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Abstract 

In a mouse model of amelogenesis imperfecta (Al), an amelogenin p.Y64H 

mutation was reported to cause the abnormal retention of amelogenin in the 

ameloblast secretory pathway. This was hypothesised to be due to enhanced 

pathological aggregation of mutant amelogenin. The aim of this thesis was to 

develop purification methodologies to deliver large amounts of wild-type (WT) and 

mutant recombinant amelogenins (r-amelogenins) and develop microplate based 

binding assays to study protein-protein interactions of these recombinants to 

elucidate the effect of the mutation on aggregation. His-tagged r-amelogenin was 

extracted from Escherichia coli (E. Coli) with 3% acetic acid. This extract was 

subject to nickel affinity chromatography (targeting the His-tag); the 'gold standard' 

technique for purifying recombinant proteins from bacterial contaminants. The His­

tag was then removed but cleavage was only -50% efficient. Cleaved r-amelogenin 

unexpectedly still bound the nickel column (presumably due to the presence of di 

and tri histidine motifs in the amelogenin sequence) which precluded its isolation 

from uncleaved contaminant. Size exclusion chromatography was also trialled and 

also found to be ineffective. Finally, preparative SOS PAGE was found to produce 

cleaved r-amelogenin at single band purity on analytical SOS PAGE. After 

optimising the purification regime, simple and cost-effective microplate binding 

assays were developed initially using amelogenin rich porcine enamel matrix 

derivative (EMO) as a surrogate. Initially the aim was to immobilise EMO on the 

plate and then measure the binding of FITC-labelled EMO by simple end point 

fluorescence measurements. An alternative method trialled UV spectrophotometry 

to monitor the loss of EMO from free solution in real time as it bound EMO 

immobilised to the well surfaces. This latter method provided an adaptable, simple 

and cost-effective means of monitoring amelogenin binding and aggregation. It 

provided pilot data suggesting that p.Y64H mutant r-amelogenin was clearly more 

aggregative than WT r-amelogenin. 
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Figure 42 Nickel chromatography round 1: Isolation of His-tagged r­
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(A) SDS PAGE data (inset) showed the protein composition of the

acetic acid extract obtained from the E. coli. The extract contained a

27 kDa protein corresponding to the molecular weight of His-tagged

r-amelogenin together with a range of contaminating bacterial

proteins. The chromatogram and accompanying SDS PAGE analysis

of the two peaks obtained showed that the column flow through

collected in Fr 1 and Fr 2 was comprised mainly of contaminating

bacterial proteins that failed to bind the column in 20 mM imidazole.

Increasing the imidazole concentration to 200 mM caused the

immediate elution of protein that was collected in Fr 3-Fr 5.

Accompanying SDS PAGE of these fractions indicated that the

protein eluted was highly enriched in the 27 kDa protein that

corresponds to His-tagged r-amelogenin. (B) SDS PAGE analysis

reproduced from Gabe et al. (2017) but shown alongside the

corresponding anti-amelogenin western blot. Intense immune­

staining at 27 kDa indicated that this band is comprised of His-tagged

r-amelogenin. The cross-reactivity above 27 kDa is presumably due to

the presence of His-tagged r-amelogenin dimers and other
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around 24 kDa. The cleavage reaction mixture also contained an 
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homodimers of cleaved and uncleaved r-amelogenins and 

heterodimers of cleaved and uncleaved r-amelogenin respectively. 

The Figure has been adapted from Gabe et al, 2017 .......................... - 153 -
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Figure 44 Nickel column chromatography round 2: Isolation of cleaved His­

tagged free r-amelogenin following His tag cleavage using HRV3C 

protease. (A) SOS PAGE (inset) showed the protein composition of 

the starting material (comprising of the mixture of 24 kOa cleaved and 

27 kO uncleaved r-amelogenins generated by HRV3C protease (Figure 

42, p. 149). The chromatogram and accompanying SOS PAGE 

analysis show that the column flow-through collected in Fr 1 

contained very little protein whereas the expectation was that this 

fraction would contain the His-tag-free cleaved r-amelogenin. Instead, 

the 24 kOa cleaved r-amelogenin was collected in Fr 2 as a result of 

increasing the imidazole concentration flowing through the column 

from 20 to 60 mM. The 27 kOa uncleaved r-amelogenin (still exhibiting 

a His tag) was eluted later when the imidazole concentration was 

stepped up to 200 mM. (B) SOS PAGE of the various fractions 

presented on a single gel for ease of comparison. Silver staining 

showed that the cleaved 24 kOa r-amelogenin (Fr 2) was not totally 

pure. Note that the cleaved 24 kOa r-amelogenin fraction (Fr 2) 

contained an apparent dimer at 46 kOa whereas the uncleaved 27k0a 

r-amelogenin fraction (Fr 3) contained dimers dominated by species

at 50 and 54 kOa. This supports the contention that the 46 kOa

species was a homodimer of His-tag-free cleaved r-amelogenins, the

50 kOa species a heterodimer of cleaved and uncleaved r­

amelogenins and the 54 kOa species a homodimer of uncleaved r­

amelogenins (as the 50 and 54 kOa species will still exhibit a His-tag

and bind the nickel column with high affinity). The figure has been

adapted from Gabe et al, 2017 .............................................................. - 157 -
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height and pore size. Once lyophilised, the acetic acid extract was 

directly subjected to SEC. For a bed height of 35 cm, two matrices 
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Section 3.1.2.2.1) and Bio-gel P-10 matrix (detailed in Section 

3.1.2.2.2). The second bed height tested was 95 cm, using Bio-gel P-

10 matrix (detailed in Section 3.1.2.2.3). Small aliquots from the 

fractions collected were taken for analytical SOS PAGE . ................. - 161 -
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gel P-30 matrix, 35 cm bed height. The chromatogram and 

accompanying SOS PAGE analysis showed that the r-amelogenin at 

27 kOa was found in the first UV elution peak at 25 ml after injection, 

predominantly in fractions 1- 3. Fraction 1 contained the r-amelogenin 

at the highest purity with fractions 2-3 containing increasing amounts 
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Figure 47 Separation of acetic acid extract components by SEC using Bio­

gel P-10 matrix, 35 cm bed height. The chromatogram and 

accompanying SDS PAGE analysis showed that r-amelogenin at 27 

kDa was found in the first UV elution peak, 20 ml after injection and 

predominantly in fractions 1 - 4. The first fraction contained r­
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Chapter 1   Introduction 

1.1 Dental enamel 

Enamel is the hardest mineralised tissue in vertebrate biology and is evolutionarily 

conserved between species (Sire et al., 2007). It can form the outer layer of teeth in 

sarcopterygians (tetrapods and lobe finned bony fishes) and has been associated with 

the dermal bones and scales of fossilised lobe finned fish (Qu et al., 2015). It protects 

teeth from physical and chemical stresses encountered during feeding. Such a vital 

function would explain the high degree of conservation amongst the proteins involved 

in generating enamel (amelogenesis). Enamel’s hardness and strength originates from 

its highly structured organisation of hydroxyapatite crystallites. The formation of 

enamel per se occurs in four discrete stages. In humans, amelogenesis begins in 

utero for deciduous teeth and at 0-1 years for permanent teeth (Nanci and Ten Cate, 

2013). Developing enamel consists initially of a protein matrix secreted by the enamel 

forming ameloblasts which partially mineralises on secretion. Later, the protein matrix 

is degraded and the partially mineralised tissue undergoes secondary mineralisation. 

This process is described in detail later in the Introduction. 

 

1.1.1 Structure and function of mature enamel 

Teeth are an essential component of the digestive system; their primary function is 

food mastication, which breaks food into small particles accessible to digestive 

enzymes. Teeth are also important in speech, aesthetic appearance (in humans), self -

defence or predation in some species. Mastication, which consists of tearing and 

crushing food, requires extremely resistant teeth, of an appropriate shape and 

hardness. To carry out millions of masticatory cycles over a life time (in humans), a 

robust structure is necessary as each cycle generates forces between 28 and > 1200 

N (Ferrario et al., 2004, He et al., 2013).  

Enamel is the external covering of teeth (Figure 1A). It comprises over 90% inorganic 

mineral by weight (De Menezes Oliveira et al., 2010), its mineral phase being 

essentially hydroxyapatite crystals (Deakins and Burt, 1944). Such a highly 

mineralised structure protects the dentine from physical and chemical stress which 

would otherwise cause demineralisation and pain due to the damaging effects of acid 

drinks and foods, and bacterial colonisation (Chun et al., 2014). 
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A study of human maxillary second molars reported enamel hardness values between 

3 and 6 GPa and a Young elasticity modulus ranging from 70-115 GPa (Cuy et al., 

2002). At the microscopic scale, enamel is a highly ordered structure where thousands 

of elongated hydroxyapatite crystallites are organised into bundles called prisms (or 

rods) interspersed with similar crystallites which comprise the interprismatic enamel 

(He and Swain, 2008) (Figure 1B). Prism organisation varies amongst species and 

tooth type and gives rise to histological banding features in enamel known as Hunter-

Schreger bands. In rodent incisors, prisms are inclined relative to each other at about 

60° generating an extreme decussating pattern. This arrangement confers mechanical 

strength, hardness and an ability to resist crack propagation and wear (Bajaj and 

Arola, 2009, Yahyazadehfar et al., 2013). This capacity to deflect crack stress 

propagation also protects the dentine enamel junction (DEJ) and the bulk of the tooth 

which is composed of dentine (Palmer et al., 2008). This creates a compound 

structure able to withstand mastication forces (He and Swain, 2008). In terms of 

evolution, the decussating structure of the enamel (as well as the thickness) have 

been linked to species selections and adaptation to hard-object diets (Dumont, 1995, 

Teaford and Ungar, 2000, Lambert et al., 2004).  

Enamel per se is, however, brittle, with a fracture toughness measured at 0.6 -1.5 MPa 

(Park et al., 2008). It would be susceptible to cracking if it was not supported by the 

dentine, which is tougher and softer, and absorbs applied masticatory stresses (Chun 

et al., 2014). Studies carried out in primates suggested that this is further facilitated by 

the scalloped structure of the dentine-enamel junction, which resists delamination 

(Shimizu and Macho, 2007). 



- 3 -

Figure 1 Schematic showing enamel on a simplified tooth. (A) Enamel is the 
outer mineral layer of teeth. Its colour is transfull/opaque. It protects the 
tissues of the inner layers. (B) Tissue architecture of rodent enamel relative 
to mineral crystals: enamel structure is highly ordered, organised into 
decussating prisms and interprismatic enamel, which makes it one of the 
toughest tissues in the organism and confers its mechanical properties. 
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1.1.2 Development of enamel: cellular and extra-cellular events 

This Section provides a brief over view of amelogenesis as part of tooth formation and 

as applicable to human deciduous teeth, permanent teeth and also to tooth 

development in other species. A distinctive characteristic of tooth development in rats 

and mice is that their incisors continuously grow. In these cases, the enamel forms 

continuously but amelogenesis occurs via a similar route (further description is 

provided in Section 1.3.4.1.1 pp. 66 - 67).  

1.1.2.1 Embryonic origins of enamel tissue 
Human tooth formation is initiated after 37 days of development in utero, as the oral 

epithelium thickens at the internal surface of the upper and lower jaws. It forms 

primary epithelium bands that grow into the underlying mesenchyme comprising 

neural crest cells, forming the dental lamina. Tooth formation originates from this 

structure and advances through three stages: bud, cap, and bell stage (Figure 2). It is 

at the cap stage (8 weeks development in utero, deciduous teeth) that the enamel 

organ can be distinguished (Figure 2C). Its peripheral inner epithelial layer 

differentiates during the bell stage into ameloblasts, which are responsible for enamel 

formation. 

During the bell stage, the inner enamel epithelium (IEE) directly faces the dental 

papilla and these two structures will form the enamel and dentine respectively. 

Amelogenesis can be described as a four-step process: (1) first, during a pre-secretory 

stage, the IEE cells differentiate into ameloblasts. (2) Second, during the secretory 

stage, the ameloblasts acquire secretory functions and secrete proteins forming the 

enamel matrix. The secretory stage is followed by (3) a transition stage, during which 

the secretion of enamel proteins stops and the ameloblasts undergo morphological 

changes reflecting a change of function. (4) Finally, the enamel matrix achieves full 

mineralisation throughout the maturation stage. All these steps are illustrated in Figure 

3 and are discussed in detail below. 
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Figure 3 (A) Enamel develops incrementally with secretion of matrix proteins, 
associated with changes of cell morphology and function. Upon 
differentiation of epithelial cells, presecrectory ameloblasts are formed. 
They eventually start to incrementally secrete enamel matrix proteins 
(EMPs), into the forming enamel matrix. (B) During the secretory stage, 
EMPs are secreted via the amelobasts Tomes’ processes. As matrix 
proteins are secreted, long, thin mineral crystals are deposited. The matrix 
at this stage is 33% mineral /33% protein and 33% water. (C)Tomes’ 
processes resorb during the transition/maturation stage where the enamel 
has reached its full thickness. (D) At the maturation stage, the ameloblasts 
have changed in morphology (now half height, no Tomes’ process), cells 
are more resorptive than secretory. Crucially, cells now pump large 
amounts of mineral ions into the matrix so pre-existing thin crystals grow 
in width and thickness to occlude >90% of the tissue. The panel A is 
adapted with permission from Hu et al. (2007), Cells Tissues Organs 
2007;186:78–85. S.G.Karger AG, Basel1 (itself adapted from Uchida et al. 
(1991))2. The histology analyses of mouse incisors in panels B, C, D are 
reproduced from Barron et al. (2010), Human Molecular Genetics 2010;19 
(7):1230-47 by permission of Oxford University Press3. 

1 HU, J. C., CHUN, Y. H., AL HAZZAZZI, T. & SIMMER, J. P. 2007. Enamel formation and amelogenesis 
imperfecta. Cells Tissues Organs, 186, 78-85. 

2 UCHIDA, T., TANABE, T., FUKAE, M. & SHIMIZU, M. 1991a. Immunocytochemical and 
immunochemical detection of a 32kDa nonamelogenin and related proteins in porcine tooth germs. 
Archives of Histology and Cytology, 54, 527-538. 

3 BARRON, M. J., BROOKES, S. J., KIRKHAM, J., SHORE, R. C., HUNT, C., MIRONOV, A., 
KINGSWELL, N. J., MAYCOCK, J., SHUTTLEWORTH, C. A. & DIXON, M. J. 2010. A mutation in 
the mouse Amelx tri-tyrosyl domain results in impaired secretion of amelogenin and phenocopies 
human X-linked amelogenesis imperfecta. Human Molecular Genetics, 19, 1230-47. 

A 

B C D 
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1.1.2.2 Presecretory stage: Inner enamel epithelium cells differentiate 
into ameloblasts 

At the onset of amelogenesis, the cuboidal cells of the IEE are separated from the 

underlying mesemchymal dental papilla cells by a basement membrane. The cells 

engage in reciprocal intercellular signalling across the basement membrane which 

triggers the differentiation of IEE cells into presecretory ameloblasts and the dental 

papilla cells into odontoblasts which are responsible for dentine formation. Just before 

the first layer of dentine forms, differentiating IEE cells secrete proteins possibly 

involved in the epithelial-mesenchymal signalling (Thesleff, 2003), which drives the 

terminal differentiation of odontoblasts. 

Initially low columnar cells, with a large central nuclei and underdeveloped secretory 

apparatus, and resting on the basement membrane (Figure 4A), the differentiating IEE 

cells undergo morphological and functional changes (Smith and Nanci, 2003). As 

odontoblasts begin to secrete a predentine matrix, IEE cells become taller and 

columnar. Their nuclei migrate proximally (towards the side bordering the stratum 

intermedium) while their Golgi and the rest of their secretory apparatus migrate 

towards the distal end: the IEE become ameloblasts, organised as a monolayer, 

separated from the odontoblasts by a basement membrane (Figure 4B).The 

ameloblasts become secretory, sending projections through the basement membrane, 

which is degraded (Figure 4C) (Reith, 1967). 

Figure 4 IEE cells differentiate into ameloblasts following reciprocal induction 
(highlighted by two yellow arrows) with odontoblasts (and their 
mesenchymal precursors). 
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1.1.2.3 Secretory stage: ameloblasts acquire secretory function in 
contact with pre-existing dentine, then secrete enamel matrix 

The newly differentiated ameloblasts initially secrete low levels of proteins. However, 

following initiation of dentinogenesis the ameloblasts become highly active secretory 

cells and develop the so-called Tomes’ processes which appears to direct the 

secretion of enamel proteins towards formation of discrete prismatic and interprismatic 

enamel (Nanci and Warshawsky, 1984, Warshawsky et al., 1987) 

The secretory ameloblasts are tall columnar cells attached to each other by junctional 

complexes, forming a monolayer. They show typical characteristics of specialised 

secretory cells including an expansive Golgi and rough endoplasmic reticulum (ER) 

and membrane- bound secretory granules packed with EMPs (Reith, 1961, Reith, 

1970, Sasaki et al., 1984). Responsible for the synthesis of EMPs, ameloblasts are 

adapted to manage the large amount of proteins transiting through the rough ER and 

the Golgi apparatus (Warshawsky, 1968). The secretory vesicles migrate to the 

Tomes’ process, where they are released and added to the extracellular enamel matrix 

already secreted (Kallenbach, 1973). By incrementally secreting EMPs, the 

ameloblasts migrate away from the dentine surface (Figure 5A). This incremental 

apposition of matrix proteins leads to the deposition of the full thickness of enamel.  

The enamel matrix is highly proteinaceous during the secretory stage: it comprises 

mainly amelogenin, ameloblastin, and enamelin; amelogenin is the major protein, 90% 

(Termine et al., 1980), and catalytic amounts of matrix metalloproteinase 20 (MMP-20) 

are present, which is responsible for extracellular processing of the EMPs (detailed 

later in Section 1.2.3.1, pp. 30 -32). Enamelin is expressed and released into the 

matrix from the early secretory stage to the early maturation stage. A study in mouse 

molars showed that its expression finishes before that of amelogenin (Hu et al., 2001). 

After their secretion, the nascent amelogenin, ameloblastin and enamelin molecules 

are soon processed by MMP-20 so that the bulk of the tissue is comprised of a range 

of enamel protein-derived polypeptides (Smith et al., 1989, Fukae and Tanabe, 1998, 

Uchida et al., 1998) which may also have architectural function (Bartlett, 2013). 

Almost simultaneously with protein secretion, thin plate-like enamel apatite crystals 

elongate in length (c-axis growth) measuring at least 100 µm (Nylen et al., 1963) and 

possibly spanning the full thickness of the enamel (Daculsi et al., 1984, Margolis et al., 

2006). Their growth is restricted to the c-axis as the EMPs likely act as a constraint to 

crystal growth in thickness and width (Robinson et al., 1998). 

In effect, the crystal architecture is lightly “sketched in” during the secretion stage 

(Figure 5B) but how these crystals are nucleated is not fully established. Initially, 

calcium and phosphate ions are present in the earliest enamel secreted (Deakins and 
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Burt, 1944, Robinson et al., 1974, Takano et al., 1986). Mineral is nucleated in the 

extracellular environment to form an ordered crystal array (Fincham et al., 1999). The 

crystals appear thicker at the dentine-enamel junction and thinner at the secretory 

front . The mechanisms for this have not been fully elucidated, the hypotheses drawn 

to date are detailed in Section 1.2.3.1.2 (pp. 33 – 35). 

Figure 5 Secretory stage of amelogenesis (A) Secretory ameloblasts are long 
columnar cells, specialised in EMPs secretion. Enamel matrix forms 
incrementally. (B) enamel crystallites are ‘sketched in’ during the secretory 
stage. 
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1.1.2.4 Transition and maturation stages: reduction of secretory activity 
and secondary mineralisation 

The transition stage starts just before enamel has reached its full thickness. The 

ameloblasts retract their Tomes’ process and stop secreting secretory stage proteins 

such as amelogenin and ameloblastin, enamelin and MMP-20 (Bartlett, 2013, Smith et 

al., 2017b). They begin to decrease in height and start secreting a final layer of 

aprismatic enamel matrix before finally secreting a new basement membrane onto the 

surface of the enamel (Figure 6A). The basement membrane is present throughout the 

maturation stage, where maturation-stage-specific secretory calcium-binding 

phosphoproteins (SCPP) are found.  

These SCPPs include amelotin and odontogenic ameloblast associated (ODAM) 

protein. Amelotin was identified in 2005 by differential display polymerase chain 

reaction analysis of mouse ameloblasts. Its encoding gene AMTN is conserved 

between species located close to the genes encoding other members of the SCPP 

family such as ENAM and AMBN on chromosomes 5 in mouse or 4 in humans 

(Iwasaki et al., 2005). Both mRNA expression pattern and protein localisation analyses 

showed that its expression is specific to maturation stage ameloblasts (Somogyi-

Ganss et al., 2012). The predicted translation product has an elevated content of 

proline, leucine, glutamine and threonine (52%) which may drive hydrophobic 

interactions promoting amelotin aggregation (Iwasaki et al., 2005, Somogyi-Ganss et 

al., 2012). Amelotin has been found in the outer enamel layer during the transition 

towards maturation stage, and at the basement membrane-like structure of maturation 

stage ameloblasts (Moffatt et al., 2006b, Somogyi-Ganss et al., 2012), where it 

interacts with ODAM and secretory calcium-binding phosphoprotein proline-glutamine 

rich 1 (Holcroft and Ganss, 2011, Fouillen et al., 2017). Its aggregative nature 

suggests that amelotin may mediate the attachment of ameloblasts to the mineralising 

enamel during the maturation stage (Moffatt et al., 2014, Smith et al., 2017b). It was 

also shown to promote hydroxyapatite mineralisation (Abbarin et al., 2015). 

ODAM, also known as APin, is another protein secreted by ameloblasts specifically 

during the maturation stage. Although it is overexpressed in some epithelial tumours 

(Kestler et al., 2008), its amelogenesis-specific expression is physiological and it was 

identified and characterised by secretome analysis of the rat enamel organ (Moffatt et 

al., 2006a, Moffatt et al., 2008). ODAM is highly conserved in mammals and has a rich 

content of proline and glutamine (28%) and hydrophobic residues (30%). During the 

maturation stage it co-localises with amelotin at the basement membrane (Park et al., 

2007, Moffatt et al., 2008) and a yeast two-hybrid (Y2H) assay showed that they may 

interact (Holcroft and Ganss, 2011), possibly contributing to ameloblast adhesion to 
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the mineralising enamel matrix. Other proteins involved in cell adhesion, predominant 

during maturation stage include integrin β6 (ITGB6), at the distal membrane of 

ameloblasts (Wang et al., 2014a) 

At the onset of the maturation stage, the enamel matrix has reached its full thickness. 

The ameloblasts decrease further in height until they are only half the height of 

secretory stage ameloblasts. Their apical membranes oscillate between ruffle and 

smooth states (Figure 6B) (Josephsen and Fejerskov, 1977, Reith and Boyde, 1981). 

They begin to secrete kallikrein-related peptidase 4 (KLK4), a serine protease which 

further degrades the spectrum of proteins and peptides generated during the secretory 

stage processing (Hu et al., 2002). Ruffle-ended ameloblasts secrete bicarbonate ions 

and are responsible for pumping calcium into the enamel matrix whereas smooth-

ended ameloblasts allow for calcium intercellular transit towards the enamel matrix. 

The bicarbonate ions are assumed to buffer the decrease in pH in the matrix caused 

by the release of protons as the hydroxyapatite crystals grow in width and thickness 

(Smith, 1998). 

The maturation stage is further characterised by an increase in mineral content and 

the concomitant loss of the protein degradation products generated by KLK4 

proteolysis activity as they are endocytosed by ruffle-ended ameloblasts (Bartlett and 

Simmer, 2014, Pham et al., 2017). WD repeat-containing protein 72 (WDR72), whose 

predicted structure suggests a role in vesicle formation, may be involved in EMPs 

degradation products removal (Katsura et al., 2014). Fluid (enamel fluid) replaces the 

degraded enamel proteins. This fluid is kept supersaturated with respect to 

hydroxyapatite as the ameloblasts pump mineral ions into the enamel which drives the 

growth in thickness and width of the enamel crystals until the enamel becomes fully 

mineralised. Maturation stage ameloblasts also express solute carrier family 24 

member 4 (SLC24A4), which is a sodium/potassium/calcium exchanger, playing an 

important role during maturation stage by transporting Ca2+ ions into the enamel matrix 

(Wang et al., 2014b). 
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Figure 6 Transition and maturation stages. (A) ameloblasts reduce their 
secretory activity and start secreting KLK4 which is responsible for protein 
degradation. (B) during the maturation stage, ameloblasts maximally 
secrete KLK4 and oscillate between smooth-ended and rough-ended 
morphologies as they pump mineral ions into the matrix and resorb matrix 
protein degradation products. The enamel becomes fully mineralised. 

The above description (Section 1.1.2 pp. 4 - 12) provides a brief overview of all stages 

of amelogenesis. However, the main focus of this thesis concerns the EMPs 

predominant at the secretory stage and the next Section describes these proteins in 

more detail. 
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1.2 Secretory stage enamel matrix proteins 

The previous Section (1.1.2) provided a brief overview of amelogenesis. This Section 

details the state of knowledge about the synthesis, structure, assembly and function of 

the EMPs at the secretory stage, especially amelogenin, which is the main focus of 

this thesis.  

During the secretory stage, enamel is ~30% protein by weight, comprising mainly 

proteins secreted by ameloblasts (Fukae and Shimizu, 1974). The major structural 

matrix proteins characterised to date are amelogenin, ameloblastin and enamelin. 

which can be found in the secretory enamel matrix as various isoforms (further 

information is described in the next Section). Proteinase MMP-20 is also found in the 

matrix during the secretory stage. Structural matrix proteins are secreted by 

ameloblasts on the preformed dentine (Hu et al., 2007) where they self-assemble to 

form a matrix that supports crystal formation.  

1.2.1 Amelogenin, the major enamel matrix protein 

Amelogenin is the major enamel protein, accounting for over 80-90% of total proteins 

in the secretory stage matrix (Eastoe, 1965, Termine et al., 1980).To date, neither the 

structure nor the precise function of amelogenin is fully understood. It is essential for 

amelogenesis as knock-out (KO) mice display a chalky white, disorganised hypoplastic 

enamel. Scanning electron microscopy (SEM), light microscopy and other analyses 

including sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS PAGE) 

and western blotting, carried out on these KO mice, suggested that amelogenin is 

necessary for the generation of enamel of the correct thickness and prismatic 

structure, but not for the formation of mineral crystals (Gibson et al., 2001). Various 

mutations in the amelogenin gene have been reported in cases of human AI; this is 

detailed in the Section 1.3.3 (Figure 12 p. 58). In the enamel matrix, amelogenin exists 

as a heterogeneous mixture. The factors explaining its diversity are detailed in a 

review by Brookes et al. (1995); they include gene sexual dimorphism, alternative 

splicing, and proteolytic processing in the extracellular matrix (Brookes et al., 1995). 

1.2.1.1 Sexual dimorphism 
Amelogenin is encoded by AMELX, located on chromosome X, and by AMELY on 

chromosome Y in human, pig and cow species (Note: AMELX in capital letters is the 

nomenclature for the human gene, specifically). In mouse and rat, the amelogenin 
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locus is found only on the X chromosome (Lau et al., 1989, Gibson et al., 1992, Veis, 

2003, Ikawa et al., 2005). In humans, the amino acid sequence of proteins AMELX 

and AMELY share 88% similarity by Clustal Omega sequence alignment (by aligning 

the entries Q99218-1 and Q99217-1) (The UniProt Consortium, 2017). At the gene 

level, the 5’ and 3’ UTR regions appear to be much less conserved. At the gene level, 

the exon and intron structures do not differ significantly, however the 5’ upstream 

regions share only 80% similarity, possibly causing a difference of transcriptional 

activity between AMELX and AMELY genes . This may explain why AMELX transcripts 

are 10-fold more abundant than AMELY transcripts in male tooth buds (Fincham et al., 

1991a, Salido et al., 1992). In this thesis, amelogenin will refer to the proteins encoded 

by AMELX only. 

1.2.1.2 Transcription variants of amelogenin (alternative splicing) 
Alternative splicing is another factor explaining the diversity of amelogenins. Early 

studies include Northern hybridisation experiments, which discerned two species of 

mRNA derived from a single amelogenin gene in bovine ameloblasts (Shimokawa et 

al., 1987). Alternative amelogenin spliced products were also found in mouse (Lau et 

al., 1992), pig (Yamakoshi et al., 1994) and human species (Salido et al., 1992). In 

most species studied, the gene structure comprises seven exons. The primary 

transcripts obtained are subjected to alternative splicing, and several mRNA isoforms 

(shown in Figure 7) have been identified, with many being confirmed at the protein 

level. In most eutherian mammals, the major mRNA transcript for amelogenin 

comprises exons 1, 2, 3, 5, 6, 7 (Salido et al., 1992) which encodes for a protein of 

173-197 amino acids (excluding a N-terminal signal peptide) depending on species.

Note: Throughout this thesis, that major splicing isoform of amelogenin (see Figure

7b), minus its N-terminal signal peptide, are refered to as either the “full-length”,

“nascent” or “parent” amelogenin when it is unprocessed.

Exons 1, 2, 3, 5, 6, 7 correspond to the ancestral gene of amelogenin, they are

present in mammals including monotremes (platypus) and non-mammalian species

such as frogs and lizards (Sire et al., 2012). They are highly conserved, even though

the length of the longest exon, exon 6, varies between species.

Exon 1 contains the 5’ untranslated region of the mature mRNA, a region which

expands into the 5’ end of the exon 2. Downstream, exon 2 comprises the initiation

codon followed by the sequence encoding the signal peptide and the first two amino

acids of the secreted protein. Exons 3 and 5 encode short amino acid sequences (16-

17 amino acids each). Exon 4 is spliced out in most variants (Figure 7, ‘b’-‘k’) which

include the dominant isoform (‘b’). In some of these splicing variants, exons 3 and 5
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have also been spliced out (Figure 7, isoforms ‘c, d, f, i’). Exon 6 encodes a proline-

rich, hydrophobic sequence comprising 137 (porcine) to 161 (bovine) amino acids. 

This difference in size is linked to the number of repeats of a proline-glutamine motif 

(Brookes et al., 1995). As exon 6 is a large exon, many internal splicing sites have 

been identified at the transcript level, favouring alternative splicing (see isoforms ‘e’-‘i’ 

in Figure 7) (Veis, 2003). Removal of the 5’ section of exon 6 generates an 

alternatively spliced mRNA encoding the 59-amino acid leucine-rich amelogenin 

peptide (LRAP), which was found in the developing enamel matrix of various 

mammalian species including mouse, rat and cow (Fincham et al., 1981, Fincham et 

al., 1982, Fincham et al., 1983, Gibson et al., 1991, Lau et al., 1992, Bonass et al., 

1994). LRAP is rather acidic, with a pI = 4.1. It comprises the N- and C-terminal 

charged regions of the full-length amelogenin. Although its precise function in enamel 

development is still unknown, in vitro studies have been carried out to determine its 

structure, assembly (Tarasevich et al., 2015) and function, supporting its role in 

controlling enamel crystal growth (Shaw et al., 2004, Le Norcy et al., 2011).  

The rarely used exon 4, encodes a short sequence of 14 - 17 amino acids depending 

on species. The amelogenin protein isoforms containing exon 4 (Figure 7a) are only 

found in the matrix in minor amounts (Yamakoshi et al., 1994). As highlighted by 

Brookes et al (1995), exon 4 is not well conserved: unlike the translated products of 

other exons, porcine and human (cDNA) exon-4-peptides share only two amino acids 

homology (Brookes et al., 1995). Present only in mammalian genes, exon 4 was 

predicted in silico to appear in ancestral therians (220 Ma) and be functional from 

artiodactyl order (104 Ma) onwards (Sire et al., 2012). 

Additional exons exist, found in amelogenin genes of eutherian mammals. Sire et al 

(2012) hypothesise that these are a possible evolutionary trait. Exon 4b is a copy of 

exon 4, found downstream of Exon 7. It is present in the amelogenin gene of rodents 

that diverged from squirrels. Not detected in transcripts, it is assumed to be spliced out 

(Bartlett et al., 2006a). In rodents, a further 2 exons have been identified downstream 

of exon 7. Exons 8 and 9 were identified in mRNA splicing variants in mouse and rat 

(Li et al., 1998, Papagerakis et al., 2005, Bartlett et al., 2006a) and at the protein level 

represent the largest amelogenin gene products secreted during rodent amelogenesis. 

Exon 8 results from a duplication of exon 5, translocated downstream of exon 7. 

Although the nucleotide sequences are 91% identical, the resulting amino acid 

sequence is only 50% conserved (Bartlett et al., 2006a). Transcripts comprising exon 

8 also comprised exon 9. Exon 9 was predicted in silico to appear in the gene of 

ancesteral placental mammals (176 Ma) as a downstream sequence, but was 

activated later (50 Ma) in rodents (Sire et al., 2012) as exons 4b and 8 (Bartlett et al., 

2006a) appeared.  



- 16 -

Figure 7 Alternative splicing variants of amelogenin in mammals. The isoforms 
‘b’ (Dominant splice product) and ‘e’ (LRAP), in boxes, are the most 
abundant splicing isoforms identified in enamel matrix (Gibson et al., 
2011). Rodent genes include an additional three exons downstream of E7: 
E4b, E8 and E9. In the rodent transcripts identified, E4b is spliced out; E8 
and E9 were found, always together (k) but never with E7 (j). 
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1.2.1.3 Properties of amelogenin protein  
The secreted amelogenin product (excluding the N-terminal signal peptide) of the 

major mRNA transcript is conserved between mammalian species (Brookes et al., 

1995). The full-length amelogenin protein is largely hydrophobic, its isoelectric point is 

in the range of neutrality, e.g. murine amelogenin has a pI of 6.6 (Simmer et al., 1994, 

Tan et al., 1998) . Its hydrophobicity is a reflection of the high abundance of proline 

and leucine in amelogenin (Eastoe, 1965, Fang et al., 2011).  

1.2.1.3.1 Primary structure 

The primary amino acid sequence of mouse amelogenin (the major isoform secreted) 

has been known since the 1980s, when it was determined by cDNA sequencing 

(Snead et al., 1985) and by Edman sequencing of translated proteins (Takagi et al., 

1984). Major native amelogenin molecules have predicted molecular weights ranging 

between 16-21 kDa on secretion depending on the animal species but on SDS PAGE 

their electrophoretic mobility is decreased, which leads to overestimation of the 

molecular weights. Hence, the full-length amelogenin (major isoform) is often referred 

to as the “25 kDa” amelogenin in the literature. Such shift in electrophoretic mobility 

has been linked to amelogenin’s high proline content (Termine et al., 1980), after the 

presence of proline was previously shown to affect the mobility of other proteins (de 

Jong et al., 1978). A more useful nomenclature has found favour in the literature in 

recent years. The amelogenin in question is identified with a letter to denote species 

and a number corresponding to the number of amino acids present in the protein. For 

example P173 and M180 denote the secreted unprocessed amelogenin translated 

from the dominant amelogenin mRNA transcripts (see Figure 7b) in pig and mouse 

respectively. 

The most abundant newly secreted amelogenin (excluding exon 4) is predicted to be 

hydrophobic overall with a hydrophilic C-terminal fragment, based on a Hopp & Woods 

hydrophilicity plot of recombinant rM1791 (Fincham et al., 1994). It is divided into three 

domains, of which the N-terminal and C-terminal are highly conserved between 

species (Brookes et al., 1994, Brookes et al., 1995, Margolis et al., 2006). The first 45 

amino acids comprise a rather hydrophobic domain,though still containing charged 

residues. Remarkably, this domain also has a relatively high tyrosine content (6 

tyrosine residues), hence its name ‘tyrosine-rich amelogenin peptide” (TRAP). It 

comprises a run of 13 amino acids that contain 3 tyrosine residues that has been 

1 rM179 corresponds to the recombinant M180 expressed by E. coli, which has lost 
Met1 due to E. coli endogeneous methionine aminopeptidases (Simmer et al., 
1994). 
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shown to have functional importance: this so-called amelogenin trityrosyl motif peptide 

(ATMP), was reported to recognise and bind N-acetylglucosamine (Ravindranath et 

al., 1999, Ravindranath et al., 2000). The importance of the ATMP sequence is 

discussed in greater details in Section 1.2.2.2.1 pp.21 - 22 . The central domain of 

amelogenin is particularly hydrophobic, being made up of XXP repeats (wherein X is 

often glutamine). The number of XXP repeats differs between species, reflecting the 

variability in length of exon 6 in the mature transcript (Fang et al., 2011, Margolis et al., 

2006). The C-terminal domain comprises the last 11-15 amino acids and is highly 

hydrophilic, with a pI of 4.65. Studies using the LRAP variant showed that this 

“telopeptide” has the capacity to bind to hydroxyapatite crystals (Shaw et al., 2004, 

Shaw et al., 2008), which researchers suggested could be associated with the control 

of crystal growth, and also “a potential candidate for promoting crystal nucleation” 

(Tarasevich et al., 2007). The latter assumption appears however contradictory with a 

previous mouse KO study, which reported that amelogenin is not necessary to the 

formation of mineral crystals (Gibson et al., 2001). A further report suggested that the 

telopeptide may also drive the ordered supramolecular assembly of amelogenin 

nanospheres within the enamel matrix (Fang et al., 2011).  

To date, one site of amelogenin post-translational phosphorylation has been identified 

at serine 16 (Ser16) (Fincham and Moradian-Oldak, 1993) . The role of phosphorylation 

in amelogenesis has therefore been a subject of interest. Phosphorylation of Ser16 per 

se has been studied in vitro using the 20 kDa porcine amelogenin processing product 

(P148), the major degradation product found in enamel matrix (Yamakoshi et al., 

1994) and full-length amelogenin (P173). In comparison with their respective non-

phosphorylated counterparts produced in E. coli using recombinant DNA technology, 

the native phosphorylated P148 and P173 amelogenins are capable of regulating 

mineral formation and stabilizing amorphous calcium apatite for longer periods of 

times (>1 day) (Kwak et al., 2009, Kwak et al., 2011). Fourier transform infrared 

spectroscopy (FTIR) measurements comparing phosphorylated LRAP with non-

phosphorylated LRAP showed that phosphorylation affects the secondary structure of 

this splicing isoform, and strongly suggested that it is a determinant factor involved in 

the interactions of LRAP with hydroxyapatite and/or amorphous calcium apatite 

(Yamazaki et al., 2017). Using a quartz crystal microbalance (QCM), researchers 

found that phosphorylation of amelogenin (native porcine P173) affected amelogenin 

conformation and binding to hydroxyapatite surfaces (Connelly et al., 2016). The only 

in vivo studies considered to date have consisted of testing the effect of experimentally 

induced single point mutations of Ser16 to alanine leading to a significantly affected 

enamel, as presented by Dr. H.C. Maroglis’s group in Enamel IX International 

symposium (Kirkham et al., 2017), abstract no. 74. However, one major criticism of 
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this approach is whether the affected phenotype is caused by the loss of the 

phosphate group or whether it is due to the presence of alanine, a non-polar amino 

acid that may cause a gain of toxicity independent from the loss of the phosphate 

group. 

Apart from the phosphorylation on Ser16, no other post-translational modifications are 

known. Studies investigating potential glycosylation showed that amelogenin is not a 

glycoprotein. Fincham et al (1991), using immunological procedures, found that 

amelogenin is not glycosylated (Fincham et al., 1991b). 

1.2.1.3.2 Secondary structure 

Structural studies using circular dichroism (CD), FTIR and nuclear magnetic 

resonance (NMR) identified secondary structure motifs such as beta sheet, beta 

strand or alpha helices in bovine amelogenin (Renugopalakrishnan et al., 1986, 

Renugopalakrishnan et al., 1989, Delak et al., 2009). These motifs were found locally 

without forming further any ordered structured domain. Most studies agree that 

amelogenin is an unstructured or intrinsically disordered protein (IDP) (Delak et al., 

2009, Lakshminarayanan et al., 2009, Ruan and Moradian-Oldak, 2015).  

Amelogenin has a high proline content, which is a disorder-promoting residue (Theillet 

et al., 2013) and also possibly responsible for polyproline II (PPII) motifs, which make 

extended and flexible structures. Lacking stabilising hydrogen bonds, the PPII motif is 

most likely to be an open and flexible structure (Williamson, 1994, Tompa, 2002). 

Reviewed by Adzhubei et al, (2013), PPII regions are most common in IDPs. 

Favouring low affinity interactions, and simultaneously allowing a high specificity of 

recognition, these motifs are favourable to protein assembly and have been implicated 

in protein recognition, signal transduction, or protein complex assembly. PPII motifs 

have also been found in proteins involved in conformational diseases such as Prion 

PrPC proteins, α-synuclein, tau protein, Alzheimer extracellular amyloid β peptide 

fragment (Adzhubei et al., 2013).  

In amelogenin in particular, PPII structures were identified by CD in recombinant 

rP172 and in rP148 (identical to the native P173 and P148 respectively but missing the 

N-terminal methionine and the phosphate group on Ser16; rP148 was engineered with 

an extra methionine in position 149). Increasing the protein concentration from 5 μM 

to >62.5 μM was reported to favour formation of β-sheet structures 

(Lakshminarayanan et al., 2007, Delak et al., 2009). Within the temperature range 5-

45°C, β-sheet tended to form “at the expense of PPII structure” (Lakshminarayanan et 

al., 2009). Therefore, under physiological conditions it is possible that both β-sheet 

and PPII structures might contribute towards amelogenin assembly and aggregation 



- 20 -

properties (though it is unclear what impact the lack of N-terminal methionine and the 

phosphate group on Ser16 would have on these data).  

1.2.1.3.3 Tertiary structure 

Efforts have been carried out to solve the crystallographic structure of amelogenin. 

Crystallographic data reported in 2005 showing a birefringent microribbon structure 

(Du et al., 2005), was later found to be due to the presence of a cellulose contaminant, 

as highlighted in the erratum by Du et al (2005)The difficulty in crystallising 

amelogenin may be due to its high proline content since proline-rich regions and/or 

PPII structures make it difficult to crystallise certain proteins (Williamson, 1994). To 

date, no amelogenin tertiary structure derived from crystallography has been reported. 

Due to the lack of any X-ray crystallographic structure or any other template, in silico 

prediction using homology modelling has not been achieved.  

1.2.1.3.4 Quaternary structure: amelogenin self-assembly 

The formation of quaternary structures of amelogenin is a highly complex 

phenomenon due to amelogenin self-assembly and aggregation properties, which are 

of fundamental importance in amelogenesis. This has therefore attracted a great deal 

of interest and is discussed in greater details in Section 1.2.2 below. 

1.2.2 Amelogenin self-assembly 

1.2.2.1 Amelogenin propensity to aggregate 
The PPII motif, in combination with the hydrophobic domains of amelogenin, appears 

to favour hierarchical self-assembly of amelogenin as suggested by variable 

temperature CD and isothermal titration calorimetry (ITC) studies (Lakshminarayanan 

et al., 2007, Lakshminarayanan et al., 2009). PPII is found in protein regions available 

for recognition and binding (Adzhubei et al., 2013). Early reports suggested that PPII 

motifs are responsible for the temperature-dependent but reversible propensity for 

amelogenin to aggregate (Nikiforuk and Simmons, 1965, Mechanic et al., 1967). This 

characteristic behaviour of amelogenin has been further characterised by high-

resolution size exclusion chromatography (HR-SEC), dynamic light scattering (DLS), 

atomic force microscopy (AFM) and transmission electron microscopy (TEM) (Fincham 

et al., 1994, Moradian-Oldak et al., 1994). The size of the amelogenin aggregates 

increases with temperature in the range 5 - 37°C (Moradian-Oldak et al., 1998).The 

formation of these aggregates has been linked to the low solubility of amelogenin, 

shown by quantitative analyses using recombinant mouse amelogenin rM179. The r-

amelogenin is only sparingly soluble at physiological pH and temperature (Simmer et 
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al., 1994, Tan et al., 1998), as physiological pH is around amelogenin’s predicted 

isoelectric point of 6.8. Amelogenin solubility was also found to decrease with higher 

ionic strength of the solution (Tan et al., 1998). 

1.2.2.2 Amelogenin hierarchical assembly 
Despite being aggregative, amelogenin self-assembles in an ordered fashion, to form 

hierarchical structures (Fang et al., 2011), which are presumed to be necessary to 

guide the formation of enamel crystals. This Section addresses: i) the domains 

involved in amelogenin self-assembly (Section 1.2.2.2.1) , ii) evidence of the first level 

of supramolecular structures which form in the ameloblasts (Section 1.2.2.2.2) and iii) 

the assembly into larger structures found in the extracellular matrix (Section 1.2.2.2.3). 

1.2.2.2.1 Domains involved in amelogenin recognition and self-assembly 

Amelogenin self-assembly was characterised by Y2H assay conducted by Paine and 

Snead (1997). The authors confirmed that amelogenin (M180) is capable of binding to 

itself with a greater affinity than that seen for protein p53 binding to SV40 large T-

antigen. p53 and SV40 large T-antigen were used as positive controls as they are 

well-known binding partners, yielding 150 β-galactosidase (Miller) units in the Y2H 

assay (Li and Fields, 1993). Two domains were found to be necessary for amelogenin 

self-assembly: the N terminal 42-residues (Met1-Met42) A domain and the 16-residue 

(Ser157 – Lys173) C-terminal B domain (Paine and Snead, 1997). Deletion experiments 

in vitro and in vivo confirmed the importance of the A and B domains in the formation 

of supramolecular assemblies (Paine et al., 2000). The N-terminal 42 residues, which 

comprise the majority of the TRAP domain as described in Section 1.2.1.3.1 p. 17 (and 

part of the hydrophobic core of amelogenin) specifically drives the formation of 

supramolecular amelogenin assemblies (so-called nanospheres). The C-terminal 16 

residues (hydrophilic) were reported to be essential in maintaining the integrity and 

stability of these nanospheres (Paine and Snead, 1997, Moradian-Oldak et al., 2000) 

by preventing clustering of hydrophobic cores of amelogenins. Later, another Y2H 

assay testing different truncated mouse r-amelogenins indicated that Pro169 plays a 

pivotal role in driving self-assembly, but point mutations Pro169 →Thr or Pro169 →Lys 

surprisingly did not affect significantly affect the self-assembly (Paine et al., 2003b). In 

vitro, a study comparing the aggregates formed by recombinants rM166 and rM179 

suggested that the C-terminal telopeptide was essential to form stable and 

monodisperse aggregates (Moradian-Oldak et al., 1994) The r-amelogenins rM166 

and native P161 lacking the conserved C-terminal telopeptide, had a larger size 

distribution and a reduced affinity for hydroxyapatite (Moradian-Oldak et al., 2002). 

They formed larger aggregates than their full-length precursors, as measured by DLS 
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and small-angle X-ray scattering (SAXS) (Moradian-Oldak et al., 2002, Aichmayer et 

al., 2005). Native P148, which also lacks the C-terminal telopeptide as well as the 

Pro162 (corrresponding to the mouse amelogenin Pro169) was also capable of forming 

nanospheres, though of a smaller size (Moradian-Oldak et al., 2002). DLS data and 

fluorescence studies using recombinant porcine amelogenins found that rP1482 

formed similar oligomers, even though smaller, as rP172 (Bromley et al., 2011). This 

clearly questions the importance of the C-terminal telopeptide and the Pro169 (in mice, 

or Pro162 in pig) in amelogenin supramolecular assembly. 

While both A and B domains are present in the full-length amelogenin (major splicing 

isoform) sequence, alternatively spliced variants such as LRAP lack these domains. 

Paine and Snead (1997) showed that LRAP does not self-assemble (Paine and 

Snead, 1997). LRAP lacks the sequence Tyr34-Met42, i.e. the ATMP domain; their 

finding suggests that the ATMP is a necessary, though not sufficient, driver of 

amelogenin self-assembly. The importance of the ATMP motif in amelogenin self-

assembly has been supported by Wald et al (2017), who focused on the evolutionarily 

conserved “Y/F-X-X-Y/L/F-X-Y/F” motifs (including the amino acids sequence 

YPSYGY), present in amelogenin and ameloblastin. Interestingly such motifs are short 

linear sequences rich in hydrophobic residues and are well-known drivers of IDP 

assembly (Mészáros et al., 2007). Comparing the WT (YPSYGY) and mutant 

(GPSGGG) recombinant human amelogenins and using HR-SEC, TEM and surface 

plasmon resonance (SPR), Wald et al showed that the integrity of the YPSYGY motif 

is necessary for amelogenin self-assembly, and possibly amelogenin-ameloblastin 

recognition (Wald et al., 2017). This latter observation supports previous works by 

Ravindranath et al, discussed in further details later (Section 1.2.5.2, pp. 45 - 49) 

1.2.2.2.2 Intracellular assembly of amelogenin in vivo 

Cross-linking studies in rat enamel organs showed that amelogenin begins to self-

assemble within the ameloblast secretory pathway. Diagonal SDS PAGE analysis 

followed by western blotting with anti-amelogenin antibodies showed the presence of 

dimers, tetramers, pentamers and hexamers of full-length M180 amelogenin. Through 

cross-linking, hexamers appeared to be the biggest unit forming intracellularly 

(Brookes et al., 2006) prior to further assembly steps in the extracellular matrix. These 

levels of assembly are detailed below, in Section 1.2.2.2.3. 

2 For clarification, recombinant rP148 used by Bromley et al. (2011) differs from the 
native P148 since it lacks Met1 and Ser16 phosphorylation, and carries and extra 
methionine at position 149. 
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1.2.2.2.3 Extracellular assembly of amelogenin observed in vivo 

Having demonstrated that amelogenin assembly begins in the intracellular secretory 

pathway (Brookes et al., 2006), Brookes et al. (2006) hypothesised that the hexamers 

undergo further assembly within the newly secreted matrix. The first stages of 

hexamer assembly may lead to the formation of transient aggregates, which may 

constitute the stippled material observed near the Tomes’ processes in developing 

enamel (Fincham et al., 1994). The transient aggregates further assemble into 

spherical structures, ‘nanospheres’, each comprising approximately 100 amelogenin 

units (Moradian-Oldak et al., 2002). Freeze-etching and AFM of developing enamel in 

rat incisors showed the presence of 30-50 nm diameter nanospheres (Robinson et al., 

1981). TEM of mouse, bovine and hamster developing enamel also showed spherical 

electron-lucent structures of 20-50 nm diameter with uranyl acetate staining; these 

nanospheres appear themselves to be organised as arrays of beads surrounding the 

forming enamel crystallites (Fincham et al., 1995). Fincham et al (1995) assumed that 

the nanospheres observed in the TEM were made up of amelogenin aggregates. They 

appeared electron-luscent because the hydrophobic nature of amelogenin may 

prevent them from binding to the heavy metal contrasting agent used to stain the TEM 

sections by increasing the electron absorption of specific structures comprising the 

section linking their observations to previous experiments where purified porcine 

amelogenins showed negative heavy metal staining when contrasted with ammonium 

molybdate. 

In addition to the in vivo studies described above, a plethora of vitro studies has been 

carried out to characterise amelogenin assembly. The literature reviewed below ( in 

Section 1.2.2.2.4) used r-amelogenin rM179 (Simmer et al., 1994), an analogue of 

major mouse amelogenin M180, lacking phosphorylation in Ser16 and the N-terminal 

Met. Amelogenin assembly studies discussed below also used porcine 25 kDa full-

length amelogenin, P173, which can be obtained from pig developing teeth obtained 

as a by-product of the meat industry (Aoba et al., 1987a, Limeback, 1987). 
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1.2.2.2.4 Characterisation of amelogenin self-assembly in vitro 

The solution properties of r-amelogenin, i.e, its propensity to self-assemble and 

aggregate were thoroughly investigated in vitro using rM179. The techniques 

employed include DLS, HR-SEC, TEM and AFM. While the assembly of amelogenins 

in macromolecular structures is hierarchical, in vitro studies reported various assembly 

modes: nanospheres, micelles, or microribbons, as discussed below and illustrated in 

Figure 8.  

 Nanospheres

The self-assembly of amelogenins into nanospheres (briefly mentioned previously in 

the Section 1.2.2.2.1) has been supported since the 1990s using rM179 (Fincham et 

al., 1994, Moradian-Oldak et al., 1998). “Spherical aggregate structures” of 12-18 nm 

diameter were observed using TEM on parlodion-covered carbon-coated copper grid, 

while 15-20 nm diameter spheres were shown by AFM on mica surface (Fincham et 

al., 1994, Wen et al., 2001), which is consistent with the nanosphere structures 

observed in vivo, described above in Section 1.2.2.2.3. DLS studies at pH 7-8 in Tris-

HCl showed that their molecular weights ranged between 2000 - 3800 kDa, which 

suggests that they are made up of 100-200 amelogenin monomers {Moradian‐Oldak, 

1994 #142}. A cryoelectron microscopy study of rM179 At pH 8 in Phosphate-buffered 

saline (PBS) supported the formation of 15-20 nm diameter nanospheres at room 

temperature within 10 minutes of incubation (Fang et al., 2011). A combination of DLS 

and SAXS studies suggested that these nanospheres comprise a dense hydrophobic 

core (detected by SAXS), surrounded by a looser shell of protein that was 

hypothesised to be comprised of the C-terminal hydrophilic telopeptide (Aichmayer et 

al., 2005).  

The formation of the nanospheres was shown to be pH, temperature and 

concentration-dependent. Initial DLS studies at room temperature (25-29°C) indicated 

that the size and distribution of aggregates varies with pH (Moradian-Oldak et al., 

1994, Moradian-Oldak et al., 1998). At pH values below 6, aggregates were relatively 

small (hydrodynamic radii 4-7 nm in Tris-HCl, or 3.9 - 4.5 nm in sodium acetate at pH 

4.4) whereas at pH 7.4, the hydrodynamic radius of the aggregates was increased to 

19.2 nm. This might be expected as pH values below 6 would induce a greater charge 

on rM179, making it more soluble and less prone to aggregation. The increased size of 

the aggregates at physiological pH is linked to their decreased solubility. At pH values 

≥ 7.8, which is significantly above the pI of rM179, the solubility of amelogenin 

increased, and the size of the aggregates decreased to 15-16 nm hydrodynamic radii 

(Tan et al., 1998, Moradian-Oldak et al., 1998). 
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DLS studies also showed that nanosphere assembly is sensitive to environmental 

temperature: Below 25°C, the nanosphere hydrodynamic radius was 15-18 nm, 

whereas at 37-40°C, it increased to 60-70 nm (Moradian-Oldak et al., 1998). 

Moradian-Oldak et al (1998a) observed that variation of pH between values 4.4 and 8 

affected the size of amelogenin aggregates significantly more at 37°C than at 25°C. 

While the size of the aggregates reached a maximum radius of 25 nm at pH=7.4 and a 

temperature of 25°C; this increased to 35 nm at pH=7.4, and then to 58 nm at pH=8, at 

37°C.  

The hydrodynamic radius of amelogenin aggregates also increases with ionic strength. 

For example at pH 7.4, increasing the ionic strength from 0.05 M to 0.16 M increased 

nanosphere hydrodynamic radius from 19.2 nm to 28.8 nm (Moradian-Oldak et al., 

1994). The physiological ionic strength of enamel fluid is 0.164 mM (Aoba and 

Moreno, 1987), suggesting that physiological temperature and ionic strength favours 

amelogenin aggregation and the assembly of larger nanospheres.  

In light of the effect of temperature on amelogenin interactions we may question the 

relevance of amelogenin in vitro aggregation/binding experiments when these are 

carried out at non-physiological temperatures. A typical example is the mechanism of 

amelogenin hierarchical assembly into nanospheres, proposed by Fang et al (2011) 

from data obtained at 25°C. In their report, the authors hypothesised that 1) 

amelogenins form dimers via their C-terminal extremities, 2) six dimers associate side-

by-side to form dodecamers and 3) dodecamers associate to form nanospheres (Fang 

et al., 2011). Fang et al’s hypotheses contrasts with previous knowledge on 

amelogenin assembly in that the ATMP motif is necessary in amelogenin self-

assembly in first place (discussed in the Section 1.2.2.2.1, p. 22), and the C-terminal 

hydrophilic peptide DKTKREEVD is not sufficient to trigger amelogenin-amelogenin 

interaction. For instance, LRAP does not self-assemble as indicated by Y2H studies 

(Paine and Snead, 1997). 

 

 Micelles 

Other modes of amelogenin assembly have been proposed. In 2007, Fukae et al 

(2007) speculated that amelogenins associate as micelles, using porcine 25 kDa 

amelogenin and its proteolytic processing products (Fukae et al., 2007). Their 

hypothesis was based on the Kyte and Doolittle amphiphilicity index and Robson 

secondary structure prediction. They claimed that the N-terminal amino acids (Met1 to 

Trp45) form the hydrophobic core of the micelles while the 13 kDa (Leu46 to Ser148) 

domain acts as a rod-like structure that connects the micellar core to the hydrophilic C-

terminal segment comprising Lys166- Asp173, which is exposed at the surface of the 

micelle facing the aqueous environment. Fukae et al (2007) add that the highly 
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charged C-terminal segments form α-helices and can interact with each other by 

intermolecular ionic interactions that mediate amelogenin-amelogenin interactions, and 

furthermore, inter-micelle assembly and aggregation. There is, however, a lack of 

evidence supporting this micelle model and there is a caveat to consider. Given that 

amelogenin is reportedly an IDP and that no tertiary structure has been found to date 

(see Section 1.2.1.3.3, p. 20), it is difficult to reconcile the in silico predicted structural 

features Fukae et al. (2007) describe with the experimental data obtained by others. 

 Ribbons

Other groups reported that amelogenin supramolecular structures are ribbon-like with 

amelogenin monomers either assembling directly into so-called nanoribbons or 

amelogenin nanospheres assembling into so-called microribbons. A first X-ray 

structure was published in 2005. The authors of that report claimed that the 

birefringent microribbons visible by synchrotron X-ray diffraction (XRD) and SEM were 

supramolecular assemblies of amelogenin nanospheres (Du et al., 2005). The report 

was later retracted (2005), following Beniash et al’s observation that the fibrillar 

structure observed was actually that of contaminanting cellulose fibres. Moradian-

Oldak et al (2006) later maintained that amelogenin supramolecular assembly results 

in the formation of microribbons using FTIR and Raman microspectroscopy, and 

proposed that amelogenin nanospheres assemble into collinear arrays which 

correspond to microribbons. They reported that these features had not yet been 

verified in vivo (Moradian‐Oldak et al., 2006). One criticism of this study is that 

polyethylene glycol, which is a protein precipitant (Ingham, 1984) was used to drive 

the amelogenin to form ribbons. It is unclear how relevant these experimental 

conditions are to the situation in vivo. A recent paper by Carneiro et al (2016) claimed 

that human amelogenin rH174 self-assembles into nanoribbons in vitro. Using AFM 

and TEM; they proposed that an N-terminal segment (Gly8 - Thr21) drives amelogenin 

self-assembly into nanoribbons through β-sheet interactions (Carneiro et al., 2016). 

However these are in silico predictions, and the formation of nanoribbons in vitro was 

observed at acidic pH (4.5-5.5 or 6.5), which again raises questions around the 

relevance of their findings to the situation in vivo. 
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To summarise, most reports agree that amelogenin assembly is an ordered 

hierarchical process, though different modes of assembly have been reported 

(summarised below in Figure 8). The most plausible model of assembly to date is 

nanospheres of 20-50 nm diameter, which could be the spherical structures observed 

in developing mouse enamel (Fincham et al., 1995). Further in vivo investigations are 

needed to confirm the precise identity of these structures e.g. are they pure 

amelogenin or are other enamel proteins involved? 
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1.2.3 Matrix biochemistry and processing of amelogenin 

Understanding the process of amelogenin self-assembly (discussed in the previous 

Section) and its interactions with other proteins and mineral within the matrix is a 

critical step in determining the role of amelogenin in amelogenesis. Amelogenin is a 

major and essential component of developing enamel matrix, suggested to control the 

growth of enamel crystals (Wallwork et al., 2001). As mentioned in the Section 1.1.2.3 

(pp. 8 - 9), the enamel crystallites sketched in during the secretory stage of 

amelogenesis appear thicker at the dentine-enamel junction (older enamel) and 

thinner at the secretion front (newer enamel). This correlates with a progressive 

proteolytic processing of amelogenin within the enamel matrix, with full-length 

amelogenin present in the newer enamel, where crystals are thinner, and its 

processing products present in the older enamel, where the crystals are thicker and 

wider (Daculsi and Kerebel, 1978, Robinson et al., 1998). Once the enamel matrix has 

reached its full thickess maturation begins; the amelogenins and processing products 

are degraded and removed, then the enamel becomes fully mineralised. 

This Section addresses i) The proteolytic processing of amelogenin throughout 

secretory stage and its possible role in the reduction in amelogenin- mineral binding 

(Section 1.2.3.1). Then it addresses ii) the full degradation of amelogenins during 

transition and maturation stages (Section 1.2.3.2). 

1.2.3.1 Amelogenin processing throughout secretory stage 
The full-length “25 kDa” amelogenin is restricted to the outer layer of the forming 

enamel and is rapidly processed after being secreted (Fukae et al., 1980, Uchida et 

al., 1991b). This processing is sequential and results in the formation of different 

processing products with various physico-chemical properties. The properties of the 

major processing products of amelogenin are described in the Section 1.2.3.1.1 below 

and how these are involved in the control of enamel crystallites growth is addressed in 

the Section 1.2.3.1.2. 

1.2.3.1.1 Protelolytic processing during secretion 

Proteolytic processing has been extensively studied in pig developing enamel. Once 

secreted into the secretory-stage enamel matrix, the full-length amelogenin (P173), 

whose apparent mobility on analytical SDS PAGE is 25 kDa, is rapidly degraded into 

smaller fragments (Fincham et al., 1991b). In pig secretory enamel, these include a 23 

kDa, 20 kDa, 13 kDa, 11 kDa, 7 and 5 kDa fragments (Yamakoshi et al., 1994) (Figure 
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9), most of which were shown to be the result of cleavage by MMP-20 that is co-

secreted during the secretory stage (Ryu et al., 1999, Nagano et al., 2009).  

The newly secreted 25 kDa amelogenin (P173) has a high degree of polarity, with a 

major hydrophobic portion and an extremely hydrophilic C-terminal portion (the last 12 

amino acids comprising the C-terminal telopeptide), Figure 9. It is quickly degraded by 

MMP-20 and as a result the intact full-length secreted product is restricted to the newly 

secreted enamel matrix at the surface of the developing enamel (Uchida et al., 1991b). 

The first MMP-20 processing step removes the hydrophilic C-terminal telopeptide, 

producing a 23 kDa amelogenin (P161). P161 is also present transiently (Yamakoshi 

et al., 1994) and is further processed resulting in the loss of its C-terminal comprising 

Met149-Trp161. The resulting processing product is P148 (commonly referred to as the 

20 kDa amelogenin from SDS PAGE analysis). P148 is relatively stable in the enamel 

matrix, and therefore accumulates, so that it appears clearly as the major band on 

SDS PAGE analyses of secretory stage pig enamel (Shimizu M, 1983, Yamakoshi et 

al., 1994, Brookes et al., 1995, Maycock et al., 2002). It was argued that P148 might 

be derived from either the 23 kDa fragment or directly from the parent amelogenin. 

Both P161 and P148 fragments self-assemble in vitro to form nanospheres; the P161 

fragment appears to form more heterogeneous nanospheres on AFM while the P148 

fragment formed smaller nanospheres with hydrodynamic radii of 10-14 nm (Moradian-

Oldak, 2001). 

Further processing of 20 kDa amelogenin was shown in vivo to generate 5 and 13 kDa 

fragments (Tanabe, 1984, Aoba et al., 1987b, Fincham and Moradian-Oldak, 1993). 

The 5 kDa fragment is the TRAP domain, comprising the first 45 amino acids. It is 

relatively insoluble and is highly conserved between species (Fincham et al., 1983, 

Fincham et al., 1989). It is also the ‘A-domain’ involved in protein-protein interactions 

identified by Y2H experiments (Paine and Snead, 1997). The loss of TRAP disrupts 

amelogenin self-assembly, and the resulting 13 kDa fragment, comprising Leu46- 

Ser148 (P46-148), does not self-assemble and is completely soluble in the enamel fluid 

(Brookes et al., 1995). However, there appears to be conflicting reports as to whether 

these lower molecular fragments are generated by the cleavage of P148 by MMP-20 

(Nagano et al., 2009, Kwak et al., 2016): while Nagano et al (2009) supported that the 

TRAP and P46-148 result from the cleavage of P148 by MMP-20, Kwak et al (2016) 

argued that P46-148 would be generated by the cleavage of P173 by MMP-20 instead, 

supporting that MMP-20 does not cleave P148. Otherwise, a minor alternative 

processing route was reported to generate an 11 kDa fragment, spanning Ala63 - 

Ser148 (Aoba et al., 1987b). 
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1.2.3.1.2 Effect of amelogenin processing on mineral binding and role of 
amelogenin in enamel matrix mineralisation 

The protein matrix of developing enamel supports and potentially directs the 

elongation of thin plate-like enamel crystals that grow in length (c-axis growth) (Nylen 

et al., 1963) as they pursue the retreating ameloblasts. By AFM, amelogenin 

nanospheres appeared to be organised in linear arrays, aligned with the side faces of 

the enamel crystals (Fincham et al., 1995, Fincham et al., 1999). In effect, the crystal 

architecture is lightly “sketched in” during the secretion stage but how these crystals 

are nucleated is not fully established. Initially, calcium and phosphate ions are present 

in the earliest secreted enamel (Deakins and Burt, 1944, Takano et al., 1986, 

Robinson et al., 1974). Crystals nucleate in the extracellular environment to form an 

ordered crystal array (Fincham et al., 1999), possibly in the initial form of octacalcium 

phosphate which later changes phase to form hydroxyapatite, which are the basic unit 

of the prisms observed in mature enamel. As nucleation of hydroxyapatite is not 

thermodymically favourable, it requires a “catalyst” to proceed. This catalyst may take 

the form of a proteinaceous template which promotes heterogeneous nucleation by 

matrix-mineral electrostatic interactions (Kirkham et al., 2002) but it is unclear which 

protein(s) are involved. They could originate either from the dentine or the DEJ, or 

from EMPs themselves. Both protein-mineral and protein-protein interactions mediate 

enamel crystallites and prism formation.  

Aoba et al. (1987a) hypothesised that processing and degradation of amelogenins 

favours crystallite growth in width and thickness– suggesting that full-length 

amelogenin constrains enamel crystal growth to c-axis only. This hypothesis was 

based on the smaller crystal thickness observed in the outer layer being concomitant 

with the location of full-length 25 kDa amelogenin essentially in that region. Its rapid 

degradation in the deeper layers (Uchida et al., 1991b) was related to reduced protein-

to-mineral adsorption which relieved inhibition of crystal growth and allowed the 

crystals present in the deeper enamel to grow in width and thickness (Aoba et al., 

1987a).  

However, this theory can be challenged. It must be noted that crystals in the deeper 

enamel are simply older and have been exposed to the mineralising environment for 

longer and have had more time to grow. That they appear thicker at the dentine-

enamel junction and thinner at the secretion front can be explained on this basis alone 

in the absence of any crystal growth inhibition associated with mineral bound full-

length amelogenin. 

A major challenge to the hypothesis proposed by Aoba et al. (1987a) was highlighted 

in S.J. Brookes’s thesis (1995, pp. 172-175) citing observations and TEM 
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measurements of enamel crystallites’ thickness and width reported by Daculsi and 

Kerebel in 1978 (shown below in Figure 10). These measurements do indeed indicate 

that crystallite thickness and width increase with depth; however, the rate of increase 

in width and thickness is faster in the “outer” 50 µm, (within the first 50 µm depth, from 

the Tomes’ processes, the width and thickness increase by 160% and 220% 

respectively), which is where the supposedly inhibitory full-length amelogenin is found. 

In contrast at 200-500 µm depth from the Tomes’ processes, where amelogenin 

degradation products dominate, the crystal width and thickness have only increased 

by 5.7 and 52.4% in thickness and width respectively (Daculsi and Kerebel, 1978). 

However, it must be rembered that the youngest crystals will be imperfect and exhibit 

more growth sites than older crystals so may be growing faster despite the presence 

of supposedly inhibitory full length amelogenin at this point. It may be that full-length 

amelogenin is actually damping very active growth near the surface and although the 

rate of growth is higher, it is less than it would be in the absence of the full length 

amelogenin.  

Figure 10 Growth of crystal width and thickness with enamel depth, as 
measured by Daculsi and Kerebel, 1978. Note the rate of growth is highest 
near the surface where the supposedly inhibitory full-length amelogenin is 
localised. 
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Amelogenin processing products have different biochemical properties to the full-

length amelogenin and may therefore have distinct and specific roles in enamel 

formation. For instance, studies suggested that (25kDa) P173 guides ordered 

hydroxyapatite crystal formation unlike (20kDa) P148, although both are involved in 

amorphous calcium phosphate stabilisation (Kwak et al., 2014). The consequences of 

amelogenin degradation may be more complex than merely generating space for 

crystallite growth in width and thickness (which Aoba et al (1987) appeared to suggest, 

as described above).  

However, in keeping with previous reports (Aoba et al., 1987a) other studies reported 

that amelogenin affinity for apatite surfaces is reduced on proteolytic processing. The 

C-terminal domain, which is charged, has strong affinity for hydroxyapatite crystals 

(Shaw et al., 2004) and its loss (processing of the full-length 25 kDa amelogenin) 

results in reduced affinity for apatite surface (Moradian-Oldak et al., 2002).The 23 kDa 

and 20 kDa amelogenins, present in higher ratio in the enamel matrix (with the 20 kDa 

amelogenin more stable), have different physico-chemical properties, per se, than the 

parent protein (more hydrophobic, illustrated in Figure 9). Such species form different 

supra-molecular assemblies in vitro to generate nanospheres with different sizes and 

polydispersity which may alter the structure and biochemical nature of the matrix 

(Moradian-Oldak, 2001). However, in vivo, the processing fragments are already 

assembled in nanospheres even as they are generated by MMP-20 processing so it is 

unlikely that monomeric forms of P161 and P148 are available in the matrix and the 

relevance of these in vitro findings is questionable.  

In addition to proteolytic processing (detailed above in Sections 1.2.3.1.1-2), 

amelogenin dephosphorylation might affect structure and function of amelogenin. 

Dephosphorylation may certainly have a functional role since phosphatases are 

present in the developing enamel matrix (Brookes et al., 1998). Phosphorylation per se 

can affect the secondary structure in LRAP in terms of its ability to stabilise the mineral 

phase (Yamazaki et al., 2017). As for P148, De-phosphorylation (or the lack of 

phosphorylation in rP147) affects the abilty of P148 to control crystal growth in vitro 

(Kwak et al., 2009). 

 

1.2.3.2 Amelogenin degradation during maturation stage 
As mentioned in the Section 1.1.2.4 (pp. 11-12), the increase in mineral content during 

the maturation stage is concomitant with the loss of the proteins in the matrix. The 

EMPs are degraded by the serine protease KLK4. KLK4 degrades the spectrum of 

proteins and peptides generated during the secretory stage processing (Hu et al., 

2000, Ryu et al., 2002). KLK4 proteolysis generates small peptides that can be easily 
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removed from the matrix. These peptides are endocytosed by ruffle ended 

ameloblasts (Bartlett and Simmer, 2014, Pham et al., 2017). Fluid (enamel fluid) 

replaces the degraded enamel proteins. This fluid is kept supersaturated with respect 

to hydroxyapatite as the ameloblasts pump mineral ions into the enamel which drives 

the concomitant growth in thickness and width of the enamel crystals until the enamel 

becomes fully mineralised.  

Using cervical enamel from incisor germs from human fetus (6-8 months old) and from 

erupted “temporary” teeth, Daculsi and Kerebel (1978) analysed the growth of the 

enamel crystallites in width and thickness using high resolution TEM. They showed 

that the crystallites grow mostly in width during the first stage of enamel development, 

and that until the end of foetal development the width has nearly stabilised to its 

average value in mature (erupted?) enamel. By then and until complete maturation, 

the crystallites grow only in thickness (Daculsi and Kerebel, 1978) as illustrated in 

Figure 10. 

As enamel hydroxyapatite crystals grow during the maturation stage, the pH drops 

since the formation of calcium hydroxyapatite unit releases protons, as shown in 

equation (1) (Simmer and Fincham, 1995). 

(1) 10 Ca2++ 6 HPO4
2- + 2 H2O ⇋ Ca10(PO4)6(OH)2 + 8H+ 

To buffer the increase of acidity, ruffle-ended ameloblasts secrete bicarbonate ions 

towards the matrix. The pH of the enamel matrix oscillates between 6.1 and 7.4, as 

ameloblasts shift between ruffle-ended, which is when they secrete bicarbonate ions to 

neutralise the protons released, and smooth-ended. This possibly buffers the 

variations of pH caused by hydroxyapatite formation.  

DLS studies showed that amelogenin nanospheres were extremely sensitive to 

changes of pH (addressed in Section 1.2.2.2.4, pp. 24-25 ), which may have a 

functional importance during amelogenesis. While the size of the aggregates were 35 

nm at pH=7.4 they increased to 58 nm at pH=8, that is, an increase of 66% over 0.6 

pH units (Moradian-Oldak et al., 1998). During the maturation stage, the drop and 

variations of pH may help break up the amelogenin nanospheres and thereby, 

facilitate amelogenin degradation and removal.   
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1.2.4 Other structural proteins of the developing enamel matrix : 
ameloblastin and enamelin 

Ameloblasts secrete three major EMPs during the secretory stage (enamelin, 

amelogenin and ameloblastin) and two during the maturation stage (amelotin and 

ODAM, detailed earlier in Section 1.1.2.4, pp. 10 - 11). Evolutionary analyses indicated 

that the five genes encoding these proteins are related; all are derived from the 

enamelin encoding gene ENAM (Sire et al., 2007), which highlighted their importance 

in amelogenesis, and the potential necessity of a coordinated action of their 

expression products. This Section focuses on ameloblastin and enamelin, which are 

structural proteins specific to the secretory stage. Like amelogenin, they have a 

relatively high content of proline and glutamine (Smith et al., 2009). Their properties 

and hypothesised functions are addressed below. 

1.2.4.1 Ameloblastin 
Ameloblastin is the second most abundant protein in the developing enamel matrix 

after amelogenin and is another essential component in enamel formation as ambn-/- 

(null) or overexpression mouse models exhibited odontogenic tumours or AI 

phenotypes respectively (Paine et al., 2003a, Fukumoto et al., 2004). Mutations in 

ameloblastin gene AMBN drove some cases of AI in man, as detailed later in Section 

1.3.2.2 (p. 53 - 54). 

The ameloblastin gene, in rats, comprises an open reading frame predicted to encode 

a protein of 422 amino acids, with a molecular weight of 45 kDa. The protein encoded 

has a high content of proline, glycine, leucine and alanine and a predicted pI of 5.54 

(Černý et al., 1996, Krebsbach et al., 1996). Ameloblastin is first expressed during 

amelogenesis as the IEE differentiates into ameloblasts, through the secretory stage 

and also during early maturation and its expression is much reduced at the end of 

maturation stage (Lee et al., 1996). The ameloblastin gene is alternatively spliced (Lee 

et al., 2003); and two major alternatively spliced transcripts have been reported in 

human, mouse, rat and pig (MacDougall et al., 2000).  

As a secreted protein, ameloblastin was detected by immunohistochemistry transiting 

the ER, Golgi apparatus and secretory granules within ameloblasts prior to secretion 

(Uchida et al., 1997). Within the secretory pathway, the newly synthesised 

ameloblastin undergoes post-translational modifications, O-glycosylation and 

phosphorylation, which increase its apparent molecular weight on secretion (Uchida et 

al., 1997). Newly secreted ameloblastin is found mostly at the surface of the 

ameloblast Tomes’ process during the secretory stage (Krebsbach et al., 1996). Once 

secreted, ameloblastin undergoes processing and degradation, with in vitro studies 
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suggesting that MMP-20 is the protease responsible (Iwata et al., 2007). Sequential 

extraction studies showed that some of the degradation products interact with enamel 

mineral and need to be desorbed from enamel crystal surfaces with phosphate buffer 

in order to be extracted from the tissue (Brookes et al., 2001). Initial cleavages of 

newly secreted ameloblastin generate a number of N-terminal polypeptides, some of 

which are found in the prism sheath. The remaining C-terminal polypeptides are 

quickly degraded and lost after secretion (Uchida et al., 1997). Although ameloblastin 

has a different spatial distribution within the extracellular matrix than amelogenin (i.e. 

N-terminal fragments accumulate at prism peripheries) they both share the same

secretory pathway in the ameloblasts and are co-secreted (Nanci et al., 1998, Zalzal et 

al., 2008) 

Although the precise function of ameloblastin is not clear, it is assumed to be involved 

in the control of crystal growth and in ameloblast attachment to the extracellular matrix. 

The major ameloblastin isoform carries in its sequence the amino acid motifs DGEA 

and VTKG; sequences found in adhesion molecules (Yamada and Kleinman, 1992). 

Studies using Ambn-/- (null) mouse models highlighted the importance of ameloblastin 

during ameloblast differentiation and maintaining of the ameloblast monolayer as the 

absence of ameloblastin resulted in detachment of ameloblasts from the matrix, loss of 

cell polarity and uncontrolled proliferation. The Ambn-/- (null) mouse models developed 

odontogenic tumours and dysplastic mineralised material was formed at the dentine 

surface (Fukumoto et al., 2004). A later study found that this so-called null mouse 

model actually expressed a truncated from of ameloblastin, Ambn-5,6/-5,6 which lacks 

exons 5 and 6 (Wazen et al., 2009). This highlighted the importance of exons 5 and 6 

as functional domains essential in ameloblast adhesion, control of ameloblast polarity 

and proliferation as described above (Fukumoto et al., 2004).  

In common with other EMPs, ameloblastin has been a topic of interest in tissue 

regeneration research due to its cell signalling and growth factor-like properties 

(Zeichner‐David et al., 2006, Lu et al., 2013). It was shown to promote the 

proliferation of mesenchymal stem cells and osteoclast and their differentiation 

(Tamburstuen et al., 2010) and showed poential in preventing and healing bone 

fracture (Lu et al., 2016).  

1.2.4.2 Enamelin 
Enamelin accounts for 3-5% of EMPs . Its importance in amelogenesis was shown by 

enamelin-null mouse models where the enamel matrix failed to mineralise, leading to 

the lack of enamel in erupted teeth, enamelin-null mice did not display any enamel. 

The loss of enamelin results in the most severe of enamel phenotypes, suggesting 
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enamelin has a primordial role in enamel matrix mineralisation (Hu et al., 2008, Smith 

et al., 2009). 

Immunofluorescence studies showed that enamelin is mostly located at the secretion 

front and at the dentine-enamel junction (Brookes et al., 2017b). Enamelin is 

expressed and secreted before amelogenin at the early secretory stage, though 

amelogenin and enamelin co-localise later at the “secretory face of the ameloblasts” 

(Gallon et al., 2013). Full-length enamelin has been identified as a 186 kDa protein 

that is glycosylated and phosphorylated (Hu et al., 1997). It is also degraded 

throughout the secretory stage of amelogenesis, and its processing products were 

shown to have a high affinity for mineral and crystal surfaces (Brookes et al., 2002). 

This explains why it has been suggested to influence crystal growth and enamel 

mineralisation. The major processing (32 kDa) product, which makes up 1% of the 

developing enamel matrix, is spread throughout the enamel layer (Uchida et al., 

1991b). How can such a small amount be sufficient to cover the enamel surface?  

In vitro studies suggested that enamelin and amelogenin act cooperatively in the 

control of crystal growth: CD and DLS analyses in PBS at pH 6.5 found direct 

interaction between recombinant rP1481 and 32 kDa enamelin (Fan et al., 2011) and 

the addition of enamelin into an amelogenin gel-like matrix increased the stabilisation 

of an amorphous calcium phosphate transient phase (Iijima et al., 2010).  

It is clear that the enamel matrix structural proteins have the potential to work 

cooperatively, within the matrix, to deliver an ordered mineralisation process. Their 

secretion by the ameloblasts also appears to be coordinated; e.g. amelogenin and 

ameloblastin were shown to be co-transported (Zalzal et al., 2008, Mazumder et al., 

2014). The secretion process of EMPs is addressed in greater details below. 

  

                                                
1 The recombinant rP148 differs from the native P148 since it lacks Met1 and Ser16 

phosphorylation, and carries and extra methionine at position 149. 
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1.2.5 Amelogenin transit through the ameloblast ER for secretion 

Amelogenin is trafficked intracellularly towards the ameloblast Tomes’ processes for 

secretion into the extracellular matrix (Simmelink, 1982, Nanci et al., 1985). Its 

propensity to aggregate requires a tight monitoring within the ameloblast ER, which is 

the organelle responsible for overseeing protein folding and the assembly of subunits 

that comprise multimeric proteins. As a secreted protein, amelogenin is synthesised by 

ribosomes associated with the rough ER and simultaneously translocated into the ER 

lumen where, like all proteins, presumably adopts an energetically favourable 

conformational state assisted by the ER folding machinery (chaperone proteins that 

interact with the client protein to prevent pathological aggregation in order to direct 

protein folding towards the correct functional end point). It then transits through the 

Golgi and by vesicular transport reaches the Tomes’ process, where it is released into 

the extracellular matrix. Ameloblasts are cells specialised in secretion and are adapted 

to manage large amounts of EMPs destined for secretion. The volume of these 

secretory organelles is maximal during the secretory stage to maintain ameloblast ER 

proteostasis (Warshawsky, 1968, Tsuchiya et al., 2008). This Section (i) describes the 

secretory pathway in general (Section 1.2.5.1) and (ii) focuses on intracellular transit of 

amelogenin during secretion (Section 1.2.5.2). 

1.2.5.1 Ameloblasts: cells specialised in protein secretion require an 
efficient ER trafficking machinery 

The ER handles secretory proteins or transmembrane proteins, starting from their 

synthesis to their transfer to the Golgi apparatus. The ER handles both protein 

synthesis and folding so that that proteins achieve their functional 3-dimensional 

conformation. This is important as the ER environment is crowded, with concentrations 

of proteins reaching 300-400 g/L (Ellis and Hartl, 1999) and up to 30% of WT proteins 

destined for secretion can spontaneously mis-fold (Schubert et al., 2000). Misfolded 

proteins may result in in loss of biological activity inactive, or be cytotoxic, or may 

induce pathological intracellular protein aggregation. 

As discussed in more detail in Section 1.3.4.2 (pp. 75 - 77), a first-line mechanism to 

relieve potentially pathological situations in the ER employs folding machinery 

comprised of so-called chaperone proteins which interact with client proteins transiting 

the ER and directing their folding towards the correct conformational endpoint whilst 

preventing abnormal aggregation. In addition, the ER is able to direct misfolded or 

aggregated proteins towards degradation which helps restore ER proteostasis. When 

neither of these factors is sufficient to restore proteostasis, the ER becomes 
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“stressed”. ER stress triggers numerous signalling cascades which comprise the so-

called unfolded protein response (UPR) which triggers a number of downstream 

actions designed to relieve the stress or ultimately commit the cell to apoptosis. 

 ER folding machinery
The ER folding machinery comprises a variety of protein chaperones, co-chaperones 

and folding enzymes (foldases) that assist protein folding during synthesis to prevent 

protein aggregation (Dobson, 2003). This process is called ER-assisted folding 

(ERAF) and a list of its components is detailed in Table 1. The chaperones recognise 

the hydrophobic portions exposed at the surface of immature, misfolded or 

aggregation-prone proteins and then assist their folding (Braakman and Hebert, 2013). 

One of the most abundant and well-known chaperones, binding protein (BiP)/GRP78, 

which belongs to the heat shock protein 70 (HSP70) family, actively promotes folding 

through conformational changes driven by ATPase activity, resulting in ATP hydrolysis 

(Hartl, 1996). It is noteworthy that the chaperone “Binding immunoglobulin protein” 

(BiP) has been shown to interact with amelogenin in vitro (Fukuda et al., 2013) 

indicating that amelogenin is likely to be chaperoned during its transit through the ER. 

Associated co-chaperones include proteins from HSP40 and GrpE families, which 

modulate the ATPase activity of BiP (Yoshida, 2007). Other chaperones include 

GRP94 (HSP90 family) which has ATPase activity, and the chaperones calnexin and 

calreticulin. The latter two are lectins that bind transiently to N-linked glycosylated 

proteins and act together to help folding of the target proteins in what is called the 

calnexin-calreticulin cycle (Ou et al., 1993, Helenius and Aebi, 2001). ER folding 

enzymes, which change the energy landscape and increase the rate of protein folding, 

include protein disulfide isomerases (such as GRP58/ERp57), which catalyse 

oxidoreduction reactions (involving disulfide bonds), and peptidylprolyl isomerases 

(including FKBP family), which catalyse the conversion cis-trans of peptide bonds 

involving proline (Lang et al., 1987, Harding et al., 1989). A remarkable feature is that 

peptide bonds involving proline adopt either cis or trans configuration unlike regular 

peptide bonds (without proline), which spontaneously adopt the trans configuration. 

With proline peptide bonds, cis-trans isomerisation reactions are needed to reach the 

protein’s native state. This requires a high activation energy (~20 kcal/mol) (Andreotti, 

2003) which curbs the kinetics of protein folding. To overcome that limiting step, 

peptidylprolyl isomerases in the ER catalyse the cis-trans isomerization reaction, 

preserving the rate of protein folding and transit (Andreotti, 2003). Their role is 

presumably all the more important when the proteins destined for secretion, such as 

amelogenin, have an high proline content. 
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 ER associated degradation
Once properly folded, the protein is ready for use or secretion out of the cell. However, 

in some cases, the protein can evade the ERAF pathway, due to a mutation for 

example, and misfold. The misfolded protein is detected and then processed for 

destruction, via ER-assisted degradation (ERAD). The misfolded protein is 

translocated towards the cytosol, through specific molecular recognition / interaction 

mechanisms, where it is ubiquitinated and degraded in proteosomes (Yoshida, 2007). 

ERAD thus helps to reduce the load of misfolded proteins; the ERAD components 

involved are listed in Table 1. When ERAD or ERAF are not sufficient to restore 

homeostasis, a third mechanism involving signalling cascades is activated as a last 

resort: the UPR. 

 The unfolded protein response (UPR)
The UPR consists of intracellular signalling cascades that control the expression of 

numerous genes in the cell. Misfolded proteins in the ER lumen activate trans-ER 

membrane molecular sensors. In higher eukaryotes such as mammals, the UPR 

comprises three signalling cascades, each of which is initiated upon the activation of 

an associated sensor protein: protein kinase RNA-like ER kinase (PERK), inositol-

requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6). In the 

resting state, the three sensors are kept inactive through their interaction with the ER 

chaperone BiP. However, BiP preferentially binds misfolded proteins, so in the 

presence of misfolded proteins, BiP tends to disassociate from the sensor proteins and 

the sensor proteins become activated (Bertolotti et al., 2000, Shen et al., 2002) 

triggering downstream signalling cascades. The UPR aids cells to manage large 

secretory loads by increasing ER volume (via synthesis of membrane lipids), ERAF 

and ERAD machinery (Travers et al., 2000).  

Figure 11 summarises the transit of secreted proteins such as amelogenin through the 

ER. The ER quality control machinery is listed in Table 1. 
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Figure 11 Diagram illustrating the transit of secreted proteins (e.g. amelogenin) 
through the ER for secretion. The ER handles synthesis and folding of 
proteins destined to secretion (or transmembrane proteins, not addressed 
here). Following translocation1, the proteins fold (1) to adopt the correct 
conformation, which may require the ER folding machinery (which includes 
chaperones, co-chaperones and folding enzymes). When the folding 
machinery fails (‘(2) No folding’), the proteins may be targeted for 
degradation (case ‘(2.1)’) to alleviate the load of misfolded proteins in the 
ER to limit ER stress. In the case where the ER folding and ER-degradation 
do not suffice to alleviate ER stress, transmembrane sensors (PERK, IRE1α 
and ATF6) are activated (case ‘(2.2)), triggering signalling cascades which 
impact on gene expression. This is the so-called UPR which attempts in 
first instance to increase the folding capacity of ER or alleviate the load of 
misfolded proteins to reduce ER stress. If the ER fails to return to 
proteostasis then the UPR triggers apoptosis. The balance between the 
UPR acting in pro-survival mode and pro-apoptotic mode is detailed later in 
Section 1.3.4.2. 

1 Co-translational translocation is the mechanism used to target proteins into the ER in 
eukaryotes. 
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1.2.5.2 Protein-protein interactions associated with amelogenin as it 
transits the ameloblast secretory pathway 

To ensure amelogenin’s proper transit through the ER and the rest of the secretory 

pathway, amelogenin needs to adopt a conformation that allows correct assembly and 

interactions with itself and with other proteins (or put another way, needs to avoid 

accessing energetically stable conformations that may favour aggregation or other 

pathological outcomes). This Section focuses on the protein-protein interactions 

involved during intracellular transit of amelogenin. It addresses: (i) potential binding 

partners (Section 1.2.5.2.1 below) and (ii) the domain(s) of amelogenin possibly 

involved in protein-protein interactions (Section 1.2.5.2.2 below). 

1.2.5.2.1 Importance of binding partners 

Various studies have identified multiple potential binding partners for amelogenin. 

These include amelogenin itself (self-assembly, detailed previously in Section 1.2.2.2, 

p. 21), cellular components (such as those involved in the ER-quality control 

machinery), or specific EMPs. 
 Amelogenin self-assembly

As detailed previously (Section 1.2.2), amelogenin has a well-known propensity to self-

assemble, with an in vivo study (discussed in Section 1.2.2.2.2, p. 22) demonstrating 

the formation of dimers, tetramers, pentamers and hexamers in the ameloblast 

intracellular secretory pathway (Brookes et al., 2006). However, this is predated by 

multiple studies reporting the aggregative nature of amelogenin, which has been 

documented since the 1960s (Nikiforuk and Simmons, 1965, Mechanic et al., 1967). 

 Binding of amelogenin with elements from the ER-folding
machinery

Potential binding partners for amelogenin (other than amelogenin itself) including 

protein components of ameloblasts and the enamel matrix have been investigated. 

A proteomics study using affinity chromatography and immunofluorescence 

microscopy in an SaOS-2 osteoblastic cell line found that HSP70 family proteins 

(especially BiP/Grp78) and other proteins of the ER folding machinery such as 

calreticulin, protein disulphide isomerase precursor and tapasin-ERp57 bound 

amelogenin (Fukuda et al., 2013). Fukuda et al. (2013)’s work was in fact focused on 

the mechanisms by which amelogenin (in the form of Emdogain) stimulated 

periodontal regeneration rather anything relating to amelogenin secretion by 

ameloblasts per se. They were actually studying the uptake of Emdogain by 

osteoblastic cells and identified amelogenin binding partners in the course of this work. 

Nevertheless, their work provides data that may be relevant to amelogenin secretion 
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by ameloblasts. Within the same study, other cellular amelogenin-binding proteins 

identified included cytoskeleton proteins such as actin, vimentin, tubulin. Another 

group used the Y2H assay, screening a 17-day mouse embryo pretransformed with a 

Y2H expression library, to identify EMP binding partners. They identified fetuin-A, 

biglycan and CDC63 as binding partners for amelogenin and also for ameloblastin or 

enamelin (Wang et al., 2005).  

 Other EMPs destined for secretion
As mentioned above, the EMPs (amelogenin, ameloblastin, enamelin) were found to 

have mutual (potential) binding partners such as CDC63, fetuin-A or biglycan (Wang et 

al., 2005). Whether this is of importance in amelogenesis remains to be clarified. 

Nonetheless, it is well known that their expression and secretion need to be 

coordinated and their actions cooperative for amelogenesis (See Section 1.2.4 pp. 37-

39). An association between amelogenin and ameloblastin has been put forward, as 

both are expressed and secreted at the same time, and share the same secretory 

pathway within the ameloblasts. They were found co-localised in secretory vesicles 

(Nanci et al., 1998, Zalzal et al., 2008). They were reported to interact via the 

amelogenin ATMP domain by enzyme-linked immunosorbent assay (ELISA), 

dosimetry and Scatchard analyses (Ravindranath et al., 2004). Immunofluorescence, 

CD and fluorescence spectroscopy studies also found that both proteins interact with 

the interaction being between the N-terminus of amelogenin (TRAP) and the 

ameloblastin domain encoded by exon 5 (Mazumder et al., 2014, Su et al., 2016). 

Currently, while amelogenin-ameloblastin interactions have been suggested in vitro, 

no in vivo evidence has been published to date. 

In contrast, Y2H assays indicated that amelogenin and ameloblastin do not interact 

(Paine et al., 1998, Bartlett et al., 2006b) .The Y2H system is a popular method to 

study protein-protein interactions in living yeast cells and has been useful to define the 

domains involved in amelogenin-amelogenin interaction (see appendix E). It verifies 

the interaction between two recombinant proteins in a living yeast cells, which 

activates the expression of a reporter gene should they interact (Fields and Song, 

1989). The system is considered an in vivo assay (Brückner et al., 2009) but both 

recombinant proteins involved are fused to Gal4 binding or activating domain which 

may alter the folding, function or the binding behaviour of the two potential binding 

partners. In addition to this, protein interaction detected using the Y2H system take 

place in the yeast nucleus. This is a very different environment to the mammalian 

rough ER and will be missing ancillary chaperones or part of the folding control 

machinery, usually resident in the mammalian rough ER. Furthermore, proteins in the 

Y2H system will not undergo post-translational modification such as phosphorylation. 

These caveats must be considered when interpreting Y2H system data.  
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1.2.5.2.2 Importance of the amelogenin tri-tyrosyl motif peptide (ATMP) in 
mediating amelogenin-protein interactions 

The integrity of amelogenin (in terms of its primary sequence) is necessary to allow its 

folding (or lack thereof), interaction with ancillary chaperones and ultimately its safe 

transit through the ameloblast secretory pathway. As amelogenin self-assembly has 

been the most studied protein-protein interaction involving amelogenin, the binding 

domains responsible for its self-assembly are the best understood.  

As detailed previously in Section 1.2.2 amelogenin self-assembly binding domains 

were identified in N- (A-domain) and C- (B-domain) terminals by Y2H experiments 

(Paine and Snead, 1997). Within the A domain, the sequence of amino acids Tyr34-

Met42 , that is: YPSYGYEPM (ATMP domain) was shown to be crucial in driving 

amelogenin-amelogenin interactions. This domain has also been the focus of reports 

by Ravindranath et al (1999) who carried out extensive work suggesting that the 

domain interacted with sugars, glycoproteins, cytokeratins, and also possibly 

ameloblastin. 

These authors reported that the ATMP domain potentially binds glycoproteins by using 

hemagglutination and hemagglutination inhibition (hemagglut.) tests with sugar, and 

dosimetry with [14C] N-acetyl-D-glucosamine (GlcNAc). This first report indicated that 

the amelogenin ATMP domain can bind to GlcNAc (Ravindranath et al., 1999). Then, 

based on the sequence similarities that they observed between the amelogenin ATMP 

sequence and wheat germ agglutinin, Ravindranath et al (2000) tested whether 

amelogenin could bind to GlcNAc-mimicking peptides whose sequence is present in 

cytokeratins. They found that ATMP was capable of binding to the GlcNAc-mimicking 

peptide “SFGSGFGGGY” (Ravindranath et al., 2000), a sequence known to be 

present in cytokeratin 14 (Shikhman et al., 1994). 

In a following report, a dosimetric binding assay verified the affinity of cytokeratin 14 

for rM179 and for the ATMP sequence and in the same report the authors investigated 

and corroborated its relevance in vivo. Looking at mouse incisors by confocal 

microscopy, they reported that amelogenin and cytokeratin 14 co-assemble “in the 

perinuclear region of ameloblasts” at day 0 post-natal, then between day 1 and day 3-

5, the complex as observed to migrate towards the ameloblast’s apical region and then 

disassemble. Dissociation of cytokeratin 14 from amelogenin was observed in the 

Tomes’ processes by autoradiography with [3H]ATMP and [3H]GlcNAc-mimicking 

peptide (Ravindranath et al., 2001) which led them to hypothesise that cytokeratin 14 

may act as a chaperone for amelogenin during its intracellular transport. In 2003, the 

same group also identified cytokeratin 5 as a binding partner for amelogenin 

(Ravindranath et al., 2003). Cytokeratin 5 is a protein that is post translationally 
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modified with GlcNAc and can pair with cytokeratin 14 to form the intermediate 

filaments of basal epithelial cells including ameloblasts (Kasper et al., 1989) The role 

of ATMP binding to cytokeratin 5 was confirmed by ELISA, western blotting and 

confical laser scanning microscopy on post-natal ameloblasts (Ravindranath et al., 

2003). Ravindranath et al. (2003) observed a cytokeratin 5-amelogenin complex 

migrating towards the periphery of the ameloblasts. Towards the secretory ends of the 

ameloblasts, confocal microscopy showed amelogenin, cytokeratin 14 and cytokeratin 

5 co-localised at day 5 of postnatal growth of enamel. At day 9, the complex appeared 

dissociated as cytokeratin 14 was no longer found co-localised with either cytokeratin 

5 or amelogenin. Cytokeratin 5 may be found either co-localised or dissociated from 

amelogenin. Remarkably, Ravindranath et al. (2003) raised a question/issue regarding 

the function of the ATMP domain by suggesting that it may be involved in GlcNAc 

binding, rather than amelogenin self-assembly, previously reported by Paine and 

Snead (1997). They opposed the hypothesis of Paine and Snead that the ATMP 

domain drives amelogenin self-assembly. This raises two questions: (1) Does the 

ATMP domain drive amelogenin self-assembly or is it the binding site for cytokeratin 

which appeared to partner amelogenin during its journey through the secretory 

pathway? And (2) Are these two functions mutually exclusive? 

To complicate matters, Ravindranath et al. (2004) reported that recombinant 

ameloblastin bound to amelogenin and peptides corresponding to the ATMP 

sequence, despite the fact that their recombinant ameloblastin did not contain GlcNAc 

or the amino acid sequence that mimics GlcNAc (Ravindranath et al., 2004). This 

contrasts with the Y2H studies previously described that were unable to demonstrate 

any interaction between ameloblastin and amelogenin (Paine et al., 1998). However, 

as already stated, certain caveats need to be considered when interpreting Y2H data. 

Ravindranath et al (2004) explained the apparent paradox – how can recombinant 

ameloblastin bind the ATMP sequence when it contains neither GlcNAc nor the 

GlcNAc mimicking amino acid motif - by hypothesising that the GlcNAc mimicking 

motif may actually be formed by the relevant amino acids, lying far apart in the primary 

sequence, coming into the correct juxtaposition to form the GlcNAc mimicking motif 

once the ameloblastin molecule has folded. Paine et al (1998) may have failed to 

identify ameloblastin-amelogenin interactions in the Y2H system due to the specific 

conformation leading to the correct juxtaposition of amino acids to form the GlcNAc 

mimicking motif being disturbed by fusion of the ameloblastin sequence with Gal4 

binding or activating domain on which the Y2H assay depends. Another problem with 

Y2H system is that there are glycosylated proteins produced by the yeast which may 

compete with ameloblastin by binding to the amelogenin ATMP. 
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While a number of studies appeared to suggest that the ATMP domain may mediate 

amelogenin-protein interactions, convincing in vivo evidence is lacking. On the basis 

that ATMP may drive protein recognition, it is likely to have an essential role in 

amelogenesis, and it would be of worth to determine how conserved this domain is 

between species. Wald et al (2017) identified the ATMP domain as a conserved ‘Y/F-

X-X-Y/L/F-X-Y/F’ motif. This study, using HR-SEC, TEM and SPR and site-directed 

mutagenesis, showed the importance of the integrity of the ATMP domain in mediating 

amelogenin self-assembly and ameloblastin recognition (Wald et al., 2017). Indeed, 

mutations in the ATMP domain (for example p.P70T) are associated with AI in humans 

(Collier et al., 1997) and as discussed later, the p.Y64H mutation in mice appears to 

cause pathological intracellular aggregation of amelogenin in ameloblasts suggesting 

altered amelogenin-amelogenin binding characteristic (Barron et al., 2010, Brookes et 

al., 2014).  

The assembly and cooperation between EMPs is clearly a requirement for enamel 

biomineralisation. This cooperation starts within the ER in the ameloblasts, and proper 

protein-protein interactions are necessary for transit throughout the secretory pathway 

of the ameloblasts. Failure of the ER secretory pathway has been shown to the 

underlying mechanism of enamel pathology in the mouse model carrying the p.Y64H 

amelogenin mutation.  
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1.3 Enamel pathologies and therapies to date 

Enamel is an acellular tissue, as ameloblasts are lost upon tooth eruption; it cannot 

cannot undergo cell mediated self regeneration or repair (Moradian-Oldak, 2009, 

Jayasudha et al., 2014). This is problematic in a variety of conditions including 

treatment of caries lesions, accidental, environmental or hereditary defects as enamel 

damage cannot be reversed. These require either recurrent fillings, veneers or tooth 

replacement with dental implants (Jayasudha et al., 2014). Regeneration studies using 

peptides have been a recent subject of interest. Self-assembling anionic peptide P11-4 

was engineered and shown to promote repair of enamel under simulated intra-oral 

conditions (Kirkham et al., 2007) and proved to be a safe and effective treatment of 

early caries lesions in clinical trials (Brunton et al., 2013). Another study used repeated 

applications of amelogenin-derived peptides, resulting in the formation of aprismatic 

enamel-like tissue, however these results were only reported, so far, in vitro 

(Mukherjee et al., 2018).  

Enamel developmental defects can result from environmental perturbations (physical 

shocks or chemical stresses) as described above, or be hereditary. Research has also 

increasingly focused on the role that genetics might play in the aetiology driving 

enamel conditions linked to ‘environmental’ factors such as caries, molar incisor 

hypomineralisation (MIH) or fluorosis (Kirkham et al., 2017).  

1.3.1 Enamel pathologies and developmental defects 

Dental caries, MIH and fluorosis are relatively common oral diseases usually linked to 

environmental factors. Growing evidence suggest that genetic factors and heredity 

may play a significant role in the development of the diseases . 

Fluorosis is caused by exposure to excessive fluoride during tooth development. The 

enamel is hypomineralised and secretory-stage EMPs are abnormally retained in the 

maturation stage enamel, where they could hinder secondary mineralisation, as 

reviewed by Brookes et al (2017a) (Brookes et al., 2017a). 

Dental caries is caused by acids arising from bacterial metabolism that dissolve tooth 

minerals. Affecting enamel initially but progressing into the dentine, or directly affecting 

dentine in the case of root caries, caries can lead to severe inflammation, tooth loss, 

infection or abscess if left untreated (Bagramian et al., 2009). Affecting 2.3 billion 

people (permanent teeth) and 560 million children (deciduous teeth) worldwide, it is 

the most prevalent noncommunicable disease worldwide (WHO, 2017). The cariogenic 

potential of bacterial biofilms present on teeth is sensitive to environmental influences; 
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mainly the availability and frequency of fermentable carbohydrate entering the oral 

cavity. However, it is increasingly clear that there is a genetic predisposition to caries. 

For example, specific genetic polymorphisms in amelogenin increased caries risk 

(Kang et al., 2011).  

MIH is a condition characterised by hypomineralised enamel on the molar and incisor 

teeth, which causes tooth sensitivity to cold, warmth, and mechanical stimulation such 

as toothbrushing (Weerheijm et al., 2001). Its prevalence varies worldwide, from 2.4% 

in Bulgaria to 40.2% in Brazil (Vieira and Kup, 2016). MIH shows different degrees of 

severity from minor discoloration in the milder cases to enamel fracture in the most 

severe cases. Since the late 1970s, MIH has been regarded as an idiopathic disease 

(Koch et al., 1987). Its aetiology has been a topic of continuing interest. Although the 

underlying mechanisms are not entirely clear, research to date supports a combination 

of environmental and genetic factors. Environmental factors include exposure to 

bisphenols and dioxin, illnesses, and malnutrition and health problems during prenatal, 

perinatal and neonatal periods; however, reviewers have questioned the robustness of 

evidence for these factors (Crombie et al., 2009, Alaluusua, 2010). Genetic 

susceptibility was supported by a genome-wide association study (Kühnisch et al., 

2014) and a twin study (Teixeira et al., 2018). Variants of genes involved directly in 

enamel development such as AMBN, TUFT1 and TFIP11 were associated with MIH, 

(Jeremias et al., 2013). 
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1.3.2 AI: major inherited pathologies of enamel 

AI refers to the major group of inherited enamel pathologies that affect both deciduous 

and permanent dentitions. This implies that AI is non-syndromic, affecting only the 

teeth, whereas it can be both syndromic and non-syndromic. It is characterised by an 

altered appearance (hypomineralisation, missing enamel, enamel discolouration and 

roughness) and sensitivity of the teeth which affects the patients’ quality of life. AI-

related issues also include difficulties with oral hygiene maintenance and loss of self-

esteem (Hu et al., 2007, Coffield et al., 2005). No preventative cure for AI exists to 

date and its prevalence ranges between 1:14000 in the U.S, to 1:700 in Northern 

Sweden (Crawford et al., 2007). Different AI classifications have been proposed but 

the usual criteria for classification include the clinical phenotype, the mode of 

inheritance, the genetic molecular basis (Aldred et al., 2003). 

1.3.2.1 Phenotype and classification 
Clinical diagnosis of AI has been largely based on clinical appearance, radiographic 

assessment and by interrogating the family history (Crawford et al., 2007) though more 

recently genetic diagnostics have been called for, e.g. targeted 21-gene panel test for 

AI introduced by the NHS in 2016 (McDowall et al., 2018). Previously however, AI has 

been classified according to the clinical phenotype exhibited by the patient.  

Hypoplastic AI is a defect in the ‘quantity’ of enamel present, characterised by 

abnormally thin enamel, which in extreme cases may be absent altogether. It is usually 

attributed to defective enamel matrix formation during the secretory stage which in turn 

undermines elongation of the crystals so although the resulting enamel is mineralised, 

it is extremely thin (Gadhia et al., 2012). The secretory stage may be affected either by 

mutations in genes encoding structural EMPs such as enamelin, ameloblastin or 

amelogenin; or it can be affected by genes encoding master controllers of 

amelogenesis such as DLX3 or FAM20A as reviewed by Smith et al (2017b) (Smith et 

al., 2017b).  

Hypomineralisation is another type of AI, thought to be caused by the enamel matrix 

reaching normal thickness but failing to mineralise due to a defective maturation stage. 

The resulting enamel is soft, weak and discoloured. Hypomineralised AI can be 

divided into two categories: Hypomaturation, which is thought to result from a failure to 

remove the EMPs; mutations in human and mice KOs of genes encoding enamel 

matrix proteases MMP-20 and KLK4 were associated with hypomature phenotype 

(Caterina et al., 2002, Wright et al., 2009, Simmer et al., 2009, Yamakoshi et al., 2011, 

Hu et al., 2016, Núñez et al., 2016). The second hypomineralisation category is 

hypocalcified AI, which is where the mineralisation has failed, and is characterised by 
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a soft enamel (Hu et al., 2007). In both types of hypomineralised AI, enamel may be 

lost post eruption (Smith et al., 2017b). 

1.3.2.2 Genes known to underlie AI 
Usually, AI is considered as non-syndromic inherited enamel defects. Actually, AI is a 

spectrum of inheritied enamel pathologies ranging from the non-syndromic, where 

enamel only is affected, to syndromic cases, where non-dental tissues may be 

affected. AI is a heterogeneous group of conditions with at least 18 genes involved 

identified (Smith et al., 2017b). The patterns of inheritance vary with examples typical 

of autosomal dominant, autosomal recessive (Wright et al., 2015) and X-linked 

(Lagerstrom et al., 1991) inheritance patterns.  

Smith et al. (2017b) provided a comprehensive review of AI and associated mutations 

(Smith et al., 2017b). Genes associated with AI include for example those encoding 

EMPs, for instance AMELX (Lagerstrom et al., 1991), ENAM (Rajpar et al., 2001, 

Mardh et al., 2002) or AMBN (Poulter et al., 2014). Mutations in genes encoding 

enamel matrix proteases such as MMP20 and KLK4 were shown to cause AI (Kim et 

al., 2005, Hart et al., 2004). Genes involved in AI also encode proteins involved in cell-

cell and cell-matrix adhesion such as amelotin (Smith et al., 2016), and FAM83H (Kim 

et al., 2008);  proteins involved in transport such as WDR72 (El-Sayed et al., 2009) 

and SLC24A4 (Parry et al., 2013); proteins involved in pH sensing, e.g.GPR68 (Parry 

et al., 2016) and genes tentatively associated with hydroxyapatite nucleation, e.g. 

C4orf26 (Parry et al., 2012). Other genes expressed in ameloblasts, such as ACPT, 

were shown to be associated with AI upon mutation, yet the role of the encoded 

proteins in amelogenesis is unclear (Smith et al., 2017b). The mutations associated 

with AI cited in this Section are listed below in Table 2. There have been various point 

mutations, deletions or insertions - possibly causing frame shifts identified to date. 

Even silent mutations that affect the DNA but not the amino acid sequence of an 

encoded protein have been shown to be associated with AI, for instance the inclusion 

of exon 4 in the mature transcript (for the major amelogenin isoform) lead to 

hypoplastic and hypomineralised enamel (Cho et al., 2014). 

For some genes, specific mutations lead to syndromic conditions while other mutations 

in the same gene lead to enamel defects only, which blurs the boundaries between the 

non-syndromic and syndromic enamel defects. Genes involved in AI, such as ACPT, 

FAM20A and DLX3 are expressed in ameloblasts and in other tissues. In the case of 

autosomal recessive mutation of FAM20A, hypoplastic AI can be spotted as an early 

symptom of enamel renal syndrome (Jaureguiberry et al., 2012, Wang et al., 2013, de 

la Dure-Molla et al., 2014) and thereby provide a means of early diagnosis since renal 

problems only manifest later in life.  
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1.3.3 X-linked AI: Amelogenin mutations and AI 

Given that the focus of this thesis is around amelogenin and in particular the p.Y64H 

amelogenin mutation a detailed account of AI linked to amelogenin mutation is 

provided below.  

1.3.3.1 X-linked AI: Amelogenin mutations and AI 
The gene encoding amelogenin AMELX is located on the short arm of the X 

chromosome in the region p22.1-p22.3 (Lau et al., 1989). X-linked AI accounts for 5% 

of all AI cases. The phenotypes involve various degrees of hypoplasia and/or 

hypomaturation (Hart et al., 2002, Wright et al., 2003). Within a single family, affected 

heterozygous females showed a milder phenotype than males or homozygous 

females. In heterozygous females, the phenotype is characterised by alternatinging 

stripes of affected and normal enamel. This is caused by “Lyonisation” which is the 

process by which one of the two X chromosomes present in every female cell is 

randomly deactivated. This leads to the differentiation of cohorts of ameloblasts that 

are either expressing a copy of the defective amelogenin gene or an unaffected WT 

copy (Berkman and Singer, 1971). 

To date, over 16 mutations causing X-linked human AI have been reported. The 

known amelogenin mutations are detailed in Figure 12. Three single point mutations 

were found in the sequence encoding the signal peptide resulting in a lack of 

amelogenin secretion and hypoplastic AI. Eight mutations were found in the N-terminal 

and central domains. One deletion causes truncation of the amelogenin gene to 18 

amino acid codons (Lagerstrom et al., 1991, Lagerstrom-Fermer et al., 1993) and the 

resulting phenotype comprised hypomineralised enamel with various levels of 

hypoplasia. In another case, a mutation affected amelogenin mRNA splicing so that 

the major amelogenin mRNA transcript included exon 4 (exon 4 is normally spliced 

out). This mutation was associated with enamel hypomaturation and to a lesser extent 

enamel hypoplasia in affected patients and hypomineralised AI in a transgenic mouse 

model (Cho et al., 2014). 

Although genotyping has been an important tool in understanding the causes of AI, 

there is a need to better understand genotype-phenotype links. Clinical studies 

currently consist of recruiting AI patients, evaluating their medical, dental and family 

histories, and establishing their clincial enamel phenotype following examination by 

principal investigators (Hart et al., 2002). To date, the understanding of underlying 

mechanisms is poor (Wright et al., 2015) apart from genotype-phenotype correlations. 

Mutations in the signal peptide and toward the C terminus (green and blue portions in 

Figure 12B) are associated with hypoplastic AI while mutations in N-terminal and 
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central domains (yellow portion in Figure 12B) cause hypomaturation AI with variable 

hypoplasia (Hart et al., 2002, Smith et al., 2017b, Kim et al., 2017) studies focusing on 

the aetiological mechanism involved (e.g. the impact of a mutation on protein folding 

and assembly, protein to mineral binding, intra- and extra-cellular transit and matrix 

function) have been carried out (described overleaf in Section 1.3.3.2). They were 

intended to provide not only a better understanding of the normal function of the 

protein in question but also open the possibility of developing therapeutic interventions 

to overcome the deleterious effect of the mutation during enamel development. 
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1.3.3.2 Characterisation of the effects of amelogenin mutations in vitro: 
Effect of point mutation p.P70T  

Investigations are currently focusing on the effect of amelogenin mutations on protein 

assembly, protein-to-mineral binding, mineral nucleation, protein binding, and intra- 

and (mostly) extra-cellular processing in X-linked AI. Two point mutations causing AI in 

humans have been investigated by multiple in vitro studies: p.T51I (Lench and Winter, 

1995) and p.P70T (Collier et al., 1997). P.T51 and p.P70T are both located in the 

conserved N-terminal portion of amelogenin, part of the ‘A’ domain which reportedly 

drives amelogenin self-assembly (Paine and Snead, 1997). The following Section 

focuses on the p.P70T mutation, which affects a part of the ATMP domain (the 

importance of this domain is detailed in the Section 1.2.2.2.1 p. 22 and 1.2.5.2.2 pp. 

47 - 49); it is also the mutation for which in vivo studies have been carried out (mice 

carrying the pY64H mutation). In vitro, p.P70T mutation has been the focus of multiple 

studies aiming to understand the underlying mechanisms of AI. The techniques 

employed include Y2H, SPR, DLS, NMR, Hemaglut., western blotting or ELISA. The r-

amelogenin-amelogenin interactions and supramolecular assembly were significantly 

affected (Moradian-Oldak et al., 2000, Paine et al., 2002, Lakshminarayanan et al., 

2010). However, there does seem to be some confusion in the literature regarding the 

precise location of the p.P70T mutation and this is rectified below (Section 1.3.3.2.1). 
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1.3.3.2.1 Clarification of amelogenin mutation nomenclature with respect to the 
p.P70T mutation

The p.P70T mutation was originally described as a p.P41T mutation by Collier et al 

1997.The authors described the mutation relative to the amino acid sequences of 

rodent, pig and cow amelogenin. However, the human sequence is lacking Met29 so 

the actual mutation in the human sequence is more accurately described as p.P40T. 

P40 is highlighted in yellow in the sequence below corresponding the major 

amelogenin isoform lacking the signal sequence and exon 4 secreted form: 
1                                     40                            70 

MPLPPHPGHPGYINFSYEVLTPLKWYQSIRPPYPSYGYEPMGGWLHHQIIPVLSQQHPPTHTLQPHHHIP 

VVPAQQPVIPQQPMMPVPGQHSMTPIQHHQPNLPPPAQQPYQPQPVQPQPHQPMQPQPPVHPMQPLPPQP 

PLPPMFPMQPLPPMLPDLTLEAWPSTDKTKREEVD 

This nomenclature is confusing because the canonical form listed in the Uniprot data 

base , Q99217-1, includes the signal peptide but still lacks exon 4 

(The UniProt Consortium, 2017). It is based on the sequence derived from mRNA 

formed by the dominant splice product (Figure 7b, p.16), except that the exon 1 is not 

translated since it is part of the 5’-untranslated region. Using this canonical sequence 

the p.P40T mutation becomes the p.P56T mutation as shown below, with the signal 

peptide highlighted in green: 
1                                                     56            70 

MGTWILFACLLGAAFAMPLPPHPGHPGYINFSYEVLTPLKWYQSIRPPYPSYGYEPMGGWLHHQIIPVLS 

QQHPPTHTLQPHHHIPVVPAQQPVIPQQPMMPVPGQHSMTPIQHHQPNLPPPAQQPYQPQPVQPQPHQPM 

QPQPPVHPMQPLPPQPPLPPMFPMQPLPPMLPDLTLEAWPSTDKTKREEVD 

The problem with this canonical sequence is that it provides no means of describing 

any mutation present in exon 4.To get round this problem some authors describe 

mutations relative the amelogenin sequence derived from the collinear splicing of all 7 

exons that generates a mRNA transcript that includes exon 4. Using this sequence the 

p.P40T mutation becomes the p.P70T mutation as shown below with exon 4 

highlighted in blue: 
1                                                                   70 

MGTWILFACLLGAAFAMPLPPHPGHPGYINFSYENSHSQAINVDRTALVLTPLKWYQSIRPPYPSYGYEP 

MGGWLHHQIIPVLSQQHPPTHTLQPHHHIPVVPAQQPVIPQQPMMPVPGQHSMTPIQHHQPNLPPPAQQP 

YQPQPVQPQPHQPMQPQPPVHPMQPLPPQPPLPPMFPMQPLPPMLPDLTLEAWPSTDKTKREEVD 

This nomenclature has been used several times in the literature to describe this 

mutation as p.P70T, e.g. (Gibson et al., 2007, Zhu et al., 2011) and is the one used in 

Figure 12A (p. 58), which lists the amelogenin mutations causing AI in human.  
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The difference of nomenclatures has led to some confusion in the literature. For 

example Buchko and Shaw (2015) published a report using NMR to study the effects 

of the p.P70T mutation. They used site-directed mutagenesis against recombinant 

mouse amelogenin to convert Pro71 (analogous to human Pro70) to Thr71. However, 

they based the amino acid numbering on the sequence corresponding to the major 

amelogenin isoform lacking the signal sequence and exon 4 which resulted in the 

wrong proline residue (highlighted in red) being substituted as shown below:  
1                                     40                            70 

MPLPPHPGHPGYINFSYEVLTPLKWYQSIRPPYPSYGYEPMGGWLHHQIIPVLSQQHPPTHTLQPHHHIP 

VVPAQQPVIPQQPMMPVPGQHSMTPIQHHQPNLPPPAQQPYQPQPVQPQPHQPMQPQPPVHPMQPLPPQP 

PLPPMFPMQPLPPMLPDLTLEAWPSTDKTKREEVD 

The authors reported that their “p.P71T” mutation caused amelogenin self-association 

to occur at lower protein concentrations. However, this has no bearing on the aetiology 

of the true p.P70T mutation in humans since the actual mutation investigated was 

p.P100T as shown below:
1                                                                   70 

MGTWILFACLLGAAFAMPLPPHPGHPGYINFSYENSHSQAINVDRTALVLTPLKWYQSIRPPYPSYGYEP 

100 

MGGWLHHQIIPVLSQQHPPTHTLQPHHHIPVVPAQQPVIPQQPMMPVPGQHSMTPIQHHQPNLPPPAQQP 

YQPQPVQPQPHQPMQPQPPVHPMQPLPPQPPLPPMFPMQPLPPMLPDLTLEAWPSTDKTKREEVD 
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1.3.3.2.2 Amelogenin p.P70T mutation impairs amelogenin self-assembly and 
mineral binding 

P.P70T mutation has been widely studied in vitro using recombinant proteins. It was 

reported to affect the secondary structure of amelogenin (Lakshminarayanan et al., 

2010). A Y2H assay also showed that this point mutation affected amelogenin self-

assembly by reducing the strength of amelogenin-amelogenin binding by 25% (Paine 

et al., 2002); a consistent finding with SPR data obtained with r-amelogenins (Paine et 

al., 2002). 

Multiple studies analysed the effect of the p.P70T mutation on the formation of 

supramolecular amelogenin assemblies: NMR studies carried out in a buffer of 2% 

deuterated acetic acid (C2H3COO2H), 7% deuterated water (2H2O) and 91% water 

(H2O), at pH 3.0, found that amelogenin carrying the mutation self-assembled at lower 

concentration and ionic strength than the WT amelogenin (Buchko et al., 2013) 

suggesting an increased propensity to self-assemble. However, the data should be 

interpreted carefully since the NMR buffer did not correspond to physiological 

conditions. DLS and AFM studies using recombinant mouse (M180) or human (H174) 

amelogenins carrying a polyhistidine tag (His-tag) reported that amelogenin formed 

larger and more heterogeneous aggregates while carrying the p.P70T mutation 

(Moradian-Oldak et al., 2000, Zhu et al., 2011). Zhu et al (2011) also found that the 

p.P70T mutation increased the affinity of amelogenin for apatite and that it delays and 

constrains apatite crystal growth (Zhu et al., 2011). 

1.3.3.2.3 Amelogenin p.P70T mutation impairs interaction with other proteins 

As detailed previously in Section 1.2.5.2.2 (pp. 47 - 49), the ATMP domain may be 

critical in mediating amelogenin interaction with other proteins. Hemagglut. studies 

showed that the p.P70T mutation precluded ATMP binding to GlcNAc, GlcNAc-

mimicking peptides, cytokeratins 5 and 14 or ameloblastin (Ravindranath et al., 1999, 

Ravindranath et al., 2000, Ravindranath et al., 2001, Ravindranath et al., 2003, 

Ravindranath et al., 2004). Substrate competition assay, pull-down assays and SPR 

studies showed that the p.P70T mutation also precluded the interaction between 

amelogenin and MMP-20 (Tanimoto et al., 2008) , which may significantly hinder the 

cleavage of amelogenin by MMP-20 as previously reported (Li et al., 2001).  

Together, the studies cited above showed the consequence of the p.P70T mutation on 

amelogenin binding behaviour in vitro. Apart from Y2H studies, most of these studies 

used recombinant (His-tagged) amelogenins, they were carried out under conditions 

that did not reflect the environment in vivo. To validate these findings and elucidate the 

pathogenesis of AI, in vivo evidence is needed.  
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1.3.4 Pathogenic mechanisms driving AI 

A plethora of in vitro studies has been carried out ( described in Section 1.3.3.2, 

above) to understand mechanisms underlying AI but their relevance to the situation in 

vivo is never clear. As illustrated in Figure 13 below, combinations of in vitro, in cellulo 

and in vivo studies would be better suited for characterising the role of mutations (for 

example, single point mutations in amelogenin) on the pathogenic mechanisms driving 

AI. The molecular mechanisms involved in amelogenesis and its pathologies are a 

current priority in enamel research (Kirkham et al., 2017) as understanding these 

mechanisms would provide a breakthrough in understanding genotype-phenotype 

correlations and help develop diagnostic tools, therapeutic interventions as well as 

informing on better ongoing restorative patient care. 

In vitro studies and in silico prediction tools do not necessarily require ethical approval 

and are cost-effective compared with preclinical and clinical studies. They can provide 

information on protein structure and function and as such are important for gaining the 

rational understanding required to identify therapeutic targets and develop drugs 

against these targets. However, in vitro and in silico studies alone are unable to 

elucidate with complete confidence the details of EMPs’ functions and the effect of 

mutations on these proteins in vivo. Never the less, in vitro and in silico studies remain 

useful adjuncts to in cellulo and in vivo studies using animal models and are often 

used at the start of a research project to develop hypotheses and inform on 

downstream research strategies employing in cellulo and in vivo model systems. 

Compared to in vitro studies, in cellulo studies provide a broader picture of the 

biological and chemical mechanisms involved. They can be carried out in parallel with 

in vitro experiments to guide the design of in vitro experiments and to validate the 

results from the latter. Naturally, at some point the research pipeline must include in 

vivo studies focusing on the whole tissue, organ or the entire organism. Animal models 

are necessary for the initial characterisation of a pathological phenotype at all stages 

of amelogesis as human-derived material is limited to clinical observations of teeth in 

situ or analysis of exfoliated teeth. Animal models are also a means to validate in vitro 

or in cellulo data at the later stages of research and of course any pharmacological 

interventions developed must be trialled in a suitable enamel model prior to human 

trials. To study amelogenesis and AI, mice have been the most useful model as they 

have the particularity of having continuously growing incisors (Smith et al., 2017b). A 

good example of the above strategy is the detailed phenotypic analysis of mice 

phenocopying human AI together with in cellulo and in vitro experiments allowed the 

underlying aetiological mechanism to be identified; in this case the p.Y64H mutation in 

amelogenin was shown to lead to pathological ER stress in the ameloblasts and 
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ameloblast apoptosis. Moreover, elucidation of the aetiological mechanism involved 

allowed for a therapeutic intervention to be applied which effectively rescued the 

phenotype in affected heterozygous female mice (Brookes et al., 2014). This is 

discussed in more detail in the following pages. 

 

 

Figure 13 Combination of approaches to consider to study the effect(s) of a 
single point mutation on amelogenin assembly and function(s) and 
trafficking.  
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1.3.4.1 In vivo studies: the use of mouse models to study amelogenesis 
and AI 

Phenotyping of teeth from AI patients is potentially confounded by post-eruptive 

changes (e.g. mechanical damage and demineralisation) that might occur during the 

time the enamel has spent in the mouth. In extreme cases, there may be no enamel 

left that can be analysed as a prelude to developing testable hypotheses as to the 

aetiological factors driving that particular case of AI. Obtaining unerupted genotyped 

human embryonic teeth would be almost impossible and certainly ethically 

questionable and precludes the direct study of human amelogenesis. However, where 

enamel survives on exfoliated human AI teeth (especially if the tooth is unerupted e.g. 

an impacted 3rd molar) enamel composition and ultrastructure can provide a record of 

sorts as to what went wrong during amelogenesis, allowing hypotheses to be 

developed and subsequently tested using in vitro, in cellulo or in vivo animal models. 

Rodents, whose incisor enamel forms continuously, have proved to be an invaluable 

animal model in AI research as all stages of development are present on a single 

incisor as detailed below (Section 1.3.4.1.1). 

1.3.4.1.1 Rodent incisors as models for studying amelogenesis and aetiologies 
driving AI 

Rodent incisors have evolved to grow continuously in response to attrition at the biting 

edge of the tooth caused by gnawing on hard foods (Hu et al., 2014). In addition, 

rodents actively wear the incisal edges to keep them chisel-sharp during thegosis; a 

behavioural process which is distinct from mastication related to feeding (Byrd, 1997). 

Continuous tooth formation and growth originates from the labial cervical loop located 

at the apical end of the incisor. It comprises permanent reservoirs of stellate reticulum 

cells, providing a stem cell niche. These cells generate so-called “transit-amplifying 

cells”, whose progeny ultimately differentiate into ameloblasts. (Harada et al., 1999).  

Tooth development occurs in the apical-to-distal (or root to biting edge) direction, with 

the ‘newest’ dental tissue forming towards the apical end, and the most mature tissues 

at the distal end (illustrated in Figure 14). Thus, all steps of amelogenesis can be 

visualised simultaneously on a single incisor and at any time. This is not feasible in 

other models where teeth are not continuously growing (e.g. pig). In such cases, 

developing teeth have to be dissected from the jaws of several animals at different 

developmental stages to capture all stages of amelogenesis. 
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1.3.4.1.2 Use of mouse models in studying amelogenesis and AI – current state 
of the art 

The advantage of using mouse models in preclinical studies is that mice are relatively 

easy to modify genetically and various mutations can be introduced to investigate 

correlations between genotype and phenotype, understand protein function and the 

aetiological mechanisms driving AI. Mouse and human developing enamel proteomes 

are highly conserved and the cellular and extracellular event occurring during 

amelogenesis are very similar. The enamel produced in both species is essentially 

identical at the biochemical level though the structural organisation of rodent incisors is 

somewhat unique in that the prisms adopt a more obvious decussating arrangement. 

Mouse ‘null’ models or KO models are those where the expression of a specific gene 

has been abolished. Although the KO models cannot explain fully the exact details 

around phenomena such as protein-protein interactions and cellular (or extra-cellular) 

processing, they can show that the protein in question has a specific role to play in 

amelogenesis overall or more usefully in a specific facet of amelogenesis. 

Various murine KO models have been engineered that lack the expression of genes 

involved in amelogenesis and the resulting enamel (developing or mature) 

characterised. The KO models studied to date include KOs of amelogenin (Gibson et 

al., 2001), ameloblastin (Fukumoto et al., 2004), enamelin (Hu et al., 2008, Smith et 

al., 2009), MMP-20 and KLK4 (Caterina et al., 2002, Wright et al., 2009, Simmer et al., 

2009, Yamakoshi et al., 2011, Hu et al., 2016, Núñez et al., 2016), amelotin (Núñez et 

al., 2016), FAM83H (Wang et al., 2016), WDR72 (Katsura et al., 2014), SLC24A4 

(Stephan et al., 2012), GPR68 (Parry et al., 2016), FAM20A (Vogel et al., 2012) and 

DLX3 (Morasso et al., 1999). 

The relevance of KO mouse models in reflecting human AI has been discussed by 

Wright et al, (2009). Mice KOs models might be expected to accurately model human 

cases of AI where the human mutation effectively abrogates expression of the protein 

in question (e.g. a mutation that destroys a promoter region). However, rather than 

knocking out a protein completely, numerous cases of human AI involve more subtle 

changes to the protein in question e.g. deletion of part of a protein, amino acid 

substitutions, affected splicing recognition sites resulting in faulty splicing and the 

introduction of premature stop codons resulting the expression of a truncated protein. 

These mutations may cause a different AI phenotype to that obtained when the protein 

in question is simply knocked out. This is because a KO model is based on loss of 

function due to complete absence of protein whereas an abnormal protein that is 

expressed may provide a ‘gain of toxicity’ meaning that although the protein is present 

it may actually be frankly toxic in addition to any loss of function the mutation may 
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have caused. In short, mouse KO models can only tell us so much; to understand the 

aetiology specific cases of human AI there is a need for mice models carrying 

mutations that replicate the specific mutations that cause human AI.  

1.3.4.1.3 Mouse model carrying the p.Y64H mutation 

As briefly eluded to above, a recent mouse model was described that carried the 

substitution of Tyr64 into a histidine (p.Y64H) mutation in amelogenin. The mice 

phenocopied human X-linked AI (Barron et al., 2010) and although the p.Y64H 

mutation has not been identified in any cases of human AI to date, it lies very close to 

the p.P70T mutation known to be associated with human AI (Collier et al., 1997) with 

both mutations lying in the previously discussed ATMP domain. The mice exhibited 

severe defects of enamel bio-mineralisation, loss of ameloblast phenotype and 

disruption of the ordered ameloblast monolayer due to premature apoptosis of affected 

ameloblasts. Affected ameloblasts failed to secrete amelogenin into the extracellular 

matrix, instead, amelogenin accumulated intracellularly, disrupting the secretory 

organelles, rough ER and Golgi apparatus (Barron et al., 2010). The observed 

abnormal retention of p.Y64H mutant amelogenin (along with ameloblastin and 

potentially other matrix proteins) led to the identification of ER stress as a possible 

factor driving AI in this model. The ameloblasts eventually succumbed to apoptosis 

due to the ER stress activating the so-called UPR, which had tipped towards pro-

apoptotic mode (the UPR is mentioned in Section 1.2.5.1, p.42 and UPR fate is 

discussed in greater details in Section 1.3.4.2, pp. 75 - 79). A concomitant increase of 

UPR markers was shown in the ameloblasts expressing mutant amelogenin (Brookes 

et al., 2014). The same group demonstrated that 4-phenylbutyrate, a histone 

deacetylase inhibitor and so-called chemical chaperone, could rescue the phenotype 

in heterozygous female mice, as ameloblast cell viability was maintained (apoptosis 

was dramatically decreased) and the mineralisation of the enamel was restored 

(Brookes et al., 2014).  

The precise molecular mechanisms leading to abnormal retention in the secretory 

pathway, ER stress and UPR-triggered apoptosis and pharmacological rescue of the 

phenotype in these mice remain to be unravelled. The UPR in theory attempts to 

relieve the ER stress in the first instance, but upon prolonged ER stress, such as the 

abnormal retention of p.Y64H mutant amelogenin, the UPR triggers ameloblast 

apoptosis which here would disrupt the ameloblast monolayer and compromise 

amelogenesis. The hypothesis, as it applies to female mice heterozygous for the 

mutation, in which only ~50% of the ameloblasts are affected (due to random 

inactivation of the X chromosome – Section 1.3.3.1 p. 56) is illustrated in Figure 15 

(pp. 72 - 73). This figure also shows the hypothesised means by which intervention 
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with 4-phenylbutyrate rescues the phenotype; the drug inhibits apoptosis so the 

ameloblast monolyayer is maintained and even though half the ameloblasts 

expressing the p.Y64H mutant fail to secrete protein, the remainder expressing the WT 

amelogenin gene are able to complete amelogenesis as normal. The next Section 

(1.3.4.2, pp. 74 - 79) describes the UPR signalling cascades in more detail, and 

addresses the molecular basis of how the UPR switches from pro-survival to pro-

apoptotic mode. 
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1.3.4.2 ER stress, the UPR and proteopathic diseases  
As detailed previously (Section 1.2.5.1), proteins destined for secretion fold in the ER 

and attain their correct functional 3-dimensional conformation. This is important since 

misfolded proteins may be trapped in a conformation that could be inactive and/or 

promote pathological intracellular aggregation which may be more toxic to the cell than 

the simple loss of function of the protein. When neither ERAD or ERAF (described in 

Section 1.2.5.1) comprising the first-line defence mechanism against misfolded 

proteins is sufficient to alleviate ER stress, the UPR sensors PERK, IRE1α and ATF6 

are triggered (detailed in Section 1.3.4.2.1). The UPR is activated and supports the 

cell as it attempts to handle its secretory burden by triggering the expression of 

downstream pro-survival genes. However, the UPR is not only triggered when mutated 

proteins are being trafficked. WT proteins can also misfold and in specialised secretory 

cells, where the secretory traffic is heavy even under normal conditions, e.g. insulin 

producing pancreatic cells (Lipson et al., 2006) and WT secretory ameloblasts (Wu 

and Kaufman, 2006, Tsuchiya et al., 2008), the UPR is activated as a normal 

physiological response to a particularly heavy period of secretory activity. 

During the initial response, the UPR attempts to alleviate ER stress caused by 

misfolded proteins by increasing the ER folding or degradation capacity of the cell, 

reducing the rate of global gene expression to reduce the number of client proteins 

entering the ER and by increasing the actual amount of ER in the cell (Lin et al., 2007). 

As mutated proteins may show greater propensity to misfold and aggregate, this may 

cause abnormally lasting ER stress which cannot be alleviated. In such cases the UPR 

switches from a pro-survival mode to pro-apoptotic mode (Ron and Walter, 2007, 

Hetz, 2012). This switch underpins the so-called proteopathies or conformational 

diseases; including some cancers, neurodegenerative diseases (Lindholm et al., 

2006), diabetes (Scheuner and Kaufman, 2008) and cystic fibrosis (Younger et al., 

2006) and now, AI (Brookes et al., 2014).  

The following Section (i) describes the three UPR pathways in more detail (Section 

1.3.4.2.1), (ii) addresses the balance between pro-survival and pro-apoptotic 

outcomes of the UPR (1.3.4.2.2) and (iii) addresses the consideration of UPR in 

dental pathologies (Section 1.3.4.2.3) 
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1.3.4.2.1 Activation of the UPR and signalling cascades and UPR fates 

The UPR comprises three signalling cascades (Figure 16) which are initiated upon the 

activation of a sensor protein: PERK, IRE1α and ATF6. At rest the three sensors are 

maintained in their inactive state by the bound ER chaperone BiP. BiP preferentially 

binds to misfolded proteins, so when misfolded proteins are in excess, BiP unbinds 

from the sensor, which then becomes activated (Bertolotti et al., 2000, Shen et al., 

2002) triggering downstream signalling cascades. 

 ATF6 pathway (Figure 16A)
ATF6 is a transmembrane protein (Haze et al., 1999) that is inactive when bound to 

BiP under quiescent conditions. It is activated upon release of BiP, after which ATF6 is 

transported to the Golgi by vesicles (Shen et al., 2002) where it is cleaved by 

proteases SP1 and SP2 (Ye et al., 2000). Its cytosolic domain (pATF6 N), which 

contains a basic leucine zipper, reaches the nucleus where it binds directly and 

specifically to DNA target sequences (Yoshida et al., 1998, Yoshida et al., 2000). 

which results in the transcription of chaperones BiP, GRP94, ERp57, calreticulin and 

components involved in the ERAD pathway (Adachi et al., 2008). 

 IRE1 pathway (Figure 16B)
IRE1 was the first known UPR sensor (initially identified in yeast) and is also the most 

highly conserved (Cox et al., 1993). The IRE1 pathway is activated on release of 

bound BiP under conditions of ER stress but can also be independently activated by 

direct binding of unfolded proteins to IRE1 (Credle et al., 2005, Gardner and Walter, 

2011). Activation of IRE1 starts with IRE1 autophosphorylation and oligomerisation 

(Shamu and Walter, 1996, Bertolotti et al., 2000, Ron and Walter, 2007). This 

activates the RNase domain of IRE1α (Hetz and Glimcher, 2009), which is in the 

cytosolic portion of IRE1 and catalyses in the unconventional splicing of X-box binding 

protein 1 (XBP1) mRNA. This splicing, produces a mRNA that will be further translated 

into the spliced isoform XBP1 (pXBP1s) (Gonzalez et al., 1999, Uemura et al., 2009). 

pXBP1s is itself a transcription factor (Yoshida et al., 2001) that upregulates genes 

involved in ERAD, chaperone synthesis, and expression of components necessary for 

lipid biosynthesis (necessary for increasing ER membrane biogenesis). In addition, 

activated IRE1α independently triggers activation of the transcription factors JNK or 

TRAF/JNK which lead to cell death (Yoshida, 2007) or cell rescue (Ogata et al., 2006) 

depending on the precise flux and nature of the UPR signalling occurring. 
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 PERK pathway (Figure 16C)
The PERK pathway also involves the release of bound BiP (Bertolotti et al., 2000), 

with resulting dimerisation and transphosphorylation (Liu et al., 2000). Once activated, 

PERK phosphorylates and represses eIF2α, a translation initiation factor, which 

causes an overall reduction in protein translation, in an attempt to alleviate the ER 

stress (Scheuner et al., 2001). When eIF2 is repressed, ATF4 is preferentially 

translated and regulates expression of proteins involved in metabolism and oxidative 

stress resistance, protein folding, and autophagy (Wek et al., 2006). ATF4 also 

activates transcription of C/EBP homologous protein (CHOP, also named GADD153) 

which contributes to cascades leading towards cell death (Wek et al., 2006, Brewer, 

2014). Other than eIF2 repression cascade, PERK induces NrF2 (Cullinan et al., 

2003), a transcription factor that promotes the synthesis of cytoprotective components 

(Kensler et al., 2007). 

A more detailed analysis of the 3 signalling arms is beyond the scope of this review. 

Suffice to say that the precise scope and nature of the signalling involved, especially 

with regard to cross talk between the 3 arms, is still under investigation. The essential 

point is that integration of the signals emerging from the 3 arms dictates whether the 

UPR remains in pro-survival mode or switches to pro-apoptotic mode; i.e. the “match 

point” decision.  
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1.3.4.2.2 UPR fates: “Match-point” decisions 

The UPR is an adaptive mechanism that attempts to alleviate ER stress but it can be 

thought of as a double-edged sword as it switches to pro-apoptotic mode upon 

prolonged stress. The duration and intensity of stress that trigger the pro-apoptotic 

mode depend on the specific context of cellular stress. The cross-talk and integrated 

signals originating from the three sensor-led arms of the UPR (Illustrated in Figure 17) 

is a key element determining the UPR fate (Tabas and Ron, 2011, Chen and 

Brandizzi, 2013). 

Figure 17 Cross-talk of the integrated signals driven by the 3 arms of the UPR.1 

PERK and IRE1α pathways are known to be either pro-survival or pro-death, and their 

prolonged activation reportedly converge towards an apoptotic endpoint (Hetz and 

Glimcher, 2009, Tabas and Ron, 2011). Current studies focus on signal integration 

(Hetz and Glimcher, 2009, Brewer, 2014). How the components are regulated, and 

how crosstalk and kinetics are synchronised, is still a matter of debate though fine-

tuning of IRE1 and prolonged PERK signalling are known to play an central role 

(reviewed by Hetz and Glimcher, 2009).  

1 Figure 17 is reproduced from Brookes et al. (2017) under the terms of the Creative 
Commons license CC BY (https://creativecommons.org/licenses/by/4.0/). 
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The molecular mechanisms driving UPR fate (pro-survival or pro-apoptotic modes) are 

currently topic of interest, as increasing numbers of publications report UPR as a 

pivotal driver of many human diseases (Wang and Kaufman, 2016). 

1.3.4.3 Amelogenin p.Y64H mutation: consequences of single amino acid 
change on amelogenin binding behaviour and intracellular 
trafficking 

The precise molecular mechanisms leading to abnormal retention of p.Y64H 

amelogenin, in the secretory of pathway of mouse ameloblasts, remains to be 

unravelled. For that, two questions are to consider: 

(1) At the amino acid level, how can a single substitution of a tyrosine into a histidine 

possibly alter amelogenin biochemical properties? The properties of both amino acids 

will be detailed in Section 1.3.4.3.1, to propose avenues for consideration. 

(2) When p.Y64H amelogenin was co-transfected with WT ameloblastin in COS-7 

cells, the apoptosis was increased (Brookes et al., 2014). Are there any other factors 

than solely amelogenin aggregation to consider, to explain its abnormal retention in 

the ER? Section 1.3.4.3.2 proposes avenues for consideration. 

1.3.4.3.1 Tyrosine and Histidine chemical properties 

At the local (amino acid) level, how can the substitution of Tyr64 into a histidine cause 

such change of amelogenin binding behaviour? At this stage of research, it would be 

difficult to predict the effect of a single amino acid substitution on amelogenin structure 

and function, as amelogenin tertiary structure has not been elucidated (see Section 

1.2.1.3.3, p. 20). This Section reminds briefly the biochemical properties of both amino 

acids (shown in Figure 18 overleaf).  
 Tyrosine (Figure 18A)

Tyrosine is a hydrophobic amino acid. With its aromatic ring, it mediates stacking 

interactions with other aromatic amino acids. In proteins, it is preferentially buried in 

protein hydrophobic cores and tyrosine can be substituted by another aromatic amino 

acid (Betts and Russell, 2003). It comprises a reactive hydroxyl group that confers its 

polarity and allows hydrogen bonding (Baker and Hubbard, 1984). It allows interaction 

with non-carbon atoms and provides with a site for phosphorylation, important in the 

cellular signal transduction (Hunter, 2014).  

 Histidine (Figure 18B)
Histidine comprises an imidazole ring. It is ionisable and can carry a positive charge. 

The imidazole ring’s tertiary amine comprises a lone pair of electrons that make it a 

nucleophile and hydrogen bond acceptor and confers its basic properties, while its 
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secondary amine is an electrophile. This confers histidine/imidazole its chemical 

versatility and adds complexity to the type of interactions it can engage into: It can be 

involved in π – π stacking, however there is a charge involved; It can also form (cation 

– π) interactions, which can be attractive or repulsive depending on histidine

protonation state (Liao et al., 2013); (hydrogen – π) bonds and can coordinate with 

metals (Liao et al., 2013). With its ability to accept or donate protons, histidine is often 

found in enzyme catalytic triads as a nucleophile activator (Betts and Russell, 2003). It 

can also coordinate with metal cations, hence its presence in metalloproteins (Strange 

et al., 1987). With a pKa close to 7, it is present as both protonated (charged) and 

unprotonated (uncharged) at physiological pH; therefore in proteins, it is not clear 

whether it will be exposed to the surface or buried in the hydrophobic core. Due to 

these complex and unique properties, histidine cannot easily substitute to any other 

amino acid.  
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Figure 18 Tyrosine and Histidine: structures and chemical properties. 

 
So, the properties of tyrosine and histidine differ in that:  

- Tyrosine is more likely buried in hydrophobic core and can be involved in π - π 

stacking interactions. Such properties are not that obvious for histidine since histidine 

can be protonated.  

- It is not always clear when histidine will be buried in the hydrophobic core or be 

exposed at the surface. It may thereby be hypothesised that the single substitution 

p.Y64H could expose to the solution a domain of amelogenin which possibly should be 

buried. 

Another point to consider is the location of the point mutation. It occurs in the ATMP 

domain, which, as Wald et al (2017) suggested, might be critical in driving amelogenin 

binding behaviour (see Section 1.2.2.2.1, p.22, for detailed explanation). 
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These hypotheses cannot be yet confirmed, as the amelogenin 3-dimensional 

structure has not been solved (Section 1.2.1.3.3, p.20). Instead, it is more realistic to 

consider studying amelogenin binding behaviour, and how this is affected by the 

p.Y64H mutation. This is indeed among the aims of this thesis.

Amelogenin binding behaviour is assumingly affected by the p.Y64H mutation, but to 

which extent, and how this causes its abnormal retention in the ER and subsequent 

UPR remains to study. The mutation may not only affect amelogenin self-assembly, 

but also affect amelogenin interaction with other proteins during its intracellular transit, 

as explained below in Section 1.3.4.3.2. 

1.3.4.3.2 Co-transfection of p.Y46H mutant amelogenin with WT ameloblastin in 
COS-7 cells increased apoptosis  

In cellulo, ER stress was observed in cells co-transfected with p.Y64H amelogenin and 

WT ameloblastin, but not with amelogenin p.Y64H alone (Brookes et al., 2014). The 

ameloblastin may be overexpressed in this case compared with its expression in 

ameloblasts in vivo, which may have increased further the protein load in the ER. It 

provides a hint to consider, though, that the p.Y64H mutation in amelogenin may 

cause ER stress by affecting amelogenin binding beviour with itself and/or with other 

proteins. Amelogenin self-assembles and may interact with other proteins including ER 

components and ameloblastin, as reviewed in Section 1.2.5.2.1 (pp. 45 – 47). The 

p.Y64H mutation impairing amelogenin binding behaviour may thereby impair the 

balance of protein-protein interactions necessary for amelogenin trafficking and 

secretion. The situation is illustrated below in Figure 19 below.  
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Figure 19 Amelogenin p.Y64H mutation affects amelogenin binding behaviour 
and therefore may perturb the balance of protein-protein interactions 
involving amelogenin: hypothesis. 

 

Bearing in mind that p.Y64H mutation may affect the balance of amelogenin 

interactions with itself or other potential binding partners during its intracellular transit, 

the first step should be to analyse how p.Y64H mutation affects amelogenin self-

assembly. To this end, large amounts of WT and p.Y64H mutant r-amelogenins were 

needed. The next Section reviews the challenges met with production and purification 

of amelogenins (native and recombinants). 
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1.3.5 Need for relevant expression and purification system for 
future amelogenin protein-binding assays 

To gain better insight of molecular mechanisms driving AI and to identify therapeutic 

targets, in vitro studies are a necessary initial step prior to in cellulo and in vivo 

studies. This thesis focuses on the possible pathogenesis mechanism(s) of p.Y64H-

associated AI in a mouse model which phenocopies human AI. In vitro functional 

studies designed to characterise intracellular amelogenin-amelogenin interactions 

would first require a reliable and plentiful source of purified wild type and p.Y64H 

amelogenins. Purifying native proteins from developing enamel is challenging when 

using teeth from large animals, such as the pig but the amounts of secretory stage 

enamel protein obtained from existing mice models expressing p.Y64H amelogenin 

would simply be too small to be of any use in protein binding studies. The cost of 

genetically modifying a large animal such as a pig to express p.Y64H amelogenin and 

the associated animal husbandry costs would be prohibitive. In addition, since p.Y64H 

amelogenin is not secreted and does not accumulate in the enamel matrix, the only 

biological source of p.Y64H amelogenin would be from the affected ameloblast 

monolayer which would still only return minuscule amounts of amelogenin.  

The only viable source of mutated amelogenin (or for that matter WT rodent 

amelogenin) is therefore via recombinant technology. 

Recombinant proteins are widely used as therapeutic agents and as tools to study 

structure-function relationships, protein interactions with other molecules and as 

antigens for antibody production. E. coli based expression systems are the most 

widely used methodology for producing r-amelogenin even though post translational 

phosphorylation of Ser16 will be absent. Baculo virus (Taylor et al., 2006, Xu et al., 

2006) and Leishmania (Yadegari et al., 2015) expression systems, having the potential 

to carry out post translational phosphorylation, have been used to produce r-

amelogenin but as yet do not appear to have been widely adopted, perhaps due to 

uncertainty as to whether the amelogenin was phosphorylated or low yield. In contrast, 

a yeast-based expression system has been reported to generate correctly 

phosphorylated r-amelogenin (Cheng et al., 2012) but again has not been widely used. 

Efforts have been made previously to purify r-amelogenin. One of the most frequently 

used purification methods, published for rM179 starts with cell lysis under denaturing 

conditions (6 M guanidine hydrochloride), centrifugation, precipitation with ammonium 

sulphate, and preparative C4 reverse phase column chromatography in 0.1% trifluoric 

acid/acetonitrile (Simmer et al., 1994). This method has been widely used for in vitro 

studies e.g. characterising amelogenin assembly into nanospheres (Moradian-Oldak et 
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al., 1994) but does not provide amelogenin at single band purity. Moradian-Oldak et al 

(1994) noted recombinant mouse amelogenins were co-chromatographed with 

contaminating E. coli proteins. Nickel-nitrilotriacetic acid (Ni-NTA) metal-affinity 

chromatography was also used to purify His-tagged r-amelogenins for functional 

studies (Moradian-Oldak et al., 2000).  
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1.3.6 Protein-protein interactions and existing analytical techniques 

As detailed in Section 1.2, the developing enamel matrix is comprised of several gene 

products whose function appears to be associated with protein-protein interactions – 

the presence of amelogenin nanospheres is the prime example of this.  Understanding 

these protein interactions is key to understanding normal amelogenesis as well as the 

aetiology of AIs driven by perturbed protein interactions. One aim of this thesis was to 

develop a simple method for studying protein interactions that also provided a high 

throughput with a view to developing a screening tool that might be used in the future 

to assess the impact of drugs on pathological enamel protein-protein interactions. The 

method ought to mimic the in vivo environment as necessary to properly characterise 

protein-protein interactions. 

1.3.6.1 Mathematical description of protein-protein interactions  
Protein recognition and binding is driven by hydrophobic bonding (Young et al., 1994), 

van der Waals forces (Roth et al., 1996), electrostatic bonds (Sheinerman et al., 

2000), hydrogen bonds (Jiang and Lai, 2002) or covalent bonds. Whether these 

interactions can occur depends on the conformations and the accessible surface area 

of the proteins involved (Jones and Thornton, 1996). These ‘intrinsic’ factors 

themselves also depend on the environment in which the protein-protein interactions 

occur such as pH, ionic strength, nature of the solvent, temperature or redox 

conditions. 

Protein-protein interactions are kinetic phenomena that can be described 

mathematically. The protein binding partners associate at a rate ka and dissociate at a 

rate kd as illustrated below in Figure 20. The ratio (ka/kd) corresponds to the binding 

affinity KA, and the inverse measure is the dissociation constant KD (= kd/ka). These 

parameters can be measured experimentally and provide a tool to compare the 

binding behaviours of mouse WT and mutant p.Y64H r-amelogenins. 
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Figure 20 Protein-protein interactions as an equilibrium. In the case of a first 
order reaction (simplified) the two binding partners associate at rate ka and 
dissociate at rate kd. The affinity or dissociation constants can be 
measured at equilibrium, where ka.[A].[B] = kd. [AB]. 

To obtain kinetics parameters that are as reliable as possible, the experimental 

conditions should be set up so as to reflect in vivo environment as accurately as 

possible. There exists a plethora of protein-protein interaction studies in vivo/in cellulo 

and in vitro. The most popular methods are addressed below in Sections 1.3.6.2 – 

1.3.6.4 (with further detail on their principles, pros and cons, provided in Appendix E), 

where the principles of the techniques are described in more detail).  

1.3.6.2 Protein-protein interaction assays in cellulo or in vivo 
To date, various in vivo or in cellulo protein-protein interaction studies have been 

carried out; Y2H assay (Fields and Song, 1989) protein fragment complementation 

assay (PCA) (Johnsson and Varshavsky, 1994, Hu et al., 2002, Galarneau et al., 

2002), fluorescence/bioluminescence resonance energy transfer (FRET/BRET) 

(Stryer, 1978, Xu et al., 1999) and cross-linking (Wong, 1991). Other techniques 

including immunofluorescence microscopy, which previously identified amelogenin 

binding partners (see Section 1.2.5.2, pp. 45 - 46) are not detailed here. 

The Y2H assay is commonly used, allowing high-throughput screening for protein-

protein interactions, and has contributed to the creation of maps of interaction 

networks (Ito et al., 2001). It has been used to characterise binding partners and 

domains for amelogenin (Paine and Snead, 1997). The protein-protein interactions 

associated with the Y2H system occur in the yeast nucleus, which may not reflect the 

natural environment in which the protein-protein interactions actually occur (Piehler, 

2005). The PCA assays, whose principle is similar to that of Y2H, in that the two 

proteins of interest, the bait and prey, are each attached to two separate fragments of 

a reporter protein that are brought together only when the two proteins of interest 

interact and then able to generate reported signal. The interaction between the ‘bait’ 

and ‘prey’ proteins can occur anywhere in the cell (Johnsson and Varshavsky, 1994). 
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Other techniques, FRET and BRET, where fluorophores or bioluminescent labels are 

attached to the proteins of interest, allow direct and real-time detection of protein-

protein interactions in cells. The signal is generated actually by the close proximity of 

the proteins of interest.  

While these techniques provide in vivo data and identify protein-protein interactions in 

real-time, they can be technically demanding and involve protein-labelling or protein 

fusion, which per se may affect the actual interactions of interest.  

Chemical cross-linking studies allow the direct study of protein-protein interactions 

without any tag or label. It has been used to analyse amelogenin self-assembly in the 

enamel matrix (Brookes et al., 2000) and in the ameloblast (Brookes et al., 2006). 

Crosslinking captures protein-protein-interactions and freezes them in time allowing for 

crosslinked complexes to be identified but precludes the generation of kinetic data. To 

date, label-free techniques that characterise the kinetic parameters of protein-protein 

binding are mostly available in vitro. They are addressed in the next Section. 

1.3.6.3 Protein-protein interaction assays in vitro 
A plethora of in vitro methods exist to characterise protein-protein interactions. Among 

popular methods, SPR, ITC, or QCM allow direct measurements in real-time of protein 

binding, generating kinetics parameters such as kd, ka , or affinity/dissociation 

constants KA, KD. 

SPR allows the detection of real-time kinetics of protein binding with a versatile assay 

format. QCM (Marx, 2003) can analyse protein adsorption and antibody-antigen 

recognition with similar sensitivity as SPR (Köβlinger et al., 1995) and both methods 

have been used in parallel in protein-protein interaction reports (Köβlinger et al., 

1995). With both SPR and QCM one binding partner is immobilised while the other 

binding partner is solubilised and binds the immobilised partner from solution. This is a 

difficulty to consider while studying the binding behaviour of amelogenin which exhibits 

poor solubility and aggregates at physiological pH and temperature (Tan et al., 1998). 

Unlike SPR or QCM, ITC avoids immobilisation of either binding partner on a surface 

as interactions are studied in solution (Brown, 2009). In studying amelogenin binding 

behaviour, ITC indicated that amelogenin self-assembly, using rP172, is driven by 

hydrophobic interactions and the formation of a hydrophobic core with water removal 

(Lakshminarayanan et al., 2009). 

AFM and DLS have been widely used to study amelogenin interactions and 

assemblies (see Sections 1.2.2.2.4 p. 24 and 1.3.3.2.2, p. 63). AFM can be used to 

visualise the structure of protein complexes (e.g. to visualise selective adsorption of 

amelogenin nanospheres onto specific faces of enamel crystals (Wallwork et al., 2001) 

and to directly measure the forces involved in the protein-protein interactions (e.g. 
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interactions between amelogenin and cell surface receptors (Kirkham et al., 2006) and 

also to analyse protein folding (Fisher et al., 1999, Yang et al., 2003). DLS can provide 

high-throughput data, and possibly quantitative analyses of reaction stoichiometry 

including equilibrium dissociation constants of protein-protein interactions occurring in 

solution (Hanlon et al., 2010). It has been used to characterise amelogenin self-

assembly, as reviewed in Section 1.2.2.2.4 (pp. 24 - 25). 

While most of these techniques can generate binding data such as association or 

dissociation constants or binding strength; they require large amounts of proteins and 

specialised and costly equipment. As discussed in the next section, microplate-based 

binding assays in contrast require no specialised equipment, are simple to carry out 

and are low cost.  

In order to compare protein-protein binding behaviours of r-amelogenin WT and 

p.Y64H mutant, pilot tests were carried out to determine optimum working conditions.

They used EMD as surrogate protein model since EMD is available in large quantities,

unlike mouse WT and mutant p.Y64H r-amelogenins.

1.3.6.4 Use of  microplate-based solid-phase protein-binding assays to 
study the effect of the p.Y64H mutation on amelogenin self-
interactions 

In this thesis, microplate binding assays were chosen because they are cost-effective, 

flexible and easily carried out in house with standard laboratory equipment which 

facilitates method development.  

A high-throughput solid-phase microplate protein binding assay, derived from ELISA 

methodology, was developed, allowing the characterisation of the interactions between 

two different proteins, one of which was non-covalently immobilised on the microwells 

of a microplate, while the other was soluble in solution and able to bind the 

immobilised protein (Biesiadecki and Jin, 2011). After washing steps, Biesiadecki and 

Jin (2011) measured the amount of soluble protein bound to its immobilised partner by 

probing with a specific antibody to the soluble binding partner in conjunction with a 

chromogenic detection step – as used in standard ELISA assays. This method proved 

to be cost and labour- effective, providing for flexible conditions and allowing the study 

of both protein association and disassociation kinetics. However, the aim in this thesis 

was to characterise the interaction between two identical proteins – the interaction 

between r-amelogenin molecules. In this case an antibody detection system would be 

of no use since the antibody would not be able to distinguish between the immobilised 

r-amelogenin and r-amelogenin bound to the immobilised r-amelogenin.

To get round this problem it was initially decided to measure directly the amount of

fluorescently-labelled free amelogenin bound to non-labelled immobilised amelogenin.



Aims and Objectives 
This thesis aims at obtaining purified WT and mutant p.Y64H r-amelogenins for in vitro 

binding assays with the aim of investigating whether the p.Y64H point mutation has an 

effect on amelogenin binding behaviour. Such studies would test the hypothesis that the 

p.Y64H point mutation causes amelogenesis imperfecta via ER stress triggered by

inappropriate aggregation in the secretory pathway.

Aim 1: Production and purification of r-amelogenins 
As addressed in Section 1.3.5, the purification of r-amelogenin has often proved 

challenging using classic chromatographic methods, as amelogenin co-eluted with  

contaminating host cell proteins (even when His-tagged recombinants were subjected to 

nickel column chromatography; the gold standard method for purifying recombinant 

proteins). Contaminating proteins could be problematic for use in downstream in vitro 

studies due to the unpredictable way in which they might modify r-amelogenin interactions. 

Recently, an extraction method based on amelogenin preferential solubility in acetic acid 

allowed a significant enrichment of r-amelogenin from E. coli which could be potentially 

useful in purifying r-amelogenin from bacterial host proteins.  

Specifically the objectives were to: 

1) Optimise the acetic acid extraction method to enrich mouse r-amelogenins in large

quantities.

2) Evaluate the use of the acetic acid extraction method as an initial clean-up step for

His-tagged r-amelogenins and optimise a range secondary purification

technologies:  nickel column chromatography based purification, size exclusion

chromatography and preparative SDS PAGE.

The importance of obtaining r-amelogenins at maximum purity (e.g. single band on 

analytical SDS PAGE with silver staining) is that it avoids any interference due to 

contaminants in functional studies. This is a major consideration for studying the effect of 

the p.Y64H single point mutation. 
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Aim 2: Studying the effect of the p.Y64H mutation 
As addressed in Section 1.3.4, the p.Y64H mutation in mouse amelogenin was associated 

with abnormal retention of amelogenin in the ameloblast secretory pathway, causing ER 

stress and subsequent pro-apoptotic UPR. Further understanding of the underlying 

mechanisms is required to identify therapeutic targets. A first route of investigation to 

consider is the effect of the p.Y64H mutation on amelogenin self-assembly and binding 

behaviour.  

Amelogenin protein-protein interactions have been investigated in multiple studies, as 

described in Sections 1.2.2.2 and 1.3.3.2. With the methods available to analyse protein-

protein interactions (see Section 1.3.6), binding assays remain technically challenging due 

to WT amelogenin’s intrinsic propensity to aggregate. 

This thesis aims at developing a cost-effective and simple method for studying protein-

protein interactions with a view to compare the binding behaviours of WT and p.Y64H 

mutant r-amelogenins in vitro and develop a screening tool for future drug design 

methodologies.  

Specifically the objectives were to: 

1) Develop a simple, high throughput and cost-effective microplate-based binding

assay, which is flexible enough to use solute conditions similar to those in vivo in

order to confidently compare with the binding behaviours of WT and mutant

p.Y64H r-amelogenins.

2) Attempt to address the question related to AI research, which is whether the

p.Y64H mutation affects amelogenin binding behaviour.

The importance of such methodologies is to define working in vitro conditions that reflect 

physiological environment so as to analyse, as accurately as possible, the effect of 

amelogenin p.Y64H mutation. 
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Chapter 2 Materials and Methods 

2.1 Production and purification of r-amelogenins 

2.1.1 General methods 

2.1.1.1 Expression of recombinant WT and mutant p.Y64H amelogenin in 
E. coli

Recombinant His-tagged amelogenins either WT (WT+His) or carrying the p.Y64H 

mutation (Mut+His), were expressed by E. coli Rosetta DE3 competent cells previously 

transfected with vector pET28/Amelx-WT+His or Amelx-MutY64H+His. The plasmid 

production and transfection were performed by a commercial company (Novagen, 

Merck Chemicals Ltd) (Barron et al., 2010, Gabe et al., 2017). Vector pET28 carried 

the T7 promoter, WT His-tagged amelogenin gene (Amelx-WT+His) or mutant His-

tagged amelogenin gene (Amelx-Mut+His), and chloramphenicol and kanamycin 

antibiotic resistance genes to allow for the selective growth of transfected cells. The 

predicted amino acid sequences of the r-amelogenins are shown below in Table 3 (the 

His-tag cleavage site is underlined and the actual peptide bond cleaved is indicated by 

a “#” character). 

Table 3  Primary sequences or r-amelogenins WT+His and Mut+His. The cleavage 
site is underlined and indicated by a “#” character. The position of p.Y64H 
point mutation is indicated in red.  

r-amelogenin Primary sequence 

WT+His 

MGSSHHHHHHSSGLVPRGSHMASMTGGQQMGRGSL
EVLFQ#GPGSMPLPPHPGSPGYINLSYEVLTPLKWYQS
MIRQPYPSYGYEPMGGWLHHQIIPVLSQQHPPSHTLQP
HHHLPVVPAQQPVAPQQPMMPVPGHHSMTPTQHHQP
NIPPSAQQPFQQPFQPQAIPPQSHQPMQPQSPLHPMQ
PLAPQPPLPPLFSMQPLSPILPELPLEAWPATDKTKREE
VD 

Mut+His 

MGSSHHHHHHSSGLVPRGSHMASMTGGQQMGRGSL
EVLFQ#GPGSMPLPPHPGSPGYINLSYEVLTPLKWYQS
MIRQPHPSYGYEPMGGWLHHQIIPVLSQQHPPSHTLQP
HHHLPVVPAQQPVAPQQPMMPVPGHHSMTPTQHHQP
NIPPSAQQPFQQPFQPQAIPPQSHQPMQPQSPLHPMQ
PLAPQPPLPPLFSMQPLSPILPELPLEAWPATDKTKREE
VD 
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The E. coli cells were stored on beads at -80 °C until required. Their growth was 

initiated on the first day of culture by spreading cells on selective medium agar plates 

and incubating them overnight at 37 °C under conditions of 5% CO2. The agar medium 

was made up of 20 g/L LB Lennox Broth (alfa Aesar H26760, Johnson Matthey Co., 

Heysham, UK) in distilled water mixed with 12 g/L Technical Agar No. 3 (Thermo 

Fisher Scientific Oxoid Ltd, Basingstoke, UK). The mixture was autoclaved at 121 °C 

for 15-20 minutes, before the addition of kanamycin A (LKT Laboratories, St. Paul, 

MN) at the concentration of 61.2 μM to favour the growth of transfected cells carrying 

the genes that provide resistance to this antibiotic. 

The resulting colonies were picked under sterile conditions and used to inoculate 8 mL 

selective liquid growth medium. The liquid growth medium was comprised of 20 g/L 

LB/Broth (alfa Aesar H26760, Johnson Matthey Co., Heysham, UK) in distilled water 

and had been sterilised by autoclaving at 121°C for 15-20 minutes. Before each 

inoculation, the medium was brought to 37 °C and kanamycin A (LKT Laboratories, St. 

Paul, MN) and chloramphenicol (Sigma-Aldrich, St Louis, MO) were added at 

concentrations of 61.2 μM and 76.4 μM respectively. The inoculated tubes were 

incubated at 37°C (ISF-1-W Kuhner AG, Basel, Switzerland) with shaking at 200 rpm. 

The next day the bacterial culture was diluted 100 times in fresh liquid growth medium 

and bacterial growth monitored by spectrophotometry at a wavelength of 600 nm 

(OD600nm) using a Jenway 6305 spectrophotometer (Bibby Scientific Limited, Stone, 

UK) until the optical density reached a value comprised between 0.6 and 1.2 AU.  

After the OD600nm reached a value between 0.6 and 1.2 AU, isopropyl 1-thio-β-D 

galactopyranoside (IPTG) (Generon Ltd, Maidenhead, UK) was added to the medium 

at a concentration of 1 mM to induce the expression of r-amelogenin. Following the 

addition of IPTG, the culture flasks were left overnight on the shaking incubator at 

37 °C. The following day the mixture was centrifuged at 15,008 g for 10 minutes at 4°C 

(Avanti J26-XP, Beckman Coulter). Supernatants were discarded and cellular pellets 

were retained and stored at -20 °C; due to their physical aspect, the cellular pellets 

harvested after E. coli culture and expression of r-amelogenin will be referred to as 

“paste” in the thesis. To monitor the expression of r-amelogenin in the E. coli, a 100 μL 

aliquot was taken from the bacterial growth flask before induction with IPTG and kept 

at -20°C. After addition of IPTG to the remaining culture and subsequent overnight 

incubation, a 100 μL aliquot was taken. The protein contents of E.coli in both pre- and 

post-induction aliquots were analysed by analytical SDS PAGE and western blot. The 

methods for analytical SDS PAGE and western blotting are described below in Section 

2.1.1.4 (pp 100 - 103). The preparation and loading of samples for analytical SDS 

PAGE and western blot analyses is detailed in the supplementary data (CD). 
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2.1.1.2 Optimisation of 3% acetic acid amelogenin extraction procedure 
The first step in isolating r-amelogenin from the bacterial paste (obtained from the 

cultures described above) from the plethora of contaminating bacterial proteins 

involved extraction in 3% acetic acid. This method, based on the apparent preferential 

solubility of amelogenin at acidic pH, was first published using non-His-tagged human 

r-amelogenin (Svensson Bonde and Bulow, 2012). Svensson Bonde and Bulow (2012)

washed the E. coli cells in 150 mM NaCl and resuspended them in 0.5 – 5% acetic 

acid. The cell suspension was heated to 60-80°C in a water bath for 20 minutes and 

then subjected to centrifugation at 20,000 g for 20 minutes. The authors reported that 

higher concentrations of acetic acid gave optimum results and that at 3% acetic acid, 

within ‘weight of E. coli to volume of acetic acid’ ratios of 0.035 – 0.35 g of E. coli paste 

per mL of acetic acid, the higher volume of acetic acid provided a higher yield but they 

did not elaborate further in terms of the optimum volume of acid to use for a given 

mass of cells (Svensson Bonde and Bulow, 2012).  

Based on this data, WT+His and Mut+His mouse r-amelogenins were extracted from E. 

coli in 3 % acetic acid. However, due to the presence of the His-tag (absent in the 

original work reported by Svensson Bonde and Bulow (2012)) and the fact that mouse 

and human amelogenins are not 100 % conserved, the volume of 3 % acetic acid used 

to extract r-amelogenin from a given weight of E. coli cells and the cell lysis conditions 

for mixing and heating were optimised for this study. 
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2.1.1.2.1 Determining the volume of 3 % acetic acid to E. coli to give optimum 
extraction efficiency 

To identify the ratio of E. coli to volume of acetic acid required to give the optimum 

yield of r-amelogenin in a single extraction step without over dilution, the extraction of 

mouse r-amelogenin in 3 % acetic acid was tested in ranges of 0.0033 - 0.33 g/mL of  

E. coli paste (obtained as described in Section 2.1.1.1 pp. 92 - 93) in acetic acid. 

Cells expressing WT+His r-amelogenin were washed to remove extracellular proteins by 

resuspension in 150 mM NaCl at 0.033 g/mL E. coli paste in NaCl solution and 

centrifuged at 3220 g for 20 minutes at room temperature. After centrifugation, the 

supernatant was discarded and the pelleted cells were resuspended in 3 % acetic acid 

at either 0.33, 0.17, 0.033 or 0.0033 g/mL by manual mixing and then heated at 75°C 

for 20 minutes in a water bath and centrifuged at 3220 g for 15 minutes. The protein 

content in the supernatant was analysed by SDS PAGE (see Section 2.1.1.4, pp. 100 - 

102). The preparation of the samples for analytical SDS PAGE is detailed in the 

supplementary data (CD). 

2.1.1.2.2 Optimisation of the mixing regimen and extraction temperature on the 
yield of r-amelogenin extracted from E. coli 

Svensson Bonde and Bulow (2012) extracted r-amelogenin by subjecting the cells 

(resuspended in acetic acid) to either sonication (8x10 seconds), followed by heat 

treatment or simply by a 20-minute heat treatment at 60-80 °C in a water bath. They 

obtained r-amelogenin at a greater purity by using direct heat treatment rather than 

sonication. However, it was not clear what form of sonication was used; was it 

relatively mild using a sonic water bath or more extreme using an ultrasonic probe 

designed specifically for tissue homogenisation? 

For E. coli expressing Mut+His, resuspending the cells in acetic acid manually was 

inefficient, being both time and effort-consuming. The extraction regimen was 

therefore optimised in an attempt to make it quicker and easier and to improve the 

yield. An ultrasonic probe was trialled as an alternative technique that simultaneously 

resuspended the cell pellet and ruptured the cells.  

The optimisation of the mixing regimen including use of an ultrasonic probe is 

illustrated in Figure 21A p.92. After resuspension in 150 mM NaCl, the E. coli cells 

expressing Mut+His were pelleted by centrifugation 3220 g for 20 minutes. The pellets 

were crudely resuspended by hand in 3 % acetic acid at 0.033 g/mL cells in acetic 

acid. The mixture was sonicated for 30 - 60 seconds, using an ultrasonic liquid 

processor (Ultrasonix processor XL sonicator, Misonix) operated at maximum 

permissible power (power setting 4 (arbitrary units)) followed by heating at 75°C in a 

water bath for 20 minutes. The mixture was then allowed to cool to room temperature, 
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followed by centrifugation at 3220 g for 20 minutes. The protein content of the mixture 

was analysed by SDS PAGE with Coomassie Blue staining (see Section 2.1.1.4, pp. 

100 - 102). The preparation of the samples for analytical SDS PAGE is detailed in the 

supplementary data (CD).  

To investigate the efficacy of the heating step on yield, the extraction procedure was 

also carried out at room temperature (as illustrated in Figure 21B below). The contents 

of the supernatant and pellet fractions were analysed by analytical SDS PAGE with 

Coomassie Blue staining (see Section 2.1.1.4, pp. 100 - 102). The preparation of the 

samples for analytical SDS PAGE is detailed in the supplementary data (CD). Gel 

densitometry was used to compare the extraction yield with and without heating. 

Figure 12  Panel (A) summarises optimisation of the mixing regimen used during 
the acetic acid extraction of r-amelogenin. The effect of ultrasonication and 
manual mixing on the resulting acetic acid extract were investigated by 
comparing the protein contents of the final supernatant and pellet by 
analytical SDS PAGE. Panel (B) describes the procedure carried out to 
investigate the effect of the heat treatment on the extraction yield. The 
effect of heating treatment was analysed by comparing the contents of final 
supernatants and pellet by analytical SDS PAGE. 
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2.1.1.2.3 Large scale acetic acid extraction of r-amelogenin using the optimised 
extraction methodology 

Following the optimisation described above, it was decided that an extraction regimen 

that included ultrasonication and heating to 75°C gave the best results (see Section 

3.1.1.2.2 pp. 140 - 141). The finalised extraction procedure of r-amelogenin in 3 % 

acetic acid was scaled up and is summarised in Figure 22. The cells harvested after 

induction of protein expression were washed in 150 mM NaCl, at a ratio of 0.033 g/mL 

E. coli paste in NaCl solution, then centrifuged 3220 g for 20 minutes. The supernatant 

was discarded and the cells were resuspended to 0.033 g/mL wet weight cells in 3 % 

acetic acid, then sonicated until the mixture appeared homogeneous and heated for 

20-25 minutes at 75°C in a water bath. After removal from the water bath, the lysate 

was left to cool to room temperature and was then centrifuged again as above. The 

supernatant was frozen at -80°C, lyophilised and desalted (see Section 2.1.1.3, p. 99 

for desalting procedure). The desalted extracts were subjected to mass spectrometry 

analyses (see Section 2.1.1.5, p. 104, for mass spectrometry analyses). 
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Figure 2 2 Flow-diagram of the optimised extraction procedure. (1) E. coli were 
washed in 150 mM NaCl and (2) resuspended in 3 % acetic acid at 0.033 g 
cell paste per mL acetic acid. The suspension was (3) mixed by 
ultrasonication, and (4) heated at 75°C for 20 minutes. (5) The fraction of 
proteins solubilised was isolated in supernatant by centrifugation at 3220 g 
for 20 minutes and (6) was lyophilised. 
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2.1.1.3 Desalting procedure 
Samples containing r-amelogenins were desalted against degassed 125 mM formic 

acid by size exclusion chromatography (SEC). The larger r-amelogenin molecules are 

excluded from the size exclusion beads and washed through the column quickly in the 

mobile phase. Smaller molecules (ions, salts, etc.) enter the beads and their passage 

through the column is retarded, meaning they elute after the protein. Degassed formic 

acid at 125 mM was prepared by dissolving formic acid (cat. no. 33015, Sigma-Aldrich, 

St Louis, MO) to 125 mM in ultrapure water1 and then degassing. It was used as the 

mobile phase because it provides the hypothetical ionic strength to reduce undesirable 

interactions between the sample proteins and the gel filtration medium. The pKa formic 

acid is 3.75 (Riddick et al., 1986), so the pH of 125 mM formic acid is low enough 

(2.34) to solubilise r-amelogenin (Tan et al., 1998) without causing long term damage 

to the column medium. In addition, formic acid is volatile and can be easily removed 

from the desalted protein by lyophilisation.  

The lyophilised samples containing amelogenin (either r-amelogenin or EMD 

components- see later, detailed in Section 2.2.1 p. 120) were dissolved in a minimum 

volume of degassed 125 mM formic acid. Any precipitate/insoluble contaminants were 

removed by filtering the mixture through a 0.45 µm filter. Then, the solution was loaded 

onto the HiPrep 26/10 column (GE Healthcare, Buckinghamshire, UK) previously 

equilibrated with degassed 125 mM formic acid. The elution was carried out at room 

temperature and a flow rate of 3.5 mL/minute using an AKTA FPLC chromatography 

system (GE Healthcare, Buckinghamshire, UK). The column eluate was monitored at 

280 nm and the desalted protein, eluting in the first peak, was frozen at -80 °C, after 

which the volatile formic acid was removed by lyophilisation. 

Some procedures required desalting of r-amelogenin that had been previously 

lyophilised from 0.1 M Na2CO3 (see Sections 2.1.2.3.2 p. 118 -119 and 2.2.1.1 p. 120). 

Because of the presence of Na2CO3 in the lyophillisate, the addition of 125 mM formic 

acid failed to acidify the solution sufficiently to dissolve the r-amelogenin without 

massively over-diluting the sample. Instead, increasing volumes of 100 % formic acid 

were added to the mixture until it appeared clear. It was then subjected to filtration and 

subsequently desalted as described above. 

  

                                                
1 In the thesis, ultrapure water (18.2 MΩ.cm) was supplied by Purelab Option-Q 

system (ELGA LabWater, Buckinghamshire, UK). 
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2.1.1.4 SDS PAGE analyses and western blotting  
SDS PAGE analyses were based on the method of Laemmli, 1970 (Laemmli, 1970) 

except that the resolving gel also contained 20 % (v/v) glycerol, to increase its density 

so that the stacking gel could be cast directly on top of the resolving gel without having 

to wait for it to polymerise. Proteins were resolved  “using a 12 % resolving gel at pH 

8.8 and a 4 % stacking gel at pH 6.8” (Gabe et al., 2017). Gels were of 1.0 mm 

thickness, cast using a Mini-PROTEAN III electrophoresis system with 15 sample 

wells (Bio-Rad Laboratories Ltd., Hertfordshire, UK). The composition of the gels and 

buffers is detailed in Table 42. The reagents for SDS PAGE were supplied by National

Diagnostics (National Diagnostic, Nottingham, UK). Gels were polymerised using 

ammonium persulphate solution (stock 10%) and N,N,N’,N’-

tetramethylethylenediamine (TEMED) (Sigma-Aldrich, St Louis, MO) immediately prior 

to casting. After the gels were cast and polymerised, samples containing the proteins 

to be separated were loaded in to the sample wells. The preparation of samples to 

load on SDS PAGE was carried out in one of two ways depending upon whether the 

samples were in solution or lyophilisates: 

- Protein in solution was prepared by mixing with concentrated 4 times (4X) Laemmli

non-reducing sample buffer (composition detailed in Table 4) at a ratio of 3:1 (v:v) 

sample volume: sample buffer. The mixture was heated for 1.5 minutes at 90-100°C, 

cooled to room temperature and then loaded on the gel. 

- Lyophilised samples were resuspended at their original concentration in concentrated

1 time (1X) Laemmli non-reducing buffer (composition detailed in Table 4). The 

mixture was heated for 1.5 minutes at 90-100°C, cooled to room temperature and then 

loaded on the gel.  

The sample preparation for each case is specified in the supplementary data (CD). 

Loading for each gel was optimised in each case (further details about the volumes 

loaded are provided in the supplementary data (CD)). Electrophoresis was carried out 

at a constant 200 V until the bromophenol blue tracker dye had reached the bottom of 

the gel. After electrophoresis, the proteins were detected using Coomassie Blue 

(Expedeon Ltd., Cambridgeshire, UK) or a silver staining (kit # 24612, ThermoFischer 

Scientific, Leicestershire, UK) or by UV illumination in ultrapure water where 

fluorescence detection was required.  

For molecular weight analysis and characterisation of the bands observed on 

analytical SDS PAGE, molecular weight markers were ran on the analytical SDS 

PAGE in separate lanes. The markers used were either “Precision Plus Protein All 

2 The composition of the gels and buffers, detailed in Table 4, was the same for 
analytical and preparative SDS PAGE (the latter, detailed later in Section 2.1.2.3) 
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Blue Standards” (cat no. 161-0373, Bio-Rad Laboratories Ltd., Hertfordshire, UK) or 

“Prestained SDS PAGE Standards, Broad Range” (cat no. 161-0318, Bio-Rad 

Laboratories Ltd., Hertfordshire, UK). 

 

Western Blotting 
To confirm the presence and identity of r-amelogenin in the extracts, the proteins were 

electroblotted onto 0.2 µm nitrocellulose membranes for western blotting analysis (Bio-

Rad Laboratories Ltd., Hertfordshire, UK) during which the membranes were probed 

with antibodies specific for amelogenin. The proteins resolved on the gels were 

transferred onto the membrane by electroblotting for 1 hour at 60 V using the 

‘sandwich’ procedure (Towbin et al., 1979). The membrane was placed in blocking 

buffer for at least 1 hour at room temperature or overnight at 4°C in order to block non-

specific binding of antibodies to the membrane. The blocking buffer was comprised of 

5 % (m/v) non-fat dry milk in Tris buffered saline (TBS). After blocking, the membrane 

was washed 2 x 7 minutes in TBS containing 0.05 % Tween 20 (TTBS). Then the 

membrane was incubated for 1 - 2 hours with affinity purified rabbit IgGs raised 

against a peptide corresponding to the amelogenin hydrophilic C-terminal (telopeptide) 

(custom made by Eurogentec, Southampton, UK) diluted in blocking buffer or TTBS 

(see Supplementary data (CD) for details on dilutions and buffers, as these are 

specific of the western blot analysis). It was then washed 2 x 7 minutes in TTBS before 

incubation with goat anti-rabbit secondary antibodies conjugated to peroxidase 

(Sigma-Aldrich, St Louis, MO) diluted in blocking buffer or TTBS (see Supplementary 

data (CD) for details on dilutions and buffers, as these are specific of the western blot 

analysis). This was followed by 5 x 7 minute washes with TTBS, and the cross 

reactivity was visualised by developing the blot with metal-enhanced 3,3'-

diaminobenzidine tetrahydrochloride (Sigma-Aldrich, Dorsetshire, UK ) according to 

the manufacturer’s instructions. The membrane was rinsed with distilled water as soon 

as bands appeared; development took between a few seconds to 7 minutes (the 

duration is specified for each analysis in the supplementary data (CD)). Then, the 

membrane was dried overnight between weighted paper towels. 

The reagents used in western blotting are listed in Table 5. Since all western blotting 

procedures carried out in this work used the same antibodies (rabbit anti-telopeptide 

IgGs and goat-anti-rabbit IgG peroxidase conjugates), whose specificity for r-

amelogenin was confirmed by controls, western blotting in this thesis will be referred to 

as ‘anti-amelogenin western-blotting’. 
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2.1.1.5 Mass spectrometry analyses  
After desalting and lyophilisation, samples (obtained after acetic acid extraction, see 

Figure 22 p. 98 or after preparative SDS PAGE, see Figure 26 p.117) were 

characterised by mass spectrometry, a technique that separates molecules based on 

their charge-to-mass ratio and allows for the accurate determination of molecular mass 

of each species present. An accurate mass determination helps confirm the identity of  

proteins present in the samples as well as their degree of purity.  

Electron spray mass spectroscopy (TOF MS ES+) was performed by the mass 

spectrometry facility (Astbury Centre for Structural Molecular Biology, Astbury Building, 

Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK). 
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2.1.2 Strategies for secondary purification to obtain purified r-
amelogenin for binding studies 

Following the process optimisations carried out as described above, the extraction 

procedure of r-amelogenins in 3% acetic acid was scaled up as summarised in Figure 

22 p. 98. As shown in the Results chapter (Sections 3.1.1.2.1-2, pp. 138 - 141) this 

process resulted in a significant enrichment of r-amelogenin. However, acid-soluble 

contaminating bacterial proteins were still visible between 10 – 75kDa on SDS PAGE 

with Coomassie Blue staining. Therefore, it was deemed necessary to carry out 

secondary purification to isolate r-amelogenin at single band purity on SDS PAGE for 

future use in binding assays. A panel of standard protein purification techniques were 

tested and eventually optimised (Sections 2.1.2.1, 2.1.2.2, 2.1.2.3). The range of 

purification strategies explored is summarised below in Figure 23. 

 

 

Figure 2 3 Secondary purification of r-amelogenin from 3% acetic acid extracts. 
Summary of the strategy developed to determine the optimum method 
providing with r-amelogenin at a suitable purity for future binding studies. 
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2.1.2.1 Purification of r-amelogenin using nickel column chromatography 
His-tag affinity chromatography using nickel affinity chromatography column (referred 

to as “nickel column” chromatography) is a purification method commonly used to 

isolate a protein of interest from a whole protein mixture (Hochuli et al., 1988). 

Recombinant proteins (including those described earlier in this thesis) are frequently 

initially engineered to carry six consecutive histidine residues present in an N-terminal 

tag (see Table 3 p. 92) which have a high affinity for nickel. In theory, when a mixture 

of proteins is pumped through the nickel column in loading buffer, proteins without the 

His-tag are not retained and pass through the column, leaving the His-tagged protein 

of interest bound to the column. After the non-His-tagged contaminants have washed 

through the column, the His-tagged protein can then be eluted from the column by 

increasing the concentration of imidazole in the buffer, as imidazole has a high affinity 

for nickel and competitively displaces the His-tagged recombinant protein. Once the 

protein is collected and the elution buffer salts removed, the recombinant protein can 

either be used directly in functionality studies, or undergo further steps of preparation 

that include removal of the His-tag with the aim of obtaining a recombinant protein as 

close as possible to the native form. The His-tag can be removed enzymatically by a 

protease and the cleavage mixture is subject to a second round of nickel column 

chromatography to isolate the His-tag-free recombinant protein which, now unable to 

bind, washes straight through the column whilst uncleaved recombinant protein and 

the cleaved His-tag are retained.   

Nickel column chromatography was used in this thesis to attempt to purify His-tagged 

r-amelogenins before and after cleavage of the His-tag as summarised above. This

preparation process included desalting and buffer exchange steps. The equipment 

used is listed in Table 6 below. The procedure is summarised below in Figure 24, with 

specific methodological details provided in the Sections 2.1.2.1.1 – 2.1.2.1.3 below..  
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Table 6  List of reagents used in nickel column chromatography purification. All 
buffer solutions were made with ultrapure water and degassed. 

Nickel column 
chromatography 
(Both rounds) 
Sections 2.1.2.1.1 
and 2.1.2.1.3 

Chromatography equipment 
• Ni-NTA column: HisTrap FF 5mL(GE healthcare bioscience, 

Buckinghamshire, UK) used in conjunction with AKTA FPLC 
system (GE healthcare bioscience, Buckinghamshire, UK) 

Nickel column chromatography buffer 
Loading buffer: 4 M urea, 50 mM Tris, 400 mM NaCl,  

20 mM imidazole, HCl, to pH = 7.6 
Elution buffer: Loading buffer plus imidazole (60 - 200 mM) 

His-tag cleavage 
Section 2.1.2.1.2 

• Recombinant type 14 3C protease from human rhinovirus  
HRV 3C (Merck Millipore, Darmstadt, Germany) 
• Buffer: 50 mM Tris, HCl to pH = 8 

Buffer exchange 
Included in Section 
2.1.2.1.2 

Chromatography equipment 
• HiPrep 26/10 column (GE healthcare bioscience, 

Buckinghamshire, UK) 
Buffer 

• 4 M urea, 50 mM Tris, 400 mM NaCl, 20 mM imidazole,  
HCl to pH = 7.6 
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Figure 2 4 Overview summary of purification of r-amelogenin using two rounds of 
nickel column chromatography. The details of steps (1), (2) and (3) are 
described respectively in the following Sections (2.1.2.1.1, 2.1.2.1.2, 
2.1.2.1.3). 
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2.1.2.1.1 Step 1: First round of nickel column purification of His-tagged r-
amelogenins extracted in acetic acid 

Following the method used by Gabe et al (2017), desalted and lyophilised crude 

extracts of r-amelogenin WT “were dissolved in a minimum volume of nickel column 

binding buffer (20 mM imidazole, 4 M urea, 50 mM Tris-HCl, 400 mM NaCl, pH = 7.6), 

loaded on to a nickel column up to a maximum protein load of 40 mg and eluted at a 

flow rate of 4 mL/minute. Unbound proteins (column flow through) were collected. 

Bound r-amelogenin was eluted by increasing the imidazole concentration to 200 mM”. 

“Fractions were analysed by analytical SDS PAGE and anti-amelogenin western 

blotting” (Gabe et al., 2017). SDS PAGE procedure is described in Section 2.1.1.4 (pp. 

100 - 103). Details for sample preparation, loading and blotting conditions are provided 

in the supplementary data (CD). The fractions comprising r-amelogenin were desalted 

by SEC against 125 mM formic acid, as described in Section 2.1.1.3 (p. 99) and 

lyophilised.  

2.1.2.1.2 Step 2: His-tag cleavage 

Similar to what was done by Gabe et al (2017) the lyophilised r-amelogenin obtained 

from the first round of nickel column purification (see previous Section), “was dissolved 

at 2 mg/mL in 50 mM Tris-HCl, pH = 8 […]. The His-tag was removed enzymatically by 

adding recombinant restriction grade protease HRV3C (Merck Millipore, Watford, UK) 

at a ratio of 3 μL enzyme solution per mg recombinant protein”. The cleavage was 

performed over 24 hours at 4°C and the protein contents of the solutions were 

analysed by analytical SDS PAGE (see Section 2.1.1.4 , pp. 100 - 102, for the 

procedure). The sample preparation and loading is described in the supplementary 

data (CD). “The resulting cleavage reaction mixture comprising cleaved r-amelogenin, 

any uncleaved r-amelogenin, free His-tag and other contaminants was finally buffer-

exchanged into nickel column binding buffer by SEC (HiPrep 26/10 column, GE 

Healthcare) ready for a second round of nickel column chromatography” (Gabe et al., 

2017). 

2.1.2.1.3 Step 3: Second round of nickel column purification to remove 
uncleaved r-amelogenins, free His-tag, and cleavage enzyme 

Similar to what was done by Gabe et al (2017), “a second round of nickel column 

chromatography was employed to remove cleaved His-tag and other contaminants 

present in the cleavage reaction mixture including any uncleaved recombinant. 

Cleavage products in binding buffer were loaded on to the nickel column” as described 

in Section 2.1.2.1.1. “Unbound proteins (expected to contain the cleaved r-

amelogenin) were collected in the column flow through. Bound proteins (expected to 
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contain any uncleaved r-amelogenin, His-tag, and His-tagged HRV3C) were eluted 

using a stepped imidazole gradient” (Gabe et al., 2017). The imidazole concentrations 

were 60 and 200 mM. Fractions were analysed by analytical SDS PAGE (see Section 

2.1.1.4, pp. 100 - 102 and Supplementary data (CD)). 
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2.1.2.2 Purification of r-amelogenin using size exclusion chromatography  
Size exclusion chromatography (SEC) allows for separation of proteins within a 

mixture according to their apparent molecular weights. The protein sample is dissolved 

in a buffer (mobile phase1) which is pumped through a column matrix of porous micro 

beads. Larger molecules are excluded from the column matrix and quickly pass 

through the column carried along in the mobile phase and are eluted first. Lower 

molecular weight components with a smaller hydrodynamic radius can diffuse from the 

mobile phase into the beads and thus their progress through the column is slower and 

depends on their rate of diffusion in and out of the beads (Grubisic et al., 1967). 

Therefore, lower molecular weight protein elutes later.  

SEC was explored as a possible purification strategy when seeking to isolate r-

amelogenins in the current study. The effect of operational variables such as matrix 

pore size and column length were investigated on the resolution of separation. The 

reagents and equipment used are listed in Table 7 below; the development of a size-

exclusion-based purification method is summarised below in Figure 25.  

Table 7  Equipment used in SEC2: column models and matrices. 
 

Column characteristics Matrix 
Bio-gel P-30 
(35 cm) 
Section 2.1.2.2.1  

Column XK 16/40  
(GE Healthcare bioscience. 
Buckinghamshire, UK) 

Bio-gel P-30, 
cat. no. 1504154 
(Bio-Rad Laboratories Ltd., 
Hemel Hempstead, UK) 

Bio-gel P-10 
(35 cm) 
Section 2.1.2.2.2 

Column XK 16/40  
(GE Healthcare bioscience. 
Buckinghamshire, UK) 

Bio-gel P-10, 
cat. no. 1504144 
(Bio-Rad Laboratories Ltd., 
Hemel Hempstead, UK) 

Bio-gel P-10 
(95 cm) 
Section 2.1.2.2.3 

Column XK 16/100 
(GE Healthcare bioscience. 
Buckinghamshire, UK) 

Bio-gel P-10, 
cat. no. 1504144 
(Bio-Rad Laboratories Ltd., 
Hemel Hempstead, UK) 

 

                                                
1 The mobile phase employed in this thesis was degassed 125 mM formic acid, 

prepared as described in Section 2.1.1.3 (p .95). 
 
2 The size exclusion chromatography used the equipment AKTA FPLC system (GE 

healthcare bioscience, Buckinghamshire, UK). 
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Figure 2 5 Purification of r-amelogenin using SEC: optimisation of column length 
and pore size. Once lyophilised, the acetic acid extract containing r-
amelogenin was directly subjected to SEC. For a column length of 35 cm, 
two matrices with different pore sizes were tested:  Bio-gel P-30 matrix 
(detailed in Section 2.1.2.2.1) and Bio-gel P-10 matrix (detailed in Section 
2.1.2.2.2). The second column length tested was 95 cm, using Bio-gel P-10 
matrix (detailed in Section 2.1.2.2.3). Small aliquots from the fractions 
collected were taken for SDS PAGE analyses. 
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2.1.2.2.1 Size exclusion chromatography using Bio-gel P-30 matrix, 35 cm bed 
height 

SEC was carried out on the AKTA FPLC system using 40 x 1.6 cm GE healthcare XK 

column (GE healthcare bioscience). The column was packed with a polyacrylamide 

matrix Bio-Gel P-30 (fractionation range of 2.5 - 40 kDa) (Bio-Rad, cat no 150-4154) 

according to the manufacturer’s instructions to a bed height of 35 cm. The sample was 

prepared by dissolving 15 mg of acetic acid extract of r-amelogenin WT (prepared as 

in Figure 22 p. 98, lyophilised, not desalted) in degassed 125 mM formic acid to 10 

mg/mL and 1.44 mL of the sample were loaded and injected onto the column that had 

been previously equilibrated with degassed 125 mM formic acid. The separation was 

carried out at room temperature using a mobile phase comprised of degassed 125 mM 

formic acid at a flow-rate of 0.25 mL/minute. The elution was carried out using 1.5 

column volumes of degassed 125 mM formic acid and 7 fractions were collected 

manually as indicated on the chromatograph (Figure 46, p. 163). The protein contents 

of the fractions 1-7 were analysed by analytical SDS PAGE (see Section 2.1.1.4, pp. 

100 - 102 and Supplementary data (CD)). 

2.1.2.2.2 Size exclusion chromatography using Bio-gel P-10 matrix, 35 cm bed 
height 

Bio-gel is supplied with a range of pore sizes. Altering the pore size changes the 

exclusion limit of a column, which in turn changes the fractionation range of the 

column. Bio-gel P-10 has small pores and a fractionation range of 1.5 - 20 kDa. It was 

thought that this might therefore provide a better fractionation of r-amelogenin than 

Bio-gel P-30 (fractionation range 2.5 – 40 kDa). The matrix was packed according to 

the manufacturer’s instructions (Bio-Rad, Ltd. Hertfordshire, UK) into a 40 cm long 

column (XK 16/40) to a bed height of 35 cm. Eleven milligrams of acetic acid extract of 

r-amelogenin WT (prepared as in Figure 22 p. 98, lyophilised, not desalted) were 

resuspended in 1.1 mL of degassed 125 mM formic acid and clarified by centrifugation 

at 20,800 g at 20°C for 10 minutes. The supernatant was collected and 1 mL was 

loaded and injected on to the column that had been previously equilibrated with 

degassed 125 mM formic acid. The separation was carried out at room temperature 

with a flow-rate of 0.35 mL/minute. The elution was carried out using 1.5 column 

volumes of degassed 125 mM formic acid and 10 fractions of 1 mL were collected. 

The protein contents of the fractions 1, 2, 3, 4, 10 were analysed by analytical SDS 

PAGE (see Section 2.1.1.4, pp. 100 - 102 and Supplementary data (CD)).  
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2.1.2.2.3 Size exclusion chromatography using Bio-gel P-10 matrix, 95 cm bed 
height 

An attempt to further improve the resolving power of Bio-gel P-10 matrix was carried 

out by increasing the bed height to 95 cm. The matrix Bio-Gel P-10 was packed 

according to the manufacturer’s instructions into a 100-cm-long column (XK 16/100) to 

a bed height of 95 cm. The sample was prepared by dissolving 11 mg of acetic acid 

extract of r-amelogenin WT (prepared as in Figure 22 p. 98, lyophilised, not desalted) 

in degassed 125 mM formic acid to 10 mg/mL. The mixture was then centrifuged at 

20,800 g at 20°C for 10 minutes. The supernatant was collected and 1 mL was loaded 

and injected on to the column that had been previously equilibrated with 125 mM 

formic acid. The separation was carried out at room temperature with a flow-rate of 

0.40 mL/minute. The elution was carried out using 1.5 column volumes of degassed 

125 mM formic acid and 10 fractions of 1 mL were collected. The protein contents of 

the fractions 1-10 were analysed by analytical SDS PAGE (see Section 2.1.1.4, pp. 

100 - 102 and Supplementary data (CD)). 
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2.1.2.3 Purification of r-amelogenins using preparative SDS PAGE 
An alternative purification strategy used preparative SDS PAGE to isolate r-

amelogenin based upon apparent molecular weight. This was trialled with the aim of: 

(1) Isolating His-tagged r-amelogenin from acetic acid extracts prior to cleavage and 

nickel column chromatography (Section 2.1.2.3.1, summarised in Figure 26 p. 117), 

and 

(2) Isolating cleaved r-amelogenin following His-tag cleavage without the need to use 

nickel column chromatography (Section 2.1.2.3.2, summarised in Figure 27 p. 119).  

The reagents for the gels and buffer used in preparative SDS PAGE were the same as 

those used for analytical SDS PAGE (Section 2.1.1.4, pp. 100 - 102, the reagents are 

listed in Table 4 p. 102). 

Analytical SDS PAGE was capable of resolving r-amelogenin from bacterial 

contaminants and in theory could be scaled up to for preparative use. The Model 491 

Prep Cell (Bio-Rad Laboratories Ltd., Hertfordshire, UK) was trialled here to assess 

the potential of preparative SDS PAGE in purifying r-amelogenin. Briefly, the sample 

was electrophoresed down a cylindrical gel that has the capacity to resolve tens of mg 

of protein (compared to tens of µg in the case of analytical SDS PAGE). Rather than 

stopping the electrophoresis and staining the gel as it is the case in analytical SDS 

PAGE to visualise the resolved protein bands, in preparative SDS PAGE, separated 

proteins were deliberately electrophoresed off the bottom of the separating gel into an 

elution chamber from where they were continually removed by a flow of buffer to a 

fraction collector. 

2.1.2.3.1 Isolation of His-tagged r-amelogenin from crude acetic acid extracts by 
preparative SDS PAGE 

After desalting and lyophilisation, acetic acid extracts (containing WT+His r-amelogenin) 

were solubilised in 1X non-reducing SDS PAGE sample buffer (see Section 2.1.1.4, 

p.100) at a concentration of 1 mg/mL. Ten millilitres of the starting solution were 

subjected to preparative SDS PAGE. Preparative electrophoresis was carried out 

using a Model 491 Prep Cell (Bio-Rad Laboratories Ltd., Hertfordshire, UK). As carried 

out by Gabe et al (2017), a 12 % resolving gel (composition detailed in Table 4, p. 

102) “was cast in the 28 mm internal diameter gel tube to a height of 9.5 cm with a 2-

cm 4% stacking gel” (composition detailed in Table 4, p. 102). “The gel was run at a 

constant 12 W power at room temperature using the circulating cooling pump as 

recommended by the manufacturer. Immediately after the tracker dye began to run out 

of the gel, 2.5 mL fractions were collected at a flow rate of 0.8 mL/minute” (Gabe et al., 

2017). Every third fraction collected was subjected to analytical SDS PAGE with 

Coomassie Blue staining to identify approximately which of the fractions contained 
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WT+His r-amelogenin (further details provided in Section 2.1.1.4, pp. 100 - 102 and 

Supplementary data (CD) for analytical SDS PAGE). Once the range of fractions 

containing the WT+His r-amelogenin had been identified, all fractions in that range were 

subjected to analytical SDS PAGE with silver staining and anti-amelogenin western 

blotting to accurately determine whether the fractions contained WT+His r-amelogenin 

at single band purity on silver staining. The fractions comprising WT+His r-amelogenin 

at single band purity were pooled together, lyophilised, desalted then lyophilised again. 

The final amount of purified WT+His r-amelogenin obtained by preparative SDS PAGE 

was weighed to obtain the yield and further characterised by mass spectrometry (See 

Section 2.1.1.5 p. 104). The purification process is summarised in Figure 26 below. 

The plan was to subject the lyophilisate to His-tag cleavage and then nickel column 

chromatography to obtain a purified ‘cleaved’ r-amelogenin (Dashed box in Figure 26).  
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Figure 2 6 Purification strategy of WT+His r-amelogenin from acetic acid extracts 
using preparative SDS PAGE. The acetic acid extract was desalted, 
lyophilised and resuspended into SDS PAGE sample buffer 1X and heated, 
to solubilise the proteins. The mixture was loaded on to the preparative 
SDS PAGE gel to separate its components according to their apparent 
molecular weights. From the fractions collected, small aliquots were taken 
and their content was analysed by analytical SDS PAGE with Coomassie 
blue staining, silver staining and western blotting to identify the fractions 
containing r-amelogenin at single band purity. These fractions were pooled 
together, desalted, lyophilised and subjected to mass spectrometric 
analysis.  
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The purification of the sample achieved with preparative SDS PAGE (shown later in  

Section 3.1.2.3.1) was such that nickel column chromatography was not actually 

needed anymore to isolate the cleaved r-amelogenin. Instead, Preparative SDS PAGE 

was tested to isolate the cleaved r-amelogenin directly after His-tag cleavage of r-

amelogenin in acetic acid extract. This second method is described in Section 

2.1.2.3.2 below. 

 

2.1.2.3.2 Isolation of cleaved r-amelogenin by preparative SDS PAGE 

This Section describes the attempt to isolate cleaved (His-tag-free) r-amelogenin by 

preparative SDS PAGE after His-tag cleavage of the His-tagged r-amelogenin without 

any involvement of nickel column chromatography. The process carried out is 

summarised in Figure 27. 

The crude acetic acid extract containing WT+His r-amelogenin was desalted against 

125 mM formic acid and lyophilised. The lyophilisate was then dissolved in 0.1 M 

Na2CO3 , pH = 9 at 2 mg/mL and incubated with HRV3C protease (Merck Millipore, 

Watford, UK) for 48 hours, at 2.5 µL enzyme stock solution per mg protein. The 

mixture was then lyophilised and desalted against 125 mM formic acid (Section 

2.1.1.3, p. 99), then lyophilised again. The lyophilisate was dissolved in 1X non-

reducing SDS PAGE sample buffer (as described in Section 2.1.1.4, pp. 100 - 102) at 

2 mg/mL and 5mL were subjected to preparative SDS PAGE as described in Section 

2.1.2.3.1, p. 115. Every third fraction collected was subjected to analytical SDS PAGE 

with Coomassie Blue staining to identify approximately which of the fractions 

contained the cleaved r-amelogenin (further details provided in Section 2.1.1.4, pp. 

100 - 102, and in the supplementary data (CD) for analytical SDS PAGE). Once the 

range of fractions containing the cleaved r-amelogenin had been identified, all 

fractions in that range were subjected to analytical SDS PAGE with silver staining 

(further details provided in the supplementary data (CD)). Fractions containing cleaved 

r-amelogenin at single band purity on silver staining were pooled together, desalted 

and lyophilised. The final amount of the purified cleaved r-amelogenin was estimated 

by spectrophotometry at 280 nm. 
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Figure 2 7 One-step purification of His-tag free ‘cleaved’ r-amelogenin from acetic 
acid extract using preparative SDS PAGE. The methodology carried out 
was the same as that described in Section 2.1.2.3.1 (see Figure 26 p. 117), 
except that an additional step of His-tag cleavage (with subsequent 
lyophilisation, desalting and lyophilisation) was added. The fractions 
obtained from preparative SDS PAGE purification were analysed by 
analytical SDS PAGE. 

 
.  
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2.2 Development of protein-binding assays  

Two binding assays were developed in order to study amelogenin-amelogenin binding 
and ultimately to investigate the effect, if any, of the p.Y64H mutation. 
 

2.2.1 Method 1: Fluorescence-based binding assay  
The basic strategy for method 1 involved immobilising amelogenin (bait protein) to 

microplate well surfaces to which was added fluorescein isothiocyanate (FITC)-

labelled amelogenin (the free ligand in solution). After incubation, wells were washed 

and any amelogenin-amelogenin binding was determined by measuring the 

fluorescence remaining bound to the wells. To conserve r-amelogenin, the 20 kDa 

amelogenin, abundant in enamel matrix derivative (EMD – the non-commercial form of 

Emdogain) (Maycock et al., 2002) was purified by preparative SDS PAGE to be used 

as a surrogate for initial method development. 

The EMD was kindly provided by Dr. Petter Lyngstadaas, University of Oslo, NO. The 

FITC was cat no.F7250 (Sigma-Aldrich, St Louis, MO) 

The methods presented below detail  

(i) FITC labelling of EMD  
(ii) purification of FITC labelled 20 kDa amelogenin from EMD and  
(iii) studies using FITC-20 kDa amelogenin in a microplate based binding assays 

 

2.2.1.1 FITC labelling of EMD 
The method employed to label EMD with FITC was adapted from the FITC 

manufacturer’s instruction (F7250 - Product Information Sheet, Sigma-Aldrich, St 

Louis, MO). EMD was dissolved at 5.5 mg/mL in a solution of 0.1 M Na2CO3 at pH = 9. 

The mixture was left stirring at 4°C overnight. FITC was dissolved to 10 mg/mL in 

dimethyl sulphoxide (DMSO) and FITC solution added slowly by 10 μL increments to 

the EMD solution at 4°C with stirring to give a final concentration of 58.33 μg FITC per 

mg EMD. The labelling mixture was then stirred overnight at 4°C. The next day, the 

mixture was frozen to -80°C and lyophilised. 

 

2.2.1.2 Purification of the 20 kDa amelogenin from FITC-labelled EMD 
using Preparative SDS PAGE  

The lyophilised labelling mixture (prepared as described above, Section 2.2.1.1) was 

desalted against 125 mM formic acid (see Section 2.1.1.3, p .99) and lyophilised 

again. The lyophilisate was dissolved in 1X non-reducing SDS PAGE sample buffer 
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(as described in Section 2.1.1.4, pp. 100 - 102) at a concentration of 8 mg/mL. 

Approximately 0.8 mL of the starting solution were subjected to preparative SDS 

PAGE. Preparative electrophoresis was carried out as described in Section 2.1.2.3.1 

(p. 115). Fractions containing the labelled 20 kDa amelogenin were pooled together, 

desalted against 125 mM formic acid (see Section 2.1.1.3, p .99) and lyophilised for 

binding assays (detailed in Section 2.2.1.3 overleaf). The 20 kDa amelogenin was 

identified based on its migration on analytical SDS PAGE and by the fact that it is the 

most abundant species present in EMD (Maycock et al., 2002). The purification 

process is summarised in Figure 28. 

 

 

Figure 2 8 Diagram summarising the preparation and purification of FITC-labelled 
EMD proteins for fluorescence binding assays. 
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2.2.1.3 Measuring amelogenin binding between free FITC-labelled 
amelogenin and immobilised amelogenin as binding partners  

To test the effect of the p.Y64H mutation on amelogenin binding behaviour, a 

microplate-based binding assay was developed, involving the immobilisation of 

unlabelled amelogenin on the microplate well surfaces to which FITC-labelled 

amelogenin was allowed to bind. The degree of binding could then be determined (and 

compared) by measuring the amount of retained fluorescence. This method was 

adapted from a “FITC-anti-FITC system” previously published (Harmer and Samuel, 

1989). As explained earlier (p. 120), the 20 kDa amelogenin from EMD (obtained as 

described in Section 2.2.1.2) was used as a surrogate. 

First, it was necessary to ensure that the unlabelled 20 kDa amelogenin from EMD 

(bait protein) saturated the polystyrene microwell surfaces to prevent false positives 

caused by FITC-labelled 20 kDa amelogenin (free ligand) binding to any exposed 

polystyrene (incompletely covered wells). In addition, it was also necessary to verify 

whether the binding affinity of the 20kDa amelogenin bait protein for the well surfaces 

was sufficiently large to resist the various washing and handling steps involved in 

carrying out the assay. For convenience, FITC-labelled 20 kDa amelogenin (purified 

from EMD using preparative SDS PAGE as described in Section 2.2.1.2, p. 121) was 

used as a surrogate unlabelled bait protein to investigate the binding kinetics of 

amelogenin to the microwell surfaces; this could be easily measured using the 

fluorescence microplate reader.  Note: for clarification, the actual binding assays were 

to be carried out later, using non-labelled r-amelogenin bound to the wells as the 

immobilised bait protein with FITC-labelled r-amelogenin being used as the free ligand 

in solution.  

In the optimisation experiments, FITC-labelled 20 kDa amelogenin, acting as surrogate 

bait protein, was dissolved at 20 μg/mL in binding buffer (see below) and serially 

diluted to concentrations of 1, 2, 5, 7.5, 10 and 20 μg/mL. Three different binding 

buffers were tested for efficacy of coating: 0.1 M Na2CO3 at pH=9, PBS at pH=7.4 and 

TBS at pH=7.2. The incubation of the plates was carried out overnight at either room 

temperature or 4°C. 

One hundred microlitres of unlabelled 20 kDa amelogenin in binding solution were 

added per microwell in triplicate and left to incubate overnight with the microplates 

sealed with parafilm. The microplates used were black 96‐well microfluor 2 plate (cat. 

No. 7205, ThermoFisher Scientific, Loughborough, UK). After overnight incubation, the 

fluorescence signal was measured using an excitation wavelength of 490 nm and an 

emission wavelength of 525 nm. The microwells were then washed. Washing 

consisted of emptying the microwell content by discarding binding solution and tap-
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drying, followed by addition of 120 μL of washing buffer (either PBS + 0.05 % 

Tween20, or TB S+ 0.05 % Tween20) which was subsequently discarded and the 

plates tap-dried. After washing the microwells, 150 μL of blocking solution were added 

per microwell and left to incubate for 1 hour at room temperature and sealed. The 

blocking solution was made up of 1 % bovine serum albumin (BSA) in washing buffer 

(blocking serves no purpose in this experiment but was included as it would later 

feature in the actual binding assays; to prevent false positives caused by FITC- 

labelled ligands binding to the well surfaces directly rather than the immobilised bait 

proteins).      

After blocking, the microwells were washed 3 times as described above and pure 

water was added prior to fluorescence detection (490 nm/525 nm). The fluorescence 

associated with bound 20 kDa amelogenin was then measured. The process is 

summarised in Figure 29.  

 

Figure 2 9 Design of experiment to determine whether amelogenins can adsorb to, 
and coat the surfaces of the microwell for later use in a fluorescence 
binding assay. FITC-labelled 20 kDa amelogenin at 1, 2, 5, 7.5, 10 and 20 
μg/mL were adsorbed onto the microwell surface to determine the lowest 
concentration required to saturate the microwell surface. Saturating the 
microwell surface with bait protein was essential in order to reduce false 
positives in the later binding experiments if protein ligands free in solution 
were able to adsorb directly to the exposed microwell surface rather than 
to the immobilised bait proteins.
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2.2.2 Method 2: Determining the kinetics of protein-microwell 
binding by monitoring the disappearance of amelogenin from 
solution  

The second method to characterise amelogenin binding events in microwell plates 

involved simply incubating unlabelled EMD proteins (comprising manly amelogenin) in 

UV transparent microwells. The decrease in UV absorbance was monitored (illustrated 

in Figure 30) as proteins initially adsorbed to the microwell surfaces (protein-

polystyrene binding) and free proteins bound to the immobilised proteins (protein-

protein binding). Protein concentration in solution is frequently measured 

spectrophotometrically at 280 nm, which is the absorbance maximum of the aromatic 

side chains of tryptophan and tyrosine (Layne, 1957). However, these amino acids are 

not particularly common in amelogenin so in order to increase sensitivity, absorbance 

was measured at 220 nm, which is within the wavelength range at which peptide 

bonds maximally absorb UV (Goldfarb et al., 1951) and is within the transparency 

range of the UV transparent microplates used. 

The microplates employed were polystyrene NUNC 96-well UV transparent microplate 

8404 (Thermofischer Scientific, Loughborough, UK). Absorbance was monitored at 

220 nm over time after adding unlabelled EMD protein and recorded using a Varioskan 

Flash microplate reader - SkanIt software (Thermoscientific, UK). 

The methods presented in this Section detail the development of the microplate 

binding assay with regards to: 

(i) The effect of the initial EMD concentration on the EMD-polystyrene
binding equilibrium (Section 2.2.2.1),

(ii) Optimisation of the methodology to investigate the kinetics of EMD
protein-protein interactions (Section 2.2.2.2),

(iii) The effect of EMD proteins adsorbed to the bottom of the microwell and
attenuating the UV before it passes through the free proteins still in
solution potentially confounding the absorbance readings (Section 2.2.2.3)

(iv) Attempts to block EMD adsorption to the bottom of the microwells to
circumvent the issue of UV attenuation by EMD adsorbing to the bottom of
the micro wells (Section 2.2.2.4).

(v) A use of the assay to study p.Y64H mutant and WT r-amelogenin
interactions (Section 2.2.2.5).
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2.2.2.1 Effect of the initial EMD concentration on binding equilibrium: 
determination of an EMD concentration required to saturate the 
microwells surfaces.  

The minimum concentration of EMD proteins required to saturate the polystyrene 

surface of the microwells was optimised by measurement of loss of protein from 

solution using spectrophotometry in the UV at 220 nm.  

At room temperature, EMD was dissolved in 1 % acetic acid to 48,308 µg/mL to 

prepare a stock solution. The stock was then diluted 1:290 with PBS to give a final 

EMD concentration of 166 μg/mL. This solution was then further diluted with PBS 

(containing 1 % acetic acid at 290:1) to give solutions containing EMD at 166, 99.6, 

66.4 and 33.2 μg/mL. Immediately after preparing the EMD solutions, aliquots were 

taken for SDS PAGE analyses. Then, 200 μL of each solution were added into empty 

polystyrene UV-transparent microwells (n=6 replicates) and left to incubate for 24 

hours in the microplate reader1. Absorbance measurements at 220 nm were recorded 

every hour during the incubation period. The averages of the 6 replicates were plotted 

using Excel software, after subtracting the blank values and the standard deviations 

calculated. At the end of the incubation, 15 µL aliquots were taken from each of the 

replicates, pooled, frozen to -80°C and lyophilised. The lyophilisates were re-dissolved 

to their original volume in 90 µL non-reducing sample buffer for analytical SDS PAGE 

(see Section 2.1.1.4, pp. 100 - 102 and Supplementary data (CD))  

2.2.2.2 Optimisation of the methodology to analyse the kinetics of 
protein-protein interactions  

In the Section above (2.2.2.1), the conditions required to saturate the surface of the 

microwells with EMD were identified. The next stage in developing the binding assay 

was to determine the effects of adding a fresh solution of EMD to the already saturated 

microwell surface to investigate whether subsequent protein – protein interactions 

occurring between immobilised EMD (bait protein) and the freshly added EMD free in 

solution could be followed by monitoring the disappearance of free EMD from solution 

by UV absorbance spectroscopy. Figure 31 below shows a hypothetical result 

illustrating the principle of the method. Any decrease of absorbance (protein 

concentration in solution), during the second incubation period would be assumed to 

reflect protein-protein binding rather than the loss of protein due to a combination of 

1 Note: The absorbance measurements started 10 minutes after the EMD solution was 
prepared. As 10 minutes represent 0.7% of the 24-hour incubation period, these 
10 minutes were considered as negligible and the starting time of absorbance 
measurement was considered to be the starting time of experiment. 
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protein-surface + protein-protein interactions occurring during the first incubation 

period during which the microwell surface becomes saturated. 

Figure 3 1 Hypothetical signal pattern obtained while monitoring initial EMD-
polystyrene interactions that saturate the microwell surface and 
subsequent EMD-EMD interactions occurring after the addition of fresh 
protein solution. The absorbance decrease in this second incubation 
period is assumed to be due to depletion of the solution due to the freshly 
added EMD interacting with the EMD already immobilised to the 
polystyrene surface during the initial saturation step. 

The procedure is described below and summarised in Figure 32 (p. 129). 

EMD was accurately dissolved in 1 % acetic to 42,735 µg/mL to provide a stock 

solution. The stock was then diluted 1:284 with PBS (pre-warmed to 37°C) to give a 

final EMD concentration of 150 μg/mL. Immediately after preparing the solutions, 

aliquots were taken for SDS PAGE analyses. A blank solution comprising of 1 % 

acetic acid diluted with PBS (pre-warmed to 37°C) at a ratio 1:284 was also prepared. 

Then, 200 µL of each solution were added into empty polystyrene UV-transparent 

microwells (n=6 replicates), and subjected to an initial incubation period of 24 hours at 

37°C during which time the well surfaces became saturated with EMD protein (“Phase 

1”). The microplate was covered with cling film to prevent evaporation and the process 

was monitored by recording absorbance measurements at 30-minute intervals 

throughout the incubation period. The average absorbance of the 6 replicates were 

plotted with after the subtracting the blank at each time point and standard deviations 

calculated. At the end of the incubation period, 15 µL aliquots were taken from the 

solutions in each microwell replicate, pooled, frozen to -80°C and lyophilised. The 

lyophilisates were redissolved to their original volume (90µL) in non-reducing sample 
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buffer (see Section 2.1.1.4, p.100) for analytical SDS PAGE. Further details regarding 

the SDS PAGE analyses are provided in Section 2.1.1.4 (p. 100 - 102) and in the 

supplementary data (CD)).  

The microplates were then inverted and tapped forcefully to remove the residual 

solutions from the microwells.  

Aliquots of a fresh solution of the EMD (at concentration 150 µg/mL as described for 

phase 1 above) were taken for analytical SDS PAGE and a second incubation period 

was then immediately initiated (“Phase 2”) by adding 200 µL of the fresh EMD solution 

to the recently emptied microwells (the resulting protein interactions are referred to as 

“EMD- EMD” i.e. free EMD was presumed to be interacting with EMD already 

immobilised to the surface). Two-hundred microliters of the fresh EMD solution were 

also added into microwells previously incubated with blank solutions as a control (this 

condition is referred to as “EMD-Polystyrene” i.e. free EMD is just interacting with the 

polystyrene surface and is essentially a repeat of phase 1 but it is concomitant with 

phase 2). The microplate was covered with cling film to prevent evaporation and the 

second incubation lasted 24 hours at 37°C. UV absorbance at 220 nm was again 

recorded every 30 minutes throughout. The average absorbance readings of the 6 

replicates were plotted, readings for the blanks subtracted and standard deviations 

calculated. After the incubation had ended, aliquots were taken from the solutions in 

the microwells for SDS PAGE as described above for phase 1. Further details 

regarding the SDS PAGE analyses are provided in Section 2.1.1.4, pp. 100 - 102 and 

in the supplementary data (CD)).  

The data points obtained during the second incubation period (describing EMD- EMD 

interactions and EMD-polystyrene interactions (control)), were replotted to represent 

the gain of protein by the polystyrene surface rather than the loss of protein from 

solution. The points were replotted as A0-AT (where A0 = initial absorbance at the start 

of phase 2 and AT = absorbance measured at time T between the start and the end of 

phase 2). They were then subjected to curve-fitting on OriginPro 9.1 (OriginLab 

corporation, Northampton, MA), to identify the equation that best fitted the data which 

would allow kinetics descriptors such as half-time T1/2 and the maximum ordinate value 

(i.e. the final amount of protein adsorbed to the polystyrene surface at equilibrium) to 

be calculated.  

OriginPro comprises over 150 functions for curve-fitting, grouped as “function 

selection” sets (e.g.: exponential, logarithm, polynomial). Within each set, OriginPro 

can perform curve-fitting with model ranking for a given dataset. For the “gain of 

protein by polystyrene surface” data plots, 70 functions fitted the data to some degree, 

with 21 yielding an r-square value of between 0.99 and 1. The Hill equation model 

(Hill, 1910) was one of these and fitted both plots for “EMD-EMD” and “EMD-
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Polystyrene” reactions. It was therefore chosen as the best fitting model and was used 

to predict T1/2 and the maximum ordinate value reached. 

Figur 3e 2 Summary of the methodology used to investigate EMD-EMD 
interactions using a microplate based assay. A solution of EMD proteins 
(150 µg/mL) was left to incubate for 24 hours in microwells (phase 1). 
Aliquots of the solution were taken for SDS PAGE analyses before and 
after incubation (at the time points T= 0 hours, 24 hours, indicated). Then 
the microwells were emptied and fresh EMD solution (150 µg/mL) was 
added again in the test microwells (phase 2). Aliquots of the solution were 
taken for SDS PAGE analyses before and after incubation (at the time 
points T= 24 hours, 48 hours, indicated). The absorbance was monitored at 
220nm. 
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2.2.2.3 Effect of proteins adsorbed on the bottom of the microwells on 
the absorbance value: a possible confounder 

During the course of these binding experiments, it was an inevitability that proteins 

would bind to the bottom of the microwells in addition to the microwell sides. The aim 

of this experiment was to investigate how the microplate absorbance measurements 

were affected by proteins binding to the bottom of the microwells. The methodology 

was again based on determination of the depletion of free protein from solution. 

Proteins coating the bottom of the microwells are lost from solution but they may still 

contribute to the UV absorbance measured, as they will still be in the light path. The 

question was therefore whether the layer of proteins adsorbed to the bottom of the 

microwell exhibited significant UV absorbance compared to the amount in solution, 

potentially confounding the data. To determine the significance of this potential 

confounder a solution of EMD (at concentration 150 µg/mL) was freshly prepared as 

described above (Section 2.2.2.2) and 200 µL were incubated for 24 hours at 37°C in 

the microwells (n=6) along with blank microwells containing a solution comprised of 

PBS:1 % acetic acid at a ratio 284:1. The microplate was covered with cling film to 

prevent evaporation. At the end of incubation, the solutions were discarded from the 

microwells, immediately after which the absorbance was read again. The average 

absorbance measurements were recorded1 and the blank values subtracted. Any 

absorbance remaining was assumed to be associated with proteins adsorbed to the 

microwell bottom. 

The data obtained (in Section 3.2.2.3) suggested that proteins adsorbing to the bottom 

of the microwells (either directly to the surface or via immobilised proteins already 

present on the surface) could be reliably detected using UV absorbance spectroscopy. 

This could therefore provide an ‘end point’-based microplate assay for monitoring 

protein-protein interactions (as opposed to the method described above based on 

using UV absorbance spectroscopy to monitor the depletion of protein from solution as 

it interacts with immobilised proteins already on the well surfaces). However, as 

described in the next Section an attempt was made to address the issue of protein 

adsorption to the bottom of the microwells by pre-blocking the bottom of the microwells 

with standard blocking proteins used in numerous assays such as western blotting and 

enzyme linked immunosorbent assays. 

1 Note: The absorbance measurements started 4.5 minutes after the EMD solution 
was prepared. As 4.5 minutes represent only 0.3% of the 24-hour incubation 
period, the starting time of absorbance measurement was considered to be the 
starting time of experiment. 
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2.2.2.4 Blocking the bottom of the microwells to inhibit adsorption of test 
proteins 

To prevent any EMD proteins from binding to the bottom of the microwells and 

confounding the determination of the absorbance values of the solutions remaining in 

the microwells, an attempt was made to block EMD binding to the bottom of the 

microwells. This required an effective blocker that would prevent EMD proteins from 

binding to the polystyrene surface. Microplate-based immunological assays employ 

various blocking regimes to abolish non-specific binding of detection antibodies to 

exposed microwell surfaces once the sample containing the antigenic target of interest 

has been adsorbed (Gibbs, 2001). Gold standard blockers bovine serum albumin 

(BSA) and non-fat dry milk proteins (NFDM) were tested therefore to investigate their 

ability to prevent the unwanted adsorption of EMD on to the microwell bottom. 

Solutions of BSA and NFDM were added into microwells and the proteins allowed to 

bind (block) the microwell surfaces. The microwells were then washed and the ability 

of the blocked surfaces to bind EMD were tested by adding EMD in solution and 

monitoring its depletion from solution using UV absorbance spectroscopy. As shown in 

Figure 33 below, effective blocking was expected to result in the absorbance 

remaining constant over the incubation period whereas the absence of blocking 

(control) would cause the absorbance to fall over time as the EMD was removed from 

solution by binding to the well surfaces. 

Figure 3 3 Hypothetical signal expected over incubation time in microwells 
effectively blocked (orange dashed line) compared to control (solid black 
line) with no blocking . In case of effective blocking the concentration of 
EMD in solution would remain constant, causing a constant absorbance 
signal overtime. In contrast, in the control without blocking, absorbance 
would fall with time as the concentration of EMD in solution falls as it 
adsorbs the well surfaces.  
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Blocking solutions were prepared by dissolving BSA cat no. 05479 (Sigma-Aldrich, St 

Louis, MO) and NFDM cat no. 170-6404 (Bio-Rad Laboratories Ltd., Hemel 

Hempstead, UK) at 1 % in a mixture of PBS and 1 % acetic acid (290:1). Two hundred 

microliters of each blocking solution were added to microwells (n=6) and the 

microplate was sealed with parafilm and incubated overnight at 4°C. The next day, the 

microwells were washed 3 times with PBS and tapped dry. EMD dissolved at 166 

μg/mL in a mixture of PBS and 1 % acetic acid (290:1) was prepared and an aliquot 

was taken immediately for SDS PAGE analyses later. Two hundred microliters of the 

EMD solution were then added to the blocked microwells. As a control, 200 µL of EMD 

were also added to non-blocked wells (n=6). The absorbance was recorded1 at 220 

nm at hourly intervals for 24 hours at room temperature. After incubation, 15 µL 

aliquots were taken from the microwells, pooled, frozen to -80°C and lyophilised. The 

lyophilisates were re-dissolved to their original volume (90 µL) in non-reducing sample 

buffer for analytical SDS PAGE (see Section 2.1.1.4 pp. 100 - 102 and Supplementary 

data (CD)). The experiment is summarised in Figure 34 below.  

1 Note: The absorbance measurements started 10 minutes after the EMD solution was 
prepared. As 10 minutes represent only 0.7% of the 24-hour incubation period, the 
starting time of absorbance measurement was considered to be the starting time 
of experiment. 
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Figur 3e 4 Summary of microwells blocking trial. (1) A solution of 1% BSA or 1% 
NFDM was left to incubate overnight in microwells at 4°C. At the end of 
incubation the microwells were washed and tapped dry. (2) Then, fresh 
EMD solution (166 µg/mL). The control condition consisted of incubating 
fresh EMD solution in microwells that were not previously incubated with 
BSA or NFDM. Aliquots of the solution were taken for SDS PAGE analyses 
before and after incubation with EMD (at the time points T= 0 hours, 24 
hours, indicated). The absorbance was monitored at 220nm. 
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2.2.2.5 Behaviour of WT and mutant pY64H r-amelogenins in the 
microplate-based assay 

The r-amelogenins used throughout the thesis carried a His-tag for purification by 

nickel column chromatography (see Figure 24, p. 108), which was the initial 

purification strategy and a standard method for purifying recombinant proteins. The 

initial aim was then to obtain cleaved and purified WT and p.Y64H mutant r-

amelogenins for use in protein binding studies. However, nickel column 

chromatography did not completely purify r-amelogenins successfully (see Section 

3.1.2.1.3), while preparative SDS PAGE provided highly purified fractions (see Section 

3.1.2.3.1). As the initial acetic acid extraction and subsequent preparative SDS PAGE 

could reach a high degree of purification, it became clear that nickel column 

chromatography and the associated His-tag were redundant. A further advantage with 

using His-tag-free r-amelogenins is that it bypasses the time-consuming and costly 

His-tag cleavage step. To this end, His-tag-free WT and p.Y64H mutant r-amelogenins 

(respectively “WT-His” and “Mut-His” r-amelogenins) were expressed by E. coli BL21 DE3 

competent cells using plasmids generated by a commercial company (Novoprotein 

Scientific, NJ, USA) during the final write up period of the thesis (earlier attempts by 

the company to produce these plasmids were unsuccessful due to ‘technical 

problems’). Details regarding the plasmids and sequences are provided in Appendix A. 

WT-His and Mut-His  r-amelogenins were initially purified using the acetic acid extraction 

procedure (kindly performed by Dr Sarah Myers and Mr. Matthew Percival). Time 

precluded further purification by preparative SDS PAGE and as described below, 

these were used directly along with WT+His and Mut+His  r-amelogenins (also extracted 

in 3% acetic acid) in the microplate assay which  simply measured the absorbance of 

protein accumulating directly on the bottom of the wells (see Section 2.2.2.3, p. 130).  

The acetic acid extracts containing r-amelogenins were lyophilised, desalted against 

125 mM formic acid (see Section 2.1.1.3, p. 99*, for details on desalting procedure) 

and lyophilised. The protein content of the extracts was analysed by mass 

spectrometry (see Appendix B for His-tag-free r-amelogenins and Figure 39 (p. 145) 

for His-tagged r-amelogenins). The lyophilisates were then dissolved in 1 % acetic 

acid to provide a 1.62 mM stock solution. The stock solutions were diluted 217.4 times 

in PBS pre-warmed to 37°C, to give a final r-amelogenin concentration of 7.46 µM. 

Considering that r-amelogenins were by far the major proteins in the acetic acid 

extracts, the concentration values disregarded any contaminants present. Immediately 

after preparing the test solutions, aliquots were taken for analytical SDS PAGE. Then, 

200 µL of each solution were added into empty polystyrene UV-transparent microwells 

(n=6) and left to incubate for 24 hours at 37°C. The microplate was covered with cling 
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film to prevent evaporation. The depletion of protein from solution was monitored by 

UV absorbance spectroscopy at A220nm. Absorbance was recorded every minute during 

the first 4 hours of incubation, then every 30 minutes until the end of the incubation 

period. The average absorbance of the 6 replicates for each of the 4 recombinant 

proteins were plotted1 after subtracting the blank values using Excel software, with the 

standard deviations calculated. The blank solution was comprised of PBS:1 % acetic 

acid at a ratio 216.4:1 (PBS: acetic acid). At the end of the incubation, 20 µL aliquots 

were taken from each of the microwell replicates, pooled, frozen to -80°C and 

lyophilised. The lyophilisates were re-dissolved to volume (120 µL) in 1X non-reducing 

sample buffer for analytical SDS PAGE. Further details regarding the SDS PAGE 

analyses are provided in Section 2.1.1.4 pp. 100 - 102 and in the supplementary data 

(CD)). Meanwhile the microplates were inverted and tapped forcefully to remove the 

solutions from the microwells, and the UV absorbance at 220 nm recorded and 

attributed to proteins present on the bottoms of the wells. 

1 Note: The absorbance measurements started 7 minutes after the EMD solution was 
prepared. As 7minutes represent less than 0.5% of the 24-hour incubation period, 
the starting time of absorbance measurement was considered to be the starting 
time of experiment. 
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Chapter 3 Results 

3.1 Production and purification of r-amelogenins 

3.1.1 Expression of recombinant WT and p.Y64H amelogenins in E. 
coli and their extraction in acetic acid. 

3.1.1.1 Expression of recombinant WT and mutant p.Y64H amelogenins 
in E. coli 

R-amelogenins WT+His and Mut+His were produced in large quantities using an E.coli

expression system. The expression of WT+His or Mut+His  r-amelogenin was induced

with IPTG when the cell density was sufficient, that is, when the culture density

OD600nm was above 0.6 AU (see Section 2.1.1.1, pp. 92 - 93).

From a starting value below 0.1 AU, which corresponds to the starting time of the large

scale growth of E. coli, the OD600nm reached the value 0.67 AU after 2.5 hours growth.

At this time, the expression of r-amelogenin was induced by adding IPTG and the

cultures were incubated overnight. Figure 35 (p. 137) shows the SDS PAGE of total

protein present in the E. coli . Cultures induced overnight with IPTG expressed a

prominent 27 kDa protein that was absent in non-induced cultures. This band was

confirmed to be amelogenin by western blotting using anti-amelogenin specific

antibodies (Figure 35B). Prominent cross-reactively was present at 27kDa with less

intensely stained bands at 54 kDa, suggesting the presence of an amelogenin dimer.

A cross-reactive band at 30 kDa was present in samples from both non-induced and

induced E. coli cultures. Clearly, some bacterial protein of unknown identity was cross-

reacting with the anti-amelogenin antibody. The r-amelogenin was seen to be running

3-5 kDa higher than the positive control due to the presence of a His-tag in the case of

the recombinant. Also, cross-reactive bands at 15 and 20 kDa were present, at

relatively low concentration in samples from induced E. coli cultures. These may be

breakdown products of the r-amelogenin.
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Figure 53  SDS PAGE and western blotting of expressed E. coli proteins. R-
amelogenin was expressed by E. coli cells in large quantities, as WT+His or 
Mut+His (carrying a His-tag). (A) SDS PAGE showing that overnight 
incubation after induction with IPTG resulted in the expression of a 
prominent protein at 27 kDa. (B) Western blot showing that the 27 kDa 
protein cross-reacted with anti-amelogenin antibodies. with less intense 
cross-reactivity at 53 kDa.  
(MW = molecular weight markers; Ctr = r-amelogenin (minus His-tag) at 24 
kDa). 



- 138 -

3.1.1.2 Optimisation of 3% acetic acid amelogenin extraction procedure 

3.1.1.2.1 Optimisation of E. coli extraction in terms of ‘weight of E. coli to 
volume of acetic acid’ used in the extraction procedure 

To identify the ratio of weight of E. coli to volume of acetic acid that gave the maximum 

yield of r-amelogenin in a single extraction step but without over dilution, E. coli paste 

was resuspended in 3% acetic acid at 0.33, 0.17, 0.033 and 0.0033 g/mL (see Section 

2.1.1.2.1, p. 95). Figure 36A below shows that easily detectable amounts of r-

amelogenin were present in the 0.33, 0.17 and 0.033 g/mL extracts whereas r-

amelogenin was less easily detected in the 0.0033 g/mL extract (when equal volumes 

of sample were loaded on the gels). The obvious reason for this is that the r-

amelogenin was diluted by a factor of 100 in the 0.0033 g/mL extract compared to the 

0.33 g/mL extract. To account for the different dilution factors, the staining intensity 

associated with each band was quantified by gel densitometry (Figure 36B). From the 

table it is clear that extracting r-amelogenin from E.coli paste at 0.0033 g/mL provided 

the greatest yield of r-amelogenin. However, large volumes are more difficult to handle 

in downstream processing steps (e.g. lyophilisation) so as a compromise, extraction at 

0.033 g/mL was chosen as the optimum ‘weight of E. coli to volume of acetic acid’ ratio 

for extraction (giving a yield of r-amelogenin about 7 times greater than extracting at 

0.33 g/mL).  
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3.1.1.2.2 Optimisation of the mixing regimen and temperature on the yield of WT 
r-amelogenin extraction

The results reported above suggested that using 30 mL of acetic acid to extract WT+His 

r-amelogenin from 1 g of E. coli (equivalent to 0.033 g/mL extract, see Section

3.1.1.2.1 above) was efficient and demanded relatively little effort to extract the bulk of

the WT+His r-amelogenin. However, for E. coli expressing Mut+His , the process was not

so efficient, as it was more difficult to resuspend the cells in acetic acid, albeit not

impossible. The extraction regimen was therefore optimised in an attempt to make it

quicker and improve the yield, and to ease the procedure. The extraction process was

carried out as summarised in Figure 37A, using either manual mixing or a 0.5-1 minute

ultrasonication step to resuspend the cells.

To verify the effect of the heating treatment on the extraction procedure, the extraction,

using ultrasonication, was carried out with or without the heating step, as summarised

in Figure 37B p. 141.

SDS PAGE analysis in Figure 37A shows that Mut+His  r-amelogenin (27kDa) was 

successfully extracted in acetic acid. The similarity of the protein profiles observed and 

the amount of 27 kDa protein obtained (as indicated by similar band staining intensity) 

indicated that ultrasonication did not obviously alter the protein content, nor the yield of 

r-amelogenin extraction. These observations contrast with those of Svensson Bonde

and Bulow (2012) who suggested that sonication may not be “very feasible in large

scale” and may reduce the purity of the amelogenin extract obtained (Svensson Bonde

and Bulow, 2012). In this study, ultrasonication provided a quicker means of

resuspending the cells without affecting the quality of r-amelogenin extraction and

therefore it was adopted as the mixing regimen.

Analytical SDS PAGE, shown in Figure 37B, showed the protein profiles obtained

when fresh cells were resuspended in acetic acid, mixed and either heated to 75°C or

kept at room temperature for 20 minutes. Gel densitometry analysis indicated that with

the heat treatment, the 27 kDa band intensity was 33% stronger in the supernatant

and 66% weaker in the pellet obtained compared respectively with the 27 kDa band

intensities in the supernatant and pellets obtained by the procedure without heating.

This indicates that the heating step significantly increased the yield of r-amelogenin

extraction. However, analytical SDS PAGE also indicated that heating may increase

the extraction of other contaminants as well, although not significantly. This was

considered to be non-problematic, since the r-amelogenin extract would be subjected

to further purification using a panel of secondary purification techniques (strategy

summarised in Figure 40, p. 146) as described in the next Sections.
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Figure 73 Panel (A) summarises the optimisation of the mixing regimen for acetic 
acid extraction of r-amelogenin. The effects of ultrasonication and manual 
mixing on the resulting acetic acid extract were compared. SDS PAGE 
showed similar protein profiles in the acid soluble fractions for both mixing 
regimens used, indicating that ultrasonication did not affect the yield nor 
the quality of extraction of r-amelogenin. Panel (B) shows the effect of heat 
treatment on the yield. SDS PAGE showed the contents of the initial cell 
resuspension in acetic acid (lane labelled 1, black frame), of the final 
pellets and acetic acid-soluble fractions obtained with the heating step 
(‘Heat’, lanes labelled 2, red frames ) or without heating (‘No Heat’, lanes 
labelled 3, blue frames). This experiment showed that heating the mixture 
to 75°C significantly increased the yield of extraction of r-amelogenin in 
acetic acid. 
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3.1.1.2.3 Large scale acetic acid extraction of r-amelogenin using the optimised 
methodology 

The extraction process using 3% acetic acid was optimised specifically for the mouse 

WT+His and Mut+His r-amelogenins. This series of optimisations provided a method for 

large scale preparation, summarised in Figure 38 below. These findings are mostly 

consistent with those of Svensson Bonde and Bulow (2012). For scaling up, longer 

sonication time (2-3 minutes) was needed in order to obtain a homogeneous mixture. 

The acetic acid extract obtained was lyophilised, desalted, lyophilised again and 

analysed by mass spectrometry (Figure 39, p. 145).

Figure 83  Flow-diagram of the optimised extraction procedure. (1) E. coli were 
washed in 150 mM NaCl and (2) resuspended in 3% acetic acid at 30 mL/g 
wet weight of cells. The suspension was (3) mixed by sonication and (4) 
heated at 75°C for 20 minutes. (5) The acid soluble proteins were separated 
from insoluble residues by centrifugation at 3220 g for 20 minutes and (6) 
the supernatant containing the acid soluble proteins was lyophilised. 
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The spectrum obtained (Figure 39, p. 145) for the lyophilisate (desalted) showed 

peaks at 24732.99, 24748.33, 24764.22, 24779.83, 24795.63, 24812.20 Da. The peak 

at 24732.99 Da possibly corresponds to the WT+His r-amelogenin which has lost a 

methionine; its MW predicted on ProtParam (Ahirwar et al., 2015) is 24864.42 Da. The 

methionine lost is likely Met1 as E. coli endogeneous methionine aminopeptidases can 

remove N-terminal methionine (Gibbs, 2001). The presence of the other peaks at 

24748.33, 24764.22, 24779.83, 24795.63, 24812.20 Da indicate additions of 16 Da, 

which can be caused by oxidations at various degrees (from 1 to 5 additions of 16 Da). 

For clarity, the hypothesis is summarised in Table 8.  

Table 8  Interpretation of mass spectrometry spectrum (peaks observed, Figure 
39) obtained from the desalted lyophilisate). In the hypothesis that
additions of 16 Da correspond to oxidations, the number of oxidations are
referred to as “+ … Ox.”

r-amelogenin state Predicted MW Total MW observed on 
spectrum  

Full length m0 = 24864.42 Da None 

Full length –Met1 m1 = 24733.23 Da 24732.99 Da 

[Full length –Met1] +1x Ox. = m1 + 16 Da 24748.33 Da 

[Full length –Met1] +2x Ox. = m1 + 32 Da 24764.22 Da 

[Full length –Met1] +3x Ox. = m1 + 48 Da 24779.83 Da 

[Full length –Met1] +3x Ox. = m1 + 64 Da 24795.63 Da 

[Full length –Met1] +5x Ox. = m1 + 80 Da 24812.20 Da 
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3.1.2 Strategies for secondary purification to obtain purified r-
amelogenin for binding studies 

Following optimisations as described above, the procedure for r-amelogenins  

extraction in 3% acetic acid was scaled up as summarised in Figure 38 (p. 143). This 

process resulted in a significant enrichment of r-amelogenin. However, acid-soluble 

bacterial proteins were still visible (with contaminants of 10 – 75k Da visible on SDS 

PAGE with Coomassie Blue staining, see Figure 37). Secondary purification was 

therefore needed to remove these and to isolate r-amelogenin at a suitable purity for 

future use in binding assays. A panel of standard protein purification techniques was 

tested and eventually optimised (Sections 3.1.2.1 – 3.1.2.3). The purification strategy 

is summarised below in Figure 40. 

Figure 04  Secondary purification of r-amelogenin from 3% acetic acid extract. 
Summary of the strategy developed to determine the optimum method 
providing with r-amelogenin at a suitable purity for future binding studies. 
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3.1.2.1 Purification of r-amelogenin using nickel column chromatography 
As shown previously (see Section 3.1.1.2.2, pp. 140 - 144), acetic acid extracts were 

enriched with r-amelogenin but still contaminated with bacterial proteins (seen on 

analytical SDS PAGE as bands ranging 10 - 75 kDa; Figure 37). Further purification 

steps were therefore trialled to reduce these bacterial contaminants. The first method 

tested was that of nickel column affinity chromatography. 

The results presented below detail the purification of r-amelogenin using standard two-

round nickel column chromatography. The two-round nickel column chromatography 

procedure is summarised in Figure 41 overleaf.  
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Figure 14  Purification of r-amelogenin using two rounds of nickel column 
chromatography. The results obtained from steps (1), (2) and (3) are shown 
in Figures 42, 43 and 44 as indicated on the flow chart. 
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3.1.2.1.1 First round of nickel column chromatography to accomplish an 
effective “clean-up” 

The acetic acid extract (produced by the procedure summarised in Figure 38, p. 143) 

was desalted and subjected to a first round of nickel column chromatography to purify 

His-tagged r-amelogenin from any bacterial contaminants co-extracted in the acetic 

acid. To summarise, the technique employs immobilised nickel ions in a column 

through which the sample is pumped. His-tag has a high affinity for nickel 

(Jeyachandran et al., 2009) and His-tagged proteins (i.e. r-amelogenin) are retained 

on the column while other proteins are washed out in the flow-through. The His-tagged 

protein is subsequently recovered by increasing the concentration of imidazole in the 

buffer passing through the column which competitively displaces the His-tagged 

protein from the nickel allowing for elution and collection.  

The chromatogram obtained using this method is shown in Figure 42A along with 

Coomassie Blue-stained SDS PAGE analysis showing the protein content of the 

starting material (the crude acid extract) and the protein content of the two peaks 

collected during chromatography. SDS PAGE of the starting material showed the clear 

presence of a 27 kDa component that corresponded to the molecular weight of His-

tagged r-amelogenin along with a number of contaminating bacterial proteins. The first 

2 fractions collected after the sample was injected onto the column (Fr 1 and Fr 2) 

corresponded to the flow-through of proteins that failed to bind to the column in 20 mM 

imidazole. SDS PAGE of these two fractions confirmed that the flow-through 

comprised the bulk of bacterial contaminants. On increasing the imidazole 

concentration to 200 mM, a second peak was eluted and collected in Fr 3, Fr 4 and Fr 

5. Analytical SDS PAGE showed that these fractions (especially Fr 3) were highly

enriched in r-amelogenin, migrating at 27 kDa. Figure 42B reproduces the SDS PAGE

analysis described above to allow it to be compared to a corresponding anti-

amelogenin western blot. The intense immuno cross-reactivity detected at 27 kDa

confirmed that protein migrating at this molecular weight was r-amelogenin. The cross-

reactivity above 27 kDa was presumably due to the presence of His-tagged r-

amelogenin homodimers migrating at 54 kDa.
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3.1.2.1.2 Second round of nickel column chromatography to isolate cleaved r-
amelogenin 

The His-tagged r-amelogenin eluted in Fr 3 (see Figure 42, p. 150) was subjected to 

His-tag cleavage by incubation with HRV3C protease (method described in Section 

2.1.2.1.2, p. 109). The ratio of enzyme-to-substrate was previously optimised 

(Appendix C) and 3 µL of stock HRV3C protease per mg substrate was identified 

within the range of minimum amounts of enzyme resulting in a maximum yield. The 

cleavage was carried out in 50 mM Tris-HCl, pH=8, previously shown to be an 

effective cleavage buffer (Appendix D).  

 

Figure 34  SDS PAGE showing the efficacy of His-tag cleavage from r-amelogenin 
using HRV protease over 24 hours. The 27 kDa uncleaved His-tagged r-
amelogenin was cleaved with approximately 50% efficiency to a generate 
His-tag-free r-amelogenin cleavage product at around 24 kDa. The cleavage 
reaction mixture also contained an additional three bands (46, 50 and 54 
kDa) possibly representing homodimers of cleaved and uncleaved r-
amelogenins and heterodimers of cleaved and uncleaved r-amelogenin 
respectively. The Figure has been adapted from Gabe et al, 20171 

  

                                                
1 Figure 43 is adapted from Gabe et al. (2017) under the terms of the Creative Commons 

license CC BY (https://creativecommons.org/licenses/by/4.0/) 
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Analytical SDS PAGE with Coomassie Blue staining (Figure 43) showed that the His-

tag cleavage was only 50% efficient, as both 24 kDa (‘cleaved’) and 27 kDa band 

(‘uncleaved’) r-amelogenins were present in the cleavage mixture. The apparent 

homodimer migrating at 54 kDa was observed in the uncleaved sample but after 

cleavage, another two bands migrating at 50 and 46 kDa were evident. The 46 kDa 

and 50 kDa bands could correspond to homodimers of r-amelogenin and heterodimers 

of cleaved and uncleaved r-amelogenin respectively. The cleaved sample also 

contained a band migrating below 10 kDa which corresponds to the cleaved His-tag. 

Following incubation with HRV3C protease, the reaction mixture was buffer-

exchanged into 20 mM imidazole nickel column chromatography binding buffer ready 

for reloading on the nickel column for a second round of nickel column purification. 

The second round of nickel column chromatography was carried out to isolate cleaved 

r-amelogenin (now freed of its His-tag) from the remaining uncleaved His-tagged r-

amelogenin, the cleaved His-tag and the HRV3C protease (which itself is His-tagged).

The cleaved r-amelogenin was the only protein in the mixture without a His-tag and in

theory at least, should not have bound to the nickel column but instead should have

eluted in the flow-through.
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Figure 44A below shows the chromatogram and Coomassie Blue-stained SDS PAGE 

analysis of the fractions obtained. SDS PAGE of the starting material showed the 

presence of the cleaved and uncleaved r-amelogenin migrating at 24 and 27 kDa 

respectively. The initial flow-through collected in Fr 1 contained only a trace of the 

expected cleaved r-amelogenin – clearly the cleaved r-amelogenin was retained on 

the column even though the His-tag had been cleaved off (the reason for this 

phenomenon is explored in Section 4.1.2.2.3, p. 221). In an attempt to elute cleaved r-

amelogenin, the imidazole concentration was increased to 60 mM; this was an attempt 

to compete off the cleaved r-amelogenin whilst leaving the uncleaved His-tagged r-

amelogenin still bound to the column. Increasing the imidazole concentration in the 

buffer flowing through the column to 60 mM immediately resulted in the elution of 

protein which was collected in Fr 2. SDS PAGE of Fr 2 showed that 60 mM imidazole 

was able to elute the 24 kDa cleaved r-amelogenin while leaving the uncleaved r-

amelogenin still bound to the nickel column. The uncleaved r-amelogenin (and the 

cleaved His-tags) was subsequently eluted from the column as expected by increasing 

the imidazole concentration to 200 mM.  

Figure 44B shows each fraction presented in Figure 44A run on a single gel to make 

comparisons between each fractions easier to see. The analytical SDS PAGE 

graphically demonstrated that the methodology was able to separate cleaved (Fr 2) 

from uncleaved r-amelogenin (Fr 3). However, upon staining the gel with silver, a more 

sensitive stain than Coomassie Blue (Morrissey, 1981), revealed that the uncleaved r-

amelogenin (Fr 2) was still contaminated with traces of uncleaved r-amelogenin and 

possibly HRV3C protease (Figure 44C). Interestingly, Fr 3 contained the bulk of 50 

and 54 kDa- molecular complexes which required 200 mM imidazole for elution while 

Fr 2 contained the 46 kDa complex eluting with 60 mM imidazole . This agreed with 

the idea that the 50 and 54 kDa- molecular complexes are comprised of heterodimers 

of the cleaved and uncleaved r-amelogenin and homodimers of the uncleaved r-

amelogenin whilst the 46kDa complex is a dimer of the cleaved r-amelogenin (since 

the presence of a His-tag in the complex increased its affinity for the nickel column). 
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In summary, using classic two-step nickel column chromatography methodology 

produced a fraction highly enriched with r-amelogenin, though the fraction was not 

absolutely pure as judged by silver stained SDS PAGE. Separating the cleaved r-

amelogenin was problematic in that it was still bound to the nickel column even without 

a His-tag and an elevated imidazole concentration (60 mM) was required to elute the 

protein; this possibly explains the presence of contaminating uncleaved protein that 

was also eluted in small amounts in the presence of 60 mM imidazole. In addition, the 

efficacy of the proteolytic cleavage step to remove the His-tag was only about 50% 

which would have an obvious impact on the yield obtained.  
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3.1.2.2 Purification of r-amelogenin using size exclusion chromatography 
As purification of r-amelogenin based on His-tag affinity chromatography did not 

generate absolutely pure r-amelogenin, SEC was trialled as an alternative 

methodology. Using this methodology, separation is based on the molecular weight of 

the components of interest. The procedure is easily scalable and does not necessitate 

the use of and disposal issues associated with hazardous chemicals (unlike nickel 

columns, which are regenerated with highly toxic nickel II solution).  

The effect of operational variables such as the column matrix pore size and the 

column bed height were tested to see the degree of separation achieved. The 

development of a size-exclusion-based purification method is summarised in Figure 45 

overleaf.  
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Figure 54  Purification of r-amelogenin using SEC: optimisation of bed height 
and pore size. Once lyophilised, the acetic acid extract was directly 
subjected to SEC. For a bed height of 35 cm, two matrices with different 
pore sizes were tested: Bio-gel P-30 matrix (detailed in Section 3.1.2.2.1) 
and Bio-gel P-10 matrix (detailed in Section 3.1.2.2.2). The second bed 
height tested was 95 cm, using Bio-gel P-10 matrix (detailed in Section 
3.1.2.2.3). Small aliquots from the fractions collected were taken for 
analytical SDS PAGE. 
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3.1.2.2.1 Size exclusion chromatography using Bio-gel P-30 matrix, 35 cm bed 
height  

An attempt to isolate r-amelogenin (WT+His) from the acetic acid extract was made 

using a XK column (1.6 cm diameter * 35 cm bed height) packed with polyacrylamide 

matrix Bio-gel P-30. According to the manufacturer, this matrix has a fractionation 

range of 2.5 – 40 kDa, which brackets the 27 kDa r-amelogenin. Figure 46 below 

shows the separation of the acid extract components using 125 mM formic acid as the 

mobile phase. Analytical SDS PAGE with Coomassie Blue staining confirmed that the 

initial sample was comprised of the 27 kDa r-amelogenin and a number of 

contaminants (mostly migrating between 7-17 kDa). It was anticipated that the 27 kDa 

r-amelogenin would elute early and the first UV peak was collected into six fractions.

SDS PAGE of these 6 fractions showed that the r-amelogenin at 27 kDa was found

predominantly in fractions 1- 3. Fraction 1 contained the r-amelogenin at the highest

purity with fractions 2-3 containing increasing amounts of the lower molecular weight

contaminants, indicating that Bio-gel-p30 was not able to provide the degree of

purification required. The broader peaks eluting later corresponded to small molecules

(e.g. amino acids and other metabolites) present in the acetic acid extracts; they were

not resolved by analytical SDS PAGE due to their small sizes (data not shown).
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Figure 64  Separation of acetic acid extract components by SEC using Bio-gel P-
30 matrix, 35 cm bed height. The chromatogram and accompanying SDS 
PAGE analysis showed that the r-amelogenin at 27 kDa was found in the 
first UV elution peak at 25 mL after injection, predominantly in fractions 1- 
3. Fraction 1 contained the r-amelogenin at the highest purity with fractions 
2-3 containing increasing amounts of the lower molecular weight 
contaminants ranging 7 – 17 kDa. At 60-100 mL after elution, a number of 
lower UV peaks (below 50 mAU UV value) were visible. This likely 
corresponded to small UV absorbing molecules (amino acids, metabolites, 
salts or other non-protein components) that were retained through the 
column pores, due to their smaller radii. 
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3.1.2.2.2 Size exclusion chromatography using Bio-gel P-10 matrix, 35 cm bed 
height  

The Bio-gel P-10 polyacrylamide matrix, whose nominal exclusion limit range is 1.5-20 

kDa, was expected to improve the isolation of amelogenin away from the lower 

molecular weight contaminants compared with matrix P-30. In theory, the 27 kDa r-

amelogenin should be excluded from the matrix beads and elute quickly in advance of 

smaller contaminants below 20 kDa which would be retained as they diffuse into the 

matrix beads during the chromatographic run. The result is shown in Figure 47 below. 

Analytical SDS PAGE with Coomassie Blue staining showed that the 27 kDa r-

amelogenin was eluted in the first 4 fractions, corresponding to the first UV peak. 

Again, the very first fraction, representing the very first protein to elute from the 

column, contained r-amelogenin in the most pure state but even here, low molecular 

weight contaminants were visible. Most of the r-amelogenin eluted over the next 3 

fractions and contained far more low molecular weight contaminants.  

Isolation of 27 kDa r-amelogenin was, however, not improved compared with that 

observed with Bio-gel P-30 (Figure 46), as the bulk of r-amelogenin was collected with 

lower molecular weight contaminants.  
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Figure 74  Separation of acetic acid extract components by SEC using Bio-gel P-

10 matrix, 35 cm bed height. The chromatogram and accompanying SDS 
PAGE analysis showed that r-amelogenin at 27 kDa was found in the first 
UV elution peak, 20 mL after injection and predominantly in fractions 1 – 4. 
The first fraction contained r-amelogenin in the most pure state but also 
contained low molecular weight contaminants. The majority of the r-
amelogenin eluted over the next three fractions and contained far more low 
molecular weight contaminants. 
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3.1.2.2.3 Size exclusion chromatography using Bio-gel P-10 matrix, 95 cm bed 
height  

As shown above, columns of Bio-gel P10 and P30 matrices with 35-cm bed height 

failed to provide an adequate purification of r-amelogenin. In an attempt to improve the 

resolution, the bed height was increased to 95 cm. The content of each fraction 

collected was analysed by SDS PAGE with Coomassie Blue staining, shown below in 

Figure 48. Increasing the bed height to 95 cm appeared to provide a slightly better 

resolution of lower molecular weight contaminants (Figure 48) compared with the 

previous conditions working with 35 cm-bed heights (Figures 46 and 47, pp. 163 and 

165), however, the 27 kDa r-amelogenin was still not isolated in a sufficiently pure 

state. In all of the size exclusion chromatographies tested, the bulk of r-amelogenin 

was never found at single band purity (Figures 46 - 48). The reasons for such a less-

than-ideal performance are discussed later in Section 4.1.2.3, p. 225 

 

Figure 84  Separation of acetic acid extract components by SEC Bio-gel P-10, 95 
cm bed height. The chromatogram and accompanying SDS PAGE analysis 
showed that r-amelogenin at 27 kDa was found in the first UV elution peak, 
20 mL after injection and predominantly in fractions 1 – 9. The first fraction 
contained r-amelogenin in the most pure state but most of the r-
amelogenin was eluted over the next 8 fractions, which contained far more 
low molecular weight contaminants.   



- 167 - 
 

3.1.2.3 Purification of r-amelogenins using preparative SDS PAGE 
The purification techniques tested previously (nickel column chromatography, Section 

3.1.2.1 and SEC, Section 3.1.2.2) failed to isolate r-amelogenin to single band purity 

by analytical SDS PAGE (as determined by Coomassie Blue and silver staining) from 

the acetic acid extract. This may be due interactions of r-amelogenin with the column 

matrices, or the aggregative nature of r-amelogenin, possibly interacting with the 

contaminants (discussed later in Sections 4.1.2.2.2, p. 221 and 4.1.2.3, p. 225). In 

either case, this would be refractory to achieving a good separation. Since analytical 

SDS PAGE could evidently resolve the 27 kDa r-amelogenin from contaminants (as 

evidenced by the analytical SDS PAGE gels shown in the previous pages), preparative 

SDS PAGE was trialled to isolate r-amelogenin away from the bacterial protein 

contaminants comprised in the crude acetic acid extract, according to their apparent 

molecular weight. Experiments were therefore carried out (1) to isolate His-tagged r-

amelogenin from the acetic acid extract (Section 3.1.2.3.1, summarised in Figure 49), 

and (2) to isolate cleaved r-amelogenin (Section 3.1.2.3.2, summarised in Figure 53) 

using preparative SDS PAGE. Preparative SDS PAGE involves collecting protein 

fractions as the proteins separating on the gel are deliberately run off the bottom of the 

gel (an outcome to be avoided at all costs during analytical SDS PAGE).  
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3.1.2.3.1 Isolation of His-tagged r-amelogenin from acetic acid extracts by 
preparative SDS PAGE 

The crude acetic acid extract obtained as described in Section 3.1.1.2.3 (p. 143) was 

desalted, resuspended into SDS PAGE sample buffer and loaded on the preparative 

SDS PAGE gel as described in the Section 2.1.2.3, p. 115 (details on the composition 

of the gel are provided in Table 4 p. 102). The resulting fractions were collected and 

analysed using analytical SDS PAGE with Coomassie Blue staining using this 

technique. The procedure is summarised in Figure 49. Following this method, WT+His r-

amelogenin ready for cleavage was found at single band purity (Figure 50, p. 170) in 

fractions 25-52.  
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Figure 94  Purification strategy of WT+His r-amelogenin from acetic acid extracts 
using preparative SDS PAGE (Figure 26 reproduced). The desalted acetic 
acid extract was resuspended into SDS PAGE sample buffer and heated, to 
solubilise the proteins. The mixture was loaded on to the preparative SDS 
PAGE gel to separate its components according to their apparent 
molecular weights. From the fractions collected, small aliquots were taken 
and their content was analysed by analytical SDS PAGE with Coomassie 
Blue staining (Figure 50), silver staining and western blot (Figure 51) to 
identify the fractions containing r-amelogenin. These fractions were pooled 
together, desalted and lyophilised. The lyophilisate was subjected to mass 
spectrometry (Figure 52) and was ready to be subjected eventually to His-
tag cleavage and nickel column chromatography, to obtain a purified 
‘cleaved’ r-amelogenin. 
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After the fractions of interest (fractions 25 – 52) were analysed by analytical SDS 

PAGE with Coomassie Blue staining (Figure 50, p. 170), the purity and identity of r-

amelogenin in the fractions was further assessed by analytical SDS PAGE with silver 

staining and western blotting (Figure 51 p. 171). 

Analytical SDS PAGE with silver staining (Figure 51A) showed single band purity in 

fractions 25 to 49. The identity of r-amelogenin in these fractions was confirmed by an 

anti-amelogenin western blot (Figure 51B). Interestingly, strong immuno-cross-

reactivity was seen from fraction 24 onwards whereas silver staining detected proteins 

that appeared to migrate just under 27 kDa in fractions 22 - 23 and were poorly cross-

reactive with anti-amelogenin antibody (Figure 51B). Fractions 25 to 49 were then 

pooled together and desalted. The lyophilisate obtained after the round of preparative 

SDS PAGE yielded 4.90 mg of purified r-amelogenin from the 10 mg of desalted 

extract (a yield of ~50%). 

The lyophilisate obtained was then subjected to mass spectrometry. The spectrum 

obtained is shown in Figure 52 p. 173. The spectrum showed peaks at 24749.60, 

24763.15, 24780.55, 24812.4. 24827.85, 24844.45, 24860.20, 24876.25, 24892.4 Da. 

The peak at 24749.60 Da possibly correspond to WT+His r-amelogenin which has lost a 

methionine (likely Met1 )1 and has one oxidation (+16 Da)2. The presence of the other 

peaks at 24763.15, 24780.55, 24812.4. 24827.85, 24844.45, 24860.20, 24876.25, 

24892.4 Da indicate additions of 16 Da, which can be caused by oxidations at various 

degrees (from 2 to 10 additions of 16 Da). For clarity, the hypothesis is summarised in 

Table 9 (p. 174).  

1 As described in the Section 3.1.1.2.3, the loss of the N-terminal methionine is likely caused by 
E. coli endogenous methionine aminopeptidase (Ben-Bassat et al., 1987).

2 The MW predicted on ProtParam (Gasteiger et al., 2005) for r-amelogenin (minus Met1) is 
24733.23 Da. One oxidation on a residue adds 16 Da, resulting in a total mass of 
23749.23 Da. 
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Table 9  Interpretation of mass spectrometry spectrum (peaks observed, Figure 
52) obtained from the final lyophilisate). In the hypothesis that additions of
16 Da correspond to oxidations, the number of oxidations are referred to as
“+ … Ox.”

r-amelogenin state Predicted MW Total MW observed on 
spectrum  

Full length m0 = 24864.42 Da None 

Full length –Met1 m1 = 24733.23 Da None 

[Full length –Met1] +1x Ox. = m1 + 16 Da 24749.60 Da 

[Full length –Met1] +2x Ox. = m1 + 32 Da 24763.15 Da 

[Full length –Met1] +3x Ox. = m1 + 48 Da 24780.55 Da 

[Full length –Met1] +5x Ox. = m1 + 80 Da 24812.4 Da 

[Full length –Met1] +6x Ox. = m1 + 96 Da 24827.85 Da 

[Full length –Met1] +7x Ox. = m1 + 112 Da 24844.45 Da 

[Full length –Met1] +8x Ox. = m1 + 128 Da 24860.20 Da 

[Full length –Met1] +9x Ox. = m1 + 144 Da 24876.25 Da 

[Full length –Met1] +10x Ox. = m1 + 160 Da 24892.40 Da 
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3.1.2.3.2 Isolation of cleaved r-amelogenin by preparative SDS PAGE 

The previous section described the results when using preparative SDS PAGE to 

isolate pure His-tagged-r-amelogenin from the crude acetic acid extract. The strategy 

was that the purified protein would then be subjected to enzymatic cleavage to remove 

the His-tag (see Figure 49, p. 169) and then the cleaved r-amelogenin could 

theoretically be purified from uncleaved r-amelogenin using nickel column 

chromatography. This method would provide a product free of any bacterial 

contaminants since initial preparative SDS PAGE of the crude acetic extract was 

highly efficient at delivering purified uncleaved 27 kDa r-amelogenin (see previous 

Section). However, as evidenced in Figure 44B (p. 156), nickel column 

chromatography was not 100% efficient in separating cleaved and uncleaved r-

amelogenin. Given the exceptional purification power of preparative SDS PAGE (see 

previous Section), it was therefore decided to develop a modified approach that 

involved desalting and lyophilising the crude acetic acid prior to subjecting the entire 

spectrum of proteins present to His-tag cleavage. Preparative SDS PAGE would then 

be used to purify the cleaved r-amelogenin from the uncleaved r-amelogenin and 

bacterial contaminants. In effect, this approach would speed up the purification 

process as the nickel column chromatography steps would be no longer required. The 

process is summarised in Figure 53, below. 
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Figure 35  One-step purification of His-tag-free r-amelogenin from acetic acid 
extracts using preparative SDS PAGE. The methodology carried out is the 
same as that described in Section 3.1.2.3.1, except that a His-tag cleavage 
(with subsequent lyophilisation, desalting and lyophilisation) was added. 
The contents of the fractions obtained from preparative SDS PAGE 
purification are shown in Figure 54. 
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Analytical SDS PAGE with Coomassie Blue staining of every third fraction collected 

(Figure 54A) showed that preparative SDS PAGE of the crude acetic extract following 

cleavage was able to isolate cleaved r-amelogenin migrating at 24 kDa (fractions 38 - 

47). Figure 54B, showing silver stained analytical SDS PAGE for all fractions between 

38 and 47 shows that contaminating, uncleaved r-amelogenin at 27 kDa began to 

appear from fraction 45 onwards. Trace amounts of a slightly lower molecular weight 

contaminant were present in fraction 39, though in negligible amounts and typically 

fractions 39 to 44 could be pooled, desalted and lyophilised to prepare purified 24 kDa 

His-tag-free r-amelogenin. 

.  



- 179 -

3.2 Development of protein-binding assays 

In the search for mechanisms underlying AI and possibilities for a therapy, AI was 

identified as a conformational disease for the first time, using a mouse model carrying 

the mutation p.Y64H, which phenocopies the human mutation p.P70T (Barron et al., 

2010, Brookes et al., 2014). These reports hypothesised that the p.Y64H mutation 

causes amelogenin to aggregate during trafficking through the ER, which in turn leads 

to ER stress and ultimately to ameloblast apoptosis (Further description of these 

studies are provided in Section 1.3.4.1.3, p. 70). Having developed methods for 

producing purified r-amelogenin, the next aim was to use WT and mutant p.Y64H r-

amelogenin to investigate the effect of the mutation on amelogenin-amelogenin 

interactions in vitro, in order to test the above hypothesis.  

Several approaches can be used to study protein-protein interactions (e.g. QCM, SPR, 

ELISA). In the present study, the aim was to develop a cost effective and high 

throughput microplate-based assay to study amelogenin–amelogenin interactions. 

Such an assay would not only be useful for studying amelogenin-amelogenin 

interactions per se but would also provide a screening tool for testing potential 

therapeutics that might modulate any abnormal amelogenin-amelogenin interactions. 

To this end, attempts were made to develop two binding assays.  

3.2.1 Method 1: Fluorescence-based binding assay 

The basic strategy for method 1 involved immobilising amelogenin (bait protein) to 

microplate well surfaces to which was added FITC labelled amelogenin (the free ligand 

in solution). After incubation, microwells were washed and any amelogenin-

amelogenin binding was determined by measuring the fluorescence remaining bound 

to the microwells (see Figure 29, p. 123). To conserve r-amelogenin during method 

development, the 20 kDa amelogenin abundant in enamel matrix derivative (EMD – 

the non-commercial form of Emdogain) was purified by preparative SDS PAGE to be 

used as a surrogate for initial method development.  

The results presented below detail: 

(i) FITC-labelling of EMD
(ii) purification of the FITC labelled 20 kDa amelogenin from EMD and
(iii) trialling of FITC-20 kDa amelogenin in the microplate based binding

assays
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3.2.1.1 FITC-labelling of whole EMD. 
Whole EMD protein was dissolved in 0.1 M Na2CO3 at pH = 9, and labelled overnight 

with FITC (Section 2.2.1.1, p. 120). The labelled proteins were subjected to analytical 

SDS PAGE and visualised by UV excitation. The gels were also stained with 

Coomassie Blue to confirm the efficiency of the labelling (Figure 55). 

Figure 55  SDS PAGE analysis showing that EMD proteins were successfully 
labelled with FITC. Coomassie Blue staining and fluorescein-specific 
fluorescence revealed similar banding patterns. 

SDS PAGE analyses as shown in Figure 55 revealed that all proteins in EMD were 

successfully labelled with FITC, since all bands visible by Coomassie Blue staining 

were also visible using UV excitation of the fluorescent label.  
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3.2.1.2 Purification of the 20 kDa amelogenin from FITC-labelled EMD 
using Preparative SDS PAGE 

Following overnight labelling, the FITC reaction mixture was lyophilised, desalted 

against formic acid, lyophilised and subjected to preparative SDS PAGE. The process 

is summarised in Figure 56 below. The fractions obtained were analysed by analytical 

SDS PAGE. UV excitation was used to visualise the bands (Figure 57A), along with 

Coomassie Blue staining (Figure 57B) and silver staining (Figure 57C). 

Figure 65  Diagram summarising the preparation and purification of FITC-labelled 
EMD proteins. 



Fi
gu

re
75 
 A

na
ly

tic
al

 S
D

S 
PA

G
E 

sh
ow

in
g 

th
e 

fra
ct

io
ns

 o
bt

ai
ne

d 
w

he
n 

FI
TC

 la
be

lle
d 

EM
D

 p
ro

te
in

s 
w

er
e 

su
bj

ec
te

d 
to

 p
re

pa
ra

tiv
e 

SD
S 

PA
G

E.
 T

he
 c

on
te

nt
s 

of
 fr

ac
tio

ns
 1

-7
0 

w
er

e 
vi

su
al

is
ed

 b
y 

flu
or

es
ce

nc
e 

(A
) a

nd
 C

oo
m

as
si

e 
Bl

ue
 s

ta
in

in
g 

(B
), 

Fr
ac

tio
ns

 o
f i

nt
er

es
t (

re
d 

bo
x)

 w
er

e 
an

al
ys

ed
 fu

rth
er

 b
y 

SD
S 

PA
G

E 
w

ith
 s

ilv
er

 s
ta

in
in

g 
to

 v
er

ify
 th

ei
r p

ur
ity

 (C
). 

N
ot

e 
th

at
 th

e 
lo

w
 m

ol
ec

ul
ar

 w
ei

gh
t c

on
ta

m
in

an
ts

 
on

 th
is

 g
el

 w
er

e 
al

so
 p

re
se

nt
 in

 th
e 

bl
an

k 
la

ne
 (l

an
e 

“B
”)

 a
nd

 d
o 

no
t a

pp
ea

r t
o 

be
 a

ss
oc

ia
te

d 
w

ith
 th

e 
ac

tu
al

 2
0 

kD
a 

fra
ct

io
ns

 p
er

 s
e.

 
Th

es
e 

fr
ac

tio
ns

 w
er

e 
po

ol
ed

 to
ge

th
er

, t
he

n 
de

sa
lte

d 
an

d 
ly

op
hi

lis
ed

, p
ro

vi
di

ng
 th

e 
m

at
er

ia
l f

or
 fu

tu
re

 b
in

di
ng

 a
ss

ay
s.

- 182 -

dncmg
- 182 -



- 183 - 
 

 

The SDS PAGE analyses in Figure 57 (pictures A-B) showed that on UV excitation 

and Coomassie Blue staining, the 20 kDa bands appeared well resolved, indicating 

that the purification process was successful. The fact that the FITC-labelled proteins 

were visible on fluorescence (Figure 57A) indicated that the purification process did 

not affect the fluorescence. 

The component of interest, the 20 kDa-amelogenin, appeared in fractions 41-49. The 

purity of these fractions, and that of the neighbouring fractions (37 and 39) was 

analysed by silver staining of the analytical gel (Figure 57C). In the fractions of 

interest, the 20 kDa band appeared as the strongest signal by far. Other components 

were visible at 36 kDa, possibly dimers. Other bands were visible at lower molecular 

weight in all of the fractions analysed, including the blank lane, which suggested that 

these bands originated from extraneous contamination that occurred during the 

preparation of the electrophoretogram (e.g. dirty gel comb) rather than being present 

in the fractions themselves. The fractions 41 to 49 were then pooled together and 

desalted for the binding assays.  
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3.2.1.3 Measuring amelogenin binding between free FITC-labelled 
amelogenin and immobilised amelogenin as binding partners 

For the fluorescence-based binding assay (described in Section 2.2.1.3, pp. 122 - 

123), it was necessary to ensure that the microplate wells were saturated with 

adsorbed bait protein and establish whether the adsorbed proteins could resist 

subsequent washing, blocking and handling steps. For convenience, FITC-labelled 20 

kDa amelogenin (purified from EMD as described previously) was used as a surrogate 

protein to investigate the binding kinetics of amelogenin to the microwell surfaces and 

to determine the conditions required to achieve saturation of the microwells. The FITC-

labelled 20 kDa amelogenin was dissolved in binding buffer at concentrations between 

1 and 20 µg/mL, to determine the concentration required to saturate the microwell 

surface . To optimise binding conditions, three buffers were compared for binding: 

Na2CO3 at pH = 9, PBS at pH = 7.4 or TBS at pH = 7.2. For each of these buffers, the 

incubation was carried out overnight either at room temperature or at 4°C. After 

incubation, the microwells were washed 3 times and blocked with 1% bovine serum 

albumin (BSA) solution (see Section 2.2.1.3 , pp. 122 - 123) for one hour at room 

temperature. Afterwards the microwells were washed three times and pure water was 

added before the fluorescence associated with adsorbed FITC-labelled 20 kDa 

amelogenin was measured. The process is summarised in Figure 58.  
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Figur 85e  Experimental design of a preliminary test to determine the binding 
conditions necessary for FITC-labelled 20 kDa amelogenin to adsorb to, and 
saturate, microwell surfaces. Any fluorescent amelogenin that bound to the 
microwell surface was detected using a fluorescence plate reader (Figure 
reproduced from Figure 29). 

Preliminary microwell-coating test using FITC labelled 20 kDa 
amelogenin 

 

? 

(1) FITC- 20 kDa amelogenin in binding buffer
(Incubation overnight at room temperature or 4°C) 

(2) Washing

(3) Blocking

(4) Washing

(5) Fluorescence detection
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After carrying out the incubation, blocking and washing steps (as summarised in 

Figure 58, p. 185) the fluorescence readings were recorded (Figure 59, p. 186). The 

data obtained were plotted as averages of 3 repeats. For all conditions, the 

fluorescence detected increased with increasing initial concentration of the FITC-

labelled 20 kDa amelogenin added to the microwells. With PBS (pH 7.4) and Na2CO3 

(pH 9) based binding buffers, fluorescence approached a plateau at around 5 µg/mL 

FITC-labelled 20 kDa amelogenin and the amount of protein adsorbed appeared to be 

greater at room temperature. In contrast, when TBS (pH 7.2) was used as the binding 

buffer, a clear plateau region, indicative that the microwell surface had been saturated, 

was not evident and the fluorescent signal continued to increase with increasing initial 

concentration of FITC labelled 20 kDa amelogenin added to the microwells. 

The data were subjected to OriginPro curve-fitting in order to estimate parameters 

such as the concentration at which half-‘saturation’ (C1/2) occurs and the maximum 

fluorescence signal achieved. The optimum models for incubations in PBS (pH 7.4) 

and Na2CO3 (pH 9) found were sigmoidal/growth curves (Hill and Bolzmann) while an 

asymptotic based model best fitted the data for TBS (pH 7.2). The parameters 

generated by the models are reported in Table 10. 

Table 01  Comparison of buffers and incubation temperatures used to coat 
microwells with FITC labelled 20 kDa-amelogenin. This table compares the 
parameters generated by the fitting models (Figure 59). C1/2 is the 
concentration at which, in theory, the signal would be half of the saturation 
value; and the maximum signal, ‘Signal max’ is the signal at saturation. 
Standard deviations are specified between brackets below values reported. 

Buffer PBS  
Bolzmann or Hill 

TBS 
Asymptote 

Na2CO3 
Hill 

Temperature Room T 4°C Room T 4°C RoomT 4°C 

C1/2 (µg/mL) 2.368 
(±0.281) 

2.211 
(±0.138) 

10.072 
(±5.160) 

7.470 
(±1.350) 

2.265 
(±1.099) 

1.742 
(±1.112) 

Signal max 
(units) 

0.077 
(±0.019) 

0.051 
(±0.016) 

0.119 
(±0.033) 

0.067 
(±0.005) 

0.076 
(±0.036) 

0.042 
(±0.020) 

The fluorescence signals were read at neutral pH in pure water which would 

theoretically maximise the signal obtained as fluorescein fluorescence is inhibited at 

low pH (Chen et al., 2008). Even so, the signals in this case were very weak (below 

0.1 on average), even though labelled protein was supposedly saturating the microwell 

surfaces. This raised doubts as to whether this method would be sensitive enough to 

accurately determine the binding of labelled protein free in solution to unlabelled 

protein immobilised on the microwell surfaces. This, together with the fact that the 

labelling chemistry protein modifies lysine residues (Maeda et al., 1969), which may 
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modify protein behaviour, switched focus towards the second method of using the 

microplate format to measure amelogenin interactions. This second method was 

developed with the aim of monitoring the interaction of unlabelled protein free in 

solution to unlabelled protein pre-adsorbed to the microwell surfaces by the reduction 

in UV absorbance of the microwell contents as the free protein in solution interacted 

with the immobilised bait protein. 
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3.2.2 Method 2: Monitoring the kinetics of amelogenin-amelogenin 
interactions as a function of a reduction in UV absorbance 

The second method involved simply incubating unlabelled amelogenin in UV 

transparent microplate wells and monitoring the decrease in UV absorbance 

(illustrated in Figure 60 below) as amelogenin initially adsorbed to microwell surfaces 

(protein-polystyrene binding) followed by binding of amelogenin remaining free in 

solution to the immobilised amelogenin covering the microwell surfaces (protein-

protein binding). Protein concentration in solution is usually monitored 

spectrophotometrically at 280 nm, which is the absorbance maximum of tryptophan 

and tyrosine. However, the EMD proteins (mostly amelogenins) used as a model 

protein are not particularly rich in these residues. Therefore absorbance was 

measured at 220 nm, which is within the range of wavelengths at which peptide bonds 

absorb maximally (Goldfarb et al., 1951)  

The results presented in this Section detail development of the microplate assay with 

regards to: 

(i) the effect of the starting EMD concentration on the EMD-polystyrene
binding equilibrium (Section 3.2.2.1),

(ii) the optimisation of the methodology to investigate the kinetics of EMD
protein-protein interactions (Section 3.2.2.2),

(iii) the effect of EMD proteins adsorbed to the bottom of the microwell and
attenuating the UV before it passes through the free proteins still in
solution potentially confounding the absorbance readings (Section 3.2.2.3)

(iv) attempts to block EMD adsorption to the bottom of the microwells to
circumvent the issue of UV attenuation by EMD adsorbing to the bottom of
the microwells (Section 3.2.2.4).

(v) an attempt to use the assay to study mutant p.Y64H and WT r-
amelogenins interactions (Section 3.2.2.5).
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3.2.2.1 Effect of initial EMD concentration on binding equilibrium: 
determination of a concentration required to saturate the 
microwell surfaces.  

As illustrated in Figure 60 above, the hypothesis behind the microplate assay was to 

monitor protein interactions between proteins free in solution and proteins already 

immobilised to the polystyrene microwell surfaces at saturating levels, by tracking the 

depletion of protein from solution.  

To optimise the starting concentration of EMD proteins required to saturate the 

polystyrene microwell surfaces, freshly prepared EMD solutions in PBS:1% acetic acid 

(290:1) ranging in concentration between 33.2 and 166 and µg/mL were added into 

empty microwells and left to incubate for 24 hours with the absorbance monitored at 1 

hour time-points. The absorbance measurements (n=6 corrected by blank subtraction) 

are plotted in Figure 61A1. The graph obtained showed that for all concentrations 

tested, the absorbance decreased over 24 hours and the decrease of absorbance was 

characterised by a fast drop (in one or two phases) within the first 10 hours of 

incubation, after which it stabilised, indicating that the binding reactions, whatever their 

nature (EMD-polystyrene and/or EMD-EMD), had reached equilibrium. SDS PAGE 

analysis with Coomassie Blue staining of the solutions left in the microwells after 24 

hours (Figure 61B) supported the spectrophotometric data in that protein concentration 

was decreased in these solutions after 24 hours incubation. 

  

                                                
1 Note: The absorbance measurements started 10 minutes after the EMD solution was 

prepared. As 10 minutes only represent 0.7% of the total 24-hour incubation, the 
starting time of absorbance measurement was considered to be the starting time 
of experiment. 
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Figure 16  (A) A range of initial EMD concentrations (33.2 – 166.0 µg/mL) was 
used to investigate EMD adsorption onto the microwell surfaces by measuring 
the depletion of EMD from solution spectrophotometrically over time. (B) To 
confirm that proteins were being removed from solution by adsorption to the 
microwell surfaces, the contents of solutions before incubation (“0h”) and at the 
end of incubation (“24h”) were analysed by SDS PAGE. All the incubations were 
carried out at room temperature, in PBS:1% acetic acid (290:1). Absorbance data 
shows mean ± SD, n=6. 

A 

B 
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For the highest starting EMD concentrations (99.6 to 166 µg/mL), the contents of the 

solutions at the end of incubation showed similar signals on SDS PAGE analysis with 

Coomassie Blue staining (Figure 61B). This implies that the maximum equilibrium 

concentration was reached. At lower initial EMD concentrations (33.2 and 66.4 µg/mL), 

in contrast, the proteins remaining in solution appeared less concentrated on analytical 

SDS PAGE (Figure 61B) suggesting that equilibriums were reached, but not to 

saturation. So, within for initial EMD concentrations of 99.6 to 166.0 µg/mL, the 

polystyrene surface was apparently entirely covered by EMD proteins; this is illustrated 

below in Figure 62. At 166.0 µg/mL the drop of EMD concentration to the saturation 

level resulted from the binding equilibrium of EMD proteins still free in solution to those 

immobilised on the polystyrene surface (EMD-EMD-polystyrene interactions).  

 
Figure 26  Diagram illustrating the hypothesis in respect of equilibrium reached 

in the microwells, at initial EMD concentrations of (A) 33.2 µg/mL, (B) 66.4 
µg/mL, (C) 99.6 µg/mL and (D) 166.0 µg/mL). (A-B) At lower initial EMD 
concentrations (33.2 and 66.4 µg/mL) the solutions at equilibrium appeared 
less concentrated as proteins bound to polystyrene. The equilibrium 
concentrations in solution were lower than at the initial concentrations of 
99.6 and 166.0 µg/mL. (C-D) At the higher initial concentrations (99.6 and 
166 µg/mL), the equilibrium concentration appeared to reach its maximum 
value, being identical in both cases (highlighted by a dashed red frame). 
The polystyrene surfaces were therefore assumed to be saturated, and 
within that range of starting concentration, the binding equilibrium 
reflected that of protein-protein binding, that is: between EMD proteins still 
free in solution and those covering the polystyrene.  
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As described in Figure 60 (p. 190), the initial hypothesis speculated that an initial 

binding phase, involving EMD-polystyrene interactions, would occur until the 

polystyrene microwell surfaces were saturated with protein and thereafter, a second 

binding phase comprising EMD-EMD interactions would become evident. However, 

there was no obvious inflection point identifying a time point when a distinct EMD-EMD 

binding phase became prominent over the initial EMD-polystyrene binding phase 

during which the microwell surfaces were brought to saturation. It may well be that 

these two phases may occur simultaneously, explaining why there was no obvious 

inflection points on the graphs (Figure 61A). It was concluded that it would not be 

possible to monitor protein loss from solution that was attributable to EMD-EMD 

interactions in isolation from the protein lost from solution due to EMD-polystyrene 

interactions occurring during saturation of the polystyrene microwell surfaces.  

In order to overcome this problem it was decided to temporally separate the saturating 

of the surface of the microwells from the subsequent phase involving EMD interactions 

with immobilised EMD saturating the microwells. Quite simply, at the end of the 

incubation to saturate the microwell surfaces, the depleted protein solution was 

discarded and replaced with fresh EMD solution. The reduction in UV absorbance of 

this fresh solution over time would then more likely reflect the kinetics of EMD binding 

to the EMD already immobilised and saturating the polystyrene microwell surfaces. 
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3.2.2.2 Optimisation of the methodology to characterise the kinetics of 
protein-protein (EMD-EMD) interactions  

As described above, it appeared to be impossible to track the initial phase of EMD 

immobilisation on to the polystyrene microwells separately from any subsequent EMD 

interactions between EMD still free in solution and the immobilised EMD. To monitor 

the EMD- immobilised EMD binding reaction in isolation, the assay was adapted by 

first  saturating the surface of the microwells during an initial incubation with EMD 

solution and then once saturation equilibrium was achieved the solution was discarded 

and replaced with fresh EMD solution for a second phase of incubation during which 

protein-protein interactions could be tracked. As illustrated in Figure 63, showing an 

hypothetical result, any decrease of absorbance /protein concentration in solution 

during the second incubation, could be assumed to reflect the rate of protein-protein 

binding rather than the combination of [(EMD-polystyrene)+ (EMD-immobilised EMD)] 

binding1.  

 

Figure 36  Hypothetical signal obtained while monitoring initial EMD-polystyrene 
interactions that saturate the microwell surfaces and subsequent EMD-EMD 
interactions occurring after the addition of fresh protein solution. The 
absorbance decrease in this second incubation period is assumed to be due to 
depletion of the solution due to the freshly added EMD interacting with the EMD 
already immobilised to the polystyrene surfaces during the initial saturation 
step.  

                                                
1 For clarification (and to relate back to the research question) the final aim of this thesis is not 

to compare protein-protein interactions with protein-polystyrene interactions but to 
compare WT r-amelogenin – WT r-amelogenin interactions with mutant p.Y64H r-
amelogenin – mutant p.Y64H r-amelogenin interactions. Here, while the protein-
polystyrene interactions were of no interest with regard to answering the research 
question; they are an incidental and necessary component of the method. 
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EMD proteins were dissolved at 150 µg/mL in PBS:1% acetic acid (284:1) (which is 

within the range known to saturate the microwell surfaces, Section 3.2.2.1 p. 192) was 

incubated at 37°C for 24 hours in the microwells (Phase 1) of polystyrene plates. At 

the end of the incubation period, aliquots were taken from the microwells for SDS 

PAGE analyses of the protein content of the solution, and the microwells were then 

emptied. Fresh solutions of EMD (at 150 µg/mL in PBS:1% acetic acid (284:1)) were 

added to the saturated microwells in order to track ensuing EMD-EMD binding 

(Condition “EMD-EMD-polystyrene”). At this point EMD was also added to fresh 

microwells as a control (“Ctr”, or Condition “EMD-Polystyrene”). The decrease in UV 

absorbance was then monitored over the next 24 hours as protein-protein interactions 

depleted the free protein free in solution (Phase 2). At the end of this second 

incubation period, aliquots were taken for SDS PAGE analysis.  

The decrease in absorbance recorded over the whole 48 hours (n=6), was corrected 

by blank subtraction and plotted as reported in Figure 64 along with the SDS PAGE 

analysis of protein remaining free in solution at the end of each of the two incubation 

periods. 

Analytical SDS PAGE confirmed that proteins were depleted from solution during the 

first 24-hour incubation period during which the microwells became saturated. After 24 

hours, this solution was removed and replaced with fresh EMD ready for the 2nd 

incubation period (24 – 48 hours) during which it was assumed that EMD-EMD 

interactions would occur that could be followed as a separate set of events from the 

initial protein-polystyrene interactions that occurred during the previous 24 hours. As 

would be expected, the SDS PAGE profile of the fresh EMD added after the initial 24 

hours was identical to the profile of the EMD added at time 01. However, after 48 hours 

the profile showed evidence of significant depletion that presumably occurred due to 

binding of free protein in solution to the previously saturated microwell surfaces. The 

protein profile associated with the control microwell, (comprising fresh EMD added to 

empty microwells at the 24 hour point) showed that the protein content was reduced at 

48 hours (this is essentially a repeat of the initial incubation designed to saturate the 

microwells – it simply facilitates comparing the reduction in absorbance arising from 

protein–protein binding in the 24-48 hour period to the protein surface binding). 

Remarkably, SDS PAGE analysis suggests that not all proteins adsorbed to the 

1 Note: The absorbance measurements started 4.5 minutes (Phase 1) and 8 minutes 
(Phase 2) after the EMD solutions were prepared. As 4.5 and 8 minutes represent 
respectively 0.55 and 0.3% of the 24-hour incubation periods, the starting times of 
absorbance measurements were considered to be the starting times of 
experiment. 



- 197 -

polystyrene surfaces, as low molecular weight (< 10 kDa) components remained at the 

same concentration after 24 hours of incubation on analytical SDS PAGE 

It is noteworthy that the plateau region of the plot representing EMD-EMD binding in 

phase 2 was at a higher absorbance level than the plateau region obtained for the 

control sample and the plateau region associated with phase 1 during which the 

microwell surfaces were being saturated with EMD. This difference, marked ΔAbs on 

Figure 64, is thought to have been due to the absorbance of EMD on to the bottom of 

the microwell during phase 1 attenuating the UV light passing through fresh EMD 

solution added for phase 2. The cause of this difference will be reviewed again later, 

below. 
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The data points shown in Figure 64 (p. 198), obtained during the second incubation 

period (and so describing EMD-immobilised EMD binding and EMD-polystyrene 

binding (control)), were replotted to represent the gain of protein by the polystyrene 

surface rather than the loss of protein from solution. The points were replotted as A0-

AT (where A0 = intial absorbance at the start of phase 2 and AT = absorbance 

measured at time T between the start and the end of phase 2). The curves were then 

subjected to curve-fitting using OriginPro software and sigmoid Hill fit was identified as 

the best fitting model (Figure 65 below). The parameters extracted from this model are 

compared in Table 11. The Hill equation suggested that the times required to reach 

half equilibrium (T1/2, identified in Hill equation as ‘K’) were similar both when EMD was 

interacting with immobilised EMD (EMD-EMD-Polystyrene) or when EMD was 

interacting directly with polystyrene (EMD-EMD-Polystyrene). This similarity could be 

because there is still a possibility that “Phase 1” might be a combination of EMD-

polystyrene and EMD-EMD binding. However, the depletion of free EMD from solution 

was greater when it was interacting with immobilised EMD compared to when it was 

interacting with polystyrene (with a ‘Maximum gain’ value predicted 14% higher).  

Figure 56  Depletion of EMD from solution (calculated as AT subtracted from A0 
and plotted against time) using Hill curve-fitting. The conditions compared 
show measurements of absorbance depletion after adding 150 µg/mL EMD 
solution to empty microwells (control - white marker), or to microwells 
previously saturated with EMD (solid black markers). The Hill model shows 
that both conditions had similar half-time rates, but apparent maximum 
gain was greater (14% higher) in the case of microwells previously 
saturated with EMD during phase 1. This difference could be due to 
adsorption by EMD already immobilised to the bottom of the microwell 
elevating the absorbance readings obtained during phase 2 when freshly 
added EMD was interacting with the immobilised EMD. 
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Table 11  Kinetics parameters predicted by OriginPro curve-fitting with Hill 
Sigmoid equation (displayed above in Figure 65), describing the gain of 
EMD proteins by polystyrene for EMD-EMD-Polystyrene and EMD-
Polystyrene (ctrl). 

Hill sigmoid Parameters Maximum gain T1/2 

EMD-Polystyrene (Ctr) 0.5199 0.5148 

EMD-EMD-Polystyrene 0.5939 0.5583 

 

The Hill equation describes the effect of ligand concentration on the proportion of 

macromolecules saturated by that ligand and was originally derived to describe the 

sigmoidal curve associated with haemoglobin binding (Hill, 1910). The Hill equation 

best fitted the plots and can be used to predict T1/2 and the maximum ordinate value 

reached (maximum gain). Any conclusions drawn need to be considered carefully as 

the Hill equation usually relevant to describe other types of reaction than those 

reported throughout the Section 3.2.2.  

To summarise, the data suggest that EMD-EMD interactions can be monitored 

quantitatively by spectrophotometric measurement of the depletion of free EMD 

remaining in solution. Obviously, the ultimate aim would be to compare WT and 

mutant p.Y64H r-amelogenins in the system by tracking the depletion of solubilised 

WT r-amelogenin as it interacts with immobilised WT r-amelogenin saturating the 

microwell surfaces. The kinetics of this process would then be compared to the 

kinetics associated with solubilised mutant p.Y64H r-amelogenin as it interacts with 

immobilised mutant p.Y64H r-amelogenin saturating the microwell surfaces. 

However, as described above, these experiments also raised the issue that EMD 

adsorbed to the bottom of the microwell during the saturation phase attenuates the UV 

light passing through the EMD solution placed in the microwell during phase 2 when 

the interaction of freshly added EMD with the immobilised EMD was being monitored 

(manifesting as ΔAbs shown in Figure 64, p. 198). Attempts to eliminate the effect of 

this confounding factor are the subject of the next Section. 
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3.2.2.3 Effect of proteins adsorbed on the bottom of the microwells on 
the binding assay performance 

As described in the previous Section, EMD immobilised to the bottom of the microwells 

of the polystyrene plates may potentially confound absorbance readings taken during 

phase 2 of the binding assay, when freshly added EMD was added to the microwells 

already saturated with immobilised EMD. This was investigated by measuring how the 

absorbance was affected by EMD binding to the bottom of the microwells. A solution of 

150 µg/mL EMD proteins in PBS:1% acetic acid (284:1) was left to incubate in the 

microwells at 37°C for 24 hours1. At the end of incubation, the solution was discarded 

from the microwells, immediately after which the absorbance was read again. The 

absorbance measurements (n=6 corrected by blank subtraction) are plotted in Figure 

66.  

 

Figure 66  The effect of EMD proteins bound to the bottom of the microwells on 
absorbance values. (1) Over an incubation period of 24 hours, the absorbance 
decreased by 0.49 units after addition of fresh EMD solution (150 µg/mL), 
presumably due to EMD proteins binding to the surfaces of the microwells. The 
incubation was carried out at 37°C, in PBS:1% acetic acid (284:1). (2) The 
absorbance read after discarding the solution (after incubation) was 0.24 units, 
which is due to the layers of EMD that adsorbed on the bottom of the 
microwells. Data shows mean ± SD, n=6. 

                                                
1 Note: The absorbance measurements started 4.5 minutes after the EMD solution 

was prepared. As 4.5 minutes represent only 0.3% of the 24-hour incubation 
period, the starting time of absorbance measurement was considered to be the 
starting time of experiment. 
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In the first 24 hours of incubation the absorbance dropped in a similar fashion to that 

observed previously (Figure 64), stabilising at a value of around 0.92. After discarding 

the EMD solution, the absorbance dropped to 0.24. This residual absorbance likely 

reflects EMD proteins that bound and accumulated onto the bottom surface of the 

microwells during the first 24 hours of incubation. This experiment confirms therefore 

that proteins bound to the bottom surface of the microwells had a significant effect on 

absorbance reading during the binding assays reported previously.  

An absorbance value of 0.24 is not negligible and in fact is close to the value 0.3, 

which is considered the ideal value to use for spectrophotometric measurements, as it 

is the point where 50% of the photons emitted by the light source are absorbed, which 

allows for readings of the highest precision. This actually opens up the possibility to 

compare the extent of binding or aggregation of WT and p.Y64H r-amelogenins by 

measuring the direct accumulation of the proteins on the bottom of the microwells 

rather than by measuring their depletion from solution. However, these would be end-

point measurements.  

For continuous kinetics analyses based on depletion of protein from solution, it would 

be preferable to eliminate the signal bias caused by EMD proteins bound to the bottom 

surfaces of the microwells. One method to achieve this would be to block the bottom 

surface of the microwells with a blocking protein; in a similar way to that employed 

when using microwell plates in classic ELISA where a blocking protein is applied after 

the target antigen has adsorbed to the microwells to prevent non-specific adsorption of 

detection antibodies to exposed microwell surfaces. As detailed in the next Section 

(3.2.2.4), a preliminary assay was therefore designed to test the efficacy of gold 

standard blocking proteins used in ELISAs for this purpose. 
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3.2.2.4 Attempts to block the microwells 
To prevent any EMD proteins from binding to the bottom of the microwells and 

affecting the absorbance values, the use of a blocker (covering the bottom surface of 

the microwells only) was trialled. This required the availability of an effective blocker 

that would prevent EMD proteins from binding to the surface of the microwells. Gold 

standard blockers BSA and NFDM were tested for this purpose.  

Blocking was carried out by adding 200 µL of 1% BSA or NFDM solutions into the 

microwells, incubating and washing before the addition of 200 µL EMD solution (made 

of EMD dissolved in PBS:1% acetic acid (290:1)). The volume of the blocking solution 

was the same as that of EMD solution in this preliminary test (to ensure that the 

surface covered by EMD solution could be entirely blocked, which would show 

whether blocking was effective). If that was indeed the case, then one should expect 

that EMD would not bind to the blocked microwell surfaces and instead remain in 

solution, providing a constant absorbance signal overtime (unlike the control with no 

blocker where absorbance would steadily decrease as the EMD adsorbed to the 

microwell surfaces). The theory for this is illustrated in Figure 67. 

Figure 76  Hypothetical signal expected over incubation time (orange dashed 
line) in microwells effectively blocked compared to control with no blocking. 

The absorbance measurements (averages, n=6, corrected by blank subtraction) over 

time1 are plotted in Figure 68A. Analytical SDS PAGE (Figure 68B) shows the content 

of the aliquots taken before incubation and at the end of incubation. 

1 Note: The absorbance measurements started 10 minutes after the EMD solution was 
prepared. As 10 minutes represent only 0.7% of the 24-hour incubation period, the 
starting time of absorbance measurement was considered to be the starting time 
of experiment. 
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Figure 86  Evaluation of the ability of the gold standard blocking proteins bovine 
serum albumin (BSA) and non-fat dry milk proteins (NFDM) to block EMD 
binding to microwell surfaces. (A) After adding fresh EMD solution, absorbance 
measurements in empty microwells (control) or in microwells previously 
blocked followed the same pattern, indicating that the blocking was not 
effective. (B) The solutions in the microwells at the end of the incubation were 
analysed using analytical SDS PAGE which confirmed  that the amount of EMD 
remaining in solution after 24h incubation, and showed that blocking the 
microwells with either blocking protein had little effect on the depletion of EMD 
from solution (i.e. did not block EMD adsorbing to the microwell surfaces). All 
the incubations were carried out at room temperature, in PBS:1% acetic acid 
(290:1). Absorbance data shows mean ± SD, n=6. 

 
The absorbance measurements (Figure 68A) show that blocking with neither BSA nor 

NFDM significantly altered depletion kinetics. Consistently, the results obtained on 

SDS PAGE analysis (Figure 68B) showed that under all conditions tested, the 

concentration of EMD decreased by similar levels leaving equal amounts of EMD left 

in solution at the end of incubation. These data together indicated that blocking the 

microwells was not successful. The possible causes for this are hypothesised and 

discussed in Section 4.2.2.3. (pp. 247 – 252). 

As described above, previous experiments (Section 3.2.2.3) showed that it was 

feasible to spectrophotometrically determine the amount of EMD adsorbed on to the 

bottom of the microwell after incubation with end point absorbance values (reflecting 

the amount of proteins that bound to the bottom of the microwell after 24-hour 

incubation of EMD solution), of 0.24. This value is close to the value 0.3, which as 

described above is the most accurate absorbance value for quantitative 

spectrophotometric measurements. At the beginning of the project, it was not 

A B 
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envisaged that enough protein could be adsorbed onto the microwell surface to be 

directly measured spectrophotometrically in this way. However, the fact that the 

accumulation of EMD on the microwell bottom could be measured directly, raised the 

possibility of comparing interactions between WT and mutant p.Y64H r-amelogenins 

simply by direct spectrophotometric measurement of the proteins accumulating on the 

microwell bottoms at the end of the incubation period.  

  



- 207 - 
 

 

3.2.2.5 Characterisation of the behaviour of WT and mutant p.Y64H r-
amelogenins in the microplate-based assay 

Throughout this thesis, the focus has been on the production, purification and use of 

His-tagged r-amelogenins (as the initial strategy was to use nickel affinity 

chromatography, the standard purification method for recombinant proteins, to obtain 

purified WT+His and Mut+His r-amelogenins) in protein-protein binding studies. However, 

during the course of the work it became clear that nickel chromatography was not 

completely suitable for use with these proteins and preparative SDS PAGE was able 

to produce purer fractions. This led to the realisation that nickel chromatography and 

the associated His-tag were not actually required as the initial acetic acid extraction 

and subsequent preparative SDS PAGE were sufficient to achieve a high degree of 

purification. A further advantage of using His-tag-free r-amelogenins is that the time-

consuming and costly His-tag cleavage step can be eliminated. To this end, a 

commercial company (Novoprotein Scientific, NJ, USA) was tasked with generating 

plasmids encoding WT and mutant p.Y64H r-amelogenins without His-tag, respectively 

“WT-His” and “Mut-His” r-amelogenins. However, this proved problematic and two 

separate batches of plasmids delivered during the final phase of the experimental work 

failed to result in the expression of protein for reasons unknown. A third batch of 

plasmids delivered during the write up phase of the thesis did express both WT-His and 

Mut-His r-amelogenins. Details regarding their sequences and the plasmid used are 

provided in Appendix A. Their identities were confirmed by mass spectrometry (see 

Appendix B) the spectra obtained showed high degree of purification with a clear 

peaks corresponding to r-amelogenins at 20160.10 Da for WT-His and 20134.2 to Mut-

His after acetic acid extraction (kindly performed by Dr Sarah Myers and Mr. Matthew 

Percival). WT-His and Mut-His r-amelogenins were tested along with WT+His and Mut+His r-

amelogenins in the microplate assays based on simply measuring the absorbance of 

protein accumulating on the bottom of the microwells directly (see Section 3.2.2.3 pp. 

202 - 203).  

WT+His and Mut+His r-amelogenins were used in the uncleaved state due to time 

constraints at this late stage in the research. The use of His-tagged proteins in 

functional studies is widely practiced with the assumption that the tag has no effect on 

protein conformation or function (Chant et al., 2005) and there are several examples 

where His-tagged enamel proteins have been used in functionality studies (e.g. His-

tagged amelogenin, ameloblastin and enamelin were used to investigate interaction of 

these enamel proteins with fibronectin (Beyeler et al., 2010) and His-tagged 

ameloblastin was used to investigate growth factor-like activity of ameloblastin and its 
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effect on the effect on cell attachment and proliferation of periodontal ligament cells 

(Zeichner‐David et al., 2006).  

Freshly prepared r-amelogenin solutions (comprising 7.45 µM solutions of WT-His, Mut-

His, WT+His, Mut+His r-amelogenins in PBS: 1% acetic acid at 216.4:1 ratio) were added 

to empty polystyrene microwells and left to incubate for 24 hours at 37°C. The 

absorbance of the microwells (n=6 corrected by blank subtraction) was tracked over 

24 hours and the absorbance measurements are plotted in Figure 69 (p. 209). The 

microwell contents were then discarded and the absorbance attributable to protein 

bound to the bottom surface of the microwells (see Section 3.2.2.3 p. 202 for further 

explanation) was measured as reported in Figure 70 (p. 210); The contents of the 

solutions before (“0h”) and after (“24h”) incubation were analysed using Analytical 

SDS PAGE with Coomassie Blue staining (Figure 69B) with the staining intensity of 

the protein bands compared by gel densitometry.  

For WT-His, both absorbance measurements and analytical SDS PAGE showed a 

minor decrease (~8-10%) of r-amelogenin concentration in solution after 24 hours 

incubation and in keeping with this, the absorbance due to bound protein on the 

bottom of the microwells was close to zero (Figure 70). This data indicated that WT-His 

r-amelogenin did not associate with the polystyrene surface of the microwells but

instead remained in solution. In contrast, Mut-His, WT+His and Mut+His r-amelogenin all

disappeared from solution over 24 hours incubation, presumably as they associated

with the polystyrene microwell surfaces. For Mut-His, the absorbance appeared to

decrease by ~37% over the 24 hours incubation period and SDS PAGE showed that

the staining intensity of the 24 kDa band decreased by ~45% over that time (Figure

69). As for WT+His and Mut+His r-amelogenins, the absorbance decrease over 24 hours

was even greater, in that the absorbance appeared to decrease by ~62% and the

staining intensity of the 27 kDa (His-tagged) bands was reduced by ~80% after 24h

incubation on analytical SDS PAGE (Figure 69). The absorbance measurements of

what was left on the bottom of the microwells demonstrated average readings ranging

between 0.16 and 0.29 units (Figure 70), which confirmed that the Mut-His, WT+His and

Mut+His r-amelogenins associated with the polystyrene surface of the microwells in

contrast to WT-His, which did not. The result is summarised in Table 12.

Table 21  Comparison of binding behaviours of WT-His, Mut-His, WT+His, Mut+His r-
amelogenins in the microplate based assay. Summary of the data obtained 
in the Section 3.2.2.5. 

r-Amelogenin Associates with microwell surface? 
WT-His No 
Mut-His Yes 
WT+His Yes 
Mut+His Yes 
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Figure 07  Comparison of absorbance readings in the microwells after discarding 
the r-amelogenin solution (after 24-hour incubation, see Figure 69A) for WT 
and mutant p.Y64H r-amelogenins ± His-tag. Solid-line arrows reflect the 
difference of absorbance with the absorbance at the end (24 hours) of 
incubation (Figure 69A). Dashed-line arrows reflect the difference of 
absorbance with the absorbance at the beginning of incubation (Figure 
69A). The initial and final absorbance values of incubation (Figure 69A) are 
indicated, as A0 and A24h. Absorbance data shows mean ± SD, n=6. 
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Figure 69A suggested that both WT+His and Mut+His disappeared from the solution more 

rapidly than WT-His and Mut-His r-amelogenins. The data in Section 3.2.2.3 (p. 202) 

previously opened up the possibility of comparing the extent of binding or aggregation 

of WT and mutant p.Y64H r-amelogenins by measuring the direct accumulation of the 

proteins on the bottom of the microwells rather than by measuring their depletion from 

solution. It is important to bear in mind that this does not account for an exact 

comparison of protein binding kinetics but rather a preliminary descriptive estimation 

as the proteins binding to the bottom of the microwells mask the actual kinetics of 

protein depletion from solution. 

As it was done previously in Section 3.2.2.2 (Figure 65 p. 200) the data obtained in 

this Section (Figure 69A) were replotted1 to represent the gain of protein by the 

polystyrene surface (A0-AT (where A0 = initial absorbance, time 0 and AT = absorbance 

measured at any time T between the start and the end of incubation), which allowed all 

curves to start from the same point, at abscissa and ordinate = 0. The graphs obtained 

are shown in Figure 71 below. The curves representing Mut-His, WT+His and Mut+His, 

subjected to curve-fitting using OriginPro software, successfully fitted the Hill sigmoid 

model (previously used in Figure 65 to analyse EMD depletion from solution). The data 

points representing WT-His were not subjected to curve-fitting because, as explained 

previously, WT-His did not significantly disappeared from solution.  

The models generated for Mut-His, Mut+His and WT+His recombinants (Figure 71) 

predicted that the maximum gain of r-amelogenin to polystyrene surface was ~40-60% 

higher with the His-tagged r-amelogenins Mut+His, WT+His, and also, the depletion pace 

was faster, with the time taken to reach half saturation predicted to be 15 minutes with 

the His-tagged r-compared with 41 minutes for the non-tagged Mut-His recombinant.  

This model highlights, despite the ‘masking’ effect of proteins binding to the bottom of 

the microwells, that:  

 In His-tag-free r-amelogenins, the single amino acid change of a tyrosine into a

Histidine caused a significant gain of protein by the polystyrene surface, which

can fit to a Hill sigmoid curve with R2=0.996.

 However, the addition of a His-tag in the primary sequence in both WT and

mutant r-amelogenins increased the amplitude and pace of gain of proteins on

polystyrene surfaces to such an extent that both curves representing WT+His

and Mut+His had similar shapes. Moreover, WT+His r-amelogenin appeared to

adhere to the polystyrene surface more than Mut+His r-amelogenin.

1 Note: The absorbance measurements started 7 minutes after the EMD solution was 
prepared. As 7 minutes represent less than 0.5% of the 24-hour incubation period, 
the starting time of absorbance measurement was considered to be the starting 
time of experiment. 
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Chapter 4   Discussion 

4.1 Purification strategy used to obtain purified r-amelogenin: 
preparative SDS PAGE identified as the most effective 
technique 

4.1.1 Purification of r-amelogenin 

As described in the literature review (Section 1.3.5 p. 84), efforts have been made 

previously to purify r-amelogenin. One of the most frequently published purification 

methods for producing recombinant mouse M180 amelogenin expressed by E. coli 

starts with cell lysis under denaturing conditions (6 M guanidine hydrochloride) 

followed by centrifugation, precipitation with ammonium sulphate and preparative C4 

reverse phase column chromatography in 0.1% trifluoric acid/acetonitrile (Simmer et 

al., 1994). This method has been widely used to provide r-amelogenin for use in in 

vitro studies e.g. characterising amelogenin assembly into nanospheres (Moradian-

Oldak et al., 1994). The method had the advantage of not being dependent on a His-

tag but did not provide r-amelogenin at single band purity on SDS PAGE. Moradian-

Oldak et al (1994) noted that the methodology generated mouse recombinant 

amelogenins that co-eluted with contaminating E. coli proteins. This purification 

method originally yielded 4–11 mg purified proteins (in acetonitrile) per litre cell culture 

(Simmer et al., 1994). The method was subsequently modified by adding a His-tag 

(MRGSHHHHHHGS) to the N-terminal with the introduction of a nickel column affinity 

chromatography step. With this method the yield was increased to 70 mg/L cell culture 

(Buchko et al., 2013). 

Nickel column affinity chromatography was used by others to purify r-amelogenins for 

use in functional or structural studies (Moradian-Oldak et al., 2000, Taylor et al., 2006). 

The purity of the r-amelogenin obtained directly by nickel column chromatography was 

not commented on by Moradian-Oldak et al (2000) while the fractions obtained by 

Buchko et al. (2013), comprising His-tagged r-amelogenin were subjected to further 

purification using reverse phase C18 columns to increase purity (Buchko et al., 2013). 

Later reports provided more detailed analyses and assessments of the ability of nickel 

column affinity chromatography to purify r-amelogenin: these include a publication 

(Taylor et al., 2006) and this thesis. The relevance of nickel column to purify r-

amelogenin is discussed in greater detail in Section 4.1.2.2 (pp. 218 – 224). 
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Other purification methods include salting out (e.g. using ammonium sulphate) 

followed by cation exchange chromatography and direct use of reverse phase 

chromatography. These were used to obtain rP172 and rM179 to characterise their in 

vitro cleavage by MMP-20 (Ryu et al., 1999).  

A recent method based on the preferential solubility of amelogenin in acetic acid 

allowed the extraction and significant enrichment of r-amelogenins from bacterial 

pellets (Svensson Bonde and Bulow, 2012). This method is discussed in greater detail 

in Section 4.1.2.1 (pp. 216 - 217). The solubility of amelogenin in acetic acid was also 

used to extract native amelogenins from porcine teeth (Wang et al., 2018) but the 

method would also have extracted the other enamel matrix proteins such as 

ameloblastin and enamelin which are equally soluble in acetic acid. The use of acetic 

acid as a selective solubilising agent for r-amelogenin, published by Svensson Bonde 

and Bulow (2012) negated the need for His-tag based purification and provided a 

simple route to His-tag-free r-amelogenin preparations for use in functional studies and 

the methodology has since been used by others. For example, Buchko and Shaw, 

(2015) used it to prepare isotopically-labelled amelogenin for NMR analyses (Buchko 

and Shaw, 2015). They extracted r-amelogenin from E. coli in acetic acid and dialysed 

the extracts against acetic acid to remove salts and reduce the ionic strength to limit 

amelogenin aggregation. The r-amelogenin was then further purified using reverse-

phase HPLC. Dialysis and HPLC improved the purity of the fractions but contaminants 

were still visible on analytical SDS PAGE after Coomassie Blue staining. Buchko et al. 

(2015) adjusted their protocol by using 6M guanidine hydrochloride for E. coli cell lysis, 

instead of 2% acetic acid and reported that the amelogenin yield was improved but 

more contaminants were co-extracted. 

To date then, the extraction and purification of r-amelogenin is complex with most 

reported methodologies using denaturants such as guanidine hydrochloride (Simmer 

et al., 1994, Taylor et al., 2006, Buchko and Shaw, 2015) or urea (Taylor et al., 2006) 

to achieve an initial extraction of r-amelogenin followed by further downstream 

purification steps.  

This thesis tested a panel of purification methods to extract and purify r-amelogenin 

from E. coli. The first priority was to define a method that could provide r-amelogenin 

at single-band purity on analytical SDS PAGE after silver staining in sufficient amounts 

for use in downstream functionality studies. Single-band purity on analytical SDS 

PAGE with silver staining generally reflects a satisfactory purity due to the high 

sensitivity of silver staining: it has a detection limit “100 times lower than that of 

Coomassie Blue staining” as reviewed by Shevchenko et al (1996) (Shevchenko et al., 

1996) and currently the silver staining kit (cat no. 24612, ThermoFisher Scientific, 
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Leicestershire, UK) employed in this thesis allows for detection down to 0.25 ng 

proteins per band.  

 

4.1.2 Purification methods tested to determine the optimum 
purification of r-amelogenin 

This section critically discusses: (i) the optimisation of acetic acid extraction of His-

tagged mouse r-amelogenin (Section 4.1.2.1), (ii) His-tag-affinity nickel column 

purification of His-tagged mouse r-amelogenin (Section 4.1.2.2), (iii) SEC purification 

of His-tagged mouse r-amelogenin (Section 4.1.2.3) and (iv) the use of preparative 

SDS PAGE to purify His-tagged mouse r-amelogenin (Section 4.1.2.4). The 

purification strategies tested are summarised below in Figure 72. 

 

 

Figure 27  Strategies tested to extract and purify mouse r-amelogenin from E. coli. 
(i) The extraction of r-amelogenin in acetic acid, based on its preferential 
solubility in acidic, was optimised. Strategies for optimisation are 
discussed in Section 4.1.2.1. After optimisation of step (i) was achieved, 
the acetic acid extract (lyophilised, desalted and lyophilised) was subjected 
to secondary purification, to isolate r-amelogenin. The purification 
methods tested were (ii) the gold-standard nickel column chromatography 
method, discussed in Section 4.1.2.2, (iii) SEC, discussed in Section 4.1.2.3 
and (iv) preparative SDS PAGE, discussed in Section 4.1.2.4. 
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4.1.2.1 Acetic acid extraction effectively reduced bacterial contamination 

The acetic acid extraction technique reportedly producing r-amelogenin from E. 

coli at > 95% purity in a single purification step was previously published (Svensson 

Bonde and Bulow, 2012). This technique is based on the simple premise 

that amelogenin is soluble in 3% acetic acid at 80°C whereas E. coli proteins are 

insoluble under these conditions. First, the volume of acetic acid for extraction was 

optimised (Section 3.1.1.2.1, p. 138). This optimisation is also referred to as 

“optimisation of ‘weight of E. coli to volume of acetic acid”) as Svensson Bonde and 

Bulow (2012) reported that the total yield increased with increasing volumes of acetic 

acid (using 0.035 - 0.35 g/mL acetic acid) without, however, providing any specific 

details. The extractions using 0.33 and 0.17 g/mL acetic acid provided a good yield 

(Section 3.1.1.2.1, pp. 138 - 139). and conveniently small working volumes. Increasing 

the ratio of solvent to solute allows more solute to enter the solution until equilibrium is 

re-established. Therefore extractions using 0.033 and 0.0033 g/mL acetic acid were 

predicted to yield more dilute extracts of larger volume that contained a greater 

absolute amount of amelogenin. Indeed, taking the larger dilution factor into account 

(Figure 36B p. 139), the highest yield of amelogenin was obtained with 0.0033 g/mL 

acetic acid. This is in agreement with the observation by Svensson Bonde and Bulow, 

that the total extraction yield increased with increasing volume of acetic acid 

(Svensson Bonde and Bulow, 2012). However, although extraction at 0.0033 g/mL 

provided an optimum yield, the excessive dilution led to handling problems and made 

downstream tasks such as lyophilisation more difficult. Therefore, extraction at 0.033 

g/mL acetic acid was chosen as the preferred option since the yield was acceptable 

and extraction volume was manageable. 

While Svensson Bonde and Bulow (2012) reported that the final fraction purity was 

higher when only heat treatment was used for cell lysis/purification, compared to when 

sonication was used, the results obtained (Section 3.1.1.2.2, pp. 140 - 141) showed 

that ultrasonic mixing did not make any significant difference to sample purity. In 

contrast to Svensson, Bonde and Bulow (2012)’s statement that “sonication is not very 

feasible in large scale”, it was found that ultrasonication facilitated mixing and 

extraction of r-amelogenin Mut+His r-amelogenin in particular (Section 3.1.1.2.2, p. 

140). However, Svensson Bonde and Bulow (2012) did not specify how sonication was 

carried out and the equipment used in this thesis (see Section 2.1.1.2.2, p. 95) may 

have been more powerful given that it was a sonic probe specifically designed to 

disrupt tissue. The results obtained in Section 3.1.1.2.2 supported Svensson Bonde 

and Bulow (2012)’s finding that heating the sample improved the extraction of r-
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amelogenin (Figure 37B, p. 141). Heat treatment is a convenient cell lysis method to 

extract recombinant proteins from E. coli cells (Middelberg, 1995). By disrupting the 

membranes it facilitates the release of proteins. It may, however, denature some 

proteins (Kim et al., 2000) but to extract r-amelogenin, it was assumed to be safe to 

use as enamel matrix derivatives were reported to resist heat treatments “without 

precipitating (Gestrelius et al., 2000) or losing their bioactivities” (Nagano et al., 2004), 

as reviewed by Svensson, Bonde and Bulow (2012).  

Following the optimisation of volume, mixing regimen and temperature, the protocol 

established was carried out as shown in Section 3.1.1.2.3 (p. 143). While the volume 

of acetic acid was optimised for the extraction of r-amelogenin WT+His (Section 

2.1.1.2.1, p. 95), the mixing regimen and temperature were optimised for r-amelogenin 

Mut+His (Section 2.1.1.2.2, p. 95). For consistency, the optimisations should have been 

ideally carried out for both r-amelogenin WT+His and Mut+His, but at this stage this was 

not important since the final extraction method adopted (Section 3.1.1.2.3, p. 143) was 

highly reproducible for both r-amelogenins, WT+His and Mut+His. 

The mass spectrometry analysis of the extracted WT+His (lyophilised, desalted and 

lyophilised) showed 5 major peaks ranging from 24732.99 Da to 24812.20 Da (Figure 

39, p. 145). According to the data generated using the Protparam tool (Gasteiger et 

al., 2005) the first peak at 24732.99 Da corresponded to the predicted molecular 

weight of r-amelogenin WT+His but minus 131 Da, indicating that the N-terminal 

methionine had been removed by E. coli methionine aminopeptidase (Ben-Bassat et 

al., 1987), an issue that was previously reported in respect of the expression of r-

amelogenins (Simmer et al., 1994, Svensson Bonde and Bulow, 2012). The other 

peaks, which are found 16 Da apart, correspond most likely to oxidised species (see 

Table 8, p. 144). The origin of this oxidation is unclear but as described in the Material 

and Methods (Section 2.1.1.2.3, p. 97) the acetic acid extract was lyophilised, desalted 

and lyophilised again before being subjected to mass spectrometry. These additional 

steps may cause oxidation of some amino acids (Challener, 2017). 

The spectra obtained (Appendix B) for WT-His and Mut-His extracted in acetic acid 

(extraction kindly performed by Dr Sarah Myers) and subjected directly to mass 

spectroscopy without prior lyophilisation showed a high degree of purification with a 

clear peak corresponding to r-amelogenin at 20160.10 Da for WT-His and 20134.2 to 

Mut-His, which also appeared to have lost the N-terminal methionine (Appendix B). Less 

pronounced peaks at 20175.30 and 20149.60 Da were visible on the spectra for WT -His 

and Mut-His respectively again suggesting possible oxidation, though at much lower 
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levels than those observed for r-amelogenin WT+His (Section 3.1.1.2.3, pp. 144 – 145). 

The His-tagged r-amelogenins may be more sensitive to oxidation simply because 

they were subjected to desalting and lyophilisation and of course the His-tag contains 

3 methionines and 7 histidines, which are amino acids sensitive to oxidation (Uchida, 

2003, Ji et al., 2009): 

“MGSSHHHHHHSSGLVPRGSHMASMTGGQQMGRGSLEVLFQ”  

Figures 36 (p. 139) and 37 (p.141) indicated that the r-amelogenin made up > 90% of 

the initial acetic acid extract. This initial extraction was effort- and cost-effective, and 

provided an extremely efficient clean-up, generating hundreds of milligrams of extract 

out of 10 g of E. coli (wet weight cells harvested). However, as contaminants were 

clearly detectable by analytical SDS PAGE with Coomassie Blue and silver staining 

techniques, secondary purification steps were needed to reach optimal purity for use in 

binding studies: (i) nickel column chromatography (Section 4.1.2.2), SEC (Section 

4.1.2.3) and (ii) preparative SDS PAGE (Section 4.1.2.4). 

4.1.2.2 His-tag purification was not an optimum method to purify r-
amelogenin 

Following expression in E. coli and extraction in acetic acid, which removed major 

contaminants, the r-amelogenin extract was subjected to standard nickel column 

purification. The procedures tested are summarised in Figure 73 (p. 220) (omitting all 

lyophilisation and desalting steps for clarity). 

4.1.2.2.1 Principles and general considerations of recombinant proteins His-tag 
purification  

Nickel affinity chromatography is a popular methodology to purify recombinant proteins 

by including a fusion tag at the N- or C-terminal. The His-tag is widely used (Hochuli et 

al., 1988) as the imidazole rings of histidine are electron donors that allow for the 

formation of co-ordination bonds with the immobilised nickel (Terpe, 2003) which 

preferentially retains the recombinant His-tagged protein on the column. The method is 

simple and in its basic form consists of expressing His-tagged proteins in a given 

organism (e.g. bacteria) followed by a first round of nickel column chromatography to 

remove bacterial contaminants. The His-tagged recombinant protein is isolated and 

then the His-tag can be removed enzymatically if a suitable cleavage site is included in 

the His-tag sequence. A second round of nickel column chromatography removes any 

remaining uncleaved recombinant protein. It may also remove the protease if this also 

carries a His-tag, yielding a purified product. The inclusion of His-tag in r-amelogenins 

for purification purposes has been previously reported (Moradian-Oldak et al., 2000, 
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Tarasevich et al., 2007, Tao et al., 2015). Researchers reported that the addition of a 

His-tag into the sequence of mouse full-length r-amelogenin rM179 increased its 

expression levels in E. coli, which they proposed to be due to the fact that the His-tag 

increased the hydrophilicity of the r-amelogenin (Svensson et al., 2006). 

The choice of buffers for nickel column chromatography used is critical since the 

protein of interest needs to be solubilised in order for it to be applied to, and bind to, 

the nickel column and then to be successfully eluted and isolated from bacterial 

contaminants. His-tag cleavage buffers were also optimised to obtain a maximum 

enzyme activity. The enzyme-to-protein ratio was optimised (see Appendix C) so as to 

provide a maximum yield with minimum amounts of protease.  

However, r-amelogenin was never successfully purified by the His-tag-based 

purification protocol, as illustrated in Figure 73 and discussed, below. 
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Figure 37  Summary of His-tag-based purification procedures tested and 
optimisations carried out. Standard nickel column chromatography 
included an initial round of nickel column chromatography before His-tag 
removal. His-tag removal was not 100% efficient and remaining uncleaved 
amelogenins and enzyme had to be removed by a second round of nickel 
column chromatography. However, a second round of nickel column 
chromatography after His-tag removal did not completely isolate cleaved  r-
amelogenin from uncleaved  r-amelogenin.  
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4.1.2.2.2 Partial efficiency of His-tag removal from r-amelogenin 

From Figure 43 (p. 153) it is clear that the efficiency of the His-tag cleavage from r-

amelogenins was considerably less than 100%. Analytical SDS PAGE of the cleavage 

reaction mixture showed the very clear presence of cleaved r-amelogenin at 24 kDa 

and uncleaved r-amelogenin at 27 kDa. Increasing the concentration of cleavage 

enzyme or increasing the incubation time had little effect on improving the efficiency of 

the cleavage reaction, as described in Appendix C.  

Previous reports also indicated that cleavage of the His-tag from r-amelogenin is 

inefficient. For example, Taylor et al (2006) used rTEV protease to cleave His-tags 

from r-amelogenin (Taylor et al., 2006) and noted the poor yield obtained. In general, 

cleavage efficiency of other recombinant proteins was as low as 50% and this was 

suggested to be caused by steric hindrance blocking the cleavage site and preventing 

enzyme access (Waugh, 2011). Amelogenin aggregation at physiological pH and 

temperatures has been well studied (Moradian-Oldak et al., 1994, Moradian-Oldak et 

al., 1995, Moradian-Oldak et al., 1998, Simmer et al., 1994, Tan et al., 1998, 

Wiedemann-Bidlack et al., 2007, Aichmayer et al., 2010) and amelogenin-amelogenin 

interactions or intra-amelogenin interactions may cause the His-tag cleavage site to be 

inaccessible to the HRV3C cleavage enzyme under certain conditions. An attempt was 

made in this thesis to increase the solubility of the r-amelogenin by carrying out the 

cleavage reaction at pH 8 and 9; conditions known to reduce the tendency of 

amelogenin aggregation (Tan et al., 1998). However, as described in Appendix D 

increasing the pH to 8 or 9 did not help matters.  

4.1.2.2.3 Nickel column purification did not successfully isolate r-amelogenin. 

Ideally, cleaved r- amelogenin, lacking a His-tag, should not be retained on the nickel 

column and is expected to elute in the flow-through fraction. In contrast, the uncleaved 

r-amelogenin, cleaved His-tag and His-tagged HRV3C protease should bind to the 

column. However, Figure 44 (pp. 156 - 157) showed that the second round of nickel 

chromatography was unable to completely separate cleaved from uncleaved r-

amelogenin because the cleaved r-amelogenin appeared to show significant affinity for 

the column. It could be eluted by increasing the imidazole concentration to 60 mM but 

this resulted in the co-elution of uncleaved r-amelogenin and other contaminants 

(reproduced in Figure 74A below). Another secondary nickel column purification was 

performed independently by Dr Sarah Myers using a more refined stepped imidazole 

gradient (at 50, 60, 70, 90, and 200 mM imidazole) in the second round of nickel 

column chromatography. SDS PAGE analysis of these fractions, shown in Figure 74B, 

showed that cleaved and uncleaved r-amelogenins were visible in all eluted fractions 
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with the higher concentrations of imidazole eluting increased amounts of uncleaved r-

amelogenin . 

 

 

Figure 47  Comparison of isolation efficiency of cleaved r-amelogenin by (A) two-
round nickel affinity chromatography or (B) second round of Nickel column 
chromatography with ‘refined’ stepped elution at 50, 60, 70, 90, 200 mM 
imidazole. The cleaved r-amelogenin, which does not carry a His-tag, was 
not collected in the flow-through as expected but was eluted by increasing 
the concentration of imidazole to 50 mM and higher concentrations. At 50 
mM imidazole, the bulk of cleaved r-amelogenin was collected with a minor 
trace of uncleaved r-amelogenin. At 60 and 70 mM imidazole, significant 
amounts of cleaved r-amelogenin were clearly co-eluted with the uncleaved 
r-amelogenin, with a higher proportion of uncleaved r-amelogenin at higher 
concentrations of imidazole. The bulk of uncleaved r-amelogenin was 
eluted at 200 mM imidazole . A trace amount of HRV3C protease (His-
tagged) is visible in elution fractions at 50 - 200 mM imidazole. Figure 74 is 
taken from Gabe et al, 20171; the data for Figure 74B was acquired by Dr 
Sarah Myers. 

  

                                                
1 Figure 74 is reproduced from Gabe et al. (2017) under the terms of the Creative 

Commons license CC BY (https://creativecommons.org/licenses/by/4.0/). 
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 Retention of His tag free cleaved r-amelogenin to the nickel column 

The reason why the cleaved r-amelogenin still has affinity for the nickel column may 

be due to the high histidine content of amelogenin (14 residues in M180). Moreover, 

as illustrated below, amelogenin includes di- and tri-histidine repeats which may act as 

a pseudo His-tag and cause non-specific binding to the nickel column: 

MPLPPHPGSPGYINLSYEVLTPLKWYQSMIRQPYPSYGYEPMGGWLHHQIIPVLSQQ

HPPSHTLQPHHHLPVVPAQQPVAPQQPMMPVPGHHSMTPTQHHQPNIPPSAQQPF

QQPFQPQAIPPQSHQPMQPQSPLHPMQPLAPQPPLPPLFSMQPLSPILPELPLEAWP

ATDKTKREEVD 

If amelogenin is an unstructured protein as described in Section 1.2.1.3.2 (p.19) the di- 

and tri-histidine repeats could be in close proximity in space and form co-ordinate 

complexes with the nickel in a similar fashion to the hexahistidine motif making up the 

His–tag even though they may be distant from each other in terms of their linear 

position in the amelogenin primary sequence.  

As described in the Section 1.2.2.1 (pp. 20 - 21) amelogenin has a strong tendency to 

aggregate and one other explanation for the retention of cleaved His-tag free r-

amelogenin on the nickel column is that the cleaved r-amelogenin is simply interacting 

with the uncleaved r-amelogenin that is strongly bound to the column by virtue of its 

His-tag. However, this is unlikely since the imidazole elution buffers were 4 M with 

respect to urea; a chaotropic agent well known for its ability to solubilise amelogenin 

(Eggert et al., 1973, Brookes et al., 2002). In addition, from Figure 73B it is clear that 

cleaved r-amelogenin is eluted with 50 mM imidazole whereas the uncleaved r-

amelogenin remains bound to the column. Imidazole is not a chaotropic agent and this 

data indicates that the cleaved r-amelogenin was being displaced from the nickel 

column by competing imidazole molecules as opposed to being solubilised from an 

aggregated state involving column-bound uncleaved r-amelogenin. 
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To recap, His-tag-based purification methodology was not suitable to obtain r-
amelogenins for future uses because: 

1) His-tag cleavage with HRV3C protease was not efficient. 

2) Cleaved r-amelogenin could not be isolated from uncleaved r-amelogenin using 

nickel column chromatography due to the apparent interaction of cleaved r-amelogenin 

with the nickel column.  

Although nickel chromatography is the standard methodology for purifying His-tagged 

proteins, it is reported elsewhere that the methodology can provide satisfactory yields 

of recombinant proteins but the purity of the proteins obtained is not always ideal 

(Lichty et al., 2005).  

Practically, the necessary inclusion of urea in the buffers to solubilise the amelogenin 

is not compatible with the enzymatic removal of the His-tag. The urea denatures the 

HRV3C enzyme, and according to the manufacturer, will completely inhibit its activity. 

This incompatibly required the use of an additional time-consuming desalting step prior 

His-tag removal (see Figure 41 p. 148 in Section 3.1.2.1). Since His-tag-based 

purification was not an optimum method to obtain r-amelogenin for functional studies, 

other purification techniques were tested and optimised. Their respective efficiencies 

are addressed and compared in the Sections 4.1.2.3 and 4.1.2.4. 
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4.1.2.3 Size exclusion chromatography on Bio-gel P columns did not 
isolate r-amelogenin from lower molecular weight contaminants  

SEC separates proteins within a mixture according to their apparent molecular weights 

or more accurately according to their hydrodynamic radii (Grubisic et al., 1967). Larger 

molecules are excluded from the column matrix and quickly pass through the column 

carried along in the mobile phase and are eluted first while lower molecular weight 

components with a smaller hydrodynamic radius can diffuse from the mobile phase 

into the beads. Their progress through the column is retarded and depends on their 

rate of diffusion in and out of the beads.  

Figures 46 - 48 (Section 3.1.2.2, pp.163, 165, 166) showed that none of the SEC 

methods employed to isolate r-amelogenin from bacterial contaminants present in the 

crude acetic acid extracts was successful; this is despite adjusting the column pore 

size and the column length. The very first fraction to elute from the columns was 

reasonably pure r-amelogenin but the bulk of the r-amelogenin was eluted over 

several fractions and these fractions were contaminated with bacterial low molecular 

weight contaminants (previously extracted, with r-amelogenin, in acetic acid).  

SEC was carried out using 125 mM formic acid which solubilised the r-amelogenin. 

Formic acid in conjunction with Bio-gel P-30 (as used here) was successfully used to 

isolate the full-length amelogenin from the lower molecular weight enamel matrix 

proteins present in extracts of developing enamel matrix (Fincham et al., 1981). 

However, the fact that most of the r-amelogenin co-eluted anomalously along with the 

low molecular weight contaminants suggested that formic acid was not effective in 

eliminating  interactions between  the r-amelogenin and the low molecular weight 

contaminants or perhaps more likely, did not prevent interactions between the  r-

amelogenin and the column matrix (which would retard the migration of r-amelogenin 

down the column such that it eluted with the low molecular weight contaminants.  

Another possibility is that amelogenin, described as an IDP (Delak et al., 2009) may 

adopt a continuum of different conformations, each with different hydrodynamic 

volumes or shapes. These different conformers of r-amelogenin may diffuse at 

different rates and co-elute with contaminants of their respective hydrodynamic radii.  
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4.1.2.4 Preparative SDS PAGE successfully purified r-amelogenin from 
acetic acid extracts 

While r-amelogenin was co-eluted with lower molecular weight contaminants on SEC, 

an alternative ‘molecular sieving’ method, preparative SDS PAGE, avoided this issue. 

Analytical SDS PAGE was used in this thesis to check the effectiveness of nickel 

column chromatography and SEC at resolving r-amelogenin from contaminants. It was 

apparent that the technique itself can successfully resolve r-amelogenin from 

contaminants. It is possible to cut bands out of the gels and extract the protein but the 

yield is in the microgram range at best. However, large scale preparative SDS PAGE 

promised the resolving power of analytical SDS PAGE with yields associated with 

chromatographic methods and was successfully trialled as an alternative to the 

chromatographic methods tested.   

sodium dodecyl sulphate (SDS) is an amphoteric detergent that binds to proteins via 

its dodecyl aliphatic tail through hydrophobic interactions (Laemmli, 1970, Reynolds 

and Tanford, 1970a). The sulphate group the effectively covers the protein with 

negative charges which repel each other and force linearization of the protein so that it 

is denatured and takes on a rod like conformation (Reynolds and Tanford, 1970b) as 

indicated in Figure 75 below. The proteins thus attain a more or less constant charge 

to mass ratio and when driven through a sieving medium (cross linked acrylamide) by 

an electric field they migrate as a function of their molecular size (Reynolds and 

Tanford, 1970b).  

 

Figure 57  Principle of protein linearisation by SDS. SDS is a detergent that binds 
to proteins by hydrophobic interactions (Reynolds and Tanford, 1970a). It 
covers the proteins with negative charges and linearises them, which allow 
to separate them according to their molecular weight (which will be directly 
proportional to their molecular sizes in this case). 



- 228 - 
 

When SDS linearises amelogenin, every molecule will attain the same rod-like 

conformation reducing the continuum of hydrodynamic radii which means that all 

molecules will migrate through the molecular sieve at the same rate as a tight, well 

resolved band.  

The results obtained (Section 3.1.2.3, pp. 167 - 178) showed that preparative SDS 

PAGE permitted the isolation of r-amelogenin to single-band purity. Furthermore, the 

resolving power was such that it not only separated His-tagged r-amelogenins from 

bacterial contaminants in the acetic acid extracts (Figures 50-51, pp. 170 - 171) but it 

also separated cleaved from uncleaved His-tagged r-amelogenins (Figure 54 p. 177).  

The purification procedures involving preparative SDS PAGE are summarised below in 

Figure 76. The results obtained indicated that the His-tag was redundant as it 

appeared likely that r-amelogenin, engineered without a His-tag, could be purified to 

single band purity from the crude acetic acid extracts simply be a single round of 

preparative SDS PAGE. 
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Figure 67  Secondary purification of r-amelogenin using preparative SDS PAGE. 
(A) Initially the strategy was to use preparative SDS PAGE to purify 
uncleaved r-amelogenin from the crude acetic acid extract (Section 
3.1.2.3.1), cleave off the His-tag and then separate the cleaved from the 
uncleaved r-amelogenin by nickel column chromatography. However 
cleaved and uncleaved proteins were never completely separated by nickel 
column chromatography (discussed in Section 4.1.2.2, p. 222). (B) An 
alternative method (which omitted the nickel chromatography) was simply 
to subject the proteins in the crude acetic acid extract to His-tag cleavage 
and then use preparative SDS PAGE to isolate the cleaved r-amelogenin 
from uncleaved r-amelogenin and contaminating bacterial proteins. This 
method gave ‘cleaved’ r-amelogenin at single band purity on analytical 
SDS PAGE with silver staining (Section 3.1.2.3.2) thus rendering the His tag 
redundant. (Discussed in Section 4.1.2.4, pp. 230 - 231). 
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4.1.2.4.1 Preparative SDS PAGE provided a high resolution purification of His- 
tagged r-amelogenin from crude acetic acid extracts 

Coupled with acetic acid extraction, which initially enriched the amelogenin fraction 

(discussed in Section 4.1.2.1, p. 216), preparative SDS PAGE allowed for the isolation 

of cleaved and uncleaved r-amelogenins and 20 kDa amelogenin from EMD to single 

band purity as determined using analytical silver stained SDS PAGE (Figures 51, 54 

and 57 in pp. 171 - 182). This Section focuses on the isolation of WT+His r-amelogenin 

using preparative SDS PAGE.  

Figures 50, 51 (pp. 170 - 171), showed that fractions 25 to 49 contained WT+His r-

amelogenin migrating at an apparent MW of 27 KDa. The earlier fractions, 22- 23, 

running at a slightly lower molecular weight of 24.5 kDa also stained well with silver 

staining. However, western blotting of this gel, using a polyclonal anti-amelogenin to 

the 12 amino acid C-terminal telopeptide, showed that the immunoreactivity was 

reduced for the bands in these earlier slightly smaller fractions. This suggests that the 

antibody had a weaker affinity for the epitope (i.e. the telopeptide). This together with 

the slightly lowered molecular weight suggests that the telopeptide may have been 

attacked by exopeptidases which shortened the telopeptide sequence. In effect, this 

would have shortened the size of the epitope and reduced the proportion of polyclonal 

antibodies still able to recognise the truncated sequence leading to a reduced 

immunological staining on the blot. It appears therefore, that the r-amelogenin may be 

susceptible to C-terminal degradation by exopeptidases, possibly of bacterial origin. 

Fortunately, the amount of r-amelogenin affected (i.e. fractions 22-23) is relatively 

small compared to the bulk of protein present in fractions 25-49 that corresponds to 

the full length r-amelogenin. It should be noted that this apparent C-terminal 

degradation was only discovered thanks to the very high resolving power of 

preparative SDS PAGE. The degradation of the C-terminal telopeptide would have no 

effect on the  His-tag and therefore r-amelogenin purified by nickel column 

chromatography would have generated a mixed fraction containing full length r-

amelogenin and r-amelogenin suffering from C-terminal truncation.    

4.1.2.4.2 Quantitative yield of r-amelogenin generated by acetic acid extraction 
coupled with preparative SDS PAGE 

As shown in Figure 77 below (p.232), 10 g of E. coli from 1.6 L of culture generated 

418 mg of crude lyophilised acetic acid extract.  Following desalting and lyophilisation 

of this extract, 171.5 mg of WT+His r-amelogenin protein were obtained. Ten milligrams 

of this were subjected to preparative SDS PAGE which yielded a total of 4.9 mg of 

protein following desalting and lyophilisation. Working backwards, this equates to a 
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yield of 52.5 mg/L bacterial culture, which compares well with the typical yield of 

recombinant protein technology which ranges from 4 to 200 mg/L (Lehmann et al., 

2003, Qing et al., 2004, Sivashanmugam et al., 2009). It is all the more satisfactory 

since the r-amelogenin is obtained at single band purity on silver stained analytical 

SDS PAGE. A first round of His-tag nickel column chromatography (Section 3.1.2.1 

pp. 149 - 151) yielded 14.5 mg r-amelogenin out of 37.4 mg of desalted extract; the 

yield, calculated as 41.5 mg per litre cell culture (Figure 78 below, p. 233), was 

therefore slightly lower, and crucially, was not at single band purity compared to 

preparative SDS PAGE. The yield and purity of the final r-amelogenin fractions 

obtained after preparative SDS PAGE and nickel column chromatography are 

compared below in Table 13.  

Table 31 Strategies employed to purify r-amelogenin: Comparison of the yield 
and purity obtained in the final fractions after preparative SDS PAGE or 
nickel column chromatography. This table highlights the observations 
reported in Figures 77 and 78 (overleaf). 

Method Yield Purity 

Preparative SDS 
PAGE-based 
purification  
(Figure 77) 

52.5 mg proteins per litre 
cell culture 

Single band on analytical 
SDS PAGE with 
Coomassie Blue staining 
and with silver staining 

Nickel column 
chromatography-
based purification 
(Figure 78) 

41.5 mg proteins per litre 
cell culture 

Major band on analytical 
SDS PAGE with 
Coomassie Blue staining 
with visible contamination 
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4.1.3 Impact of preparative SDS PAGE on r-amelogenin production 

4.1.3.1 Preparative SDS PAGE by-passes the need for a His-tag  
As shown above in Figures 77 and 78 (Section 4.1.2.4.2), preparative SDS PAGE 

appeared to be superior to nickel column chromatography for purification of His-tagged 

r-amelogenin away from the milieu of bacterial contaminants present in the crude 

acetic acid extracts, giving a yield of ~50 mg His-tagged r-amelogenin per litre of 

bacterial culture. The initial plan was that the purified His-tagged r-amelogenin would 

then be subjected to His-tag cleavage and the cleaved r-amelogenin purified by nickel 

chromatography (Figure 76A, p. 229). However, the degree of resolution provided by 

preparative SDS PAGE was such that a simplified method was developed that 

involved subjecting all of the proteins present in the acetic acid extract to His-tag 

cleavage and then purifying the cleaved r-amelogenin from the uncleaved r-

amelogenin and bacterial contaminants using preparative SDS PAGE (Figure 76A, p. 

229). When this second approach was used by subjecting 10 mg of the cleaved 

lyophilised acetic acid extract to preparative SDS PAGE the final yield of purified 

cleaved r-amelogenin was in the order of 1 mg, which equates to around 10 mg of 

cleaved r-amelogenin per litre of bacterial culture. This apparent reduction in yield is a 

reflection of the fact that in this case, the 10 mg of starting material contains a mixture 

of cleaved and uncleaved r-amelogenin so there is less target protein in the 10 mg of 

starting material to begin with. In addition, the preparative SDS PAGE fractions 

containing the cleaved and uncleaved r-amelogenins overlapped slightly (see fractions 

45 -47 in Figure 54, p. 177), so not all fractions containing the cleaved r-amelogenin 

were pooled to obtain the final yield. 

In summary then, the results obtained not only support that a His-tag is now redundant 

to purify r-amelogenin but also show that the presence of a His-tag is in itself 

problematic as its removal is not 100% efficient; this complicates the purification 

process, particularly affecting the yield. The excellent resolving power of preparative 

SDS PAGE, coupled with the acetic acid extraction technique provides for a far better 

approach to obtaining purified r-amelogenins and that is to engineer a His-tag-free r-

amelogenin that can be extracted in acetic acid and purified to single band purity from 

the contaminating bacterial proteins by preparative SDS PAGE. Abandoning the His-

tag would dramatically reduce costs as the HRV3C protease is expensive and it would 

provide a rapid means of delivering mg quantities of His-tag-free r-amelogenin using 

one round of purification only. Crucially, the yield would be expected to return to ~50 

mg of recombinant per litre of bacterial culture since the purification process would be 

exactly the same as that shown in Figure 77 above (p. 232). The only difference would 

be that the E. coli would be expressing His-tag-free r-amelogenin as opposed to His-
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tagged r-amelogenin. For that, the choice of expression system is important, 

considering Svensson et al (2006)’s observation that the addition of a fusion His-tag 

increased bacterial growth and r-amelogenin expression (Svensson et al., 2006) as 

discussed earlier in Section 4.1.2.2 (p. 219). Svensson et al. (2006) used BL21(DE3) 

E. coli cells transfected with pET11a vector, which may be sensitive to the properties

of the r-amelogenin they express.

An attempt was made to engineer an expression vector to express His-tag free r-

amelogenin but the commercial partner undertaking the work experienced undisclosed

technical difficulties in producing the vectors. Functional vectors resulting in the

expression of both WT and mutant Y64H r-amelogenins at comparable levels to the

vectors expressing the His-tagged r-amelogenins were finally delivered during the

write-up period of this thesis but as discussed elsewhere, time limited their use

experimentally.

4.1.3.2 Preparative SDS PAGE may provide a route to  r-amelogenin 
produced by eukaryotic expression systems 

One drawback of expressing amelogenin using bacterial expression systems is that 

Ser16 will not be phosphorylated as it is in the native protein. However, eukaryotic 

systems will produce correctly phosphorylated amelogenin. 

Taylor et al. (2006) expressed human r-amelogenin in an eukaryotic baculovirus 

system which yielded 10 mg r-amelogenin per litre culture using nickel 

chromatography. However, the r-amelogenin was sensitive to degradation within the 

Sfx insect cells. These degradation products, presumably many of them carrying the 

His-tag, were clearly present in the nickel column elution fractions on analytical SDS 

PAGE following Coomassie Blue staining (Taylor et al., 2006) and full-length r-

amelogenin could not be isolated to single band purity. The potential of preparative 

SDS PAGE to provide a ready source of purified phosphorylated r-amelogenin is an 

exciting prospect for the field. 
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4.1.3.3 Preparative SDS PAGE purification may increase protein 
oxidation. 

The previous sections highlight the benefits of preparative SDS PAGE for purifying r-

amelogenin. However, in the interests of providing a balanced and critical discussion it 

is important to mention one possible drawback; increased protein oxidation linked to 

SDS PAGE.  

The mass spectra obtained from Figure 39 (p. 145) and Figure 52 (p. 173) are 

compared in this Section (Figure 79, below). Figure 79 shows numerous species 

corresponding to r-amelogenin carrying multiples of 16 Da (i.e. oxygen) in both the 

crude acetic acid extract and the r-amelogenin purified by preparative SDS PAGE. The 

number of species exhibiting evidence of oxidation was greater in the sample 

subjected to preparative SDS PAGE. 

 Preparative SDS PAGE caused oxidation
The polymerisation of the acrylamide/bis acrylamide monomers to form the 

polyacrylamide gel used in SDS PAGE gels involves the oxidising agent ammonium 

persulphate (see Section 2.1.1.4, pp. 100 - 101). Excess persulphate in SDS gels is 

known to oxidise proteins as they migrate through the gel and histidine, cysteine and 

methionine side chains are particularly sensitive to oxidation. However, this problem 

has been addressed by Sun and Anderson, 2004 who advocated thorough degassing 

of the gel solutions to remove molecular oxygen and replacing the persulphate 

triggered polymerisation system with a photopolymerisation system using flavin as an 

alternative initiator. This, together with adding the antioxidant thioglycolate to the 

running buffer, reportedly eliminated protein oxidation during SDS PAGE (Sun and 

Anderson, 2004). The potential effect of protein oxidation on protein structure and 

function clearly needs to be considered and it would be preferable in future studies to 

take the preventative steps described above to protect the r-amelogenin from any 

oxidation incurred during preparative SDS PAGE.     
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4.2 Development of microplate binding studies to dissect the 
molecular mechanisms in AI. 

As described in Section 1.3.4.1.3 (p. 70), the first evidence of a mechanism underlying 

AI was published in 2014 using mice carrying a p.Y64H mutation. This mechanism 

was proposed to be driven by ER stress that subsequently triggered a  pro-apoptotic 

UPR. ER stress generally arises following pathological interactions (aggregation) of 

affected proteins transiting the ER and p.Y64H amelogenin in affected mice was 

abnormally retained in within the ameloblasts (Brookes et al., 2014). A compound, 4-

phenyl butyrate, reported to relieve ER stress (Iannitti and Palmieri, 2011), rescued the 

phenotype in heterozygous female mice (Brookes et al., 2014) providing the first 

possibility that  AI could be relieved therapeutically. However, further work is needed 

to further dissect the underlying mechanism; especially in terms of how the p.Y64H 

mutation affects amelogenin-amelogenin interactions and in turn how potential 

therapeutic agents might modulate such interactions or modulate the UPR. Key 

questions are: How did the single-point mutation trigger ER stress and a subsequent 

pro-apoptotic UPR? How did 4-PB rescue the phenotype? Further studies can help 

answer these questions.  

This section (4.2) describes initial trials of microplate based binding tests for use in 

studying amelogenin-amelogenin interactions.  
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4.2.1 A fluorescence labelling-based microplate binding assay was 
not successful. 

The fluorescence labelling-based microplate binding assay consisted of immobilising 

amelogenin (bait protein) to microwell surfaces and adding FITC-labelled amelogenin 

(the free ligand in solution) to allow it to bind to the unlabelled bait on incubation. After 

incubation, microwells would be washed and any amelogenin-amelogenin binding 

would be determined by measuring the remaining fluorescence. This would provide a 

simple method to analyse the effect of the p.Y64H mutation on amelogenin binding 

behaviour. First, to try and establish the conditions required to saturate the microwells 

with the bait amelogenin, a preliminary experiment was conducted using FITC-labelled 

amelogenin as a bait (see Section 2.2.1.3, pp. 122 – 123). Different concentrations 

and incubation conditions were tested and the protocol carried out (Figure 29 p. 124) 

was the same as that planned for the actual binding assay except that no FITC-

labelled amelogenin was added as “free ligand” and the fluorescence measured at the 

end was to reflect the amount of bait adsorbed.  

In order to determine the amount of bait r-amelogenin required to saturate all binding 

sites within the wells, FITC-labelled EMD was incubated in the microwells overnight in 

PBS, TBS or bicarbonate (Section 3.2.1.3, p. 184). The fluorescence signals obtained 

following coating of the microwells reached clear plateau values of 0.05141 (PBS, 4°C) 

and 0.04167 (bicarbonate, 4°C) fluorescence units (Figure 59, p. 186). These were 

reached at low starting concentrations of EMD (less than 10 µg/mL). This suggests 

that the protein may have only formed a monolayer and that no protein-protein 

interaction occurred. With TBS, the signal kept going up, suggesting it coated the 

microwell and then interactions between free and immobilised 20kDa amelogenins 

made the signal keep going up. The signals obtained by incubating the amelogenin 

solutions at room temperature (20°C) were higher than at 4°C, suggesting that higher 

temperatures of incubations for coating favoured amelogenin binding to microplates 

surfaces. This is understandable since amelogenin propensity to aggregate increases 

with the temperature (Moradian-Oldak et al., 1998).  
Remarkably, the signals in all cases were very weak (below 0.1 on average), even 

though labelled protein may have saturated the microwell surfaces. This raised doubts 

as to whether this method would be sensitive enough to accurately determine the 

binding of labelled protein free in solution to unlabelled protein immobilised on the 

microwells surfaces. At the very least, it was clear that FITC as a label was not 

sensitive enough for the purpose. 

FITC covalently modifies positive lysine R-groups and the N-terminal portion of 

proteins, and so, could modify their binding behaviour. This is what may have 
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happened with the surrogate 20 kDa amelogenin from EMD, interfering with its 

immobilisation on the polystyrene surface of the microwell. A similar issue was 

reported in other works using BSA, as FITC-labelling altered its blocking abilities: 

FITC-labelled BSA did not withstand PBS or PBS-0.1% Tween washing (Ahirwar et al., 

2015) unlike unlabelled BSA, which is a gold standard blocker in ELISA protocols 

(Gibbs, 2001). 

In the case of the actual proposed binding assay, unlabelled amelogenin would have 

been bound to the microwells as bait. In this case, lysine modification might be an 

advantage as FITC-labelled amelogenin ligand would not bind the microwells. This 

would avoid nonspecific binding to the polystyrene. However at this stage, the 

robustness of fluorescence-based microplate binding assays could not be 

demonstrated as the preliminary study was not successful.  

A second method to study amelogenin-amelogenin binding was developed based on 

UV-absorption spectrometry to monitor the depletion of solubilised amelogenin from 

solution in real time as it bound to amelogenin immobilised on the microwell surfaces. 

As discussed in the next Section, this avoided the need for labelling or covalent 

modifications and no washing steps were involved. The method, utilising UV-

transparent microplates could, in theory, be used to determine the kinetics of protein-

protein interactions as proteins were depleted from solution over time. 



- 241 - 
 

4.2.2 Protein depletion from solution in UV-transparent microplates 
provided with an end-point measurement and limited kinetic 
information 

Unlabelled amelogenin was incubated in UV transparent microwells and the decrease 

in UV absorbance was monitored over time, reflecting the depletion of amelogenin 

from solution, as amelogenin initially adsorbed to the microwell surfaces (protein-

polystyrene binding) and then amelogenin remaining free in solution binding to the 

previously immobilised amelogenin (protein-protein binding). The hope was that this 

would then permit determination of the kinetics of amelogenin-amelogenin binding 

(illustrated in Figure 80).  

 

Figure 08  Principle of protein (amelogenin) depletion assay using UV-transparent 
microwells. Panel (A) illustrates the initial hypothesis that (1) amelogenin 
would bind to the polystyrene and then (2) free amelogenin would bind to 
immobilised amelogenin. Panel (B) displays the decrease of absorbance 
expected, reflecting the interactions occurring in (A). After phase (1) of 
amelogenin-polystyrene binding, there is an inflexion point and the second 
slope (2) would reflect previously free amelogenin binding to the 
immobilised amelogenin. The assumption is that amelogenin-polystyrene 
binding occurs more readily than amelogenin-amelogenin binding so that 
the microwells are saturated before amelogenin-amelogenin binding 
begins. The aim is to characterise phase (2), that is, amelogenin-
amelogenin binding.  
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4.2.2.1 The absorbance decrease reflected the major EMD proteins 
binding to the polystyrene surfaces 

4.2.2.1.1 Amelogenin bound to polystyrene surfaces 

In all tests carried out, absorbance decreased throughout the incubation period 

(Section 3.2.2, Figures 61 p. 192, 64 p. 198, 66 p. 202, 68 p. 205), which indicated that 

EMD, used as a surrogate for r-amelogenin, bound to the polystyrene surface. 

Consistently, analytical SDS PAGE with Coomassie Blue staining showed that the 

concentration of amelogenins left in solution (looking at the 20 kDa band) was, as 

expected, reduced after incubation (Figures 61 p. 192, 64 p. 194, 68 p. 205).  

The binding of hydrophobic amelogenin to polystyrene was expected as polystyrene 

(Figure 81 below) is hydrophobic. Amelogenin has a high content of hydrophobic 

amino acids such as proline and leucine. The binding of leucine to polystyrene was 

demonstrated by studies on LK14 peptide (Mermut et al., 2006). The adsorption of 

proteins to polystyrene is mediated by their hydrophobic regions (Norde et al., 1995). 

This is likely mediated by hydrophobic interactions between the benzene rings of 

polystyrene and hydrophobic amino acid residues (Qiang et al., 2017), as illustrated in 

Figure 81 below.  

Figure 18  Principle of adsorption of EMD proteins on polystyrene surface. The 
adsorption of protein on polystyrene is mediated by hydrophobic 
interactions and the residues involved are most likely those of 
hydrophobic amino acids (red box, on the right).  

 

However, analytical SDS PAGE of proteins remaining unadsorbed from solution 

indicated that low molecular weight (< 10 kDa) components were not adsorbed to any 

degree during the incubation period (shown in Figures 61, p. 192 and 64, p. 198). 

These could be soluble components of EMD such as amelogenin degradation 
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products (Brookes et al., 1995) which may not be able to engage in hydrophobically 

driven interactions and therefore did not bind to hydrophobic polystyrene. 

The first step in developing the method was to establish the starting concentration of 

EMD sufficient to saturate the microwell surfaces. The results in Section 3.2.2.1 (pp. 

191 – 192) showed that the equilibrium was reached after 10 hours of incubation as 

the absorbances plateaued from that point onwards (Figure 61A p. 192). The 

polystyrene microwell surfaces could be saturated using EMD at an initial 

concentration ranging 99.6 to 166 µg /mL. For both 99.6 and 166 µg/mL as starting 

concentrations, the contents of solution at equilibrium displayed equal signals on 

analytical SDS PAGE after Coomassie Blue staining in Figure 61B (p. 192). This was 

illustrated in Figure 62 (p. 193), reproduced below in Figure 82. 

Figure 28  Saturation of the polystyrene surface was obtained using EMD at 
initial concentrations of 99.6 - 166 µg EMD / mL. As the EMD concentrations 
at equilibrium appeared to be the same on analytical SDS PAGE (illustrated 
by the dashed red boxes), the polystyrene surfaces were assumed to be 
saturated, with the equilibrium existing between free EMD and the 
immobilised EMD. 

4.2.2.1.2 Characterising the kinetics of EMD binding:  Mathematical modelling 
of the UV absorption curves 

It is worth noting that in contrast to what was hypothesised initially (Figure 80, p. 241) 

the pattern of UV absorbance decrease (Figure 61A p. 192) was not a linear graph 

with inflexion point. This could be because: 

 With time the concentration of free EMD in solution would fall, so binding did

not occur under constant conditions and slowed down towards the equilibrium;

 Free EMD- immobilised EMD interactions may be occurring at the same time

as free EMD- polystyrene interactions, confounding the protein-protein and

protein-polystyrene binding kinetics, as illustrated in Figure 83 below. This

precludes seeing a distinct inflexion point.
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Figure 38  Amelogenin-amelogenin and amelogenin-polystyrene binding may 
occur simultaneously: hypothesis. 

 

It was important to ensure that the initial phase of EMD-polystyrene binding was not 

confused with EMD binding to immobilised EMD for kinetic analysis. Passive 

adsorption by hydrophobic binding to polystyrene may cause denaturation of the 

proteins adsorbing, which is a well-known issue (Butler et al., 1993). and could alter 

subsequent amelogenin self-assembly.  

To overcome this issue and avoid confounding the kinetics of EMD-EMD binding with 

those of EMD-polystyrene binding, the binding assay was carried out to include an 

initial incubation phase that saturated the polystyrene surface with EMD, followed by a 

second incubation with fresh EMD solution, allowing free EMD to bind to immobilised 

EMD (See Section 2.2.2.2, pp. 126 – 129 for detailed methodology), presumably 

representing EMD-EMD binding. The results obtained in Section 3.2.2.2 (Figure 64 p. 

198) indicated that free EMD bound to immobilised EMD, with a greater propensity (in 

terms of rates of depletion from free solution) than that observed for EMD-polystyrene 

binding (Section 3.2.2.2, pp. 200 - 201).  

The depletion kinetics at the 1st and 2nd phases of EMD binding (respectively EMD  -

polystyrene and EMD – EMD binding) were subjected to curve-fitting and the Hill 

sigmoid equation generated the best fit, encompassing all time-points (see Figure 65 

p. 200) with R2 > 0.99. The Hill equation originally described the saturation of 

haemoglobin with oxygen as a function of oxygen tension (Hill, 1910). It can be 

expressed as the following equation (as written in OriginPro 9.1 software (OriginLab, 

Northampton, MA)):  

y = Vmax. (xn/(Kn + xn)) 

The variable y is the velocity of binding reaction and x is the concentration of ligand. 

The equation generates 3 parameters: Vmax (= maximum velocity), K (= 

concentration of ligand required to reach half of maximum velocity) and n (= 

cooperation or “Hill” coefficient, whose value indicates whether ligands positively or 

negatively cooperate while binding to the macromolecule.  
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The Hill equation is however not actually applicable to the data presented in the thesis, 

as it expresses the velocity of the reaction as a function of reactant concentration. 

Besides, the Hill equation is related to various equations in biology describing 

equilibria: Langmuir isotherms, used in adsorption studies, Michaelis-Menten equation 

in enzymology or EC50  calculations in pharmacology (Goutelle et al., 2008). 

In the current work, the exponential functions would have been more relevant 

biologically to the second phase of depletion if this represented EMD-EMD binding 

only. As indicated in Figure 20 p. 87 (Section 1.3.6.1), the rate of protein-protein 

binding is a differential equation. Exponential equations were among the equations 

tested for curve-fitting (Section 2.2.2.2, p. 128) but did not generate a fit to R2 > 0.99, 

comprising all time-points. The Hill equation was therefore chosen, because for all 

graphs obtained it proved to be the most convenient tool for interpretation and 

comparison. It generated the following parameters: 

 Vmax = ‘Maximum gain’ of EMD to polystyrene surface predicted 

 K=T1/2 = time to reach half of maximum depletion. This allows to 

compare .paces of depletion. 
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4.2.2.2 EMD binding to EMD immobilised on the bottom of the microwells 
caused the decrease in UV absorbance as EMD was depleted as it 
bound to immobilised EMD  

The absorbance measurements reported in Section 3.2.2.2 (Figure 64, p. 198), 

including the plateau region, were higher for EMD-EMD binding than EMD-polystyrene 

binding. At equal equilibrium concentrations (shown by analytical SDS PAGE in Figure 

64, p. 198) the difference of absorbance observed (ΔAbs, in Figure 64, p. 198) 

probably reflected EMD binding to the EMD already immobilised to the bottom of the 

microwells so that the absorbance recorded was actually an aggregated value of this 

material and any free EMD left unbound in solution (as illustrated below in Figure 84A 

below). This was an unavoidable consequence of the UV light path passing through 

the bottom of the microwell. This was also observed in the initial test to determining 

sufficient starting EMD concentration to saturate the microwells, where the absorbance 

at equilibrium was higher at starting EMD concentration of 166 µg/mL (Section 3.2.2.1, 

p. 192) as illustrated in Figure 84B below.

Figure 48  EMD bound to the bottom of the microwells affected the true 
absorbance reading associated with unbound EMD remining free in 
solution. Absorbances values were higher at equilibrium when more EMD 
had bound to the bottom surface of the microwells (highlighted by dashed 
red boxes and red double-headed arrows). This was observed (A) in the 
two-phase incubation assay (Section 3.2.2.2, p. 198) and (B) in the 
saturation test (Section 3.2.2.1, p. 192) where the EMD concentration in 
solution was the same at equilibrium but the absorbance values differed. 
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To confirm and further characterise the effect of proteins bound to the bottom of the 

microwells on the absorbance reading, a third test was carried out (Section 2.2.2.3, p. 

130), to measure the absorbance of what remained bound to the bottom of the 

microwell after discarding the contents of the microwell once the 2nd incubation had 

reached equilibrium. The final absorbance read, post-incubation, was 0.24 which is not 

negligible (Section 3.2.2.3 p. 202). So, it is clear that the higher absorbance values at 

equilibrium (as discussed above, in Figure 84) were due to EMD proteins bound to the 

bottom of the microwells.  

This implies that the interpretation of protein binding kinetics is complicated by proteins 

binding to the bottom of the microwells (which makes 22% of surface covered by 200 

µL EMD solution) causing the depletion of free EMD in solution to be underestimated 

during the second incubation phase.  

However, the results obtained (Section 3.2.2.3, pp. 202 - 203) opened up the 

possibility that the binding behaviour of WT and mutant p.Y64H r-amelogenins can be 

compared by measuring the direct accumulation of proteins on the bottom of the 

microwells, as the value 0.24 obtained with EMD is close to 0.3, which is where 

absorbance measurements can be read with the highest precision1. This method 

would provide end-point measurements but not direct real-time kinetics. To monitor the 

kinetics of EMD-EMD binding (shown as EMD depletion from solution) adjustments 

were needed to eliminate the bias caused by EMD binding to the bottom of the 

microwells. An option was to block the bottom of the microwell from binding to EMD as 

discussed in below in Section 4.2.2.3. 

4.2.2.3 Blocking did not prevent EMD from binding to polystyrene 
Microplate-based immunological assays use different blocking regimes to prevent non-

specific adsorption of detection antibodies to the microwell surface. Ideally, antibodies 

will only be retained in the microwell if they recognise and bind specifically  to the 

target antigen that has been immobilised to the microwell surface. BSA and NFDM are 

gold standard blockers in ELISA tests (Gibbs, 2001). BSA forms a monolayer when 

binding to polystyrene surfaces (Fair and Jamieson, 1980) and is predicted to interact 

with polystyrene via CH3 groups, resisting washes in PBS (Jeyachandran et al., 2009). 

NFDM has proved a more effective blocker than BSA in western blotting and in ELISA, 

as well as being cheaper (Johnson et al., 1984) and like casein (which is its major 

1 To reiterate the interpretation of the results obtained in Section 3.2.2.3 (p. 202), an 
absorbance value of 0.3 corresponds to the point where 50% of the photons emitted 
by the light source are absorbed, which allows for reading at the highest precision. 
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component) was found to be the most effective blocker against peroxidase-conjugated 

immunoglobulin non-specific binding to polystyrene microwells (Vogt Jr et al., 1987). 

In this thesis, the ability of BSA and NFDM to block EMD from binding to polystyrene 

was tested first, before any attempt to block the bottom of the microwells (See Section 

2.2.2.4 pp. 131 – 133 for the method). If the blockers prevented EMD from binding to 

the polystyrene, the concentration of EMD added to a blocked microwell was expected 

to remain constant over the incubation period (illustrated in Figure 85A below), causing 

a constant absorbance reading over time to be obtained (illustrated by the orange 

dashed line in Figure 85B below). The absorbance pattern would be clearly different 

from when EMD was added to the “Control” microwells which were not blocked (black 

line in Figure 85B) . 

Figure 58  Absorbance pattern expected in case of successful blocking. Panel A 
illustrates the effect of blocking. (A) Without blocker (black box), EMD 
proteins bind to the microwell surface, so their concentration in solution 
decreases. In the presence of blocker (orange box), EMD is expected not to 
bind to the microwells surface and remain at constant concentration in 
solution. the absorbance of protein is expected to remain constant over 
time with blocker (dashed orange line in panel B). 
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The absorbance patterns obtained (Figure 86A below) however, did not show 

significant difference in the binding of EMD whether or not the microwells were 

blocked with BSA or NFDM before adding EMD solution. Three hypotheses to explain 

this can be drawn, as illustrated in Figure 86 B-D (below): 
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 The gold standard blockers were washed off before adding EMD solution
(Figure 86B).

The washes were carried out three times simply with PBS (see Figure 34, p.133), but it 

is unlikely that BSA or NFDM were removed in these conditions, as both are common 

blockers in ELISA tests and can withstand high stringency washes with PBS even in 

the presence of 0.05% Tween 20 – a non-ionic detergent commonly added to ELISA 

wash buffers to minimise loose nonspecific binding . Both BSA and NFDM are 

“permanent blockers” that “only need to be added once” and can withstand multiple 

washes (Gibbs, 2001). For example, BSA withstands washes and phosphate-BSA 

complexes forming reportedly tend to favour BSA-polystyrene binding (Jeyachandran 

et al., 2009).  The next hypothesis is that the blockers were not washed off during 

washes with PBS, but were removed by EMD acting as a binding competitor. 

 EMD had a stronger affinity than the blockers for the polystyrene
(Figure 86C)

Assuming that amelogenin may have a greater affinity for polystyrene surfaces than 

BSA or NFDM, then, its addition could quickly displace the adsorbed blocker by the 

“Vroman” effect. The Vroman effect originally described the displacement of fibrinogen 

initially adsorbed to a surface caused by plasma proteins having a greater affinity for 

that surface (Vroman et al., 1980) but is the general definition of the competitive 

desorption of one protein by another (Hirsh et al., 2013). It has been reported using 

QCM that BSA previously adsorbed to a surface was displaced by competitive binding 

of other proteins such as fibronectin (Felgueiras et al., 2016) Similarly, SPR studies 

suggested that albumin was displaced by competitive binding of fibrinogen and IgG 

(Green et al., 1999). As for NFDM, the Vroman effect has not been documented. This 

does not mean that NFDM  cannot be displaced by competitive adsorption of EMD or 

other proteins. This hypothesis could be verified using AFM, QCM-D, Time-of-Flight 

Secondary Ion Mass Spectrometry, Time-of-flight mass spectrometry or SPR, which 

were employed to characterise competitive protein displacement on surfaces (Green 

et al., 1999, Hirsh et al., 2013). QCM is suitable technique in particular to characterise 

protein surface adsorption and blocking abilities (Reimhult et al., 2008). Alternatively, it 

would be a simple matter to run the contents of a blocked microwell following the 

addition of amelogenin on SDS PAGE to see if the blocking protein had been 

desorbed into solution. 

Should the Vroman effect occur, one could expect that the kinetics of absorbance 

depletion would differ between conditions as the EMD would have to displace the 

blocker first before it could bind the surface itself (unless this process occurred very 
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quickly). How, then, can the fact that the absorbance patterns are similar be explained 

(Figure 86A, above)? 

It maybe that EMD can displace the blocking protein very quickly; The time-point 

measurements were every 30 minutes, which may not provide a sufficient temporal 

resolution if EMD displaced the blocker very quickly. 

 EMD bound to BSA or NFDM with the same affinity as it bound to
polystyrene (Figure 86D).

BSA and NFDM are the most common blockers used in the laboratory as they prevent 

non-specific protein binding in ELISA studies (Gibbs, 2001) or western blotting. 

Naturally, they are only suitable providing the detection antibodies do not bind to them 

instead of the microwell surface. For BSA and NFDM, there is a risk of cross-reactivity 

with anti-phosphotyrosine antibodies while using BSA prepared from fraction V (which 

is the BSA used in this thesis, see Section 2.2.2.4, p. 131) as it may contain 

phosphotyrosine (Gibbs, 2001). In addition, in the case of BSA, some cross-reactivity 

was reported to human antibodies (Chart et al., 1998) or to vaccina virus complement 

control protein (Xiao and Isaacs, 2012). In contrast, the literature abounds with 

thousands of examples where BSA and NFDM have been used successfully as 

blockers suggesting that in general proteins do not interact with them. However, this is 

not to say EMD proteins follow this trend.  

As blocking did not prove effective it could not be used to solve the issue around the 

undesirable binding of EMD to the bottom of the microwells and further development is 

required. At this stage then, the microplate binding assay can be used to provide an 

end-point measurement of EMD binding to the bottom of the microwells by using UV 

spectroscopy to directly measure the amount of proteins adsorbed to the bottom of the 

microwells after 24-hour incubation. 
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4.2.2.4 Achievements, future developments and prospectives  

4.2.2.4.1 UV-transparent microplate-based depletion measurements provide a 
cost-effective and simple method to analyse amelogenin binding 
behaviour 

To recap, the microplate binding assays developed and discussed previously in 

Section 4.2.2 provided reliable end-point measurements as a means to compare 

binding behaviours of WT and p.Y64H mutant r-amelogenins. This approach consisted 

of incubating proteins in polystyrene in microwells until saturation and protein-protein 

binding equilibriums are reached, and measuring the absorbance (after discarding the 

solutions) of what is left on the bottom of the microwell. Comparing the solution 

contents before and after incubation also confirmed protein depletion.  

This assay provides an exciting prospective, as it allows high-throughput studies, the 

protocol is easy to carry out and is adaptable in that the solution conditions are easily 

modified. The use of 384 microwell microplates would further reduce the amounts of 

precious r-amelogenin even further as the microwell volume is only 131 µL compared 

to the 392 µL in a microwell from a 96 microwell plate. 

4.2.2.4.2 Impact of the proposed method and future use 

As it stands, the method developed here could also be used as a preliminary 

screening tool to determine conditions (buffer, pH, range of concentrations, 

temperature etc.) for subsequent binding studies using SPR, QCM and AFM.  

As mentioned in Section 1.3.4 (p. 64) in vitro studies are useful adjuncts to in cellulo or 

in vivo studies, as they allow detailed understanding of biological mechanisms. On 

their own, in vitro studies rarely reflect in vivo events. Notably, common in vitro protein 

binding experiments may involve protein labelling and may be limited by protein 

solubility. Due to amelogenin’s propensity to aggregate in physiological-like buffers 

(Tan et al., 1998), it has proved problematic to study amelogenin binding behaviour or 

assembly (see Sections 1.2.2.2.4 pp. 25 - 26 on amelogenin supramolecular 

assembly, and 1.3.3.2.1 p. 59 regarding the studies of p.P70T mutation). 

Therefore, in techniques such as SPR (further details are provided in appendix E), 

which require that amelogenin should be solubilised (according to Biacore handbook 

(Biacore Assay Handbook 29-0194-00 Edition AA)), cost-effective pilot studies could 

be helpful to determine conditions that mimic as closely as possible those existing in 

vivo or in cellulo (eg. amelogenin concentrations, buffer, pH) while still being 

compatible with SPR. The microplate binding assay developed in this thesis 

(discussed throughout Section 4.2.2, pp. 241 - 247) can then be integrated into the 

pipeline below (Figure 87):  following in vivo observations, it could provide a step that 
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would guide the choice for conditions to use in more elaborate binding studies using 

SPR or QCM. This would help dissecting in vivo events such as mechanisms 

underlying AI with greater accuracy, which itself would help characterising therapeutic 

targets. 

Figure 78  Experimental pipeline for dissecting protein binding behaviours in 
vivo (“in vivo events. Following initial in vivo observations (step 1) the 
microplate binding assay developed (Section 4.2.2) can provide pilot data 
(step 2) to guide the design of protein-protein interaction studies (step 3). 
Accurate characterisation of in vivo events is a first step for drug 
discovery. The interest of this pipeline is discussed in text, p. 253-254 
regarding amelogenin-amelogenin binding studies (short term prospective) 
and pp. 263-264 regarding amelogenin binding to other proteins (middle-
long term prospective). 

However, the microplate binding test described here is open to further improvements 

that would allow it to be used to generate more exhaustive and accurate binding 

kinetics data such that it could replace the more expensive and lower throughput 

techniques such as SPR and QCM. The improvements to consider are discussed in 

the next Section (4.2.2.4.3). 
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4.2.2.4.3 Immediate possibilities for improvement of the microplate-based 
binding assay 

The following improvements should be considered, to generate more accurate and 

reliable binding kinetics data using the microplate assay. 

 Measure accurately the initial rate of binding reaction 
The absorbance measurement recordings reported in Section 3.2.2 (Figures 61A, 64, 

66, 68A, 69A) started within 4.5 to 10 minutes after preparing EMD solutions, which 

should be the actual starting point of the experiments. In this thesis, this was 

considered as negligible as it only represent 0.3 – 0.7% of the total duration of the 

absorbance measurements. Nonetheless further development would be needed to 

measure the initial reaction rates. In the short term, using QCM or SPR in complement 

could help to measure the initial binding reaction rates. 

 Prevent any amelogenin from binding to the bottom surface of the 
microwells and masking the solution depletion kinetics.  

To reiterate Section 4.2.2.2 (p. 247), all surfaces binding and immobilising EMD and r-

amelogenin solutions were polystyrene, the bottom surface comprises 22% of the total 

surface exposed to the protein solutions which is not negligible. The rate at which 

proteins adsorb to the bottom surface of the microwell masked the rate at which they 

disappeared from solution due to binding to the rest of the microwell surface which is 

problematic. Initially, the approach taken was to block  the bottom of the microwells 

with gold standard blockers BSA and NFDM, but these were not effective (Discussed 

in Section 4.2.2.3, pp. 247 - 252). Alternative ‘anti-fouling’ methods remain to be tested 

and investigated. Polystyrene surfaces can be transformed to prevent protein binding. 

For example,  PLL-g-PEG adsorbed on to polystyrene prevented BSA adsorption to 

the surface (Hecker et al., 2018) and there are many other potential blockers that 

could be tested. Another approach to consider is chemically transforming the surfaces 

of the microwell. For example, treating the surface to make it hydrophilic by plasma 

irradiation or by corona discharge (Onyiriuka et al., 1991). This may inhibit amelogenin 

binding if the binding is hydrophobic in nature. 

 Test different concentrations of amelogenins to generate data relevant  to 
the Hill equation. 

The Hill equation was chosen in EMD adsorption curve-fitting (see Figure 65, p. 200) 

as a function of time (as Discussed in Section 4.2.2.1, p. 244). However the Hill 

equation is (in simplified terms) the expression of a reaction velocity as a function of 

the initial reagent concentration. To be able to use the Hill equation model (with 

biological relevance), the next step would then consist of testing different starting 

concentrations of amelogenin/EMD and plot them against initial depletion rates.   
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4.2.2.4.4 General risks to consider with microplate-based studies: amelogenin 
is an aggregative protein 

Amelogenin is prone to self-assembly and aggregation. It is also an intrinsically 

disordered protein . Although its best-known assembly mode is to form nanospheres, 

an ellipsometry and AFM study showed that when adsorbing to surfaces, it formed 

smaller structures, either monomers or reduced oligomers, and it may adopt various 

quaternary structures depending on the adsorption surface used (Tarasevich et al., 

2009a, Tarasevich et al., 2009b). This effect may be an issue for any technique where 

amelogenin is adsorbed . 

4.2.2.4.5 Relevance of EMD as a surrogate 

The convenience of using EMD as a surrogate for mouse r-amelogenin is that it 

comprises mostly amelogenins and is available in abundant quantities for method 

development purposes (Sections 3.2.2.1 – 3.2.2.4 in Results chapter, and 4.2.2.1 – 

4.2.2.4 in Discussion chapter) (Maycock et al., 2002). EMD contains a mixture of 

porcine amelogenins (Maycock et al., 2002) which share a high degree of homology 

with mouse amelogenins (Brookes et al., 1995). However, EMD is a heterogeneous 

mixture of amelogenins, comprising  all of the amelogenin processing products, 

together with non-amelogenin components such as ameloblastin (Kuramitsu-Fujimoto 

et al., 2015) found in trace amounts in the pig secretory stage enamel  used to 

produce EMD. Clearly, EMD is not comprised of 100% full length amelogenin, the 

amelogenin isotype comprising the r-amelogenins  used here and therefore  the 

following caveats need to be taken into account: 

· Caveat 1: EMD It is a heterogeneous mixture. It comprises proteins that may exhibit

a wide range of different binding affinities, giving absorbance data that reflect an 

average of all proteins rather than one specific species, unlike the r-amelogenins used 

in this thesis. This complicates the interpretation of protein binding kinetics.   

· Caveat 2: Its major component is the 20 kDa “P148” amelogenin processing product,

which raises 2 concerns: 

(1) P148 does not contain the hydrophilic telopeptide. Studies comparing rP147

and the full length telopeptide-bearing rP172 showed that the telopeptide played a role 

in amelogenin assembly and amelogenin-mineral interactions (Wiedemann-Bidlack et 

al., 2007, Kwak et al., 2009). The ideal surrogate would have been full length porcine 

amelogenin P173 but this is not the most abundant isoform in EMD. 

(2) P148 is found in the enamel matrix only since it is a proteolytic processing

product of P173. As explained in the Sections 1.2.1.2.1 (p. 17) and 1.2.3.1.1 (pp. 30 – 

31), P173 is the major isoform of parent amelogenin, which transits through the 
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ameloblast secretory pathway and towards secretion; given the conservation of 

amelogenin between species (Brookes et al., 1995) P173 would be the most 

appropriate surrogate for M180 and therefore, for the r-amelogenins used in this 

thesis. 

 

In spite of the caveats mentioned above  using EMD as a surrogate proved useful in 

these preliminary studies. It demonstrated that the method could be used to track the 

depletion of a relevant protein from solution as it bound to proteins adsorbed to the 

microplate microwell walls (discussed above in Section 4.2.2) and using microplate-

based assay to compare the binding behaviours of WT and p.Y64H mutant r-

amelogenins where feasible (discussed in the Section 4.2.3). Specifically, using EMD 

as surrogate informed on: 

 Experimental design. 

 Suitable starting concentrations (100 -160 μg/mL) which saturated the 

polystyrene surfaces and subsequently provided a sufficient negative change 

of absorbance that could be accurately tracked as the proteins were depleted 

from solution by interaction with the immobilised protein phase.  

  The incubation time required to reach binding equilibrium (for saturating the 

microwell surfaces in order to establish the immobilised phase and for the 

subsequent binding of freshly added protein this immobilised phase; around 10 

-15 hours). 
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4.2.3 Effect of the p.Y64H mutation on mouse amelogenin binding 
properties and the possibilities of dissecting molecular 
mechanisms underlying AI. 

Using the experimental design developed with EMD as a surrogate (discussed above 

in Section 4.2.2), the binding behaviours of WT and mutant p.Y64H r-amelogenins  

were compared. This Section discusses the results obtained.  

4.2.3.1 The hypothesis that the p.Y64H mutation causes amelogenin to 
become aggregative is supported by these data 

The possibility that the p.Y64H amelogenin increases amelogenin-amelogenin binding 

propensity is supported by the results obtained in Section 3.2.2.5 (pp. 207 - 212): 

- The absorbance measurements and analytical SDS PAGE gel densitometry analyses

(Figure 69 p. 209) showed that WT-His remained more or less in solution at constant 

concentration (excepting for a 8-10% minor decrease of signal). Mut-His was depleted 

from solution by 45% over 24 hours incubation. 

- Reading the absorbance of the proteins adsorbed onto the bottom of the microwells

left after discarding the solutions (Figure 70 p. 210), the recombinant Mut-His yielded an 

absorbance value of 0.29. In contrast, the absorbance values read after discarding 

WT-His microwells were 5-7-fold lower (0.04) with a much smaller standard deviation 

which confirms that in contrast to Mut-His, WT-His was hardly bound to polystyrene.  

Mut-His r-amelogenin appeared better at binding to the microwells than WT-His, which 

did not show any obvious aggregation behaviour as it stayed in solution over the 

incubation period. This suggests that the p.Y64H mutation increased r-amelogenin 

apparent hydrophobicity and propensity to aggregate. This pilot experiment therefore 

provided with a further step in understanding the effect of the p.Y64H mutation, as 

discussed below in Section 4.2.3.2. However, the difference of binding behaviour was 

not observed with the His-tagged r-amelogenins, where WT+His showed higher 

aggregation propensity than Mut+His. It is clear that the presence of the His-tag 

appeared to make a huge difference on the behaviour of r-amelogenin in this 

experimental system. This point is addressed in greater detail later in Section 4.3.2 (p. 

268). 

It is worth noting that the r-amelogenins employed were expressed in E. coli, [which 

differs from the eukaryotic system of expression] and therefore lacked phosphorylation 

on Ser16 (See Section 4.1.3.2, p. 235). Although both WT and mutant p.Y64H r-

amelogenins lacked this phosphorylation, this may have compromised the comparison 

between WT and mutant p.Y64H r-amelogenin. The effect of phosphorylation has 
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been itself a subject of great interest (see Section 1.2.1.3.1, p. 18 for detailed 

explanations).  

 

4.2.3.2 Hypothesis regarding the effect of the mutation p.Y64H 
As suggested in the Section 1.3.4 (pp. 64 - 65) understanding the effect of the 

mutation p.Y64H on amelogenin function, in the disruption of amelogenesis, requires a 

combination of in vitro, in cellulo and in vivo studies; to reiterate, in brief: 

- In vitro and (if applicable) in silico data would dissect the mechanism 

underlying AI in fine details. 

- In cellulo studies are also needed to dissect the underlying mechanisms of AI, 

while providing a broader picture. 

- In vivo studies are needed as initial observations and also, at some point, to 

validate the data obtained in vitro and/or in cellulo.  

Built on the literature review and on the pilot data discussed above in Section 4.2.3.1, 

there are various possible consequences of the p.Y64H mutation to consider, at 

different levels. The hypotheses are illustrated in the diagram below, adapted from 

Figure 13 (p. 65). The relevant sections of the literature review and thesis data are 

displayed on the Figure below. 
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Figure 88  Hypothetical or identified effect(s) of the amelogenin p.Y64H mutation. 
This figure represents the scales which may be impacted by the mutation 
p.Y64H, i.e.: locally, in the amino acid sequence (box “functional domain
impacted”) at the amelogenin structure and function scale (boxes “folding”
and “assembly”) or at the cellular or extracellular scales
(boxes”intracellular” and “extracellular trafficking”). Futher description can
be found in the text below.
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As shown in Figure 88 above, the p.Y64H mutation in amelogenin may have effects at 

different scales: 

 Locally, as a single point mutation. 

Tyrosine and Histidine have different propensities for exposure to aqueous surface 

and as well, can participate to different types of interactions (as reviewed in Section 

1.3.4.3.1, pp. 79 - 82). At higher scales this single point mutation per se can 

hypothetically affect the conformation and binding properties of amelogenin. 

 Locally, affecting the ATMP domain 

As ATMP domain is reportedly involved in amelogenin interaction with itself and with 

other proteins (reviewed in Sections 1.2.2.2.1, p. 22 and 1.2.5.2.2, pp. 47 - 49), the 

mutation may affect amelogenin recognitions properties and interaction with itself 

and/or other proteins, an avenue to consider. 

The two “local” effects, cited above, can be described in silico as they only concern a 

few amino acids, as such. However, in silico studies are limited at this level since 

amelogenin 3-dimensional structure has not been solved, to date (see Section 

1.2.1.3.3, p. 20). Awaiting structural data, the effect of the p.Y64H mutation was 

studied in vitro, focusing on amelogenin binding properties. 

 Affecting amelogenin binding properties in vitro 

The pilot data obtained with the microplate-based binding assay developed in this 

thesis (Sections 3.2.2.5, 4.2.3) suggested that the p.Y64H mutation increased 

amelogenin’s propensity to aggregate. This appears supported previously reported 

data, which found abnormal retention of mutant p.Y64H amelogenin in the ER, as 

detailed in the next paragraph. 

 Affecting amelogenin intracellular trafficking in cellulo and in vivo.  

As detailed in Section 1.3.4.1.3 (p. 70), ameloblasts expressing p.Y64H amelogenin 

displayed abnormally engorged ER vesicles, with mutant amelogenin, which strongly 

suggested ER stress (Brookes et al., 2014). Consistently, an increase of UPR markers 

was observed, including pro-apoptotic markers, which would explain the premature 

ameloblast apoptosis noticed in vivo by Brookes et al (2014). Abnormal retention of 

p.Y64H amelogenin was also observed in cellulo in COS-7 cells while co-transfected 

with ameloblastin (see Section 1.3.4.3.2, p. 82). These latter data are capital to 

validate any in vitro or in silico data, past, present or future. 
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To compare the binding behaviours of WT-His and Mut-His r-amelogenins with more in 

vivo relevance, the next step would be to obtain recombinants that carry 

phosphorylation on Ser16. This can now be achieved since, as developed in this thesis, 

amelogenin can be purified using acetic acid extraction and preparative SDS PAGE 

(see Section 4.1.3.2, p. 235). Instead of E. coli, the expression system would need to 

be eukaryotic, which would include the relevant protein folding machinery operating in 

the ER during the secretory pathway (and overcome the problem of bacterial cleavage 

of the N-terminal methionine). Following purification however, a challenge would still 

potentially in whether the r-amelogenins can recover their native conformation. 

A caveat in many in vitro experiments is that they rely on correct protein folding and 

conformation is achieved via the amino acid sequence alone- however, this is not 

always enough to fold a protein – as chaperones are often necessary to catalyse 

protein folding to their native functional conformations (Hartl et al., 2011). 
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4.2.3.3  Future tests to develop a therapeutic for AI as a conformational 
disease 

Clearly, data obtained using the WT-His and Mut-His r-amelogenins suggested that their 

binding behaviour was affected by the p.Y64H mutation. The current results (Section 

3.2.2.5, pp. 207 - 212, discussed in Section 4.2.3.1, p. 258) supported that r-

amelogenin was more aggregative while carrying the mutation p.Y64H, which is 

consistent with its abnormal retention observed in the ameloblasts and the subsequent 

ER-stress and pro-apoptotic UPR (Brookes et al., 2014). However, the results 

obtained in this thesis (Section 3.2.2.5) were generated by one pilot experiment due to 

time constraints, so further work including the use of other techniques would be 

advisable to corroborate the data obtained and confirm their reproducibility.  

Characterising the way in which the p.Y64H mutation affects protein-protein 

interactions will be invaluable in helping to dissect ER-stress and UPR mechanisms 

driving AI in the presence of this mutation and help develop therapeutic strategies and 

targets. 

This section proposes middle- and long-term strategies to study the pathogenesis of AI 

and other enamel diseases: 

-  In the middle-term, studying the effect of p.Y64H mutation on how amelogenin 

interacts with other proteins (e.g. chaperones and UPR activation trans-ER-membrane 

sensors) involved in the ameloblast secretory pathway (Discussed in Section 4.2.3.3.1 

overleaf). 

-  In the long-term, the UPR has been associated with enamel fluorosis (Brookes 

et al., 2017a), so the scope of ER-stress and UPR- studies can be widened to 

understand and possibly treat other enamel diseases (Discussed in Section 4.2.3.3.2 

overleaf). 

 

4.2.3.3.1 Analysing impaired protein-protein interactions in the presence of the 
p.Y64H mutation  

Section 3.2.2.5 showed that the effect of the p. Y64H mutation significantly affected 

amelogenin aggregation. Various binding partners for amelogenin, other than 

amelogenin itself, were previously identified in vitro (as reviewed in Section 1.2.5.2.1, 

pp. 45 - 47); for example ERAF components such as BiP/Grp78, calreticulin, protein 

disulphide isomerase precursor, apasin-ERP57 (Fukuda et al., 2013), cytoskeleton 

components such as actin, vimentin, tubulin (Fukuda et al., 2013), cytokeratins 5 and 

14 (Ravindranath et al., 2001, Ravindranath et al., 2003), or other EMPs such as 

ameloblastin (Ravindranath et al., 2004), with which it colocalises in the intracellular 

secretory pathway (Mazumder et al., 2014). As suggested in Section 1.3.4.3.2 (pp. 82 
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- 83), the p.Y64H mutation could affect the binding equilibria related to amelogenin 

self-assembly, amelogenin-ameloblastin interactions, or amelogenin interactions with 

ER folding machinery. These interactions may be interdependent and necessary to the 

proper trafficking of amelogenin in the ameloblast and to its extracellular function 

(Figure 19, p. 83). 

Therefore, in the middle-term, the effect of the p.Y64H mutation on the binding of 

amelogenin with other relevant proteins is worth investigating. This could be done 

using the microplate-based method developed in this thesis (discussed in Section 

4.2.2), possibly in combination with other techniques. The pipeline proposed in Figure 

87 (p. 254) and possible improvements to the microplate binding assay (discussed in 

the Section 4.2.2.4.3 pp. 255) would provide an efficient strategy to characterise the 

kinetics of protein-protein interactions involved. 

The choice of amelogenin-binding partners to study can be guided by data from the 

literature, and ideally, the availability of an “interactome” database would be of great 

help (Shoemaker and Panchenko, 2007). The online “Search Tool for the Retrieval of 

Interacting Genes/Proteins (STRING)” (https://string-db.org) is a possible starting 

point. However, little information is currently available regarding the amelogenin 

interactome.  

This research prospective mentioned, the studies on protein-protein interactions 

involved (and impaired) in the context of ER-stress and UPR (see Section 1.3.4.1.3 p. 

70 on the mouse model carrying the mutation p.Y64H) could serve a wider 

investigation in the long-term, as UPR has been reported in other enamel pathologies 

(addressed below in Section 4.2.3.3.2);  

 

4.2.3.3.2 Conformational diseases and therapy in amelogenesis 

 ER stress and UPR found in cases of AI 
The mouse model expressing the amelogenin p.Y64H mutation is the first model 

showing ER stress as mechanism driving AI (Barron et al., 2010, Brookes et al., 2014). 

A recent paper by Brookes et al, 2017, addressed the role of the UPR in enamel 

pathologies (Brookes et al., 2017a): AI and fluorosis. Following the publication on 

amelogenin p.Y64H , ameloblast ER stress was observed as well with enamelin 

mutations p.55I in mouse and p.L31R in human (Brookes et al., 2017b). The secretory 

stage ameloblasts secretion pathways were impaired as enamel matrix proteins were 

abnormally retained. Notably, UPR markers (e.g., Grp78, Xbp1, Grp94, and Atf4) were 

upregulated in ameloblasts expressing  amelogenin p.Y64H and Enamelin p.S55I.  
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 ER stress and UPR found in fluorosis
The mechanisms underlying fluorosis have been studied for decades. Histological

studies reported that fluoride disturbed intracellular protein trafficking (Matsuo et al.,

1996). This supported the idea that the ameloblasts were suffering ER stress.

Supporting this finding, a study using the ameloblast-derived cell line LS8 and porcine

enamel organ epithelial cells showed that UPR components were up-regulated in

response to fluoride. The researchers observed that fluoride promoted IRE1 activation,

with up-regulation of BiP (Grp78), Xbp-1, and Chop expression (Kubota et al., 2005).

 Therapeutic prospective

Identifying the UPR as an aetiological factor in AI or fluorosis offered prospective for 

developing therapeutic interventions that could potentially abolish AI in affected 

familes or fluorosis. In the mouse model (X-linked AI) carrying the mutation 

amelogenin p.Y64H, treatment with 4-phenylbutyrate restored the phenotype in 

heterozygous mice for the mutation (Brookes et al., 2014). 4-Phenylbutyrate also 

protected the ameloblast-like cell line ALC from cytotoxicity caused by fluoride, again 

by impacting on elements of the UPR (Suzuki et al., 2017). The precise mechanism of 

action of 4-phenylburtyrate is not entirely known to date, although both reports 

showed that it mitigates UPR-pro-apoptotic outcome. 

Conformational diseases in general are currently subject to intense research. The 

possibility of modulating intracellular protein-protein interactions with a view to 

reversing aggregation-linked ER stress is one major approach in attempts to identify a 

therapeutic intervention. As well as acting as an anti-apoptotic agent, 4- 

phenylbutyrate is also reported to act as a chemical chaperone and has been shown 

to restore a stalled secretory pathway in cells expressing the mutated sodium 

transporter responsible for cystic fibrosis (Rubenstein et al., 1997) or reduced the 

aggregation of mutant myocilin in a case of glaucoma (Yam et al., 2007). It had, 

though, no such effect on ameloblasts expressing p.Y64H amelogenin. Otherwise, 

BiP/Grp78 expression enhancer (BIX) has also been shown to restore correct protein 

folding and so potentially alleviate ER stress (Hetz et al., 2013). In the search to 

restore correct protein folding, a comprehensive characterisation of the effect of 

candidate drugs on protein-protein interactions is required. This will facilitate the 

design of therapeutics that can control pathological aggregation. 
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4.3 The presence of His-tag altered the binding/aggregation 
behaviour of amelogenin 

In Section 3.2.2.5 (pp. 207 - 212), WT+His and Mut+His r-amelogenins clearly exhibited 

different binding behaviours when compared to their His-tag-free homologues. This 

section addresses (i) the predicted chemical properties of the His-tag (Section 4.3.1), 

then (ii) highlights the issues associated with using His-tagged amelogenin in binding 

assay reported in this thesis (Section 4.3.2) finally (iii), this section reviews the role of 

His-tag in purification methodologies and in protein binding studies (section 4.3.3). 

4.3.1 Predicted and measured properties of fusion-His-tag 

Histidine has well-known unique binding properties (Section 1.3.4.3.1, pp. 79 – 82) as 

its imidazole ring mediates various types of interactions including cation metal 

coordination via its electron-donating secondary amine. In immobilised metal affinity 

chromatography (in this thesis, a nickel column was used) the number of His residues  

comprising the His-tag affects the purification efficiency; as longer His-tags improve 

the protein purity (Hochuli et al., 1988). However, increasing the length of the His-tag 

increases the risk of altering the protein structure and function. Balancing both these 

factors (final protein purity and maintaining protein function), hexahistidine-tags are the 

preferred option (Bornhorst and Falke, 2000) and are very commonly used. Using 

hexahistidine tags, the binding affinity of the tag for immobilized Ni2+-nitrilotriacetic acid 

ranges from KD = 1-10 μM for fusion-tag proteins (Nieba et al., 1997, Lata et al., 2005) 

to KD = 14 nM for oligopeptides (Knecht et al., 2009). Hexahistidine-tagged proteins 

can be eluted by competition with imidazole at 100 mM or higher concentrations 

(Bornhorst and Falke, 2000).  

 

The His-tag employed in this thesis is 40 amino acids long (see sequence below) and 

includes a cleavage site for rhinovirus 3C protease (underlined) : 

“MGSSHHHHHHSSGLVPRGSHMASMTGGQQMGRGSLEVLFQ# ” 

Using the on line tool ProtParam (https://web.expasy.org/protparam/), this His-tag has 

calculated a pI of 9.46 and a grand average of hydropathicity (GRAVY) index of -

0.603, which suggests that it is hydrophilic (Kyte and Doolittle, 1982, Gasteiger et al., 

2005). As summarised in Table 14 below, the inclusion of this His-tag in the r-

amelogenin may not have significantly affected the Kyte and Doolittle GRAVY index, 

but would have increased the pI from 6.51 to 6.87; which is significantly closer to 

physiological pH. So, as the binding assays used PBS: 1% acetic acid at ratios 

216.4:1 to 290:1, whose pH is within physiological values, which is closer to the His-

tagged r-amelogenins’ pI;  His-tagged r-amelogenins would be expected to be less 
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soluble and more aggregative than His-tag-free amelogenins.  This may explain why 

both WT+His and Mut+His r-amelogenins used in this thesis were more aggregative, or 

were better able to bind polystyrene microwell surfaces, than WT-His r-amelogenin . 

Crucially however, in contrast to WT-His r-amelogenin, Mut-His r-amelogenin appeared to 

exhibit significant aggregative or polystyrene binding properties. Whatever the case, 

the mutation was having a significant impact on r-amelogenin behaviour.  

 

Table 41  Differences of pI and hydropathicity predicted by Protparam between 
WT-His 1 and WT+His 2 mouse amelogenins (Gasteiger et al., 2005): effect of 
the addition of His-tag. 

 
  

                                                
1 The pI and GRAVY indexes were calculated from the sequence of His-tag-free 

mouse M180 amelogenin WT (WT-His). The ‘input’ sequence is provided in 
Appendix A. 

 
2 The pI and GRAVY indexes were calculated from the sequence of recombinant  His-

tagged mouse M180 amelogenin WT (WT+His) used in this thesis. The ‘input’ 
sequence is provided in Table 3 p. 92 (Section 2.1.1.1). 
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4.3.2 His-tag altered r-amelogenin function, masking the effect of 
mutation p.Y64H. 

As mentioned earlier in Section 4.2.3.1 (p. 258), the presence of the His-tag 

significantly enhanced apparent binding of r-WT r-amelogenin to the plastic. The gain 

of proteins by the polystyrene surface was greatly enhanced and accelerated when 

His-tagged r-amelogenins were used. The models generated by curve-fitting with the 

Hill equation (Figure 71, p. 212) predicted that the depletion from solution of both 

WT+His and Mut+His r-amelogenins was 50% higher and faster that the depletion of WT-

His r-amelogenin , with a ‘half-time’ of 15 minutes (-vs- 40 minute predicted for Mut-His). 

(To reiterate, these kinetics parameters were only a rough estimate and do not permit 

accurate comparison (Discussed in Section 4.2.2.1.2, pp. 244 - 245)).  

If EMD binding to polystyrene is hydrophobic then the inclusion of the His-tag may 

have enhanced hydrophobic interaction; as shown in Table 14 (Section 4.3.1, p.267), 

the GRAVY index predicted on Protparam tool is less negative, which suggests an 

increase in hydrophobicity (Kyte and Doolittle, 1982). As mentioned previously in the 

Section 4.3.1, the change of pI (see Table 14), which is closer to the reaction pH, may 

play an important role.  

Beyond these parameters (GRAVY, pI, etc.), which are predicted simply from amino 

acid sequences, the enhanced aggregative behaviour seen in the presence of the His-

tag may be caused by the His-tag rendering the hydrophobic parts of the r-amelogenin 

more accessible to the surface. In some way this would alter the conformation of r-

amelogenin, making it more aggregative. This is important in studies that use 

recombinants with the His tag still attached, which may possibly mislead the data 

reported previously in binding studies; this is addressed in the next Section. 
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4.3.3 r-amelogenin is often used in functionality studies with the 
His-tag still in place 

The use of His-tagged proteins in functionality studies is widely practiced under the 

assumption that the tag has no effect on protein conformation or function (Chant et al., 

2005). As His-tag affinity purification is a relatively simple and well-established method 

(Hochuli et al., 1988) the addition of a His-tag has been extensively used to purify 

proteins for crystallographic studies, for which the tag was not removed (Derewenda, 

2004). There are several examples where His-tagged enamel proteins have been 

used in functionality studies, e.g. His-tagged amelogenin, ameloblastin and enamelin 

were used to investigate interaction of these enamel proteins with fibronectin (Beyeler 

et al., 2010) and His-tagged ameloblastin was used to investigate the growth factor-

like activity of ameloblastin and its effect on cell attachment and proliferation of 

periodontal ligament cells (Zeichner‐David et al., 2006). A panel of in vitro studies of 

amelogenin self-assembly and mineral binding, used r-amelogenins carrying an N-

terminal His-tag: “RGSHHHHHHGS”. The addition of this His-tag sequence, which is 

not cleavable, was initially for purification purposes (Moradian-Oldak et al., 2000, 

Tarasevich et al., 2007, Lakshminarayanan et al., 2010, Tao et al., 2015). Some 

reports estimated that the presence of His-tag in in vitro studies did not alter 

amelogenin nanosphere formation nor its calcium phosphate nucleation behaviour 

(Moradian-Oldak et al., 2000, Tarasevich et al., 2007), while other studies reported 

that the presence of the same His-tag (RGSHHHHHHGS) affected amelogenin 

assembly and adsorption behaviour to hydroxyapatite (Tao et al., 2015). Tao et al 

(2015) proposed that at pH 8, the His-tag promoted oligomer–oligomer interactions by 

lowering the net protein charge and promoting imidazole ring-stacking interactions. In 

this thesis, the His-tag clearly affected the binding of r-amelogenin to polystyrene 

surfaces at physiological pH and temperature. The mechanisms involved are unclear, 

though one may propose that the His-tag imparted some specific conformation on the 

r-amelogenin, which altered the availability of specific residues or domains to interact 

with the polystyrene. 

Clearly, based on the pilot data presented in this thesis and the literature, it would be 

preferable to conduct functionality studies with r-amelogenins free of any tags in order 

to maximise confidence in the data obtained. The use of His-tags for functionality and 

structural studies does not guarantee that the results obtained will necessarily reflect 

in vivo situations. For example, a His-tag proved to be problematic when studying 

Gcn5-related N-acetyltransferase as the His-tag bound to the substrate-binding site 

and affected the enzyme’s active site conformation and activity (Majorek et al., 2014). 
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That the His-tag affected the behaviour of amelogenin-amelogenin interactions should 

be considered in the design of future functionality studies. For example, when carrying 

out SPR studies, sensor chips are available whose surfaces are functionalised with 

Ni2+ so that His-tagged protein can be captured prior to running a binding experiment 

(Biacore Series S NTA Sensor Chips). The resulting data would need to be interpreted 

in the knowledge that the His-tag could influence the results obtained.  
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Chapter 5 Conclusions and future work 

To recap, the work achieved in this thesis responds to the initial aims as follows: 

5.1 Aim 1: Production and purification of r-amelogenins 

1) The previously reported method, using acetic acid for extracting His-tag-free r-

amelogenins from E. coli at a high level of purity (Svensson Bonde and Bulow, 2012) 

was optimised for His-tagged recombinants prior to further purification using nickel 

column chromatography, the ”gold standard” purification methodology. 

2) Nickel column chromatography proved less than ideal for purifying r-amelogenin 

since His-tag cleavage was not 100% efficient. This means that cleaved and 

uncleaved recombinants needed to be subjected to a second round of nickel column 

chromatography to separate them but this was confounded by the fact that amelogenin 

contains tri- and di histidine repeats which seem to act as pseudo His tags that made it 

impossible to produce a final product that exhibited single band purity using silver 

stained analytical SDS PAGE. 

3) As an alternative, preparative SDS PAGE proved to be an effective means for 

purifying r-amelogenin and was able to produce a final product that exhibited single 

band purity using silver stained analytical SDS PAGE. Preparative SDS PAGE 

negated the need for nickel chromatography, therefore rendered the His-tag 

redundant, and provided the potential to purify His-tag-free r-amelogenins. 
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5.2 Aim 2: Investigation of the effect of p.Y64H mutation 
associated with AI in mouse, on amelogenin-amelogenin 
binding  

1) A simple binding assay using UV-transparent microplate was developed with EMD

as a surrogate with the aim to be used to compare WT and p.Y64H r-amelogenins in

terms of their ability to adsorb to the polystyrene surface of the microwells (EMD-

polystyrene binding) and, on top, to bind to the adsorbed EMD (EMD-EMD binding).

2) Given that the use of a His-tag is now redundant to purify r-amelogenin, plasmids

coding His-tag-free WT-His and Mut-His r-amelogenins were produced to provide

recombinants for use in the microplate-based binding assay. Time limitations only

allowed for a pilot study to be carried out, comparing the behaviours of WT+His, Mut+His,

WT-His and Mut-His r-amelogenins. The data obtained among His-tag-free r-amelogenins

(WT-His and Mut-His) suggested that Mut-His adsorbed strongly, whereas WT His-tag-free

r-amelogenin showed weak adsorption. This suggests that the mutation had a

significant impact on amelogenin behaviour in terms of its binding properties. In

contrast, the His-tagged r-amelogenins (WT+His and Mut+His) both adsorbed strongly in

the microplate assay.

3) Therefore, the comparative data between WT+His and WT-His r-amelogenins suggests

that His-tags can have a significant impact on amelogenin behaviour and this should

be considered when planning functional studies using r-amelogenins purified using

His-tag-based methodologies.
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5.3 Future work 

Following these conclusions, the following prospective can be considered: 

1) Given the purifying power of preparative SDS PAGE, r-amelogenins can be
obtained, as close as possible to the native M180 amelogenin, for binding 
studies. 
Time limitations allowed the use in the binding assay of r-amelogenins extracted in 3% 

acetic acid only, illustrated in Figure 89A (because the plasmids expressing His-tag-

free r-amelogenins were delivered during the write-up phase of this thesis). So, next: 

 the r-amelogenins will all be subjected to a round of preparative SDS PAGE to

yield single band purity on silver staining analytical SDS PAGE (Figure 89B).

 Furthermore, r-amelogenins can be expressed in an eukaryotic system, which

will allow, for example, phosphorylation on Ser16 (Figure 89B).
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Figure 98  Production and purification of His-tag free r-amelogenins for 
microplate-based binding assays: current achievements and future 
prospectives. At this stage (box A), the WT and mutant p.Y64H r-
amelogenins were expressed in E. coli, extracted in acetic acid, where they 
account for >90% of all proteins (see Section 4.1.2.1, p. 216) for further 
details). Due to time constraints, the acetic acid extracts (desalted) were 
tested directly in the microplate binding assays without further purification 
by preparative SDS PAGE.  Future improvements would employ an 
eukaryotic system, so that the proteins produced are as close as possible 
to the native M180 amelogenin. They could be purified by preparative SDS 
PAGE and after desalting, used in microplate-based binding assay 
developed (Discussed in Section 4.2.2). 
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2) To investigate further the effect of the amelogenin mutation p.Y64H in vitro,
the following prospective is to consider:

2.1) Data reproducibility. 
Repeat the pilot binding assay carried out in this thesis, to corroborate the results 

obtained and confirm their repeatability. 

2.2) UV-transparent microplate binding assay: method development 
Pursue the development of the microplate-based binding assay, so that absorbance 

measurements reflect directly and accurately amelogenin adsorption to the sides of 

the microwells, i.e: Prevent any amelogenin from binding to the bottom surface of the 

microwells. 

2.3) Studying the effects of p.Y64H mutation 

 Choice of techniques for studying protein-protein interactions.
Considering the experimental pipeline proposed (Figure 87, reproduced below), other 

protein binding techniques can be employed to confirm or complete those obtained 

with the UV-transparent microplate-based assay.  

Figure 09  (Figure 88 reproduced) Experimental pipeline for dissecting protein 
binding behaviours in vivo. 
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 Choice of proteins for protein binding assays.
The results obtained in this thesis suggest that the p.Y64H mutation affected 

amelogenin-amelogenin binding and aggregation behaviour. The p.Y64H mutation 

may also affect amelogenin binding to other proteins (if these interactions indeed 

occur in WT), for instance chaperones, or EMP (such as ameloblastin) co-secreted 

with amelogenin in the secretory-stage ameloblasts. This point is worth considering 

further, in order to dissect the pathological mechanisms underlying ER stress- related 

AI:   

.  

Figure 19  The amelogenin p.Y64H mutation may perturb the balance of protein-
protein interactions involving amelogenin. Future routes to investigate for 
protein-protein interactions are indicated. 
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Appendix A Preparation of His-tag-free r-
amelogenins WT and mutant p.Y64H for 

microplate-based binding studies 

Recombinant His-tag-free amelogenins either WT (WT-His) or carrying the p.Y64H 

mutation (Mut-His), were expressed by E. coli BL21(DE3) competent cells previously 

transfected with vector pET30a /Amelx-WT-His or Amelx-Mut-His. The plasmid 

production and transfection were performed by a commercial company (Novoprotein 

Scientific, NJ, USA). Vector pET30a carried the T7 promoter, LacI operator, WT or 

p.Y64H mutant His-tag-free amelogenin gene (Amelx-WT-His or Amelx-Mut-His) and 

kanamycin resistance gene to allow for the selective growth of transfected cells. The 

predicted amino acid sequences of the r-amelogenins are shown below in Table 1.

Table 1 Primary sequences or r-amelogenins WT-His and Mut-His. The 
position of p.Y64H point mutation is indicated in red. 

r-amelogenin Primary sequence 

WT-His 

MPLPPHPGSPGYINLSYEVLTPLKWYQSMIRQPYPSYGYEPM
GGWLHHQIIPVLSQQHPPSHTLQPHHHLPVVPAQQPVAPQQ
PMMPVPGHHSMTPTQHHQPNIPPSAQQPFQQPFQPQAIPPQ
SHQPMQPQSPLHPMQPLAPQPPLPPLFSMQPLSPILPELPLE
AWPATDKTKREEVD 

Mut-His 

MPLPPHPGSPGYINLSYEVLTPLKWYQSMIRQPHPSYGYEPM
GGWLHHQIIPVLSQQHPPSHTLQPHHHLPVVPAQQPVAPQQ
PMMPVPGHHSMTPTQHHQPNIPPSAQQPFQQPFQPQAIPPQ
SHQPMQPQSPLHPMQPLAPQPPLPPLFSMQPLSPILPELPLE
AWPATDKTKREEVD 

E. coli cells storage and growth, induction of r-amelogenin expression, and 

extraction in acetic acid were kindly performed by Dr. Sarah Myers. The cell growth 

and r-amelogenin induction conditions were the same as those described in Section 

2.1.1.1 (induction with IPTG) pp. 92 - 93. The extraction in acetic acid is the same 

as described in 2.1.1.2 p. 94. The acetic acid extracts were desalted against 125 

mM formic acid (See section 2.1.1.3, p. 99)
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Appendix B    Preparation of His-tag-free WT and 
p.Y64H mutant r-amelogenins for microplate-based

binding studies 

Recombinant His-tag-free amelogenins either wild-type (WT-His) or carrying the 

p.Y64H mutation (Mut-His), were expressed by E. coli BL21 (DE3) and extracted in 

acetic acid were (See Appendix A for details). The supernatants of acetic acid 

extracts were subjected to mass spectrometry.

The results of mass spectrometry analysis are displayed below in Figure 1 (spectra 

for r-amelogenin WT-His) and Figure 2 (spectra for r-amelogenin Mut-His). This 

appendix supports the text in Section 4.1.2.1 (p. 217)
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Appendix C Determination of a minimum 
working enzyme/protein ratio 

The N-terminal His-tag initially included in the sequence of r-amelogenin for 

purification purposes had to be removed using HRV3C (71493, Merck), a recombinant 

restriction-grade protease from human rhinovirus protease. HRV3C catalyses the 

hydrolysis between glutamine and glycine within the sequence LEVLFQ/GP. It is 

however an expensive reagent (currently priced at £226.10 / mL stock solution). To 

limit the need for costly amounts of HRV3C, the cleavage reaction was optimised to 

determine the most cost-effective enzyme-to-substrate ratio. 

The ratios tested ranged from 2 µL enzyme solution per mg desalted acetic acid 

extract to 20 µL enzyme solution per mg desalted acetic acid extract. The acetic acid 

extract containing r-amelogenin WT+His was resuspended at 2mg/mL into a solution of 

1.5M NaCl, 0.5M Tris-HCl, pH = 7.5, which is the standard cleavage buffer 

recommended by the manufacturer for the restriction grade HRV3C protease 

(Millipore-71493, Herfordshire, UK). The protease (in its stock solution at 2U/µL) was 

added into the r-amelogenin solution, to 2, 2.4, 4, 10, or 20 µL per mg substrate 

protein. The mixture was left at 4°C over 72 hours and for each condition 50µL aliquots 

were taken to -80°C every 24 hours. The aliquots taken were lyophilised and 

resuspended to original concentration in 1X sample buffer for analytical SDS PAGE. 

The yields of cleaved r-amelogenin were measured by gel densitometry. The 

optimisation procedure is summarised in Figure 3 below and the results obtained are 

shown in Figure 4. 
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Figure 3 Summary of the procedure optimising the (enzyme-to-target) protein 
ratio, expressed as µL stock solutions HRV3C per mg desalted acetic acid 
extract. Acetic acid extracts of r-amelogenin were desalted and 
resuspended in His-tag removal buffer (recommended by the manufacturer 
for HRV3C) and stock solutions of HRV3C proteases were added as 0 
(Control), 2, 2.4, 4, 10, 20 µL per mg proteins. The mixture was incubated 72 
hours, with small aliquots taken each 24 hours for analytical SDS PAGE. 
The results obtained are shown in Figure 4. 

Small aliquot of each fraction 
(taken each 24 hours) 

E. coli culture
and expression of r-amelogenin 

Crude extraction in 3% acetic acid 

Desalting and lyophilisation 

Resuspension (2mg/mL) in standard His-tag removal buffer:
 150 mM NaCl, 50mM Tris-HCl pH 7.5.

+ 0, 2, 2.4, 4, 10, 20 µL enzyme per mg protein
(72 hours incubation)

Analytical SDS PAGE 
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Figure 4 shows the effect of increasing incubation times and enzyme-to-substrate 

ratios on the efficiency of His-tag cleavage. In the control, containing no enzyme 

(“Control” in Figure 4 above), the uncleaved r-amelogenin at 27kDa is present 

through the incubation period indicating that there was no significant degradation over 

the 72-hour incubation time.  

In the samples subjected to His-tag removal (i.e., where HRV3C was added to the 

mixture at 2 to 20 µL per mg protein extract), two additional bands were visible: one 

minor 22kDa band corresponding to the HRV3C enzyme (orange arrows in Figure 4), 

and one prominent 24kDa band, corresponding to the cleaved (His-tag-free) r-

amelogenin. The 22kDa band corresponding to the HRV3C enzyme was more intense 

in the samples containing more enzyme. The fact that the band intensity of the 

‘cleaved’ (His-tag-free) and ‘uncleaved (His-tagged) r-amelogenin are similar on all 

‘test’ lanes indicated that neither the time of incubation, nor the enzyme: substrate 

ratio significantly affected the yield of His-tag removal. Given this, an enzyme-to-

substrate ratio of 3µL of stock enzyme per mg of substrate was used for the cleavage 

reactions.   

In all conditions tested, it was clear that the His-tag removal reaction never 

approached 100% efficiency.  
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Appendix D  Effect of buffer composition and pH on 
efficiency of His-tag removal 

As described in Appendix C it was decided to use the HRV3C enzyme at an enzyme-

to-substrate ratio of 3µL per mg substrate protein mixture. This optimisation was 

carried out at pH 7.5 in the buffer suggested by the manufacturer -150 mM NaCl, 

50mM Tris-HCl . However, in the course of the work, some cleavages were carried 

out at pH 8 in 50mM Tris-HCl and even at pH 9 in 0.1M Na2CO3 

The rationale of carrying out the cleavage at pH 8 in 50mM Tris-HCl using was 

twofold. First the slight increase in pH and the reduction in ionic strength due to 

omission of the 150mM NaCl would be expected to aid r-amelogenin solubility and 

possibly allow it to be more accessible to the enzyme.  

The rationale of carrying out the cleavage at pH 8 and 9 in 0.1M Na2CO3 is that this 

more extreme pH would be expected to favour further the solubility and reduce the 

aggregation of r-amelogenin (Tan et al., 1998), therefore increasing its accessibility to 

the protease HRV3C. The buffer 0.1M Na2CO3 at pH = 9 also allowed the cleavage 

products to be directly labelled with fluorescein at this point if required (as fluorescein 

labelling is carried out in this buffer system). 
The freeze dried acetic acid extract was dissolved at 2mg/mL in the cleavage buffers 

and stock HRV3C solution was added to 3 µL per mg protein and incubated for 72 

hours. The cleavage buffers were: Tris-HCl (pH=8), 0.1M Na2CO3 (pH=8), or 0.1M 

Na2CO3 (pH=9). As controls, small aliquots were taken before adding the HRV3C; then 

small aliquots were taken after adding HRV3C every 24 hours for analytical SDS 

PAGE. The aliquots taken for analytical SDS PAGE were lyophilised and resuspended 

to original concentration in 1X sample buffer.  

The procedure is summarised in Figure 5 below and the results obtained are shown in 

Figure 6. 
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Figure 5 Summary of the procedure designed to test the effect of buffer 
composition and pH on r-amelogenin His-tag removal efficiency. The His-
tag cleavage was carried out by incubating the acetic acid extract 
comprising r-amelogenin with HRV3C protease at 3 µL stock HRV3C 
solution per mg proteins for 72 hours. Incubation was done in either of 
these buffers: Tris-HCl (pH=8), 0.1M Na2CO3 (pH=8), or 0.1M Na2CO3 (pH=9). 
Small aliquots were taken before adding the HRV3C as controls and small 
aliquots were taken after adding HRV3C every 24 hours for SDS PAGE 
analyses. The results obtained are shown in Figure 6.

E. coli culture
and expression of r-amelogenin 

Crude extraction in 3% acetic acid 

Desalting and 
lyophilisation 

0.1M Na2CO3 
pH9 

 50mM Tris-
HCl pH8

Analytical 

SDS PAGE 

0.1M Na2CO3 
pH8

His-tag cleavage 

Small aliquot taken 
at 0, 23, 48, 72h  

His-tag cleavage His-tag cleavage 

Analytical 

SDS PAGE 

Analytical 

SDS PAGE 

Small aliquot taken 
at 0, 23, 48, 72h  

Small aliquot taken 
at 0, 23, 48, 72h  
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Analytical SDS PAGE in Figure 6 above showed that for all buffers, His-tag cleavage 

was effective, as a 24 kDa band is visible in all lanes except the controls, which have 

not been subjected to His-tag removal. However the cleavage yield never approached 

100%.  

Neither the composition of buffers nor the duration of incubation appeared to significantly 

affect the cleavage efficiency, since the intensities of the  ‘cleaved’ and ‘uncleaved’ 

bands appeared similar between different lanes (except the controls,  which did not 

contain HRV3C enzyme ). Figure 6B shows that the cleavage in 0.1M Na2CO3 was as 

effective as that carried out in 50mM Tris-HCl (Figure 6A. Figure 6C shows that 

increasing the pH to 9 did not affect the rate of cleavage either.  

It did not make significant difference either whether the r-amelogenin was WT or mutant 

p.Y64H.

Reference 
TAN, J., LEUNG, W., MORADIAN-OLDAK, J., ZEICHNER-DAVID, M. & FINCHAM, A. 

G. (1998) The pH dependent amelogenin solubility and its biological
significance. Connective tissue research, 38, 215-221.
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Appendix E   Protein-protein interactions and existing 
analytical techniques 

As mentioned in Section 1.3.6, “Understanding protein interactions is key to 

understanding normal amelogenesis as well as the aetiology of amelogenesis 

imperfectas driven by perturbed protein interactions”. To this end, the choice of protein 

binding studies to carry out is crucial. This appendix will complement  Sections 1.3.6.2 

-1.3.6.3 by providing further details on the principles, advantages and limitations of 

some existing in vivo and in vitro techniques. 

E.1 Protein-protein interaction assays in vivo 
This section reviews major in vivo protein-protein interactions studies. It details Y2H 

assay (Fields and Song, 1989) PCA (Johnsson and Varshavsky, 1994), FRET (Stryer, 

1978) and cross-linking (Wong, 1991). Their principles, pros and cons are summarised 

in Table 2 in this appendix. Other techniques including immunofluorescence microscopy, 

which previously identified amelogenin binding partners (See Section 1.2.5.2, p. 45 - 49) 

are not detailed here. 

Overall, in vivo protein-protein interactions studies are invaluable as they can generate 

the most relevant information on actual in vivo events. However, for detailed 

characterisation of protein-proteins interactions, in vitro studies are carried out as they 

can provide binding kinetics data, they are versatile and easier to handle. 

E.2 Protein-protein interaction assays in vitro 
There exists a plethora of in vitro methods to study protein-protein interactions. This 

Section addresses in vitro studies which do not require labelling or addition of a fusion 

protein or fusion tag. Popular methods include SPR (Karlsson et al., 1991), QCM 

(Sauerbrey, 1959), ITC (Freire et al., 1990),DLS (Pecora, 2013) or AFM (Binnig et al., 

1986). Their principles, pros and cons are summarised in Table 3 in this appendix. 

Other techniques related to microplate-based binding assays, including ELISA, are 

addressed in the Section 1.3.6.3-4 of the thesis and are not detailed in this appendix. 
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Supplementary data 

Details of analytical SDS PAGE and western blotting  

 

As indicated in section 2.1.1.4 p. 001  301-  (“SDS PAGE and western blotting”), the 

sample loading for each SDS PAGE analysis was optimised. This was to obtain strong 

enough band staining to display the proteins present in the extracts, and at the same 

time, avoid overloading so that the bands could be distinguished clearly. 

The volumes and concentrations differed depending on: 

- The visualisation technique employed; e.g.: silver staining is much more sensitive 

than Coomassie Blue (Morrissey, 1981)  

- The sample itself, e.g. The starting material was usually more concentrated than the 

purification fractions collected; it was sometimes so concentrated that dilution was 

necessary to be able to distinguish its contents on analytical SDS PAGE. 

This appendix details the sample preparation and loading for the analytical SDS PAGE 

and western blotting Figures comprised in the results (Chapter 3). It details: 

- The composition of samples before electrophoresis   

- The molecular weight markers used (and their dilution, if there is). 

- The volumes of samples and markers loaded 

It specifies also the staining techniques employed.  

- For Coomassie Blue staining, the duration of staining with Coomassie Blue is 

provided. As for the reagent employed, details are in the ‘Materials and 

Methods’ chapter (Section 2.1.1.4) pp. 001  201-  

- For silver staining, the duration of staining and development steps are provided 

here. As for details about the kit and whole procedure employed, see Materials 

and Methods’ chapter (Section 2.1.1.4) pp. 001  201-  

- For western blotting, this section provides with the duration of incubation with 

the primary and secondary antibodies, the dilution factor and the buffers in 

which the antibodies are diluted. The primary and secondary antibodies do not 

change between all western blots. The blotting procedure and reagents are all 

detailed in the Materials and Methods’ chapter (Section 2.1.1.4) pp. 101 , 301  
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1.1 Expression of recombinant WT and mutant p.Y64H 

amelogenins in E. coli (Section 3.1.1.1) 

 

 

 

 

Figure 53   

(Section 3.1.1.1 p. 1 73 ) 

SDS PAGE and western blotting 

of expressed E. coli proteins. 

The sample preparation, 

loading and staining/blotting 

methods are detailed below. 

Figure 63 A (Section 3.1.1.2.1 p. 1 93 ) 

Optimisation of the weight of E. coli paste to volume 

of acetic acid in the extraction process. 

The sample preparation, loading and staining/blotting 

methods are detailed below. 
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35A
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35B
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Figure 73  (Section 3.1.1.2.2 p. 141 ) 

Optimisation of the mixing regimen and temperature on the yield of r-amelogenin 

extraction. 

The sample preparation, loading and staining/blotting methods are detailed below. 
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1.2 Optimisation of 3% acetic acid extraction method (Section 

3.1.2.1) 

 

 

 

 

Figure 24 B  

(Section 3.1.2.1.1 p. 051 ) 

Nickel column chromatography 

round 1. 

The sample preparation, loading 

and staining/blotting methods are 

detailed below. 

Figure 34  (Section 3.1.2.1.2 p. 351 ) 

Optimisation of the mixing regimen and temperature 

on the yield of r-amelogenin extraction. 

The sample preparation, loading and staining 

/blotting methods are detailed below.  
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Figure 44   

(Section 3.1.2.1.2 p. 1 65 ) 

Nickel column chromatography round 2. 

The sample preparation, loading and 

staining /blotting methods are detailed 

below. 
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1.3 Purification of r-amelogenin using nickel column 

chromatography (Section 3.1.2.2) 

 

 

 

Figure 64  (Section 3.1.2.2.1 p. 361 ) 

Separation of acetic acid extract components by 

size exclusion chromatography using Bio-gel-

p30 matrix, 35 cm column length 

The sample preparation, loading and staining 

/blotting methods are detailed below. 

Figure 74  (Section 3.1.2.2.2 p. 1 56 ) 

Separation of acetic acid extract components by 

size exclusion chromatography using Bio-gel-

p10 matrix, 35 cm column length 

The sample preparation, loading and staining 

/blotting methods are detailed below. 

Figure 84  (Section 3.1.2.2.3 p. 1 66 ) 

Separation of acetic acid extract 

components by size exclusion 

chromatography using Bio-gel-p10 

matrix, 95 cm column length. 

The sample preparation, loading and 

staining /blotting methods are detailed 

below.  
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1.4 Purification of r-amelogenin using preparative SDS PAGE 

(Section 3.1.2.3) 

 

Figure 05  (Section 3.1.2.3.1 p. 071 ) 

Analytical SDS PAGE with Coomassie Blue staining to identify the fractions of 

interest (those containing r-amelogenin). 

The sample preparation, loading and staining /blotting methods are detailed below. 
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Figure 15  (Section 3.1.2.3.2 p. 171 ) 

Analytical SDS PAGE of the fractions of interest (obtained by preparative SDS PAGE) 

with silver staining and western blotting. 

The sample preparation, loading and staining /blotting methods are detailed below.  
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Figure 45 A (Section 3.1.2.3.2 p. 1 77 ) 

Analytical SDS PAGE showing the isolation of ‘cleaved’ r-amelogenin from 

‘uncleaved r-amelogenin using preparative SDS PAGE. (A) Coomassie Blue staining. 

The sample preparation, loading and staining /blotting methods are detailed below.  

Figure 45 B (Section 3.1.2.3.2 p. 1 77 ) 

Analytical SDS PAGE showing the isolation of ‘cleaved’ r-amelogenin from 

‘uncleaved r-amelogenin using preparative SDS PAGE. (B) Silver staining. 

The sample preparation, loading and staining /blotting methods are detailed below.  
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1.5 Fluorescence-based binding assay (Section 3.2.1) 

 

 

 

Figure 55  (Section 3.2.1.1 p. 081 ) 

EMD proteins sucessfully labelled with FITC 

The sample preparation, loading and staining /blotting 

methods are detailed below. 
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Figure 75  (Section 3.2.1.2 p. 281 ) 

Fractions obained when FITC-labeled EMD proteins were subjected to preparative 

SDS PAGE. 

The sample preparation, loading and staining /blotting methods are detailed below.  
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1.6 Monitoring the kinetics of amelogenin-amelogenin interactions 

as a function of UV absorbance (Section 3.2.2) 

 

 

 

 

Figure 16 B (Section 3.2.2.1 p. 291 ) 

A range of initial EMD concentrations (33.2 – 166 µg/mL) was used to investigate 

EMD adsorption onto the microwells surfaces. 

The sample preparation, loading and staining /blotting methods are detailed below.  

Figure 46   

(Section 3.2.2.2 p. 1 89 ) 

Analysis of EMD-EMD binding 

kinetics. 

The sample preparation, loading 

and staining /blotting methods 

are detailed below. 
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Figure 86  (Section 3.2.2.2 p. 2 50 ) 

Ability of goldstandard blockers BSA and NFDM to 

block EMD from binding to microwell surfaces. 

The sample preparation, loading and staining /blotting 

methods are detailed below. 

Figure 96 B  

(Section 3.2.2.5 p. 2 90 ) 

Comparison of r-amelogenin depletion 

from solution after 24h incubation in 

microwells for WT-His, Mut-His, WT+His, 

Mut+His. 

The sample preparation, loading and 

staining /blotting methods are detailed 

below. 
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