ô⇒ ∫ ∞
0
V 3 ∂ψ

∂V
e−V 2

dV = 0, (b.2.4)

assuming that ψ(υ = 0) is �nite.
b.3 high-velocity limit of the linearised electron-electron

collision operator

¿e behaviour of the L̂ operator in the limit of high-velocity can be evaluated by
integrating the second term by parts:

lim
V→∞ L̂

[
∂ψ
∂V

] = 1
V
∂ψ
∂V

− 4√
π

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[
U3

3 ∫ ∞
U
e−W2 ∂ψ

∂W
dW
]V

0

+ ∫ V

0

V 3

3
e−U2 ∂ψ

∂U
dU

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(b.3.1)

= 1
V
∂ψ
∂V

, (b.3.2)
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where both terms in the curly brackets can be neglected as they approach zero
exponentially fast. Note how the second term in the curly brackets vanishes at
in�nity due to the energy conservation discussed in the previous section.

b.4 inverse of the electron-electron collision operator

In section 4.3.1 a form for the inverse of the operator L̂ was provided without
proof:

L̂−1∗ [S(V )] =
√
π
2

VS(V )
γ(3⁄2 ,V 2)

− 2√πV ∫ V

∗
Y2 ∫ Y0 S(T)Te−T2

dT
γ(3⁄2 ,Y2)2

dY , (b.4.1)

which is an inverse for any nonnegative value of ∗, but this should be chosen so as
to conserve energy. ¿is can be shown by applying L̂ to both sides of the equation
and integrating by parts multiple times. Substituting G(V ) = S(V )Ve−V 2

for
compactness we �nd

When integrating
eqs. (b.4.2)
and (b.4.3) by parts
terms in red are
integrated, while
terms in blue are
di�erentiated. In
eq. (b.4.4)
color-coding is
merely used to
indicate which
terms cancel.

L̂
[
L̂−1∗ [S(V )]

]

= S − 4γ(3⁄2 ,V 2) ∫ V

∗
Y2 ∫Y0G dT
γ(3⁄2 ,V 2)2

dY (b.4.2)

− 4 ∫ V

0
U2 ∫ ∞

U

G(W)
γ(3⁄2 ,W2)

− 4We−W2 ∫ W

∗
Y2 ∫Y0G dT
γ(3⁄2 ,Y2)2

dY dW dU

= S − 4{γ(3⁄2 ,V 2) ∫ V

∗
Y2 ∫Y0G dT
γ(3⁄2 ,Y2)2

dY + ∫ V

0
U2 ∫ ∞

U

G(W)
γ(3⁄2 ,W2)

dW (b.4.3)

−U2 ∫ ∞
U

2W2e−W2
∫W0 G dT

γ(3⁄2 ,W2)2
dW − 2U2e−U2 ∫ U

∗
Y2 ∫Y0G dT
γ(3⁄2 ,Y2)2

dY dU}

= S − 4{
��

���
���

���
���:0

γ(3⁄2 ,V 2) ∫ V

∗
Y2 ∫Y0G dT
γ(3⁄2 ,Y2)2

dY + ∫ V

0���
��

���
���:

0
U2 ∫ ∞

U

G(W)
γ(3⁄2 ,W2)

dW (b.4.4)

−
��

���
���

���:
0

U2 ∫ ∞
U

G(W)
γ(3⁄2 ,W2)

dW +U2
[

∫Y0G dT
γ(3⁄2 ,W2)

]∞
��

0
U

+
�
�
�
�
��>

0
U2 ∫U0G dT
γ(3⁄2 ,U2)

dU −
���

���
���

���
��:0

γ(3⁄2 ,V 2) ∫ V

∗
Y2 ∫Y0G dT
γ(3⁄2 ,Y2)2

dY}
= S − 4 ∫ V

0

U2 ∫∞0 G dT
Γ(3⁄2)

dU , (b.4.5)
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where Γ(3⁄2) =√
π/2. ¿erefore, L̂−1∗ successfully inverts L̂ as long as the integral

of G vanishes. ¿is is guaranteed to be the case as it is equivalent to requiring
that the υ4 moment of the (le -hand side of the) f0 equation is zero due to energy
conservation.

b.5 noncontribution of nonstationarity in perturbing the
distribution function

¿e time-derivative of f0 which appears in the source is proportional to V 3

L̂−1∗ [V 3] = √
π
2

V4

γ(3⁄2 ,V 2)
− 2√πV ∫ V

∗
Y2 ∫ Y0 T4e−T2

dT
γ(3⁄2 ,Y2)2

dY (b.5.1)

= √
π
2

V4

γ(3⁄2 ,V 2)
−√

πV ∫ V

∗
3
2

Y2

γ(3⁄2 ,Y2)
− Y5e−Y 2

γ(3⁄2 ,Y2)2
dY (b.5.2)

= √
π
2

V4

γ(3⁄2 ,V 2)
− √

π
2
V
[

Y3

γ(3⁄2 ,Y2)

]V

∗ (b.5.3)

= 0 (b.5.4)

b.6 convergence of iterative form of inverse collision op-
erator

In section 4.3.1 we provided an iterative approximation to calculate the second
term in the inverse of the collision operator

∫ V

0

Y2 ∫Y0 S Te
−T2

dT
γ(3⁄2 ,Y2)2

dY ≈ N∑
n=1

n!In
[
eV

2
∫V0 S Te

−T2
dT
]

γ(3⁄2 ,V 2)n+1 , (b.6.1)

where I[F(V )] = ∫V0 2U
2e−U2

F(U) dU and L̂−10 [S(V )]〈0〉 = 0. It can be shown that
this approximation converge by proving that the error term

∆N [S] = ∣ ∫ V

0

Y2 ∫Y0 S Te
−T2

dT
γ(3⁄2 ,Y2)2

dY − N∑
n=1

n!In
[
eV

2
∫V0 S Te

−T2
dT
]

γ(3⁄2 ,V 2)N+1 ∣ (b.6.2)

= ∣2(n + 1)! ∫ V

0

Y2e−Y 2
IN
[
eY

2
∫V0 S Te

−T2
dT
]

γ(3⁄2 ,Y2)N+2 dY ∣ (b.6.3)

goes to zero asN increases. In order to do this, we �rst need to ascertain a number
of properties of the lower incomplete gamma function.
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Lemma b.6.1 Absolute bounds on the incomplete gamma function
An upper bound of the gamma function

γ(n, x) = ∫ x

0
xn−1e−x dx ⩽ xn

n
, (b.6.4)

is obtained using the fact that e−x ⩽ 1, ∀x ⩾ 0. Alternatively, integrating by parts
and noting that the lower incomplete gamma function is strictly increasing with
respect to it’s second argument yields a useful lower bound:

γ(n, x) = xn

n
e−x + γ(n + 1, x)

n
⩾ min(xn

n
e−x , nn−1e−n). (b.6.5)

Lemma b.6.2 Relative bounds on the incomplete gamma function
It is useful to show that for m ⩾ n + 1
γ(m, x) = xm−nγ(n, x) − (m − n) ∫ x

0
xm−n−1γ(n, x) dx (b.6.6)

⩽ xm−nγ(n, x), (b.6.7)

which can be improved upon by using the usual recurrence relation

mγ(m, x) = xme−x + γ(m + 1, x) (b.6.8)

⩽ xme−x + xm−nγ(n + 1, x) (b.6.9)

⩽ nxm−nγ(n, x). (b.6.10)

While this inequality will be useful in the low-velocity limit, the following lemma
will be applied in the high-velocity limit.

Lemma b.6.3 ¿e lower regularised gamma function is strictly decreasing with
respect to its �rst argument
¿e regularised gamma function is de�ned as P(n, x) = γ(n, x)/Γ(n), where
Γ(n) = γ(n,∞). For any m > n,
P(m, x) − P(n, x) = ∫ x

0

(
xm−n
Γ(m)

− 1
Γ(n)

)
xn−1e−x dx (b.6.11)

can be shown to be nonpositive. ¿is is trivial for x ⩽ ( Γ(m)/Γ(n) )1/(m−n); in
order to demonstrate that the integral does not exceed zero at higher velocities it
can be rewritten as:

P(m, x) − P(n, x) = ∫ x

∞
(

1
Γ(n)

− xm−n
Γ(m)

)
xn−1e−x dx , (b.6.12)
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which has a negative integrand for all x ⩾ ( Γ(m)/Γ(n) )1/(m−n). ¿us ∂P(n,x)
∂n ⩽ 0,∀x ⩾ 0.

Lemma b.6.4 Upper bound of iterated integral for a monomial S
Assuming that S(V ) = V j where j > 2, then the iterated integral has the following
upper bound

In
[
eV

2 ∫ V0 S Te−T
2
dT
] ⩽ V j+2

3

(
V 1− jγ( j+22 ,V 2)

)n

n!
(b.6.13)

for all n ⩾ 1.
Proof for n = 1.
I1
[
eV

2 ∫ V0 S Te−T
2
dT
] = ∫ V

0
2U2 ∫ V0 T j+1e−T2

dU ⩽ V 3

3
γ( j+22 ,V 2) (b.6.14)

Proof by induction. Assume

In
[
eV

2 ∫ V0 S Te−T
2
dT
] ⩽ V j+2

3

(
V 1− jγ( j+22 ,V 2)

)n

n!
(b.6.15)

Ô⇒ In+1[eV 2 ∫ V0 S Te−T
2
dT
] ⩽ ∫ V

0

2U4+ je−U2

3

(
U 1− jγ( j+22 ,U2)

)n

n!
dU (b.6.16)

⩽ V 2+ j
3

(
V 1− jγ( j+22 ,V 2)

)n+1
(n + 1)! (b.6.17)

using integration by parts.

¿eorem b.6.5 For all є > 0, ∃N such that ∆M[V j] < є for all M > N
Proof. Choose

N = max[C j + 1,−W−1( − 3 log(Ξ)єΞ−Z/A j
)

log(Ξ)
− Z], (b.6.18)

whereW−1( f ) is the lower branch of the LambertW function, which provides an
inverse of the function f (z) = zez for z ⩽ −1 and
C j = j + 2

j − 1 , Ξ = j + 2
3

, Z = 1 + B j
A j
(C j + 2) (b.6.19)
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has been de�ned in terms of upper bounds corresponding to theorems b.6.2
and b.6.3. ¿ese are given by

A j = 9
4
e−iπ( j−1)/2γ( j−12 ,− 3

2
) + [V∗ −√ 3

2

]2
( j+4
2e
)( j+4)/2

γ(3⁄2 , 3⁄2)2
(b.6.20)

= ∫
√

3
2

0

U j+4e−U2

( 2
3U

3e−U2)2 dU + ∫ V∗√
3
2

2
( j+4
2e
)( j+4)/2

γ(3⁄2 , 3⁄2)2
dU (b.6.21)

> ∫ V∗

0

2U j+4e−U2

γ(3⁄2 ,U2)2
dU (b.6.22)

B j = 3V∗ j+2
γ(3⁄2 ,V∗2)( j − 1) (b.6.23)

= V∗N( j−1)(N − C j) ∫ ∞
V∗

2U j+4−N( j−1)e−U2

2
3U

3e−U2
γ(3⁄2 ,V∗2) dU (b.6.24)

> (N − C j) ∫ ∞
V∗

2U j+4e−U2

γ(3⁄2 ,U2)2

(
V∗
U

)N( j−1)
dU (b.6.25)

V∗ is the velocity at which the two upper bounds presented in theorems b.6.2
and b.6.3 for the function γ( j+22 ,V 2) are equal to each other:

V∗ j−1 = Γ
( j+2

2
)

Γ
( 3
2
) Ξ (b.6.26)

¿us, for allM > N
є > A j(M + Z)e− log(Ξ)(M+Z)ΞZ/3 (b.6.27)

> (A j(M + 1) + B j(C j + 2))Ξ−M/3 (b.6.28)

> (M + 1)
3

(
∫ V∗

0

2U j+4e−U2

γ(3⁄2 ,U2)2
dU + B j

N − C j

)
Ξ−M (b.6.29)

> (M + 1)
3 ∫ ∞

0

2U j+4e−U2

γ(3⁄2 ,U2)2
min

(
3
j + 2 , Γ

( j+2
2
)

Γ(3⁄2),U j−1
)M

dU (b.6.30)

> (M + 1)
3 ∫ ∞

0

2U j+4e−U2

γ(3⁄2 ,U2)2+N
(
U 1− jγ( j+22 ,U2) )M dU (b.6.31)

> 2(M + 1)! ∫ ∞
0

U2e−U2

γ(3⁄2 ,U2)N+2 I
M[eU

2
∫ U0 T j+1e−T2

dT
]
dU (b.6.32)

> ∆N[V j+1]



b.7 asymptotic expansion for collisionless diffusion approximation 214
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[ 13th February 2018 at 14:05 – Jonathan Brodrick ¿esis version 0.2 ]

figure b.1: Reduction of the maximum error of the integral in eq. (b.6.1) a er N
iterations for the monomial source V 8 resulting from a linearised temperature sinusoid
(see eq. 4.3.13): (the nonstationary V 3 term does not contribute to pertubrations of the
distribution function). Dashed lines depict the large overestimate of the error resulting
from eq. (b.6.28), while the solid line result provides uses the improved approximation
in eq. (b.6.31) for the exact error ∆N evaluated at V = ∞, which has been calculated
numerically for up to three iterations and marked by crosses. (Zero iterations leads to an
error that diverges with increasing velocity).

By this theorem and the linearity of the iterated integral on S its convergence
is guaranteed for any source S(V ) bounded above by a polynomial that does not
include a constant, linear or quadratic term (i.e. S ⩽ ∑∞j=2 c jV j for any combina-
tion of c j ∈ IR). Note that the minimum number of iterations N required for a
maximum error less than є turns out to be much less than suggested by equation
eq. (b.6.18).

b.7 asymptotic expansion for collisionless diffusion approx-
imation

Consider the integral

F j(u) = 4√
π ∫

∞
0

V (2+ j)e−V 5u−V 2
dV (b.7.1)

appearing in the expression for the electric potential in the collisionless limit
under the di�usive approximation eq. (4.4.48). Its asymptotic expansion as
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u →∞ can be obtained by changing variables to x = V 5 and applying the general
form of Watson’s lemma (Watson 1916) presented by Oberhetting (1959);

F j(u) = 4
5
√
π ∫

∞
0

x( j−2)/5e−xu−x2/5 dx (b.7.2)

Ô⇒ F j ∼ 4
5
√
π

1
u( j+3)/5

∞∑
m=0

(−1)m
m!

Γ
[3 + j + 2m

5

] 1
u2m/5 as u →∞. (b.7.3)

b.8 asymptotic expansion for regime of collisionless supra-
thermals

¿e integrals appearing in the expression for the heat �ow in the collisionless
suprathermals (eq. 4.5.11) obtained by using a low-velocity approximation for the
electron-electron collision integral take the form

Jn(V∗) = ∫ ∞
0

wne−w2V 2
∗

1 + cψw5 dw . (b.8.1)

We are interested in the asymptotic expansion of Jn in the short-wavelength limit
corresponding to V∗ → 0. Applying the Mellin transform �nds that

For derivation of
eq. (b.8.3) see
example 2.3 of
(Oosthuizen 2011)

M[Jn](s) = Γ(s/2)
2 ∫ ∞

0

wn−s
1 + cψw5 dw (b.8.2)

= π
10c(n+1)/5ψ

Γ(s/2) cosec(π(1 + n − s)/5), (b.8.3)

which is analytic on the strip given by max(0, n − 4) < Re(s) < n + 1 as long as
n > −1. ¿e singular expansion of eq. (b.8.2) is given by

M[Jn](s) ≍ 1
c(n+1)/5ψ

∞∑
k=0

(−1)k
k!

1
s + 2k

∞∑
m=−∞

1
s − (n + 1 − 5m) , (b.8.4)

where all poles corresponding to Re(s) ⩽ max(0, n − 4) contribute to the asymp-
totic series of Jn(V∗) at V∗ → 0+. ¿is can be found by applying Oosthuizen’s
(2011) converse mapping theorem. Due to the varying occurence of double poles
with di�erent values of n this can not be done generally and must be carried out
on a case-by-case basis. We shall provide an example for a particularly tricky case
of n = 4.
Example b.8.1
To obtain the �rst two terms for the asymptotic series of J4(V∗) as V∗ → 0 we
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need to separate the double and single poles contributing to the singular element
of J4(V∗) at s = V∗ (using Oosthuizen’s notation)
[M[J4](s)

]
s=0= 1

cψ

(
1
s2
+ 1
s

( ∞∑
k=1

(−1)k
k!

1
s + 2k + ∑m≠1

1
s + 5(m − 1)

))
, (b.8.5)

while the second sum evaluates to zero due to cancellation, the �rst sum is more
complicated but equating it to Γ(s/2)/2 − 1/s allows the limit −γE/2 at u = 0 to
be computed (where γE is the Euler-Mascheroni constant).

∴[M[J4](s)
]
s=0= 1

cψ

( 1
s2
− γE
2s

)
(b.8.6)

Ô⇒ J4(V∗) = 1
cψ

( − log(V∗) − γE/2) +O(V 2∗ ) (b.8.7)

by the converse mapping theorem.

b.9 noncontribution of the snb electric field correction
for a low-amplitude temperature sinusoid

Lemma b.9.1∀є,Y > 0∃δTe/T0 > 0 ∣ ∀(k, υ) ∈ {IR2∣kλ(0)ei υ2/υ22T < Y}∣ λei∗ (E)

λei
∗ − 1∣ < 1, In other

words, a small enough amplitude can always be chosen such that electric �elds
can be ignored up to any given product of k and υ2.
Proof. Choose δTe/T0 = є/(1 + β∥)ξY , then from eq. (4.6.11) we �nd that

∣ λei∗ (E)
λei∗ − 1∣ = (1 + β∥)k∣sin(kx)∣δkBTe

1⁄2meυ2
λei∗ ≤ є (b.9.1)

b.10 asymptotic behaviour of ji-held closure

Here we derive the asymptotic short-wavelength behaviour of the Ji-Held clos-
ure (Ji and Held 2014) for the thermal conductivity of a fully-ionised hydrogen
temperature sinusoid

κ∥c = 2 ∫ ∞
0

Khh(s′) cos(√2kλ(B)ei s′) ds′, (b.10.1)

where Khh(s) = −(d + a exp(−b∣s∣c) log(1 − α exp(−β∣s∣γ)),
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In order to calculate the dominant terms as kλ(B)ei →∞we can apply themethod
of Wong and Lin (1978)/ Dai and Naylor (1992), which requires expressing the
above cosine transform as a complex Fourier transform,

κ∥c = Re [2 ∫ ∞
0

Khh(s′) exp(√2ikλ(B)ei s′) ds′
]
, (b.10.2)

and then change variable to t = −is′
Ô⇒ κ∥c = Re [2i ∫ ∞

0
Khh(it) exp(−√2kλ(B)ei t) dt

]
. (b.10.3)

¿e asymptotic behaviour of κ∥c at kλ(B)ei →∞ is then determined by that of Khh

at t → 0;

Ô⇒ κ∥c = −2(d + a) Re [ ∫ ∞
0
i
(
log(β) + γ log(it)
− β(it)γ

2
+O(tc log(t)))e−√2kλ(B)ei t dt

] (b.10.4)

assuming c > γ > 0 as is the case for the parameters given by Ji andHeld. Carrying
out the integration yields

κ∥c = −
√
2(d + a)
kλ(B)ei

Re
[
i
(
log(β) + γ(iπ/2 − γE − log(√2kλ(B)ei ))

− βiγΓ(1 + γ)
2(
√
2kλ(B)ei )γ

+O( log(kλ(B)ei )
(kλ(B)ei )c

))] (b.10.5)

= π(d + a)γ√
2kλ(B)ei

(
1 − β sin(πγ/2)Γ(γ)

2γ/2π +O( log(kλ(B)ei )
(kλ(B)ei )c

))
. (b.10.6)

¿is allows us to associate the Ji-Held �tting parameters with the coe�cients
de�ned in eq. (4.5.1) that parametrise the damping behaviour of temperature
sinusoids as the collisionless limit is approached: χ1 = π(d + a)γ/3, η = γ and
c1 = β sin(πγ/2)Γ(γ)/2γ/2π.
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spark A vfp code by Epperlein et al. (1988a,b; 1991) which employs the adi
method in one velocity and up to two spatial dimensions to solve the
vfp equations in the di�usion approximation and incorporates the
e�ect of electron-electron collisions on

#»

f 1 by modifying νei (see 3.1.2).
adi (AlternateDirection Implicit)Numericalmethodused to solvemulti-dimensional

partial di�erential equations by treating in turn only one dimension
implicitly and the others explicitly.

ale Describes a particular spatial discretisation scheme used in hydrodynamics
codes designed for simulating implosions.

awbs (Albritton-Williams-Bernstein-Swartz) Refers usually to an approximation
of the electron-electron collision operator that only retains the slowing
down term, see section 2.3.2.

bgk (Bhatnagar-Gross-Krook) collision operator
bout++ Collaborative code used to simulate boundary turbulence in complex

tokamak geometry.
celia (Centre Lasers Intenses et Applications.) Laboratory based in Bourdeaux,

France. Home to the chic code and birthplace of the snb model.
cfl (Courant-Friedrichs-Lewy condition) Provides an upper bound for the

timestep ∆t corresponding to a given cell size ∆x in hyperbolic pde’s.
chic Radiation-hydrodynamics code with ale capabilities used at celia.
ctc (Classical Transport Code) A 2d �nite element code developed by Bissell

et al. (2010) able to simulate �ux-limited Braginskii transport including
appropriate corrections for inverse bremmstrahlung due to laser absorp-
tion along with simple hydrodynamics used as a comparison to vfp
simulations.

dill (Di�usive Implicit Linearised Lorentz) A code for solving the vfp code
under the Di�usive approximation using a fully-Implicit formulation
adapted for Linearised (small amplitude) problems in the Lorentz (high-
Z) limit. Details can be found in section 3.1.4.

dke (Dri Kinetic Equation) A 1d2v pde derived from the gyro-averaged vfp
equation under the assumption that the departure of the distribution
function fromMaxwellian is small and does not vary too fast. It is o en
applied in tokamak studies and is introduced in eq. (2.1.5).

draco Rad-hydro code used by lle, Rochester.

218
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dued ¿e University of Rome hydro code, see Atzeni 1986; Atzeni et al. 2005.
edf (Electron Distribution Function) ¿e probability density of �nding an elec-

tron in a particular location in the six-dimensional position/velocity
phase-space.

eic (Eigenvector-Integral Closure) Nonlocal model based on Ji, Held and So-
vinec’s moment description of the distribution function Ji et al. 2009.
Further developed by Omotani et al. (2013; 2015).

elm (Edge Localised Mode) Large energy-releasing disruption in tokamaks that
manifests as �laments escaping the sol.

hydra ¿e llnl rad-hydro code.
icf (Inertial Con�nement Fusion) refers to any approach to fusion energy where

the primarymethod is to obtain very high fuel densities for short periods
of time.

impact (Implicit Magnetised Plasma and Collisional Transport) fully-implicit
vfp code by Kingham and Bell (2004) which retains only the �rst two
terms in a Cartesian tensor expansion and approximates the e�ect of
electron-electron collisions on

#»

f 1 by modifying νei (see 3.1.2).
iter ¿e world’s largest tokamak, currently under construction in Cadarache,

France.
jet ¿e largest operational tokamak in the world, situated at the Culham Centre

for Fusion Energy.
k2 A vfp code in the kalos formulation developed by Mark Sherlock at llnl,

very similar to oshun.
kalos (Kinetic Laser-plasma Simulation) Used to denote the spherical harmonic

formulation presented by Bell et al. (2006) used in the code with the
same name

kipp (Kinetic Code for the Plasma Periphery) A 1d2v vfp code developed by
Chankin et al. (2012) at ipp Garching.

lasnex An 2d radiation-hydrodynamics code for simulating inertial fusion
experiment using a �nite element method.

lilac Another University of Rochester rad-hydro code (Holstein et al. 1986).
lle at the University of Rochester, home to the Omega Laser Facility
llnl (Lawrence Livermore National Laboratory) in California, location of Na-

tional Ignition Facility.
lmv (Luciani, Mora and Virmont) Usually used to refer to a convolution kernel

suggested in Luciani et al. 1983 (see section 2.3.2).
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Maglif (Magnetised Liner Con�nement Fusion) is a novel hybrid approach
to achieving fusion gain by sending short electric pulse through thin
hohlraums containing fusion fuel.

mcf (Magnetic Con�nement Fusion) refers to various approaches to realising
fusion energy by containing the fuel with magnetic �elds, including
tokamaks and stellarators.

mfp refers to a representative distance that a particle (electron/ion) can travel
in a plasma without being overly a�ected by collisions. More precisely,
this is o en calculated as the ratio between a (thermal) velocity and
collision frequency, for example the Braginskii electron-ionmfp is given
by λ(B)ei = υ1Tτ(B)ei .

mhd (Magnetohydrodynamics) A term used to encompass encompass a cohort
of related e�ects involving the evolution of magnetic �elds and electric
currents in conductive �uids.

mumps (MUlti-frontal Massively Parallel sparse direct Solver) ¿e matrix solver
used in the kipp code to calculate the Rosenbluth potentials and evalu-
ate the e�ect of the Fokker-Planck collisions.

nflf (Non-Fourier Landau-Fluid) ¿e nonlocal model invented by Dimits,
Joseph and Umansky (2013, 2014 see also Umansky et al. 2015) based
on �tting a sum of modi�ed Helmholtz equations to behaviour of a
low-amplitude temperature sinusoid.

nif (National Ignition Facility) World’s �rst megajoule-scale inertial fusion ex-
periment.

ode (Ordinary Di�erential Equation)
oecd (Organisation for Economic Co-operation and Development)
oshun A vfp code using the spherical harmonics formulation developed by

Tzoufras et al. (2011). Most time-di�erencing is performed explicitly
but some implicit features are available using operator splitting.

pde (Partial Di�erential Equation)
pic (Particle-in-Cell) An approach to modelling kinetic e�ects in plasma by

simulating typically 104 − −106 charged particles on each cell making
up a larger grid, electromagnetic �elds at each cell are then calculated
based on the resulting charge and current densities on the grid.

snb (Schurtz, Nicolaï, Busquet) ¿e multigroup di�usion model, sometimes
referred to solely as the Schurtz model presented in section 3.3.

sol (Scrape-O� Layer) Region just outside the last closed �ux surface in a toka-
mak that transports heat and particles from the core to the divertor.
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solps (Scrape-O� Layer Plasma Simulation) Fluid code for 2d modeling sol
transport coupled to Monte Carlo neutral code b2-eirene.

spring is a rather ancient Fourier-space vfp code developed by Epperlein and
Short (1994) that is able to include arbitrary harmonics.

srs (Stimulated Raman Scattering)
uedge A fully-implicit 2d code developed at llnl for modelling the tokamak

edge.
varpro (Variable Projection) A Fortran implementation of the separable non-

linear least squares algorithm.
vfp (Vlasov-Fokker-Planck) A continuum approach to a fully kinetic descrip-

tion of a plasma. ¿is can be fully represented where the full collision
operator Ce typically neglects large-angle scattering and truncates an
expansion to �rst in the inverse Coulomb logarithm 1/logΛα in its
derivation.
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a is a coe�cient appearing in the nflf model used to parametrise the damping
behaviour of a low-amplitude temperature sinusoid in the collisionless
limit with Q̃ → Q̃(B)/akλ(B)ei . ¿is can be related to the dimensionless
thermal conductivity κ(B)∥c Hammett and Perkins coe�cient χ1 by a =
κ(B)∥c /(3⁄2√2χ1) ≈√

πκ(B)∥ /3√2.
#»B is the magnetic �eld.
bE determines the lowest order deviation of the electric �eld from the local limit

for a low-amplitude temperature sinusoid in the semicollisional regime
as #»E → 1 − bEk2λ(B)ei

2.
bQ determines the lowest order deviation of the heat �ow from the local limit for

a low-amplitude temperature sinusoid in the semicollisional regime as
#»Q → 1 − b + Qk2λ(B)ei

2.
c is the speed of light.
c∞ appears in the expression introduced in section 4.5 Im[Q̃x] = −3⁄2 χ1(1 −

c∞/(kλ(B)ei )η)neυ2TkBT̃e which approximates the imaginary part of the
heat �ow arising from a damping low amplitude temperature sinusoid
at high degrees of nonlocality where the suprathermal electrons can be
considered collisionless.

c1 is used to replace c∞ to achieve a better �t to simulations across a wide range
of collisionalities.

Cα( fα) = ∑β Cαβ( fα , fβ) represents the full Fokker-Planck collision operator for
collisions of species α between all species, including itself. In this work
only electron-electron and electron-ion species are considered.

Cee0( f0) = Γee
υ2

∂
∂υ
(
I0( f0) f0 + D( f0)

∂ f0
∂υ
)
represents the action of the nonlinear

Fokker-Planck electron-electron collision operator on the isotropic part
of the distribution function f0.

C(L)
ee 0(δf0) = Cee(δf0, f (mb)e

)+Cee( f (mb)e , δf0
)
is the linearised collision operator,

valid when the deviation from Maxwellian is small, for collisions of
electrons with themselves introduced at the beginning of chapter 4.

D( f )= 4π ∫ v0 u2 ∫∞u f0w dw du/υ is an integral operator appearing in the electron-
electron collision operator for the isotropic part of the distribution
function Cee0.

e is Euler’s number.
e is the magnitude of the electron charge.
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e denotes an electron species.
#»E is the electric �eld.
#»E (B) is the local electric �eld according Braginskii (1965) or Spitzer-Härm theory

typically using the more accurate coe�cients obtained by Epperlein and
Haines (1986).

Emult allows for a multiplier on the local electric �eld used in the snb model.
fα is the distribution function for species α.
fN is the Nernst �ux-limiter.
fQ is the thermal �ux-limiter.
fRL is the �ux-limiter for the Righi-Leduc heat �ow.
f (mb)e = ne exp(−υ2/υ22T)/(√πυ2T)3 is the Maxwell-Boltzmann electron distribu-

tion function.
f0 = ∫ fe d2Ω/4πis the isotropic part of the distribution function in either a

spherical harmonic or Cartesian tensor expansion.
δf0 = f0 − f (mb)e is the isotropic perturbation to the distribution function.
δfe = fα − f (mb)e is the total deviation of the electron distribution function from a

Maxwellian.
#»

f 1 represents the �rst-order anisotropy in the distribution function in either a
spherical harmonic or Cartesian tensor expansion.

Hen (x) = (−1)nex2 dn
dxn e

−x2 are the Hermite polynomials.
Hg is the term that is solved for in the snb model from which the nonlocal heat

�ow can be obtained. Schurtz et al. (2000) suggest that this can be
related to the isotropic perturbation of the distribution function δf0.

IN ( f ) = 4π ∫ υ0 f uN+2 du /υN
i is the imaginary unit
I(B)N is the modi�ed Bessel function of the �rst kind.

i denotes an electron species.
#»j is the electric current.
k typically represents the wave number representing the temperature gradient

unless otherwise speci�ed.
kB is Boltzmann’s constant
K(B)
N is the modi�ed Bessel function of the second kind.

Kn = λ(B)ei /LT is the nonlocality parameter or Knudsen number assumed to be
small in the Chapman-Enskog expansion.

L(α)n (x) = x−αex
n!

dn
dxn (e

−xxn+α) are the generalised Laguerre polynomials of order
α.
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LT is the temperature scalelength, which is usually calculated by LT = ∣Te/#»∇Te∣
unless speci�ed otherwise. For the temperature sinusoid damping stud-
ied chapter 4 this is instead taken to be 1/k.

mα is the mass of species α.
nα is the number density of species α.
Pn (x) = 1

2nn!
dn
dxn (x

2 − 1)n are the Legendre polynomials.
p j are the linear coe�cients in nflf
Pe = nekBTe is the electron pressure.
Pml (x) = (−1)m(1 − x2)m/2 dm

dxm Pl (x) are the associated Legendre polynomials.
#»Q is the electron heat �ow.
q j are the linear coe�cients in nflf
Qfs = nekBTeυ1T is the free-streaming heat �ux.
#»Q (B) is the local heat �ow as given by Braginskii (1965) or Spitzer-Härm theory

using the more accurate coe�cients obtained by Epperlein and Haines
(1986).

R is the normalised response function de�ned by Hammet and Perkins (1990)
appearing in the linear analysis of a collisionless plasma.

r is a numerical factor used to correct the velocity-dependent Krook frequency
νee in the snb model.

Tα is the temperature of species α.
υ typically denotes the velocity of a particular energy group.
υ1T =√kBTe/me is a commonly used de�nition of the electron thermal velocity.
υ2T =√2kBTe/me is a another de�nition of the electron thermal velocity corres-

ponding to the velocity of electrons with kinetic energy kBTe.
υN = −β∧∇⊥Te/eB is the Nernst velocity at which magnetic �elds are advected

down temperature gradients.
wg = ∫ βg+1⁄2βg−1⁄2

β4e−β/24dβ is the weighting function used in the snb model.
Z is the average ionisation.
α⊥ is the perpendicular resistivity represent the dependence of the electric �eld

on any current travelling parallel to it.
βg = єg/kBTe is the relative energy of a group of electrons compared to the thermal

energy at that point.
β∥ is the parallel thermoelectric coe�cient which determines the dependence

of the parallel electric �eld on the parallel temperature gradient as well
as the dependence of the parallel heat �ow on any current travelling
parallel to the magnetic �eld.

β⊥ is the thermoelectric coe�cient which determines the dependence of the
electric �eld perpendicular to the magnetic �eld and temperature gradi-
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ent on the temperature gradient itself as well as the dependence of the
parallel heat �ow on any currents travelling in an opposite direction.

β∧ is the thermoelectric coe�cient which determines the dependence of the elec-
tric �eld perpendicular to the magnetic �eld and temperature gradient
on the parallel temperature gradient itself as well as the dependence of
the heat �ow on any currents travelling in a perpendicular direction.

є = 1⁄2meυ2 is the energy corresponding to a particular group g of electrons with
velocity υ.

ε0 is the permitivitty of free space.
Γαβ = 4π(ZαZβe2/4πmαε0)2logΛαβ is a velocity-independent terms that appears

in the collision operator Cαβ between species αand β. Here Zα is the
average charge of species α relative to the magnitude of the electron
charge e.

γ(n, x) = ∫ x0 xn−1e−x dx is the lower incomplete gamma function.
γD represents the damping rate of a temperature sinusoid.
γE = 0.5772 . . . is the Euler-Mascheroni constant.
Γ(n) = ∫∞0 xn−1e−x dx is the complete gamma function.
η appears in the expression introduced in section 4.5 Q̃x = −3⁄2 χ1(1−c∞/(kλ(B)ei )η)neυ2TkBT̃e

which approximates the imaginary part of the heat �ow arising from a
damping low amplitude temperature sinusoid at high degrees of nonloc-
ality where the suprathermal electrons can be considered collisionless.

θ (t) is the Heaviside step function which takes the value 1 if t > 0 and 0 otherwise.
κ∥ is the dimensional thermal conductivity in the absence 0f or parallel to an

applied magnetic �eld.
κ(B)∥ is the parallel dimensional thermal conductivity in the local limit. ¿is was

originally calculated by Braginskii (1965), butmore accurate calculations
have been performed by Epperlein and Haines (1986).

κ⊥ is the dimensional thermal conductivity perpendicular to an applied magnetic
�eld but parallel to the temperature gradient.

κ∧ is the dimensional thermal conductivity perpendicular to both the temperature
and applied magnetic �eld.

logΛαβ is the Coulomb logarithm based on collisions between species α and
β. While there are a number of di�erent expressions for this in the
literature, both electron-electron and electron-ion forms are typically
assumed to take equivalent and constant values in this work.

λD = υ1T/ωpe is the Debye length for a plasma with cold ions.
λee = υ/νee is the velocity-dependent Krook electron-electron mean free path

used in the snb model.
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λei = υ/νei is the velocity-dependent electron-ion mean free path
λ(0)ei = λei(υ2T) is the electron-ion mean free path of an electron with energy kBTe
λ(B)ei = 3√πλ(0)ei /4√2 is the electron-ion mean free path as de�ned by Braginskii

(1965).
λei∗ = ξυ/νei is the velocity-dependent electron-ion mean free path.
λ(T)ei = λei(υ1T) = λ(0)ei /4 is the Trubnikov (1965) electron-ion mean free path.
λ∗e =√λei∗ λee is the velocity-dependent geometrically averaged mean free path

appearing in the original snb model (Schurtz et al. 2000) (note that
this depends on the value chosen for r).

λ(0)s = kBTe/e∣#»E ∣ is the stopping distance of a thermal electron with energy
є = kBTe travelling antiparallel to an electric �eld.

µ0 is the permeability of free space.
#»∇ is the vector gradient operator.
νee = rνei/Z is the velocity-dependent ‘Krook’ electron-electron frequency used

in the snb model.
νei = niΓei/υ3 is the velocity-dependent electron-ion collision frequency that

appears in the equation for
#»

f 1.
ν(0)ei = νei(υ2T) is the rate at which a �rst-order anisotropy of the distribution

occuring at kBTe is damped due to electron-ion collisions.
ν∗ei = νei/ξ is the corrected velocity-dependent electron-ion collision frequency

that appears in the equation for
#»

f 1.
ϕ is the electric potential.
ρ = e(ni − ne) is the charge density.
τ(0)ei = 1/ν(0)ei is the collision time for an electron with energy kBTe against a cold

ion background.
τ(B)ei = 3√πτ(0)ei /4 is the mean collision time de�ned by Braginskii (1965).
τ(T)ei = 1/νei(υ1T) = τ(0)ei /4 is the Trubnikov electron-ion collision time (1965).
ξ is the electron-ion collision �x reducing the electron-ion mean free path λei to

approximate the e�ect of electron-electron collisions on the anisotropic
part of the distribution function

#»

f 1. ¿e form most commonly used in
this is that Epperlein and Short (1991): ξ = (Z + 0.24)/(Z + 4.2).

ξes = (Z + 0.24)/(Z + 4.2) allows an explicit shorthand to specify that it is the
Epperlein Short collision �x that is being used rather than another one.

χ ωceτ(B)ei is the Hall parameter representing the importance of magnetic �elds
over collisionality.

χ1 is a coe�cient appearing in the nflf model used to parametrise the damping
behaviour of a low-amplitude temperature sinusoid in the collisionless
limit with.
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Ψ is the dimensionless ratio between theNernst andheat �ux coe�cients Peβ∧/eBκ⊥.
ψ = δf0/ f (mb)e is the relative nonlocal perturbation on the isotropic part of the

distribution function.
ωce = eB/me is the electron cyclotron frequency.
ωpe =√nee2/meε0 is the electron plasma frequency.



GLOSSARY

mnAnalternative (and essentially equivalent)method to closing the vfp equation
when expanding in spherical harmonics or Cartesian tensors by max-
imising ‘angular entropy.’ ¿is approach conveniently ensures positive-
de�niteness of the the distribution function by re-expressing the edf in
terms of Lagrange multipliers as f = exp(α0(υ)+ #»υ ⋅ #          »

al pha1(υ)/υ+ . . . )
pn¿emost common closure used in vfp codes that expand the distribution func-

tion according to anisotropy (i.e. with spherical harmonics or Cartesian
tensors). ¿is corresponds to performing a truncation by enforcing
fN+1 = 0.

regime of collisionless suprathermals Describes the approach to
the collisionless regime where the collisions of electron that have speeds
exceeding the thermal velocity can be neglected.

braginskii Corresponds to the local theory of magnetised plasmas presented
by Braginskii (1965), although more exact transport coe�cients were
later calculated by Epperlein et al. (1986).

cartesian tensor expansion Amethod for expressing amulti-dimensional
scalar function, such as a distribution function, as series of terms with
increasing anisotropy: f = f0(υ) + υ i

υ f1i(υ) + υ iυ j
υ2

f2i j(υ) + . . .
chapman-enskog expansion An approach to understanding transport

theory by expanding the distribution in increasing order of nonlocality
represent by the Knudsen number Kn

collisionless regime ¿e behaviour of a plasma when collisions are com-
pletely neglected on the timescale of the problem, in this case collestive
e�ects such as plasma oscillations and Landau damping are unavoidably
important.

hydrodynamic regime Corresponds to the conditionswhere the local theory
holds

semicollisional regime Plasma conditions such that the mean free path
is still much smaller than the temperature scalelength but the lowest
(second) order perturbations on the heat �ow begin to be noticeable.

separable nonlinear least squares An algorithm used to optimise �ts
that consist of a series of weighted nonlinear problem
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