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Abstract 

Kaposi’s sarcoma associated herpesvirus (KSHV) is a human tumour virus and 

key aetiological agent for several malignancies including Kaposi’s sarcoma. 

KSHV exhibits a biphasic life cycle split between a persistent latent period with 

minimal gene expression and a lytic period with an expression cascade that 

culminates in the release of nascent virions. Crucially, the lytic phase has been 

shown to be important for tumorigenesis and the spread of Kaposi’s sarcoma. 

The Nuclear Pore Complex (NPC) is a protein mega-complex that regulates 

nucleocytoplasmic transport. It is formed by multiple copies of individual 

nucleoporins that combine into a sophisticated protein gateway. The regulation 

of nuclear access makes it a target for viruses that subvert the NPC in order to 

hijack the cell for viral replication. Whilst herpesvirus can induce changes at the 

NPC, little is known about KSHV NPC remodelling.  

This study presents an investigation of how KSHV targets the NPC during its lytic 

infection highlighting the targeting a specific nucleoporin, Nup98, and an attempt 

at broader interactomic analysis using proximity dependent biotin identification. 

Nup98 is specifically downregulated early during lytic infection by the E3 ubiquitin 

ligase activity of viral protein RTA. This appears to be related to the repression of 

expression at viral ORF50 promoters when Nup98 is overexpressed in the 

nucleoplasm. This study also highlights how depletion of Nup98 is detrimental to 

the virus, leading to failed virion egress.  

In summary, this project highlights how KSHV specifically targets one population 

of Nup98 but requires NPC-bound Nup98 to sequester a cellular mRNA for 

CHMP7 protein to ensure virion egress. It also provides the first attempt at using 

interactomic techniques to create a comprehensive, semi-quantitative profile of 

changes to the NPC during KSHV lytic infection that can pave the way for further 

interaction studies and the development of targeted antivirals for KSHV. 

  



 vi 

Contents 

Acknowledgements: ........................................................................................ iii 

Abstract .............................................................................................................. v 

Abbreviations .................................................................................................. xv 

1 Introduction ................................................................................................ 2 
1.1 Herpesviriales ................................................................................................ 2 

1.1.1 Classification of Herpesviruses ............................................................................... 2 
1.1.1.1 Alphaherpesvirinae ........................................................................................ 3 
1.1.1.2 Betaherpesvirinae .......................................................................................... 4 
1.1.1.3 Gammaherpesvirinae ..................................................................................... 5 

1.1.2 Virion structure ........................................................................................................ 5 
1.1.3 Genomic structure .................................................................................................. 6 
1.1.4 Life cycle ................................................................................................................. 8 

1.1.4.1 Latency ........................................................................................................... 9 
1.1.4.2 Lytic .............................................................................................................. 10 

1.2 Gammaherpesvirinae .................................................................................. 13 
1.2.1 Epstein-Barr Virus ................................................................................................. 13 

1.2.1.1 EBV Life cycle .............................................................................................. 15 
1.2.2 Kaposi’s sarcoma-associated herpesvirus ........................................................... 16 

1.2.2.1 KSHV associated diseases .......................................................................... 19 
1.2.2.1.1 Kaposi’s Sarcoma .................................................................................... 19 
1.2.2.1.2 Kaposi’s sarcoma-associated immune reconstitution inflammatory 
syndrome (KS-IRIS) ...................................................................................................... 
  ................................................................................................................. 21 
1.2.2.1.3 Multicentric Castleman’s Disease ............................................................ 22 
1.2.2.1.4 Primary Effusion Lymphoma .................................................................... 22 

1.2.2.2 Life cycle ...................................................................................................... 23 
1.2.2.2.1 Latency .................................................................................................... 25 
1.2.2.2.2 Lytic Replication ....................................................................................... 26 

1.3 The Nuclear Envelope ................................................................................. 31 
1.3.1 The Nuclear Lamina ............................................................................................. 32 
1.3.2 The Nuclear Membrane ........................................................................................ 33 
1.3.3 The Nuclear Pore Complex .................................................................................. 35 

1.3.3.1 Structure of the NPC .................................................................................... 36 
1.3.3.2 Nuclear Transport ........................................................................................ 42 

1.3.3.2.1 Receptor Transport system ..................................................................... 42 



 vii 

1.3.3.2.2 Permeability barrier .................................................................................. 47 
1.3.4 The Dynamic NPC ................................................................................................. 51 

1.3.4.1 The NPC during development ...................................................................... 51 
1.3.4.2 Cell type specific NPCs ................................................................................ 52 
1.3.4.3 Nup98 ........................................................................................................... 53 

1.3.5 Viral remodelling of the Nuclear Pore Complex .................................................... 55 
1.3.5.1 Capsid remodelling Events ........................................................................... 56 
1.3.5.2 Non-capsid remodelling Events .................................................................... 57 

1.4 Proteomic approaches ............................................................................... 60 
1.4.1 Quantitative techniques ......................................................................................... 62 

1.4.1.1 Isotope-coded affinity tag (ICAT) .................................................................. 63 
1.4.1.2 SILAC ........................................................................................................... 64 
1.4.1.3 Isobaric labelling approaches: iTRAQ and TMT ........................................... 65 

1.4.2 Interactome techniques ......................................................................................... 67 
1.4.2.1 Selective proteomic proximity labelling using tyramide ................................ 68 
1.4.2.2 APEX tagging ............................................................................................... 69 
1.4.2.3 Proximity dependent biotin identification ...................................................... 71 

1.5 Thesis Aims ................................................................................................. 74 

2 Materials and Methods ............................................................................ 78 
2.1 Materials ...................................................................................................... 78 

2.1.1 Antibodies .............................................................................................................. 78 
2.1.2 Cell culture reagents ............................................................................................. 79 
2.1.3 Chemicals .............................................................................................................. 80 
2.1.4 Enzymes ................................................................................................................ 81 
2.1.5 Oligonucleotides .................................................................................................... 81 
2.1.6 DNA constructs ..................................................................................................... 82 

2.2 Methods ....................................................................................................... 85 
2.2.1 Cell culture ............................................................................................................ 85 

2.2.1.1 Cell lines ....................................................................................................... 85 
2.2.1.2 Cell maintenance .......................................................................................... 86 
2.2.1.3 Cell viability assay ........................................................................................ 86 
2.2.1.4 siRNA knockdown ......................................................................................... 87 
2.2.1.5 Transient transfection ................................................................................... 87 
2.2.1.6 Lentiviral transduction ................................................................................... 88 

2.2.2 Virus based assays ............................................................................................... 89 
2.2.2.1 Induction of KSHV lytic replication ................................................................ 89 
2.2.2.2 Viral re-infection assay ................................................................................. 89 



 viii 

2.2.2.3 Viral replication assay .................................................................................. 90 
2.2.2.4 Cytoplasmic fractionation ............................................................................. 91 

2.2.3 Analysis of proteins ............................................................................................... 91 
2.2.3.1 Quantification of protein samples ................................................................. 91 
2.2.3.2 SDS-PAGE Electrophoresis ......................................................................... 92 
2.2.3.3 Western Blotting ........................................................................................... 92 

2.2.4 Analysis of protein interactions ............................................................................. 93 
2.2.4.1 Immunofluorescence .................................................................................... 93 
2.2.4.2 Co-immunoprecipitation of proteins ............................................................. 94 
2.2.4.3 Chromatin immunoprecipitation (ChIP) ........................................................ 95 

2.2.5 Quantification of mRNA levels .............................................................................. 96 
2.2.5.1 Total RNA isolation ...................................................................................... 96 
2.2.5.2 DNase I treatment ........................................................................................ 97 
2.2.5.3 Reverse transcription (RT) ........................................................................... 97 
2.2.5.4 Quantitative PCR (qPCR) ............................................................................ 98 

2.2.6 Molecular cloning .................................................................................................. 99 
2.2.6.1 Transformation of E.coli DH5a ..................................................................... 99 
2.2.6.2 Plasmid purification .................................................................................... 100 

2.2.7 Biotin affinity identification (BioID) ...................................................................... 100 
2.2.7.1 Transfection of BioID constructs ................................................................ 101 
2.2.7.2 Biotin affinity purification ............................................................................ 101 

2.2.8 Data analysis ...................................................................................................... 102 
2.2.8.1 Experimental design and null-hypothesis significance testing ................... 102 
2.2.8.2 Densitometry analysis ................................................................................ 103 
2.2.8.3 ImageJ analysis ......................................................................................... 103 
2.2.8.4 Bioinformatics analysis: .............................................................................. 104 

 R language scripts for BioID data analysis ............................................ 105 
 R language scripts for perimeter data analysis ...................................... 108 

3 Nup98 is remodelled by KSHV during lytic infection ......................... 111 
3.1 Introduction ............................................................................................... 111 
3.2 Nup98 is specifically downregulated early during KSHV lytic infection ... 
  .................................................................................................................... 112 
3.3 The localisation of Nup98 is not altered during KSHV lytic infection .. 114 
3.4 Increased Nup98 degradation in the presence of KSHV RTA is 
dependent on the ubiquitin-proteasome pathway ............................................. 118 
3.5 Nucleoplasmic Nup98 binding partner DHX9 does not play a role during 
early KSHV lytic replication ................................................................................. 124 



 ix 

3.6 Nucleoplasmic Nup98 acts to prevent transcription of KSHV lytic ORFs 
at ORF50-promoters ............................................................................................. 127 
3.7 Chromatin Immunoprecipitation of Nup98 ............................................. 128 
3.8 Overexpression of GFP-Nup98 in TREx does not prevent the 
progression of KSHV lytic infection when induced with sodium butyrate ..... 130 
3.9 Discussion ................................................................................................. 135 

4 CHMP7 is targeted by KSHV via a Nup98-dependent mechanism to 
enhance virion egress .................................................................................. 138 

4.1 Introduction ............................................................................................... 138 
4.2 siRNA treatment successfully depleted Nup98 in TREx cells .............. 140 
4.3 Normal bulk mRNA export is maintained during Nup98 siRNA treatment 
  .................................................................................................................... 141 
4.4 Nup98-depletion did not impede normal KSHV lytic gene expression 142 
4.5 Nup98-depletion reduced viral infectivity but did not impact KSHV DNA 
replication ............................................................................................................. 146 
4.6 Nup98-depletion led to an accumulation of viral capsids at the plasma 
membrane suggesting impaired virion egress .................................................. 148 
4.7 Nup98-depletion led to maintained expression of KSHV-targeted cellular 
protein CHMP7 ............................................................................................................ 
  .................................................................................................................... 152 
4.8 Overexpression of ESCRT-III components has no impact on KSHV lytic 
gene expression or replication compartment formation .................................. 156 
4.9 Overexpression of CHMP7 leads to a decrease in infectious virion 
release ................................................................................................................... 161 
4.10 Overexpression of CHMP7 led to increased membrane bubbling and 
maintenance of membrane integrity ................................................................... 165 
4.11 Discussion ................................................................................................. 169 

5 Using proximity dependent biotin identification to probe for nuclear 
pore remodelling during KSHV lytic infection ............................................ 174 

5.1 Introduction ............................................................................................... 174 
5.2 Optimisation of BioID-nucleoporin expression and subcellular targeting 
  .................................................................................................................... 176 
5.3 Pilot LC-MS/MS analysis of BioID-nucleoporin pull downs .................. 182 
5.4 Tandem Mass Tagging LC-MS/MS coupled to BioID ............................. 187 
5.5 Discussion ................................................................................................. 194 

6 Discussion .............................................................................................. 198 

References ..................................................................................................... 211 
 

  



 x 

Table of Figures 

Figure 1.1 The Phylogenetic tree of Herpesviridae.. ........................................... 3 

Figure 1.2 Herpesvirus virion structure. .............................................................. 6 

Figure 1.3 The Arrangement of Herpesvirus Genomes. ..................................... 8 

Figure 1.4 Viral entry mechanisms. ..................................................................... 9 

Figure 1.5 Herpesvirus lytic replication. ............................................................ 12 

Figure 1.6 EBV latency programmes and associated disorders. ...................... 16 

Figure 1.7 KSHV genome map. ........................................................................ 18 

Figure 1.8 KSHV global seroprevalence data. .................................................. 19 

Figure 1.9 Kaposi’s sarcoma incidience rates worldwide. ................................. 21 

Figure 1.10 Outline of RTA mechanisms for gene transactivation. ................... 29 

Figure 1.11 Overview of the Nuclear Envelope compartment. .......................... 32 

Figure 1.12 Overview of the nuclear membrane. .............................................. 35 

Figure 1.13 The Structure of the Nuclear Pore Complex. ................................. 38 

Figure 1.14 The architecture of the NPC scaffold. ............................................ 41 

Figure 1.15 The Ran cycle. ............................................................................... 44 

Figure 1.16 Models of the central NPC channel. .............................................. 50 

Figure 1.17 Overview of specialised nuclear pore complexes. ......................... 53 

Figure 1.18 Model of the alternate cellular pools of Nup98. .............................. 55 

Figure 1.19 Work flow of protein identification and quantification by LC tandem 

mass spectrometry. ........................................................................................... 62 

Figure 1.20 Overview of SILAC. ........................................................................ 65 

Figure 1.21 Schema of isobaric mass tagging techniques. ............................... 67 

Figure 1.22 Overview of SPPLAT. .................................................................... 69 

Figure 1.23 Outline of APEX in mitochrondria. ................................................. 70 



 xi 

Figure 1.24 Outline of proximity dependent biotin identification. ....................... 72 

Figure 2.1 Puromycin kill curve for TREx cells. ................................................. 89 

Figure 3.1 Nup98 is specifically downregulated at 8 h post induction of KSHV lytic 

replication in TREx cells.. ................................................................................ 114 

Figure 3.2. Confocal microscopy-based quantification of the proportion of TREx 

cells that undergo KSHV lytic replication. ....................................................... 116 

Figure 3.3 Nup98 localisation in TREx cells is not altered on the reactivated of 

KSHV. ............................................................................................................. 118 

Figure 3.4 Nup98 protein levels decrease in 293T cells after transfection with 

KSHV RTA protein. ......................................................................................... 120 

Figure 3.5 Nup98 degradation is prevented on treatment with proteasome 

inhibitor MG132. .............................................................................................. 122 

Figure 3.6 RTA could not be shown to co-immunoprecipitate with Nup98 in TREx.

 ........................................................................................................................ 123 

Figure 3.7 The depletion of Nup98 nucleoplasmic binding partner DHX9 did not 

impact KSHV lytic replication. ......................................................................... 126 

Figure 3.8. Overexpressing Nup98 alongside RTA and an ORF50 luciferase 

construct in 293T cells significantly reduces luminesence. ............................. 128 

Figure 3.9 Chromatin Immunoprecipitation in TREx cells using Nup98 was 

unsuccessful. .................................................................................................. 130 

Figure 3.10 Overexpression of GFP-Nup98 in TREx cells could not be detected 

by western blot and no significant changes to KSHV early lytic infection mRNA or 

protein was observed. ..................................................................................... 132 



 xii 

Figure 3.11 Immunofluorescence analysis of stably expressing GFP and GFP-

Nup98 TREx cells shows no difference RTA levels or localisation in reactivated 

cells. ................................................................................................................ 134 

Figure 4.1 Nup98 can be significantly depleted by siRNAs in TREx cells. ..... 140 

Figure 4.2 SiRNA depletion of Nup98 does not impact bulk mRNA export in 

unreactivated TREx or prevent the retention of PolyA RNA during KSHV lytic 

replication. ....................................................................................................... 142 

Figure 4.3 SiRNA depletion of Nup98 does not impact the expression of IE KSHV 

genes during lytic infection in TREx cells. ....................................................... 143 

Figure 4.4 Nup98 siRNA treatment significantly decreased Nup98 at the NPC and 

in the nucleoplasm. ......................................................................................... 145 

Figure 4.5 SiRNA depletion of Nup98 does not impact KSHV genome replication 

but reduces viral reinfectivity and leads to an accumulation of viral late protein 

ORF65. ............................................................................................................ 148 

Figure 4.6 Depletion of Nup98 leads to ORF65 accumulation at the cell 

membrane in a halo pattern when visualised by confocal immunofluorescence 

microscopy. ..................................................................................................... 151 

Figure 4.7 CHMP7 is specifically downregulated during KSHV lytic infection in 

TREx cells. ...................................................................................................... 153 

Figure 4.8 Cytoplasmic CHMP7 mRNA reduction during KSHV lytic infection is 

ablated by Nup98-depletion. ........................................................................... 155 

Figure 4.9 Lentiviral transduction of ESCRT-III components in TREx cells 

produced a low transduction level. .................................................................. 157 



 xiii 

Figure 4.10 Overexpressing CHMP7 and IST1  of the ESCRT-III complex in TREx 

does not affect the induction of KSHV lytic replication and the formation of 

replication compartments. ............................................................................... 160 

Figure 4.11 Overexpressing CHMP7 reduces the production of infectious virions 

of KSHV but does not decrease viral DNA production. ................................... 162 

Figure 4.12 Overexpression of CHMP7 leads to an increase in the halo 

phenotype of ORF65 at the cell membrane during KSHV lytic infection. ........ 165 

Figure 4.13 Overexpressing CHMP7 leads to bubbles forming at the plasma 

membrane during KSHV lytic infection. ........................................................... 168 

Figure 5.1 Transfection of GFP-nucleoporin constructs in 293T cells led to 

mistargeting of nucleoporins away from the nuclear envelope. ...................... 177 

Figure 5.2 Selection of GFP-nucleoporins in TREx after nucleofection led to loss 

of targeting after 4 weeks. ............................................................................... 179 

Figure 5.3 Transient nucleofection of BioID-nucleoporins showed efficient 

biotinylation targeting even after the induction of lytic replication. .................. 181 

Figure 5.4 LC-MS/MS analysis of biotin affinity immunoprecipitation of BioID and 

BioID-nup53. ................................................................................................... 186 

Figure 5.5 Overview of Tandem mass tagging of BioID-nucleoporins samples.

 ........................................................................................................................ 190 

Figure 5.6 TMT of BioID-Nup85 shows that at 24 h post lytic replication specific 

ribosomal biogenesis pathways are maintained. ............................................ 193 

Figure 6.1 Schematic of the proposed role of Nup98 during KSHV infection. 207 

  



 xiv 

List of tables 

Table 2.1 List of antibodies, their species, working dilution for western blotting 

(WB) and immunofluoresence (IF) and suppliers. ............................................. 78 

Table 2.2 List of cell culture reagents and their suppliers. ................................ 79 

Table 2.3 List of enzymes and their suppliers. .................................................. 81 

Table 2.4 List of oligonucleotides used and their sequences (forward and reverse, 

5'-3'). ................................................................................................................. 81 

Table 2.5 List of all DNA constructs used, their donors and references. .......... 83 

  



 xv 

Abbreviations 

< less than 

= equals to 

>  greater than 

2D 2 dimensional 

3D-SIM 3D-structured illumination microscopy  

Å angstrom 

AAA-ATPase ATPases Associated with diverse cellular Activities 

AAAS triple A syndrome  

ACTH adrenocorticotropic hormone  

AIDS Acquired Immunodeficiency Syndrome 

AMP adenosine-5'-monophosphate 

APEX ascorbate peroxidase  

APS ammonium persulphate 

ATCC American Type Culture Collection  

ATP adenosine-5'-triphosphate 

BAF barrier to autointegration factor 

BCBL-1 body cavity B lymphocytes 

BioID Proximity dependent biotin identification 

bp base pair 

BSA bovine serum albumin 

CAS cellular apoptosis susceptibility gene 

CBP CREB-binding protein 

cDNA complementary deoxyribonucleic acid 

ChIP chromatin immunoprecipitation 

CHMP2A charged multivesicular body protein 2A 

CHMP7 charged multivesicular body protein 7  

cm centimetre 



 xvi 

CR cytoplasmic ring 

CREB cAMP response element binding protein 

CRM1 chromosomal maintainence protein 1 (or Exportin 1) 

Ct cycle threshold 

Da dalton 

DAPI 4', 6-diamidino-2-phenylindole 

DDR DNA damage response 

DE delayed early 

dH2O distilled water 

DHX9 DEAD/DEAH box (DExH) -helicase 9  

DMEM Dulbecco's modified eagle medium 

DMSO dimethyl sulfoxide 

DNA deoxyribonucleic acid 

DNase deoxyribonuclease 

dox doxycycline hyclate 

E early 

EBV Epstein-Barr Virus 

ECACC European Collection of Authenticated Cell Cultures  

EDTA ethylenediaminetetraacetic acid 

EMDB Electron Microscopy Data Bank  

ERK extracellular signal–regulated kinase 

ES electrospray ionisation 

ESCRT endosomal sorting complexes required for transport 

FBS foetal bovine serum 

FDR false discovery rate 

FG phenylalanine-glycine 

FISH fluorescence in-situ hybridization  

FLIP (FADD-like IL-1β-converting enzyme)-inhibitory protein 

g gravitational force 



 xvii 

g gram 

GAPDH glyceraldehyde 3-phosphate dehydrogenase  

gB glycoprotein B 

GDP guanosine-5'-diphosphate 

GFP green fluorescent protein 

gH glycoprotein H 

gL glycoprotein L 

GTP guanosine-5'-triphosphate 

h hours 

HAART high active anti-retroviral therapy 

HBV hepatitis B virus 

HCMV Human cytomegalovirus 

HDAC histone deacetylase 

HEK human embryonic kidney 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HHV Human herpesvirus 

HIV-1 human immunodeficiency virus type 1 

HPI Human Protein Index 

HRP horseradish peroxidase 

HSV-1 Herpes simplex virus 1 

HVS Herpes saimiri virus 

ICAT Isotope-coded affinity tag  

ICTV International Committee on Taxonomy of Viruses  

IDD intrinsically disordered domain 

IE immediate-early 

IFN interferon 

Ig immunoglobulin 

IL interleukin 

INM inner nuclear membrane 



 xviii 

IQR interquartile range 

IR inner ring 

IRD Immune restoration disease 

IRES internal ribosomal entry site 

IST1 IST1 homolog 

iTRAQ isobaric tag for relative and absolute quantification 

kaps karyopherin 

kbp kilobase pair 

kDa kilodalton 

KS Kaposi's sarcoma 

KS-IRIS Kaposi’s sarcoma-associated immune reconstitution inflammatory syndrome  

KSHV Kaposi's sarcoma associated herpesvirus 

L late 

L protein Leader protein 

LANA Latency associated nuclear antigen 

LAT Latency associated transcript 

LB Luria-Bertani broth 

LC liquid chromatography 

LiCl lithium chloride 

LINC linker of nucleo- and cytoskeleton complex 

lncRNA long non coding ribonucleic acid 

m/z mass to charge ratio 

MALDI-TOF matrix-assisted laser-desorption-ionisation-time-of-flight  

MCD Multicentric castleman's disease 

MDa megadaltons 

MDa/s megadaltons per second 

MHV68 Murid herpesvirus 68 

min minutes 

miRNA micro ribonucleic acid 



 xix 

mL mililitre 

Mnase micrococcal nuclease 

mRNA messenger ribonucleic acid 

MS mass spectrometry 

MS/MS tandem mass spectrometry 

MTA mRNA transcript accumulation protein  

MVB multivesicular bodies  

NaCl sodium chloride 

NE nuclear enevelope 

NET Nuclear envelope transmembrane protein 

NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells 

NLS nuclear localisation sequence 

nM nanomolar 

NPC Nuclear Pore Complex 

NR nucleoplasmic ring 

NP-40 Nonidet™ P-40 

NTR nuclear transport receptor 

Nup nucleoporin 

Nxf1 nuclear export factor 1  

oC degrees Celsius 

ONM outer nuclear membrane 

ORF Opening reading frame 

p p value 

p/s penicilin/streptomycin 

PAGE polyacrylamide gel electrophoresis 

PAN polyadenylated nuclear RNA 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PEL primary effusion lymphoma 



 xx 

pgRNA pre-genomic RNA 

polyA polyadenylated 

POMs 
integral membrane proteins of the pore membrane domain of the nuclear 
envelope  

PPI protein-protein interactions 

qPCR quantitative polymerase chain reaction 

qRT-PCR quantitative reverse transcription polymerase chain reaction 

Ran Ras-related nuclear protein 

RBP-jk Recombining binding protein suppressor of hairless kappa 

RCC1 regulator of chromosome condensation 1 

RNA ribonucleic acid 

RNase ribonuclease 

ROD reduction of dimensionality 

rpm revolutions per minute 

RPMI Roswell Park Memorial Institute media 

RRE RTA response element 

RTA replication and transcription activator 

Scr scrambled siRNA 

SDS sodium dodecyl sulphate 

shRNA short hairpin ribonucleic acid 

SILAC Stable isotope labelling with amino acids in cell culture  

siRNA short or small interfering ribonucleic acid 

SPPLAT Selective proteomic proximity labelling using tyramide 

ssRNA single stranded RNA 

TBS tris buffered saline 

TBS-T tris buffered saline and Tween® 20 

TEMED tetramethylethylenediamine 

TMT tandem mass tagging 

TPA 12-O-tetradecanoylphorbol-13-acetate  

TREx TREx BCBL-1-Rta 



 xxi 

USA United States of America 

UTR untranslated region 

v/v volume per unit volume 

VSV Vesicular stomatitis virus 

vFLIP viral (FADD-like IL-1β-converting enzyme)-inhibitory protein 

vIL viral interleukin 

VPS4A Vacuolar protein sorting-associated protein 4A 

w/v weight per unit volume 

μg microgram 

μL microlitre 

μm micrometre 

 

  



 xxii 

Bases 

A adenine 

C Cytosine 

G guanine 

T thymine 

 

Amino Acids 

Alanine Ala A 

Arginine Arg R 

Asparagine Asn N 

Aspartate Asp D 

Cysteine Cys C 

Glutamate Glu E 

Glutamine Gln Q 

Glycine Gly G 

Histidine His H 

Isoleucine Ile I 

Leucine Leu L 

Lysine Lys K 

Methionine Met M 

Phenylalanine Phe F 

Proline Pro P 

Serine Ser S 

Threonine Thr T 

Tryptophan Trp W 

Tyrosine Tyr Y 

Valine Val V 



1 
 

 

 

 

 

 

 

 

Chapter 1 
~ 

Introduction 
 

  



2 
 

1 Introduction 

1.1 Herpesviriales 

1.1.1 Classification of Herpesviruses 

Viruses are a form of infectious agent that must reproduce within the living cells 

of a host organism. The origins of viruses are still disputed, but across all domains 

of life infectious agents that exhibit viral characteristics are observed, with many 

sharing key genes for viral replication and morphogenesis (Koonin et al., 2006).  

Herpesviruses are a morphologically distinct family of DNA virus that belong to 

the Herpesviriales order. The Herpesvirales order was established in 2009 by the 

International Committee on Taxonomy of Viruses (ICTV) in line with 

recommendations from the Herpesviridae study group. The Herpesvirales order 

contains three families of herpesviruses that are related to one another: 

Herpesviridae family, containing viruses that infect mammals, birds and reptiles; 

Alloherpesviridae family, incorporating viruses that infect fish and frogs; and the 

Malacoherpesviridae family, which includes viruses that can infect bivalves 

(Eberle et al., 2013). 

The largest of these families Herpesviridae is split into three further sub-families: 

alpha-, beta-, gammaherpesvirinae (Figure 1.1) (Matthews, 1979). Classification 

of viruses by the ICTV followed the basic principal that “a virus species is a 

polythetic class of viruses that constitutes a replicating lineage and occupies a 

particular ecological niche” until the advent of DNA sequencing techniques (Van 

Regenmortel et al., 1991; Davison, 2010). With the expansion of advanced 
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genomic techniques and metagenomics, the classification of viruses is moving 

further away from the polythetic rule as the size of the virome becomes one that 

cannot fully establish all the distinct ecological niches that viruses inhabit 

(Simmonds et al., 2017). 

 

Figure 1.1 The Phylogenetic tree of Herpesviridae. An outline of the evolutionary relationship of 
Herpesviridae using amino acid sequence alignment. Human herpesvirus 8 or Kaposi’s sarcoma associated 
herpesvirus is indicated with a red circle. Adapted from (McGeoch et al., 2008a). 

 

1.1.1.1 Alphaherpesvirinae 

The three main sub-families of Herpesviridae diverged between 180-210 million 

years ago (McGeoch et al., 1995). The Alphaherpesvirinae subfamily is believed 

Species Genus Sub-family 
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to have diverged first from the herpesvirus common ancestor. Within the 

Alphaberpesvirinae exist a number of different genuses originally separated by 

their infectious host. The most clinically relevant of these genuses are the 

Simplexvirus genus containing Herpes simplex 1 and 2 (human herpesviruses 

(HHV) 1 and 2) and the Varicellovirus genus containing Varicella-Zoster Virus 

(HHV-3). The predominant features of the Alphaherpesvirinae sub-family are the 

ability to infect a wide host cell range, an efficient and rapid reproductive cell cycle 

and the ability to establish latent infections in sensory ganglia. 

Alongside the above-mentioned human pathogens there are several important 

animal pathogens within the Alphaherpesvirinae sub-family. These include: 

another member of the Varicellovirus genus pseudorabies virus (Suid 

herpesvirus-1 (SuHV-1)), which primarily infects pigs but has also been shown to 

infect cattle, dogs, cats and horses; Marek’s disease virus also known as Gallid 

herpesvirus 2, an example of a member of the Mardivirus genus, which infects 

chicken and turkeys; and equine herpesvirus 1 (another member of the 

Varicellovirus genus), which causes encephalomyelitis and respiratory disease 

in horses (Woźniakowski and Samorek-Salamonowicz, 2015). 

1.1.1.2  Betaherpesvirinae 

Current approximations suggest the Betaherpesvirinae sub-familiy diverged 

slightly later than the Alphaherpesvirinae within the 180-210 million years 

divergence time frame (Davison, 2002). Betaherpesvirinae have a far more 

restrictive host range compared to Alphaherpesvirinae. Their reproductive cycle 

is also longer, with infected cells often enlarging, referred to as “cytomegaly”. 

These viruses can establish a latent infection in cells of the secretory glands, 
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reticuloendothelial system and the kidneys (Whitley, 1996). Betaherpesvirinae 

examples include human cytomegalovirus (HCMV, HHV-5) of the 

Cytomegalovirus genus and other human pathogens of the Roseolovirus genus 

(HHV-6A, HHV-6B and HHV-7). The Betaherpesvirinae sub-family also includes 

animal pathogens of the rodent family in the genus Muromegalovirus and of the 

elephant family in the genus Proboscivirus. 

1.1.1.3 Gammaherpesvirinae 

The Gammaherpesvirinae sub-family is approximated to follow a similar 

evolutionary divergence timeline as Betaherpesvirinae (Davison, 2002). 

However, Gammaherpesvirinae have the most restricted infectious range 

primarily infecting lymphocytes although some members can infect endothelial 

tissues. The most prominent members of the Gammaherpesvirinae sub-family 

are the human pathogens Kaposi’s sarcoma-associated herpesvirus (KSHV, 

HHV-8), a member of the Rhadinovirus genus, and Epstein-Barr virus (EBV, 

HHV-4), of the Lymphocrytovirus genus. Another member of the Rhadinovirus 

genus, murid herpesvirus 68 (MHV68), is an important model system for 

gammaherpesvirus study. 

1.1.2 Virion structure 

The herpesvirus virion has a distinct morphology that is shared across the order 

Herpesvirales (Figure 1.2). All herpesvirus genomes consist of a single large, 

linear double-stranded DNA molecule, that is contained within an icosahedral 

(T=16) capsid. This capsid is formed from 162 capsomers, 150 hexons and 12 

pentons, giving an approximate overall diameter of 125-130 nm. One pentameric 
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capsomere is replaced by the portal vertex, the crucial site of genome entry and 

exit (Chang et al., 2007; Deng et al., 2007). The viral capsid is surrounded by a 

tegument layer, an amorphous protein coat consisting of both cellular and viral 

proteins. Proteins within the tegument aid the virus rapidly upon viral entry in a 

variety of roles such as targeting the capsid to the nucleus, cytoskeletal 

reassembly, and intiaition of viral and host gene expression (Kelly et al., 2009; 

Penkert and Kalejta, 2011). Enclosing the tegument is the viral envelope, a lipid 

bilayer that contains a number of viral glycoproteins that facilitate host cell binding 

and membrane fusion (Mettenleiter et al., 2009). 

 
Figure 1.2 Herpesvirus virion structure. Schematic of herpesvirus virion with structural components 
highlighted. Figure taken from Swiss Institute of Bioinformatics ViralZone.ExPASy.org. 

 

1.1.3 Genomic structure 

The herpesvirus genome is a single double-stranded DNA molecule with a size 

range of 125-250 kbp. Comparative genomic analysis of herpesviruses breaks 

their genome into sections of unique and repeat regions. These repeat regions 
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(103-104 bp in size) are found in many herpesvirus genomes and different 

patterns of their placement between unique regions has led to the identification 

of six genome types (Figure 1.3). Genomes of Class A, consist of a unique 

sequence flanked by a direct repeat region an example of which is HHV-6. Class 

B genomes, such as KSHV, also exhibit a flanked unique sequence with directly 

repeated sequences at the genome termini present in multiple copy number. 

Class C, EBV being the predomiant example, is similar to Class B with its multiple 

copy number terminal direct repeats, but also contains an internal set of direct 

repeats. Class D genomes contain two unique regions each flanked by a set of 

inverted repeat sequences, an example of which is VZV. HSV-1 and 2 have class 

E genomes which exhibit two unique regions with larger repeat regions around 

the large unique sequence. Class E genomes also contain a sequence that 

contains a small section of repeats at the end of genome termini and at the 

junction between the large and small repeat region. Finally, Class F represents 

all herpesvirus genomes that do not include repeats characterised in the other 

classes. Crucially, the genome structure does not correspond to evolutionary 

relatedness and all genome types occur within Alpha-, Beta-, and 

Gammaherpesvirinae. 
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Figure 1.3 The Arrangement of Herpesvirus Genomes. Layouts of forms of herpesvirus genomes with 
unique (single lines) and repeat (boxes with relative directionality) sequences. For types B and C the 
numbers of repeats are variable. Adapted from (McGeoch et al., 2008b). 

 

1.1.4 Life cycle 

The first moment where a virus moves from an inanimate structural arrangement 

of lipids, nucleic acids, polysaccharides and proteins to an operational “living” 

entity is virion binding at the cell surface. Viral surface glycoproteins are essential 

for viral binding and entry, and in Herpesvirales are designated gL, gH and gB. 

The first contact interaction between herpesvirus and a cell is often via a host cell 

glycosaminoglycan, such as heparan sulphate (with the exception of EBV) 

(Shukla and Spear, 2001). This is a reversible reaction that is not essential to 

viral entry but has been shown to improve the efficiency of viral entry. This 

interaction with heparan sulphate anchors the virus onto the cell membrane, 

increasing its probability of interacting with additional cell surface receptors that 

will initiate viral fusion (Figure 1.4). Once a viral glycoprotein binds to the fusion 

receptor, the interaction is irreversible and the virus begins to fuse with the cell 

membrane (Spear and Longnecker, 2003). In KSHV, the viral glycoprotein K8.1A 

is responsible for the initial binding of the virus to cells via heparan sulphate (Luna 

et al., 2004). After fusion the capsid and viral tegument proteins are released into 

the cytoplasm. The capsid is trafficked to the nucleus via the microtubule network, 

which is stabilised by the action of tegument proteins (Sodeik et al., 1997; 

Naranatt et al., 2005). The capsid disassembles when it reaches the nuclear pore 

complex releasing the viral genome in linear form. This enters the nucleus and is 

circularised by covalent linkage at the head and tail of the DNA molecule 

(Poffenberger and Roizman, 1985; Garber et al., 1993; McVoy and Adler, 1994). 
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Figure 1.4 Viral entry mechanisms. a) Binding and fusion steps at the plasma membrane. Initial 
interactions between envelope glycoproteins (brown) and membrane receptors (purple) tether the virus to 
the plasma membrane, whilst other interactions trigger conformational changes that mediate membrane 
fusion (blue receptors and yellow glycoproteins). The fusion of viral and cellular membranes creates a 
hemifusion intermediate followed by full fusion. b) Alternate routes of entry, some herpesviruses are able to 
enter the cell via either fusion with the plasma membrane or fusion with the endocytic membrane after 
endocytosis. Taken from (Connolly et al., 2011). 

 
1.1.4.1  Latency 

The key characteristic of herpesviruses is their ability to establish a quiescent 

latent infection in order to maintain a long-term persistent infection. During this 

latent state the virus remains dormant and does not produce new virions. The 

sites of latency differ between the subfamilies of Herpesviridae with 

Alphaherpesvirinae such as HSV and VSV establishing a latent reservoir in 

neuronal cells, Betaherpesvirinae such as HCMV establish their latency in 

myeloid cells whilst Gammaherpesvirinae such as KSHV do so in B lymphocytes. 

How herpesviruses establish latency is poorly understood, however within the 

model herpesvirus system of HSV-1 it has been demonstrated that the 
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establishment of latency is a direct result of a failure to initiate immediate-early 

genes expression (Conn and Schang, 2013; Lee et al., 2016). This leads to 

histone deposition on the viral genome which establishes the latent 

transcriptional state (Deshmane and Fraser, 1989). During latency, 

herpesviruses transcribe a subset of genes called latency associated transcripts 

(LATs) that maintain the viral episome with minimal disruption to cell survival 

(Stevens et al., 1987). This ability to exist in a latent form is a key aspect of 

herpesvirus biology and the etymology of herpesviruses. Where the prefix 

herpes- is derived from the ancient greek verb hérpein, meaning to creep, this 

reflects the trait of establishing a dormant, creeping latent infection. 

1.1.4.2 Lytic 

The reactivation of a latent virus commits it to the second phase of the 

herpesvirus lifecycle, lytic replication (Figure 1.5). During lytic replication, an 

expression cascade is triggered leading to the full expression of the viral gene 

complement. This occurs in three different temporal stages of expression: 

immediate-early, delayed-early and late gene expression. Immediate-early genes 

are produced rapidly after the trigger of reactivation, their protein products initiate 

the transcription of delayed-early genes and begin to subvert host cell processes. 

Before DNA synthesis can begin, delayed-early genes are translated, helping 

concert efforts to drive the cell to produce nascent virions over regular cellular 

processes and begin viral DNA synthesis. The viral genome that was circularised 

when it entered the nucleus is replicated via a rolling circle style mechanism. This 

involves large-scale nuclear reorganization to form replication compartments, 
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where concatamers are produced from a single viral episome and then cleaved 

off to begin the packaging process (Reviewed in (Weller and Coen, 2012)).  

The packaging process is completed in the nucleus prior to virion maturation, 

which occurs through a series of envelopment and de-envelopment stages. This 

begins with capsids in the nucleus budding into the perinuclear space through 

the inner nuclear membrane (INM). For primary envelope-mediated nuclear 

egress to occur all herpesviruses encode two proteins that make up the nuclear 

egress complex (NEC) (Mettenleiter et al., 2013). In HSV-1, these are the 

proteins pUL34 and pUL31 which form a heterodimer which is essential for 

successful viral egress (Sam et al., 2009). The NEC recruit conserved herpesviral 

protein kinases (CHPKs) such as UL13, UL97 and BGLF4 (from HSV-1, HCMV 

and EBV respectively) to disassemble the nuclear lamina (Lee et al., 2008; 

Hamirally et al., 2009). This gives capsids access the the INM where the NEC 

hijacks cellular endosomal sorting complex required for transport-III (ESCRT-III) 

proteins (Arii et al., 2018). The ESCRT-III complex is responsible for a diverse 

number of cellular membrane-related functions including multivesicular body 

(MVB) formation, cytokinesis, and viral budding (Alonso Y Adell and Teis, 2011; 

Morita et al., 2011; Vita and Broadie, 2017). The HSV-1 NEC appears able to 

recruit ESCRT-III during nuclear egress through an interaction with ESCRT-III 

adaptor ALIX which is then able to recruit CHMP4 proteins to the INM at sites of 

HSV-1 virion envelopment (Arii et al., 2018). This envelope includes several viral 

glycoproteins such as gB and gH that promote de-envelopment of the perinuclear 

capsid by fusion with the ONM (Farnsworth et al., 2007). After de-envelopment, 

the capsid is released into the cytoplasm where tegument proteins are acquired 

by the capsid through a variety of processes including during capsid transport by 
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microtubules and within the trans-Golgi network (TGN) where the second 

envelopement step occurs (Luxton et al., 2006; Loomis et al., 2006). Viral 

glycoproteins are essential for secondary envelopement at the TGN along with 

the ESCRT-III complex which leads to a final enveloped virion within a TGN 

vesicle (Brack et al., 2000; Farnsworth et al., 2003; Pawliczek and Crump, 2009). 

Herpesviruses disrupt the TGN transport network during lytic replication which 

has been suggested to prevent recycling of TGN-derived vesicles, promoting 

forward transport to the plasma membrane (Wisner and Johnson, 2004). Capsid-

containing vesicles are then able to exocytose at the plasma membrane releasing 

newly produced virions. 

 
Figure 1.5 Herpesvirus lytic replication. a) After infection the virion releases the viral DNA which enters 
the nucleus and is rapidly circularised. b) Reactivation of the virus causes the expression of immediate-early 
(IE) genes. c) IE proteins move back into the nucleus and initiate the production of early (E) genes. d) DNA 
replication stimulates the production of late (L) genes, which encode key virion proteins. e,f) Late proteins 



13 
 

are reimported into the nucleus and assemble into nascent virions with newly replicated viral genomes. g) 
Virion egress via a multistep process, obtaining tegument proteins in the cytoplasm before final egress as 
the plasma membrane. Taken from (Knipe and Cliffe, 2008). 

 
1.2  Gammaherpesvirinae 

The Gammaherpesvirinae sub-family consists of four genera: 

Lymphocryptovirus, Macavirus, Percavirus, Rhadinovirus (Davison, 2010). The 

latent infection of Gammaherpesvirinae occurs in either B- or T-lymphocytes; 

however, their lytic infection occurs in fibroblasts or epithelial cells. These viruses 

all have a linear double-stranded DNA genome, the structure of which contains a 

large central region containing most of the viral genes. The ends of the genome 

are capped by variable numbers of direct repeat sequences required for genome 

circularisation during latency. 

The propensity to establish a latent infection in dividing lymphocytes means 

Gammaherpesvirinae have evolved a variety of mechanisms to ensure genome 

propagation without cell lysis. These include driving cell cycle progression, 

repressing antiviral signals and production of anti-apoptotic factors (Li et al., 

1997; Li et al., 1998; Sun et al., 2003). This manipulation of cell cycle and 

apoptotic signalling is linked to the ability of many gamma-herpesviruses to 

induce neoplasia and transform cells in culture. EBV and KSHV are two such 

human gamma-herpesviruses that are capable of causing multiple cancers and 

lymphoproliferative disorders. 

1.2.1 Epstein-Barr Virus 

Epstein-Barr virus (EBV) or human herpesvirus 4 is a gammaherpesvirus of the 

Lymphocryptovirus genus. The virus was first identified in 1964, after Michael 
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Epstein and Yvonne Barr visualised a section of lymphoblasts derived from 

Burkitt’s Lymphoma. This had been prompted after Epstein attended a lecture in 

1961 given by Denis Burkitt on the epidemiology surrounding the eponymous 

lymphoma in Africa. Epstein and Barr noted in their paper the “overall appearance 

of the virus resembles herpes simplex” and, after further collaboration with 

Werner and Gertrude Henle in Philadelphia, they observed viruses from “EB” (the 

name denoting the Burkitts lymphoma derived cell lines) and were confirmed as 

a new human herpesvirus (Epstein et al., 1964; Epstein et al., 1965). The virus 

was first described as Epstein-Barr Virus (after the cell lines from which it was 

first identified) and linked to the more common infection infectious mononucleosis 

by the Henle laboratory in 1968 (Henle et al., 1968).  

Structurally, EBV is a typical gammaherpesvirus with a linear double stranded 

DNA genome of 184 kbp. It encodes 85 genes that are expressed dependent on 

the lifecycle stage of the virus (Baer et al., 1984; de Jesus et al., 2003). Like other 

herpesviruses, the EBV lifecycle is split between a quiescent latent phase and a 

productive lytic phase. Whilst our understanding of EBV has improved 

significantly since its discovery in the 1960s, it remains a serious human 

pathogen due to its aetiological relationship with a number of malignancies such 

as Burkitt’s lymphoma, nasopharyngeal carcinoma, post-transplant 

lymphoproliferative disease, Hodgkin’s lymphoma and gastric carcinoma. 

Estimates in 2010 suggested that EBV-related cancers led to the deaths of 

around 143,00 people worldwide per year (a figure described as an 

underestimate), highlighting the continued relevance in understanding EBV and 

how it leads to cancer (Khan et al., 2014). 
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1.2.1.1 EBV Life cycle 

EBV forms a highly persistent infection (~95% global seroprevalence) due to its 

ability to infect the B-cell reservoir. It infects B-cells via the CD21 B-cell surface 

molecule but can also infect other cell types such as epithelial cells, 

mesenchymal cells and T-cells. Upon the initial infection of a naïve B-cell, EBV 

initiates the latency III programme with the full complement of latent viral proteins 

and RNAs expressed. This induces B-cells to transform into proliferating blast 

cells, establishing an infection-mediated lymphoblastoid cell line (Thorley-

Lawson, 2001). Within the proliferating blast cell the virus restricts its protein 

expression to latency II, which stimulates the formation of germinal centres by 

inducing infected B cell differentiation into latent B memory cells (which can be 

attributed to the viruses high persistence) (Casola et al., 2004). In B memory 

cells, EBV restricts its latent programme even further to latency I where a minimal 

number of viral proteins and RNAs are produced. Finally, these resting EBV 

positive, B cells can enter latency 0, a state with no viral protein production at all 

(Young and Rickinson, 2004).  

All EBV-induced malignancies are driven by viral latency however the alternate 

expression programmes described above are responsible for different 

pathologies (Figure 1.6). After latency 0, where no viral proteins are produced, 

latency I is the most restricted of EBV latency programmes. During latency I 

EBNA1 is the only viral protein produced, along with viral miRNAs and virally 

encoded small RNAs (EBERs) (Rowe et al., 1987; Yajima et al., 2005). Latency 

I is observed in all cases of endemic Burkitt’s lymphoma, the exact mechanism 

by which EBV induces Burkitt’s lymphoma is not well understood with some 
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studies showing EBNA1 can promote cell survival and others showing the 

contrary and it simply maintains the viral genome (Kang et al., 2001; Kennedy et 

al., 2003). Latency II, which is found in tumours in Hodgkin’s lymphoma, T cell 

and Natural Killer (NK) cell carcinomas, is characterised by the expression of 

EBNA1, latent membrane protein (LMP) 1, 2A, 2B along with EBERs and viral 

miRNAs. LMP1 is a viral oncogene capable of promoting cellular proliferation and 

survival (Pratt et al., 2012). LMP2A and 2B act together to elicit a B cell receptor 

(BCR)-like signalling cascade that promotes cell survival and proliferation 

(Fruehling and Longnecker, 1997; Lynch et al., 2002). Latency III, has the largest 

expression complement with all viral nuclear antigens produced (EBNA- 1, 2, 3, 

3A, 3B, 3C, leader protein), along with the LMPs, EBERs and viral miRNAs. 

These additional EBNAs have roles in promoting cell growth and survival 

(Tomkinson et al., 1993; Hsieh and Hayward, 1995). Latency III is observed in 

lymphomas in immunodeficient individuals whether post-transplant or in AIDS 

patients (Kutok and Wang, 2006). 

 

Figure 1.6 EBV latency programmes and associated disorders. Key viral proteins and non-coding RNAs 
for each latency programme along with associated disorders are highlighted. 

 

1.2.2 Kaposi’s sarcoma-associated herpesvirus 
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Human herpesvirus 8 (HHV-8) was initially discovered as Kaposi’s sarcoma-

associated herpesvirus (KSHV). Kaposi’s sarcoma (KS) was first described by 

Hungarian physician and dermatologist Moritz Kaposi in 1872 as “idiopathic 

multiple pigmented sarcoma of the skin” (Kaposi, 1872). Until the 1980s, the 

incidence of KS was very rare (at between 0.02 and 0.06 per 100,000 people), 

with greater prevalence in middle-aged to elderly men of Mediterranean 

European or Jewish origin (Safai and Good, 1981). However, with the onset of 

the AIDS epidemic in the early 1980s, when unprecedented numbers of AIDS 

patients began to present with KS, careful epidemiological research at this time 

identified that KS may be caused by a sexually transmitted infectious agent (Beral 

et al., 1990). It was not until 1994 that DNA fragments of a herpesvirus were 

isolated from a KS tumour using representational difference analysis of a 

patient’s genomic DNA in both unaffected tissue and tumour tissue (Chang et al., 

1994). Subsequently, KSHV was linked to multicentric Castleman’s disease 

(MCD), an atypical lymphoproliferative disorder, and primary effusion lymphoma 

(PEL), a B-cell lymphoma (Soulier et al., 1995; Cesarman et al., 1995). The viral 

genome was fully sequenced in 1996, yielding a ~165 kb viral genome, with 81 

open reading frames (ORF), many of which were functional homologues of 

herpesvirus saimiri (HVS), an old world monkey gammaherpesvirus (Russo et 

al., 1996) (Figure 1.7). Furthermore, KSHV also encodes 25 mature miRNAs, 

long non-coding RNAs (lncRNAs) and, recently, a number of upstream and small 

ORFs have been identified (Sun et al., 1996; Cai et al., 2005; Arias et al., 2014). 
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Figure 1.7 KSHV genome map. With ORF locations highlighted for each temporal phase of KSHV lifecycle. 
KSHV miRNA cluster also included. Adapted from (Coscoy, 2007) after data in (Arias et al., 2014) and 
(Paulose-Murphy et al., 2001).  

 

With the formalisation of KSHV as the key aetiological agent responsible for KS, 

PEL and MCD efforts began to understand the epidemiology of the virus. KSHV 

does not ubiquitously infect the world’s population as seen with EBV. A 

compilation of seroprevalence data in 2010 showed highest seroprevalence in 

sub-saharan Africa (>50%) (Figure 1.8). However, in Northern Europe and the 

USA seroprevalence is much lower at <10% and in the Mediterranean and South 

America seroprevalence is at 10-30% (Mesri et al., 2010). Interestingly, recent 

studies of the KSHV and KS incidence in Asia has found a marked variation in 

the seroprevalence of the virus across the continent with high levels of 
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seroprevalence in the Chinese autonomous region of Xinjiang, once a staging 

post on the ancient Silk Road between Europe and China, as well as high levels 

in Taiwan and Cambodia of between 10-30%. This is compared with very low 

levels of seroprevalence in Japan and Thailand of <10% (Zhang and Wang, 

2017).  

 

Figure 1.8 KSHV global seroprevalence data. % KSHV seroprevalence mapped per country with countries 
lacking data coloured grey. Adapted from (Mesri et al., 2010) with additional data from (Zhang and Wang, 
2017). 

 

1.2.2.1 KSHV associated diseases 

KSHV has been identified as the aetiological agent in three malignancies: 

Kaposi’s sarcoma (KS), multicentric Castleman’s disease (MCD) and primary 

effusion lymphoma (PEL) (Chang et al., 1994; Soulier et al., 1995; Cesarman et 

al., 1995). 

1.2.2.1.1 Kaposi’s Sarcoma 

Kaposi’s sarcoma presents as red-brown macules on the skin that range in size 

from several millimetres to centimetres. KS is categorised into 4 forms: classic 
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KS, AIDS-associated KS, Endemic KS and Iatrogenic KS (Dezube, 1996). 

Classic KS is a rare presentation of the disease in elderly Mediterranean men, 

with lesions predominantly forming on the lower extremities. Patients often live 

with the disease for 10 years or more and typically do not die of KS (Hengge et 

al., 2002). AIDS-associated KS is an extremely aggressive form of the disease 

with lesions developing multifocally on the upper body, head and neck (Hengge 

et al., 2002). It quickly develops from lesions to tumours with tumour 

dissemination to organs rapidly leading to high mortality. KS is now the most 

common neoplasm in homosexual and bisexual men with AIDS. The frequency 

of this form of KSHV exploded during the AIDS epidemic in the early 1980s with 

incidence rates in homosexual men in San Francisco USA at 40% (Martin et al., 

1998; Goedert, 2000). HIV-1 infection appears to exacerbate KSHV 

pathogenesis through the HIV-1 tat protein that drives IL-8 expression promoting 

angiogenesis that contribute to KS tumour formation (Vogel et al., 1988; Lane et 

al., 2002). Endemic KS or African KS is predominantly observed in young men 

and young children, with a high prevalence across equatorial Africa. This was 

proposed to relate to the barefoot exposure to volcanic soils and subsequent 

uptake of aluminosilicates inducing a level of immunosuppression (Ziegler et al., 

1984; Wabinga et al., 1993). However, with the outbreak of the AIDS epidemic, 

KS also reached epidemic proportions in Africa rendering it difficult to study 

African KS as an independent disease. Iatrogenic KS is an unusual clinical 

presentation of KS that occurs on the induction of immunosuppressive therapy. 

It can occur chronically or rapidly onset and is an emerging clinical concern for 

those who have received organ transplants (Hengge et al., 2002). Intriguingly, 

studies have shown that iatrogenic KS is reversible on the removal of 
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immunosuppression (Hengge et al., 2002). Whilst high active anti-retroviral 

therapy (HAART) has proven to be highly effective at reversing the effects of 

AIDS and thus KS, seroprevalence rates are still high among certain 

demographics, especially in Africa. Furthermore, the emergence of iatrogenic KS 

in combination with an ageing population in many Western countries highlights 

the critical importance of continuing research into KS and KSHV to reduce 

mortality (Figure 1.9). 

 
Figure 1.9 Kaposi’s sarcoma incidience rates worldwide. Follows the levels of KSHV seroprevalence 
shown above with highest KS rates in central Africa. No data available for countries in white. Taken from 
(Mesri et al., 2010). 

 

1.2.2.1.2 Kaposi’s sarcoma-associated immune reconstitution inflammatory 

syndrome (KS-IRIS) 

Kaposi’s sarcoma-associated immune reconstitution inflammatory syndrome 

(KS-IRIS) is a form of immune restoration disease (IRD) that occurs in patients 

treated with HAART. IRDs are rare disorders that develop when the HAART 
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restored immune system stimulates an immunopathological reaction leading to 

disease. Whilst IRDs are more commonly seen with bacteria such as Cryptococci 

and mycobacteria, they have also been observed in patients with latent HSV-1 

infection and hepatitis B (French et al., 2004). The establishment of KS as an 

IRIS-associated disease comes from observations in Africa where a proportion 

of patients who successfully responded to HAART treatment for HIV went on to 

develop KS (Bower et al., 2005). Whilst KS-IRIS is not always fatal, it can 

complicate a patient’s recovery. Furthermore, the increasing use of HAART to 

treat HIV-1 in Africa makes KS-IRIS an emerging clinical problem (Martin et al., 

2009). 

1.2.2.1.3 Multicentric Castleman’s Disease 

Multicentric Castleman’s Disease (MCD) is a subtype of Castleman’s Disease, a 

group of lymphoproliferative disorders characterised by lymph node enlargement. 

Whilst there are 3 main subtypes of Castleman’s disease, KSHV has only been 

shown to cause MCD (Soulier et al., 1995). KSHV-MCD saw a resurgence during 

the AIDS epidemic with a strong correlation of MCD cases in a HIV context being 

KSHV-associated. The pathophysiology of KSHV inducing MCD is proposed to 

involve inflammatory dysregulation stimulated by lytic gene product viral homolog 

of interleukin-6 (vIL-6) (Polizzotto et al., 2012). Whilst the exact mechanism by 

which vIL-6 drives MCD development is unknown overexpression of IL-6 leads to 

MCD-like symptoms in mice (Brandt et al., 1990).  

1.2.2.1.4 Primary Effusion Lymphoma 

Primary effusion lymphoma (PEL) is a B-cell lymphoma that leads to the 

overproduction of malignant B-cells that invade body cavities such as the pleural 
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space. KSHV is required for PEL to develop and is often found as a complication 

of HIV-1 induced immune dysfunction (Cesarman and Knowles, 1999; Chen et 

al., 2007). PEL is highly aggressive and often found at a late stage of lymphoma 

progression, leading to very poor clinical outcomes for those diagnosed, with only 

a 52% 1-year survival rate in those diagnosed at an early stage (El-Fattah, 2017).  

1.2.2.2 Life cycle 

The KSHV life cycle follows the typical herpesvirus pattern as described above. 

KSHV encodes five conserved glycoproteins gB, gL, gH, gM, and gN. 

Furthermore, KSHV encodes several unique lytic cycle associated glycoproteins 

K8.1A, K8.1B, K1, K14, K15 KSHV glycoprotein gB binds heparan sulphate, but 

also contains the RDG motif which binds specifically to integrin α3β1, unlike other 

herpesvirus gBs (Akula et al., 2002). This targeting of integrin α3β1	broadly 

correlates with KSHV target cells, although it is not known whether virus binding 

to integrin facilitates fusion as gH, gL and gB have been shown to be required for 

KSHV fusion (Pertel, 2002). The attachment of the virus at the cell surface is then 

followed by entry and internalisation into the cell which is shown to be rapid 

reaching a peak within 60 minutes post infection (Krishnan et al., 2004). The 

interaction of viral glycoprotein gB with host receptors induces focal adhesion 

kinase (FAK) stimulating cellular signalling pathways to aid with actin 

rearrangements for virus internalization (Sharma-Walia et al., 2004; Veetti et al., 

2010) (Reviewed in (Chakraborty et al., 2012)). Once the viral envelope has fused 

with the cell membrane the internalized capsids are then trafficked via the host 

microtubule network to the nuclear periphery. The activation of FAK signalling by 

gB leads to downstream activation of  Rho and Rac, via intermediate signalling 
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steps by Src and phosphoinositide 3-kinase (PI3K), which lead to the stabilization 

of microtubules for the passage of capsids to the nucleus (Naranatt et al., 2005). 

Upon reaching the nuclear periphery, the capsid will release its genome cargo 

into the nucleus. The exact mechanism of KSHV genome delivery at the nuclear 

pore is not yet fully understood; however, the HSV-1 capsid (which is of a 

comparable size and diameter to KSHV) has been shown to dock to the nuclear 

pore via nucleoporins Nup214 and Nup358 (Copeland et al., 2009; Pasdeloup et 

al., 2009). A currently unidentified triggering event induces the uncoating of the 

capsid and the viral genome translocates through the nuclear pore complex. It is 

theorized that the efficiency and speed of the translocation process is driven by 

either pressurization of the viral genome during packaging, with electrostatic 

forces between the DNA and capsid proteins maintaining pressurization, or by 

immediate transcription of the genome providing a mechanical force to pull the 

viral genome into the nucleus (Reviewed in (Liashkovich et al., 2011)). Upon entry 

into the nucleus, the KSHV genome is in a linear double-stranded conformation. 

A crucial step before the establishment of latency is genome circularisation, the 

exact mechanism by which KSHV circularises its genome is poorly understood 

but may relate to the initiation of a DNA damage response (DDR) (Lieberman, 

2013). This occurs quickly after nuclear entry by the viral genome through the 

activation of ataxia-telangiectasia mutated kinase (ATM) and an increase in 

phosphorylation and protein level of histone 2AX (H2AX). This culminates in the 

formation of phosphorylated H2AX (γH2AX) foci which colocalise with the viral 

genome and has been hypothesised to assist in the recruitment of chromatin 

modifier proteins that are required for the establishment of viral latency (Singh et 

al., 2014).  
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1.2.2.2.1 Latency  

Following de novo infection it has been shown that the viral transactivator RTA is 

expressed immediately activating the Latency-associated-nuclear antigen 

(LANA). LANA expression downregulates RTA and represses its expression, a 

critical step in the establishment of latency (Lan et al., 2005). During a latent 

infection, KSHV is maintained as high copy number, circular episomes (~50 per 

cell) within the nucleus with minimal protein expression. Latently expressed 

genes predominantly feature around the latency locus which encodes 

ORF73/LANA, ORF72/v-Cyclin, ORF71/v-Fas-associated death domain-like 

interleukin-1β-converting enzyme-inhibitory protein (vFLIP) and K12 along with 

12 virally encoded microRNAs (Rainbow et al., 1997; Kedes et al., 1997; Dittmer 

et al., 1998; Sadler et al., 1999; Burýsek and Pitha, 2001). As well as repressing 

RTA, LANA acts to tether the viral episome to host chromosomes during mitosis, 

ensuring proper segregation and partition into daughter cells (Ballestas et al., 

1999). LANA has also been shown to maintain latency by inhibiting expression of 

the viral transactivator protein RTA (ORF50) (Lu et al., 2006). v-Cyclin is a viral 

cyclin homologue that forms a complex with cyclin-dependent kinase 6 and 

phosphorylates retinoblastoma protein (pRB) in order to dysregulate the cell cycle 

and promote the expansion of KSHV-infected cells (Godden-Kent et al., 1997; 

Verschuren et al., 2004). vFLIP is a viral homolog of cFLIP that inhibits Fas ligand 

induced apoptosis by preventing procaspase-8 activation (Thome et al., 1997). 

vFLIP also activates NF-kB pathways promoting cell survival (Matta and 

Chaudhary, 2004). As such these genes contribute to the primary aims of latency: 
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to maintain the viral genome and ensure transmission to host daughter cells 

during cell division in order to maintain viral copy number. 

1.2.2.2.2 Lytic Replication 

Latently infected cells transition to lytic replication can be triggered by a range of 

stimuli, including hypoxia, co-infection with HIV-1, oxidative stress and 

inflammatory cytokines (Mercader et al., 2000; Davis et al., 2001; Merat et al., 

2002; Ye et al., 2011). All latent-lytic switch events promote the expression of the 

viral transactivator protein RTA that initiates a temporally regulated sequence of 

gene expression which culminates in the assembly and egress of nascent virions 

and cell death. The induction of lytic replication leads to a cascade of changes 

within the cell, initiated by the virus, to subvert cellular machinery to achieve its 

key evolutionary goal: replication. In KSHV, lytic replication is marked by three 

distinct temporal stages of gene expression: immediate-early, delayed-early and 

late. At the apex of this transcriptional cascade is RTA (ORF50), an immediate-

early transcript that is sufficient and necessary for successful viral lytic replication 

(Lukac et al., 1998; Sun et al., 1998). In vitro phorbol esters are commonly used 

to induce lytic replication of KSHV-infected cell lines via a proposed activation of 

ERK activation leading to the production of the transcription factor c-Fos and c-

Jun which come together to form the AP-1 complex that promotes RTA 

expression (Cohen et al., 2006).  

Reactivation of KSHV from latency is a critical pathogenic step during the 

progression of KS (Moore et al., 1996). Furthermore, the transition to lytic 

replication in vivo appears inversely related to immunocompetency with tumour 

development observed in KSHV-positive transplant recipients using 
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immunosuppressants. Tumour development has been shown to successfully 

regress after the cessation of immunosuppressant treatment in some cases 

(Farge et al., 1999; Hengge et al., 2002). 

Expression of the viral gene ORF50 leads to the production of the RTA protein, 

which contains an N-terminal basic domain and a C-terminal acidic domain 

similar to the transactivating domains in the EBV Zta transactivator protein (Lukac 

et al., 1998). RTA is expressed as a 110 kDa protein with a 90 kDa minor protein 

also observed. These two forms differ in their phosphorylation patterns with 

experiments demonstrating that RTA is phosphorylated by cyclin-dependent 

kinase 9 (CDK9) in order to maximise its transactivational function (Lukac et al., 

2001a; Tsai et al., 2012). Initial studies of how RTA induces the transcription of 

KSHV genes were focused on two immediate-early transcripts: (MTA) mRNA 

transcript accumulation protein and polyadenylated nuclear (PAN) RNA. This 

highlighted two alternate methods of transcriptional activation by RTA. PAN RNA 

is an abundant non-coding poly-adenylated RNA that is expressed during KSHV 

lytic replication and appears to be critical for the expression of late viral transcripts 

(Sun et al., 1996; Borah et al., 2011). RTA was shown to directly bind to the PAN 

promoter which, in conjugation with the C-terminal activator domain, is sufficient 

for PAN RNA production. A consensus sequence within the PAN promoter is also 

found in other immediate-early genes such as Kaposin and is described as an 

RTA-responsive element (RRE) (Song et al., 2004; Chang et al., 2005). At RREs, 

RTA directly regulates the expression of certain immediate-early transcripts 

inducing their expression (Figure 1.10a).  
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However, RTA also activates transcription via an alternative pathway highlighted 

through studies on the regulation of expression of MTA protein at the ORF57 

promoter. MTA, also referred to as the ORF57 protein, is a viral immediate-early 

protein that subverts normal nucleocytoplasmic transport to preferentially export 

intronless viral mRNAs via the cellular TREx complex (Reviewed in (Schumann 

et al., 2013)). Through experiments characterising the role of RTA at the ORF57 

promoter, RTA was shown to bind to Recombination Signal Binding Protein 

(RBP)-Jk (Lukac et al., 2001b). This interaction between RBP-Jk and RTA 

appears crucial for the transcription of certain viral genes via the activation of the 

Notch signalling pathway (Liang et al., 2002; Swaminathan, 2005) (Figure 1.10b).  

RTA also appears to regulate expression through inducing degradation of 

transcriptional repressors (Yang et al., 2008). This is attributed to an intrinsic 

ubiquitin E3-ligase activity within RTA that targets cellular repressor proteins for 

degradation during lytic infection. Specifically, RTA has been shown to induce 

the degradation of the transcriptional repressor Hey1, allowing for RTA 

upregulation during lytic replication (Gould et al., 2009) (Figure 1.10c). 
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Figure 1.10 Outline of RTA mechanisms for gene transactivation. a) RTA binds directly to the RTA-
response element (RRE) initiating transcription. b) RTA recruits cellular transcription factors such as RBP-
jk to initiate transcription. c) RTA degrades a transcriptional repressor allowing for transcription. 

 

Through this variety of mechanisms, RTA is able to orchestrate the expression of 

a variety of immediate-early viral factors that begin to bring the cell under the 

control of the viral replication programme. K8, modulates cellular transcription via 

the recruitment of CREB-binding protein (CBP) (Zhu et al., 1999; Hwang et al., 

2001). Whilst, viral G-protein coupled receptor (vGCPR) acts as a constitutively 

active CXC chemokine receptor activating mitogen-activated protein kinase 

(MAPK), Akt, and phospholipase C (PLC)-mediated pathways in order to promote 

proliferation (Sun et al., 1999; Chiou et al., 2002; Smit et al., 2002; Cannon, 

2007). These immediate-early genes rapidly subvert normal host cell processes 

and allow for efficient expression of the delayed-early genes prior to viral genome 

replication.  

a) 

b) 

c) 
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The delayed early genes continue subverting host cell processes via the action 

of viral proteins like ORF37, which reduces cellular gene expression via 

increasing global mRNA turnover (Glaunsinger and Ganem, 2004; Glaunsinger 

et al., 2005), and prepares for the replication of viral genomes via genes such as 

ORF59, which translocates the viral polymerase ORF9 to the nucleus to initiate 

viral DNA replication (McDowell et al., 2013). After viral DNA replication the last 

temporal cohort of genes are expressed, which include components of the virion 

such as ORF65 and viral glycoproteins like gB (Lin et al., 1997; Pertel et al., 

1998).  

Nascent virions assemble in the nucleus and undergo a multi-step egress 

process. This begins at the nuclear membrane where KSHV virions bud into the 

perinuclear space through the action of the KSHV nuclear egress complex (NEC). 

This is composed of two proteins ORF67 and ORF69, which share strong 

similarity with HSV-1 NEC proteins UL34 and UL31(Santarelli et al., 2008). Whilst 

the HSV-1 NEC proteins have been shown to interact with ESCRT complex 

proteins to aid with nuclear egress how KSHV subverts ESCRT-III during its own 

egress is less well characterised. However, experiments in EBV have shown that 

EBV NEC components also recruit ESCRT-III to aid with nuclear egress 

suggesting this process may be shared between herpesvirus sub-families. 

Overexpression of EBV NEC proteins is able to form nuclear membrane-derived 

vesicles suggesting they are involved in the initial envelopment step at the 

nuclear membrane during viral egress (Klupp et al., 2007). The enveloped virion 

then fuses via interactions with ONM proteins and viral glycoproteins with the 

ONM losing its envelope and releasing the virion into the cytoplasm. Within the 

cytoplasm the KSHV virion acquires tegument proteins such as ORF45 which 
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interacts with kinesin-2 and is responsible for capsid-tegument transport along 

microtubules and has been shown to help direct viral particles to the Golgi for 

final maturation (Sathish et al., 2009; Wang et al., 2015). Within the Golgi viral 

particles acquire their final envelope containing viral glycoproteins and are 

transported within a Golgi-derived vesicle to the cell membrane where the vesicle 

fuses with the cell membrane and releases the virion (Mettenleiter et al., 2009). 

1.3 The Nuclear Envelope 

The defining separation between prokaryotes and eukaryotes is the presence of 

a membrane separating the DNA genome from other cytoplasmic compartments. 

The nuclear envelope (NE) is the specific subcellular compartment that gives rise 

to this separation and is typically split into three components: the nuclear lamina, 

the nuclear membrane and the nuclear pore complex (NPC) (Figure 1.11). The 

nuclear membrane is split into the outer nuclear membrane (ONM) which is 

continuous with the endoplasmic reticulum and is orientated towards the 

cytoplasm, while the inner nuclear membrane (INM) is orientated towards the 

nucleoplasm. The nuclear lamina is a proteinaceous meshwork of class V 

intermediate filament proteins that act as a scaffold for the nuclear membrane 

interacting at the INM (Prokocimer et al., 2009). NPCs exist within pores of the 

nuclear membrane and regulate nuclear cytoplasmic transport. Traditionally, the 

nuclear envelope was viewed as a static structure that only underwent significant 

change during mitosis; however, a large body of emerging evidence shows the 

nuclear envelope compartment is a highly dynamic and responsive part of the 

cell. 
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Figure 1.11 Overview of the Nuclear Envelope compartment. Heterochromatin loops close to the nuclear 
lamina which is attached to the nuclear membrane made up of two lipid bilayers. Nuclear pore complexes 
reside within natural pores in this double membrane which also houses trans-nuclear membrane proteins 
that interact with the cytoskeleton through the LINC complex. 

 

 

1.3.1 The Nuclear Lamina 

The lamina is composed of type A or B lamin proteins, lamin B1 and B2 are the 

most common B lamins and are encoded by distinct genes LNMB1 or LNMB2. B-

type lamins have an acidic isoelectric point, at least one form is expressed in all 

cells, and are permanently found to be isoprenylated (which helps tether the 

protein to the INM) (Nigg et al., 1992; Gruenbaum et al., 2003). A-type lamins are 

formed from two splice variants of the LNMA gene that give rise to lamin A and 

lamin C. These proteins have a neutral isoelectric point, are expressed in a 

tissue-specific manner and may not always be isoprenylated (Gruenbaum et al., 

2003). Both types consist of a N-terminal head domain, a coiled-coil central rod 
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domain and a C-terminal tail domain, and include a nuclear localisation 

sequence, an immunoglobulin (Ig) fold and a CaaX motif (Gruenbaum and Aebi, 

2014). Experiments using 3D-structured illumination microscopy (3D-SIM) 

showed that lamin filaments form separate continuous meshworks in mammalian 

nuclei with A-type lamins playing a crucial role in regulating the distribution of 

NPCs (Shimi et al., 2015; Xie et al., 2016).  

The lamin meshwork not only acts as a simple scaffold but also has a multitude 

of binding partners. These include nuclear envelope transmembrane proteins 

(NETs) which allow the nuclear lamina to transmit mechanical signals to cellular 

actin filaments via the linker of nucleo- and cytoskeleton (LINC) complex 

(Padmakumar et al., 2005; Crisp et al., 2006). Lamins also play a role in binding 

heterochromatin to the nuclear periphery through interaction of LEM domain 

proteins and barrier to autointegration factor (BAF). Experimental studies have 

demonstrated how relocating actively transcribed genes to the nuclear lamina 

leads to gene silencing, demonstrating the regulatory role of the lamina (Reddy 

et al., 2008). This highlights how the nuclear lamina contributes to the physical 

organisation of nuclear contents (especially the genome) in order to regulate 

gene expression. Localisation to the nuclear periphery and the lamina is 

associated with an increased level of repression, whilst localisation of genes to 

the nuclear interior leads to their expression. In developmental contexts this has 

been shown to be especially important in defining stages of differentiation (Peric-

Hupkes et al., 2010). 

1.3.2 The Nuclear Membrane 
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The nuclear membrane is composed of two lipid bilayer membranes that are 

connected via membrane-bound proteins and at NPCs (Figure 1.12). The outer 

nuclear membrane (ONM) is contiguous with the endoplasmic reticulum and 

features a number of membrane-bound proteins, such as the Nuclear envelope 

spectrin repeat proteins (Nesprin) family. These proteins act to help transmit 

mechanosensory signals between nuclear filaments and the cytoskeleton 

through the functioning of the LINC complex (Burke and Roux, 2009; Uzer et al., 

2015). 

The inner nuclear membrane (INM) interacts with the nuclear lamina, giving the 

nucleus its overall shape, and is also the surface for many membrane-bound 

proteins. These include proteins that act within the LINC complex to transmit 

mechanosensory information, such as Sun2. Sun2 binds lamins and other 

nucleoplasmic factors but also has a lumenal domain targeted to the perinuclear 

space (the lumenal space between the ONM and INM). There Sun2 interacts with 

Nesprin proteins, forming a crucial bridge between the nucleus and the cytoplasm 

for the LINC complex (Hodzic et al., 2004; Crisp et al., 2006; Burke and Roux, 

2009). 
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Figure 1.12 Overview of the nuclear membrane. The lamina represented by alternating filaments of lamin 
A and B attached to the inner nuclear membrane (INM) via Sun1/2 proteins. These proteins bind to Nesprin 
proteins in the perinuclear space (PNS) which exists as a transmembrane protein between the PNS and the 
outer nuclear membrane (ONM) attaching to either plectin and then intermediate filaments (Nesprin 3) or 
actin via Nesprin 1/2. 

 

1.3.3 The Nuclear Pore Complex 

The Nuclear Pore Complex (NPC) is a highly conserved protein mega-complex 

that sits within pores formed within the nuclear membrane. Present in all forms of 

eukaryotic life, the NPC is the most significant conduit of information in the cell, 

giving rise to a selective bidirectional transport system. In humans, the complex 

is approximately 125 MDa in mass and is composed of ~500-1000 copies of 30 

different nucleoporins (Nups) (Cronshaw et al., 2002; DeGrasse et al., 2009). 

These give rise to a protein mega-structure that exhibits eightfold radial symmetry 

with a series of subcomplexes that perform critical roles in regulating 

nucleocytoplasmic transport. 
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1.3.3.1 Structure of the NPC 

Over the past 50 years significant work has elucidated a highly ordered structure 

comprising of multiple copies of nucleoporins arranged in eightfold radial 

symmetry around a pore within the nuclear membrane. Nucleoporins are 

complexed into different sub-complexes which come together to form 

substructures that form the overall NPC superstructure. These substructures can 

be classified into 6 main groups: integral membrane proteins of the pore 

membrane domain of the nuclear envelope (POMs); membrane apposed coat 

nucleoporins; adaptor nucleoporins; channel nucleoporins; nuclear basket 

filaments; and cytoplasmic filament nucleoporins (Hoelz et al., 2011) (Figure 

1.13). 

The first work on the nuclear pore began in 1950, when H. G. Callan used nuclei 

from amphibian Xenopus laevis to visualise the nuclear membrane using electron 

microscopy. Through his preparation he observed pores within the nuclear 

membrane which he described as “evenly space out over its area [outer nuclear 

membrane]” (Callan and Tomlin, 1950). In 1959, Michael Watson identified 

discrete densities at these pores with the appearance of a channel and 

cytoplasmic extrusions. He described these as “sufficiently well differentiated to 

be classed as an anatomical unit for which we propose the name pore complex” 

(Watson, 1959). Further work showed the pore complex was not circular but 

exhibited eight-fold radial symmetry and also extended significantly out into the 

nucleus and the cytoplasm (Abelson and Smith, 1970; Wischnitzer, 1973). As 

electron microscopy technology improved, the NPC quite literally came into focus 

with a 90 Å structure in 1982, beginning to highlight the discrete substructures 
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that make up the NPC (Unwin and Milligan, 1982). In 1986, Günter Blobel’s 

laboratory isolated the first nucleoporin and yielded an antibody for visualising 

the nuclear pore complex using immunofluorescence (Davis and Blobel, 1986). 

Increasing improvements have established that the structure of the NPC has two 

coaxial rings, at both the nuclear and cytoplasmic periphery, which are connected 

by eight elongated spokes and a central spherical plug region (Jarnik and Aebi, 

1991; Stoffler et al., 2003; Beck et al., 2004a). Whilst the core appears like a 

symmetric doughnut structure, the major structural projections out of the core are 

not symmetric and form a nuclear basket region and multiple cytoplasmic 

filaments.  
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Figure 1.13 The Structure of the Nuclear Pore Complex. a) Cryo-electron tomographic reconstruction of 
the Dictyostelium discoideum NPC [Electron Microscopy Data Bank (EMDB) code 1097, Beck et al. 2004]. 
The cytoplasmic filaments, the symmetric core, and the nuclear basket are coloured in cyan, orange, and 
purple, respectively. b) A schematic model of the NPC. The four concentric cylinders are composed of 
integral pore membrane proteins (POMs), coat nucleoporins, adaptor nucleoporins, and channel 
nucleoporins. Natively unfolded phenylalanine-glycine (FG) repeats of a number of nucleoporins make up 
the transport barrier in the central channel and are indicated by a transparent plug. Taken from (Hoelz et al., 
2011). 

 

The nucleoporin composition of these distinct structures has demonstrated how 

nucleoporins combine into small substructures that exist in multiple copies to give 

rise to the larger structures. Starting with the non-symmetric structures at the 

NPC, the cytoplasmic filaments are made up of three nucleoporins 

Nup358/RanBP2, CAN/Nup214 and Nup88/84 (Kraemer et al., 1994; Wu et al., 

1995; Bastos et al., 1997). Nup358 is a nucleoporin specific to vertebrates and is 

the largest nucleoporin, with purified Nup358 forming ~36 nm long, 5 nm thick 

filaments (Yokoyama et al., 1995; Delphin et al., 1997). It acts as a key junction 

during the RanGTP cycle and contains several phenylalanine-glycine (FG) 

repeats which function as binding sites for transport receptors (Yaseen and 

Blobel, 1999). Nup88/Nup84 forms a cytoplasmic orientated subcomplex with 

CAN/Nup214, an apparent component of the cytoplasmic filaments (Kraemer et 

al., 1994; Panté et al., 1994; Fornerod, van Deursen, et al., 1997; Bastos et al., 

1997). Both proteins appear to play a key role in nuclear localisation sequence 

(NLS)-mediated protein import and bulk mRNA export (van Deursen et al., 1996; 

Uv et al., 2000). 

The other major non-symmetric NPC structure is the nuclear basket. In 1991 the 

development of high resolution scanning electron microscopy enabled the first 

visualisation of a basket structure on the nucleoplasmic face of the NPC 

(Goldberg and Allen, 1992). Starting with the nucleoplasmic coaxial ring at the 
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nuclear pore, eight fibres extend out ~40 nm into the nucleoplasm and attach to 

a small ‘basket’ ring of 60 nm in diameter (Goldberg and Allen, 1992). In 

vertebrates the nuclear basket is composed of three nucleoporins: Nup50, 

Nup153 and TPR. TPR is the most significant component of the nuclear basket 

with a molecular mass of 265 kDa forming a coiled-coil structure, although its 

exact localisation at the nuclear basket is disputed (Cordes et al., 1997; Frosst et 

al., 2002; Krull et al., 2004). TPR also appears to play a role relating to CRM1-

dependent export and mediating a level of RNA export quality control prior to 

export (Frosst et al., 2002; Coyle et al., 2011). Nup153 is a more peripheral 

component of the nuclear basket with immunogold staining showing it localises 

to the nucleoplasmic coaxial ring (Krull et al., 2004). It appears to play a crucial 

role in nuclear export, and during nuclear pore assembly after cell division 

(Sukegawa and Blobel, 1993; Ullman et al., 1999; Vollmer et al., 2015). Nup153 

also appears to be a mobile nucleoporin, able to diffuse off the NPC, and perform 

functions within the nucleus (Nakielny et al., 1999; Griffis et al., 2004; Vaquerizas 

et al., 2010). The final vertebrate nuclear basket nucleoporin is Nup50, a small 

mobile nucleoporin with a very short residence time at the NPC (Guan et al., 

2000; Rabut et al., 2004). Nup50 binding at the nuclear pore is dependent on 

Nup153 and suggests Nup50 has a role in nuclear import. Furthermore, studies 

have shown Nup50 binds to importins (Lindsay et al., 2002; Makise et al., 2012). 

Interestingly, Nup50-depletion is not lethal but does prevent differentiation events 

in C2C12 myoblasts, suggesting a non-transport based role of this nucleoporin 

(Buchwalter et al., 2014).  

The symmetric core of the NPC is composed of three stacked rings: an inner ring 

that spans the fused nuclear membranes, and cytoplasmic and nucleoplasmic 
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rings which stack upon the inner ring from each respective side (Unwin and 

Milligan, 1982). The key scaffold subcomplexes of these rings are the Y-complex 

and the inner ring complex. The Y-complex is the most well-known and best 

structurally defined of these subcomplexes with its distinct Y-shape made up of 

a small arm, a large arm and a stem (Lutzmann et al., 2002; Beck et al., 2004b; 

Kampmann and Blobel, 2009). The small arm is composed of Nup85, Seh1 and 

Nup43, whilst the large arm comprises Elys, Nup37, Nup160. These two arms 

connect to one another via Nup160-Nup85 complex and the stem through Nup96 

and Sec13. Nup96-Sec13 connect to a highly flexible stem tip containing Nup133 

and Nup107 (Bui et al., 2013; Kelley et al., 2015). Multiple copies of the Y-

complex oligomerise into two head-to-stem rings at both the cytoplasmic and 

nucleoplasmic side. These two rings form an inter-complex crosslink between the 

inner and the outer ring (Figure 1.14). These rings act as the crucial scaffold on 

which the asymmetric structures already described connect to the NPC itself.  

The inner ring complex is composed of five nucleoporins: Nup205, Nup88, 

Nup93, Nup155 and Nup53. Nup53 has been shown to bind to the integral 

membrane protein component of the nuclear pore NDC1 that spans the nuclear 

membrane, anchoring the NPC (Eisenhardt et al., 2014). Nup155 has also been 

shown to make contact points with the nuclear membrane and surrounds the 

membrane in multiple copies as a first layer between the membrane and the 

remaining inner ring complex proteins (Bui et al., 2013). The second layer of the 

inner ring complex is comprised of Nup205 and Nup188; however, due to the 

small size of Nup93 current methods struggle to identify its exact position in the 

inner ring complex (Andersen et al., 2013) (Figure 1.14). Other subcomplexes 

have also been shown to interact with the inner ring complex, with both Nup188 
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and Nup93 binding to Nup214-Nup84-Nup62-Nup98-Rae1 complex (Von Appen 

et al., 2015). Importantly, this highlights that the understanding of the NPC 

architecture is still developing, with areas of the NPC such as the inner ring 

complex still poorly understood. 

 
Figure 1.14 The architecture of the NPC scaffold. a) One symmetric unit of the NPC with four copies of 
the Y-complex that form the scaffold of the cytoplasmic ring (CR) and the nucleoplasmic ring (NR). The outer 
copy is shown in orange; the inner copy is shown in gray. Multiple membrane contacts of the inner ring 
complex: region of outer bilipid layer where contacts made are shown in green and purple; apparent 
transmembrane domains are shown in blue. b) Nup155 (green) appears to interact with the membrane at 
the points indicated in a). c) Nup205 and Nup188 densities (red) per asymmetric unit localise to the CR, IR 
and NR. Another copy might reside only on the cytoplasmic site and is shown in orange. d) Proteins of 
neighbouring asymmetric units are shown as well. Taken from (von Appen and Beck, 2015). 

 

The final symmetric subcomplex is composed of channel nucleoporins Nup62, 

Nup58 and Nup54. These nucleoporins give rise to the selective barrier of the 

NPC and many aspects of their protein structure are highly conserved across all 
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eukaryotic life. The Nup62-Nup58-Nup54 complex attaches to the inner ring 

complex protein Nup93 and extends into the central channel. In the central 

channel, these subcomplexes oligomerise into a ring structure, able to constrict 

and dilate dependent on the binding of transport factors (Sharma et al., 2015). 

These nucleoporins are also rich in FG-repeat regions that extend into the central 

channel and create the selective barrier. The exact mechanism of nuclear 

transport that arises from the FG-repeat density in the central channel but is 

poorly understood although a range of theories have been proposed. 

1.3.3.2 Nuclear Transport  

The key function of the NPC is to facilitate selective bidirectional transport 

between the nucleus and cytoplasm. This includes the export of RNAs into the 

cytoplasm, the import of mature proteins into the nucleus, and the export of 

enormous ~2.5 MDa pre-ribosomal subunits, to name a select few transport 

operations. These processes must all occur near simultaneously and in a highly 

selective manner to prevent damage to the nuclear compartment. Statistical 

modelling has predicted the scale of nuclear transport to be approximately 1000 

translocation events per second of approximately 100 MDa/s (Ribbeck and 

Görlich, 2001). The NPC achieves this via a highly regulated transport system 

that combines a permeability barrier and a receptor-based transport system.  

1.3.3.2.1 Receptor Transport system 

The machinery behind receptor-based transport systems is highly conserved 

within eukaryotes. This suggests that the development of this system was a 

critical juncture in the evolution of eukaryotic life, when one of the key constraints 

of evolving a contained compartment for the genome was overcome. Behind this 



43 
 

evolutionary significance is the small GTPase Ras-related nuclear protein (Ran), 

which is highly conserved and a member of the Ras family of GTPases (Moore 

and Blobel, 1993).  

The Ran cycle describes the process of nucleotide exchange that Ran performs 

between the cytoplasm and the nucleus. The classical cycle of nuclear transport 

begins with the formation of a heterotrimer of importin beta, importin alpha and a 

cargo containing a nuclear localisation sequence (NLS). This complex docks to 

and is transported through the NPC where the importins facilitate transport 

through the FG-repeat layer. Once in the nucleus, a high RanGTP environment, 

importin beta is bound by RanGTP, promoting the disassembly of the 

heterotrimer. The cargo can now fulfil its role in the nucleus and importin beta 

and alpha are separately exported after being bound by RanGTP, in the case of 

importin alpha also binding cellular apoptosis susceptibility gene (CAS) (Kutay et 

al., 1997). After these factors are transported through the NPC into the cytoplasm, 

a high RanGDP environment, RanGTP is hydrolysed by RanGAP1 and RanBP1 

which causes the dissociation of RanGDP and the importin complex. This 

releases the importins for any subsequent import events. Meanwhile RanGDP is 

reimported into the nucleus where the nucleotide exchange factor RCC1 

promotes the exchange of GDP for GTP (Figure 1.15). 
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Figure 1.15 The Ran cycle. 1. A heterotrimer of importin alpha, beta and a cargo containing a nuclear 
localisation sequence (NLS) forms. 2. This complex moves to the NPC. 3. The complex is transported 
through the NPC with importins interacting with nucleoporins. 4. RanGTP binds causing the dissociation of 
the heterotrimer binding to importin beta. 5. Importin beta and RanGTP are re-exported out of the nucleus. 
6. RanBP1 and RanGAP1 induce the hydrolysis of RanGTP to RanGDP leading to the release of importin 
beta. 7. Importin alpha interactions with CAS and RanGTP in the nucleus forming a complex. 8. This complex 
then exits the nucleus. 9. RanBP1 and RanGAP1 induce the hydrolysis of RanGTP to RanGDP inducing the 
dissociation of importin alpha and CAS in the cytoplasm. 10. RanGDP travels down the concentration 
gradient into the high RanGTP environment in the nucleus. 11. RanGDP is converted back into RanGTP by 
RCC1. Taken from (Dasso and Pu, 1998). 

 

Whilst the energetic system powering nuclear transport is well-defined, the exact 

mechanism of how transport receptors such as importins bind nucleoporins and 

facilitate transport is less well understood. The hydrophobic environment of the 

central channel of the NPC has been demonstrated to be critically important for 

successful transport (Ribbeck and Görlich, 2002). Crystal structure analysis of 

importin beta bound to the FG-motif complex shows that importin beta has 
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several hydrophobic pockets that interact with hydrophobic residues in the FG-

nucleoporins (Bayliss et al., 2000; Liu and Stewart, 2005; Otsuka et al., 2008). 

Studies investigating the structure of members of the karyopherin beta 

superfamily (of both importins and exportins) show a high level of structural 

similarity between family members even though sequence similarity is very low 

(Xu et al., 2010; O’Reilly et al., 2011). Structurally, they are composed of a 

number of HEAT motifs (19-21 repeats), containing two amphiphilic alpha helices 

connected by a short linker region (Chook and Blobel, 1999; Cingolani et al., 

1999). These structures are highly flexible, which is thought to relate to their role 

binding different cargoes and RanGTP (Conti et al., 2006; Forwood et al., 2010). 

Many investigators have noted the apparent paradox of strong interactions 

between karyopherins and FG-nucleoporins and the speed of nuclear transport, 

questioning how transport complexes do not get trapped within the NPC through 

these strong hydrophobic interactions. Recently, it has been demonstrated that 

importin beta undergoes a conformational change during passage through the 

NPC, mediated by a series of weak hydrophobic interactions with nucleoporins. 

It is hypothesised that these induced changes lead to highly stochastic transport 

with a number of outcomes, including a proportion of transport events failing to 

cross the nuclear pore on a single attempt (Yoshimura et al., 2014). 

1.3.3.2.1.1 mRNA Transport 

mRNA transport is a crucial example of receptor based transport facilitated by 

the NPC. mRNA export occurs via a distinct mechanism from nuclear export of 

proteins, tRNA and miRNAs. The two predominant export adaptor proteins that 

are loaded onto messenger ribonucleoprotein (mRNP) complexes are Nxf1-Nxt1 

and Crm1.  
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Bulk mRNA export occurs through the action of heterodimer of Nxf1/TAP and 

Nxt1 (Segref et al., 1997; Herold et al., 2000). Nxf1-Nxt1 heterodimer is recruited 

to mRNP complexes via interactions with ALY a component of the TREX 

complex. Nxf1-Nxt1 act as a nuclear export receptor that then facilitates passage 

through the NPC. 

A subset of cellular mRNAs are exported via an alternate pathway facilitated by 

karyopherin Crm1 (Fornerod, et al., 1997). Crm1 is also responsible for mediating 

export of unspliced and partially spliced HIV mRNA through the action of the HIV 

Rev protein (Cullen, 2003). The Crm1 pathway requires additional adaptor 

proteins due to Crm1 lack of an RNA binding function. These appear to vary 

depending on the transcript being exported, with eukaryotic initiation factor 4E 

(eIF4e) for cyclin D1 mRNA and HuR reported as an adaptor for Cd83 and Fos 

mRNA export (Brennan et al., 2000; Culjkovic et al., 2006). 

Once these export receptors are recruited to the mRNP it is considered export 

competent. This targets the mRNP to the NPC where the export receptor is able 

to directly interact with FG-nups. It has been suggested that the 5’ end of the 

mRNP leads the mRNP into the pore at the nuclear face of the NPC (Visa et al., 

1996). How the binding of export receptors to FG-nups facilitates movement of 

the mRNP in the NPC is unclear and different theories surrounding this are 

addressed in the next section. However, work has shown that not all FG-nups 

are required for mRNA export, only specific subcomplexes in the central channel 

and at the nuclear face hinting that export occurs through a series of thresholds 

in the pore before final commitment to exit into the cytoplasm (Terry and Wente, 

2007). 
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1.3.3.2.2 Permeability barrier 

The permeability barrier acts to prevent the passive diffusion of large molecules 

into the nucleus; the limits of which are either a mass greater than 40 kDa or a 

diameter greater than 390 Å (Panté and Kann, 2002). FG-nucleoporins that line 

the inner channel of the NPC are responsible for the formation of the barrier. 

Typically, these proteins are composed of a folded domain and an intrinsically 

disordered domain (IDD) (Wagner et al., 2015). IDD are domains that lack a 

stable secondary or tertiary protein structure. This often leads to difficulties 

visualising these proteins through crystallographic techniques and is the 

predominant research hurdle towards understanding FG-nucleoporin formation 

at the NPC. FG-nucleoporins also have a low net charge and high mean 

hydrophobicity, along with repeats of the eponymous FG-motif (Schmidt and 

Görlich, 2016). The most common of these motifs are: FG, FxFG, GLFG, PxFG, 

SxFG (Cushman et al., 2006; Denning and Rexach, 2007).  

The structure formed by the convergence of FG-nucleoporins in the central 

channel is a current area of debate and further investigation. A number of models 

have been proposed, but there is currently no consensus on what structure may 

exist in the central channel. Some of these models include: the selective 

phase/hydrogel model, reduction of dimensionality model, the kap-centric model, 

and the polymer brush model. The selective phase model, also known as the 

hydrogel model, hypothesises that intra- and intermolecular interactions between 

FG-nucleoporins create a cohesive, gel-like network (Ribbeck and Görlich, 2002; 

Frey and Görlich, 2007) (Figure 1.16b). This creates a 3D molecular sieve that 

occludes large molecules but allows for the diffusion of small molecules, whilst 

nuclear transport receptors (NTR) are able to pass through the gel via their 
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hydrophobic domains (similar to how lipids pass through a lipid bilayer). To 

support this theory FG-nucleoporins form a hydrogel in vitro and permit the 

selective transport of importins (Frey and Görlich, 2009; Hülsmann et al., 2012).  

The reduction of dimensionality (ROD) model arose from observations that the 

NPC appeared to be saturated with NTRs at all times and suggested that FG-

domains coat the walls of the central channel and are occupied continuously with 

NTRs (Peters, 2005) (Figure 1.16c). This binding was speculated to cause a 

collapse of the FG-filaments, creating a small inner lumen at the centre of the 

pore to allow for small molecule diffusion. FG-bound NTR were then confined to 

move in only two dimensions, where they would random walk over the FG surface 

on the sides of the central channel and reach their transport destination (Peters, 

2009; Schleicher et al., 2014).  

The kap-centric model posits that due to the proportionally greater numbers of 

karyopherins present in cells compared to nuclear pores, it is karyopherins (kaps) 

that regulate the speed and selectivity of the NPC (Reviewed in (Lim and 

Kapinos, 2015)). Proponents of this hypothesis point to evidence that in 

permeabilised cells where high karyopherin concentrations are added nuclear 

transport increases, whilst in low karyopherin environments nuclear transport is 

slower (Timney et al., 2006; Yang and Musser, 2006). They argue that if FG-

nucleoporins were predominantly responsible for managing nuclear transport 

speeds, a high kap environment means more FG-NTR saturation at the NPC 

leading to slower transport (Figure 1.16d). Given the experimental evidence, they 

suggest that the key regulators of nuclear transport efficiency and speed are the 

kaps themselves. They also point to experiments performed which advocate the 
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hydrogel model and claim these observations support the idea that karyopherins 

are able to regulate the permeability of FG-nucleoporins with in vitro FG-

nucleoporin hydrogels able to ‘heal’ after the diffusion of NTRs through the 

hydrogel (Frey and Görlich, 2009). 

The virtual gate or polymer brush model contrasts with many of the other 

hypothesises by proposing a mechanism based on thermodynamic 

considerations rather than elucidating the role of FG-FG interactions (Rout et al., 

2003) (Figure 1.16a). This suggests that the movement of a molecule from the 

cytoplasm to the nucleus involves a loss of entropy, due to few movement 

possibilities in the smaller nucleus. The energy price of this loss of entropy would 

be increased by non-cohesive FG-domains that were posited to act as repulsive 

or entropic bristles which moved randomly (Lim et al., 2006). This would create 

an entropic gate, preventing the random diffusion of molecules into the nucleus. 

For transport to occur it was hypothesised that interactions with FG-domains 

would release enthalpy and, if the binding energy generated was high enough to 

overcome the loss of entropy, transport would occur.  
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Figure 1.16 Models of the central NPC channel. a) Virtual gating/polymer brush model, characterised by 
non-cohesive FG-domains acting as entropic barriers. b) Selective phase/hydrogel model, characterised by 
cohesive FG-domain interactions (blue) between other FG-domains and the NTR (green) this allows for the 
movement of cargo (red) through the NPC. c) The reduction of dimensionality, FG-nups bind to the NTR 
allowing for transport along a 2D axis at the sides of the channel, binding of the NTR facilitates collapse of 
the FG-filaments. d) Kap-centric, the binding of karyopherins occurs continuously and regulates the speed 
and permeability of the NPC barrier.  

a) 

b) 

c) 

d) 
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1.3.4 The Dynamic NPC 

With the expansion in understanding of the structure and function of the NPC 

evidence has begun to emerge suggesting the NPC is a much more dynamic 

structure than initially thought. The residency time of almost a third of NPC 

components, typically central channel and nuclear/cytoplasmic facing 

nucleoporins, has been shown to be short (ranging from a few seconds to a few 

hours) (Rabut et al., 2004). Scaffold nucleoporins exhibit a far longer residency 

time often greater than a cell cycle. How these dynamic movements on and off 

the pore are implicated in the function of the NPC is a developing knowledge 

domain that has also begun to highlight the many non-transport related roles of 

nucleoporins. 

1.3.4.1 The NPC during development 

A number of nucleoporins have been shown to be necessary for the 

differentiation of different cell types. Nup210 or GP210 is required for both 

myogenesis and neuronal differentiation in mice. Its expression is induced during 

differentiation; however its incorporation into the NPC does not appear to alter 

nuclear transport but rather the expression of myogenesis genes (Capelson et 

al., 2010; Kalverda et al., 2010; D’Angelo et al., 2012). 

Similar to GP210, Nup358 has also been attributed to myoblast differentiation. 

Increased Nup358 expression is required for correct myoblast differentiation, 

although, as above, this does not alter nuclear transport pathways. It has been 

observed that myoblasts and myotubes exhibit different Nup358 copy number at 

their NPC, suggesting these differentiation changes are structurally-related; 
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however, how this change is important for differentiation is not yet understood 

(Asally et al., 2011). 

Nup133 and ELYS, both components of the Y-complex, are required for 

successful differentiation of certain cell types. In Zebrafish, the absence of the 

ELYS homologue results in abnormal neuronal differentiation affecting 

development of the retina (Cerveny et al., 2010). In mice, a mutation that 

generates a null allele of Nup133 also leads to neuronal development defects 

and is lethal (Lupu et al., 2008). The mechanism behind this role is not well 

understood, but the structural nature of these nucleoporins suggests they 

function away from the pore during differentiation. 

1.3.4.2 Cell type specific NPCs 

A number of nucleoporins have been identified that exhibit tissue specific 

expression patterns. These include Nup210, Nup45, Nup50, Nup133, Nup155 

and ALADIN (Hu and Gerace, 1998; Zhang et al., 1999; Guan et al., 2000; Olsson 

et al., 2004; Cho et al., 2009). Furthermore, mutations in several nucleoporins 

lead to tissue-specific pathologies. A mutation in Nup155 (found highly expressed 

in heart, placenta, liver and skeletal muscle) preventing it binding at the NPC 

leads to heart malfunction and cardiac disease (Zhang et al., 1999; Zhang et al., 

2008). Missense mutations in Nup62, a key FG-nucleoporin in the central 

channel, lead to autosomal recessive infantile bilateral striatal necrosis, a severe 

brain disorder with degeneration of the basal ganglia (Basel-Vanagaite et al., 

2006). Mutations in the nucleoporin ALADIN cause triple A syndrome (AAAS) 

which causes adrenocorticotropic hormone (ACTH)-resistant adrenal failure (Cho 
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et al., 2009). These findings developed into a hypothesis that NPCs exists as 

much more specialised structures across different cell types (Figure 1.17). 

 
Figure 1.17 Overview of specialised nuclear pore complexes. a) Specialised NPCs with alternate 
transport pathways. b) Specialised NPCs able to interact with different chromatin sections. c) A model of 
specialised NPCs within a single cell. Taken from (Raices and D’Angelo, 2012). 

 

1.3.4.3 Nup98 

Nup98 is a well-characterised example of a dynamic nucleoporin. Nup98 is 

expressed predominantly as a bicistronic peptide comprising of Nup96-Nup98. 
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This polypeptide undergoes autoproteolytic cleavage that allows both 

nucleoporins to localise at the NPC. At the NPC, Nup96 and Nup98 have 

unrelated roles, with Nup96 acting a component of the structural Y-complex with 

a residency time of several months, whilst Nup98 cycles on and off the pore and 

is turned over rapidly (Toyama et al., 2013). This cycling leads to the existence 

of two pools of Nup98 within the cell, one at the NPC and one within the 

nucleoplasm (Griffis et al., 2002; Oka et al., 2010). At the NPC, Nup98 is involved 

in mRNA export through its interaction with mRNA export factors Rae1 and Nxf1 

(TAP) (Powers et al., 1997; Bachi et al., 2000; Blevins et al., 2003). Nup98 also 

interacts with members of the importin beta family and the exportin CRM1 (Allen 

et al., 2001; Oka et al., 2010).  

The nucleoplasmic fraction of Nup98 is a remarkable case study of the dynamic 

nature of the NPC (Figure 1.18). Extensive work in Drosophila has shown that 

nucleoplasmic Nup98 binds at the promoters of genes responsible for 

development, and that depletion of Nup98 leads to robust suppression of these 

promoters (Kalverda et al., 2010; Capelson et al., 2010). Furthermore, Nup98 

directly interacts with histone modifying enzymes such as CBP/p300 and histone 

deacetylases (HDACs) through its unique form of FG repeat, GLFG (Lawryn H. 

Kasper et al., 1999; Bai et al., 2006). Nup98 translocation mutants are also key 

promoters of the onset of acute myeloid leukaemia (AML) through the ability of 

Nup98 to recruit histone deacetylases to promote oncogenic expression (Bai et 

al., 2006). The GLFG domain is also responsible for the formation of discrete 

Nup98 foci within the nucleus called GLFG-bodies (Griffis et al., 2002; Griffis et 

al., 2004). The exact function of these discrete bodies is unclear, and they are 

not observed across all cell types. RNA polymerase II does not localise at GLFG 
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foci, leading to the suggestion that GLFG-bodies act as dynamic storage centres 

of nucleoplasmic Nup98 that can rapidly cycle to transcriptional start sites when 

needed (Griffis et al., 2002; Franks et al., 2017). Nup98 also regulates the 

expression of antiviral response genes and has been attributed to a phenomenon 

called ‘epigenetic transcriptional memory’. This is predominantly linked to the 

interferon gamma (IFN-γ) response with IFN-γ-inducible genes able to be 

induced faster after an initial IFN-γ treatment due to the presence of a histone 

modification and Nup98 (Light et al., 2013; Panda et al., 2014). 

 

Figure 1.18 Model of the alternate cellular pools of Nup98. The NPC-bound Nup98 is shown in grey. 
Nup96-bound Nup98 promotes the localisation of Nup98 at the nuclear pore. Free Nup98 (shown in red) is 
able to diffuse off the NPC and form GLFG bodies or bind at promoters and recruit histone remodelling 
complexes. Adapted from (Franks et al., 2017). 

 

1.3.5 Viral remodelling of the Nuclear Pore Complex 

The position of the NPC as the primary conduit between the nucleus and the 

cytoplasm makes it a key target for certain viruses. For viruses that replicate 

relatively quickly access to the nucleus provides an effective way of utilising host 

DNA replication machinery. If a virus has a relatively longer replication cycle, 

access to the nucleus provides a safer environment to protect the viral genome 
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and coordinate slow subversion of other cellular processes. Due to the complexity 

of the NPC, viruses have developed an incredible variety of strategies for 

subverting its selective barrier function. These include brute force demolition of 

the central channel, or viral factors binding to nucleoporins or manipulating 

nuclear transport. 

1.3.5.1 Capsid remodelling Events 

A common form of NPC remodelling occurs during de novo infections where the 

viral capsid is transported to the nuclear pore. At this stage the goal of the virus 

is to deliver its genome into the nucleus through capsid interactions with 

nucleoporins. 

Adenovirus is one such virus that utilises capsid-based remodelling to deliver its 

genome. After internalisation at the plasma membrane, the adenovirus virion is 

transported along cellular microtubules to the nucleus. The capsid is then able to 

bind to Nup214 targeting it to the NPC and kinesin-1 light-chain Klc1/2 (Trotman 

et al., 2001). Nup358, which is a component of the cytoplasmic filaments that 

includes Nup214, is then bound by kinesin-1 heavy-chain Kif5C (Strunze et al., 

2011). This seems to exert a force upon the capsid that causes disassembly and 

the release of the viral genome along with relocalising Nup358, Nup214 and 

Nup62 from the NPC. This increases the permeability of the NPC and appears to 

aid with the import of the viral genome into the nucleus (Strunze et al., 2011). 

HSV-1 also exhibits capsid-NPC interactions during initial viral genome delivery. 

Viral tegument proteins pUL36 and pUL25 mediate docking of the virion to the 

NPC through interactions with Nup358 and Nup214 at the cytoplasmic filaments 
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(Copeland et al., 2009; Pasdeloup et al., 2009). These tegument proteins are also 

involved in the uncoating of the virion once docked to the NPC, triggering the 

release of the viral DNA.  

Hepatitis B virus (HBV), a hepadnavirus that has a double-stranded DNA genome 

but replicates through an RNA intermediate step, transports its DNA genome into 

the nucleus on initial infection. Within the nucleus HBV produces pre-genomic 

RNAs which it uses as a template to produce genomic DNA for new virions. The 

process of the nuclear entry by HBV is poorly understood, leading to two main 

theories of HBV genome delivery: the capsid disassembles in the cytoplasm and 

the DNA-viral polymerase complex is imported into the nucleus via karyopherins; 

or the virion is imported into the nucleus and disassembles on binding to Nup153, 

releasing the DNA-viral polymerase complex (Reviewed in (Gallucci and Kann, 

2017)). 

1.3.5.2 Non-capsid remodelling Events 

The alternate form of viral remodelling events is coordinated by non-capsid viral 

proteins. The overwhelming aim of these remodelling events is to aid viral 

replication by breaking down normal nucleocytoplasmic transport and inducing 

preferential transport of viral factors. These strategies range from more subtle 

hijacking of nucleoporins to the destruction of the NPC central channel. 

The Picornaviridae family have a single stranded, positive sense RNA genome 

and replicate exclusively in the cytoplasm. They achieve this by inducing the 

relocalisation of numerous nuclear factors through a dramatic remodelling of the 

NPC. Poliovirus, or Enterovirus C, is a form of Enterovirus from the larger 



58 
 

Picornaviridae family. Poliovirus encodes 2Apro, a viral protease that causes the 

proteolysis of a number of key nucleoporins responsible for nucleocytoplasmic 

trafficking (Gustin and Sarnow, 2001; Gustin and Sarnow, 2002; Park et al., 

2008). Nup98 is cleaved first early post infection, followed by Nup62 and then 

Nup153 at later periods (Gustin and Sarnow, 2002; Park et al., 2008). Electron 

microscopy appears to show the actions of the cleavage remove a large density 

at the centre of the NPC attributed to the relocalisation of nuclear factors (Belov 

et al., 2004). Intriguingly, Cardiovirus, another genus of Picornaviridae, increases 

permeability of the NPC via a different mechanism. The Cardiovirus L protein 

induces hyperphosphorylation of nucleoporins dependent on the presence of its 

zinc-finger domain (Bardina et al., 2009; Porter et al., 2010). Nup62, Nup98, 

Nup153 and Nup214 are all hyperphosphorylated through the action of the L 

protein, mediated by mitogen activated kinases (Porter and Palmenberg, 2009). 

These changes inhibit nuclear import and cause nuclear efflux, allowing the virus 

to utilise nuclear factors for its replication (Porter and Palmenberg, 2009). 

Herpesviruses have also been shown to act on the NPC after the capsid 

remodelling events described above. HSV-1 decreases the expression of 

Nup153 by greater than 3-fold and Nup153 is relocalised to the cytoplasm during 

early stages of infection (Ray and Enquist, 2004; Leuzinger et al., 2005). The 

HSV-1 protein ICP27 interacts directly at the NPC via Nup62 and inhibits several 

forms of nucleocytoplasmic transport (Malik et al., 2012). This is similar to another 

herpesvirus, EBV, which encodes a protein kinase BGLF4 that binds Nup62 and 

Nup153 and induces a reorganisation of the NPC (Chang et al., 2012). The action 

of BGLF4 on these nucleoporins attenuates importin beta trafficking and 

promotes the nuclear import of large molecules. BGLF4 appears to enhance the 
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import of several non-NLS containing EBV proteins that are crucial to viral DNA 

replication (Chang et al., 2015). 

HIV-1, a retrovirus, initially utilises the NPC to target the delivery of its genome to 

the nucleus. HIV-1 appears to undergo uncoating upon entry into the cytoplasm; 

however, observations suggest this process is not a key delineating step before 

transport to the nucleus. A number of studies have also shown that HIV-1 capsid 

proteins are an important determinant of nuclear import and that by interacting 

with Nup358 HIV-1 are able to attach to pores for genome delivery (Yamashita 

and Emerman, 2004; Ocwieja et al., 2011). After docking at the NPC via Nup358, 

the capsid delivers the pre-integration complex (PIC), a complex of the HIV-1 

genome and viral and cellular factors that reverse transcribes the HIV-1 ssRNA 

genome into cDNA (Reviewed in (Jayappa et al., 2012)). The PIC translocates 

through the NPC and interacts with Nup153, which mediates its exit from the 

NPC. Nup153 and Nup98 appear to aid in the process of PIC targeting to host 

chromatin for successful genome integration (König et al., 2008; Woodward et 

al., 2009; Di Nunzio et al., 2012). However, these interactions don’t constitute a 

formal remodelling of the NPC, rather a hijacking of their normal cellular roles. 

Nevertheless, over the course of HIV-1 infection, the NPC does appear to be 

remodelled with significant decreases in the abundance of 18 nucleoporins 

(Monette et al., 2011a). Furthermore, microarray data of HIV-1 infected T 

lymphocytes have shown that Nup62 is upregulated 24 h post infection, whilst 

Nup50 is downregulated (Imbeault et al., 2009). The exact purpose of these 

changes is poorly understood, although high-throughput screens show many of 

these nucleoporins are necessary host cofactors for HIV-1 infection (König et al., 

2008; Zhou et al., 2008). One proposed downstream effect of these remodelling 
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events is the induced cytoplasmic retention of hnRNP A1, allowing the virus to 

positively regulate HIV-1 transcripts with an internal ribosome entry site (IRES) 

(Monette et al., 2009). 

1.4 Proteomic approaches 

With the advent of mass DNA sequencing technologies in the 1990s, 

investigators began to look at methods for analysing the global complement of 

proteins that corresponded to the genome. In 1995, the word ‘proteome’ was first 

used to describe the protein complement to the genome and hence the field of 

proteomics (the study of the global protein network) was born (Wasinger et al., 

1995). The idea of the proteome was later described as “the idea of a finite 

totality, comprising of the functional (protein) molecular specifications of a 

genome” (Anderson and Anderson, 1998). The large scale study of proteins 

actually began much earlier in the 1970s with the development of two-

dimensional electrophoresis (O’Farrell, 1975). The development of these 

technologies briefly focused scientific attention on a project to construct the 

Human Protein Index (HPI); however, major political changes in the early 1980s, 

and the failure to attract large-scale support, stifled the expansion of this project 

(Anderson and Anderson, 1982). With the advent of restriction enzyme 

technology, the genomic revolution quickly overtook much of the previous focus 

on the HPI, given the feasibility and ease of genomic techniques (Reviewed in 

(Anderson and Anderson, 1998)). The identification of many of the proteins 

visualised by 2D gel electrophoresis proved a serious bottleneck until the advent 

of highly sensitive mass spectrometry (MS)-based techniques combined with 

protein sequence databases.  
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Mass spectrometry allowed for the identification and quantification of protein 

samples with greater speed and in a high-throughput work flow. When combined 

with polyacrylamide gel electrophoresis (PAGE) or liquid chromatography (LC) 

highly complex protein mixtures could be resolved into more manageable 

samples, allowing for the potential to resolve proteins from whole-cell lysates 

(Reviewed in (Owen et al., 2014)). The work flow of MS-based analysis of protein 

samples begins with a separation step through either LC or PAGE. Samples are 

then digested into peptides, typically using trypsin, before further separation by 

LC. Peptides are then ionised through approaches such as matrix-assisted laser-

desorption-ionisation-time-of-flight (MALDI-TOF) and electrospray ionisation 

(ES) and analysed through tandem mass spectrometry (MS/MS) (El-Aneed et al., 

2009). In the first round of MS (MS1) the mass to charge ratio (m/z) of peptides 

is determined, generating a spectrum of m/z. These initial peptide spectra are 

then taken forward for an additional fragmentation step using an approach such 

as collision induced dissociation (CID), where ions are crashed into inert gas 

molecules, and fragments are again separated in another round of mass 

spectrometry. The m/z of these new fragments are then compared to a theoretical 

database of fragment m/z in silico using peak intensities to determine quantities 

of these peptides (Figure 1.19) (Yates et al., 1995; Washburn et al., 2001; Han 

et al., 2008). 
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Figure 1.19 Work flow of protein identification and quantification by LC tandem mass spectrometry. 
The protein sample is separated through electrophoresis (1DE, 2DE) or liquid chromatography (LC), it is 
then digested into peptides with trypsin and separated again by LC. The first round of mass spectrometry is 
then performed (MS1) followed by peak identification and further mass spectrometry (MS2) to identify 
peptides. Taken from (Owen et al., 2014). 

 

1.4.1 Quantitative techniques 

Since the advent of 2D gel electrophoresis technologies investigators have also 

asked how changes in the quantities of these proteins relate to cellular conditions. 

Initially, computer algorithms were developed to create standard maps of healthy 

versus pathological cell proteomes. These worked by comparing the intensity of 

a stain for a given protein on the 2D gel based on the assumption that the staining 

density corresponded to the protein concentration (Arora et al., 2005). With the 

application of mass spectrometry technologies, it was possible for the first time 

to dramatically increase the throughput of quantitative studies. Whilst the 

intensities of ions observed in MS are theoretically proportional to peptide 
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abundance in a sample, absolute signal intensities can vary from run to run. 

Differences in sample complexity, chromatographic separation and peptide 

ionisation efficiency can all contribute to variability when comparing ion ratios 

(Dijkstra et al., 2007). The application of stable isotopes to proteomic studies 

provided a crucial answer to these variability problems. Isotopes such as 13C, 15N, 

18O and 2H could be incorporated into proteomic samples that allowed for MS 

traces to highlight ‘light’ and ‘heavy’ peptide ions. These signals can be directly 

compared to give a relative ratio of protein levels between labelled conditions. 

1.4.1.1 Isotope-coded affinity tag (ICAT) 

An early approach that incorporated stable isotopes was isotope-coded affinity 

tagging (ICAT). This approach utilises a biotin affinity tag coupled to a stable 

isotope labelled linker (initial deuterium) and a thiol-reactive group (Gygi et al., 

1999). Differences between two cell states were compared by treating cells with 

isotopically light and heavy ICAT reagents. These are then combined and treated 

with a protease before affinity isolation of ICAT-labelled peptides, which are then 

analysed by LC-MS/MS. The ratio of the peptide pairs then provide a relative 

quantification of the labelled protein (Gygi et al., 1999). This approach suffers 

from the drawback of relying on cysteine-containing peptides to ensure 

attachment of the label via the thiol linker, leading to the under-representation of 

peptides lacking a cysteine, resulting in the development of alternative 

techniques (Hsu et al., 2003).  
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1.4.1.2 SILAC 

Another commonly raised drawback of ICAT approaches was whether the 

differences observed only related to differences in sample preparation during the 

labelling step. Stable isotope labelling with amino acids in cell culture (SILAC) 

was a metabolic approach that attempted to resolve this problem (Oda et al., 

1999; Ong et al., 2002). SILAC involves the addition of isotopically labelled amino 

acids to cell culture media, ensuring that as cells grow and express protein they 

incorporate these ‘heavy’ or ‘light’ amino acids(Ong et al., 2002). These samples 

can then be harvested, treated with a protease and analysed by LC-MS/MS. The 

differences observed between the samples are again calculated into a ratio of the 

peptide pair and expressed as a relative quantitation (Figure 1.20). This approach 

alleviated some of the drawbacks of ICAT; however, SILAC is an expensive and 

time-consuming approach for quantitation that suffers from limitations when 

attempting to multiplex multiple conditions.  
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Figure 1.20 Overview of SILAC. Cells are cultured in media containing synthetic arginine with either heavy 
or light nitrogen isotope. Treatment is then added and incubated onto the cells. These are then collected 
and analysed via LC-MS/MS. This yields a trace with measurable abundance differences between light and 
heavy versions of the same peptide. Adapted from (Watanabe and Kanai, 2011). 

 

1.4.1.3 Isobaric labelling approaches: iTRAQ and TMT 

The development of iTRAQ (isobaric tag for relative and absolute quantification) 

arose from the limitations of both ICAT and SILAC approaches (Ross et al., 

2004). During iTRAQ, samples from each treatment are harvested and digested 

with trypsin. The fragments are then treated with the iTRAQ tag to label fragments 

from each treatment with a specific mass tag. These are then mixed and 

separated via LC where, due to the isobaric nature of the tags, peptides from 
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differing treatments with alternate tags migrate at the same rate. Peptides 

analysed by MS/MS and iTRAQ tags are identified after MS2, when the 

fragmentation stage induces the dissociation of the specific mass tag. This allows 

for the generation of peptide ratios and relative quantitation data for a given 

peptide across several treatments (Figure 1.21). Initially, iTRAQ was 

demonstrated for multiplexing across four different conditions, but has since been 

developed for eight condition experiments (Ross et al., 2004; Choe et al., 2007). 

The nature of iTRAQ has alleviated previous drawbacks of quantitative 

techniques like poor label uptake, multiplexing and detection of post-translation 

modifications (Zieske, 2006). 

Tandem mass tagging (TMT) is another isobaric reporter approach that utilises 

different structured tags to iTRAQ, but operates on the same experimental basis 

(Thompson et al., 2003). TMT tags utilise a m/z range from 126 to 131 allowing 

for a six-plex experiment, although recent advances have enabled TMT to label 

up to ten different samples through high-resolution instrumentation (McAlister et 

al., 2012; Werner et al., 2012). TMT has also been used in conjunction with 

SILAC to create ‘hyperplexing’, with up to eighteen different experimental 

conditions analysed through six tag TMT combined with three different SILAC 

media conditions (Dephoure and Gygi, 2012). This approach could be further 

combined with the previously described ten-plex TMT approach with the 

possibility of analysing relative protein changes across up to thirty different 

conditions. 



67 
 

 

Figure 1.21 Schema of isobaric mass tagging techniques. Protein is extracted from sample conditions 
and protein digested. Mass tag labels (MT) are added and samples and mixed. These are then separated 
by liquid chromatography (LC) and analysed by tandem mass spectrometry (MS/MS). In MS1 precursor ions 
are produced by ionisation, these are then selected and fragmented further before separation into product 
ions in MS2. MS2 peaks can then be selected and further fragmented before separation in MS3 where mass 
tags form distinct peaks highlighting relative levels of that peptide between each sample. 

 

1.4.2 Interactome techniques 

Whilst advances in proteomics helped identify and quantify changes in proteins 

across different environmental conditions, these approaches do not, in isolation, 

elucidate the specific interaction networks of proteins. However, through the 

combination of modern proteomic techniques and in situ labelling techniques 

major advances have been made in understanding a variety of protein-protein 

interactions (PPI). This has expanded into the field of interactomics, or the study 

of both indirect and direct protein interactions (Sanchez et al., 1999). These 
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approaches allow for the development of a more coherent understanding of how 

proteins accomplish the myriad of cellular processes. With the advent of tools for 

quantitative proteomics the potential now exists to investigate PPI in a 

quantitative high-resolution manner, providing new insights into how many of the 

multiprotein complexes that exist within the cell change over the course of drug 

treatment, cancer progression or development. 

1.4.2.1 Selective proteomic proximity labelling using tyramide 

Through investigations into the interaction of the B cell receptor (BCR), a IgM 

class immunoglobulin, the interactomic technique of selective proteomic 

proximity labelling using tyramide (SPPLAT) was developed (Figure 1.22) (Li et 

al., 2014). SPPLAT utilises an unreactive tyramide-biotin molecule and a 

horseradish peroxidase conjugated antibody that is complementary for a target 

protein. This anti-target antibody is added to live cells along with tyramide-biotin 

and hydrogen peroxide. The anti-target antibody binds to the target cell surface 

molecule and catalyses hydrogen peroxide to water, and in the process adds a 

free radical to tyramide-biotin allowing it to react rapidly with adjacent molecules. 

This process labels proximal proteins to the target protein with biotin, allowing 

them to be specifically purified using streptavidin and analysed using LC-MS/MS 

(Johanna Susan Rees et al., 2015). Investigators have also combined this 

approach with quantitative proteomic techniques such as SILAC in order to 

identify the relative transience of interactions (Li et al., 2014). However, this 

approach is limited to cell surface proteins and the labelling efficiency of tyramide-

biotin is strongly determined by the efficacy of the antibody used. 
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Figure 1.22 Overview of SPPLAT. Anti-target peroxidase conjugated antibody is added along with 
tyramide-biotin. Anti-target antibody binds and hydrogen peroxide is added leading to activation of tyramide-
biotin which reacts with nearby proteins. Cells are then lysed and streptavidin beads are used to pull down 
biotinylated proteins which are analysed by LC-MS/MS.  Taken from (Johanna Susan Rees et al., 2015). 

 

1.4.2.2 APEX tagging 

Another independently developed labelling method utilises engineered ascorbate 

peroxidase (APEX). This technique was developed for in vivo labelling that 

occurs rapidly, within a small radius, and is performed via a genetically targetable 

enzyme (Rhee et al., 2013). The first demonstrated use of APEX was targeting 

the enzyme to the mitochondrial matrix. The targeted protein, Mito-APEX, was 

expressed and, on the addition of biotin-phenol, catalysed the reaction of phenol 

to phenoxyl-radicals which exist for a short half-life and react with adjacent 



70 
 

proteins labelling them with biotin (Rhee et al., 2013). Cells can be lysed, and 

protein extracted before biotinylated proteins are purified with streptavidin beads 

and analysed by mass spectrometry (Figure 1.23). Whilst SPPLAT allows for 

biotin labelling at the cell surface, APEX can be expressed within the cell allowing 

for specific and temporally regulated labelling. This control of the time of labelling 

is often contrasted to the final interactomic approach described, namely BioID, 

where the labelling process can take several hours (Hwang and Espenshade, 

2016). APEX can again be adapted to combine quantitative proteomic 

approaches to include relative quantitation of the specific interactome under 

investigation (Hung et al., 2016). An important consideration of this approach is 

whether the diffusion of the enzyme-labelling complex will introduce false-

positively labelled proteins. It has been argued that even with a biotinylation 

speed of 1 min this would give sufficient time for the complex to diffuse around 

half the size of a typical cell (10 µm) (Johanna S. Rees et al., 2015).  

 

Figure 1.23 Outline of APEX in mitochrondria. Mito-APEX is transfected into cells with targeting to the 
mitochrondrial matrix. Biotin-phenol is then added with hydrogen peroxide, mito-APEX catalyses the 
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conversion of phenol to phenoxyl which rapidly reacts with local proteins labelling them with biotin. Cells are 
then lysed and biotinylated protein captured with streptavidin beads and identified via mass spectrometry. 
Taken from (Rhee et al., 2013). 

 

1.4.2.3 Proximity dependent biotin identification  

Proximity dependent biotin identification (BioID) was developed in 2012 as a 

method for understanding protein interactions in vivo. BioID utilises a mutant form 

of Escherichia coli biotin ligase (BirA*) to promiscuously biotinylate proximal 

proteins on the addition of biotin (Roux et al., 2012). In E.coli this biotin ligase is 

responsible for post-translationally modifying a subunit of acetyl-Coenzyme A 

(acetyl-CoA) carboxylase. The process of biotinylation is ATP dependent, with 

the ligase using biotin and ATP to produce a biotinyl-5’-AMP (adenosine 

monophosphate) intermediate, which is able to react with the target protein 

forming an amide bond between biotin and a lysine functional group, releasing 

AMP (Lane et al., 1964; Chapman-Smith and Cronan, 1999). The wild type form 

of BirA has a high affinity for biotinyl-5’-AMP, which is retained in its active site 

until binding to the acetyl-CoA carboxylase subunit. A mutant form of BirA* was 

also discovered that carries the R118G mutation at the active site leading to 

reduced affinity for biotinyl-5’-AMP leading to premature release (Kwon and 

Beckett, 2000; Choi-Rhee et al., 2004). The development of BirA* allowed for the 

cloning of a fusion gene of a target protein of interest and BirA* at either the C or 

N terminus. These fusion proteins can then be expressed in cells and biotinylation 

induced by the addition of biotin to cell culture media. Cells are then harvested, 

proteins extracted and biotinylated proteins purified using streptavidin. Mass 

spectrometry can then be used to identify the biotinylated proteins (Figure 1.24). 
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Figure 1.24 Outline of proximity dependent biotin identification. A fusion protein of BirA* and the target 
protein is expressed, biotin is added to the media leading to biotinylation of adjacent proteins within a ~10 
nm radius. Cells are then lysed, proteins extracted and streptavidin is used to purify biotinylated protein 
before analysis by mass spectrometry. Taken from (Varnaitė and MacNeill, 2016). 

 

The labelling process is proximity dependent on the area reachable by biotinyl-

5’-AMP and was initially described as within a radius of 20 to 30 nm from the 

ligase (Roux et al., 2012). Further experiments demonstrated a small range of 10 

nm when using the construct to label components of the nuclear pore complex, 

based on the known structural dimensions of the NPC (Kim et al., 2014). Through 

this radius of biotinylation, BioID is able to label not only proximal protein-protein 

interactions at the target molecule, but also indirect and dynamic interactions. 
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This makes BioID a key tool in understanding the adaptive landscape of protein 

interactomes over time with successful implementation of BioID investigating the 

nuclear lamina, centrosome components, c-Myc interacting partners in tumour 

cells and chromatin-associated proteins (Roux et al., 2012; Firat-Karalar et al., 

2014; Dingar et al., 2015; Lambert et al., 2015). Nevertheless, the accuracy of 

the BioID approach is also constrained by the radius of labelling and the duration 

of biotinylation. Even with a labelling radius of 10 nm it has been suggested that, 

due to the crowded nature of the cell, there is still a large risk of biotinylating 

unrelated proteins (Phillips et al., 2009). This potential for false-positives is 

exacerbated by the long duration of labelling (18-24 h) which increases the 

potential of labelling false-positives. Overall, these constraints are common 

across all forms of in vivo proximity-based labelling systems and require crucial 

consideration when interpreting data. Often it has been shown that combining 

these techniques with quantitative proteomics aids in determining degrees of 

association (Rhee et al., 2013). 
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1.5 Thesis Aims 

The aim of this thesis is to build upon previous work from the Whitehouse 

Laboratory, which highlighted through quantitative proteomic analysis changes in 

the protein levels of nucleoporins after the induction of KSHV lytic infection. Little 

is known about how KSHV alters the NPC during the lytic infection and this work 

aimed to address this lack of knowledge through two approaches. First, using 

traditional biochemical techniques identify and characterise specific changes at 

the NPC during KSHV lytic infection. Second, utilise new interactomic techniques 

to capture a more holistic understanding of changes at the NPC during KSHV 

lytic infection. 

Chapter 3 aimed to validate and characterise observations from quantitiative 

proteomic work previously performed by the Whitehouse laboratory. This 

identified Nup98 as a nucleoporin specifically downregulated early after the 

induction of KSHV lytic infection (8 h post induction). Interestingly, this 

nucleoporin appears to have a restrictive effect on the expression at the viral 

ORF50 promoter, which appears related to the role of Nup98 within the nucleus 

rather than at the NPC. The targeting of Nup98 by KSHV is linked to the E3 

ubiquitin ligase activity of viral immediate-early protein RTA and appears 

important for the transcription of viral genes containing an RTA-response 

element. 

Chapter 4 expands on a series of investigations that also aimed to characterise 

KSHV targeting of Nup98 using siRNAs to depleted Nup98 before lytic replication 

was induced. Contrary to expectations, results show Nup98-depletion was 
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detrimental to the virus, leading to failed virion egress at the late stage of KSHV 

lytic replication. Results suggested this was related to the role of Nup98 at the 

nuclear pore as a component of the Nup98-Rae1 complex, which is targeted by 

KSHV to induce nuclear retention of a subset of host RNAs. One such RNA 

encodes the ESCRT-III component CHMP7, which has a crucial role recruiting 

the ESCRT-III complex to membranes, to induce repair and abscission. Results 

suggested that overexpression of CHMP7 induced a phenotype in lytic replicating 

cells similar to that of Nup98-depletion, corroborating the hypothesis that nuclear 

pore-bound Nup98 is crucial for successful viral replication due to its anchor role 

at the NPC for Rae1. 

Finally, chapter 5 aimed to implement proximity dependent biotinylation (BioID) 

and tandem mass tagging at the NPC during KSHV lytic infection to identify 

stochiometric changes at the pore. This involved attempts to develop cell lines 

that stably expressed BioID nucleoporin fusion proteins ensuring proper targeting 

at the nuclear pore complex. However, difficulties establishing stable cell lines 

led to the use of transient transfection procedures to incorporate correctly 

localised fusion nucleoporins. A pilot experiment was then performed to confirm 

successful streptavidin immunoprecipitation of biotinylated proteins, before a 

large scale ten-plex experiment was performed to attempt to characterise 

changes at the NPC during lytic infection. The results of these experiments were 

then analysed using automated data analysis scripts written in R and interactome 

maps generated using STRING-db. 

Overall, this work highlights the specific targeting of a nucleoporin and the NPC 

during KSHV lytic infection. It highlights the alternate roles of Nup98 with KSHV 
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appearing to target a specific subcellular population of the protein, whilst requiring 

the presence of Nup98 at the NPC. In the longer term, the characterisation of this 

interaction and further elucidating of mechanisms by which the virus targets 

cellular proteins early during lytic infection may highlight potential targets for 

future antiviral therapies. Furthermore, the datasets acquired from the BioID 

analysis may offer a unique insight into KSHV-interactomic approaches. 
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2 Materials and Methods 
2.1 Materials 

2.1.1 Antibodies 

All antibodies, their species, working dilutions and suppliers are outlined in Table 

2.1 Horseradish peroxidase (HRP)-conjugated anti-mouse, anti-rabbit and anti-

rat secondary IgG, used for Western Blotting at a 1:5000 dilution, were obtained 

from Dako (a brand subsidiary of Agilent). For confocal immunofluorescence (IF) 

Alexa Fluor® 594-, 488-, 546-, and 633- conjugated anti-rabbit, anti-mouse and 

anti-rat were used at a dilution of 1:500 and obtained from Life Technologies 

(Thermo Fisher Scientific). 

Table 2.1 List of antibodies, their species, working dilution for western blotting (WB) and 
immunofluoresence (IF) and suppliers. 

Antibody Species 

Working dilution 

Supplier 

WB IF 

Anti-GAPDH Mouse 1:5000 - Abcam® 

Anti-Mab414 Mouse 1:1000 1:200 Abcam® 

Anti-Lamin B1 Rabbit 1:1000 1:500 Abcam® 

Anti-Nup98 Rat 1:1000 1:100 Abcam® 

Anti-Nup98 Rabbit For ChIP Abcam® 
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(ab45584) 

Anti-ORF57 Mouse 1:1000 1:200 Santa Cruz 

Biotech® 

Anti-ORF65 Mouse 1:500 1:200 S J Gao, 

University of 

Southern 

California 

Anti-RTA Rabbit 1:500 1:500 David Blackburn, 

University of 

Birmingham 

 

2.1.2 Cell culture reagents 

All cell culture reagents, media and selection antibiotics used were supplied as 

shown in Table 2.2. 

Table 2.2 List of cell culture reagents and their suppliers. 

Reagent Supplier 

Doxycycline hyclate Sigma-Aldrich® 

Lipofectamine 2000 Thermo Fisher 
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Hygromycin B 

Puromycin dihydrochloride 

Nucleofector Reagent V 

Lonza 
Phosphate buffered saline (PBS) 

Dulbecco’s Modified Eagle Medium 

(DMEM) 

Roswell Park Memorial Institute 

medium (RPMI1640) 

Gibco™ 

Opti-MEM® 

Foetal Bovine Serum (FBS) 

Penicillin/Streptomycin (P/S) 

Trypsin-EDTA 

 

2.1.3 Chemicals 

Unless otherwise stated, chemicals were obtained from Sigma-Aldrich®, Thermo 

Fisher Scientific brands (including Invitrogen™ and Gibco™), Melford, VWR 

International, Merck Millipore. Sterilisation was achieved by sterile filtering (0.22 

μm filters, Millipore) or by autoclaving (121 oC, 30 min, 15 psi). 
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2.1.4 Enzymes 

All enzymes and their suppliers are listed in Table 2.3. 

Table 2.3 List of enzymes and their suppliers. 

 

Enzyme Supplier 

DNA-free DNA removal kit (DNase I 

treatment) 
Ambion 

DNase I 

Invitrogen™ 

ProtoScript II Reverse transcriptase 

RNase inhibitor, Murine New England Biolabs 

 

2.1.5 Oligonucleotides 

Oligonucleotide primers used in quantitative PCR (qPCR), as well as oligo(dT)15 

were obtained from Sigma-Aldrich®. 

Table 2.4 List of oligonucleotides used and their sequences (forward and reverse, 5'-3'). 

Gene name Sequence (5'-3') 

ORF57 F – GCCATAATCTAAGCGTACTGG 
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 R - GCAGACAAATATTGCGGTGT 

ORF47 

 

F  - CGCGGTCGTTCGAAGATTGGG 

R - CGAGTCTGACTTCCGCTAACA 

GAPDH 

 

F - TGTGGTCATGAGTCCTTCCACGAT 

R – AGGGTCATCATCTCTGCCCCCTC 

CHMP7 

 

F – TCCCAGACAGATCAGATGGTT 

R - TTCATCCTGGGTGTCACAGA 

Nup98 

 

F - TGGGTGAAGGGCTAAATAG 

R - GGCGATCTGGGCTCTTTATT 

Myc (ChIP) 

-475 to -396 

F - TTTGTCAAACAGTACTGCTACGG 

R - CTCCCTCTCAAACCCTCTCC 

ORF50 

 

F - ATGACAAGGGTAAGAAGCTTCGG 

R - ACTGGTAGAGTTGGGCCTTCAGTT 

 

2.1.6 DNA constructs 
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All DNA plasmid constructs were either present in the Whitehouse Laboratory, 

purchased from commercial sources or kindly donated by collaborators, as 

shown in Table 2.5. 

Table 2.5 List of all DNA constructs used, their donors and references. 

Plasmid Kindly provided by Reference 

pLX_TRC317 

CHMP7 

Mission TRC3 Sigma 

TRCN0000478910  

Purchased from the MISSION® 

TRC3 Human LentiORF 

collection 

pLX_TRC317 IST1 Mission TRC3 Sigma 

TRCN0000471238 

pLX_TRC317  Mission TRC3 Sigma 

TRCN0000472187 

pLX_TC317 VPS4A Mission TRC3 Sigma 

TRCN0000480591 

pVSV.G 

Dr. Edwin Chen - 

psPAX2  

pLKO.1 DHX9 shRNA  Purchased from Dharmacon  
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TRCN0000001208 TRC Lentiviral Human shRNA 

RHS4533-EG1660 pLKO.1 DHX9 shRNA TRCN0000001209 

pLKO.1 DHX9 shRNA TRCN0000001210 

pLKO.1 DHX9 shRNA TRCN0000001211 

pLKO.1 DHX9 shRNA TRCN0000001212 

Nup85-GFP 

Dr. Kyle Roux (Roux et al., 2012) 

Nup133-GFP 

Nup160-GFP 

Nup53-GFP 

pcDNA3.1 mycBioID-

Nup53 

pcDNA3.1 mycBioID-

Nup160 

pcDNA3.1 mycBioID-

Nup133 
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pcDNA3.1 mycBioID-

Nup85 

pcDNA3.1 mycBioID 

pcDNA3.1 mycBioID-

R118G 

GFP-Nup98 Professor Richard Wozniak (Capitanio et al., 2017) 

pGL3-RTA-luc Professor Adrian 

Whitehouse 

(Gould et al., 2009) 

pRTA Gary Hayward (Yu et al., 2005) 

pEGFP-N1 Clontech Catalogue No. 6085-1 

pRTLK Renilla Promega Catalogue No. E2261 

 

2.2 Methods 

2.2.1 Cell culture 

2.2.1.1 Cell lines 

BCBL-1 are a cell line derived from B lymphocytes latently infected with KSHV 

originally from a patient with body cavity-based lymphoma. These cells were 

obtained from the American Type Culture Collection (ATCC). TREx BCBL1-Rta, 

a cell line derived from BCBL-1 cells containing an inducible myc-tagged RTA 
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plasmid, were a kind gift of Jae Jung, University of Southern California 

(Nakamura et al., 2003). Both BCBL-1 and TREX BCBL-1-Rta cells (referred to 

as TREx cells) were used for KSHV lytic replication experiments, unless 

otherwise stated. Human embryonic kidney (HEK) 293T cells (referred to as 293T 

cells) were obtained from the European Collection of Authenticated Cell Cultures 

(ECACC). These cells were used for all plasmid transfection experiments. 

2.2.1.2 Cell maintenance 

BCBL-1 and TREx cells were grown in RPMI medium 1640 (Gibco) with 

glutamine, supplemented with 10 % (v/v) foetal bovine serum (FBS, Invitrogen) 

and 1 % (v/v) penicillin-streptomycin (Invitrogen) (referred to hereafter as 

complete RPMI). This cell line was maintained under hygromycin B (Life 

technologies) selection (100 μg/ml). 293T cells (ATCC) were grown in DMEM 

(Life technologies) and supplemented with 10 % (v/v) foetal bovine serum (FBS, 

Invitrogen) and 1 % (v/v) penicillin-streptomycin (Invitrogen) (referred to hereafter 

as complete DMEM). TREx cells were maintained under hygromycin B selection 

(100 μg/ml). All cells were grown at 37 oC in a humidified incubator with 5 % CO2. 

2.2.1.3 Cell viability assay 

Cell viability was determined using the MTS-based CellTiter 96® AQueous One 

Solution Cell Proliferation Assay (Promega). For this 1 ml of 1 x 106 TREx cells 

were seeded into a 12-well plate with fresh complete RPMI containing drug or 

selection agent (G418). After 24 h, 100 μL of treated cells were transferred into 

a 96-well plate and 20 μL of CellTiter 96® AQueous One Solution Reagent was 

added. The 12-well plate was then incubated at 37 oC for 1 h before the 
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absorbance was measured at 490 nm using the Infinite® F50 Robotic microplate 

reader (Tecan). 

2.2.1.4 siRNA knockdown 

8 x 106 TREx cells were transfected once with 100 μL of Nucleofector solution V 

(Lonza) to which 100 nM Allstars negative control siRNA (Qiagen) or Nup98 

Silencer Select siRNA (ID s9782, Life Technologies) was added. Cells were 

transfected using the T-01 programme of an Amaxa nucleofector I (Lonza). 

Immediately after nucleofection, 300 μL fresh RPMI 1640 media was added and 

cells incubated for 10 min at room temperature. Cells were then added to 8 mL 

of fresh complete RPMI 1640 media and maintained in 6-well plates. Cells were 

then reactivated 48h post transfection and incubated for the desired time. 

2.2.1.5 Transient transfection 

3 x 106 293T cells were seeded out per well into 6-well plates and grown to 

approximately 60 % confluence before transfection. Cells were transfected using 

Lipofectamine® 2000 following the manufacturer’s instructions. Briefly, per well, 

100 μL of Opti-MEM was mixed with 3 μL Lipofectamine® 2000 and in a different 

mix 100 μL of Opti-MEM was combined with 1 μg of plasmid DNA for 10 min at 

room temperature with gentle agitation. Mixtures were then combined and 

incubated at room temperature for a further 10 min. Fresh media was added to 

cells during this time and finally the combined 200 μL Opti-MEM 

lipofectamine:plasmid mix was added dropwise to the cells. Experiments were 

conducted 24 h post transfection unless otherwise stated. 
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2.2.1.6 Lentiviral transduction 

3 x 106 293T cells were seeded into a volume of 1 mL complete DMEM per well 

of a 6-well plates and grown until reaching >80 % confluence. Cells were then 

transfected with 0.65 μg of psPAX and pVSV and 1.2 μg of lentiviral plasmid of 

interest (Table 2.5) using Lipofectamine® 2000. Cells were then incubated for 48 

h after which the lentivirus-containing supernatant was collected and filtered with 

0.45 μm filter. 1 mL of lentivirus-containing supernatant was added to 0.5 mL 

fresh RPMI 1640 media containing 0.5 x 106 TREx cells supplemented with 8 

μg/mL polybrene and spin-inoculated by centrifuging for 1 h at 800 x g at room 

temperature. Media-lentiviral supernatant was then left on the cells till the end of 

the day before being removed and replaced with fresh RPMI 1640 medium. 2 

μg/mL of puromycin was added 48 h after viral spin-inoculation to select for 

successfully transduced TREx cells (Figure 2.1) (Balistreri et al., 2016). Cells 

were selected alongside a non-transduced control in 6-well plates for 12 days 

before being transferred into T75 flasks for expansion for experiments. Complete 

RPMI medium supplemented with 2 μg/mL of puromycin was used for all 

subsequent passaging. 
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Figure 2.1 Puromycin kill curve for TREx cells. Different dilutions of puromycin were mixed with fresh 
media and incubated with TREx cells for 24 h before an MTS assay was performed to determine cell viability. 
n=4, standard deviation shown. Experiment from (Baquero et al. unpublished data). 

 

2.2.2 Virus based assays 

2.2.2.1 Induction of KSHV lytic replication 

To induce KSHV lytic replication, 0.8 x 106 TREx cells were treated with 2 μg/ml 

doxycycline (Sigma). Unless stated otherwise, viral mRNA export assays, protein 

expression studies, immunoprecipitation and immunofluorescence experiments 

were performed at 24 h post-induction of KSHV lytic replication. BCBL-1 cells 

were induced by the addition of 3 mM sodium butyrate and 20 ng/mL 12-O-

tetradecanoylphorbol-13-acetate (TPA). 

2.2.2.2 Viral re-infection assay 

Lytic replication was induced for 72 h in 2.0 x 106 TREx cells. Cells were then 

spun down at 500 x g for 5 min at room temperature and 2 mL of cell supernatant 

was mixed 1:1 with 2 mL of DMEM and added to confluent 293T cells seeded in 
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6-well plates. After 24 h, the 293T cells were washed with PBS and total RNA 

was extracted using 1 mL TRIzol (Invitrogen™) as described below and were 

subsequently used for quantitative reverse transcriptase PCR (qRT-PCR) as 

described below. 

2.2.2.3 Viral replication assay 

To assess changes to the level of KSHV DNA production within cells after siRNA 

treatment, 1 x 106 TREx cells per well were seeded onto 6-well plates and 

nucleofected with either scrambled or Nup98 siRNAs, as described in section 

2.2.1.4, and then induced 48 h post-nucleofection. 72 h post-doxycycline 

induction cells were spun down at 500 x g for 5 min at 4 oC. Viral and cellular 

DNA was purified using the QIAamp DNA Mini kit (QIAGEN) following the 

manufacturer’s instructions. Initially the cell pellet was resuspended in 200 μL 

PBS and cells were lysed by addition of proteinase K (QIAGEN) and buffer AL 

followed by 15 s pulse vortexing and 10 min incubation at 56 oC. 100 % ethanol 

was then added, and the solution was applied to a QIAquick spin column. 

Columns were centrifuged at 6,000 x g for 1 min at room temperature and flow-

through was discarded. Wash buffer AW1 was then added to the column and the 

above centrifugation step was repeated. Wash buffer AW2 was then added and 

the column was centrifuged at 8,000 x g for 3 min at room temperature. Flow-

through was discarded and DNA was eluted by the addition of 50 μL dH2O. The 

column was then incubated at room temperature for 1 min and centrifuged at 

6,000 x g for 1 min. Eluted DNA was stored at -20 oC. Viral and cellular DNA 

levels were quantified by qPCR as described below (Section 2.2.5.4). 
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2.2.2.4 Cytoplasmic fractionation 

1 x 106 TREx cells were induced as described in section 2.2.2.1 and 24 h later 

cells were collected by 500 x g 5 min spin followed by a wash in 1 mL of PBS. 

Cells were then lysed in 600 μL of 1 % (v/v) Triton X-100 in PBS for 10 min on 

ice. 350 μL of the lysate were then transferred to fresh microcentrifuge tubes and 

spun for 5 min at 2000 x g at 4 oC and the supernatant was transferred to fresh 

microcentrifuge tubes as the cytoplasmic fraction. The remaining 250 μL was 

divided into 200 μL for extraction of RNA with the use of TRIzol as described in 

section 2.2.5.1 and the remaining 50 μL were kept for protein analysis via western 

blotting. The supernatant of the cytoplasmic fraction was also divided for total 

RNA extraction and protein analysis into volumes of 300 μL and 50 μL. 

2.2.3 Analysis of proteins 

2.2.3.1 Quantification of protein samples 

Protein sample concentrations were determined using the Bio-Rad DCÔ protein 

assay following the manufacturer’s instructions. In a 96-well plate, 5 μL of protein 

lysate or pre-diluted bovine serum albumin (BSA) standards, obtained by serial 

dilution of a 5 mg/ml BSA stock, were incubated with 25 μL Reagent A’ (25 μL of 

reagent S in 1 mL of reagent A) and 200 μL reagent B. After 15 min of incubation 

at room temperature with constant agitation absorbance was measured at 620 

nm using the Infinite® F50 Robotic microplate reader (Tecan). Protein 

concentration was determined through calculation of a standard curve of known 

protein concentrations using BSA in the specific lysis buffer used for the 

experiment. The absorbance of the known concentrations was determined as 

described above and Microsoft Excel was used to determine the function of the 
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standard curve. The function was then applied to all experimental samples to 

determine protein concentration. 

2.2.3.2 SDS-PAGE Electrophoresis 

Protein samples were mixed 1:1 with 2 x SDS loading buffer [100 mM Tris/HCl, 

pH 6.8, 4 % (w/v) SDS, 20 % (w/v) glycerol, 10 mM DTT, 0.25 % (w/v) 

bromophenol blue], and subsequently boiled for 5 min at 95 oC. Samples were 

then separated via molecular weight using sodium dodecyl sulphate (SDS)-

polyacrylamide gel electrophoresis (PAGE). After boiling samples, these were 

loaded alongside Precision Plus ProteinÔ Dual Colour Standards (Bio-Rad®) 

onto a 10 % polyacrylamide gel (unless otherwise stated) composed of a stacking 

gel [5 % (v/v) acrylamide/bis-acrylamide 37.5.1 (Severn Biotech Ltd.), 375 mM 

Tris/HCl, pH 8.8, 0.1 % (w/v) SDS, 0.12 % (v/v) APS, 0.012% TEMED (v/v)] and 

a resolving gel [10% (v/v) acrylamide/bis-acrylamide 37.5.1 (Severn Biotech 

Ltd.), 125 mM Tris/HCl, pH 6.8, 0.1 % (w/v) SDS, 0.08 % (v/v) APS, 0.008 % 

TEMED (v/v)]. Gels were run at 180 V for 60 min or until the dye front reached 

the bottom of the resolving gel. The running buffer used was 25 mM Tris, 192 mM 

Glycine, and 0.1 % (w/v) SDS. 

2.2.3.3 Western Blotting 

Protein samples separated by SDS-PAGE (Section 2.2.3.2) were transferred to 

an AmershamÔ ProtranÔ NC Nitrocellulose Membrane (Thermo Fisher 

Scientific). Proteins were electrophoretically transferred onto the nitrocellulose 

membrane via a wet transfer system. The nitrocellulose membrane was 

assembled into a “blotting sandwich” composed of a blotting pad, two pieces of 
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Whatman filter paper, gel, nitrocellulose membrane, two pieces of Whatman filter 

paper and a blotting pad. Prior to use the membrane was pre-soaked alongside 

all other blotting components in transfer buffer [20 % (v/v) methanol, 25 mM Tris, 

192 mM glycine]. The “blotting sandwich” was then transferred into a blotting rig 

and run at 100 V for 1 h. The transfer of the ladder onto the nitrocellulose 

membrane was used to evaluate the efficiency of the transfer. Non-specific 

protein binding was then blocked for 1 h incubating the membrane in 5 % (w/v) 

non-fat milk (Marvel) in Tris buffered saline and Tween-20 (TBS-T) [150 mM 

NaCl, 50 mM Tris/HCl, pH 7.5, 1 % (v/v) Tween-20] on a rocking platform. The 

membrane was then incubated with primary antibody in 2.5 % (w/v) non-fat milk 

in TBS-T for 60 min at room temperature, followed by three 5 min washes in TBS-

T. Secondary antibody (HRP-conjugated IgG) was applied in 2.5 % (w/v) non-fat 

milk in TBS-T for 60 min at room temperature, followed by five 5 min washes in 

TBS-T. Chemiluminescence was developed by adding enhanced 

chemiluminescence (ECL) system (Geneflow) to the membrane for 1 min. A 

photographic HyperfilmÔ ECL (Thermo Fisher Scientific) was then exposed to 

the membrane for the desired amount of time. The film was developed with a 

Konica SRX-101A developer. 

2.2.4 Analysis of protein interactions 

2.2.4.1 Immunofluorescence 

293T cells or TREx cells were grown on 24-well plates containing sterile glass 

coverslips, which had been coated in poly-l-lysine (Sigma-Aldrich®) for 5 min and 

washed three times in PBS. Once 293T cells had reached at least 50 % 

confluence they were transfected as described in section 2.2.1.5. TREx cells 
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were nucleofected as described in section 2.2.1.4 and seeded onto coverslips 

immediately. TREx cells were then induced either 48 h post-transfection as 

described in section 2.2.2.1. At the required experimental time point coverslips 

were washed in PBS and fixed with 4 % (v/v) formaldehyde for 15 min at room 

temperature. Formaldehyde was then removed, and coverslips washed three 

times with PBS. Cells were then permeabilised using 1 % (v/v) Triton X-100 in 

PBS for 15 min at room temperature. To prevent non-specific binding cells were 

incubated with 1 % (w/v) BSA in PBS for 1 h at 37 oC in a humidity chamber. After 

blocking, cells were incubated with primary antibodies in 1 % (w/v) BSA in PBS 

for 1 h at 37 oC in a humidity chamber. After three washes with PBS, Alexa 

Fluor®-conjugated secondary antibodies were incubated under the same primary 

antibody conditions. For the analysis of biotinylation, Alexa Fluor®-conjugated to 

streptavidin was used. Following secondary antibody treatment, coverslips were 

washed a further five times with PBS and mounted onto microscope slides with 

DAPI containing mounting medium (VECTASHIELD®, Vector Laboratories) for 

nuclei labelling. Slides were stored at 4 oC until visualisation on an inverted LSM 

880 confocal microscope (Ziess) using Zen 2011 software (Ziess).  

2.2.4.2 Co-immunoprecipitation of proteins 

For co-immunoprecipitation assays, TREx cells were prepared and induced as 

described in section 2.2.2.1. At different time points post induction of lytic 

replication (0, 8, 16, 24 h), cells were harvested at 500 x g for 5 min at 4 oC, 

washed once with PBS and lysed for 10 min using 1 mL of modified RIPA buffer 

[150 mM NaCl, 50 mM Tris/HCl; pH 7.6, 1 % (v/v) Nonidet™ P-40 (NP-40)]. The 

insoluble fraction was pelleted at 10,000 x g for 10 min and the supernatant was 
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kept on ice. The supernatant was then incubated by rotation with 5 μg of Nup98 

antibody (Abcam®) overnight at 4 oC. The following day, protein A agarose beads 

(Roche) were pelleted at 500 x g for 5 min and washed 3 times with modified 

RIPA buffer to remove residual storage buffer. 30 μL of beads were then 

incubated by rotation with the antibody-supernatant mix for 1 h at 4 oC. The beads 

were then pelleted by centrifugation at 500 x g for 5 min at 4 oC and washed in 

ice cold modified RIPA buffer 3 times further before the agarose-antibody-antigen 

complex was mixed with 60 μL 2 x SDS loading buffer (Section 2.2.3.2) and 

proteins eluted by heating at 95 oC for 5 min before analysis by SDS-gel and 

Western blotting. 

2.2.4.3 Chromatin immunoprecipitation (ChIP)  

1 x 107 TREx cells were prepared per ChIP in a six-well plate and induced as 

described in section 2.2.2.1. Cells were fixed for 10 min with 1 % (v/v) 

formaldehyde at room temperature. Fixation was then quenched by the addition 

of 10X Glycine solution to a final concentration of 1X and incubated for 5 min at 

room temperature. Formaldehyde crosslinked chromatin was then obtained using 

the Pierce Chromatin Prep Module (Thermo Scientific) according to the 

manufacturer’s protocol to obtain formaldehyde crosslinked chromatin. 

Chromatin was digested incubating six units of micrococcal nuclease (MNase) 

per 100 μL of MNase digestion buffer in a 37 oC water bath for 15 min. These 

conditions resulted in optimal digestion of chromatin with most fragments ranging 

between 150-300 nucleotides in length which was confirmed via running for 40 

min at 100 V on a 1 % (w/v) TAE-agarose gel and staining with 0.2 μg/mL 

ethidium bromide. Immunoprecipitations were carried out using EZ-ChIP kit 
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(Millipore) according to the manufacturer’s instructions. Immunoprecipitations 

were performed overnight at 4 oC and contained 50 μL of digested chromatin (1 

x 107 cells), 450 μL ChIP dilution buffer and 1.5 μg Nup98 antibody (ab45584) or 

1.5 μg of normal mouse IgG (Millipore) which was used as negative control 

antibody. Prior to qPCR analysis, DNA was subjected to a DNA clean up step 

using DNA spin columns provided in the EZ-ChIP kit (Millipore). qPCR reactions 

were performed as described in section 2.2.5.4. using either 4 μL ChIP DNA or 4 

μL of 1 % input DNA as template. 

2.2.5 Quantification of mRNA levels 

2.2.5.1 Total RNA isolation 

Total RNA was extracted from cells using the TRIzol reagent (Life Technologies) 

according to the manufacturer’s protocol. 1 mL of TRIzol was added to 2 x 106 

TREx, BCBL-1 or confluent 293T cells from one well of a 6-well plate. Cells were 

resuspended in TRIzol for 5 min at room temperature after which 200 μL of 

chloroform was added and samples were vigorously shaken for 15 s. Samples 

were then incubated for a further 3 min at room temperature and then centrifuged 

at 12,000 x g for 15 min at 4oC. 500 μL of the upper phase layer, containing RNA, 

was transferred to a fresh microcentrifuge tube containing 500 μL of isopropanol. 

Samples were mixed and incubated for 10 minutes at room temperature before 

a further centrifugation step to precipitate the RNA at 10,000 x g for 10 minutes 

at 4oC. The supernatant was then discarded, and the RNA pellet was washed in 

70% ethanol and centrifuged at 7,500 x g for 5 minutes at 4oC. After this 

centrifugation the supernatant was discarded, and the RNA pellet was air-dried 
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at room temperature for approximately 5 minutes. The pellet was then 

resuspended in 16 μL of DNase and RNase free H2O. 

2.2.5.2 DNase I treatment 

To remove any contaminating DNA from the total RNA isolate, samples were 

treated with DNA-freeÔ DNA removal kit (Ambion®) following the manufacturer’s 

instructions. Briefly, 0.1 volumes of 10x DNase I buffer and 1 µL of DNase I were 

added per sample and incubated for 30 min at 37 oC. Next, samples were treated 

with 0.1 volumes of DNase inactivating reagent and gently mixed for 2 min at 

room temperature. The DNase inactivating agent was pelleted from the RNA 

solution by centrifugation at 10,000 x g for 2 min at 4 oC. The supernatant was 

transferred to a new microcentrifuge tube and stored at -80 oC. 

2.2.5.3 Reverse transcription (RT) 

Total RNA concentrations were measured using a NanoDrop ND-1000 

spectrophotometer (NanoDrop Technologies, a Thermo Fisher Scientific 

Company). 1 µg of total RNA was added to the following reaction to synthesise 

complementary DNA (cDNA). Initially, 1 µL Oligo(dT)15 (500µg/mL) and 1 µL 

dNTP mix (2.5 mM/dNTP) were added per sample and incubated at 65 oC for 5 

min and then immediately cooled on ice. The following master mix was then 

added per sample: 4 μL 5x ProtoScript® II Reverse Transcriptase Reaction Buffer 

(NEB), 2 μL 0.1 M DTT (NEB), 1 μL RNase Inhibitor, Murine (NEB), 1 μL 

ProtoScript® Reverse Transcriptase (NEB). Samples were also prepared with 

the same master mix but omitting the reverse transcriptase, as a negative RT 
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control. Samples were then incubated at 42 oC for 50 min, followed by inactivation 

of the reverse transcriptase at 65 oC for 20 min. The cDNA was stored at -20 oC. 

2.2.5.4 Quantitative PCR (qPCR) 

Quantification of cDNA or genomic DNA was carried out using a Rotor-Gene 

6000 Real-Time PCR machine (QIAGEN) and sequence-specific primers. The 

amplification efficiency of primers was determined prior to primer use for qPCR 

by the following procedure: serial dilutions of cell lysate cDNA were prepared 

from neat to 1:128 and qPCR was performed using the primer set. Cycle 

threshold (Ct) values were then determined using the method outlined below. 

These were plotted on a logarithmic scale and a linear function was determined. 

The slope coefficient of the function was then used to calculate the % 

amplification efficiency using the formula E=-1+10$-
1

slope%. Primers with efficiencies 

between 90 % and 110 % were selected for subsequent use. For each sample 4 

μL of cDNA, as well as RT negative samples and no-template control samples 

were added to a master mix [10 μL 2x SensiMixÔPlus SYBR (Bioline), 5 μL dH2O, 

1 μL primer mix (10 μM forward and reverse primers)]. These were prepared in 

0.1 mL strip tubes (QIAGEN). The qPCR programme used was: initial 

denaturation step 95 oC for 10 min, 35 cycles of denaturation 95 oC for 15 s, 

annealing at 60 oC for 30 s, and elongation at 72 oC for 20 s. Ct values were 

acquired at the elongation step of each cycle and analysed using the Rotor-Gene 

6000 Series Software Version 1.7. After the completion of 35 cycles, a melt curve 

analysis was performed to confirm single-product amplification. Samples were 

normalised against the housekeeping gene GAPDH (unless otherwise stated) 

and quantified using the comparative CT method. This involves calculating the 
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difference in Ct values (∆Ct) between the gene of interest and reference 

housekeeping gene. The difference between the ∆Ct values between the 

experimental condition versus control condition are then calculated giving a ∆∆Ct 

value. The fold change between these conditions was then calculated using the 

formula 2(-∆∆Ct). 

2.2.6 Molecular cloning 

2.2.6.1 Transformation of E.coli DH5a 

All constructs contained a kanamycin or ampicillin resistance gene. Initially 

competent E. coli DH5a cells were thawed on ice. 1 ng of plasmid DNA was 

mixed with 50 μL of competent cells and incubated on ice for 30 min. Cells then 

underwent heat shock at 42 oC for 30 s before immediately cooling on ice for 5 

min. SOC medium [0.5 (w/v) yeast extract, 2 % (w/v) tryptone, 10 mM NaCl, 2.5 

mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM Glucose] was then added and 

the mixture was incubated at 37 oC for 1 h while shaking at 140 rpm. After 1 h 

cells were then spread onto Luria-Bertaini (LB) broth-agar plates [1.5 % (w/v) 

microagar in LB medium] containing 100 μg/mL ampicillin or kanamycin. Plates 

were then incubated at 37 oC overnight.  

Transformed DH5a cells were saved as glycerol stocks for long term storage. 

This was obtained by picking a single bacterial colony from an agar plate and 

grown in 3 mL LB medium containing 100 μg/mL ampicillin or kanamycin 

overnight at 37 oC with shaking at 140 rpm. This starter culture was then mixed 

with LB-medium containing 40 % glycerol at 1:1 ratio and stored at -80 oC. 
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2.2.6.2 Plasmid purification 

For isolation of large amounts of plasmid DNA the Plasmid Maxi Kit (QIAGEN) 

was used following the manufacturer’s guidelines. For each plasmid, a single 

bacterial colony of DH5a cells were picked from agar plates and grown in 3 mL 

LB medium containing 100 μg/mL ampicillin or kanamycin overnight at 37 oC with 

shaking. Of these starter cultures, 200 μL were then used to inoculate 100 mL LB 

media containing 50 μg/mL of the relevant antibiotic and was grown overnight at 

37 oC with shaking. The bacterial cultures were harvested at 5,000 x g for 15 min 

at 4 oC and then resuspended in 10 mL buffer P1. 10 mL of lysis buffer P2 was 

then added and the solution incubated for 5 minutes at room temperature. 10 mL 

of neutralisation buffer P3 was then added and incubated on ice for 10 min. 

Insoluble debris was then spun down at 5,000 x g for 1 h at 4 oC and the clear 

supernatant was added to a pre-equilibrated QIAGEN-tip 500. After the 

supernatant had passed through the column by gravity flow, two rounds of resin 

washing were performed with 30 mL of wash buffer QC. The plasmid DNA was 

then eluted into 10.5 mL of 100 % isopropanol by addition of 15 mL elution buffer 

QF. The eluted DNA:isopropanol solution was then spun at 5,000 x g for 1 h at 4 

oC to produce a precipitated DNA pellet. This was then washed in 1 mL of 70 % 

ethanol and spun down at 16,000 x g for 10 min. The supernatant was removed, 

and the DNA pellet was then air-dried at room temperature for 5 min and 

resuspended in 200 μL dH2O. DNA content and purity were determined using a 

NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, a Thermo 

Fisher Scientific Company). 

2.2.7 Biotin affinity identification (BioID) 
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2.2.7.1 Transfection of BioID constructs 

8 x 106 TREx cells were nucleofected once with 100 μL of Nucleofector solution 

V (Lonza) to which 2 μg of plasmid DNA was added. Cells were nucleofected 

using the protocol described in section 2.2.1.4. 

1 x 106 293T cells were transfected with the same amount of BioID plasmid DNA 

using the previously described technique in section 2.2.1.5. 

2.2.7.2 Biotin affinity purification 

Two independent nucleofections for each BioID plasmid in TREx cells were 

performed as described in section 2.2.1.4 and then pooled to give a final cell 

number of 1.6 x 107. Cells were either induced to KSHV lytic replication as 

described in section 2.2.2.1 or maintained as unreactivated. 24 h prior to 

harvesting, cells were incubated with 100 μM biotin (Sigma)-containing media. 

Cells were lysed following the protocol described in (Roux et al., 2012) which is 

briefly outlined below. Cells were harvested by a 5 min spin at 500 x g in PBS 

and then lysed in Roux lysis buffer [50 mM Tris, pH 7.4, 500 mM NaCl, 0.4 % 

(w/v) SDS, 5 mM EDTA, 1 mM DTT and 1x Complete Protease Inhibitor (Roche)] 

for 10 min at room temperature and then sonicated. Triton X-100 was then added 

to 2 % (v/v) final concentration. An equal volume of chilled 50 mM Tris, pH 7.4 

was added before another round of sonication and centrifugation at 4 oC 16,000 

x g. Supernatants were then incubated by rotation with 200 μL of Dynabeads 

(MyOne Streptavidin C1, Invitrogen) overnight. Beads were collected by spinning 

at 500 x g for 5 min and washed twice for 8 min at room temperature in wash 

buffer 1 [2 % (v/v) SDS in dH2O], then washed at room temperature in wash buffer 
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2 (0.1 % deoxycholate (w/v), 1 % triton-X100 (v/v), 500 mM NaCl, 1 mM EDTA 

and 50 mM HEPES, pH 7.5), once with wash buffer 3, (250 mM LiCl, 0.5 % NP-

40 (v/v), 0.5 % deoxycholate (w/v), 1 mM EDTA, and 10 mM Tris, pH 8.1) and 

twice with wash buffer 4 (50 mM Tris, pH 7.4, and 50 mM NaCl). Bound proteins 

were eluted from the beads with 50 μL 2 x SDS loading buffer (Section 2.2.3.2) 

saturated with 100 mM biotin by incubating beads at 95 oC for 5 min. Protein 

samples were then stored at -80 oC before being shipped to the University of 

Bristol Proteomic Facility in dry ice. 

2.2.8 Data analysis 

2.2.8.1 Experimental design and null-hypothesis significance testing 

Experiments were performed as experimental replicates by the n number 

specified in the figure legends (unless otherwise stated) and data analysis for bar 

plots was performed exclusively in Microsoft® Excel. Data was averaged using 

the built in AVERAGE function and standard deviations calculated using the 

STDEV.S function. Standard error of the mean was then calculated using the 

standard deviation and number of samples and 95 % confidence intervals were 

calculated for error bar parameters. All error bars shown are the 95 % confidence 

intervals around the mean of the data and all p-values shown were calculated 

using the T.TEST function set for a two-tailed, two-sample with equal variance 

test. 

All box and whisker plots were plotted using R package ggplot2 utilising the 

geom_boxplot setting. In ggplot2 a box and whisker plot shows the median, the 

25th and 75th percentiles (interquartile range, IQR) as the upper and lower hinges, 

and whiskers extending 1.5*IQR. The box plots are notched to highlight the 95 % 
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confidence intervals around the median calculated as 1.58*IQR/√(. More 

documentation can be found at 

https://ggplot2.tidyverse.org/reference/geom_boxplot.html.  

2.2.8.2 Densitometry analysis 

Densitometry analysis was performed using ImageStudioLite® from Li-COR 

Biosciences. Scanned .tiff images were imported into ImageStudioLite® and 

converted to grayscale. Using the draw rectangle function a box was drawn 

around a band and then using the copy and paste function the identical shape 

was produced for each band to be analysed. This was performed for both GAPDH 

and the protein band of interest producing a data table that was copied into Excel. 

The signal column was then used to calculate the relative intensity of the band 

versus the control band, this relative intensity was then normalised by  protein of 

interest relative intensity divided by loading control (GAPDH) relative intensity. 

These were plotted as a standard Excel bar plot. 

2.2.8.3 ImageJ analysis 

For the counting of BioID-expressing cells to calculate biotinylation rates: 

Nucleofected TREx cells were prepared as described in section 2.2.4.1. Tile 

scans were performed using the LSM 880 confocal microscope (Ziess) creating 

an RGB 3000 x 3000 pixel image of approximately 1.5 cm2 of a tile. This was 

exported as a .tiff from Zen 2011 using the Save As function and then opened in 

Fiji (Schindelin et al., 2012). The image was then split into three separate images 

for each channel. The following was performed on both the blue channel for DAPI, 

and the red channel for Biotin: Remove background, threshold was adjusted with 
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a maxima of approximately 40. Images were then converted to mask, the fill holes 

command was used and watershed was performed. Particles were then analysed 

using a size threshold of 25 pixels-infinity, no circularity threshold was set, and 

outlines were selected as the preferred output. The data from this count was then 

exported as a .csv file and analysed using Excel. 

For cell membrane analysis using phalloidin: 

Transduced TREx cells were prepared as described in section 2.2.4.1. Tile scans 

were performed using the LSM 880 confocal microscope (Ziess) creating an RGB 

3000x3000 pixel image of approximately 1.5 cm2 of a tile. This was exported as 

a .tiff from Zen 2011 using the Save As function and then opened in Fiji 

(Schindelin et al., 2012). The image was then split into three separate images for 

each channel. The red channel (phalloidin) was kept, background was removed, 

and threshold set to 25-255. Images were converted to mask, holes filled and 

watershed set. Global measurement settings had been set to mm and particles 

were analysed for perimeter and area using a size threshold of 10 mm-infinity, no 

circularity threshold was set, and outlines were selected as the output. Data was 

then exported as a .csv and analysed in Rstudio (R version 3.4.0 (2017-04-21) -

- "You Stupid Darkness") using the script in section 2.2.8.4.2.1. 

2.2.8.4 Bioinformatics analysis: 

Tandem mass tagging (TMT) mass spectrometry data was provided as an excel 

spreadsheet that was converted to a .csv file using the Excel Save As function. 

Rstudio (R version 3.4.0 (2017-04-21) -- "You Stupid Darkness") was then used 

to filter data to provide a new enriched hits datasheet using the ratio of protein 
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between IP and R118G, the non-biotinylating control, (induced or uninduced 

depending on the IP sample) was greater than 1.5, code available in section 

2.2.8.4.1. This list of proteins was further refined using an additional R script 

(Section 2.2.8.4.1.3) which also included proteins that were significantly 

downregulated or upregulated using the protein ratio between reactivated and 

unreactivated conditions (BioID-nup+/BioID-nup-). This produced a new list 

including enriched proteins compared to beads-only, and proteins upregulated 

during lytic replication by >2.0 or downregulated during lytic replication <0.33. 

This list was then outputted as a .csv and protein accession codes were 

converted to gene names using Uniprot mapper 

(https://www.uniprot.org/mapping/, Options: UniProtKB AC/ID to Gene name). All 

successfully mapped identifiers were copied and used in a multiple protein search 

on STRING (https://string-db.org/). The STRING network map was rendered and 

filtered to exclude edges derived from text mining data. Using the Analysis tab 

nodes were coloured by selecting the Gene Ontology cellular component 

categories cytoplasm and nuclear part. 

 R language scripts for BioID data analysis 

2.2.8.4.1.1  BioID script workflow 

Import and initial filter script 

V 

Combinatorial refinement script 

V 

Protein names then converted from accession to gene names 
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V 

STRING-db analysis 

 

2.2.8.4.1.2  Import script and initial filter versus background 

Below example for unreactivated samples: 

library(dplyr) 

library(ggplot2) 

# Set working directory for import of mass spec csv files 

setwd("C:/Users/bsac/OneDrive for Business/PhD/PhD s- drive/Omic 
data/BioID/TMT/Total with Human and KSHV prot/CSV Human and KSHV 
prot") 

# create a dataframe containing .csv data from reactivated BioID 
sample 

BioIDun <- data.frame(read.csv("211116 Total Human Plus KSHV v BioID -
.csv", header = TRUE)) 

# create a dataframe containing .csv data from unreactivated 

R118G (beads only) sample 

R118Gun <- data.frame(read.csv("211116 Total Human Plus KSHV v R116G-
.csv", header = TRUE)) 

# filter a refined table with only columns of accession, description, 
R118G/nup- and nup+/nup- 

# produce a table of nup+/nup- 

nup_ratio <- BioIDun[,c("Accession","Description","X128C.131")] 

# filter for induced nup hits 

BioIDun_hits <- filter(R118Gun, R118Gun[,"X128_C.129_N"] > 1.5) 

# BioIDind_hits has a list of enriched hits compared to beads only 

# for validation purposes we will save this data to confirm these hits 

# are nuclear versus bioid 

setwd("/Users/alexcoleman/OneDrive - University of Leeds/Code/R 
scripts/Bioid analysis/Enriched hits scripts/Enriched lists") 

write.csv(BioIDun_hits, file = "BioIDind_hits.csv") 
Below example for reactivated samples: 

library(dplyr) 

library(ggplot2) 

# Set working directory for import of mass spec csv files 
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setwd("C:/Users/bsac/OneDrive for Business/PhD/PhD s- drive/Omic 
data/BioID/TMT/Total with Human and KSHV prot/CSV Human and KSHV 
prot") 

# create a dataframe containing .csv data from reactivated BioID 
sample 

BioIDun <- data.frame(read.csv("211116 Total Human Plus KSHV v BioID -
.csv", header = TRUE)) 

# create a dataframe containing .csv data from reactivated 

R118G (beads only) sample 

R118Gind <- data.frame(read.csv("211116 Total Human Plus KSHV v 
R116G+.csv", header = TRUE)) 

# filter a refined table with only columns of accession, description, 
R118G/nup- and nup+/nup- 

# produce a table of nup+/nup- 

nup_ratio <- BioIDun[,c("Accession","Description","X128C.131")] 

# filter for induced nup hits 

BioIDind_hits <- filter(R118Gind, R118Gind[,"X128_C.129_N"] > 1.5) 

# BioIDind_hits has a list of enriched hits compared to beads only 

# for validation purposes we will save this data to confirm these hits 

# are nuclear versus bioid 

setwd("/Users/alexcoleman/OneDrive - University of Leeds/Code/R 
scripts/Bioid analysis/Enriched hits scripts/Enriched lists") 

write.csv(BioIDind_hits, file = "BioIDind_hits.csv") 

 

2.2.8.4.1.3   Combinatorial refinement script 

# this is the working library for allocating final key hits 

# it takes from previous enriched hits versus beads only 

# then creates final list of hits that are present in both OR 

# present in uninduced list but ratio is less than <0.33 OR 

# present in induced list but ratio is greater than 2 

library(dplyr) 

# set working dir 

setwd("/Users/alexcoleman/OneDrive - University of Leeds/Code/R 
scripts/Bioid analysis/Enriched hits scripts/Enriched lists") 

# imports Nup85 hits datasets (enriched over R118G) 

Nup85in <- data.frame(read.csv("Nup85ind_hits.csv", header = TRUE)) 

Nup85un <- data.frame(read.csv("Nup85un_hits.csv", header = TRUE)) 

# Imports original Nup85 unreactivated dataset containing the 
Nup85+/Nup85- ratios 

Nup85un_origin <- data.frame(read.csv("/Users/alexcoleman/OneDrive - 
University of Leeds/PhD/PhD s- drive/Omic data/BioID/TMT/Total with 
Human and KSHV prot/CSV Human and KSHV prot/211116 Total Human Plus 
KSHV v Nup85-.csv", header = TRUE)) 
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# create a list of shared proteins in both Nup85+ hit list and Nup85- 
hit list 

shared_85 <- Nup85in[Nup85in$Accession %in% Nup85un$Accession,] 

# Create a long list of all hits identified but not all necessarily 
shared between +/- 

prot_names <- bind_rows(Nup85un, Nup85in) 

# removes duplicates 

prot_names <- unique(prot_names) 

# creates new dataframe to calculate relative abundance differences 
from  

# original dataframe versus Nup85- by selecting out proteins by 
Accession from long list of all hits 

prot_names1 <- Nup85un_origin[Nup85un_origin$Accession %in% 
prot_names$Accession,] 

# reduce columns to relevant columns 

prot_names1 <- 
prot_names1[,c("Accession","Description","X..Unique.Peptides","X129_C.
127_N")] 

# filter the list for proteins in the shared list defined above, or 
proteins with a Nup85+/Nup85- ratio greater than 2 or proteins with a 
Nup85+/Nup85- ratio less than 0.33. 

prot_names1 <- prot_names1[prot_names1$Accession %in% 
shared_85$Accession | prot_names1$X129_C.127_N > 2.0 | 
prot_names1$X129_C.127_N <= 0.33,] 

# create a new column to highlight if this protein was present in the 
Nup85+ hit list 

prot_names1$In <- prot_names1$Accession %in% Nup85in$Accession 

# create a new column to highlight if this protein was present in the 
Nup85- hit list 

prot_names1$Un <- prot_names1$Accession %in% Nup85un$Accession 

# set working directory for saving  

setwd("/Users/alexcoleman/OneDrive - University of Leeds/Code/R 
scripts/Bioid analysis/Enriched hits scripts/Enriched lists") 

write.csv(prot_names1, file = "Nup85_hits_combo2.csv") 

 

 R language scripts for perimeter data analysis 

2.2.8.4.2.1   Boxplot analysis of perimeter data 

library(ggplot2) 

# quick analysis of ImageJ features 

rx1_scr <-data.frame(cbind(read.csv('dir/to/csv 
/reactivated_tile1.csv'),treatment='Mock'))[,c(2,3,4)] 

rx2_scr <- data.frame(cbind(read.csv('/Users/alexcoleman/OneDrive - 
University of Leeds/Images for 
classification/Phalloidin/Scr/Analysis/Rx 
only/reactivated_tile2.csv'),treatment='Mock'))[,c(2,3,4)] 
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rx1_ist1 <- data.frame(cbind(read.csv('/Users/alexcoleman/OneDrive - 
University of Leeds/Images for 
classification/Phalloidin/ist1/Analysis/Rx_only/reactivated_tile1.csv'
),treatment='IST1'))[,c(2,3,4)] 

rx2_ist1 <- data.frame(cbind(read.csv('/Users/alexcoleman/OneDrive - 
University of Leeds/Images for 
classification/Phalloidin/ist1/Analysis/Rx_only/reactivated_tile2_outl
i.csv'),treatment='IST1'))[,c(2,3,4)] 

rx1_7 <- data.frame(cbind(read.csv('/Users/alexcoleman/OneDrive - 
University of Leeds/Images for 
classification/Phalloidin/chmp7/Analysis/Rx_only/reactivated_tile1.csv
'),treatment='CHMP7'))[,c(2,3,4)] 

rx2_7 <- data.frame(cbind(read.csv('/Users/alexcoleman/OneDrive - 
University of Leeds/Images for 
classification/Phalloidin/chmp7/Analysis/Rx_only/reactivated_tile1_2.c
sv'),treatment='CHMP7'))[,c(2,3,4)] 

main_df <- rbind(rx1_scr,rx2_7,rx2_ist1,rx2_scr, 
row.names=c('Perim.','Area','Label')) 

main_df$Area <- sapply(sapply(main_df$Area, as.character), as.numeric) 

main_df$Perim. <- sapply(sapply(main_df$Perim., as.character), 
as.numeric) 

main_df$Perim.Area <- main_df$Perim./main_df$Area 

# set up saving at 300dpi 

tiff('test.tiff',units = 'px', width = 1500, height = 1200,res= 300) 

ggplot(main_df, aes(x=treatment, y=Perim.Area))+ 

  stat_boxplot(geom=’errorbars’)+ 

  geom_boxplot(notch=TRUE, 

               lwd = 0.7) + 

  scale_x_discrete(limits=c('Mock','IST1','CHMP7'), 

                   name = 'LentiORF')+ 

  scale_y_continuous(expand=c(0,0), 

                     limits=c(0,2.6), 

                     breaks=seq(0,2.6,0.2), 

                     name = 'Perimeter/Area')+ 

  theme_classic() 

# confirm saving of tiff file 

dev.off() 
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3 Nup98 is remodelled by KSHV during lytic 

infection 

3.1 Introduction 

KSHV is a member of the Gammaherpesvirinae sub-family. Its lifecycle is divided 

into two distinct replication stages: latency with minimal gene expression and a 

focus on episome maintenance; and lytic replication, where the full complement 

of viral open reading frames (ORFs) are expressed and nascent virions are 

produced and released. Lytic replication itself is split into three temporal stages 

based on the kinetics of ORF expression: immediate-early, delayed-early and 

late. At each of these stages different viral proteins are expressed that remodel 

endogenous cellular processes from mRNA export through immediate-early 

ORF57 protein to global mRNA turnover via delayed-early ORF37 protein 

(Glaunsinger and Ganem, 2004; Majerciak and Zheng, 2009). 

The nuclear pore complex (NPC) is a protein mega-complex that sits at the 

nuclear envelope and regulates nucleocytoplasmic transport. It is formed from 

multiple copies of 30 different proteins called nucleoporins, giving rise to a mega-

complex of approximately 125 MDa (Hoelz et al., 2011). It acts as both a barrier 

and a sophisticated conduit permitting regulated transport of protein and RNA 

(Moore, 1998; Cautain et al., 2014). Nup98 is a nucleoporin crucial for various 

RNA export pathways, as well as playing a variety of off-pore regulatory roles 

within the nucleus (Powers et al., 1997; Light et al., 2013). Viral remodelling of 

nucleoporins is an established strategy of cellular subversion during viral infection 

and alterations in nucleoporin levels had been identified from whole cell lysate 
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proteomic data from lytically induced KSHV-infected B cells (Sophie Schumann, 

Unpublished data). Therefore, it was speculated that KSHV may specifically 

remodel components of the NPC during lytic infection to aid its replication. 

In this chapter, Nup98 is identified as a nucleoporin that is remodelled during 

early KSHV lytic infection via a large quantitative proteomic screen. A range of 

techniques are then employed to confirm and characterise the importance of 

Nup98 targeting during KSHV lytic replication. 

3.2 Nup98 is specifically downregulated early during KSHV lytic 

infection 

SILAC-based quantitative proteomics is a mass spectrometry technique that 

detects changes in protein abundance between samples using non-radioactive 

isotope labelling (Oda et al., 1999; Ong et al., 2002). Previously, members of the 

Whitehouse laboratory had prepared BCBL-1-Rta cells (subsequently referred to 

as TREx cells) grown in either heavy, light or medium isotopic conditions. Cells 

in the heavy and medium conditions were treated with doxycycline to induce 

KSHV lytic replication through an inducible mycRTA construct and lysed at 24 h 

and 8 h post doxycycline treatment, respectively. Lysed samples were then sent 

to Dr Kate Heesom at the University of Bristol Proteomic Facility for analysis and 

the SEQUEST data was obtained with relative protein levels expressed as ratios 

between the three conditions. Whole cell lysate quantitative proteomic data with 

a 1% false discovery rate (FDR) showed Nup98 levels were reduced by 

approximately half when comparing the SILAC ratio of protein levels between 0 

h and 8 h post induction of lytic replication (Figure 3.1a). Nup98 is a 

nucleoplasmic-orientated nucleoporin containing GLFG repeats that has a key 
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role in nuclear export but has also been shown to diffuse off the pore into the 

nucleus (Powers et al., 1997; Griffis et al., 2002). Nup98 therefore, exists as two 

populations within the cell, a pore-bound population facilitating export with the 

adaptor protein Rae1 (Blevins et al., 2003), and a nucleoplasmic population 

playing roles in transcription (Capelson et al., 2010; Kalverda et al., 2010). Similar 

decreases in other nucleoporin levels were not observed for other nucleoporins 

including Nup160, Nup133, Nup107, key structural nucleoporins that form the 

Nup160-Nup107 complex (Walther et al., 2003), and Nup153, another 

nucleoplasmic-oriented nucleoporin involved in nuclear import (Sukegawa and 

Blobel, 1993; Ullman et al., 1999). From the quantitative proteomic data 

corresponding to Nup160-Nup107 complex nucleoporins it could be inferred that 

the overall number of nuclear pores did not decreased within 8 h of lytic infection.  

To validate the observed downregulation of Nup98, western blot analysis was 

performed on TREx cells at different time points post induction of KSHV lytic 

replication via doxycycline-inducible mycRTA (Figure 3.1b). The decrease in 

Nup98 protein levels was confirmed at 8 h and shown to be specific when 

compared to Nup153, similar to the quantitative proteomic data. Densitometry 

analysis confirmed this decrease in Nup98 protein levels was significant 

compared to Nup98 levels at 0 h and was comparable in magnitude to the 

observation in the quantitative proteomic data (Figure 3.1c). Intriguingly, qPCR 

analysis of Nup98 mRNA levels over the course of KSHV lytic infection did not 

show a decrease in Nup98 mRNA, in fact at 8 h post induction of lytic replication 

Nup98 mRNA levels rose significantly to 2.5 fold when compared to 0 h post 

doxycycline treated TREx cells (Figure 3.1d). These results suggest that Nup98 
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was specifically targeted by the virus rather than the NPC as a whole and that 

Nup98 protein was specifically targeted rather than Nup98 mRNA. 

 

Figure 3.1 Nup98 is specifically downregulated at 8 h post induction of KSHV lytic replication in TREx 
cells. a) 1% FDR quantitative proteomic ratio of nucleoporin protein levels at 8 h post induction of lytic 
replication compared with protein levels at 0 h post induction of lytic replication (Sophie Schumann, 
unpublished data). n=1. b) A representative Western blot of nucleoporin levels at 0 h, 8 h and 24 h post 
induction of lytic replication in TREx cells. mycRTA represents a control for induction of lytic replication via 
the doxycycline-inducible mycRTA construct, ORF57 shows mycRTA is able to activate the viral lytic 
cascade and GAPDH represents a loading control. c) Quantified densitometry of Nup98 band intensity 
normalised to GAPDH for reactivation time course experiments shown in b). n=3, 95% confidence intervals 
shown, T-test p-value shown between indicated conditions. d) qPCR analysis of Nup98 mRNA levels relative 
to GAPDH mRNA from TREx cells at times shown post induction of lytic replication. n=3, confidence intervals 
shown, T-test p-value shown between indicated conditions.  

 

3.3 The localisation of Nup98 is not altered during KSHV lytic 

infection 

a) b) 

c) 

d) 
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In order to understand the above changes, it was important to first determine the 

proportion of TREx cells that undergo KSHV lytic replication after treatment with 

doxycycline to promote mycRTA expression. Using confocal microscopy, it was 

possible to determine the percentage of lytically replicating TREx cells at each 

time point (Figure 3.2). This shows that in TREx at 0 h there were <5 % of cells 

that expressed RTA in line with expectations surrounding rates of spontaneous 

reactivation (Lukac et al., 1998). At 8 h, the time point where we observe a 

decrease in Nup98 protein levels, 23.8 % of cells were expressing RTA. This 

suggests that the level of Nup98 protein decrease may be greater than that 

observed through western blot analysis given the low proportion of cells that were 

expressing RTA at 8 h post induction of lytic replication. These data help inform 

subsequent analyses given that the virus is reactivated only within a proportion 

of TREx cells at each time point with a majority of cells expressing RTA by 24 h 

(57.2 %). 
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Figure 3.2. Confocal microscopy-based quantification of the proportion of TREx cells that undergo 
KSHV lytic replication. Representative tilescan confocal images of TREx cells at either 0, 8 or 24 h after 
the induction of lytic infection. DAPI in blue, RTA in red. ImageJ quantification of the % of RTA positive cells 
shown. n=3, 95% confidence intervals shown. 

 

Following on from these observations, confocal immunofluorescence was 

performed to determine whether a decrease in Nup98 protein levels could be 

visualised in RTA expressing TREx cells. Confocal immunofluorescence analysis 

of the localisation of Nup98 in TREx at different time points after the induction of 

KSHV lytic replication showed that there was no obvious decrease of Nup98 

signal at the nuclear pore or relocalisation of Nup98 as KSHV lytic replication 
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progressed (Figure 3.3). Nup98 can be observed through confocal 

immunofluorescence predominantly at the nuclear pore as strong, discrete 

signals indicating NPCs, there is also a faint diffuse signal in the nucleoplasm 

although no discrete GLFG-bodies are visible as has been observed in some cell 

types (Griffis et al., 2002). At 0 h, differences in Nup98 levels can be observed in 

cells lacking RTA expression suggesting a level of baseline variability. At 8 h, 

there are some cells that have begun to express RTA however there is no 

consistent Nup98 phenotype when these cells are compared to cells lacking RTA 

expression. At 24 h, replication compartments have begun to form in RTA 

expressing cells but again there is no observable decrease in Nup98 signal or 

localisation. These results suggest that decreases in Nup98 protein levels during 

KSHV lytic replication may not occur at the NPC. The approach taken for confocal 

microscopy here aimed to minimise background signal and therefore involved 

focusing upon the NPC Nup98 signal at the expense of the more diffuse signal 

within the nucleoplasm. Technically this made visualising nucleoplasmic Nup98 

difficult in TREx cells however the observation of no consistent NPC Nup98 

phenotype suggested that the nucleoplasmic fraction of Nup98 may be being 

targeted. 



118 
 

 

Figure 3.3 Nup98 localisation in TREx cells is not altered on the reactivated of KSHV. Confocal 
immunofluorescence analysis of Nup98 in TREx cells at 0 h, 8 h and 24 h post induction of KSHV lytic 
replication with doxycycline, endogenous RTA staining present to confirm induction to lytic replication, DAPI 
to identify cell nucleus. 

 

3.4 Increased Nup98 degradation in the presence of KSHV RTA is 

dependent on the ubiquitin-proteasome pathway 

The decrease of Nup98 protein during KSHV lytic infection appeared to occur 

within 8 h of reactivation of TREx cells without a concurrent downregulation of 

Nup98 mRNA levels. Therefore, it was hypothesised that Nup98 could be being 

targeted for degradation through the ubiquitin-proteasome pathway. 

Furthermore, KSHV immediate-early protein RTA, the viral transactivator 

responsible for initiating the transition from latency to lytic replication (Lukac et 
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al., 1998), has previously been shown to specifically target other cellular proteins 

via a ubiquitin E3 ligase-like domain (Yu et al., 2005; Gould et al., 2009). 

Therefore, the targeted degradation of Nup98 during KSHV lytic infection could 

be linked to RTA-induced proteasomal degradation. 

In order to test this hypothesis a series of experiments were performed in RTA-

transfected 293T cells. Initially, these experiments simply involved transfecting a 

construct that constitutively expressed RTA into 239T cells, incubating the cells 

for 24 h before western blot analysis of Nup98 protein levels. This showed that 

24 h after transfection with an RTA expression plasmid Nup98 protein levels 

decreased significantly compared to an untransfected control (Figure 3.4a). This 

was further quantified using densitometry confirming a significant decrease when 

compared to Nup98 protein levels in untransfected control 293T cells (Figure 

3.4b). To confirm that the transfection of RTA did not lead to a decrease in Nup98 

mRNA levels, RNA was also extracted from transfected cells and analysed by 

qPCR. A modest decrease in Nup98 mRNA levels after RTA transfection was 

observed however the scale of the decrease did not account for the decrease in 

protein levels observed (Figure 3.4c). This suggested that expression of RTA 

could lead to a decrease in Nup98 protein levels in 293T cells in the absence of 

all other KSHV lytic factors. 
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Figure 3.4 Nup98 protein levels decrease in 293T cells after transfection with KSHV RTA protein. a) 
A representative western blot of Nup98 levels in 293T cells 24 h post transfection with RTA expression 
plasmid and untransfected cells. RTA levels also shown along with GAPDH as a loading control. b) 
Densitometry of the Nup98 band intensity from western blot analysis normalised to GAPDH for experiments 
where RTA was transfected into 293T cells with protein extracted 24 h post transfection. n=3, 95% 
confidence intervals shown, T-test p-value shown between indicated conditions. c) qPCR analysis of Nup98 
mRNA levels normalised to GAPDH mRNA in untransfected and RTA transfected 293T. n=3, confidence 
intervals shown, T-test p-value shown between indicated conditions. 

 

Having demonstrated that transfection of RTA led to a decrease in Nup98 protein 

levels but did not reduce Nup98 mRNA levels to the same extent the next step 

was to identify whether the downregulation was via the ubiquitin-proteasome 

pathway. Therefore, a series of experiments were performed with MG132, a 

peptide aldehyde that binds to the chymotrypsin-like active site of the b subunit 

of the proteasome inhibiting protein degradation (Rock et al., 1994), to determine 

whether Nup98 degradation upon transfection of RTA could be prevented.  
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Initially, 293T cells were transfected with an untagged RTA expression construct 

and incubated for 24 h before cells were treated with DMSO or 20 µM MG132. 6 

h after treatment with MG132 or DMSO cells were harvested and lysed for 

western blot analysis. Western blots were performed to confirm RTA expression 

and to compare Nup98 protein levels in each treatment (Figure 3.5a). A 

significant downregulation of Nup98 was observed in RTA-transfected 293T cells 

compared with untransfected cells treated with DMSO however, this significant 

decrease is not detectable between untransfected and RTA-transfected cells that 

were treated with 20 µM MG132 (Figure 3.5b). Similar experiments were 

performed on reactivated TREx cells, with TREx cells treated with doxycycline to 

induce KSHV lytic replication and 2 h post doxycycline treatment DMSO or 20 

µM MG132 was added. 6 h after DMSO or MG132 treatment cells were harvested 

and lysed. This allowed for the comparison of Nup98 levels at 8 h post induction 

of lytic replication, the timepoint where the downregulation of Nup98 is observed 

in lytically replicating cells. Western blot analysis of these samples showed that 

doxycycline treated cells were able to induce mycRTA expression and that Nup98 

levels decreased in reactivated cells treated with DMSO, however in MG132 

treated cells Nup98 levels did not decrease between 0 h and 8 h (Figure 3.5c). 

Densitometry analysis of Nup98 relative band intensity normalised to GAPDH 

showed a significant decrease in Nup98 in DMSO treated TREx cells at 8 h post 

doxycycline treatment when compared to Nup98 at 0 h (Figure 3.5d). This 

decrease was not observed in reactivated MG132 treated TREx between 8 h and 

0 h, with an apparent increase in Nup98 at 8 h compared to 0 h although this was 

not significant (Figure 3.5d). These observations showed that the RTA-induced 

decrease of Nup98 in 293T was sensitive to inhibition of the proteasome and that 
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the Nup98 decrease observed in TREx cells at 8 h post reactivation with 

doxycycline was also dependent on the proteasome. Overall, these data 

suggested that RTA was responsible for decreasing Nup98 protein levels via the 

ubiquitin-proteasome pathway. 

 

Figure 3.5 Nup98 degradation is prevented on treatment with proteasome inhibitor MG132. a) A 
representative western blot of Nup98, RTA and GAPDH (loading control) from 293T cells that were either 
untransfected or transfected with RTA for 24 h before treatment with either DMSO or 20 µM MG132 for 6 h 
before protein was collected. b) Densitometry analysis of Nup98 band relative intensity normalised to 
GAPDH from western blots of protein extracted from 293T cells (untransfected or RTA transfected 24 h post 
transfection) treated for 6 h with either DMSO or 20 µM MG132. n=3, 95% confidence intervals shown, T-
test p-value shown between indicated conditions. c) A representative western blot of Nup98, mycRTA and 
GAPDH (loading control) from TREx cells treated with doxycycline and 2 h subsequently treated with DMSO 
or 20 µM MG132 before protein extracted 8 h post doxycycline treatment. d) Densitometry analysis of Nup98 
band relative intensity normalised to GAPDH from western blots of protein extracted from TREx cells treated 
with doxycycline and 2 h later either DMSO or 20 µM MG132 with protein extracted at 8 h post doxycycline 
treatment. n=3, 95% confidence intervals shown, T-test p-value shown between indicated conditions.  

 

a) c) 

 

 

i) 

 

 

b) d) 
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Next, attempts were made to use co-immunoprecipitation techniques to pull down 

Nup98 protein and determine whether RTA binding could be detected. This 

involved inducing lytic replication in TREx cells and performing Nup98 

immunoprecipitations on protein lysates at different time points post induction of 

lytic infection. RTA was not identified when immunoprecipitation samples were 

analysed via western blotting (Figure 3.6). However, this did not exclude the 

hypothesis that RTA is targeting Nup98 for degradation via its E3 ubiquitin ligase 

as interactions between E3 ligases and their substrates can be highly transient 

and therefore not always identifiable via co-immunoprecipitation experiments 

(Pierce et al., 2009). 

 

Figure 3.6 RTA could not be shown to co-immunoprecipitate with Nup98 in TREx. 
Immunoprecipitations using anti-Nup98 antibodies were performed at different time points post the induction 
of lytic replication in TREx cells with doxycycline. Endogenous RTA was probed at each time point and no 
co-immunoprecipitation was observed. n=2. 
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3.5 Nucleoplasmic Nup98 binding partner DHX9 does not play a role 

during early KSHV lytic replication 

Thus far experiments had indicated that Nup98 protein was downregulated early 

during KSHV lytic infection via enhanced degradation through the proteasome-

ubiquitin pathway. This decrease did not appear to occur at the NPC and 

therefore was speculated to be specific to the nucleoplasmic Nup98 fraction. The 

next steps of this work involved determining why KSHV targeted Nup98 and the 

mechanism behind its hypothesised restrictive role of viral replication. The 

function of Nup98 within the nucleoplasm is not fully understood but has been 

suggested to involve transcription regulation via its interaction with a range of 

nucleoplasmic binding partners (Light et al., 2013; Panda et al., 2014; Capitanio 

et al., 2017). One of its main binding partners is DExH-helicase 9 or DHX9 (also 

referred to as RNA Helicase A) (Capitanio et al., 2017).  It was therefore 

speculated that the targeting of nucleoplasmic Nup98 by KSHV could be related 

to DHX9 due to its interactions with CREB-binding protein (CBP) and RNA 

Polymerase 2 (Nakajima et al., 1997). This is a critical pathway for KSHV during 

early lytic infection because RTA, the viral transactivator, also recruits CBP to 

stimulate transcription of early viral genes (Gwack et al., 2001). It was 

hypothesised therefore that the nucleoplasmic Nup98-DHX9 interaction maybe 

disrupted by RTA early during lytic infection to allow DHX9 to be recruited as part 

of the CBP complex with RTA to KSHV early lytic gene promoters. 

To investigate this hypothesis, shRNAs against DHX9 were transduced with 

Lentivirus into BCBL-1 cells to deplete DHX9. It was hypothesised that upon the 

reactivation of lytic replication in DHX9-depleted cells RTA expression would 
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have a less efficient induction of lytic replication due to the potential role of DHX9. 

BCBL-1 cells were chosen for these experiments rather than TREx cells to 

eliminate the potential for doxycycline induced mycRTA expression to mask the 

proposed effect of DHX9 at early lytic promoters. Many of these early lytic 

promoters rely on RTA to stimulate expression through ORF50 response 

elements, therefore the doxycycline inducible mycRTA system was inappropriate 

for these experiments. DHX9 protein levels were successfully depleted using 

targeted shRNAs and subsequent analysis of BCBL-1 cells induced into lytic 

replication with 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium 

butyrate showed a modest decrease in RTA levels at 48 h in DHX9-depleted cells 

compared to scrambled treated cells (Figure 3.7a). However, there were minimal 

observable differences in ORF57 expression levels at both 24 h and 48 h time 

points post induction of the lytic replication. qPCR analysis of ORF57 and ORF50 

RNA levels further confirmed there was no significant difference in expression 

levels at 24 h post induction of lytic replication (Figure 3.7b). At 48 h there was 

an increase in ORF50 levels observed in DHX9-depleted cells but this was not 

significant when compared to scrambled treated cells, ORF57 levels were 

observed to be significantly different however the difference was only a slight 

increase (0.56 fold in scrambled treated cells, 0.75 fold in DHX9-depleted cells, 

Figure 3.7b). This data suggests no significant role of DHX9 specifically in KSHV 

lytic infection although it is possible that redundancy within the dead-box helicase 

family means the effects of DHX9-depletion were obscured.  
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Figure 3.7 The depletion of Nup98 nucleoplasmic binding partner DHX9 did not impact KSHV lytic 
replication. a) A representative western blot of viral immediate-early proteins (ORF57 and RTA) in BCBL-
1 cells expressing either scrambled or 1209 shRNA against DHX9, lytic replication induced with TPA and 
sodium butyrate. GAPDH shown as a loading control. b) qPCR analysis of KSHV immediate-early transcripts 
in BCBL-1 cells expressing either scrambled or 1209 shRNA targeting DHX9 at time points post induction 
of lytic replication with TPA and sodium butyrate. n=3. 95% confidence intervals shown, T-test p-value shown 
between indicated conditions. 

 

b) 

a) 
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3.6 Nucleoplasmic Nup98 acts to prevent transcription of KSHV lytic 

ORFs at ORF50-promoters 

The observations thus far led to the speculation that KSHV was targeting the 

nucleoplasmic fraction of Nup98 due to no observable changes of Nup98 

localisation. To test whether nucleoplasmic Nup98 had a restrictive effect on early 

KSHV lytic processes, 293T cells were transfected with a series of plasmid 

combinations to test the effect of overexpressing GFP-Nup98, a donation from 

collaborators from the Wozniak Laboratory, on a viral ORF50-promoter-luciferase 

construct. Overexpression of Nup98 has been shown to saturate the 

nucleoplasmic fraction which could highlight the more transient impacts of Nup98 

on KSHV (Griffis et al., 2002). Cells were transfected in triplicate and incubated 

for 24 h before lysis and luciferase substrate addition. Luminescence readings 

were then obtained using an automated plate reader and results analysed. 

Interestingly, overexpression of GFP-Nup98 along with an FLAG-RTA 

overexpression construct led to a significant decrease in the luminescence 

produced from ORF50-promoter luciferase construct compared to luminescence 

in FLAG-RTA and GFP transfected cells (Figure 3.8a). An empty FLAG vector 

was used to control for RTA overexpression showing the baseline level of 

luminescence from the ORF50-promoter luciferase construct (Figure 3.8a). This 

suggested that when cells were oversaturated with GFP-Nup98, RTA was unable 

to induce transcription at the ORF50 promoter. To test the kinetics of GFP-Nup98 

repression of RTA-induced transcription at the ORF50 promoter, the above 

luciferase experiments were extended using sequentially increased doses of 

GFP-Nup98 and GFP. Results showed that the negative transcriptional effect of 

GFP-Nup98 was dose-dependent with luminescence from ORF50-driven 
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luciferase decreasing as the amount of GFP-Nup98 transfected increased 

(Figure 3.8b). This suggests that nucleoplasmic Nup98 negatively regulates RTA-

induced transcription at the ORF50 promoter and furthermore, suggests that this 

negative effect is implicitly linked to the level of Nup98 present within the cell. 

Therefore, the targeting of Nup98 protein levels by KSHV early during lytic 

replication is essential to ensure transcriptional activation of immediate-early 

KSHV genes. 

 

Figure 3.8. Overexpressing Nup98 alongside RTA and an ORF50 luciferase construct in 293T cells 
significantly reduces luminesence. a) Luminesence analysis of ORF50 luciferase construct when treated 
with FLAG-RTA and GFP, FLAG-RTA and GFP-Nup98 or an empty FLAG-vector and GFP-Nup98 in 293T 
cells. Luminescence standardized to Renilla control. n=4, 95% confidence intervals shown, T-test p-value 
shown between indicated conditions. b) Dose dependent experiment transfecting ORF50 luciferase 
promoter, FLAG-RTA and GFP or GFP-Nup98 at various concentrations. Luminescence standardized to 
Renilla control. n=3, 95% confidence intervals shown, T-test p-value shown between indicated conditions. 

 

3.7 Chromatin Immunoprecipitation of Nup98 

To identify whether the downregulation of expression at the RTA promoter was 

mediated by binding of Nup98 at the ORF50 promoter, chromatin 

immunoprecipitations were attempted. Initial work to optimise the protocol was 

a) b) 
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performed on unreactivated TREx cells to confirm that Nup98 

immunoprecipitation could be accomplished. Anti-RNA polymerase II antibody 

was utilised as a positive control, as it had been previously used for ChIP 

experiments in the Whitehouse Laboratory, anti-rabbit IgG was utilised as a 

negative control. Cells were harvested using the Pierce Chromatin Prep Module 

to obtain formaldehyde fixed chromatin. Chromatin was then digested into 

fragments for ChIP using micrococcal nuclease. Successful fragmentation was 

visualised on an agarose gel and samples were carried forward for 

immunoprecipitation (Figure 3.9a). The EZ-ChIP kit from Millipore was utilised for 

the immunoprecipitation alongside a rabbit anti-Nup98 antibody previously used 

for Nup98 ChIP (Light et al., 2013). Immunoprecipitations were performed 

overnight, and DNA was obtained for both sample inputs and 

immunoprecipitations via a DNA spin clean column from the EZ-ChIP kit. qPCR 

was then performed to quantify the % of input obtained from the 

immunoprecipitations for the DNA at the MYC promoter, a site Nup98 has 

previously been shown to bind (Capitanio et al., 2017). Disappointingly, there was 

very poor fold enrichment of the MYC promoter from the anti-Nup98 

immunoprecipitation when compared to the IgG control. Further to this, when 

compared to anti-RNA polymerase II where 23.6 fold enrichment was observed 

it was apparent that immunoprecipitation with anti-Nup98 had been unsuccessful 

(Figure 3.9b). This result was consistent across two experiments and led to the 

prioritisation of alternative experiments to look for the interaction between Nup98 

and the KSHV genome.  
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Figure 3.9 Chromatin Immunoprecipitation in TREx cells using Nup98 was unsuccessful. a) DNA gel 
showing the efficiency of micrococcal nuclease shearing of genomic DNA for ChIP. 100kbp ladder used, 
between each treatment lane volumes have been doubled for better resolution. b) Comparison of the fold 
enrichment between IgG, anti-RNA polymerase II and anti-Nup98 antibodies for ChIP of MYC promoter. 
n=2. 

 

3.8 Overexpression of GFP-Nup98 in TREx does not prevent the 

progression of KSHV lytic infection when induced with sodium 

butyrate 

Utilising the GFP-Nup98 expression described above, a Lentiviral transfer vector 

was developed to allow for the generation of stably expressing GFP-Nup98 cell 

lines. Lentiviral transduction was performed with this transfer vector and an empty 

GFP vector on TREx cells and puromycin at 2 µg/mL was used select stably 

expressing cells (Balistreri et al., 2016). Untransduced cells were used as a 

control to confirm puromycin induced cell death and after 12 days of selection no 

control cells were alive. At this stage a hypothesis had been developed that 

speculated nucleoplasmic Nup98 was targeted early during KSHV lytic infection 

in order to prevent Nup98 negatively regulating ORF50 responsive KSHV genes. 

a) b) 
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This negative regulation was speculated to revolve around the ability of 

nucleoplasmic Nup98 to bind at promoters and recruit histone remodelling 

complexes (Liang et al., 2013; Franks et al., 2017). Therefore, it was 

hypothesised that the inclusion of overexpressed GFP-Nup98 may act to prevent 

expression at ORF50 responsive viral genes on the induction of KSHV lytic 

replication. 

Due to the proposed action of RTA downregulating Nup98 protein levels induction 

of TREx cells via doxycycline to induce lytic replication with mycRTA was not 

possible. This is due to the potential for doxycycline-induced mycRTA expression 

to counter-act the action of GFP-Nup98 due to previously demonstrated RTA-

induced Nup98 degradation and mycRTA ability to activate endogenous RTA 

expression via the ORF50 promoter. This high level of cross talk could potentially 

mask any real protective effects offered by GFP-Nup98. Therefore, TREx cells 

were induced to KSHV lytic replication via treatment with sodium butyrate, a well-

established alternative (Lu et al., 2003). Cells were induced with sodium butyrate 

and left for 24 h before they were harvested and lysed for RNA isolation and 

protein isolation. Western blot analysis was performed and showed poor 

expression of GFP and GFP-Nup98, in fact, levels were so low that blotting for 

GFP resulted in a blank blot (Figure 3.10a). GFP-Nup98 could only be detected 

in lytically replicating cells when probing for Nup98 but the signal was minimal 

suggesting poor transduction efficiency or a loss of the GFP expression cassette. 

Western blots for endogenous RTA and ORF57 protein showed higher levels of 

RTA in GFP-Nup98 cells in both NaBut treated and untreated cells however 

ORF57 levels appeared slightly reduced in treated GFP-Nup98 cells compared 

to GFP cells (Figure 3.10b). Nevertheless, the low detection of GFP-Nup98 
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means these differences may results largely from variations in reactivation 

efficency than any effect of GFP-Nup98. qPCR was also performed RNA levels 

for viral immediate-early transcripts ORF50 and ORF57 with no significant 

difference in ORF57 transcript levels (Figure 3.10a) However, there was a slight 

but significant increase in ORF50 levels observed (1 fold in GFP lytic cells, 1.16 

fold in GFP-Nup98 lytic cells, Figure 3.10), but again this difference cannot be 

attributed to any effect of GFP-Nup98 given its low level of expression. 

 

Figure 3.10 Overexpression of GFP-Nup98 in TREx cells could not be detected by western blot and 
no significant changes to KSHV early lytic infection mRNA or protein was observed. a) A 
representative western blot of KSHV immediate-early lytic genes (endogenous RTA and ORF57) after stably 
expressing GFP and GFP-Nup98 cells were treated with sodium butyrate (NaBut), GFP shown to probe 
GFP constructs, GAPDH is a loading control. b) qPCR analysis of immediate-early KSHV lytic genes ORF57 
and ORF50 after stably expressing GFP and GFP-Nup98 cells were treated with sodium butyrate. n=3, 95% 
confidence intervals shown, T-test p-value shown between indicated conditions. 

 

a) 

b) 
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Concomitant with these experiments, immunofluorescence was performed on 

GFP and GFP-Nup98 expressing cells induced to KSHV lytic replication with 

sodium butyrate. Given the indication from western blot analysis that GFP/GFP-

Nup98 expression had been lost or transduction efficiency low it was hoped that 

confocal immunofluorescence would allow for the identification of a phenotype 

within the small number of GFP-Nup98 expressing cells. GFP and GFP-Nup98 

TREx cells were seeded onto poly-l-lysine coated coverslips and incubated for 

24 h before sodium butyrate was added to stimulate reactivation of KSHV lytic 

replication. Cells were fixed 24 h post sodium butyrate treatment and stained for 

anti-RTA, to confirm successful induction of KSHV lytic replication, before 

washing and staining with secondary antibodies conjugated to Alexa FluorTM 

before finally being mounted onto coverslips with DAPI. Coverslips were then 

visualised on a Ziess LSM 880 confocal microscope and both GFP and GFP-

Nup98 cells were observed although at a very low rate as suggested by western 

blotting (Figure 3.11). 

Nevertheless, GFP-Nup98 was seen to localise at the NPC and in the 

nucleoplasm as expected. Interestingly, the nucleoplasmic signal of GFP-Nup98 

occurred as both a diffuse stain and also as discrete, intense foci (Figure 3.11). 

These were not previously observed when staining for endogenous Nup98 in 

TREx cells (Figure 3.3a) and appear to be a common artefact of Nup98 

overexpression refered to as GLFG-bodies (Griffis et al., 2002). Nevertheless, 

the induction of KSHV lytic replication does not appear ablated in GFP-Nup98 

overexpressing cells with a strong RTA stain present alongside good GFP-Nup98 

staining (Figure 3.11). There was observed a level of colocalization between 

GFP-Nup98 particularly with several GLFG-foci although this was not 
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consistently seen with some GLFG-bodies occurring in the nucleolar regions of 

the nucleus which have minimal RTA signal. These data suggested that even 

amoungst the low level of successfully overexpressing GFP-Nup98 TREx cells 

that increased cellular saturation of Nup98 at both the NPC and in the 

nucleoplasm did not affect the induction of KSHV lytic replication when cells are 

treated with sodium butyrate. 

 

Figure 3.11 Immunofluorescence analysis of stably expressing GFP and GFP-Nup98 TREx cells 
shows no difference RTA levels or localisation in reactivated cells. Cells were treated with sodium 
butyrate to induce KSHV lytic replication and fixed 24 h post induction of KSHV lytic replication. Cells were 
then permeabilized, blocked with BSA and stained with anti-RTA before mounting with DAPI and 
visualisation on a Zeiss LSM 880 upright confocal microscope. 
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3.9 Discussion 

In this chapter the nucleoporin Nup98 protein has been shown to be specifically 

targeted early during KSHV lytic infection (Figure 3.1). The decrease in Nup98 

can be achieved through the overexpression of RTA and Nup98 degradation can 

be ablated by inhibiting the ubiquitin-proteasome pathway (Figure 3.4 and Figure 

3.5). However, attempts to visualise a relocalisation or decrease of Nup98 by 

confocal microscopy were inconclusive, with levels at the NPC remaining 

unchanged (Figure 3.2) This led to the hypothesis that KSHV was targeting the 

nucleoplasmic fraction of Nup98 in order to subvert a transcriptional role of Nup98 

rather than a nucleocytoplasmic role. Further experimentation showed that 

overexpressing Nup98 led to reduced transcription at viral promoters specifically 

the ORF50-promoter (Figure 3.8). This observation has serious implications for 

early KSHV lytic infection; with several immediate-early KSHV genes requiring 

the ORF50 gene product, RTA for their transcription (Song et al., 2001; Lukac et 

al., 2001b; Deng et al., 2002; Chang et al., 2002). It was hypothesised this 

restrictive action of Nup98 could be a serious impediment during the latent-lytic 

switch to the low initial concentrations of RTA. 

The next steps of this work aimed to validate this hypothesis by confirming 

binding of Nup98 to the KSHV genome using ChIP and utilising a GFP-Nup98 

overexpression construct in TREx cells to test its effect on KSHV lytic replication. 

Previous work had shown ChIP of Nup98 was possible and Nup98 binding had 

previously characterised at a variety of cellular genomic sites (Liang et al., 2013). 

Nevertheless, attempts at ChIP in TREx cells with this particular Nup98 antibody 

were unsuccessful although remain a key experiment for future work, in order to 
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confirm whether Nup98 directly binds to the ORF50 promoter (Figure 3.9). To 

investigate whether overexpressing Nup98 could have a preventative effect on 

the induction of KSHV lytic replication, a GFP-Nup98 overexpression construct 

was produced as a lentiviral transfer plasmid to allow for the establishment of 

stably expressing GFP-Nup98 TREx cells. Experiments were performed 

reactivating cells to KSHV lytic replication using sodium butyrate rather than the 

doxycycline inducible mycRTA system to prevent overexpressed mycRTA 

masking an effect. However, low levels of GFP and GFP-Nup98 expression were 

achieved after puromycin selection either due to low transduction efficiency or 

loss of the expression cassette (Figure 3.10). In the small set of GFP/GFP-Nup98 

positive cells the overexpression of GFP-Nup98 did not lead to reduce RTA 

expression (Figure 3.11). This could relate to the role of sodium butyrate as a 

histone deacetylase inhibitor that induces global changes to the epigenetic 

landscape (Davie, 2003). It has previously been shown that nucleoplasmic Nup98 

is able to alter chromatin structures and affect transcription (Liang et al., 2013; 

Light et al., 2013; Franks et al., 2017). Therefore, the action of sodium butyrate 

treatment could disrupt a hypothetical Nup98-induced chromatin remodelling 

event, masking any potential protective effect. Therefore, it is crucial that for 

future work efforts are made to test alternative methods of reactivation of KSHV 

lytic replication, including heat shock or hypoxia to test for a protective effect of 

Nup98. 
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4 CHMP7 is targeted by KSHV via a Nup98-

dependent mechanism to enhance virion egress 

4.1 Introduction 

In the previous chapter, it was demonstrated that KSHV downregulates a specific 

nucleoporin, Nup98, early during KSHV lytic replication. Nup98 is a dynamic 

nucleoporin that exists both at the nuclear pore and within the nucleoplasm 

playing multiple roles within the cell. At the NPC, Nup98 is orientated towards the 

nucleoplasm facilitating a range of RNA export pathways via complex formation 

with host proteins NXF1 and Rae1 (Powers et al., 1997; Blevins et al., 2003). 

Nup98 has also been shown to be interferon inducible and regulate antiviral gene 

expression (Enninga et al., 2002; Panda et al., 2014). KSHV has been shown to 

target factors that prevent the interferon response during early lytic infection (Ma 

et al., 2015; Ma et al., 2017). Initial experiments therefore looked to investigate 

whether KSHV downregulated Nup98 as part of a preventative strategy against 

an antiviral response. This chapter expands upon the unexpected results of those 

experiments which led to an entirely new line of enquiry regarding the role of 

Nup98 at the NPC during KSHV lytic infection and the requirement of Nup98 to 

ensure successful virion egress.  

KSHV virion egress is a complex, multistep process as new virions transition from 

the nucleus to release from the cell (Mettenleiter et al., 2009). The general model 

for herpesvirus particle assembly is: newly synthesised viral DNA is packaged 

into the capsid in the nucleus; the capsid leaves the nucleus by primary 

envelopment at the inner nuclear membrane, the primary envelope then fuses 
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with the outer nuclear membrane releasing capsids into the cytoplasm; final 

maturation of the capsid occurs in the cytoplasm where the capsids acquire a 

tegument layer before the secondary envelopment step via budding at the trans 

Golgi network (TGN); at this stage the virus acquires its glycoproteins and exits 

the TGN within a cellular vesicle; this capsid-containing-vesicle is transported to 

the cell surface where the vesicle fuses with the plasma membrane releasing a 

mature, enveloped virion (Reviewed in (Mettenleiter, 2002; Mettenleiter et al., 

2009)). However, much of this work has been performed primarily using 

alphaherpesviruses and there is much still to be elucidated regarding how the 

gammaherpesviruses interact with cellular components to ensure successful 

packaging and eventual egress. 

Herein, it is shown that whole-cell Nup98 depletion does not alter early KSHV 

lytic replication however Nup98-depleted TREx cells exhibit reduced infectious 

virion egress. This phenotype is attributed to Nup98-depletion disrupting the 

action of KSHV lytic ORF10, a viral protein that interacts at the NPC with Rae1, 

a Nup98 binding partner, to inhibit RNA export a certain cellular mRNA. One 

cellular mRNA targeted in this manner is that of ESCRT-III component charged 

multivesicular body protein 7 (CHMP7). Through experiments overexpressing 

CHMP7 it was demonstrated that a similar failed virus egress phenotype could 

be observed leading to the hypothesis that KSHV targets CHMP7 mRNA during 

lytic infection to prevent its role in membrane repair. Crucially, this work highlights 

an interesting juxtaposition to the previous chapter where it was shown Nup98 is 

reduced during KSHV lytic infection with evidence suggesting this was targeted 

to nucleoplasmic Nup98. This chapter highlights how KSHV may require Nup98 

at the NPC during lytic infection for the action of viral ORF10. 
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4.2 siRNA treatment successfully depleted Nup98 in TREx cells 

In the Chapter 3, Nup98 levels were shown to be downregulated early after the 

induction of KSHV lytic infection (Figure 3.1). Nup98 has previously been shown 

to be targeted by other viruses to inhibit bulk mRNA export and furthermore, 

Nup98 expression can be induced by interferon to alleviate a virally-induced 

export block (Enninga et al., 2002). Therefore, it was hypothesised that KSHV 

was downregulating Nup98 early during KSHV lytic infection to prevent a Nup98-

mediated antiviral pathway. To test this, siRNAs against Nup98 were 

nucleofected into TREx cells and after 48 h RNA and protein was collected. qPCR 

analysis showed a significant ~70 % reduction in Nup98 mRNA levels (Figure 

4.1a). Western blot and densitometry analysis also showed a significant reduction 

Nup98 protein levels (Figure 4.1b and Figure 4.1c). 

 

Figure 4.1 Nup98 can be significantly depleted by siRNAs in TREx cells. a) qPCR analysis of Nup98 
mRNA levels in TREx cells nucleofected with scrambled (scr) and Nup98 siRNAs 48 h post nucleofection. 
n=3. 95 % confidence intervals shown, T-test p-value shown between indicated conditions. b) A 

a) b) 

c) 
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representative western blot of Nup98 protein levels 48 h post nucleofection with scrambled and Nup98 
siRNA treated TREx cells, loading control GAPDH. c) Quantified densitometry of Nup98 band intensity 
normalised to GAPDH for siRNA treated TREx cells. n=3, 95 % confidence intervals shown, T-test p-value 
shown between indicated conditions. 

4.3 Normal bulk mRNA export is maintained during Nup98 siRNA 

treatment 

With the establishment of a functional Nup98-depletion system in TREx cells, it 

was important to initially identify whether depletion of Nup98 led to alterations in 

mRNA export. Fluorescence in-situ hybridization (FISH) was used to identify 

whether the siRNA depletion of Nup98 arrested bulk mRNA export in TREx cells. 

TREx cells were nucleofected with scrambled or Nup98 siRNA and incubated for 

48 h before treatment with doxycycline to induce KSHV lytic replication. 24 h after 

doxycycline treatment cells were fixed and cells permeabilised and stained with 

fluorescently labelled oligo(dT) probe to detect polyadenylated (polyA) RNA. 

These cells were visualised using an LSM 880 confocal microscopy and showed 

that in unreactivated TREx cells depletion of Nup98 did not lead to significant 

differences in bulk mRNA localisation (Figure 4.2a). This was further confirmed 

using pixel profiling of the confocal images which showed that in unreactivated 

TREx the strongest fluorescent oligo-dT signal was seen outside the nucleus or 

in specific low DAPI intensity foci within the nucleus (Figure 4.2b). Nup98 

depletion did not affect changes in bulk mRNA localisation caused by KSHV lytic 

replication (Figure 4.2a). In scrambled treated reactivated cells fluorescent oligo-

dT overlaps more with areas of DAPI signal, with less signal in the cytoplasm but 

high intensity foci still apparent in the nucleus (Figure 4.2b). These changes on 

reactivation are also observed in Nup98-depleted TREx cells with predominant 

oligo-dT signal overlapping with the DAPI signal along with high intensity foci in 

the nucleus. Overall, this work suggests that Nup98-depletion does not alter 
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normal bulk mRNA nucleocytoplasmic transport in TREx cells and does not 

prevent mRNA retention observed on TREx reactivation. 

 

Figure 4.2 SiRNA depletion of Nup98 does not impact bulk mRNA export in unreactivated TREx or 
prevent the retention of PolyA RNA during KSHV lytic replication. a) Confocal microscope images of 
FISH analysis between scrambled (scr) and Nup98 siRNA treated cells, 48 h post nucleofection cells were 
treated with doxycycline to induce KSHV lytic replication. Cells were then fixed 24 h post doxycycline 
treatment. Cells were permeabilized and stained with fluorescently tagged oligo-dT. b) Confocal pixel 
profiling of a single cell from each image (shown by red arrow in Merge) showing DAPI intensity (blue) and 
Poly A signal intensity. 

 

4.4 Nup98-depletion did not impede normal KSHV lytic gene 

expression 

Next, Nup98-depleted TREx cells were reactivated to investigate whether the 

depletion of Nup98 would aid the progress of viral lytic replication. qPCR analysis 

showed that the depletion of Nup98 did not significantly impact ORF50 

a) b) 
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expression suggesting that induction via the doxycycline inducible system was 

not affected (Figure 4.3a). Moreover, analysis of ORF57, an RTA-responsive 

immediate-early gene, showed that ORF57 transcription was similarly not 

significantly impacted by Nup98-depletion (Figure 4.3a). Western blot analysis of 

ORF57 protein levels showed a similar phenotype with ORF57 levels unaffected 

by Nup98 depletion with no significant difference in ORF57 relative band 

intensities detected (Figure 4.3b and Figure 4.3). This suggested that the 

absence of Nup98 did not affect the kinetics of lytic replication progression, nor 

did it lead to increased levels of spontaneous reactivation in latent cells. These 

results suggested that depletion of Nup98 did not effect KSHV lytic induction via 

the doxycycline-mycRTA system and did improve the level of immediate-early 

gene expression. 

 

Figure 4.3 SiRNA depletion of Nup98 does not impact the expression of IE KSHV genes during lytic 
infection in TREx cells. a) qPCR analysis of KSHV immediate-early transcripts ORF50 and ORF57 in TREx 
cells nucleofected with siRNAs and 48 h treated with doxycycline to induce KSHV lytic replication. RNA 

a) 

b) 

c) 
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extracted at 24 h post doxycycline treatment. n=3, 95 % confidence intervals shown, T-test p-value shown 
between indicated conditions. b) A representative western blot analysis ORF57 levels in TREx cells 
nucleofected with scrambled (scr) and Nup98 siRNAs for 48 h before doxycycline treatment to induce KSHV 
lytic replication. Lysates taken at 24 h post doxycycline treatment, Nup98 shown to confirm siRNA depletion, 
mycRTA to confirm doxycycline induction, GAPDH present as loading control. c) Quantified densitometry of 
ORF57 band intensity normalised to GAPDH at 24 h post doxycycline treatment in TREx cells nucleofected 
with scr and Nup98 siRNA 48 h prior to doxycycline treatment. n=4, 95 % confidence intervals shown, T-test 
p-value shown between indicated conditions. 

 

In the previous chapter it was shown that Nup98 decreased early during KSHV 

lytic infection, but confocal analysis showed no change in localisation or Nup98 

levels (Figure 3.4). Therefore, a series of experiments were performed on TREx 

cells treated with scrambled or Nup98 siRNA and seeded onto poly-l-lysine 

coverslips. 48 h after nucleofection with siRNAs cells were treated with 

doxycycline to induce KSHV lytic infection and fixed at either 0 h, 8 h, 24 h post 

doxycycline treatment. TREx cells were then permabilized, blocked with BSA and 

stained with anti-RTA and anti-Nup98 before washing and secondary antibody 

treatment. Cells were then mounted with DAPI and visualised using an LSM 880 

confocal microscopy (Ziess). In Nup98-depleted cells, Nup98 levels appear 

significantly reduced at all time points post doxycycline treatment at both the NPC 

and the nucleoplasm (Figure 4.4). Nup98-depletion however does not appear to 

have a negative effect on RTA expression levels with replication compartments 

occurring in both scrambled and Nup98 siRNA treated cells by 24 h (Figure 4.4). 

Overall, these results suggest Nup98 depletion with siRNAs achieves a 

significant reduction in whole-cell Nup98 levels and confirms observations from 

the previous chapter that Nup98 levels at the NPC do not appear to change within 

8 h of the induction of lytic infection with doxycycline. 
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Figure 4.4 Nup98 siRNA treatment significantly decreased Nup98 at the NPC and in the nucleoplasm. 
TREx cells were nucleofected with either scrambled or Nup98 siRNA and seeded onto poly-l-lysine 
coverslips, 48 h post nucleofection cells were treated with doxycycline to induce KSHV lytic replication. Cells 
were then fixed at either 0 h, 8 h or 24 h post doxycycline treatment and stained with anti-RTA and anti-
Nup98. Coverslips were mounted with DAPI and visualised using an LSM 880 confocal microscope. 
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4.5 Nup98-depletion reduced viral infectivity but did not impact KSHV 

DNA replication 

To examine whether Nup98 depletion affected late stages of viral lytic replication, 

viral DNA load and infectious virion production were assessed. In order to test 

viral load TREx cells were nucleofected with either scrambled or Nup98 siRNA 

and incubated for 48 h before cells were treated with doxycycline to induce KSHV 

lytic replication. Cells were incubated for 72 h after doxycycline treatment before 

DNA was extracted. qPCR was then performed to determine viral DNA load which 

showed that the depletion of Nup98 actually increased viral DNA load levels but 

not significantly when compared to scrambled cells (Figure 4.5a). To determine 

the effect of Nup98-depletion on viral infectivity, TREx cells were treated as 

described above and 72 h post doxycycline treatment supernatant was collected 

from TREx cells and added at a 1:1 ratio with DMEM and incubated for 24 h with 

naïve 293T cells. RNA was then extracted from these 293T cells and qPCR 

performed to determine levels of ORF57. A significant reduction in ORF57 levels 

was observed in 293T cells treated with supernatant from Nup98-depleted TREx 

cells (Figure 4.5b). Furthermore, western blot analysis of viral capsid protein 

ORF65 showed an increase within Nup98-depleted cells at 72 h post doxycycline 

treatment to induce KSHV lytic replication (Figure 4.5c). Due to difficulties 

consistently detecting ORF65 by western blot this experiment was only 

performed once. Overall, depletion of Nup98 did not appear to impact viral DNA 

production, which corroborates the findings in Figure 4.3 that showed no impact 

on the induction of lytic replication or IE gene expression. However, Nup98-

depletion did significantly reduce the rate of infectivity of virions produced from 

Nup98-depleted cells. This finding, along with the suggestive observation of 
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increased levels of the viral capsid protein ORF65 in Nup98-depleted TREx cells, 

led to the hypothesis that Nup98-depletion negatively impacted virion egress at 

an unspecified stage.  

 

a) 

b) 

c) 
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Figure 4.5 SiRNA depletion of Nup98 does not impact KSHV genome replication but reduces viral 
reinfectivity and leads to an accumulation of viral late protein ORF65. a) qPCR analysis of viral DNA 
levels in scrambled (scr) and Nup98 siRNA treated TREx cells reactivated for 72 h. n=3, 95 % confidence 
intervals shown, T-test p-value shown between indicated conditions. b) Viral progeny levels measured as 
ORF57 expression in infected naïve 293T cells 24 h post addition of supernatant from scrambled (scr) and 
Nup98 siRNA treated TREx cells 72 h post induction of lytic replication. n=3, 95 % confidence intervals 
shown, T-test p-value shown between indicated conditions. c) Western blot analysis of ORF65 protein levels 
in siRNA treated TREx reactivated for 72 h. GAPDH shown as a loading control. n=1. 

 

4.6 Nup98-depletion led to an accumulation of viral capsids at the 

plasma membrane suggesting impaired virion egress 

To determine how Nup98-depletion led to reduced KSHV infectivity confocal 

immunofluorescence was performed on TREx cells treated with either scrambled 

or Nup98 siRNA. These experiments looked to confirm the observation by 

western blot that levels of viral capsid protein ORF65 were increased at 72 h in 

Nup98-depleted TREx cells. TREx cells were nucleofected with either scrambled 

or Nup98 siRNAs and after 48 h treated with doxycycline to induce KSHV lytic 

replication. 72 h post doxycycline treatment cells were fixed, permeabilized and 

stained with antibodies against the viral capsid protein ORF65. Nup98 depletion 

was confirmed prior to this experiment via western blotting at 48 h post 

nucleofection. In Nup98-depleted cells an accumulation of ORF65 was observed 

at the plasma membrane forming a halo like phenotype when compared to 

comparable cells treated with the scrambled siRNA (Figure 4.6a). Inspection of 

Nup98-depleted cells at a higher zoom clearly shows a build-up of ORF65 at a 

periphery outside the DAPI stain rather than a more dispersed appearance 

outside the DAPI stain in scrambled treated TREx cells (Figure 4.6c). This 

suggested that Nup98 depletion was affecting virion egress at the plasma 

membrane. Utilising the tile scan functionality of the confocal microscope multiple 

1.5 mm2 tiles of images were taken and the observed phenotype was quantified 
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and calculated as a percentage of total ORF65 positive cells (Figure 4.6c). This 

analysis showed a significant increase in the occurrence of the halo phenotype 

in Nup98-depleted cells compared to scrambled siRNA treated cells. This 

supported the hypothesis that Nup98-depletion impaired virion egress, 

presumably via a mechanism affecting the final step of egress at the plasma 

membrane. 
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a) 
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Figure 4.6 Depletion of Nup98 leads to ORF65 accumulation at the cell membrane in a halo pattern 
when visualised by confocal immunofluorescence microscopy. a) A panel of multiple confocal 
immunofluorescence microscopy images of siRNA treated TREx cells reactivated for 72 h (Scr or Nup98 
siRNA), stained with DAPI and viral capsid protein ORF65. b) A single cell comparison of ORF65 localisation 
in siRNA treated TREx cells reactivated for 72 h (Scr or Nup98). 5x zoom window inset, white arrow indicates 
‘halo’ phenotype. c) Quantification of halo phenotype (ORF65 stain as a semi-continuous ring outside the 
DAPI stain) in both Scr and Nup98 siRNA treated cells reactivated for 72 h. n=5, 95 % confidence intervals 
shown, 95 % confidence intervals shown, T-test p-value shown between indicated conditions. 

  

b) 

c) 
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4.7 Nup98-depletion led to maintained expression of KSHV-targeted 

cellular protein CHMP7 

Previous results raised the interesting question of how a nucleoporin could inhibit 

virion egress from the plasma membrane. It was hypothesised this effect may be 

related to the role of Nup98 at the nuclear pore in mRNA export and how KSHV 

subverts nucleocytoplasmic transport during lytic replication. A recent study had 

highlighted how the KSHV ORF10 protein interacts with Nup98-binding partner 

Rae1 to scan the 3’UTRs of a subset of cellular mRNAs preventing them from 

being exported during KSHV lytic infection (Gong et al., 2016). Crucially, this 

study showed that mutating ORF10 led to a decrease in viral titre but did not 

impact viral DNA load, a similar phenotype to the one observed in the Nup98-

depletion experiments described previously. Therefore, it was hypothesised that 

Nup98-depletion disrupted the action of ORF10 during lytic replication and 

allowing previously retained mRNAs to be transported and translated.  

The previous study identified 686 genes that showed a significant 50 % increase 

in nuclear/cytoplasmic ratio which included CHMP7, a member of the endosomal 

sorting complexes required for transport (ESCRT) complex (Gong et al., 2016, 

Table S3). When corroborating this data with an existing whole cell SILAC data 

set (Schuman et al., unpublished data) components of the ESCRT-III complex 

including CHMP7 were substantially downregulated by 24 h after the induction of 

KSHV lytic infection (Figure 4.7a). The downregulation of CHMP7 was 

subsequently confirmed with western blot analysis and densitometry showing that 

CHMP7 protein levels significantly decreased (~80 %) between 8 h and 24 h post 

induction of lytic replication (Figure 4.7b and Figure 4.7c). Overall, this work 
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characterised the observation from previously published work that KSHV targets 

CHMP7 and the ESCRT-III complex during lytic infection. 

 

 

Figure 4.7 CHMP7 is specifically downregulated during KSHV lytic infection in TREx cells. a) SILAC 
ratios of protein levels at 24h/0h for three ESCRT-III complex proteins. Data from a whole-cell SILAC screen 
performed on TREx cells reactivated at 0 h, 8 h, 24 h with doxycycline (Schuman et al., unpublished data). 
n=1. b) A representative western blot of CHMP7 levels in TREx cells treated with doxycycline to induce 
KSHV lytic replication at 0 h, 8 h, 24 h post doxycycline treatment. c) Quantified densitometry of CHMP7 
band intensity normalised to GAPDH at either 0 h, 8 h, 24 h post doxycycline treatment in TREx cells 
nucleofected with scrambled (scr) and Nup98 siRNA 48 h prior to doxycycline treatment. n=3, 95 % 
confidence intervals shown, T-test p-value shown between indicated conditions. 

 

To further test the hypothesis that Nup98-depletion disrupted KSHV induced 

CHMP7 mRNA retention subcellular fractionation was performed on scrambled 

and Nup98 siRNA treated TREx cells. RNA was isolated from the whole cell and 

cytoplasmic fractions and CHMP7 mRNA levels compared between latent and 

lytically replicating cells (Figure 4.8a). Results demonstrated that whole cell 

CHMP7 mRNA levels decreased 24 h after the induction of KSHV lytic replication 

by doxycycline (~50  %) and in scrambled treated cells the cytoplasmic fraction 

of CHMP7 mRNA significantly decreased (Figure 4.8a). However, in Nup98-

a) 

b) 

c) 
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depleted TREx cells the proportion of CHMP7 mRNA in the cytoplasm was not 

significantly different to CHMP7 levels in unreactivated Nup98-depleted TREx 

cells (Figure 4.8a). Furthermore, western blot analysis of CHMP7 protein levels 

showed that in scrambled siRNA treated cells, CHMP7 protein levels decreased 

at 24 h  post induction of KSHV lytic replication, in contrast a smaller scale 

reduction was observed in Nup98-depleted cells (Figure 4.8b). These 

observations were confirmed by densitometry analysis of western blots which 

showed a significant difference in CHMP7 normalised relative band intensity 

between reactivated and unreactivated scrambled treated cells but no significant 

change between Nup98 siRNA treated cells (Figure 4.8c). It is important to note 

that a complete rescue of CHMP7 levels should not be expected even if Nup98-

depletion prevents nuclear sequestration of CHMP7 mRNA. This is because 

during KSHV lytic infection the virus initiates host cell shut off through the action 

of the ORF37 protein which accelerates global mRNA turnover (Glaunsinger and 

Ganem, 2004). Overall, these results further confirm the observations that 

CHMP7 mRNA is sequestered in the nucleus during KSHV lytic infection and 

show that this sequestration is dependent on the presence of Nup98. 

Furthermore, the depletion of Nup98 from the NPC prevents CHMP7 mRNA 

sequestration in the nucleus leading to maintained CHMP7 protein levels during 

KSHV lytic infection.  
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Figure 4.8 Cytoplasmic CHMP7 mRNA reduction during KSHV lytic infection is ablated by Nup98-
depletion. a) qPCR analysis of CHMP7 mRNA levels in whole-cell (WCL) and cytoplasmic (C) 
compartments in scrambled (scr) or Nup98 siRNA treated cells in either a latent (0 h) or lytic state (24 h post 
doxycycline treatment). n=3, 95 % confidence intervals shown, T-test p-value shown between indicated 
conditions. b) A representative western blot analysis of CHMP7 levels in either scrambled (scr) or Nup98 
siRNA treated cells and treated with doxycycline to induce KSHV lytic replication. Nup98 shown to confirm 
knock down, mycRTA to confirm induction via doxycycline, GAPDH present as a loading control c) Quantified 
densitometry of CHMP7 band intensity normalised to GAPDH for scrambled (scr) or Nup98 siRNA treated 

a) 

b) 

c) 
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TREx cells at either 0 h (-), 24 h (+) post doxycycline treatment. n=3, 95 % confidence intervals shown, T-
test p-value shown between indicated conditions. 

4.8 Overexpression of ESCRT-III components has no impact on KSHV 

lytic gene expression or replication compartment formation 

Having established that upon Nup98-depletion KSHV-mediated targeting of 

CHMP7 was disrupted, work began to confirm that CHMP7 had a protective role 

within the cell by preventing virion egress. To test this a number of ESCRT-III 

complex protein overexpression transfer vectors were transduced into TREx cells 

using a second-generation Lentiviral system. These included CHMP7, IST1 and 

VPS4A in order determine whether the observation was specifically related to the 

role of CHMP7 or the ESCRT-III complex more broadly (Horii et al., 2006; 

Guizetti, Schermelleh, Mäntler, et al., 2011; Mierzwa et al., 2017). All 

overexpressed proteins were V5-tagged allowing for simple detection via western 

blot and confocal microscopy, an empty Lentiviral transfer vector was used as a 

transduction control (referred to as mock). Transduced cells were selected with 

puromycin alongside untransduced control TREx cells for 12 days to ensure all 

untransduced cells died before transduced cells were transferred to larger flasks 

for expansion. 

Initially, it was important to establish the transduction efficiency of the ESCRT-III 

overexpression proteins. Therefore, confocal microscopy was performed to 

determine the percentage transduction efficiency 28 days post transduction. 

Multiple tile scans were performed and quantified using ImageJ to determine the 

percentage of V5 positive cells. These experiments showed a low level of V5 

expression within transduced cells (20 %) suggesting that there was either loss 

of the expression cassette or poor transduction efficiency (Figure 4.9).  
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Figure 4.9 Lentiviral transduction of ESCRT-III components in TREx cells produced a low 
transduction level. a) Representative confocal tile scans of TREx cells transduced with Lentiviral 
overexpression constructs including an empty puromycin vector (Mock), CHMP7, IST1, VPS4 transfer 
vectors. b) Quantification of confocal tile scans showing the percentage transduction efficiency (number of 
V5 positive cells divided by total cells per image). n=3, 95 % confidence intervals shown. 

 

a) 

b) 
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Due to time constraints the decision was taken to pursue experiments with these 

transduced cells. Furthermore, given the complexity of the ESCRT-III complex it 

was decided to conduct subsequent experiments comparing IST1 and CHMP7 

overexpression alongside a mock transduced control. IST1 was chosen because 

of similarities in its role recruiting the ESCRT-III complex during multivesicular 

body trafficking and CHMP7 role recruiting ESCRT-III at the endoplasmic 

reticulum (Olmos et al., 2016; Frankel et al., 2017). Whilst VPS4A, an AAA-

ATPase, is involved in the disassembly of the ESCRT-III complex (Merrill and 

Hanson, 2010; Takahashi et al., 2018).  Having determined there was a level of 

expression of proteins of  it was now important to determine that the doxycycline-

inducible system of initiating KSHV lytic replication was not disrupted by the 

Lentiviral transduction. Transduced TREx cells were treated with doxycycline to 

induce KSHV lytic replication and protein extracted at 24 h post treatment. 

Western blot analysis was performed on cell lysates and probes for levels of the 

V5 tagged ESCRT-III complex proteins, mycRTA and ORF57 (Figure 4.10a). 

Probing with anti-V5 antibody yielded bands at the expected approximate sizes 

of IST1 at 39 kDa and CHMP7 at 51 kDa. It also confirmed the low level of 

expression of both of these proteins with no IST1 detectable in unreactivated cells 

although it was detectable in reactivated cells. CHMP7 was detectable in both 

unreactivated and reactivated cells but at a low intensity (Figure 4.10b). Crucially, 

there was no observable impact on the induction of KSHV lytic replication in these 

transduced cells in the western blot with ORF57 expression following on from 

mycRTA expression. However, differences in ESCRT-III overexpressing cells 

could be masked by the low expression rate therefore confocal microscopy was 

also performed to ensure that overexpression did not prevent the formation of 
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KSHV replication compartments in the nucleus, a critical step in successful KSHV 

lytic replication (Figure 4.10b). Both CHMP7 and IST1 staining occurred in the 

cytoplasm as expected along with the correct formation of viral replication 

compartments confirmed via RTA staining within discrete nuclear foci at 24 h post 

induction of KSHV lytic replication (Figure 4.10b). These results confirmed that in 

transduced cells that successfully expressed ESCRT-III complex proteins the 

induction and progression of KSHV lytic replication was not disrupted.   
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Figure 4.10 Overexpressing CHMP7 and IST1  of the ESCRT-III complex in TREx does not affect the 
induction of KSHV lytic replication and the formation of replication compartments. a) Western blot 
analysis of overexpressed ESCRT-III components with V5 tag alongside mycRTA and ORF57 to show 
induction of KSHV lytic infection at different time points post doxycycline treatment. b) Confocal 
immunofluorescence of KSHV replication compartments in stably expressing CHMP7 or IST1 or mock 
transduced cells 24 h post the induction of KSHV lytic replication. 

a) 

b) 
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4.9 Overexpression of CHMP7 leads to a decrease in infectious virion 

release 

After demonstrating that the overexpression of ESCRT-III components did not 

impact on KSHV lytic replication in TREx cells attempts were made to test 

whether the overexpression of CHMP7 reduced viral infectivity. This was derived 

from the observation that CHMP7 levels were maintained in Nup98-depleted cells 

where reduced viral infectivity was also observed. Mock transduced, CHMP7 and 

IST1 overexpressing cells were reactivated for 72 h and DNA was extracted 

before quantification of viral DNA levels by qPCR. qPCR showed increases in 

viral DNA in both ESCRT-III overexpressing cell lines compared to mock 

transduced cells however neither of these increases can be considered 

significant (Figure 4.11a). The release of infectious virions from these cell lines 

was also tested, with cells treated with doxycycline to induce KSHV lytic 

replication and incubated for 72 h before supernatant taken and mixed 1:1 with 

DMEM and incubated for 24 h on naïve 293T cells. 293T cells were then lysed 

and RNA extracted to determine KSHV ORF57 mRNA levels. Interestingly, there 

was a significant ~65 % decrease in the production of ORF57 mRNA in naïve 

293T cells treated with supernatant from CHMP7 overexpressing cells compared 

to mock transduced cells, implying that either fewer infectious virions had been 

released or virions released were less able to infect 293T cells (Figure 4.11b). 

Furthermore, this decrease in infectious virion production appeared specific to 

CHMP7 and was not observed in IST1-overexpressing cells (Figure 4.11b). 

Overall, these data suggest that increased levels of CHMP7 during KSHV lytic 

replication impair virion infectivity. Whether this related to release of virion or the 

production of defective virions was unclear. Interestingly, this observation 
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mirrored the observation made in Nup98-depleted cells suggesting CHMP7 was 

the factor responsible in Nup98-depleted cells for reduced viral infectivity. 

 

Figure 4.11 Overexpressing CHMP7 reduces the production of infectious virions of KSHV but does 
not decrease viral DNA production. a) Relative levels of viral DNA in mock transduced, IST1, CHMP7 
overexpressing cells compared in latent cells and cells 72 h post the induction of lytic replication. n=3, 95 % 
confidence intervals shown, T-test p-value shown between indicated conditions. b) Levels of ORF57 
expression in naïve 293T cells reinfected with the supernatant of mock transduced, IST1, CHMP7 
overexpressing cells that were either latent or had been induced to lytic replication for 72 h. n=3, 95 % 
confidence intervals shown, T-test p-value shown between indicated conditions. 

 

As previously mentioned, confocal microscopy of Nup98-depleted cells showed 

the ORF65 capsid protein formed a halo outside of the DAPI stain at the plasma 

membrane. Identical confocal immunofluorescence experiments were performed 

a) 

b) 
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on CHMP7- and IST1-overexpressing cells and the ORF65 halo phenotype was 

observed in TREx cells that had been transduced with the CHMP7-

overexpression construct (Figure 4.12a). Crucially, these experiments were 

lacking confirmation that the cells visualised are overexpressing CHMP7-V5 due 

to cross-species reactivity problems with the ORF65 antibody and the anti-V5 tag 

antibody. Attempts were made to visualise V5 with antibodies from different 

animal species however none were able to successfully. In order to determine 

whether the ORF65 halo phenotype was more frequent in cells transduced with 

the CHMP7 overexpression construct tile scans were performed on multiple 

coverslips to produce a series of 1.5 mm2 images that were analysed to quantify 

the proportion of ORF65 halo cells, as a proportion of all ORF65 positive cells. 

This quantification showed a significantly greater proportion of ORF65 positive 

cells had the halo phenotype in cells transduced with the CHMP7-overexpression 

construct when compared to mock transduced cells (Figure 4.12b). Whilst it was 

disappointing that overexpression of ESCRT-III components could not be 

confirmed in ORF65 positive cells the global analyses of tile scans suggested 

that the transduction of CHMP7 specifically lead to increased ORF65 halos even 

though overexpression was occurred in a minority of cells. 
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a) 
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Figure 4.12 Overexpression of CHMP7 leads to an increase in the halo phenotype of ORF65 at the 
cell membrane during KSHV lytic infection. a) A panel of multiple confocal immunofluorescence images 
of ORF65 in 72 h reactivated TREx cells either mock transduced, or overexpressing CHMP7 or IST1. V5 is 
missing due to cross species reactivity between the anti-ORF65 and anti-V5 antibodies b) The percentage 
of ORF65 halo phenotypes observed as a percentage of total ORF65 positive cells from 3 x 1.5 mm2 tile 
scans for reactivated (72 h) mock transduced cells, or overexpressing IST1 or CHMP7. n=5, 95 % 
confidence intervals shown, T-test p-value shown between indicated conditions. 

 

4.10 Overexpression of CHMP7 led to increased membrane bubbling 

and maintenance of membrane integrity  

Having tentatively demonstrated that the overexpression of CHMP7 led to 

reduced virion infectivity and a potential reduction in viral egress at the plasma 

membrane the next step was to test a mechanism by which CHMP7 prevented 

viral egress. This was crucial in understanding how Nup98-depletion also led to 

reduced virion infectivity and would highlight, the importance of Nup98 at the NPC 

during KSHV lytic replication. Given the variety of functions of the ESCRT-III 

complex within the cell initial attempts to characterise the action of CHMP7 in 

preventing viral egress focused on the action of ESCRT-III at the plasma 

membrane given the phenotype of the ORF65 halo. CHMP7 and other ESCRT-

III factors have been shown to regulate plasma membrane integrity during 

necroptosis, a regulated form of cell death. During necroptosis, ESCRT-III 

b) 
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components bind at sites of damage to the plasma membrane and excise 

damaged sections as membrane bubbles (Gong et al., 2017). Therefore, it was 

hypothesised CHMP7 was targeted by KSHV during the lytic infection to prevent 

this membrane repair pathway which disrupted viral egress. To test whether cells 

transduced with a CHMP7 overexpression construct had a greater degree of 

membrane bubbling at late stages of KSHV lytic replication the perimeter/area 

ratio of TREx cells transduced with CHMP7, IST1 overexpression constructs or 

mock transduced was measured. This followed the assumption that cells able to 

produce membrane bubbles would have a greater perimeter/area ratio given the 

additional cell membrane perimeter produced by the bubble. In order to quantify 

the plasma membrane, cells were stained with phalloidin conjugated to 

rhodamine, which stained F-actin at the cell membrane. In order to stain just the 

plasma membrane cells were unpermeabilized during this experiment meaning it 

was not possible to co-stain for V5 to determine which cells were overexpressing 

ESCRT-III components. Confocal microscopy was then performed to produce tile 

scans of coverslips for perimeter analysis by ImageJ. Normally, it was observed 

that phalloidin stained the plasma membrane sufficiently well in all cell lines at 72 

h post doxycycline treatment to induce KSHV lytic replication (Figure 4.13a). 

Subjectively, it was apparent that in cells transduced with CHMP7 overexpression 

construct there was a greater proportion of cells with small bubbles contiguous 

with or proximal to the normal cell membrane when compared to mock 

transduced or cells transduced with IST1 overexpression construct (Figure 

4.13b).  However, given the inability to visualise whether these cells were 

overexpressing ESCRT-III components it is impossible to draw strong 

conclusions from this cell-to-cell analysis. Therefore, to determine whether this 
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trend was observable across a wider sample of cells confocal tile scans were 

performed to quantify the perimeter/area ratio of hundreds of cells from each 

condition. This data was analysed through ImageJ and plotted as a box and 

whisker plot (Figure 4.13c). Overall the variety of cell shapes and sizes are 

broadly similar between all three cell lines as seen by the similarity in distribution 

of the interquartile ranges (Figure 4.13c). However, in cells transduced with the 

CHMP7 overexpression construct the median perimeter/area ratio is significantly 

increased when compared to mock transduced and IST1-overexpressing cells. 

This suggests that whilst overexpressing ESCRT-III components does not 

change the distribution of cell sizes (as seen with the similarity in interquartile 

ranges) it does lead to an increase in the typical cell perimeter/area ratio in 

CHMP7-overexpressing cells. Whilst it was not possible to show CHMP7 

overexpression in cells with membrane bubbling these data do suggest there was 

a positive effect on global cell perimeter/area values within cells that were 

transduced with a CHMP7 overexpression construct. 
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Figure 4.13 Overexpressing CHMP7 leads to bubbles forming at the plasma membrane during KSHV 
lytic infection. a) Confocal immunofluorescence of transduced cells (mock, IST1, CHMP7) reactivated for 
72 h stained with DAPI and phalloidin. b) Phalloidin-only images magnified 5x with white arrows highlighting 
potential membrane bubbles. c) Box and whisker plot of perimeter/area ratio of cells from each transduced 
cell line (mock, IST1, CHMP7). Black dots are outliers outside of 1.5*IQR, notches around median line 

a) 

b) 

c) 



169 
 

indicate 95% confidence intervals of the median shown as notches. n=2, with >100 cells counted for each 
condition in each tile scan, T-test p-value shown between indicated conditions. 

 

4.11 Discussion 

Previous work has highlighted how specific herpesviruses have targeted 

components of the nuclear pore complex to aid their replication (Wild et al., 2009; 

Chang et al., 2015). However, little is known about how KSHV interacts with 

nucleoporins during its lytic replication cycle. Whole cell proteomic work 

previously performed in the Whitehouse laboratory had identified that between 

latency and the first 8 hours of lytic replication, Nup98 was specifically 

downregulated when compared to other nucleoporins although levels at the NPC 

appeared unchanged (Figure 3.3). Initially, it was hypothesised that this may be 

due to the virus targeting an antiviral role of Nup98, as previous studies had 

shown it could restrict viral infection and reverse virally induced mRNA export 

arrest (Enninga et al., 2002; Panda et al., 2014). However, upon Nup98-depletion 

from the whole-cell it became apparent that the significant Nup98 reduction was 

detrimental to viral lytic replication, specifically to virion infectivity (Figure 4.4). 

Further analysis suggested this was due to an accumulation of virions at the 

plasma membrane suggesting a failure in viral egress (Figure 4.6). 

In order to determine how Nup98-depletion could lead to reduce virion infectivity 

and inhibit viral egress, work focused on previous studies that have shown KSHV 

utilises the Nup98-binding partner and export adapter protein Rae1 during KSHV 

lytic infection to retain certain cellular transcripts in the nucleus (Pritchard et al., 

1999). This occurs through the action of the viral protein ORF10 that interacts 

with Rae1 to scan the 3’ UTR of transcripts as they prepare to be exported at the 
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nuclear pore (Gong et al., 2016). Nup98 and Rae1 interact at the NPC to help 

facilitate mRNA export therefore it is not surprising that depletion of Nup98 could 

disrupt the action of ORF10 protein (Blevins et al., 2003; Ren et al., 2010). 

Therefore, it was hypothesised that whilst KSHV decreased Nup98 protein levels 

early during lytic replication it did not decrease them sufficiently at the NPC to 

disrupt the Rae1-Nup98 interaction that was observed in siRNA depleted cells. 

Comparing datasets from previous published work on ORF10 and the existing 

proteomic work of the Whitehouse laboratory led to a potential link in the ESCRT-

III pathway, specifically CHMP7 (Sophie Schuman, unpublished data) (Gong et 

al., 2016). CHMP7 is a component of the ESCRT-III complex that is responsible 

for membrane manipulation within the cell, including the formation of 

multivesicular bodies (MVB), cellular abscission, and viral budding (Alonso Y 

Adell and Teis, 2011; Morita et al., 2011; Vita and Broadie, 2017). Existing data 

suggested that CHMP7 was specifically targeted by KSHV during lytic infection 

by ORF10 sequestering CHMP7 mRNA in the nucleus. Using subcellular 

fractionation, it was demonstrated that this sequestration of CHMP7 mRNA could 

be disrupted by siRNA depletion of Nup98, and that this led to maintained CHMP7 

protein levels during lytic infection (Figure 4.8). To test whether CHMP7 was 

responsible for decreasing viral infectivity TREx cells were transduced with a 

Lentiviral overexpression construct for CHMP7 along with IST1 (another ESCRT-

III component) and a mock transduced control. Cells transduced with a CHMP7 

overexpression construct exhibited significantly reduced viral infectivity when 

compared to the other cell lines (Figure 4.11). Furthermore, there was also an 

observable increase in the proportion of cells exhibiting an accumulation of viral 

capsid protein at the plasma membrane, although it was not possible to confirm 
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this occurrence was specifically linked to CHMP7 overexpressing cells (Figure 

4.12).  

Finally, attempts were made to determine the mechanism by which CHMP7 

expression was able to reduce viral infectivity. This focused on whether CHMP7 

overexpression was able to promote an ESCRT-III plasma membrane repair 

pathway (Gong et al., 2017). During this process the ESCRT-III complex controls 

plasma membrane integrity by producing bubbles from the plasma membrane 

helping sustain cell survival. A greater frequency of membrane bubbles were 

observed in lytically replicating cells transduced with a CHMP7 overexpression 

construct and a significantly greater median perimeter/area ratio were observed 

in these cells compared to mock transduced cells and cells expressing other 

ESCRT-III proteins (Figure 4.13). However, at a cell-to-cell level it was not 

possible to establish whether cells with membrane bubbles were overexpressing 

CHMP7. Therefore, it is difficult to draw meaningful conclusions on whether this 

is the mechanism of reduced KSHV virion infectivity. More work is required to 

determine how exactly CHMP7 could act to inhibit late stage viral processes. 

Given that evidence from other studies that some ESCRT-III components are 

required for successful herpesvirus replication the observation that CHMP7 is 

specifically downregulated and negatively affects virion infectivity warrants further 

exploration  (Crump et al., 2007; Pawliczek and Crump, 2009). 

Overall, the observations in this chapter open interesting questions regarding 

how KSHV targets Nup98 during its lytic infection. Observations outlined above 

demonstrate that a significant depletion in Nup98 across the whole cell is 

detrimental to KSHV lytic replication. Therefore, it could be hypothesised, given 
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no observations of a decrease in Nup98 levels at the NPC during lytic infection 

that the downregulation of Nup98 at 8 h during lytic infection is specifically 

targeting the nucleoplasmic fraction. 
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5 Using proximity dependent biotin identification 

to probe for nuclear pore remodelling during 

KSHV lytic infection 

5.1 Introduction 

The traditional understanding of the NPC held that the nucleoporin composition 

of the pore was uniform across cell types and environments. However, recent 

work has established that NPC specialization can occur in different cell types and 

cellular circumstances (Ori et al., 2013). The specialization of nuclear pores also 

opens an interesting question regarding virus-nuclear pore interactions, 

specifically do viral remodelling events specialise nuclear pores to aid viral 

replication? 

Previous work on viral remodelling of the nuclear pore has demonstrated how 

viruses target single or subsets of nucleoporins to aid with viral replication. For 

example, Picornaviridae have been shown to target FG-nucleoporins for 

proteolytic cleavage, whilst HSV-1 has been shown to inhibit host 

nucleocytoplasmic transport and induce nuclear pore dilation (Gustin and 

Sarnow, 2001; Wild et al., 2009; Malik et al., 2012). Interestingly, during HIV-1 

infection the NPC undergoes a range of extensive compositional changes without 

affecting overall nuclear envelope integrity. Many of these changes appear critical 

to HIV-1 replication suggesting that the virus remodels and specialises NPCs to 

enhance HIV-1 replication (Monette et al., 2011b). 
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To determine whether KSHV lytic replication induced a stoichiometric remodelling 

at the nuclear pore a novel technique called proximity dependent biotin 

identification (BioID) was utilised. BioID is a technique developed by Roux et al. 

(2012) that adapts a similar technique Dam-ID, for analysing proximal protein-

protein interactions. The principal is to fuse a promiscuous biotin ligase to a 

protein of interest, express this fusion protein in vivo where it will biotinylate 

proximal proteins after biotin is introduced to the media. These biotinylated 

proteins can then be isolated using streptavidin beads and identified by mass 

spectrometry. This technique had previously been used to analyse interactions 

at the nuclear pore and therefore offered an immediate starting point for 

understanding remodelling events during KSHV lytic infection (Kim et al., 2014).  

In this chapter, BioID was applied to TREx cells that were reactivated to the lytic 

replication cycle to identify protein changes at the NPC. Initial work aimed to 

optimise the experimental system in both 293T and TREx cells. This was initially 

performed with GFP-nucleoporin and BioID-nucleoporin plasmids provided by the 

Roux laboratory. Attempts were made to establish TREx cell lines that stably 

expressed these plasmids after transfection, however this led to persistent 

mislocalisation of the target protein. Work then continued using transient 

transfections, which achieved good target localisation and was optimised to 

achieve the best biotinylation efficiency. LC-MS/MS analysis showed these 

transient transfections were able to specifically target a nuclear subset of proteins 

compared to the free ligase. Finally, work attempted to combine this system with 

tandem mass tagging-based quantitative proteomics which allowed for relative 

quantitation of protein levels between KSHV latent and lytic replication phases. 
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These data were then analysed using bioinformatic tools and clustering analysis 

to identify potential changes at the nuclear pore. 

5.2 Optimisation of BioID-nucleoporin expression and subcellular 

targeting 

The premise of the experiment was to use BioID to specifically biotinylate 

nucleoporins via a biotin ligase fusion protein with nucleoporin members of the 

Y-complex (Nup160, Nup85, Nup133, Nup53) (Kim et al., 2014). This would 

ensure the labelling of the majority of the NPC due to the stability and positioning 

of the Y-complex within the inner rings of the NPC. Biotin labelled nucleoporins 

could then be isolated after SDS lysis of transfected cells via biotin affinity capture 

with streptavidin (Figure 5.1a). The first steps of developing the BioID system to 

analyse KSHV-mediated NPC remodelling were performed using analogous 

GFP-nucleoporin plasmids. This allowed for faster analysis via confocal 

microscopy to confirm successful subcellular targeting of overexpressed 

nucleoporins. 

GFP-nucleoporin plasmids were transfected into 293T cells and visualised via 

confocal immunofluorescence to confirm that nucleoporin overexpression 

resulted in subcellular targeting. However, these experiments showed consistent 

mistargeting of the GFP-nucleoporin constructs in 293T cells (Figure 5.1b). Using 

Lamin B1 to costain for the nuclear envelope highlighted the level of mistargeting 

with the GFP signal predominantly in the cytoplasm rather than at the nuclear 

envelope. In the case of Nup85-GFP, there is observable staining at the nuclear 

envelope however a strong dense stain is also present in the cytoplasm. It is 

thought that this localisation is precursor NPCs within the specialised 
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endoplasmic reticulum region of the annulate laemalle which are oversaturated 

by the overexpression of Nup85-GFP. 

 

Figure 5.1 Transfection of GFP-nucleoporin constructs in 293T cells led to mistargeting of 
nucleoporins away from the nuclear envelope. a) Representation of the principal of proximity dependent 
biotinylation. b) Confocal immunofluorescence of GFP-nucleoporin transfected into 293T cells. Lamin B1 
was used as a nuclear envelope stain. 

 

a) 

b) 
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Due to the availability of TREx cells it was decided to move away from 

optimisation of these constructs in 293T-based cell lines and focus on developing 

correct targeting in TREx. Using Amaxa nucleofector® technology, TREx cells 

were nucleofected with GFP-nucleoporin constructs which showed successful 

localization at the nuclear envelope (Figure 5.2b). Attempts were then made to 

select these cells to create a stably-expressing cell line. Cells were treated with 

G418 due to the neomycin resistance marker within the plasmid backbone. A kill 

curve for G418 in TREx cells was determining by performing a serial dilution of 

G418 and determining cell viability 24 h after the addition of G418. This showed 

~100 % cell death at a concentration of 0.4 mg/ml G418 and so was the 

concentration taken forward to for selection (Figure 5.2a). However, after four 

weeks of selection the overexpressed nucleoporin became mistargeted with 

diffuse staining within the cytoplasm and no specific signal at the nuclear pore 

(Figure 5.2b). Therefore, it was decided to proceed using transient nucleofections 

as the biotin affinity identification protocol contained sufficient steps to specifically 

isolate biotinylated proteins. 
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Figure 5.2 Selection of GFP-nucleoporins in TREx after nucleofection led to loss of targeting after 4 
weeks. a) A G418 kill curve for TREx cells. Different dilutions of G418 were mixed with fresh media and 
incubated with TREx cells for 24 h before an MTS assay was performed to determine cell viability. n=5, 95 
% confidence intervals shown. b) Confocal immunofluorescence of GFP-nucleoporins nucleofected into 
TREx cells 1 week after transfection and 4 weeks after selection with G418. 

 

Subsequently, transient nucleofection was performed using BioID-nucleoporin 

plasmids, along with the free ligase (BioID) and the non-biotinylating mutant 

(R118G) (Figure 5.3a). Transfections were performed, and cells given at least 24 

h recovery time before media was supplemented with biotin. 

Immunofluorescence and confocal microscopy were used to determine the 

targeting of biotinylation (Figure 5.3a). This showed good targeting at the nuclear 

pore complex in BioID-Nup53, still with occasional staining of the annulate 
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laemalle. BioID, or the free ligase, showed staining throughout the cell, with a 

stronger signal within the nucleus but still diffuse and not specific to the nuclear 

envelope. R118G showed no signal when probed with Alexa-Fluor conjugated 

streptavidin indicating that biotinylation detected was specific to the BioID ligase. 

One key concern surrounding transient nucleofections was the proportion of 

successful transfection. Therefore, ImageJ was used to quantify confocal tile 

scans of coverslips to determine from a large field image the proportion of 

biotinylation. This was performed as a time course post nucleofection to 

determine the best time to conduct the biotin affinity pull down. Unfortunately, the 

level of biotinylation detected was very low (<10 %) and gradually decreased over 

time (Figure 5.3b). 3 days post nucleofection appeared to most consistently give 

the highest level of biotinylation for BioID-nup53 and thus it was decided that for 

experiments this time point would be used. Similar analysis was also performed 

to determine whether the induction of lytic replication in TREx using doxycycline 

had any impact on biotinylation efficiency (Figure 5.3c). These cells were induced 

48 h post nucleofection and simultaneously induced with doxycycline and biotin 

added to the media. Whilst there was an observable decrease in biotinylation 

efficiency in both BioID and BioID-nup53 after induction it was not of a large 

enough magnitude to suggest that using this technique to identify nuclear pore 

components would be unfeasible. 
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Figure 5.3 Transient nucleofection of BioID-nucleoporins showed efficient biotinylation targeting 
even after the induction of lytic replication. a) Confocal immunofluorescence of transiently nucleofected 
TREx after the introduction of biotin to media. Nup98 shown as a control to confirm biotinylation at the 
nuclear pore. b) ImageJ quantitation of % biotinylation over several days post nucleofection for free ligase 
(BioID) and nucleoporin-bound ligase (BioID-nup53). n=3, 95 % confidence intervals shown. c) ImageJ 
quantitation of % biotinylation between induced and uninduced TREx cells when transfected with free ligase 
(BioID) and nucleoporin-bound ligase (BioID-nup53). n=3, 95 % confidence intervals shown. 

  

a) 

b) 

c) 
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5.3 Pilot LC-MS/MS analysis of BioID-nucleoporin pull downs 

After initial difficulties the BioID system was demonstrated to work within the 

TREx cell line and biotinylation was maintained after the induction of lytic 

replication. The next steps of this project involved biotin affinity capture of 

biotinylated proteins and analysis via mass spectrometry comparing latent and 

lytic replicating cells. 

Following the biotin affinity capture protocol previously used by the Roux 

laboratory to investigate structural interactions in the NPC Y-complex (Kim et al., 

2014), initial work used LC-MS/MS to identify proteins biotinylated by either the 

free ligase or BioID-nup53 (Figure 5.4). This approach produced two datasets 

that were analysed through an automated work flow to produce a list of enriched 

hits and unique hits (Figure 5.4a). Enrichment was defined by comparing the 

number of peptide fragments of one protein observed in the BioID condition and 

BioID-nup53. If 2x as many peptides were observed between those conditions 

the protein was considered enriched in its respective condition. These enriched 

hits were combined with unique hits that only occurred in one condition to create 

a complete hit list from each BioID experiment. These new curated data sets were 

then further annotated to convert accession codes to gene names using the freely 

available UniProt tool. These gene names can then be analysed via the free 

network and cluster analysis tool STRING-db. STRING-db is a web application 

that predicts protein-protein interactions based on a number of factors including 

published experimental data, pathway database information,  text mining, gene 

cooccurrence, similar gene evolutionary neighbourhoods, relatedness by gene 

fusion events (Szklarczyk et al., 2017). STRING network analysis performed here 
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excluded connections based on text mining data. Pathway analysis of the curated 

data tables showed that proteins identified from the free ligase BioID fall into a 

variety of gene ontology groups including a number of cytoplasmic proteins along 

with components of the nucleus (nuclear part) (Figure 5.4b). Moreover, the 

network illustrates the predominantly cytoplasmic nodes (red) with fewer nuclear 

part nodes (blue), there are also few edges between nodes indicating fewer 

connections (Figure 5.4d). However, when this was compared to pathway 

analysis for BioID-nup53 a large number of cytoplasmic nodes (red) are still 

detected however there are more defined clusters of nuclear part nodes (blue) 

with a greater number of edges between these nuclear part nodes (Figure 5.4e). 

Furthermore, the false discovery rate calculation for BioID-nup53 pathway 

analysis is much lower than for BioID, suggesting that STRING-db analysis has 

a greater confidence that the proteins within the BioID-nup53 curated data set 

are specifically from these pathways and cellular compartments. Manual analysis 

of the curated data sets also showed that BioID-nup53 successfully pulled out a 

number of nucleoporins compared to BioID including Nup62, an expected Nup53 

interaction partner, and Nup98, which has been previously identified using BioID-

Nup53 (Figure 5.4c) (Kim et al., 2014). It is however, disappointing that the 

specific bait protein was not itself identified. However, the success of identifying 

specific subcellular networks of functionally related proteins at and around the 

NPC led us to proceed with the tandem mass tagging experiment. 
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a) 

b) 

c) 
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Figure 5.4 LC-MS/MS analysis of biotin affinity immunoprecipitation of BioID and BioID-
nup53. a) Percentage comparison of protein hits between BioID and BioID-nup53. Data is 
expressed as enriched (number of proteins analysed is >2x the opposite condition) or only (where 
protein is only present in that sample. b) Gene Ontology analysis of the cellular component protein 
hits from BioID are related to. c) Gene Ontology analysis of the cellular component protein hits from 
BioID-nup53 are related to. d) Nucleoporin hits identified in BioID-Nup53 hits. e) STRING network 
map of enriched BioID hits. Nodes coloured red indicated cytoplasmic in gene ontology, nodes in 
blue indicate nuclear gene ontology. Edge colour indicates a connection between nodes based on  
of gene fusion evidence (red), gene neighborhood evidence (green), gene cooccurrence evidence 
(blue), experimental evidence (purple), database evidence (light blue), coexpression evidence 
(black). f) STRING network map of enriched BioID-nup53 hits. Nodes coloured red indicated 
cytoplasmic in gene ontology, nodes in blue indicate nuclear gene ontology. Edge colour indicates 
a connection between nodes based on  of gene fusion evidence (red), gene neighborhood evidence 
(green), gene cooccurrence evidence (blue), experimental evidence (purple), database evidence 
(light blue), coexpression evidence (black). 

 

 

f) 
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5.4 Tandem Mass Tagging LC-MS/MS coupled to BioID 

To understand specific stochiometric changes at the NPC during KSHV lytic 

infection, transient BioID was combined with the quantitative proteomic technique 

tandem mass tagging prior to LC-MS/MS analysis.  

Tandem mass tagging (TMT) is an emerging technique within mass spectrometry 

for the analysis of relative protein abundance. The concept of TMT is to 

incorporate a isobaric peptide tag composed of a sensitization (reporter) group, 

a mass normalization group and a peptide reactive functional region (Thompson 

et al., 2003). The peptide reactive region attaches the tag to proteins within the 

sample whilst the mass normalization group acts to ensure that the tag is isobaric 

after tagging, thus ensuring that proteins tagged from different samples are the 

same mass and run identically on HPLC. The sensitization or reporter group acts 

as the internal mass standard and is unique for each sample that is tagged. It is 

removed from the overall TMT molecule by collision induced dissociation during 

LC-MS/MS and forms a distinct isotope peak within the MS readout. 

Alongside the nucleoporin fusion proteins, the free ligase and ligase mutant 

R118G were used to provide an internal control to ensure proper targeting and a 

control for background binding to the streptavidin beads during biotin affinity 

capture. Samples were labelled with TMT reagents prior to LC-MS/MS to allow 

for relative abundance measurements (Figure 5.5a). To ensure suitable 

biotinylation coverage of the NPC these experiments utilised three nucleoporin 

biotin ligase fusion proteins: Nup53, a nucleoporin that sits centrally within the 

NPC as part of the Nup93-Nup53 complex helping anchor central plug 

nucleoporins to the nuclear membrane (Hawryluk-Gara et al., 2005; Mansfeld et 
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al., 2006); Nup133 and Nup85 are components of the Y-complex, a modular 

subdomain of the NPC that is critical to nuclear pore assembly and gives rise to 

central doughnut shaped structure of the NPC (Walther et al., 2003; Harel et al., 

2003). These three nucleoporin fusion proteins would provide coverage of both 

the central plug region and cytoplasmic and nucleoplasmic facing regions as 

previously demonstrated by the Roux laboratory (Kim et al., 2014). 

To analyse the quantitative proteomic data, which was provided as a spreadsheet 

readout from SEQUEST software set at a 1% False Discovery Rate (FDR), the 

tables were converted to columns of comma separated values (.csv) and 

processed through a series of R scripts to clean the data producing lists of 

proteins that were true hits (i.e. proteins with a greater than 1.5 protein ratio of 

protein in the experimental condition compared to the corresponding condition 

ligase mutant R118G). These lists were produced for each nucleoporin fusion 

protein in the unreactivated and reactivated condition. These were then analysed 

via STRING-db to identify via Gene Ontology the pathway associated with these 

proteins and confirm correct biotinylation targeting compared to the free ligase.  

Initial network analysis was disappointing (Figure 5.5b). With two key 

experimental conditions Nup53 and Nup133 not producing significant protein-

protein interaction maps based on STRING-db. This was due to a low number of 

hits being identified and minimal pathway similarity between these proteins. This 

is potentially a consequence of the transient nucleofection system limiting the 

initial pool of biotinylated protein alongside the stringent biotin affinity protocol. 

However, Nup85 did successfully produce a list of hits that produced a significant 

protein-protein interactions network map. Furthermore, Gene Ontology pathway 
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analysis showed strong identification of nuclear proteins in both unreactivated 

and reactivated compared to the free ligase (Figure 5.5c). 

Having performed network clustering analysis and confirming for each condition 

enriched nuclear targeting versus the free ligase, these lists were then combined 

to include peptides that matched one of two criteria: the peptide was present in 

both unreactivated and reactivated samples; or the peptide was only found in one 

condition and its relative abundance underwent a significant increase or decrease 

(for example viral peptides which were significantly increased in abundance 

during reactivation but not at all present in the unreactivated sample). 

 

a) 

b) 



190 
 

 

 

Figure 5.5 Overview of Tandem mass tagging of BioID-nucleoporins samples. a) Schematic of process 
of tandem mass tagging with samples initially prepared, then labelled with different TMT tags (highlighted 
by colour), then samples are combined before LC-MS/MS analysis. b) STRING overview of node clustering 
for each experimental condition. c) Gene Ontology analysis of likely Cellular Component that peptide hits 
(enriched compared to R118G) are associated with for all experimental conditions. 

 

With the combined list of true peptide hits identified from the Nup85 data it was 

possible to perform further network analysis to identify clusters of functionally 

c) 
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related peptides and analyse any changes in their relative abundance during lytic 

replication. This initial network cluster analysis was again performed using 

STRING-db and showed a good protein-protein interaction p-value (Figure 5.6a), 

suggesting more interactions than would be typically expected. Gene Ontology 

pathway analysis then identified a number of pathways which were enriched for 

a variety of peptides which allowed for further analysis of relative abundance 

changes of these clusters of functionally related peptides (Figure 5.6b). However, 

this clustering showed that of proteins identified the majority did not cluster into 

any highly specific pathways (only the nucleoplasm and cytosol compartments) 

except a small group involved in the ribonucleoprotein complex. Due to the 

relative position of Nup85 at the NPC it is plausible for BioID to label proteins that 

are in the nucleoplasm or the cytosol. When comparing the relative abundance 

of these identified peptides between latency and lytic replication it was observed 

that ribonucleoprotein complex proteins identified by BioID were increased by 

approximately 2.5-fold (Figure 5.6c). However, for nucleoplasmic peptides a 

much wider range of relative abundance ratios can be seen although the general 

trend still suggests 2.5-fold increase in relative abundance at the NPC during lytic 

replication. STRING-db network analysis highlights the areas of functional 

clustering particularly around proteosomal proteins (PSME1, PSMB1, PSMC4), 

ribosomal biogenesis-related proteins (RPS21, TBL3, PWP2, RRS1) and 

regulators of nuclear transcription (UFL1, TCEB2, TCEA1) (Figure 5.6d). 

However, the experiment failed to identify any nucleoporins other than TPR and 

failed to pull down the bait protein as would be expected.  
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a) 

b) 
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Figure 5.6 TMT of BioID-Nup85 shows that at 24 h post lytic replication specific ribosomal 
biogenesis pathways are maintained. a) The STRING-db network overview of combined Nup85 
peptide hits. b) Gene Ontology analysis of likely Cellular Component that peptide hits (enriched 
compared to R118G) are associated with for BioID-Nup85. c) Boxplot of reactivated/unreactivated 
protein ratios for two Cellular component subsets identified from STRING-db. d) STRING-db 
network of combined Nup85 peptide hits. Nodes coloured red indicated cytoplasmic in gene 
ontology, nodes in blue indicate nuclear gene ontology. Edge colour indicates a connection 
between nodes based on  of gene fusion evidence (red), gene neighborhood evidence (green), 
gene cooccurrence evidence (blue), experimental evidence (purple), database evidence (light 
blue), coexpression evidence (black). 

 

  

d) 
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5.5 Discussion 

In this chapter the novel technique of proximity dependent biotinylation (BioID) 

was combined with tandem mass tagging (TMT) in an attempt to identify relative 

stochiometric changes at the nuclear pore during KSHV lytic replication. This 

work followed on from previous work using BioID to probe the structure of the 

nuclear pore, specifically showing new interaction data regarding components of 

the Y-complex (Kim et al., 2014). This approach was constrained by the difficult-

to-transfect cell lines utilised in this study and difficulties establishing stable cell 

lines (Figure 5.2). Therefore, after work optimising this system through transient 

nucleofection a series of experiments were performed using three BioID-

nucleoporins in tandem with TMT labelling and mass spectrometry to identify 

changes at the NPC during KSHV lytic infection (Figure 5.3). Through mass 

spectrometric analysis a series of large, relational datasets were produced. 

These were analysed via R scripts to identify true hits when compared to a beads-

only control and then analysed to identify proteins enriched at the NPC in either 

latency or lytic replicating cells and proteins present at the NPC during both 

lifecycle stages. This produced a final list of peptide hits for hierarchical cluster 

analysis of functions and analysis of relative abundance changes (Figure 5.5). 

This identified a variety of proteins of interest however time constraints prevented 

extensive validation in a wet-laboratory setting.  

However, only one of the three BioID-nucleoporins, Nup85, successfully pulled 

down enough peptides to perform network analysis (Figure 5.6). Further analysis 

of this one successful experiment identified three main groups of labelled 

proteins: cytosolic, nucleoplasmic and ribonucleoprotein complex. The highly 
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generic nature of these groups suggests no highly specific functional pathways 

were identified. This is disappointing given it would be expected to identify 

peptides related to the nuclear pore complex within this experiment. However, 

the identification of nucleoplasmic and cytosolic proteins is plausible given the 

approximate position of Nup85 on the NPC (Kelley et al., 2015). Analysis of the 

relative abundance changes of these peptides between latent and lytic cells 

showed that across all three groups the levels of these peptides at the NPC 

increased by approximately 2.5-fold between latent cells to lytic cells. It is 

important to note that this could be related to the fact that the dataset from lytic 

replicating Nup85 expressing cells identified the most peptides when compared 

to beads-only (Figure 5.5b). However, this increase could relate to the virus 

manipulating export pathways to preferentially boost nucleocytoplasmic transport 

systems required by the virus. Herpes simplex 1 virus has been shown to inhibit 

nucleocytoplasmic transport pathways via interaction with nucleoporins (Malik et 

al., 2012). Research on the impact of KSHV lytic replication on protein export at 

the NPC is limited but studies with CRM1 inhibitor leptomycin B have shown that 

viral proteins such as ORF45 require CRM1 to shuttle between the nucleus and 

the cytoplasm (Li and Zhu, 2009). This would suggest that the CRM1 export 

pathway is not specifically disabled by the virus during lytic infection, 

nevertheless future work investigating the impact of KSHV lytic replication on 

alternate forms of protein import and export would help clarify the increases seen 

here. 

Finally, it is also worth noting the identification of ribonucleoprotein complex 

proteins from this data. The impact of KSHV on ribosomes during lytic infection 

is not well characterised but the above data shows a relative increase in 
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ribosomal proteins at the NPC during lytic infection. This suggests that ribosomal 

proteins are not significantly affected by the virus-induced process of host cell 

shut off (Glaunsinger and Ganem, 2004). Furthermore, several components of 

the ribonucleoprotein complex were identified at higher levels during lytic 

replication suggesting either aspects of the ribosome were upregulated during 

lytic infection or that components of the ribosome came together more rapidly 

after pre-ribosomal export at the nuclear pore complex during lytic replication. 

  



197 
 

 

 

 

 

 

 

 

Chapter 6 
~ 

Discussion 
 

  



198 
 

6 Discussion 

The nuclear pore complex (NPC) is a sophisticated barrier that separates the 

nucleus and the cytoplasm. The protective role of the NPC is challenged by a 

variety of factors, none more diverse and unrelenting as viruses. Many different 

families of viruses have co-evolved to target the NPC, leading to a variety of 

strategies for overcoming the selective barrier.  

Little is known about how KSHV targets the NPC therefore this thesis set out to 

explore how KSHV manipulates the NPC during its lytic infection. It looked to 

validate observations from previous whole cell quantitative proteomic data 

obtained by the Whitehouse Laboratory that indicated changes at the NPC during 

KSHV lytic infection. It also aimed to implement proximity dependent biotin 

identification (BioID) at the NPC during KSHV lytic replication, in combination with 

tandem mass tagging (TMT), to develop a semi-quantitative profile of how the 

NPC is altered over the course of KSHV lytic infection. 

Chapters 3 and 4 explored the specific targeting of nucleoporin Nup98 by KSHV 

early during lytic infection. This began with the observation that 8 h after the 

induction of KSHV lytic replication whole-cell Nup98 protein levels decreased by 

approximately half in the proteomic data (Figure 3.1a). This was confirmed by 

Western blot analysis and pointed to rapid targeting of this nucleoporin by the 

virus (Figure 3.1b). A number of other viruses have been shown to specifically 

target Nup98 during their lifecycles: Influenza A has been shown to downregulate 

Nup98 expression and sequester other components of RNA export machinery to 

inhibit export of host mRNAs; Vesicular stomatitis virus (VSV) interacts with 
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Rae1-Nup98 complexes to disrupt nucleocytoplasmic transport (von Kobbe C et 

al., 2000; Satterly et al., 2007; Chen et al., 2010; Rajani et al., 2012). 

Furthermore, Nup98 has also been shown to be interferon inducible, specifically 

in the case of the VSV export block, IFN-γ treatment or ectopic expression of 

Nup98 reverses virus-mediated disruption (Enninga et al., 2002). However, 

KSHV has been shown to suppress IFN signalling during lytic replication through 

the action of caspases (Tabtieng et al., 2018). Notwithstanding, Nup98 has also 

been shown to regulate antiviral genes in Drosophila as part of its off-pore role 

within the nucleoplasm (Panda et al., 2015). Therefore, it was hypothesised that 

KSHV targeted nucleoplasmic Nup98 due to its role modulating transcription of 

antiviral genes. This was supported by observations that the localisation and 

levels of Nup98 at the NPC did not appear to change during lytic replication 

(Figure 3.3). This can be compared with a more obvious depletion phenotype 

seen when TREx cells are treated with Nup98 siRNAs, in these cells a clear 

decrease in Nup98 levels can be observed at the NPC (Figure 4.4). Therefore, it 

was hypothesised that KSHV was specifically targeting the nucleoplasmic 

fraction of Nup98 in TREx cells during lytic replication. 

The viral transactivator protein RTA arose as the most likely determinant of 

Nup98 targeting during early lytic infection. RTA expression occurs rapidly on the 

switch from KSHV latency to lytic replication, making it highly likely there is 

sufficient levels of RTA at 8 h post reactivation to negatively impact endogenous 

Nup98 protein levels (Lukac et al., 1998; Nakamura et al., 2003). This was 

confirmed by transfecting an RTA overexpression construct into 293T cells which 

led to a significant decrease in Nup98 levels 24 h post transfection (Figure 3.4). 

RTA is a multifunctional transcriptional activator and repressor protein. It is able 
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to activate genes through a variety of mechanisms either through direct binding 

to specific DNA sequences called RTA response elements (RREs) or through 

interactions with other transcription factors such as RBP-Jk, AP1 and C/EBP 

(Liang et al., 2002; Wang et al., 2003; Liang and Ganem, 2004; Wang et al., 

2004). RTA is also able to suppress transcription through targeting proteins for 

proteasomal degradation such as Hey1, IRF7 and KSHV-RTA binding protein (K-

RBP) through its E3 ubiquitin ligase activity (Yu et al., 2005; Yang et al., 2008; 

Gould et al., 2009). Therefore, RTA could potentially be downregulating Nup98 

through a variety of mechanisms. However, qPCR analysis of both reactivated 

TREx and transfected 293T showed Nup98 mRNA did not decrease sufficiently 

to cause a decrease in Nup98 protein levels (Figure 3.1d and Figure 3.4c). This 

suggested RTA was targeting Nup98 protein levels through its E3 ubiquitin ligase 

domain. RTA has previously been shown to target transcriptional repressor Hey1 

for degradation via its E3 ubiquitin ligase domain in order to prevent Hey1 

repressing transcription at the ORF50 promoter (Gould et al., 2009). ICP0, an 

immediate-early HSV-1 lytic protein, also possesses a RING-finger ubiquitin 

ligase activity that acts to disrupt ND10 bodies in the nucleus that participate in 

host cell antiviral responses (Maul et al., 2000; Boutell et al., 2002; Gu and 

Roizman, 2003).  Utilising the proteasome inhibitor MG132, Nup98 degradation 

was shown to be dependent on proteasome activity both when overexpressing 

transfected RTA in 293T cells and during lytic replication in KSHV-infected B cells 

(Figure 3.5). Further efforts were made to co-immunoprecipitate RTA bound to 

Nup98 to support the hypothesis that RTA directly interacts with Nup98 to induce 

its degradation. These experiments were not successful but do not exclude the 

possibility that RTA is inducing the degradation of Nup98 (Figure 3.6). The 
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interaction between E3 ligases and their targets is highly dynamic through very 

weak, transient interactions making the determination of E3 ligase substrates 

technically difficult (Pierce et al., 2009).  

Having established that the decrease in Nup98 was dependent on RTA and the 

activity of the proteasome the crucial question now turned to why KSHV was 

targeting Nup98. As described above, Nup98 is interferon inducible and 

responsible for regulating antiviral genes. This suggested Nup98 might play a 

restrictive role on the virus which was explored in two experiments: the first by 

comparing immediate-early gene expression in Nup98-depleted TREx cells; the 

second by looking at the effect of overexpressing Nup98 and RTA in 293T cells 

along with a luciferase gene controlled by the ORF50 promoter. In Nup98-

depleted TREx cells, the absence of Nup98 had no impact on the expression of 

immediate-early gene ORF57 at both the mRNA and protein level (Figure 4.3). It 

was hypothesised that the absence of Nup98 might lead to either greater levels 

of spontaneous reactivation or increased ORF57 expression in the absence of 

Nup98 as a viral restriction factor. Neither was observed although this could be 

due to the doxycycline inducible mycRTA system for inducing lytic replication in 

TREx cells leading to overexpressed mycRTA that obscured an effect in Nup98-

depleted cells. However, the second experiment showed that overexpressing 

Nup98 and RTA led to decreased luciferase luminescence from the ORF50-

promoter in a dose-dependent manner suggesting Nup98 had a restrictive effect 

on the ORF50 promoter (Figure 3.8). ORF50 encodes for the viral transactivator 

RTA highlighting the importance to the virus of disrupting this restrictive role of 

Nup98 for successful viral lytic replication. The exact mechanism of how Nup98 

would repress expression at the ORF50 promoter is unclear, however, 
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nucleoplasmic Nup98 binds to promoters of developmental and cell cycle genes 

and when depleted from these sites gene expression is concomitantly 

downregulated (Kalverda et al., 2010; Capelson et al., 2010). Furthermore, the 

overexpression of Nup98 enhances the transcription of Nup98-bound genes, 

pointing to a key transcriptional role of Nup98 in the nucleoplasm (Kalverda et al., 

2010). Nup98 also plays a causative but poorly understood role in human 

leukaemia, with chromosomal translocations in acute myeloid leukaemia 

resulting in chimeric proteins containing the Nup98 FG-domain and homeobox 

transcription factors (Lam and Aplan, 2001). Both these domains are required for 

the transforming ability of these chimeric proteins which appear to potently active 

Hox genes (L H Kasper et al., 1999; Kroon, 2001; Argiropoulos and Humphries, 

2007). The Nup98 component of these chimeras recruits histone acetylases and 

deacetylases via its FG-repeat domain (L H Kasper et al., 1999; Bai et al., 2006; 

Wang et al., 2007). This multitude of mechanisms through which Nup98 exerts 

control over transcription makes identifying how Nup98 restricts ORF50 

transcription difficult to pinpoint although it is likely acting through a repressive 

binding partner. Attempts were made to transduce a Lentiviral GFP-Nup98 

overexpression construct into TREx cells in order to test whether this restricted 

the progress of KSHV lytic infection (Figure 3.10). However, poor levels of GFP-

Nup98 were detected suggesting either a low transduction efficiency or loss of 

the expression cassette. Attempts were made to use confocal microscopy to 

identify whether GFP-Nup98 positive cells exhibited an alternate phenotype to 

GFP-Nup98 negative cells on induction of lytic replication, however no phenotype 

was observed (Figure 3.11). These experiments were performed by reactivating 

cells with sodium butyrate, an alternative to induction via the doxycycline-
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inducible mycRTA system, due to concerns this overexpressed mycRTA would 

induce the degradation of Nup98 sufficiently to override any effect of GFP-Nup98. 

However, previously described Nup98 binding partners that could be responsible 

for repressing ORF50 expression including histone deacetylases that could also 

be inactivated by sodium butyrate treatment (Davie, 2003). Overall, the poor level 

of GFP-Nup98 expression and potentially confounding reactivation treatments of 

sodium butyrate and mycRTA make drawing conclusions from these experiments 

difficult.  

Whilst the above describes a potential role of nucleoplasmic Nup98 in acting a 

viral restriction factor further experiments depleting Nup98 from TREx cells 

showed a significant loss of Nup98 was detrimental to viral replication. Whilst 

Nup98-depletion had no impact on the expression of immediate-early KSHV lytic 

genes it did lead to reduce infectivity of virions produced at 72 h after the induction 

of lytic replication (Figure 4.5b). Whilst Nup98-depletion did not reduce viral DNA 

levels produced at this late stage it did lead to an apparent accumulation of viral 

capsid proteins at the cell periphery (Figure 4.6). KSHV virions assemble within 

the nucleus and have a multi-step egress mechanism that includes budding 

through the nuclear membrane (Mettenleiter et al., 2009). This posed an 

interesting question of how a nucleoporin was able to inhibit the final stage of 

egress at the plasma membrane. Serendipitously, work in 2016 highlighted the 

role of KSHV ORF10, a delayed early lytic protein, that selectively sequesters 

certain cellular mRNAs in the nucleus during lytic infection through interacting 

with RNA export adaptor Rae1 (Gong et al., 2016). One cellular transcript that 

was specifically retained encoded the cellular protein CHMP7, a member of the 

ESCRT-III family (Horii et al., 2006). ESCRT-III or endosomal sorting complexes 
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required for transport is a cellular protein complex involved in a variety of 

membrane remodelling processes within cells including the sorting of 

multivesicular bodies (MVB), membrane abscission during necroptosis, 

cytokinesis and formation of the nuclear pore complex (Guizetti, Schermelleh, 

Jana, et al., 2011; Webster et al., 2014; Gong et al., 2017). The nuclear retention 

of CHMP7 mRNA was confirmed by qRT-PCR of subcellular fractions and 

analysis of existing whole cell quantitative proteomic data showed a 100-fold 

reduction in CHMP7 protein levels at 24 h after the induction of KSHV lytic 

replication (Figure 4.7a and Figure 4.8a). This retention during lytic replication 

was shown to be ablated by Nup98 depletion by siRNA treatment and 

furthermore, led to increased levels of CHMP7 protein in Nup98-depleted TREx 

cells (Figure 4.8a). Overexpression of CHMP7 also produced a reduction in virion 

infectivity and led to an observable increase in viral capsid accumulation at the 

cell periphery (Figure 4.11b and Figure 4.12b). However, the transduction 

efficiency of these overexpression constructs was low (~20 %) and CHMP7 

overexpression could not be confirmed in cells with viral capsid accumulation due 

to antibody cross-reactivity. Whilst the ESCRT-III complex acts in a variety of 

roles within the cell attempts to determine how CHMP7 was able to induce viral 

capsid accumulation at the cell periphery focused on the role of ESCRT-III in 

plasma membrane repair. Necroptosis is a caspase-independent form of cell 

death that relies on receptor-interacting serine/threonine kinase 1 (RIPK1) as its 

primary regulator. RIPK1 mediates necroptosis in the absence of caspase 8 

activity leading to the autophosphorylation activation of the RIPK1 binding 

partner, RIPK3, to form the necrosome. This includes mixed-lineage kinase 

domain-like protein (MLKL) which is recruited by RIPK3 and phosphorylated. 
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MLKL then, by a poorly understood mechanism, localises to and destabilises the 

plasma membrane (Reviewed in (Weinlich et al., 2017)). It has been shown that 

ESCRT-III plays a role downstream of MLKL in shedding damaged sections of 

the plasma membrane. This helps maintain plasma membrane integrity so that 

dying cells are able to secrete cytokines and other signalling molecules into their 

microenvironment (Gong et al., 2017). It has been proposed that KSHV may 

indirectly induce necroptosis within infected cells through reduced caspase-8 

activity (Feoktistova et al., 2012). Therefore, CHMP7 could be sequestered by 

KSHV ORF10 to prevent it recruiting ESCRT-III to the plasma membrane during 

late lytic replication so as not to disrupt normal viral egress. However, this specific 

ESCRT-III mechanism may not be the key disrupting factor for viral infectivity. 

Some components of the ESCRT-III complex have been shown to be critical for 

successful herpesvirus egress (Crump et al., 2007; Pawliczek and Crump, 2009). 

Furthermore, the nuclear budding step of herpesviruses also appears to require 

ESCRT-III components (Lee et al., 2012; Arii et al., 2018). Therefore, the finding 

that KSHV specifically downregulates an ESCRT-III protein is intriguing and could 

relate to a more specialised role of CHMP7 such as in plasma membrane repair 

described above or in nuclear envelope reformation (Olmos et al., 2016). Overall, 

Nup98 depletion appears to disrupt KSHV lytic sequestering of a viral restriction 

factor CHMP7 mRNA. However, during KSHV lytic replication the targeted 

depletion of Nup98 does not achieve as significant a reduction in Nup98 as 

achieved by siRNA treatment. This suggests that KSHV specifically targets the 

non-pore bound fraction of Nup98 to aid with early lytic replication but does not 

deplete Nup98 at the NPC.  
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Overall, Nup98 targeting by KSHV appears to be dynamic and responsive to the 

alternate subcellular fractions of Nup98 within the cell (Figure 6.1). KSHV 

appears to require Nup98 presence at a certain level at the NPC during lytic 

replication in order to ensure the function of KSHV ORF10 protein and its 

interaction with Rae1. If Nup98 levels are depleted sufficiently, the ORF10-Rae1 

interaction fails to sequester cellular mRNAs in the nucleus allowing for their 

continued transcription at a level greater than when Nup98 is present at the NPC. 

This allows for CHMP7 expression to be maintained and remain functional later 

during KSHV lytic replication, which may then play a role disrupting viral egress. 

Nevertheless, KSHV actively targets the a non-pore fraction of Nup98 through 

the E3 ligase activity of immediate-early protein RTA. This appears to prevent the 

inhibitory effect of Nup98 on transcription at the ORF50 promoter and may involve 

Nup98 recruiting a nucleoplasmic binding partner that represses transcription. 
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Figure 6.1 Schematic of the proposed role of Nup98 during KSHV infection. During latency Nup98 is 
present at the nuclear pore assisting Rae1 with mRNA export and in the nucleoplasm bound to the KSHV 
ORF50 promoter where it recruits repressor proteins to inhibit ORF50 transcription. On the lytic switch (red 
arrows) Nup98 is targeted in both pools by the virus, at the nuclear pore Nup98 is required by KSHV to 
anchor Rae1 to the NPC in order for KSHV ORF10 protein to sequester specific cellular mRNAs in the 
nucleus. In the nucleoplasm, RTA targets Nup98 for degradation helping remove repressor proteins allowing 
for RTA to trigger a feedback loop of ORF50 expression. 

 

Future work should look to build on these observations through three key 

questions: does Nup98 bind at the ORF50 promoter, can Nup98 be 

overexpressed in the nucleoplasm and prevent the latent-lytic switch of KSHV, 

and finally do histone modifications at the ORF50 promoter depend on Nup98. 

The first question can be answered by continuing to use chromatin 

immunoprecipitation (ChIP) experiments in unreactivated and reactivated TREx 

cells. Initial work using a previously published Nup98 ChIP antibody were 

unsuccessful but future work should look to utilising the well-published 2H10 rat 
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monoclonal that was used for other Nup98 experiments in this thesis. 

Identification of Nup98 binding at the ORF50 promoter during KSHV latency is 

the first crucial step in confirming the potential negative regulatory role of Nup98 

on the virus. The second question, using Nup98 overexpression constructs to 

repress the induction of KSHV lytic replication is more complex. As shown in 

previous chapters, there was no observed effect on KSHV lytic replication in 

TREx overexpressing GFP-Nup98 when induced to lytic replication with sodium 

butyrate. The difficulty of successfully inducing lytic replication without 

overexpressing the viral transactivator protein RTA or inducing global histone 

remodelling via HDACi means experiments to test for the protective effect of 

Nup98 should utilise alternate reactivation mechanisms. Previous work shows 

that KSHV lytic replication can be induced by increasing oxidative stress, hypoxia 

and treatment with virus-like vesicles (Davis et al., 2001; Horii et al., 2006; Li et 

al., 2011). Future experiments should attempt to induce KSHV lytic replication 

through these alternate stimuli in GFP-Nup98 overexpressing cells to 

characterise its potential protective effect. Finally, the question of confirming 

Nup98-dependent histone modifications at the ORF50 promoter will require work 

using ChIP for specific histone markers, with previous studies showing that during 

latency ORF50 exhibits H3K4me3 and H3K27me3 modifications (Günther and 

Grundhoff, 2010; Toth et al., 2013). 

In chapter 5, the novel interactomic technique BioID was combined with TMT to 

create a quantitative profile of changes at the NPC during KSHV lytic infection. 

This built on previously established usage of BioID-nucleoporin fusion proteins 

that were shown to provide good coverage of the NPC (Kim et al., 2014). After 

difficulties establishing a good transfection efficiency and subcellular targeting of 
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these constructs it was decided to perform the experiments using transient 

transfections of TREx cells (Figure 5.3). BioID-nucleoporins were transfected into 

cells that were either maintained in the latent state or induced to lytic replication. 

The results of these experiments were by and large disappointing with minimal 

purification of other components of the NPC (Figure 5.4). This can be attributed 

to the low transfection efficiency which in conjunction with a stringent purification 

procedure made it difficult to harvest a high concentration of proteins. 

Nevertheless, the combination of BioID and TMT provide a small level of insight 

in changes around the nuclear envelope microenvironment during KSHV lytic 

infection. During lytic infection there was an observed increase in the level of 

proteins associated with the ribonucleoprotein complex, including preribosomal 

components, in the vicinity of the nuclear envelope. This potentially points to 

increased transport of ribosomal components during KSHV lytic infection which 

could relate to the concept of virally induced specialised ribosomes, which has 

been proposed to occur during KSHV lytic infection (Bussey et al., 2018).  

Future efforts to utilise BioID to characterise changes at the NPC during viral 

infection should focus on developing stably expressing inducible BioID-

nucleoporins. Through communication with the Roux laboratory it was highlighted 

that their stably expressing HEK293T cell lines were selected for low BioID-

nucleoporin expression levels (Personal communication). This was due to 

common mistargeting of the BioID-nucleoporins into the cytoplasm, typically in 

the annulate laemella region. Transient transfections into latently infected B cells, 

exhibited good nuclear envelope staining with no mistargeting however attempts 

to select for stably expressing cells produced strong mistargeting effects. To 

alleviate these problems future attempts could look to use inducible expression 
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systems to regulate BioID-nucleoporin expression to ensure the prevention of 

major mistargeting effects (Firat-Karalar et al., 2014). Furthermore, recent 

advances in developing a lentiviral BioID toolkit mean that overcoming the 

problem of transfection efficiency in the traditionally difficult to transfect B cell line 

may also be possible (Samavarchi-Tehrani et al., 2018). Finally, the use of a 

smaller, more efficient biotin ligase, BioID2, should also be considered. This 

smaller ligase requires less biotin supplementation but achieves enhanced 

labelling activity (Kim et al., 2016). 

Overall, the work within this thesis expands our understanding of KSHV 

interactions with key cellular processes during lytic infection. This work provides 

enticing observations into how KSHV specifically remodels the NPC to aid its 

replication and highlights the importance of one specific nucleoporin, Nup98. The 

importance of targeting Nup98 early during KSHV lytic infection may provide a 

new avenue for developing therapeutics that prevent the transition to lytic 

infection which is a key stage in the development of KSHV-related malignancy. 

Furthermore, this work has highlighted how the dualistic nature of Nup98 is 

exploited by the virus, both by targeting its nucleoplasmic role and by requiring 

Nup98 at the NPC. Finally, this thesis lays out an initial attempt at using 

interactomic techniques to produce a more comprehensive map of viral 

interactions and induced changes at the nuclear pore complex and provides a 

guide on how to develop this approach further. 
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