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Abstract

The objective of this thesis is to utilise modern open-design ul-

trasound research platforms to develop new and advance sev-

eral existing techniques that incorporate nonlinear phenom-

ena.

Acoustically, nonlinearity refers to changes in speed of sound,

attenuation or elasticity that vary with frequency, temperat-

ure or pressure. These effects cannot be linearised by the wave

equation and require fluid dynamics and elasticity equations

to be fully understood. While this is a hindrance and source

of error in many areas of ultrasound such as high-intensity fo-

cused ultrasound (HIFU) and medical imaging, nonlinearities

do have uses in non-destructive guided wave (GW) testing.

These effects are influenced greatly by the transducer surface

pressure, and so precise control of the excitation is necessary

to achieve the desired nonlinear effect, if any, in the medium.

In this thesis, aided by the use of two new research platforms,

several new ultrasound techniques were developed.

It was shown the frequency content in the electrical wave-

form is pertinent and so distortion must be minimised. This

requirement conflicts with several hardware limitations, how-

ever. Accordingly, a genetic algorithm was applied to find

novel switched waveform designs. It was found to achieve a

2% granularity in amplitude control with harmonic reduction,

where existing waveform designs could not produce any. This

fine amplitude control is a requirement for array applications.



Following this, a technique to control the direction of GWs

without knowledge of the waveguide was devised. Record-

ings of a propagating GW, induced by the first element of an

array transducer, were re-transmitted in a recursive fashion.

The effect was that the transducer’s transmissions construct-

ively interfered with the transverse wave, causing most of the

guided wave energy to travel in the direction of the trans-

ducer’s spatial influence. Experimental results show a 34 dB

enhancement in one direction compared with the other.

GWs were then applied to bone for two purposes: for as-

sessment of osteoporosis and for measurement of skull prop-

erties to assist transcranial therapy. It was shown that ex-

isting methods for obtaining dispersion curves are ineffectual

due to limitations in the available sampling area. A signal

processing scheme was devised to temporally align transverse

dispersive waves so that beamforming style techniques could

be applied to prove or disprove the existence of certain modes.

The technique in combination with multiplication was applied

to numerical, ex vivo and in vivo experiments. It was found

to improve the contrast of the higher order modes. The tech-

nique could improve the reliability of osteoporosis diagnosis

with ultrasound, but may also prove useful for acquiring dis-

persion images in NDT. Numerically the technique was shown

to improve the S3 and A3 mode intensity by 6 dB and 13 dB

respectively compared with an existing Fourier method.

In skull, a relationship was found between the curved thera-

peutic array geometry and the delay profile necessary to form

GWs in skull. Several numerical models were tested and it was

shown that the thickness could be obtained from the group ve-

locity. The estimated maximum error using this technique was

0.2 mm. Since the data is co-registered with the therapeutic

elements, this method could be used to improve the accuracy



of thermal treatments in the brain.

Finally, the application of switched excitation for HIFU was

considered. To improve on cost, efficiency and size, alternat-

ive excitation methods have the potential to replace the linear

amplifier circuitry currently used in HIFU. In this final study,

harmonic reduction pulse width modulation (HRPWM) was

proposed as an algorithmic solution to the design of switched

waveforms. Its appropriateness for HIFU was assessed by

design of a high power 5 level unfiltered amplifier and sub-

sequent thermal-only lesioning of ex vivo chicken breast. HRPWM

produced symmetric, thermal-only lesions that were the same

size as their linear amplifier equivalents (p > 0.05). These

results demonstrate that HRPWM can minimise HIFU drive

circuity size without the need for filters to remove harmonics

or adjustable power supplies to achieve array apodisation.

Overall it has been shown in this thesis that precise control

of the nonlinear wave phenomena can be afforded when using

open-platform ultrasound research hardware. The methods

described within may reduce the cost and increase the efficacy

of future commercial systems.
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Chapter 1

Introduction

1.1 History

Sound plays a part in our lives that is scarcely less important than light or

motion. It may be surprising to the reader then that our now vast knowledge

of the mechanics of sound is relatively new. Despite huge advances in the

understanding of optics, astronomy and classical mechanics during the Islamic

golden age (769-1258), little attention was given to the physics of sound except

for the first estimations on the speed of sound by Abū Rayhān al-B̄irūn̄i [9].

In fact, beyond simple observations by Pythagoras (600 BC) [10] about the

relation of pitch to the length of a vibrating string, the vibratory nature of

sound wasn’t discovered, albeit accidentally, until 1638 by Galileo. In “Dis-

courses Concerning Two New Sciences”, published in the same year, he de-

scribes how a pure tone can be produced by dragging an iron chisel across a

brass plate [11]. Notably, he found that the indentations left by the chisel were

closer together when the pitch was high. He expressed that a relation is to be

found in the number of vibrations per unit time, which we now call frequency.

The next 250 years brought with it volumes of publications that describe

the linear behaviour of sound in gas, including reflection, diffraction and at-

tenuation. The most significant of these works perhaps being Lord Rayleigh’s,

“Theory of Sound” [12]. His work introduced a number of complex surface

waves including Rayleigh and whispering gallery waves. Lamb, who was greatly

admired by Rayleigh, would later theorise the existence of a more complex

1



1. INTRODUCTION

multi-modal highly dispersive wave [13]. Sadly, he died before the identifica-

tion of the Kramers–Kronig relation and the invention of the modern computer

which have both made Lamb waves so prolific in everyday non-destructive test-

ing (NDT).

Lamb waves are just one example of small signal acoustics that are highly

dispersive, and so unlike regular wave propagation their speed of sound varies

greatly with frequency. At large finite amplitudes, sound exhibits additional

nonlinearities as the localised acoustic pressure changes the material’s density.

Unlike the regular wave equation, its one-dimensional analysis includes a po-

sition term. This 3rd order differential equation has its own dedicated body

of literature called nonlinear acoustics. This thesis, also considers this nonlin-

ear phenomenon. To better distinguish the two, nonlinear will always appear

italicised with a footnote explanation when referring to nonlinear acoustics1.

1.2 Scope

This thesis concerns itself mostly with two particular areas of ultrasound:

guided wave testing and high intensity focused ultrasound (HIFU). In both of

these areas, observation of nonlinear phenomena is both critical and common-

place, so they serve as excellent examples for this thesis. Whilst the reader may

be familiar with more common modes of ultrasound, such as ultrasonography,

there are important differences with these modalities that must be described

first.

Guided waves are used in non-destructive testing to inspect thin structures,

which usually means that the material (waveguide) thickness is close to, or less

than, one wavelength. Unlike regular ultrasonic NDT, where bulk waves are

used to find features in the elevation direction of the transducer, guided waves

travel perpendicular to the thin dimension. Because the waveguide boundaries

are so close, and the attenuation is low, these waves are useful for inspecting

long structures such as pipes or heat exchangers [14]. As with many oscillating

systems, the guided waves have multiple anti-symmetric and symmetric modes.

Their relationship between the speed of sound and frequency is extremely

1Nonlinear propagation induced by sufficiently large amplitudes
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nonlinear.

HIFU is a form of therapeutic ultrasound wherein a focused transducer

is used to non-invasively heat tissue inside the body. With low intensities,

perfusion can be increased, but it is more common to use higher intensities,

where cavitation and thermal ablation can be caused which is useful to treat a

variety of diseases [15]. The temperature rise is related to the tissue attenuation

which has a nonlinear relationship with frequency. Nonlinear propagation1 also

adversely occurs, due to the high pressures involved.

1.3 Motivation

With the exception of the development of guided wave testing in the 90s, these

nonlinearities have had little consequence for imaging and were neglected un-

til recently. Conversely, for high intensity focused ultrasound (HIFU), where

the pressures used are commonly two orders of magnitude higher, nonlinear

propagation has been greatly studied [16]. However, with the ever-increasing

frequencies used in imaging, nonlinear phenomena should now be taken into

consideration, for example, when designing matched filters [17]. Similarly in

the HIFU field, while there is a great ambition to miniaturise and reduce the

cost of the excitation hardware, the effects this has on any nonlinear phenom-

ena should be considered.

Various successes in transducer, hardware and software design have lead to

the miniaturisation of NDT and medical ultrasound scanners. Unfortunately,

this has needlessly impaired ultrasound research because these systems do

not allow reconfiguration of the transmit, receive or processing sequences. In

response, academics and engineers have triumphantly developed their own

open platforms [18] such as University of Bristol’s Ultraino [19], University

of Florence’s ULA-OP [20] and University of Leeds’ UARP systems [8], [21].

These highly flexible architectures continue to produce novel imaging tech-

niques [22], but the focus has mainly been on two and three dimensional cardiac

and vascular imaging, where the propagation of sound is mostly linear.

1Nonlinear propagation induced by sufficiently large amplitudes
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1.4 Objectives and Organisation

Advances in signal processing and electronic design make it possible to use new

post-processing algorithms and more complex transmit sequences to control,

monitor, and observe the nonlinear propagation of waves. However, the task re-

mains non-trivial, and careful consideration should be given to the transmission

frequency, bandwidth and pressures to achieve the desired experimental beha-

viour. In this thesis, signal processing algorithms and custom transmit/receive

sequencing are combined to control and/or observe the propagation of complex

nonlinear ultrasonic waves.

Chapter 2 first introduces the hardware used in this thesis. Switched excit-

ation is used exclusively and the implications for nonlinear wave propagation

is considered. With this in mind, the transmit capabilities are extended to

facilitate ultra high-frequency imaging (60 MHz) and high-intensity focused

ultrasound (3.3 MHz). The results of this study were published in:

• C. Adams, D. M. Cowell, L. Nie et al., ‘A miniature HIFU excitation

scheme to eliminate switching-induced grating lobes and nullify hard

tissue attenuation’, in Ultrasonics Symposium (IUS), 2017 IEEE Inter-

national, IEEE, 2017, pp. 1–4.

• D. Cowell, T. Carpenter, P. Smith et al., ‘Modified harmonic reduction

pulse width modulation (mHRPWM) for switched excitation of resonant

HIFU transducers’, in Ultrasonics Symposium (IUS), 2018 IEEE Inter-

national, IEEE, 2018, pp. 1–4.

In the next chapter, the flexibility of the UARP transmit is leveraged to

automate guided wave inspection in plates. A methodology is developed that

allows the enhancement of the direction of guided waves without the need for

parameters to be known. The results of this study were published in:

• C. Adams, S. Harput, D. Cowell et al., ‘An adaptive array excitation

scheme for the unidirectional enhancement of guided waves’, IEEE trans-

actions on ultrasonics, ferroelectrics, and frequency control, vol. 64, no. 2,

pp. 441–451, 2017.
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• C. Adams, S. Harput, D. Cowell et al., ‘Specimen-agnostic guided wave

inspection using recursive feedback’, in IEEE International Ultrasonics

Symposium (IUS), IEEE, 2016.

Chapter 4 continues on the theme of guided waves by describing a new

beamforming technique for measuring phase velocity dispersion. The technique

is applied to the assessment of cortical bone ex vivo and in vivo. Another

technique for measuring skull’s acoustics properties using a transcranial array

was also devised. As a result, the following was published:

• C. Adams, S. Harput, D. Cowell et al., ‘A phase velocity filter for the

measurement of Lamb wave dispersion’, in IEEE International Ultrason-

ics Symposium (IUS), IEEE, 2016.

• C. Adams, J. R. McLaughlan, L. Nie et al., ‘Excitation of leaky Lamb

waves in cranial bone using a phased array transducer in a concave thera-

peutic configuration’, The Journal of the Acoustical Society of America,

2017.1

• C. Adams, J. McLaughlan, L. Nie et al., ‘Excitation and acquisition of

cranial guided waves using a concave array transducer’, in Proceedings

of Meetings on Acoustics 173EAA, ASA, vol. 30, 2017, p. 055 003.2

Finally, in an extension to chapter 2, methods for lesioning using switched

excitation are explored in chapter 5. An electronics design and associated

switching algorithm are presented to miniaturise and reduce the cost of HIFU

array systems. This body of work resulted in the following publications:

• C. Adams, T. M. Carpenter, D. Cowell et al., ‘HIFU drive system mini-

aturisation using harmonic reduced pulse width modulation’, IEEE trans-

actions on ultrasonics, ferroelectrics, and frequency control, 2018.3

• T. M. Carpenter, C. Adams, S. Freear et al., Five Level Switched High

Intensity Focused Ultrasound Driver Design, Jul. 2018.4

1Conference presentation
2Editor-reviewed publication
3Accepted for publication, available pre-print on IEEEXplore https://doi.org/10.

1109/TUFFC.2018.2878464
4Online document repository
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Chapter 2

Evolutionary Approach to

Switched Waveform Design for

Frequency-Dependent

Propagation

This thesis uses two bespoke ultrasound systems built at the University of

Leeds. Both use 5-level switched excitation circuits, which improves the effi-

ciency and reduces the size of the systems. However, if consideration is not

given to the switched waveform design, harmonics will be introduced within

the bandwidth of the transducer. There are implications of this for frequency-

dependent waveform propagation, which will be discussed in this chapter. Fol-

lowing this, the two ultrasound systems are introduced and waveform design

methodologies for controlling acoustic pressure, including harmonically re-

duced pulse width modulation (HRPWM), are discussed. Although HRPWM

has superior spectral performance, it is found that hard limitations on the

switch timing make a number of its waveforms unusable. To find possible

solutions with the required amplitude control and harmonic reduction, a ge-

netic algorithm (GA) was employed to search the large space. The number

of possible amplitudes, or granularity, that could be generated using the GA

was measured experimentally. A low percentage granularity indicates a fine

control of the amplitude. When HRPWM was supplemented with waveforms
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from the GA, at 1.1 MHz the granularity was reduced from 2.7 % to 1.3 %. At

3.3 MHz HRPWM could not achieve any control of amplitude, but the GA was

able to achieve a granularity of 2.1%. This improvement allows finer control of

acoustic intensity in HIFU array applications, which could reduce treatment

time.

2.1 Introduction

The dimensions of piezoelectric (PZT) elements in ultrasonic array transducers

are constrained by requirements for lateral resolution and frequency response,

which in turn influences axial resolution in imaging. This means that array

element dimensions are typically on the order of 10 µm. Because the array

elements are this small, the excitation circuitry needs to deliver large voltages

to the PZT to achieve the desired pressures necessary for imaging [24]. In

therapeutic devices, the array elements are larger so require smaller excitation

voltages but are excited continuously at much higher total powers. Therefore,

the design of electronics for imaging and therapeutic systems pose challenges.

A number of electronic designs are available for ultrasound systems that

vary in complexity and features. The simplest are pulser circuits, where a

high voltage, usually negative, pulse with a very short duration and rise time

is applied to the transducer. This causes the PZT to resonate naturally and

produce acoustic energy according to its bandwidth. For simple biomedical

and NDT imaging applications, this may suffice. However, the improvements

in SNR that can be obtained by using sinusoidal or chirped excitation makes

alternative designs highly desirable [25]. Pulsed excitation is also not suit-

able for therapeutic applications where continuous wave (CW) operation is

required to achieve the necessary increase in temperature. Traditionally, these

requirements have been met with linear amplifiers. In this configuration, the

amplifier’s switches, (MOSFET, GAN etc) are operated in their unsaturated,

linear region so that a fixed gain is applied to the input. Transformers may

also be included at the output stage to convert the power to a higher voltage

[26]. Naturally, the circuit also requires some waveform generator such as a

DAC to generate the desired input.

8
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With switched excitation, the transistors are instead operated in their fully

saturated region. Here, the input of each transducer is connected to transistors

that rapidly switch between a discrete number of voltage levels to approximate

the desired waveform. This may be referred to as any combination of class d,

e or f amplifiers1. The distinction between the classes is often subtle, although

Class-D generally uses two transistors and the output is nonlinear2. Class-E

if more efficient and uses only one transistor with a filter, with class-F being

similar but with filters designed to reflect some harmonics, making transistor

parasitics permissible [28]. Designs with any combination of these classes also

exist. These types of amplifiers may feature an input stage, as is often the case

with consumer audio amplifiers. However, in ultrasound systems, the source

is usually virtual and the excitations are generated by a digital device such as

a micro-controller or an FPGA.

The advantages of these circuit topologies are numerous [29], [30]. Improve-

ments in efficiency can be yielded, which in turn reduces thermal management

requirements and thus system size. Switched excitation circuits also tend to be

less expensive to manufacture, which is perhaps responsible for the ubiquity

of class-D and class-DE audio amplifiers [31]. An example of a multi-level

switched circuit is shown in figure 2.1. It features two positive levels (V2, V1),

two negative (−V1, −V2) and a clamp circuit (blue) that is designed to return

the output to 0 Volts. Each switch output is connected to a common input on

the transducer element (red).

Although switched excitation offers many of the aforementioned improve-

ments, the rapid switching inevitably spectrally distorts the signal. So as to

minimise this, the switching frequency is typically set to be much higher than

the frequency response of the connected load. Additional power filters may

also be employed to further improve signal purity. But these are large and

limit the bandwidth of the waveform and transducers that can be used. Also,

because of the current speed capabilities of transistor technologies, relative to

the frequencies used in ultrasound (20 kHz - 100 MHz), there is a limit on the

number of switching events that can occur per excitation cycle. This means

1M. M. El-Desouki and K. Hynynen, ‘Driving circuitry for focused ultrasound noninvas-
ive surgery and drug delivery applications’, Sensors, vol. 11, no. 1, pp. 539–556, 2011.

2The output voltage does not follow the input voltage in a linear fashion
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+V1

−V1

−V2

+V2

Figure 2.1: A simplified example of a multi-level switched circuit. The green
circuity is used to switch the circuit between the discrete voltage levels −V1,
+V1, −V2 and +V2. The blue circuity is used to clamp the transducer to
ground. In red, the circuit output is connected to the transducer element
without the use of a filter.
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any generated harmonics may be within, or close to the effective bandwidth

of the transducer. For this reason, a number of authors have proposed solu-

tions to the problem of harmonic generation for ultrasound applications [32].

A range of these schemes are discussed and tested for therapeutic applications

in chapter 5. The rest of this chapter serves three purposes:

1. To introduce the hardware used and the harmonic reduction technique

that is used throughout the thesis.

2. To consider the effect harmonic distortion from switched circuits has on

phased arrays and problems of frequency dependent propagation phe-

nomena.

3. To propose a new approach to switched waveform design using genetic

algorithms.

2.2 UARP Technology and HRPWM

This thesis owes its experimental results to two bespoke ultrasound systems

developed at the University of Leeds which are shown in figure 2.2. The Ul-

trasound Array Research Platform II (UARPII) [21] is shown on the left and

the High Intensity Focused Ultrasound Array Research Platform (HIFUARP)

[8] is shown on the right. They are both the result of development over several

years. Table 2.1 shows a performance summary of the two systems.

The UARPII is a 128 channel imaging system and can be used for both

NDT and biomedical applications. The HIFUARP is a 16 channel array sys-

tem with each driving circuit capable of 41 W continuous use. Both systems

are extremely flexible and allow truly arbitrary sequencing of transmit and

receive. These systems use switched excitation and were designed to use a

Harmonic Reduced Pulse Width Modulation (HRPWM) algorithm to excite

the transducers, although this is not imperative and other methodologies may

be used.
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Left: Ultrasound Array Research
Platform II (UARP II).

Right: High-Intensity Focused
Ultrasound Array Research

Platform (HIFUARP).

Figure 2.2: Ultrasonic array systems used throughout this thesis.

Table 2.1: System specifications

UARP II HIFUARP
Max. continuous trans-
mit time

100 ms 40 s

Maximum voltage 200 V 48 V
Receive sampling fre-
quency

80 MHz TX only

Max. transmit frequency 160 MSps, 15 MHz
TX

160 MSps, 4 MHz
TX

Transmit technology 5 level with IC
pulsers

5 level with discrete
MOSFETs

Channels 128 16
Maximum power per
channel

< 1 W 41 W
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Figure 2.3 shows examples of several existing switching schemes. Each

is compared with an ideal 70% amplitude sine wave. The maxima of this

sine wave is used as a reference for the corresponding periodograms. +V2,

+V1, GND, −V1 and −V2 represent the voltage rails used and are set to 1,

0.5, 0, -0.5 and -1 respectively. The most harmonically distorted scheme,

bi-level, is shown in 2.3a. Here, the harmonics are large compared to the

fundamental component, with f3, the third harmonic being only 10 dB less

than the fundamental. Since this is the most intense and likely has the largest

ramifications of all the harmonics, reducing its magnitude is the focus of the

switching schemes presented here.

The rest of the graphs in 2.3 show other schemes. Continuing down the

page, the first is third harmonic reduction (3HR) (figure 2.3b)1. Here the angles

are fixed to remove the third harmonic symmetry. Following this is staircase

excitation which works by approximating the sine wave in a quantised manner.

The addition of extra levels naturally disrupts the generation of harmonics.

Finally, HRPWM2 is shown, which extends the harmonic reduction used in

3HR with the addition of amplitude control. Because of this amplitude control,

f1 has a power of 0 dB unlike others in the figure. This makes it highly useful

in array applications where apodisation is required, as all the elements can

be connected to a single power supply. Like 3HR, the angles are still set to

reduce the third harmonic, but critically it is able to modulate its amplitude

of the fundamental component. Reduction of the third harmonic is often more

effective than with staircase excitation as the latter relies on incidental rather

than systematic disruption of symmetry. Crucially, HRPWM can perform this

harmonic reduction at peak amplitudes below V1, where staircase cannot.

1S. C. Tang and G. T. Clement, ‘A harmonic cancellation technique for an ultrasound
transducer excited by a switched-mode power converter’, in Ultrasonics Symposium, 2008.
IUS 2008. IEEE, IEEE, 2008, pp. 2076–2079.

2D. Cowell, P. Smith, S. Harput et al., ‘Non-linear harmonic reduction pulse width
modulation (HRPWM) for the arbitrary control of transducer-integrated switched excitation
electronics’, 2014 IEEE International Ultrasonics Symposium, 2014. doi: 10.1109/ultsym.
2014.0198.
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(a) Bi-level excitation

(b) Third harmonic reduced bi-level excitation

(c) Staircase excitation

(d) HRPWM excitation

Figure 2.3: Time and frequency domain data for each of the excitation schemes.
Each has differing levels of complexity and harmonic distortion. Each switching
scheme is shown in blue and compared to ideal excitation made with a linear
amplifier. The periodograms are calculated using the peak amplitude of the
ideal waveform (shown in red).
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2.3 Acoustic Consequences of Harmonic Dis-

tortion

Some harmonic reduction schemes allow for miniaturisation and integration

of excitation circuitry into the transducer without the need for filters [33].

Without these schemes, the harmonic distortion may be converted to acoustic

energy. The consequences of this are discussed in this section.

2.3.1 With Phased Arrays

Phased arrays refer to array transducers where the pitch, k, is approximately

half the wavelength, λ, or less (k < λ/2). This spacing allows the transducer to

build effective interference patterns in the near field for steering beams. Just

as with moving or wobbling a single element transducer, this allows a partic-

ular area of interest to be sonicated [34], which has applications in NDT1[36],

therapeutic ultrasound2 and biomedical imaging [34].

Unlike single element transducers, phased array transducers produce un-

desired field patterns that include grating lobes [38]. This has ramifications

for all types of ultrasound including undesired heating during HIFU [39] and

artefacts in imaging. These lobes have known relationship with frequency and

speed of sound (SOS). It is known that at a given frequency and fixed pitch,

that the grating lobe is always some fixed angle from the main lobe irrespect-

ive of the steering angle. To reduce these lobes, transducer pitch is usually

minimised so that the grating lobe is not within the field of view and so is

negligible.

The harmonics generated by switched excitation effectively have a smaller

wavelength acoustically, because the frequency is higher, and so the pitch-

wavelength ratio effectively becomes much larger for these generated harmon-

1B. W. Drinkwater and P. D. Wilcox, ‘Ultrasonic arrays for non-destructive evaluation:
A review’, NDT & E International, vol. 39, no. 7, pp. 525–541, 2006, issn: 0963-8695. doi:
10.1016/j.ndteint.2006.03.006.

2F. Xiaobing and H. Kullervo, ‘Control of the necrosed tissue volume during noninvasive
ultrasound surgery using a 16-element phased array’, Medical Physics, vol. 22, no. 3, pp. 297–
306, doi: 10.1118/1.597603. eprint: https://aapm.onlinelibrary.wiley.com/doi/

pdf/10.1118/1.597603.
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ics:
k

λh
= h× k

λ1

where h is the harmonic component number. These components then are more

likely to produce lobes. They will be of most consequence when curved arrays,

which are commonplace in HIFU, are used because the lobes will be within

the field of view (FOV). To test this, a typical prostate HIFU array [40] was

simulated in Field II [41]. The concave array consisted of 64 elements, where

each was 50 mm in height, 1.5 mm in width and 167 µm of kerf separated them.

The array elements were distributed on an arc with a radius of 100 mm. The

geometric focus of the transducer was at 0 mm laterally and -100 mm axially.

The excitation for the array was a 1 MHz continuous wave, and phase shifts

were applied to focus the beam at -30 mm laterally and -70 mm axially. To

reduce simulation time, only part of the field of view was simulated. Figure

2.4 depicts the transducer, its focal points and the simulation area.

The impulse response of a 10 element HIFU transducer (Imasonic, France)

[42] was obtained using a 1 mm needle hydrophone (Precision Acoustics Ltd,

UK). The hydrophone was placed at the transducer natural focal point and

the peak excitation voltage was kept under 20 V to reduce the effects of any

nonlinear propagation1 (PPP < 1.5 MPa). This impulse response was input

into field II to improve modelling accuracy.

Four different excitation schemes were considered; analogue, bi-level, 3HR

and HRPWM. Linear amplifier excitation (pure sine) was defined as,

a(t) = sin(2πft) (2.1)

where f is 1 MHz. The bi-level excitation was formed by finding the sign of

the analog excitation:

a(t) = sgn{sin(2πft)} (2.2)

1Nonlinear behaviour introduced by large signal amplitudes
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Figure 2.4: The geometry of a curved array HIFU transducer used in the
simulation. The natural focus of the transducer is shown by the red dot (0,0,-
100 mm). Phase delays were applied to each element so that the energy was
focused on the blue dot (-70,0,-30 mm). The green square shows the actual
area that was simulated.
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Third harmonic reduction is defined as

a(t) =


1, for sin(7π/6) < sin(2πft) ≥ sin(π/6)

0, for sin(7π/6) ≤ sin(2πft) ≥ sin(π/6)

−1, for sin(7π/6) ≥ sin(2πft) < sin(π/6)

 (2.3)

3HR and bi-level have a fixed amplitude, so any changes to amplitude

must be achieved by changing the electrical configuration. HRPWM comprises

multiple DSP stages and is difficult to represent analytically. Fundamentally,

it involves modulating PWM switching angles in a manner that modulates the

desired amplitude of the fundamental component of the signal without forming

undesired 2nd or 3rd harmonics. The waveforms may be truly arbitrary in

frequency and amplitude.

Figure 2.5 shows the beam profiles for all the excitations. To create a beam

profile, the PPP was obtained at each point then the absolute maximum for all

tested points was used as a reference to convert the image into relative intensity.

The sampling frequency used in the simulation was 100 MHz. Each excitation

and image used its own unique reference. The highest, 12 dB, is shown in

the images. All excitation schemes correctly focus the beam to a small point

(dictated by the diffraction limit). For the analogue excitation, there is little

energy outside of the focal spot. For the bi-level excitation, harmonics form a

grating lobe of approximately -12 dB relative intensity. Both 3HR excitations

and HRPWM reduce the magnitude of this energy, with HRPWM performing

best at removing energy outside the focal region.

Table 2.2 summarises the suitability of each of the considered excitation

schemes for use with phased arrays. Linear amplifier is the gold standard

as it can achieve amplitude control, and it has no harmonic distortion, and

thus no grating lobes. However it does not have the aforementioned benefits

of switched excitation. When simple bi-level switched excitation is used ef-

ficiency can be improved, but it produces grating lobes and cannot achieve

amplitude control with a fixed power supply. 3HR can remove these grating

lobes and is still efficient but still cannot achieve amplitude control. Of the

switched schemes considered, HRPWM is best because it can achieve harmonic

reduction, amplitude control and uses an efficient switched-based architecture.
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2.3 Acoustic Consequences of Harmonic Distortion

Figure 2.5: Beam profiles of a concave focused HIFU transducer when different
excitation schemes were used. Bi-level has lots of acoustic energy in harmonics
which form grating lobes that deposit energy outside the focal region. 3HR
and HRPWM schemes were able to reduce the amplitude of the grating lobes.

Table 2.2: Performance of each scheme when used to excite a phased array.

Amplitude control Grating lobe removal Switch-based
Linear
amplifier

X X

HRPWM X X X
3HR X X
Bi-level X
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2.3.2 For Nonlinearities

All waves are subject to nonlinear, frequency dependent effects. However, the

severity depends on the medium, and the conditions of propagation (eg, Lamb,

bulk etc). The harmonic distortion prevalent in switched excitation may have a

profound effect on wave propagation. Relevant phenomena and the associated

implications of a distorted signal are discussed below.

Frequency-Dependent Attenuation Scattering and absorption are the

two mechanisms that constitute the attenuation of sound. Absorption is the

process that converts sound into heat. Scattering is when sound deviates from

its path because of localised non-uniformities in the medium. Both are complex

frequency related phenomena that reduce the intensity of a propagating wave.

The intensity of a propagating plane wave can be described by

Ī(x) = Ī(0)e−1(αs+αa) (2.4)

where Ī(0) is the initial intensity at the start of the medium and x is the

distance travelled in the medium. αs and αa describe the scattering and ab-

sorption coefficients respectively. Mediums such as pure liquids may be dom-

inated entirely by attenuation, but biological tissues and solid materials are

rarely comprised of just one mechanism [38]. A good approximation for the

frequency dependence of combined attenuation, α = (αs+αa) can be described

by the equation:

α = α0 × fn (2.5)

Where f is frequency in MHz, n is between 1 and 2, and α0 is the attenuation

coefficient at 1 MHz. This strong frequency dependence means propagating

acoustic waves that contain harmonic distortion will exhibit pressure loss at a

faster rate (with distance) than non-distorted waves. At therapeutic intensit-

ies, this could result in undesired pre-focal heating and will be explored further

in chapter 5. For imaging, this reduces the strength of an echo at a given fixed

PPP.
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2.3 Acoustic Consequences of Harmonic Distortion

Dispersion Dispersion refers to the propensity for different wavelengths to

have differing phase velocities. For plane waves travelling in tissue, this means

that temporal spreading of the wave occurs when either a broadband pulse or

frequency modulated signal is used. The Kramers-Kronig relation has been

used to build accurate models that relate attenuation and dispersion in solids

and fluids[43]. Therefore, because the attenuation in water is quite low com-

pared with other fields of study, dispersion is of little consequence in tissue at

low frequencies [44], [45]. However, the same cannot be said of guided waves

where the relations are considerably more complex. These waves travel at the

surface of structures and consist of multiple oscillatory modes which in turn,

have their own relationship between frequency and velocity. An infinite num-

ber of modes with different speeds exist. At high frequency-thickness products

it is possible for several modes to exist at a given frequency. However, prac-

tically, because of attenuation and spatial sampling limitations, it is difficult

to observe more than a few at one time. In NDT, these waves can be lever-

aged for inspection [46] because of the unique way they interact with defects

in thin structures and biomedically, they are being used to assess bone [47].

Harmonic distortion in the acoustic waveform could extenuate certain modes

of oscillation.

Shockwave Formation At sufficiently high pressures, the normal wave

equations that govern wave propagation become unsuitable as the propagat-

ing wave begins to influence the local density of the medium in which it is

propagating. Instead, nonlinear equations must be used1. In nonlinear acous-

tics, the pressure maxima are sufficiently large that they increase the density

of the medium they are travelling in, and thus travel faster than the rest of the

wave. Conversely, the minima travel slower. This effect distorts the waveform

and simultaneously generates harmonics at the same time. This effect con-

tinues as the wave travels through the medium until shock waves are formed.

Shockwaves have extremely short rise times, which enhances heat deposition.

The heating from a non-shocked wave can be described as

Hlin = 2αI (2.6)

1Nonlinear propagation induced by large amplitudes.
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Whereas the heating from a shocked wave is described by,

Hshock = βf0A
3
s/6c

4
0ρ

2
0 (2.7)

where f0 is the initial frequency, β is the coefficient of nonlinearity, A is the

amplitude of the shock wave, c0 is the normal SOS in the medium and ρ0 is the

nominal density. Shock waves are usually short-lived because they are rapidly

attenuated. This causes pre-focal deposition of energy [16] and as such are

usually avoided, although they have uses in histotripsy [48].

The blue line in figure 2.6 shows some of the stages of shock-wave formation:

• Close to the source, the waveform propagates in a linear fashion. (top in

the figure)

• Some distance away from the source the wave begins to exhibit nonlinear

behaviour as the wave becomes more sawtooth-shaped. (middle)

• The rise time of the waveform continues to decrease until the waveform

is “shocked”. (not shown)

• Further on, the high harmonic content of this waveform is rapidly atten-

uated and the amplitude is reduced.

This figure was made using 1D analysis in k-wave, a nonlinear pseudo-spectral

simulation package [49]. The source pressure and frequency were 30 MPa and

1 MHz respectively, which are typical values used in lithotripsy [50]. The

medium properties were set to be representative of generic tissue [51].

The significance of this phenomena to switched excitation is that the shock

wave formation distance, x̄, is frequency dependent:

x̄ =
ρ0c

3
0

βP02πf
(2.8)

Or approximately in tissue, 100 mm / (MHz MPa). This means that the

distorted components of the acoustic waveform (as a result of distortion of the

electrical waveform) will shock before the fundamental component. The red

coloured waveform in figure 2.6 shows what happens to shock wave formation

when harmonic distortion (30% when f = 3 × f0) is introduced. At 50 mm,
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Figure 2.6: Shockwave formation of acoustic waves with and without distor-
tion caused by switched excitation, at the source (top), 2 mm from the source
(middle), and 50 mm from the source (bottom).
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there is more harmonic content at the third and fourth harmonics compared

to when an ideal sine wave was used, but after the shock wave begins to be

absorbed, the magnitudes of these harmonics are equal. This means that they

were absorbed and converted to heat, which may or may not be desired.

2.4 Evolutionary Design of Switched Waveforms

The previous section described a number of scenarios where distortion in

the acoustic wave, brought about by switched excitation, may influence wave

propagation. In addition to the desire for selective harmonic reduction, there

may be additional constraints on the timing of switched waveforms. For ex-

ample, consider figure 2.8 which shows one cycle of a switched waveform (red)

sampled at 160 MHz. The green markers represent the time that the gates of

all transistors must be switched off, dead time. The length of time depends on

the MOSFETs used and is often anti-symmetric if P and N-type switches are

used. It is necessary because there is a delay between the gate of a MOSFETs

being turned off and the output actually turning off. If dead time is not used

after a transistor turns off and another turns on, the two transistors will short

two of the supply rails.

This requirement then limits the validity of some waveforms because they

may require transitions during the dead time or any added dead time may

overlap. Consider also that due to the varying specification of transducers, the

harmonic reduction is not always necessary, and in fact, some harmonic re-

duction could be sacrificed in order to achieve finer control over the amplitude

which is necessary for array applications. This is demonstrated in figure 2.7

which shows the centre-normalised frequency response for a number of com-

mon transducers. The selected harmonic to be eliminated may also change,

for example with dual mode use arrays (DMUA) [52] where the bandwidth is

highly unconventional. Indeed it may even be desirable to accentuate certain

harmonics in order to excite the transducer at a higher centre frequency than

could be achieved otherwise. The number of requirements for switched excit-

ation waveforms are therefore broad, numerous, and cannot be addressed by

one universal design algorithm. However, the problem remains complex with
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Figure 2.7: The frequency response of three different transducers. The PVDF
and HIFU originate from their datasheets but the NDT response was obtained
experimentally. The frequency axis is normalised for their centre frequencies.

objectives that are seemingly conflicting. It is prohibitively time consuming

to derive a switched excitation from first principles every time there are new

requirements.

In this work, it is proposed that a genetic algorithm (GA) may be used

to generated switched waveforms. The GA will be applied to HIFU. Testing

will be performed numerically and experimentally. Waveforms produced by

the GA will hereafter be referred to as GAPWM.

2.4.1 Genetic Algorithm Operation

Consider figure 2.8 again which shows a generalised depiction of a 5 level

waveform with 8 transitions. The variable δ represents the incremental angle

between each transition. In other words, the first transition occurs at 0+δ1, the

second at δ1 + δ2 and so on. The role of the waveform designer, algorithmic or
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Figure 2.8: An example of a switched waveform. This one was produced by
GAPWM. The green dots show the dead time period where the transistor must
be switched off.

otherwise is to adjust these switching angles to achieve the desired magnitude

of certain frequencies and minimise others. The problem, therefore, has a large

number of dimensions (8 in this case).

Positive changes are represented by δ1,2,7,8 and negative ones by δ3..6. The

systems described previously all use 5 level excitation circuitry and therefore

only 5 levels are considered, but since the algorithm is highly parametrised

there is no reason it cannot be adapted for any number of levels. The number

of transitions is (l − 1)× 2 where l is the number of levels.

In total, 9 angles are optimised, 8 of which are shown in figure 2.8, with

the ninth inferring the total length of the waveform. The unit for the angles is

samples and δ ∈ Z+[0..fs/fc]. A zero value is permissible because it allows the

algorithm to consider missing levels as the waveform jumps to a level and then

immediately to the next. For example, consider if δ3 were 0, the waveform

would transition to V2 and then to V1 0 samples later, with the latter taking

precedence.

For a five-level waveform, the design search space is extremely large. For

a 1 MHz single cycle waveform sampled at 160 MHz there are approximately
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4.3× 1017 possible waveforms. Genetic algorithms (GA) are extremely well

suited to this type of problem. They are effective at traversing large, multi-

dimensional search spaces to find optima using a limited number of tests.

Although the only way to guarantee finding a global optima is by using an ex-

haustive search, the mutation operator in the algorithm has been shown to be

often effective at avoiding local optima [53]. The proximity of solutions to the

global optima depends on several algorithm parameters which are discussed

later. A full explanation of the workings of genetic algorithms is beyond the

scope of this thesis, and excellent literature already exists to explain them1.

However, in brief, GAs mimic the process of biological evolution to find math-

ematical solutions. Abstractly, their operation is as follows:

1. Set the generation counter, G = 0

2. Create a population of random genes where each gene represents a pos-

sible solution to a mathematical problem.

3. Test each member of the population using a fitness function, g(x) and

assign a value that quantifies how well it solves the problem.

4. Produce offspring from the fittest members of the population. This pro-

duces genes with even more optimal solutions.

(a) Some members may have random mutations to increase the diversity

of the population. This helps to avoid local optima.

(b) If elitism is enabled, extremely fit members will produce offspring

asexually.

5. Increment the generation counter, G.

6. GOTO 3, or stop when some condition is satisfied.

A number of stopping conditions may be used, such as a maximum number

of generations being reached. The trade off in this instant is increasing the

likelihood of the algorithm finding an optima average change in the fitness of

1D. A. Coley, An introduction to genetic algorithms for scientists and engineers. World
Scientific Publishing Company, 1999.
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the fittest member, at a cost of increased execution time. For this reason, it

may be desirable to monitor the average change in fitness [54].

There are also a number of critical parameters that need describing and de-

fining. The crossover fraction defines what percentage of the next generation

should consist of normal, sexually produced members. When the crossover

fraction is 0, the next generation is made entirely of mutated members. Con-

versely, when it is set to 1, there is no mutation.

Elitism, which allows the fittest members to reproduce asexually guarantees

that the fitness of the best member will not decrease between generations,

at the cost of genetic diversity. Authors have shown that when applied to

standard test problems, using elitism is more effective than optimising the

crossover function [55].

In this implementation, the algorithm stops when either the average fitness

is less than 1× 10−3 over the previous 100 generations, or G > 500. This was

chosen so solution-dependent stopping criterion weren’t needed and there was

high confidence that enough solutions were tested [54].

There is currently no consensus on the optimum population size for a prob-

lem, except that high dimensionality problems require a larger population [56].

Therefore to ensure that there was enough genetic diversity, the population size

was set to be 500. Elitism was enabled for the top 20 fittest members, and the

crossover fraction was set to 0.9, which is typical for the given population size

[56].

Each parameter is described and defined in table 2.3.

The fitness function g(x) used was as follows,

g(x) =



450× 106 × Σ8
i=1δi if Σ8

i=1δi > fs/ft

400× 106 if dead time overlaps

300× 106 if no transitions

250× 106 if |Ai −Ai−1| > (V2 − V1) ∪Ai−1 = 0

200× 106 if |Ai −Ai−1| > (V2 −−V1)

ΣE2
i otherwise

A refers to the generated time domain waveform consisting of I samples. E
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Table 2.3: Description of each GA parameter

Parameter Description Value
Population
size

Number of solutions considered in
each generation

500

Elitism Fittest members reproduce
asexually

True

Crossover
fraction

Fraction of children that are cre-
ated from parents and not from
mutations

0.9

Stopping
condition

Condition that must be met to
stop the algorithm

G < 500 or
‖g(xn−100)− g(xn)‖ <

1× 10−3

is the error in frequency magnitude between the switched waveform and the

equivalent analogue excitation. E is calculated from the squared difference

between the frequency responses of A and the an equivalent sinusoidal signal.

g(x) would then be exactly 0 when the frequency responses are the same. ft is

the target frequency. The algorithm attempts to minimise the fitness function.

The function can be used to sanitise the population of genes that produce

untenable waveforms. Here δn is in samples and the first line (450× 106)

ensures that the waveform is not longer than one cycle. The next line ensures

that the dead time does not overlap so the waveform is safe. Following this

300× 106 is used if the waveform is completely empty, i.e. all levels have

been skipped. 250× 106 is assigned if there are any large transitions away

from GND. This has been included to reduce overshoot although may not be

strictly necessary. Similarly, waveforms with very large changes from V2 to

−V2 or likewise are assigned a high fitness of 200× 106. If all these conditions

are met the assigned fitness is based on the previously described error, E. The

decrementing nature of these values encourages the algorithm to improve the

quality of its solutions and differentiate between the different failure conditions.

The frequency points of interest are application dependent and are calcu-

lated using the Goertzel transform. Since only the magnitude of a few fre-

quencies is required, this z transform-based method was chosen over Fourier

methods to improve the algorithm performance. Weighting may also be ap-

plied to indicate the preference for control of certain frequencies over others.
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2.4.2 Experimental Method

The necessity of dead time limits the number of usable waveforms that the

HRPWM algorithm produces for the HIFUARP. For a 1.1 MHz transducer,

for example, HRPWM can only produce one valid waveform in the range 40-

60%. For a 3.3 MHz transducer it cannot produce any.

To extend the transmit capabilities of the HIFUARP, to better support

array applications, the algorithm was used in two ways, firstly to increase the

amplitude granularity at 1.1 MHz and secondly to produce waveforms at 3.3

MHz. Waveform solutions were found in 1% increments at both frequencies.

For the 1.1 MHz waveforms, the algorithm was set to eliminate the second and

third harmonic. Whereas the 1
3

subharmonic was minimised for the 3.3 MHz

waveforms because this is where the transducer is sensitive (figure 2.7).

Using the solutions, 20 cycle waveforms were generated and then uploaded

to the HIFUARP which was connected to a HIFU transducer (H-102, Sonic

Concepts, USA) along with its matching network. With a membrane hydro-

phone (Precision Acoustics, UK), the acoustic waveform at the transducer

focus was recorded for each GA excitation along with all usable HRPWM ex-

citations. The transducer and hydrophone were placed in a tank of degassed

and deionised water. To reduce the effects of nonlinear propagation1, the rail

voltages, V2, V1, GND, −V1 and −V2 were reduced to 12 V, 6 V, 0 V, -6 V and

-12 V respectively. Although this was lower than what would be required to

generate lesioning pressures, it reduced the effects of harmonic generation as

a result of nonlinear propagation. This allowed the harmonic distortion of the

signal as a result of the electrical waveform to be isolated and measured.

From the recorded waveforms, the magnitude of the selected frequencies

was found using an FFT. The globally maximum observed peak pressure was

used as a reference to represent each waveform by a dB value, and from this,

the effective amplitude as a percentage of maximum was found by linear curve

fitting. The process was as follows:

1. For each considered design waveform, the resulting acoustic waveform

was recorded 16 times and then averaged.

1Nonlinear propagation caused by large signal amplitudes
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2. Averaged data was then Fourier transformed to find the magnitude of

the target frequency for each tested switched waveform.

3. Data were converted to relative intensity by using the global maximum

magnitude as a 0 dB reference (at the target frequency).

4. Experimental results were then compared against constructed sinusoids

to find the closest equivalent amplitude.

The constructed sinusoids were created in increments of 0.1%. The FFT length

and sampling frequency were conserved. Waveforms that produce the same

effective amplitude after this procedure fitting are considered superfluous and

the duplicate is disregarded. For 1.1 MHz, the GAPWM is only being used

to supplement HRPWM, so if one of the waveforms is produced by GAPWM

and the other by HRPWM, the former was disregarded.

Figure 2.9 demonstrates the GAs operation. It shows the fittest solutions

over several generations. Here, the GA is attempting to produce a 3.3MHz

waveform with a 25% amplitude. The left-hand graph shows the frequency

response for the waveform being tested on the right. Comparisons in both

the frequency and time domain are made with the equivalent sinusoidal in

grey. Generation 1 shows that at least one member produced a valid waveform

(Σδ < 2π), but there is a lot of harmonic content which appears as side lobes in

the frequency spectrum. Additionally, the amplitude is incorrect as the peak

in the frequency domain is ≈ 10 dB, although it is a good first approximation.

Five generations later, the peak amplitude begins to approach the correct value

and the side lobes are significantly reduced. By removing the top level, the

algorithm has found that it can meet the dead time requirements and the

desired amplitude control. At the 100th generation, the algorithm has nearly

found its optimal solution as it is no longer possible to visually discriminate

the difference in amplitude in the frequency domain between the sinusoid and

switched waveform.

2.4.3 Results

Figure 2.10 shows three further solutions produced by GAPWM at different

amplitudes when f = 3.3 MHz. Once again, the first three cycles are shown

31



2. EVOLUTIONARY APPROACH TO SWITCHED WAVEFORM
DESIGN FOR FREQUENCY-DEPENDENT PROPAGATION

1 2 3 4 5

Frequency [MHz]

-20
-10
0

10

In
te
n
.
[d
B
]

0 0.2 0.4 0.6

Time [µs]

-1

0

1

A
m
p
.
[a
u
]

(a) Generation = 1

1 2 3 4 5

Frequency [MHz]

-20
-10
0

10

In
te
n
.
[d
B
]

0 0.2 0.4 0.6

Time [µs]

-1

0

1

A
m
p
.
[a
u
]

(b) Generation = 5

1 2 3 4 5

Frequency [MHz]

-20
-10
0

10

In
te
n
.
[d
B
]

0 0.2 0.4 0.6

Time [µs]

-1

0

1

A
m
p
.
[a
u
]

(c) Generation = 100

Figure 2.9: The GA improving the quality of its solution over several gener-
ations for 3.3 MHz waveform generation. The resulting waveform from the
fittest member of generation 1, 5 and 100 is shown. The periodogram on the
left shows the frequency content of the waveform. The corresponding wave-
form in the time domain is shown on the right. Results are compared with a
perfect analogue excitation with an amplitude of 25% which is shown in grey.
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Figure 2.10: Example waveforms produced by GAPWM at different amp-
litudes when f = 3.3 MHz. The grey sinusoid shown in the background is of
equivalent amplitude

along with a sinusoidal excitation at the equivalent amplitude (grey). The

waveforms do not appear to have obvious form, progression or symmetry and

would be difficult to obtain analytically.

Figure 2.11 shows the linearised acoustic amplitudes of combined GA and

HRPWM waveforms. The 3rd harmonic amplitude is also shown, although, for

greater clarity, values more than 15 dB below the fundamental are excluded.

Similarly, figure 2.12 shows the same for f = 3.3 MHz, but subharmonics at

1.1 and 2.2 MHz are instead considered, because this is where the transducer

can produce acoustic energy. The grey lines in both figures show the curve

used for the fitting procedure described in the method.
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Figure 2.11: Experimentally obtained acoustic intensity for each design
method across valid excitation amplitudes. Significant harmonic content is
also shown. f = 1.1 MHz
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Figure 2.12: Experimentally obtained acoustic intensity across valid excitation
amplitudes using GAPWM. There was no significant harmonic distortion in
the acoustic output. f = 3.3 MHz
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Figure 2.13: The number of valid excitations across the amplitude range.
Green shows the granularity when HRPWM (blue) is supplemented with wave-
forms from GAPWM (green).
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Figure 2.14: The number of valid excitations across the amplitude range. Red
shows results from GAPWM when f = 3.3 MHz. HRPWM produced no valid
excitations at this frequency.
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To assess the effectiveness of the amplitude control with each scheme, the

granularity of both was measured. The linear fit procedure already given in

section 2.4.2 described how the effective acoustic amplitude was used to con-

vert each excitation into a percentage. Following this procedure, the number of

waveforms inside 10% intervals were measured. The granularity number indic-

ates how many waveforms that differ by more than 0.1% (due to the threshold

used in the fit procedure) in the given range there were. A high granularity

number indicates that the scheme was able to achieve fine amplitude control

in that range which is desirable. Granularity may also be given in percentage

for the whole range. This indicates how many different amplitudes can be gen-

erated across the whole range. For example a 2% granularity indicated that

totally there were 50 waveforms of different acoustic amplitudes.

The granularity of these results are shown in figures 2.13 and 2.14 for 1.1

and 3.3 MHz respectively. Due to the interval chosen in the linearisation

procedure, 10 is the maximum possible value. The granularity when HRPWM

and GAPWM results are combined is shown by the green bar of figure 2.13.

The granularity achieved by GAPWM at 3.3 MHz is shown by the red bars in

figure 2.14.

Figure 2.15 shows waveform solutions at 65% amplitude using HRPWM

and GA. The green markers show where dead time is applied. The required

dead time invalidates the waveform produced by HRPWM because of the

collisions shown by the red patches. To avoid this, GAPWM produced a

solution with a longer mid-level but no upper level.

Figure 2.16 shows a pressure wave measured at the transducer focus using

GAPWM excitation. The amplitude was 65% and the frequency was 3.3 MHz.
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Figure 2.15: Two switched waveforms generated using HRPWM (top) and
GAPWM (bottom). The amplitude was 63%. The HRPWM waveform was
unusable because of dead time collisions which are shown in red. The green
crosses show the dead time.
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Figure 2.16: Recorded pressure wave when using a 3.3 MHz GAPWM excita-
tion at 65%
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2.5 Discussion

The results show that GAPWM is able to produce switched waveforms that

can meet varying specifications for frequency response and strict timing. At

1.1 MHz, the GA was used to supplement HRPWM, improving on the granu-

larity whilst maintaining 3rd harmonic reduction. At this frequency, between

60% and 80%, the granularity was reduced from 2.73% to 1.3%. However,

at modulations below 20%, the harmonic reduction was ineffective and the

waveforms would be unusable because the harmonics were so large. This is be-

cause of a limitation on the search space. In this modulation range, HRPWM

achieves harmonic reduction through double pulses per half cycle which were

not considered. The algorithm could be modified to consider such solutions.

At 3.3 MHz, the timing constraints imposed by dead time meant that

HRPWM could not produce any usable waveforms. The GAPWM was re-

run with the 3rd harmonic reduction requirement relaxed, but suppression of

subharmonics (1.1 MHz) was enabled. The GA produced a set of waveforms

with an average amplitude granularity of 2.1%. The pressure wave was clean

of transients and any obvious distortion, although a slight reduction in peak

pressure was observed with each cycle. This is perhaps due to the slight asym-

metry of the voltage rails caused by differing P and N-type switch resistances.

The algorithm could be modified to remove very low-frequency components

if required. The improvements in granularity will allow the system to better

apodise an array.

The produced waveforms may be difficult to derive analytically. However,

the very nature of genetic algorithms means that the waveform solutions are

likely to be close to but not equal to the global optima. This is evidenced for

example by the increased harmonic content compared to the mathematically

perfect solutions offered by HRPWM at equivalent amplitudes. The algorithm

could be improved by performing a linear search once the space has been

narrowed by the GA.

However, the GA’s strengths lay in its flexibility, because the fitness func-

tion can be easily adapted to consider other requirements and solutions can

be found relatively quickly. For 3.3 MHz, 100 waveforms were generated in 15

minutes with a regular desktop computer (Intel i5, 8GB Memory). By compar-
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ison it would take approximately 1675 years to perform an exhaustive search

of all possible amplitudes. This estimation allows 90 ms per test and 487 pos-

sible tests. There are some limitations, as the waveforms generated have fixed

transmission frequency and amplitude. In therapeutic environments, this is

ideal. However, for imaging applications, frequency modulated and windowed

waveform are beneficial [17]. The unusual nature of the solutions pose some

small problems, whilst they are successful novel solutions to the problem, there

is currently no analytical understanding of the solutions, which may make fre-

quency and amplitude modulated waveforms difficult to construct from the

existing data.

If the algorithm could be adapted to consider solutions in terms of phase

relationships, more complex waveforms could be constructed by comparing

against the real phase of a chirp or other signal.

2.5.1 Adaptations for Ultra High Frequency Waveform

Design

The trend in both biomedical imaging and NDT is to use continually higher

frequencies [57]. The reduction in wavelength improves the spatial resolution

which can reveal great detail even though in tissue, penetration depths are very

low. At these frequencies, detailed imaging of the eye has been demonstrated

[58].

The dead time requirement for the HIFUARP was just one example of a

constraint that may be placed on waveform design, but high-frequency ultra-

sound (> 20 MHz) and pre-clinical imaging (40-80 MHz) also present chal-

lenges for switched, discrete-sampled transmit systems. Adaptations to the

algorithm for designing high-frequency waveforms are described in this sec-

tion. Improving the granularity of HRPWM was again the aim. Apodisation

is commonly used in imaging systems to reduce the magnitude of side lobes

which cause imaging artefacts. To achieve this, the search space was increased

so that more unusual waveform patterns could be generated with intentionally

high harmonic distortion within the transducer bandwidth.

Whilst genetic algorithms are efficient at solving large search spaces, in-

creasing the number of dimensions usually warrants an increase in the popu-
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lation size to maintain diversity. A good rule of thumb is that the population

size should be 10 times larger than the number of dimensions. Since the com-

putational complexity is O(n), the search space should be increased whilst

minimising the number of additional dimensions, n. Fortunately, the problem

can be constrained. Since it is still only possible to perform a few transitions

per cycle, the entropy can be increased by instead changing the levels to which

each transition goes.

Given the number of transitions is still fixed, the number of level permuta-

tions is also fixed. This allows a plethora of different waveforms to be produced

with fixed angles by just changing one variable. Figure 2.17 demonstrates this

for a 30 MHz waveform. Here the angle variables remain the same, but the

permutation number (m) differs. Each waveform, in turn, has a unique rep-

resentation in the frequency domain.

Improvements to the testing of fitness were also made. For the CW excita-

tions, a number of repeat cycles were considered to ensure the average energy

was the same or very similar as a sinusoid. For imaging applications, much

shorter excitations are typically used, so in order to achieve reliability and

good frequency resolution for fitness testing, the following changes were made.

Firstly, each waveform was up-sampled to 300 MHz whilst maintaining the

exact switching position. The fitness function was then applied on only one

cycle, but over 50 repeats, with each repeat having a 2π offset. The error was

summed over each repeat. This process allows high accuracy in the frequency

domain over a short period of time with good reliability to extend the wave-

form into multiple cycles. This step stops the algorithm taking advantage of

any harmonic properties afforded by sampling frequency rounding errors.

Figure 2.18 shows three example 30 MHz waveforms solved using the GA.

Figure 2.19 shows 256 element apodisation profiles generated using ideal res-

ults, GA and HRPWM. The profiles were generated from 5 cycle excitations

using each method, applying a representative bandpass filter, normalising and

compensating for phase. The peak magnitude for all excitations was then

found and fit, using the smallest error, to an ideal hamming window. Figure

2.19 below shows the error between the ideal and each of the switched meth-

ods. The HRPWM has a peak error of 100% at the edges of the window whilst

GAPWM only has a peak error of approximately 55% at the same location.
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Figure 2.17: Several different waveforms produced using fixed angle parameters
but with a different permutation number m. The addition of the m variable
allows the entropy of the algorithm to be increased by including only one
additional dimension to the search space.
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Figure 2.18: Three high frequency waveforms generated using the GA with
amplitudes of 72 % (top), 60 % (middle), 91 % (bottom).
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granularity.
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This further highlights the rigidity of traditional switched waveform design

methodologies. Although some improvements in efficiency may be provided, at

high frequencies HRPWM’s harmonic reduction is superfluous to requirements.

For example, with a centre frequency of 20 MHz, the 3rd harmonic is 60 MHz;

so in order for this to be observed acoustically, the transducer would need a

200% bandwidth. This is well beyond the capabilities of any current transducer

technology.

2.6 Conclusions

Switched excitation offers many improvements in terms of efficiency and phys-

ical size. Without filtering, it can produce harmonics that may be observed

acoustically if the transducer bandwidth allows. For ultrasonic waves that

propagate with a strong dependence on frequency this switching distortion

may have a profound influence on the expected behaviour.

To compensate, several authors have demonstrated switching schemes that

minimise the production of the third harmonic. In practice, at low frequencies

and with HIFU transducers it is more important to perform this reduction

but is not necessary at high frequencies as the bandwidth of these transducers

seldom allows production of the third harmonic. Timing constraints are also

placed on the waveform, which makes some of these reduction techniques un-

tenable. Accordingly, genetic algorithms were used to explore the large space

and generate waveforms that improved on the granularity offered by existing

schemes.

GAPWM can facilitate the use of switched excitation in ultrasonic systems

where fine amplitude control is required, leading to lower cost per acoustic

channel.
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Chapter 3

An Adaptive Array Excitation

Scheme for the Unidirectional

Enhancement of Guided Waves

Control over the direction of wave propagation allows an engineer to spatially

locate defects. When imaging with longitudinal waves, time delays can be ap-

plied to each element of a phased array transducer to steer a beam. Because

of the highly dispersive nature of guided waves, this beamsteering approach is

sub-optimal. More appropriate time delays can be chosen to direct a guided

wave if the dispersion relation of the material is known. Existing techniques,

however, need a priori knowledge of material thickness and acoustic velocity.

The scheme presented here does not require prior knowledge of the dispersion

relation or properties of the specimen to direct a guided wave. Initially, a

guided wave is generated using a single element of an array transducer. The

acquired waveforms from the remaining elements are then processed and re-

transmitted, constructively interfering with the wave as it travels across the

spatial influence of the transducer. The scheme intrinsically compensates for

the dispersion of the waves and thus can adapt to changes in material thick-

ness and acoustic velocity. The proposed technique is demonstrated in simula-

tion and experimentally. Dispersion curves from either side of the array were

acquired to demonstrate the scheme’s ability to direct a guided wave in an

aluminium plate. Results show that uni-directional enhancement is possible
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without a priori knowledge of the specimen using an arbitrary pitch array

transducer. Experimental results show a 34 dB enhancement in one direction

compared with the other.

3.1 Introduction

Guided waves (GW) have been applied to a plethora of inspection problems

[14], [59]. The applications are abundant and diverse. Historically GW have

been used for the inspection of pipe work [60], [61], heat exchangers and aging

aircraft [14]. Newer aircraft are manufactured from composites, which require

sophisticated techniques for inspection [62], [63]. Guided waves however are

still applicable here [64], [65]. They are widely regarded as the most promising

tool for non destructive evaluation (NDE) [66], [67] and structural health mon-

itoring (SHM) [68]–[74]. GW also have biomedical applications [75]–[80]. Their

excellent range [66]–[68], good sensitivity [74] and flexibility of application [60],

[68], [69] make them desirable in NDE and SHM.

In pipes and plates, guided waves are used for detection of cracks [61],

[72], delaminations [65] and corrosion. Welds [67] and joints [14], [72], [81] can

be evaluated and thickness can be measured [82]. With the correct choice of

mode, which will be discussed later, guided waves can propagate in pipes that

are immersed or coated [14].

Lamb waves, a useful variety of guided waves, are complex [14], but they

are now well understood [83]–[85]. They are composed of multiple modes

of oscillation [86] which is advantageous for the detection of many types of

defects [60]. Low order modes can be used for the detection of large cracks,

and higher order modes can be used for the measurement of corrosion [60],

[87], [88], texture and small defects [87].

Two dimensional Fourier analysis [71], [89] and delay-sum methods [83]

can quantify the presence of modes [67]. This technique is commonly used

to quantify the interaction of Lamb waves with defects [90]. Phase velocity

dispersion relations are often more useful but are harder to obtain experiment-

ally, although authors have obtained them using optoacoustics [91]. For low

frequency-thickness products this is not problematic, as only two modes exist
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[66], [67], A0 and S0. Lamb waves are dispersive, however, so their velocity

changes with frequency. At higher frequency-thickness products, low order

modes will approach Rayleigh waves, whilst higher order modes can have the

same velocity. In SHM situations, where a broadband stimulus is common-

place, sophisticated methods for the separation of these higher order modes

exist [65]. Thus for high order mode inspection, it can be desirable to only

generate a single mode at a time [67], [87]. Monitoring the backscatter [61]

for reflections can indicate poor bonding, whilst mode conversions [65] can be

observed when a mode interacts with the edges of a defect [71], [92]. Control

over mode generation can also be useful for traversing complex materials or

waveguides [93]. Mode selection, however, is not required for more common

low order mode inspection, as these modes can be easily identified.

Control over the direction of propagation is advantageous to the engineer for

greater range and location of defects [68], [74], [94]. With finite acoustic power,

a greater range can be realised by applying the wave in only one direction.

Without any steering, Lamb waves will propagate in all directions equally in

the waveguide. When the Lamb wave interacts with a defect it can be difficult

to locate since the reflection or mode conversion could have come from any

direction. Scatter and the inherent dispersion of Lamb waves can hamper

exact location of defects, but methods exist to compensate for this [59], [73],

[95]–[97]. The application of signal processing in NDE is commonplace [98].

While sophisticated techniques for guided-wave inspection exist, they are

not always adopted. Often not all the necessary parameters are known at the

time of inspection. This is especially an issue when the specimen is placed in a

harsh environment. Pipes can be under strain or be heated by their contents.

In SHM, components may be exposed to extreme seasonal temperatures [99].

All these will effect the acoustic properties and dispersion relation of the ma-

terial. Existing techniques are not robust to these harsh environments which

may contribute to their lack of adoption. Progress is being made in the de-

velopment of software to automate processes and analysis [100]. A parameter-

agnostic technique for the generation of directed guided waves might allow

guided waves to see more use in the field.

In thin plates, transmission at an oblique incidence has historically been

used for control over direction, mode generation and mode reception. Many
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researchers point out its limited use [68]. The engineer is limited by the angular

resolution of the probe, and changing the angle can be tedious or impossible

if the transducer is buried or inaccessible.

Arrays are increasingly used in NDE [35] in place of single element trans-

ducers. Arrays can be used to excite a single mode if the pitch matches the

wavelength of the desired mode. Generally, arrays are favoured in ultrasound

because of their flexible beamforming capabilities. Whilst beamforming of

transducer arrays is often associated with medical imaging [101], these tech-

niques are applicable to NDE also [102]. New NDE specific imaging techniques

are being published too [103]. A commonly used industrial technique for cre-

ating a unidirectional array is to apply a 90◦ phase shift to quarter wavelength

separated elements1. With respect to GW specific techniques, unidirectional

single-mode waves can be generated through the application of delays to each

element’s excitation in a phased array transducer2. The delays approximate

the transport time of the phase for the desired mode between adjacent ele-

ments. In both cases, this is only possible with a priori knowledge of the

specimen thickness and its dispersion curves. When the modes of the speci-

men are unknown it may be possible to first obtain a dispersion curve from an

edge reflector and use these results as inputs into the technique just described.

However, the availability of an appropriate reflector cannot be guaranteed and

it complicates an already complex inspection technique with an additional

step. In SHM, authors have manufactured bonded transducers that are able

to direct guided waves based on the wavenumber [74].

This chapter describes a scheme for the uni-directional enhancement of

guided Lamb waves. The direction of propagation can be controlled without

a priori knowledge of the material’s parameters. This chapter builds on exist-

ing work3 with the addition of an improved signal processing chain that has

1C. F. Vasile, ‘Periodic magnet unidirectional transducer’, 4 232 557, Nov. 1980.
2J. Li and J. L. Rose, ‘Implementing guided wave mode control by use of a phased

transducer array’, IEEE transactions on ultrasonics, ferroelectrics, and frequency control,
vol. 48, no. 3, pp. 761–768, 2001.

3C. Adams, S. Harput, D. Cowell et al., ‘Specimen-agnostic guided wave inspection using
recursive feedback’, in IEEE International Ultrasonics Symposium (IUS), IEEE, 2016, D. M.
Charutz, E. Mor, S. Harput et al., ‘Guided wave enhancement phased array beamforming
scheme using recursive feedback’, in 2013 IEEE International Ultrasonics Symposium (IUS),
Jul. 2013, pp. 166–169. doi: 10.1109/ULTSYM.2013.0043.
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facilitated experimental validation.

3.2 Method

In this section, a scheme for the uni-directional enhancement of guided waves

is described. A short process called recursive feedback allows the scheme to

resolve unknown parameters. Consisting of several short iterations, once com-

plete, allows uni-directional guided wave inspection to be undertaken. Simula-

tion results are presented for the purpose of graphical demonstration. Follow-

ing this, mathematical analysis is undertaken by comparing the scheme with

an existing one. Before experimental validation can be completed a noise filter-

ing and truncation signal processing chain is presented. Finally, experimental

process and parameters are justified.

3.2.1 Recursive Feedback

Consider a phased array transducer of N elements mounted normally on a thin

plate as shown in figure 3.1.

The recursive feedback scheme is as follows:

1. i = 1 Initially, the first element of the transducer is excited with a linear

chirp. As the first element loads the material, longitudinal and shear

waves combine and create multimodal Lamb waves that travel in both

directions. Simultaneously element two records the surface pressure of

the material.

2. i = 2 Now the first element transmits the same stimulus as it did before.

This time, however, the second element transmits back its recording from

the previous iteration. The third element records.

3. i = 3 In the third step of the scheme, the first element transmits its stim-

ulus, the second its recording from step one and the third its recording

from step two. The fourth element records.

4. i = N This process is continued until all N elements are transmitting.
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The effect is that Lamb waves tend to travel in the direction of the array’s

spatial influence (+Z). Each element reinforces the travelling wave using its

recording. Lamb waves will still propagate in the opposite direction but with

less energy. The scheme will amplify forward (+Z) any modes generated by

the first element.

It is often highly desirable to enhance only one mode at a time which fa-

cilitates thorough inspection, where each mode is sensitive to different defects.

However, the multimodal nature of the scheme is advantageous in two circum-

stances. The first is at low frequency-thickness products where the modes are

easily separated by their disparate phase velocities. At this operating point,

mode selection is less advantageous as modes can be very easily separated

temporally. The second circumstance is the inspection of joints because the

lowest order modes are most indicative of joint health. For example, complete

attenuation of all modes crossing the boundary indicates a break whilst a loss

of the A0 mode indicates contamination in a kissing bond joint.

The process is shown diagrammatically along side finite element modelling

(FEM) results in figures 3.1a through 3.1f. In FEM a 2.5 mm thick aluminium

sheet was used. The excitation was a 10 cycle 700-800 kHz linear chirp. Ideal-

ised pressure loads were used instead of a transducer to improve simulation

efficiency and they were separated (pitch) by 400 µm. The linear chirp was

windowed with the Blakman-Harris function. The colour represents pressure.

In figure 3.1a element 1 is transmitting (green) whilst element 2 is recording

(red). The wave packets are equal in pressure and equidistant from the first

element. In figure 3.1b elements 1 and 2 are transmitting, element 3 is record-

ing. In +Z, the wave packets appear less defined than those in −Z. In figure

3.1c, elements 1, 2 and 3 are transmitting. Element four is recording. This

process is continued until the ninth and final iteration, shown in figure 3.1f.

Here the wave packets are most intense and well defined in +Z.
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-Z +Z

(a) i = 1 (b) i = 2

(c) i = 3 (d) i = 4

(e) i = 5 (f) i = N

Figure 3.1: Diagrammatic representation of each iteration of the scheme. A
nine element array transducer is superimposed on simulation results to show
where pressure loads were applied. The colour of the waveguide represents the
normalised intensity of the pressure. Elements which are highlighted green are
transmitting, whilst those highlighted red are receiving. Simulation images for
iterations 1 though 5 are captured at 17 µs. For the Nth iteration the image
was captured at 23 µs, enough time for the wave packets to exit the influence
of the array. The scheme enhances guided waves in one direction.

3.2.2 Background

The wave-length of a Lamb wave is described by equation 3.1. The phase

velocity, Cph, can be found from well documented dispersion curves. An array

transducer of pitch L can be used to amplify a particular mode. If λ = L,

an excitation with a centre frequency of f can be used to satisfy equation 3.1,

the corresponding mode will be amplified in both directions. This is limited

of course by the pitch and bandwidth of the transducer.

λ =
Cph

f
(3.1)

The rest of this section references work already published on the use of

time delays for mode selectivity in both directions1.

1W. Zhu and J. L. Rose, ‘Lamb wave generation and reception with time-delay periodic
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For an array probe mounted to a thin waveguide, the amplitude of a gen-

erated mode is described by equation 3.2.

Am(z) = V · F (ω) · Cm(z) ·H(ω) (3.2)

Where Am(z) is the amplitude of mode m. V is particle displacement. F (ω)

is the frequency response of each element and Cm(z) is the coupling coeffi-

cient between the waveguide surface traction and the guided wave mode. z is

the position along the waveguide. Since the designer has no control over the

coupling coefficient or the frequency response of each element, H(ω) must be

changed to affect the amplitude of a mode. Equation 3.3 describes the trans-

ducer response in relation to frequency and separation when using a single

frequency.

H(ω) =
N∑
i=1

ej[ωt∓βm(z−zi)] =
sin(N L

λ
π)

sin(L
λ
π)

ej[ωt∓βm(z−zcentre)] (3.3)

∓ means − for +Z and + for −Z. λ is the wavelength of harmonic mode m.

zcentre is the centre location of the transducer array. βm is the wavenumber.

To influence H(ω) either the frequency must be changed or the separation

must be changed. For the designer, this is either tedious or impossible. With

the introduction of an additional delay of td0 to each element i, H(ω) can be

influenced without changing these parameters. Consider equation 3.4.

H(ω) =
N∑
i=1

ej[ω(t−ti)∓βm(z−zi)] =
sin[Nπ(L

λ
∓ td0

T
)]

sin[π(L
λ
∓ td0

T
)]
ej[ω(t−N−1

2
td0)∓βm(z−zcentre)]

(3.4)

In order to maximise the amplitude of a harmonic mode in the +Z direction,

td0 should be chosen to satisfy

λ =
L

(n− td0/T )
(3.5)

linear arrays: A bem simulation and experimental study’, Ultrasonics, Ferroelectrics, and
Frequency Control, IEEE Transactions on, vol. 46, no. 3, pp. 654–664, 1999, J. Li and J. L.
Rose, ‘Implementing guided wave mode control by use of a phased transducer array’, IEEE
transactions on ultrasonics, ferroelectrics, and frequency control, vol. 48, no. 3, pp. 761–768,
2001.
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T is simply 1/f . n here is an arbitrary integer, of a value that must satisfy

n > (td0/T ). Here, td0 is used to approximate the propagation time between

adjacent elements, such that the peaks of the travelling mode are reinforced.

It does not however take into consideration the dispersive nature of Lamb

waves; the travelling wave will tend to temporally spread, so only one mode

at one operating point is enhanced. The scheme proposed here takes this into

consideration, reinforcing the travelling wave as it appears at the transducer

in the previous iteration. This is keystone to the proposed scheme’s ability to

enhance multiple modes simultaneously.

3.2.3 Signal Processing

The dispersive nature of Lamb waves means that successive excitation se-

quences grow in length. Additionally, any noise introduced by simulation arte-

facts or otherwise will be amplified until the experiment becomes unstable.

There is a need then for signal processing to reduce the amplification of noise

and to truncate the signal.

Firstly a bandpass filter was used to block any irrelevant frequencies, such

as those that are outside the frequency range of the transducer and the initial

excitation. The filter must have a linear phase, so an FIR design was em-

ployed. The filter order was 50, and the -6 dB bandwidth was the same as the

transducer used.

Recordings were then cross correlated with the initial stimulus to find the

point t0. t0 is the lead, τ applied to maximise the correlation of initial excita-

tion, x and the recording, y:

t0 = arg max τ(x ? y)(τ) (3.6)

It is imperative that noise and cross-talk between adjacent elements is

rejected. Restrictions were placed on τ :

2× tk < τ <
i

fmin

(3.7)

Here, tk is the propagation delay in the PZT. The signal must have propag-
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Figure 3.2: Signal processing chain used to reject noise and ensures that the
region of interest is re-transmitted.

ated through the first element (tk, known), through the material (unknown)

and through the second element (tk) before it can be considered a valid correl-

ation. The value tk can be obtained through a simple pulse echo experiment:

With a material of known dimensions and speed of sound, the error between

theoretical and actual time arrival will equate to 2tk.

fmin is the start frequency of the chirp, x(t). The upper boundary ensures

that the bottom term, n − td0
T

, of equation 3.5, remains positive. n = 1 since

L < λ.

All transmissions should be of length Tt, the length of x. Abrupt truncation

of the signal could introduce high-frequency components, so windowing was

applied so as to achieve a gradual reduction in amplitude as t0 ← t and t →
(t0 + Tt). A Tukey window was used here to maximise total energy in the

transmission whilst maintaining a gradual reduction in amplitude near the

edges.

Finally, a gain was applied to equate the peak value of x and y. The signal

processing chain is shown in figure 3.2.

3.2.4 Quantifying Directivity

The 2D Fourier transform method was used to obtain a dispersion curve [5],

[89]. This was accomplished by measuring the surface acoustic pressure at
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many points in monotonic space. Recordings were then packed together into a

matrix, with dimensions of space and time. Taking the two dimensional Fast

Fourier Transform (FFT) gave a matrix of frequency against wavenumber.

Since recording length and FFT size were conserved, the directivity of the

scheme was quantified by comparing the outputs of the FFTs since energy was

conserved. The peak value of the first iteration was used as a reference for

power calculation.

Experimentally several techniques exist for evaluation of surface displace-

ment; Laser vibrometers [97] and optical fibres [107] are popular choices. Here

the transmitting array was used to obtain a dispersion curve for experimental

simplicity. The transducer array was placed close to one edge and separated

from the others by a much greater distance. Generated waves were reflected

by the closest edge of the plate before passing over the array. It was import-

ant that the transducer was not moved between comparisons of +Z and −Z.

Re-positioning the transducer might have affected the coupling, and so the

distance to the reflecting edge could not be reliably reproduced. To combat

this, the enhancement direction of the scheme was changed whilst leaving the

transducer in situ. The array was split in two. In the first experiment, +Z was

quantified by exciting toward the reflector from the middle element. In the

second experiment, −Z was quantified by enhancing away from the reflector

using the other half of the array. For a 64 element array, element 32 trans-

mitted during the first iteration regardless of the enhancement direction. For

evaluation of +Z, elements 32 through 63 were energised. For evaluation of

−Z, elements 32 through 1 were energised. Dispersion curves will be identical

during the first iteration regardless of enhancement direction. This arrange-

ment is shown in figure 3.3.

3.2.5 Experimental Parameters

Experimentally, a 64 element array probe with a pitch of 0.33 mm and centre

frequency of 2.5 MHz was used. The waveguide was a 0.9 mm thick aluminium

plate. A high viscosity and high impedance couplant was required to maximise

energy transfer between the transducer and the waveguide, so a thin layer of

honey was employed between the two. The transducer was placed 120 mm
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−Z +Z

Transducer Edge reflector

Isolators

(a) Guided waves are enhanced toward the reflector. The right hand side of the array is
excited.

(b) Some time after, the wave packets reflect off the edge and pass over the array. The +Z
dispersion curve is acquired.

−Z +Z

(c) The enhancement direction is changed allowing the −Z dispersion curve to be obtained

Figure 3.3: Depiction of the experimental arrangement. An array transducer
was mounted on a metal plate. The plate edge was used as a reflector so
that the transmitting array could also be used to acquire a dispersion curve.
The array was selectively excited to change the enhancement direction so that
both directions can be measured. Between experiments, the array was not
disturbed and the first transmitting element remained the same distance from
the reflector. Small pieces of wood were placed along the perimeter of the
non-reflecting edges to acoustically isolate the plate.
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away from the reflecting edge and approximately 1 metre from the other edges.

The initial stimulus was a 10 cycle 2.25-2.75 MHz linear chirp, windowed with

the Blackman-Harris function.

The first time the experiment was run, the waveforms were unknown. The

received, and subsequently re-transmitted waveforms are related to a large

number of variables relating to the material and how it disperses. The keystone

of this scheme is its ability to excite modes without knowledge of the material’s

properties. Since the returning waveforms could not possibly be predicted,

arbitrary waveform generation was required. Experimentally this was achieved

using the 5 level, HRPWM algorithm described in chapter 2.
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3.3 Experimental Results and Observations

Figures 3.4, 3.5 and 3.6 show dispersion curves from iterations 1, 4 and 31

respectively. In each case, curves for each direction are presented. Theoretical

results, which were calculated using GUIGUW [108], [109] are overlaid in white.

In the first iteration of the scheme, +Z and −Z are almost identical, which

is to be expected. In the first iteration, modes A0, S0 and A1 are visible. In the

fourth iteration (figure 3.5), the scheme begins to exhibit its enhancing cap-

abilities. In the +Z enhancement direction there is more energy, indicated by

dilation around the A1 and S0 modes. Figure 3.6 shows the last iteration of the

scheme (i = 31). Here the enhancing capabilities of the scheme are most ap-

parent. Compared with the first iteration, the most dominant mode in +Z, S0,

has increased by 35 dB. Modes A0 and A1 have increased by 30 dB. Conversely,

in −Z, there is only a 10 dB increase in energy. There are vertical stripe arte-

facts visible in this curve that extend into all wave numbers at approximately

2.5 MHz. The artefacts have a pattern in the frequency domain, suggesting

that all channels are affected equally and it is not a spatially-varying problem.

Possible causes may be side lobes from the FFT, or ADC distortion. The dir-

ectional enhancement was achieved without any knowledge of the material’s

dispersion curves, a requirement of other schemes.
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(a) +Z

(b) −Z

Figure 3.4: Dispersion curves measured in +Z and −Z for the first iteration.
The dispersion curves are equal, the guided waves show no preference for either
direction.
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(a) +Z

(b) −Z

Figure 3.5: Dispersion curves measured in +Z and −Z for the fourth iteration.
The scheme begins to demonstrate its steering capability.
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(a) +Z

(b) −Z

Figure 3.6: Dispersion curves measured in +Z and −Z for iteration 31. In the
final iteration, the scheme shows preference for +Z as more energy is present
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3.4 Simulated Inspection

In this section, the recursive feedback scheme will be applied to two inspection

problems. The simulated transducer and excitation frequency will remain the

same between problems, but different materials will be used. The first is

chosen to highlight the scheme’s ability to excite several modes without prior

knowledge of the material’s properties. In the second, defect localisation and

detection will be carried out.

The transducer had 8 elements and the pitch was 3 mm. Each element was

400 µm wide and the excitation was a 700 - 800 kHz linear chirp.

3.4.1 Contaminated Lap Joint

Lap joints consist of two plates that are glued together with an overlap and are

commonplace in aeronautics. Causes of failures include inclusions (contamina-

tion) and voids. These are caused by poor curing, poor surface preparation or

stress [110]. A cross-section of a lap joint with an inclusion is shown in figure

3.7.

When poor quality lap joints are subjected to guided waves, mode conver-

sions, phase velocity changes and attenuation occur when the waves interact

with contaminants. For example, the amplitude of the S0 mode can indicate

the existence of a delamination [111]. However, the A0 mode is most sensitive

to bond state and exists often [112]. Fully cured bonds convey the most en-

ergy but inclusions may introduce fluid modes. As the guided waves cross the

Epoxy

Contamination

Aluminium

Recording area

Loading area

Gudied waves

Gudied waves

Figure 3.7: Diagram of the simulated lap joint that has been contaminated.
Two plates are epoxied together. Guided waves were generated in the lower
plate and couple into the top plate.
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Gudied waves

Loading area

Titanium

Edge reflector

5 mm

1 mm

Blind hole

2 mm

Figure 3.8: Diagram of the simulated plate with a blind hole. Guided waves
were generated and enhanced in both directions.

overlap, the A0 mode will become a multilayer mode (2h) [112].

In this experiment, a lap joint was modelled using an FEA tool (PZFlex,

WAI, USA). For the plates, 2 mm thick aluminium sheets were used. 600 µm

thick epoxy and a 200 µm thick inclusion of castor oil was used for the defective

joint. Approximately a third of the 60 mm wide overlap was consumed by the

defect and it was placed 500 µm from the incoming edge of the epoxy.

Recursive feedback was performed on the lower of the two plates with the

aim of generating a guided wave toward the joint. The process was repeated

on an uncontaminated joint so that a comparison could be made.

3.4.2 Defect Localisation in a Titanium Plate

In this second numerical experiment, recursive feedback was applied to a 500

mm wide, 2 mm thick titanium plate with a defect. At one end lay the edge,

and at the other end lay a blind hole, 5 mm in diameter and 1 mm deep. This

is shown in figure 3.8. Note that the distance from the loading area to the hole

and edge is irrelevant since the attenuation was relatively low over the range

(< 0.5 dB).

Here, recursive feedback was used in two ways. Firstly the scheme was used

to excite toward the edge of the material. In the second operation, the waves

were directed toward the hole. The out of plane surface displacements over

the transmitting area were monitored for reflections. Comparisons between

the two enhancement directions should indicate where the defect lay. The

higher intensity reflections from the two directions will indicate the location

of the defect. Exact localisation is difficult because of the dispersion of the
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propagating waves. However, this can be compensated for [113]. Dispersion

curves were acquired to observe any specific attenuation or reflection of modes.

3.4.3 Results and Observations

Figure 3.9 shows the dispersion curves for a lap joint with and without con-

tamination. The dispersion was acquired from the top of the two plates. The

out of plane surface displacements were recorded at several locations.

The same process was applied to the defective plate experiment, the results

of which are presented in figure 3.10. The results are given in relative intensity

(dB). In the case of the lap joint, the reference is the maximum value taken

from the non-contaminated recording. In the case of the defective plate, the

maximum value from the edge enhanced direction dispersion was used.

Returning to the uncontaminated lap joint, two modes are visible, A0 at

the top and S0 at the bottom. The A0 mode is the most predominant. Both

modes are centred around the 700 kHz-800 kHz frequency range which was

the bandwidth of the excitation waveforms. The same is true for both the

dispersion curves in figure 3.10.

There was a significant loss of energy in the A0 mode when the contaminant

was introduced into the lap joint. Either the contaminant absorbed A0 entirely

or there was general attenuation of signals and a mode conversion took place

from A0 to S0. By comparing with the dispersion relation of the known good

joint, it can be shown the bond was defective.

In the defective titanium sheet (figure 3.10), A0 and S0 modes can also be

seen. In the top image, guided waves have been excited toward the edge and

thus away from the defect. Although the enhancement direction was away from

the defect there was some small reflection from the residual energy propagating

in the opposite direction. The modes are not complete in the edge direction,

and there has been some loss of both modes at 700 kHz. When the guided

waves were directed toward the defect, a 10 dB increase of A0 and a 5 dB

increase in S0 was observed. From this magnitude increase, it can be deduced

that this was the direction of the defect.
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(a) Uncontaminated lap joint

(b) Contaminated lap joint

Figure 3.9: The dispersion relations of lap joints with and without contamin-
ation. The peak value of the uncontaminated has been used as a reference.
Attenuation and mode conversions have occurred in the contaminated case.
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(a) Reflected from Edge

(b) Reflected from Defect

Figure 3.10: Dispersion relations reflected from a defect in each enhancement
direction. Top: Guided waves were enhanced in the opposite direction to the
defect so there was only a small reflection from the defect. Bottom: Guided
waves were enhanced toward the defect so there was a much larger reflection.
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3.5 Source Influence

Lamb waves can exist in rods, thin plates [66] and cylinders, where the bound-

aries are in close proximity [84]. When the surface is loaded, Lamb waves

form, which are the superposition of bulk and longitudinal waves [46], [84].

Lasers [114], EMATs [68] and ultrasound transducers can all be used to gen-

erate Lamb waves. EMATs are often the preferred source for buried pipes

and where source influence is undesirable. Large bonded PVDF and PZT 2D

apparatus are usually used in SHM [70], [73], [88], [94], [95], [113], [115], [116].

Bonded PVDF is sometimes preferred in SHM because of its low cost and

low source influence [71]. PZT which can be bonded to curved surfaces [117]

has shown great range however [118], [119]. PZT ultrasound transducers have

more source influence, but the effects are well understood [14]. Moveable PZT

transducers arrays are more commonly used for the inspection of plates [69]

and pipes [61]. Single crystal materials look promising, which might enable

generation of very long range guided waves [120].

When using an array transducer a couplant is usually required for proper

transduction. The choice of couplant is often dictated by the application and

so the scheme has been tested with various couplants to assess its robustness

to different environments. Couplants of oil, water and no couplant (air) were

tested in simulation. Dispersion curves measured for oil and water in each

enhancement direction are shown in figures 3.11 and 3.12 respectively. The

same simulation parameters have been used as in figure 3.1, however only 7

iterations of the scheme have been executed to conquer the increased simula-

tion time incurred modelling the air. In addition, a λ/4 matching layer and

a λ/8 thick wear plate have been included in the simulation. Oil and water

behave almost identically, with a 15.6 and 15.5 dB peak enhancement achieved

with each couplant respectively. This can be attributed to their similar acous-

tic impedances. Using no couplant (not shown) performed extremely poorly;

only very low-frequency components of the windowing function coupled into

the waveguide and no enhancement was apparent. The peak value from the

enhanced direction of each couplant was used as a power reference.

As with any contact ultrasonic experiment, the influence of the transducer

can affect the results. There are two particular nuances of this experiment

71



3. AN ADAPTIVE ARRAY EXCITATION SCHEME FOR THE
UNIDIRECTIONAL ENHANCEMENT OF GUIDED WAVES

(a) Positive direction (+Z)

(b) Negative direction (−Z)

Figure 3.11: Results of enhancement using an oil couplant.
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(a) Positive direction (+Z)

(b) Negative direction (−Z)

Figure 3.12: Results of enhancement using a water couplant.
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which are noteworthy. First is the effect of loading applied to the transducer.

Presuming that the contact area for each element in the array is far smaller

than the wavelength of mode m [105], the coupling coefficient between the

waveguide and the array element is:

Cm(z) = S ∗ V
∗

m · T · k̂1

4Pmm

e−iβm(z−z0) (3.8)

Here, S is the area that the given element contacts the waveguide, Vm the

particle displacement distribution, T the surface traction and Pmm is the power

density. k̂1 is the unit vector normal to the waveguide. The convolution S ∗ ...
has been used in place of an integral, since a∗f(b) = a

∫
f(b). z0 is the location

of each element in the array.

This equation describes the coupling coefficient of a particular mode with

distance. When the dot product with H(ω) is made, the amplitude of a given

mode at a given distance can be found which was given earlier in equation 3.2.

H(ω) described the wave propagation while Cm(z) describes the influence that

each element has on the amplitude. More detail on the derivation of these

equations is available [105] but is beyond the scope of this section.

The significance of this Cm(z) term to this section is that as source loading

is increased, modes with a wider particle displacement distribution will increase

in magnitude more than modes with a narrow displacement. For this reason,

the pressure applied to the transducer should be carefully considered when

comparing the magnitudes of modes.

The second noteworthy influence of the transducer is particular to the

recursive feedback scheme. The scheme reinforces modes as they are presented

to the transducer. It is possible that under the correct conditions modes of the

system may be reinforced rather than only of the waveguide. If the transducer

is modelled as a single mass on top of the waveguide, then damping may occur.

More significantly, individual matching and wear plate layers may incur the

creation of waves not dis-similar to multilayer modes. Fortunately, a typical

λ/4 thick matching layer is thin compared to the waveguide and so when

separated by a wear plate and couplant is likely to have only a small influence

on the experiment. Any system modes will likely convert to single layer plate

modes at the boundaries of the transducer. Bounds were applied to the cross-
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correlation algorithm (3.5). The bounds were defined in equation 3.7 and were

chosen to further discourage system modes, as acoustic energy that has not

travelled twice through the non-active layers of the transducer were temporally

discriminated. Observations from simulations that include these layers confirm

this. Finally, since the experimental results are free from spurious modes

and align well with theoretical results it can be concluded that plate modes

have been enhanced as opposed to system modes when the given experimental

parameters were used.

3.6 Discussion

For the experimental results, the dispersion curves display good SNR, attrib-

uted to good coupling between transducer, honey and waveguide. It is possible

to generate Lamb waves using air-coupled transducers, but mode choice is lim-

ited and the transducers are intolerant of small changes in angle [121]. Addi-

tionally, an initial excitation centred around the transducer’s centre frequency

was chosen to maximise energy in the waveguide. The dispersion curves show

that most of the energy was between 2-3 MHz, as expected.

Figure 3.13 shows how the amplitude ratios for each direction change with

respect to frequency. For each iteration, the difference between the maximum

value in +Z and −Z at each frequency was calculated. Only the bandwidth

of the chirp was considered. The green line represents the first iteration, this

line is almost completely flat indicating there is almost no difference in power

in each enhancement direction. The red line represents the fourth iteration.

Here there is a peak increase of approximately 12 dB in the frequency range

of the excitation. In the final iteration, which is represented by the blue line,

the peak amplitude ratio has increased even further to a maximum of 34 dB.

Although some general increase in enhancement with each iteration is apparent

in this graph, a better metric is power density which can be obtained through

numerical integration of the linear amplitude ratios. The power densities are

shown in table 3.1. The power reference here is the power density from the

first iteration.

The choice of initial excitation will change which modes may propagate,
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Table 3.1: Power densities for different iterations

Iteration Power Density (dBHz)
1 0
4 20.96
31 51.39

although unlike other schemes, the scheme will enhance all valid modes. For

example, a broadband impulse will excite many modes across a large frequency

range. Conversely, with a narrowband linear chirp, only modes with a non-

infinite velocity in the frequency range of the linear chirp can be observed.

While the designer is still in the process of finalising experimental parameters,

it can be desirable to use a broadband linear chirp to increase the chances

of exciting a mode, or to excite multiple modes. However, it should be noted

that using a broadband signal reduces temporal resolution of defects [122]. The

choice of initial excitation is critical to the success of the scheme. Experiment-

ally and in simulation, a very narrow chirp was used for the initial excitation

in the scheme. The use of a chirp facilitates pulse compression which allows

the signal processing chain to approximate the transport time of the guided

waves between elements. For these reasons, impulse excitations are not appro-

priate as they cannot be resolved in a bandwidth limited system. The higher

the time-bandwidth product (TB) the more accurate the approximation of

the delay. However, the bandwidth factor is limited by the transducer. So

the length of the excitation must be increased, which in turn reduces resolu-

tion. Conversely, a reduction in the excitation length means less energy can

propagate in the waveguide but TB is reduced. A balance must be struck.

Despite this analysis, the reduced power budget available when undertaking

remote NDT inspections will likely have the biggest influence on the choice of

excitation. Approximately 2 kW peak power was required during firing using

the experimental parameters given here.

It may be difficult to direct the waves in materials that are either extremely

thin or thick. This is because for a given frequency, f , wavelength λ decreases,

and the scheme presumes that L < λ. Since only low order modes are being

generated, there is no risk of the guided waves interacting with micro defects.

Since L < λ/2, the array meets the spatial Nyquist limit and simplifies the
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Figure 3.13: Amplitude ratios between each enhancement direction are com-
pared for iterations 1, 4 and 31. The results are given in dB across the band-
width of the transducer

experimental arrangement for measuring the resulting dispersion curves.

The signal processing chain consists of frequency filtering, cross-correlation

and windowing. The chain is simple, and although difficult to implement

with simple electronics, it can be easily achieved with software signal pro-

cessing. Since no part of the scheme is real-time, the computational require-

ments were minimal. On a high-end desktop computer (Intel XEON E5-1620,

64GB RAM), each iteration took approximately 500 milliseconds to process

including firing. Thus, with a 32 element transducer, a full 32 iterations were

executed in approximately 16 seconds, although there is plenty of scope for

optimisation. Most of this time constituted uploading TX waveforms to the

UARP. Approximately 1 GB of memory was required.

If the waveguide or transducer are changed, the scheme will, of course, need

to be re-executed. As the results indicate, the more elements used the better

the power density and enhancement. The number of elements used however
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is limited by the number in the array and the available computation time for

deriving the waveforms for inspection.

The focus has been on the directional enhancement of low order modes,

which can be easily separated with Fourier analysis. Mode control could be

achieved through dispersion reversal which might make the scheme useful at

higher frequency-thickness products where modes cannot be separated as easily

during an inspection. Changes to input stimulus and additional boundaries

applied to equation 3.6 might be required to achieve this.

For the simulation results, further investigation of the lap joint dispersion

might indicate more about the defect to the engineer. The exact cause of loss

of the A0 mode might become apparent if a multi-layer dispersion relation

were acquired from the overlap of the two materials. Phase velocities might

also pertain to the composition of the inclusion.

The method used here for the inspection of the bond requires knowledge

of the dispersion relationship of a known good bond for comparison. Altern-

atively, the dispersion of the guided waves prior and post entry to the bond

could be compared to identify the flaw.

With the defective titanium plate, computational limitations meant that

only 8 pressure loads were applied to the material. This achieved a 10 dB

increase in power when directed toward the defect. Practically, it is feasible

that this increase would be much larger as modern transducer arrays often

contain 64 or more elements and it has been shown experimentally that the

recursive feedback scheme’s ability to direct guided waves improves as more

elements are used.

3.7 Conclusion

Guided waves have many biomedical, NDT, and SHM applications. Their

versatility makes them attractive in all these fields. Whilst Lamb waves are

complex, they are now well understood, which has made research into their

generation more accessible. They consist of many modes of oscillation, where

each mode can be used for the inspection of different types of defects.

Control over direction is desirable as it allows localisation of defects, al-
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though some processing is required to compensate for the dispersion if an

accurate location is required. Whilst beamforming techniques do exist for the

directional enhancement of guided waves, they require knowledge of the thick-

ness of the specimen and its dispersion curves, which may be inaccessible to

the operator. Arrays have been applied to solve this problem.

A scheme was devised for the uni-directional enhancement of Lamb waves.

It required no knowledge of the material’s dispersion curves. In the scheme, the

first element of the array generates multimodal Lamb waves in the waveguide,

while the adjacent element records the Lamb wave. In the next iteration,

the recording is played back. The process is repeated until all elements are

transmitting. In these several short iterations, the scheme can quickly resolve

parameters required for direction enhanced guided wave inspection. From this

point onward, guided wave inspection can be undertaken freely as excitations

appropriate for the waveguide and transducer have been found.

The scheme was first demonstrated in a simulation where increased de-

formation was visible in the direction of the array’s spatial influence. Based

on equations relating to an existing scheme, a signal processing chain was de-

vised to facilitate experimental validation, where the effect of uni-directional

enhancement became apparent in iteration 4. Each successive iteration showed

an increase of energy in the positive enhancement direction compared with the

first iteration. When all elements were transmitting during iteration 31, an in-

crease of 34 dB was observed in +Z, where only a 10 dB increase was observed

in −Z compared to the energy deposited from a single element. As further

evidence, amplitude ratios between enhancement directions were compared for

several iterations across the bandwidth of the chirp. Following numerical in-

tegration of this data between 2.25 and 2.75 MHz, it was shown that the power

density increased between iterations.

Returning to simulation, the scheme was used to inspect two specimens.

The first was a lap joint, a cured epoxy joint between two aluminium sheets.

The lap joint was compared with an otherwise identical joint with an inclusion

of castor oil. The second application was a titanium sheet with a blind hole

defect.

For the defective plate, acquired dispersion curves from the transmitting

area showed that there was a 10 dB increase in reflected power from one
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direction. This indicated that the recursive feedback scheme can correctly

discriminate the direction of a defect. With the lap joints, guided waves were

generated in the bottom plate which propagated through the bond into the

top plate. Dispersion relations acquired from the top surface showed that

attenuation of the A0 mode occurred when the bond was contaminated.

The source influence of the transducer was discussed as it may reduce

the effectiveness of the scheme. Numerically, it was shown that the scheme

could possibly reinforce modes of the system rather than of the plate alone,

although this was not observed in simulation or experimentally. Additionally,

it was shown that the traction applied to the transducer may change the amp-

litude of individual modes. In a simulation, several couplants were tested to

verify the robustness of the scheme, as couplant choice is often dictated by

the inspection environment. A wear plate and matching layer were included

in the simulation and it was shown that oil and water performed well, achiev-

ing a 13 dB enhancement over seven iterations. Under the same operating

conditions however, air performed extremely poorly exhibiting no directional

enhancement.

This work shows that it is possible to control the direction of Lamb waves

using an array transducer. The strategy described within does not need any

prior knowledge of the material and is able to excite multiple modes whilst dir-

ecting the guided waves. This may increase the accessibility and effectiveness

of guided wave testing.
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Chapter 4

Induction and Observation of

Guided Waves in Bone

The behaviour of guided waves (GW) is highly related to the mechanical prop-

erties of the waveguide they are travelling in. Since the bone cortex is a rel-

atively thin (< 10 mm) structure, it can host GWs at ultrasonic frequencies,

and so researchers are actively investigating ways to obtain bone dimension

and health data from ultrasonic GW measurements. One potential applica-

tion is the diagnosis of osteoporosis, since existing techniques, such as dual

X-ray absorptiometry, are expensive and involve repeated exposure to ionising

radiation. Another potential application that is proposed here is measurement

of skull bone thickness, which needs to be known in order to conduct transcra-

nial therapy. Both settings provide unique challenges. In long bone, which is

affected most by osteoporosis, the limited area which can be used for acoustic

coupling, drastically reduces the quality of any dispersion measurements. In

the transcranial therapy setting, the data must be co-registered with the thera-

peutic elements for it to be useful. For long bones, a new signal processing

technique was used to introduce frequency-dependent phase shifts, which tem-

porally aligns multiple transverse guided wave observations. This then allows

typical beamforming steps, such as sum, to be used to prove or disprove the

existence of guided wave modes through constructive interference. Multiplica-

tion was used to improve the contrast compared to an existing Fourier method.

Although this technique produced artefacts that could be removed with simple
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frequency filtering, the contrast of the high-order modes was improved when

applied to ex vivo and in vivo bone. Numerically the technique was shown to

improve the S3 and A3 mode intensity by 6 dB and 13 dB respectively com-

pared with the existing Fourier method. Experimentally, it was found that

the spectral leakage was lower than with currently used techniques to measure

phase velocity along with improved sensitivity to high order modes. The tech-

nique could improve the reliability of osteoporosis diagnosis with ultrasound,

but may also prove useful for acquiring dispersion images in NDT.

For skull bones, guided waves were generated and observed using a sim-

ulation of a typical transcranial array. A geometric relationship was found

between the angle of incidence and the sonication point which was used to

define a delay profile for the array. Guided waves were induced in skull and

aluminium models, and a relationship between thickness and group velocity

was found, although windowing and Hilbert transforms were necessary to re-

move the bulk-reflections. The estimated maximum thickness error using this

technique was < 0.25 mm. The results showed that a therapeutic-geometry

array could be used to measure skull properties using GW. Since the data

is co-registered with the therapeutic elements, this method could be used to

improve the accuracy of thermal treatments in the brain.

4.1 Introduction

In this section, the acoustical and mechanical properties of bone are introduced

along with two potential applications of bone-guided waves.

4.1.1 Bone Types and Their Physical Properties

Bone is a complex viscoelastic composite [123]. It is anisotropic and governed

by no less than five elastic coefficients, making it transversely isotropic [124].

At the mesoscale, bone is inhomogeneous, however, minimum representative

volumes have been identified to allow homogenisation techniques to be used

[125]. The long femur and tibia bones are comprised of cancellous, also called

trabecular, spongy bone at the jointed ends, and marrow-filled tubular sections

in the middle called cortical bone. Cancellous bone has been well-characterised
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Table 4.1: Bone properties including speed of sound (SOS) used for modelling
in the chapter,

Property Symbol Value (Cortical) Value (Trabecular)
Density ρ 1969 kg m−3 1055 kg m−3

Long. SOS CL 3476 m s−1 1886 m s−1

Shear. SOS CS 1760 m s−1 650 m s−1

[126] and characterisation of cortical bone, which can host guided waves [127],

[128], continues.

It has been shown that in the transverse direction, an increase in porosity

contributes to a decrease in compression and shear bulk wave velocities [129].

The trend is weaker in the axial direction however, meaning that porosity

contributes to the anisotropy of the material. The Young’s modulus of cortical

bone has been measured [130] and strong correlations between the diagonal

stiffness coefficients and density have been discovered. There are still many

challenges facing full in vivo measurement of bone however [131]. Namely, the

influence of the exterior soft tissue which has now been measured [132], and

coupling which is made difficult because of variations in soft tissue thickness

over the bone length. To combat the latter, probes have been developed to

remove the error associated with poor alignment [133]. Despite the influences

of the soft tissue, modes of the cortex can still be extracted with an inversion

procedure [127].

Skull is essential to protecting the brain, and like long bone, is also a

multi-layered hard tissue that is a combination of the two bone types. The

layers can vary in thickness between a wide range of values which means that

varying phase aberrations affect the coherence of any sound wave propagating

through it. It, like all bone, is highly absorbing, so when exposed to high-

intensity sound fields, heats rapidly [134]. Bone is therefore highly attenuative

compared to other tissues [135].

The basic acoustic properties of bone, which are used throughout this

chapter, are summarised in table 4.1. Figure 4.1 shows the composition of

the two bone layer types in skull.

83



4. INDUCTION AND OBSERVATION OF GUIDED WAVES IN
BONE

Transducers

150 mm

Infinite

Infinite

In
fi
n
it

e

In
fi
n
ite

Trabecular
bone

Cortical
bone

Figure 4.1: Cross-sectional view of assembly of the two bone types in skull.
The skull was obtained by vectorising a CT scan of a healthy adult male [136].
Also shown: Boundary layers and dimensions used in subsequent simulations.

4.1.2 Applications of Guided Waves in Bone

Skull and long bones are thin (< 10 mm) media, so can both host guided

waves. Since the mechanical properties of any media are highly related to

the propagation behaviour of guided waves, observation of these waves has

numerous biomedical uses.

In this section of the chapter, two applications of guided waves in bone are

described. The first, osteoporosis assessment, is actively researched. A second,

new potential application of using guided waves to assist transcranial therapy

is introduced.

For Diagnosis of Osteoporosis

Osteoporosis is a disease where bone strength diminishes, drastically increasing

the risk of a stress fracture. Of the 200 million women worldwide which it is

estimated to effect [137], post-menopausal women are the most susceptible

because of a drop in oestrogen levels. As the disease is not usually discovered

until after a break, the world health organisation recommend screening women

aged 65 or older [138].

Currently, the standard for identifying brittle bones is dual-energy X-ray

absorptiometry (DXA). DXA works by irradiating the entire body with two
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different intensity X-ray beams. When soft tissue is subtracted, bone mass

density (BMD) can be measured. The BMD is then compared with a reference

mean. Patients with a T score 2.5 deviations lower than this reference are

considered osteoporotic [139].

There are several problems with this technique. It is not quantitative and

it requires exposure to harmful ionising radiation. Practically speaking, the

unwieldy size and high expense of DXA machinery make it of limited use for

screening purposes. Authors also point out that BMD is not the only contrib-

utor to bone strength; structural properties such as thickness, cross-sectional

area and moment of inertia are all contributing factors [123]. Furthermore,

BMD cannot account for bone’s complex microstructure of cracks, porosity

and crystallinity which all provide a mechanism for breakage [123]. Diseases

such as type 2 diabetes may result in a reduction of bone quality but not in a

reduction of BMD [140].

Researchers in the 1990s identified ultrasound as an alternative approach

[141], [142]. Several commercial ultrasonic systems were produced and correl-

ations between the speed of sound (SOS) and BMD were discovered. How-

ever, as some indicate, a lack of understanding of results and standards meant

quantitative ultrasound (QUS) was never properly adopted [143]. While tra-

becular bone loss has been the hallmark of osteoporosis, researchers continue

to identify the importance of cortical bone in healthy [144] and healing bone

[145]. With the recent discovery of additional guided wave modes from axial

testing, there has a been a resurgence in QUS. Authors have found that the

microstructure and elastic properties of bone effects QUS in axial transmission

[146]. Recent work shows sex hormone levels and higher osteoporotic fracture

risk align with QUS results [147]–[149]. All of these observations indicated

that QUS may eventually supersede DXA, although a full understanding of

bone quality and its relationship with acoustical properties is required first.

To complicate matters, there is currently no agreement about which guided

wave signal to use. Proponents of first arriving signal (FAS) have shown that

the velocity can be used to determine the thickness of the cortical bone [150].

This is not reliable however as the FAS may correspond to a flexural mode

rather than a lateral wave if the thickness is less than one wavelength [151].

Conversely, the group velocity of the fundamental flexural guided wave mode
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can determine the thickness of cortical bone [152]. This chapter concerns itself

only with guided modes.

Potential for Transcranial Therapy Guidance

Focused ultrasound has been used extensively to treat numerous diseases [15],

[153], [154] and provide palliative care [155], [156]. By focusing ultrasonic en-

ergy to a point using either an acoustic lens or phased array techniques [29],

[157], tissue can be heated until ablation or to induce hyperthermia [158]. Re-

searchers have begun focusing ultrasound in the brain [159] to ablate tissue or

to modulate neurons [160], [161]. However, this is made difficult by the skull’s

properties discussed at the start of this chapter. Large amounts of energy

are therefore required to achieve the desired heating at the target point. The

effect is that the hard-soft tissue interface approaches unacceptable temperat-

ures when exposed to high intensity focused ultrasound (HIFU). Experiments

with cadavers have shown that the interface may reach 49 ◦C higher than the

focus during typical exposures due to attenuation [162].

To combat this, researchers have astutely developed new transcranial thera-

peutic arrays. The arrays consist of a large number of elements [163]. The large

element count means that local tissue heating is reduced as the acoustic power

is distributed across a larger area, so the localised intensity is lower. Phased

array techniques are then used to focus a beam to the target [159], [164], [165].

Unfortunately, beam steering is made difficult because skull’s acoustic proper-

ties vary across its entire volume. In order for the energy to arrive in phase at

the focal point, these aberrations must be compensated for.

Compensation of the phase aberrations is achieved with a computed tomo-

graphy (CT) scan using time reversal [159]. There are a number of downsides

with this technique, however. The first is that this adds a third point of failure

and expense to the existing magnetic resonance imaging (MRI) and ultrasound

required for therapy. It also requires exposure to harmful ionising radiation.

The CT scan can only be performed before therapy and cannot compensate for

patient motion or changes to the skull. Most significantly, however, is that the

CT scan is not co-registered with the therapeutic array. This means that small

errors in the location of elements or the patient could translate to incorrectly-
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located ablation. One seemingly obvious solution to this might be to use the

therapeutic array to image the skull with ultrasound. However, this is made

difficult by the high attenuation of the skull bone and the limited resolution

that can be achieved at non-attenuated wavelengths.

Estrada et al. have recently modelled and experimentally proven the ex-

istence of guided waves in murine skulls1. It is proposed here that these waves

may be used for an alternative or additional imaging modality to guide trans-

cranial therapy.

4.1.3 Objectives

In any case (skull or long bone), to acquire bone properties from guided

wave measurements, models must be fit to incomplete experimental disper-

sion curves with an exhaustive search, although genetic algorithms have been

applied to speed up the fit process [167]. Dispersion curves can be generated

by solving the Lamb equations, but it has been suggested that normal lamb

wave theory is limited when applied to regular bones [76]. With a supplement-

ary group velocity filter, authors have solved the lamb equations to fit curves

to experimentally obtained data [168].

The dispersion relation of guided waves may be presented in several ways.

Phase velocity (Cph) and wavenumber (k), both as a function of frequency

are the most common. Although wavenumber relations are easier to obtain,

interpretation is difficult as the curves do not have an easily identifiable shape

or order of symmetric and antisymmetric modes. The phase velocity is the

easiest to interpret as the modes are more readily distinguished, and changes

in thickness usually result in an exact linear shift in the frequency domain.

This is therefore the preferred form in literature [169].

In long bone, authors have obtained phase velocity dispersion measure-

ments using two dimensional Fourier analysis, but this requires a high number

of spatial measurements to detect higher order modes, which are necessary for

a reliable fit to models. Unfortunately, only a small area of the tibia and radius

are available for inspection clinically.

1H. Estrada, J. Rebling and D. Razansky, ‘Prediction and near-field observation of skull-
guided acoustic waves’, Physics in Medicine and Biology, vol. 62, p. 4728, 2017.
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In skull, there is comparatively less literature available on the subject. Al-

though fundamental to this work, guided waves have only been observed in

the near-field using optoacoustic excitation. This work should be extended

by attempting to observe these guided waves in the far field with a concave

configuration phased array transducer, typical of the type currently used thera-

peutically. Since the behaviour of bone-guided waves is so interlinked with the

properties of the bone waveguide, GWs could be used as an alternative or

additional imaging modality to guide transcranial therapy.

In summary, the objectives of this chapter, are as follows:

• Observe guided waves in both skull and long bone

• Devise a new method to measure phase velocity dispersion to improve

the SNR of high order modes

• Measure skull properties, such as thickness, using skull-borne guided

waves

4.2 Methods for Inducing Guided Waves

Schemes for inducing guided waves in bone are described in this section. Ini-

tially, the technique for inducing guided waves in ex vivo long bone is described.

Subsequently, two types of purpose-built hardware (AZA and EVA) are intro-

duced. Finally, a sonication technique suitable for the skull in a therapeutic

context is described.

4.2.1 Induction in Ex Vivo Long Bone

Prior to an in vivo study, ex vivo experiments were conducted on a tibia bone

harvested from a young bovine. The ex vivo study provided an opportunity

to experiment with signal processing techniques, without the influence of soft

tissue. Great care was taken to avoid damage to the bone when removing

the soft tissue because scratches and cuts on the surface would create early

reflectors or degrade transduction. Soft tissue was first manually removed

from the sample using a scalpel. Following this, it was soaked in biological
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Before mechanical
tissue removal with the
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attached.
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hours.

Figure 4.2: The ex vivo bone during different stages of the preparation process

washing powder (Ariel, Proctor & Gamble, UK) but was later moved to a

0.01 M sodium hydroxide (NaOH) solution to accelerate the cleaning process

[170]. The sample was soaked for a total of 72 hours. The cleaning process

is depicted in figure 4.2. To maintain its acoustic properties, the sample was

stored in water when not in use. This process is known to minimise damage

to the bone [170]. Any influence on the acoustic properties as a result would

have been minor and the bone would have remained representative of an in

vivo cortical bone waveguide.

The bone provides unique challenges because of its attenuating properties

and uneven surface. In these experiments, a single element transducer was

used to induce guided waves in the cortical bone waveguide whilst a phased

array transducer was used to receive the guided waves. To achieve good coup-

ling, a water-based gel was used in conjunction with a spring-loaded mount.

The transmitting and receiving elements were placed close together to over-

come bone’s attenuation and achieve sufficient SNR. The separation used was

approximately 30 mm.

Since bovine cortical bone is typically thicker than in humans [171], the

frequency-thickness product is higher (mmMHz), so clinically used frequencies

(1 MHz) have a tendency to excite higher order modes in bovine samples.

A variety of stimulus were tested and a chirp was found to be the best at

providing enough energy and bandwidth. A 1 MHz unfocused transducer

(V303, Olympus NDT, Japan) was excited with a 1-1.5 MHz 100 cycle chirp.

A 64 element probe (FPA 2.5, General Electric, USA) with a pitch of 0.33 mm

89



4. INDUCTION AND OBSERVATION OF GUIDED WAVES IN
BONE

Figure 4.3: Picture showing arrangement of transmitter and receiver in the ex
vivo long-bone experiments

was used for receiving the guided waves. Unlike the transmitter, its centre

frequency was 2.5 MHz, but its high bandwidth of approximately 70% meant

that it was able to detect the guided waves. The flattest area of the bones

was used. The arrangement is depicted in figure 4.3. The clamp shown in

the figure applied very little pressure and was far enough from the region of

interest to not influence the propagation of any guided waves.

The incoming guided wave signals were digitised by the UARP II at a

sampling frequency of 80 MHz. The UARP triggered a signal generator to

produce the chirp which was amplified with a linear amplifier (A150, E&I,

USA), such that the peak voltage supplied to the transducer, Vpp = 300V.

The interconnects are shown in figure 4.4.

4.2.2 Induction in In Vivo Long Bone

For the in vivo study, a bespoke transducer was used that consisted of 24

receiving elements between two transmitting arrays. The transmitting and

receiving arrays were separated by approximately 1 cm of kerf. The data was

obtained from two prototype systems, code-named AZA and EVA [133] with

the full consent of the participants and ethical approval. The transducers

and excitation scheme of each system differed slightly and are summarised in
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Figure 4.4: Interconnect used for capturing guided waves in bone. The UARP
continuously triggers the signal generator to produce the desired a chirp. The
bone was insonified with guided waves via a transducer and amplifier

Table 4.2: Specifications of the EVA and AZA systems

AZA EVA
Centre frequency 0.5 MHz 1 MHz
Pitch 1.2 mm 0.8 mm
Excitation scheme Cortex focused Iterative pulsing

table 4.2. Data was acquired by Kay Raum and Johannes Schneider of Berlin-

Brandenburg School for Regenerative Therapies. The probes were developed

at the Laboratoire d’Imagerie Paramétrique.

The two transmission arrays in each probe consisted of 5 transmitting ele-

ments. The unique arrangement of transducing elements allowed poor coup-

ling from a rotation out of plane to be negated. If coupling between one of

the transmission arrays and the bone was poor then data generated from the

other transmission array could be used. In the EVA system, each transmitter

was excited in turn and a recording was made. In the AZA system, the 5

elements were used to focus ultrasound at the cortex to maximise the guided

wave energy. A continuous 2D FFT on the received signals allowed trained op-
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AZA EVA

Transducer Bone

Transmitters

Receivers

Figure 4.5: Diagram showing arrangement of transmitting and receiving ele-
ments in the EVA and AZA system transducers. In the AZA system, the
elements are used to focus sound onto to the bone cortex, whereas in the EVA
system, each element is excited in turn with a pulse.

erators to confirm good coupling was achieved. A diagram of both transducers

is shown in figure 4.5.

4.2.3 Induction in Simulated Skull Bone

Skulls were modelled as hollow, approximately-spherical shapes that change

internal (R1) and external (R2) radius over their spherical angles. The propaga-

tion of guided waves in spheres is complex [172]–[175] and leads to the propaga-

tion of many novel types of wave structures. Since this work concerns itself

only with GW induction in a 3 layer model using curved geometry transducers,

skulls were modelled as cylinders that extend infinitely into the +Z and −Z
half spaces to simplify modelling. Cylinders were used because they can be

modelled in 2D space, improving simulation efficiency. Aluminium cylinders

were first considered to validate the technique as the thickness can be easily

adjusted, and the high velocity of sound reduced the number of computational

elements. A total of 32 different-thickness cylinders between 2 and 10 mm

were considered.

Following this, three-ply skull models were simulated. Three nominal thick-

nesses of 3.97, 5.37 and 8.46 mm were considered. The skull consisted of a

trabecular layer between two layers of cortical bone. The skull shape was ob-
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tained from a CT scan of a healthy adult male1, which was then vectorised

so that the thickness of each layer could be adjusted. The nominal radius

of the inner trabecular layer and the internal radius of aluminium phantoms

was 87 mm. For the skulls, the percentage thickness of each layer remained

constant; 35% and 29% for the cortical and trabecular layers respectively. The

transducers and medium were surrounded by infinite half spaces of water. Ab-

sorbing boundaries were used at the fringes of the space. The simulation layout

is shown in the introduction to this chapter in figure 4.1.

For simulation, the finite element analysis software (PZFlex, WAI, USA)

was used. The maximum frequency considered was 2 MHz and the element size

was 16 times smaller than the wavelength in the slowest material. Water was

the slowest material used in the simulation, so the element size was approxim-

ately 740 µm. The time step for each element was adjusted automatically by

the software with a time stability constant of 0.9 used. The total simulation

width was 322 mm and the height was 161 mm. Each simulation was run for

108 µs.

To induce lamb waves in the media (skull or aluminium), obliquely incident

plane waves were generated. Experimentally (not shown), it was found that an

incidence angle of 60◦ was effective at exciting lamb modes in ex vivo human

skull. The curved geometry of the therapeutic array meant that the angle

of incidence was not the same as the plane wave steering angle. Figure 4.6

depicts the relationship between the two. Here, the blue shape represents a

cross section of a skull, and point P is chosen to be insonified. To achieve the

desired angle of incidence, a number of elements were selected from angle φ

with a width of w. The elements generate a plane wave at an angle γ. The

distances from the transducers and from point P to the geometric centre are

Rt and R2 respectively. R1 is reserved for the inner radius of the skull. To

calculate φ the following equation was used:

φ = θ − sin−1

(
R2 sin(θ)

Rt

)
(4.1)

1R. Sharma and F. Gaillard. (2018). Platybasia, [Online]. Available: https : / /

radiopaedia.org/articles/platybasia.
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Once φ is known, the steering angle γ can be calculated with the following:

γ = θ − φ (4.2)

Generally, it can be said that,

γ 6= φ

Elements within a bounding box of width w were used to generate the

plane wave. To calculate the steering delays for each element, the Cartesian

grid was first rotated about the transducer’s geometric centre and then again

by the coordinates of the edge element:

C =
[
B
〈

cos(φ) − sin(φ)
sin(φ) cos(φ)

〉
−A1Tp

] [
cos(γ) − sin(γ)
sin(γ) cos(γ)

]
(4.3)

Here, B represents the selected elements’ Cartesian coordinates. A is a

vector containing the edge coordinates and is subtracted column-wise (p) from

the rotated B coordinates. This is so the subsequent rotation of γ is performed

around the edge element. The y coordinates of C now equal the distance to

an imaginary plane at an angle γ to the elements. These distances y can be

used to calculate the correct delays. For clarity, the rotation points have been

included in figure 4.6.

The transducer consisted of 128 pressure loads distributed evenly between

0 and π radians. The nominally convex radius of 150 mm was increased by

the thickness of the aluminium cylinder and half the thickness of the skulls.

This was so that the distance between the surface and transducers remained

constant between simulations. All selected transmitting elements were excited

with a broadband Blackman-Harris shaped wavelet. Hamming window apod-

isation was applied to reduce side lobes. For the aluminium models, the centre

frequency was 200 kHz. Whereas for the skull models, 67 kHz was used.

Unlike long-bone, only group velocity was considered. Whilst phase velo-

city would be preferable as it gives more information, it requires a reference

phase which cannot be easily obtained with the geometry used. Figure 4.7

shows the range [a − b] of frequency-thickness products that were considered

for the aluminium. In this range, the changes in group velocity of the F(1, 1)
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Figure 4.6: Geometry of simulation, the blue represents the vectorised skull
shape and the dashes represent the transducers. The correct transmitting
transducers must be selected from the array to achieve the desired angle of
incidence. The steering angle differs from the angle of incidence, so the element
coordinates are rotated about the two indicated points first.

and F(1, 3) modes should be visible. Similarly, figure 4.8 also shows the group

velocity for the first order flexural modes in skull, with the three considered

fd products shown with red lines. Both of these figures were generated using

GUIGUW [109].
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Figure 4.7: The group velocity of the first order flexural modes in an aluminium
cylinder. The red lines show the range of thicknesses that were considered.
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Figure 4.8: The group velocity of first order flexural modes in a three layer
skull cylinder. The red lines show the three different thicknesses of skulls that
were considered.
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4.3 Phase Velocity Measurement in Long Bone

Using Phase Shift and Multiply (PSAM)

A number of techniques already exist to measure phase velocity with varying

suitability and effectiveness. In anisotropic solids, a π shift [176] or zero cross-

ing [177] in time can be introduced through displacement, to measure phase

velocity. This is difficult to achieve reliably at high frequencies [176] and is

particularly inappropriate for lamb waves as they are multi-modal. The amp-

litude spectrum method is more appropriate for solids with close proximity

boundaries but is still not applicable to multi-modal waves [178]. When deal-

ing with only low order modes, a wavelet transform may be used to separate

modes [179].

The two dimensional Fast Fourier transform (2D FFT) is most commonly

used for the separation of modes in time domain signals [89], [180]. Fourier

analysis can also be performed on smaller segments of the recorded signals

to produce time-frequency plots [181]. By measuring the surface displace-

ment at many points along the surface of a waveguide, a matrix of time-space

dimensionality can be obtained. When the Fourier transform is applied, a

wavenumber-frequency map can be generated. Since k = 1/λ = f/Cph, ele-

ments can be re-arranged to form a phase velocity dispersion map [71], [182].

This works well but requires a prohibitively high number of spatial measure-

ments to detect higher order modes. Due to the aforementioned limitations of

skull bones; attenuation and soft tissue influences, this method is ineffective.

For the accurate assessment of bone using QUS, a technique that is able to

achieve a high SNR from a small spatial area is necessary.

To overcome these limitations, some authors have used singular value de-

composition (SVD) [182], [183] with the AZA and EVA systems to filter the

modes before applying the FFT. This technique is highly effective at removing

noise. However, there are some limitations, SVD is a statistical method and

relies on reliably receiving the spatial plane wave on all elements of the trans-

ducer which cannot be guaranteed. The technique also requires two thresholds

be heuristically chosen, which may be prone to error.

In this section, phase shifting is applied to allow the temporal alignment of
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modes, such that additional beamforming-style mechanisms may be employed.

As an example, multiplication will be used to implement a DMAS-style (delay

multiply and sum) beamformer1 in an attempt to increase the contrast of

modes.

Using short time Fourier transform (STFT), experimentally obtained group

velocity has shown good agreement between bone and a hollow cylinder models

[185]. More recently, however, authors have shown a free plate model can best

predict the guided waves propagating in tubular bone-mimicking phantoms

[186]. This follows 3D simulation work by others that show cortical tubular

shells have identical SOS to plates of the same thickness [151]. Accordingly,

an aluminium plate will be used to explain the principals and demonstrate the

technique.

4.3.1 Premise

Consider a transducer mounted normally to a waveguide as shown in figure 4.9.

The in-plane direction of motion is labelled Z. As the acoustic guided waves

travel across the surface of the transducer, the out of plane displacements

can be recorded and concatenated to give a matrix M, of dimensionality time

and space. An example is given in figure 4.10. In this instance, a 5 mm thick

aluminium plate has been loaded over a very small area (< 100 µm) in an FEA

simulation (PZFlex, WAI, USA). A 1.5 MHz centre frequency Blackman-Harris

shaped pulse was used for the load. Both low order Rayleigh-like modes and

high order modes are visible.

The Rayleigh-like S0 mode is the most apparent as indicated by the dark

line. Other modes are visible which appear more faintly. The general angle

at which grouped wave packets appear in the image is dictated by the group

velocity.

An infinitely fast wave would appear as a completely horizontal line, i.e.,

faster waves appear to be more horizontal than slower waves. This is because

they move faster across the transducer array and thus travel more distance in

1G. Matrone, A. Savoia, G. Caliano et al., ‘The delay multiply and sum beamforming
algorithm in ultrasound b-mode medical imaging.’, IEEE Trans. Med. Imaging, vol. 34,
no. 4, pp. 940–949, 2015.
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Wave Energy

Waveguide

Transducer

Z

Figure 4.9: Diagram showing how out of plane displacement of guided waves
are commonly recorded. Guided waves travel over the surface of a transducer
mounted to the waveguide. The out of plane displacements can be recorded
with a transducer.

Figure 4.10: Matrix M. Out of plane surface displacements are concatenated
to create a matrix of dimension space and time. High order and rayleigh-like
modes are visible.
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Figure 4.11: Time delays required to temporally align modes with a 0.5 mm
pitch transducer. The delays change as a function of both frequency and phase
velocity.

the same time. Conversely, modes’ packets with a slower group velocity will

approach a vertical line as they only achieve a small Z displacement in the

same time. In addition to a group velocity, lamb waves also have a related

phase velocity. Both velocities are frequency related. Within the time-space

representation of modes, phases are visible as peaks and troughs within the

group.

4.3.2 Phase Shifting

When the temporal frequency of these guided waves is known, delays can be

applied to each element of the array transducer to temporally align particular

modes, such that when they are summed, constructive interference takes place.

Thus, when the engineer has knowledge of a specimen’s dispersion curve and

excitation frequency, delays can be chosen so as to assess the existence of a

particular mode1. This relationship is described in equation 4.4.

1J. Li and J. L. Rose, ‘Implementing guided wave mode control by use of a phased
transducer array’, IEEE transactions on ultrasonics, ferroelectrics, and frequency control,
vol. 48, no. 3, pp. 761–768, 2001.
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λ =
L

β + (t0/T )
(4.4)

Here, λ is wavelength, L is pitch, β is an arbitrary integer and t0 is the

delay increment to be applied to each element. T is simply 1/f . Substituting

Cph = fλ and T = 1/f means the time delay can be expressed as a function

of phase velocity and frequency, as in equation 4.5 (β = 1).

t0 =
L

Cph

− 1

f
(4.5)

This, of course, means that different delays are required to extract indi-

vidual frequency components for a given phase velocity. Figure 4.11 shows the

required delay for a given frequency and phase velocity using a fixed 0.5 mm

pitch transducer. It can be seen in the figure that the required delays change

continuously with frequency, so achieving temporal alignment irrespective of

the frequency or phase velocity is challenging.

Fortunately, as any time domain signal can be expressed as an infinite sum

of its constituent frequency components, frequency dependent delays, which

are phase shifts in the frequency domain, can be applied to the incoming signals

to achieve alignment irrespective of frequency.

Digital Implementation

Consider AN,M , a time domain signal of N samples recorded at interval n from

element m of an array transducer. Its discrete Fourier transform (in time only)

is XΦ,M , where φ is the interval of frequency. This is described in Equation

4.6 and defined in 4.7.

AN,M
F−→ XΦ,M (4.6)

Xφ,M =
N−1∑
n=0

An,me
−j2πnφ

N (4.7)

These complex coefficients represent the amplitude and phase of an expo-

nential function. When these weighted exponential functions are summed, the
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original time domain signal can be obtained.

A delay in the time domain maps to a phase delay in the frequency domain.

Equation 4.8 describes this relationship when a delay of D samples is applied

to the original time domain signal.

An−D,m
F−→ e

−j2πφD
N Xφ,m (4.8)

D can be replaced by D(φ,m,Cph), a function of frequency, element posi-

tion and phase velocity to achieve the required phase shift for each frequency:

An−D(φ,m,Cph),m
F−→ e

−j2πφD(φ,m,Cph)

N Xφ,m (4.9)

To form function D, first the substitution

f =
φfs

2N

is applied to equation 4.5, yielding 4.10.

L

Cph

− 2N

φfs

(4.10)

Here, fs is the sampling frequency and the assumption is made that when

φ = N , f = fs/2, the Nyquist limit. This simply converts a frequency into its

corresponding bin number in a discrete Fourier transform (DFT), presuming

of course that the DFT produces N frequency bins in the range [−fs
2
, fs

2
].

Since equation 4.10 describes the real time delay applied in seconds per

element, D(φ,m,Cph) can be derived by multiplying each instance of m by

mfs to obtain a value in samples for each element:

D(φ,m,Cph) = m

[
Lfs

Cph

− 2N

φ

]
(4.11)

This however means that as φ→ 0, D → −∞, which would be impossible

to implement, so a square window is applied to function D:

D(φ,m,Cph) =

m
[
Lfs

Cph
− 2N

φ

]
, for φ > 0,

0, for φ = 0
(4.12)
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Finally, a frequency-space domain matrix, PΦ,M can be produced for a

given phase velocity as follows:

Pφ,m =

exp

[
−j2πφm( Lfs

Cph
− 2N

φ
)

N

]
Xφ,m, for φ > 0,

Xφ,m, for φ = 0

(4.13)

At this point, the matrix P contains a phase shifted guided wave signal

from each element of the transducer. The signals are in the frequency domain,

and phase shifts have been applied so that for the given phase velocity, all the

frequency components are in phase. This forms the basis of the phase shifting

aspect of the algorithm.

4.3.3 Generating a Dispersion Curve

The described process is then repeated for each phase velocity, o, in a user-

defined search space to produce a three dimensional matrix, E. The dimen-

sions are space, frequency and phase velocity. E then contains phase-aligned

frequency domain data for a total of O phase velocities, where each o indexes

one value of Cph. The formal definition of this matrix is as follows:

Eφ,m,o = e
−j2πφD(φ,m,Cph)

N Xφ,m (4.14)

Applying the inverse Fourier transform in the frequency domain only, re-

turns the matrix to the time domain. At this point, summation in the dimen-

sion m would cause the temporally aligned waves to constructively interfere.

Conversely, the wave packets that were not aligned would destructively inter-

fere. To enhance this process as much as possible, multiplication was used

instead:

YN,o =
M−1∑
i=1

F−1{EΦ,i,o} ×F−1{EΦ,i+1,o} (4.15)

Y is a series of time domain signals for each evaluated phase velocity index,

o. Constructive interference will have taken place at particular frequencies

and phase velocities. In the implementation described here, multiplication

was used, although other signal processing techniques may be used to find the
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Table 4.3: Simulation parameters for small and large area tests

Large Area Sim. Small Area Sim.
Spatial Interval 0.07 mm 0.4 mm

Total Area 80 mm 30 mm
Discrete Measurement Points 11429 75

temporal alignment of modes such as summation or cross-correlation.

Finally, to transform the matrix into the familiar frequency-velocity matrix,

S is found by re-applying the Fourier transform as in equation 4.16.

SΦ,o = F{YN,o} (4.16)

4.3.4 Comparison with 2D FFT

To demonstrate the PSAM technique a comparison was first made with the 2D

FFT method using the data obtained earlier from the simulated 5 mm thick

aluminium plate. Two dimensional Fourier analysis was performed and the

subsequent matrix was transformed into the Cph domain using the substitution

(Cph = fλ). This process was then repeated but with a reduced measurement

area and increased interval more typical of a transducer that would be used

experimentally. The results from the FFT were then compared with PSAM

using the same data set. The parameters for each test are summarised in table

4.3. In both cases, the sampling frequency remained at 100 MHz.

The large area simulation in figure 4.12 shows a phase velocity map gener-

ated from Fourier analysis. The modes are clearly distinguished and have good

definition. The high order modes S3 and A3 are visible. Figure 4.13 shows the

FFT and PSAM results for the decimated small area simulation data. Both

results were normalised by the largest non-rayleigh wave mode. Theoretical

results produced by GUIGUW [73], [108], [109] are overlaid. In both cases,

the definition is reduced. PSAM has a large artefact near 0 MHz, but with

the parameters used, it is inconsequential as it could be easily separated from

the modes using simple frequency filtering. Despite this, PSAM is better at

extracting the higher order modes.
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Figure 4.12: Dispersion obtained using FFT from a large area of an aluminium
wave guide (simulation data).

The green line at 4200 m s−1 shows the phase velocity where the two

schemes were compared in figure 4.14. This velocity was chosen because sev-

eral modes can be observed in one dimension easily. The PSAM and FFT

results are represented by the orange and blue lines respectively. At this phase

velocity, both were able to extract the first 3 orders of antisymmetric and

symmetric modes. At A3 though, the FFT method begins to show a loss

of sensitivity and there is a false-peak between A1 and S2 which may be a

SH-mode wave. PSAM appears less sensitive at S2, which may be due to a

disruptive beamforming artefact that effects all phase velocities at that fre-

quency. However, the amplitude of the S3 and above modes are higher with

PSAM: The FFT method was not able to resolve the S4 or A4 modes. Most

significantly there was a 6 dB and 13 dB increase in the S3 and A3 modes

respectively.
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(a) FFT

(b) PSAM

Figure 4.13: Dispersion curves obtained using both FFT and PSAM from a
smaller sized area of an aluminium waveguide. The green line shows the point
at which the phase velocity resolution is considered. Model data is overlaid in
white (simulation data).
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Figure 4.14: Detected modes at 8100 ms−1 using PSAM and FFT. The results
are normalised. PSAM is able to resolve higher order modes.
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4.4 Long Bone Results

The creation of dispersion curves with a high contrast is necessary to properly

fit models and thus determine bone properties. Methods for inducing guided

waves in long bone have previously been described and so in this section, the

results from applying PSAM to the long bone data are provided and evaluated.

4.4.1 Ex Vivo

Figure 4.15 shows dispersion obtained from the bovine sample using FFT and

PSAM techniques. Overlaid is a speculative 4.7 mm low porosity (< 3%)

model. The images show Raleigh waves well aligned with the theoretical model.

For PSAM, the image also shows A4, A3 and S3 but no model data is available

for the latter so this alignment cannot be verified. The FFT results are similar

although there is slightly more noise in the low-velocity region around 1 MHz.

There is also an additional artefact at 1.25 MHz, that does not appear in

PSAM results and can’t be aligned to any of the modes.

4.4.2 In Vivo with EVA System

To improve the SNR of the results from the EVA system, a sparse array tech-

nique was employed that is described in the next section. However, due to

the operational differences between the two systems, it was not possible to

apply this technique to the AZA system data. Consequentially, for the sake of

brevity, only successfully coupled and conditioned data from the EVA system

is presented here. The remaining results have been placed in appendix A at

the end of this thesis.

Additional Signal Conditioning

The spatial constraints of the transducer mean that the high number of re-

ceiving elements used in simulation and in the ex vivo experiment cannot be

afforded. Fortunately, the redundant number of transmitting elements meant

that a sparse array imaging technique could be used. If an ideal plate model

is presumed, a shift in −Z in transmitting element is the same as a shift in
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(a) FFT (b) PSAM

Figure 4.15: Dispersion obtained from bovine tibia using FFT and PSAM. A
4.7 mm low porosity bone model is speculatively overlaid.

+Z of the receiving array (with a stationary transmitter). In both cases, the

distance between the transmitting element and the first receiving element in-

creases and all receiving elements are subject to the same attenuation resulting

from the increase in distance. This is depicted in figure 4.16. Utilising this

principle allowed a matrix that exceeded the real size of the receiving array to

be produced.

The small step size between transmitting elements means there was inev-

itable overlap. However, this was advantageous because the averaging effect

improved the SNR. There were R total receiving elements (index r) and Q

total transmitting elements (q, per direction), thus the size of the sparse array

was R + Q − 1. Of course, columns closer to the centre of the new sparse

array had a larger amplitude because those segments had more contributing

signals. When the matrix was averaged, those central segments had a smaller

weighting than their counterparts at the fringes of the matrix because they

had a higher overall amplitude.

The column density D, represents the number of overlapping columns in

the final matrix. For 4 receiving elements and 3 transmissions, the column

density would be,

D = [1, 2, 3, 3, 2, 1]

because there are two columns in the centre where there are 3 overlaps, and
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Bone

Multiple Real
Transmissions

Single Real
Receiver

Multiple Virtual
ReceiversSingle Virtual

Transmission

Figure 4.16: Sparse-array technique used to increase the number of sampling
points for the EVA system experiments. A shift in the position of the trans-
mitter is considered equivalent to a shift in the receiving array position, which
causes overlapping of the obtained data. Each of the coloured dots represents
each separate matrix that was obtained.
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only one at the edges and so forth. D was calculated from the weight matrix,

W, where each column and transmitter number is represented by horizontal

and vertical co-ordinates respectively. Matrix W was generated as follows:

Wij =

1, for j ∈ [i, i+R− 1] where i ∈ [1, Q]

0, otherwise
(4.17)

Which, for R = 4 and Q = 3 would produce a matrix as follows:

W =

1 1 1 1 0 0

0 1 1 1 1 0

0 0 1 1 1 1

 (4.18)

The weight vector D then is the sum of matrix W in the transmission

dimension, i:

D = ΣQ
i=1Wi,j (4.19)

The sparse-array image was appropriately weighted by column-wise divid-

ing the image by D. Each column of the sparse transmit matrix was effectively

divided by the number of contributing columns.

Dispersion Curves

Prior to measurement, subjects underwent a micro CT scan, and from this

data, model dispersion curves were generated and compared with those ob-

tained experimentally.

Figures 4.17 shows a dispersion curve obtained using both FFT and PSAM

on the EVA system. The chosen direction has superior coupling. Here, the

EVA data tend to align well with the models except for the S0 mode, which

appears at a much lower phase velocity and is likely caused by the known

influence of the silicon coupling material [183]. Even with this alignment issue,

the S0 mode which appears at approximately 0.5 MHz is present, although it

is much less intense with the FFT technique. Due to the reduced spectral

leakage of the technique, PSAM has better separation of the S1 and A2 modes,

although the latter cannot be verified because there is no model data available.
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(a) FFT (b) PSAM

Figure 4.17: Dispersion obtained using the EVA system from direction 2 using
both FFT and PSAM techniques. Model data acquired from a micro CT scan
is overlaid in white.

4.5 Skull Results

Although a technique for inducing guided waves in skull has already been

described, additional processing was required to extract the guided waves,

which is described here. Dispersion curves from mathematical models were

generated using GUIGUW and compared with the results obtained.

4.5.1 Group Velocity Changes

The majority of the energy in the field of view will consist of bulk reflection

from the boundary between the water and medium. However, as the faster

guided waves move around the cylinder, it becomes easier to separate the

leaking energy from the reflection due to the difference in SOS. For this reason,

an arbitrary transducer in the array, some small angle from the insonified area

is chosen to acquire the signals. A large angle makes temporal windowing

easier as the leaking waves become more separated from the reflected energy.

However averaging effects are introduced; any changes in the waveguide that

effects propagation will be less localised. Conversely, a small angle makes

windowing more difficult but provides more localised information about the

waveguide acoustic properties. In simulations, a liberal value of 70◦ was used.

Figure 4.18 shows a snapshot from a simulation and demonstrates how after a
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Transducers

Leaky energy

Reflection

Waveguide

Guided waves

Figure 4.18: Snapshot from the simulation of the aluminium model. Guided
wave modes travel faster than the reflected energy in an aluminium cylinder
so can be temporally extracted using a transducer displaced from the source.

small amount of time the higher velocity guided waves are separated from the

reflected energy (figure 4.19 for skull).

Accordingly, temporal windowing was first applied based on the propaga-

tion distance. Following this, the signal underwent a Hilbert transform to

extract the envelope.

Figure 4.20 shows the signal envelopes for different thickness of cylinders.

Each vertical line in the image is the Hilbert transform of the received signal

for each thickness. The intensity was calculated by using the maximum ob-

served amplitude as a reference. From the transformed signals, propagation

time was subtracted. Each line was then concatenated together to form the im-

age. Although the frequency is consistent between simulations, the thickness

increases and so the fd (frequency-thickness) product also increases. Guided

waves are known to change group velocity with changes in fd product, which

is demonstrated in the figure. There is a change in the group velocity of two of

its modes as fd increases. The theoretical group velocity is overlaid in white.

Similarly, figure 4.21 shows the results for the skull models. The envelopes

for captured waveforms from the three different thicknesses of skulls are shown.

Blue, red and gold represent 3.97, 5.37 and 8.46 mm respectively. Since the
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Guided Waves

Reflection

Leaky Waves

Figure 4.19: Snapshot from the simulation that demonstrates that three-layer
skull models can host guided waves. Energy from these guided waves leak into
the surrounding fluid.

Figure 4.20: The group velocity of the leaking modes for different thicknesses
(since frequency is constant). There is a small difference between the measured
results and the modelled data, which are shown in white.
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Figure 4.21: The envelopes of guided waves leaking from the simulated skull
for each thickness. The signals indicate that the group velocity changes as the
skull thickness does.

distance between the waveguide and the transducer is fixed a later arrival

in the envelope is indicative of a reduction in group velocity. Just as with

the aluminium cylinders, as thickness increases so does the time of arrival (a

reduction in velocity).

4.6 Discussion

4.6.1 Performance of PSAM

When the algorithm was applied to ex vivo bone, the improvements were not

profound like those in the simulation results. In this instance, the reverse was

true and the FFT appeared had better performance as there was resolve of

more modes. However the correctness cannot be fully verified because the

exact bone dimensions and properties were unknown, and so the fit was only

estimated. Despite the high element count of the receiving transducer, the

results have a poor SNR and the low number of dected modes demonstrate

the need for bespoke systems like AZA and EVA. Another cause of the poor

SNR was the high frequency-thickness of the experiment.
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For the in vivo experiments, the agreement between the experimental data

and the models is good, but this may be due to the large size of the EVA

time-space space matrix afforded by the sparse array technique used. The

most obvious issue with the PSAM technique in the results is the addition of

strong subharmonic frequency components. However, as with the simulation

results, the components could be easily separated in the frequency domain

and have no influence on the identification of the modes. It is possible that

these harmonics are the result of the multiplication step used in the algorithm.

PSAM does have reduced spectral leakage and appears to excel in separating

closely spaced modes. The areas of sensitivity are small however and may be as

a result of the highly nonlinear1 nature of multiplication based beamformers;

strong correlations in signals appear much more profound than they would with

a linear beamformer like DAS. Just as with simulation there is also improved

detection of the higher order modes. The overall contrast was improved with

PSAM.

4.6.2 Validity of Skull-borne GWs as a Therapy Guide

For GW to be useful as therapy guide it must be possible to do the reverse

of what has been demonstrated, i.e., predict the skull thickness or other para-

meters from measurements. There may be multiple ways to do this including

sonicating the skull with several discrete frequencies. One technique proposed

here is to give each thickness a unique signature based on the difference between

the two mode velocities. Figure 4.22 shows the group velocity of the two modes

across the thickness range 5 to 7.5 mm (1 to 1.5 mmMHz) from figure 4.20.

The values were found from the locations of the wave packet maxima.

The major mode refers to the higher amplitude wave packet which is likely

F(1, 1) while the minor mode refers to F(1, 2). To give each thickness a signa-

ture the two velocities were subtracted to produce the orange line. From this

line it can be seen that each thickness has a unique value which could be used

to estimate thickness from GW measurements. As the thickness increases, the

velocity difference reduces. At 7 mm, the value increases slightly, but may be

1As in nonlinear function. Unlike sum based beamformers which are commonly referred
to as being linear.
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Figure 4.22: Difference in wave packet velocities in the thickness range 5 - 7.5
mm from figure 4.20. The major (blue) velocity is the slower, high amplitude
packet and minor is the faster, but lower amplitude packet. The difference
between the two is shown in orange.

as a result of an incorrect wave packet maxima location. There is a discernable

difference in the value between the intervals considered, so it can be deduced

that the thickness measurement accuracy is < 0.25 mm.

Returning to figure 4.20, there is some disagreement between the simula-

tion and theoretical results, particularly for the mode F(1, 2), which is likely

the result of fluid loading. A full study into the effects of fluid loading on the

waveguide is beyond the scope of this chapter, but it is expected the wave

shapes of the excited modes mean that they are susceptible to changes in ve-

locity. Figure 4.23 shows the wave shapes for both modes at the two different

frequency-thickness products. The waves propagate in three dimensions at all

times, circumferentially (θ), radially (r) and along the cylinders axis (z). The

shapes are presented as displacement along the radius of the cylinder. The

wave shape’s amplitudes are normalised so they can be easily compared with

each dimension. By comparing the amplitude of the shape in each dimension

it is possible to determine where most of the displacement exists at a given

operating point. It can be seen that mode F(1, 2) has low radial and circum-

ferential displacements which will likely change the velocity of these modes as
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they propagate through a fluid [84].

With regards to the skull models, figure 4.8 should again be considered. At

the fd operating points considered, a reduction in the speed of the fastest mode

F(1, 3) was expected with these experimental parameters and was observed.

Therefore, the results show that it is possible to excite guided waves in a three-

layered skull model using the unconventional geometry. It was also shown that

the nominal thickness has an impact on the velocity of these guided waves.

A number of simplifications were made in the modelling, however. Firstly,

a cross section of skull was modelled instead of a full 3D model, which reduced

the number of computational elements by a factor of 1520. This compromise is

permissible though as this work concerned itself primarily with the challenge

of exciting guided waves in a curved skull model with a concave transducer.

Further modelling should be conducted to determine the influence of the skull

shape and artefacts on measurements.

With respect to array modelling, 128 elements were used, which is perhaps

denser than what would be available in clinical systems, where only 1024 ele-

ments are used to cover the whole skull [187]. To aid simulation performance,

frequencies lower than what is clinically available were used. Experimentally,

increasing the excitation frequency and reducing the element density will in-

duce grating and side lobes. It will also mean that the generated plane wave

would need more distance to form. Experiments in ex vivo skull (not shown)

showed that the angle of incidence did not influence guided wave propaga-

tion as it typically would in normal waveguides. Therefore the small distance

should not have much impact, as only the part of the wavefront at the correct

angle will convert into guided waves anyway.

Further mathematical analysis should be conducted with respect to mode

propagation. The influence of overall speed of sound with respect to individual

layers should be considered. Dispersion curves for a fluid-loaded 3 layer skull

should also be calculated. This would allow a measured arrival time to be con-

verted to specific layer properties. Algorithmic approaches for converting these

observations into exact quantified are also needed. Least squares algorithms

and neural networks may prove useful here.
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(d) F(1,2) at fd ≈ b

Figure 4.23: Wave shapes for different frequencies and modes in aluminium.
The wave shape changes according to frequency and mode. ur is displace-
ment in the radius, uz is displacement along the length of the cylinder, uθ is
displacement in the circumference
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4.6.3 Prospects

Both of the presented schemes would likely benefit from signal processing devel-

opment. For the long bone experiments, SVD, which has been shown to greatly

improve the SNR of GW bone measurements, should be applied in conjunction

with the PSAM algorithm. The skull experiments could also greatly benefit

from the application of SVD. By making multiple observations around the

array, SVD could be used to extract the guided waves from the signals that

are superimposed with the reflections, due to their differing velocity. This

could improve the localisation of the technique as currently, signals are separ-

ated temporally which means chosen receiving elements must be some distance

away from the transmitters to allow the faster waves to separate.

Furthermore, tomography could also be included to improve localisation.

A full 3D implementation would allow plane waves to insonify the skull at nu-

merous locations from multiple directions. Tomography could then be used to

calculate a localised difference in skull properties. This could be used to gener-

ate a thorough map of thickness change that is co-located with the therapeutic

array.

The PSAM algorithm suppressed the S2 mode considerably, but this arte-

fact of nonlinearity could be calibrated out in a way that would not impinge

on the recovery of other modes. This is common practice with other nonlin-

ear beamformers. The algorithm was shown to improve the contrast of the

higher order modes in simulation, but the results did not translate as well to

the in vivo and ex vivo experiments. This is because there is currently little

experimental or theoretical data available on the higher order modes of bone.

However, there is still a significant contribution with the presented PSAM

technique. Until higher order mode data is known, which the PSAM technique

could be used to characterise, other applications of PSAM such as NDT should

be considered. In metal plate inspection for example, where the attenuation of

these higher order modes is much lower, PSAM could be used to enhance their

detection. Additionally, the algorithm is not limited to using multiplication;

the phase shift step could be used to support other beamforming techniques,

and researchers are invited to continue this investigation. Accordingly, the

phase shift code has been provided in appendix B.
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For the skull models, it was shown that the properties of the skull could

be ascertained from guided wave measurements made using a phased array

transducer in a concave configuration. Transcranial arrays will continue to

increase in density making localised detection of skull properties more plaus-

ible. Currently, however, not enough is known about how these guided waves

propagate around the complex multi-dimensional water-loaded structures, to

draw exact properties from the measurements. So as with long bone, a more

thorough theoretical understanding is required.

Even with the improvements to the signal processing, it seems it would be

difficult to obtain phase aberration data at a resolution that could compete

with existing CT methods. However, the measurement of attenuation which

was not considered seems highly plausible. To the best of the author’s know-

ledge, clinical transcranial systems do not currently compensate for varying

attenuation in the skull. This information cannot be obtained from a CT scan

or from pulse-echo measurement, but could from GW measurements.

4.7 Conclusions

The behaviour of guided waves in bone is sensitive to a number of mechanical

properties of the bone waveguide. Two potential applications were presented

here: Osteoporosis assessment, and skull measurement for transcranial ther-

apy. For the former, the understanding of cortical guided waves continues to

improve, but obtaining accurate dispersion curves from a small, highly atten-

uating area of the skeleton remains challenging. For skull measurement, any

data obtained needs to be co-registered with the therapeutic array to be useful.

This also poses challenges because of the unusual geometry.

For long bones, a signal processing technique was designed to remove dis-

persion from the bone, achieving temporal alignment of multiple transverse

observations of the highly dispersive waves. This allowed beamforming tech-

niques to be used to highlight the existence of certain modes that align at a

given phase velocity. Multiplication was used and it was found in simulation

that this was effective at highlighting particularly high-order modes, although

it did introduce low-frequency noise. Experimentally, it was found that the
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spectral leakage was lower than with currently used techniques to measure

phase velocity along with improved sensitivity to high order modes again.

Further work is required to remove the introduction of the low-frequency

noise and to apply SVD which may be used to achieve the high-quality curves

necessary for model fitting. Unfortunately, the high order modes are highly

attenuated and not properly understood in bone, so the technique may be

more useful in other fields such as NDT which will be explored in the future.

For the skull aspect of the investigation, a scheme for generating guided

waves in skull was described. To test it, simplified skulls were modelled using

finite element analysis. The proposed technique involved selecting an area

of skull to be inspected and choosing a number of elements from a typical

transcranial array to achieve the required angle of incidence tangential to the

skull. For each element in the array, delays were applied to a wavelet excitation

to produce an angled plane wave. The obliquely incident waves interacted with

the skull to produce guided waves.

To separate the guided waves from reflected spectra, temporal windowing

was used, followed by a Hilbert transform to estimate the group velocity. A

number of different thickness aluminium models were considered along with 3

thicknesses of skull. Measurements from the aluminium models were compared

with theoretical dispersion curves and exhibited the expected behaviour with

respect to changes in velocity. However, there was some disagreement in the

exact value, likely due to the effects of water loading which was not considered.

In skull, a decrease in velocity with an increase in thickness was observed which

was also expected. Further efforts should be focused on; signal processing to

improve localisation, and experimental work to better understand the effects of

fluid loading and to select more appropriate modes. The modelling should also

be extended to consider attenuation, as localisation of absorption differences

cannot be achieved with existing CT technology, and the requirements for

localisation are much lower than for thickness.

Overall, this chapter has shown that guided waves have numerous biomed-

ical applications. The bespoke research platforms used here (AZA/EVA/UARP)

provide access to the raw, un-beamformed, data and precise control of the

transmission sequencing, which has promoted the development of two novel

GW induction and observation methods tailored for bone. Both schemes of
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work could be eventually integrated into commercial systems, to fulfil currently

unmet clinical needs.
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Chapter 5

HIFU Drive System

Miniaturisation Using Harmonic

Reduced Pulse Width

Modulation

Switched excitation has the potential to improve on the cost, efficiency and

size of the linear amplifier circuitry currently used in HIFU systems. Exist-

ing switching schemes are impaired by high harmonic distortion or lack array

apodisation capability, so require adjustable supplies and/or large power fil-

ters to be useful. A multi-level PWM topology could address both of these

issues but the switching-speed limitations of transistors mean that there are

a limited number of pulses available in each waveform cycle. In this study,

harmonic reduction pulse width modulation (HRPWM) is proposed as an al-

gorithmic solution to the design of switched waveforms. Its appropriateness for

HIFU was assessed by design of a high power 5 level unfiltered amplifier and

subsequent thermal-only lesioning of ex vivo chicken breast. Three switched

waveforms of different electrical powers (16, 26, 35 W) were generated using

the HRPWM algorithm. Lesion sizes were measured and compared with those

made at the same electrical power using a linear amplifier and bi-level excita-

tion. HRPWM produced symmetric, thermal-only lesions that were the same

size as their linear amplifier equivalents (p > 0.05). At 16 W, bi-level excit-
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ation produced smaller lesions but at higher power levels large transients in

the acoustic waveform nucleated undesired cavitation. These results demon-

strate that HRPWM can minimise HIFU drive circuity size without the need

for filters to remove harmonics or adjustable power supplies to achieve array

apodisation.

5.1 Introduction

High intensity focused ultrasound (HIFU) is a non-invasive surgical technique

that is used to generate coagulative necrosis in tissue through localised thermal

ablation [188], [189] and other mechanical effects [190], [191].

The main application areas of HIFU are the treatment of soft tissue tu-

mours [192], [193] in liver [194], kidney [154], prostate [195], [196], breast [197]

and in the brain [198], [199]. HIFU is not limited to the treatment of soft tis-

sue tumours, and exploration of new avenues such as triggered drug delivery

[200], treatment of bone tumours [201], neurological disorders [202], ectopic

implantation [203] and pain management [155], [204] continues.

Single element transducers with a fixed focus have traditionally been used

to achieve the desired intensities for ablation [205]. Recently though, high

power therapeutic arrays are increasingly used [153] as they can facilitate dy-

namic focal position for hyperthermia [206], [207] and ablation1. Large arrays

on the order of 1000 elements are essential in transcranial therapy to spread the

acoustic heating in the skull [208], [209]. Since the attenuation and phase ab-

errations induced by the skull vary considerably across its surface [210], [211],

the phase and amplitude of the excitation waveform of each element must be

adjusted [159], [164], [165]. Other uses of array transducers include rib spar-

ing in the treatment of liver [42], [212], [213], volumetric treatment of uterine

fibroids [214] and surgery on the prostate [215]. Whilst the ability to excite

each element in the array with a different waveform is essential to transcranial

therapy, it is also highly desirable in other applications as it facilitates array

1F. Xiaobing and H. Kullervo, ‘Control of the necrosed tissue volume during noninvasive
ultrasound surgery using a 16-element phased array’, Medical Physics, vol. 22, no. 3, pp. 297–
306, doi: 10.1118/1.597603. eprint: https://aapm.onlinelibrary.wiley.com/doi/

pdf/10.1118/1.597603.
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apodisation which reduces side lobes, linear frequency modulation to reduce

grating lobe energy [39], phase shift keying [216] to suppress standing waves

and beam steering [217].

In HIFU systems each array element is typically connected to a linear power

amplifier so that the system can deliver the high electrical powers (> 15 W)

necessary for tissue ablation. Each amplifier is in turn connected to its own

waveform generator to achieve the necessary phase and amplitude control. This

arrangement has low harmonic distortion, meaning that the electrical waveform

does not contain undesired harmonics of the fundamental component. Whilst

this is desirable, there are a number of disadvantages including high cost,

low efficiency and large size [27]. This is increasingly problematic as higher

density arrays continue to be developed. Additionally, the large numbers of

passive components which are prevalent in these designs limit their usefulness

for catheters and in MRI environments [30]. For HIFU array treatments to be

more financially and practically accessible, improvements should be made to

the driving circuitry [27].

In this thesis, a harmonic reduction pulse width modulation (HRPWM)

amplifier is proposed to reduce the size and cost of the excitation circuitry

currently used in HIFU array systems. Comparisons will be made with existing

excitation techniques numerically and experimentally.

5.2 Switching Schemes and Amplifier Design

As discussed in chapter 2, switched mode circuits have numerous advantages

over linear amplifier designs [29], [30]. Unlike linear amplifiers, the input of

each transducer element is connected to transistors that rapidly switch between

a discrete number of voltage levels to approximate the desired waveform. Op-

erating the transistors in their saturated region increases the efficiency but may

produce powerful third and fifth harmonics in the electrical waveform [32]. For

example, when a simple bi-level excitation is used, the third and fifth harmon-

ics are only 10 dB and 15 dB less powerful than the fundamental component.

These harmonics can be within the bandwidth of HIFU transducers which are

highly resonant devices that produce acoustic energy at their harmonics [218],
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[219]. These harmonics could cause unwanted effects [220], such as disruption

of the focal region [30], heating of the transducer [221] and the generation of

grating lobes [1].

5.2.1 Switching Schemes

A number of switching schemes have been proposed as an alternative to lin-

ear amplifiers. Bi-level has been shown to minimise the footprint of driving

electronics and improve efficiency. Amplitude control can also be achieved

by adjusting the duty cycle [222], but this regime still requires additional

fixed-frequency filtering components in the circuit design to remove harmonics.

These filters are large, MRI incompatible [223] and limit the use of frequency

modulated waveforms.

Tang & Clement demonstrated that introducing a predetermined off period

between the two levels can be used to disrupt the periodicity of the third har-

monic1. This has been implemented in an MRI compatible catheter system

[224]. Alternatively, additional levels can be introduced to the circuit to imple-

ment staircase converters. This naturally disrupts the generation of harmonics

[225] and several authors have demonstrated harmonic reduction this way at

ever increasing frequencies and powers [221], [226]. However, the constraints

placed on the waveform with these techniques mean that each array element

would require its own adjustable supply to achieve apodisation which is costly

and cumbersome.

Amplitude control in a switched system can be achieved using PWM and

has been successfully applied to ultrasonic imaging [21]. Here the circuitry is

continually switched at a higher rate than the frequency response of its load.

The load acts as a bandpass filter causing averaging of the drive voltage across

one switching period. The pulse width is then modulated to achieve the desired

instantaneous amplitude. It is possible to drive a HIFU transducer with PWM,

but the combination of high power and frequency, mean that a limited number

of pulses per waveform are available, and thus amplitude control may not be

1S. C. Tang and G. T. Clement, ‘A harmonic cancellation technique for an ultrasound
transducer excited by a switched-mode power converter’, in Ultrasonics Symposium, 2008.
IUS 2008. IEEE, IEEE, 2008, pp. 2076–2079.
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reliable.

HRPWM is a five-level PWM scheme with carriers algorithmically designed

specifically to reduce the number of pulses in each cycle whilst retaining amp-

litude control and actively implementing harmonic reduction [227]. It has

facilitated a number of medical imaging and NDT applications [3], [22], [228],

but this study is the first time it has been used for HIFU.

5.2.2 Circuit Operation

Previous publications on HRPWM have utilised 5-level integrated pulser ICs to

excite the transducer. These integrated devices have limited total continuous

power ratings, so are not suitable for the continuous wave (CW) operation

necessary for HIFU. For this study, a purpose built 5-level pulser bridge circuit

was designed using discrete components to facilitate high power CW operation.

Figure 5.1 shows the structure of one bridge of the pulser. Each pulser

is made up of three identical bridges, providing ±V1, ±V2 and GND rails.

The full schematic and printed circuit board (PCB) design have been made

available online [8]. Each bridge consists of two capacitive level shifter circuits,

an NMOS power transistor for the negative rail, a pair of PMOS transistors

for the positive rail, and two pairs of diodes to prevent the MOSFET body

diodes becoming forward biased. Two PMOS transistors are used in parallel

as the series resistance of each PMOS device is about twice that of the NMOS

transistors. The pulser is controlled by driving the six MOSFET gates, two

per bridge. The PMOS transistors are controlled by the active low signals A0,

A1+ and A2+ where a 0 V pulse will turn the MOSFET on, and +12 V will

turn it off. For each NMOS transistor, a +12 V pulse on the active high control

signals A0, A1− and A2− will turn it on, and 0 V will switch it off. These control

signals require relatively high switching currents due to the large capacitance

of the MOSFET gates, and as such are driven using MOSFET drivers (Analog

Devices ADP3654) with current limiting resistors. As the gates are referenced

to high voltage power supplies (Vn ≈ 30 V), capacitive level shifters are used

to isolate the gates from the control circuitry. The level shifters use series

capacitors that are biased to the supply voltages via a combination of a parallel
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resistor and Zener diode. When the high voltage power supplies are turned

on the capacitors will rapidly charge up to the supply voltage through the

Zener diode, which protects the gates. When the input control signal side

of the capacitor is driven to “On” (+12 V for NMOS, 0 V for PMOS), this

change in voltage will be reflected as an equal change at the gate, becoming

−Vn + 12 V and +Vn − 12 V for NMOS and PMOS respectively. Similarly,

when the control signal is driven to “Off”, the gate side of the capacitors

will return to the supply voltage ±Vn. Due to the bleed resistor in the level

shifter, the A1+, A2+, A1− and A2− control signals cannot be driven to “On”

indefinitely, being limited to approximately 1 ms on-time. This is not an issue

for ultrasound applications as each gate is typically turned on for less than

a microsecond. The pulser circuit was fabricated on a PCB, with an active

area of approximately 25 cm2 as shown inset in figure 5.1. Sixteen channels of

the drive circuit were connected to an FPGA development card (5SGSMD5N,

Altera, USA). The transmit waveforms were then designed using MATLAB

(Mathworks, USA) and uploaded via PCI Express to the FPGA. Each channel

could be operated individually with up to 41W output power for 30 seconds

of CW, or combined in parallel for higher output powers.

5.3 Numerical Study: Effect of Harmonic Dis-

tortion on Lesioning

Numerical simulations were undertaken to assess the effect of harmonic distor-

tion from switched excitation on lesion formation. The simulation considered

a single element transducer where amplitude control can be achieved by ad-

justing the power supply. This allows the effects of harmonic distortion to be

isolated from any amplitude control capabilities that are necessary for array

systems.

2D simulations were performed in the pseudo-spectral simulation package

k-wave [229]. A typical concave HIFU transducer with a diameter of 64 mm, a

natural focus of 63 mm and a centre frequency of 1.1 MHz was simulated. The

transducer transfer function consisted of a low pass, 50 order FIR filter that

rejected energy at harmonic four and above. The element size in simulation
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was 112 µm and had 646× 531 elements of which 20 in each dimension formed

the absorbing boundaries, leading to a total area of 64 mm× 78 mm.

Bi-level and HRPWM excitation schemes were considered in conjunction

with a linear amplifier. A 50% duty cycle square wave was used for the simplest

of the switched schemes, bi-level excitation. For HRPWM, transitions to each

level are set to achieve the desired magnitude of the fundamental component

whilst ensuring that any switching-induced harmonics destructively interfere.

Pertinent to the algorithm is that its carriers can change in frequency and

phase, allowing the waveforms to be designed to give only one or two pulses

per half cycle. This ensures robust control of amplitude and thus acoustic

intensity using a minimal number of switching events. The acoustic wattage

produced by the transducer was maintained between schemes. This allowed

the effects of harmonic distortion in the presence of tissue to be assessed. To

this end, the virtual power supply of each of the schemes was adjusted so that

when the transducer transfer function was applied they all produced 26 W of

acoustic power. In addition to control by supply rails, the HRPWM scheme

is also able to modulate its own amplitude so it was arbitrarily set to produce

waveforms at 70% duty cycle prior to adjustment of the power supply. Figure

5.2 shows bi-level and HRPWM schemes in the frequency and time domains.

The two example excitations are compared with a perfect sinusoidal excitation

by a linear amplifier which is shown in grey. Three cycles of the excitations are

shown. In the frequency domain, the highest 20 dB of normalised amplitude

is shown across the frequency response of the transducer. The location of the

second and third harmonics of the transducer, where the electrical conversion

efficiency is highest, are indicated by the lines f2 and f3. Below 20 dB, any en-

ergy is considered irrelevant. Neither the sinusoidal or HRPWM excitation has

observable frequency content outside the fundamental component. The bi-level

scheme has harmonic distortion at f3, that could be converted into acoustic

energy. The transducer was placed in water and a 45 mm thick medium that

best represented chicken muscle [51], [230] was placed at the transducer’s focal

point. The medium’s acoustic and thermal parameters are presented in table

5.1.

Nyborg’s heating equation [231] was modified to calculate the total heat
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Figure 5.2: Time and frequency domain plots of the 1.1 MHz bi-level and
HRPWM excitations used in simulation. Ideal linear amplifier results are
shown in grey for comparison. The second and third harmonics of the trans-
ducer are indicated by the black lines f2 and f3.
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Table 5.1: Medium properties used for modelling

Property Symbol Value
Speed of sound c 1520 m s−1

Density ρ 1020 kg m−3

Thermal conductivity Λ 0.5 W m−1 K
Specific heat C 3600 J kg−1 K
Ambient temperature T0 37 ◦C
Attenuation α 1.1 dB/MHz1.5cm
Parameter of nonlinearity (B/A) 6.4

generation by the ultrasound at the first 6 harmonics:

Q =
h=6∑
h=1

αhp
2
h/ρc (5.1)

Where ph and αh refer to the magnitude of the pressure and absorption at

harmonic h. Pennes’ bioheat transfer equation [232] was then used to calculate

the temperature rise in the medium for each exposure made with each scheme.

Exposures were made for 20 s before cooling for a further 10 s, to account for

perfusion. The starting temperature was 37 ◦C. From the thermal exposures,

CEM43 was calculated [233]. A lesion map was then created from the area of

tissue where CEM43 exceeded 240 minutes, which is the default value for the

simulation package and also the reported damage threshold for prostate tissue

[234]

5.4 Experimental Study: Lesion Volume Con-

trol with PWM

A key advantage of the HRPWM scheme is the ability to apodise arrays

without the need for independently adjustable power supplies or external fil-

ters. It is essential that this apodisation can occur at electrical powers relevant

for HIFU therapy. In this part of the study, assessment of the scheme’s amp-

litude control capability was made by comparing lesioning efficacy with a linear

amplifier. A reduction in amplitude should reduce the lesion volume and vice
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versa. Additional comparisons were made with bi-level excitation. The aims

of the experimental study were to both augment the simulation results and to

assess the capability of HRPWM to control acoustic intensity and duration at

lesioning levels.

For the linear amplifier experiments a signal generator (33600A, Agilent,

USA) was connected to 45 dB linear power amplifier (A150, E&I Ltd, USA)

(figure 5.3).

5.4.1 Sample Preparation, Lesioning and Analysis

Ex vivo chicken breast was used for the lesioning study. Fresh chicken breasts

were lesioned within 18 hours of purchase and were refrigerated at 4 ◦C when

not used. The tissue was cut into cubes approximately 55 mm × 55 mm ×
40 mm. The samples were then degassed in a 1% (v/v) phosphate buffer

solution for 4 hours. To ensure repeatability between samples, they were placed

in a holder marginally smaller than their cut size so that they were slightly

compressed in all directions. The sample holder had acoustic windows on

opposite sides of approximately 50 mm× 50 mm (figure 5.3).

Lesioning was performed with a single element focused HIFU transducer

(H-102, Sonic Concepts, USA) in conjunction with the manufacturer provided

impedance matching network, although it contained no frequency-filtering

components. The transducer had a centre frequency of 1.1 MHz, a focal dis-

tance of approximately 63 mm and a diameter of 64 mm. The -6 dB beamwidth

size data was obtained from the datasheet and is 1.33 mm in diameter and 10

mm long. To co-locate the centres of the transducer focus and the samples, an

alignment target was temporarily attached to the inside of the sample holder,

prior to the start of the first exposure. Using a hydrophone (Y-107, Sonic Con-

cepts, USA) co-located and confocal with the centre of the HIFU transducer,

the transducer was pulse-echo aligned onto the target. The sample holder was

attached to a CNC machine stage which was programmed to move to 5 fixed

locations spaced 20 mm apart. This meant that the 5 lesions were always made

in the same places and at a fixed depth of 20 mm in each sample. Sonications

were performed in a tank of degassed, deionised water which was maintained

at 28±1 ◦C using an immersion circulator. This temperature was chosen to be
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Figure 5.3: Schematic of the experimental apparatus used in this study. Not
shown: current probe, matching network, CNC machine

representative of in vivo tissue without causing premature denaturing of the

sample.

To attenuate post-focal energy and prevent reflections, 10 mm of absorbing

material was placed behind the samples. This arrangement is depicted in figure

5.3. The samples were sonicated for 20 s. Between exposures, the tissue was

allowed to cool for 10 s, to allow the bulk temperature of the tissue to return

to ambient. Immediately after all the exposures were complete, samples were

sliced through the centre of the lesions, revealing two halves of each lesion.

Photographs of each lesion were taken next to a ruler and an identifying code.

Using image analysis software (ImageJ, National Institutes for Health, USA),

the pixel/size ratio was calculated and then the lesion cross-section area was

measured using an ellipse area tool.

For the lesioning efficacy of different excitation schemes to be compared,

the aim was to ensure that damage to the tissue was predominantly thermal

136



5.4 Experimental Study: Lesion Volume Control with PWM

in nature and not from mechanical effects such as acoustic cavitation and/or

boiling [235]. Three measures were taken to ensure that mechanical damage

was reduced. Firstly, a passive cavitation detection (PCD) system was used

[235]. Secondly, exposure times and intensities within the limits of previously

published lesioning work (in chicken breast) were used [236]. Thirdly, lesions

were inspected for unusual shapes that may suggest boiling.

For the PCD system the hydrophone was connected to an 11-bit oscillo-

scope (MSO-5104A, Agilent, USA) via a 5 MHz high pass filter (THP5P554100B,

Allen Avionics, USA) and a 40 dB preamp (SPA1411, Spectrum, Germany).

The high pass filter was used to remove any reflected energy from the HIFU

transducer’s first 3 harmonics and to avoid saturation of the oscilloscope’s in-

put. The oscilloscope was run in segmented mode and was set to record up to

up to 256 waveforms of 250µs length. The trigger threshold was set slightly

above the noise level at 380 mV. The trigger hold-off was set to 50 ms so

that data from up to 12.8 s of the exposure could be recorded. The number

of triggers was recorded for each exposure, and if this number exceeded 10,

the lesion was considered to be mechanically rather than thermally formed.

Fourier analysis was performed on the recorded signals.

To ensure that each tissue sample was adequately degassed, prior to lesion-

ing, a high amplitude 5 cycle pulse was applied to the transducer to discount

the presence of bubbles. Additionally, every tissue sample contained at least

one thermal-only lesion made using the linear amplifier.

5.4.2 Considered Schemes and Control of Acoustic In-

tensity

HRPWM, linear amplifier and bi-level schemes were used. Three different elec-

trical powers for each scheme were considered: 16, 26 and 35 W. Using the

beam width from the transducer datasheet and presuming an 80% efficiency,

these electrical powers correspond to intensities of 1205, 1958 and 2637 W cm−2

respectively. Prior to ablations, with the transducer in-situ but samples re-

moved, the circuit was adjusted to achieve the desired electrical power. For

the linear amplifier experiments, the signal generator amplitude was adjusted.

For the bi-level excitation, the supply voltage was adjusted but for HRPWM,
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the power supplies were fixed and the amplitude modulation parameter was

changed.

If knowledge of a transducer’s complex impedance is known and a single

drive frequency is used to excite the transducer, delivered true power can be

controlled by changing the voltage of the waveform [237]. This approach is

unsuitable here for two reasons, (1) the switched waveforms contain multiple

frequency components that have differing corresponding impedances and (2)

the output impedance of the switched circuitry is unknown and so there is

potential for high levels of reflected energy.

Instead, a current probe (TM502A, Tektronix Inc., USA) and an oscillo-

scope (DS06014A, Agilent, USA) were used to measure the total delivered

true power. The current probe was placed around the positive input of the

matching network. Using a 100 cycle excitation, true power as a function of

frequency was then calculated from the real product of the Fourier transformed

voltage and conjugated current waveforms:

P (f) = Re(V (f)× I(f)∗) (5.2)

The total delivered power across a given frequency range was then calcu-

lated from the integral of P (f):

PT =

∫ f1

f0

P (f)df (5.3)

For the experiments 500 kHz and 10 MHz were used for f0 and f1 respect-

ively.

Since the electrical and acoustic configuration was consistent between schemes,

it was presumed that the acoustic intensity remained the same irrespective of

the scheme used. This power measurement approach was calibrated using a

purely resistive 50 Ω load before the transducer was connected.

For each intensity and scheme, three lesions were made and measured,

leading to a total of 27 exposures.
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5.5 Results and Discussion

Figure 5.4 shows simulated lesioning under the three different excitation schemes.

The acoustic field would propagate from left to right. The lesions are correctly

shaped and axisymmetric although not rotationally symmetric. This is be-

cause of pre-focal lesioning due to non-linear propagation [16], [205]. The le-

sion cross-section areas and their percentage changes from the linear amplifier

lesion are shown in table 5.2.

Ideally, each of the simulated schemes would have been calibrated to pro-

duce the same acoustic intensity at the focal region. This information cannot

be obtained however prior to completion of a free field simulation. Authors

have suggested previously that peak acoustic pressures might instead be ap-

propriate to make comparisons between lesioning experiments [238]. However,

this does not consider the increased energy that exists in the acoustic waveform

when harmonics are introduced. For this reason, each scheme was calibrated

using a fixed acoustic wattage at the surface. Despite this calibration, the

schemes all produced different lesion sizes in simulation. When bi-level excita-

tion was used, the lesions were smaller (-35%) compared with linear amplifier

excitation. This is because more of the acoustic energy was distributed in har-

monics and as the higher frequency components were more readily absorbed,

less energy reached the focal region. When HRPWM excitation was used the

lesion cross-section area was only slightly smaller (-12%) than the linear amp-

lifier lesion. This is likely due to HRPWM having energy at higher order

harmonics that are attenuated by the tissue.

The simulation results show that an increase in harmonic distortion of the

excitation waveform reduces the lesion size (figure 5.4). The HRPWM scheme

had the lowest harmonic distortion of the switched schemes and thus produced

a lesion that was much closer in size to the linear amplifier case.
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Figure 5.4: Simulated lesioning results. HRPWM and bi-level switched
schemes were compared with excitation by a linear amplifier.

Figure 5.5 shows the experimentally obtained averaged lesion cross-section

areas for different electrical powers using different excitation schemes. The

error bars represent the standard deviation of three repeat measurements. The

variance in mean lesion area between the linear amplifier and HRPWM was

between +10% and -5%, whereas the variance was between -30% and -45% for

the bi-level results. Each set of repeats were tested for normality using the

Shapiro-Wilk test which is ideal for small sample sizes [239]. All set of repeats

passed the test except for the lesions produced using 35 W bi-level excitation.

Table 5.2: Comparison of simulated lesion sizes with different excitation
schemes

Excitation Lesion Cross Section Area ( mm2)
Linear Amplifier (Ideal) 49
HRPWM 43 (-12%)
Bi-level 32 (-35%)
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Figure 5.5: Lesion cross section areas at several electrical powers using different
excitation schemes. Error bars are calculated from the standard deviation of
3 repeats at each scheme and power. The purple markers show the number of
recorded cavitation events on average for each of the excitations.
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Table 5.3: Statistical tests

Wattage (W) Test Value

16-35
Linear Amplifier p = 0.0006
Bipolar p = 0.0023
HRPWM p < 0.0001

16
Lin. vs Bipolar p = 0.0543
Lin. vs HRPWM p = 0.5517

26
Lin. vs Bipolar p = 0.1290
Lin. vs HRPWM p = 0.7788

35
Lin. vs Bipolar p = 0.0737
Lin. vs HRPWM p = 0.8264

Analysis of variance was then undertaken on the lesion cross-section areas

to quantify their statistical significance. Tests were performed to assess two

attributes, (1) similarity between schemes at the same power and (2) difference

in lesion volume at different powers with fixed schemes. The tests and results

are summarised in table 5.3. With HRPWM and the linear amplifier lesions,

the analysis shows that a change in electrical power yields a change in lesion

size (p < 0.05) and that the sizes are similar at each power level (p > 0.05).

The same can be said when comparing the linear amplifier and bi-level lesions,

although the size change is not as well discriminated and the difference in size

at equivalent powers is more statistically significant (0.8264 � 0.0737 at 35

W).

As in simulation, with the 16 W bi-level excitation, there is a 47% reduction

in the mean lesion area which is attributed to the absorption of harmonics. At

the two higher powers however, the reduction in lesion volume is attributed

to cavitation. This hypothesis can be confirmed in a number of ways. The

average cavitation event count is shown in figure 5.5 by the purple markers

is high (> 10) for the two high power bi-level exposures, while it is 0 for all

other exposures. The lesion data from the 35 W bi-level excitation also failed

a normality test which is indicative of the stochastic nature of cavitation.

Mechanical damage is further evidenced by comparing the lesion shapes in

figure 5.6. Here, all lesions were made using a fixed electrical power of 35 W but

with different excitation schemes. Lesion (a) was made using a linear amplifier

and lesion (b) was made using HRPWM. These two lesions are axisymmetric
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Figure 5.6: Lesions made using 35 W of electrical power. Lesion (a) was made
using the linear amplifier, lesion (b) was made using HRPWM. Lesion (c) was
made with bi-level excitation and was formed by mostly mechanical effects
evidenced by a high number of triggers from the passive cavitation detector.

and ellipsoid in shape which is desirable. They show no evidence of boiling and

have a similar cross-section area (a: 53.79 mm2, b: 47.29 mm2). Lesion (c) was

mechanically-formed using bi-level excitation. The lesion is round instead of

cigar-shaped, has a smaller area of 24.34 mm2 and the cavitation count reached

255 (the maximum possible) during the exposure.

Example signals acquired from the PCD are shown in figure 5.7. The grey

line shows an acquired signal during thermal-only lesioning using a 35 W linear

amplifier excitation. The spectrum here indicates no cavitation activity. The

blue line shows an increase in the noise floor and harmonic generation by the

presence of bubbles. This cavitation signal was recorded during a 26 W bi-level

exposure. The spectrum suggests stable rather than inertial cavitation. No

ultraharmonics are visible, although this is not expected at pressures close to

the cavitation threshold [240].

5.5.1 Suitability of HRPWM for Therapeutic Ultrasound

Figure 5.8 shows negative pressure beam plots made with the CNC stage and

a 0.4 mm membrane hydrophone (D1064, Precicion Acoustics, UK). The step

size was 0.5 mm and the peak negative pressure (PNP) was used as an intensity

reference.

The acquired waveforms were deconvolved to compensate for the hydro-

phone response and then an FIR high-pass filter (n = 50, fc = 2 MHz) was

applied to separate the higher order harmonics from the waveform. Pressure

plots 5.8 (a) and (c) were produced using the unfiltered waveform of bi-level

and HRPWM excitations respectively. Plots (b) and (d) show the correspond-
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Figure 5.7: Examples of signals from the passive cavitation detector during le-
sioning. The grey line shows the PCD waveform during thermal-only lesioning
with the linear amplifier. The blue line shows the PCD waveform from stable
cavitation during a 26 W bi-level exposure. The reference value used for the
intensity calculation is from the mean noise level.
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Figure 5.8: Pressure plots made with bi-level (a), HRPWM (c) and third
harmonic only with bi-level (b) and HRPWM (d). For (a) and (c) only the
highest 6 dB are shown.
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ing plots when the fundamental component is removed. For (a) and (c) only

the highest 6 dB are shown. The beam plots were made at sufficiently low pres-

sures (< 1 MPa) to minimise the influence of non-linear propagation. Cubic

interpolation was applied to the images so that a 1◦ rotation could be applied

to correct for slight misalignment of the CNC machine and the acoustic path.

These results show that harmonic distortion in the bi-level electrical wave-

form can be observed in the acoustic domain. HRPWM was effective at re-

ducing harmonic content in the waveform as no harmonics were visible above

−15 dB. Since the magnitude of the harmonic components in the bi-level

pressure plot and electrical waveform were equal (approximately −10 dB @

3.3 MHz) this supports the model used in simulation that the transducer is

almost equally efficacious at its fundamental component as it is at its third

harmonic. This was further confirmed from a bandwidth measurement of the

transducer (not shown).

The simulation and experimental parameters at 26 W were very similar al-

though the higher ambient temperature used in the thermal simulations meant

that simulated lesions were slightly larger. This was compounded by the fact

that the simulation model presumed a 100% efficiency of the transducer, where

experimentally only values of 80% have been reported [237]. The simulations

showed that an increase in harmonic distortion in the excitation waveform can

reduce lesion size for a fixed acoustic power. However, experimentally, a re-

duction in lesion size with HRPWM was not observed as it was in simulation.

This is likely because the transducer is much more effective at attenuating

harmonics than the FIR filter used in the simulation model.

Experimentally, additional undesirable mechanical effects were observed

when using bi-level excitation. The authors believe the cause was the result of

waveform shape rather than any inherent harmonic distortion. This suggests

that a regular 5-level staircase circuit might suffice, although to the best of the

author’s knowledge no other appropriate pulse width modulation algorithm

exists.

HRPWM’s major advantage over other schemes however is its ability to

apodise an array without the need for each element to have an independent

power supply or filter. This makes it suitable for a number of high-density

applications, catheters and MRI environments especially if combined with new
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techniques to replace the matching network [241]. The experimental results

show that this amplifier design and switching topology can control thermal

dose at intensity levels useful in HIFU.

5.5.2 Cavitation Nucleation with Bi-level Excitation

It is expected that the reduction in lesion size with bi-level excitation would

be more profound at higher depths as more acoustic energy would be absorbed

before the focal region. To compensate, larger pressures could be used, but this

is undesirable as it increases the likelihood of cavitation. It was not possible

to generate thermal-only lesions using 35 W bi-level excitation. Cavitation

activity was also observed during two of the three exposures at 26 W using bi-

level excitation. To rule out possible error in power measurement, the acoustic

intensity of the bi-level and linear amplifier schemes were compared at each

power level. The −6 dB beam width was measured as 1.85 mm using the

membrane hydrophone and the time-averaged acoustic power for each electrical

power was measured with a radiation force balance (Precision Acoustics, UK)

[242]. Due to the harmonic components having different focal positions, bi-

level excitation distorted the focal region slightly, but it did not have any

significance at the -6 dB threshold. At each power level, the intensities were

found to be similar irrespective of the excitation scheme used. This means that

the cavitation with bi-level excitation was not nucleated primarily through

heating.

Experiments were repeated in an agar phantom to compare with chicken

breast and it was found that cavitation was also observed using the 26W bi-

level excitation, but not using the linear amplifier, even at higher intensities.

The first cavitation event was temporally located at 85µs after the start of

firing, which is approximately twice the propagation time for the natural focal

point of the transducer. This suggests that a transient near the start of the

waveform was nucleating the cavitation.

Subsequent high resolution (fs = 200 MHz) acoustic waveforms were cap-

tured using the membrane hydrophone at the focal point. It was observed that

the pressure when using the linear amplifier increased slowly over the first 3

cycles but when using bi-level excitation, there were large negative transients.
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Figure 5.9: Acoustic pressure waveforms recorded near the hydrophone’s sat-
uration limit using the linear amplifier and bi-level excitation. The waveform
made using bi-level excitation features large negative and positive (not shown)
transients that are marked by arrows.

Examples of these transients are shown in figure 5.9. Here bi-level and linear

amplifier excitations are shown at equivalent nominal pressures, however at

the start, there are a number of transients that exceed this nominal pressure

as indicated by the arrows.

Because of the saturation limit of the hydrophone, it was not possible

to observe these transients with the highest power bi-level excitation. The

values of these transients are shown alongside intensity measurements in figure

5.10. The error bars represent the minimum and maximum values of intensity

caused by spatial averaging of the hydrophone and the purple line represent

the suspected cavitation threshold.

A high PNP causes cavitation as the high negative pressure causes bubbles

to form. The following positive pressure trasient then may instigate interial

cavitation. Therefore cavitation nucleation could be attributed to the negative
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Figure 5.10: The measured acoustic intensity and transient pressure values for
linear amplifier and bi-level excitations at all 3 electrical powers. Due to satur-
ation of the hydrophone, it was not possible to obtain pressure measurements
for bi-level at 35 W. The pink represents the suspected cavitation threshold.
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pressure transients. With 26 W bi-level excitation, the PNP was larger than

the PNP with the linear amplifier at both 26 and 35 W power levels. It is also

expected that these transients are very close to the cavitation threshold as it

was also not possible to produce thermal-only lesions with the linear amplifier

at 38 W.

The cause for cavitation with bi-level excitation is not fully understood and

warrants further investigation. It likely involves a number of factors including

transients pre-conditioning the tissue [243] and focal region distortion which

have both been observed and could be exacerbated by nonlinear propagation

in tissue.

5.5.3 Secondary Effects from Compensation

The simulation results show that there was a loss in lesioning efficiency with

distorted waveforms, however there may be secondary effects caused by the

distortion if the pressure was increased to compensate for the attenuation in

tissue. The peak positive pressure (PPP) was measured in the simulation res-

ults at the fundamental component and it was found that the PPP was 3%

lower when using HRPWM and 7% lower when using bi-level. Experiment-

ally it was expected that the pressure difference for HRPWM would be much

smaller since the transducer is more effective at attenuating the higher order

harmonics than the transfer function used (-30 dB, f > 5 MHz).

Clinically, larger depths and higher powers may be used, for example in the

treatment of liver tissue. At these depths, focal pressure would be much more

significant but could be compensated for by increasing the source pressure.

This has clinical implications however as it means the relationship between

electrical power and intensity at the focus becomes unknown. Additionally, it

increases the likelihood of cavitation and shockwave formation.

Computational limitations mean it is difficult to simulate the depths used

clinically in the treatment of liver, however it was possible to repeat the sim-

ulations with a slightly thicker medium (60 mm instead of 40 mm) with com-

pensation for the loss of pressure at the focal region. Here, pre-focal lesioning

at the surface of the tissue was observed with bi-level excitation. This was a

secondary effect caused by the high harmonic content of bi-level excitation but
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Figure 5.11: Simulated lesioning results when the loss of pressure in the funda-
mental component is compensated for. (a) was formed using linear amplifier,
(b) with HRPWM and (c) with bi-level. Here, the bi-level causes pre-focal
lesioning (38.34 mm2), but HRPWM and the linear amplifier both produced
similar sized lesions (32 mm2)

was not observed using HRPWM. The results are shown in figure 5.11

5.6 Conclusions

HRPWM was compared with linear amplifier and bi-level excitations numeric-

ally and experimentally. In simulation, it was shown that increased harmonic

distortion in the bi-level excitation waveform reduced the size of lesions. For

the experiment, 3 waveforms of different powers were generated by adjusting

the modulation parameter of HRPWM. Using these waveforms, lesions in ex

vivo tissue were made and compared against lesions made at equivalent elec-

trical powers using bi-level excitation and a linear amplifier. The experimental

results showed that HRPWM could produce thermal-only lesions of an equival-
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ent size to those made with a linear amplifier. At the lowest power level used,

bi-level excitation produced smaller lesions, but transients in the waveform

nucleated cavitation at the higher power levels.

The study showed that HRPWM was able to control acoustic pressure at

intensities relevant to HIFU. The use of HRPWM will facilitate improvements

in efficiency, practicality and cost for HIFU drive circuitry.
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Chapter 6

Conclusions

The recent development of ultrasound research platforms has facilitated the

experiments described in this thesis, where it was necessary to consider and

control the nonlinear behaviour of waves. The thesis covered a broad range

of areas from electronic waveform design through to dispersion in bone, which

produced 2 journal papers and 5 conference proceedings. A comprehensive

summary and conclusions now need to be drawn.

6.1 Motivation and Aims

Sound is a mechanical wave and is often modelled using a simple one-dimensional

wave equation. This may be extended in a number of ways to consider attenu-

ation, dispersion and nonlinear 1 propagation caused by large finite amplitudes.

All these phenomena are frequency related, and with the trend continuing to

use higher frequencies, they must now be increasingly taken into consideration.

While these phenomena may be useful in guided wave inspection, they are

generally a hindrance in other fields of ultrasound. Recently, researchers have

developed a number of ultrasound research platforms such as the University

of Leeds’ UARP II and HIFUARP which the author aided in the development

of. These platforms, like others, offer precise control of the transmit-receive se-

quencing and access to the raw un-beamformed receive data. This has provided

a passage for the development of many new imaging techniques. So far how-

1Nonlinear propagation due to large signal amplitudes

153



6. CONCLUSIONS

ever, research has concerned only mostly-linear problems.

Therefore the aims of the thesis were to:

• Introduce the ultrasound platform used throughout the course of the

PhD study.

• Introduce several nonlinear phenomena, and;

– Discuss the implications of them on ultrasound system design.

– Accordingly make any necessary improvements to the transmit ar-

chitecture.

• Leverage the capabilities of the open platform design to develop new

techniques and advance several existing ones that involve nonlinear phe-

nomena.

6.2 Conclusions and Further Work

In chapter 2, the UARP II and HIFUARP were introduced. Both are based

on the same architecture, but the former is transmit-only and is used for high-

power therapeutic applications, while the latter serves as a fully-fledged ima-

ging system. They both use a 5-level switched transmit circuits to achieve sim-

ultaneous amplitude and reduced harmonic distortion of the excitation wave-

forms. In this chapter, the desirability of this reduced harmonic distortion is

identified from the perspective of nonlinear phenomena and is supported by

several numerical experiments. Whilst harmonic distortion was shown to be

undesirable, it does place timing constraints on the waveform which, as several

bandwidth measurements show, may not be fully necessary. The constraints

mean that some of the waveforms produced by HRPWM, a 5-level waveform

design algorithm, are invalid for therapeutic excitation hardware. This is due

to the speed-limitations of high-current MOSFETs. This, in turn, effects the

capability of the hardware to control the power delivered to the array. When

all types of hardware and transducers with varying bandwidths are considered,

the number of possible waveform-solutions may be non-finite. A genetic al-

gorithm (GA) was used to search this large space and produce more suitable
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waveforms. The GA was effective and was able to achieve a granularity of 2%

at 3.3 MHz where the existing 5-level schemes could not achieve any. The al-

gorithm could be used to extend the transmit capabilities of existing switched

systems and may increase the prevalence of switched electronics in HIFU sys-

tems, which could reduce the cost of treatment.

The motivation for the thesis was provided by a substantial number of

nonlinear examples, but the described phenomena are by no means exhaustive

and more could be considered. The genetic algorithm approach was shown to

be effective at controlling any switching-generated harmonics, whilst simultan-

eously achieving other, seemingly conflicting objectives. Because the fitness

function can be easily modified to suit many applications, the algorithm could

be used as an effective waveform generation tool inside and outside the area

of ultrasonics. It may prove increasingly useful in designs with exotic trans-

ducer technologies (eg dual mode use arrays), where elements are sensitive to

multiple, non-integer-product frequencies, making schemes like HRPWM too

constricting. There are some minor features that could be added to improve

its versatility, such as amplitude or frequency modulation. The advent of new

gallium-nitride-based switches may eventually render some of these approaches

redundant due to the vastly improved switching speeds. However, GAN devices

remain extremely expensive and so undermine the cost-saving purpose of us-

ing switched excitation. The techniques presented here will still be required

to extend the usefulness of older designs and high-density array applications,

where it will remain prohibitively expensive to use GAN technology.

The advantages of having such precise control over the sequencing of an

ultrasound platform were demonstrated in chapter 3. Here, this new techno-

logy was applied to a problem of a nonlinear nature: guided waves. In NDT,

these waves are widely used because they can travel great distances, and their

multi-modal nature means they are sensitive to a range of defects. However, if

one wants to spatially locate a defect, their inherently complex nonlinear be-

haviour makes traditional beam steering techniques ineffectual. Authors have

already devised techniques to steer guided waves, but they require knowledge

of the waveguide parameters which may not be known. Using the advanced

receive and transmit architecture of the UARP II, a new scheme was devised

that reinforced naturally propagating guided waves. The scheme induced a
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Lamb wave in the material using the first transducer element and then re-

corded its propagation using the remaining elements. The adjacent element

re-transmitted this recording and the process was repeated for every element.

This caused constructive interference, which caused more of the guided wave

energy to travel in the direction of the spatial influence of the transducer. The

results in chapter 3 show that it is possible to control the direction of guided

waves without knowledge of the waveguide’s material parameters. This could

make GW inspection automated, therefore more affordable and could also

prove useful when inspecting units with an unknown composition of materials.

The technique would benefit from additional testing on real-world inspec-

tion problems to assess its usability. One concern might be that it enhances

the direction of all modes, which may be undesirable since high order modes

can be hard to separate. However, this but could be solved by filtering the

receive waveforms before retransmission.

Continuing on this theme, guided waves in bone were then explored in

chapter 4. Guided wave propagation is readily effected by the properties

of the waveguide, and so many of bone’s mechanical attributes may be in-

ferred by observing these waves. This has implications in two fields: firstly

in the assessment of osteoporosis which is actively researched, and secondly

for measurement of skull properties to assist transcranial therapy, which was

proposed here. The behaviour of guided waves is usually summarised by dis-

persion curves in either the frequency-phase velocity form or the frequency-

wavenumber form. That being said, the former is preferred because it is more

readily interpreted. These curves can be found by re-arranging the output

of the two dimensional Fourier transform of a time-space matrix. However,

this technique has limited resolve of the high-order modes, particularly when

the number of spatial sample points is limited, which is often the case when

taking measurements from bone. To improve on this, a technique was devised

to temporally align dispersive modes across several transverse observations. In

simulation, a multiplication-based method was applied and was shown to im-

prove the intensity of the higher order modes. The technique was then applied

to bone, in vivo and ex vivo, where it was found that, compared to Fourier

methods, it was less sensitive to poor coupling and was better at extracting

high order modes. The ageing population, as well as the inconvenience and
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expense of DXA, means that ultrasonic methods are required for screening.

Numerically the technique was shown to improve the S3 and A3 mode intens-

ity by 6 dB and 13 dB respectively compared with the existing Fourier method.

The technique could support the characterisation of the higher order modes in

bone necessary for osteoporosis assessment.

With the skull, for any inferred properties to be useful, the induction or ob-

servation of waves must be co-located with the therapeutic array. Accordingly,

a geometric relationship between the concave array and element time-delays

necessary to generate guided-wave-inducing plane waves was found. To test

this, simple aluminium cylinders were initially simulated. It was found that

even when the distance travelled was subtracted, a change in group velocity

of two wave packets was observed as the thickness was changed. This was in

agreement with the expected behaviour. Similarly, with simulated skull mod-

els there was also a change in the group velocity for different thicknesses. It

was shown that properties of the skull could be ascertained from guided wave

measurements made using a phased array transducer in a concave configura-

tion. The estimated maximum error using this technique was 0.2 mm. This

could improve the accuracy, safety and efficacy of transcranial therapy.

The contribution of the dispersion phase shifting step in this chapter was

significant. It could be considered equivalent to the delay stage in many receive

beamformers, and other signal processing techniques could be applied to prove

or disprove the existence of a correlation between transverse channels. The

multiplication stage did introduce low-frequency artefacts, but these could be

removed using a simple bandpass filter. Accordingly, the program code will be

made freely available online to encourage researchers to improve these results

by applying other beamforming techniques. Other applications such as NDT

and SHM might benefit from this technique.

Transcranial arrays will continue to increase in density making localised de-

tection of skull properties more plausible. More needs to be known about how

these guided waves propagate around the complex multi-dimensional water-

loaded structures, to draw exact properties from the measurements. Currently,

any phase aberrations that could be measured, would not compete with the

existing CT methods. However, measurement of attenuation might be a po-

tential application; to the best of the author’s knowledge, clinical transcranial
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systems do not currently compensate for varying attenuation in the skull. This

information cannot be obtained from a CT scan or from pulse-echo measure-

ment but could be obtained from GW measurements.

In chapter 5, the impacts of the switching schemes that were described

in chapter 2 on HIFU were considered. It was proposed, that because tissue

attenuation, and thus lesioning efficacy is frequency dependent, there may be

implications for heavily distorted excitation schemes. The 5-level HRPWM

scheme described previously is advantageous because it can achieve amplitude

control which is highly desirable in array HIFU applications. In simulation,

it was shown that for a fixed acoustic power, the more distorted excitation

schemes produced smaller lesions than their non-distorted counterparts. This

was because more of the acoustic energy was attenuated before reaching the

focal region. At larger depths, when this was compensated for it caused pre-

focal lesioning. Experimentally, it was found that bi-level excitation nucleated

cavitation because it caused transients in the acoustic waveform. For the three

fixed acoustic powers tested, it was shown that HRPWM produced lesions

the same size as their linear amplifier equivalents. The results here and in

chapter 2 show that HRPWM could allow switched circuits to become more

widely adopted in ultrasound hardware; yielding significant cost savings and

miniaturisation.

6.3 Closing Remarks

There are implications of nonlinear phenomena, which need increasing consid-

eration, in a wide range of areas including NDT and biomedicine. Overall it

has been shown in this thesis that precise control of the nonlinear phenomena

of waves can be afforded when using modern ultrasound research hardware.

The methods described may reduce the cost and increase the efficacy of future

ultrasound systems.
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A. ADDITIONAL AZA AND EVA SYSTEMS RESULTS

(a) FFT (b) PSAM

Figure A.1: Dispersion obtained using the EVA system from direction 1 using
both FFT and PSAM techniques. Model data acquired from a micro CT scan
is overlaid in white.

(a) FFT (b) PSAM

Figure A.2: Dispersion obtained using the AZA system from direction 1 using
both FFT and PSAM techniques. Model data acquired from a micro CT scan
is overlaid in white.
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(a) FFT (b) PSAM

Figure A.3: Dispersion obtained using the AZA system from direction 2 using
both FFT and PSAM techniques. Model data acquired from a micro CT scan
is overlaid in white.
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Appendix B

Dispersive Waves Phase Shift

Program Code

function [W, F] = phaseFilter(M, Cph, L, fs)

%W here is the output array you’re after

%F is the actual 2D filter

%Work out szie of FFT

N = nextpow2(size(M,1));

N = 2^N;

%Output W will be same sz as M

W = zeros(size(M));

%How many elements?

zt = size(M,2); %aspatial

sz = size(M,1);

%Generate real frequency bins

%This vector doesn’t change because N increases

%so resolution increases

%automagically

fRealPos = (0:N/2) * (fs/N);

%This is a positive delay.

%In other words mode delay is applied at channel1

%THESE ARE POSITIVE WHEN CORRECT
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B. DISPERSIVE WAVES PHASE SHIFT PROGRAM CODE

fd = (L/Cph) - 1./fRealPos;

%Above vill produce some weird values at DC etc

%Remove inf

fd(isinf(fd)) = 0;

%Generate an array for all filtering

%Unity gain by default

F = ones(N,zt);

%For each channel..

for i=1:zt

%first channel is delayed the most because it comes first

%Work out the discrete delay in samples

fdz = fd*fs*(zt-i);

%n vector used in DFT calculation

NVEC = 0:N/2;

f = exp((-1i*2*pi*NVEC.*-fdz)/N);

%Maintain hermitian symmetry

f_full = [f(1:end-1) fliplr(conj(f(2:end)))];

%For the channel define the filter

F(:,i) = f_full’;

end

%Fft the incoming 2D array in one go

Mf = fft(M, N, 1);

%Apply the filter

Mff = Mf .* F;

Mt = ifft(Mff, N, 1,’symmetric’);

%Trim it accordingly (remove zero padding)

W = (Mt(1:sz,:));

end
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