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ABSTRACT

This thesis presents a development and analysis of a low computation Model Predic-
tive Control (MPC) that is known explicitly as Predictive Functional Control (PFC) for
different types of dynamical processes. Since the current concept of PFC suffers from sev-
eral issues such as the weak efficacy of tuning parameter, conservative constrained solution
and poor handling of challenging dynamical systems, the prime objective of this research
is to develop novel approaches to tackle these limitations while retaining the simplicity of
formulation, coding and tuning of PFC. For the first contribution, a Laguerre based PFC
(LPFC) is proposed to handle a system with stable and straightforward dynamics where
it can provide better consistency between model predictions and actual system behaviour.
Consequently, LPFC also improves the overall closed-loop performance including the effi-
cacy of tuning parameter while providing more accurate and less conservative constrained
solutions compared to the conventional PFC. For the second contribution, a Pole Shaping
PFC (PS-PFC) is developed based on the original idea of the traditional pole cancellation
technique to alleviate the effect of undesirable poles when dealing with a more challeng-
ing dynamical processes such as those with open-loop integrating, oscillating and unstable
modes. This approach provides a stable response with less aggressive input demand com-
pared to the pole cancellation method while retaining a similar recursive feasibility property
of constraint handling. The third contribution of this research is on the development of an
off-line sensitivity analysis to measure the robustness and possible sensitivity trade-off for
different PFC structures in response to noise, disturbance and parameter uncertainty. The
findings show that although LPFC provides better closed-loop performance than PFC, yet
the control loop may become more sensitive to noise. On the other hand, for PS-PFC,
since the conventional Independent Model (IM) structure is unable to handle a divergent
prediction, a T-filter is proposed where it manages to recover the sensitivity to noise by

sacrificing its sensitivity to disturbance and parameter uncertainty.
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Chapter 1

INTRODUCTION

This chapter presents an overview of the research topic where Section 1.1 starts with
the motivation behind this work and Section 1.2 introduces the problem statement to set
up the prime research objectives, which are given in Section 1.3. The following Section 1.4
provides the research flow with a summary of contributions and Section 1.5 describes the

thesis organisation together with the list of related publications.

1.1 MOTIVATION

Advancement in modern computation has triggered the use of Model Predictive Con-
trol (MPC) in widespread applications including automotive (Hrovat et al., 2012), chemical
(Farina et al., 2016), alternative energy (Abdullah & Idres, 2014b) and others. The underly-
ing concept is that at each sampling time, MPC will minimise a quadratic cost function and
provide an optimal control solution. This controller offers systematic frameworks to handle
systems with constraints, delays, many outputs and challenging dynamics (J. A. Rossiter,
2018; L. Wang, 2009). Because of its appealing characteristics, MPC has become one of
the major subjects in the current scientific research. This past decade has seen the rapid
development of MPC control theories in many areas such as how to improve the controller
stability (Mayne et al., 2000), feasibility (Giselsson & Rantzer, 2010), robustness (Bemporad
& Morari, 1999), and also accuracy (Qin & Badgwell, 2000).

Nevertheless, the implementation of MPC in real applications is more expensive com-
pared to other traditional simple controllers, considering it requires a higher computa-

tion demand and expensive computer hardware for modelling and optimisation processes
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(J. A. Rossiter & Haber, 2015; Vazquez et al., 2014; Jones & Kerrigan, 2015; Dovzan &
Skrjanc, 2010). This scenario becomes worse if the number of constraints within a sys-
tem increase as it needs to ensure recursive feasibility throughout a validation horizon
(J. A. Rossiter, 2018; Mayne et al., 2000; Rawlings & Muske, 1993). Although the tuning
of MPC is easier than other classical controllers, yet the selection of weights in the cost
function still requires trial and error procedure, which is not entirely transparent especially
to the less experienced users. Hence, proper training to understand the effect of tuning pa-
rameters on the system behaviour and overall controller frameworks are often needed (Qin
& Badgwell, 1997) and these requirements are indeed time consuming. Despite its vast
theoretical developments, MPC applications are still largely restricted to high-end, complex
or large unit operations (Qin & A. Badgwell, 2003; Mayne, 2014) where the optimality of

solutions are necessary.

Conversely, in many small-scale industries, the majority of staff prefer a simpler con-
troller such as Proportional-Integral-Derivative (PID) (Astrém & Higglund, 2001) although
there exist other advanced controllers such as Linear Quadratic Regulator (LQR) (Kwak-
ernaak & Sivan, 1972), Sliding Mode Control (SMC) (Utkin, 1993) and others. The main
factor behind this is because of their limited understanding and experiences of other con-
troller’s principle (J. A. Rossiter & Haber, 2015). Although PID frameworks are well es-
tablished, the users may face difficulties in handling constrained systems. For example,
the usage of an integrator during constraint violations can produce wind-up and/or satu-
ration (J. A. Rossiter, 2018). Some may argue that anti-wind-up techniques can prevent
this limitation (Visioli, 2006), but it often requires a well-trained user to implement this
ad-hoc tuning rule (De Dond et al., 2000) while these are difficult to design and manage for

different combinations of system dynamics and constraints.

From the practical perspective, it is clear that many industrial end-users are willing to
trade between optimality of control solutions with ease/cost of implementation, especially
for a simple application (Richalet & O’Donovan, 2009). This preference has triggered the
widespread acceptance of Predictive Functional Control (PFC), which was developed by
Richalet around the 1960s and early 1970s (Richalet et al., 1978). The main difference

between PFC and MPC is on the minimisation process, where the objective is to track a
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desired target trajectory at a specific point instead of finding an optimal solution. Besides,
a constant future input assumption of PFC (Richalet & O’Donovan, 2009) reduces the
overall complexity of coding, and consequently, it only uses minimal computation, and
indeed, for low order models, the coding is almost trivial and can be implemented on a
modest processor, including a Programmable Logic Controller (PLC) (Khadir & Ringwood,
2008). The use of settling time or closed-loop time constant as a tuning parameter makes
the designing process more transparent, especially to the operating technician (Hashizume,
2015). PFC also retains some of the advantages of MPC namely the constraints and delays
managements (Richalet & O’Donovan, 2009). Taken together, these advantages highlight
the potential of PFC to replace PID controller, especially for Single Input Single Output
(SISO) applications (J. A. Rossiter, 2018; Richalet & O’Donovan, 2009; Hashizume, 2015).

Surprisingly, PFC only receives comparatively little attention in the academic literature
despite its wide acceptance in the industry due to its difficulty in providing rigorous prop-
erties like stability assurance and robust feasibility except for a few cases (J. A. Rossiter,
2017). As far as the author is concerned, there is limited formal analysis of PFC perfor-
mance in the literature except for few papers (J. A. Rossiter & Haber, 2015; J. A. Rossiter,
2016; J. Rossiter et al., 2016) and books (Richalet & O’Donovan, 2009; J. A. Rossiter, 2018;
Haber et al., 2012). General studies in this field are mainly focused on the implementation
aspect in specific applications (Skrjanc & Matko, 2000; Yang et al., 2005; Yiming & Bin,
2012) rather than improving the control law itself. Besides, most of the conventional meth-
ods that used to improve the reliability of PFC (Richalet & O’Donovan, 2009) often lack
academic rigour (J. A. Rossiter, 2016; Valencia-Palomo & Rossiter, 2011). This inadequacy
indicates a need for more systematic analysis and development of PFC, which can provide

useful contributions to both theoretical frameworks and practical implementations.

1.2 PROBLEM STATEMENT

From the previous discussion, it is clear that PFC concept can provide a simple ap-
proach along with other potential benefits. Besides, this controller also has been success-
fully implemented in various small-scale industrial applications as reported in Richalet &

O’Donovan (2009). Nevertheless, this thesis would like to point out that the current PFC
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concept also may suffer from several weaknesses in providing a satisfactory control perfor-

mance. For example:

e There is a tuning issue with PFC where the use of constant future input assumption
could lead to ill-posed solutions. Specifically, the open loop prediction and closed-loop
behaviour are inconsistent due to insufficient degrees of freedom (d.o.f) especially when
using a small coincidence horizon n, (J. A. Rossiter & Haber, 2015; J. A. Rossiter,
2016). This situation may reduce the accuracy of constrained solutions while making
it very conservative when satisfying the output or state constraints. Conversely, if a
larger n,, is used, better prediction consistency can be obtained, but the effectiveness
of desired closed-loop pole A as the tuning parameter becomes less significant. Hence,
this scenario triggers the need for an alternative future input parameterisation that
can provide more d.o.f to eliminate this limitation. Besides, as will be discussed in the
following chapter, the current PFC approach for handling soft constraints by switching
the input between multiple regulators (Richalet & O’Donovan, 2009) is obsolete and
not systematic, as most of the modern constraint approaches are often embedded inside
the controller. It is notable that the concept was developed back in the 70s where
the computation ability was not as advanced as today. However, as time passed, PFC
practitioners are still comfortable in using this old method. Theoretically, there is a

possibility to adopt a similar systematic constraint approach as in the modern MPC.

e Although the implementation of PFC is straightforward for simple dynamic systems
(J. A. Rossiter & Haber, 2015), a user may face a difficulty in tuning a more challenging
dynamic process such as those with integrating, oscillating or unstable mode mainly
because of its poor open-loop prediction (J. A. Rossiter & Haber, 2015; J. A. Rossiter,
2016, 2002; Rawlings & Muske, 1993). The default PFC concept is unable to cope with
these dynamics and often requires some modification in its control law. In practice, a
cascade-like structure or decomposition model as suggested in Richalet & O’Donovan
(2009) are widely used, where it will stabilise the open-loop process before implement-
ing the standard control law. However, there are several limitations for these methods
and in fact, there is no clear explanation on how to systematically tune the controller

which leads to a counter-intuitive implementation of PFC. Thus, a simple concept of
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PFC that can adapt to these challenges while retaining its simplicity of tuning and

other advantages would be a worthwhile contribution.

e Another issue that needs attention is regarding the sensitivity of the PFC prediction
structure. Embedding a robust formal design as in MPC will require a more com-
plex algorithm and implementation which runs against the core principle of PFC.
The common practice is to employ an Independent Model (IM) structure (Richalet
& O’Donovan, 2009) for unbiased prediction. However, this structure is not imple-
mentable with an open loop divergent process (J. Rossiter et al., 2016) unless the
cascade structure is implemented as it can retain the stability of IM. Conversely, it is
also worth to consider other prediction structures such as a Realigned Model (RM)
(similar to a CARIMA model in GPC) while improving its robustness via a simple
T-filter. Thus, a formal off-line sensitivity analysis for PFC is essential to get an
insight into what sort of sensitivity trade-offs one should expect when using different
prediction structures. Besides, the same analysis can be used to compare and measure

the robustness of other proposed modifications to the PFC control law.

1.3 RESEARCH OBJECTIVES

Based on the problem statements, the objectives of this work are established as :

1. To design a novel PFC method that can improve the prediction consistency, tuning

process, and constraint handling.

2. To develop novel PFC approaches which can deal with challenging dynamic systems
while retaining the ease of coding, implementation and also recursive feasibility con-

strained solutions.

3. To provide an off-line systematic sensitivity analysis for different PFC structures and

explore the possibility to adopt other alternative structures to improve its robustness.
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1.4 RESEARCH FLOW WITH MAIN CONTRIBUTIONS

After a comprehensive literature review which will be presented in Section 3, this work
tackles each of the listed objectives separately. For the first objective, this work only focus

on a simple and straightforward dynamical system, where the main contributions are:

1. Development of Laguerre based Predictive Functional Control (LPFC) specifically for
a straightforward and stable process, which provides better prediction consistency and
tuning efficacy compared to the conventional PFC while retaining the simplicity of

coding and implementation.

2. Development of a more systematic and cost-effective constraint handling method for
LPFC that provides more accurate and less conservative constrained solutions com-

pared to the traditional multiple regulators approach.

3. A formal comparison of closed-loop and constraint handling performances between the
traditional PFC concept and LPFC with different input parametrisations (through
inputs and input increments) while identifying the potential weaknesses for these

approaches.

For the second objective, this work develops and analyses the performance of three
different alternative PFC structures specifically to handle challenging dynamic systems and

the contributions are:

1. Extending the concept of LPFC to handle an integrating process and comparing the
tuning, performance and constraint handling ability with the traditional cascade struc-

ture while identifying the possible limitations for both approaches.

2. Development of the newly introduced concept of Pole Placement PFC by J. Rossiter
et al. (2016) for handling an oscillating process without the use of imaginary number

via simple algebraic manipulation while discovering its advantages and disadvantages.
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3. Development of a Pole Shaping PFC (PS-PFC) by adopting the concept of Pole Can-
cellation PFC of J. A. Rossiter (2016) to handle different types of challenging dy-
namical systems where it can provide a stable performance with less aggressive input

demand while retaining a similar recursive feasible constrained property.

In order to achieve the third objective, this work provides a systematic sensitivity

analysis for PFC, LPFC and PS-PFC. Another three contributions can be listed as follow:

1. Derivation of an off-line sensitivity analysis for different types of PFC structures for
comparing the robustness between IM and RM predictions in the presence of distur-
bance and noise while introducing the use of T-filter with the RM to get the best

trade-off between the two structures.

2. A formal robustness analysis for the proposed LPFC and traditional PFC to un-
derstand the possible sensitivity trade-off in the presence of noise, disturbance and

parameter uncertainty.

3. Development of a robust prediction structure for PS-PFC by utilising a T-filter to
improve its robustness against noise while analysing the possible sensitivity trade-off

with disturbance and parameter uncertainty.

1.5 THESIS ORGANISATION

This thesis consists of eight main chapters. Chapter 1 introduces an overview of this
work wherein motivation, problem statement, objectives and main contributions are ex-
plained. Chapter 2 provides the technical details of PFC and continues with Chapter 3,
which reviews the works of literature that are related to this research. For clarity of pre-
sentation, Chapter 4, 5, and 6 are divided according to the types of PFC that have been
developed rather than following the research flow (as discussed in Section 1.4) since different
types of formulations are used for different approaches. Thus, each of these chapters present
the development of Pole Placement PFC, Laguerre based PFC and Pole Shaping PFC, re-
spectively. The following Chapter 7 analyses the sensitivity of different PFC prediction
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structures and Chapter 8 provides the conclusion with possible future works. Since most of
the contributions in this thesis are already published or accepted in journals or conference
proceedings, only a summary and the main highlights are presented in Chapter 4, 5, 6 and
7. More detail descriptions and derivations of the proposed concept can be found from these

papers which have been attached in the Appendix section.
Appendix A (Zabet et al., 2017) (published),

Zabet, K., Rossiter, J. A., Haber, R. & Abdullah, M. (2017). Pole-placement Predic-
tive Functional Control for under-damped systems with real numbers algebra, ISA Trans-

action, 71, 403—414.
Appendix B (Abdullah & Rossiter, 2016) (published),

Abdullah, M., & Rossiter, J. A. (2016). Utilising Laguerre function in Predictive
Functional Control to ensure prediction consistency. In 2016 11th UKACC International

Conference on Control (pp. 1-6).
Appendix C (Abdullah et al., 2017) (published),

Abdullah, M., Rossiter, J. A., & Haber, R. (2017). Development of constrained Pre-
dictive Functional Control using Laguerre function based prediction. IFAC-PapersOnLine,

50(1) (pp. 10705-10710).
Appendix D (Abdullah & Rossiter, 2019b) (accepted),

Abdullah, M., & Rossiter, J. A. (2019b). Using Laguerre functions to improve the
tuning and performance of Predictive Functional Control. Accepted by International Jour-

nal of Control.
Appendix E (Abdullah & Rossiter, 2018a) (accepted),

Abdullah, M., & Rossiter, J. A. (2018a). Alternative method for Predictive Func-
tional Control to handle an integrating process. in Proceedings of 2018 12th UKACC In-

ternational Conference on Control.
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Appendix F (Abdullah & Rossiter, 2018d) (published),

Abdullah, M., & Rossiter, J. A. (2018d). Input shaping Predictive Functional Control

for different types of challenging dynamics processes,” Processes, 6(8),118.
Appendix G (Abdullah & Rossiter, 2018b) (in press),

Abdullah, M., & Rossiter, J. A. (2018b). The effect of model structure on the
noise and disturbance sensitivity of Predictive Functional Control,” in Proceedings of 2018

European Control Conference.
Appendix H (Abdullah & Rossiter, 2018¢) (in press),

Abdullah, M., & Rossiter, J. A. (2018c). A formal sensitivity analysis for Laguerre
based Predictive Functional Control,” in Proceedings of 2018 12th UKACC' International

Conference on Control.

Appendix I (Abdullah & Rossiter, 2019a) (submitted),

Abdullah, M., & Rossiter, J. A. (2019a). Sensitivity analysis for an input shaping
Predictive Functional Control for processes with challenging dynamics,” in Submission to

2019 3rd IEEE Conference on Control Technology and Applications.

Remark 1.1. It should be noted that most of the results in this thesis will use a qualitative
analysis instead of quantitative for ease of presentation and explanation. Adding qualitative
analysis will not give any extra information to the reader since most of the simulations
are using arbitrary systems in a discrete domain except for a few cases where it seems

appropriate.



Chapter 2

TECHNICAL DETAILS OF PFC

Before presenting the literature review, it is better for readers to have some technical
insight into the traditional PFC framework. Hence, this chapter provides two brief formu-
lations of PFC that will be used or benchmarked in this work. Section 2.1 introduces the
nominal PFC concept together with its traditional constraint handling technique. Section
2.2 describes the cascade structure of PFC that is specifically known as transparent control
and often used for handling integrating systems or other challenging dynamical processes.

The final Section 2.3 summarises the main highlights of this chapter.

2.1 NOMINAL PFC CONCEPT

A fundamental concept in any predictive controller follows a simple human intuition,
where one would need to anticipate a future behaviour far in advance to select a required
control action to achieve the desired goal while taking into account the associated limitations
and other uncertainties. In general, PFC has different formulations and representations that
depends on what sort of objective that it wants to achieve or types of a prediction model
that is used. For example, the formulation for tracking a ramp or parabola set-point is
different from tracking a constant set-point. Thus, the nominal formulation that will be
presented in this section is considered as the most basic form of PFC and only can be used
explicitly for tracking a constant set point. This formulation is divided into several major
components namely the target trajectory, system prediction, control law, and constraint

handling.

10
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2.1.1 Target Trajectory

In principle, the target trajectory is a time-based variable that describes the desired
closed-loop behaviour before it converges to the final set-point. Although there is no restric-
tion on the choice of a function for this trajectory, in practice a user often utilises a simple
exponential due to its simplicity of calculation in real-time and predictable convergence
rate (Richalet & O’Donovan, 2009). This preference keeps the coding and implementation
of PFC straightforward and easy to understand which leads to its well-accepted concept in

the industry.

For transparency of presentation, consider the first-order system with constant set
point R and without delay:
1 (I1=2X)

where 7(s) and r(z) are the continuous and discrete form, respectively. From here, a user
can easily select a desired convergent rate for the response based on the time constant 7,.. In
industrial practice, a Closed-loop Time Response (CLTR) is often used to define T, where
technically, it represents the time taken to reach 5% of the desired set-point (T, = CLTR/3).
Notably, the parameter T} also can be represented in the discrete form as the desired closed-
loop pole A = e_%, where T is the sampling time. For clarity of presentation, this work

uses A as the tuning parameter instead of CLTR to avoid the conversion.

Defining ¥, » as the current output measurement from a plant, the prime control ob-
jective of PFC is to force its prediction at k sample into the future, y,, yyp, | to match the
target response at a single sample instant in the future, which is known as the coincidence
horizon n, (the second tuning parameter). Conceptually, the idea is equivalent to enforcing

the following discrete equality:

Ypktnylk = Thdnylk = (]- - )‘ny)R + )‘nyyp,k (22)

where the reference trajectory is re-initialised at each sample to embed the feedback loop.
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2.1.2 Model Prediction and Structure

Notably, the PFC concept is quite flexible and can take any form of prediction model
ranging from a simple Finite Impulse Response (FIR), transfer function, or state space,
where it is well known that each of these models has its pros and cons (J. A. Rossiter,
2018). The formulation in this thesis is constructed with a general transfer function as
this model is commonly used in many PFC applications. Besides, it only requires a small
number of parameters compared to the FIR and is suitable enough to represent a SISO
process (where generally PFC concept will work well) without the need for an observer as

with a state space model.

For a comprehensive representation of different order process dynamics, the derivation
of ny-step ahead prediction can be formed based on Toeplitz-Hankel forms (J. A. Rossiter,
2018). For a general polynomial f(z) = fo + fiz™' + ... + faz™", it can be defined via

future matrix C'y and past matrix Hy as:

-fo 0 0 ] -f1 Ja - fny-
o L L Y O (2.3)
_fny fny—l fny—2 T _0 o - 0 ]

Given a general transfer function model with dimension of n;, (numerator) and n,

(denominator):

ym(2) = ——u(2) (2.4)

the simplified prediction structure for inputs u; and outputs ¥y,  at sample & can be

formulated as:

Ymanylb = Ca  Cot + Cq Hy e + O ' Ho Yok (2.5)
Q
H P

where matrix H, P, () depend on model parameters and the definition of U, U, y@,k are
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given as:
Uk Uk—1 Ym,k
U Uf— _
u = k+1 g = k—2 Uik = Ym k-1 (2.6)
L Uk+ny—1 1 | Uk —ny, i | Ym,k—nq i

Remark 2.1. There are some subtleties to ensure offset-free tracking in the presence of
measurement noise, disturbance and parameter uncertainty which can be deployed either via
Realigned Model (RM) or Independent Model (IM) structure (Richalet & O’Donovan, 2009).
RM structure measures the past output directly from a plant through the stored memory
in a processor, while IM calculates the same parameter independently through the model
computation. For introducing the concept, the formulation used here is the IM structure
as it is considered as a standard design in many PFC applications (Richalet et al., 1978;

Richalet €& O’Donovan, 2009).

Figure 2.1 illustrates the schematic structure of IM where the process model G, and

plant G}, run in parallel. The correction term dj, is calculated at cach time step as:

di, = Ypk — Ym.k (2.7)

where y,,  and y,, 1, denote the output from model and plant, respectively. Hence, the plant
prediction which in general is explicitly unknown can now be represented with the unbiased

model prediction by adding the correction term dy, into the prediction (2.5) as:

where L is a unit vector as d is assumed to be constant throughout the prediction window.

Go |—

Gm

Figure 2.1: Independent Model (IM) structure.



14 TECHNICAL DETAILS OF PFC

Remark 2.2. The use of IM structure in predictive control is originated from the concept
of Smith predictor and Independent Model Control (IMC) (Garcia & Morari, 1982). The
main advantage is that it can take any form of prediction model without the need of an
observer or filter. The term dy in (2.7) is representing the Process Model Error (PME) to
ensure that the internal model of a system provides non-biased predictions while avoiding

offset error (Richalet & O’Donovan, 2009; J. A. Rossiter, 2018).

2.1.3 PFC Control Law

After defining the target trajectory and system prediction, the next step is to derive the
control law. As pointed out before, there are only two tuning parameters in PFC which are
the desired closed-loop pole A and the coincidence horizon n,. The X is selected between the
range of 0 < A < 1 to determine the convergence rate to the steady state input R. Smaller
value provides faster convergence and vice versa. For the coincidence horizon, ideally one
may desire a smaller n, to drive the output response as close as possible to the target tra-
jectory. However, this is not always the best tuning practice as the user also needs to weigh
other factors such as the aggressiveness of input and stability of performance, especially
when dealing with a higher order or challenging dynamical processes (J. A. Rossiter, 2002;

J. A. Rossiter & Haber, 2015).

With suitable tuning parameters, the control law is then computed by forcing the
system prediction to match the target trajectory specifically at n, step ahead. Extracting
the nyth row from matrix H, P, @, the control input is solved by substituting (2.8) into (2.2).
In order to simplify the calculation process without the matrix inversion, PFC assumes a
constant future input, namely w4 = ug,? = 0, ...,ny. In consequence, it simplifies H,, to

single parameter h,, = > H,, and (2.2) becomes:
hnyuk + Pnylf_k + Qnyy?jk +dp=(1-X\")R+ /\nyyp,k (2.9)

The required control input can be easily solved as:

1~ AR 4+ Xy — (Po e + Qu, Yonsk + d
wp = ( ) Yp,k h( Y - @n, + k) (2.10)
Ny

then, the same process is repeated to update the value of u; at each time step.
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2.1.4 Simple Illustration

In order to illustrates the PFC concept, Figure 2.2 shows the step response of an
arbitrary second-order over-damped system overlaid with the desired target trajectory r

with A = 0.7 (for this case the final set point is 1).
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Figure 2.2: System step response overlaid with the target trajectory.

Figure 2.3 demonstrates that the implied output predictions at the first sample y,,
is forced to coincide with the trajectory r at a selected horizon n, = 4 with the assumed
constant future input at the first sample u); = 2.8. Based on a receding horizon principle
as in MPC (L. Wang, 2009; J. A. Rossiter, 2018), PFC only send the first computed input

to the plant and the same process is repeated at the next time step.
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Figure 2.3: System prediction at the first sample instant.
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Figure 2.4 presents the closed-loop performance of the system where the output y,
converges to the desired steady-state set-point with a close enough dynamics compared to

the desired trajectory r.
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Figure 2.4: System closed-loop response.

2.1.5 Constraints Handling

One of the key selling points of PFC is the constraint handling ability (Hashizume,
2015) where generally, the constraints can be implemented to the input, rate, state and
output. The first two constraints are known as hard constraints that often employed due
to the physical limitations of the process hardware. Violating these limits may reduce the
component lifespan or at worst damaging the process itself. The other two constraints are
defined as soft constraints which can be ignored sometimes but may affect the controller
performance and economic profit. Effectively satisfying these constraints may offer many
attractive benefits such as higher production profit, better control performance, lower main-
tenance cost and safer control environment (J. A. Rossiter, 2018; Richalet & O’Donovan,

2009; L. Wang, 2009; Abdullah & Idres, 2014a).

The traditional PFC handles the hard and soft constraints using different approaches.

For input and rate limits, the inequalities can be represented as:
u<up<T (2.11)

Au+up_1 <up < Au+ Uk_1 (2.12)
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where Au and Au are the minimum and the maximum rate, while w and @ denote the
minimum and maximum input, respectively. Without explicitly including these constraints
in the control computation, a clipping method can be utilised (Abu et al., 1991). When
the limit in (2.11) or (2.12) is violated, the controller will treat it as an equality constraint

(Richalet & O’Donovan, 2011).

Remark 2.3. The input and rate constraint need only be implemented on the current input
within conventional PFC. Although the constrained solutions are not optimum, the recursive
feasibility property can be guaranteed due to the constant future input assumption (Richalet
& O’Donovan, 2009). This type of solution is sufficient enough particularly for stable and

straightforward dynamical systems.

For state and output constraints, PFC employs multiple regulators, which run in par-
allel as shown in Figure 2.5. Each of this regulators uses different tuning parameters of A

and n, (Richalet & O’Donovan, 2009; Abu et al., 1991).

e The first regulator PF'C is the preferred control law and produces input u; j using
(2.10) to track the set point while satisfying the hard constraints. Within some val-
idation horizon n; to be defined, the supervisor uses input uq j to predict the future
state behaviour using a prediction model such as (2.5). If the state predictions are

within their limit, then use uy = uy .

e The second regulator PF (5 is more conservatively tuned to track the state limit by
manipulating input us ;.. When the state limit is expected to be violated using PF'C',

then use uy = ug k.

e An advanced decision-making method such as fuzzy logic, look-up table, or artificial
neural network may be utilised for a smoother transition (Richalet & O’Donovan,

2009).

For ease of presentation, this formulation considers state constraints although similar

approach can be used when satisfying output constraints. The second controller PFCy
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Xmax u2
PFC2 —\L P2 ——
X
u
Supervisor
R ™ | y
—) PFC1 P1 ——
u1
T |

Figure 2.5: Schematic of PFC considering state or output constraints.

regulates the second input us j based on a state prediction equation:
Ltk = Py Wk + P, Uk + Qn, Tk + di (2.13)

where h,,_, P, ,Qn, denote the state model parameters and in this case, the correction term
dy, = © — xp, (2., denotes the model used to calculate the state). The maximum state limit
T is a set as a target instead of R. With a suitable coincidence horizon n, and the desired
closed loop pole A;, input ug j, is computed as:

(1 = A Zopae — AT @) — (Pmlj_k + in,if_k + dy)
P,

Ug g = (2.14)

It is also important that the associated PFC is tuned, if possible, to avoid oscillations or

any overshoot in the predictions for satisfying the limits.

Remark 2.4. A suitable validation horizon n; for checking the predictions associated to
PFCy should be used since the projection of Ui)k must include the open loop time response
of PFCy. In addition, the target pole A, of PFCy must be compatible with the need to
satisfy the internal constraints of PF'Cy. Choosing a fast pole to improve the overall sys-
tem response may decrease the controller robustness and introduce conflicts with the hard

constraints (Richalet & O’Donovan, 2009).

2.2 PFC WITH CASCADE STRUCTURE

In order to handle a system with marginally stable or oscillating dynamics, PFC prac-

titioners often employ a two level cascade structure that is known as transparent control
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(see Figure 2.6). The inner loop employs a proportional gain with negative feedback to sta-
bilise the open loop prediction, while nominal PFC controls the outer loop and eliminates
any offset due to disturbance while enhancing the overall dynamic performance (Richalet

& O’Donovan, 2009).
R uc 4 u y
PFC K G

Figure 2.6: Transparent PFC structure.

\ 4

The inner loop with gain K will be used as a prediction model by PFC instead of
the original plant model G to compute the manipulated input u.. Given the pre-stabilised

model in continuous form as:

) = o ggeels) (2.15)

PFC in the outer loop will compute the input u.j using the standard formulation as dis-
cussed in Section 2.1.3. Then, the actual input u that will be sent to the plant is defined
as:

up = K(uck — yr) (2.16)

With this technique, the controlled system is able to maintain regulation during set-point
changes by introducing a temporary over-compensated set-point (Richalet & O’Donovan,
2009). Besides, due to the pre-stabilisation, this approach can use the standard IM structure
effectively to handle noise, disturbance and parameter uncertainty even for an open-loop

divergent process.

Remark 2.5. Transparent PFC (TPFC) only accepts proportional gain rather than the
combination with integral and/or derivative to keep the constraint implementation purely
algebraic (Richalet €& O’Donovan, 2009). To implement input or rate constraints, it is
crucial for the model to detect possible constraint violations a priori. Thus, a back calculation

procedure is needed to transfer the information from the inner loop to the outer loop as:

Smin < g < g+ u’;{"'“ (2.17)

Yr +
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AUpmin + Ug—1 AUmag + Ug—1
- T <K < - 0 = -
K = Yok = Ykt K

Failure to do this could introduce an overshoot in the input (and/or output) due to a mis-

Yk + (2.18)

match between the predicted model behaviour and the actual system behaviour.

Remark 2.6. For output or state constraints, the multiple-requlators approach as discussed
in Section 2.1.5 is used to satisfy the limits (Richalet & O’Donovan, 2009). For this case, the

second controller needs to be tuned more carefully to avoid conflict with the hard constraints.

2.3 SUMMARY

Based on the presentation of nominal and cascade formulations of PFC, there are

several points that worth to highlight:

1. It is clear that the nominal control law of PFC is straightforward and can be coded

in just a few lines while only requires low computation demand.

2. The use of X as one of the tuning parameters of PFC makes the concept intuitive
and transparent especially to the industrial user since this parameter has a direct

relationship with the desired closed-loop time repose that one would like to achieve.

3. Generally, PFC can use any form of prediction model. Since this controller is mostly
effective in controlling SISO system instead of MIMO, this work adopts a transfer
function model where it requires fewer parameters than the FIR model (Ljung, 1998)
and can avoid the use of an observer as with the state space model. The advantages

and disadvantages of these models will be further discussed in the next chapter.

4. Although PFC uses IM as a standard prediction structure, this work will also consider
the use of a RM structure for a specific case, especially when dealing with challenging

dynamical applications which will be discussed later on in the upcoming chapter.

5. The constraint handling approach of PFC that is based on multiple regulators is
obsolete and may become very conservative since the second regulator is tuned with

a slower pole for avoiding conflict with the hard constraints.
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6. The concept of transparent control to handle a marginally stable or oscillating process
seems promising. Nevertheless, the restriction in using a proportional only controller
in the inner loop to simplify the constraint handling may limit its reliability to pre-

stabilised an open-loop unstable process.

Overall, this chapter provides a brief insight into the technical details of PFC formu-
lations namely the nominal and transparent PFC. A more detailed review of the tuning
procedure, alternative structures and issues faced by PFC will be discussed in the next

chapter.



Chapter 3

LITERATURE REVIEW

This chapter starts with a general review of Model Predictive Control in Section 3.1.
The following Section 3.2 is devoted to the classical concept of PID controllers that are often
used in many industrial applications. Section 3.3 discusses the benefits and limitations of
PFC along with its latest development in various types of applications. Next, significant
issues of PFC in managing the tuning parameters, challenging dynamical processes, and
robustness are reviewed in Section 3.4, 3.5 and 3.6, respectively. The final Section 3.7
provides a summary of this chapter to consolidate the findings and suggestions on how to

tackle the listed issues.
3.1 MODEL PREDICTIVE CONTROL

Nowadays, automatic control has become a necessary tool in most of the industrial
applications in order to keep all the processes running smoothly according to the desired
specifications within a safe working environment. Besides, implementing self-control ma-
chines can increase the production rate while reducing human resources and the operation
cost. There are many types of controllers available in the market and literature that may be
generally classified either via linear or non-linear, stochastic or robust, discrete or contin-
uous, modern or classical and others. Each types of these controllers has their advantages
and disadvantages depending on how or where it is implemented. Selecting the right type
of controller for a specific application is an essential task for an engineer, where they need
to weigh several aspects such as computation time, tuning process, process dynamics, con-
straint handling and others. One of the preferred types of controllers that can satisfy most

of the mentioned requirements is a Model Predictive Controller.

22
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Model Predictive controller (MPC) can be referred to as a type of controller that uses
an implicit model for prediction, solving the control action based on a specific objective
function and applying a receding horizon concept where only the first computed output
is sent to the plant while the whole process is repeated at each time step (Camacho &
Bordons, 2012). This controller offers many attractive benefits to a user, for example, the
ability to handle constraints in a systematic fashion (Garcia et al., 1989) where an optimal
input can be computed to satisfy the set point while considering the associated physical and
performance limitations by solving a specific cost function. Other than that, MPC also can
handle different types of systems including those with long time delay, non-minimum phase
or unstable mode due to its flexibility in selecting different prediction model and objective
function (L. Wang, 2009). Besides, its flexibility also provides a natural extension to non-
linear control or hybrid concept that can utilise a modern approach such as fuzzy logic and
artificial neural network (Tatjewski, 2007). The tuning procedure can be considered more
straightforward compared to the classical PID, which is based on the selection of weights in

the cost function rather than requiring a complete off-line frequency analysis.

There are many variants in the MPC framework depending on what type of model
and objective function are used. Most of the early MPCs employed a discrete linear model
and specially designed for SISO applications such as Finite Impulse Response (FIR) or step
response (SR) as in Dynamic Matrix Control (DMC) (Cutler & Ramaker, 1980) and trans-
fer function as in Generalized Predictive Control (GPC) (Clarke & Mohtadi, 1989). The
modelling process of DMC is very straightforward, yet it may require a high number of
parameters. Conversely, GPC only needs a small number of parameters for the modelling
process, but it is less straightforward to extend the concept for handling MIMO processes.
Nevertheless, these two classic MPCs have been successfully implemented in various indus-
trial applications as reported in many references (Camacho & Bordons, 2012; J. A. Rossiter,

2018; Tatjewski, 2007).

With the advancement in computation power together with its significant drop in the
price and size, academics started to implement a state space model in MPC, where it is
more convenient to generalise its overall concept for formal analysis and extension to MIMO

system. Other models including FIR, SR, and transfer function can be easily converted
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into the state space format. This model is also capable of forming a non-linear future
prediction. Besides, a feed-forward concept can be naturally embedded in the formulation
to improve its robustness against a measured disturbance. However, this model may provide
numerical ill-conditioning when dealing with a large prediction horizon or dimension of state
(L. Wang, 2009; Tatjewski, 2007). In addition, the identification process of state space in
a real application can be challenging if the full state variables are not measurable. For this
case, an estimator such as the Kalman filter is often used to estimate the unmeasurable

states with a careful tuning process (Bishop et al., 2001).

Notwithstanding those facts, MPC also has undergone various types of development
through this century. In early development, many works tried to come out with numerous
heuristic tuning methods (Garcia et al., 1989). Later on, this issue becomes clear that if
the controller is solved based on an ill-posed decision where there is prediction mismatch
between the open-loop and actual behaviour, the optimisation process becomes ineffective.
The leading solution at that time is to use large enough prediction horizon with the similar
number of control horizon (Mosca & Zhang, 1992). However, this can lead to a substantial
computation expense in addition to the numerically ill-conditioned problem (J. A. Rossiter,
2018). In order to avoid this problem, L. Wang (2009) proposed the use of Laguerre functions
to parameterise the control horizon, so that a small number of parameter can be used to get
an effect of a larger horizon. Besides, an exponentially weighted function is embedded inside
the prediction horizon to improve the ill-conditioning problem. Consequently, this concept
can provide a prescribed degree of stability, which can be extended to the constrained cases
by modifying the weights in the cost function. A similar outcome can be obtained with the
dual mode MPC (Scokaert & Rawlings, 1998), which utilises an infinite prediction based
on LQR with the concept of a tail. The stability of this controller can be proved using a
Lyapunov equation with the condition that the computed solutions must be feasible. On the
opposite side, Valencia-Palomo & Rossiter (2011) developed an auto-tuned MPC that can
be easily embedded into a standard PLC with systematic constraint handling. Although this
concept is simpler than the common MPC, yet it can be considered as more realistic than
the classical PID. These works are only a few examples of the more extensive developments

of MPC in the literature.
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Although MPC may provide optimal control and other associated benefits, yet it has
several well known drawbacks. First, the derivation of MPC concept and the identification
of its prediction model are considerably more complex than the classical PID controller. An
accurate model is necessary because if there is a significant mismatch between the predicted
behaviour and actual response, the optimisation process becomes meaningless (J. Rossiter &
Kouvaritakis, 2001). Additionally, MPC often needs a higher computation load and time for
the optimisation procedure. Although this requirement is not a severe problem considering
the current computation power, yet most of the process industries are still relying on the use
of a simple processor such as PLC where other tasks such as measuring and sending a signal
are also carried out simultaneously. Besides, the processor may require more computation
when the number of variables and prediction horizon increases (Valencia-Palomo & Rossiter,
2011). The similar requirement is required when satisfying constraints as it needs to retain
optimality and recursive feasibility of the solutions. Due to these situations, in most cases,

MPC is only used to handle more complex processes rather than simple ones.

3.2 CLASSICAL PID

PID is the most popular controller, which is well established and has become a standard
approach in handling the closed-loop control problem within numerous small-scale industrial
applications. The main reason behind this is because of its simplicity in concept, low
implementation cost and well-explained theory in the academic literature. This controller is
well known to be very useful in handling a simple and straightforward linear control problem
and highly compatible to deploy in a basic PLC processor. Currently, many engineering
software such as Matlab, LabView and others provide a built-in PID toolbox. This controller
consists of three optional regulators, which are a proportional, integral and derivative. The
objective is to find a suitable gain for individual or combination of more than one regulator
to obtain the desired closed-loop response. Its traditional tuning rule as developed by Ziegler
& Nichols (1942) to get the best behaviour while retaining stability is well recognised and
accepted among control community and has become a standard syllabus in most of the

control system undergraduate courses.
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According to a report by Astrom & Higglund (2001), almost 90% of the control loop
in the process industry are PID, particularly with PI since the derivative term is occasion-
ally used. This situation is not surprising since most PID users are quite comfortable in
using its concept even when the performance is poor compared to what could be achieved
(J. A. Rossiter & Haber, 2015). Although the tuning process of PID controller seem to
be intuitive, yet in a real process it may be not as straightforward as one imagines, es-
pecially when multiple objectives are conflicting with each other in the presence of strong
non-linearities, disturbance or environmental uncertainties (Kumar et al., 2011). In order
to avoid this issue, a careful off-line tuning is often employed through several trials until
the controller manages to obtain the desired closed-loop response. A knowledge related to
root locus, Bode plot, Nyquist plot to assess the closed-loop stability deems necessary to

implement and tune this controller effectively.

By default, the concept of PID does not provide an optimal solution where the com-
putation solely relies on the constant parameter of the gains in the feedback loop without
having direct knowledge of the process. Consequently, it may encounter difficulties when
handling a complex system with constraints or long time delay. To overcome this limitation,
PID also has undergone various kind of developments. For handling physical limitations
without saturation and oscillation in the response, an anti-wind-up with a proper tuning
is frequently utilised (Astrom & Hagglund, 2001). For controlling a process with long time
delay, the PID can be implemented with an active dead-time compensator known as Smith
predictor (Astrom et al., 1994). These methods can be considered as a traditional modifi-

cation of PID to improve its reliability to handle those processes.

The advancement of modern computation also has triggered numerous development
of PID in many areas. For instance, several works had proposed a hybridisation between
PID concept with other advanced strategies such as fuzzy logic, neural network or MPC to
name a few. For example, Xu et al. (2005) proposed to use GPC to optimally tune the PID
parameters offline and obtained a similar performance as using GPC alone. Diordiev et
al. (2003) developed a hybrid PID-Fuzzy for a simple DC/DC converter where the original
PID concept was used as a based controller, and fuzzy was utilised to provide the desired

gain. This controller managed to provide better response in handling a highly non-linear
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process compared to the conventional PID. In order to increase the adaptability of this
controller, Yongquan et al. (2003) utilised a neural network to train the PID-Fuzzy gain
using back-propagation-algorithm. From all these listed works, it is clear that the concept
of PID can be extensively explored with other methods to increase its reliability, especially

when dealing with highly non-linear processes.

Nevertheless, there are also some drawbacks that should be perceived when using
PID controller. The proposed constraint handling approach of PID via anti-wind-up is still
posterior where a user will ignore all the limits during the designing process and only consider
it at the implementation stage (Garcia et al., 1989). Consequently, it is quite difficult to
generalise this ad hoc strategy to other applications. Besides, most of the output or state
constraints are not considered in PID where it can only be avoided through a proper tuning
(Valencia-Palomo & Rossiter, 2011). Evidently, the hybrid PID concept can provide a better
performance compared the conventional one, yet the complexity in implementation, tuning

and designing process also need to be weighed by a user.

3.3 PREDICTIVE FUNCTIONAL CONTROL

From the brief review of MPC and PID in the previous two sections, it is clear that
cach of these controllers has their speciality. MPC is suitable for a complex system while
PID is useful for a simple process. Nevertheless, a user also should consider another poten-
tial alternative to PID which is the Predictive Functional Control (PFC). This controller
can be considered as one of the simplest forms of MPC, which uses a similar concept except
that its tracks the target trajectory at specific points instead of finding the optimal solution
via quadratic cost functions. This simplification makes it attractive to the industrial prac-
titioner to implement it in a small scale application that has limited resources. Since PFC
can be naturally embedded in a standard PLC, the implementation can be extensive, easily
accessible and cheap. Richalet (2007) pointed out that in early industrial work, technical
staff become confident to use PFC as an alternative to PID when given a strong promo-
tion and practical support in a systematic training programme. Richalet et al. (1995) also
reported several early implementations of PFC in the metallurgical industry such as contin-

uous casting, rolling mills and roll eccentricity. Besides, numerous successful applications
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of PFC in other fields can be found in these references (Richalet, 2007; Hashizume, 2015;
Richalet & O’Donovan, 2009; Pedersen et al., 2017; Skrjanc, 2007).

PFC also inherits some of the key features of MPC such as the handling of constraints
and delay control problems. Indeed, these properties elevates the key selling points of PFC
as it is quite difficult to obtain these futures with the default PID regulator. Besides, the
tuning process of PFC is very simple and straightforward, where the use of CLTR as the
tuning parameter (as discussed in Section 2.1.1) provides valuable information to a user
(Hashizume, 2015). In addition, PFC also has a notable performance in tracking ramp
and parabolic set points, which is beneficial especially when implemented in the aerospace
applications (Richalet & O’Donovan, 2009). The simplicity in its coding and implementation
also make it possible to extend its usage to non-linear control (Yang et al., 2006). Similar to
MPC, the PFC concept also is quite flexible and can take any type of internal model, target
trajectory, prediction structure. This flexibility makes it easy to combine the concept with

other techniques to further improve its utility.

3.3.1 Recent Developments

The recent developments of PFC are mostly focused on improving its performance
for a specific application. Similar to the review of MPC and PID, the traditional PFC
concept was often combined with other advanced approaches to obtain the advantages
from both methods. For instances, in heat exchanger control problem, Skrjanc & Matko
(2000) implemented PFC with Fuzzy logic to manage a highly non-linear behaviour of the
process. An almost similar concept is adopted by Yang et al. (2005) in the fossil power plant
application, where PFC was employed with customised Elman neural network to improve
the control behaviour of steam temperature. In order to handle a highly uncertain batch
reactor, a cascade PFC structure with an adaptive internal model was utilised by Yiming

& Bin (2012) to increase the controller robustness.

There are also several works that were looking into the combination between PID with
PFC concept. In a marine engine application, R. Wang et al. (2018) used a PID controller to

track the engine speed where the gains are tuned by PFC based on a first-order plus dead
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time (FOPDT) reference model. This controller managed to provide a better transient
behaviour, steady-state performance, adaptation and robustness compared to classical PID
regulator. A similar concept was adopted by J. Zhang (2017) in the control of chamber

pressure in a coke furnace where a similar conclusion was obtained.

Munoz et al. (2018) presented the first application of PFC in autonomous underwater
vehicles where they compared its performance with other controllers based on fuzzy and
gain scheduling. It was shown that PFC provides better performance in both high and in-
termediate level implementations with the smoothest behaviour and minimum oscillation in
the presence of sensor noise. Besides, PFC provided a safer control law where the limits of
actuators were considered and easily programmed into Guanay’s embedded systems. Ped-
ersen et al. (2017) compared the performance of three control methods namely a traditional
gain scheduled PI-based controller, PFC and PFC with a neural network on a laboratory
set-up for handling the superheat in a refrigeration system. It was found out that the per-
formance of these controllers are almost similar and can only be compared in term of their

tuning parameters and computational load, where PFC provided the best package.

Guo et al. (2017) proposed an augmented PFC in an autopilot missile application. A
novel performance index that depends on the reference trajectory, output prediction, and the
set-point was designed to improve the closed-loop dynamics. The simulation showed that the
proposed controller managed to produce better response while satisfying the implied input
constraints in the presence of an abrupt disturbance. This work is an excellent example
to highlight the ability of PFC in tracking different types of set-points such as ramps and
parabola. Other than that, R. Zhang & Jin (2018) extended the concept of PFC to a
non-linear control for handling oxygen content regulation in a coke furnace application by
utilising a hybrid model based on a linear iterative design for catering the non-linearity.
The implementation of this concept was straightforward and can provide better response

compared to the conventional one.
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3.3.2 Limitations

From the discussion in section 3.3.1, it is apparent that PFC has undergone various
kind of developments and can provide many attractive benefits with such a simple approach
that are worth considering as an alternative controller to the classical PID. Nevertheless, it
is also observed that the current research works in PFC are mostly focussing towards the
practical improvement in a specific application by adopting a more advanced approach rather
than improving the underlying control law itself. Hence, this thesis is solely interested in
proposing a new development within this area so that a user may get some insight into how
to effectively used the PFC controller before extending its concept to a more sophisticated

design.

The main problem with the PFC concept can be related to its simplicity. The math-
ematical foundations of PFC are not systematic and rigorous compared to other MPC
approaches (Valencia-Palomo & Rossiter, 2011). For instance, the performance or stability
analysis is primarily a posteriori and very difficult to prove except for the specific case with
a first order process as reported by J. A. Rossiter (2017). Hence, this scenario provides an
opportunity for the academic community to propose a more rigorous yet intuitive concept
of PFC that can be easily embedded in a simple PLC processor while retaining its simplic-
ity of formulation. Based on a comprehensive PFC analysis presented by J. A. Rossiter &
Haber (2015), three crucial issues should be considered to improve its underlying control
law namely the tuning efficacy, challenging dynamic applications and robustness to uncer-
tain cases. The next three sections will review these issues together with the default and

recently developed methods to overcome it.

3.4 TUNING EFFICACY AND CONSTRAINT HANDLING OF PFC

In general, PFC can be tuned to get better accuracy, robustness and transient dynamics
(Richalet & O’Donovan, 2009). Accuracy of the controller defines its ability to provide the
desired set-point without offset error in the presence of uncertainties. This tuning criterion
can be more difficult to achieve if the desired set-point is not constant such as tracking

ramps or parabola. Moreover, it also has a link with the second tuning criteria which is
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robustness that describes the deterioration of performance in the presence of uncertainties.
Conversely, the transient dynamics represents how fast or slow the system will converge to
the set-point or rejecting the disturbance. Since the scope of this research is only focused on
tracking a constant set-point, only the dynamics and robustness become the main interest.
These requirements have a direct relationship with the choice of coincidence horizon n, and

desired closed-loop pole A.

As discussed before, the core objective of PFC is to drive the closed-loop performance
to behave like a pre-specified first order system, which is the target trajectory (2.2) (Richalet
& O’Donovan, 2009). Theoretically, this concept is valid if the selected coincidence horizon
ny closely represents the overall system response (J. A. Rossiter & Haber, 2015). However,
it is often impossible to achieve this condition with a non-first order process considering its
closed-loop response can not exactly approximate the first-order target trajectory. In order

to overcome this issue, a systematic tuning procedure is required.

3.4.1 Tuning Procedure

An ideal tuning is to select the desired closed-loop pole A similar to the open-loop
characteristic, yet this is not entirely practical since most of the applications desire to
modify its convergent speed. For a first-order system, it has been proven mathematically
that the link between the desired pole and the actual closed-loop is weak and only effective
if the coincidence horizon n, = 1 (Richalet & O’Donovan, 2009; J. A. Rossiter & Haber,
2015; J. A. Rossiter, 2017). Choosing n, > 1 will deviate the closed loop dynamics further
from the target trajectory. However, this selection is not applicable with a higher order
model, where larger coincidence horizons are usually needed to retain the robustness for
compensating a lag in its step response and avoiding any over aggressive input activity or
instability. Earlier works by Khadir & Ringwood (2008) analysed the use of a reduced first
order model to represent a higher order system. Although, n, = 1 can be used with this
approach, yet the response is quite poor compared to the use of a full-scale model with a
well tuned n,. Thus, a proper section of n, is necessary to retain the efficacy of A as the
tuning parameter as it also can affect the robustness and computed input activity (Richalet

& O’Donovan, 2011).
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For a higher order process, several tuning rules have been proposed in the literature.
According to the PFC tuning manual given by Richalet & O’Donovan (2009), the coincidence
horizon should be selected based on the inflexion point of the step response where the
gradient is maximum. This point varies with the section of A and may work only for
a specific dynamical system. For a non-minimum phase process, the range of inflexion
point itself may not be enough to represent the overall dynamics. For this case, Khadir &
Ringwood (2008) suggested that n, should be selected beyond the inflexion point to avoid
any instabilities. However, a user should also note that if n, is too large, it can reduce the
effectiveness of A as a tuning parameter and becoming closer to the open-loop dynamics of
a system. J. A. Rossiter & Haber (2015) recommended a safe range for selecting n,, which
is in between 40% to 80% rise of the step input response to the steady state. Although
there are no formal or generic proofs for this conjecture, yet it still helps a user to get a
general idea on selecting a suitable n, to get better closed-loop performance while retaining

the stability.

There is also an alternative structure of PFC that can provide better tuning guide-line
as proposed by J. Rossiter et al. (2016). In their work, a different concept of PFC from the
conventional one known as Pole-Placement PFC (PP-PFC) was developed where a higher
order process including non-minimum-phase dynamics can be effectively tuned with n, = 1.
The central concept is to decompose a higher order model into a group of individual first
order models that operate in parallel. Then, a separate PFC control law is deployed for each
of these submodels. By utilising the concept of linearity, the algorithm combines partial
contributions of each individual inputs sum to unity for achieving the desired dynamics.
This modification eliminates the previous trial and error tuning procedure and provides more
intuitive design while retaining the simplicity of coding and implementation. Nevertheless,
the proposed controller may require a complex number when dealing with an under-damped
process. This requirement will limit its application to a simple dynamical system as most

of the available processor in the industry can only cope with real numbers.

With regards to all the listed tuning procedures or alternative approaches, there still
exists an inconsistency issue between the open-loop predictions used for decision mak-

ing and the actual closed-loop behaviour that results, especially when using smaller n,
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(J. A. Rossiter & Haber, 2015). Conversely, a large n, may provide better prediction con-
sistency, but the effectiveness of A as the tuning parameter becomes less significant. The
main reason behind this is because of the constant future input assumption of PFC where
there is insufficient d.o.f to ensure prediction consistency when anything other than open-
loop behaviour is wanted (J. A. Rossiter, 2016). Some may argue that PFC is never design
to compute an input based on long term predictions as eventually it will still converge to
the steady state due to the receding horizon principle. Nevertheless, this inconsistency issue
may affect the constraint handling performance of PFC especially when dealing with out-
put and state constraints where long-term predictions are often required for checking and

enforcing the limits.

3.4.2 Constraint handling

As discussed in Section 2.1.5, the traditional PFC handles input and rate constraints
using a simple saturation approach, which is feasible enough to implement only on the first
sample due to the constant future input assumption. As for the output and state constraints,
a user employs multiple PFCs with the different tuning of A and n, that work in parallel
either to track the set point or satisfy the constraints using a logical supervisor (Richalet
& O’Donovan, 2009; Abu et al., 1991). Although, there are many pieces of evidence that
this approach can work in real applications, yet it has a potential weakness when all the
constraints are activated. Since there is no interaction among the regulators, a conflict
between constraints may occur. In order to avoid this issue, a user needs to tune the second
regulator using a slower pole as pointed out in Remark 2.4. This preference, however, may

lead to very conservative constrained solutions.

With the advancement in computation, it is now possible to formulate a more system-
atic constraint handling strategy using a single set of linear inequalities that can surpass the
limitation of the conventional approach (J. A. Rossiter & Richalet, 2002). This concept is a
common practice in a standard MPC framework and can be formed similarly as ONEDOF
(J. A. Rossiter et al., 2001) and reference governor approaches (Gilbert & Tan, 1991). It
also worth to highlight that the implementation of this concept with MPC may require

more computation even with relatively small horizons since all the constraints need to be
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satisfied simultaneously at each iteration (Tatjewski, 2007; L. Wang, 2009). Conversely,
the implementation with PFC is expected to consume less computation due to its simpler

control law, albeit providing suboptimal constrained solutions.

Nevertheless, this systematic constraint strategy requires consistent open-loop pre-
diction to avoid long-term violation effectively. With the current ill-posed decision, the
implementation of this strategy will give less accurate and more conservative constrained
solution especially when the validation horizon of the constraint is bigger than the coinci-
dence horizon n, (J. A. Rossiter, 2018; L. Wang, 2009; Mayne et al., 2000; J. A. Rossiter &
Richalet, 2002). In reality, the underlying PFC constant input assumption which restricts
the prediction to a single d.o.f is indeed counter-productive (J. A. Rossiter, 2016). Instead,
it is more desirable to utilise a dynamic that evolves over many more samples (J. A. Rossiter
et al., 2010) to further improve the tuning and constraint performance of PFC while logically

retaining the simplicity of formulation.

3.5 HANDLING CHALLENGING DYNAMICAL PROCESSES

For systems with close to monotonic step responses such as first order or over-damped
second order dynamics, a typical PFC can perform well with a proper selection of tuning
parameters A and n, (J. A. Rossiter & Haber, 2015). Conversely, the default PFC framework
may not be adequate for handling less desirable dynamics such as oscillatory, unstable,
under-damped, and significant non-minimum phase systems or any combination of these
dynamics. Again, the main reason is that the constant future input dynamics of PFC
does not have enough d.o.f where any non-zero input will provide divergent or oscillatory
predictions. (J. A. Rossiter & Haber, 2015; J. A. Rossiter, 2016, 2002; Rawlings & Muske,
1993). In order to have a good prediction, these undesirable open-loop poles need to be
altered before implementing the standard control law. If not, it would lead to instability
or infeasibility when dealing with constraints (Kouvaritakis et al., 1996). There are several
approaches available in the literature to fix this issue such as decomposition model, cascade
structure and pole cancellation. This section will review the advantages and disadvantages

of these methods.
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3.5.1 Decomposition Model

Decomposing a model is the process where the original model representing a system
is modified to provide a stable open-loop response. Specifically, it is decomposed into two
stable models by compromising the approach between RM and IM structure (Richalet &
O’Donovan, 2009). The first model takes the control input, while the second model is
fed by the process output which can take a form as compensated input. The outputs
summation from both models will lead to stable prediction. This structure gives a simple
solution to handle integrative or unstable processes where a simple PID controller is not
effective. For instance, in an aerospace application, this model manages to improve the
control performance of rocket pitch-angle, which has a fast and under-damped dynamics,

while reducing its vibrations in the transient period (Skrjanc, 2007).

Although these methods often work for handling integrating, oscillating and unstable
process, yet a more nuanced implementation is required. Specifically, the tuning process is
less simple and intuitive, which undermines the critical selling point of PFC where there
is a specific rule that needs to be satisfied for ensuring stability (Richalet & O’Donovan,
2009). For some cases such as when dealing with a process that has both unstable and
non-minimum phase dynamics, the decomposed model has a limit to stabilise this system
where the time constant of the numerator must be less than the denominator. Besides, the

identification process of this model can be quite challenging for a less trained user.

3.5.2 Cascade Structure

As discussed in Section 2.2, PFC practitioners also deploy a form of cascade PFC design
or known as a Transparent control to handle integrating process (Richalet & O’Donovan,
2009). It has become a normal practice to form a two-stage design where the inner design
is utilised to stabilise the open-loop dynamics by manually selecting a suitable stabilising
gain using a Proportional only controller, while the external loop deployed the conventional
PFC to control and achieve the dynamic performance. The same method also can be
extended to handle an oscillatory process and some of unstable dynamics systems. Indeed,

the underlying concept is well received and has a similarity with the concept of dual-mode
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MPC (J. A. Rossiter, 2018; J. A. Rossiter et al., 1998). It is shown in the coking furnace
application that the cascade structure also can improve the process sensitivity to a set-point

change and disturbance, by carefully tuned both of the regulators to alleviate the offset term

(R. Zhang et al., 2009).

Nevertheless, the main drawback of this structure is that it can only accept a pro-
portional controller to keep the constraint implementation purely algebraic which is not
practical with a full PID regulator. Consequently, a user may face difficulty when handling
a more complex unstable process that cannot be stabilised by merely adding the propor-
tional gain in the control loop. It is also noted that the cascade structure needs a back
calculation procedure when implementing hard constraints to transfer the information from
the inner loop to the outer loop. Such an approach can be considered as a standard prac-
tice and has a similarity with the concept of anti-windup as in the classical PID controller.
However, if the input limits are only checked at the first sample, a recursive infeasibility
may arise as the condition is now changed compared to the nominal PFC that based on the
constant input assumption. Hence, the implementation of PFC becomes more complicated
as one needs to carefully tune the stabilising gain to pre-stabilise the system while ensuring
recursive feasibility when satisfying constraints. Besides, there is no systematic procedure
and clear explanations in the literature on how to effectively pre-stabilise the inner loop and
to handle constraints effectively within a nested loop where most of the implementations

are ad hoc with little if any rigour.

3.5.3 Pole Cancellation

Pole Cancellation PFC can be considered as a more systematic approach compared to
the two previous methods, which has clear design choices and simple coding to manage the
open-loop challenging dynamics processes. The core concept is to shape or constrain the
future input predictions of a model so that the output predictions will converge to a steady
state value (J. A. Rossiter et al., 1997). By utilising a linear combination principle, the
sequence of predicted input is selected to cancel out the undesirable poles. This parametri-
sation approach is originally derived from the conventional MPC framework for unstable

dynamics (J. A. Rossiter, 2018). It can act as an excellent alternative to the previous
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decomposition model and eliminates the tuning difficulties associated with that structure
(J. A. Rossiter, 2002). In addition, this input parametrisation concept can also increase the
efficacy of the closed-loop time constant as PFC tuning parameter when implemented with
a CARIMA model (J. A. Rossiter, 2016). This method also enables easier constraints imple-
mentation with guaranteed recursive feasibility solutions which is generally not applicable

to other conventional approaches.

Theoretically, this concept offers a more general control law to handle a different kind
of challenging dynamics system compared to the previous two conventional approaches.
However, there arc also several main drawbacks that should be noted by a user. For ex-
ample, the control input change from the shaping procedure can be very precise and quite
aggressive which may not be practical to implement in a real applications (J. A. Rossiter,
2016). Also, the use of the realigned CARIMA model can lead to a more sensitive response
to measurement noise especially when dealing with a higher order system where more mea-
surements are needed to compute the control law. Hence, a user may require a suitable low

pass filter to recover the controller robustness against the measurement noise.

3.6 ROBUSTNESS OF PFC

Robustness is a measure of how well a system can maintain its performance and stability
in the presence of uncertainties that can be in the form of measurement noise, disturbance or
plant model mismatch. If uncertainty is not handled carefully, it may cause unstable and/or
infeasible control solution (Bemporad & Morari, 1999; Mayne et al., 2000). As discussed
before, it is quite difficult for PFC to adopt a robust formal design as in MPC (Mayne
et al., 2005) due to its simplicity requirement (Khadir & Ringwood, 2008). Besides, the
main purpose of PFC is to provide a sub-optimal control solution with a moderate enough
performance and robustness specifically for a simple system. Hence, the logical alternative
is to derive its control law using a method that can provide a robust design (Zabet & Haber,
2017; J. A. Rossiter, 2018). Besides, there is a direct link between the robustness of PFC

control law with its prediction model and structure.
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3.6.1 Types of Model

In any predictive control, the accuracy of prediction is fundamental to the efficacy of
the control design. Also, different prediction models will give different sensitivity to uncer-
tainties. This relationship can affect the consequent behaviour of the controllers whether it
can retain the steady-state behaviour and stability of the controlled performance. Similar

to MPC, PFC also can take several types of models to make a future prediction such as:

1. Finite Impulse Response (FIR): This structure is constructed based on the im-
pulse response of a plant. The traditional MPC known as Dynamic matrix control
uses this model and has been widely received in the industry. The design and imple-
mentation are simple and easy to understand (Qin & Badgwell, 1997) due to its clear
description of process time delay, response time, and gain of the system (L. Wang,
2009). The other advantage is that it has lower variance prediction errors without the
need for robust design (J. A. Rossiter, 2018). This structure also is easily extended for
adaptation (Han et al., 2003). The main drawback is that it requires large numbers of

coefficients, which require extra space and memory in the program (L. Wang, 2009).

2. Transfer function: It is constructed based on the input and output relationship of
the process. There are many types of transfer functions, which depends on the added
term. Common PFC practice is to use a first-order transfer function (Richalet &
O’Donovan, 2009). For higher order model, it can be represented by several sub models
constructed in parallel using a partial fraction. In MPC, the well-known example of
prediction using a transfer function is in GPC. This structure has good compatibility
with the popular black-box identification technique (Ljung, 1998). However, one may
face a problem when extending it to multi-variable case (L. Wang, 2009; J. A. Rossiter,
2018). Since most of PFC application is focus on SISO process, this model can be

considered as a suitable option.

3. State space: This structure is very systematic and can be used to represent multi-
variable systems. It is constructed based on a set of input, output and state variables.

State space model is more compact and has fewer parameters compared to the other
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three models. This structure makes the designing and analysing processes of the
controller become more transparent (L. Wang, 2009; Bemporad & Morari, 1999) since
the previous two models also can be formed into the state-space structure. One of the
limitations using state space model is that, if the state of the plant is not measurable,
an observer or estimator is needed to complete the prediction, where the tuning of an

estimator is not often straightforward and mostly based on trial and error.

Each of the presented model structures has their benefits and limitations when im-
plemented with PFC which is analogous to the previous discussion in MPC. For general
predictive control application, a typical academic prefers to use transfer function and state
space models, while most of the industrial practitioners are favoured toward the FIR. A
comprehensive sensitivity analysis for these types of models has been made and presented
by (J. A. Rossiter, 2018). It can be concluded that the use of state-space or transfer function
without an estimator (realigned models) in predictive control can lead to poor sensitivity
concerning measurement noise. This weakness is the main reason why the industrial users
have favoured a FIR model. However, the FIR structure often needs a high number of coef-
ficients to represent the plant (L. Wang, 2009). In general, PFC can adopt any model, but
in order to keep the presentation transparent, the author used mainly a transfer function
as it is more convenient to link the system poles to the target pole for further modifications
or analysis. Besides, it is suitable enough to represent SISO applications without the need

for an observer.

3.6.2 Prediction Structure

Prediction structure has a direct impact on the loop sensitivity. There are two typical
types of prediction structure which are the Realigned Model (RM) and Independent Model
(IM) as discussed before in Remark 2.1 in Section 2.1.2. The RM structure is more sensitive
to measurement noise compared to IM structure, yet better in rejecting the disturbance.
Hence, a user needs to select a suitable prediction structure to get the best performance.

There are several possible ways to handle and improve robustness in PFC such as:
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1. Independent model: The common practice in the industry is to employ the indepen-
dent model approach that is claimed to have a low sensitivity to noise and disturbance.
The concept is very straightforward as discussed in Section 2.1.2. This method can
take any models without the need of observer or filter. The concept is equivalent to
a more efficient implementation of popular step response models. However, the usage
is only limited to a stable prediction where for the process with unstable poles need

to be pre-stabilised first before implementing the structure.

2. T-filter (J. A. Rossiter, 2018): This approach is often used with an RM structure
of the transfer function that is known as CARIMA model as in GPC to improves the
noise sensitivity. As far as the author is concerned, no work has tried to implement this
filter in PFC framework. T-filter acts as a low-pass filter by reducing the transference
of high-frequency noise. The benefits that a user can gain is that it can improve the
sensitivity to the parameter or signal uncertainty without any impact on the nominal
tracking. This method can also handle the unstable process. Although, this approach
does not have a systematic design where it is difficult to tune for a specified effect,
rather than trial and error, yet there is a possibility to tune it systematically using

Youla parametrisation (J. A. Rossiter, 2018).

3. Kalman filter: Constructed based on an optimal framework to improve prediction
accuracy (Grewal, 2011). It can be used to estimate both state and disturbance in
a system. However, this filter assumes rather than estimates the knowledge of signal
characteristics. It also does not cater for all the sensitivity functions rather than gives

optimal state estimation for a given signal uncertainty (J. A. Rossiter, 2018).

Other than the listed methods, there are also several ad hoc approaches that can be
used to improve PFC robustness. For example, Satoh et al. (2012) designed a cascade-like
structure where the inner loop consists of a disturbance observer and outer the loop employs
the nominal PFC. This structure managed to provide better robustness against higher order
disturbance and such as those with ramp and parabolic dynamics. Zabet & Haber (2017)
proposed to use a feed-forward structure with a Smith predictor. With this structure, PFC

can be tuned systematically for robustness. Azira et al. (2018) showed that the use of state
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space with the reduced observer ( where only a partial of the states are measured) provide
less steady state error compared to the full estimated observer in a pneumatic positioning
system application. However, there is no systematic analysis was done where the conclusion
was purely made based on observation. Li et al. (2017) designed an improved PFC prediction
structure by embedding disturbance information into the system model instead of using a
feed-forward or observer approach. The simulation and experimental results of permanent
magnet synchronous motor showed that the proposed method is more robust than PFC
with the conventional observer. Nevertheless, a user should note that the identification of

disturbance is not a simple task, and it can be different for other applications.

Although there are many possible ways to improve the robustness of PFC either via
implementing different types of a prediction model, structure or estimator, there is a lack
of formal comparison between these approaches. Besides, it is good for a user to have a
solid understanding of how these structures can affect the loop sensitivity before using it.
Since the sensitivity is a process dependent, an off-line analysis is desirable to identify the
trade-off between sensitivity and also to measure the robust performance of the controller.
However, most of the existing sensitivity analysis in the literature (J. A. Rossiter, 2018) are
mainly focused on the MPC algorithm . Whereas for PFC, different results may occur since

the control law is more straightforward.

3.7 SUMMARY OF LITERATURE REVIEW

This chapter has provided a brief review of the MPC, PID and PFC control framework.
From the survey, it is found out that although MPC is a good controller and can provide
many attractive benefits, yet its application is more suitable for complex applications. As
for a simple application, PFC seems more suitable to be implemented when compared to
both MPC and traditional PID controllers. The review also pointed out that PFC has
been widely used in many industrial applications and undergone several developments to
improve its control performance further. Nevertheless, there are still some issues that are
worth highlighting concerning with its default control law such as the efficacy of tuning,
prediction inconsistency, handling constraints, challenging dynamics applications and also

robustness to uncertainty. Hence, the primary objective for this research to fill in these gaps
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by developing several approaches to tackle the issues.

Firstly, it is noted that there is a potential development that can be done with the
PP-PFC. The ability to tune the coincidence horizon with n, = 1 for a higher order process
may provide various benefits such as simpler tuning rule and implementation. However, the
current processor may require to implement a complex number when controlling a system
with complex poles. Since most of the simple processors in the industry are only capable
of processing a real number, this work will propose an alternative way in Chapter 4 to
avoid the use of complex numbers in the calculation process while retaining its computation

simplicity.

Secondly, it is also pointed out that the prediction inconsistency issue may affect the
constraint handling performance of PFC. The main reason behind this is because of the ar-
tificial constraint of PFC in using the constant future input assumption that has insufficient
d.of. In Chapter 5, a novel PFC algorithm based on Laguerre polynomial will be proposed
to enlarge the d.o.f with a single parametrisation for improving the prediction consistency.
Besides, a more systematic constraint handling method as commonly used in MPC will be
embedded inside this algorithm for replacing the traditional multi-regulator approach to

provide more accurate and less conservative constrained solutions.

For handling a challenging dynamics process that contains either integrating, oscillating
or unstable poles, the concept of PC-PFC will be developed to include the effect of the tail
in Chapter 6. Consequently, instead of cancelling those undesired poles, the control law
will shape it according to a user specification. This control law is expected to give a
less aggressive input activity while retaining the valuable property of PC-PFC that is the

guaranteed of recursive feasibility constrained solutions.

As for the robustness issue, there is a clear need for off-line sensitivity analysis for PFC
to provide some insight on what sort of sensitivity trade-off that one should expect when
using different types of prediction structures. Besides, the same analysis can be carried
out to asses the robustness of any proposed control law of PFC. This development will be
covered in Chapter 7 along with another proposal of using the T-filter with RM structure
in the PFC framework.
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Finally, it is also should be highlighted that the scope of this research is limited to a
constant set point target. In addition, the delay control problem will be ignored for clarity
the presentation since implementing PFC for this process is straightforward (J. A. Rossiter
& Haber, 2015; Richalet & O’Donovan, 2009). Also, the off-line sensitivity analysis will only
cover a transfer function model since only this model is used throughout the work. Other
issues such as tracking ramp or parabolic set points or the different selection of prediction

model will be denoted as future work.



Chapter 4

POLE PLACEMENT PFC

This chapter provides a summary of the ISA Transaction paper which is attached in
Appendix A (Zabet et al., 2017) that develops a novel method for Pole Placement PFC
(PP-PFC) specifically for handling a system with complex poles by using real numbers
algebra. Section 4.1 starts a brief review on a general concept of PP-PFC that was originally
developed by J. Rossiter et al. (2016) to handle over-damped systems together with a short
discussion regarding its advantages. Section 4.2 introduces the extension work of this paper
where the default concept of PP-PFC is formulated for handling systems with complex
poles. Section 4.3 presents the original contributions of this work where new algorithms
of PP-PFC are developed to avoid the use of complex numbers. Section 4.4 demonstrates
some of the simulation results from the paper and Section compares the performance of

PP-PFC with the traditional pole-placement technique (Astrom & Murray, 2010).

4.1 THE CONCEPT OF PP-PFC

It is noted form the previous discussion that a user should be more cautious in tuning
the conventional PFC for a higher order system where the main parameter A, is often
ineffective and not a good representation of the closed-loop dynamic that results when using
ny > 1 (J. A. Rossiter & Haber, 2015). One way to avoid this issue is via implementing the
PP-PFC where the main motivation is to exploit the efficacy of PFC for first-order systems
in order to propose an equally simple tuning process that will work on higher-order systems.
Also, this control law can provide a better link between the closed-loop performance and
the target trajectory compared to the nominal PFC. Since the prediction model structure of

PP-PFC is a bit different from the one that is given in Section 2.1.2, a basic formulation for

44
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a first order system using nominal PFC will be presented first before deriving the PP-PFC

concept.

4.1.1 Tuning PFC for First Order System

PFC has been particularly effective in industry partially because many real systems
have dynamics which are close to first-order and it is easy to show that for a first-order
system, the PFC tuning parameters work perfectly, as long as one uses a coincidence horizon
of one (J. A. Rossiter & Haber, 2015). In other words, the target pole A becomes the closed-

loop pole exactly in the nominal case y, = yp = y.

e For a first-order model with n, = 1, the control law is given as follows:

Ye+1 = bug — ayy, 11—\ A
+ ooy = )Tk:(aJr )Yk

(4.1)
Urr1 = (1 = N)7i + Ay,

e Rearranging and substituting the corresponding control action back into the system

dynamics gives:

1—XNre+(a+ A
yk+1=b( Jri b( Jui —ayr = (1 = N)rg + Ay (4.2)

From which it is clear that the closed-loop behavior is represented by a first-order

model with unity gain (no steady-state offset) and the desired pole A.

4.1.2 Pole Placement PFC Control Law

In order to maintain simple coding, PFC overcomes the complexity of prediction alge-
bra by using partial fractions to express the n‘"-order model G,,(z) as a sum of first-order

models (Richalet & O’Donovan, 2009; Khadir & Ringwood, 2008) and hence:

Ymk = Gmuka

n n
biz_l
" = Ymk = ZGiuk = Z T o1 Yk (4.3)
Gn=" G, P iy L
i=1
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Figure 4.1: Parallel model format alongside the actual process Gp.

The effective structure of the model is illustrated in Figure 4.1 where G, represents the
real (unknown) process and G; denote the partial fraction expansion of the assumed model
G- In practice this means that the independent model deployed in PFC code comprises
a number of first-order independent models running in parallel; clearly the coding and

computation requirement for each is trivial.

The advantage of this parallel formation is that n, steps ahead predictions can be
defined explicitly and without the need for costly or cumbersome prediction algebra. To be
precise, the predictions for the model can be expressed as the sum of the predictions of a

number of first-order models with component outputs y,(,?, that is:

n

Ymktn, = ; bi#“k + (—ai)"yyf,?,k (4.4)

The key concept of PP-PFC is to treat each sub-model G; as if it had an independent
input and then deploy a nominal PFC algorithm to compute what that input should be in
order to achieve some specified dynamic, say pole p;. The next core concept is to exploit
linearity and linear combinations. The algorithm takes a linear combination of all the
proposed inputs to determine the desired input to the real system. By utilizing a sensible
constraint (that the partial contributions of each individual inputs sum to unity), it is easy

to show that the desired dynamic is then achieved in the nominal case d = yp & — Ym r = 0.
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Algorithm 4.1. (PP-PFC): The PP-PFC algorithm for achieving a target closed-loop

pole comprises the following steps.

1. Define targets for each individual sub-model G; based on the model steady-state gains

of output yfﬁ? (4.3) using the formulae:

O N b;
= ——Tk; - 4.5
Tk 2?21 % k Yi 1+a, ( ‘))

2. Identify proposed inputs for each sub-model (i =1,...,n) using the control law (4.1):

o Wopl) — @t o oy
b, ; k _Z@_ i
7 =11

(4.6)

3. Form a linear combination of these inputs to determine the process input as:

Up = Zﬁzuk ; Zﬁz =1 (47)

It is important that a sensible choice is made for the values of §; as, while any choice
satisfying (4.7) will give the desired closed-loop pole, the choice made also has an impact
on the other closed-loop poles. Indeed, the remaining flexibility in the values of 3; can be
used to assign the other closed-loop poles at values p;,i = 2,...,n using a partial fraction
by the following definitions (J. Rossiter et al., 2016):

[1iso(a; + pi)
H?:l;i;éj(aj —a;)’

Remark 4.1. It has been proven in the paper that the control law of (4.6), (4.7) ensures that

Bj =

Vi=1,2,..,n (4.8)

the target pole p1 becomes a closed-loop pole in the nominal case (where d = 0). Besides,
using the choice of B; as in (4.8) results in all the poles p;,i = 2, ...,n becoming closed-loop
poles. The stability of PP-PFC also is guaranteed in the nominal case as the positions of

the poles are all known and have to be selected to be inside the unit circle.

Hence, the overall implied control law can be formed as:

(@)

ﬁzr = (a' +p1)y m
u = Zﬁz V= p1) bk + Zﬁzzb—k (4.9)
i=1 i=1 v
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4.2 EXTENSION OF PP-PFC TO SYSTEMS WITH COMPLEX POLES

For simplicity the presentation will assume just a single pair of complex poles; this is
reasonable as PFC would rarely be used on very high-order models given that low-order
models usually capture the core dynamics. Moreover, notwithstanding this, the results
will automatically carry over anyway. Consider a model G,,(z) which has roots at —ay,
—ag,..., —a, with ay, ag a complex conjugate pair. A partial fraction expansion of G,,(z)

into first-order terms is:

n(z) S
() = L 41
Gm(2) (14 a1z7H(1 + agz71)...(1 + apz™1) ; 1+a;z71 (4.10)

It is noted that the residues b1, by will be complex conjugates.

A quick review of the previous section will reveal that none of the algebra required
numbers to be purely real and the algebra and pole computations should equally apply
for complex numbers. The obvious consequence is that a system with complex coefficients
should still be amenable to the PP-PFC control law of (4.7). In fact, the only requirement
that needs careful checking is that the input u(k) to be implemented to the real process
must be real. Applying a control law which utilises B1u™ (k) + Bou(® (k) as defined in (4.7)
will result in a real input as long as 2 = ] (means complex conjugate). The overall implied

control law associated to a pair of complex poles is given as:
u(k) = B1u® (k) + BiulV (k)

) | Birmm)] g G+ )y ()

(ai + p1)yw " (k)
= ]_ —
(I—p1) ™ b 1 by

by

+ 57
(4.11)
It should also be remarked that the condition of )" 3; = 1 implies that S = (7.

Remark 4.2. Several proofs had been provided in the paper that the desired closed-loop poles
of pi are achieved for any choices of desired poles and any open-loop poles, irrespective of
whether they are complex or real. In all cases, the proposed control law of (4.7) produces a
real input. However, it is emphasised that the underlying signals implied in the independent
model of Figure 4.1 will be complex numbers and as this model is retained in the control
law tmplementation, it assumes that complex number algebra is supported by the operating

system.
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4.3 DEVELOPMENT OF PP-PFC USING REAL NUMBERS ALGE-
BRA

Notably, the previous concept of PP-PFC needs to exploit complex number algebra
and linear combinations in order to deliver guarantees of stability and performance for
handling underdamped systems, and this has some possible negative consequences. Firstly,
the computational effort is slightly greater, although that could be considered trivial in
practice. Secondly however, the requirement for complex number algebra in itself could be
a problem as many low level process control units (where PFC would be applied alongside
competitor approaches such as PID) do not support complex number algebra. In view of
these observations, practical implementation is easier by avoiding complex number algebra
and hence a modified formulation of the PP-PFC algorithm is developed which utilises just

real numbers while retaining the key attributes of simple algebra, coding and tuning.

Two alternative implementations are developed in this section: i) handling the real and
imaginary components explicitly and ii) a formulation of the algorithm avoiding complex
numbers altogether. Readers should note that the case of target poles p; being complex is
also included as this gives the designer extra flexibility which can be useful, and this is a

novel contribution to the PFC field.

4.3.1 Formulation with Explicit Real and Imaginary components

Based on a complex numbers representation in Cartesian coordinates, the real and
imaginary parts of IM prediction can be handled with real number algebra where each com-
ponent of the complex numbers (real and imaginary part) is calculated separately. Consider

x = Re{z} + jIm{z} and y = Re{y} + jIm{y}, then:

zy = | Re{y} Re{z} — Im{y} Im{x}] +j [Re{y} Im{z} + Im{y} Re{z} (4.12)

Vv
real part imaginary part
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The update equation of independent model G, = y,(fl)(k) =bjulk—1) — aiy%)(k — 1) can
be handled using the following two separate computations.
Re{yy) (k)} = Re{—a;} Re{y}) (k — 1)} — Im{—a;} Im{y}) (k — 1)} + Re{b;}u(k — 1)
Im{y) (k)} = Re{—a;} Im{y) (k — 1)} + Im{—a;} Re{yyy) (k — 1)} + Im{b;}u(k — 1)
(4.13)

Since u(k) need to be real while all the complex number appears to be in the conjugates,
all the imaginary terms must cancel out and only the real part of the term Biu(i)(k) needs
to be computed as:

Bivi
b; 2?21 Y

—Im {(ai + Pl)%} Im{y() (k)}

2

Re{Biu'” (k)} = Re{(l ) }r(kz) +Re {( + pl>%} Re{yf) (k)}

{2

(4.14)

Remark 4.3. The paper (Zabet et al., 2017) also pointed out that compared to PP-PFC
using complex algebra, the increase in computational demand using real number algebra is

inconsequential although the coding is slightly more involved.

4.3.2 Formulation with Real Numbers

The main concept deployed next is to exploit the structure in the Independent Model
of Figure 4.1 in order to reduce the control law to an even simpler final form. Ironically,
there is a partial move away from the partial fraction expansion in first-order terms to
the final implementation so that the implied partial fractions are all real, although the full

decomposition structure is still implicit in the control law design.

Considers the parts of (4.11, 4.14) linked to complex conjugate pairs of poles in G(z).
The one-step-ahead prediction models for the summed outputs of G1, G2 and the output of
G112 = G1 + G2 must match, assuming the inputs into each are the same. This means the

complex states of G, G2 can be inferred from the real states of G o:

bzt bz~ ! Biz7! + Byz?
GLQ =G +Gy = ! 1 + 2 1= : —12 -2
L+taz=t " 1+az L+ (a1 +az)z7t +ara2z™2 (4 15)

yiD (k + 1) = Bru(k) + Bou(k — 1) — (a1 + a2)y b2 (k) — (ara2)y(b? (k — 1)
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(1) _ _ (1)
yay (k + 1) = bru(k) — arysy (k)

=Sy Pk + 1) =y (k+ D +yR (k+1)  (416)
y$2 (k4 1) = bou(k) — asy(? (k)

In consequence, ignoring the dependence on the term u(k) which is yet to be determined,
one can write that:

—aryV (k) — asy@ (k) = Boul(k — 1) — (a1 + a2)yt? (k) — (ara2)y’b? (k — 1) (4.17)
W (k) + y$2 (k) =y (k)
1 (2

Therefore, given they are conjugates, the values ym’, ym’ can be inferred from these simul-

taneous equations (noting that in both the imaginary parts are zero by definition).

5 ~Re{a} Tm{ai}| |Re{y (k)}
1 0 | [Im{yy) (k)}

_[Bzu<k—1>—2Re{a1}y“ (k) — arafylt )k 11:

v (k) (4.18)
0 Im{ay}
Re{y(l)(k)} _ 1 Re{ai} Bou(k —1) — 2Re{a1}y,(ﬁ’2)( k) — alalyg 2)(k 1)
fm{yw'(k)} |  20mden} v (k)

In addition, the real value of the proposed weighted input signal Re{g;u;(k)+Bi+1wi+1(k)}
for the two sub-models having complex conjugated poles a; and a;+1 comprises numerous

components (Ko, K1 i, K2;) which can be computed off-line and stored as:

Bivi n 57:+1%:+1] } r(k)

> - 1%[ bi bit+1
Ko.i (4.19)
#2Re{ (04 o) Re(uf2 (00} ~21m { (0s+ o)} m(uf2 0}

Re{Biu' (k) + Bip1u™V (k)} = Re {

7

Ky Ka;

Thus, the proposed common input signal Re{g;u® (k) + Bi1u D (k)} for the two
sub-models having complex conjugate poles can be simplified to a second-order control law
which is based solely on real number algebra and using the states of the second-order model

Gl i+1 by substitution of (4.18) into (4.19) as:

Re{ B (k) + Birau ™D (k) = K&V r(k) + KDy 00D (1) (120
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where:
K(()i,i-i—l) ~ Ko K{z’,i-i—l) _ KyiIm{ai} — Ko, Re{ai};
2Tm{a;}
. (4.21)
gl Ky a;a; gl _ K3:Bs;
2 2Im{a;}’ 3 2Im{a;}

Remark 4.4. Only the component of the control law corresponding to pairs of complex poles
needs to use the formulation of (4.20). The contribution of submodels with real poles can
use the simpler formulation. A comparison of computation loading between the alternative

approaches is given in Table 4.1.

Table 4.1: Computational loading for different realizations of PP-PFC for second order
system.

PP-PFC with PP-PFC with | PP-PFC with
complex algebra calculating real algebra

real/imag. parts

13 operations 11 operations 7 operations

Remark 4.5. There is typo error in the original paper (Zabet et al., 2017) for Table
4.1. In order to compute a control input specifically for a second order system Biu(i)(k) +
Bir1ul(k), the PP-PFC with complex algebra (4.11) requires 13 operations (summation
and multiplication), while PP-PFC with real/imaginary part (4.14) needs 11 operations and
PP-PFC with real number algebra (4.20) only uses 7 operations.

4.4 RESULTS

This section provides some of the numerical examples from the paper (Zabet et al.,
2017) that compare the simulation times of the control (as an indicator to the simplicity of
the control action calculation) using classical PP-PFC, PP-PFC with real and imaginary
parts calculation, and the new formulated PP-PFC algorithm, for various choices of p.

Consider an arbitrary third order under-damped process G1 with poles at —0.9, —0.9+0.45:

~ —0.66271 4+ 0.08272 4+ 0.6
1 —2.72271 42626272 — 0.892423

Gy (4.22)
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Figure 4.2 demonstrates the response of PP-PFC with and without constraints for

various choices of p. An output disturbance is added around the 70th sample to demonstrate

the disturbance compensating ability of the approach. These results highlight that:

1. The proposed PP-PFC gives effective control while retaining an intuitive link to the

resulting closed-loop behavior with the tuning parameter p. Moreover, a user can

select the target pole as being complex, which is not applicable for conventional PFC.
When the controller is tuned with p;23 = 0.8, the response converges within 50

samples. Conversely, with p; = 0.8; p2 = p5 = 0.8 4+ 50.2, a faster response is obtained

where it settle around 38 samples with maximum overshoot of 0.1.

2. Table 4.2 provides the simulation times comparison for different formulation of PP-

PFC. it is shown that the new formulated PP-PFC provides the fastest control action
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Table 4.2: Relative simulation times of the different realizations of PP-PFC for process G

PP-PFC with PP-PFC with | PP-PFC with
) complex algebra calculating real algebra
real/imag. parts
p1,23 = 0.8 100% 45% 42%
p1 =038 100% 41% 37%
p2.3 = 0.8 & 50.2

calculations compared to the one with explicit calculation of real and imaginary part,

and the PP-PFC using complex algebra.

3. It is also clear that PP-PFC manages to satisfy the implied input limit T = 0.8 and

rate limit Au = 0.1 effectively without detriment to the closed-loop performance.

It is also shown in Zabet et al. (2017) that PP-PFC based on real numbers algebra
managed to control real laboratory hardware that is the Quanser servo with a flexible link
(see Figure 4.3) with the different selection of poles according to the desired settling time.
The same performance as in the previous simulation is obtained. Figure 4.4 shows the
controller managed to provide a smooth tracking to the desired target and while, retaining
the intuitive link between the target dynamic p and the closed-loop convergence speed. A

detail quantify performance for the responses are provided in Table 4.3.

Figure 4.3: The experimental plant.
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Figure 4.4: PP-PFC performance of the under-damped Quanser servo with flexible joint.

Table 4.3: Quantify PP-PFC performance for Quanser servo with flexible joint

p | Rise time | Settling time | Maximum overshoot
0.7 0.4s 0.85s 0.16
0.8 0.57s 1.1s 0.12

Remark 4.6. The concept of PP-PFC has a similarity as the traditional pole-placement

method (Astrom € Murray, 2010). Both methods will produce a same response if the poles

are placed in the same position. Nevertheless, the PP-PFC will provide the advantage in

predictions and constraints implementation as it is well noted that it is quite challenging to

satisfy any limits with the traditional pole-placement method. As discussed before in Chapter

3, a special tools such as anti-wind up is needed (Astré’m & Hagglund, 2001) which often

requires an ad-hoc tuning procedure. Future work will look at a more systematic comparison

between these two methods since designing the traditional pole-placement is non-simple and

beyond the remit of this work.
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4.5 SUMMARY

In summary, this work has proposed a new PFC approach to handle systems with
under-damped open-loop dynamics where in many cases, a conventional PFC approach is
difficult to tune. Critically, the overall coding complexity and requirements are similar
to the code of the conventional PFC, but a core advantage is that the tuning options
are now more straightforward than with a conventional algorithm. In fact, it is shown
additionally that one is now able to select the target closed-loop pole to be complex and
this is often advantageous compared to the restriction to real poles with conventional PFC.
In addition, the new formulation of the PP-PFC algorithm (for systems with under-damped
open-loop dynamics) reduces the calculation efforts in comparison to the conventional PP-
PFC formulation because of dealing with real numbers only. A further advantage is that
PP-PFC can be used in PLC or decentralized control systems which usually do not support

complex algebra.

Nevertheless, there are also several limitations and drawbacks that should be noted
when using the current concept of PP-PFC. Firstly, the controller can only work with
a stable and converging system since the IM structure is not able to handle a diverging
process. Secondly, it also may face difficulty in satisfying long-range constraints which
are often required in the industry since its underlying framework is mainly designed for a
single horizon n, = 1. Consequently for an under-damped process, PP-PFC may produce
an oscillatory prediction when satisfying output limits if the selected validation horizon is
greater than one. Due to these circumstances, a user may desire a more generalised approach
that can handle different types of challenging dynamics system while satisfying the implied

constraints effectively. This alternative method will be discussed later in Chapter 6.



Chapter 5

LAGUERRE BASED PFC

This chapter presents a summary of the author’s contributions from four different pa-
pers (Abdullah & Rossiter, 2016; Abdullah et al., 2017; Abdullah & Rossiter, 2019b, 2018a)
which are related to the development of PFC using Laguerre based prediction to achieve the
first research objective. Section 5.1 starts with some illustrations, which demonstrate the
prediction inconsistency of PFC and its impact on the tuning efficacy. In order to overcome
these issues, Section 5.2 introduces the concept of Laguerre based PFC (LPFC) and con-
tinues with the development of a more systematic constraint handling approach in Section
5.3. The next Section 5.4 provides a formal comparison of the closed-loop performance and
efficacy of constraints handling between the traditional PFC and LPFC control law with
different parameterisations of Laguerre polynomial. Section 5.5 extends the use of LPFC to

handle integrating processes and Section 5.6 provides the overall summary for this chapter.
5.1 TUNING WEAKNESS OF PFC

Before introducing the concept of LPFC, it is important first to understand the current
tuning weaknesses of traditional PFC where its simplification using a constant future input
assumption may lead to ill-posed decision making. Figure 5.1 illustrates the comparison
between the open-loop behaviour and the closed-loop response together with the expected
target trajectory A = 0.7 for arbitrary first-order Ga, second-order G3 and third order

non-minimum phase G4 systems with varying selection of n,,.

0.25z71
=108 (5-1)
0.04z~1
Gs : (5.2)

T 116211406422

o7
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~ —0.0569z"" 4 0.051422 + 0.05022 7
1 —1.98422"14+1.33012—2 — 0.30122—3

Gy (5.3)

From the observation, a smaller n, provides an output response (y, red solid line)
closer to the target trajectory (r black circle) compared to the output of larger n, ( y, blue
solid line) for processes Ga, G3,G4. However, the consistency between an open-loop output
prediction at the first sample (yp|1 red dotted line) and the actual behaviour ( y, red solid
line) is poor. Conversely, larger n, provides better prediction consistency but the efficacy of
A as a tuning parameter becomes less significant, where the actual response ( y, blue solid
line) converges far away from the target trajectory (r black circle). Indeed, a user may desire
to use a smaller n,, for the best closed-loop performance, yet the prediction consistency issue
also should be considered, since an ill-posed solution may affect the constrained performance
of PFC if the validation horizon n; (used for checking any future violation) is larger than
the coincidence horizon n,. Thus, a user needs to select the coincidence horizon n,, carefully

to get the best trade-off between the two outcomes (J. A. Rossiter & Haber, 2015).

In order to improve this trade-off, the future input dynamics may require extra d.o.f to
ensure consistency between open-loop prediction and closed-loop behaviour while retaining
the effect of A\. This work proposes a simple modification to the conventional control law by
utilising Laguerre polynomials to replace the future input assumption of PFC to overcome

this issue.

5.2 LAGUERRE BASED PFC

The Laguerre function is a powerful tool to represent d.o.f and usually is used in the
system identification field (Skultéty et al., 2013; Sarah et al., 2014; Wahlberg, 1991). A
higher order process can be modelled with a few low order Laguerre networks to simplify
its coding and implementation. In MPC, this orthonormal function is used to enhance
the horizon effect, either in the continuous (L. Wang, 2001) or discrete (L. Wang, 2004)
time domain. In essence, the effect of a large input horizon can be obtained with a small
number of parameters/d.o.f.. This simplification reduces the implied computational burden
dramatically while improving the controller performance when longer prediction horizons

are needed (Abdullah & Idres, 2014b; L. Wang, 2004). Moreover, the Laguerre function can
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Figure 5.1: Comparison between the open-loop prediction at a first sample with the implied

closed-loop behaviour of PFC for the process Ga, 3 and G4 with varying n,,.



60 LAGUERRE BASED PFC

capture the desired system dynamics to some extent in that its convergence is linked to its
pole which is a design parameter. This feature makes it an attractive option to parametrise
d.o.f for prediction, while improving the feasibility and performance of predictive controllers

(J. A. Rossiter et al., 2010; J. A. Rossiter & Wang, 2008; Khan & Rossiter, 2011).

Nevertheless, this work adopts a different approach, where the main idea is to replace
the PFC constant input prediction with an alternative dynamics assumption based on a
Laguerre polynomial. This modification is expected to give a well-posed solution while

enhancing the effectiveness of A as the tuning parameter.

5.2.1 Formulation of LPFC

The core concept of LPFC is to embed two dynamics within the predicted input:

1. The expected steady-state input.

2. The d.o.f which converges to the steady state value with dynamics according to the

selected Laguerre pole.

Although Laguerre polynomials of high order have been used in MPC (Abdullah & Idres,
2014b; L. Wang, 2009), this work employs a first-order Laguerre polynomial for shaping
the input prediction to ensure a smooth convergence while retaining the simplicity of the
PFC concept. The first order Laguerre function, with modified scaling for simplicity, can

be expressed in vector form as:

1

_ — 2,2
LE) = = lhaz +az 4 (5.4)
where q; is the Laguerre pole. Define L = [1, qy, a,?, S ,a?y_l]T. Now we are in a position
to define the input prediction to be deployed in PFC.
Theorem 5.1. A future input parameterised as
U
u(z) = —2 o —7 (5.5)

11 1—qz7!
will give output predictions which settle at the desired steady-state, where 1 represents a

degree of freedom and uss denotes the expected steady state input to remove offset.
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Proof. The signal defined in (5.5) has the property that:

lim up = ugs (5.6)
k—o0

This is obvious as the definition of L(z) shows that the components converge to zero asymp-

totically. By definition wugg is:

lim up =uss = lim yp =R (5.7)
k—o0 k—o00

where R is the set target. As the Laguerre polynomial evolves over the horizon, it will

converge to the steady state input with respect to its pole q;. O

Noting that (5.5) is equivalent to U = Lny + ugs, the output prediction is modified by
substituting this into the model prediction of (2.8):

Yp ktnylk = H(uss + L"7k) + Plf_k + erg,k + dp, (5.8)

Algorithm 5.1. Define the output prediction n,-steps ahead using (5.8). The LPFC law is

defined by substituting this prediction into target trajectory (2.2) and solving for the d.o.f.

.
(1 - /\ny)R + /\nyyp,k - (hnyuss + Pnytf_k + Qnyyﬁvk + dk)
H,,L

Due to the receding horizon principle (L. Wang, 2009) and the definition of L(z), the current

Nk = (5.9)

input is defined as:

U = Uss + Nk (5.10)
Remark 5.1. The input steady state value ugs can be estimated as:
Uss = G (2) (R — dy) (5.11)
The inclusion of error term dy in (5.11) is to ensure an unbiased estimation.

Remark 5.2. For a first-order system, a; should be equal to \ to ensure consistent dynam-
ics with the target trajectory. Although for higher-order systems, tuning a; < A can provide
faster convergence (Abdullah € Rossiter, 2016), yet to keep the implementation simple, the
decay rate of Laguerre is set to a; = X which is good enough for most of the stable and

straightforward dynamics processes.
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5.2.2 Results

The proposed control law is implemented in three different processes, which are Go, G
and G4. Figure 5.2 shows that LPFC provides better prediction consistency between the
open-loop prediction at the first sample (y,; blue dotted line) and closed loop response (,
blue solid line) compared to PFC (y,|; red dotted line and y, red solid line). Besides, LPFC
also improves the overall closed-loop performance, where its actual output converges closer
to the desired set point than PFC (except for the first-order process, where the performance

is equivalent).

Another interesting observation is that when implementing LPFC with the non-first
order processes, Figure 5.3 demonstrates that using smaller a; provides a faster output
response, yet with a more aggressive input demand. Conversely, larger a; produces slower
convergence to the set-point, but with a less aggressive input activity. Nevertheless, these
changes still provide a well-posed decision making, where the future input trajectory will

eventually converge to its steady-state value.

In essence, LPFC can improve the prediction consistency and the overall closed-loop
response of the traditional PFC while retaining the simplicity of tuning and implementa-
tion. The UKACC 2018 conference paper (Abdullah & Rossiter, 2016), which is attached
in Appendix B provides a more detailed discussion and analysis for this work. Acknowledg-
ing the advantages of LPFC, the next section will demonstrate its benefit when handling

constraints.
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Figure 5.2: The response of open-loop prediction at a first sample and the implied closed-

loop behaviour of the process Go, G3 and G4 for nominal PFC and LPFC.
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Responses of G3 with ny, =5 and A = 0.7
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Figure 5.3: Tuning LPFC with different Laguerre pole a; for the process G3 and Gy.

5.3 SYSTEMATIC CONSTRAINED HANDLING WITH LPFC

As discussed in the previous two chapters, the traditional PFC utilises a multiple reg-
ulators approach to handle the soft constraints while employing a simple clipping approach
for the hard constraints. This suboptimal framework often works in real processes, but the
performance may be very conservative since the second regulator needs to use a slower A
to avoid conflict with the hard constraints in the primary regulator. Besides, the constant
input assumption also may detect an early violation due to the prediction mismatch espe-
cially when the validation horizon n; > n,. Although this method uses a real prediction,
the second regulator is not aware of the other controller behaviour. Hence, it all comes

down to the experience or understanding of a user to tune this controller effectively.
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Since PFC utilises the model prediction, it is possible to adopt a similar constraint
handling concept as in the modern MPC, which provides a more systematic tuning and
implementation compared to the multiple-regulators approach. Nevertheless, this strategy
also needs a good prediction consistency or well-posed decision to compute an effective
constrained solution for satisfying the limits within a long validation horizon. Noting that
the previous LPFC concept manages to improve the prediction consistency issue, the next
paper (Abdullah et al., 2017) which is attached in Appendix C explores its capability to

improve the constraints handling of PFC. There are two main contributions, which are:

1. The substitution of the typical PFC multiple-regulators scheme (Richalet & O’Donovan,
2009; Abu et al., 1991) with a vector approach as in MPC, which is more cost effective,

systematic and easy to tune.

2. The improvement in constrained performance with LPFC, where it provides more

precise and less conservative solutions compared to the traditional approach.

5.3.1 Constraint Handling via Vector Approach for PFC

Given that PFC deploys only simple coding to enable use on low-level processors, the
constraint handling is defined to be simple and thus avoids the optimisers common in more
mainstream algorithms (Abu et al., 1991; Gilbert & Tan, 1991). Assume constraints, at

every sample, on input and states as follows:
Au<Au, <Au; w<u <w y<y <y (5.12)
where Auy = up — ug—1 is the input increment or rate.

For input and rate constraints, this strategy uses a similar saturation approach as in
Section 2.1.5, that is, if the proposed wuy violates (5.12), then move to the nearest value
which does not. The modernising part will be on the implementation of output and state
constraints by adopting a standard core concept as in the MPC literature the so-called

ONEDOF and reference governer (J. A. Rossiter et al., 2001).
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1. For a suitable validation horizon n;, compute the entire set of future predictions
Yp htilk = Hl% + Piy_k + Qiy@,k +dg, @ = 1,---,n;. Use the compact notation
ypﬁ—i—l =H U + Plf_k; + Qyn(l,k + dj, to capture the output predictions in a single vector
where ypﬂ—l—l = [yp,k+1|k:7 Ypk+2)ks " yp,k+ni|k]T

2. Combine the input, rate and output constraints along with the output predictions

into a single set of linear inequalities of the form:

Cur, < [k (5.13)
R _ _ . -
-1 —u 0
1 Au —Up_
C= ;o f= - o
—1 —Au Up—1
H 7 Pug, + QYmk + di
_—H_ = _—Pl(L_/.; - Qyn;,k — dk._

where fi depends on past data in Uk, Yok and on the limits. The horizon for the

output predictions and thus the row dimension of H, should be long enough to

3—J>k+1’
capture all core dynamics!

3. The predictions satisfy constraints iff (5.13) is satisfied and thus a conventional MPC
algorithm will ensure this occurs and that is consider inequalities Cu, < fi explic-
itly rather than an alternative constraint representation which may be suboptimal or

approximate.

The proposed PFC constraint handling algorithm is summarised next. This uses a
single simple loop to select the wuy closest to the unconstrained solution of (2.10) which

satisfies (5.13).

Algorithm 5.2. At each sample:

1. Define the unconstrained value for uy from (2.10).

2. Define the vector fi, of (5.13) (it is noted that C' does not change).
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3. Use a simple loop covering all the rows of C' as follows:

(a) Check the ith constraint that is the ith row of Cuy < fi using a; = Cyug, — f ;-

(b) If a; > 0, then set u, = (fr,)/Ci, else leave uy, unchanged.

Remark 5.3. Recursive feasibility is defined as the ability of controller to ensure that given
a current feasible solution, it is possible to guarantee feasibility at the next sample and thus
at all future samples (J. A. Rossiter, 2018). Failure to ensure this condition can allow
infeasibility at some point in the future where the control may become undefined. In other

term, ones needs to ensure that the control input:

Ukg1lk41 = Ukt 1k (5.14)

Theorem 5.2. In the nominal case and for stable open-loop processes, Algorithm 5.2 is
guaranteed to be recursively feasible and moreover converge to a feasible value for uy that is

closest to the unconstrained choice.

Proof. Assume feasibility at initiation and also note that for stable open-loop processes the
predicted outputs are convergent for constant future inputs uy,; = ug, Vi > 0. Consequently,
if one has feasibility at sample k — 1, then the choice u; = ui_1 must be feasible, that is
satisfy (5.13). Hence, as long as uj_1 is a possible choice (which it must be as all constraints
must satisfy Cjug_1 < fi,;), recursive feasibility is assured and a feasible solution will lie
between uj_; and the unconstrained wuy. Each constraint Cjui, < fi; will either lower or
upper bound wuy; if ux < ug_1 then only the lower bounds can be active and if up > ugk_1
only the upper bounds. Hence, an active constraint Cjuy < fi; will bring u;, closer to ug_q
if violated by the unconstrained wug but otherwise will have no affect. In consequence, the
final uy will be only as close to u as it needs to be to satisfy all the active constraints and

thus, is also as close to the original unconstrained wuy as possible. O

Remark 5.4. Because this approach (Algorithm 5.2) deploys a very simple for-loop, coding
s simple and very fast and certainly far more simple than traditional MPC approaches which
often use a quadratic program albeit potentially suboptimal but equally, more systematic and

probably quicker than the ad-hoc approaches common with PID.
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5.3.2 Constraint Handling via Vector Approach for LPFC

The procedure for constraint handling for LPFC is analogous to that discussed in the
previous subsection. The core conceptual difference is that the d.o.f is now 7. In principle,
the input constraints need to be checked along the entire prediction horizon. However,
given the maximum magnitude increments occur at the first sample, only Awuy needs to be
checked, and similarly, the maximum/minimum of wuj; has a simple dependence on 7y, s

so again only one value needs to be checked.

As in Algorithm 5.2, the aim is to choose the d.o.f. as close as possible to their
unconstrained values, and subject to (5.12). Inclusion of Laguerre based input dynamics

U = Ln 4 ugs changes the vector of linear inequality into:

an < fk (515)
- ! - - u - i Uss |
-1 U Uss
c=| " | s= Bul Uss = Uk
-1 _M —Ugs + Ug—1
__HL_ | _g i __Huss - PEL_k - Qy"(ﬁ,k — dk_

Then an approach similar to Algorithm 5.2 will solve for 7.

Corollary 5.1. In the absence of uncertainty, the inequalities implied in (5.15) are always
feasible, assuming feasibility at the previous sample, no changes in the target and a long

enough horizon.

Proof. The structure of the input prediction based on (5.5) is such that, as long as uss does
not change from one sample to the next, then one can always choose 7 so that the predicted
input trajectory is unchanged; this is obvious from the simple exponential structure. Con-
sequently, if there exists an 7 to satisfy constraints at the previous sample, there must exist

a valid value at the current sample. O

Remark 5.5. Infeasibility can arise due to too fast or too large changes in the target (or

disturbances) as this causes large changes in the value of uss. However, Laguerre PFC helps
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enormously in this case because the exponential structure embedded into the input prediction
automatically slows down any over aggressive input responses and thus significantly increases
the likelihood of feasibility being retained. In the worst case, set point changes need to be

moderated (as in reference governer approaches (Gilbert & Tan, 1991)).

5.3.3 Results

Two numerical examples are considered as case studies for output and state constraints,
respectively. The first example compares the performance of LPFC and PFC using a sys-
tematic constraints approach (Algorithm 5.2) for process Ga. Figure 5.4 demonstrates in the
presence of 0.2 input disturbance from 20s to 25s, the constrained solution of LPFC (blue
line) satisfies the output limit 7 = 1.05 more precisely and less conservatively compared to

PFC (red line) when using the validation horizon n; = 10.

045, —y, (LPFC) ]
0.2} —u (PFC) ] 02} °r
—u (LPFC) - -y =105
0 . . . . . . . ole . . : 1
0 5 10 15 20 25 30 35 40 0 10 20 30 40 50
Samples Samples

Figure 5.4: Constrained performance of PFC and LPFC for process G2 with A = 0.7 and
ny = 1.

The second example considers two processes that run in parallel where the main process
G's,1 and state process G o receive a similar manipulated input u from the regulator. Here,
the performance of LPFC using Algorithm 5.2 will be compared with the conventional

multiple-regulator scheme (CPFC) as discussed in Section 2.1.5.

00164271 o 0.089142~1 — 0.0867422
T 1009835217 92T 1191821 +0.92:-2

For safety and economic reasons, the state is constrained at T = 127 with a limited input

Gs1 (5.16)

@ = 160, and speed Au = 4. For a fair comparison, LPFC and the first regulator of
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state constrained PFC (CPFC) will both use n, = 1, validation horizon (i = 68) and pole
(A = 0.975) to track the set point (R = 100). Since CPFC treats the maximum state as
a second target (2.14), the coincidence horizon (n, = 30) and desired pole (A; = 0.984) of

the second constraining regulator are selected carefully to satisfy the internal constraints.

Figure 5.5 shows that LPFC outperforms CPFC while satisfying the state constraints.
Although the state behaviours (dotted line) of both z(CPFC) and x(LPFC) are within
the limits, the output settling time of y(LPFC') 200 samples is almost twice as fast as
y(CPFC) (300+ samples) and closer to the target trajectory R.

100} /\ B [T ettt
100t <
5 80 —u (CPFQC) T 3 i —r
o =
£ —u (LPFC) 3 i f: —y (CPFC)
50 [ —y (LPFC) |
60T . 1. —--T = 127
u, (CPFC) aclive  u, (CPFC)adtve  H/ z (CPFQ)
------ z (LPFC)
40 . . 0 . .
0 200 400 600 0 200 400 600
Samples Samples

Figure 5.5: Performance of constrained CPFC and LPFC for process Gf.

Conversely, CPFC requires a careful tuning process and a higher operation cost as
two regulators are used simultaneously. Besides, it also needs a large pole to slow down
the control response for avoiding any conflict with the internal constraints. Figure 5.6
demonstrates the effect of poor tuning decision with a smaller pole A, = 0.963, where

CPFC (blue line) violates the maximum input @ = 160.

In summary, the proposed LPFC control law with the systematic constraints handling
approach eliminates the careful tuning process of multiple-regulators since the constraint is
now explicitly included in the control computation. Moreover, the algebra for computing
the vectors C, f as in (5.15) is the same as that required for computing the predictions and
thus is unavoidable where constraint handling is desired and specifically, needs no input
or tuning choices from the designer. This work has not investigated the implications of

infeasibility due to large disturbances or setpoint changes any further than insisting on



5.4 DIFFERENT PARAMETERISATIONS OF LPFC 71

180 .
O | BREE L LT T T T T
140 1 1001

= —u(A,= 0.984) 5

_ Q

2120 —u(X;= 0.963) ; 5 ; o= 0.984)

£ —--T= 160 o ¥ A= 0.963)
100 S0T ot

80 A= 0.984)
A= 0.963)
60 . : 0 . .
0 200 400 600 400 600

Samples

Figure 5.6: CPFC responses with different poles A\, = 0.984 and A\, = 0.963 for process G5.

sensible limits to changes in uss as that is a more challenging scenario and requires a priori
trade-off decisions such as which constraints or requirements to sacrifice during transients.
The details formulation and discussion of this work are available in 2017 IFAC conference

paper (Abdullah et al., 2017), which is attached in Appendix C.

5.4 DIFFERENT PARAMETERISATIONS OF LPFC

As shown in the previous section, LPFC offers some benefits in providing better pre-
diction consistency, tuning effect and constrained performance compared to the traditional
PFC approach. Nevertheless, there is a tendency that the constraint handling of LPFC may
face an infeasibility issue especially when there is a significant change in the uss. Hence,
the IJC 2018 journal paper (Abdullah & Rossiter, 2019b) which is attached in Appendix
D explores another possibility to use an alternative parameterisation of LPFC explicitly
using an input increment for avoiding this issue. Besides, this work also presents a more
formal comparison of the closed-loop response and constrained performance between PFC
and LPFC with two different parameterisations: (i) one based on the inputs and (ii) another

based on the input increments. There are two main findings which are worth highlighting;:

1. Mapping Laguerre directly onto the inputs is more preferable than mapping onto the
input increments as this enables faster transients and a better usage of the full input

range.
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2. However, the downside is that it needs to utilise an implied terminal constraint and,
as is well known in the literature, terminal constraints can cause conflicts with other

constraints and thus, at times, need to be managed carefully.

5.4.1 Parameterisation of LPFC Based on Input Increment

The choices of parameterisation via inputs and input increments are not exactly equiv-
alent and thus would lead to different results in general (Abdullah & Rossiter, 2019b).
Noting the definition of first-order Laguerre polynomial in (5.4), an almost equivalent defi-

nition could use the input increments and hence:
. — . — 2, .
Aup = v;  Auppp = avg;  Auppop, = a“vg; -+ (5.17)

in this case the implied input trajectory would be:

e = Up—1+ vk Ui = W1+ (1 a)vks Uppop = upm1+ L+ ar+ai)vg; -+ (5.18)
Next, note the properties of the geometric sequence 1,1 4+ a;,1 4+ a; + alz, -+, It is known
that

o0 1 _ an-i—l +1
_ a’
Z 1 g and Zal Toa (1 —a;")Sa (5.19)
=0 =0
Using this properties, the equivalent sequence of (5.18) can be represented as:
Auy Vg U Uk—1 + Vg
Aug g avy, Up 41k up—1 + (1= a})Savi
Hik | N ik L (5.20)
Aol a%uk Upt2|k up—1 + (1 — a?)Sauk

Algorithm 5.3. LPFC2: An alternative PFC control law using a Laguerre parameterisa-

tion of the input increment trajectory is defined as follows:

1. Define the input trajectory from (5.20).
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2. Define the output prediction ny-steps ahead using (5.8) with (5.20) and hence define

~ . -
(1—-a?)8,
Yp ktnylk = H(uk_l -+ I/k) -+ P% + Qyn;,k + dy, (5.21)
‘ (1—-a?)8,
L i
Lo

3. Substituting outputl predictions (5.21) into (2.2) with a suitable ny, the PFC control

law can be defined as:

(L= A")R+ Xy — (b, uk—1 + P, Uk + Qn, Yok + dy)
HnyLQ

where the implied control input becomes:

(5.22)

VL =

Up = Up—1 + Vg (5.23)

Corollary 5.2. The prediction classes for PFC given in (2.10) and with Laguerre based
on input increments (5.17) suffer from a critical weakness. In both cases the asymptotic
value of the predicted output is highly unlikely to be close to the desired target of R. This is
because, the value of ui satisfying the PFC law definition ri4+n = Yp kyn 0 general will be

inconsistent with u, = Elusg].

5.4.2 Constraint Handling Properties for Different Parameterisation of LPFC

The constraint handling procedure for LPFC2 is same with LPFC by using the inequal-
ities vector of (5.15), the only required modifications are to set uss = ugp_1 and L = Lo.

Nevertheless, there are some subtleties which are worth highlighting and link to feasibility.

Lemma 5.1. For the nominal case, recursive feasibility is guaranteed with LPFC2, irre-

spective of the choice of target R.

Proof. Assuming feasibility at sample k£ — 1, then the choice Auy i = Aug i1, Vi >0
will give rise to predictions which satisfy constraints (5.12). The choice vy = a1 will
enable this choice of future inputs and thus a feasible solution exists at the current sample

and, clearly, this statement can be made recursively. O
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Lemma 5.2. For the nominal case, recursive feasibility is not guaranteed with LPFC.

Proof. The potential weakness with input prediction class (5.5) is emphasised in the first
term wuy = ugsk + Mk as this contains a value, specifically u,, which may or may not be
feasible. Moreover, consideration of the implied increments shows that Auy, = g —up—1+
n could be very large if there is a significant change in ugs ) (that is, uss p # ussk—1). To
be more precise, the sequence of proposed inputs from the previous sample can be laid

alongside the proposed sequence at the current sample:

Uss, k—1 + ank—1 Uss, k + Nk

Uss, k—1 + (127719—1 Uss, k + ang—1 594
gk|k—1 - y)k|k - (5.24)

3 2
Ugs,k—1 + A Nk—1 Uss kT A1k

From these it is clear that one can only ensure u

=y ifu = Ugs p—1 1S unchanged.
Sklk—1 Sklk ss,k ss,k—1 g

Without the ability to remain on the same prediction class, recursive feasibility cannot be

assured. O

Theorem 5.3. In order to ensure recursive feasibility while using LPFC, the user must

retain the option to modify uss ), as required.

Proof. 1t is a consequence of Lemma 5.1 whereby the option to choose wugs 1 = ugsr—1

enables the selection of u

Y1 = u K hence garanteeing feasibility. O

The requirement in Theorem 5.3 is analogous to reference governer strategies (Gilbert
& Tan, 1991) and is unsurprising and indeed also a well known issue within mainstream
MPC. That is, large changes in the target can give rise to transient infeasibility where there
is a terminal constraint as implicit with input trajectory (5.5) and this is easiest dealt with
by slowing the change in target (equivalently modifying the implied terminal constraint).
This work will use examples to compare such a strategy with the use of LPFC2 which
is more analogous to GPC (Clarke & Mohtadi, 1989) in not having an implied terminal

constraint and thus does not require this additional check.
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5.4.3 Results

This paper considers several non-first order dynamics where it is known that the con-
ventional PFC is adequate for such systems. The simulation studies will compare the predic-
tion consistency, closed-loop performance and efficacy of constraint handling between PFC,
LPFC (with input parameterisation) and LPFC2 (with input increment parameterisation).
Since the tuning efficacy of LPFC has been discussed as in the previous two sections and
so this section illustrates whether the proposed adoptions of LPFC2 changes any of those
insights or not. This thesis only presents one of the given examples in Abdullah & Rossiter

(2019b) that is process Gg:

. —0.04z71 +0.1272
C1—-14271 4045272

Gs =5 A=07 (5.25)

1. Figure 5.7 shows that LPFC gives the best prediction where its response is the closest
to the target trajectory followed by PFC and LPFC2. This outcome is because the
flexibility in LPFC allows a large initial input to get a fast transient and then a gradual
decay to the desired steady-state. By contrast, PFC tries to manage everything with
the constant input and thus fails. LPFC2 has a different weakness: as the increments
Awuy all have the same sign, the required early increments to satisfy the control law
inevitably lead to an asymptotic input trajectory which grows too large and ironically,
also implies a less aggressive initial input move which could provide relatively slow

transients compared to PFC and LPFC.

7 r 5 .
_ —PFC | —PFC
6f - -LPFC 4}
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Figure 5.7: Input and output prediction of PFC, LPFC ,LPFC2 for process Gg.
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2. For the closed-loop response (see Figure 5.8), none of the algorithms is able to get close
to the desired dynamic/target trajectory when n > 1. However, LPFC is marginally
faster during the intermediate transients than PFC whereas LPFC2 has slow initial

transients but ultimately converges to the steady-state slightly more quickly.

7
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5 3
=R =i
= 3F ‘\ o
2F * N
~ -~
1 TN e e
0 . . . 02 . .
0 5 10 15 20 20 25 30 35
Sampling instants Sampling instant

Figure 5.8: Closed-loop response of PFC, LPFC LPFC2 for process Gg.

3. For constraint handling (refer Figure 5.9), as expected LPFC has by far the best
performance because it exploits the input most effectively. By contrast, because PFC
assumes a constant future input, the input values available become highly restricted to
be close to the steady-state because otherwise, the long-range output predictions would
exceed the upper output limit. LPFC2 has a slow initial transient, again because the
shape of the input trajectory will only meet the upper constraints in the long term.
However, in the medium term LPFC2 can exploit input values beyond uss and thus

eventually converges in a timescale not dissimilar from LPFC.
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Figure 5.9: Constrained performance of of PFC, LPFC ,LPFC2 for process Gg.

In summary, a comparison of the two alternative parameterisations indicates that in
most cases, mapping Laguerre directly onto the inputs is preferable rather than the input
increments, since this provides better prediction consistency and closed-loop performance.
However, if necessary, a user may need to modify the implied terminal constraint which is

similar to the reference governor approach in MPC to avoid recursive infeasibility.

5.5 LPFC FOR AN INTEGRATING PROCESS

Generally, when dealing with a system that has a marginally stable dynamics, the
constant future input assumption of PFC will produce a divergent open-loop prediction
(Richalet & O’Donovan, 2009; J. A. Rossiter & Haber, 2015; J. A. Rossiter, 2016). Conse-
quently, it may lead to poor closed-loop performance, prediction inconsistency, and also a
failure in constraint implementation. To deal with this types of plant, PFC practitioners of-
ten employ the Transparent Control as discussed before in Chapter 2, Section 2.2 (Richalet
& O’Donovan, 2009). In practice, this structure is implementable within a constrained and
uncertain environments. However, the controller still leads to an ill-posed decision making,
which may impact its closed-loop performance (Abdullah & Rossiter, 2016) and constraints
handling (Abdullah et al., 2017). Besides, the interaction between inner and outer loops also
makes the tuning and constraint implementation less transparent and, within the literature,

there is no clear or systematic guideline to deal with this issue.
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The UKACC 2018 conference paper (Abdullah & Rossiter, 2018a) which is attached
in Appendix E extends the use of LPFC for handling an integrating process. Since the
underlying frame work of LPFC shapes the future input trajectory to converge to its steady
state value, it may stabilise the open-loop prediction without the cascade structure. Besides,
with a proper tuning of Laguerre pole a;, a user may obtain a better closed-loop performance
and prediction consistency to facilitate more reliable constraint management. In fact, the
required modification to deploy this algorithm is straightforward and thus in line with the

simplicity requirement of PFC.

5.5.1 LPFC Control Laws for Integrating Process

For an integrating process, since one of its poles will reside on the origin, the expected
steady state input becomes zero for a constant set point. These dynamics are still compatible
with the LPFC law with the only required modification being to define uss = 0. Hence, the
future input dynamics of (5.5) becomes:

u(z) = Tn,z—l (5.26)
This dynamics will give input predictions that settle exponentially at zero with a speed
linked to Laguerre pole q;. Besides, the value n will affect the implied steady-state outputs

since it has an affine dependence on the integral of the future input.

Algorithm 5.4. For integrating process, a similar algorithm as in (5.9) is used except that
Ugs term is removed.

(1 — /\ny)R + /\nyprC — (Pnyy_k + QTZnyJC -+ dk)
H, L

M = (5.27)

Similarly, to satisfy the implied constraints, this control law uses the similar procedure
as in Algorithm 5.2 to solve for 1. As noted in Remark 5.2, a user also may further improve
the prediction consistency of LPFC with a proper tuning of Laguerre pole a; by selecting a

proper value that it less than A. In brief, LPFC provides several benefits such as:

1. It offers a simple and systematic framework to handle an integrating process.
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2. It stabilises the output prediction without a cascade structure thus the constraint

handling procedure is more straight forward.

3. The Laguerre pole a; can be utilised to control the speed of convergence to improve

the prediction consistency and efficacy of constrained solution.

4. The implied structure of LPFC in conjunction with constraints means that a recursive

feasibility guarantee for nominal case is provided (J. A. Rossiter et al., 2001).

5.5.2 Results

This paper considers a first order servo system G7 (5.28) with an integrator as a plant

to demonstrate the benefit of using LPFC compared to the cascade PFC (TPFC).

0.0095272 4+ 0.00732 !
1—1.452"140.4522

7= (5.28)

The simulation will focus on the tuning process and the concept of well-posed decision in

addition to the efficacy of constraint handling. The results demonstrates that:

1. In the unconstrained case, Figure 5.10 shows that although TPFC with different
choices of gain K manages to track the trajectory set point with almost equivalent
speed, the prediction consistency for both tunings are still poor. A similar scenario is
observed when tuning LPFC with a = X\ where there is still noticeable inconsistency
between predictions (blue dotted line) and the closed-loop behaviour (blue line). How-
ever, tuning the Laguerre pole with a; = 0.56 improves the prediction consistency and

the overall closed-loop performance.

2. Figure 5.11 demonstrates that when implementing the output constraint y = 0.8,
TPFC provides slower convergence (around 10 samples) and a more conservative con-
strained solution due to the prediction inconsistency. However, with a well tuned
LPFC, the solution becomes more accurate (it converges around 5 samples) and less

conservative in satisfying the limit.
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Open-loop and closed-loop performance of TPFC
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Figure 5.10: Open-loop and closed-loop performance of TPFC and LPFC with different
tuning for process Gr.

Nevertheless, there is a potential weakness with LPFC due to the use of an IM structure.
A small offset error may occur if there is a plant-model mismatch or the real plant is not
in fact integrating. In this case, when the input wus, is set to zero, the correction in target
trajectory cannot be made. The other limitation of LPFC is that its first order shaping is
not able to handle an oscillatory or unstable process since its underlying dynamic is not
capable enough to stabilise these undesirable poles. Hence, other alternative structures that

can surpass this limitation are more desirable.
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Figure 5.11: Constrained performance of TPFC and LPFC with bounded output 3 = 0.8.

5.6 SUMMARY

This chapter has presented several contributions that are related to the development

of Laguerre based PFC for improving prediction consistency, tuning efficacy and constraint

handling while extending the usage to handle an integrating process and pointing out its

potential weaknesses. The main highlights of this chapter are:

1. The UKACC 2016 conference paper (Abdullah & Rossiter, 2016) in Appendix B proves

that LPFC can provide better prediction consistency and overall closed-loop perfor-

mance compared to the traditional PFC.

. The TFAC 2017 conference paper (Abdullah et al., 2017) in Appendix C proposes a
more systematic constraint handling procedure using LPFC and demonstrates that it
gives a more accurate and a less conservative constrained solution compared to the

traditional multiple-regulators approach of PFC.

. The IJC 2018 journal paper (Abdullah & Rossiter, 2019b) in Appendix D provides
a performance comparison with several non-first order systems between PFC and
different parameterisations of LPFC with inputs and input increments. The paper
also points out that although LPFC provides the best performance compared to the
other two approaches, a user needs to implement an extra terminal constraint to ensure

recursive feasibility, which is common within the mainstream MPC practice.
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4. The UKACC 2018 conference paper (Abdullah & Rossiter, 2018a) in Appendix E
extends the use of Laguerre based PFC to handle an integrating process where the
proposed controller provides better performance when compared to the traditional

PFC cascade structure.

Nevertheless, these developments are only valid for simple and stable dynamics. Al-
though LPFC is implementable with an integrating system, yet in uncertain cases such
as in the presence of noise, disturbance and parameter uncertainty, it may provide poor
closed-loop performance and a potential offset error. Hence, the next chapter will discuss
the development of another alternative method for PFC that can specifically handle more

challenging processes.



Chapter 6

POLE SHAPING PFC

It should be well noted now that the default PFC concept is more challenging to tune for
a plant with an open-loop integrating, oscillatory or unstable prediction. The previous two
techniques LPFC and PP-PFC can only handle one specific type of challenging dynamics
process namely an integrating and oscillating, respectively. Hence, the second objective
of this work is to propose a new systematic approach to PFC that can be generalised to
handle these processes. This section provides a comprehensive summary of the Process
2018 journal paper (Abdullah & Rossiter, 2018d) which is attached in Appendix F, that
develops an alternative PFC structures known as Pole Shaping PFC (PS-PFC). Section 6.1
begins with a brief discussion on the inspired concept of Pole Cancellation PFC developed
by J. A. Rossiter (2016) and Section 6.2 presents the author’s contribution in extending its
concept to develop the PS-PFC. Section 6.3 presents several numerical examples from the

paper and the final Section 6.4 provides the overall summary for this chapter.

6.1 POLE CANCELLATION PFC (PC-PFC)

Pole Cancellation PFC (PC-PFC) is another alternative method for handling differ-
ent types of challenging dynamics systems that was originally used in MPC (J. A. Rossiter,
2018). Since the constant input assumption of typical PFC does not provide enough flexibil-
ity to control those challenging dynamics systems (J. A. Rossiter & Haber, 2015; Rawlings
& Muske, 1993; Mosca & Zhang, 1992), it is crucial to first stabilise the prediction before

implementing the nominal control law (J. Rossiter & Kouvaritakis, 1994). Hence, the first

83
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step is to factorise the poles in the denominator:
Ay(z) = 2 Auz); alz) = a(2)at(2) (6.1)

where a™*(z) contains the undesirable poles. Utilising the Toeplitz/Hankel form (J. A. Rossiter,

2018), the future output predictions can be computed as:

[Co-nllCat]y,  +HaY, = CoAu, + HAu, (6.2)

k+1

Rearranging prediction (6.2) in more compact form produces:

Y

Y., = [Comal M [Cor ] [ChAY, + HyAu, — Ha Y, (6.3)

P

from which the presence of the undesirable modes are transparent through the factor

[Ca+]_1'

Lemma 6.1. Next, the future input sequence Agk is selected at each sample, such that the
following equality is satisfied:
[CyAu, +p]=Cyry (6.4)

where v is a convergent sequence or a polynomial, will ensure that the corresponding output

predictions in (6.3) do not contain the undesirable modes in a™.

Proof. This is self evident by substitution of (6.4) into (6.3) which gives:

Y [Ca—A]_l[Ca+]_1[Ca+]7 = [Ca—A]_LV (65)

—k+1 -
so that only the acceptable modes in a™(z) remain in the predictions, along with any
components in the convergent sequence ~. It is noted that this choice automatically includes

the initial conditions within p and thus updates each sample as required. O

Remark 6.1. Requirement (6.4) can be solved by a small number of simultaneous equations

(J. A. Rossiter, 2018) where the minimal order solution can be represented as:
Au =Pp; vy=Dp (6.6)

for suitable P, Po. The required dimension of non-zero elements in vector Az_z}k corresponds
to at least one more than the number of undesirable modes (n,+ ), while the order of 7y is
usually taken as ny = n, — n,+, where n, is the effective dimension of p (which depends

upon the column dimensions of Hy, Ha).



6.1 POLE CANCELLATION PFC (PC-PFC) 85

To ensure the future manipulated control moves are convergent while adding some flex-
ibility for modifying the output predictions, the input requirement in (6.6) can be enhanced
to:

Au, =Pp+Cp¢ (6.7)
where the vector parameter ¢ denotes the d.o.f. within the predictions.

Theorem 6.1. Using the new shaped input (6.7) ensures that the undesirable modes do not
appear in the output predictions, irrespective of the choice of ¢. The output predictions are

convergent if ¢ is finite dimensional or a convergent infinite dimensional sequence.

Proof. Substitute input prediction (6.7) into output prediction (6.4), the predictions be-

come:
gk—l—l = [Ca*A]_l[Can]_l[CbAgk + P]
= [Ca*A]_l[Can]_l[Ca*’V + CbCa+¢] (68)
= [Co-al 7 [Cho + 1]

The prediction can be represented with an equivalent z-transform:

Z_l 2_2 s z z z
g(z) — [17 ’ av_(z)]h"' Cb¢] — 7( ):_b((z))¢( ) (69)

It is known from Lemma 6.1 that the contribution from v gives a convergent prediction and

thus overall convergence is obvious as long as ¢(z) is convergent (or an FIR). O

Remark 6.2. Noting the definition of p in (6.3), the ny-step ahead output prediction with

prediction class (6.7,6.9) can be put in more common form as:

Yktnylk = Hsn, @ + Loy, Atk + Qs n, Yk (6.10)

where Hsp,, Psp,, and Qsyn, are suitable matrices and the additional subscript ‘s’ is used
to denote shaping and ¢ is taken to be FIR (equivalently a finite dimensional vector). Note
however that typically for PFC ¢ is a scalar. Also, it is easy to show (J. A. Rossiter, 2002)
that choosing ¢ = 0 will automatically give the same input predictions as deployed at the

previous sample which enables consistency of predictions from one sample to the next.

Algorithm 6.1. [PC-PFC] After selecting a suitable coincidence horizon n, and desired
closed-loop pole A\. The d.o.f ¢ is computed by substituting prediction (6.10) of PC-PFC
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into equality (2.2) and thus:

1 n .
Qb: hns (1—)\ y)’{’—|—)\ yyk_Qny,s(y_k—PnyysAiLk (611)

)

then, the current input increment Auy. is determined simply by inserting ¢ into the predicted

input of (6.7).

Remark 6.3. It has been shown in the work of J. A. Rossiter (2016) that PC-PFC can
improve the significance of \ as the tuning parameter when handling unstable and oscillating
processes. Besides, the implied modification also provides a recursive feasibility guarantee
when satisfying the limits. Nevertheless, the manipulated input dynamics is not always
implementable or desirable for some cases, since cancelling the specified poles in just a few

control moves often lead to an over-aggressive input trajectory (J. A. Rossiter, 2016, 2002;

Mosca € Zhang, 1992).

6.2 THE CONCEPT OF POLE SHAPING PFC (PS-PFC)

Noting the benefits and weaknesses of the Pole Cancellation PFC (PC-PFC) as dis-
cussed in Remark 6.3, this work develops an alternative shaping method known as Pole
Shaping PFC (PS-PFC) to improve its reliability. Cancelling the undesired pole directly will
lead to several issues such as sensitivity to uncertainty or worst instability (J. A. Rossiter,
2018). This scenario may happen because of the controller is highly depending on the accu-
racy of the represented model. Hence, rather than cancelling the undesired poles directly,
PS-PFC changes these poles to be inside the unit circle so that it can stabilise the open-
loop prediction while allowing the output modes to evolve over many more samples (thus,
the term ”shaping” is used to name this controller). With this modification, the required

control input will be less aggressive than the previous method.

6.2.1 PS-PFC Control Law

The formulation given in this section is directly linked to the previous PC-PFC control
law. It is known that dead-beat pole cancellation can require aggressive inputs and the

minimal order solutions to (6.4) are in effect dead-beat input predictions (Rawlings & Muske,
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1993; J. A. Rossiter, 2016). Although dead-beat solutions are easy to define and thus have
some advantages in terms of computation and transparency, in practice, a user may desire
a less aggressive shaping that is more implementable in a real system. Alongside this,
the popularity of dual mode approaches in the literature (Scokaert & Rawlings, 1998) is
partially because they allow the implied input predictions to converge to the steady-state
asymptotically rather than in a small finite number of steps. Thus, the proposal here is to
introduce some poles say «(z) in the implied solutions for v(z), ¢(z) used in (6.9) to obtain

a smoother solution of (6.4).

The mainstream MPC community has focussed on optimal control solutions, but given
PFC is intended to be simple and low dimensional, the proposal here is that is more rea-
sonable to investigate the potential of simple default choices for the asymptotic dynamics
a(z) within the input and output predictions. Clearly, this choice can be strongly linked to

the target closed-loop behaviour and/or system knowledge.

Proposal 6.1. By definition, the integrator has a pole on the unit circle, that is factor
(1 — 271), and conversely, cancelling the pole as in (6.4) is equivalent to enforcing a pole
on the origin, that is factor (1 — 0z7'). Hence the choice of pole factor a = (1 — 0.5z71)

represents a simple half-way house trade off between these two choices.

Proposal 6.2. For a process with significant under-damping, the implied o(z) will have only
real poles which are chosen to be close to the real parts of the oscillatory poles. This will
reduce the undesirable oscillation in the output predictions, but not change the convergence

speed, albeit the input may then be somewhat oscillatory.

Proposal 6.3. For open-loop unstable systems, a simple default solution simply inverts the

unstable poles, that is, defining a(z) such that a®™(z;)) =0 = «a(l/z)=0.

Remark 6.4. A reader should also be noted that the concept of PS-PFC is different from
the traditional pole placement technique (Astrom € Murray, 2010) and PP-PFC which was
discussed in Chapter 4. The PS-PFC' concept replaces the undesirable poles by placing
new poles to obtain a stable open-loop prediction rather than getting a desired closed-loop
performance. For this case, the standard PFC requlator will enforce the stabilised open-loop
response to follow the first order target trajectory as discussed before in Chapter 2, Section

2.1.5.
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Lemma 6.2. The dynamics o(z) will be present in the predictions if the following Diophan-

tine equation is used to solve the input/output prediction pairing.

b(2)w(z) + a(2)p(z) = a™(2)5(2); plz)=[1,27% .. ]p (6.12)
e ()
RO MR TG mE)

Proof. First note that (6.12) is equivalent to solving:
[C,CLtw +p] = Cpr CLH4 (6.13)

and moreover eqn.(6.13) follows directly from enforcing (6.4) while assuming A u, = Clw.

Hence, substituting this Au , into (6.3) gives:

Y., =Cal[C ] [Cohu, + )
= [Ca Al M Cat |G C ' W + P (6.14)
= [Ca—A]_l[Ca“‘]_l[Ca“‘C(;Lﬂ = Ca_—lAC(;LV
It is evident therefore that the desired poles are in the predictions for both the input and

output. 0

Remark 6.5. The new requirement (6.13) can be solved similarly to (6.4) where the minimal

order solution for w and % are:
w = Pip; 4= Pp (6.15)

Theorem 6.2. A convergent prediction class which embeds both the desired asymptotic poles

and some degrees of freedom (d.o.f.) can be defined from:
w = Pip + Cy+ ¢; Ay, = [Ca] 7 [Pip + Cpr )] (6.16)

where convergent IIR or FIR ¢ constitutes the d.o.f.

Proof. Based on superposition, the additional component in w, that is C,+@, necessarily
cancels the undesirable poles and gives overall convergent output predictions. So using
(6.14), then:
Yoo = CACH [CoAu, + 1)
=c L Cly+ et OO, Cugl (6.17)

=C 1 CoM v + Cug]
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O

Remark 6.6. By extracting the nZh row and noting the definition of p in (6.3), the n, step

ahead prediction from (6.17) can be rearranged in a more general form as:
Yktnylk = Pny,a® + Po, o DUk + Qn, oYk (6.18)

Jor suitable hy, o, Pn,.ar@n, o and il is noted that as is conventional for PFC, ¢ has just a
single non-zero parameter in order to retain computational simplicity and have just a single

d.o.f. for satisfying the control law (2.2).

Algorithm 6.2. [PS-PFC] After selecting a suitable ny, and \, the d.o.f ¢ is computed by
substituting prediction (6.18) of PS-PFC into equality (2.2) and thus:

1
¢ = (1 - /\ny)r + )‘nyyk,’ - Qny,ag(/_k - Pny,aAgk (619)

Ny,

then, the current input increment Ay is determined simply by inserting ¢ into the predicted

input of (6.16).
6.2.2 Constraint Handling of PS-PFC with Recursive Feasibility

Noting the definition of future input increments in (6.16) and output predictions in

(6.18), the constraints inequalities for (5.12) can be defined as:

LAu < C; ' [Pip + Cor )] < LA
Lu < CaC3 [Pip + Cur¢] + Lug—y < LT (6.20)
LQ < Ha¢ + PaAﬂk + Qay_k < Ly

where C7/ is a lower triangular matrix one ones and L is a vector of ones with appropriate
dimension (typically a horizon long enough to capture the core dynamics in the predictions).
It should be noted that the validation horizon n; for the predictions used in (6.20) will in
general be much longer than the coincidence horizon used in (6.19) as one needs to ensure
that the implied long range predictions satisfy constraints. The inequalities can be combined
for convenience as follows (although this is not necessary for on-line coding where efficient
alternatives may exist):

Co < 1 (6.21)
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OI/AC;10Q+ L[ﬂ—uk_l] —C[/Act;lplp
—CpaCC+ L[~u+up_1] + CraC5 ' Pip
c-ic LAuw—C:1P
C = a at : fk _ «a lAp
-C;C,. —LAu+C;'Pp
H, Ly — PozAﬂk - Qay_k
I —H, | | Lyt PoAur+ QaYr |

Algorithm 6.3. [PS-PFC with constraint handling] At each sample:

1. Define the unconstrained value for ¢ from (6.19).
2. Update the vector £y, of (6.21) (it is noted that C does not change).

3. Use a simple loop covering all the rows of C' as follows:

(a) Check satisfaction of the ith constraint using: el C¢ < fi;.

(b) If eXCo > f.i, then set ¢ = (fr:)/[el C], else leave ¢ unchanged.

Theorem 6.3. In the presence of constraints, Algorithm 6.3 is recursively feasible where
the computed ¢ will not only enforce the input/output predictions to satisfy constraints at
the current sample but also guarantees that one can make the same statement at the next

sample.

Proof. By definition, the choice of ¢ = 0 ensures feasibility in the nominal case because
the input component 151p is the unused part of the input prediction from the previous
sample and this is known to satisfy constraints by assumption. One can ensure feasibility

at start-up by beginning from a sensible state. O

It is worth noting that using the pre-stabilised /shaped predictions is essential for this
recursive feasibility result which is not available for more conventional PFC approaches for
which the implied long range predictions may be divergent. Thus, Theorem 6.3 is an

important contribution of this work.
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Remark 6.7. It is noted that recursive feasibility is an essential property to implies stability
(Scokaert et al., 1999). However, recursive feasibility alone is not sufficient to guarantee
stability; the Lyapunov theorem needs to be respected which is only possible if the quadratic
cost function is used as in MPC. Although Algorithm 6.3 allows recursive feasibility which
is a strong result, ironically the use of PC-PFC or PS-PFC does not not give any a priori
stability and/or performance guarantees in general which is a well understood weakness of
PFC approaches (J. A. Rossiter, 2017) and a consequence of wanting a very simple and

cheap control approach.

6.3 RESULTS

Several numerical examples are presented in (Abdullah & Rossiter, 2018d) to compare

the performance between PS-PFC, PC-PFC and conventional PFC ranging form:

1. Integrating process:

0.1z271 +0.4272

Ge = 6.22
T (1-0821)(1 -2 (6.22)

2. Oscillatory process:

0.85271 — 1.5272 4 0.85272
Go = 6.23
? (1 -0.62"1)(1 —1.6271 4+ 0.8272) (6.23)
3. Unstable process:
2271 —0.26272

Gio = 022 0262 (6.24)

(1=0.92"1)(1— 1.5z 1)

The results shows that:

1. For open-loop behaviour in Figure 6.1, PS-PFC produces the best prediction behaviour
because it ensures convergent predictions with less aggressive input activity than given

by PC-PFC and PFC.

2. For closed-loop performance in Figure 6.2, PS-PFC (using a default choice of «) gives
the best trade-off between the rate of convergence and the aggressiveness of input

activity compared to PFC and PC-PFC.
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3. For constraint handling in Figure 6.3, both PS-PFC and PC-PFC satisfy constraints
while retaining recursive feasibility throughout and converge safely. However, PS-PFC

provides a smoother input transition and better constrained performance.

In essence, the proposed PS-PFC algorithm gives a pragmatic and simple proposal for
deriving input and output prediction pairs which do not require aggressive inputs during
transients compared to the more classical alternative approach of PC-PFC. Besides, using
the proposed parameterisations also allows a simple proof of recursive feasibility so that the
constraint handling can be performed more safely and reliably. Other than these numerical
examples, this paper also has validated the practicality of PS-PFC controller by successfully

implementing it in laboratory hardware, that is the Quanser SVR02 servo based unit.

6.4 SUMMARY

This chapter has presented a summary of the Process 2018 journal paper (Abdullah
& Rossiter, 2018d), which introduces a novel input shaping method known as Pole Shaping
PFC to handle different types of challenging dynamics system with far less aggressive input
demand compared to the traditional Pole Cancellation PFC. Besides, PS-PFC also provides
a more general approach to handle different types of challenging dynamics systems compared
to the other two previously developed methods of PP-PFC and LPFC with the additional

advantage of a guaranteed recursive feasible constrained solution.

Nevertheless, since PP-PFC utilises the Realigned Model (RM) structure, the con-
trol law may become more sensitive to measurement noise and parameter uncertainty
(J. A. Rossiter, 2018). This limitation is because of its underlying algorithm becoming
too dependent on the accuracy of the model representing the plant. Although, theoretically
it can provide an offset-free correction in the presence of disturbance and model-mismatch,
yet the RM structure is still not able to withstand high-frequency measurement noise espe-
cially with a higher-order process. Hence, the next chapter will propose the use of T-filter
in PS-PFC to tackle this limitation together with a formal sensitivity analysis for different

types of PFC structures to measure their robustness.
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Closed-loop behaviour for system Gg with n =4
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Chapter 7

SENSITIVITY ANALYSIS

This chapter presents a comprehensive summary from three different papers (Abdullah
& Rossiter, 2018b,c, 2019a) that focus on the sensitivity analysis for varying PFC structures.
It is noted that the previous two chapters have developed the Laguerre PFC to control stable
and straightforward dynamics processes while Pole Shaping PFC for challenging dynamics
systems. Hence, the third objective of this work is to analyse and compare the sensitivity
trade-off of these structures to measurement noise, disturbances and parameter uncertainty.
Before analysing those control laws, Section 7.1 provides the initial analysis between the
IM and RM structure of PFC and proposes the use of a T-filter to improve the robustness
of a RM structure. Section 7.2 continues to analyse the sensitivity trade-off when using
LPFC compared to traditional PFC. Since the underlying concept of PS-PFC utilising a
RM structure is quite sensitive to high-frequency measurement noise, Section 7.3 proposes
the use of a T-filter to handle this issue while providing its formal sensitivity analysis. The

final section 7.4 provides the summary for this chapter.
7.1 SENSITIVITY ANALYSIS OF DIFFERENT PFC STRUCTURES

As discussed before in Chapter 2, PFC can utilise two main prediction structures which
are the Independent Model (IM) and Realigned Model (RM). Between these two options, IM
has become a standard structure for PFC to handle uncertainties (Richalet & O’Donovan,
2009). Although the implementation of IM is straightforward, its usage is only limited to
a stable process, where for unstable dynamics, PFC practitioners often imply the cascade
structure to retain its stability. Conversely, the use of a RM structure is more general

which can be implemented to different types of dynamical processes, yet this structure may

96
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become highly sensitive to measurement noise due to its dependency on the plant output
measurements. Nevertheless, a user also should consider the use of a a T-filter to surpass
the limitation of a RM structure, which has become a conventional practice in the GPC

framework (Yoon & Clarke, 1995; J. A. Rossiter, 2018).

Hence, the main contribution of this work is to propose the use of a T-filter within a
PFC framework while analysing the sensitivity trade-off between three prediction models
namely the RM, RM with T-filter and IM structures when handling measurement noise
and disturbances. The associated sensitivity functions are derived and validated via both
closed-loop simulation and real-time implementation. Since the sensitivity relationships are
system dependent, performing this off-line analysis is beneficial to measure the robustness of
a controller. The detailed formulation, derivation and discussion of this work are published
in the ECC 2018 conference paper (Abdullah & Rossiter, 2018b), which is attached in

Appendix G.

7.1.1 PFC with RM Structure

Without loss of generality and for clarity of presentation, this work assumes an underly-
ing CARIMA model to represent the prediction of RM, RM with T-filter and IM structures.
A similar representation as in the previous chapters is used except that now the model is

in a difference form, where:
Yrrny b = HAUL + PAUE + QYk (7.1)

This structure provides an offset free correction due to the presence of an integrator, where
the current and past output is measured directly from a plant. Substituting prediction (7.1)

into equality (2.2) gives the control law of:

Aty = | (1= A™)r + Xy — Quy Y — P, Aty (7.2)

ny,1

where the constant future input assumption of PFC means Aug.; = 0 for ¢ > 0, hence
only the first column (Hy, 1) of matrix H,, is used for this case. The control law can be
represented in a vector form by rearranging (7.2) in terms of parameters F'; N and D with
obvious definitions:

Auy = Fr — Nyx — DAuy, (7.3)
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Although the formulation in (7.3) can be implemented directly, it is easier to utilise a

transfer function form for analysing its sensitivity (J. A. Rossiter, 2018). The vectors of

N = [N07N17N27 7Nn]

A o R (7.4)
D = [Dg, D1, D2, ..., Dy]
are defined in the z domain as:
N(z) = Ny + Niz7l Noz72 4+ ..+ Npz ™"
D(z) = Do+ D1z, Doz 2+ ...+ D,z " (7.5)

D(2) =14 271D(z)
Noting the definitions of Aitk and Yk, the sensitivity functions can be derived in a fixed

closed loop form of:

D(z)Au, = F(z)r — N(2)yx (7.6)

—) F(2) [D(z)a]* G(z)

N) O

Figure 7.1: PFC with RM structure equivalent block diagram.

Figure 7.1 indicates the equivalent block diagram (unconstrained case) and adds mea-
surement noise n and output disturbance d. From the structure, the effective control law
can be simplified to K(2) = N.(2)[D.(2)A]7!. Assuming system G(z) = b(z)a(z)"!, the

closed-loop pole polynomial P.(z) = 1+ K(z)G(z) is represented as:
P.(z) = D(z)a(2)A + N(2)b(2) (7.7)

The sensitivity of the input to noise is derived by finding the transference from u to n (refer

to Figure 7.1):
Sun = K(2)[1 + K(2)G(2)]*
(7.8)
= N(2)P.(z) a(z)
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Similarly, the sensitivity of output to disturbances is obtained by solving the transference

from d to y:

Sya = [1+ K (2)G(2)] ™!
(7.9)
=a(2)P.(2)'D(2)A

7.1.2 PFC with T-filter

Other than the IM structure, T-filter is often considered as an essential tool in the
practical implementation of predictive controller that uses a transfer function model (Clarke
et al., 1987; J. A. Rossiter, 2018). It acts as a low pass filter to eliminate high frequency
measurement noise from a plant without affecting the nominal tracking performance of
predictive control (Yoon & Clarke, 1995). The framework proposed here is a two stage
design whereby PFC is first tuned for performance tracking, then the T-filter is employed
to improve the sensitivity. Conceptually, the measurement output is low-pass filtered before
prediction and anti-filtered after prediction to restore the predicted data back to the correct
domain before deploying the nominal algorithm. The schematic structure is shown in Figure
7.2 where it reduces the impact of high frequency noise on the prediction while retaining

the valuable low frequency dynamics.

<t
W<

Form
predictions

Low-pass

filter Anti-filter ——)

\|l
\|l
\|l

Figure 7.2: PFC prediction structure with T-filter.

The desired T-filter T~ is deployed as §; = ypT ' or T, = yi. Define the filtered
predictions up to horizon n, as follows:

gk+1 = HAU, + PAUE + QY (7.10)

The relationship between the filtered and unfiltered predicted data can be represented using

Toeplitz/Hankel form (J. A. Rossiter, 2018):

L CTng + Hry (7.11)
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substituting (7.11) into (7.10) gives:

C;l[gk+1 — HTg_k] = HC;I[A_%L]C — HTAﬂk] —|—PA<£Lk + Q(g_k (712)

Multiplying through by Cr and grouping common terms:
Yp = HAup + PAUL + QY (7.13)

where P = [CrP — HHy| and Q = [Hr + C7rQ]. The difference between (7.13) and (7.3)
are the last two terms which now are based on past filtered data. Hence, applying a similar

control law, a PFC with T-filter can be formulated as:

Di(2)Auy, = F(z)r — Ne(2)yx (7.14)

where Dy(z) = l;((j)) and NV (z) = 17\4(% From the equivalent block diagram representation in

Figure 7.3, the closed-loop pole polynomial, sensitivity of the input to noise and sensitvity

of the output to disturbances are constructed as:
Pi(z) = Dy(2)a(z)A + N¢(z)b(2)
Sun = Ni(2)Py(2) " ta(2) (7.15)

Sya = a(z)Py(z) ' DA

—3 F(z) T@[DEA T = G(z)

N(Z)T(2)*

Figure 7.3: PFC with T-filter equivalent block diagram.

Remark 7.1. It can be shown that the closed-loop poles of PFC with a T-filter Pi(z) are
related to the equivalent poles of PFC by P,(z) = P.(2)T(z) and also that the inclusion of

T-filter cannot affect the nominal tracking performance (J. A. Rossiter, 2018).
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7.1.3 PFC with IM structure

The prediction using an IM structure can also be represented using a CARIMA model.

Similar as before, the only difference is that now the parameter is in the difference form of:

Yp ktny b = HA_ng + PAuy + ng’k + (Ypk — Ym,k) (7.16)

The new equality between prediction (7.16) with the target trajectory (2.2) at n, step ahead

is given as:
Hy, Atk + B, Atk + Qn, Y = Y = (1= A") (R = yp) (7.17)

Since the future input increment Awug; is assumed zero for @ > 0 and H,, is reduced to

Hnwl, the PFC control law is:

1
Hny,l

Auy = (T=A")r — (1= \")y, — Qn”gm,k + Ymk — Pm,Agk (7.18)

For suitable F, N;, M;, D, one can rearrange (7.18) as:
Auyp = Fr — Nigm o~ Miyr — ﬁAilk (7.19)

Transforming (7.19) into an equivalent transfer function format, the fixed closed loop is
constructed as:

D(z)Auy = F(2)r — Ni(2)Ymk — Mi(2)yk (7.20)

The model output can be determined exactly from the model Y, = b(2)a(z) 'uy and

hence equation (7.20) can be replaced by (see Figure 7.4 for the effective loop structure):

[D(2)A + Ni(2)b(2)a(z) " up = F(2)r — M(2)y (7.21)

>

D;(z)

The sensitivities for IM structure of Figure 7.4 are obtained analogously to the PFC
with RM structure by substituting parameter D(z)A with D;(z), and N(z) with M;(z) in
equation (7.7-7.9). The closed-loop pole polynomial and sensitivites are:

Pi(z) = Di(z)a(z) + M;(2)b(z)
Sun = M;(2)Pi(2) ta(2) (7.22)

Syd = a(2)Pi(2) "' Di(2)
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Di(z)*
- " ! dk
r t | Uk I ++l yk
—3 F(2) —+3 [D(z)a] : Go(2) POT—
TN\ !
|
|| Ni) I Gn(2) : f++nk
b - = | C
Mi(z)

Figure 7.4: PFC with IM structure equivalent block diagram.

7.1.4 Results

This paper analyses the sensitivity of PFC with a RM structure (PFC), PFC with a
T-filter (PFCT) and PFC with an IM structure (PFCI) for a first order real plant, that is,
a Quanser SRV02 servo based unit G711 (Apkarian et al., 2012), and second order numerical

examples which represent an over-damped process Gyo.

0.8338
Gy = ———22 7.93
U= 045521 (7.23)

272403271
1—1.22"140.3222

Gy = (7.24)

1. For a first order Quanser servo system, all the PFC structures will use the same tuning
parameters (A = 0.7 and n, = 3). Figure 7.5 shows that in the high frequency range,
the first order PFCT (T = 1—0.8z71), gives the lowest sensitivity to noise followed by
PFCI and PFC. However, the output of PFCT becomes more sensitive to low and mid
frequency disturbances compared to PFCI and PFC. The real response validates this
analysis and it can be concluded that for this case, it may be worth to have a slower
disturbance rejection (which is less likely to occur) to get the best noise sensitivity

with the T-filter.

2. For a second order over-damped process, Figure 7.6 demonstrates that the input of

PFCT?2 with second order filter (T = (1 —0.8271)2) gives the lowest input sensitivity
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Figure 7.5: Sensitivity analysis for process Gy;.

to noise followed by PFCI, PFCT1 with first order filter (7' = 1 — 0.8271) and PFC.
Nevertheless, over filtering the measurement as with PFCT2 leads to a poor output
reaction to disturbances in the low or mid frequency range compared to other struc-
tures. The closed-loop response validates this analysis and for this specific case, there
is a reasonable argument that the IM structure provides a good sensitivity trade off

between noise and disturbances.

Although generic conclusions are not applicable in this study, it is clearly shown that
the popular IM structure does not always give the best trade-off between the uncertainties
as demonstrated in the first example. In some cases, using a low pass filter such as a T-
filter can enable a good sensitivity trade-off between noise and disturbances. However, the

sensitivity of PFC structures are system dependent and thus the best option may not be
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Figure 7.6: Sensitivity analysis for G1s.

clear a priori, as the latter example indicated a likely preference for using the IM approach.

Hence, production of off-line sensitivity plots is essential to give insight into the robustness

of differing PFC structures.

7.2 SENSITIVITY ANALYSIS OF LAGUERRE PFC

It is noted that Laguerre PFC can provide several benefits such as improving the

prediction consistency, closed-loop performance and constraint handling. However, it is

also well-known that an input shaping method, in general, can affect the loop sensitivity of

a system since the algorithm becoming too dependent on the accuracy of a representative

model. Hence, the UKACC 2018 conference paper (Abdullah & Rossiter, 2018¢), which is

attached in Appendix H presents a formal sensitivity analysis of LPFC by considering the
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effect of noise, unmeasured disturbances and parameter uncertainty. The performance will
be benchmarked with the nominal PFC to get some insight into the sort of sensitivity trade-
off that ones should expect when using LPFC. Similar as before, the sensitivity plots from
bode diagrams and closed-loop simulations are used to measure the controller robustness.
The scope of this work is only focused on a simple and stable dynamics system as LPFC is
only effective for this process. Since a Laguerre polynomial is better parametrised with an
input rather than input increments, both PFC and LPFC take the IM structure for handling

noise, disturbance and parameter uncertainty.

7.2.1 Sensitivity Functions for PFC and LPFC

Generally, both PFC (2.10) and LPFC (5.9) control laws can be converted into a fixed

structure by grouping the common terms where for an IM structure:
Di(z)u, = F(2)r — M(2)yp (7.25)

By referring to Figure 7.7, the effective control law can be simplified to K (z) = M (z)[D;(2)] L.

Di(z)*
r-—— ! dk
r + I Uk I ++‘l' Yok
— F(2) - (D)1 : Go(z) POT—
- I
| |
ymk | +
| N(z) Gm(z) I 5 +Nk
L — | C <
M(z)

Figure 7.7: IM structure equivalent block diagram for PFC and LPFC.

Assuming system G(2) = b(z)a(z) !, the closed-loop pole polynomial P;(z) = 1+ K (2)G(z)
is represented as:

Pi(2) = Di(2)alz) + M(2)b(z) (7.26)

The sensitivity of the input to noise is derived by finding the transference from n(z)
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to u(z):
Sun = K(2)[1 + K(2)G(2)] 7! = M(2)Pi(2) a(2) (7.27)

Similarly, the sensitivity of output to disturbance is obtained by solving the transference
from d(z) to y(z):
Sya=[1+K(2)G(2)] " = a(2)Pi(2) ' Di(z) (7.28)

The multiplicative uncertainty is modelled as G(z) — (1 + 6)G(z), for ¢ a scalar (possibly
frequency dependent). Thus the closed-loop pole sensitivity to multiplicative uncertainty

becomes:
P.=1+G1+4+0)K]=0
(7.29)
Sy, =GK[1+ K(2)G(2)]"!' = M(2)Py(2)'b(2)
From the derivation, it is clear that the main difference between the sensitivity functions

for PFC and LPFC is the parameter D;(z), F(z), M(z).

7.2.2 Results

This paper considers a second order over-damped process (G13. For the first example,
both PFC and LPFC are tuned using a faster A compared to its slowest open-loop pole
(A=0.7, ny = 7). The second example demonstrates the effect of loop sensitivity when the
controllers are tuned using slower pole A = 0.92 (almost similar with the slowest open-loop
pole) with n, = 9. In order to analyse the sensitivity trade-off between PFC and LPFC,
the Bode plots of each sensitivity functions are plotted together with their closed-loop

bandwidth. The outcomes of this analysis are given as:

0.1z71 +0.4272
(1 -0.5271)(1—-0.9271)

Gz = (7.30)
1. For the first case, Figure 7.8 shows that LPFC has a higher bandwidth compared to
PFC. Since LPFC has a faster dynamics, it becomes less sensitive in rejecting low-
frequency disturbance. However, higher bandwidth requires more aggressive input
activity, and thus LPFC becomes more sensitive to measurement noise and modelling
uncertainty compared to conventional PFC. The closed-loop simulation in Figure 7.9

validates the analysis where LPFC is slightly less robust than PFC in handling noise
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and uncertainty, yet better in rejecting disturbance and tracking the target, but that

observation is most likely linked to the difference in implied closed-loop poles with

LPFC delivering the desired pole while PFC is not doing so.
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Figure 7.8: Sensitivity plot for process Gi3 with A = 0.7 and n = 7.

2. For the second example, when LPFC is tuned to have a similar bandwidth with PFC,
Figure 7.10 demonstrates that both controllers provide similar sensitivity outcomes
with respect to disturbance, noise and modelling uncertainty. Besides, the closed-loop

simulation in Figure 7.11 validates the analysis.

In summary, it is clear that the controller sensitivity is related to the achieved closed-
loop bandwidth. Since LPFC is better at delivering the target A compared to PFC, in
consequence, for the same A, LPFC is usually more highly tuned and thus more sensi-

tive to noise and modelling uncertainty. However, where the two control laws give similar
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closed-loop poles (perhaps by deploying different \), their sensitivities are similar. There-
fore, LPFC is a better base on which to explore the trade-offs in the sensitivity, as there
is a stronger connection between the tuning parameters and the achieved closed-loop per-
formance (Abdullah & Rossiter, 2016) in addition to better constraint handling due to its

well-posed decision and prediction consistency as discussed in (Abdullah et al., 2017).
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Figure 7.9: Closed-loop response of process G13 with A = 0.7 and n = 7 in the presence of

disturbance, noise, and uncertainty.
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7.3 SENSITIVITY ANALYSIS OF PS-PFC WITH T-FILTER

This section presents a sensitivity analysis of the Pole Shaping PFC (PS-PFC) al-
gorithm, that was proposed in the previous chapter to handle processes with open-loop
divergent or oscillatory dynamics. Notably, PS-PFC utilises the RM structure for unbiased
predictions, where it is well know that this structure can naturally handle uncertainty and
disturbance. Nevertheless, it may be very sensitive to a high frequency measurement noise
which can result in poor control performance or at worst instability (J. A. Rossiter, 2018).
In order to improve this issue, a T-filter based prediction is proposed while analysing its
trade-off against the sensitivity to disturbances and parameter uncertainty. As to the au-
thors’ knowledge, no-one has looked at this in the context of shaped predictions and thus
this proposal forms the main contribution of this work. The detailed formulations, discus-
sions and results are available in the CCTA 2019 conference paper (Abdullah & Rossiter,
2019a) which is attached in Appendix I.

7.3.1 Sensitivity Functions for PS-PFC with and without T-filter

The derivation of PS-PFC with a T-filter has a direct link with the presented formula-
tion in Chapter 6. In order to implement a T-filter with a PS-PFC control law, the matrix
C'4 needs to be separated from prediction (7.13). Noting the definition of H, P, @ in (7.1)

and P, Q, the new representation can be formed as:

Y

Fpr1 [CG‘A]_l[Ca*']_l[CbAgk + ﬁbA]zk - fjAgk] (7.31)

P
where I—]'b = CrHy — CyHr and Hj=CuHp+CrHy. Now, the control law with a T-filter
follows a similar derivation of PS-PFC in Section 7.1.2, but using filtered prediction (7.31)
instead of (6.3).

Remark 7.2. If T = 1, the prediction of (7.81) becomes nominal as in (6.3) given that
Cr =1 and Hp = 0. Thus the derivation of sensitivity functions for PS-PFC with and

without T-filter can be generalised.
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Based on receeding horizon principle, only the first computed input is implemented.
Since the first row of matrix C;! and Cy+ is always 1, the input trajectory of (6.16) and

the implied control law can be simplified to:
Auyg = [Plp + @] (7.32)

The control law is then rearranged into compact form by substituting ¢ from the filtered

prediction of (7.31) into (7.32):

Auy, = Pﬂ) +

(1 — )\ny)T + Ny — Qny,ozg_k - Pny,ozAgk (733)

hny,a
As p is representing both past filtered input and output, equation (7.33) is rearranged in
a more general form by noting the definition of yx, = Criyr + Hryr_1 and grouping the

common term of r, Yk, and Aty into:

ks —
Auy, = Fr — Nk, — DATy,
~ - (7.34)
= Fr — NT 'y — DT~ Aug
= —

Noting the definitions of Agk and Yk, the sensitivity functions are derived based on a fixed

closed-loop form of:

D(2)T(2) ' Aup = F(2)r — N(2)T(2) 'y (7.35)

Figure 7.3 indicates the equivalent block diagram in the presence of measurement
noise n and output disturbance d. Here, the overall control law can be simplified to K(z) =
No(2)[De(2)A]7L. Assuming system G(z) = b(z)a(z)~!, the closed-loop pole polynomial
P.(z) =1+ K(z)G(z) is represented as:

P.(z) = D(z)a(2)A + N(2)b(2) (7.36)

Hence the associated sensitivity of input to noise, output to disturabce and parameter

uncertainty are given as:
Sun = K(2)[1 + K(2)G(2)] 7' = N(2)Pu(2) " a(2) (7.37)

Sya =1+ K(2)G(2)] ' = a(2)P.(2) "' D(2)A (7.38)

Sy = GK[l+ K(2)G(2)] "t = M(2)Pi(2) 'b(2) (7.39)
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7.3.2 Results

This subsection presents two numerical examples to demonstrate the impact of a T-
filter on the loop sensitivity in the presence of noise, disturbance and parameter uncertainty:.

The selected process with its tuning parameters are given as:

1. A 3rd order under-damped process with two under-damped poles and «a(z) = (1 —
0.8271)(1 — 0.871):

0.85271 —1.5272 4+ (0.85272

Gy = -
YT 1=062)(1-1.621+0822)

A=0.T;n, =4 (7.40)

2. A 2nd order unstable system with one pole is outside the unit circle and «a(z) =
(1—0.833z71):

04271 —0.1272

Cls = (1—052"1)(1—1.271)

A=0.7;n, =6 (7.41)

The sensitivity plots are shown in Figures 7.12 and 7.13, where T7 = 1 represents PS-
PFC without a T-filter and 7 = 1 — 0.82~! is PS-PFC with a first order filter. For both

cases, the overall outcome can be summarised as:

e PS-PFC with a T-filter manages to reduce the overall sensitivity in the high-frequency
domain, yet becomes more sensitive in the low and mid frequency domains compared

to PS-PFC without a T-filter.

e This scenario means that the process will respond better with a T-filter in the presence
of high-frequency noise, but worse in rejecting low or mid frequency disturbances and

parameter uncertainty.

In order to validate this off-line analysis, the closed-loop responses for both processes

are simulated with three different conditions. Figures 7.14 and 7.15 demonstrate that:

1. When Gaussian random white noise corrupts the output measurement of both pro-
cesses, PS-PFCT rejects noise better compared to PS-PFC, thus reducing the overall

input fluctuation.
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2. In the presence of an output disturbance, PS-PFCT is slower in rejecting it compared

to PS-PFC, yet its input activity is far less aggressive.

3. When there is a parameter uncertainty (consider plant dynamics different from the
model), both controllers provide offset-free tracking, but the response with PS-PFCT
is a bit slower compared to PS-PFC.

In addition to these numerical examples, the paper also has implemented the proposed
control law on real laboratory hardware, specifically the Quanser servo with a flexible arm
to track its angular position. This process consists of two complex poles and one integrating
pole along with some plant model mismatch. The bode plot shows a similar trade-off in
sensitivity to those noted in the numerical examples. However, when implemented in a real
plant, only the second-order T- filter is implementable, where else the input fluctuation
is unacceptable/unsafe. The controller manages to track the alternating set-point without
offset error while reducing the oscillation in the flexible link. Hence, in this case, the usage

of a T-filter is essential for the effective utilisation of PS-PFC.

In essence, the associated sensitivity analysis of PS-PFC for noise, disturbance and
parameter uncertainty with and without the T-filter indicates that the benefits are similar
to those achieved in the context of GPC. Although without generic proofs, it is still clear
that use of T-filter often helps in reducing the sensitivity of an input to measurement noise

with only relatively small deterioration in disturbance rejection.
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7.4 SUMMARY

This chapter has presented a comprehensive summary of three different works to tackle
our third research objective which is to analyse the sensitivity of PFC with different struc-

tures where:

1. Abdullah & Rossiter (2018b) shows that using IM is not always beneficial especially
when dealing with high-frequency noise, hence other alternative structure such as the

use of T-filter with RM also should be considered.

2. Abdullah & Rossiter (2018c) presents the sensitivity trade-off that one should expect
when using LPFC where a user needs to sacrifice some of its sensitivity features for

getting a better closed-loop performance and other associated benefits.

3. Abdullah & Rossiter (2019a) implements a T-filter in a PS-PFC framework to improve
its input sensitivity to measurement noise with only relatively small deterioration in
rejecting disturbance and parameter uncertainty. However, this trade-off is essential

to ensure that the control law is providing an implementable computed input.

Overall, it is apparent that the sensitivity is system dependent. Hence, in practice,
an off-line sensitivity analysis is essential to gain some insight into the robustness with
differing prediction structures. The findings from this work are only the initial starting
point to motivate the needs for a more comprehensive robust analysis in the future for

different types of PFC such as the cascade structure, pole placement and others.



Chapter 8

CONCLUSIONS AND FUTURE WORKS

This final chapter is divided into two sections whereon Section 8.1 presents the overall
conclusion of this research and Section 8.2 suggests several potential future works that can

be carried out to further enhance the concept of PFC.
8.1 FINAL CONCLUSIONS

From the literature survey, it is noted that PFC only received a few attention in the
academic literature considering its capability to replace the use of traditional PID controller
in many small-scale applications. Most of the current developments are focusing on the
hybridisation of PFC with other advanced techniques rather than improving the control law
itself. Thus, this research has presented several novel developments of PFC to improve some
of its significant weaknesses such as the tuning efficacy, constrained performance, reliability
in handling different types of challenging dynamics processes and robustness analysis to
uncertain cases. Although a reliable general solution for all the problems is not available,

yet this work has provided some of the best options for each different cases.

8.1.1 Stable and simple dynamics system

The implementation of Laguerre PFC specifically with an inputs parameterisation
for a system with simple and stable dynamics seems promising considering it manages
to provide a better prediction consistency, overall closed-loop performance and constraint
handling compared to the traditional PFC approach. Besides, this work also proposes

the use of a systematic and cost-effective constraint handling method as in MPC rather

119
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than the traditional multiple-regulators scheme, where it provides more accurate and less
conservative constrained solutions. Since the overall modification for the proposed control
law is straightforward, the simplicity of tuning and implementation of the original concept
can be retained. Nevertheless, when using LPFC, a user may need to modify or slow down
the implied terminal constraints to avoid infeasibility in some cases. This procedure may

need extra computation, yet it is still relatively simpler than MPC.

8.1.2 Challenging dynamics systems

For challenging dynamics system, this research has explored three alternative methods
namely Laguerre PFC (LPFC), Pole Placement PFC (PP-PFC) and Pole Shaping PFC (PS-
PFC) to improve the reliability of the PFC concept. It is noted that LPFC and PP-PFC
are only implementable with integrating and oscillating dynamics processes, respectively.
Besides, these structures have their limitations, for example, LPFC may provide a small
offset error in the presence of plant model mismatch due to the setting of uss = 0, while
PP-PFC constraint handling is only effective for a single prediction. Conversely, the PS-
PFC concept can be generalised for different types of challenging dynamics systems with the
proposed default shaping of «. This control law can provide stable closed-loop performance
with a smooth input dynamic while guaranteeing recursive feasible constrained solutions.
However, a user should also be concerned with the use of Realigned Model structures where

additional filtering may be required for reducing its sensitivity to measurement noise.

8.1.3 Sensitivity Analysis

In general, the sensitivity of PFC structures is system dependent where the best option
may not be apparent a priori. Hence, this research has provided an off-line sensitivity
analysis for comparing the robustness of differing PFC structures. The first analysis is
employed to compare the sensitivity between PFC with a RM structure, PFC with an IM
structure and PFC with a T-filter. Although a general conclusion is not applicable, it is
noted that a RM structure is highly sensitivity to measurement noise. Conversely, the IM
structure also is not always the best option to improve this sensitivity. For some cases, using

a T-filter with a RM structure may provide a better improvement and sensitivity trade-off.
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The second analysis is performed to the proposed LPFC control law, which utilises
the IM structure. It is shown that when using LPFC, a user need to pay a small trade-
off by having a more sensitive controller to noise and uncertainty since it is highly tuned
with a larger bandwidth compared to the conventional PFC. However, both controllers may
typically have similar sensitivities when both are tuned to get similar closed-loop poles which

would indicate a preference for LPFC in general due to easier tuning and other advantages.

The third analysis demonstrates the benefits of using a T-filter prediction with PS-
PFC where it is originally designed with the RM structure. The associated sensitivity
response of PS-PFC for noise, disturbance and parameter uncertainty with and without
the T-filter indicates that the benefits are similar to those achieved in the context of GPC
(J. A. Rossiter, 2018). The simulation and experiment results clearly show that the use of
T-filter often helps in reducing the sensitivity of an input to measurement noise with only

relatively small deterioration in disturbance rejection.

8.2 RECOMMENDATION FOR FUTURE WORK

In a nutshell, the development works in this thesis are not fully matured. There are
still a lot of validations, comparisons, modifications and analysis that need to be done in

order to fully understand the rigour behind these frameworks. For examples:

1. Notably, the proposed PS-PFC concept can provide stable closed-loop performance
with satisfactory constrained solutions when handling different types of challenging
dynamics processes. However, it also may face similar prediction consistency issues as
other PFC frameworks if the implied validation horizon is larger than the coincidence
horizon. Possible future work is to look at how one can effectively shape the pole «

to eliminate this weakness to future improve its constrained performance.

2. If the previous recommendation is implementable, there is also a possibility to adopt
a similar concept for handling a stable and simple dynamics system. This framework
may generalise the use of PS-PFC for all types of system dynamics. Nevertheless, it

needs to undergo several validations and comparisons with other alternative structures
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such as LPFC and cascade structure to get an insight into its performance, tuning,

coding, computation demand and robustness.

. Another possible idea is to utilise the concept of implied closed-loop prediction as in

the dual mode MPC to improve the constraint performance, which is not yet explored
in PFC framework. Probably, the findings from this proposal may change or not
change the insights that have been presented in this thesis. Hence, it is interesting
to analyse how to implement this concept effectively while retaining the simplicity of
formulation. Besides, one also should investigate whether it can provide recursively

feasible constrained solutions.

Recent work of J. Zhang et al. (2018) has developed a more systematic cascade struc-
ture of PFC that can provide a direct relationship between the desired closed-loop
pole with the internal tuning gain. Although, the current idea is only limited to a
simple integrating dynamics, yet the concept may be extend for handling other chal-
lenging dynamics systems with proper modification. Hence, it is possible that this
structure can provide a similar effect as the PS-PFC method. Again a detailed review
and comparison with other structures are needed to justify what sort of benefits that

it can provide.

. Since the sensitivity analysis in this thesis only covers the influence of prediction

structure, future work should consider the impact of changes in the parameters A, n,
and the choice of shaping poles a(z) in PS-PFC where these parameters can also affect
the loop sensitivity of a controller. Besides, a more formal robustness comparison with
other alternative PFC methods such as cascade structures and pole placement also

should be considered.

. The use of state space prediction model with a Kalman filter in PFC framework should

also be analysed in details whether it can provide better sensitivity trade-off compared

to a T-filter.

Indeed the use of a first order target trajectory can provide a simple and transpar-

ent framework. However, future work should look at other alternative functions or
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10.

representation that may provide better closed-loop performance while retaining the
simplicity of tuning and implementation as one of the advantages of PFC is to track

ramp or parabolic set point.

. In the literature, several works have extended the concept of PFC as a non-linear

controller. Again a complete analysis should be done to provide more rigour for this

applications.

. Since PFC can be an excellent alternative to the classical PID controller, it is also

interesting to employ this simple concept to a more complicated application where
PFC can act as a slave controller rather than the main one so that a user can extract

full benefits from this design.

A formal comparison between the proposed methods with other existing techniques
such as MPC, LQR, pole-placement and others should also be considered which can

provide useful insight to a user.
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1. Introduction

PFC (Predictive Functional Control) [1] is probably the most
successful industrial implementation of MPC (Model Predictive
Control) based on the numbers and breadth of applications. The
main reason for this is relatively simple in that the coding re-
quirements are similar to that for PID (Proportional-Integral-De-
rivative) controllers and thus the PFC strategy is a competitor with
PID rather than more expensive plant wide or system wide ap-
proaches. Moreover, it has some advantages over PID in that the
tuning mechanism is intuitive being based mainly on a desired
time constant (equivalently settling time or convergence rate) and
also it embeds a reasonable level of systematic constraint handling
using relatively low computational complexity.

Nevertheless, the main weakness of conventional PFC is the
same as its strength, that is the relative simplicity [2,3]. Although
execution and coding are straightforward for systems with over-
damped or simple dynamics, a different picture emerges with
systems with less desirable open-loop dynamics [4]. Consequently,
although a conventional PFC [1] can work with systems of in-
tegrators, open-loop unstable processes and non-minimum-phase
characteristics, often the tuning is difficult and the implementa-
tion less simple and intuitive. Thus one purpose here is to develop

* Corresponding author.
E-mail addresses: j.a.rossiter@sheffield.ac (J.A. Rossiter),
robert.haber@th-koeln.de (R. Haber).

http://dx.doi.org/10.1016/j.isatra.2017.08.002
0019-0578/© 2017 ISA. Published by Elsevier Ltd. All rights reserved.

a modified PFC approach which retains the core attributes of
simplicity but more specifically, retains intuitive insight during the
design which means the approach is simple for technicians to
deploy.

Predictive control algorithm can be calculated by properly
planning the manipulated signal sequence via minimizing a cost
function. The idea of pole-placement design for predictive control
is not new. Pole-placement state-feedback design for optimizing
continuous-time predictive control was applied in [5] and ex-
tended this algorithm for the constrained case in [6]. GPC (Gen-
eralized Predictive control) [7] has two degrees of freedom and
allows a design based on pole-placement, see [8] and [9]. In-
vestigations of the stability of PFC for first-order process models
[10] were followed by a pole-placement PFC controller re-
commended for higher-order, over-damped processes in [11].

This paper has a focus on systems with significant under-
damped dynamics in the open-loop and first considers the efficacy
of a routine PFC implementation. It is demonstrated via a number
of examples, that the efficacy is variable which motivates the need
for an improved algorithm. Earlier literature has discussed the
possibility of shaping the input predictions [4], but although often
effective, that approach has the disadvantage of requiring some
moderately difficult algebra/coding and there is still a need to fully
understand the robustness to uncertainty of such approaches. This
paper takes an alternative approach which is to explore and de-
velop a recently proposed alternative the PP-PFC (Pole-Placement
PFC) [11]. The main contribution here is to consider the extent to
which this approach is suitable for handling under-damped



404 K. Zabet et al. / ISA Transactions 71 (2017) 403-414

systems. Moreover, as will be seen, a secondary benefit is addi-
tional flexibility in the choice of target poles to include mild un-
der-damping; such an option is not available to conventional PFC.

A simplistic implementation of the proposed PP-PFC algorithm
for underdamped systems is shown to rely on complex number
algebra and this has some possible negative consequences. Firstly,
the computational effort is slightly greater, although that could be
considered trivial in practice. Secondly however, the requirement
for complex number algebra in itself could be a problem as many
low level process control units (where PFC would be applied
alongside competitor approaches such as PID) do not support
complex number algebra. In view of these observations, a second
contribution of this paper is to propose algorithms which cir-
cumvent the complex number algebra in a relatively simple fash-
ion, thus allowing straightforward coding, maintenance and
tuning.

Section 2 will give a basic background on conventional PFC and
demonstrate the potential difficulties when applying this to un-
der-damped systems. Section 3 will introduce the pole-placement
PFC approach for systems with real poles followed by Section 4
which will discuss how this approach is extended to cope with
complex poles, that is under-damped systems. Section 5 will then
develop an alternative formulation of PP-PFC which uses just real
number algebra. Section 6 gives numerical examples and also
some simulations on hardware.

2. Background of PFC

This section gives a brief review of a basic PFC algorithm and
demonstrates a normal tuning procedure.

2.1. PFC concepts

The basic principle underlying PFC approaches is that the de-
sired output dynamic is close to that of a first-order response with
a specified pole A. The hope is that if one, recursively at each
sample, ensures the prediction of the system behavior is close to
the desired dynamic, then the closed-loop behavior is likely to be
close to that dynamic. Hence, for a desired steady-state set value of
r, a typical target trajectory r*, expressed in discrete time, takes
the form':

r*(k) — (1 _ /1)2
1-4

-1
g (k). ot

In the interest of simple computation, PFC differs from more
standard MPC approaches in that it uses the prediction at just a
single point, the so called coincidence horizon, here denoted by a
n, step ahead prediction. The control law is defined by forcing the
system prediction to match the target dynamic of r*(k) at a point
n, steps ahead, as illustrated in Fig. 1.

In practice, the system output y,(k) is not beginning from zero,
so the target trajectory is one which follows a first-order dynamic

from the current point y,(k) to the correct steady-state, that is:

rk + i) = rk) — Alrck)y — yol, izl @)
PFC is defined by forcing coincidence n, steps ahead and thus

the control law is defined from the equality:

Ypk +my) =r(k) = 2%rk) — y, (k). A3)

1 In the following the case of a stepwise change in the reference signal is as-
sumed. The same algorithm works for stepwise change in the output additive
disturbance, as well.

Match prediction and target

0.7

0 1 2 3 4 5 6 7 8 9 10
Samples

Fig. 1. Illustration of PFC target dynamic r* and coincidence of the output pre-
diction y, with target dynamic n, = 6 samples ahead.

Mismatch between process output y, and model output y,, is
assumed constant during the prediction horizon and hence offset-
free tracking can be achieved with a minor modification to take
account of this bias. The system prediction is given by the model
prediction plus an estimated disturbance d(k) (variants of this exist
but are not central to the current paper):

Yk +ny) =y, (k +ny) +dk), dk) =y,k&) -y, K. %)

Simplification 1. The n, steps ahead prediction yp(k +n,) de-
pends upon the future choices of control actions. As PFC is pre-
mised on being as simple as possible, a typical assumption is that
the future inputs remain constant, that is (u(k + i) = utk), i>1).
This has the advantage that only one decision variable is needed so
the desired selection to satisfy (3) is straightforward to code (this
also applicable with non-linear processes).

Simplification 2. In order to maintain simple coding, PFC over-
comes the complexity of prediction algebra by using partial frac-
tions to express the nth-order model G,,,(z) as a sum of first-order
models [1,2,12] and hence:
V() = Gr@u(k),

n

< bz!

i >y k) =) G@uk) =) ———uk).
Cu(@ = Y, G@), Yn ) ; @l gnalz-‘ ®
i=1 5)

The effective structure of the model is illustrated in Fig. 2
where G, represents the real (unknown) process and G; denote the
partial fraction expansion of the assumed model G,,(z). In practice
this means that the independent model deployed in PFC code
comprises a number of first-order independent models running in
parallel; clearly the coding and computation requirement for each
is trivial.

The advantage of this parallel formation is that n, steps ahead
predictions can be defined explicitly and without the need for
costly or cumbersome prediction algebra [13]. To be precise, the
predictions for the model can be expressed as the sum of the
predictions of a number of first-order models with component

1

outputs y?, that is:
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» G,

Fig. 2. Parallel model format alongside the actual process G,.

Yk + 1)) = Z b= =9 g+ (- iy
" AL T4y R | 6)
Algorithm 1. (PFC) A simple PFC control law can now be con-
structed by using (3) and prediction (6) in (4). Hence, solve the
following for u(k):

b; 0
1Miu(k) Ym (k)].

n
A —2™rk) = yydor= 3 [1- (- af)“y][

i=1
Rearrange to determine the input as:
A =aMirk) -y, (01 + - = a ]y

n 1-(-ap"
Zi b, ®)

uck)

The terms in this law are simple to compute.

Remark 1. This paper does not discuss issues such as ramp tar-
gets, system delays and constraints in order to avoid unnecessarily
complicated presentation which would distract from the core
concepts and contributions presented here. The proposals of this
paper carry over to such scenarios in a straightforward fashion.
The required modifications are well known in the literature and in
fact imply relatively minor changes to the algebra and coding.

2.2. Efficacy of PFC tuning parameters when applied to under-
damped systems

This section considers what might be a weakness of PFC which
is the underlying motivation for the paper. That is, the main tuning
parameter, namely the desired convergence rate 4, is often in-
effective and not a good representation of the closed-loop dy-
namic that results. Clearly this undermines one core selling point
and thus should be improved.

Some simple guidance exists for tuning PFC [1-3] but in prac-
tice, these methods are underpinned by the requirement to do a
form of global search over potential parameters. For a straight-
forward system and constant targets there are two tuning para-
meters: (i) the coincidence horizon n, and (ii) the target closed-
loop pole A. The user can use trial and error over expected rea-
sonable values and choose the pairing that gives them closest to
the desired performance . The readers can do this themselves and
will find that for many systems the process works well, which is
not surprising given the wide spread commercial success of PFC.
Specifically, the design procedure is most effective when the
process is first-order or heavily damped. However, for other pro-
cesses, the procedure can be less effective [3,11].

® Fig. 3 shows the possible pole positions for different pairings of

1 . : :
c 091
iel
D o8l 1
g —\=0.6
3 07} —X=0.7 .
by —=0.8
[72]
S 06/ —A=09
o —\=0.95
N o5t ]
0.4 : : :
0 5 10 15 20

Coincidence horizon

Fig. 3. Illustration of PFC closed-loop poles with different choices of 2 and n,, on the
over-damped example Py. Note n, < 3 gives closed-loop instability.

1 T T .

0.7

Slowest pole position

0 5 10 15 20
Coincidence horizon

Fig. 4. Illustration of PFC closed-loop poles (absolute values as complex) with
different choices of 1 and n, on the under-damped example P,.

tuning  parameters on an  over-damped  system
P=(-z"1+4z2%H/1-14z""+045z7?). It is clear that good
pairings exist in that the closed-loop dynamics can be close to
the target dynamic and thus a simple PFC design procedure can
be effective.

® Fig. 4 shows the possible closed-loop poles with different
pairings of tuning parameters for a specific under-damped
system P, = (0.4z"! + 0.08z7%)/(1 — 1.6z"! + 0.8z72). (This process
is equivalent to example M, given in (38)). This case is less clear
but because while the link between target dynamic and desired
dynamic may be achieved for small ny, tuning is more difficult
because the responses are quite sensitive to the choice of
coincidence horizon. This inconsistency of result for different
n, could be worrying.

® Fig. 5 shows a different under-damped and non-minimum-
phase example N (given in (39)). In this case it is not easily
possible to find a good pairing of parameters. Worse still, it is
clear the system is closed-loop unstable for nearly all reason-
able choices and thus in this case, PFC would be a potentially
unsafe approach.

3. Pole-placement PFC
The previous section has demonstrated that the nominal PFC

algorithm of (8) may be ineffective for systems with difficult dy-
namics and more specifically, that the role of the tuning parameter
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A can be weak [3]. In view of this, some recent work [11] con-
sidered a minor modification with the aim of making the tuning
more effective and thus having real physical meaning to potential
users so that they can use it intuitively, as was also intended.

This section will give a quick review of the proposed mod-
ification, the so called PP-PFC approach.

3.1. PFC with a first-order model

PFC has been particularly effective in industry partially because
many real systems have dynamics which are close to first-order
and it is easy to show [3] that for a first-order system, the PFC
tuning parameters work perfectly, as long as one uses a coin-
cidence horizon of one. In other words, the target pole A becomes
the closed-loop pole exactly in the nominal case y, = Y, =Y.

® For a first-order model with n,=1, the control law (8) is given as
follows:

Yk + 1) = buck) - ayk), k) = A = ork) + @ + Dy
yke + 1) = (1 = Dyrde) + Ay, by 9)

® Rearranging and substituting the corresponding control action
back into the system dynamics gives:

Yk + 1) = bl(] - r(k) -g (@, + Dyl ay®
1
=1 - rk) + 1yk). 10)

From which it is clear that the closed-loop behavior is re-
presented by a first-order model with unity gain (no steady-state
offset) and the desired pole A.

3.2. Pole-placement PFC

The main motivation for PP-PFC algorithm is to exploit the ef-
ficacy of PFC for first-order systems in order to propose an equally
simple process that will work on higher-order systems as it is
known (Section 2.2) that tuning for higher order systems [3] is not
nearly so straightforward or effective in general.

The key concept within the proposal is to treat each submodel
G; shown in Fig. 2 as if it had an independent input and then de-
ploy a nominal PFC algorithm to compute what that input should
be in order to achieve some specified dynamic, say pole p;. The
next core concept is to exploit linearity and linear combinations.
The algorithm takes a linear combination of all the proposed in-
puts to determine the desired input to the real system. By utilizing
a sensible constraint (that the partial contributions of each in-
dividual inputs sum to unity), it is easy to show that the desired
dynamic is then achieved in the nominal case
ddo) = y,(k) = ¥, (k) = 0

Algorithm 2. (PP-PFC): The PP-PFC algorithm for achieving a
target closed-loop pole comprises the following steps.

1. Define targets for each individual submodel G; based on the
model steady-state gains of output y;,;) (5) using the formulae:

rik) = =1 —r(k); = b
=17 1+ an

2. Identify proposed inputs for each submodel (i =1, ...,
the control law (9):

n) using

= pptrk) -

dk) + (a; + p )y k)
b; ’

1

u®(k) =

rid(k)
?=1 7j (12)

dVk) =

3. Form a linear combination of these inputs to determine the
process input as:

n n
uck) =Y pu®ky; p=1.
1-; ; ‘ (13)

Next we demonstrate that the desired pole p; is achieved be-
fore discussing how the remaining freedom in $; might be used.

Lemma 1. The control law of (12), (13) ensures that the target pole
p1 becomes a closed-loop pole in the nominal case (thus d(k) = 0).

—1 as the
1) and

Proof. The control law (13) is presented by using z
shifting time operator, z~'x(k) = x(k — 1), and using (5), (1
(12):

Z p A = pprOk) + @; + pyQik)

uck)
i=1 bi
@ +a) bz
=Krk) + Tu k
(k) Z T, Ll
where, K. =(1 - pl)z b
bi Xty (14)

Rearranging this it is clear the characteristic polynomial of the
closed-loop poles p(z) has p; as a root:

1
{pc(z) { Z ﬂl(’ill +a)Z _0}

n

n
Pyt G
pop=1-2 p2—T=1-Y p=0
< ,; "oy + a; ,; : (15)

It is important that a sensible choice is made for the values of f3;
as, while any choice satisfying (13) will give the desired closed-
loop pole, the choice made also has an impact on the other closed-
loop poles. Indeed, the remaining flexibility in the values of f; can
be wused to assign the other closed-loop poles at values

pp1=2, ..., n using a partial fraction by the following definitions
[11].
1o+ p
ﬂj=—Hl 204 +7) v;=1,2,..,n.
Hl 1;i#f (a (16)

Theorem 1. Using the choice of f; in (16) results in all the poles
pp 1 =2, ..., n becoming closed - loop poles.
Proof. The overall implied control law is given as:

ﬂr(”(k)

uk) = Z puk) = (1 - py) Z
i=1 i=1

_ 1-p prrk) &
Z] 171 ; bl ;

Z": (@ + p )y“kk)
~1

(a v uck).
aiz a7n

Substituting in from (15) and (17):
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i=1 1 i=1 T+ a;
(k) = r(k)
J 17
n 1—o n 1-— _Z—l
H Pi +|1- H i_] uck).
im1 1+ i i=1 1+ a;z 18)

The implied characteristic polynomial of the closed-loop poles
is given as:

n 1-— -Z_l
{pc=0}z[]'[¢_1]=o

iz1 1 + az (19)

From this it is clear that p; are the closed-loop poles.o

Remark 2. The stability of PP-PFC is guaranteed in the nominal
case as a natural corollary of Theorem 1 whereby the positions of
the poles are all known and have to be selected to be inside the
unit circle.

4. Extending PP-PFC to systems with complex poles

This section forms a main contribution of this paper which is to
extend PP-PFC to systems with under-damped modes. The sig-
nificance of this change is because the partial fraction expansion
implicit in (5) will lead to complex poles and residues, and in turn
this means that the control laws of (13) imply complex inputs. In
the first instance there is a need to consider whether the use of
complex numbers is important or indeed whether PP-PFC is still
effective and simple to design and implement.

The reader should note a core point which is that, if the PP-PFC
algorithm continues to work effectively with under-damped modes,
then it solves a tuning challenge for conventional PFC as tuning for
Algorithm 1 can be a significant challenge in the presence of oscil-
latory predictions. For simplicity this presentation will assume just a
single pair of complex poles; this is reasonable as PFC would rarely
be used on very high-order models given that low-order models
usually capture the core dynamics. Moreover, notwithstanding this,
the results will automatically carry over anyway.

4.1. Partial fraction expansion with complex coefficients

Consider a model G,(z) which has roots at —-a;, —a,, ..., — a,
with a;, a; a complex conjugate pair. A partial fraction expansion
of G (z) into first-order terms is:

nz) S bz!
G, (2) = = ! .
@ A+ azhA +azh..A+a,z ,; 1+az!

(20)

It is noted that the residues b, b,,...,b,, will be complex conjugates.

4.2. PFC law for a process with complex coefficients

A quick review of the previous section will reveal that none of
the algebra required numbers to be purely real and the algebra
and pole computations should equally apply for complex numbers.
The obvious consequence is that a system with complex coeffi-
cients should still be amenable to the PP-PFC control law of (13). In
fact, the only requirement that needs careful checking is that the
input u(k) to be implemented to the real process must be real.

Lemma 2. Consider the submodel G(z) = where both b;, a;
are complex and find the corresponding co1ntrbl law using (9). The
implied output dynamics must follow the desired first-order trajec-
tory with dynamic A.

Proof. This is already evident from (10) in Section 3. However,
closer inspection reveals that the corresponding input signal u® is
not real due to the presence of r®, b;, a; in the law definition (12).
Nevertheless, as this is a simulation model, not a real process, that
issue is not important. O

Lemma 3. Notwithstanding the fact that the implied input u®(k) is
complex, nevertheless applying a control law which utilises
B + pu®(k) as defined in (13) will result in a real input as long
as g, = p;* (means complex conjugate).

Proof. The overall implied control law associated to a pair of
complex poles is given as:

utk) = puPk) + pu* k)

Ok (D% @ + )y k)
_ (1 _ P1)|: ﬂl - + ﬁ] oF +ﬂ1 1 P;)ym
1 1 1

Laf + ppy,ﬁ}’*(k)
v bf [“3))

Here all the terms are complex conjugates and hence the resulting
term u(k) is real. It should also be remarked that the condition that
Y 8, = 1implies that g, = g;". o

Lemma 4. Notwithstanding the fact that the implied input could be
complex, nevertheless applying a control law as defined in (13) will
result all the desired closed-loop poles being achieved, even when p;
are defined as complex numbers.

Proof. This follows automatically from Lemma 3 as algebra is not
affected by the use or not of complex numbers.o

Theorem 2. Notwithstanding the fact that the implied input u®(k) is
complex, nevertheless applying a control law which utilises
i su®k) as defined in (13) will result in a real input as long as f;
are calculated based on (16), irrespective of the choices of p;.

Proof. The core difference in this proof is to allow complex
choices for the poles and showing that all the desired poles are
achieved while retaining a real input. The overall implied control
law is given as:

n . (@) (i)
uty =Y pui = 1 - /’1)2 /)r (k) ,‘(a.+ﬂl;.)y (k)
i=1 i=1 1
1-p & Bk @+ ppz!
= + B uck).
Yoo b 121 1+az™! (22)
Substituting from (19):
n n
B 1-
- il
7 ; b; E 1+a,
rdy 4 1-» b l—-pz
u(k) = ”H] Hi(k)
Z_ﬂ’] + a; 1 1+az (23)

Again it is clear that any terms appear in complex conjugate pairs.
o

Remark 3. This section has proved that the desired closed-loop
poles of p; are achieved for any choices of desired poles and any
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open-loop poles, irrespective of whether they are complex or real.
In all cases, the proposed control law of (13) produces a real input.
However, it is emphasised that the underlying signals implied in
the independent model of Fig. 2 will be complex numbers and as
this model is retained in the control law implementation, it as-
sumes that complex number algebra is supported by the operating
system.

It is worth repeating that a key benefit of PP-PFC as opposed to
conventional PFC is that the user can now guarantee the behavior
of the nominal closed-loop and achieve the desired dominant
dynamics. This section has shown that a simplistic implementa-
tion of PP-PFC on systems with under-damped dynamics is
effective.

5. Implementable PP-PFC using real numbers algebra

The main weakness of PP-PFC as presented in the previous
section is the reliance on complex number algebra. However, many
operating systems used to implement control do not support
complex number algebra. Consequently there is a need to develop
an alternative implementation which uses only real number
algebra.

Two alternative implementations are developed in this section:
i) handling the real and imaginary components explicitly and ii) a
formulation of the algorithm avoiding complex numbers alto-
gether. Readers should note that the case of target poles p; being
complex is also included as this gives the designer extra flexibility
which can be useful, and this is a novel contribution to the PFC
field.

5.1. Calculating real and imaginary parts separately

For complex numbers expressed in Cartesian coordinates, the
real and imaginary parts can be handled with real number algebra
as follows. In this method, each component of the complex
numbers (real and imaginary part) is calculated separately for
example, consider x =Re{x} +jlm{x} and y = Re{y} + jIm{y},
then:
xy = [ Re{y}Re{x} — Im{y}Im{x}]

~

real part

+j[ Re{y}Im{x} + Im({y}Re{x}].

imagin‘a,ry part (24)
Lemma 5. The update equation of independent model

Gn = y(k) = buck - 1) - ay@(k — 1) can be handled using the fol-
lowing two separate computations.

Re(y,f,’;)(k)) = Re{- ai}Re(y,(T';)(k -1} - lm[—ai}lm(yr(r‘;)(k — 1)} + Re{bjjuck — 1)
m{ydk)) = Ref- aIm{yPk - 1)) + Im{-a;)Re(yD(k - 1)} + Im{bjjuck - 1). (25)

Lemma 6. Only the real part of the term /Jiu“)(k) needs to be
computed.

}RE{y;?(kn

Re{pu®k)} = Red (1 - p)) Ll
' Vb b

B.y. 5.
By, }r(k)+ Re{ (a; + p])/f

B, ;
- Im{ (a; + ﬂl)ﬁ}lm(yfn)(k)l- 26)

Proof. It was established in Theorems (2) and (3) that u(k) is real
and therefore all the imaginary terms must cancel out and
therefore need not be computed. ©

Theorem 3. Compared to PP-PFC using complex algebra, the increase
in computational demand using real number algebra is incon-
sequential although the coding is slightly more involved.

Proof. As is clear from (25), (26), the PP-PFC calculation of the
real and imaginary parts of the actual submodels output required
10 mathematical operations on real numbers (summation and
multiplication) with 4 reserved places for variables in addition to
the variable u(k), and the calculation of the real parts of
pu?k) + g, ,u™Vik) required 5 operations on real numbers with
one reserved place for the variable in addition to the r(k) variable.
In comparison, the PFC of (17) uses the same memory space and 11
operations on complex numbers but in truth the difference is so
small that on modern computing it has small relevance. o

Remark 4. When the desired closed-loop pole p; is real (f; are
complex conjugates), the calculation of the real and imaginary
parts of yfri)* can be omitted because, by inspection, these are
known from y®.

5.2. New formulation of PP-PFC algorithm using real numbers
algebra

The main concept deployed next is to exploit the structure in
the independent model of Fig. 2 in order to reduce the control law
to an even simpler final form. Ironically, there is a partial move
away from the partial fraction expansion in first-order terms to the
final implementation so that the implied partial fractions are all
real, although the full decomposition structure is still implicit in
the control law design.

This section deploys a number of lemmata and theorems which
are required to establish the final result. The reader may like to
note that a key focus in many of these is to identify when terms
are real or appear in complex conjugate pairs, and when they do
not, so that this information can be exploited efficiently in any
code. The idea is to look carefully at the computation required for
each term in (22), (26).

5.2.1. Real system poles
First consider the parts of (22), (26) linked to real system poles.

Lemma 7. The parameter f3; related to a real system pole a; has real
value if the target pole p; is real, otherwise it has complex value.

Proof. This follows from the fact that f; in (16) have complex
values in conjugate pairs when p; is real, otherwise when p; is
complex, then f; will contain the complex p; and thus not be in
conjugate pairs. o

Lemma 8. The parameter (a; + p,)p; related to a real system pole a;
has a real value irrespective of whether the target pole p; is real or
complex.

Proof. Considering (16) the parameter (q; + p,)f, contains the

complex values in conjugate pairs.
I, @ +p)

(a,. + pl)ﬂl = rl‘,]%

o1z @i = ap @7

[m]

Theorem 4. The real value of the proposed weighted input signal
Re{/iiu‘” } for the submodel having real pole a; comprises numerous
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components which can be computed off-line and stored.

B

Re{pu®} = Req (1 - p)——bt—
Ry

}r(k) +(q; + pﬂéyf,?(k)-
i (28)

Proof. This is obvious in that several of the terms above do not
change.

B, B
Ky =Res 1 — p)—=—1; K ;= (a; + p)2;
0,i {( Pl)bi Z?zl y]} 1,i ( Pl)bi

Re{pu®) = Ko (k) + Ky ;9 ). 9)
[m]

Remark 5. The coefficient K,; is automatically real when the
target pole p; is real.

5.2.2. Complex system poles
Next the paper considers the parts of (21), (26) linked to
complex conjugate pairs of poles in G(z).

Lemma 9. The one-step-ahead prediction models for the summed
outputs of G;, G, and the output of G,, = G, + G, must match, as-
suming the inputs into each are the same. This means the complex
states of Gy, G can be inferred from the real states of G ,.

Proof. This is by inspection following linearity.

-1 —1

bz
1+az7!

b,z

2= G+ Gy = 1+ az!
2

-1 2
_ Biz7 4+ B,z
14+ a0z +a,a,z

_Zy;}'z)(k + 1) = Byuck)

+ Byutk — 1) = (@, + apy P (k) — @@yl >k = 1) 30

1), ()
(k + 1) = bjutk) — a (k)
Ym ! m } >y %k + 1) =y Pk + 1) + y Pk + 1).

Yk + 1) = byutk) — ayPk) 31)

In consequence, ignoring the dependence on the term u(k) which
is yet to be determined, one can write that:

—ay k) — ayPk) = Byuck — 1) = (a1 + @)yl 2 (k) — @@y 2k — 1)

y Pk + y2@k) = y§2 k). (32)
Therefore, given they are conjugates, the values yr‘n”, yr‘nz) can be

inferred from these simultaneous equations (noting that in both
the imaginary parts are zero by definition).

2[—Re(al] lm[aﬂ] Re{y{(k)}
1 0 I m{y{Pdo}

~ [BZU(k_l)—ZRe{al }y,‘n"2>(k)—alafy,‘;'2>(k—1>} . [Re{yfn”(k)}}

vy k) Im{y k)
0 Im{ay}
[1 Re{au] Bou(k—1)-2Re{ay)y; 2 (k)-aaiyy, > (k=1)
i T‘“”[ Y 2o ] 33)

[m]

Lemma 10. The parameters f;, f;. related to complex conjugate

poles a; and a;, | are complex conjugates if the target pole p; is real,
otherwise f3;, ;1 are not complex conjugates.

Proof. From (16) both f; and f3; , 1 are complex conjugates if p; is
real, otherwise if p; is complex then both f; and S, are not
conjugate pairs. O

Lemma 11. The parameters (a; + p,)p; and (a;,1 + p)p,,, related to a
complex conjugate pair of poles a; and a;,,, are complex conjugates
irrespective of whether the target pole p; is real or complex.

Proof. Considering (16), all the terms appear in conjugate pairs.
HIJ-‘l:] (@; + /)j) .

H?:l;j#i(af -a)’
H?:] @1+ P])

o is1 @is1 = @) (34)

(ai + p])ﬂi =

(RN

Lemma 12. The real value of the proposed weighted input signal
Re{pu;k) + p, il 1K)} for the two submodels having complex con-
jugated poles a; and a;,, comprises numerous components which can

be computed off-line and stored.

: ' 1=p[ b | Buitan
Re(pu (o) + 4, u™"(k)} = Re | Bty Pl (L g
i i+1 ZLI}/}L bi bi“

+ 2Re{ (a; + pp%}Re{y,i? *)}

_ Zlm{ (a; + pl)§}11n{yg>(l<)}. 35
i

Proof. This is obvious in that several of the terms above do not
change.

K0-=Re{ 1 _pll—%_'_ ﬂi+1}/i+1:|}.
1 )

E;’:] }’jl_ bi bi+1

K= 2Re{(a,~ + ppg};

Kyi=- Zlm{ (a; + pl)ﬁ};

y bl
Re{pu®(k) + g, u™ Vo) = Ky r(k) + Ky Re{yP()} + K, Im{yPk)}. (36)
a

Remark 6. The coefficient K; is automatically real when the
target pole p, is real (g, = 47,).

Theorem 5. The proposed common input signal
Re{pu®k)+p,, u*V(k)) for the two submodels having complex con-
jugate poles can be simplified to a second-order control law which is
based solely on real number algebra and using the states of the sec-
ond-order model G;;, ;.

Proof. This follows from substitution of (33) into (36).
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Table 1
Computational loading for different realizations of PP-PFC.

PP-PFC with
complex algebra

PP-PFC with
calculating
real/imag. parts

PP-PFC with
real algebra

11 operations 15 operations 14 operations

YDk 1 1) = By ju(k) + By uck — 1) - 2Refa;)y* k) — agafy Dk - 1;

Re[/}ium(k) + /}i“u(””(k)) _ I(éi'i+1)r(k) + Kl(i,i+1)yr(ri',i+1)(k) +K§i'i+1)yg'i+1)(k -1
+ K Ducke — 1K) = Ko 13

K lm{a;} - K; jRefa;} |

K(i.i+1) — :

1 2 Im{a;)

. K, ja;ai*
K“'Hl)= _ 2,144 .

2 2 Im{a;}
KU1 _ K5 By, ]

3 2 Im{a;} 37)
o

5.2.3. Computational load comparisons

Only the component of the control law corresponding to pairs
of complex poles needs to use the formulation of (37). The con-
tribution of submodels with real poles can use the simpler for-
mulation of (29). From (37), the new formulated PP-PFC calcula-
tion of the actual second-order submodels output requires
7 mathematical operations on real numbers with 4 reserved places
for variables in addition to the u(k) variable, and the calculation of
the real parts of gu®k) + 4, +1u('l”)(k) requires 7 operations on real
numbers with one reserved place for the variable in addition to
the r(k) variable. A simplified comparison of the alternative ap-
proaches is given in Table 1.

6. Numerical examples

This section will give some numerical examples to compare the
simulation times of the control (as an indicator to the simplicity of
the control action calculation) using classical PP-PFC, PP-PFC with
real and imaginary parts calculation, and the new formulated PP-
PFC algorithm, for various choices of p on two under-damped
examples M, N:

_ 04z7'+0.08z72
1-16z"+08z7% 38

__ —066z"+ 0.08z72 + 0.6z73
1-272z""+2.626772 - 0.8924z73" (39)

M has poles at —0.8 + 0.4j. The choice N matches the example used
in Fig. 5 which conventional PFC could not handle and has poles at
-0.9, -0.9 + 0.4j. The open-loop step responses are plotted in
Figs. 6 and 7, respectively.

As it is seen from the step responses, process M is of type
minimum-phase and process N of type non-minimum-phase.
Process M is of second-order, has a gain of 2.4 and a damping
factor ¢ = 0.234 which causes an overshoot in the open-loop step
response of about 45%. Process N is of third-order and has a gain of
1.47. The open-loop step response shows an undershoot of about
-700% and an overshoot of 374%. Both oscillating processes were
selected for illustration the new control algorithm as they are
difficult to control.

The average simulation time of repeated 100 simulations for
each case is considered in the computational loading results.
Moreover, the reader will notice the additional advantage of the

1.4 T

o N
[o2) - N
T T T

|

Largest pole position
o
o

0 5 10 15
Coincidence horizon

Fig. 5. Illustration of PFC closed-loop poles (closed-loop instability) with different
choices of 2 and n,=3 on the under-damped example N.
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Fig. 6. Step response of system M.
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Fig. 7. Step response of system N.

proposed approach which is the ability to select a target pole as
being complex which is not something that is possible in con-
ventional PFC; such an option is reasonable in many cases where a
small overshoot allows better behavior overall.

In the following simulations a stepwise change in the reference
signal and the disturbance acting at the process output, as shown in
Fig. 2, are applied. The algorithm can also compensate for dis-
turbances acting at the process input, but this case is not shown here.
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Fig. 8. Illustration of PP-PFC performance with different choices of p on the under-
damped example M.

6.1. Example 1: PP-PFC of example M

The PP-PFC simulation of example M is given in Fig. 8 for var-
ious choices of desired closed-loop pole p. An output disturbance
is added around the 40th sample to demonstrate the disturbance
compensating ability of the approach. It is clear that the proposed
algorithm has given effective control and moreover, the tuning
parameter p has retained an intuitive link to the resulting closed-
loop behavior as expected. Moreover, it is demonstrated that one
can select the target pole as being complex, unlike for conven-
tional PFC. Nevertheless, in this case a conventional PFC can also
give effective control although the link to the desired A (defined
based on the dominant poles of the simulations in Fig. 8) is weaker
(see Fig. 9). For interest, the reader should note that both the va-
lues of f; have a real part of 0.5 as expected (as Y 5, = 1), but also
have a non-zero imaginary part.

The simulation times are set in Table 2. The results show that
the new formulated PP-PFC have fastest control action calcula-
tions, and the PP-PFC using complex algebra have slowest control
action calculations.

6.2. Example 2: PP-PFC of example N

The PP-PFC simulation of example N is given in Fig. 10. An
output disturbance is added around the 70th sample. Despite the
obviously very challenging dynamics of this process, the PP-PFC
algorithm has given smooth control to the required target and
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Fig. 9. Illlustration of conventional PFC performance with different choices of 1 on
the under-damped example M.

Table 2
Relative simulation times of the different realizations of PP-PFC for example M.

PP-PFC with PP-PFC with PP-PFC with
p complex algebra calculating real algebra
real/imag. parts
P12 =07 100% 74% 48%
pyp =07 £j0.275 1009% 77% 48%
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Fig. 10. Illustration of new formulated PP-PFC performance with different choices
of p on the under-damped example N.

moreover, as desired, has maintained the intuitive link between
the target dynamic p and the closed-loop convergences speed.
Conversely, classical PFC is very sensitive to the choice of n, and
gives stable behavior only for a small range of large n, which in
effect makes the parameter A redundant, as is clearly seen in
Fig. 11; the plots are almost identical irrespective of the choice of A
and hence only relatively slow A can be achieved.

The simulation times are set in Table 3. Also here, the results
show that the proposed formulation of PP-PFC has the fastest
calculations, and the PP-PFC using complex algebra has the slow-
est calculations.

6.3. Example 3: Constraint handling of PP-PFC for example N

For completeness, this section demonstrates that constraint
handling can be embedded also in the PP-PFC algorithm in a
conventional PFC manner without detriment to performance

T
""" Yref
—2=0.93
-6 1 1 | 1 i 2=0.9
0 20 40 60 80 100 120
Samples
T T T T
1L i
. e e prmimim—— =
60 80 100 120

Samples

Fig. 11. Illustration of conventional PFC performance with different choices of 1 on
the under-damped example N.
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Table 3
Relative simulation times of the different realizations of PP-PFC for example N.
PP-PFC with PP-PFC with PP-PFC with
p complex algebra calculating real algebra
real/imag. parts
P13 =08 100% 45% 42%
p1=08 100% 41% 37%

py3=08+j0.2

beyond the inevitable loss of some performance when constraints
are active. The control law is summarized as follows [11]:

1. Test whether the proposed controller output satisfies plant in-
put absolute and rate constraints. If not, modify u(k) to ensure
both using saturation.

2. To ensure satisfaction of output/state constraints one must form
the implied predictions over a sensible but large horizon and
modify u(k) as required to ensure satisfaction. This reduces to a
simple for loop which ensures that maximum or minimum of
yp(k + 1) is within limits.

The constrained u(k) has to be applied in the model prediction.

Fig. 12 shows the controlled and manipulated variable plots of
example N with an input rate maximum limit of 0.1 per sample
and an absolute maximum input limit of 0.8. As can be seen, the
constraints have been handled effectively.

7. Real-time control

In this section, the proposed controller is implemented with a
real laboratory hardware. This process posses its own challenges
such as the measured data and the controller model may differ in
value and can lead to a failure if it is not addressed properly. Other
than that, the computation time of the controller need to be faster
than the sampling time to avoid any delay when updating the
output value. In this work, a Quanser SRV02 servo based unit
powered by a Quanser VoltPAQ-X1 amplifier with a flexible joint is
used as a plant. This system is operated by National Instrument
ELVIS 11+ multifunctional data acquisition. The plant is connected
to a computer via USB connection using NI LabVIEW software as
shown in Fig. 13.

The flexible joint base is mounted on the load gear of the SRV02
system. The servo angle @ together with its link will increase
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Fig. 12. Illustration of PP-PFC performance of the under-damped example N con-
sidering input constraints.

Fig. 13. The experimental plant.

positively in counter-clockwise (CCW) rotation when the supplied
voltage is positive (V,, > 0). The same situation applied to the link
deflection angle o with CCW rotation. Both 64(t) and a(t) are
measured in radians. Fig. 14 shows a schematic of the flexible joint
system [ 14| where the servo motor voltage V,, is acting as a control
variable that generates a torque 7 at the load gear to rotate the
flexible joint base. On the other hand, the viscous friction coeffi-
cient of the servo B, will oppose the applied torque at the servo
load gear and the friction acting on the link is denoted by the
viscous damping coefficient B,. The overall flexible joint system is
assumed linear with a spring stiffness K.

The main objective for this task is to track the angular speed of
the servo 4(t) by manipulating the supplied voltage V,,(t). The
general mathematical model of the process is given as (for more
details see [15]):

B
oty = LY a(t) — =24ty + lr(t)
Jeq Jeq Jeq

+ B
at) = _Ks[ ity ]e"]a(w + 2950 - e
Jeg Jeg eq
“O— MKtk Vin(D) = k()
o (40)

where the list and value of each corresponding SRV02 parameter
used are given in Table 4. By substituting the parameter value and
manipulating the algebraic equation, the control model for the
plant is reduced to:

6(t)= 619.05 a(t) — 34.700(t) + 61.07V,,(t)

@)= —1015.62 a(t) + 32.780(t) — 61.07V,,(t) 41
The model in (41) is converted to a discrete-time transfer function
with sampling time 0.02 s to get a direct relationship between the
angular speed and input voltage as:

0@z) _ 0.8451z7' - 1.556z7% + 0.8457z°
Vi@ 1-217z""+ 1.753z7% - 0.4997773 42)

Fig. 15 shows the open-loop behavior of the plant and the
mathematical model based on the voltage input profile. It is clear
that both of the outputs exhibit under-damped behavior due to
the extended joint attachment in the servo motor where there
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Fig. 14. Rotary flexible joint model [15].

7,0
<
- Motor —E ‘ Jeq
I/m Beq
Table 4
SRVO02 servo parameters specification [14,15].
Parameters Value
Gearbox efficiency, 74 0.9
High-gear total gear ratio, K, 70
Motor efficiency, 7, 0.69

Motor current-torque constant, ke
Motor back-emf constant, ki,

7.68 x 1073 Nm/A
7.68 x 1073 V/(rad/s)
Motor armature resistance, R, 26 Q2

Spring stiffness, K 0.5N/m

Viscous friction coefficient, B.q 0.004 Nm/(rad/s)
Moment of inertia without external load, Jeq 208 x 1073 kg m?2

Total moment of inertia of the arm, J; 1.9 x 103 kg m>

exist an oscillation before converging to the steady-state value. It
is noted that there is a large parameter mismatch between the
measured and model outputs. However, this discrepancy can be
handled by the independent model structure of PFC algorithm (4).

The proposed algorithm is employed with different selections
of poles according to the desired settling time. Fig. 16 demon-
strates the capability of the new PP-PFC controller to track an al-
ternating set point between —1 rad/s and 1 rad/s. The same per-
formance as in the previous simulation is obtained. The controller
managed to provide a smooth tracking to the desired target and
while, retaining the intuitive link between the target dynamic p
and the closed-loop convergence speed.

Generally, the implementation of this controller is very straight-
forward as it does not need any complex arithmetic compared to the
traditional approach. Hence, it can be easily implemented on a low-
cost hardware such as PLC (Programmable Logic Controller). In ad-
dition, the use of unit coincidence horizon simplifies both the tuning
and coding processes which makes it more transparent and attrac-
tive compared to the conventional PID controller.
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Fig. 15. The open-loop behavior of plant and model based on the supplied voltage.
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Fig. 16. Illustration of PP-PFC performance of the under-damped Quanser servo
attached with flexible joint.

8. Conclusion and future work

This paper has proposed a new approach to PFC for systems
with under-damped open-loop dynamics. In many cases a con-
ventional PFC approach is difficult to tune with open-loop oscil-
latory dynamics and thus loses important features such as sim-
plicity and intuition. This paper shows that by building on the
partial fraction expansion commonly used in industrial PFC code
to form model predictions, one can make use of the powerful re-
sults for first-order systems and apply these for high-order sys-
tems even where the partial fraction expansion gives complex
residues (under-damped systems). Critically, the overall coding
complexity and requirements are similar to the code of the con-
ventional PFC but a core advantage is that the tuning options are
now more straightforward than with a conventional algorithm. In
fact, it is shown additionally that one is now able to select the
target closed-loop pole to be complex and this is often advanta-
geous compared to the restriction to real poles with conventional
PFC.

The proposed new formulation of the PP-PFC algorithm (for
systems with under-damped open-loop dynamics) reduces the
calculation efforts in comparison to the conventional PP-PFC for-
mulation because of dealing with real numbers only. A further
advantage is that PP-PFC can be used in programmable logic
controllers or decentralized control systems which usually do not
support complex algebra; a simulation demonstration on hard-
ware was presented.

Future work aims to look more closely at the allocation of the
values f;. There is a need to consider more carefully how these
extra degrees of freedom can be utilised most effectively, while not
increasing the complexity of the approach. Finally, there is also a
need to compare this approach more formally with the shaping
approach [4].
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It is also noted that while the current approach will deal with
some level of parameter uncertainty, a formal sensitivity analysis
and design remains as future work.

References

[1] Richalet J, O'Donovan D. Predictive functional control: principles and in-
dustrial applications. Springer Science & Business Media; 2009.

[2] Haber R, Bars R, Schmitz U. Ch. 11: Predictive control in process engineering:
from the basics to the applications, Ch. 11: Predictive functional control, Wi-
ley-VCH (2011) 437-465.

[3] Rossiter JA, Haber R. The effect of coincidence horizon on predictive functional
control. Processes 2015;3(1):25-45.

[4] Rossiter J. Input shaping for PFC: how and why?. ]. Control Decis 2016;3
(2):105-18. http://dx.doi.org/10.1080/23307706.2015.1083408.

[5] Gawthrop P, Ronco E. Predictive pole-placement control with linear models.
Automatica 2002;38:421-32.

[6] Chen W-H, Gawthrop PJ. Constrained predictive pole-placement control with
linear models. Automatica 2006;42:613-8.

[7] Clarke DW, Mohtadi C, Tuffs PS. Generalized predictive control. Part I. The

basic algorithm. Automatica 1987;23(2):137-48.

[8] Wang W, Mao ZZ. Generalized pole-placement adaptive control algorithm and
its convergence analysis. Sel Top Model Control 1995;2:874-8.

[9] Fikar M, Unbehauen H, Mikles ]. Design of a predictive controller based on
pole-placemen. In: Proceedings of the 3rd European control conference 4
(2004) 131-135.

[10] Khadir M, Ringwood J. Stability issues for first order predictive functional
controllers: extension to handle higher order internal models. In: Proceedings
of the international conference on computer systems and information tech-
nology (2005) 174-179.

[11] Rossiter J, Haber R, Zabet K. Pole-placement Predictive Functional Control for
over-damped systems with real poles. ISA Trans 2016;61:229-39.

[12] Khadir M, Ringwood J. Extension of first order predictive functional controllers
to handle higher order internal models. Int J Appl Math Comput Sci 2008;18
(2):229-39.

[13] Rossiter ]. Notes on multi-step ahead prediction based on the principle of
concatenation. In: Proceedings of the Institution of Mechanical Engineers, Part
I: Journal of Systems and Control Engineering 207(4) (1993) 261-263.

[14] Quanser user manual flexible joint experiment set-up and configuration,
Quanser Inc., 2012.

[15] Apkarian ], Karam P, Levis M. Instructor workbook set-up flexible joint ex-
periment for LabView users. Quanser Inc; 2012.



Appendix B

UTILISING LAGUERRE FUNCTION IN
PREDICTIVE FUNCTIONAL CONTROL TO
ENSURE PREDICTION CONSISTENCY

M. Abdullah and J. A. Rossiter

This paper has been published in:
Proceedings of the 11th UKACC International Conference on Control 2016

135



Declaration form

UTILSING LAGUERRE FUNCTION IN PREDICTIVE FUNCTIONAL CONTROL TO ENSURE PREDICTION
CONSISTENCY

(Proceeding of the 11 International Conference on Control 2016)

Contributions of authors:

M. Abdullah

Provided the initial idea, formulations, codes, simulations and draft of this paper.

J. A. Rossiter

Supervised M. Abdullah and proofread the paper.

Signatures:

M. Abdullah J.A. Rossiter

(First author) (Second author)



2016 UKACC 11th International Conference on Control (CONTROL)

Belfast, UK, 31st August - 2nd September, 2016

Utilising Laguerre Function in Predictive Functional
Control to Ensure Prediction Consistency

Muhammad Abdullah* and John Anthony Rossiter!
*TDepartment of Automatic Control and System Engineering,
University of Sheffield, Mappin Street, S1 3JD, UK.
Email: MAbdullah2 @sheffield.ac.uk* and j.a.rossiter@sheffield.ac.uk’
*Department of Mechanical Engineering,
International Islamic University Malaysia, Jalan Gombak, 53100, Kuala Lumpur Malaysia.
Email: mohd_abdl @iium.edu.my

Abstract—This work proposes the use of Laguerre function
in Predictive Functional Control (PFC) to produce well-posed
decision making. The constant control input assumption of a
classical PFC is replaced with the Laguerre polynomial and the
steady state input of a system. With this slight modification, better
consistency between model predictions and an actual system
behaviour is achieved. In addition, the effectiveness of desired
closed-loop time constant as PFC tuning parameter becomes
more significant. The coding and tuning processes of the proposed
approach are very straightforward and in line with the key selling
points of PFC.

Keywords—Predictive Control, PFC, Laguerre Function

I. INTRODUCTION

Advancement in modern computation has triggered the
usage of Model Predictive Control (MPC) in many appli-
cations such as automotive [1], chemical [2], and others.
This controller offers a systematic and effective framework to
handle system constraints and delays [3]. However, an MPC
application is more expensive compared to other traditional
controllers as it needs higher computational loads and coding
complexity for prediction and optimization processes. Besides,
in a real industrial application, staff often prefer to use a
simpler controller such as PID rather than predictive control
due to their limited understanding and experience [4].

On the other hand, Predictive Functional Control (PFC) is
a simplified version of MPC [5]. Currently, this controller
is widely adopted in scenarios traditionally dominated by
PID due to its simplicity and ease of tuning. PFC computes
the manipulated input of a system with a simplified cost
function. It forces the system output to match the desired target
trajectory at a specific horizon. Due to the constant future input
assumption, PFC coding becomes simple and consequently,
it only uses minimal computation and indeed for low order
models the coding is almost trivial. The use of settling time
or closed-loop time constant as a tuning parameter makes the
designing process more transparent, especially to industrial
users. PFC also retains similar advantages to more classical
MPC algorithms such as the systematic handling of constraints
and delays control problems. Taken together, these advantages
explain the very wide industrial application of PFC [6].

Nevertheless, although PFC is simple and user-friendly, it is
underpinned by a decision making process which at times is

978-1-4673-9891-6/16/$31.00 ©2016 IEEE

ill-posed. For example, earlier work has shown that there can
be a large mismatch between the open-loop predictions used
for decision making and the actual closed-loop behaviour that
results, especially when using small horizons [4]. Conversely,
with large horizons, better prediction consistency is usually
achieved, but the effectiveness of closed-loop time constant as
the tuning parameter becomes less significant. This is mainly
due to the constant future input assumption of PFC and so
there is insufficient degrees of freedom (d.o.f.) to ensure
prediction consistency when anything other than open-loop
behaviour is wanted.

For systems with challenging dynamics, PFC practitioners
have proposed several modifications to the default algorithm
[7]. However, this leads to a more complicated PFC imple-
mentation as one needs to engage both with the selection and
tuning of the required modification. One alternative way to
tackle difficult dynamics is via shaping the predicted input so
that it will converge smoothly to its steady state value [8]. The
proposed modification is expected to give a better prediction
consistency which will be useful for higher order systems and
complex control problems.

Motivated by Laguerre MPC [9], [10], this paper aims to
explore the potential benefits of applying Laguerre functions
within a PFC framework. In MPC, this orthonormal function
is utilised to enhance the horizon effect [10]. In essence a
large horizon input prediction can be obtained with a small
number of parameters/d.o.f.. This can reduce the implied
computational burden dramatically and improve the controller
performance [9], [11] where longer input horizons are needed.
Moreover, the Laguerre function can capture the desired
system dynamics to some extent in that its own convergence
is linked to its pole which is a design parameter.

In PFC, Laguerre function is usually used as a black box
model to represent a plant [12]. A high order system can be
modelled with a low order Laguerre network. This will reduce
the controller computation demand significantly. However, the
idea of this work is to replace the PFC constant input predic-
tion with an alternative assumption based around a Laguerre
polynomial. The specific idea is to embed two dynamics within
the predicted input, that is both the expected steady-state
and also a deviation which converges to steady state value



with dynamics accorded to the selected Laguerre pole. This
modification will give a well-posed solution, in addition to
enhancing the effectiveness of close-loop time constant as a
PFC tuning parameter. Section 2 provides a brief description of
nominal PFC framework and formulation. Section 3 explains
the modification of PFC to utilise a Laguerre function. Section
4 discusses various numerical examples. Section 5 presents the
conclusion and future work.

II. NOMINAL PFC FORMULATION

This section reviews the basic framework of nominal PFC
where the objective is to track a step target. In order to give
focus to the key conceptual contribution of this paper, the fine
details of the algebra to ensure offset correction and integral
action is excluded in the formulation although obviously
applied in all the numerical examples. This exclusion does not
affect the validity of the analysis and tuning presented. Integral
action is usually embedded in PFC using an independent
model formulation; predictions are corrected using an offset
term between the output of the independent model and the
actual process. This technique also ensures offset-free tracking
in case of small levels of uncertainty [4].

A. Target Trajectory

PFC design is based on simple human concepts. One esti-
mates a required control action according to how fast one ex-
pects/desires the output to approach the target. More precisely,
in PFC the n-step ahead system prediction | is forced to
move closer to the target R than the current output y;, with
a constant future input assumption uy i, = ug, % = 0,...,n.
The target trajectory is derived based on a desired closed-loop
pole of A. The mathematical formulation of this objective is
met by the predictions satisfying an equality, k samples ahead:

Ykt = B — (R —yp)\" 1)

There are two main tuning parameters of PFC. The first is
the coincidence horizon n, defined as the coincidence point
at which one desires the system prediction and the target
trajectory to coincide. The second is the closed loop pole A
which links to 95% of the desired settling time (often denoted
as TRBF in the industry: A = ¢”/TEBF T ig the sampling
time). An interested reader can find more detailed explanations
of PFC theory and concepts in the references, e.g. [4]-[6].

B. Model Prediction and PFC Control Law

PFC utilises the n-step ahead prediction of a linear mathe-
matical model to compute the manipulated input. In this paper
and without loss of generality, a general transfer function
model is used to represent the system. For such models the
prediction algebra is very well known in the literature (e.g.
[3]). Hence, here only the key results are provided for the
sake of conciseness. For inputs u; and outputs yy, the n-step
ahead unbiased linear model prediction is formulated as:

Yk+nlk = Hnu_lf + Pnzf_k + Qny_k 2

where parameters H,,, P,, ),, depend on the model parame-
ters and for a model of order m:

U Uk—1 Yk
Uk+1 Uk—2 Yk—1

% = ;) U = ; % = .
Uk+n—1 Uk—m Yk—m

To compute the control input, the prediction (2) is substi-
tuted directly into (1) to obtain:

“)

Using the constant future input prediction assumption and thus
defining h,, = > (H,,) the PFC control law reduces to:

R—(R=yo)\" = (Put + Quyt)
h?L

Remark 1: Tt is convenient to define the expected value ugg
of constant input which will lead to no steady-state offset. For
a given model and disturbance estimate the computation of
this is straightforward [3].

Hyug + Pk + Quiye = R — (R — yp) A"

U =
—

)

III. LAGUERRE PFC FORMULATION

The reader is reminded of the underlying ethos behind this
proposal. For a system to have other than open-loop behaviour,
the input signal must include some dynamics. Therefore, in
order for the input prediction to be closely matched to the
desired closed-loop behaviour, then the input prediction must
also have dynamics. However, the default PFC assumption is
that the future input is constant, that is, it has no dynamics
and therefore the default predictions can only match open-
loop behaviour. The intention here is to put some dynamics
into the input predictions and thus enhance the prediction
capabilities of PFC enabling a matching with a greater range
of desired closed-loop behaviours. This, in turn, should enable
more effective and systematic tuning.

In this first subsection, the basic principle of Laguerre
function and how it is used to shape the input prediction are
explained briefly. The latter subsection will look at its im-
plementation within PFC framework to generate new control
law. The key focus of this formulation is to keep the coding,
computational load and interpretation as simple as possible as
these features are key selling points of PFC.

A. Input Parametrization using Laguerre Function

The discrete Laguerre polynomial is derived from the dis-
cretisation of continuous Laguerre function [10]. This or-
thonormal function is widely used in system identification
due to its ability to capture the system behaviour with fewer
parameters. The z-transform of discrete Laguerre polynomials
are defined as:

(271 —a)i~1

Li(z) =V1—-a?~———

(%) A a )

where a is the Laguerre pole which depends on a user

selection, and ¢ denotes the order of Laguerre polynomial. To
ensure stability, the pole should be in the range of 0 < a < 1

(6)



[10]. Although Laguerre polynomials of high order may be
used in MPC [10], [11], here only a first order Laguerre
polynomial is employed to shape the input prediction to ensure
a smooth convergence. The first order Laguerre function, with
modified scaling for simplicity, can be expressed in vector
form as:

1

Li(z)=—— =

2 -2
1—az71 ZhAe )

1+az ' 4a

Define Ly = [1,a,a?,--- ,a" !]T. Now we are in a position

to define the input prediction to be deployed in PFC.
Theorem 1: A future input parameterised as

u(z)

_ Uss n
T 1=zt + 1—az1

(®)

will give output predictions which settle at the desired steady-
state. n) represents a degree of freedom.
Proof: The signal defined in (8) has the property that

lim up = ugs ©
k— o0
This is obvious as the definition of Li(z) shows that the
components converge to zero asymptotically. By definition
(see Remark 1), u,, is such that:

im up = ugs = (10)

li = |
Jm Jm =1

As the Laguerre polynomial evolves over the horizon, it will
converge to the steady state input with respect to its pole a.
Noting that (8) is equivalent to u; = L1n + uss, the output
prediction is modified by substituting it into (2):

Yk+tnlk = HyLin + hpuss + Pn7<1_k + Qny_k (11)

B. Laguerre PFC Control Law

This section defines the PFC law using the Laguerre poly-
nomial to shape the input predictions.

Algorithm 1: Define the output prediction n-steps ahead
using (11). The PFC law is defined by substituting this
prediction into (1) and solving for the d.o.f. 7.

R— (R = yo)\" = (Putt + Quie) — hotts
H'nLl

n= 12)
Due to the receding horizon principle [10] and the definition
of Li(z), the current input is defined as:
Up = Uss + 7 (13)

Remark 2: It is worth noting that with this control law
structure, it is straightforward to add some constraint handling
capabilities, that is, modify 7 as necessary to ensure that
the input predictions meet constraints. This method will only

require a simple loop which is common practice in industrial
PFC implementations [4].

IV. NUMERICAL EXAMPLES

In this section, various numerical examples (a first order
system, a second order system and a third order non-minimum
phase system) are presented to show the benefit of the pro-
posed Laguerre PFC algorithm. The simulation will focus on
the tuning process and the concept of well-posed decision
making, that is consistency between the predictions and the
actual closed-loop behaviour that results.

For each case, two figures are plotted to represent the
open-loop and closed-loop input and output of the alternative
controllers (1,12). The implied prediction at a given sample
is denoted by subscript p (input u,, and output y,). While for
the actual closed-loop behaviour, it is expressed with subscript
s (input ug and output ys). The target trajectory is used to
represent the signal r instead of steady state target R.

The desired closed-loop pole A and the Laguerre pole a
are both set to 0.7 for all the cases. In the last subsection,
the effect of varying Laguerre pole is discussed briefly. For
reference, the steady state input of a system is plotted as
uss. The key sign for well-posed decision making is when
the prediction and behaviour are similar or relatively close
to each other. This indicates that the controller only needs a
minimum effort to change the system input from one sample
to the next. Conversely, a drastic system input change indicates
inconsistent foundation within a control law which could lead
to unpredictable and undesirable effects.

A. First Order System

The first order system is:

_ 0.25z71
T 1-0.82"1

A suitable coincidence horizon is selected based on the coinci-
dence point between the open loop prediction and the desired
target trajectory [4]. From Fig. 1, it is clear that n = 4 is
the suitable choice. Fig. 2 shows the performance of nominal
PFC and Laguerre PFC (LPFC). The upper figure represents
the output behaviour and the lower figure illustrates the input
behaviour. Both of the controllers manage to track the set point
R asymptotically. However, nominal PFC produces some in-
consistency between the implied prediction y,(PF'C') and the
actual closed-loop behaviour ys(PEFC). The output prediction
continues to rise above the desired target due to the nominal
constant input assumption. Although the actual behaviour is
close to the target trajectory r, the control input us(PFC)
requires under actuation from one sample to the next as it
differs from the predicted one u,(PFC). By applying a La-
guerre polynomial, the consistency between output prediction
yp(LPFC) and actual behaviour ys(LPFC) is improved
dramatically. This shows that the controller is producing well-
posed decision where the input prediction u,(LPFC') and
the system input us(LPFC) coincide with each other and
converge smoothly to the system steady state input uss. In
addition, with the Laguerre function, the effectiveness of X as
the tuning parameter becomes more significant compared to

Gi (14)
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Fig. 1. Ist order step response G1 with target trajectory 7.
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Fig. 2. 1st order system response for nominal PFC and Laguerre PFC.

the nominal PFC. The result indicates that the system output
yp(LPFC') exactly mimics the target trajectory r.

B. Second Order System

Most of the second order systems or higher have a lag in
their step response [4]. Thus, it is not realistic in general to
expect the system output to match a first order target trajectory
in immediate transients. In this study, the selection of coin-
cidence horizon for these particular systems is made based
on the conjecture presented in [4]. A good range is defined
approximately around 40% to 80% rise of the step response to
its steady state value where the gradient is significant. Fig. 3
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Fig. 3. 2nd order step response G2 with target trajectory r
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Fig. 4. 2nd order system response for nominal PFC and Laguerre PFC.

shows the step response of the 2nd order system (15) alongside
the desired closed-loop behaviour (A = 0.7). The 40% to 80%
rise of the step response is approximately corresponding to
the coincidence horizon of n = 5 and n = 15, respectively.
Extending it to the target trajectory, the suitable horizon is
selected as n = 5 as this gives a significant gradient.

B 0.04z71
© 1—-1.6271 +0.64272
Fig. 4 shows the performance of both PFC controllers,

nominal and Laguerre PFC in tracking the set points with
n = 5. A similar conclusion can be drawn as for the first order

G 15)
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Fig. 5. 3rd order non-minimum phase system step response G3 with target
trajectory r

example. The proposed LPFC controller manages to produce
a well-posed solution as can be seen from the comparison
between y,(LPFC) and ys(LPFC) graphs. In addition, it
also provides a closer output response y,(LPFC) with the
target trajectory 7 compared to the nominal PFC y(PFC).
As stated earlier, a close match in early transients is not a
reasonable expectation.

C. Non-minimum Phase System

For the next case, a third order non-minimum phase system
is considered. The transfer function model is given as:

_—0.0569z ' 4 0.0514z2 + 0.05022 3
T 1—-1.9842271 4+ 1.33012~2 — 0.3012z73

The step response of this system together with the desired
target trajectory are plotted (see Fig. 5). A similar procedure
is used as the previous second order example where the
coincidence horizon is selected based on 40% to 80% rise
of its step response. Thus, the horizon should be in the range
of 7 < n, < 12. Selecting below this range will lead to a
poor closed-loop performance. On the other hand, selecting
above this value will put too much emphasis on the steady
state value. For this case, a choice n = 7 was made.

Fig. 6 shows the control performance of nominal PFC
and Laguerre PFC for the non-minimum phase system. As
expected, neither controller is able to track the 1st order target
trajectory in transients because of the non-minimum phase
characteristic. However, Laguerre PFC manages to produce
a well-posed decision. Without Laguerre, the output predic-
tion y,(PFC) continues to rise beyond the target trajectory.
Conversely, with Laguerre, both input prediction u,(LPFC)
and output prediction y,(LPFC) converge smoothly to the
desired targets.

Gs

(16)

D. Effect of Varying Laguerre Pole

An interesting observation is noted here. The convergence
of the predicted input depends on the selected value of the La-
guerre pole. This parameter determines how fast the predicted
input converges and implicitly therefore has an impact on the
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Fig. 6. 3rd order non-minimum phase system response for PFC and LPFC.

convergence rate of the output predictions. Logically, the value
a should be equal to the desired closed-loop time constant A.
However, Fig. 7 illustrates the effect on closed-loop behaviour
of varying the Laguerre pole a on the second order system. As
one reduces the pole, the system output produces behaviour
closer to the target trajectory but with a higher initial input.
Conversely, if one increases the pole to a higher value, the
input prediction converges slower to the steady state value
with a lower initial input.

Although it is not quite as obvious as with the second order
system, a similar behaviour is produced by the third order non-
minimum phase system (see Fig. 8). Decreasing Laguerre pole
to a smaller value will force the system input to converge faster
to its steady state value. This will generate a closer output
response with the target trajectory in demand of higher initial
input. On the other hand, increasing the pole to a higher value,
the opposite effect is gained. With this kind of ability, it will
not only increase the effectiveness of A as tuning parameter but

also improve the system performance compared to the nominal
PFC.

Despite these promising results, questions remain. Should
the value of Laguerre pole a equal to the desired closed-
loop time constant A, or should it become the second tuning
parameter to improve the system performance. Clearly, further
work is required to establish detailed analysis of this issue.
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Fig. 7. Laguerre PFC for 2nd order system with different Laguerre pole a.
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Fig. 8. Laguerre PFC for 3rd order non-minimum phase system with different
Laguerre pole a.

V. CONCLUSION

This work reviews the possibility of utilizing Laguerre
polynomials to shape the PFC input prediction. Instead of
the constant future input assumption, Laguerre PFC forces
the input prediction to converge to its steady state value
throughout the horizon. This slight modification can improve
the consistency of the decision making where the optimal input
differs significantly from a constant. The examples have show
that the proposed controller can improve the PFC performance
of first order system, second order system, and third order non-
minimum phase system. By improving the consistency of the
underlying PFC assumptions, the proposed PFC law can also
improve the effectiveness of A as a tuning parameter, with
obvious benefits to end users.

The next steps involve consideration of real industrial appli-
cations and a systematic analysis of robustness and sensitivity.
The PFC controller is well known for its simplicity, it works
well in many applications. However, for many scenarios a
number ad-hoc constructive methods are used to improve be-
haviour and thus there is a need for a more systematic analysis
and insight which can lead to a more consistent and flexible
algorithms for such scenarios. In addition, it is also important
to test the proposed method on the system with a time delay
or unstable dynamics as it may sometimes degrade the closed-
loop control performance in many industrial applications.
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© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Predictive Control, Constrained PFC, Effective Constraint Technique.

1. INTRODUCTION

Most control systems have constraints which can be identi-
fied as input constraints, rate constraints, state constraints
and output constraints. If these constraints are not consid-
ered systematically in a control design, it may result in un-
wanted behaviour such as overshoots, long settling times,
and even instability. Satisfying constraints effectively offers
many attractive benefits including a higher production
profit, better control performance, lower maintenance cost
and safer control environment (Rossiter, 2003; Richalet
and O’Donovan, 2009; Wang, 2009; Abdullah and Idres,
2014a). Clearly, these scenarios justify the need for a
systematic constrained controller design.

In practice, the commonly used Proportional-Integral-
Derivative (PID) controller faces difficulties in handling
constraints. For example, the usage of an integrator during
constraint violations can produce wind-up and/or satura-
tion (Rossiter, 2003). Although, anti wind-up techniques
can prevent this situation (Visioli, 2006), these require
tuning procedures which are difficult to design and manage
for different combinations of dynamics and constraints.

Conversely, Model Predictive Control (MPC) utilises a
representative mathematical model to form an accurate
future prediction of the system behaviour and thus sat-
isfies constraints systematically via an optimal control
approach (Rossiter, 2003; Wang, 2009). However, typical
MPC strategies require a high computational demand and
expensive computer hardware, thus are only suitable for

* This work is funded by International Islamic University Malaysia
and Ministry of Higher Education Malaysia.

certain applications (Rossiter et al., 2010; Jones and Kerri-
gan, 2015). Indeed, as the number of constraints increases,
the optimal constraint handling problem requires increas-
ingly complex and demanding solvers.

Many industrial end-users are willing to trade off some
loss in optimality with ease/cost of implementation. This
preference has triggered the widespread acceptance of Pre-
dictive Functional Control (PFC) among industrial prac-
titioners. PFC belongs to the family of predictive control
which compute the manipulated input based on a sim-
plified cost function. It provides some valuable properties
namely intuitive tuning, simplicity in coding, low com-
putational demand, effective handling of dead-time pro-
cesses and a basic constraint handling ability (Richalet and
O’Donovan, 2009). With these features, PFC has become
a popular and widely used alternative to PID controllers,
especially for SISO loops.

The nominal PFC utilises a constant future input as-
sumption to reduce the computation burden and formu-
lation complexity (Richalet and O’Donovan, 2009). This
assumption can be effective in some scenarios, especially
where short predictions work well enough to capture the
core dynamics. However, with long predictions, the con-
sistency with the actual closed-loop behaviour can deteri-
orate significantly thus invalidating any assumptions used
for constraint handling (Rossiter and Haber, 2015; Abdul-
lah and Rossiter, 2016). This break down in consistency
can imply that the PFC constraint handling approach is
invalid at worst and leads to poor decision making (that
is, input choices) at best. Moreover, PFC practitioners
commonly use an ad-hoc approach for managing state

2405-8963 © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2017.08.2222
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constraints, where multiple regulators that work in parallel
are switched either to track the set point or satisfy the
constraint depending on a supervisor decision (Richalet
and O’Donovan, 2009). This structure works in most appli-
cations, but has a disadvantage in that it requires a careful
tuning procedure to avoid conflicts with the internal con-
straints which thus counters some of the inherent benefits
of a simple and transparent approach. The operation cost
also may increase due to the use of multiple regulators.

This paper proposes a better constraint strategy to allevi-
ate some of the drawbacks of the conventional approach.
A Laguerre function will be utilised to improve the pre-
diction consistency (Abdullah and Rossiter, 2016), hence
instead of assuming a constant future value, the future
predicted input converges to the steady state exponentially
based on the desired pole. With a well-posed decision,
the constrained solution will become more precise and
less conservative. In addition, rather than handling state
constraints with a multiple regulators scheme, a vector
approach is considered to simplify the computation and
tuning processes.

Section 2 provides a brief description of a traditional con-
strained PFC formulation. Section 3 presents the proposed
Laguerre PFC scheme for constraint management. Section
4 gives a comparison between the nominal and Laguerre
approaches based on two numerical examples. Finally,
section b presents some conclusions and future work.

2. NOMINAL CONSTRAINED PFC FORMULATION

This section provides a brief review of nominal PFC in-
cluding constraint handling. For simplicity of presentation
of the core concepts, the main objective is to track a con-
stant step target and moreover, the offset correction and
integral action algebras are omitted, although included
in the numerical examples. These simplifications do not
affect the core analysis, insights and results presented.
Finally, without loss of generality, the PFC formulation
is constructed using a general transfer function structure.

2.1 Unconstrained PFC

The basic principle of PFC is to drive the n, step ahead
prediction of output yjyn,|r nearer to the set point R
than the current output y;. The ratio is linked to a tuning
parameter is the desired closed loop pole A = ¢ 3T/CLTER
where T is the sampling time and CLTR is the desired
closed loop settling time (to 95%). The basic PFC law is
defined by enforcing the following equality:

Ykgny b = B — (R —yp) ™ (1)
where n,, is denoted as the coincidence horizon. There are
some subtleties to ensure offset free tracking but the basic
law is still (1). For a more detailed description of PFC
theory and concepts, interested readers can refer to these
references, e.g. (Rossiter and Haber, 2015; Richalet and
O’Donovan, 2009; Haber et al., 2011).

Since the prediction algebra for general transfer functions
is well known in the literature (e.g. (Rossiter, 2003)), only
simplified formulations are presented here. The n, step
ahead unbiased linear prediction for inputs u; and outputs
Y can be represented as:

Yktnylk = Hny% + Pnylf_k + Q”y?{_k (2)
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where H,, , P, Qn , depend on the model parameters and
for systems of order m:

Uk Uk—1 Yk
Uk+1 Uk—2 Yr—1
ug = : Yk = : Yk = : (3)
Uk+n—1 Uk—m Yk—m

The control input is solved by substituting the predic-
tion of (2) into (1) alongside the assumption of a con-
stant future input, namely wpyjr = ug,i = 0,...,n,.
In consequence the parameter H, can be simplified to
B, = Hy,[1,1,---]7 and (1) becomes:

hny ug + P"'yy_k + Qnyy_k =R - (R - yk)/\ny (4)
After minor rearrangement, the, PFC law reduces to:

R — (R —yp)\" — (Pny’tflc + Qnyy_k)

hny

(5)

U =

2.2 Input and Input Rate Constraints

The system input is often constrained because of physical
limits or indeed desired limits on temperature, pressure,
voltage and others. These constraints are presented as:

Umin < Uk < Umaa (6)
Atpin + tup—1 < up < Ao + Up—1 (7)

where Auy,in and Aupg, are the minimum and the
maximum rate, while Ui, and Um,q,; denote the minimum
and maximum input. Without explicitly including these
constraints in the control computation, a clipping method
can be utilised (Fiani et al., 1991). When the limit in
(6) or (7) is violated, the controller will treat it as an
equality constraint (Wang, 2009). However, it is crucial for
the model to detect possible constraint violations a priori
(Richalet and O’Donovan, 2009). Failure to do this could
introduce an overshoot in the input (and/or output) due
to a mismatch between the predicted model behaviour and
the actual system behaviour.

Remark 1. The input and rate constraint need only be
implemented on the current input within conventional
PFC because of the constant future input assumption.

2.8 State Constraints

In some applications (i.c heat treatment) an internal
variable, state or output may be constrained either for
an economic or safety reason. To solve this problem, the
conventional PFC approach uses multiple regulators which
run in parallel (see Fig. 1) (Richalet and O’Donovan, 2009;
Fiani et al., 1991).

e The first regulator PF'C] is the preferred control law
and produces input uy  (using (5)) to track the set
point while satisfying its internal constraints. Within
some validation horizon to be defined, the supervisor
uses input u;  to predict the future state behaviour
using a prediction model such as (2). If the state
predictions are within their limit, then use uy = uy .

e The second regulator PF'Cs is more conservatively
tuned and tracks the state limit by manipulating
input ug . When the state limit is expected to be
violated using PFCy, then use uy = ug k.
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Xmax u2
PFC2 P2 ——
X
u
Supervisor
S PFC1 '—,I P1 —)y
u1
T |

Fig. 1. Schematic of PFC considering state constraints.

e An advanced decision-making method such as fuzzy
logic, look up table, or artificial neural network may
be utilised for a smoother transition.

Remark 2. The second controller PF'C5 regulates the sec-
ond input us  based on a state prediction equation:

Thgng |k = Moy Uk + anlﬂc + Qnﬁﬂc (8)
where h,,_, P, ,Qn, denote the state model parameters.
The maximum state limit x,,4, is a set as a target. With
a suitable coincidence horizon n, and the desired closed
loop pole Az, input usg , is computed as:

— (Tmaz — TE)AY® — (Pp U + Qn, Tk)
Ny

wmam

U2,k =

The associated PFC is tuned, if possible, to avoid oscilla-
tions in the predictions to ensure the constraint is satisfied.

Remark 3. A suitable validation horizon for checking the
predictions associated to PFC; should be used since the
projection of %1,k must include the open loop time response

of PFCs. In a(iiition, the target pole A\, of PFC5 must be
compatible with the need to satisfy the internal constraints
of PFC;. Choosing a fast pole to improve the overall
system response may decrease the controller robustness
and introduce conflicts with the actuator limit (Richalet
and O’Donovan, 2009).

3. CONSTRAINED LAGUERRE PFC FORMULATION

This section presents the formulation of PFC based on
Laguerre based input predictions. By embedding expo-
nentially decaying dynamics within the input prediction,
it enables PFC to achieve a closer match to the desired
closed-loop behaviour. This can improve the reliability of
the constrained PFC solution. A detailed analysis and
benefits of Laguerre PFC are presented in Abdullah and
Rossiter (2016). Since a similar strategy to nominal PFC
is adopted for input and rate constraints (Remark 1), only
the state/output constraint case is presented here.

The Laguerre PFC approach requires explicit knowledge
of the expected constant steady-state input wuss which
will lead to no steady-state offset; in fact this value is
implicitly used in conventional MPC as well. For a given
model and disturbance estimate, the computation of this
is straightforward (Rossiter, 2003).

3.1 Unconstrained Laguerre PFC formulation

A Laguerre polynomial is often used for system identifica-
tion and estimation as it can provide the ability to capture
system behaviour with fewer parameters (Nurges, 1987).
The z-transform of discrete Laguerre polynomials are:

L) = Vi—a@i

(1 —ae 1y O<axl1

(10)
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where j is the order of Laguerre function and a is the
Laguerre pole which depends on a user selection. Although
a high order polynomial can be used in MPC (Abdullah
and Idres, 2014b; Wang, 2009), this work employs a first-
order Laguerre polynomial to retain the simplicity of
formulation especially when dealing with low order system.
The first-order Laguerre function, with altered scaling is:

1
Li(z) = a1 = l+azt+a?22+--- (11
Define Ly = [1,a,a?,--- ,a” 1]T. Now we are in a position
to define the input prediction to be deployed in PFC.

Theorem 1. A future input parametrised as
u(z) — uSS 77
11—zt 1—qaz?!
will give output predictions which settle at the desired
steady-state. 1) represents one degree of freedom.

(12)

Proof: The signal defined in (12) has the property that
(13)

lim ug = ugs
k—oo

= limy,=R O
k—o0

The implied input prediction in (12) converges to the

steady state exponentially with a rate a. The associated

output prediction is derived by substituting (12) into (2):

yk+ny|k = hnyuss + HnyLl'r] + Pnyy_k + Qnyy_k (14)

The following algorithm defines the PFC law using the
Laguerre polynomial to shape the input predictions.

Algorithm 1. (LPFC). Define the n, step ahead predicted
output using equation (14). The PFC law is defined
by substituting this prediction into (1), solving for the
parameter 7 and then computing uy from (12).
R— (R - yk))‘ny - (Pny’lf_k + Qny?{_k) - hnyuss (15)
Hny Ll

Due to the receding horizon principle (Wang, 2009) and
the definition of L;(z), the current input is defined as:

U = Uss + 1) (16)
Remark 4. The value of Laguerre pole a determines the
convergence speed of a system (Abdullah and Rossiter,

2016). For low order system, a reasonable choice is @ = A
where it gives a direct link to the desired target trajectory.

’[7:

Remark 5. The maximum (if bigger than wuss) and mini-
mum (if smaller than wus) of the predicted future input
given in (12) is the first (current) value wy. Similarly,
the maximum/minimum rate is given from Aug = ugs +
n — ug—1. Hence, with LPFC, the maximum/minimum
input rate/value (relative to expected steady-state) occur
at the first sample and thus the proposed Laguerre PFC
can adopt an equivalent constraint handling procedure for
input constraints as standard PFC.

3.2 Efficient state and output constraint handling

To increase the efficiency of constraint strategy, an off-
line prediction is utilised. The limiter computes the max-
imum or minimum input that is associated with all con-
straints being satisfied within the validation horizon. The
technique has similarities to the so called ONEDOF and
reference governer approaches in the literature Rossiter
et al. (2001) and has the advantage of being implementable
using a single simple loop at each iteration.
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Lemma 2. The input constraints can be represented by a
set of linear inequalities with a single variable 7.

Proof: This follows directly from the observations in
remark 5. The constraints can be summarised as follows:

1 Uss Umax
-1 —Ugs Wi
_|_ S8 nin I:l 17
1 " Uss — Uk—1 Aumam ( )
-1 Uk—1 — Uss Alpin

Lemma 3. State constraints can be represented by a set of
linear inequalites with a single variable 7.

Proof: This follows directly from computation of the state
predictions as in (14) and comparison with the state limits.
For example, a single state limit gives the following;:

Ugs 1
Ugs a
Hnm Uss + CL2 n + Pnr% + Qn,%lf S Tmaz
—_— ——
frg (k)

One can stack these inequalities over a specified horizon

such that, for example:
H 1 Uss 1
Hy Uss

f1(k)

+ @ i + f2(k) < Tmazx O (18)

Theorem 4. All the input, state and output constraints
can be represented by a single vector inequality as:
Mn < wv(k) (19)
Proof: This is a consequence of the previous two lemmata
by combining all the inequalities for all the constraints.
The vector M is fixed but the vector v(k) varies each
sample as it depends upon past system data and the
estimation of the expected steady-state input ug,. [J

Corollary 1. In the absence of uncertainty, the inequalities
implied in (19) are always feasible, assuming feasibility at
the previous sample, no changes in the target and a long
enough horizon.

Proof: The structure of the input prediction (12) is such
that, as long as uss does not change from one sample
to the next, then one can always choose 1 so that the
predicted input trajectory is unchanged; this is obvious
from the simple exponential structure. Consequently, if
there exists an 7 to satisfy constraints at the previous
sample, there must exist a valid value at the current
sample. [We shall not discuss issues linked to required
horizon lengths (Gilbert and Tan, 1991) as this would
take the complexity beyond reasonable expectations for
PFC approaches where a lack of rigorous mathematical
guarantees is accepted to allow more simplicity.] O

Remark 6. Infeasibility can arise due to too fast or too
large changes in the target (or disturbances) as this causes
large changes in the value of uss. However, Laguerre PFC
helps enormously in this case because the exponential
structure embedded into the input prediction automati-
cally slows down any over aggressive input responses and
thus significantly increases the likelihood of feasibility be-
ing retained. In the worst case, set point changes need to
be moderated (as in reference governer approaches) but
such a discussion is beyond the remit of this paper.

We can now define the constraint handling algorithm.

M. Abdullah et al. / IFAC PapersOnLine 50-1 (2017) 10705—-10710

Algorithm 2. (LPFC constrained). First ensure that the
change in the steady-state value of wug, is such that no
absolute or rate constraints in the inputs are violated as
this suggests a poorly chosen target. Hence enforce that
|u55,k - uss,k—ll < AUpae and that wmin < Uss < Unag-

Second, use the unconstrained law (15) to determine the
ideal value of 1 and check each constraint implied in (19)
using the following simple loop (subscripts denote position
in a vector).

Set Nmax = OOy Mmin = —OQ.
For i=1:end,
if M;n € v; & M; > 0 then define npq. = vi/M;,
if M;n £ v; & M; <0 then define 1,,;, = v;/M;,
end loop.
if 7 < Nmin, set N = Nmin. if Mnae <0, 84 N = Nnaz-

Note that the upper and lower limits on n to ensure
feasibility update at each cycle in the loop but as all the
inequalities are only ever tightened, changes lower down
cannot contradict changes higher up.

3.3 Summary of benefits

This approach eliminates the careful tuning process of
multiple regulators (Remark 3) since the constraint is now
explicitly included in the control computation. Moreover,
the algebra for computing the vectors v, M is the same
as that required for computing the predictions and thus
is unavoidable where constraint handling is desired and
specifically, needs no input or tuning choices from the
designer. This work has not investigated the implications
of infeasibility due to large disturbances or set point
changes any further than insisting on sensible limits to
changes in wss as that is a more challenging scenario
and requires a priori trade off decisions such as which
constraints or requirements to sacrifice during transients.

4. NUMERICAL EXAMPLES

This section presents two numerical examples to highlight
the benefit of the proposed constraint method. The first
example implements output constraints while the second
example operates with state constraints. For cach case,
two figures are plotted to represent the system input
and output. The focus is to analyse and compare the
constrained control performance of nominal PFC (PFC)
and Laguerre PFC (LPFC). It should be noted that
throughout the examples, a choice of ¢ = A is used for
LPFC as discussed in Remark 4.

4.1 Output Constraint Example

A first order system (20) with 0.2 input disturbance from
20s to 25s should track a constant set point (R = 1). For
a fair comparison of PFC and LPFC, both controllers use
similar tuning parameters for the desired pole (A = 0.7)
and a coincidence horizon (n, = 1).

~0.25z7¢
C1-08z71
In the unconstrained case (see Fig. 2), PFC and LPFC

produce similar closed loop behaviour. The system out-
put (y(PFC) and y(LPFC)) exactly tracks the target

Gy (20)
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Fig. 2. Unconstrained PFC and LPFC responses.

trajectory R with settling time 8 samples and overshoots
slightly in response to the disturbance. However, the initial
prediction of nominal PFC y,(PFC) (displayed as com-
puted at the first sample) is inconsistent with the actual
closed-loop behaviour y(PFC) because of the assumption
of constant input in the prediction (i.e. u,(PFC)). Never-
theless, the actual input u(PFC') converges to the correct
steady state value. Since LPFC embeds the exponential
decay dynamics (e.g. through (12)), the input prediction
up(LPFC) matches the actual system input w(LPFC)
and so has better consistency between predictions and ac-
tual behaviour. This consistency is important for accurate
constraint handling, to avoid conservativeness.

For the constrained case, a maximum output is set at
Ymaz = 1.05. A validation horizon ¢ = 10 is used to
cover the transient period and avoid a long-term violation.
However, PFC detects the output violation of y,(PFC') at
the 6th sample ahead because of the ill-posed prediction
(refer Fig. 2). The constraint is satisfied (Fig. 3) by the
input w(PFC) reducing from 1.2 to 0.9. As a result,
the output y(PFC) converges slower to the set point
compared to y(LPFC). Since LPFC produces a well-
posed prediction, the output y(LPFC) exactly matches
the target trajectory R with a precise solution u(LPFC)).

4.2 State Constraint Example

Consider two processes that run in parallel. The main
process P, and state process Ps receive a similar manipu-
lated input w from the regulator. For safety and economic
reasons, the state is constrained at x,,,, = 127 with a
limited input w;,q, = 160, and speed At = 4.

_0.0164z71  _ 0.08914z~! —0.08674z 2
T 1-09835: 1 7T 1-1.918: 1409222

1 (21)
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Fig. 3. Constrained PFC and LPFC responses.

For a fair comparison, Laguerre PFC (LPFC) and the first
regulator of state constrained PFC (CPFC) will both use
n, = 1, validation horizon (i = 68) and pole (A = 0.975)
to track the set point (R = 100). Since CPFC treats the
maximum state as a second target (9), the coincidence
horizon (n, = 30) and desired pole (A, = 0.984) of
the second constraining regulator are selected carefully to
satisfy the internal constraints (Remark 3).

Fig. 4 shows that LPFC outperforms CPFC while satisfy-
ing the state constraints. Although the state behaviours of
both 2(CPFC) and x(LPFC) are within the limits, the
output settling time of y(LPFC) 200 samples is almost
twice as fast as y(CPFC) (300+ samples) and closer
to the target trajectory R. In addition, CPFC requires
a careful tuning process and a higher operation cost as
two regulators are used simultaneously. To respect the
actuator limits, a large pole is needed to slow down the
control response. Fig. 5 demonstrates the effect of poor
tuning decision with a smaller pole A\, = 0.963, where
it computes a higher initial input than the maximum
input Zyer = 160. On the other hand, LPFC satisfies
all the system constraints systematically without conflict.
With Laguerre based prediction, the constrained solution
becomes more precise and less conservative compared to
the nominal CPFC approach.

5. CONCLUSION

This work proposes an improved constrained PFC tech-
nique to satisfy the state, output and input limits which
are less conservative than the conventional PFC approach
and no more onerous to code and implement. With a
minimum modification, the design and formulation remain
simple and straight forward. The embedding of Laguerre
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Fig. 5. CPFC responses with different poles A\, = 0.984
and A\, = 0.963.

input dynamics instead of constant input dynamics gives a
better prediction consistency which ensures the constraint
handling is more precise and less conservative. Given that
the more conservative and complicated multi-regulator ap-
proach is widely adopted in many industrial applications,
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we expect the proposed single constrained LPFC will offer
better performance and be more cost effective. It alleviates
the strict tuning requirements of the second CPFC regu-
lator while satisfying all the constraints in a systematic
fashion. As shown in the examples, the proposed method
often enables faster convergence when handling the output
and state constraints compared to the nominal strategy.

For future work, the robustness and sensitivity analysis of
conventional PFC and LPFC will be investigated as well
as the potential for more rigorous stability and feasibility
guarantees, while retaining simplicity. Moreover, tests on
hardware are planned. Finally, consideration will focus on
whether higher order input parameterisations would be
even more advantageous for higher order systems; this may
involve a more complex constraint handling procedures.

REFERENCES

Abdullah, M. and Idres, M. (2014a). Constrained model
predictive control of proton exchange membrane fuel
cell. JMST, 28(9), 3855-3862.

Abdullah, M. and Idres, M. (2014b). Fuel cell starvation
control using model predictive technique with Laguerre
and exponential weight functions. JMST, 28(5), 1995—
2002.

Abdullah, M. and Rossiter, J.A. (2016). Utilising Laguerre
function in predictive functional control to ensure pre-
diction consistency. UKACC.

Fiani, P., Richalet, J., et al. (1991). Handling input and
state constraints in predictive functional control. In
CDC, 985-990. IEEE.

Gilbert, E.G. and Tan, K.T. (1991). Linear systems
with state and control constraints: The theory and
application of maximal output admissible sets. IEEE
Transactions on Automatic Control, 36(9), 1008-1020.

Haber, R., Bars, R., and Schmitz, U. (2011). Predictive
control in process engineering:From basics to applica-
tions, chapter 11. Wiley-VCH, Germany.

Jones, C.N. and Kerrigan, E. (2015). Predictive control
for embedded systems. Optimal Control Applications
and Methods, 36(5), 583-584.

Nurges, Y. (1987). Laguerre models in approximation
and identification of digital systems. Awvtomatika i
Telemekhanika, (3), 88-96.

Richalet, J. and O’Donovan, D. (2009). Predictive func-
tional control: principles and industrial applications.
Springer.

Rossiter, J.A. (2003). Model-based predictive control: a
practical approach. CRC press.

Rossiter, J., Kouvaritakis, B., and Cannon, M. (2001).
Computationally efficient algorithms for constraint han-
dling with guaranteed stability and near optimality. IJC;
74(17), 1678-1689.

Rossiter, J., Wang, L., and Valencia-Palomo, G. (2010).
Efficient algorithms for trading off feasibility and per-
formance in predictive control. IJC, 83(4), 789-797.

Rossiter, J.A. and Haber, R. (2015). The effect of coin-
cidence horizon on predictive functional control. Pro-
cesses, 3(1), 25-45.

Visioli, A. (2006). Practical PID control. Springer.

Wang, L. (2009). Model predictive control system design
and implementation using MATLAB®). Springer.



Appendix D

USING LAGUERRE FUNCTIONS TO
IMPROVE THE TUNING AND
PERFORMANCE OF PREDICTIVE
FUNCTIONAL CONTROL

M. Abdullah and J. A. Rossiter

This paper has been accepted for publication in:

International Journal of Control 2019

137



Declaration form

USING LAGUERRE FUNCTIONS TO IMPROVE THE TUNING AND PERI.:ORMANCE OF PREDICTIVE
FUNCTIONAL CONTROL

(International Journal of Control 2019)
Contributions of authors:

M. Abdullah

Provided the initial idea, formulations, codes, simulations and draft of this paper.

J. A. Rossiter

Supervised M. Abdullah and proofread the paper. Provided idea on the comparison between
different parameterisations of Laguerre polynomial.

Signatures:

M. Abdullah J.A. Rossiter

(First author) (Second author)



ARTICLE TEMPLATE

Using Laguerre functions to improve the tuning and performance of
predictive functional control

Muhammad Abdullah®,* and John Anthony Rossiter?

2P Department of Automatic Control and Systems Engineering, The University of Sheffield,
S1 3JD, UK.

ARTICLE HISTORY
Compiled February 7, 2019

ABSTRACT

This paper proposes a novel modification to the predictive functional control (PFC)
algorithm to facilitate significant improvements in the tuning efficacy. The core con-
cept is the use of an alternative parameterisation of the degrees of freedom in the
PFC law. Building on recent insights into the potential of Laguerre functions in
traditional MPC (Rossiter et al., 2010; Wang, 2009), the paper develops an ap-
propriate framework for PFC and then demonstrates that these functions can be
exploited to allow easier and more effective tuning in PFC as well as facilitating
strong constraint handling properties. The proposed design approach and the asso-
ciated tuning methodology are developed and their efficacy is demonstrated with a
number of numerical examples.

KEYWORDS
MPC; PFC; coincidence horizon; tuning.

1. Introduction

Model predictive control (MPC) has been very popular in the literature (Camacho
& Bordons, 1999; Rossiter, 2018) for decades and very widely applied in industry
(Richalet , 1993). However, the literature has given much less attention to certain ap-
proaches within the MPC portfolio, namely algorithms such as Predictive Functional
Control (PFC), (Fallasohi et al., 2010; Fiani & Richalet, 1991; Haber et al., 2011;
Richalet et al., 1978, 2009). This may appear somewhat surprising given the evidence
that PFC is so widely used in industry (Richalet et al., 2009), however, the reasoning
is simple: the tuning and general properties of PFC are difficult and weak compared to
more conventional MPC algorithms (Rossiter & Haber, 2015; Rossiter, 2015; Rossiter
et al., 2016) and in consequence, academic authors and reviewers are very wary since
most of the academic journals are focusing on the theoretical development of a pre-
dictive controller. The same situation can be seen in most of the core textbooks of
MPC as PFC concept is barely discussed, for examples Rawlings & Mayne (2009);
Wang (2009) to name a few. More specifically, with the exception of a few special
cases (Rossiter, 2016), PFC is not conducive to a priori stability gaurantees and many
reviewers are uncomfortable with this weakness, not withstanding the huge successes
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in industry especially for many chemical applications (Haber et al., 2011; Richalet
et al., 2009).

The prime aim of this paper is to propose a modification to PFC which improves the
overall properties and thus gives the user more confidence in the resulting closed-loop
behaviour and constraint handling. We do not pretend that a generic a priori stability
proof is possible and instead emphasise that PFC should not be contrasted with more
advanced MPC algorithms such as dual-mode (Rossiter et al., 1998; Rossiter, 2018;
Scokaert & Rawlings, 1998) because:

(1) PFC is a competitor with algorithms such as PID which equally have weak a
priori properties.

(2) PFC is orders of magnitude cheaper than dual-mode MPC and thus a comparison
between the two is inappropriate. Besides the application is usually restricted to
Single Input and Single Output (SISO) processes; you get what you pay for and
if you want a very cheap and simple algorithm do not expect all the analysis and
properties of expensive alternatives.

PFC offers properties such as prediction and systematic constraint handling not easily
embedded in PID while having coding complexity that is similar to PID and tuning
rules that are easy to automate and understand (Richalet et al., 2009, 2011).

In recent years, some authors have been to explore alternative parameterisations
of the degrees of freedom with conventional MPC approaches. One could argue this
begins with prestabilisation (e.g. Muske & Rawlings (1993)) and indeed the dual-
mode approaches as proposed in the 1990s are, in effect, reparameterising the d.o.f.
(Rossiter, 2018). Latterly, authors have been looking at functional approaches (Rossiter
et al., 2010; Wang, 2009) whereby the future input trajectory is defined as a linear
combination of a set of functions (Khan & Rossiter, 2013), where the systematic choice
of function is still to a large extent an open question (Muehlebach & D’Andrea, 2017).
The advantages of functions such as Laguerre over the more conventional choice of a
standard basis set are that they extend the impact of the input changes over a much
longer horizon and thus are more likely to be able to capture the shape of the desired
closed-loop input trajectory. This simple change can lead to a reduction in the number
of d.o.f. needed to manage constraints effectively and thus enables performance to be
maintained with a lower computational load.

The obvious question to ask then is: to what extent can a similar parameterisation
improve the properties of PFC leading to easier or more consistent tuning? Such an
advance would be of significant benefit given the large number of SISO loops which
involve some what challenging dynamics and constraints which make PID implemen-
tations messy and often poorly tuned whereas, by contrast, PFC may be equally cheap
and also able to handle those dynamics and constraints more systematically. Of course,
as with PID, the user must accept that any stability analysis is a posteriori.

A smaller but important contribution of this paper is also to improve the constraint
handling techniques typically adopted in a conventional PFC algorithm as, in order to
demonstrate the constraint handling of the proposed Laguerre approaches, it is perti-
nent to ensure the constraint handling is done as effectively as possible. The existing
strategies popular in PFC were developed using engineering intuition and limited com-
puting but as will be seen can be improved using insights available from more modern
MPC approaches and while still incurring minimal computational loading and coding,
certainly in terms of the functionality available on current cheap processors. Specifi-
cally the aim is to avoid the need for an online optimisation as that ensures the code
is simple, quick and easy to maintain and validate.



This paper will propose the use of Laguerre functions for PFC and demonstrate
how these can be introduced in a systematic manner. Section 2 will give standard
background on PFC and briefly highlight the tuning challenges. Section 3 looks at
constraint handling and proposes a systematic but simple procedure. Section 4 will
introduce Laguerre functions and propose two different mechanisms for introducing
these into PFC. Section 5 will give a number of numerical examples and Section 6 will
give a case study on some laboratory hardware. Section 7 contains the conclusions.

2. Background on PFC

This section summarises the key assumptions, notation and principles underlying a
conventional PFC algorithm and gives a brief insight into the weaknesses. As much of
this is standard in the literature, detailed derivations are omitted.

2.1. Standard PFC algorithm

PFC is premised on the assumption that it is reasonable to desire the closed-loop
response to follow (approximately) a first order trajectory from the current position
to the desired steady-state target.

Remark 2.1. For simplicity of exposition, as these issues only introduce more com-
plicated algebra but do not affect the core principles, this paper will not discuss issues
linked to non-zero dead-times and time-varying targets. Details are available in the
references.

Therefore, the desired output trajectory is given as:
Tktn = R— (R - yk)/\nv (1)

where ri,, denotes the desired n-step ahead value for output y; at sample k& and A is
the desired closed-loop pole (PFC practitioners often use the desired closed-loop time
constant in lieu of A as these are equivalent) and R is the target. The unconstrained
PFC law is defined by solving, for a single specified coincidence horizon n:

Yknlk = Tktn  WIth  wp = Upyqp = Uppop =+, (2)

where Y|k, Up4nx are the n-step ahead predicted values for the output and input
respectively made at sample k.

In order to solve (2), the dependence of the output predictions on the assumed
values ur = ugqqk, @ > 0 is needed. Prediction algebra is standard in the literature
(e.g. Rossiter (2018)) so here we simply assume the solution can be given as:

Uk—1 Yk—1 Ug
Uk—2 Yk—2 Uk+1|k

Yk+n|k = Pnup‘l‘Qnyp‘l‘Hngk‘de:; Up = . 5 Yp = . ; gk = Up 42|k
Uk—n,, Yk—n,

for suitable P,, Qn, Hy, ny, ng and dy, is a term to ensure unbiased prediction (typically
taken as the difference between the process measurement and an internal model output,



although these details are not central here). Note that from (2) we can write Y, =

Lug, L =[1,1,---,1]7. Substituting prediction (3) into (1,2) the PFC control law
can be defined as:

R— (R - yk)An - Pnup - Qnyp —dy,
H,L '
(4)

Remark 2.2. A main selling point of PFC is the computational simplicity of control
law (4). Given H,, P,,Q,, are needed for just a single horizon n, the computation of
these can be relatively trivial and thus the overall coding requirements are elementary
(Richalet et al., 2009).

2.2. Tuning of PFC

The industrial popularity of PFC is partially down to the intuitive tuning parame-
ters. The designer, at least in principle, chooses the desired closed loop time constant
(equivalently A). The computer can then do a quick search over diffferent choices of
coincidence horizon n, displays the associated responses and then the user can deter-
mine which value n gives the most desireable closed-loop behaviour. However, herein
lies two major weaknesses (Khadir & Ringwood, 2005, 2008; Rossiter & Haber, 2015).

(1) Often the actual closed-loop performance/dynamics are not close (Rossiter et al.,
2016; Zabet et al, 2017) to the chosen pole A which of course draws into question
the value of this as a tuning parameter (main exceptions are when n = 1 can be
chosen which is generally true only for first order plant).

(2) An offline search over different coincidence horizons is somewhat clumsy and
difficult to argue as systematic and gives no assurance that a reasonable answer
will result.

Remark 2.3. It is easy to show that PFC suffers from the prediction mismatch
(Rossiter, 2018) common in open-loop MPC' approaches whereby the optimised pre-
dictions may bare little resemblance to the closed-loop behaviour that results. This
inconsistency can (not must) lead to poor descision making. The mismatch arises be-
cause the prediction assumption on the future input, that this remains constant, is
in many cases inconsistent with the actual input trajectory that arises or indeed is
required for good behaviour.

In summary, where a process has close to first order dynamics, PFC works very
well. However, as the open-loop dynamics differ more from a first order system, the
usefulness of A as a tuning parameter reduces and the selection of an appropriate
coincidence horizon become less obvious. This paper seeks to propose some alternative
formulations to reduce these weaknesses and, as will be noted, can be very beneficial
when it comes to constraint handling.

3. Systematic constraint handling in PFC with recursive feasibility
Given PFC deploys only very simple coding to enable use on low level processors, the

constraint handling is defined to be simple and thus avoids the optimisers common
in more mainstream algorithms and instead uses approaches which are simpler even



than reference governer strategies (Fiani & Richalet, 1991; Gilbert & Tan, 1991).
Assume constraints, at every sample, on input and states as follows:

Au<Au, <Au; w<u, <% y<y <7, (5)

where Aug = ug — up—1 is the input increment or rate.

The simplest PFC approach deals only with input constraints and deploys a sat-
uration approach, that is, if the proposed wuy violates (5), then move to the nearest
value which does not. Readers should note that this saturation approach automati-
cally avoids issues with integral windup and the like which can occur when using PID.
Also, for systems with stable open-loop dynamics, this approach is usually safe, albeit
potentially suboptimal.

The historic PFC literature (Richalet et al., 2011) deploys more involved strategies
to cater for state constraints which are akin to reference governer approaches (Gilbert
& Tan, 1991), though perhaps a little more cumbersome. The core principle is to deploy
nested or parallel PFC loops. The outer loop supplies the target to the inner loop and
is used to modify this target when there is an expectation that an unmodified target
will lead to a constraint violation. Such an approach requires design and tuning of the
outer loop, but also is inherently simplistic and not designed to consider a multitude
of different constraints as in (5); consequently there is clear potential in modernising
that approach.

First we summarise a core concept adopted as standard in the MPC literature for
constraint handling and propose to use this concept in place of the historical PFC
choices.

(1) For a suitable horizon m, compute the entire set of future predictions Yktilk =

Piuy, + Qiyp + Hzgk +dg, ©=1,---,m. Use the compact notation gk+1 =
Pu, + Qyp + H u, + Ldy, to capture the output predictions in a single vector
where y = Ykt ks Yho2fhes - ) -

(2) Combine the output constraints, output predictions and input constraints into

a single set of linear inequalities of the form:

[ 1] [ _ 0 i
-1 —U 0
o 1 . . M Uk—1
C=1 4|0 /= —Au| —U—1 ’
HL Ly Puy, + Qyp + Ldj,
|—HL| | —Ly | | —Pup — Qyp — Ldy |

where f;, depends on past data in up,y, and on the limits. The horizon for
the output predictions Y 1’ and thus the row dimension of H, should be long

enough to capture all core dynamics!

(3) The predictions satisfy constraints iff (6) is satisfied and thus a conventional
MPC algorithm will ensure this occurs and that is consider inequalities Cug, < fi
explicitly rather than an alternative constraint representation which may be
suboptimal or approximate.



The proposed PFC constraint handling algorithm is summarised next. This uses a
single simple loop to select the uy closest to the unconstrained solution of (4) which
satisfies (6).

Algorithm 3.1. At each sample:

(1) Define the unconstrained value for uy from (4).
(2) Define the vector fi, of (6) (it is noted that C' does not change).
(3) Use a simple loop covering all the rows of C' as follows:
(a) Check the ith constraint that is the ith row of Cux < fi using a; = Cjuy —
Jri
(b) If a; > 0, then set up, = (fx,i)/Cs, else leave uy, unchanged.

Theorem 3.1. In the nominal case (when there is no change in dy) and for stable
open-loop processes, Algorithm 3.1 is guaranteed to be recursively feasible and moreover
converge to a feasible value for uy that is closest to the unconstrained choice.

Proof. Assume feasibility at initiation and also note that for stable open-loop pro-
cesses the predicted outputs are convergent for constant future inputs ugy; = ug, Vi >
0. Consequently, if one has feasibility at sample k& — 1, then the choice up = ur_1
must be feasible, that is satisfy (6). Hence, as long as uj_1 is a possible choice (which
it must be as all constraints must satisfy Cjui—_1 < fi;), recursive feasibility is as-
sured and a feasible solution will lie between uj_1 and the unconstrained uy. Each
constraint C;ug, < fi; will either lower or upper bound wuyg; if up < ug—1 then only the
lower bounds can be active and if uy > ug_1 only the upper bounds. Hence, an active
constraint Cjuy, < fi; will bring uy, closer to ug_; if violated by the unconstrained uy,
but otherwise will have no affect. In consequence, the final u; will be only as close to
ui as it needs to be to satisfy all the active constraints and thus, is also as close to
the original unconstrained uy as possible. O

Remark 3.1. Because this approach (Algorithm 3.1) deploys a very simple for-loop,
coding is simple and very fast and certainly far more simple than traditional MPC' ap-
proaches which often use a quadratic program but equally, more systematic and probably
quicker than the ad-hoc approaches common with PID. Nevertheless, the usage is only
limited for single input single output (SISO) process, as PFC is rarely used to con-
trol a multi input multi output (MIMO) system due to its limited capability (Richalet
et al., 2009). Nevertheless, this offset only occurs in the implied prediction, where the
closed-loop response will only used the first sample of the input. Since the manipulated
mput up value is updated at each sample time, the final output still converges to the
steady state target R.

4. PFC using Laguerre functions

The main weakness of conventional PFC was the assumption with the predictions
that the future input is constant. This same weakness is present in conventional MPC
algorithms such as GPC and in fact equivalent restrictions also exist in the d.o.f. within
dual-mode strategies. In an effort to ameloirate these and instead propose future input
trajectories which were likely to be closer to those required in closed-loop, a few authors
considered Laguerre function parameterisations (Khan & Rossiter, 2013; Rossiter et
al., 2010; Wang, 2009). It was shown that despite being a relatively simple change in



formulation, this helped significantly with trade-offs between the number of d.o.f. in
the prediction class and the feasibility (ability to deal with constraints).

The purpose of this paper is to propose and demonstrate the potential benefits of
a similar concept when applied to PFC. However we should note some fundamental
differences:

e In PFC we deploy just one d.o.f. and thus can use just a single Laguerre function.

o A different trade off will be investigated, that is between tuning parameter A
and closed-loop performance achieved during both unconstrained scenarios and
constraint handling scenarios

4.1. Definition of input trajectories using Laguerre functions

As we are not using the whole set of Laguerre functions and just a single one, it is
easier just to state that single function. For a given pole a, the first Laguerre function
is given as:

Lo(2) = Lq)[1+az ' +a?22+a3273 + -] (7)

(Typically L(1) # 1 when defining multiple Laguerre functions (Rossiter et al., 2010)
although for this paper this detail is optional.) An underlying assumption within this
paper is that the closed-loop input will converge to the steady-state with close to first
order dynamics and thus with dynamics that can be represented by L,(z) plus some
constant w. That is, ideally the future input predictions are defined as:

Ue = Wk + Mk Upp1pp = We + ONk; Uppopy = Wi + @3 - (8)
where 7 is a scaling factor to be selected on-line, and wy, is a value to be defined
rather than a d.o.f.. The reader will note that in effect wy is the implied steady-
state/asymptotic value for ug,; within the predictions.

An almost equivalent definition could use the input increments and hence:
Aup =g, Augpqp = avk;  Augyop = a’vg; -, 9)

although in this case the implied input trajectory would be:

Uk = g1 + V) Uppapp = 1 + (L4 a)Vs uppop = up—1 + (1 + a+ a®)vy; .
(10)

Next note the properties of the geometric sequence 1,1 + a,1 + a + a?,---. It is
known that
o0 n
; 1 . 1—ant!
Sa = 2&2 =12 and 2&2 =14 - (1 —a"™)S,. (11)
1= 1=

Lemma 4.1. The choices of (8,9) are not exactly equivalent and thus would lead to
different results in general.

Proof. Consider the implied control increments with the choices of (8,9). First the



choice (8) gives:

ug wg + M Auy, Wy — Ug—1 + M
Uptlk| | Wkt ank Aupyr| (@ —T1)nk o
Ugyolk |~ |Wk T a2nk = Augio| = (a2 — a)nk (12)
Using an equivalent notation, we can rewrite sequence (10) as follows:
Ay, vk U Up_1 + Vg
Augpafe| | av Ueplk | uk—1+ (1 a?)Savk
Augpop | = |@Pvk| T o | = |uk—1+ (1 —a®)Savi | - (13)

Hence it is clear that there is a significant difference in these choices of parameterisa-
tion:

(1) Choice (8) allows the first increment Awuy to be out of proportion to the remaining
increments whereas for choice (9) this ratio is fixed. Choice (8) may be better
where a disproportionately large (or small) first increment is needed.

(2) Irrespective of the choice of w, the relative sizes of respective elements are the
same for all except the first increment, so for example, taking (12,13) in turn:

Auy,.; i il
LS W eniele LA el S (14)

Aug ik
Augrivie @ Aupyippp o't —a a

Hence the two choices would be equivalent if and only if both wg — up_1 + M = v
and (a — 1)n, = avy which would require a specific choice of wy. O

Theorem 4.2. The choice of parameterisation (8) has more flexibility than the choice
(9) and thus, in general, is to be prefered.

Proof. This follows immediately from the previous Lemma. Appropriate choices of
Mk, Yk, make the increments identical for all bar the first, that is Aug. In this instance,
parameterisation (8) has an additional d.o.f. wy which can be exploited if desired and
if not assigned an equivalent value to that implied in (9). O

Proposal: As was noted above, wy is the asymptotic value of the input within the
predictions and hence an obvious choice of wj which eliminates the need for more
design decisions is to set wy = Eluss], that is the expected steady-state input value
required to remove offset. This would ensure the output predictions have zero offset
asymptotically.

Corollary 4.3. The prediction classes for PFC given in (2) and with Laguerre based
on input increments (9) suffer from a critical weakness. In both cases the asymptotic
value of the predicted output (not to be mized up with the closed-loop output which
has no asymptotic offset assuming stability) is highly unlikely to be close to the desired
target of R. This is because, the value of uy satisfying the PFC law definition ryy, =
Yk+n 0 general will be inconsistent with uy, = E|uss].



4.2. Unbiased prediction and steady-state estimation

The output predictions with a single control increment were given in (3). With La-
guerre based predictions, that is where Y, is taken from, for example (12), this pre-
diction can be reformulated as:

1 1

1 a
yk+n|k=PnUp+Qnyp+Hn 1| wk + Hn | 2| 1+ dg. (15)

How Hna

The reader will note from Corollary 4.3 that wy, is defined using the expected steady-
state. In simple terms, a typical PFC computation of this value is given from:

yss—dk _R—dk

Yss = Gssuss + dk — Uss = Gss Gss )

(16)

where G5 is the model steady-state gain, yss is the desired output steady-state (typ-
ically R) and d, the offset between the model output and process measurement.

Remark 4.1. Since the value of dy is updated at each sample, the Independent Model
(IM) structure is capable to handle some level of disturbance and parameter uncertainty
and give zero asymptotic offset. Although the loop and its signals are impacted by
measurement noise, as measurement noise is typically assumed to be a zero mean
random variable, the impact of this on offset is typically ignored in the MPC literature.
Of course there is an impact on loop sensitivity which is not a topic of this paper but
an interested reader may refer to the work of Abdullah € Rossiter (2018b).

4.3. Two PFC algorithms using Laguerre function predictions

Having defined both the input and output predictions, the PFC algorithm follows the
same lines as in section 2, that is, choose the d.o.f. 7 such that (1,2) are satisfied.

Algorithm 4.1. LPFC: The PFC control law using a Laguerre parameterisation of
the input trajectory is defined as follows:

(1) Define the input trajectory from (12) with wy, = uss ) as defined in (16).
(2) Define the output prediction n-steps ahead using (15).
(3) Substituting prediction (15) into (1,2) the PFC control law can be defined as:

Pnup-l—Qnyp-l—Hnwwk-l—Hnan—i-dk =R — (R—yk)A”, (17)

R — (R — yk)/\n - Pnup - Qnyp — Hppwy, — dk_
Hn/a '

= M= U = Wi + Ng.

For completeness, as this has some relevance with constaint handling, a second
algorithm is also defined.



Algorithm 4.2. LPFC2: An alternative PFC control law using a Laguerre parame-
terisation of the input increment trajectory is defined as follows:

(1) Define the input trajectory from (13).
(2) Define the output prediction n-steps ahead using (15) with (13) and hence define

1
(1- az)Sa
Ye+nlk = Pnup + Qnyp + Hypup—1 + Hy (1 _ (13)5 v + dp. (18)

a

H'n.n

(3) Substituting output predictions (18) into (1,2) the PFC control law can be defined
as:

Pnup + Qnyp + Hnwuk—l + Hnnyk + dk =R - (R - yk))\"7 (19)

R— (R - A" — P, — — H, _1—d
N ( yk) nuj;z;I Qnyp nwlk—1 k; U = Up_1 + V.
nn

4.4. Constraint handling

The procedure for constraint handling is analogous to that discussed in section 3 and
thus is not presented in detail. The core conceptual difference is that the d.o.f is now
one, as either the parameter 7 or v can be selected depending on the choice of input
parameterisation and this means that, in principle, the input constraints need to be
checked along the entire prediction horizon. However, given the maximum magnitude
increments occur at the first sample, only Awuy one needs to be checked and similarly,
the maximum/minimum of ug,; has a simple dependence on 7, Vg, wi so again only
one value needs to be checked.

As in Algorithm 3.1, the aim is to choose the d.o.f. as close as possible to their
unconstrained values, and subject to (5). Nevertheless, there are some subtleties which
are worth highlighting and link to feasibility.

Lemma 4.4. For the nominal case (where the is no large change in dy), recursive
feasibility is guaranteed with input prediction class (13), irrespective of the choice of
target R.

Proof. Assuming feasibility at sample & — 1, then the choice Auyi, =
Aupyip—1, ¥i > 0 will give rise to predictions which satisfy constraints (5). The
choice v, = avp_1 will enable this choice of future inputs and thus a feasible solution
exists at the current sample and, clearly, this statement can be made recursively. [J

Lemma 4.5. For the nominal case, recursive feasibility is not guaranteed with input
prediction class (12).

Proof. The potential weakness with input prediction class (12) is emphasised in the
first term up = ugsk + 7% as this contains a value, specifically ug,j which may or
may not be feasible. Moreover, consideration of the implied increments shows that
Aup = Ugs — Uk—1 + M could be very large if there is a significant change in ugs i
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(that is, ugs i # ussk—1). To be more precise, the sequence of proposed inputs from the
previous sample can be laid alongside the proposed sequence at the current sample:

Ugs k—1 T ONk—1 Uss,k + Nk
Ugs k—1 T az"?k—l Uss, kT ONk—1
Y1 — |Ussp—1 + @t | 5 B T | vssp + @ (20)
From these it is clear that one can only ensure 1—1'>k|k—1 = gklk if Ussp = Ussh—1
(equivalently wy) is unchanged. Without the ability to remain on the same prediction
class, recursive feasibility cannot be assured. O

Theorem 4.6. In order to ensure recursive feasibility while using prediction class
(12), the user must retain the option to modify g, as required.

Proof. 1t is a consequence of Lemma 4.4 whereby the option to choose s 1 = Uss k—1
enables the selection of Y1 = S hence garanteeing feasibility. O

Readers may note that the requirement in Theorem 4.6 is analogous to reference
governer strategies (Gilbert & Tan, 1991) and is unsurprising and indeed also a well
known issue within mainstream MPC. That is, large changes in the target can give
rise to transient infeasibility where there is a terminal constraint as implicit with
input trajectory (12) and this is easiest dealt with by slowing the change in target
(equivalently modifying the implied terminal constraint). This paper will use examples
to compare such a strategy with the use of (13) which is more analogous to GPC
(Clarke & Mohtadi, 1989) in not having an implied terminal constraint and thus does
not require this additional check.

5. Simulation studies

The simulation studies will be sectioned into three main themes and comparisons will
be made between PFC, LPFC and LPFC2.

(1) Compare the predictions arising from the different algorithms and the extent to
which these give good expectations of good performance and consistent decision
making.

(2) Consideration of tuning efficacy and performance.

(3) Consideration of constraint handling efficacy.

Several non-first order dynamics examples will be used to emphasise a variety of chal-
lenging characteristics (for example non-minimum phase and unstable dynamics), as it
is known that conventional PFC is often inadequate for such systems. These examples
are:

(1) A second order non-minimum phase system with zero at 0.4:

—0.04271 4 0.1272

i =T 0452

n=>5 A=0.T. (21)
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(2) A third order over-damped system with poles at 0.9241, 0.9869 + 0.03339:

—0.1665z"" + 0.0157272 — 0.1505
1—2.898271 +2.7993272 — 0.9012z~3"

Gy =1073 n=25 X\=0.96. (22)

(3) A second order unstable system with poles at 0.63 and 1.27.

01zt —-022
C1-1.9271 40827

Gs =5 A=0T7. (23)

Remark 5.1. The selection of A depends on a user preference where the range should
be in between 0 < A\ < 1. This parameter is directly related to the desired closed-loop
time response (CLTR), where X\ = e 3T+/CLTR qnd T, is the sampling time (Richalet
et al., 2009). Obviously, a smaller value of X leads to a faster convergence and vice
versa. For the coincidence horizon n, this work follows the conjecture given in (Rossiter
€ Haber, 2015) where the point is selected in between 40% to 80% rise of the step input
response to the steady-state value.

5.1. Prediction consistency and recursive decision making

A core underlying assumption in well posed MPC algorithms is that the optimised
prediction at the current sample is reasonable and hence, could be re-used at the
next sample. However, as these examples will show that is often not the case with
a conventional PFC law due to the prediction assumption that the future input is
constant. Where anything other than an open-loop dynamic is required, a constant
input cannot deliver the desired dynamic and thus to embed this into the predictions
automatically creates a mismatch in expectations.

Figure 1 shows the optimised predictions for example G at the first sample from
which it is clear that although all the predictions satisty 751, = yg+n (n = 5) as defined
by (2) but elsewhere they differ significantly from the target trajectory ry within the
exception of LPFC which remains close (apart from in early transients for which,
due to the non-minimum phase characteristic, tracking 7 is impossible) and also has
the correct asymptotic value. The input trajectories show that the flexibility in LPFC
allows a large initial input to get a fast transient and then a gradual decay to the desired
steady-state. By contrast, PFC tries to manage everything with a constant input and
thus fails. LPFC2 has a different weakness: as the increments Auy all have the same
sign, the required early increments to satisfy (2) inevitably lead to an asymptotic input
trajectory which grows too large and ironically, also imply a less aggressive initial input
move which could imply relatively slow transients compared to PFC and LPFC.

Figure 2 shows similar behaviour for example G2, although in this case the disparaity
between the target rp is amplified much further due to the relatively slow underly-
ing dominant dynamics of the open-loop poles (real part 0.98), and thus open-loop
predictions, compared to the desired pole (A = 0.96).

The figure for G5 is omitted as, being open-loop unstable, the predictions are diver-
gent. It so happens that, in the constraint free case, effective decision making may still
result from using these predictions over a short output horizon as evidenced by the
numerous examples in the literature using both GPC and PFC on open-loop unstable
processes (e.g. Rossiter et al. (1998)). Moreover,

Remark 5.2. [t is worth noting that, an IM structure is not suitable for open-loop
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Figure 1. Output and input predictions for PFC, LPFC, LPFC2 for example G.
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Figure 2. Output and input predictions for PFC, LPFC, LPFC2 for example Gs.

unstable processes as would be evident should any uncertainty or noise be introduced.
In such cases a classical PFC approach often deploys a cascade structure (Richalet
et al., 2009), but for convenience, the results of this paper carry across directly as long
as a suitable alternative prediction model is used (Clarke & Mohtadi, 1989; Rossiter,
2018). Such details are not core to this paper and thus omitted.

5.2. Tuning efficacy of PFC, LPFC and LPFC

The tuning efficacy of PFC has been discussed elsewhere (Rossiter & Haber, 2015;
Rossiter et al., 2016) and so this section illustrates whether the proposed adaptions of
LPFC, LPFC2 change any of those insights or not. The underlying issue is that, with
the exception of cases where one can choose n = 1, the tuning parameter A may have
a weak correlation with the closed-loop pole that results.

Figures 3, 4, 5, 6 overlap the closed-loop behaviour with the original target for
examples G1, G2, G3. From these figures three obvious conclusions are clear.

(1) None of the algorithms is able to get close to the desired dynamic/target trajctory
when n > 1.

(2) LPFC is marginally faster during the intermediate transients than PFC whereas
LPFC2 has slow initial transients but ultimately converges to the steady-state
slightly more quickly.

(3) Nevertheless, the closed-loop responses do speed up with the choice of smaller A
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(see figure 6).
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Figure 3. Closed-loop output and input behaviour for PFC, LPFC, LPFC2 for example G1.
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Figure 4. Closed-loop output and input behaviour for PFC, LPFC, LPFC2 for example Ga.

5.3. Constraint handling

The reader may be puzzled as to why the improved prediction consistency illustrated in
section 5.1 seems to have minimal impact on the efficacy of tuning and hence question
whether the move to LPFC has any benefits? The answer to this becomes clear when
one considers the constraint handling scenarios. When doing constraint handling and
in particular wanting assurances of recusive feasibility (see section 4.4), consistency
between predicitions and the actual closed-loop behaviour is essential. The decision on
how to limit ug,n, v to ensure predictions meet constraints will be ill-posed if those
predictions are not representative and, of particular concern, these decisions could be

unnecessarily conservative thus leadng to far slower performance than necessary.

e This section will demonstrate how the inconsistency in PFC predictions can lead

to extreme conservativism, whereas this is less likely to occur with LPFC.

e The section also shows a scenario where LPFC2 might be preferred to LPFC
as it gives a much more straightforward mechanism for coping with large target

changes.

Add constraints @ = 1.2, Au = 0.5, = 1.1 to example G; and limits @ = 2, Au =
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Figure 5. Closed-loop output and input behaviour for PFC, LPFC, LPFC2 for example G3.
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Figure 6. Closed-loop output and input behaviour for LPFC for example G with various .

0.4,57 = 1.1 to example G5. Then the corresponding closed-loop simulations for a
target of R = 1 are shown in Figures 7, 8. It is clear that LPFC has by far the best
performance because it exploits the input most effectively. By contrast, because PFC
assumes a constant future input, the input values available become highly restricted
to be close to the steady-state because otherwise the long-range output predictions
would exceed the upper output limit; this is obvious in the input figures where for PFC
the input goes barely above its steady-state value. LPFC2 has a slow initial transient,
again because the shape of input trajectory (9) will only meet the upper constraints in
the long term if, for example, the first term Awug = avyp < w. However, in the medium
term LPFC2 can exploit input values beyond uss and thus eventually converges in a
timescale not dissimilar from LPFC.

Now consider a case where a simplistic implementation of LPFC fails, whereas PFC
and LPFC2 do not. Add rate constraints to the input predictions for LPFC as given
in (12).

| Ay |wy, — uk—1 + M|

[Auga|| = | lla—D)m| | < (24)

Now, consider the case where Au = 0.1,w; = 1,up_; = 0,a = 0.8. The first two
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Figure 7. Closed-loop output and input behaviour for constrained LPFC for example G1.
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Figure 8. Closed-loop output and input behaviour for constrained LPFC for example Ga.
inequalities reduce to:

L+ 0.1 11<m < —0.9
— 0.2 : —L1l=7 > -V
| . | < [0_1] m<os (25)

Clearly these two conditions are inconsistent and thus LPFC is infeasible and the
main factor is the input rate constraint. A simple scenario which would give rise to
this inconsistency is when wy, changes significantly from one sample to the next (say
due to a large change in set-point R). The requirement for the input sequence to
both meet the new steady-state (while following the given decay rate) and beginning
from the current ug_; can easily be in conflict with rate constraints Au. This issue

is well understood in the main MPC literature and a reference governing or softening
approach will be needed to avoid infeasibility.

Remark 5.3. The reader may also be able to come up with scenarios where a large
change in wy gives rise to inconsistency between output constraints and other con-
straints. In general the easiest solution, which is standard in the mainstream MPC

literature, is to relax the implied terminal constraint, that is slow the rate of change of
wg as much as required.
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6. Demonstrations on laboratory equipment

This section demonstrates and compares the performance of PFC and LPFC in con-
trolling a real laboratory process that is a Quanser SRV02 servo based unit (see Fig-
ure 9). This system is powered by a Quanser VoltPAQX1 amplifier that comes with
National Instrument ELVIS II4+ multifunctional data acquisition device. The control
algorithms are employed using National Instrument LabVIEW software in personal
computer which is connected to the plant via USB wire.

Figure 9. Quanser SRV02 servo based unit.

The control objective for this case is to track the desired angular position of the
servo, 6(t) by regulating the supplied voltage, V' (¢). The mathematical model is derived
based on differential equation and given as (for more detail explanation and derivation
refer to Quanser (2012)):

d? d

Jeqﬁﬁ(t) + Beqaﬁ(t) = A,V (1), (26)

where J.q = 0.00213 kgm? is the equivalent moment of inertia, By = 0.0844 Nms/rad
is the equivalent viscous damping parameter and A,, = 0.129 Nm/V is the actuator
gain. By rearrange the model (26) and discretise it with sampling time 0.02s, the
transfer function of angular position to voltage input can be formed as:

0.0095z~1 +0.007322

G, = .
4T 1 14521404522

(27)

Both of the controllers are tuned with A = 0.7 and n = 8. Similar conclusions as in
previous section can be seen from Figure 10, where LPFC is more effective in tracking
the set point and converging faster (closer to the desired \) than PFC.

Next, the following constraints are added to the process: —6 V<V <6V, -3V
< AV <3V, =08 rad < 6 < 0.8 rad. Due to the advantage of employing better
prediction consistency and well-posed decision making, LPFC manages to utilise the
extra d.o.f in its future input trajectory to satisfy all the constraints better than PFC
(refer Figure 11). It is notable that the constraint handling weaknesses implicit in
PFC (linked to the assumed steady-state input in the predictions implying output
constraint violations), means that PFC is very slow to converge to the output limit of
0.8 whereas LPFC is not affected by this weakness!
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Figure 11. Constrained performance of PFC and LPFC in tracking the Quanser SVR02 servo position.

Remark 6.1. The process used for this example has an integrator where one of its
poles reside on the unit circle. Using the conventional PFC approach is not recom-
mended since then the open loop prediction is divergent which inevitably will imply
output constraint wviolations. The mormal practice is to employ a cascade structure
where the prediction is stabilised first before implementing the control law (Richalet
et al., 2009). However, this cascade from of PFC is more complez to tune and has less
clear cut properties so the discussion is beyond the scope of this paper. Conversely,
LPFEC can still be used since its future input dynamics will converge to zero assuming
one uses the appropriate choice of ugs = 0 (Abdullah & Rossiter , 2018a).

Remark 6.2. [t is noted that there is a small offset error in Figure 10, which is far
more obvious when using the conventional PFC. The main reason behind this is because
the Independent Model (IM) structure used in the control law is not very effective in
handling parameter uncertainty of the open-loop divergent process. This sensitivity can
be improved by implementing other alternative prediction structures such as CARIMA
or T-filter (Rossiter, 2018), but again the discussion of this topic is beyond the remit
of this paper.
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7. Conclusions

This paper has taken the start point that Laguerre based input parameterisations have
been effective for mainstream MPC algorithms and thus it is worth investigating their
efficacy with PFC. We have proposed the use of Laguerre based predictions for PFC
and evaluated the efficacy of this, compared to a more conventional PFC algorithm,
using two different parameterisations: (i) one based on the inputs and (ii) another
based on the input increments.

The most obvious conclusion is that using Laguerre functions can offer some clear
benefits and more specifically, because it enables better consistency between the predic-
tions at each sample and the resulting closed-loop behaviour, it enables more accurate
constraint handling because satisfaction of constraints by the predictions is now a bet-
ter representation of the actual future. By contrast, especially with regard to output
constraints, a traditional PFC algorithm may have to adopt some quite conservative
assumptions in order to ensure recursive feasibility and thus sacrifices performance.

The paper gives a proposal for a more formal, but computationally simple, constraint
handling policy which has more rigour than traditional PFC constraint handling ap-
proaches. Then using this, a comparison of the two alternative parameterisations in-
dicates that in most cases, mapping Laguerre directly onto the inputs is preferable to
mapping onto the input increments as this enables faster transients and a better usage
of the full input range. However, the one downside is the need to utilise an implied
terminal constraint and, as is well known in the literature, terminal constraints can
cause conflicts with other constraints and thus, at times, need to be managed carefully.
Further investigations into computationally simple and efficient ways of doing this for
PFC form an immediate future work.

Some other aspects which would be interesting to address next include: (i) to what
extent does using a Laguerre parameterisation change, for better or worse, the underly-
ing loop sensitivity compared to conventional PFC and (ii) is there potential to exploit
other input parameterisations and if so, how can one choose these systematically and
in a computationally simple manner.
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Abstract—This work proposes an improved method for Predic-
tive Functional Control (PFC) to handle an integrating process.
Instead of assuming a constant future input, the dynamic
is shaped with a first-order Laguerre polynomial so that it
converges to the expected steady state value. This modification
provides simpler coding and tuning compared to the conven-
tional method in the literature. Simulation results show that
the proposed controller improves the consistency of the open-
loop prediction of an integrating process and thus improves
closed-loop performance and constraint handling properties. The
practicality of this algorithm is also validated on laboratory
hardware.

Index Terms—Predictive Control, PFC, Laguerre Function,
Constraints, Integrating Process, Transparent Control, Servo
System.

I. INTRODUCTION

Predictive Functional Control (PFC) is a simple version
of Model Predictive Control (MPC) developed in the early
1970s [1]. This algorithm only requires simple coding and
low-level computation while retaining similar benefits to MPC
in handling constraints and/or delays [2]. Despite its appealing
characteristics, PFC receives relatively little interest in the
literature [3] as it does not easily have rigorous properties
such as stability assurances [4], [5] or robust feasibility [6].
However, the key selling point of PFC is the simplicity in
tuning and implementation; it is a competitor to PID rather
than the conventional predictive controller.

The simplistic PFC concept has several limitations, espe-
cially when dealing with an integrating process [2]. Due to
their marginally stable dynamics, the constant future input
assumption of PFC gives a divergent open-loop prediction
[2], [7], [8]. Consequently, it may lead to poor closed-loop
performance, prediction inconsistency, and also a failure in
constraint implementation. Nevertheless, for low-level control
applications where PID is unable to handle a constraint, PFC
is still considered as an attractive option. Thus, the aim of this
paper is to overcome some weaknesses while maintaining the
formulation simplicity and cost effectiveness of PFC.

To deal with open-loop unstable plant, PFC practitioners
often employ a cascade like structure known as transparent

This work is funded by International Islamic University Malaysia and
Ministry of Higher Education Malaysia.

control [2]. The inner loop consists of a proportional controller
to stabilise the system predictions, and PFC provides the
target trajectory via an outer loop. In practice, this structure
often works better than PID within a constrained environment.
However, the use of constant future input assumption can
still lead to ill-posed decision making which impacts on both
closed-loop performance [9] and constraint handling [10]. The
interaction between inner and outer loops also makes the
tuning and constraint implementation less transparent and,
within the literature, there is no clear or systematic explanation
of the approach.

Recent work has shown Laguerre PFC (LPFC) can im-
prove closed-loop performance, prediction consistency and
constraint handling for a stable system [9], [10]. This paper
explores its capability to handle an integrating process. LPFC
shapes the future input trajectory to converge to steady state
with 1st order dynamics; this framework can stabilise the open-
loop prediction of an integrating system without requiring a
cascade structure, thus retaining a standard, and simpler, PFC
formulation. Moreover, the Laguerre pole can be used to fine
tune the closed loop performance [9], [11] and facilitate more
reliable constraint management. The required modification is
straightforward and thus in line with the simplicity require-
ment.

Section II gives some background on the nominal PFC
and LPFC frameworks. Section III introduces the transparent
control and LPFC law to handle an integrating process. Sec-
tion IV provides a numerical example and analysis for both
approaches. Section V validates the results with laboratory
equipment simulations and section VI provides conclusions.

II. PFC FORMULATION FOR NOMINAL SYSTEM

This section only gives a brief review of conventional and
Laguerre PFC formulations. For more detailed explanations of
PFC theory and concepts can be found in these references, e.g.
[2], [31, [7], [9]. To focus on the key conceptual contribution,
the offset free correction is omitted from the formulation
although it is applied in all the examples. Without loss of
generality, all the control structures will use a general transfer
function model for prediction. It is noted that the sensitivity
of PFC to uncertainties constitutes future work.



A. Traditional PFC

A PFC framework is based on simple human concepts and
computes a required control action depending on how fast a
user expects/desires the output to reach the target. There are
two main components in the PFC formulation which are the
desired target trajectory and system prediction. The control
law is calculated by enforcing the following equality:

Yktnk = B — (R —yp) A" (1)

where ¥y, |1 is the n-step ahead system prediction at sample
time k. The right hand side of (1) represents the desired
trajectory of the output from y; to the target value R with
a convergence rate A. The two main tuning parameters are:

o The coincidence horizon n defines the point where the
system prediction matches the target trajectory.

o The desired closed-loop pole A\ = e 3T/CLTR  yith
T the sampling time and CLTR the closed-loop time
response.

Since the n-step ahead prediction algebra of a linear transfer
function mathematical model is well known in the literature
(e.g. [12]), here only the key results are provided. For inputs
ug and outputs yy, the n-step ahead linear model prediction is
given as:

Yk+n|k = Hn% + Pny_k + Qny_k 2)

where parameters H,,, P,, Q,, depend on the model parame-
ters and for a model of order m:

Uk Uk—1 Yr
Uk+1 Uk—2 Yr—1
U = UL = N =
= : vk Yk
Uk4n—1 Uk —m Yk—m

3)
The control input is computed by substituting the prediction
(2) directly into (1) to obtain:

Hn%"'Pny'_k"'Qny_k =R- (R_yk)/\n “

Adding a constant future input prediction assumption uy ;j, =
ug,% = 0,...,n and defining h,, = > (H,,), the nominal PFC
control law reduces to:

R - (R - yk)>\n - (Pnlﬂf + Qny_k)
hn

Remark 1: The tuning parameter A should make the design
process transparent, however the selection of coincidence
horizon n affects the efficacy of A due to the constant future
input assumption [7]. With small horizons, the effectiveness of
A is more significant, but there may be poor prediction consis-
tency with the target behaviour resulting in poor closed-loop
behaviour. Conversely, larger horizons gives better prediction
consistency but reducing the effectiveness of A as a tuning
parameter.

Remark 2: Prediction consistency is important for effective
constraint handling thus, for some challenging dynamics, a
constant input assumption may be ineffective [10].

)

U =
U

B. Laguerre PFC (LPFC)

The LPFC approach utilises the expected constant steady-
state input uss to eliminate the offset. The z-transform of
discrete Laguerre polynomials are [11]:

O<axl (6)

where j is the order of Laguerre function and a is the Laguerre
pole which depends on a user selection between 0 < a < 1.
For simplicity of coding and concept, a first-order Laguerre
polynomial is employed here, although high order polynomials
may be used [11], [13], [14]. The function with altered scaling
becomes an exponential decay as:

1

L(Z):l——az—l = l+az ' +ad*2724+--- (7

Hence, the future input prediction is parametrised as:
Ugtn = Uss + Lnm; Ly = a"; L= [1,&, e 7an—1] ®

where 7 is a degree of freedom. The parametrisation of (8)
gives output predictions which converge to the steady-state
exponentially with a rate a. The n step ahead output prediction
is derived by substituting (8) into (2):

Ye4nlk = hnuss + Hyp Ly + Pnl(lf_k + Qniﬂ/_k 9)

Hence, the LPFC control law is defined by substituting
prediction (9) into (1) and solving for parameter 7 as:

R - (R - yk))\n - (Pny'_k + Qny_k) - hnyuss
H,L,

N = (10)
Due to the receding horizon principle [11] and the definition
of L(z) in (7), the current input wuy, is:

an

Remark 3: By shaping the future input dynamics, LPFC can
improve prediction consistency, closed-loop performance and
the efficacy of \ as a tuning parameter [9]. This improvement
also provides a more accurate and less conservative solution
when satisfying output/state limits [10].

Up = Uss + Nk

III. PFC FORMULATION FOR INTEGRATING SYSTEM

An integrating process has marginally stable dynamics as
one of the poles resides at the origin. This pole gives an extra
challenge to the traditional PFC framework because the open-
loop prediction does not converge when using the constant
future input assumption. This section presents two alternative
frameworks. The first subsection briefly reviews the proposed
technique in the literature, so-called transparent control by [2],
and the following subsection presents the proposed modifica-
tion of LPFC for integrating processes. Currently, the concept
is only introduced to a single integrator problem, while future
work will consider a further generalisation for a plant with
multiple integrators or marginally stable poles.



A. Transparent Control

Transparent control utilises two level of cascade structure
(see Fig. 1). The inner loop employs a proportional gain
with negative feedback to stabilise the open loop prediction,
while nominal PFC controls the outer loop and eliminates any
offset due to disturbance and enhances the overall dynamic
performance [2].

R uc + u y
—3 PFC K G

Vv

Fig. 1: Transparent PFC structure.

The inner loop with gain K will be used as a prediction
model as in (12) instead of the plant model GG to compute the
manipulated input u..

GK
y(s) = muc(s) (12)
The actual input w that will be send to the plant is:
ug = K(Uek — Yk) (13)

With this technique, the controlled system is able to maintain
regulation during set-point changes by introducing a temporary
over-compensated set-point [2]. At the same time, the outer
loop will minimise the tracking error using a standard PFC
formulation as discussed in section II-A.

Remark 4: Transparent PFC (TPFC) only accepts propor-
tional gain rather than the combination with integral and/or
derivative to keep the constraint implementation purely al-
gebraic [2]. To implement input or rate constraints, a back
calculation procedure is needed to transfer the information
from the inner loop to the outer loop and avoiding saturation
as:

Y + um% SUek S Yk + % 14
JANTI - A " .
yk+%§uc’k§yk+%w—+“kl (15)

K
Since the constraint is implemented at the current time only,
there is no check that the implied predictions satisfy con-
straints in the future and thus recursive infeasibility may result.

Remark 5: For output or state constraints, the traditional
practise utilises a multiple PFC regulators that run in parallel
[2], [10]. The first regulator computes the preferred control
action while the second regulator produces an input to satisfy
the limit. A supervisor will choose the correct input for the
plant. However, advances in computation technology mean
this tedious ad hoc approach can be replaced with a more
systematic, but simple, approach such as in [15].

B. Laguerre PFC for Integrating Process

Due to the pole on the origin, the steady state input for
an integrating process is zero for a constant set point. These
dynamics are still compatible with a LPFC law (section II-B)
with the only required modification being to define uss = 0.

Theorem 1: The future input dynamics of
Uss Mk
u(z) = 1—27t 1—az!
will give input predictions that settle exponentially at zero with
a speed linked to Laguerre pole a. For an integrating process,
the value 7y, effects the implied steady-state outputs.
Proof: The signal defined in (16) has the property that

a7

(16)

m up = uss =
k—o0

lim y = R
k—o0

When uss = 0, the steady-state output has affine dependence
on the integral of the future input. [

Remark 6: For simple first order system the value of a
should be equal to A [9]. However for a higher order system,
selecting a < A will give faster convergence to steady state
and thus can improve the prediction consistency.

Algorithm 1 (LPFC): For integrating process, a similar
algorithm as in (10) is used except that uss term is removed.
R - (R - yk))‘n - (Pn'lf_k’ + Qny_k)

Hy,Ly,

Theorem 2: Using LPFC input predictions as defined in
Algorithm 1, output, state and input constraints can be rep-
resented by a set of linear inequalities.

Proof: Output constraints can be constructed from the

output predictions in (9) within the validation horizon n; and
comparison with the limits at each sample instant, e.g.:

M = (18)

Ymin < HniLnink' + Pni'lﬂc + me_k < Ymaz) Vi>0 (19)

The maximum/minimum input rate/value occur at the first
sample, so input constraints can be formulated as:

(20)
2y

Umin < Mk < Umaz

Atypin < Nk — Uk—1 < Umaz

Combining (19,20,21) it is clear that for suitable M, v; one can
represent the satisfaction of constraints by predictions using a
single vector inequality of the form:

Mn, <v, O (22)

We can now define the constraint handling algorithm which
is akin to methods given in [15].

Algorithm 2: [LPFC constrained] Use the unconstrained
law (18) to determine the ideal value of 7y and check each
constraint in (22) using a simple loop (subscripts denote
position in a vector).

Set Upmar = 00, Umin = —00.
For i=1:end,
if My £ v; & M; > 0 then define wpq, = vi/M;,
if My £ v; & M; <0 then define wupmin = v; /M,
end loop.
ifnk < Umin, Mk = Umin- lfumaac < Mk, Mk = Umaz-
Define u(k) using (16).

Note that the upper and lower limits to ensure recursive
feasibility update at each cycle in the loop but as all the
inequalities are only ever tightened, changes lower down
cannot contradict changes higher up throughout the horizon.



Remark 7: Infeasibility can arise due to too fast or large
changes in the target. However, LPFC helps in this case
because the exponential structure embedded into the input
prediction automatically slows down any over aggressive input
responses and thus significantly increases the likelihood of
feasibility being retained. In the worst case, set point changes
need to be moderated as in reference governor approaches
[16].

The summary benefits of this algorithm are:

« It offers a simple and systematic framework to handle an

integrating process.

o It stabilises the output prediction without a cascade
structure thus no back calculation process (Remark 4) is
needed for input/rate constraints.

o The Laguerre pole a can be utilised to control the speed
of convergence to improve the prediction consistency and
efficacy of constrained solution.

e The implied structure of (16) in conjunction with con-
straints (22) means that a recursive feasibility guarantee
(nominal case) is provided [15].

IV. NUMERICAL EXAMPLES AND ANALYSIS

This section presents a numerical example to demonstrate
the benefit of using LPFC compared to TPFC. A first order
servo system with integrator is considered as a plant where
the control objective is to track the position. The discrete
mathematical model with sampling time 0.02s is:

0.0095272 +0.0073z 7!
1—1.45271 +0.452—2

This simulation will focus on the tuning process and the
concept of well-posed decision making that can be observed by
comparing the open-loop prediction and closed-loop behaviour
of the controller. In addition, the efficacy of constraint handling
is also discussed in the last subsection.

G:

(23)

A. Tuning and Performance of TPFC

The first step in implementing TPFC is to tune the pro-
portional gain before selecting the coincidence horizon n.
This gain K will determine the convergence speed and the
steady state error of the inner-loop. Small gain leads to slower
responses, while too large a gain causes oscillatory behaviour.
The root-locus (continuous time) plot shows that the choice
K = 6.45 is around a critical value in that higher K would
give oscillatory poles (see Fig. 2).

The coincidence horizon is selected by comparing the step
response with a desired first order target trajectory r with A =
0.74 (refer to Fig. 2). Since the inner loop is second order
(due to the added integrator), it is necessary [7] to choose a
coincidence horizon in the range 3 < n < 8; lower values are
often preferable so here n = 3.

Fig. 3 shows the closed-loop and predicted (at sample
k = 0) performance of TPFC with different values of gain K.
The actual closed-loop behaviour is expressed as y (output)
and u (input), while the implied predictions are denoted by
signals output ¥, and input u, (corresponding to first value
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Fig. 3: Closed-loop and open-loop behaviour of G for TPFC
with different K.

of input produced by PFC u. instead of the actual input u) .
For both choices of K, in the unconstrained case, the closed-
loop outputs y track the trajectory set point r and with almost
equivalent speed. However, with K = 1, the implied prediction
1p has a very slow convergence in response to the constant
input dynamics u, and is inconsistent with the closed-loop
behaviour y that results. With a higher gain value (K = 6.45),
the consistency is improved but still poor. This inconsistency
is likely to lead to severely flawed decision making should
constraint handling be required.

B. Improvement on Prediction Consistency with LPFC.

For LPFC, due to the presence of an integrator, the coinci-
dence horizon is selected based on the the impulse response
(see Fig. 4) using the guidance of [7]; this suggests a value in
the region of n = 3.

Ideally, for a first order system, the value of Laguerre pole
a should be equal to the desired closed loop pole A\ [10].
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Fig. 5: Closed-loop and open-loop behaviour of G for LPFC
with varying Laguerre pole a.

However, for a higher order system, this value needs to be
further tuned as it has an impact on the convergence rate
of the output prediction when tracking the first order target
trajectory (Theorem 1). Fig. 5 shows that with a choice of
a = A, while the controller still tracks the set point well, there
is still noticeable inconsistency between predictions 1, and
the closed-loop behaviour y. However, reducing the pole to
a = 0.55 improves the prediction consistency and the overall
closed-loop performance is still good (Remark 6).

C. Improvement in Constrained Performance with LPFC

One of the key selling points of PFC is the computationally
simple (low cost) constraint handling ability. When the system
input is bounded to U, = 8 (see Fig. 6), both of the
controllers manage to track the set point and satisfy the
given limit although LPFC gives a slightly better closed-loop
performance due to the well posed decision. Moreover, the
LPFC formulation is more straightforward to implement and
does not require back calculation methods (Remark 4).

Fig. 7 shows the system response of both controllers when
the output is limited to ¥;nq, = 0.8. The validation horizon is
selected at n; = 10 to cover most of the transient period and
prevent constraint violation at the early stage. In this case the
closed-loop response of TPFC is slower and more conservative
in satisfying the limit due to the prediction inconsistency
demonstrated in Fig 3. Conversely, LPFC which is based on
more consistent predictions (see Fig 5) converges much faster

10 T T T T T T T T T
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Fig. 6: Closed-loop response of G for LPFC and TPFC with
bounded input (w4, = 8).
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Fig. 7: Closed-loop response of G for LPFC and TPFC with
bounded output (Y4 = 0.8).

compared to TPFC. Clearly the constrained solution of LPFC
is more accurate and less conservative.

V. IMPLEMENTATION ON REAL HARDWARE

To validate the practicality of LPFC, the algorithm is
tested on a Quanser SRV02 servo based unit powered by a
Quanser VoltPAQ-X1 amplifier (see Fig. 8). This system is
operated by National Instrument ELVIS II+ multifunctional
data acquisition. The plant is connected to a computer via
a USB connection using NI LabVIEW software. The control
objective is to track the servo position 6(¢) by manipulating the
supplied voltage u(t). The mathematical model of this system
is given as (for more details, refer to [17] user manual):

0.02546(t) = 1.53u(t) — O(t) (24)

where 6(t) and 0(t) are both servo angular acceleration and
speed, respectively. Converting the continuous model in (24) to
discrete form with sampling time 0.02 s, the transfer function
of angular speed to voltage input becomes G as in (23).
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Fig. 9: Unconstrained and constrained performances of LPFC
in tracking the Quanser SRVO02 servo position.

The algorithm is employed with similar tuning parameters
as in the previous numerical example (A = 0.74, n = 3
and a = 0.55). Fig. 9 demonstrates the unconstrained and
constrained performances of LPFC to track an alternating set
point between -1 rad/s to 1 rad/s. For the unconstrained case,
a similar performance to the simulation studies are obtained.
The controller manages to provide a smooth tracking to the
desired target while retaining the intuitive link between the
target dynamic A and the closed-loop convergences speed
(CLTR = 0.2s). In the constrained case, the implied input
limits (—8v < uy, < 8v) and output limits (—0.8 < yi < 0.8)
are satisfied without any conflict by employing the systematic
constraint method (Algorithm 2).

VI. CONCLUSIONS

This work proposes an alternative Laguerre PFC approach
to control an integrating process. Since the traditional PFC
formulation for integrating processes is unable to give a
stable open loop prediction, the transparent control approach
is often used. Although this cascade structure can stabilise
the plant using a proportional controller, the decision making
process may still be poorly posed, and notably can lead to
a highly conservative solution in the presence of constraints.
Conversely, by shaping input predictions using a Laguerre

polynomial, the nominal PFC method can be employed with-
out a cascade structure. Besides, the improved prediction
consistency of LPFC enables the constrained solution to
become more accurate and less conservative, thus improving
performance. This paper has also demonstrated the efficacy
of the proposed LPFC algorithm on laboratory hardware with
active constraints. Critically, the proposed algorithm is very
simple to code and implement which in line with the core
markets for PFC approaches.

Nevertheless, there is a potential weakness with LPFC
especially when the independent model structure is used. A
small offset error may occur if there is a model mismatch
or the real plant is not in fact integrating. Future work aims
to look more closely at this issue while providing a formal
sensitivity analysis and systematic design of LPFC in handling
uncertainty. Another important consideration is to analyse the
alternative shaping methods which may be better tailored to
deal with higher order and/or challenging dynamical.
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Abstract: Predictive functional control (PFC) is a fast and effective controller that is widely used for
processes with simple dynamics. This paper proposes some techniques for improving its reliability
when applied to systems with more challenging dynamics, such as those with open-loop unstable
poles, oscillatory modes, or integrating modes. One historical proposal considered is to eliminate
or cancel the undesirable poles via input shaping of the predictions, but this approach is shown to
sometimes result in relatively poor performance. Consequently, this paper proposes to shape these
poles, rather than cancelling them, to further enhance the tuning, feasibility, and stability properties
of PEC. The proposed modification is analysed and evaluated on several numerical examples and
also a hardware application.

Keywords: predictive control; unstable; underdamped; integrating; input shaping

1. Introduction

Predictive functional control (PFC) is a simple controller that is effective for small-scale
single-input-single-output (SISO) applications, especially for low-order and stable processes [1-3].
The main advantages of PFC compared to its prime competitor—that is, proportional integral derivative
(PID)—are its ability to handle constraints and its transparent tuning parameters. Indeed, it must be
emphasised that the performance of PFC should not be benchmarked against more advanced model
predictive control (MPC) strategies [4], because the implementation is relatively much cheaper and
requires only low computation with very straightforward coding [5,6].

Nevertheless, despite its apparently attractive benefits, PFC has received relatively little attention
in the academic literature because of the lack of a priori stability guarantees [7,8], which are possible
with more advanced MPC approaches. Consequently, several recent works have developed the
basic concept of PFC to improve its overall tuning properties while providing a confident assurance
in the resulting closed-loop performance and constraint handling [9-12]. However, most of these
modifications perform well only with low-order and simple dynamical processes. For a system
with open-loop unstable poles, significant underdamping, or integrating dynamics, PFC is quite
challenging to tune effectively [13], and the resulting divergent or oscillating predictions may give rise
to infeasibility and /or robustness issues.

PFC practitioners often deploy a type of cascade structure to handle a challenging dynamics
process, where an inner loop is used to improve the dynamics for an outer loop to control [14,15].
This modification enables a user to retain an independent model (IM) structure that handles
uncertainties, while retaining a similar tuning concept as the conventional approach. Nevertheless,
the inner PFC can only accept a proportional-type controller to avoid any overcomplication when
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handling constraints [6]. This restriction makes it difficult to have a systematic selection of gain, rather
than an ad hoc approach. Moreover, a back-calculation or anti-wind-up technique is required to
avoid any saturation while satisfying the constraints [6], which also can be conservative and thus
affect performance.

A fundamental conceptual weakness of a simplistic PFC approach is that one is basing decisions
on an open-loop prediction, which may have undesirable, possibly divergent, dynamics; matching this
to a desirable closed-loop dynamic will lead to an ill-posed approach. Hence, an alternative approach
is to pre-stabilise/pre-shape the output predictions by shaping the future input dynamics so that the
effect of unwanted poles on the predictions are alleviated or cancelled [16]. This modification can
retain the systematic tuning concept of PFC, in addition to facilitating a recursive feasibility guarantee
feature for constraint handling. However, the performance of this control law is not always desirable,
since the cancellation of specified modes (poles) within the predictions using a minimal number of
control input changes often requires an aggressive input trajectory [16-18], which is not implementable
or ideal for some cases.

In practice, less aggressive shaping to remove the undesirable modes from the prediction [19] is
preferable, and this forms the main thrust of the proposal in this paper. More specifically, the proposal
here is that, rather than using a small, finite number of control moves (effectively, finite impulse
response (FIR) parameterisation), such as in Generalized Predictive Control (GPC) Added the
defination and conventional PFC, the future input moves will be parameterised using an infinite
impulse response (IIR) instead. The preference for IIR over FIR is due to IIR being more convenient to
manipulate and define than a high-order FIR, in general. In turn, by allowing the output modes to
evolve over many more samples, the required input will be less aggressive. Nevertheless, due to the
desire for simplicity and transparency that is a central tenet of PFC, in this paper, we choose not to
generalise the parameterisation for different dynamics. Instead, this work seeks to provide some rigour
on how to effectively and systematically shape the future input for a given dynamic and, moreover,
how to ensure some recursive feasibility properties during constraint handling.

Section 2 of this paper presents a brief formulation of conventional PFC. Section 3 introduces the
concept of input shaping PFC, together with the constraint handling approach. Section 4 demonstrate
the proposed algorithms on several numerical examples and also on some laboratory hardware.
Section 5 provides the conclusions.

2. Conventional PFC

This section presents, in brief, the main concepts, notation, and formulation of PFC, together with
a systematic constraint handling approach. For more detailed derivations, theory, and concepts of PFC,
an interested reader may refer to the references, e.g., [5,6,13,20]. Without loss of generality, a controlled
autoregressive and integrated moving average (CARIMA)-based model is used instead of the standard
independent model (IM) structure to derive the required unbiased predictions, as this form is more
amenable to the algebra required to implement the shaping. Hence, the model will take the form:

D+ b+ o B =1-! M

where b(z) = biz7' + ..., a(z) = 1+a1z7! + ..., yi, u; are the outputs and inputs, respectively,
at sample k, and {j is an unknown zero mean random variable used to capture uncertainty.

2.1. Control Law

PFC design is based on the assumption that a closed-loop response should follow a first-order
dynamic from the current state y; to the desired target r [20]. In practice, one aims to achieve this
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by ensuring a matching using the open-loop prediction, but only at a single point. In other words,
the predicted output trajectory is chosen to satisfy the following equality:

Yigne = (1= A")r + A"y 2

where v Sy k1 the n-step ahead system prediction at sample time k, and A is the desired closed-loop
pole that will determine the speed of convergence. PFC practitioners typically select the desired
closed-loop time response (CLTR) which has an explicit link with the corresponding closed-loop pole,
that is, A = eCITR, where T is the sampling period [6].

The predictions for the CARIMA model (1) are standard in the literature (e.g., [4,21]), so only
the final form is given here. For input increments Ay ;, the n-step ahead future output prediction is
formed as:

Y = HAU + PAUK + Qlfk ®

where the left and right arrow underlying vectors represent past and future variables, respectively.
The parameters H, P, Q depend on the model parameters, and for a model of order m:

Auy, Auy_q Yk Yi+1
Atgiq Aug_p Y1 Yi+2

A= | . AU = : Y= . P e T )
AMk+n—1 AMk—m Yk—m Yi+n

In conventional PFC [6,20], within the predictions we select Auy; = 0, i > 0. Uusing this and
substituting the n-step ahead prediction from (3) into equality (2) gives:

Hyei1Auy + PnAgk + QuYk = (1= A"r+ Ay (5)

where e; is the ith standard basic vector and H,, = e,T, H,P, = e,{ P,Q, = e,{Q. Hence, the PFC control
law is given as:
1
By = 5= | (1= A")r 4+ Ay = Qufk = Pubbt |y = Hier ©®)
Remark 1. Figure 1 shows a comparison of simplified flow diagrams, where both PFC and MPC share the same
structure, yet have a different optimisation process, where the constraint handling is embedded inside the main

block. As for PID, the control input is obtained simply by tuning the gains, while the constraints are handled via
a rule base [22].

Remark 2. It is noted that PFC performs well for a system with close to a monotonic step response, such as a
first-order system and overdamped second-order dynamics, assuming, of course, a sensible choice of the tuning
parameters A and n [11-13]. However, the same tuning procedure may not work for systems with less simple
open-loop dynamics, leading to ill-posed decision making and unreliable control.
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PFC/MPC control structure

PFC/ ’ Plant y‘
MPC ’
PID control structure
r u y
7 PID Plant >

Figure 1. Comparison of flow diagrams for predictive functional control (PFC), model predictive
control (MPC), and proportional integral derivative (PID).

2.2. Constraint Handling

The constraint handling approach presented here is adapted from the standard MPC
literature [21,23] but with simpler code, and it is more systematic and less conservative than the
back-calculation typically used in conventional PFC algorithms [24]. Similarly, it will be more efficient
than the ad hoc approaches used with PID. Assume constraints, at every sample, on input rate, input,
and states, as follows:

Au < Aup <Au; u<wu <u, y<yx<y Vk (7)
The user needs to:

1. Find a suitable horizon m [23] over which to compute the entire set of future output predictions

in a single vector: Y ik = HeqAuy + PAitk + QYk. The horizon for output predictions ¥ oy

and thus the row dimension of H, should be long enough to capture all core dynamics!
2. Combine the input constraints, rate constraints, and output predictions into a single set of
linear inequalities:

CAuy < i (8
F 1 [ u— Uj—1 1
-1 —U+ U
1 Au
C=| 4|/ &= ~Au i L= :
Hey Ly — PAux — QUk 1
| —He | | —Ly+ PAgk + QY|

where f; depends on past data in Aﬂk’ Yk and on the limits.
3. The input/output predictions will satisfy constraints if inequalities (8) are satisfied, and thus the
PFC algorithm should consider these explicitly.

Next, a single simple loop is utilised to find the Auy closest to the unconstrained solution of (6),
while satisfying (8).
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Algorithm 1. Simple PFC algorithm with systematic constraint handling

At each sample:

1. Define the unconstrained value for Auy from (6).
Define the vector £y of (8) (it is noted that C does not change).
3. Usea simple loop covering all the rows of C as follows:

N

(a)  Check the ith constraint that is the ith row e! CAuy < fr.; of CAuy < fy.
(b)  IfelCAuy > fy;, then set Auy = (fi.;)/ el C], else leave Auy unchanged.

Remark 3. For a simple and stable open-loop process and for suitably large m, Algorithm 1 is guaranteed to be
recursively feasible and, moreover, to converge to a possible value for Auy, that is closest to the unconstrained
choice [12]. However, this benefit does not apply to systems with more challenging dynamics, such as when the
open-loop prediction is divergent.

3. Input Shaping PFC

This section presents the concept of input shaping to pre-stabilise (or pre-condition) the open-loop
predictions of processes with undesirable dynamics. The shaping of input predictions can be done either
via explicit pole cancellation or pole shaping, and both methods can be used to formulate a PFC control
law which retains a recursively feasible constrained solution. A key issue, however, is whether one
deploys FIR or IR parameterisations of the predictions for the future input increments Auy, i > 0.

3.1. Pre-Stabilisation of Predictions via Pole Cancellation

For systems with poor open-loop dynamics, the constant input assumption of typical PFC does
not provide enough flexibility within the predicted input to both cancel the effect of an undesirable
pole and to get nice convergent behaviour [13,17,19]. Thus, it is crucial to first stabilise the prediction
before implementing it into a control law [25]. The first step is to factorise the poles in the denominator:

Ay(z) = MAH(Z); a(z) = a” (z)a" () ©

where a'(z) contains the undesirable poles. Utilising the Toeplitz/Hankel form [21], the future output
predictions can be computed as:

(Co-allCat]Y,  +HaY, =Codu, + HAu, (10)

k+1

where for general polynomial f(z) = fo + fiz ! + .. + fuz ",

fo O 0o . fi fo o fu

1 0 0 > fo .. 0
szjfji..;Hf=f.jT._

foo faer faao 0 0 .. 0

Rearranging prediction (10) in more compact form, we get:
Y = [Cn_A]_l[Cﬂ+]_l[CbAﬂ)k +HpAu, —HpY | (11)
N e’
p

from which the presence of the undesirable modes are transparent through the factor [C,+ ]!
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Lemma 1. Selection of the future input sequence A u,, at each sample, such that the following equality
is satisfied:
[CoAu, +p] = Cory (12)

where 7y is a convergent sequence or a polynomial, will ensure that the corresponding output predictions in (11)
do not contain the undesirable modes in a™.

Proof. This is self-evident by substitution of (12) into (11), which gives:
Yy o1 = [CoalHCH] T Cot ]y = [Comal My (13)

so that only the acceptable modes in 2~ (z) remain in the predictions, along with any components in
the convergent sequence . It is noted that this choice automatically includes the initial conditions
within p and thus updates each sample as required. O

Remark 4. Requirement (12) can be solved by a small number of simultaneous equations [21], where the
minimal-order solution can be represented as:

Au =Pip; v=Pp (14)

for suitable Py, P>. The required dimension of non-zero elements in vector Au , corresponds to at least one more
than the number of undesirable modes (n,+ ), while the order of -y is usually taken as n, = n, — n,+, where ny
is the effective dimension of p (which depends upon the column dimensions of Hy,, Hy).

To ensure the future manipulated control moves are convergent, while adding some flexibility for
modifying the output predictions, the input requirement in (14) can be enhanced to:

Au, =Pip+Cypi¢p (15)
where the vector parameter ¢ denotes the degrees of freedom (d.o.f.) within the predictions.

Theorem 1. Using the new shaped input (15) ensures that the undesirable modes do not appear in the output
predictions, irrespective of the choice of ¢. The output predictions are convergent if ¢ is finite-dimensional or a
convergent infinite dimensional sequence.

Proof. Substitute input prediction (15) into output prediction (12), and the predictions become:

Y= [Co-al M Car 17 [CoA Y, + p]
— [Ca—A]il[Caﬁ.]*l[Ca-ﬂy + CbCa+¢] (16)
= [Co-al M [Chp + 7]

The prediction can be represented with an equivalent z-transform:

y(z) =

(1,275,272l + Gl _ v(2) +b(2)¢(2)
> a=(z) - a( (17)

2)

It is known from Lemma 1 that the contribution from 7 gives a convergent prediction, and thus
overall convergence is obvious as long as ¢(z) is convergent (or an FIR). O

Remark 5. Noting the definition of p in (11), the n-step ahead output prediction with prediction class (15) and
(17) can be put in a more common form as:

Yicrnlk = Hsn@ + Pon Btk + Qs nYk (18)
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where Hs , Ps , and Qs , are suitable matrices, and the additional subscript °s” is used to denote shaping and ¢
is taken to be FIR (equivalently a finite dimensional vector). Note, however, that typically for PFC, ¢ is a scalar.
Also, it is easy to show [18] that choosing ¢ = 0 will automatically give the same input predictions as those
deployed at the previous sample, which enables consistency of predictions from one sample to the next.

3.2. Pre-Stabilisation via Pole Shaping

It is known that dead-beat pole cancellation can require aggressive inputs, and the minimal-order
solutions to (12) are in effect dead-beat input predictions [16,19]. Although dead-beat solutions are
easy to define and thus have some advantages in terms of computation and transparency, in practice,
a user may desire a less aggressive shaping that is more implementable in a real system. Alongside
this, the popularity of dual mode approaches in the literature [26] is partially because they allow
the implied input predictions to converge to the steady state asymptotically, rather than in a small,
finite number of steps. Thus, a logical question to ask is whether a smoother solution to (12)—that is,
one where the implied solutions for y(z), ¢(z) used in (17) have some poles, say a(z)—would work
better for PFC.

The mainstream MPC community has focussed on optimal control solutions, but, given that
PFC is intended to be simple and low-dimensional, the proposal here is that it is more reasonable to
investigate the potential of simple default choices for the asymptotic dynamics a(z) within the input
and output predictions. Clearly, this choice can be strongly linked to the target closed-loop behaviour
and/or system knowledge.

Proposal 1. By definition, the integrator has a pole on the unit circle—that is, factor (1 — z~')—and, conversely,
cancelling the pole as in (12) is equivalent to enforcing a pole on the origin—that is, factor (1 — 0z~ 1). Hence,
the choice of pole factor & = (1 — 0.5z~ 1) represents a simple half-way house trade-off between these two choices.

Proposal 2. For a process with significant underdamping, the implied «(z) will have only real poles which are
chosen to be close to the real parts of the oscillatory poles. This will reduce the undesirable oscillation in the
output predictions, but not change the convergence speed, albeit the input may then be somewhat oscillatory.

Proposal 3. For open-loop unstable systems, a simple default solution simply inverts the unstable poles, that is,
defining a(z) such that a*(z;) =0 = a(1/z;) =0.

Lemma 2. The dynamics a(z) will be present in the predictions if the following Diophantine equation is used
to solve the input/output prediction pairing.

b(2)w(z) +a(z)p(z) = a* (2)4(z); p(z) =Lz, .]p (19)
w(2) I 4C)
= M@= 0= m0amee

Proof. First, note that (19) is equivalent to solving:
[CoCa'w + p] = Cor C 19 (20)

and, moreover, Equation (20) follows directly from enforcing (12) while assuming A = Cylw.
Hence, substituting this Ay , into (11) gives:

ikﬂ - [C”_A]_l[ca+]_l[CbAgk +pl
[CH_A]il[Ca‘*']il[CbC;lW =+ P] (21)
= [Ca*A]_l[Cqu]_l[CaJrCa_l'ﬂ = Ca__lACa—l,?

It is evident, therefore, that the desired poles are in the predictions for both the input
and output. O
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Remark 6. The new requirement (20) can be solved similarly to (12), where the minimal-order solution for w
and  are:
w="Pp; §=Dp (22)

Theorem 2. A convergent prediction class which embeds both the desired asymptotic poles and some degrees of
freedom (d.o.f.) can be defined from:

w=Pp+C,i¢; Ay, = [Ca] Y [Brp + Coi ¢] (23)
where convergent IIR or FIR ¢ constitutes the d.o.f.

Proof. This is analogous to Theorem 1 and is based on superposition. The additional component
in w—that is, C,+ ¢p—necessarily cancels the undesirable poles and gives overall convergent output
predictions. So, using (21), then: Added hat on top of gamma in Equation (24).

_ 1 ~—1

Y1 = ComaCor [Colu, +p]
=C 1 G+ C L CC M [Cor Cpef] (24)
=C,\Ca [1+ Cyg)

O

Remark 7. By extracting the n'’ row and noting the definition of p in (11), the n-step ahead prediction from (24)
can be rearranged in a more general form as:

Yivnk = hn,zx‘P + Pn,ucAgk + Qn,zx]ﬂf (25)

for suitable hy, x, Py n, Qn,a, and it is noted that as is conventional for PFC, ¢ has just a single non-zero parameter
in order to retain computational simplicity and to have just a single d.o.f. for satisfying the control law (2).

3.3. Proposed Shaping PFC Control Laws

Since the shaped predictions of (18) and (25) are derived in a general form, two new control
laws—Pole Cancellation PFC (PC-PFC) and Pole Shaping PFC (PS-PFC)—can be formulated in a
conventional manner after selecting a suitable coincidence horizon 7 and desired closed-loop pole A.

[PC-PFC] The d.o.f ¢ is computed by substituting prediction (18) of PC-PFC into equality (2),

and thus:
1
¢ = p [(1 — /\n)r + )U‘yk _ Qn,s(y_k _ Pn,sAilk] (26)
n,s

then, the current input increment Auy is determined simply by inserting ¢ into the predicted input
of (15).
[PS-PEC] The d.o.f ¢ is computed by substituting prediction (25) of PS-PFC into equality (2),

and thus: .

?= e

[(1 = A+ Ay — Qnallk — Pn,aAﬁk] (27)

then, the current input increment Auy is determined simply by inserting ¢ into the predicted input
of (23).

3.4. Constraint Handling Approaches with Recursive Feasibility

A core advantage of MPC, in general, is that the optimised predictions can be restricted to ones
which satisfy constraints; the d.o.f. within the predictions are used to ensure constraint satisfaction.
For PC-PFC and PS-PFC, the d.o.f. in the predictions is the variable ¢. This section gives a brief
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overview of how the constraint inequalities ensuring (7) depend upon ¢. We will use PS-PFC and
assume that the reader can easily find the equivalent matrices for PC-PFC (for which, in effect, & = 1).

Noting the definition of future input increments in (23) and output predictions in (25),
the constraints inequalities for (7) can be defined as:

< CUPip + Corg)] < LAu;
Lu < CiyaCy '[Pip + Cpe ] + Lug_q < Lii; (28)
Lz <

where Cj/p is a lower triangular matrix one ones, and L is a vector of ones with an appropriate
dimension (typically a horizon long enough to capture the core dynamics in the predictions). The reader
should note that the horizon for the predictions used in (28) will, in general, be much longer than
the coincidence horizon used in (27), as one needs to ensure that the implied long-range predictions
satisfy constraints. The inequalities can be combined for convenience as follows, although this is not
necessary for online coding where efficient alternatives may exist:

i C[/AC,X_lc‘ﬁ i [ L[ﬂ - le,l] - CI/ACoc_lplAp 1
—Cr/aCy1C+ L[—u + ] +CI<AC1:¢_1P1P
c— CilCyr - LAu — c;lplAp
—Cc'C |7 —LAu+ C;'Pp
H, Ly — PaAi‘k — Qa(y_k
L —Ha | Ly P+ Qu¥k |

Algorithm 2. [PS-PFC with constraint handling]

At each sample:

1. Define the unconstrained value for ¢ from (27).
2. Update the vector £y of (29) (it is noted that C does not change).
3. Usea simple loop covering all the rows of C as follows:

(a)  Check satisfaction of the ith constraint using: el C¢ < fi.;.
(b) IfelCo > fi, then set ¢ = (fi;)/[el C), else leave ¢ unchanged.

Theorem 3. In the presence of constraints, Algorithm 2 is recursively feasible where the computed ¢ will not
only enforce the input/output predictions to satisfy constraints at the current sample, but will also guarantee
that one can make the same statement at the next sample.

Proof. By definition, the choice of ¢ = 0 ensures feasibility in the nominal case because the input
component Pjp is the unused part of the input prediction from the previous sample, and this is
known to satisfy constraints by assumption. One can ensure feasibility at start-up by beginning from a
sensible state. [J

Readers should note that using the pre-stabilised /shaped predictions is essential for this recursive
feasibility result, which is not available for more conventional PFC approaches, for which the implied
long-range predictions may be divergent. Thus, this Theorem is an important contribution of this paper.

Remark 8. Although Algorithm 2 allows recursive feasibility, which is a strong result, ironically, the use of
PC-PFC or PS-PFC does not not give any a priori stability and/or performance guarantees in general, which is
a well-understood weakness of PFC approaches [7] and a consequence of wanting a very simple and cheap
control approach.
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4. Numerical Examples

This section presents several numerical examples of the proposed Pole Shaping PFC (PS-PFC)
in handling different types of challenging dynamics, while comparing its performance with the Pole
Cancellation PFC (PC-PFC) and conventional PFC (PFC). These examples will highlight:

the impact of input shaping on the open-loop behaviour;
the trade-off in the closed-loop performance;

the efficacy of constraint handling;

the efficacy on laboratory hardware.

For demonstration purposes, the first three processes with varying dynamics are investigated
in a MATLAB simulation environment in Sections 4.1-4.4. The final example in Section 4.5 is on
laboratory hardware.

4.1. Description of Case Studies

The case studies presented here are inspired from the real process applications. However,
for clarity of presentation, the model parameters are not specific to a given piece of apparatus, but rather
are generic to attain suitable dynamics which enable an explicit comparison between the control laws.
In this work, it is assumed that there is no plant model mismatch. The robustness properties of these
controllers will remain as future work, although it is noted that, as with most predictive controllers,
disturbance rejection and offset free tracking is implicit.

4.1.1. Case Study 1: Boiler Level Control

In the process industry, the use of a boiler is frequent, and the level of water needs to be controlled
within the manufacturer’s specified limits. Exceeding the allowable limits may lead to water overflow,
overheating, and/or damage to many components. Conversely, if the level is low, the water wall tubes
may overheat and cause tube ruptures, resulting in expensive repairs and other potential hazards.
Hence, the prime control objective is to raise the water level at the boiler start-up point while retaining it
at a constant steam load. Since the conversion process from water to steam is very slow, a typical model
for this process is usually a first-order system with an integrator and stable zero [27]. In a discrete
form, one of the poles should reside in a unit circle. The relationship between the output water level
(m), y(z), and the input water flow rate (m3 s, u(z), can be represented by a representative model,

such as Gq:
' 0.1z71 +0.4z72

(1-08z71)(1—2z71)

G = (30)

4.1.2. Case Study 2: Depth Control of Unmanned Free-Swimming Submersible (UFSS)

In the marine application, the depth of an unmanned submarine can be controlled by deflecting
its elevator surface, whereby the vehicle will rotate about its pitch axis; the associated vertical forces
due to the water flow beside the vehicle enable the vehicle to sink or rise. Since a step input deflection
may create an oscillatory angle of dive due to the water current, typical dynamics to represent
this system often consist of at least one stable pole and two complex poles with stable zeros [22].
Thus a representative third-order underdamped process G, can be assumed to represent this pitch
control system:

0.85z~! —1.527% +0.8522
(1—-0.6z71)(1 —1.6z1+0.8272)

with the output as the pitch angle (rad) and input as the input elevator deflection (m).

Gy = (1)

4.1.3. Case Study 3: Temperature Control of Fluidised Bed Reactor

A fluidised bed reactor is used to produce a variety of multiphase chemical reactions that are
highly exothermic and can be considered as unstable. The reactor bed temperature needs to be
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controlled by manipulating the coolant flow rate to avoid overheating and other potential hazards.
In this case, a drastic change in flow rate will trigger a reaction between the chemicals that releases
extra energy and increases the bed temperature. In fact, the change in flow rate needs to follow specific
dynamics to avoid this reaction while stabilising the temperature. A reduced control model includes at
least one stable pole, typically, and one unstable pole [28] to relate the dynamics between the output
temperature (°C) and input coolant flow rate (m?® s~!). Inspired by this system, a representative
second-order unstable process G3 is considered as a good case study:

0.2z 1 —0.26z2

C = A 09z A —152 1)

(32)

4.2. The Impact of Input Shaping on Predictions and Feasibility

The prime purpose of shaping the future input dynamics is to eliminate the effect of unwanted
poles in the future predictions. Nevertheless, it is also undesirable to have an overaggressive input
activity, which may not be implementable in a real plant. To analyse this issue, the prediction behaviour
of PFC, PC-PFC, and PS-PFC for processes Gy, Gz, and Gs are plotted in Figure 2. From these results,
it can be observed that:

e For an integrating process, such as G1, the constant input prediction of PFC leads to a divergent
output prediction, and thus, output constraints can only be satisfied if the input is selected to
be zero! Hence, the PFC plots do not appear in this example, as the constraint handling forces a
choice of u; = 0, Vk.

e For Gy, the default input prediction (Equation (15)) for PC-PFC (blue-dotted line) is of dead-beat
form and aggressive, whereas the input prediction (Equation (23)) for PS-PFC moves smoothly
to the steady state and is less aggressive. There is no significant difference in the corresponding
output predictions.

e  For the underdamped system G, the output prediction from PFC includes a significant oscillation,
which is undesirable and will also cause constraint handling to be conservative. The differences
between PC-PFC and PS-PFC predictions are similar to those noted for Gy, that is, PS-PFC has a
much smoother and less aggressive input prediction, albeit slow, and output prediction, due to
the choice of a. Of course, this difference means that the constraint handling for PS-PFC will be
far more preferable and less conservative, in general. Conversely, since PC-PFC cancelled out
two of their oscillatory open-loop poles, a sudden spike or aggressive damping is expected in the
output response.

e  For the unstable process G3, a conventional PFC cannot be used because the divergent predictions
will automatically violate constraints so that no feasible choice for 1 will exist. Once again, it is
seen that the predictions for PS-PFC are preferable to those from PC-PFC.
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Figure 2. Input and output predictions with PFC, PC-PFC, and PS-PFC for processes G, G2, G3.

In summary, PS-PFC produces the best prediction behaviour because it ensures convergent
predictions which will satisfy constraints with less aggressive input predictions, and thus less
conservative constraint handling, than given by PC-PFC/PFC.

4.3. Tuning Efficacy and Closed-Loop Performance: The Unconstrained Case

First we give a brief discussion on PFC tuning for completeness. In general terms, a good practice
guidance is to select the coincidence horizon in between 40% and 80% rise of the step input response
to the steady-state value [13]: here, G; (4 <n <9), G2 (8 < n <15),and G3 (11 < n < 21). Selecting a
smaller horizon will lead to a more aggressive input, while larger horizons reduce the efficacy of A as a
tuning parameter.

In general therefore, the main designer choice is the desired closed-loop pole; for simplicity of
illustration, we take the desired pole to be A = 0.7. Figure 3 demonstrates the closed-loop performance
of PFC, PC-PFC and PS-PFC on the three case study processes with these tunings. It is noted that:

e For all cases, PS-PFC (using a default choice of «) gives the best trade-off between the rate of
convergence and the aggressiveness of input activity compared to PFC and PC-PFC. Changes to «
could offer a further tuning parameter for varying this trade-off.
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e Itis notable that PS-PFC gives similar or better output behaviour to PFC/PC-PFC while using a

far smoother and less aggressive input trajectory.
e  For processes G, G3, the input and output behaviour of PC-PFC is extremely aggressive and

would not be implementable in a real application.
e For process Gs, the conventional PFC cannot be stabilised with the given choice of 7.

Closed-loop behaviour for system G; with n = 4
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Samples Samples
Closed-loop behaviour for system G, withn =8

N
—_

3
P,

Outputs

Intputs
oy .&.... .
‘i

0 0.5 —-r (A=0.7) |
o PFC
3 -« PC-PFC
-1 0 —PS-PFC
0 10 20 30 0 10 20 30
Samples Samples
Closed-loop behaviour for system Gz with n = 11
1 == —
o 05F
o
2 -
> [2]
[oR =
a o0
2F S
o —-r (A=0.7)
05k -« PC-PFC
* —PS-PFC
4 . . . .
0 10 20 30 0 10 20 30
Samples Samples

Figure 3. Closed-loop input and output behaviour of PC-PFC and PS-PFC for processes Gy, Gy, G3.

4.4. Constraint Handling

As noted in Section 4.2, for many dynamics a conventional PFC approach is infeasible or highly
conservative because the output predictions inevitably violate constraints beyond a given horizon.
Thus, conventional PFC can only be implemented by using short constraint horizons and thus with
the loss of any recursive feasibility assurance; if it does work this is luck not good design and thus
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should be avoided. For the case studies here, conventional PFC could only be used safely with output
constraints for Gy, although in that case we would expect some conservatism due to the oscillations in
the output predictions.

PC-PFC and PS-PFC pre-stabilise the output predictions and thus can be used safely and with a
recursive feasibility assurance. Figure 4 compares the performance of PFC, PC-PFC, and PS-PFC when
constraints are added to the process. Several observations can be noted:

e Asexpected, PS-PFC and PC-PFC satisfy constraints, retain recursive feasibility throughout and

converge safely.
e  For process Gj, the constrained performance of the controllers are almost the same, but PS-PFC

provides a smoother input transition.
e For process G it is clear that handling the under-damping will cause some challenges to any

control law, but clearly PS-PFC provides the best responses.
e For process Gs, the inherent dead-beat input predictions deployed by PC-PFC mean the

performance is poor and slow to converge whereas PS-PFC performs well.

Closed-loop constrained behaviour for system G; with n = 4 and
—02<u, <02,-02<Au <02, -12<y, <12

Intputs

—r (A=0.7) ]
o PFC

«.. PC-PFC
—PS-PFC

20 30 20 30

Samples Samples
Closed-loop constrained behaviour for system G, with n = 8 and
—1<u <1;,-02 < Aup <02,-1.05 <y <11

0.4} 090a22% 1} olze
o
[%) ! « /
*g-O.S 5- I'
— 5 ’
= 005 —r (A=0.7) ]
0.2 o PFC
---PC-PFC
. —PS-PFC
0.1 . . 0 . .
0 10 20 30 0 10 20 30
Samples Samples

Figure 4. Cont.
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Closed-loop constrained behaviour for system Gz with n = 11 and
—1<u <1L,-02<Au <02,-02<y, <12

1F ——rrree - Ll S
o :
o
2 hat
a [2]
2.0.5 =05}
£ 3
=]
O |
/ .. PC-PFC
°f; ' 0 P —PS-PFC
0 10 20 30 40 0 10 20 30 40

Samples Samples

Figure 4. Constrained input and output behaviour of PFC, Pole Cancellation PFC (PC-PFC), and Pole
Shaping PFC (PS-PFC) for processes G1, G, G3.

4.5. Application of PS-PFC on Laboratory Hardware

This section demonstrates the implementation of PS-PFC on laboratory hardware, that is,
a Quanser SRV02 servo-based unit (Quanser, Markham, ON, Canada) (see Figure 5). This device is
powered by a Quanser VoltPAQ-X1 amplifier and operates by National Instrument ELVIS II+ (National
Instruments, Austin, TX, USA) multifunctional data acquisition via USB connection. The control
objective is to track the servo position 6(t), measured in radians, by manipulating the supplied
voltage V (t). This servo will rotate counter-clockwise with positive supplied voltage and vice versa.
A second-order model of (33) with an integrator is used to represent the system dynamics (refer to [29]

for a more formal derivation) as:
1.53

) = Somsas 1y V) 33

!

Figure 5. Quanser SRV02 servo based unit.

To implement the proposed control law, the continuous model (33) is discretised with sampling
time 0.02s to obtain the discrete model of:

_0.0095z72 + 0.0073z

Ge =
T 1—-145z"1 4045272

(34)

The plant is set to have a CLTR of 0.2s (which is equivalent to A = 0.89). Using a similar
procedure to that in the previous section, the coincidence horizon is selected at n = 4. Figure 6
demonstrates the unconstrained and constrained performances of PS-PFC in tracking the servo
position. In the unconstrained case, the controller manages to track the target position with the
desired convergence speed. As for the constrained case, all the implied input limits (=8 < u; < 8),
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rate limits (—3 < Auy < 3), and output limits (—0.8 < y; < 0.8) are satisfied systematically without
any conflict.

15 ' ; 1 — _
I . ==y (Unconstrained) Lo
°r !I‘ K ==y (Constrained) £
H = 05F L
— Iy —Target ¢
> o = i
= 5 3 ‘l: g E
7 [ 2 0 ! E
[3] % i
% 0 -. .qu!ur——d-ﬁ._‘_.Jl ‘&?ﬂquﬁ‘ g ‘ ;
. 305t i
-5 ==u (Unconstrained) 1 g \ i
===y (Constrained) Qresnasesansn s b
10k . . p .
Time (s) Time (s)

Figure 6. Unconstrained and constrained performance of PS-PFC for process Gs.

5. Conclusions

This paper proposes two potential simple modifications to a conventional PFC algorithm
to improve the constraint handling properties for processes with challenging dynamics, such as
integrating modes, underdamping, or unstable modes. Both proposals use relatively simple algebra—in
effect, the solution of a small number of linear simultaneous equations—to parameterise the future
input trajectories which lead to convergent and desirable output behaviours; this is done in terms
of a component to deal with the current state (or initial condition) and a free component for control
purposes. A core contribution is to show that using the proposed parameterisations allows a simple proof
of recursive feasibility so that the constraint handling can be performed more safely and reliably.

A specific novelty of this paper is the proposed PS-PFC algorithm, which gives a pragmatic
and simple proposal for deriving input and output prediction pairs which do not require aggressive
inputs during transients; the more classical alternative approach of PC-PFC, in general, deploys very
aggressive inputs in transients and thus cannot be used in practice. Simulation evidence on a variety of
simulation case studies and hardware demonstrates that the proposed PS-PFC algorithm significantly
outperforms both a conventional PFC approach and PC-PFC.

Although, as with all predictive control laws, both PC-PFC and PS-PFC are robust to some
parameter uncertainty and disturbances, a detailed sensitivity analysis is an important next step.
Also, it is of particular interest to compare these approaches with the alternative feedback formulations
for PFC [6,15] by way of systematic design, nominal performance, constraint handling, and sensitivity.

Author Contributions: This paper is a collaborative work between both authors. J.A.R. provided initial proposals
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the whole project. M.A. developed the code and analysed the concept in various challenging dynamics process
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The effect of model structure on the noise and disturbance sensitivity of
Predictive Functional Control

Muhammad Abdullah! and John Anthony Rossiter?

Abstract— An Independent Model (IM) structure has become
a standard form used in Predictive Functional Control (PFC)
for handling uncertainty. Nevertheless, despite its popularity
and efficacy, there is a lack of systematic analysis or academic
rigour in the literature to justify this preference. This paper
seeks to fill this gap by analysing the effectiveness of different
prediction models, specifically the IM structure and T-filter, for
handling noise and disturbances. The observations are validated
via both closed-loop simulation and real-time implementation
and show that the sensitivity relationships are system depen-
dent, which in turn emphasises the importance of performing
this analysis to ensure a robust PFC implementation.

Keywords—Predictive Control, PFC, Sensitivity Analysis, In-
dependent model, T-filter, Noise, Disturbance.

I. INTRODUCTION

Predictive Functional Control (PFC) is a variant of Model
Predictive Control (MPC) that optimises a cost function
solely based on a single degree of freedom (d.o.f) [1],
[2]. With this simplification, PFC only requires a minimal
computation and indeed, for low order models, the coding
is almost trivial. In addition, PFC inherits some benefits
of MPC such as systematic handling of constraints and/or
systems with delays [3]. Because of its transparent tuning
procedure, the controller is widely used in many industrial
applications and has become a prime competitor to Propor-
tional Integral Derivative (PID) regulators [2]-[4].

Despite its attractive attributes, the simplistic PFC concept
is often unable to provide a consistent prediction [5], accurate
constrained solutions [6] and effective handling of systems
with challenging dynamics [7]. Several works have modified
the traditional PFC framework to tackle these weaknesses
either via cascade structures [2], pole-placement [7], [8] or
input shaping [6], [9]-[11]. However, the derivation of these
methods excludes explicit consideration of uncertainty and
no attempt was made to discuss or analyse systematically the
robustness of PFC.

Generally, PFC has received comparatively little attention
in the academic literature because of its weaknesses in
providing rigorous properties such as stability assurances
[12], [13] or robust feasibility [14]. Critically however,
embedding a formal robust design into the PFC formulation
conflicts with the requirement for simplicity of coding and
implementation [15]; a key selling point of PFC is its
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simplicity. The normal option is to derive the nominal PFC
controller using methods expected to give a robust design
[16], [17], such as the use of a T-filter [18] or an Independent
Model (IM) [2]. Since the unconstrained PFC framework
provides a fixed control law, loop sensitivity can be computed
and analysed to assess the controller robustness.

A conventional PFC approach often employs the IM struc-
ture to handle uncertainty [2], [3]. However, this paper argues
that it is not always the best option to improve sensitivity
in general. A user should also consider other alternatives
such as the T-filter which may enable better trade-offs
between noise and disturbance sensitivity [16], [18]. This
paper compares the robustness of these two structures and
their sensitivity functions are derived and benchmarked with
a nominal PFC based on a CARIMA model. The analysis
may help a user to get some insight into how to improve the
controller robustness via selecting a suitable PFC structure
rather than requiring a more complicated robust design [14].

This paper consists of five main sections. Section II
discusses the basic formulation and derivations of sensitiv-
ity functions for three different PFC structures: CARIMA
model, T-filter and IM structure. Section III presents the
analysis on a real-time example. Section IV analyses two
numerical examples with a higher order dynamics and sec-
tion V provides the concluding remarks.

II. PFC STRUCTURES AND SENSITIVITY FUNCTIONS

This section presents a brief formulation of three differ-
ent PFC structures associated to different prediction model
assumptions together with the derivation of the associated
sensitivity functions. Without loss of generality, this paper
assumes an underlying CARIMA model (since state space
and Finite Impulse Response (FIR) models can equally be
represented with an IM). Here, only a brief background
on PFC is presented; more detailed derivations, theory and
concepts are available in references [2]-[5].

A. PFC with a CARIMA model

The PFC framework is designed based on human intuition
where one computes a required control action depending on
how fast one desires the output to reach the set point. The
first order target trajectory is utilised to define the desired
future output by enforcing the equality [5]:

yk+rly|k = (1 - /\”y)r + )\n”yk (1)

where yiin,|x 1s the ny-step ahead system prediction at
sample time k, the desired closed-loop pole A controls the
convergence rate from output yy, to steady-state target r, and



the coincidence horizon n, (a tuning parameter) is when
the system prediction is forced to match the target trajectory
exactly [2]. Since the n,-step ahead prediction algebra for a
CARIMA model is well known in the literature (e.g. [16]),
only the final form is given here. For input increments Awuy,
and outputs yy, the n,-step ahead linear prediction model is:

Ytny |k = HAuR + PAug, + Qyk (2)

where parameters H, P, () depend on the model parameters
and for a model of order m:

Auy, Augp_1 Yk
Augi Aug_o Yk—1
Alfk = . 7A(ilk = ;!{Lk = : (3)
AUk+n71 Aukfm, Yk—m

Substituting prediction (2) into equality (1) gives:
HAug + PAuk + QYe = (L= A")r + X'y (4)
The constant future input assumption [2], [3] of PFC means

Augy; = 0 for ¢ > 0, hence only the first column (Hp) of
matrix H is used to construct the control law, thus:

1
Auy, = A (1= X")r + X'y, — QYr — PAgk o)

The control law can be represented in a vector form by
rearranging (5) in terms of parameters F', N and D with
obvious definitions:

Aug = Fr — Nyr — DAuy (6)

Although the formulation in (6) can be implemented
directly, it is easier to utilise a transfer function form for
analysing its sensitivity [16]. The vectors of

N = [Ny, N1, Na, ..., N,,]
D = [Do, Dy, Da, ... D]
are defined in the z domain as:
N(2) =Ng+Niz7' Noz ™2 4 ..+ N,z
ﬁ(z) =Do+ D127 , Doz 2+ ... 4 Dp2" (8)
D(z)=1+z"'D(2)

@)

Noting the definitions of Aﬁk and y_k in (3), the sensitivity
functions are derived based on a fixed closed loop form:

D(2)Aug = F(2)r — N(2)yx 9)

Fig. 1 indicates the equivalent block diagram and adds mea-
surement noise 7 and output disturbance d. From the struc-
ture, the effective control law can be simplified to K(z) =
N.(2)[D.(2)A]7L. Assuming system G(z) = B(z)A(z)7L,
the closed-loop pole polynomial P.(z) = 1+ K(2)G(z) is
represented as:

P.(z) = D(2)A(2)A + N(z)B(z) (10)

The sensitivity of input to noise is derived by finding the
transference from wu to n (refer to Fig. 1):

= N(2)P.(2) " A(2) (1

uk o WL

[D()a]? G(z)

F(z)

+
: +nk

Fig. 1: PFC equivalent block diagram representation.

N(z)

Similarly, the sensitivity of output to disturbance is obtained
by solving the transference from y to d:

Sya =1+ K(2)G(2)] ' = A(2) P.(2) ' D(2)A (12

Remark 1: This work only considers the sensitivity to
input noise and output disturbances. Other analysis such
as parameter uncertainty Sg, output noise Sy, and input
disturbance S, are similar but excluded to save space.

B. PFC with T-Filter (PFCT)

The T-filter acts as a low pass filter to eliminate high
frequency measurement noise without affecting the nominal
tracking performance [18] of predictive control, although in
the literature a T-filter has yet to be applied to PFC. The
framework proposed here is a two stage design whereby
PFC is first tuned for performance tracking, then the T-
filter is employed to improve the sensitivity. Conceptually,
the measurement output is low-pass filtered before prediction
and anti-filtered after prediction to restore the predicted data
back to the correct domain before deploying the nominal
algorithm. The procedure is illustrated in Fig. 2 and reduces
the impact of high frequency noise on the prediction while
retaining the valuable low frequency dynamics [16].

y y

N Low-pass
filter

Form i N ‘¥

predictions Anti-filter |—)

!

Fig. 2: PFCT prediction structure with T-filter.

The desired T-filter 7! is deployed as ¢, = yxT "' or
Ty, = yi. Define the filtered predictions up to horizon n,
as follows:

8y = HAG + PATK + Ol (13)
The relationship between the filtered and unfiltered predicted
data can be represented using Toeplitz/Hankel form (refer to

[16] for more details):

Aug = CrAuy, + Hp Ay,
where for T'(2) = To + Thz7t + ...+ Tp2™™
Ty 0 0o - n T o T,
T, To 0 T 15 --- 0
Cr=|. . . JHr = | . . .
Ty Tuy Tooo - 0 0 - 0
(15)



substituting (14) into (13) gives:

Cr'lY, ., — Hrie) = HCr' [Awx — Hy Aiy) + ATy + Qi

Tk A,

(16)

Multiplying through by Cr and grouping common terms:
Yp = HA_’L)Lk + PAgk + Q;t(/_k a7
where P = [CrP — HHy] and Q = [Hr + CrQ]. The
difference between (17) and (2) are the last two terms which
now are based on past filtered data. Hence, applying a similar

control law and derivation to eqns.(4-9), a PFCT fixed control
law can be formulated as:

Dy(2)Auy, = F(z)r — Ni(2)yk (18)

T
the block diagram i)f Fig. 3. The closed-loop pole polyno-

mial, sensitivity of the input to noise and sensitvity of the
output to disturbances are:

Pi(z) = Di(2)A(2)A + Ni(2)B(z)
Sun = Ni(2)Pi(2) T A(2)
Syd, = A(Z)Pt(Z)_lD,gA

Remark 2: It can be shown that the closed-loop poles of
PFCT P.(z) are related to the equivalent poles of PFC by
Py(z) = P.(2)T(z) and also that the inclusion of T-filter
cannot affect the nominal tracking performance [16].

dkl
Uk WYk

T DA | G(z) =

where Dy(z) = 2E) and Ny(z) = % are represented in

19)

F(2)

N(Z)T(2)*

Fig. 3: PFCT control loop.

C. PFC with an Independent Model (PFCI)

As discussed before, the IM structure is often used in
conventional PFC [2], [3] as the creators believe it gives
better sensitivity properties in general. The implementation
is equivalent to using a step response model (ignoring
truncation errors [16]). Define y,, to be the model output and
1y the process output, then the prediction of future output in
(2) is defined based on ¥, and augmented with a correction
term Dy = yr, — Y,k as follows:

Yotn, |k = HAU, + PAug + ngyk + Dy, (20)

Equating prediction (20) with the target trajectory (1) gives:
HAwe+ PAuH QY ~ gt = (1=A™)(r—yi) 21)
Since the future input increment Awy,; is assumed zero for

17> 0 and H is reduced to H;, the PFC control law is:

1
Aup, = —

T | (A= (=N =Qy  ym =P

(22)

For suitable F, N;, M;, D, one can rearrange (22) as:

Aup = Fr—Niy = Myp — DAuy, (23)

Transforming (23) into an equivalent transfer function for-

mat, the PFCI fixed closed loop is constructed as:
D(z)Auy, = F(2)r — Ni(2)ym.e — M;(2)ys (24)

The model output can be determined exactly from the model
Ymk = B(2)A(2) luy and hence equation (24) can be
replaced by (see Fig. 4 for the effective loop structure):

[D(2)A + Ni(2)B(2) A(2) " ur = F(2)r—M;(2)ys, (25)

Gp(z)

Fig. 4: PFCI control loop.

The sensitivities for IM structure of Fig. 4 are obtained
analogously to CARIMA PFC by substituting parameter
D(z)A with D;(z), and N(z) with M;(z) in equation (10-
12). The closed-loop pole polynomial and sensitivites are:

Pi(2) = Di(2)A(2) + My(2)B(2)
Sun = ML(Z)PL(Z)_lA(Z)
Sya = A(2)P;(2) "' Di(2)

D. Summary of Control Laws

(26)

Table I summarises the sensitivity functions for PFC (Fig.
1), PFCT (Fig. 3) and PFCI (Fig. 4). The key observation is
that while, the derivation and structure of all the sensitivity
functions are almost same, their parameters are different and
hence, different sensitivity response should be expected.

TABLE I: Sensitivity to noise and disturbance.

Algorithm | Input sensitivity to Output sensitivity to
noise disturbance
PFC N(2)P:(2) " TA(2) A(z)P.(2)"I1D(z)A
PFCT Ni(2)Pi(2)"TA(z) | AQR)Pi(2)~TDi(2)A
PECI M, (2)P;i(2) " TA(2) A(z)P;(2)~1D;(2)

ITII. REAL TIME SYSTEM EXAMPLE

This section analyses the sensitivity of a PFC con-
trolled Quanser SRV02 servo based unit [19] system against
noise and disturbance. The servo is powered by a Quanser
VoItPAQ-X1 amplifier that comes with National Instrument
ELVIS II+ multifunctional data acquisition device. The con-
troller is run by National Instrument LabVIEW software via
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USB connection (Fig. 5). The objective is to track the desired
servo angular speed, 0(t) by regulating the supplied voltage,
V(t). The mathematical model is given as [19]:

0.02540(t) = 1.53V (t) — 6(¢) 27)

where 0(2&) is the servo angular acceleration. Converting the
model (27) to discrete form with sampling time 0.02s, the
transfer function of angular speed to voltage input is:
B 0.8338

~ 1-0.455271

For a fair comparison, all PFC structures will use the same
tuning parameters (A = 0.7 and n, = 3). The sensitivity
functions for different loop structures: PFC, PFCT and PFCI
are illustrated via Bode plots (see Fig. 6). A summary of
observations is given as:

G (28)

« In the high frequency range, the first order PFCT, T' =
1—0.8271 (red dashed line) gives the lowest sensitivity

P it

IFhiLa 0 gl

1 i --;;,,"g;,ﬁﬂr—,lilvi; 2
" &

Input voltage (V)
N

—Target \
--—-PFC

Output speed (rad/s)

Time (s)

Fig. 7: Closed-loop performance of Quanser servo with
different PFC structures.

to noise and disturbance followed by PFCI (green dotted
line) and PFC (blue dashed-dotted line).

e The output of PFCT is more sensitive to low and mid
frequency disturbances compared to PFCI and PFC.

This observation is then validated by comparing their
closed-loop performance on the hardware (see Fig. 7). In
this case, the desired angular speed is set at 4 rad/s and
the output step disturbance (d = 2) entered the system at
3s. The output measurement is corrupted by Gaussian white
noise with variance of 2. The results show:

o PFCT reduces noise transmission to the input compared
to PFCI and PFC.

o PFCT rejects the output disturbance 0.2s slower com-
pared to PFCI and PFC.

In summary, without filter or altered structure, the PFC
input is fluctuating between 2.5V to 3V. This situation may
lead to a fatigue failure especially for a highly sensitive appli-
cation. However, improving the sensitivity in one frequency
range may make it worst at the other range and hence in
practice, a trade-off to get the best overall performance is
required. In this example, it may be worth to have a slower
disturbance rejection (which is less likely to occur) to get
the best noise sensitivity with the T-filter.

IV. ANALYSIS FOR HIGHER ORDER SYSTEMS

This section discusses the sensitivity analysis of second
order systems with over and under-damped dynamics. The
analysis is then validated with their closed-loop performance
using Matlab simulations.
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Fig. 8: Sensitivity plot for G2 with different PFC structures.

A. Over Damped Second Order System

An over damped second order system (29) is considered
here. The set point is zero and a step output disturbance
(d = 0.1) occurs at the 50th sample. The measurement is
corrupted by Gaussian random white noise. All PFCs are
tuned with A = 0.7 and n, = 3.

_ 272403271
1 —1.22"140.32272

The Bode plots in Fig. 8 show:

o The input of PFCT2, T = (1 — 0.8271)? (pink line)
gives the lowest input sensitivity to noise followed by
PFCI (green dotted line), PFCT1, Ty = 1—0.82 " (red
dashed line) and PFC (blue dash-dotted line).

« However, over filtering the measurement as with PFCT2
leads to a poor output reaction to disturbances in the low
or mid frequency range compared to other structures.

The closed-loop simulation in Fig. 9 reflects the sensitivity
analysis whereby:

o PFCT2 rejects most of the noise in input but in fact the

variance with PFCI is still small.

¢ In the present of the output disturbance, PFCT2 con-
verges 7 samples slower with the highest overshoot
(Ymaz = 0.5) compared to PFCI (y,q, = 0.3) and
PFCT1 (ymax = 026)

Although, a user can manually tune the T-filter, in this
example there is a reasonable argument that the IM structure
provides a good sensitivity trade off between noise and
disturbances.

G

(29)

B. Second Order Under-damped System

A PFC controlled second order under-damped system (30)
again has a zero set point and a disturbance (d = 0.1) at

Input
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(©]
0 e S
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Fig. 9: Closed-loop response of G5 with corrupted measure-
ment noise and disturbance.

50th sample and measurement noise. The tuning parameter
(A = 0.8 and n, = 4) is selected based on the conjecture
presented in [5], [10].

~0.056527% +0.04952!
T 1—1.564321 4+ 0.67032

A similar pattern to the previous example is observed in
the Bode diagrams of sensitivity (see Fig. 10):

Gs

(30)

o PFCT1 gives a small improvement in rejecting high
frequency noise, but less than PFCI, while having al-
most similar disturbance sensitivity in the low frequency
range compared to PFCL

« Over filtering the measurement noise with PECT2 leads
to a more sensitive output to low frequency distur-
bances.

The closed-loop simulations in Fig. 11 validate the anal-

ysis whereby:

o PFCI rejects more noise compared to PFCT1 and almost
the same as PFCT2.

« In the presence of the output disturbance, PFCI over-
shoots more than PFCT1 and less then PFCT2 but
converges faster than both.

In this case, it is clearly shown that PFCI has better

sensitivity trade-off between noise and disturbances, thus no
filter or observer would be recommended.

V. CONCLUSIONS

This work provides a sensitivity analysis to uncertainty
for different PFC structures. Although generic conclusions
are not applicable, it is clearly shown that the popular
IM structure does not always give the best robustness to
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Fig. 10: Sensitivity plot for G3 with different PFC structures.

uncertainty especially for a simple first order system. In some
cases, using a low pass filter such as a T-filter can provide
a good sensitivity trade-off between noise and disturbances
as shown in the hardware example of section III. However,
the sensitivity of PFC structures are system dependent and
thus the best option may not be clear a priori as the latter
two examples indicated a likely preference for using the IM
approach. Hence, production of off-line sensitivity plots is
essential to give insight into the robustness of differing PFC
structures and indeed, this should be extended to consider a
wider range of sensitivity such as parameter uncertainty.

It is also noted that this paper did not consider the impact
of changes in the parameters A,n and one might argue
that this should also be investigated. Moreover, where PFC
is challenging to tune [9] and/or needs structural changes,
further alternative structures may be beneficial and should
be included in any offline analysis.
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Abstract—A Laguerre Predictive Functional Control (LPFC) is
a simple input shaping method, which can improve the prediction
consistency and closed-loop performance of the conventional
approach (PFC). However, it is well-known that an input shaping
method, in general, will affect the loop sensitivity of a system.
Hence, this paper presents a formal sensitivity analysis of LPFC
by considering the effect of noise, unmeasured disturbance and
parameter uncertainty. Sensitivity plots from bode diagrams
and closed-loop simulation are used to illustrate the controller
robustness and indicate that although LPFC often provides a
better closed-loop tracking response and disturbance rejection,
this may involve some trade-off with the sensitivity to noise and
parameter uncertainty. Finally, to validate the practicality of the
results, the sensitivity of the LPFC control law is illustrated on
real-time laboratory hardware.

Index Terms—Predictive Control, PFC, Sensitivity Analysis,
Laguerre function, Parameter Uncertainty, Noise, Disturbance

I. INTRODUCTION

Model Predictive Control (MPC) is an optimal controller
that employs a control action based on a future output pre-
diction. Typically, MPC utilises a finite horizon prediction in
the optimisation process and can explicitly take into account
different types of constraints in a system [1]. Nevertheless, the
implementation of this controller is often more expensive and
requires higher computational effort and time compared to its
competitors [2]. Hence for low-end applications, it is wiser
to consider a simpler controller such as Proportional Integral
Derivative (PID) or Predictive Functional Control (PFC).

Developed in 1973, PFC is known as a simplified version of
MPC that minimises the output error at a single point instead
of over a whole trajectory [3], [4]. With this simplification,
PFC only needs simple coding and minimal computation.
Although in general, the computed input is not optimal, it still
retains some of the core benefits of an MPC approach such as
systematic handling of constraints and/or systems with delays
[4]. Besides, the use of a target first-order Closed-loop Time
Response (CLTR) as one of its tuning parameters, makes the
design process more transparent. Currently, this controller is
widely used in many industrial applications and has become
a prime competitor with PID regulators [4]-[6].

This work is funded by International Islamic University Malaysia and
Ministry of Higher Education Malaysia.

Despite its attractive attributes, the simple PFC concept is
often unable to provide a consistent prediction [7], accurate
constrained solutions [8] and effective handling of systems
with challenging dynamics [9], [10]. Several works have mod-
ified the traditional PFC framework to tackle these weaknesses
either via cascade structures [4], [11], pole-placement [9],
[12] or input shaping [8], [10]. However, the derivation of
these methods often excludes explicit consideration of uncer-
tainty, and only a few works have systematically discussed or
analysed the robustness of PFC [13], [14]. Hence, the main
objective of this work is to tackle this issue on one of its
alternative structures know as Laguerre PFC (LPFC).

LPFC is defined by shaping the future predicted input trajec-
tory with a first-order Laguerre polynomial [15], [16]. Instead
of the constant input assumption of PFC, the future dynamics
are now forced to converge gradually to the steady-state value.
This modification can improve the prediction consistency
and the significance of CLTR as a tuning parameter [16].
Furthermore, due to the well-posed decision making, satisfying
constraints within a larger validation horizon becomes more
accurate and less conservative [8]. However, this algorithm,
as in common in MPC, is utilising the model parameters
to estimate the steady state input while improving the loop
performance and hence, it is worth investigating its sensitivity
concerning noise, disturbances and parameter uncertainty.

Since the general unconstrained PFC framework provides
a fixed control law, loop sensitivity can be computed and
analysed to assess the controller robustness [3]. The perfor-
mance of LPFC will be benchmarked against a nominal PFC
structure to get some insight into the sort of sensitivity trade-
off that ones should expect. The reader is reminded again that
the scope of this work is only focused on simple and stable
dynamic system; further development of LPFC to deal with
challenging or unstable systems constitutes future work and
in general is non-simple with a PFC approach.

This paper consists of five main sections. Section II dis-
cusses the basic formulation and derivations of sensitivity
functions for PFC and LPFC. Section III presents some
numerical examples. Section IV illustrates the findings are
consistent with those on real-time laboratory hardware and
section V gives the conclusions.



II. PFC STRUCTURES AND SENSITIVITY FUNCTIONS

This section presents a brief formulation for both PFC
and LPFC together with the derivation of their sensitivity
functions. More detailed derivations, theory and concepts are
available in these references [3], [4], [6], [7]. Without loss of
generality, this work utilises an autoregressive with exogenous
terms (ARX) model with an independent model (IM) structure.

A. Conventional PFC

1) Target trajectory: PFC is designed to follow a closed-
loop behaviour of the first order system with a delay 7 (or h
samples) and a time constant 7. [7]. The z-transform of the
target trajectory, r(z) with steady-state R is:

21—\
o) = 5

The representation of target pole, A in (1) is equivalent to the
desired closed-loop time response (CLTR) which is normally
used by industrial practitioners [4]. The conversion can be
presented by T,, = CLTR/3, where \ = eTr with T the
sampling period.

R (1)

2) Coincidence point and degree of freedom: The control
objective of PFC is to force the system open-loop prediction,
yp to exactly match the predicted target trajectory of (1) at
a selected coincidence point n samples into the future [4].
Consequently, the control law is formulated to enforce the
equality:

Ypjtnle = (1 = A")R+ XN"yp 2)

where Y, ;ynk 18 the n-step ahead system prediction at
sample time k and y, ) is the current process output
measurement.

3) Independent model: The independent model (IM) struc-
ture is often used in conventional PFC [4], [5] as this is
known to provide good sensitivity properties in general, yet it
is only applicable to open-loop stable systems. The implemen-
tation is equivalent to using a step response model (ignoring
truncation errors [1]). Both the model G, and process G,
run in parallel using the same input uy (see Fig.l1). The
error (d, = Ypk — Ym,k) between process output 7, and
model output y,, is utilised to handle noise, disturbance and
parameter uncertainty. Using the unbiased model prediction,
the equality (2) is altered to:

(1 - /\n)R + )‘nyp,k = Ym, k+n|k + dk

n (3)
(R - ypk)(]- - A ) = Ym,k4+n|k — Ym,k

4) Control law: The n-step ahead prediction algebra for
an ARX model is well known in the literature, which can be
represented using Toeplitz/Hankel form (e.g. [1]), hence only
the final form is given here. For input u; and model outputs
Ym, k> the n-step ahead linear prediction model is:

Ym,k4nle = Hug + Pug + QYmok )

Gp

Gm

ym

Fig. 1: The independent model structure.

where parameters H, P, ) depend on the model parameters
and for a model of order m:

U Uk—1 Ym,k
Uk+1 Ug—2 y. Ym,k—1 (5)
Up = s U = k=
b : L 2 :
Uk+n—1 Uk—m Ym,k—m

Substituting prediction (4) into equality (3) gives:
Hli]f-i-Pl(L_]q-i-Qyn&k —Ymie =R —ypr) (1 —=A") (6)

The constant future input assumption of PFC [3], [4] means
that wy,;,, = uy for i > 0, hence defining h = » (H), the
control law reduces to:

1
Uk = E
The control law can be represented in a vector form by
rearranging (7) in terms of parameters Fj,, N,, M, and D,
with obvious definitions:

up = FyR — NpYmk — My, — DypAuy (8)

(1=A")R=(1=A")yp,s— QU k+ymp —Pur | (7)

Remark 1: Conventional PFC can work well with low
order and simple dynamical systems, especially when the
coincidence point is selected properly [7]. However, with
the restricted degree of freedom (d.o.f) in its future input
dynamics, an inconsistency between open-loop and closed-
loop predictions will occur [7], [16]. Since the current decision
making could then be ill-posed, the accuracy of a constrained
solution might also be affected, especially when the validation
horizon is selected far beyond the coincidence point [8].

B. Laguerre based PFC (LPFC)

1) Future input dynamics: The main difference between
LPFC and PFC is that the future predicted input dynamics
are shaped via a first-order Laguerre polynomial (in effect, a
simple exponential decay function with pole a) so that it will
converge to the expected steady state input ugs [15], [16].
Thus, instead of the constant dynamics assumption of PFC,
the future input is modified to

Up = Uss + Ln 9)

where L is the vector (L = [1,a,a?,..a” 1]T) and 7 is a

degree of freedom. For a general transfer function G,,,(z) =

B(2)A(2)7!, the value us; is estimated as:
Uss = G (2) "M (R — dy) (10)

The inclusion of error term dg in (10) is to ensure an unbiased
estimation.



Remark 2: For a first-order system, a should be equal to
A to ensure consistent dynamics with the target trajectory
[16]. Although for higher-order systems, the value of a can
be tuned for faster convergence [15], this work will only use
a = X to keep the sensitivity analysis transparent.

2) LPFC control law: The output prediction of (4) is
modified with the new input dynamics of (9) to give:

Yminle = H(uss + L) + Pug + QYmk - (11)

The equality of (6) now becomes:
HIn+huss+Puk+QYmbk—ym e = (r—ype)(1=A") (12)
and the control law is computed by solving for 7 as:

1

n=ﬁ(

1—/\")r—(1—)\")yp,k—huss—er&k—i—ym,k—PIf_k
(13)
Due to the receding horizon principle [3] and the definition of

L(z), the current input is defined as:

Up = Uss + 1) (14)

Noting the structure of wugs in (10) and n in (13), the
manipulated input ug in (14) can be altered into vector form
simply by rearranging the algebra and grouping the common
terms into parameters Fj, N;, M; and 151 so that:

u = Fyr — NiYym ke — Myyp i — ﬁlAgk (15)

Remark 3: 1t has been shown in [16] that LPFC law of (15)
manages to improve the prediction consistency and the efficacy
of X\ as tuning parameter compared to the conventional PFC
law of (8). In addition, the constrained solution becomes more
accurate and less conservative [8].

C. General Sensitivity function for IM structure

From the previous subsections, it is clear that both PFC and
LPFC can be represented by a fixed control law as in (8) and
(15). These are used in the derivation of sensitivity functions
presented next to analyse their respective robustness [1].

First consider a generic formulation of the control law
within an IM structure:

up = Fr — Nk — My, ), — DA, (16)

This can be represented in a transfer function form, where the

vectors of
N =[Ny, N1, Na, ..., Ny

. PP 17
D = [Dy, D1, Da, ..., Dy,]
are defined in the z domain as:
N(z) =No+ Niz7' Noz™ 2 4+ ... + N,z "
f)(z) =Do+ D1z Doz 2+ ...+ Dz (18)

D(z) =1+2"'D(2)

Noting the definitions of uj; and yrg,k in (5), the sensitivity
functions are derived based on a closed-loop form of:

D(z)uy, = F(z)r — N(2)Ym s — M (2)yp i (19)

alongside the model/plant equations (e.g8. Ym,k =
B(2)A(2)'uy) and hence equation (19) can be replaced by:

[D(2) + N(2)B(2)A(2) ' ur = F(2)r — M(2)ypr (20)

Di(z)

F(2)

Gp(2)

Fig. 2: PFCI control loop.

Fig. 2 indicates the equivalent block diagram with the
addition of measurement noise nj; and output disturbance
di. From the structure, the effective control law can be
simplified to K(z) = M(2)[D;(z)A]"!. Assuming sys-
tem G(z) = B(z)A(z)7?, the closed-loop pole polynomial
Pi(z) =1+ K(2)G(%) is represented as:

Pi(2) = Di(2)A(2) + M(2)B(2) @1

The sensitivity of the input to noise is derived by finding
the transference from n(z) to u(z) (refer to Fig. 2):

Sun = K(2)[1 + K(2)G(2)] 7' = M(2)Pi(2) "' A(2) (22)

Similarly, the sensitivity of output to disturbance is obtained
by solving the transference from d(z) to y(z):

Sya =1+ E(2)G()]™" = A(2)Pi(2) "' Di(#)

Finally, the multiplicative uncertainty is modelled as G(z) —
(1 +6)G(z), for § a scalar (possibly frequency dependent).
Thus the closed-loop pole sensitivity to multiplicative uncer-
tainty becomes:

P.=[1+G(1+6K]=0
S, = GK[L+ K(2)G(2)] ' = M(2)Pi(2) ' B(2)
D. Summary of Control Laws

(23)

(24)

Table I summarises some of the sensitivity functions for
PFC and LPFC. It is noted that the structures of all the
sensitivity functions are same, but obviously with different
parameters and hence, different sensitivity responses should
be expected.

TABLE I: Sensitivity functions for PFC and LPFC.

Algorithm PFC LPFC
Sun My(2)Pip(2)"TAGR) | Mi(2)Pii(2)~"A(z)
Syd AR)P;p(2) " 1Dip(2) | ARR)Pia(2) 1Di(2)
Sy My(2)P; ) B(z) M;(2) P B(z)

The polynomials M(z), D(z), P;(z) used a subscript p for
PFC, while for LPFC the subscript is [.



III. NUMERICAL EXAMPLES

This section presents the sensitivity analysis of uncon-
strained second order over-damped process (25) as constraint
handling would imply non-linear control. In fact, if the loop
structure has low sensitivity in the nominal case, it is likely
to carry over for the constrained case. For the first example,
both PFC and LPFC are tuned using a faster A compared to the
slowest open-loop pole. The second example demonstrates the
effect of loop sensitivity when the controllers are tuned to have
almost similar closed-loop poles. The outcome of this analysis
is then validated with the closed-loop simulation using Matlab.

0.1z~ 14+ 0.4272

G, = (25)
(1-0.52"1)(1-0.9z2"1)
A. First example
Output sensitivity

9 Closed-loop bandwidth 5 to disturbances
10 =TT 10
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e
%
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Frequency Frequency

Fig. 3: Sensitivity plot for process G; with A = 0.7 and n = 7.

In this example, the system (25) is considered to track a
unit set point. The desired pole is set to A = 0.7, while the
coincidence point is tuned at n = 7 using conjecture presented
in [7], that is corresponding to 40% to 80% rise of the step
response to the steady-state value.

To analyse the trade-off between performance and robust-
ness of PFC and LPFC, the Bode plots of each sensitivity
function are plotted together with their closed-loop bandwidth
(see Fig. 3). It can be observed that:

o for this particular selection of tuning parameters, LPFC
(red dotted line) has a higher bandwidth compared to
PFC (blue dashed line). Since LPFC has a faster dynam-
ics, it becomes less sensitive in rejecting low-frequency
disturbance..

o However, higher bandwidth requires more aggressive
input activity, and thus LPFC becomes more sensitive to
measurement noise and modelling uncertainty compared
to conventional PFC.

One could argue that PFC has failed to deliver the desired
bandwidth and if LPFC were to be tuned to give an equivalent

lower bandwidth, in all likelihood, the sensitivities would be
similar.

Input with disturbance Output with disturbance
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Fig. 4: Closed-loop response of process G; with A = 0.7 and
n = 7 in the presence of disturbance, noise, and uncertainty.

To validate this analysis, a closed-loop control (see Fig. 4)
is simulated with three different conditions:

1) A step output disturbance (d = 1) is added to the 30th
sample.
2) The output measurement is corrupted by Gaussian ran-
dom white noise with variance of 0.1.
3) System Gy, (26) is used to predict the future dynamics
instead of G; to demonstrate the effect of uncertainty.
G 0.12271 +0.37272
LT 137271 404272
The simulation outcomes reflect the previous sensitivity anal-
ysis whereby:

(26)

« LPFC converges approximately 2 samples faster in track-
ing the target and rejecting the output disturbance with
almost similar overshoot (Y, = 2) compared to PFC.

e On the other hands, LPFC reacts more to the noise in the
input compared to conventional PFC.

o For parameter uncertainty, both controllers manage to
converge towards the steady-state value but with apparent
differences in their closed-loop response.

In this example, it is clear that LPFC is slightly less robust
than PFC in handling noise and uncertainty, yet better in re-
jecting disturbance and tracking the target, but that observation
is most likely linked to the difference in implied closed-loop



poles with LPFC delivering the desired pole and PFC not
doing so.
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Fig. 5: Sensitivity plot for process G; with A = 0.92 and
n=9.

B. Second example

The next example looks at the effect of sensitivity when the
process (25) is tuned using slower A = 0.92 (almost similar
with the slowest open-loop pole). Based on the same procedure
[7], the coincidence point n = 9 is selected to track a unit set
point. It can be observed that (see Fig. 5):

o With the selected tuning parameters, LPFC and PFC have
almost a similar bandwidth.

e As a consequence, both controllers are giving a close
sensitivity outcome with respect to disturbance, noise and
modelling uncertainty.

Again to validate the sensitivity analysis, the closed-loop
simulation is run to track a unity set point for three different
cases (similar as previous example). The outcomes in Fig. 6
demonstrates that:

o PFC and LPFC converge at the same rate and very close
to the target trajectory while rejecting the disturabce with
overshoot approximately around ;4. = 1.8.

o Similar observation can be seen with the presence of
noise and modelling uncertainty where both controllers
performance are almost same.

C. Summary

In summary, for the two cases given, the controller sensi-
tivity is related to the achieved closed-loop bandwidth. LPFC
is better at delivering the target A whereas PFC often gives
a slower response than desired when large n is required. In
consequence, for the same A, LPFC is usually more highly
tuned and thus more sensitive to noise and modelling un-
certainty. However, where the two control laws give similar
closed-loop poles (perhaps by deploying different ), their

Input with disturbance Output with disturbance

0.15 2
™
(3] B 15 AN
| i i s
I i I e
0.05 I i 1 =
i i
o1 Fm e 05
-0.05 0
0 20 40 60 80 0 20 40 60 80
Samples Samples
015 Input with noise Output with noise
1
f
A oa A. 'l‘ il
0.1 L', .‘JJ\”‘J\ 1‘,'\,!\“”\. .v.' ] 0.8
B 0.6

i
0.05 = 0.4
i
[
1

0

0 20 40 60 80 0 20 40 60 80
Samples Samples
Input with uncertainty Output with uncertainty

p—
o .

R

0.1 f‘-—"-"-“"-\ 1

0.08F | ~. 0.8
~.,
| S,
0.06F | o e e e} 0.6
0.04 ’ 0.4 = Target trajectory
I =-=-LPFC
0.02 i 0.2 s PEC
oL 0
0 20 40 60 80 0 20 40 60 80
Samples Samples

Fig. 6: Closed-loop response of process G'; with A = 0.92 and
n =9 in the presence of disturbance, noise and uncertainty.
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Fig. 7: Quanser SRV02 servo based unit.

sensitivities are similar. Therefore, LPFC is a better base on
which to explore the trade-offs in the sensitivity, as there
is a stronger connection between the tuning parameters and
the achieved closed-loop performance [16] in addition to a
better constraint handling due to its well-posed decision and
prediction consistency as discussed in [8].

IV. REAL TIME SYSTEM IMPLEMENTATION

This section demonstrates the practicality of LPFC to con-
trol a real system, that is a Quanser SRV02 servo based
unit [17]. The servo is powered by a Quanser VoltPAQ-
X1 amplifier that comes with National Instrument ELVIS
II+ multifunctional data acquisition device. The controller
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Fig. 8: Step response and LPFC closed-loop behaviour for
process Gs.

is run by National Instrument LabVIEW software via USB
connection (see Fig. 7). The objective is to track the desired
servo angular speed, é(t) by regulating the supplied voltage,
V (¢). The mathematical model is given as [17]:

0.02546(t) = 1.53V () — 4(t) 27

where é(t) is the servo angular acceleration. Converting the
model (27) to discrete form with sampling time 0.02s, the
transfer function of angular speed to voltage input becomes:

B 0.8338

~ 1-0.4552"1
The upper Fig. 6 shows the modelling uncertainty between the
process y, and model ¥, subjected to a step input u. To track
the angular speed at 1 rad/s, LPFC is tuned with n = 1 (often
a sensible choice for a first-order system [7]) with desired
CLTR at 0.5s (equivalent to A = 0.89). It is noted that at 3s,
there is a step output disturbance (d = 2) entering the system
while the measurement is corrupted by Gaussian white noise
with variance of 0.5. The closed-loop response (see lower Fig.
8) shows that:

o LPFC manages to reduce some noise transmission to
the input with approximate 0.2 variance from 0.5, while
rejecting the output disturbance.

o Although there is modelling uncertainty, the selected
CLTR is still achieved at 0.5s with minimum offset error.

G» (28)

V. CONCLUSIONS

This work provides a formal sensitivity analysis of LPFC in
the presence of noise, disturbance and modelling uncertainty.
The performance is then compared with the conventional PFC
control law. Indeed it is clear that when using LPFC, a user
need to pay a small trade-off by having a more sensitive
controller to noise and uncertainty since it is highly tuned
with a larger bandwidth than conventional PFC. However, both

controllers may typically have similar sensitivities if giving
similar closed-loop poles which would indicate a preference
for LPFC in general due to easier tuning and other advantages
as discussed in Remark 3.

Future work will consider the analysis of different PFC
structures that deal with more challenging dynamics and
unstable systems as PFC is currently has a number of ad-hoc
constructive methods to improve its closed-loop behaviour. In
addition, a core issue that also needs to be considered is the
impact of modelling assumptions on sensitivity. This paper
assumes an IM model of Fig. 1, so it would be interesting
to consider how sensitivity might change with alternative
prediction models such as T-filter [14].
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Sensitivity Analysis of an Input Shaping Predictive Functional Control
for Processes with Challenging Dynamics

Muhammad Abdullah!2 and John Anthony Rossiter?

Abstract— This paper presents a formal sensitivity analysis
of a Pole Shaping Predictive Functional Control (PS-PFC)
algorithm, recently proposed to handle processes with open-loop
divergent or oscillatory dynamics. Since the PS-PFC utilises a
CARIMA based model, the control law may be sensitive to
high-frequency noise. Hence, in this paper, the use of a T-
filter is proposed to improve the noise sensitivity. Nevertheless,
there is a trade-off in the controller response to a low-frequency
disturbance and parameter uncertainty so here, both sensitivity
plots and closed-loop simulations are used to analyse the
controller robustness. The practicality of PS-PFC control law
is then validated in real-time laboratory hardware.

Keywords—Predictive Control, PFC, Sensitivity Analysis, Input
Shaping, T-filter, Noise, Disturbance, Uncertainty.

I. INTRODUCTION

Predictive Functional Control (PFC) has been widely used
in many simple industrial applications due to its transparent
tuning procedure [1]-[3]. Unlike its prime competitor, a
Proportional-Integral-Derivative (PID) controller often needs
a well-trained user to tune the gains and implement a rule-
based constraint handling effectively. Since PFC adapts a
similar concept to the more advanced Model Predictive Con-
trol (MPC), it inherits some of the benefits such as systematic
handling of constraints and delays [2], [4]. Indeed, although
the performance of PFC is often comparable to advanced
MPC in the SISO case, it cannot be fairly compared with
those because the optimisation is based on a single degree
of freedom (d.o.f) and thus requires minimum computation,
simple coding and is much faster and cheaper.

Despite the limited attention received in the academic
literature, PFC has undergone several developments to tackle
some of its weaknesses in providing a priori guarantees
of stability [5], [6], consistent prediction [7] and accurate
constrained solutions [8]. Besides, there are a few attempts
to discuss and analyse the robustness of PFC with different
prediction structures [9], [10] systematically. Nevertheless,
the scope of discussion for PFC has been largely limited
to stable and straightforward dynamical processes, as more
challenging applications such as those with open-loop diver-
gent or oscillatory behaviours often need a tailored technique
to handle the undesirable poles effectively.

There are several frameworks to improve the effectiveness
of PFC in handling challenging dynamics: cascade structures
[2], pole-placement [11] or input shaping [12], where each

I Dept. of Mech. Engineering, International Islamic Univ. Malaysia, Jalan
Gombak, 53100, Kuala Lumpur Malaysia. mohd_abdl @iium.edu.my

2 Dept. of ACSE, University of Sheffield, S1 3JD, UK. MAbdul-
lah2 @sheffield.ac.uk, j.a.rossiter @sheffield.ac.uk

method has its pros and cons. The cascade structure pre-
stabilises a process while retaining an Independent Model
(IM) structure which can be useful for robustness to high-
frequency uncertainty (standard IM structures cannot handle
open-loop unstable plant and so are not discussed in this pa-
per.). However, the tuning of the associated stabilisation gain
is not always systematic or obvious. Methods such as pole-
placement PFC (PP-PFC) can handle oscillatory dynamics
well but are not applicable to open-loop unstable processes.
Besides, PP-PFC also faces difficulty in satisfying long-range
constraints as its coincidence points need to be the first
sample. Direct cancellation of the unwanted poles within the
predictions is another attractive method that can generalise
the pre-stabilisation for different challenging dynamics, but
such an approach often requires over aggressive input activity
that is not entirely practical for a real process.

A recent proposal is Pole Shaping PFC (PS-PFC); here,
the undesirable pole is shaped instead of cancelled to ensure
smooth dynamics [13]. Although each different dynamic
requires a specific shaping, the underlying framework and
formulation are the same. Notably, PS-PFC has the advantage
that the constrained solution is guaranteed to be recursively
feasible. However, the impact on the robustness of input
shaping methods is unstudied and forms the main contri-
bution of this paper. PS-PFC can handle uncertainty and
disturbance, nevertheless, the structure may be sensitive to a
high-frequency measurement noise resulting in poor control
performance or at worst instability [15]. Hence, the second
contribution is to propose the use of T-filter to improve the
input sensitivity to noise while analysing its trade-offs against
the sensitivity to disturbances and parameter uncertainty as
this structure is rarely used within the PFC framework [9].

Section II presents a brief formulation of nominal PFC,
Pole Shaping PFC, T-filter prediction and derivation of the
associated sensitivity functions. Section III analyses the loop
sensitivity and performance of several numerical examples
with different challenging dynamics. Section IV discusses
the practicality of the proposed algorithm with real laboratory
hardware and section V provides the conclusion.

II. PFC STRUCTURES AND SENSITIVITY FUNCTIONS

This section presents a brief formulation of nominal PFC
control law and the concept of PS-PFC. The 2nd subsec-
tion develops the inclusion of a T-filter into the prediction
structure for PS-PFC and the derivation of the associated
sensitivity functions. Without loss of generality, this paper
assumes an underlying CARIMA model although different
prediction structures may be used for a stable process.



A. Nominal PFC control law

This subsection presents a brief formulation of PFC; more
detailed derivations, theory and concepts are available in
references [1]-[4]. The original concept of PFC is to track a
first order target trajectory by enforcing the equality [14]:

Yrtn, k= (1= A")r + A"y (1)

where yjyn, | is the ny-step ahead system prediction at
sample time k, A is the desired closed-loop pole (convergence
rate of output y to target r), and tuning parameter n, is
a coincidence horizon where the system prediction and the
target trajectory are forced to match. The prediction for a
CARIMA model utilises notation [15] defined for a general
polynomial f(2) = fo+ fiz7t + ... + fnz™™ as follows:

fo O 0o - i for fa
0o ... .

Cr = le f:O : | Hr= f:2 f:3 .| @
fn fnfl fn72 0 0 0

Given the model below and defining A(z) = Aa(z):

Byl = 3 uG) =y = g AuG) )

the simplified prediction structure is constructed as:
Yntny i = Ca Oy Buk+ O Hy Aus + Ca Hage  (4)
H P Q
where parameters H, P, () depend on model parameters and:
Auy, Aug_y Yk
w=] : |

Yk—m

Auyg = s Auy, =
_>k 3 (_k

Auk-f—'n—l Auk—m

Substituting the ny"’h' row of prediction (4) into (1) gives:
Hy, Bt + P, B + Qn, Yo = (1= A™)r+ Ay (6)

As PFC predictions assume a constant future input [2], where
Augy; = 0 for i > 0, only the first column (h,,) of matrix
H,, is used to construct the final control law:

by Ay = (1= N)r + Xy — Qn, Yk — Po, Aur (7)

Remark 1: A typical PFC can perform well with any 1Ist
order system or high order stable and over-damped dynamics
if the tuning parameters A and n, are selected carefully
[14]. However, PFC becomes difficult to tune for open-loop
unstable or oscillating process and needs a more nuanced
modification to refine these undesirable dynamics [2], [14].

B. Pole Shaping PFC (PS-PFC)
The first step of pre-stabilisation is to separate the open-
loop poles in the denominator of model (3) as:
a(z) =a”(2)a’(2) ®)

where a™(z) is the undesired poles (unstable or under-
damped poles) and a~(z) is the stable poles. Hence, the
future output prediction of (4) can be represented as:

y [Co-al M Cat ] [CoAu, + HyAu, —Hay,] 9)
—_——

Skl

P

Lemma 1: Prediction in (9) is convergent if its input is
shaped to satisfy the condition of (10) at each sample

w(z)
a(z)
where 7 is a convergent sequence or a polynomial that ensure
the corresponding prediction in (9) eliminates the undesirable
poles at while replacing it with the shaped poles .
Proof: Substituting condition of (10) in prediction (9):

Y, =1C0 s (Car ] [Colu, 4]

—k+1
= [Ca-a] M Cat ] CHCq tw + p]
= [Ca-al O] O O 1] = CACT Y

[CoCotw +p] = Car Oty = Aulz) =

(10)

(11)

It is evident that both the desired and shaped poles are in
the predictions for both the input and output. ]

Remark 2: The new requirement (10) can be solved by
small number of simultaneous equation [15], where the
minimal order solution for w and v for suitable P;, P, are:

w=Pip; v=PFPp (12)

The required dimension of non-zero elements in vector A u
corresponds to at least one more than the number of unde-
sirable modes (n,+), while the order of 7 is usually taken
as N, = N, — Ny+, Where ny, is the effective dimension of p
(which depends upon the column dimensions of Hy, H 4).

A proposal to select a suitable shaping pole a(z) is made
based on the link to the target closed-loop behaviour and/or
system knowledge:

1) For integrating system, a pole factor v = (1 —0.5z71)
is used as it represents a simple half-way house trade
off between integrating factor (1—2~1) and cancelling
the pole on the origin (1 — 0z71).

2) For a process with significant under-damping, the
implied «(z) has only real poles which are chosen to
be close to the real parts of the oscillatory poles. This
selection reduces the undesirable oscillation in the out-
put predictions, but does not change the convergence
rate, albeit the input may be somewhat oscillatory.

3) For open-loop unstable systems, a simple default solu-
tion simply inverts the unstable poles, that is, defining
a(z) such that a™(z;) =0 = «(1/z)=0.

Theorem 1: With a choice of «, a convergent prediction

class which embeds both the desired asymptotic poles and
some degrees of freedom (d.o.f.) can be defined from:

w = Plp + Cu+¢; Agk = [Ca]_l[Plp + Ca+¢] (]-3)
where convergent Infinite or Finite Impulse Response (IIR
or FIR) ¢ constitutes the d.o.f.

Proof: Based on superposition. The additional component
in w, that is C,+ ¢, necessarily cancels the undesirable poles
and replace it with the shaped pole o which gives overall
convergent output predictions. So using (11), then:

-1 -1
Ypir = CamnClar [CoBu, +p]
=C 1\ Clly+ C 1\ CICIMC, Cyg

=C L\ C Iy + Cug] O

(14)



Remark 3: By extracting the n,'" row and noting the
definition of p in (9), the n, step ahead prediction from (14)
can be rearranged in a more general form as:

Yk4ny |k = hny,a¢ + Pny,aAgk + Qny,ozy_k (15)

for suitable hnyfa,Pny#a,Qny,a and it is noted that as is
conventional for PFC, ¢ has just a single non-zero parameter
in order to retain computational simplicity and also a single
d.o.f. for satisfying the control law (1).

Algorithm 1: The d.o.f ¢ is computed by substituting
prediction (15) into equality (1) and thus:

1
hny,a

o= (L= A")r + Ay — any_k — P,Ly,uAgk
(16)
then, the current input increment Awy, is determined simply

by inserting ¢ into the predicted input of (13).

C. Shaped predictions with a T-filter

One of the reasons why PFC only received little attention
in the academic literature is due to its inability in providing
robust feasibility due to its simplicity requirement. Thus,
a simple available option is to utilise a robust prediction
structure wherein previous work [9]; a T-filter has been used
on predictions (4) to improve the input sensitivity to noise.
However, to the authors’ knowledge no-one has looked at this
in the context of shaped predictions and hence this subsection
provides the required novel developments.

The T-filter serves as a low pass filter to reject high-
frequency measurement noise without affecting the nominal
tracking performance [16]. Theoretically, the measurement
output is low-pass filtered before prediction and anti-filtered
after prediction to restore the predicted data back to the
correct domain before deploying the nominal algorithm.
The desired T-filter 7! is deployed as §x = yxT ' or
Ty = yi. Define the filtered predictions as follows:

Yy

Yy = HAUy + PAty + QYk 17)

The relationship between the filtered and unfiltered predicted
data can be represented using Toeplitz/Hankel form (2):

Yy =Cry

Horij:
Sk41 —>k+1+ T?(/_k,

A_’L}Lk- = CTA_/L:Lk + HTAgkv (18)
substituting (18) into (17) gives:

Crtly

Y1 ~ HTZz_k] = HC;l[A_l;Lk - HTAgk] -i-PA(E;C + Qg_k (19)

Aty
gy

=

Multiplying through by Cr and grouping common terms:

Y (20)

Sk+1
where P = [CrP — HHy| and Q = [Hr + CrQ). The
difference between (20) and (4) are the last two terms which
now are based on past filtered data.

Remark 4: When implementing T-filter to the PS-PFC
control law, the matrix C'4 need to be separated form

= HAuy, + PAiy + Qi

prediction (20). Noting the definition of H, P, Q in (4) and
P, @, the new representation can be formed as:

Y

Yoy = Caal T Car ] T CoAY, + HyAj, —Hay ] (21)
—_—

P

where ﬁb = CrHp — CyHy and I‘fA = CyHyr 4+ CrHpy.
Now, the control law with a T-filter follows a similar
derivation from (10) to (16) but using filtered prediction (21)
instead of (9).

Remark 5: If T = 1, the prediction of (21) becomes
nominal as in (9) given that Cpr = 1 and Hy = 0. Thus
the derivation of sensitivity functions for PS-PFC with and
without T-filter can be generalised.

D. Sensitivity functions

An off-line sensitivity analysis is used to measure the
controller robustness. Improving sensitivity in a specific
frequency range may make it worse in another. Hence, this
analysis can help to understand what sort of trade-off that
one should expect when implementing a T-filter especially in
the context of shaped predictions. This subsection will derive
the associated sensitivity functions that are needed.

Based on the receding horizon principle, only the first
computed input (e.g. (7)) is implemented. Since the first row
of matrix C;! and C,+ is always 1, the input trajectory of
(13) and thus implied control law can be simplified to:

Auy, = [Plp + Q5] (22)

The control law is then rearranged into compact form by
substituting ¢y, from the filtered prediction of (21) into (22):

Aup = Pip+ 1| (1 — X))y + XNy, — an.a@s = P, oAl (23)

hny,a

As p is representing both past filtered input and output,
equation (23) is rearranged in a more general form by noting
the definition of y, = Cryr + Hryr—1 and grouping the
common term of r, Yx, and Ay into:
— —
Auy, = Fr — Ny_if — DA_i}LA;g o4
=Fr— NT 'yr — DT ' Auy,
< <

The above equation can be converted into transfer function

form where the vector of N = [Ny, N1, Na, ..., N,,J and D =

[Dy, D1, Ds, ..., D] are defined in the z domain as:
N(z) =No+ Nz}, Noz72 4 ...+ N,z "
E(Z) = D(] —+ ﬁlz_l,ﬁgz_2 + ...+ an—n
D(z) =1+ 27'D(2)

(25)

With the definitions of Aug and yx in (5), the sensitivity
functions are derived based on a fixed closed-loop form of:

D()T(2) Aup = F(2)r — N(2)T(2) 'y (26)

Fig. 1 indicates the equivalent block diagram in the
presence of measurement noise n and output disturbance
d. The overall control law can be simplified to K(z) =
N(2)[D(2)A]~! and assuming system G(z) = b(z)a(z) 1,



T(z2)[D(z)a]?

Fig. 1: PFC equivalent block diagram representation.

the closed-loop pole polynomial P.(z) = 1+ K(z)G(z) is
represented as:

P.(z) = D(2)a(z)A + N(2)b(z) (27)

The sensitivity of input to noise is derived via the transfer-
ence from u to n (refer to Fig. 1):

Sun = K(2)[1 4+ K(2)G(2)] 7! = N(2)Pe(2) ta(z) (28)

Similarly, the sensitivity of output to disturbance is obtained
by solving the transference from y to d:

Sya=[1+K(2)G(2)] 7" = a(2)P(2) "' D(2)A  (29)

Then the multiplicative uncertainty can be modelled as
G(z) — (14 0)G(z), where § is a scalar (possibly fre-
quency dependent). Thus the closed-loop pole sensitivity to
multiplicative uncertainty becomes:

P.=1+G1+4§)K]=0
Sy =GK[1+ K(2)G(2)] 7! = N(2)P.(2) " 'b(2)

III. NUMERICAL EXAMPLES

(30)

This section presents numerical examples and sensitivity
analysis of PS-PFC with and without a T-filter for different
types of challenging dynamics. It is of interest to determine
whether the insights from GPC [16] carry over to the case
with shaped predictions. These examples demonstrate the
impact of the T-filter on the loop sensitivity and the com-
parison of their closed-loop performance in the presence of
noise, disturbances and parameter uncertainty. Two arbitrary
processes with different dynamics are considered:

1) A 3rd order under-damped process with two under-
damped poles and a(z) = (1 — 0.8271)(1 — 0.871):
0.85271 —1.5272 + 0.852 72

(1 —0.6271)(1 —1.62"1+0.8272)

2) A 2nd order unstable system with one pole is outside
the unit circle and a(z) = (1 —0.833271):

04271 —0.1z72

(1-0.5z"1)(1-1.2271)

G = (€29

Ga = (32)

A. Sensitivity analysis

Processes G and Gy are tuned with ny, = 4 and n, =
6, respectively to track a unit set point with desired pole
A = 0.7. The coincidence horizon is selected according to
the conjecture in [14], which is based on 40% to 80% rise
of the step input to its steady-state value. The bode plots
of each sensitivity function are plotted in Fig. 2 and 3 to
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Fig. 2: Sensitivity plots for G; with different T-filters.
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Fig. 3: Sensitivity plots for G2 with different T-filters.

highlight the impact of a T-filter on the control loop, where
Ty = 1 has no filtering and To = 1 — 0.8z~ is first order.
For both cases, the overall outcome can be summarised as:

o PS-PFC with 75 (red line) manages to reduce the overall
sensitivity in the high-frequency domain, yet becomes
more sensitive in low and mid frequency domain com-
pared to 73 (blue dotted line).

e This scenario means that the process will respond
better with a T-filter in the presence of high-frequency
noise, but worse in rejecting low or mid frequency
disturbances and parameter uncertainty.

B. Closed-loop responses
Closed-loop responses for both processes are simulated
with three different conditions (see Fig. 4 and 5) to validate
the previous sensitivity analysis. The outcomes show:
1) When Gaussian random white noise corrupts the output
measurement of both processes with the variance of



0.01, PS-PFC with T5 rejects more noise compared
to 17 by reducing the input fluctuation approximately
from variance 0.6 to 0.1 for G; and 0.3 to 0.1 for G.

2) In the presence of output disturbance in Gy (d = 0.1)
and G, (d = 0.5) at 15th sample, responses with T5
are slower in rejecting the disturbance than with 77,
yet its input activity is far less aggressive.

3) When there is a parameter uncertainty (consider plant
dynamics as G'1 , (33) and G'2;, (34)), both T and 15
provide offset-free tracking, but the response with 75
is a bit slower compared to T7.

0.86z71 — 1.52272 4 (0.8322

33
(1= 0.552"1)(1 — 1.652—1 + 0.82272) (33)

Gl,p =

0.12z71 —0.38272
(1-042"1H(1-1.12"1)

Gpo = (34)
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Fig. 4: Closed-loop responses of G in the presence of noise,
output disturbance and parameter uncertainty.

C. Summary

In practice, there is a trade-off as improving the sensitivity
in one range it will become worse in another range. In both
examples, the T-filter enables this trade-off to be performed
as it clearly reduces input sensitivity to measurement noise
thus reducing fatigue which is important for real applications.
The corresponding reduction in performance when handling
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Fig. 5: Closed-loop responses of G5 in the presence of noise,
output disturbance and parameter uncertainty.

output disturbances and parameter uncertainty is less impor-
tant as the integral action will deal with these uncertainties in
the long term regardless. Nevertheless, although the results
are similar in tone to [16], the reader is reminded that
sensitivity is system dependent and hence, it is recommended
to do the off-line sensitivity analysis for each case.

IV. REAL TIME SYSTEM EXAMPLE

In this section, the proposed controller is implemented in
laboratory hardware. This process poses some challenges
such as under-damping and the measured data and the
controller model may differ in value and can lead to a failure
if not addressed properly. A Quanser SRV02 servo based unit
powered by a Quanser VoltPAQ-X1 amplifier with a flexible
joint is used as a plant. This system is operated by National
Instrument ELVIS II multifunctional data acquisition Fig. 6.

The control objective for this task is to track the angular
position of the link #(¢) (measured in radians) by manipu-
lating the supplied voltage V (t). The angle 6 increases pos-
itively in counter-clockwise (CCW) rotation with a positive
the supplied voltage, and vice versa. A discrete-time transfer
function with sampling time 0.02s is used to represent the
system (for more details of the first principle model see [17]):

0(z)
Vin (2)

__ 0.009625z1—0.010112"2-0.0044452"3+40.007632z 4
- 1—-3.17z 143.92z 2—-2.252 340.52 0
(35)
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Fig. 6: Quanser SRV02 servo based unit.
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Fig. 7: Sensitivity plot for the servo kit with different PFC
structures.

with two under-damped poles and one integrating pole. The
control law is tuned to track an alternating set point between
-1 rad/s and 1 rad/s with A\ = 0.7, n = 9 and «(z) =
(1 —0.5271)(1 —0.747721)(1 — 0.7477~1). Fig. 7 shows
the sensitivity comparison with T-filter values 77 = 1, T, =
1-082z"1and T3 =1—1.62"1 4+ 1.64272.

The trade-offs in sensitivity are similar to those noted in
the previous section. Fig. 8 shows the real response where it
is of interest that the simulation is acceptable only with T3 as
with 7} and 7% the input fluctuation is unacceptable/unsafe.
The controller manages to track the alternating set-point
without offset error while reducing the oscillation in the
flexible link. Hence, in this case, the usage of a T-filter is
essential for the effective utilisation of PS-PFC.

V. CONCLUSIONS

This paper proposes and demonstrates the adoption of a
T-filter with the PS-PFC algorithm and thus provides a mech-
anism for improving sensitivity for systems where a classical
PFC may not be implementable, such as for under-damping
and unstable modes. The associated sensitivity analysis of
PS-PFC for noise, disturbance and parameter uncertainty
with and without the T-filter indicates that the benefits are
similar to those achieved in the context of GPC. Hence,
although generic proofs are not applicable, it is clearly shown
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Fig. 8: Closed-loop performance of Quanser servo flexible
joint with a second order T-filter.

that use of T-filter often helps in reducing the sensitivity
of an input to measurement noise with only relative small
deterioration in disturbance rejection. In practice, an off-line
sensitivity analysis is essential to gain some insight into the
robustness with differing prediction structures. Future work
will look at the impact of changes in the parameters \,n
and also the choice of shaping poles «(z). A robustness
comparison with alternative PFC methods such as cascade
structures and pole placement also should be considered.
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