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Abstract

Entanglement is a feature at the heart of quantum information. Its enablement of

unusual correlations between particles drives a new wave of communication and computa-

tion. This thesis explores some of the ways in which the tools for studying entanglement

can be used to quantify the transmission of quantum information, and compares the use

of different techniques.

We begin this thesis by expanding the technique of teleportation simulation, which adds

noise to the entangled resource state to mimic channel effects. By introducing classical

noise in the communication step, we show it is possible to simulate more than just Pauli

channels using teleportation. This new class is characterised, and studied in detail for a

particular resource state, leading to a family of simulable channels named “Pauli-Damping

channels” whose properties are analysed.

Also introduced are a new family of quantum states, “phase Werner” states, whose

entanglement properties relate to the interesting conjecture of bound entangled states

with a negative partial transpose. Holevo-Werner channels, to which these states are

connected, are shown to be teleportation covariant. We exploit this to present several

interesting results, including the optimal estimation of the channel-defining parameter.

The minimal binary-discrimination error for Holevo-Werner channels is bounded for the

first time with the analytical form of the quantum Chernoff bound. We also consider

the secret key capacity of these channels, showing how different entanglement measures

provide a better upper bound for different regions of these channels.

Finally, a method for generating new Bell inequalities is presented, exploiting non-

physical probability distributions to obtain new inequalities. Tens of thousands of new

inequivalent inequalities are generated, and their usefulness in closing the detection loop-

hole for imperfect detectors is examined, with comparison to the current optimal construc-

tion. Two candidate Bell inequalities which may equal or beat the best construction are

presented.
iii
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Chapter 1

Foreword and Preliminaries

1.1 Foreword

The field of quantum mechanics emerged around a century ago, a reaction to new experi-

ments which defied accepted physical theories. The work of Maxwell and Hertz had shown

how light behaved as a wave, building on Young’s double slit experiment. Yet observed

phenomena such as black body radiation and the photoelectric effect contradicted this

stance. Furthermore, discoveries were made at the atomic level suggesting a Newtonian

planetary-like structure, but with strictly discrete orbital energies. From these observa-

tions emerged the idea that energy came in discrete “quanta” and that these quanta could

show wave-like behaviour; an idea then extended to matter particles. From these concepts

emerged mathematical frameworks, such as Schrödinger’s wave functions and Heisenberg’s

uncertainty principle, to form the basis of quantum theory.

The theory predicted many unusual and counter-intuitive effects, with several con-

cepts controversial even amongst the pioneers of quantum mechanics. Einstein, a No-

bel prize winner for his resolution of the photoelectric effect, along with Podolsky and

Rosen presented the “EPR paradox” [39], showing the predictions of quantum theory ap-

peared to violate the principles of relativity; measurement of the position of one particle

could seemingly disturb another particle distantly separated, such that a measurement of

the second particle’s momentum became uncertain. They proposed underlying “hidden”

variables, with the uncertainty emerging only due to our lack of knowledge of the true

physical description. This argument was investigated by John Bell [8], who proved the

physical assumptions made by Einstein could not match all quantum behaviours. Ex-
1



Chapter 1: Foreword and Preliminaries

perimental results since have all ruled against these hidden variables [3, 45, 54, 93, 99].

Schrödinger also took issue with the interpretation of the theory - illustrated with the

famous “Schrödinger’s cat” thought experiment, an intended absurdity which has become

a legitimate philosophical argument, as well as a common reference point. It was here

that the term “entanglement” was coined, to describe systems of particles which cannot

be fully described independently of each other.

From these origins has arisen a field known as “quantum information”. Abstracted

away from particles and waves, instead the counter-intuitive properties are embedded

within a language of Hilbert spaces, vectors, and linear operators, developed by pioneers

such as von Neumann, Dirac and Weyl. Inspired by the work of Claude Shannon, who de-

veloped information theory to understand and quantify information storage, transmission

and extraction, researchers in quantum information seek to study these same problems

utilising quantum states. Whilst Shannon’s work used the bit, a binary digit taking value

either 0 or 1, as its fundamental unit of information, quantum information instead relies

on the qubit, a quantum state allowing for a superposition of both 0 and 1.

Areas of research in quantum information include quantum computation, quantum

cryptography and quantum communication, and in all three of those fields, many impor-

tant developments are promised. These promises have been taken seriously - quantum

random number generators are commerically available, whilst quantum computer chips

are in development by Google, IBM and Microsoft, and governments have invested huge

sums in order to be the first to develop quantum technologies for economic and security

purposes. Alongside this, hundreds of academics worldwide are looking to understand the

possibilities and limitations, trying to enact them in laboratories worldwide - and even

beyond, to satellites orbiting Earth.

In order to achieve these amazing new developments, entangled states are often re-

quired as a resource. In the field of quantum communication, much work has been done

on how to establish entanglement between remote parties, and the rate at which this

can be done. Recently though, entanglement has obtained a new role as a quantifier of

communication. Connections between quantum states and channels have allowed the com-

munication abilities of certain channels to be determined via the entanglement properties
2



1.1 Foreword

of related quantum states. It is this new role of entanglement theory with which the ma-

jority of this thesis concerns itself.

Chapter 1 is a primer for the rest of the thesis. It introduces the mathematical lan-

guage used to understand the field of quantum information, explaining how we describe

quantum states, measurements and channels. It also introduces the measures used to

quantify entanglement and the properties desirable for such a measure. Also discussed are

capacities of quantum channels, measures which describe the rate at which useful resources

such as qubit states or entanglement may be sent or established through use of the channel.

Chapter 2 looks at the process of quantum teleportation. First introduced in [11], it

allows one remote party to perfectly transmit a quantum state to another, by consuming

a maximally entangled state pre-shared between them and transmitting some classical

information. It was observed that by replacing the resource state shared between the par-

ties by a less entangled state, the effect on the transmitted state was to distort it, as if it

had physically been transmitted through a noisy quantum channel. In effect, the channel

has been “simulated”, and a connection can be made between the capacity of the chan-

nel and the entanglement of the resource state. Whilst this protocol may only simulate

Pauli channels, we show that by adding classical noise into the communication step, one

may expand the range of channels one can simulate, and provide a necessary criterion for

non-Pauli properties. We then focus on a specific resource state, characterising the set of

possible simulable channels.

Chapter 3 introduces the reader to the Werner states, a highly symmetrical family of

quantum states which has been used multiple times to highlight surprising properties of

quantum information theory. After explaining some unusual entanglement properties of

these states, we introduce a generalisation called “phase Werner” states, and present a

potential connection to the important NPT bound entanglement conjecture, including a

class of phase Werner states which may exhibit this property.

Chapter 4 looks at the properties of Holevo-Werner channels, quantum channels related

to Werner states by channel-state duality. By showing these channels satisfy a property

known as “teleportation covariance”, we are able to bound how accurately one is able
3
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to estimate the channel-defining parameter via quantum measurement, either when the

parameter is completely unknown or known to be one of two possible values. To do this,

we establish the analytical form of the quantum Chernoff bound for Werner and isotropic

states. We also look at the secret key capacity of Holevo-Werner channels, which quan-

tifies the rate at which secure classical bits may be established between parties via this

channel. By exploiting the unusual entanglement of Werner states, we are able to show

the novel feature that different entanglement measures provide a better bound on this

capacity, depending on the channel parameter.

Chapter 5 focuses instead on the topic of non-locality - the property shown by Bell to

separate quantum mechanics from Einstein’s hidden variable theories. Whilst entangle-

ment is necessary for non-locality, it is not sufficient, and proving the existence of non-

locality is paramount for the most secure quantum cryptography protocols. We show how

one can exploit non-physical extremal no-signalling distributions in order to generate new

Bell inequalities, which certify the existence of non-locality, having done so to create tens

of thousands of new inequivalent inequalities. These new inequalities are then analysed

to determine their usefulness in tackling the “detection loophole”, a cryptographically-

relevant problem in which maliciously preprogrammed distributions may appear non-local,

and therefore cryptographically secure, by measurement failure. Given are two Bell in-

equalities which appear to match or better the detection efficiency of the current optimal

construction.

Finally, Chapter 6 summarises the results and implications of the work presented, and

discusses the limitations and potential further directions for future research.

1.2 Structure of this Chapter

The first section of this chapter will introduce the very basics of discrete variable quan-

tum information, defining states, measurements and channels, along with concepts such as

purity and entanglement. It will finish with two famous protocols; teleportation and key

distribution, in order to show what is possible with such tools. The second section intro-

duces the idea of entanglement measures; what such a measure requires, what properties

one would like it to have, and the common measures we use. Following this, a discussion

of the connections between different measures is given. This is then followed by the same
4



1.3 The Mathematics of Quantum Information

treatment for the capacities of quantum channels.

1.3 The Mathematics of Quantum Information

In order to understand an area of scientific research, we must first have a firm grasp of the

underlying mathematical structure that we work with. The field of quantum information

is split into two camps, discrete variable and continous variable. Discrete models have a

finite number of basis states, of which the system can exists in any superposition; how-

ever, measurement of the state in any given basis can only produce a finite numbers of

outcomes. By far the most studied discrete model is the qubit, in which the basis is made

up of two states, explained in subsection 1.3.1. By contrast, continuous variable quantum

information allows measurements to have a continuous spectrum of possible outcomes.

Normally continuous variable systems are characterised by the two quadratures, q̂ and p̂,

for each particle, which can be understood as position and momentum respectively. This

thesis shall focus on discrete variable quantum information.

1.3.1 The Qubit

In classical computational theory, the fundamental unit of information is the bit, a single

binary value 0 or 1. In quantum theory the basic unit of information is the qubit - the

qubit can also be in the state |0⟩ or |1⟩, but also in any superposition of the two: a linear

combination

|ϕ⟩ = α0 |0⟩+ α1 |1⟩ , |α0|2 + |α1|2 = 1 (1.1)

with α0, α1 complex.

The state |ϕ⟩ is not in the state |0⟩ nor |1⟩ - when measured it will collapse into one

of the two, with probability |α0|2 and |α1|2 respectively. These qubit states are complex

vectors |ϕ⟩ =

 α0

α1

 living in the Hilbert space H2, with the inner product between two

states |ϕ1⟩ = α0 |0⟩+ α1 |1⟩ , |ϕ2⟩ = β0 |0⟩+ β1 |1⟩ given by

⟨ϕ1|ϕ2⟩ = α∗
0β0 + α∗

1β1 (1.2)

where ⟨ϕ1| = (α∗
0, α

∗
1) is the conjugate transpose |ϕ1⟩†. Note that that this is a com-

plex inner product, ⟨ϕ2|ϕ1⟩ = ⟨ϕ1|ϕ2⟩∗. However, we always have that states |ϕ⟩ satisfy

⟨ϕ|ϕ⟩ = 1. This idea is generalised to qudits - states with basis states |0⟩ . . . |d− 1⟩, and
5
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complex coefficients α0 . . . αd−1 with ⟨ϕ|ϕ⟩ =
∑

i |αi|2 = 1.

Since these states represent physical systems, a natural question is how to combine

them. Suppose I have two non-interacting particles, one in state |ϕA⟩ =
∑

i αi |i⟩A and

one in state |ϕB⟩ =
∑

j βj |j⟩B - is there a way I can describe the two together? This is

indeed possible by making use of the tensor product ⊗:

|ϕAϕB⟩ = |ϕA⟩ ⊗ |ϕB⟩ =
∑
i,j

αiβj |i⟩A ⊗ |j⟩B . (1.3)

Normally we omit the ⊗ and group them together within one ket1 bracket. Given |ϕA⟩ ∈

HA, |ϕB⟩ ∈ HB, we say the new state |ϕAϕB⟩ ∈ HA ⊗HB, or HAB for short. One of the

most important features of quantum theory arises from the fact that this product does

not describe all allowable states on HAB - clarified by the following definition.

Definition 1.3.1 A bipartite state |ϕ⟩ ∈ HAB is called separable if there exists two states

|ϕA⟩ ∈ HA, |ϕB⟩ ∈ HB such that |ϕ⟩ = |ϕA⟩⊗ |ϕB⟩. If this is not possible, then |ϕ⟩ is said

to be entangled.

Here it is useful to note the following distinction: in this thesis |ϕ⟩A and |ϕ⟩B represent

the same state, on two different Hilbert spaces; whereas |ϕA⟩ and |ϕB⟩ generally represent

two different states (which may or may not belong to different Hilbert spaces).

The most important entangled state is the Bell pair, or maximally entangled state,

|Φ+⟩ := |00⟩+ |11⟩√
2

. (1.4)

Measuring one subsystem of this state in the {|0⟩ , |1⟩} basis leads to |0⟩ half the time,

after which the state collapses into |00⟩, and |1⟩ the other half, giving state |11⟩. The

significance of this is that if the second party also measures the {|0⟩ , |1⟩} basis, they will

obtain a perfectly correlated outcome to the first party’s measurement, despite having no

prior knowledge of its outcome! This unusual feature forms the basis of many quantum

cryptographic protocols, as we shall see later on.

Theorem 1.3.2 (Schmidt Decomposition) For any pure state |ϕ⟩ ∈ HA ⊗HB, there

1The term bra refers to ⟨·|, and ket |·⟩ - together making a “bra-ket”.

6
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exists a set of orthonormal states {|iA⟩} on HA and {|iB⟩} on HB such that

|ϕ⟩ =
∑
i

λi |iA⟩ |iB⟩ (1.5)

where λi are non-negative real numbers which satisfy∑
i

λ2i = 1

and are known as Schmidt coefficients. Due to the orthonormality condition, |{λi}| ≤

min {dim[HA],dim[HB]} with |{λi}| = 1 iff |ϕ⟩ is separable.

The number of non-zero λi is known as the Schmidt rank.

1.3.2 Measuring States

We have touched upon measurement and “collapse” of a quantum state, but now we define

it more rigorously.

Definition 1.3.3 A quantummeasurement is a collection of measurement operators {Mm}

which are linear operators acting on a Hilbert space. The probability of obtaining outcome

m is given by ⟨ϕ|M †
mMm |ϕ⟩, where † is the conjugate transpose. The state after outcome

m is given by

|ϕm⟩ = Mm |ϕ⟩√
⟨ϕ|M †

mMm |ϕ⟩
. (1.6)

These {Mm} must satisfy
∑

mM
†
mMm = I.

The set of linear operators on H is denoted L (H), and operators can always be represented

as matrices. In fact for any given orthonormal basis {|ek⟩} a linear operator can be

represented as Akl = ⟨ek|A |el⟩.

Definition 1.3.4 A Projective Valued Measure (PVM) is a measurement {Pm} such that

PkPl = δklPk.

The state after measurement is therefore

|ϕm⟩ = Pm |ϕ⟩
∥Pm |ϕ⟩∥

, (1.7)

where ∥|ϕ⟩∥ =
√
⟨ϕ|ϕ⟩.

Often we are not concerned with the post-measurement state; in which case we can use

a Positive Operator-Valued Measure (POVM). This is where we take Em =M †
mMm as the

elements, so that our conditions are
∑

mEm = I, and our probabilities p(m) = ⟨ϕ|Em |ϕ⟩.
7
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1.3.3 Mixed States and Density Operators

The formalism introduced so far is useful, but does not fully describe all the possibilities

of quantum theory. Suppose I flip a coin and prepare state |ϕH⟩ if I obtain a heads, and

|ϕT ⟩ if tails. I then give the resulting state to you, without telling you the outcome of the

coin flip. How would you describe the state? One would be tempted to write it as

|ϕcoin⟩ =
1

2
|ϕH⟩+ 1

2
|ϕT ⟩ (1.8)

but now calculating the inner product ⟨ϕcoin|ϕcoin⟩ we find

⟨ϕcoin|ϕcoin⟩ =
(
1

2
⟨ϕH |+ 1

2
⟨ϕT |

)(
1

2
|ϕH⟩+ 1

2
|ϕT ⟩

)
=

1

4
(⟨ϕH |ϕH⟩+ ⟨ϕT |ϕT ⟩+ ⟨ϕH |ϕT ⟩+ ⟨ϕT |ϕH⟩)

=
1

2
+

⟨ϕH |ϕT ⟩+ ⟨ϕT |ϕH⟩
2

̸= 1 (1.9)

when |ϕH⟩ ̸= |ϕT ⟩. Thus |ϕcoin⟩ is not a valid quantum state. In order to describe these

states, we must instead turn to density operators.

Definition 1.3.5 A density operator ρ ∈ L(Hd) is expressed:

ρ =
∑
i

pi |ϕi⟩ ⟨ϕi| , pi ≥ 0,
∑
i

pi = 1 (1.10)

with each |ϕi⟩ ∈ Hd. They are normally represented as matrices, with ρkl = ⟨ek| ρ |el⟩.

In our example previously, the correct way to describe the state would be

ρcoin =
1

2
|ϕH⟩ ⟨ϕH |+ 1

2
|ϕT ⟩ ⟨ϕT | . (1.11)

Normally we will use as shorthand ρ ∈ Hd to refer to a d-dimensional density matrix.

Lemma 1.3.6 Density matrices are:

• Hermitian: ρ† = ρ,

• Trace 1: Tr[ρ] = 1,

• Positive Semidefinite ⟨v| ρ |v⟩ ≥ 0,∀ |v⟩.
8
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Proof.

• Hermitian:

ρ† =

(∑
i

pi |ϕi⟩ ⟨ϕi|

)†

=
∑
i

pi ⟨ϕi|† |ϕi⟩† =
∑
i

pi |ϕi⟩ ⟨ϕi| = ρ. (1.12)

• Trace 1:

Tr[ρ] =
∑
k

⟨ek| ρ |ek⟩

=
∑
k

⟨ek|

(∑
i

pi |ϕi⟩ ⟨ϕi|

)
|ek⟩

=
∑
i

pi
∑
k

⟨ek|ϕi⟩ ⟨ϕi|ek⟩

=
∑
i

pi∥|ϕi⟩∥2 =
∑
i

pi = 1. (1.13)

• Positive Semidefinite:

⟨v| ρ |v⟩ = ⟨v|

(∑
i

pi |ϕi⟩ ⟨ϕi|

)
|v⟩ =

∑
i

pi ⟨v|ϕi⟩ ⟨ϕi|v⟩ =
∑
i

pi|⟨v|ϕi⟩|2 ≥ 0.

(1.14)

�

If a matrix ρ is positive semidefinite, we express this as ρ ≥ 0. A matrix is positive

semidefinite iff its eigenvalues {λi} satisfy λi ≥ 0, ∀i.

Definition 1.3.7 A state ρ is said to be pure iff it can be written ρ = |ϕ⟩ ⟨ϕ| for some

state |ϕ⟩. Else the state is said to be mixed. If a state is pure, then it can be equivalently

described as ρ or |ϕ⟩.

One can see how for pure states, the trace 1 condition reduces to ∥|ϕ⟩∥ = 1. For mixed

states, the state norm ∥|ϕ⟩∥ generalises to the trace norm:

Definition 1.3.8 The trace norm is defined:

∥ρ∥1 := Tr
[√

ρρ†
]

(1.15)

Definition 1.3.9 The purity of a state ρ is given by Tr[ρ2], with ρ pure iff Tr[ρ2] = 1.
9
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The state for which the purity is minimised is the state known as the maximally mixed

state, Id/d. For this state the purity is 1/d.

We can extend the concept of entanglement to density matrices.

Definition 1.3.10 A state ρ ∈ HAB is separable iff it can be written in the form

ρ =
∑
i

qiρ
i
A ⊗ ρiB, qi ≥ 0,

∑
i

qi = 1, (1.16)

where ρiA = |ϕi⟩ ⟨ϕi| ∈ HA, ρiB = |ψi⟩ ⟨ψi| ∈ HB. Else ρ is said to be entangled.

The tensor product on density matrices is the natural extension from pure states:

∑
i

pi |ϕi⟩ ⟨ϕi| ⊗
∑
i

rj |ψj⟩ ⟨ψj | =
∑
i,j

pirj |ϕiψj⟩ ⟨ϕiψj | . (1.17)

Given a bipartite density matrix ρAB ∈ HA ⊗HB, we are often interested in what the

reduced state is for just one subsystem; referred to as ρA ∈ HA or ρB ∈ HB respectively.

we can do this via the partial trace.

Definition 1.3.11 The partial trace with respect to B is defined as

TrB[|ai⟩ ⟨aj | ⊗ |bk⟩ ⟨bl|] := |ai⟩ ⟨aj |Tr[|bk⟩ ⟨bl|] ≡ ⟨bl|bk⟩ |ai⟩ ⟨aj | (1.18)

and generalised to HA ⊗ HB by linearity. Partial trace with respect to A is defined

analogously. For a bipartite state ρAB ∈ HA ⊗HB, the reduced state on A is given by

ρA := TrB[ρAB]. (1.19)

1.3.3.1 Measuring Mixed States

Now that we have expanded our definition of quantum states, we need to expand how

we perform measurements. Luckily the measurement operators remain unchanged - we

only need to change how to apply them. The probability of measurement m is given by

Tr[M †
mMmρ], whilst the postmeasurement state is

ρm =
MmρM

†
m

Tr[M †
mMmρ]

. (1.20)

Similarly, we can apply POVMs to density matrices: the probabilities we obtain are

simply p(m) = Tr[Emρ].
10
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1.3.4 Quantum Operations

Aside from measurement, there are other processes which can occur to a quantum state.

The simplest of these is a unitary operation U : ρ → UρU †, where U is a d × d unitary

matrix. These are reversible operations: if ρ′ = UρU †, then we may simply apply

U † : ρ′ → U †ρ′U = U †UρU †U = ρ (1.21)

to return to our original state.

This is not the most general class of operations however; we want to consider all

trace-preserving2 completely positive maps - that is, maps E which satisfy

Tr[E (ρ)] = Tr[ρ] = 1 (1.22)

and

∀n ∈ N, ρ ≥ 0 ⇒ (In ⊗ E) (ρ) ≥ 0. (1.23)

These requirements are simply stating that valid quantum states should be mapped to

valid quantum states. The second condition (complete positivity) may seem unusual -

why not require that the map is simply positive? However, one should be able to apply

such a map to a subsystem of any quantum state and still obtain a valid overall state - it

is this property that complete positivity embodies.

Maps satisfying the above criteria are known as quantum channels. They can be

expressed as :

E (ρ) =
∑
i

KiρK
†
i , (1.24)

with
∑

iK
†
iKi = I. If E : Hd1 → Hd2 , then the Ki are of size d2 × d1, and

∑
iK

†
iKi = Id1 .

In general, these channels are not reversible, and often we are interested in the quantum

channel which accurately describes the noise (unwanted operations) that occurs when

trying to send/store a quantum state.

2Of course, one can also consider operations which do not preserve trace, but are “trace non-increasing”,

allowing for sub-normalised states - but we do not here.

11
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1.3.4.1 Quantum Channel Examples

• Bit flip channel

Perhaps the simplest quantum channel, which has its roots in classical information

theory. With probability 1 − p the state |0⟩ is sent to |1⟩ (and vice versa) whilst

with probability p it is left unchanged. In the form (1.24) , we have K0 =
√
p I,

K1 =
√
1− pσx, where σx is the Pauli matrix

σx =

 0 1

1 0

 , (1.25)

the unitary which flips |0⟩ and |1⟩. Unless p = 0, 1 this channel is not unitary, and

thus not reversible.

• Depolarising channel

Another common channel is the depolarising channel. With probability p, the quan-

tum state is transmitted successfully, whilst with probability 1 − p the state is

completely lost - replaced by the maximally mixed state I/d. Thus

Dp := pρ+ (1− p)
I

d
. (1.26)

For d = 2, there are four Kraus operators:

K0 =

√
1− 3p

4
I =

√
1− 3p

4

 1 0

0 1

 , K1 =

√
p

4
σx =

√
p

4

 0 1

1 0

 ,

K2 =

√
p

4
σy =

√
p

4

 0 −i

i 0

 , K3 =

√
p

4
σz =

√
p

4

 1 0

0 −1

 .

The three Pauli matrices σx, σy, σz play an important role in qubit quantum theory,

as we shall see later.

• Amplitude damping channel

Another useful channel is the amplitude damping channel - it has an important

operational interpretation, of the decay of an excited atom. If the atom is ground

state |0⟩, then it cannot decay further. However, if it is in the excited state |1⟩ then

it has probability γ of losing a photon into the environment and dropping to the
12
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ground state, and probability 1 − γ of staying in the excited state. The action on

both the atom and the environment is:

|0⟩A |0⟩E → |0⟩A |0⟩E ,

|1⟩A |0⟩E → √
γ |0⟩A |1⟩E +

√
1− γ |1⟩A |0⟩E .

The action on the atomic system can be described as a channel with Kraus operators:

K0 =

 1 0

0
√
1− γ

 , K1 =

 0
√
γ

0 0

 . (1.27)

Unlike the previous examples, the Kraus operators are not Pauli matrices - a point

we shall return to in chapter 2.

1.3.4.2 Local Operations and Classical Communication

A particularly important class of quantum operations is that of local operations and classi-

cal communication (LOCC). In this scenario, two parties Alice and Bob share a quantum

state ρAB ∈ HA⊗HB, with Alice owning HA and Bob HB. The class of LOCC operations

are all possible processes they can do whilst being confined to separate laboratories. They

can transform their subsystem, send them through channels, prepare auxillary states and

measure them jointly with their subsystem - anything so long as it is confined to local

Hilbert spaces. The classical communication allows them to co-ordinate their efforts - for

example, they could perform the operation

∑
i

pi
(
E i
A ⊗ E i

B

)
(ρAB) , pi ≥ 0,

∑
i

pi = 1 (1.28)

by Alice sampling a probability distribution, and communicating the result to Bob. We

shall see much more of this general class of operations throughout the thesis.

1.3.5 Quantum Protocols

In this section I shall outline two important quantum protocols, which serve to illustrate

and motivate some of the research in this thesis.

1.3.5.1 Teleportation

Perhaps one of the most interesting protocols within quantum information theory - and

one that always provokes a reaction when explaining one’s research to strangers to the
13
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field - is the concept of teleportation [11]. In this scenario, Alice owns a qubit state

|ϕ⟩C = α0 |0⟩ + α1 |1⟩ she wishes to send to Bob - but they do not share a quantum

channel. Fortunately, they have a classical line of communication between the two of

them3, and they had hitherto shared between themselves a maximally entangled state,

|Φ+⟩ = (|00⟩+ |11⟩) /
√
2. With this, it is possible for Alice to perfectly transmit |ϕ⟩ to

Bob. The protocol is as follows:

1. First consider the overall state

|ϕ⟩C ⊗ |Φ+⟩AB = (α0 |0⟩+ α1 |1⟩)C ⊗
|00⟩AB + |11⟩AB√

2

=
1√
2
(α0 |00⟩CA |0⟩B + α0 |01⟩CA |1⟩B + α1 |10⟩CA |0⟩B + |11⟩CA |1⟩B) .

(1.29)

We will re-express this overall state using a different basis for Alice: the Bell basis.

This is a two-qubit orthonormal basis consisting of the four maximally entangled

two-qubit states:

|Φ+⟩ = I⊗ I |Φ+⟩ = |00⟩+ |11⟩√
2

|Φ−⟩ = I⊗ σz |Φ+⟩ = |00⟩ − |11⟩√
2

|Ψ+⟩ = I⊗ σx |Φ+⟩ = |01⟩+ |10⟩√
2

|Ψ−⟩ = I⊗ iσy |Φ+⟩ = |01⟩ − |10⟩√
2

and we can express

|00⟩ = |Φ+⟩+ |Φ−⟩√
2

, |01⟩ = |Ψ+⟩+ |Ψ−⟩√
2

,

|10⟩ = |Ψ+⟩ − |Ψ−⟩√
2

, |11⟩ = |Φ+⟩ − |Φ−⟩√
2

.

This means we can rewrite our state in Eq. (1.29) as:

1

2

(
|Φ+⟩CA ⊗ (α0 |0⟩+ α1 |1⟩)B + |Ψ−⟩CA ⊗ (α0 |0⟩ − α1 |1⟩)B

+ |Ψ+⟩CA ⊗ (α0 |1⟩+ α1 |0⟩)B + |Ψ+⟩CA ⊗ (−α0 |1⟩+ α1 |0⟩)B
)
. (1.30)

2. Alice performs a projective measurement on her subsystem HCA in the Bell basis -

we can see from our rewriting that this will collapse the superposition of the four

terms in Eq. (1.30) into just one of them, each with equal probability.

3. Alice then communicates her outcome over the classical communication channel -

this will take two classical bits (as there are four possible outcomes).

3Or just Alice to Bob is sufficient.

14
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4. Dependent on Alice’s outcome, Bob performs one of the following unitaries:

(a) Alice obtained |Φ+⟩:

Bob’s state is of the form (α0 |0⟩+α1 |1⟩)B - this is exactly |ϕ⟩ and Bob performs

no unitary/ the identity unitary.

(b) Alice obtained |Φ−⟩:

Bob’s state is of the form (α0 |0⟩ − α1 |1⟩)B - by performing the operator σz,

Bob obtains  1 0

0 −1

 α0

−α1

 =

 α0

α1

 = |ϕ⟩ . (1.31)

(c) Alice obtained |Ψ+⟩:

Bob’s state is of the form (α1 |0⟩ + α0 |1⟩)B - by performing the operator σx,

Bob obtains  0 1

1 0

 α1

α0

 =

 α0

α1

 = |ϕ⟩ . (1.32)

(d) Alice obtained |Ψ−⟩:

Bob’s state is of the form (α1 |0⟩ − α0 |1⟩)B - by performing the operator iσy,

Bob obtains  0 −1

1 0

 α1

−α0

 =

 α0

α1

 = |ϕ⟩ . (1.33)

Thus regardless of Alice’s outcome, Bob is able to recover |ϕ⟩.

Although we have only described this for pure states in detail, the protocol works for

general mixed and/or entangled states. Moreover, by using the generalised Pauli matrices{
Xi

d, Z
j
d

}d−1

i,j=0
, where

[Xd]kl = δk,(l−1) mod d, [Zd]kl = e
2πi(k−1)

d δkl (1.34)

one may generalise this protocol for qudits. For this, the measurement performed is the

projection onto the d2 states
{
Xi

dZ
j
d |Φ⟩d

}
i,j

with |Φ⟩d =
∑d

i=0 |ii⟩ /
√
d the d-dimensional

maximally entangled state.

There are a few interesting things to note about this protocol - the first, that it is an

LOCC protocol - Alice performed a local measurement, Bob a local unitary, and there

was classical communication only. The second, that Alice ends up owning one of the
15
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four maximally entangled states, each with probability 1/4 - her measurement told her no

information about |ϕ⟩, and she no longer holds a copy of |ϕ⟩. Finally, in order to send one

arbitrary qubit, one “ebit” (a maximally entangled Bell pair) and two bits were required.

1.3.5.2 BB84 - Key Distribution

Another important application of quantum information is key distribution for cryptog-

raphy purposes. The current schemes used today are classical techniques relying on the

difficulty of certain number theory problems, primarily integer factorisation. However,

in 1994 Peter Shor proposed [95] an algorithm which solves this problem in polynomial

time - the gold standard for algorithms. This algorithm is a quantum algorithm i.e. it

requires a quantum computer to run. Whilst this means communication is secure for the

time being4, with the development of practical quantum computers we must look to an

alternate solution. One such scheme, which is utilised by many experimentalists, is the

BB84 protocol [10], introduced by Bennett and Brassard. The protocol works as follows:

1. Alice and Bob share a perfect quantum channel I : HA → HB, and an unsecure

classical channel. Alice generates two uniformly random bits, and depending on the

result prepares one of four states:

bits state

00 |0⟩

01 |1⟩

10 |+⟩ = |0⟩+|1⟩√
2

11 |−⟩ = |0⟩−|1⟩√
2

(1.35)

the first bit refers to the basis, whilst the second refers to the state prepared.

2. Alice then transmits the state to Bob.

3. Bob then randomly choose a basis, {|0⟩ , |1⟩} or {|+⟩ , |−⟩}, and measures - taking

|0⟩ and |+⟩ as outcome 0 and |1⟩ and |−⟩ as outcome 1.

4. Alice and Bob repeat steps 1-3 many times - until Bob has an n-bit string. Bob then

communicates to Alice that he has received the states.

4Provided no-one finds a non-quantum polynomial algorithm for factorisation.
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5. Alice then communicates to Bob the first bit of each random pair; i.e. which basis

the state was prepared in. Bob checks each of his choices, and discards all bits where

the basis does not match.

6. Of the remaining bits, Alice randomly selects 1/2 of them, telling Bob their position

and value. Bob checks to see if they coincide (which they should, having being

measured in the same basis as they were prepared in) - if they pass up to a certain

error tolerance - then they use the remaining bits to send a message by use of a one

time pad.

The one time pad is a classical security method in which, for a message of length m

bits, m uniformly random bits are added to the message via an XOR operation. If the m

bits are used for only a single message, and kept completely secret, then this message is

“perfectly secure” - all possible messages have a unique mapping to the encrypted string,

and are thus all equally likely - without the added bit string, no information can be learned

about the original message [94].

Why can we trust this protocol? There are three possible attacks to the protocol.

• “The man in the middle” attack.

Our malicious eavesdropper, Eve, poses as Alice to Bob, and Bob to Alice, per-

forming the protocol with each. This is a fundamental attack to all cryptography

schemes, and thus we require the quantum channel is “authenticated” - it really goes

from Alice to Bob.

• Eve copies the state then passes it on to Bob, waiting for Alice’s basis

choices.

In classical communication, this attack would be devastating. In quantum theory

however, this is made impossible by the “no-cloning theorem” [112].

Theorem 1.3.12 (No-Cloning Theorem) There exists no unitary such that for

arbitrary |ϕ⟩,

U |ϕ⟩ |r⟩ = |ϕ⟩ |ϕ⟩ (1.36)

where |r⟩ is an arbitrary resource state.

Proof. Consider the inner product of two states, ⟨ϕ|ψ⟩. As |r⟩ is a valid quantum

state, ⟨ϕ|ψ⟩ = ⟨ϕ|ψ⟩×1 = ⟨ϕ|ψ⟩ ⟨r|r⟩. If such a cloning unitary exists, then we could
17
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write

⟨ϕ|ψ⟩ ⟨r|r⟩ = ⟨ϕr|ψr⟩ = ⟨ϕr|U †U |ϕr⟩ − ⟨ϕ| ⟨ϕ|ψ⟩ |ψ⟩ = ⟨ϕ|ψ⟩2 (1.37)

this forces either ⟨ϕ|ψ⟩ = 1 or ⟨ϕ|ψ⟩ = 0, a contradiction to our arbitrary state

assumption. �

This proof generalises to mixed states and general operations; the important thing

is Eve cannot copy the states and pass them on.

• Eve measures the states, copying it and then passing it on to Bob.

In this case, Eve can clone her post-measurement state, as she may simply prepare

the same state. However, to do this she must choose a basis to measure in. If

she chooses the same basis as Alice (which occurs with probability 1/2) then she

can do this without Bob detecting her measurement. However, if she chooses the

wrong basis - for example, if she measures the state |+⟩ in the {|0⟩ , |1⟩} basis she

will collapse the state into either |0⟩ = (|+⟩+ |−⟩) /
√
2 or |1⟩ = (|+⟩ − |−⟩) /

√
2.

Thus when Bob makes his measurement, if he chooses the {|+⟩ , |−⟩} basis, there is

a 1/2 chance he will obtain |−⟩, a result which would be impossible had there been

no interference! Thus if a single such result (although in practice due to practical

considerations, there is usually a tolerable number of fails) is found in the check,

Alice and Bob should abort the protocol. Note that the protocol only establishes a

secret key, so no sensitive information has been leaked.

1.3.6 Relations between dimensions

The final part of this first section states a few important results regarding the expansion

of lower dimensional spaces to higher ones.

Theorem 1.3.13 (Purification) Given a state ρA on HA, it is always possible to define

a pure state |ϕ⟩AR on HA ⊗HR, such that

ρA = Tr (|ϕ⟩AR ⟨ϕ|) . (1.38)

System R is known the reference system.

Proof. Suppose that ρA =
∑

i pi |iA⟩ ⟨iA|, where {|iA⟩} is an orthonormal basis for HA

and
∑

i pi = 1 (we can do this for any state). Then introduce a Hilbert space HR of the
18
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same dimension as HA, with an orthonormal basis {|iR⟩}. We can define a pure state

|ϕ⟩AR :=
∑
i

√
pi |iA⟩ |iR⟩ . (1.39)

Then

TrR (|ϕ⟩AR ⟨ϕ|) =
∑
i,j

√
pipj |iA⟩ ⟨jA|Tr(|iR⟩ ⟨jR|)

=
∑
i,j

√
pipj |iA⟩ ⟨jA| δij

=
∑
i

pi |iA⟩ ⟨iA|

= ρA.

�

Theorem 1.3.14 (Naimark Extension) Any POVM can be realised as a projective

measurement, on a higher dimensional Hilbert space.

This theorem is proved in similar manner to the purification theorem above.

Theorem 1.3.15 (Stinespring’s Dilation Theorem) Every channel E : HA⊗HB can

be seen as a transformation of the form

E (ρ) = TrE′

[
UAE (ρ⊗ |r⟩E ⟨r|)U †

AE

]
(1.40)

with |r⟩ ∈ HE an ancilla state, with H = HA ⊗HE ≡ HB ⊗HE′ . That is, every channel

can be seen as a restriction of a unitary transformation on a larger Hilbert space.

1.4 Measures of Entanglement

Since entanglement is such an important part of quantum theory, we would like to be able

to accurately quantify it, and compare whether one state is “more entangled” than another.

In this section we shall introduce some of the important entanglement measures [61],

focusing on the ones that we use later on in the thesis. Before this however, we would

like to lay out some key features [88] that a good measure of entanglement should have.

Suppose we have an entanglement measure E (ρ) - we would like the following:
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• Separable states σ have E(σ) = 0.

Since entangled states are defined as states which are not separable, this seems like

a very reasonable requirement.

• Entanglement should not increase under LOCC operations: For Λ, an LOCC, E(Λ(ρ)) ≤

E(ρ).

A more operational requirement; it is easy to show that entangled states cannot be

created using LOCC operations, but this statement is slightly stronger, since one

could envision an “entanglement expansion” protocol. However, imagine it is pos-

sible to create state σ from ρ by a LOCC operation. Then any protocol we could

do with σ (and LOCC operations) we could also do with ρ, first by transforming it

using LOCC into σ and then performing the same operation. Thus we cannot say σ

is more entangled than ρ, because as a resource ρ is at least as useful as σ.

• Entanglement is invariant under local unitaries.

Since local unitary operations are invertible, this follows as a consequence of the

previous requirement.

• There exist maximally entangled states |Φ⟩d such that E(ρ) ≤ E(|Φ⟩ d ⟨Φ|), ∀ρ ∈

Hd ⊗Hd.

In particular, for bipartite systems, it should be the state5 |Φ⟩d =
∑d−1

i=0 |ii⟩ /
√
d

- this is because any other state on Hd ⊗ Hd can be formed using this state and

LOCC operations. This property is limited to the bipartite case; for example the

“W state” (|001⟩+ |010⟩+ |100⟩) /
√
3 and the “GHZ state” (|000⟩+ |111⟩) /

√
2 are

both entangled, yet it has been shown there exists a partition between entangled

states one can create via LOCC from the two [37]. Thus the concept of a maximally

entangled state is much more nuanced for multipartite entanglement. This thesis is

restricted to the bipartite scenario.

A measure that satisfies the above properties is normally referred to as an “entanglement

monotone” - since it decreases monotonically under LOCC. There are other requirements

5As well as all states local unitarily equivalent.
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which whilst not necessary, it would be desirable for our measure to have. These include:

• E(ρ) is well-defined for all states ρ.

You may be surprised that this is not on the list above, but this is not the case;

there exist entanglement measures which are monotones on pure states but do not

satisfy the above conditions when extended to mixed states. Thus we restrict their

use to the treatment of pure states only. An example of this is the von Neumann

entropy, which we shall see explicitly later on in this section.

• Convexity: E(
∑

i piρi) ≤
∑

i piE(ρi).

Whilst there are authors who make arguments for this property based on information

about the system, the primary advantage of this property is simply mathematical,

as it allows for easier testing of monotonicity and calculation for mixed states.

• Additivity: weak: E(ρ⊗n) = nE(ρ) and strong: E(ρ⊗ σ) = E(ρ) + E(σ).

This property is also extremely useful mathematically, allowing for higher dimen-

sional tensor product states to be analysed more easily, and initially seems to make

sense operationally - given two copies of an entangled state, it seems reasonable to

achieve twice as much. This is a misleading thought though, as it fails to take into

account joint local operations - for example, Alice could transform jointly her two

subsystems by a unitary UA1A2 ̸= UA1 ⊗ UA2 . Many important measures of entan-

glement fail this condition, even in its weaker form - whilst the strong condition is

only satisfied by a few relevant measures.

• Continuity: ∀ ϵ > 0 ∃ δ s.t. ∀ρ, ρ′, ∥ρ − ρ′∥1 ≤ δ ⇒ |E (ρ) − E (ρ′)| ≤ ϵ. This

property is a nice mathematical property for functions to have, and also makes sense

intuitively - we would expect two quantum states which are very similar to have

roughly equal amounts of entanglement. Moreover, as the distance between states

gets smaller and smaller then so too should the difference in entanglement between

them. In fact, is is desirable for our measure to have a stronger form on continuity,

known as asymptotic continuity - this requires that, given ∥ρ−ρ′∥1 ≤ δ , the measure

satisfies a “Fannes type” inequality

|E (ρ)− E (ρ)| ≤ kδ log d+O(δ), (1.41)
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with k some constant and O(δ) a function dependent only on δ, which vanishes as

δ → 0. This trait is desirable as many entanglement measures are considered in the

limit of an infinite number of copies of the state - as the dimension of the space goes

to infinity, we wish that the continuity distance grows sufficiently slowly that the

“regularised version” limn→∞E(ρ⊗n)/n is also continuous.

Let us have a look at some such measures.

• Von Neumann entropy

For ρ = |ϕ⟩ ⟨ϕ|, we can define the von Neumann entropy measure as:

ES (ρ) := S(TrB [ρ]) := −Tr [ρAlogρA] . (1.42)

For a separable state |ϕ⟩ = |ϕA⟩ ⊗ |ϕB⟩, the subsystem |ϕA⟩ is pure - and so the

von Neumann entropy is 0. For the maximally entangled state |Φ⟩d =
∑d−1

i=0 |ii⟩ /
√
d

the reduced state is the d dimensional maximally mixed state Id/d - and so we ob-

tain log d as our entanglement. This property of entanglement measures (where

E(|Φ⟩d) = log d is known as normalisation, and is common amongst measures.

Whilst a good measure for pure states, it is simple to see that the d2 maximally

mixed state Id2/d
2 also gives value log d, yet clearly Id2/d

2 = Id/d⊗ Id/d. Thus this

measure is insufficient for general purposes - although defined for all states, it only

provides an entanglement measure for pure states.

• Distillable entanglement

We have seen already that the maximally entangled state is the “most useful” state,

in that any LOCC protocol over any state can be done instead using the maximally

entangled state as a starting resource. Most protocols are qubit based, and thus one

often wants as many copies of |Φ⟩2 ≡ |Φ+⟩ = (|00⟩+ |11⟩) /
√
2 as possible. This idea

gives rise to the notion of entanglement distillation - how efficiently can we convert

copies of some less entangled state ρ into fewer, but maximally entangled, copies of

the state |Φ⟩2? Formally:

ED (ρ) := sup

{
r : lim

n→∞

(
inf

Λ∈LOCC
∥Λ
(
ρ⊗n

)
− |Φ⟩ 2 ⟨Φ|

⊗rn∥1
)

= 0

}
. (1.43)

This measure reduces to the von Neumann entropy when considering pure states,

but generally is difficult to calculate - a frustrating outcome given its operational

usefulness.
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One could ask instead the distillable entanglement using maximally entangled states

|Φ⟩d - however, the states |Φ⟩⊗rn
2 and |Φ⟩2rn are local unitarily equivalent; thus the

|Φ⟩d distillation rate is simply ED/ (log d).

• Entanglement cost

Entanglement cost can be thought of as a counterpart of the distillable entanglement,

going in the reverse direction. This operational cost instead looks at the optimum

rate at which our maximally entangled Bell states |Φ⟩2 may be converted into a

given state via LOCC operations. Mathematically:

EC (ρ) := sup

{
r : lim

n→∞

(
inf

Λ∈LOCC
∥Λ
(
|Φ⟩ 2 ⟨Φ|

⊗rn)− ρ⊗n∥1
)

= 0

}
. (1.44)

Unsurprisingly, this too is difficult to compute, due to the generality of LOCC op-

erations. For pure states though, this reduces to von Neumann entropy once more.

• Entanglement of formation

In an effort to simplify the entanglement cost, instead we may consider the entan-

glement of formation,

EF (ρ) := inf

{∑
i

piES(|ϕi⟩ ⟨ϕi|)

∣∣∣∣∣∑
i

pi |ϕi⟩ ⟨ϕi| = ρ

}
(1.45)

which we can see looks to construct the state ρ from pure states with the minimal

total entanglement. This measure only looks at a single copy of the state however,

whereas entanglement cost is considered in the limit of n→ ∞ copies. Due to this,

we are introduced to our first regularised measure

E∞
F (ρ) := lim

n→∞

EF (ρ⊗n)

n
. (1.46)

This regularised entanglement of formation was shown to satisfy E∞
F (ρ) = EC(ρ),

and it was hoped that EF would be additive, since it seemed to be for many ρ

where both EF and EC were known. Ultimately though, this was shown not to be

the case [52], [61] and the difficulty of LOCC optimisation seen in calculating the

entanglement cost is replaced by the difficulty in regularising EF .

• Relative entropy of entanglement

This measure is one we shall repeatedly apply throughout the thesis, due to some
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of the results in the literature we take advantage of. This measure aims to look

at the distance6 between the state and its closest separable state counterpart, by

using the quantum relative entropy S(ρ∥σ) = Tr [ρ log ρ− ρ log σ]. It is defined in

the following way

ER(ρ) := min
σ∈Sep

S(ρ∥σ). (1.47)

Like the entanglement of formation, the relative entropy of entanglement (REE) is

also subadditive over tensor products - we shall explore this property in detail later

in the thesis by looking at Werner states - the first such states shown to exhibit

subadditivity in this measure. Thus we also have a regularised version

E∞
R (ρ) := lim

n→∞

ER (ρ⊗n)

n
. (1.48)

• Relative entropy of entanglement with respect to PPT states

The concept of relative entropy can easily be generalised to other sets, rather than

simply separable states - as long as the set is closed under LOCC operations, then we

have a valid entanglement measure. One of the most used instances of this is the set

of states with positive partial transpose (PPT); that is σTB := (I⊗ T ) (σ) ≥ 0. This

is a necessary condition [81] for separability, but is only sufficient [59] for H2 ⊗H2

and H2 ⊗ H3. The formal definition of the relative entropy of entanglement with

respect to positive partial transpose states (RPPT) is

EP (ρ) := min
σ, σTB≥0

S(ρ∥σ), (1.49)

and like the REE admits a regularised version

E∞
P (ρ) := lim

n→∞

EP (ρn)

n
. (1.50)

• Negativity and logarithmic negativity

As mentioned above, a partial positive transpose is a necessary condition for sepa-

rable states. Thus a simple measure of entanglement is simply the absolute sum of

the negative eigenvalues of ρTB :

N(ρ) :=
∑
i

|λi| − λi
2

(1.51)

6This is not a true distance, since S(ρ∥σ) ̸= S(σ∥ρ).
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with {λi} the spectrum of ρTB .

This measure is convenient due to its simplicity in calculation, but is not additive

over tensor products. To achieve this, a related measure, the logarithmic negativity

was defined:

EN (ρ) := log

(∑
i

|λi|

)
≡ log (2N(ρ) + 1) (1.52)

which retains the convenience of calculation. Unfortunately, EN is not asymptoti-

cally continuous - we shall see the significance of this limitation in the next section.

• Squashed entanglement

Another measure we shall employ later in this thesis; it was motivated by ideas in

classical cryptography. It is defined as

Esq (ρ) :=
1

2
min

ρ′ABE∈ΩAB

S(A : B|E) (1.53)

where ΩAB is the set of density matrices ρ′ABE such that TrE [ρ′ABE ] = ρ ∈ HAB. The

ancilla space HE may be of any (even infinite) dimension. The function S(A : B|E)

is the quantum conditional mutual information

S(A : B|E) := S(ρ′AE) + S(ρ′BE)− S(ρ′E)− S(ρ′ABE) (1.54)

where S(ρ′AE) denote the von Neumann entropy of the reduced state ρ′AE = TrB[ρ
′
ABE ].

It looks to quantify how much may be learned about the full state from only the

ancilla dimensions. The minimisation over all possible extensions makes this a very

difficult measure to find in general - however, it is additive over tensor products, and

can always be upper bounded by choosing a specific extension.

• Key Distillation Rate

Another operational measure, K(ρ), it is inspired from one the most important

applications of quantum information theory - quantum key distribution. It quantifies

the rate at which the two parties holding the entangled state may obtain shared secret

bits7 i.e. known to both of them, but not to any external eavesdroppers. Like the

distillable entanglement, this measure is taken in the asymptotic limit limn→∞ ρ⊗n.

7Classical bits, not qubits!
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The formal definition for this rate is:

K (ρ) := sup

{
r : lim

n→∞

(
inf

Λ∈LOCC
∥Λ
(
ρ⊗n

)
−Ψ⊗rn∥1

)
= 0

}
. (1.55)

where Ψ is a “private state” - a state of the form:

Ψ = UT (|Φ⟩ 2 ⟨Φ| ⊗ τA′B′)U †
T (1.56)

where |Φ⟩2 is the maximally entangled state, and τA′B′ is an arbitrary state often

referred to as the “shield state”. The unitary UT is known as “twisting unitary” and

takes the form:

UT =

1∑
i,j=0

|ij⟩AB ⟨ij| ⊗ U ij
A′B′ (1.57)

where the unitaries U ij are arbitrary. These states have the property that for any

purification |Φ⟩AA′BB′E , if Alice and Bob measure in the computational basis and

trace out subsystems A′, B′, the resultant state is

ΦCCQ =
1

2
(|0⟩ ⟨0|+ |1⟩ ⟨1|)⊗ τ ′E , (1.58)

where we see that ΦCCQ is a correlated classical quantum (CCQ) state where Alice

and Bob share one correlated classical bit, which is completely uncorrelated with

the quantum state on the environment state on HE . Thus, even if a malicious

eavesdropper controls the environment, she can learn nothing about their shared

bit. It should be noted that the maximally entangled state itself is an example of a

private state.

Alternatively, one could consider an alternate definition of K(ρ) in which |Φ⟩d is

used to define a private state instead - however, it has been shown that the two

definitions coincide [19].

1.4.1 Relations Between Entanglement Measures

In this section, we present some relations between entanglement measures. Whilst a

lot of these measures are interesting in their own right, many of them were created to

better understand and quantify the operational entanglement measures - since at the

heart of quantum information is the desire to understand and apply physical processes. In

particular, we seek to understand their relationship to the entanglement cost and distillable

entanglement. Before that however, we shall look at their application on pure states only.
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Theorem 1.4.1 ( [36]) If an entanglement measure E satisfies

• E(σ) = 0 for σ separable;

• E(|Φ⟩d) = log d;

• E(Λ(ρ)) ≤ E(ρ) for LOCC operations Λ;

• E is asymptotically continuous;

then the regularised version E∞ (ρ) := limn→E(ρ)/n coincides with the von Neumann

entropy on pure states. Moreover, if E is weakly additive, then E = E∞ and coincides

with the von Neumann entropy on pure states.

Most of the above measures satisfy these conditions: both entanglement cost and distill-

able entanglement do this as mentioned before; so too does the entanglement of formation

(trivially), and both the regularised REE and RPPT. The logarithmic negativity does not

however - but squashed entanglement does. In much of the literature the term “entangle-

ment measure” is reserved for entanglement monotones satisfying this property; we have

not kept to that here, but it is an important distinction worth noting.

Theorem 1.4.2 ( [36]) If an entanglement measure E satisfies

• E(|Φ⟩d) = log d;

• E(Λ(ρ)) ≤ E(ρ) for LOCC operations Λ;

• E is asymptotically continuous8;

• E is convex;

if E is weakly additive, then ED(ρ) ≤ E(ρ) ≤ EC(ρ), and if E is subadditive, then

ED(ρ) ≤ E∞(ρ) ≤ EC(ρ).

It shall be useful in later chapters to understand the proof behind this theorem, in

regards to upper bounding the distillable entanglement, and therefore we shall present it

here.

Proof. We begin with the definition of entanglement distillation,

ED (ρ) := sup

{
r : lim

n→∞

(
inf
Λ
∥Λ
(
ρ⊗n

)
− |Φ⟩ 2 ⟨Φ|

⊗rn∥1
)

= 0

}
. (1.59)

8Actually, it is sufficient for this property to be satisfied for pure states only.
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Consider a specific LOCC distillation protocol, Λ with rate r. This protocol must distill

n copies of ρ into rn copies of |Φ⟩2, with some error ϵ, which vanishes in the limit n→ ∞.

Formally, we have that:

∥Λ
(
ρ⊗n

)
− |Φ⟩ 2 ⟨Φ|

⊗rn∥1 ≤ ϵ. (1.60)

Suppose we have an entanglement measure E which satisfies the above conditions; we may

then apply asymptotic continuity9:

∥Λ
(
ρ⊗n

)
− |Φ⟩ 2 ⟨Φ|

⊗rn∥1 ≤ ϵ⇒ |E(Λ
(
ρ⊗n

)
− E(|Φ⟩ 2 ⟨Φ|)

⊗rn| ≤ kϵ log 2rn +O(ϵ)

⇒ E(|Φ⟩ 2 ⟨Φ|
⊗rn) ≤ E(Λ

(
ρ⊗n

)
) + kϵrn+O(ϵ) (1.61)

where O(ϵ) is a function that vanishes as ϵ → 0. We can now apply the condition that

E(|Φ⟩d) = log d to the left hand side of our inequality to obtain:

E(|Φ⟩ 2 ⟨Φ|
⊗rn) = E(|Φ⟩ 2rn ⟨Φ|) = log 2rn = rn. (1.62)

Plugging this in we have

E(|Φ⟩ 2 ⟨Φ|
⊗rn) ≤ E(Λ

(
ρ⊗n

)
) + kϵrn+O(ϵ)

⇒ rn ≤ E(Λ
(
ρ⊗n

)
) + kϵrn+O(ϵ)

⇒ rn ≤ E(ρ⊗n) + kϵrn+O(ϵ)

(1.63)

where we have applied the monotonicity of E under LOCC. We can therefore bound r by

r ≤ E(ρ⊗n)

n
+ kϵr +

O(ϵ)

n

We can now take the limit n → ∞ - by definition of ED(ρ), ϵ must vanish in this limit,

and thus

r = lim
n→∞

r ≤ lim
n→∞

E(ρ⊗n)

n
+ kϵr +

O(ϵ)

n
= lim

n→∞

E(ρ⊗n)

n
= E∞(ρ). (1.64)

As this holds for all valid r, we thus conclude

ED(ρ) ≤ E∞(ρ). (1.65)

We have proved our result, and when E is weakly additive, E∞(ρ) = E(ρ). �

The relative entropy of entanglement with respect to both separable and PPT states

9For this proof, we shall assume this holds for mixed states.
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satisfies the above conditions, and thus both E∞
R (ρ) and E∞

P (ρ) upper bound ED(ρ).

As this regularised measure is generally difficult to calculate, one may instead use that

E∞
R/P ≤ ER/P to provide a single-letter bound on ED(ρ) - though in general this is a looser

bound. Note that we cannot do this for EC . Another entanglement measure satisfying

the conditions is the squashed entanglement - as this is an additive measure, one can use

Esq directly.

Despite failing to be asymptotically continuous, nevertheless the logarithmic negativ-

ity EN (ρ) also provides an upper bound for the distillable entanglement [105], although

there is no known connection to the entanglement cost. As EN (ρ) is easy to calculate

and strongly additive, this provides the simplest way to provide upper bounds - although

often it provides a looser bound than those measures satisfying the conditions above.

Another important comparison to make is that between secret key rate and distillable

entanglement. One maximally entangled state (|00⟩+ |11⟩)/
√
2 can give one bit of secret

key, as both Alice and Bob can measure in the {|0⟩ , |1⟩} basis10 to obtain a shared bit,

which is secure by the monogamy of entanglement [24] - showing ED(ρ) ≤ K(ρ). The two

are nonequivalent though, as there exist states with a positive partial transpose known as

bound entangled states. These states are undistillable - for these states ED(ρ) ≤ E∞
P (ρ) = 0

- but some of these states have been shown to have a non-zero key distillation rate [55].

One may also generalise the proof of theorem 1.4.2 in order to provide an upper

bound for the secret key distillation rate - replacing |Φ⟩ 2 ⟨Φ| by Ψ, a suitable private

state. In order to apply the same methodology, there is the extra condition of E that

E(Ψ⊗rn) ≥ rn, a property satisfied by the relative entropy of entanglement [56] and

squashed entanglement [17]11, but not by the RPPT. One also requires that the dimension

of the private state dim [Ψ⊗rn] ≤ 2dnn, with lim infn→ dn = dk, a constant. This is to

ensure the term (kϵ dim[Ψ⊗rn]) /n vanishes as n → ∞. Although this restricts the set

of private states one may consider, it was shown in [18] that the key distillation rate for

all states may be achieved considering these restricted private states only - therefore one

needs only consider distillation protocols Λ for which the dimensional constraint holds.

10Or indeed, any basis.
11These two papers were the first show this upper bound for E∞

R and Esq respectively.
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1.5 Capacities of Quantum Channels

Before we explore the realm of quantum channel capacities, it is worth briefly returning

to the classical world and looking at what capacity means in terms of a classical channel.

To do this we need to define exactly what a classical channel is. In mathematical terms,

it is simply a map from an alphabet X to another alphabet Y defined by a conditional

probability distribution p(Y = y|X = x). Note this is a digital channel - this concept can

be generalised to analogue by considering instead sets X , Y allowing continuous variables,

and a conditional probability density function fY (y|x). The capacity of such a channel is

the maximal amount of information that be transmitted over the channel per use, such

that the probability of error can be made arbitrarily small. Claude Shannon, the father

of information theory, showed that the capacity C of a channel π, was given by

C(π) = sup
pX(x)

I(X : Y ) := H(Y )−H(Y |X) (1.66)

where I(X : Y ) is the mutual information between two random variables, given by the

Shannon entropy of Y , H(Y ) =
∑

y −pY (y) log pY (y), whilst H(Y |X) is the conditional

Shannon entropy H(Y |X) =
∑

x pX(x)
(∑

y −pY |X(y|x) log pY |X(y|x)
)
. The mutual in-

formation is optimised over all probability distributions for the input alphabet, to allow

for biases in the channel in transmitting certain letters.

In the above scenario, one is concerned with transmitting bits across a classical channel.

For quantum channels however, the situation is slightly different. Quantum channels are

maps E : HA → HB such that

E(ρ) =
∑
i

KiρK
†
i ,
∑
i

K†
iKi = IA. (1.67)

Since we are now transmitting quantum states, some ambiguity arises regarding capaci-

ties - should we alter our definition to instead consider quantum states, rather than bits?

Or should we retain the desire to transmit bits, with the additional power of a quantum

channel? The solution to this conundrum is instead for each channel to have multiple ca-

pacities, each referring to the transmission of a specific type of desired information. We also

must consider a capacity C in the context of three separate scenarios - no-communication,

denoted C, where both sender and receiver are allowed local quantum operations, but

no additional classical communication; one-way communication, denoted C1, where the

sender may also transmit classical communication to the receiver with each use of the
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channel, to aid them in their local operations, and two-way communication C2, where

between each use of the channel sender and receiver are allowed to communicate freely

before and after each use of the channel - the general term for such protocols is adaptive.

This may seem to defeat the purpose of transmitting information though the quantum

channel at all, but as we shall see, the nature of the capacities we wish to determine allow

for a rigorous treatment of all three of these scenarios - assuming the classical channel is

“unsecure” - meaning any eavesdropper may obtain the information sent. Naturally for

any capacity the following holds true:

C ≤ C1 ≤ C2. (1.68)

Some of the most important capacities are:

• Entanglement distillation capacity

This capacity quantifies the optimal rate at which a channel may be used to establish

maximally entangled states |Φ⟩2 between sender and receiver - it can be thought of

as analogous to the distillable entanglement. The two-way entanglement distillation

capacity is defined:

D2(E) := sup

{
r : lim

n→∞

(
inf
Λ
∥ρnAB − |Φ⟩ 2 ⟨Φ|

⊗rn∥1
)

= 0

}
. (1.69)

Where ρnAB is the overall joint state between sender and receiver after n uses of E ,

with LOCC operation Λi, i ∈ {0 . . . n+1} performed after the ith use of the channel

- we refer to these as the overall LOCC operation Λ. For the no-communication and

one-way versions, the Λi are restricted to the relevant communication operations.

Since entanglement cannot be increased by LOCC operations, we see that the two-

way communication does not “break” this capacity - distillation is impossible over

the classical channel alone.

• Quantum capacity

This capacity seeks to quantify how many qubits may be sent through the channel

per use - note that this refers to an arbitrary qubit - thus the amplitude damping

channel, which adds noise to the state |1⟩ but leaves |0⟩ unchanged, does not have

capacity 1. It is defined in a similar manner to D2, namely:

Q2(E) := sup

{
r : lim

n→∞

(
sup
τ

inf
Λ
∥ρnAB − τ∥1

)
= 0

}
, τ ∈ H⊗rn

2 (1.70)
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where the supremum over τ ensures an arbitrary rn qubit state can be sent. Like

the entanglement distillation capacity, this capacity is not made unbounded by the

addition of classical capacity - since it is known that even an infinite amount of

classical communication is insufficient to perfectly send an arbitrary quantum state.

• Secret key capacity

This capacity is the analog of the key distillation rate - the rate at which shared,

secret key bits can be established between parties. This can be formulated in the

same manner as the previous two:

K2(E) = sup

{
r : lim

n→∞

(
inf
Λ
∥ρnAB −Ψ⊗rn∥1

)
= 0

}
(1.71)

where Ψ is a private state, as seen in Eq. (1.56). Notice again how no secret key bits

can be sent directly using the auxiliary classical channel, due to our assumption the

classical channel is unsecure. As this capacity is almost always considered with the

assistance of two-way communication, we shall write K to mean K2 for the rest of

this thesis.

• Private communication capacity

A similar concept to the secret key capacity above, the private communication capac-

ity (P2) quantifies how many bits of secure classical information may be transmitted

from the sender to receiver. We shall not define a supremum-based definition like the

others as P2 = K, so any results about secret key capacity can be directly translated.

1.5.1 Relations Between Capacities

Aside from the relations concerning the allowance of various amounts of additional classical

communication, there are also some important relations between the two-way capacities.

The first is that for all channels, Q2 = D2. That D2 ≤ Q2 is immediately obvious - Alice

(the sender) and Bob (the receiver) can distill r maximally entangled states between them,

and use them to send r qubits via teleportation. The reverse is also surprisingly simple,

once we remember that τn was an arbitrary rn qubit string - we can take this to be rn

halves of maximally entangled qubit pairs to achieve the second inequality.
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We also know that D2 ≤ K - since maximally entangled states are specific examples of

private states. It is likely there exist channels for which D2 < K, akin to bound entangled

states, although no such channel has yet been shown. The final relation states thatK = P2

- a secret key string of length rn can send securely rn bits by use of a one-time pad, whilst

if Alice has been able to send rn private uniform bits securely to Bob, then they would

also be able to use that string as a secure key string.

1.5.2 Connecting Capacities and Entanglement Measures - and LOCC
Simulation

It is easy to see the similarities between many of the defined entanglement measures for

channels and capacities of channels. It turns out they can be connected in terms of their

values also.

Theorem 1.5.1 For a channel E , we may lower bound either the entanglement distillation

capacity or secret key capacity in the following way:

ED(χE) ≤ D2 (E) K(χE) ≤ K2 (E) (1.72)

where χE is the Choi matrix of E : HA ⊗HB, defined as:

χE := (IA ⊗ E) (|Φ⟩A ⟨Φ|) . (1.73)

Proof. Given HA is of dimension d, Alice may prepare the maximally entangled state

|Φ⟩d, and send half of the state through E , resulting in exactly one copy of χE per use

of the channel. Alice and Bob may then use the optimal distillation procedure on these

states, obtaining distillation/key rate r - since the number of channel uses to states is

one-to-one, this is a specific example of a rate r protocol for E - thus it is a lower bound,

since the supremum must be at least r. �

In determining capacities, lower bounding it using the entanglement distillation of the

Choi matrix only solves some of the difficulty - since entanglement distillation itself re-

quires considering all LOCC operations on any possible number of copies of the state.

Moreover as we have seen in section 1.4.1, most of our bounds of entanglement distillation

are upper bounds - and thus we cannot state the relation between them and the capacity

in question.
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This problem has been tackled by a theoretical tool known as channel simulation,

which will be discussed in more detail in the next chapter; but we shall outline the general

idea here. Suppose Alice and Bob share a state τ ∈ HA ⊗ HB, and that, for any state

ρ ∈ HA′ (another Hilbert space belonging to Alice) they are able to perform an LOCC

operation Λ independent of ρ, such that TrAA′ [Λ (ρ⊗ τ)] = E (ρ) ∈ HB. We can see that

they have in effect performed one transmission “through” E using one copy of τ . When

this is possible, then the adaptive protocol achieving the capacity of E can therefore be

seen as a specific distillation protocol for τ , giving [85]:

D2 (E) ≤ ED(τ), K2 (E) ≤ K(τ), (1.74)

and the upper bounds of ED(τ) and K(τ) can then be used to upper bound the capacities

of E . Moreover, in some cases τ = χE , thus establishing D2 (E) = ED(χE) and K2 (E) =

K(χE). Although channel simulation was first shown for Pauli channels12 in [12], the most

general formulation of channel simulation for Pauli channels and many more was given

by [85].

1.6 Summary

The aim of this chapter is to provide the reader with the basic tools to understand the pro-

cesses and results that follow in the next few chapters, and to give an overview of the work

done to characterise that subject-defining property that is entanglement. Try explaining

the concept of entanglement to a lay person and already one struggles to pin it down; the

neat analogy of the perfectly correlated coins does not accurately portray the full extent

of entanglement’s subtlety. Trying to characterise the “amount” of entanglement has led

to all of the measures above, almost all of them requiring the consideration of infinite di-

mensions to determine. Even the relationship between entanglement and the other great

feature of quantum information, non-locality, is ambiguous; seemingly entanglement is not

sufficient for non-locality, nor is a greater quantity of entanglement indicative of a greater

degree of non-locality. These foibles will be looked at further in the coming chapters.

12See chapter 2.
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Chapter 2

Simulation of Non-Pauli Channels

The work presented in this chapter forms the basis of the paper “Simulation of non-Pauli

Channels”, whose authors are (in order) Thomas Cope, Leon Hetzel, Leonardo Banchi,

and Stefano Pirandola. Any work by authors other than myself in this chapter will be

credited appropriately.

2.1 Structure of this Chapter

This chapter will begin with an overview of channel simulation, defining the concept and

giving a history of previous results up until this point. This will include the motivation

for studying such a concept. Once this is completed, we will move to look at the specific

technique of teleportation simulation, before moving into the new developments presented

in this work allowing for the simulation of novel channels which do not have the Pauli

property. Once the proofs are fully presented, a summary of results will be given, along

with a discussion for future topics of research.

2.2 The History of Channel Simulation

The first introduction of the important tool of channel simulation was, surprisingly, not

used to simulate channels at all. The 1996 paper by Bennett, DiVincenzo, Smolin and

Wootters [12] was interested in two vital concepts in quantum information theory. The

first was entanglement purification, in which pure entangled states are distilled from mixed

entangled states shared between two parties - typically distilling many mixed states into

fewer maximally entangled states. The other concept was error correction, a staple in
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classical information theory to protect information from noise induced by the transmission

through a channel. Their insight was to consider the standard teleportation protocol

(explained in chapter 1) but replacing the maximally entangled resource state by a mixed

entangled state - the authors noted that, instead of teleporting the input state exactly, it

was distorted as if sent through a quantum channel. Given this information, they were

able to deduce to two important equalities for Bell-diagonal states:

ED1 (σ) = Q (M(σ)) (2.1)

and

ED (σ) = Q2 (M(σ)) (2.2)

with M the mapping from states to channels achieved by performing teleportation over

them. Bell-diagonal states are convex combinations of the four Bell pairs, and ED1 is

the distillable entanglement limited to one-way communication only, whilst Q(Q2) refers

the quantum capacity of a channel with no(two-way) communication. These results were

derived from their explicit construction of a distillation protocol for σ from an error cor-

recting code of M(σ), and vice versa. They also noted that Bell-diagonal states σ always

gave rise to a Pauli channel1: one whose action on a state ρ may be written2

EP (ρ) = p0IρI + p1σxρσx + p2σyρσy + p3σzρσz, pi ≥ 0,
3∑

i=0

pi = 1. (2.3)

and that there was a bijection between the two - the weights pi correspond to the weights

of the four Bell states. This result was expanded in the work of Bowen and Bose [13] who

were able to show that teleportation over any arbitrary two-qubit state would result in a

Pauli channel. Furthermore for any two-qudit state, using the generalised teleportation

protocol will produce a channel of the form

E (ρ) =
d2−1∑
i=0

piσiρσ
†
i , pi ≥ 0,

d2−1∑
i=0

pi = 1, (2.4)

with {σi} the set of generalised Pauli matrices introduced in section 1.3.5.1.

Another generalisation in a different direction was performed by Reinhard Werner [111],

who looked at maintaining perfect teleportation fidelity, but altering the shared state,

1These are also called generalised depolarising channels.
2The Pauli matrices are Hermitian.
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Alice’s measurements and Bob’s corrective operation. This departure from the standard

protocol will be mirrored by our approach later in the chapter. He concluded that, un-

der the condition that the protocol is “tight” - teleporting a d-dimensional state with a

d2-dimensional resource state and a d2-outcome measurement, that perfect teleportation

occurs iff the resource state σ is maximally entangled, Alice’s measurement distinguishes

between d2 orthogonal maximally entangled states, and Bob’s corrective operations are

the unitaries generating these orthogonal states from resource state σ.

In 2015, the property of teleportation covariance was studied by [68], and then by [85]

for systems of any dimension.

Definition 2.2.1 A channel E : Hd → Hd′ is teleporation covariant iff it satisfies

E
(
UiρU

†
i

)
= ViE (ρ)V †

i ,∀ρ ∈ Hd (2.5)

with {Ui} ≡ {σi} the generalised Pauli matrices for dimension d, and {Vi} some corrective

unitaries.

This property is extremely significant, since it allows a channel to be simulated by its own

Choi matrix:

χE := (I⊗ E) (|Φ⟩ d ⟨Φ|) . (2.6)

This we can show in the following way: Consider the teleportation of ρ over the max-

imally entangled state |Φ⟩d. Then the conditional state Bob obtains before learning of

Alice’s measurement is the state UiρU
†
i . Suppose he then applies the channel E to this

state, to obtain E
(
UiρU

†
i

)
= ViE (ρ)V †

i by teleportation covariance. Thus when he ob-

tains Alice’s result i, by performing the corrective unitary V †
i he obtains the state E (ρ) .

As Bob applied the channel E to his state before receiving Alice’s result, we can instead

consider him applying the channel before the measurement took place. As the two op-

erations take place on locally separated subsystems, this will not affect the output. As

(IA ⊗ EB) (|Φ⟩d ⟨Φ|) = χE , this means the same protocol can instead be thought of per-

forming the conventional teleportation protocol over the Choi matrix, still obtaining E (ρ).

The consequence of this is that we have enacted the channel E simply by performing local

operations and classical communication (LOCC) operations on the state χE - we call this

simulating the channel, defined formally in 2.2.3.
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Leung and Matthew [68] used this teleportation covariance property to upper bound

the performance of coding schemes which preserved a positive partial transpose (PPT).

Its use in the field of channel simulation was greatly expanded by Pirandola, Laurenza,

Laurenza and Banchi [85] which introduced many new concepts and results, which we

shall go over here.

First we must introduce the concept of an “adaptive protocol”. Alice and Bob begin

with general Hilbert spaces, HA, HB, with which they may prepare any states locally,

with free classical communication between them - we label this state ρ0AB, prepared by

LOCC operations Λ0. Alice then picks a subsystem to send through the channel E - we

label the Hilbert space of this subsystem HA1 - and transmits it to Bob through E - the

received state living in space HB1 . This is followed by another round of local operations,

Λ1, resulting in a new shared state ρ1AB ∈ HA\A1
⊗HB∪B1 - we then update HA = HA\A1

and HB = HB∪B1 . This process is then repeated n times, resulting in the shared state

ρnAB, dependent on the LOCC operations Λ = (Λ0, . . . ,Λn). Such an adaptive protocol is

said to have rate rn if ||ρnAB−ϕn||1 ≤ ε, where ϕn is the target state consisting of nrn copies

of some “desired resource”. For example, ϕn = |Φ⟩⊗nrn
2 , if the aim to distill maximally en-

tangled Bell pairs (ebits). The error ε must be “sufficiently small”3 - it vanishes as n→ ∞.

This concept of an adaptive protocol allows the following definition of a two-way ca-

pacity.

Definition 2.2.2 A two-way assisted capacity of quantum channel E is given by the

optimisation

C (E) := sup
Λ∈LOCC

lim
n→∞

rn. (2.7)

This may be interpreted as the optimal asymptotic rate of a desired resource generation

over all adaptive protocols4. Generally, this optimisation is almost impossible to do, due

to the extremely general nature of Λ. However, we can simplify the process using an

LOCC simulation of the channel.

3In the definitions presented in chapter 1, this condition is presented more explicitly.
4See chapter 1 for some specific capacities.
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𝜌
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Figure 2.1: The general idea behind LOCC simulation: Alice begins with an arbitrary

input state ρ, and the two share some resource state σ. Via an LOCC protocol, they aim

for Bob to end up with the state E (ρ).

Definition 2.2.3 ( [85]) A channel E : HA → HB is σ-simulable if there exists a state

σ ∈ HA′ ⊗ (HB ⊗HB′) such that, for any state ρ ∈ HA, Alice and Bob can transform

using trace-preserving LOCCs ρ⊗ σ → τE,ρ satisfying TrAA′B′ [τE,ρ] = E (ρ) ∈ HB.

This definition requires that the LOCCs are trace-preserving; this imposes that the channel

is simulated with certainty, rather than a probabilistic simulation where many attempts

are made to simulated the channel, and the successful ones are post-selected.

Now consider the final state of an adaptive protocol ρnAB. This state was constructed

ρnAB = Λn

(
IAB\AN

⊗ EAN→BN

) (
ρ
(n−1)
AB

)
(2.8)

from ρ
(n−1)
AB , the state after n− 1 channel transmissions and LOCCs. If E is σ-simulable,

we may replace the nth channel use EAN→BN
by it’s LOCC simulation, to obtain

ρnAB = ΛnΛs

(
ρ
(n−1)
AB ⊗ σ

)
= Λ′

n

(
ρ
(n−1)
AB ⊗ σ

)
(2.9)

with Λs the LOCC simulation protocol. Furthermore, we may iterate this process repeat-

edly to obtain [85] ρnAB = Λ′
nΛ

′
(n−1) . . .Λ

′
0 (σ

⊗n) = Λ̄ (σ⊗n). Note that the input state ρ0AB
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does not feature in this formula, since this state is locally separable and was also prepared

by LOCC. This technique is known as “stretching of the protocol”.

The consequence of this is that any adaptive protocol for a σ-simulable channel E may

be simulated using n copies of the resource state σ. We can take advantage of this in order

to simplify the calculation of the two-way assisted capacity. We explain how this can be

done, following the methodology in [82].

Suppose we have an entanglement measure E which is:

• Asymptotically continuous: ∥ρ− σ∥1 ≤ δ ⇒ |E(ρ)− E(σ)| ≤ kδlogd+O(δ),

• Monotonic under LOCC : E(Λ(ρ)) ≤ E(ρ),

• Weakly subadditive: E(ρ⊗n) ≤ nE(ρ).

Consider an adaptive protocol with rate rn; by definition this means that we have the

output state ρnAB satisfies ∥ρnAB−ϕn∥1 ≤ ε, with limn→∞ ε = 0. By asymptotic continuity,

this implies

|E(ρnAB)− E(ϕn)| ≤ kεlogd+O(ε) ⇒ E(ϕn) ≤ E(ρnAB) + kε log d+O(ε) (2.10)

where d = dim[ϕn]. If the adaptive protocol is over a σ-simulable channel, we may write:

E(ϕn) ≤ E(ρnAB) + kεlogd+O(ε)

= E(Λ̄
(
σ⊗n

)
) + kεlogd+O(ε)

≤ E(σ⊗n) + kεlogd+O(ε) (2.11)

where we have applied the monotonicity of E. In order to progress further, we require two

more conditions - this time on ϕn, the target state;

• Normalisation: E(ϕn) ≥ nrn.

• Exponential Growth: dim [ϕn] ≤ 2dnn, where lim infn→∞ dn = dk, a constant value.
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Applying the normalisation condition, we can further simplify:

E(ϕn) ≤ E(σ⊗n) + kεlogd+O(ε)

⇒ nrn ≤ E(σ⊗n) + kεlogd+O(ε)

≤ E(σ⊗n) + kεlog
(
2dnn

)
+O(ε)

≤ E(σ⊗n) + kεdnn+O(ε)

⇒ rn ≤ E(σ⊗n)

n
+ kεdn +

O(ε)

n
. (2.12)

Finally we can substitute this into our definition of a two-way capacity [82, 85],

C (E) = sup
Λ∈LOCC

lim
n→∞

rn ≤ sup
Λ∈LOCC

lim
n→∞

E(σ⊗n)

n
+ kεdn +

O(ε)

n
= E∞(σ) (2.13)

with E∞(σ) the regularised entanglement measure limn→∞E(σ⊗n)/n ≤ E(σ). The other

terms disappear because we imposed that limn→∞ ε = 0. Thus limn→∞ kεdn = 0, as does

limn→∞O(ε)/n = 0, as asymptotic continuity requires limε→0O(ε) = 0.

We can see how this method adapts the techniques for bounding the distillable en-

tanglement of states, for use in determining channel capacities. For the choice of en-

tanglement measure E, the two we shall use primarily in this thesis are the relative

entropy of entanglement (REE) ER, and the squashed entanglement Esq. Both satisfy

the requirements presented above [17, 20, 97, 103]. One of the most commonly investi-

gated capacities is the quantum capacity Q2. It has been shown that Q2 is equal to

the entanglement distillation capacity D2, where the target state is ϕn = |Φ⟩⊗nrn
2 . We

have that ER

(
|Φ⟩⊗nrn

2

)
= Esq

(
|Φ⟩⊗nrn

2

)
= nrn, and that dim

[
|Φ⟩⊗nrn

2

]
= 2nrn implying

dn = dk = 1.

Another commonly investigated capacity is K - the secret key capacity. The target

state here is Ψ⊗nrn , with Ψ = UT (|Φ⟩ 2 ⟨Φ| ⊗ τA′B′)U †
T a “private state” - τA′B′ is an arbi-

trary “shield state”, and UT a “twisting unitary”. It has been shown ER (Ψ⊗nrn) ≥ nrn [56]

and Esq (Ψ
⊗nrn) ≥ nrn [17]. There has been some controversy over the exponential growth

requirement for private states; as τA′B′ is allowed to be any size. However, in [18] it was

shown that the key distillation rate for states, K(ρ), could be achieved by only consider-

ing private states with at most exponential growth in the number of copies of the state;

this proof was adapted in [85] to show secret key capacity need only consider adaptive
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protocols with exponential growth private states; and so the above method may be applied.

Finally, another entanglement measure worth considering is the relative entropy with

respect to positive partial transpose states (RPPT), EP . This too is asymptotically

continous, monotonic and subadditive [97, 103]; however, whilst EP

(
|Φ⟩⊗nrn

2

)
= nrn,

EP

(
Ψ⊗nrn

2

)
� nrn. This means EP can be used as an upper bound for Q2, but not K.

These bounds are weak converse bounds - they bound the rate of error-free communi-

cation (ε→ 0).

It is interesting to note that the concept of LOCC simulation can be applied to any

channel - however, the most general method only gives us a trivial upper bound on two-way

capacities.

Lemma 2.2.4 Every channel is trivially simulable.

Proof. Suppose we have a channel E : HdA → HdB between Alice and Bob. If Alice and

Bob instead shared the maximally entangled state |Φ⟩dA , they can perform the teleporta-

tion protocol to send the input state ρ from Alice to Bob with perfect fidelity. Bob can

then apply the channel E locally. �

This is a valid LOCC protocol, which clearly |Φ⟩dA-simulates E . However, this is not

useful to us, since it implies Q2 (E) ≤ K (E) ≤ E∞
R

(
|Φ⟩dA

)
= log dA. However, this is

a trivial upper bound on the capacity of any channel with input Hilbert space HdA , as

Q2(IdA) = K(IdA) = log dA. In the next section though, we shall see we can use the

teleportation protocol in order to obtain non-trivial upper bounds.

2.3 Channel Simulation via Teleportation

As previously discussed, it was shown in [13] that teleportation over any arbitrary two-

qubit state would result in a Pauli channel. We shall present that result here:

Theorem 2.3.1 ( [13]) The standard teleportation protocol over an arbitrary two-qubit

state σ will produce a channel of the form

EP (ρ) =
3∑

i=0

piσiρσi (2.14)
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Figure 2.2: Teleportation simulation - by replacing the maximally entangled state with

a less entangled state σ, the teleportation protocol has the overall effect of enacting the

channel E .

with pi = Tr [Eiσ] and

E0 := |Φ+⟩ ⟨Φ+| , |Φ+⟩ = 1√
2
|00⟩+ |11⟩ ,

E1 := |Ψ+⟩ ⟨Ψ+| , |Ψ+⟩ = 1√
2
|01⟩+ |10⟩ ,

E2 := |Ψ−⟩ ⟨Ψ−| , |Ψ−⟩ = 1√
2
|01⟩ − |10⟩ ,

E3 := |Φ−⟩ ⟨Φ−| , |Φ−⟩ = 1√
2
|00⟩ − |11⟩ .

For the rest of the chapter, it shall be useful to think of qubits in their Bloch representation.

Definition 2.3.2 An arbitrary qubit state can be written in the Bloch representation:

ρ =
1

2

 1 + z x− iy

x+ iy 1− z

 (2.15)

with x = (x, y, z) the Bloch vector of ρ, and ρ = (I + x · σ) /2, σ = (σx, σy, σz).

Definition 2.3.3 The Bloch sphere ∥x∥ ≤ 1 defines all valid qubit states. The state is

pure iff ∥x∥ = 1.
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 𝒙
 𝒚

 𝒛

|0⟩

|1⟩

Figure 2.3: The Bloch Sphere - all qubit states can be represented as a point within the

sphere.

We can also express an arbitrary two-qubit state in a “Bloch-style” representation:

σ =
1

4

I⊗ I +
3∑

i=1

aiσi ⊗ I +
3∑

j=1

I⊗ bjσj +
3∑

i,j=1

tijσi ⊗ σj

 . (2.16)

Corollary 2.3.4 In Bloch form, the channel simulated over teleportation by σ may be

written:

E : (x, y, z) → (t11x,−t22y, t33z) (2.17)

with conversion between expressions given by:

t11 = p0 + p1 − p2 − p3 = 1− 2p2 − 2p3, (2.18)

t22 = −p0 + p1 − p2 + p3 = −1 + 2p1 + 2p3, (2.19)

t33 = p0 − p1 − p2 + p3 = 1− 2p1 − 2p2. (2.20)

These points satisfy

t11 + t22 + t33 ≤ 1, (2.21)

t11 − t22 − t33 ≤ 1, (2.22)

−t11 + t22 − t33 ≤ 1, (2.23)

−t11 − t22 + t33 ≤ 1, (2.24)
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Figure 2.4: The Pauli tetrahedron, T . The four extremal points correspond to the four

Bell states.

which implies that the vector (t11, t22, t33) characterising the Pauli channel belongs to the

tetrahedron T defined by the convex combination of the four points

e0 = ( 1,−1, 1), e1 = ( 1, 1,−1), (2.25)

e2 = (−1,−1,−1), e3 = (−1, 1, 1).

If these points are substituted into Eq. (2.16), and the remaining parameters set5 to 0

then we obtain the four density matrices of the Bell pairs, {Ei}.

According to corollary 2.3.4, there is a simple way to simulate a Pauli channel with

arbitrary probability distribution {pi}. One may just take the resource state

σ =
1

4

(
I⊗ I +

3∑
i=1

tiiσi ⊗ σi

)
, (2.26)

with tii being connected to {pi} by Eqs. (2.18)-(2.20). Note that this resource state is Bell

diagonal, i.e., a mixture of the four Bell states. Thus this description presents the result

of [12] neatly.

5This is necessary in order to be a valid state.
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2.4 Introducing a Noisy Teleportation Protocol

Pauli channels are important for accurately modelling noise, but are restrictive in terms of

the transformations we may apply; corollary 2.3.4 shows that they only allow for rescaling

of individual elements of the Bloch vector. It was our goal to expand the possible channels

simulable to include more general transformations. Some notable non-Pauli channels have

been shown simulable, including the erasure and amplitude damping channels [85], but

none using a two-qubit resource state.

To achieve this, it will be necessary to alter the teleportation protocol, whilst retaining

its LOCC character. A natural way to do this is to change the classical channel used

by Alice and Bob - formerly always assumed to be just the identity channel. Since we

are retaining the original measurement and correction unitaries, we can without loss of

generality consider an arbitrary classical channel as a conditional probability distribution:

Π =
{
pl|k
}
, pl|k ≥ 0,

3∑
k=0

pl|k = 1. (2.27)

This means given Alice receives output k, rather than Bob performing deterministically

corrective unitary6 σk, he instead performs σl with probability pl|k. For the original

protocol we have pl|k = δlk.

Theorem 2.4.1 Consider a teleportation protocol based on a Bell detection and Pauli

correction unitaries, but where the resource state is a generic two-qubit state σ and the

CCs from Alice to Bob are subject to a classical channel Π (“noisy teleportation”). In this

way, we simulate a quantum channel Ef whose action on the Bloch sphere is described by

Ef : (x, y, z) → (f10 + f11x+ f12y + f13z,

f20 + f21x+ f22y + f23z,

f30 + f31x+ f32y + f33z) (2.28)

where fij is given by the formula fij = t′jiSij , with

Sij :=
1

4

3∑
k,l=0

−1δk,0+δj,2+δj,0+δk,j+δi,l+δ0,lpl|k, (2.29)

6We use the convention that σ0 = I.
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Figure 2.5: By replacing both the resource state and the classical channel between parties,

we hope to increase the possible E the protocol can simulate.

and T ′ is defined as the augmented T matrix,

t′ji =


bi j = 0

tji j ∈ {1, 2, 3}
i ∈ {1, 2, 3} , (2.30)

taking tji from the T matrix of Eq. (2.16).
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


1 1 −1 −1

1 1 −1 −1

1 1 −1 −1

1 1 −1 −1




1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1




−1 −1 1 1

1 1 −1 −1

−1 −1 1 1

1 1 −1 −1




1 1 −1 −1

−1 −1 1 1

−1 −1 1 1

1 1 −1 −1


1 −1 1 −1

1 −1 1 −1

1 −1 1 −1

1 −1 1 −1




1 −1 1 −1

1 −1 1 −1

−1 1 −1 1

−1 1 −1 1




−1 1 −1 1

1 −1 1 −1

−1 1 −1 1

1 −1 1 −1




1 −1 1 −1

−1 1 −1 1

−1 1 −1 1

1 −1 1 −1


1 −1 −1 1

1 −1 −1 1

1 −1 −1 1

1 −1 −1 1




1 −1 −1 1

1 −1 −1 1

−1 1 1 −1

−1 1 1 −1




−1 1 1 −1

1 −1 −1 1

−1 1 1 −1

1 −1 −1 1




1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1





Figure 2.6: The matrix S, a succinct representation of the 12 possible forms for Sij . The

rows of S corresponds to i = 1, 2, 3 respectively, whilst the columns give j = 0 . . . 3. Given

i, jth element Sij , Sij can be obtained by the sum 1/4
∑3,3

k=0,l=0[Sij ]k,l pl|k, starting the

row/column count at 0.

Definition 2.4.2 A qubit quantum channel E : (x, y, z) → (x′, y′, z′) can be described by

its F matrix FE , where
1

x′

y′

z′

 = FE


1

x

y

z

 =


1 0 0 0

f10 f11 f12 f13

f20 f21 f22 f23

f30 f31 f32 f33




1

x

y

z

 (2.31)

describes its action on the Bloch vector of a qubit state.

As an example, a Pauli channel EP : (x, y, z) → (t11x,−t22y, t33z) has F matrix

FP =


1 0 0 0

0 t11 0 0

0 0 −t22 0

0 0 0 t33

 . (2.32)

We see immediately that this addition of classical noise greatly expands the range of

simulable channel actions; It is now possible to include constant terms in the actions,
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as well as interdependence between components of the Bloch vector; much more than

previously possible in the Pauli framework. Before we go on to discuss the possibilities

for two arbitrary qubits, it is worth considering the restriction to Bell-diagonal resource

states - for which we can prove the following no-go theorem.

Theorem 2.4.3 Using a Bell-diagonal resource state, i.e. of the form in Eq. (2.26), it is

only possible to simulate Pauli channels regardless of the classical channel in place between

the two parties.

Proof. We know from the structure of Bell-diagonal states means that only tii are non-

zero; this immediately limits the action of any simulated channel to

E : (x, y, z) → (t11S11x, t22S22y, t33S33z) . (2.33)

Looking at the structure of the sums Sii for i ∈ {1, 2, 3}, it is possible to verify7 that for

any given pl|k, the induced action is one of the four transformations

Epl|k : (x, y, z) → ( t11x,−t22y, t33z) (2.34)

→ ( t11x, t22y,−t33z) (2.35)

→ (−t11x,−t22y,−t33z) (2.36)

→ (−t11x, t22y, t33z) , (2.37)

which are the four Pauli transformations induced by simulation over the respective states

defined by

( t11, t22, t33), ( t11,−t22,−t33),

(−t11, t22,−t33), (−t11,−t22, t33),

with perfect classical communication. Since {tii} define a Bell state, they may be given

by a convex weighting of the four Bell pairs, using the probabilities given in Eqs. (2.18)-

(2.20). By permuting the probabilities in the following way, it is possible to generate the

four states above.

State |Φ+⟩ |Ψ+⟩ |Ψ−⟩ |Φ−⟩

( t11, t22, t33) p0 p1 p2 p3

( t11,−t22,−t33) p1 p0 p3 p2

(−t11, t22,−t33) p2 p3 p0 p1

(−t11,−t22, t33) p3 p2 p1 p0

7By looking at the sign of each pl|k in S11, S22, S33.
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This means that, for any given pl|k, a valid Pauli channel is simulated. As 1/4
∑
pl|k = 1

and by linearity of the action, we can consider the overall channel a convex combination

of these channels, and thus a Pauli channel also. �

It is important to understand the difference between theorem 2.3.1 and theorem 2.4.3.

Theorem 2.3.1 tells us that an arbitrary two-qubit resource state with perfect CC from

Alice to Bob may only simulate Pauli channels, whereas theorem 2.4.3 states that a Bell-

diagonal resource with an arbitrary classical channel for the CC from Alice to Bob may

only simulate Pauli channels. As a result, we have the following corollary which will drive

us in the choice of the resource state σ in the next section.

Corollary 2.4.4 In order to simulate a non-Pauli channel via noisy teleportation, the

resource state σ of Eq. (2.16) must have b ̸= 0 or T non-diagonal. This means σ cannot

be Bell-diagonal (and thus cannot be the Choi matrix of a Pauli channel).

2.5 Pauli-Damping Channels

Corollary 2.4.4 tells us that a non-Bell-diagonal state is required to simulate non-Pauli

channels. We chose the Choi matrix of the amplitude damping channel, motivated by

three reasons. It is the most studied (dimension preserving) non-Pauli channel; the Choi

matrix has a relatively high number of zero parameters in the Bloch description, and the

fact that it was (and still remains) an open question as to whether the amplitude damping

channel is Choi-simulable i.e. LOCC simulable by its own Choi matrix - indeed, by any

discrete variable resource non-trivially.

The action of the amplitude damping channel on the Bloch sphere is given by:

Eγ : (x, y, z) →
(√

1− γx,
√
1− γy, γ + (1− γ)z

)
. (2.38)

where γ ∈ [0, 1] is the probability of damping. The Choi matrix of this channel is

χγ =


1
2 0 0

√
1−γ
2

0 0 0 0

0 0 γ
2 0

√
1−γ
2 0 0 1−γ

2

 , (2.39)
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2.5 Pauli-Damping Channels

which is a resource state of the form (2.16), where the non-zero entries are only

b3 = γ, t11 =
√
1− γ, t22 = −

√
1− γ, t33 = 1− γ. (2.40)

We may also describe this channel using its F matrix:

Fγ =


1 0 0 0

0
√
1− γ 0 0

0 0
√
1− γ 0

γ 0 0 1− γ

 . (2.41)

Using this resource, we state one of our two main results:

Theorem 2.5.1 All channels that are simulable by noisy teleportation over the amplitude

damping Choi matrix χγ can be uniquely8 decomposed in the following way:

Esim = σux ◦ Eη ◦ EP (2.42)

where u = 0 or 1, σx is the Pauli unitary map σx(ρ) = σxρσ
†
x, Eη is an amplitude

damping channel with parameter η, and EP is a Pauli channel with suitable parameters

q = (q1, q2, q3) belonging to the tetrahedron T .

Proof. Making use the formula in Eq. (2.28) we know that any channel Esim simulated

with χγ will have an F matrix of the form

Fsim =


1 0 0 0

0
√
1− γS11 0 0

0 0 −
√
1− γS22 0

γS30 0 0 (1− γ)S33

 . (2.43)

Before we continue this proof, it is important to state that if two channels have equal F

matrices then they are equivalent. This is because they both enact the same action on an

arbitrary qubit state (and thus act identically on the entire input space). Thus we aim

to prove the theorem by equating the above F matrix of a simulated channel with that

of our decomposition defined in Eq. (2.42). From the F matrices of Eη and EP , we derive

8Except in the special cases η = 0, 1.
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that E+ := Eη ◦ EP and E− := σx ◦ Eη ◦ EP have F matrices:

F+ =


1 0 0 0

0
√
1− ηq1 0 0

0 0 −
√
1− ηq2 0

η 0 0 (1− η)q3

 , (2.44)

F− =


1 0 0 0

0
√
1− ηq1 0 0

0 0
√
1− ηq2 0

−η 0 0 −(1− η)q3

 , (2.45)

where (q1, q2, q3) ∈ T . As γ ≥ 0, but S30 ∈ [−1, 1] (a fact easy to see from its structure),

this means we can reduce theorem 2.5.1 to this equivalent proposition.

Proposition 2.5.2 For any channel Esim simulated by resource state χγ using noisy tele-

portation, we may write the following equality:

Fsim =


F+ if S30 ≥ 0,

F− if S30 ≤ 0.

(2.46)

with F+/F− generated by valid Pauli and amplitude damping channels. One can see that

this equality defines a unique value for u and η, and a unique vector q - except when

η = 1, in which case q is arbitrary, and η = 0, where all decompositions have degeneracy

u = 0,q = (q1, q2, q3) and u = 1,q = (q1,−q2,−q3).

We thus split this proof into two cases.

Case 1: S30 ≥ 0.

First we equate the f30 components: η = γS30. Since both γ, S30 ∈ [0, 1] this is a valid η

value. We now equate the diagonal components of the two sides to obtain

(√
1− ηq1,−

√
1− ηq2, (1− η)q3

)
=
(√

1− γS11,−
√

1− γS22, (1− γ)S33

)
(2.47)

⇒ (q1, q2, q3) =

(√
1− γ

1− η
S11,

√
1− γ

1− η
S22,

1− γ

1− η
S33

)
⇒ (q1, q2, q3) =

(√
1− γ

1− γS30
S11,

√
1− γ

1− γS30
S22,

1− γ

1− γS30
S33

)
.

(2.48)
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We can always do this rearrangement unless η = 1 - this forces both γ, S30 = 1 also, which

trivially satisfy Eq. (2.47). For the rest of the proof, we shall assume η ∈ [0, 1). It remains

to prove that this vector describes a valid Pauli channel, and from corollary 2.3.4 this is

equivalent to proving that the vector q ∈ T .

Lemma 2.5.3 For all classical channels Π, as defined in our noisy teleportation protocol,

we have that (S11, S22, S33) belongs to the tetrahedron T .

Proof. An alternative way to define T is by four inequalities which are satisfied by all

points within the tetrahedron, namely

x+ y + z ≤ 1,

x− y − z ≤ 1,

−x+ y − z ≤ 1,

−x− y + z ≤ 1.

We have already seen these used in corollary 2.3.4. We may substitute into these S11, S22
and S33, obtaining

S11 + S22 + S33 = 1− (p02 + p13 + p20 + p31) ≤ 1,

S11 − S22 − S33 = 1− (p03 + p12 + p21 + p30) ≤ 1,

−S11 + S22 − S33 = 1− (p00 + p11 + p22 + p33) ≤ 1,

−S11 − S22 + S33 = 1− (p01 + p10 + p23 + p32) ≤ 1.

From this, we can conclude that all (S11, S22, S33) possible belong to the tetrahedron. �

Lemma 2.5.4 If a point (x, y, z) belongs to the tetrahedron defined by T , then so too

does the point (
√
αx,

√
αy, αz),where α ∈ [0, 1].

Proof. Since any point in the tetrahedron can be expressed as a convex combination of

the four extremal points in T , it is sufficient to show that the four points,

(
√
α,−

√
α, α), (

√
α,

√
α,−α), (2.49)

(−
√
α,−

√
α,−α), (−

√
α,

√
α, α),

belong to the tetrahedron (i.e. are themselves a convex combination of the four extremal

points), and thus any rescaled tetrahedron point also still remains with the full tetrahedron,
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since it may be written as a convex combination of the four points above.

Expressing an arbitrary point in T as

(x, y, z) =
3∑

i=0

piei,
3∑

i=0

pi = 1, pi ≥ 0, (2.50)

then we can achieve the points in Eq. (2.49)

Point p0 p1 p2 p3

(
√
α,−

√
α, α) (1+

√
α)2

4
1−α
4

1−α
4

(1−
√
α)2

4

(
√
α,

√
α,−α) 1−α

4
(1−

√
α)2

4
(1+

√
α)2

4
1−α
4

(−
√
α,−

√
α,−α) 1−α

4
(1+

√
α)2

4
(1−

√
α)2

4
1−α
4

(−
√
α,

√
α, α) (1−

√
α)2

4
1−α
4

1−α
4

(1+
√
α)2

4

(2.51)

The normalisation condition is easy to verify:

(1 +
√
α)2

4
+

1− α

4
+

1− α

4
+

(1−
√
α)2

4
= 1. (2.52)

�

Lemma 2.5.5 Given S30 ≥ 0, (1− γ) / (1− γS30) ∈ [0, 1].

Proof. As γ ∈ [0, 1], we have (1− γ) ∈ [0, 1] also. Moreover, S30 ∈ [0, 1], and we can

therefore write

1 ≥ γ ≥ γS30

⇒ −1 ≤ −γ ≤ −γS30

⇒ 0 ≤ 1− γ ≤ 1− γS30

⇒ 0 ≤ 1− γ

1− γS30
≤ 1

as we took η = γS30 ∈ [0, 1). �

Combining the results of lemmas 2.5.4 and 2.5.5 by setting α = (1− γ) / (1− γS30), we

can conclude that if (S11, S22, S33) is in T , so too is (q1, q2, q3). Since (S11, S22, S33) is in

T by lemma 2.5.3, we may conclude the defined EP is a valid Pauli channel, verifying our

decomposition.

Case 2: S30 ≤ 0.

Equating Fsim and F−, we now find η = −γS30, though due to the sign of S30 we still find
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η ∈ [0, 1]. The diagonal elements now give us that

(q1, q2, q3) =

( √
1− γ√

1 + γS30
S11,−

√
1− γ√

1 + γS30
S22 −

1− γ

1 + γS30
S33

)
. (2.53)

Again, this rearrangement is acceptable unless η = 1, forcing γ = 1 and S30 = −1 - which

trivially satisfy Fsim = F− as in case 1. Thus we assume η < 1 for the rest of this proof.

Lemma 2.5.6 For all classical channels Π, as defined in our noisy teleportation protocol,

we have that (S11,−S22,−S33) belongs to the tetrahedron T .

Proof. Consider the four equations in corollary 2.3.4, with the vector (S11,−S22,−S33):

S11 + (−S22) + (−S33) = S11 − S22 − S33 ≤ 1,

S11 − (−S22)− (−S33) = S11 + S22 + S33 ≤ 1,

−S11 + (−S22)− (−S33) = −S11 − S22 + S33 ≤ 1,

−S11 − (−S22) + (−S33) = −S11 + S22 − S33 ≤ 1.

where the inequalities come from the proof of lemma 2.5.3. �

Lemma 2.5.7 Given S30 ≤ 0, (1− γ) / (1 + γS30) ∈ [0, 1].

Proof. As −S30 ∈ [0, 1]:

1 ≥ γ ≥ −γS30

⇒ −1 ≤ −γ ≤ γS30

⇒ 0 ≤ 1− γ ≤ 1 + γS30

⇒ 0 ≤ 1− γ

1 + γS30
≤ 1

�

We may then repeat the same logic used in the proof of case 1, applying lemma 2.5.4 with

α = (1− γ) (1 + γS30) and (S11,−S22,−S33) ∈ T .

These two cases are sufficient to cover all χγ-simulated channels, and thus our result is

proved. �

Whilst we have shown that all the channels χγ simulable by noisy teleportation are

necessarily of the form (2.42), we must also consider the converse - which channels of the
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form (2.42) are χγ-simulable? We answer that question in the following theorem.

Theorem 2.5.8 Using noisy teleportation over the amplitude damping Choi matrix χγ

with γ ∈ (0, 1), it is only possible to simulate channels of the form in Eq. (2.42) where

η ∈ [0, γ] and q = (q1, q2, q3) belonging to the convex space bounded by the points( √
1− γ

1− η
, ±

√
1− γ

1− η

(
1− η

γ

)
,∓1− γ

1− η

(
1− η

γ

))
,(

±
√

1− γ

1− η

(
1− η

γ

)
,

√
1− γ

1− η
, ∓ 1− γ

1− η

(
1− η

γ

))
,(

−
√

1− γ

1− η
, ±

√
1− γ

1− η

(
1− η

γ

)
,±1− γ

1− η

(
1− η

γ

))
,(

±
√

1− γ

1− η

(
1− η

γ

)
,−
√

1− γ

1− η
, ± 1− γ

1− η

(
1− η

γ

))
. (2.54)

These points correspond to the extremal points of the tetrahedron T truncated by the two

planes z = ± (1− η/γ), and shrunk by the transformation

(x, y, z) →
(√

1− γ

1− η
x,

√
1− γ

1− η
y,

1− γ

1− η
z

)
. (2.55)

For γ = 0, η = 0 and EP is any valid Pauli channel q ∈ T , whilst for γ = 1, η ∈ [0, 1] and

EP is in the convex space (2.54) unless η = 1 also - in which case EP is irrelevant and we

set q = 0.

Before we prove this result, we take from it the following definition:

Definition 2.5.9 We define the Pauli-damping channels as the class of qubit channels

that are simulable by teleporting over the amplitude damping Choi matrix χγ and using

a classical channel Π for the CCs. They have a unique decomposition of the form in

theorem 2.5.1, and must satisfy the criteria in theorem 2.5.8.

Proof. First we deal with the two extremal cases, γ = 0, 1. When γ = 0, we must have

that η = |γS30| = 0 also. This means S30 is not fixed and (S11, S22, S33) = q. By setting:

p0|0 = p1|1 = p2|2 = p3|3 = 1 → q = (1,−1, 1),

p1|0 = p0|1 = p3|2 = p2|3 = 1 → q = (1, 1,−1),

p2|0 = p3|1 = p0|2 = p1|3 = 1 → q = (−1,−1,−1),

p3|0 = p2|1 = p1|2 = p0|3 = 1 → q = (−1, 1, 1),

56



2.5 Pauli-Damping Channels

we can produce the extremal points of T - consequently we can set q to any point in T ,

by taking convex combinations of these distributions.

For γ = 1, the proof below for γ ∈ (0, 1) holds, unless η = 1 also. However for this case

the channel Eη sends every state to |0⟩ - making our Pauli channel in the decomposition

irrelevant. We can therefore choose it to be the channel defined by q = 0.

Fixing γ ∈ (0, 1), we know the sum S30 may take any value in [−1, 1], and that

η = |γS30| - so we may conclude we are free to choose η ∈ [0, γ]. For the Pauli channel EP
in the decomposition, we know its defining vector q must satisfy (using the same case 1:

S30 ≥ 0, case 2: S30 ≤ 0 split):

Case 1:

q =

( √
1− γ√

1− γS30
S11,

√
1− γ√

1− γS30
S22,

1− γ

1− γS30
S33

)
(2.56)

=

( √
1− γ√

1− |γS30|
S11,

√
1− γ√

1− |γS30|
S22,

1− γ

1− |γS30|
S33

)
. (2.57)

Case 2:

q =

( √
1− γ√

1 + γS30
S11,−

√
1− γ√

1 + γS30
S22,−

1− γ

1 + γS30
S33

)
(2.58)

=

( √
1− γ√

1− |γS30|
S11,−

√
1− γ√

1− |γS30|
S22,−

1− γ

1− |γS30|
S33

)
. (2.59)

We have already shown that the two vectors (S11, S22, S33), (S11,−S22,−S33) lie within

T , so we know with certainty that allowable Pauli channels will certainly lie within the

shrunk tetrahedron with extremal points:( √
1− γ√
1− η

,−
√
1− γ√
1− η

,
1− γ

1− η

)
( √

1− γ√
1− η

,

√
1− γ√
1− η

,−1− γ

1− η

)
(
−
√
1− γ√
1− η

,−
√
1− γ√
1− η

,−1− γ

1− η

)
(
−
√
1− γ√
1− η

,

√
1− γ√
1− η

,
1− γ

1− η

)
(2.60)

where we have used that η = |γS30|. However, we have now fixed our η value, forcing

S30 = ±η/γ. As the summations S11, S22, S33 are over the same parameters as S30 - the

conditional probabilities pl|k - this imposes some structure on them.
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S30 #({Qm}) # ({S± (Q±
m)}) # (S).

|S30| = 0 96 19 4

0 < |S30| < 1
2 384 80 8

|S30| = 1
2 64 16 8

1
2 < |S30| < 1 128 48 8

|S30| = 1 16 9 4

Table 2.1: The cardinality of sets constrained by the condition S30 = k.

To analyse the possible values for S11, S22, S33, we use a technique known as vertex

enumeration (described in detail in section 5.6). This obtains the extremal points of a set

X given that ∀x ∈ X satisfy a set of inequality constraints cTi x ≤ bi, ∀i. In this case we

are interested in the vectors π = (p0|0 . . . p3|3) in the sets

P±
η =

{
π

∣∣∣∣∣ pl|k ≥ 0,
3∑

k=0

pl|k = 1, S30 = ±η
γ

}
. (2.61)

We denote the sets of extremal points {Q±
m}m. Now we may consider (S11, S22, S33),

(S11,−S22,−S33) as two linear functions, S+ and S−, which map

S± : P±
η → T .

Since {Q±
m} are extremal points of P±

η we may express any π ∈ P±
η as π =

∑
m πmQ

±
m,

πm ≥ 0,
∑

m πm = 1. This means the transformations S± act as the following

S±(π) = S±

(∑
m

πmQ
±
m

)
=
∑
m

πmS±
(
Q±

m

)
(2.62)

due to the linearity of S±. From this, we may conclude that the extremal points of the

allowable (S11, S22, S33), (S11,−S22,−S33) are simply a subset S ⊆ {S± (Q±
m)}m.

Using the vertex enumeration program PANDA [71] to find the extremal points Q±
m,

the set {S± (Q±
m)} was then calculated; points s ∈ {S± (Q±

m)} were tested for extremality

by testing whether they could be written as a convex combination of {S± (Q±
m)} \ {s} -

if it cannot, it must be extremal. Thus S was obtained. A summary of the process is

presented in table 2.1.
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2.5 Pauli-Damping Channels

The 8 points referenced in table 2.1 (which reduce to four points in the special S30 =

0,±1 cases) are the points(
1 ,±

(
1− η

γ

)
,∓
(
1− η

γ

))
,

(
±
(
1− η

γ

)
, 1 ,∓

(
1− η

γ

))
,(

− 1 ,±
(
1− η

γ

)
,±
(
1− η

γ

))
,

(
±
(
1− η

γ

)
, −1 ,±

(
1− η

γ

))
, (2.63)

regardless of the case (S30 positive or negative). These points correspond to T , truncated

by two planes at z = ± (1− η/γ). Combining this result with the shrinking factors of(√
(1− γ) / (1− η),

√
(1− γ) / (1− η), (1− γ) / (1− η)

)
gets our final result. �

Corollary 2.5.10 Any “non-trivial” amplitude damping channel Eγ (i.e. γ ̸= 0, 1) cannot

be χγ-simulated using the noisy teleportation protocol.

Proof. In order for this to occur, we require η = γ, and EP = I, which have seen already

equates to q = (1,−1, 1). However, η = γ means every extremal point s ∈ S has z coeffi-

cient ± (1− γ/γ) = 0, and thus every allowable q must have z component 0 also. �

Special consideration should also be given to the two extremal cases, γ = 0, 1. For

γ = 0, we have Eγ = I, and χγ = |Φ+⟩ ⟨Φ+|. We can Choi-simulate Eγ simply by following

the standard teleportation protocol. When γ = 1, Eγ maps every state to |0⟩ ⟨0|, and so

the Choi matrix is I/2 ⊗ |0⟩ ⟨0|. Therefore Bob may simply apply the identity matrix to

simulate the channel9, regardless of Alice’s measurement result. For this resource state,

only convex combinations of |0⟩ ⟨0| and |1⟩ ⟨1| are possible from the application of the

corrective Pauli unitaries. This follows from our decomposition, as the constraint on q

forces EP = D1 - the depolarising channel sending all states to I/2, with Eη and σux then

determining the exact convex combination.

2.5.1 Distinguishability of Pauli-Damping Channels

We have shown how we can simulate non-Pauli channels using noisy teleportation. In this

section we quantify the distance between the Pauli-damping channels and the closest Pauli

channel, known as the distinguishability.

9Although this channel clearly has 0 capacity.
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Figure 2.7: A representation of the three components of the Pauli-damping channels.

2.5.1.1 Distance in Trace Norm

Definition 2.5.11 The trace norm distance between two quantum channels E1, E2 is de-

fined as

∥E1 − E2∥1 := sup
ρ
∥E1(ρ)− E2(ρ)∥1, (2.64)

where ∥σ∥1 = Tr
[√

σσ†
]
.

For Hermitian σ, this is equivalent to the sum of the absolute values of the eigenvalues of

σ. The trace norm between two channels also has the following operational meaning.

Lemma 2.5.12 ( [53]) Given a single copy of a channel E : HA → HB chosen uniformly

at random from {E1, E2}, the minimal probability of incorrectly identifying the channel

using an input state ρ ∈ HA is given by:

pmin =
1

2
− ∥E1 − E2∥1

4
. (2.65)

Proposition 2.5.13 Given a decomposition Esim = σux ◦ Eη ◦ EP characterised by η and

(q1, q2, q3) respectively, then the trace norm between Esim and the closest Pauli channel Ecl

is simply η. Moreover, the closest Pauli channel has F matrix

(f11, f22, f33) =


(√

1− ηq1,−
√
1− ηq2, (1− η)q3

)
for u = 0,(√

1− ηq1,
√
1− ηq2,−(1− η)q3

)
for u = 1.

(2.66)
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2.5 Pauli-Damping Channels

with fij = 0, i ̸= j.

Proof. For qubit states, the trace norm between two states is equivalent to the Euclidean

distance between their respective Bloch vectors. We shall split the proof into two cases:

Case 1: u = 0.

When u = 0, the action of Esim is

Esim : (x, y, z) →
(√

1− ηq1x,−
√

1− ηq2y, (1− η)q3z + η
)

(2.67)

whilst an arbitrary Pauli channel10 EC with parameters (c1, c2, c3) ∈ T has action:

EC : (x, y, z) → (c1x,−c2y, c3z) . (2.68)

This means we can reformulate our problem to:

min
(c1,c2,c3)∈T

max
x,y,z: x2+y2+z2≤1(

(
√

1− ηq1 − c1)x
)2

+
(
−(
√
1− ηq2 − c2)y

)2
+

(
((1− η)q3 − c3)z + η

)2
, (2.69)

minimising the square of the trace norm between the two output states. Looking at the

final term (((1− η)q3 − c3)z + η)2, given that the maximum occurs for a given |z| value,

this term can be rewritten as

max

{(
((1− η)q3 − c3)|z|+ η

)2
,
(
− ((1− η)q3 − c3)|z|+ η

)2}
= (|(1− η)q3 − c3||z|+ η)2 .

(2.70)

This term is minimised at c3 = (1− η) q3 regardless of the value of |z|, and has value η2.

For the term (
(
√
1− ηq1 − c1)x

)2
(2.71)

we can see this will be minimised when c1 =
√
1− ηq1 and will have value 0, regardless of

|x|. Similarly, (
−(
√
1− ηq2 − c2)y

)2
(2.72)

is minimised when c2 =
√
1− ηq2.

Summarising this, we have found our trace norm-minimising channel provided

EC : (x, y, z) →
(√

1− ηq1x,−
√
1− ηq2y, (1− η) q3z

)
(2.73)

10We use subscript C, to distinguish it from Ecl and EP .

61



Chapter 2: Simulation of Non-Pauli Channels

is a valid Pauli channel, equivalent to the condition
(√

1− ηq1,
√
1− ηq2, (1− η) q3

)
∈ T .

Since (q1, q2, q3) ∈ T and (1− η) ∈ [0, 1], we may apply lemma 2.5.4 to conclude this is

indeed the case.

Case 2: u = 1.

Using a similar method, our problem can be written in this case as

min
(c1,c2,c3)∈T

max
x,y,z:x2+y2+z2≤1(

(
√

1− ηq1 − c1)x
)2

+
(
(−
√
1− ηq2 − c2)y

)2
+

(
(−(1− η)q3 − c3)z − η

)2
. (2.74)

Again, we begin by looking at the final part of the sum. For a fixed value of |z|, this term

will be

max

{(
(−(1− η)q3 − c3) |z| − η

)2
,
(
((1− η)q3 + c3) |z| − η

)2}
= max

{(
((1− η)q3 + c3) |z|+ η

)2
,
(
− ((1− η)q3 + c3) |z|+ η

)2}
=
(
|(1− η)q3 + c3||z|+ η

)2
. (2.75)

This is clearly minimised when c3 = −(1−η)q3. For the x and y terms, they are minimised

for

c1 =
√
1− ηq1, c2 = −

√
1− ηq2.

To see that this vector defines a valid Pauli channel, one can notice that T is invariant

under the Bloch action of σx as it simply permutes the extremal points. Therefore we can

conclude that if (q1, q2, q3) belongs to the tetrahedron so too does (q1,−q2,−q3). As this

is exactly the relation between the terms (c1, c2, c3) for cases 1 and 2, we may infer that

(c1, c2, c3) again defines a valid Pauli channel, and the second part of our proposition is

proved. �

In general the trace norm is not the most accurate way of measuring channel distin-

guishability. This is due to the detail that, by sending part of an entangled state through

the channel, some channels may be distinguished with better probability than that pro-

vided by the trace norm. A better distance measure is given by the diamond norm, defined

in the following way:
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2.5 Pauli-Damping Channels

Definition 2.5.14 The diamond norm distance between two quantum channels E1, E2 is

defined as

∥E1 − E2∥⋄ := sup
ρ∈κ⊗H

∥(Iκ ⊗ E1) (ρ)− (Iκ ⊗ E2) (ρ)∥1. (2.76)

with κ an ancillary Hilbert space of any dimension.

It is immediately obvious that ∥E1 − E2∥1 ≤ ∥E1 − E2∥⋄ - and like the trace norm, this

measure too has an operational motivation.

Lemma 2.5.15 ( [109]) Given a single copy of a channel E : HA → HB chosen uniformly

at random from {E1, E2}, the minimal probability of incorrectly identifying the channel is

given by:

pmin =
1

2
− ∥E1 − E2∥⋄

4
. (2.77)

Proposition 2.5.16 Given a decomposition Esim = σux ◦ Eη ◦ EP characterised by η and

(q1, q2, q3) respectively, then the diamond norm between Esim and the closest Pauli channel

Ecl is η, equivalent to the trace norm, with the closest channel under ∥·∥⋄ the same as ∥·∥1
given in proposition 2.5.13.

Although the diamond norm appears to be a difficult quantity to obtain, due to the

unbounded dimension of the ancillary Hilbert space, we may use the following lemma to

greatly simplify the problem.

Lemma 2.5.17 ( [9]) There exists a ρ ∈ H ⊗ H which achieves the diamond norm be-

tween two channels E1, E2 : H → H′.

Corollary 2.5.18 ( [9]) The diamond norm between two qubit channels E1, E2 is achieved

by a two-qubit state.

Proof. Once more we split the proof of proposition 2.5.16 into two cases, depending on

the value of u.

Case 1: u = 0.

We start with the knowledge that

min
E ′∈Pauli

∥Esim − E ′∥⋄ ≤ ∥Esim − Ecl∥⋄. (2.78)

since Ecl is itself Pauli. To find ∥Esim − Ecl∥⋄, we shall look at the quantity

∥(I2 ⊗ Esim) (ρ)− (I2 ⊗ Ecl) (ρ)∥1 (2.79)
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for an arbitrary two-qubit state ρ, using the decomposition given in Eq. (2.16). We find

that MD = (I2 ⊗ Esim) (ρ)− (I2 ⊗ Ecl) (ρ) is given by

MD =
1

4


(1 + a3)η 0 (a1 − ia2)η 0

0 (1 + a3)η 0 −(a1 − ia2)η

(a1 + ia2)η 0 (1− a3)η 0

0 −(a1 + ia2)η 0 (−1 + a3)η

 . (2.80)

As MD is Hermitian, the trace norm is equal to the sum of the absolute values of eigen-

values. The eigenvalues of MD are:

1

4

(
− 1−

√
a21 + a22 + a23

)
η,

1

4

(
1−
√
a21 + a22 + a23

)
η, (2.81)

1

4

(
− 1+

√
a21 + a22 + a23

)
η,

1

4

(
1+
√
a21 + a22 + a23

)
η.

Since a21 + a22 + a23 ≤ 1, the absolute values are:

1

4

(
1+
√
a21 + a22 + a23

)
η,

1

4

(
1−
√
a21 + a22 + a23

)
η, (2.82)

1

4

(
1−
√
a21 + a22 + a23

)
η,

1

4

(
1+
√
a21 + a22 + a23

)
η.

We can see that the sum of these values is η, irrespective of the input state ρ. We can

thus conclude that ∥Esim − Ecl∥⋄ = η = ∥Esim − Ecl∥1.

Now let us suppose that there exists a channel E ′ which has a strictly smaller diamond

norm from Esim than our posited closest channel Ecl. This means we may write the following

chain of inequalities:

∥Esim − E ′∥1 ≤ ∥Esim − E ′∥⋄ < ∥Esim − Ecl∥⋄ = η = ∥Esim − Ecl∥1 (2.83)

however, we proved in proposition 2.5.13 that the closest channel under trace norm was

Ecl, thus leading to a contradiction. We can therefore conclude that the diamond norm

between Esim and Ecl is minimal.

Case 2: u = 1.

In this case, we have our simulated channel is defined by Esim = σx ◦ Eη ◦ EP - we can

define a related channel, Epos = Eη ◦ EP . From case 1, we know that the closest channel

to Epos is the channel Eposcl with action (f11, f22, f33) =
(√

1− ηq1,−
√
1− ηq2, (1− η)q3

)
,
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2.5 Pauli-Damping Channels

with diamond norm distance η. This means we can write:

η = ∥Epos − Eposcl∥⋄

= sup
ρ
∥(I2 ⊗ Epos) (ρ)− (I2 ⊗ Eposcl) (ρ)∥1

= sup
ρ
∥(I2 ⊗ σx) (I2 ⊗ Epos) (ρ)− (I2 ⊗ σx) (I2 ⊗ Eposcl) (ρ)∥1

= sup
ρ
∥(I2 ⊗ Esim) (ρ)− (I2 ⊗ Ecl) (ρ)∥1

= ∥Esim − Ecl∥⋄, (2.84)

where we have used the fact that the trace norm is invariant under unitary operations,

and that Ecl for the case u = 1 is equivalent to σx ◦ Eposcl. We can now use the same

argument used in Eq. (2.83) to conclude that this norm is indeed minimal. �

From this proposition we can conclude that, given resource state χγ , we can simulate

a channel at most ∥·∥⋄ = γ distinguishable from the set of Pauli channels (since that is

the largest allowable η). We can also state that, given a Pauli-damping channel Esim =

σux ◦ Eη ◦ EP , we can one-copy distinguish it from any Pauli channel with probability

p ≥ 1/2 + η/4, and give the Pauli channel for which equality holds.11

2.5.2 Capacities of Pauli-Damping Channels

As mentioned in the first section of this chapter, if a channel can be shown to be LOCC

simulated over a pre-shared resource, we may upper bound the two-way entanglement

distillation, quantum, private and secret key capacities by the REE of the resource state.

Since the Pauli-damping channels were explicitly constructed by an LOCC protocol over

resource state χγ , we may apply this result for a χγ-constructed Pauli-damping channel E

to obtain

D2(E) = Q2(E) ≤ P2(E) = K(E),

K(E) ≤ ER (χγ) ≤ Φ(Eγ) :=
1

2
− 1− γ

2
log2

(
1− γ

2

)
+

2− γ

2
log2

(
2− γ

2

)
. (2.85)

This specific bound is obtained by calculating the relative entropy to a specific separable

state, σγ = (I⊗ Eγ) ((|00⟩ ⟨00|+ |11⟩ ⟨11|)/2). It is possible to see that this bound may

11In fact, for this particular channel, we may obtain the optimal probability by sending the maximally

mixed state through the channel, measuring σz, and choosing Esim if the output is 0 and Ecl otherwise.
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not always be optimal; for example, if γ = 0 we have the maximally entangled state as

our resource state, and ER (χ0) = ER (|Φ+⟩ ⟨Φ+|) = 1 is our upper bound. However,

if the Pauli-damping channel we are considering is the completely depolarising channel

D1 : ρ → I/2, then the capacity of the channel is 0. This is an extreme example, but it

illustrates how the bound can fail to portray the true nature of the channel.

To counter this, we can consider an alternative upper bound, obtained by a different

LOCC simulation protocol. This simulation takes advantage of the fact Pauli-damping

channels are composite.

• Take a specific Pauli-damping channel Esim = σux ◦ Eη ◦ EP .

• Alice and Bob have the pre-shared resource χEP - the Choi matrix of channel EP in

the decomposition of Esim.

• Alice and Bob perform the standard teleportation protocol over χEP - by corollary

2.3.4 this simulates the channel EP from Alice to Bob.

• Bob then applies locally the channel σux ◦ Eη to his received state; his final state is

thus σux ◦ Eη ◦ EP (ρ) ≡ Esim (ρ).

• The channel Esim has been χEP -simulated, and therefore

D2(E) = Q2(E) ≤ P2(E) = K(E) ≤ ER (χEP ) ≤ Φ(EP ) :=


1−H2 (pmax) pmax ≥ 1

2 ,

0 pmax ≤ 1
2 ,

(2.86)

with the final inequality coming from [85], and pmax = maxi {pi} in the decom-

position (2.4) of EP . Φ(EP ) is obtained by choosing the specific separable state

σP = (I⊗ EP ) ((|00⟩ ⟨00|+ |11⟩ ⟨11|)/2).

This upper bound is effectively the same principle that for composite channels, C (E2 ◦ E1) ≤

C (E1). Although the upper bound is decomposition specific, we can compare the efficacy

with the resource-based bound by noting that Φ(EP ) is a convex function over the tetra-

hedron T - the four values pi corresponding to the weights of each corner in the convex

decomposition. Therefore, for a given γ, we can compare the upper bound given by χγ

to that given by the extremal Pauli channels of the restricted tetrahedron in theorem

2.5.8. The Pauli-based bound will be greatest when the restricted tetrahedron is largest;

occuring when η = 0. Our convex space is then bounded by the points:
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(√
1− γ,±

√
1− γ,∓(1− γ)

)
,(

±
√
1− γ,

√
1− γ,∓(1− γ)

)
,(

−
√
1− γ,±

√
1− γ,±(1− γ)

)
,(

±
√
1− γ,−

√
1− γ,±(1− γ)

)
.

Each of these is generated by a permutation of the four probabilities:{
γ

4
,

(
1−

√
1− γ

)2
4

,

(
1 +

√
1− γ

)2
4

,
γ

4

}
. (2.87)

As γ ∈ [0, 1], it must be the case that pmax =
(
1 +

√
1− γ

)2
/4, and pmax ≥ 1/2 when

γ ≤ 2(
√
2− 1). Therefore, applying our convexity argument, we have that

Φ(EP ) ≤


1−H2

(
(1+

√
1−γ)

2

4

)
γ ≤ 2(

√
2− 1),

0 γ ≥ 2(
√
2− 1).

(2.88)

In figure 2.8, we compare the the two bounds for varying γ. We see that the bound ob-

tained by the Pauli channel in the decomposition is always tighter than that obtained by

using the resource state! This means that, although we were able to simulate the Pauli-

damping channel in a non-trivial way using a novel LOCC protocol, it is actually more

beneficial to simulate part of the channel trivially (by local application of the σux ◦ Eη)

allowing us to use an alternate resource state.

It should be noted that for both of our analytical bounds, we did not find the exact

REE of our resource state, instead choosing a particular separable state to calculate the

relative entropy - providing an upper bound for the REE. With this in mind, it is possible

that the ER(χγ) provides a better upper bound than ER(χEP ) when the two quantities are

exactly calculated. To see if this is the case, we note that for H2 ⊗H2 the REE and the

RPPT coincide [58]. We use a semidefinite programming-based12 numerical approximation

of the RPPT, “CVXQUAD” [40,41]. The numerical analysis of the two resource states is

given in figure 2.9, showing that ER(χEP ) still provides a better bound than ER(χγ).

12These problems are explained in detail in chapter 5.
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Figure 2.8: Here we compare our two analytical bounds for Pauli-damping channels, one

based on the non-Bell-diagonal resource state χγ , the other from the Pauli channel in the

decomposition. The Pauli-based bound is considerably tighter.

2.5.3 The “Squared” Pauli-Damping Channel

Corollary 2.5.10 proved that it was impossible to χγ-simulate Eγ (for γ ̸= 0, 1); but we

were still interested in how close a channel it was possible to simulate. Motivated by this,

my summer project student Leon Hetzel performed the least-squares minimisation

min
Esim

∑
i,j

|[Fγ ]ij − [Fsim]ij ]|2 (2.89)

with Fsim the F-matrix of a Pauli-damping channel,

Fsim =


1 0 0 0

0
√
1− ηq1 0 0

0 0 −
√
1− ηq2 0

η 0 0 (1− η)q3

 . (2.90)

Note that generally this type of minimisation does not coincide with the minimisation of

the trace/diamond norm. The reason why we chose this measure was because we wanted

to find the channel with the closest action regardless of the input state, rather than the

trace/diamond norms, which only considers the worst case scenario input state.

The result of the optimisation (2.89) was the channel

Esq : (x, y, z) →
(√

1− γ
(
1− γ

2

)
x,
√
1− γ

(
1− γ

2

)
y, γ2 + (1− γ2)z

)
(2.91)
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Figure 2.9: This figure compares the numerical REE bounds for secret key capacity of

Pauli-damping channels. Although we see an improvement on Φ(Eγ), the upper bound

provided by ER(χγ) is still looser than ER(χEP ).

with F matrix
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We name this channel the squared channel due to its similarity of action on the z compo-

nent of the Bloch vector to the original channel Eγ , except with the square exponent.

This channel is a Pauli-damping channel (being χγ-simulable by noisy teleportation)

and thus may be decomposed into the catenation of channels given in theorem 2.5.1. This

particular channel has decomposition u = 0, η = γ2, and

q =

(
1− γ

2√
1 + γ

,−
1− γ

2√
1 + γ

,
1− γ

1 + γ

)
. (2.93)

2.6 Discussion and Further Directions

The tool of LOCC-simulation in order to provide weak converse bounds of channel capac-

ities is one with lots of potential; but comes with the caveat that a suitable resource state

and LOCC protocol need to be found in order to apply the result. The most commonly

studied LOCC protocol for this task has been the standard teleportation protocol, over
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Chapter 2: Simulation of Non-Pauli Channels

an arbitrary resource state. We extended this protocol by introducing classical noise into

the communication step between Alice and Bob, allowing teleportation simulation of more

than just the Pauli channels. One could generalise this further by allowing Bob different

operations conditional on Alice’s measurement outcome, or changing Alice’s measurement.

Not all non-Pauli channels are simulable using this new protocol though; although we have

been able to introduce constant terms in the Bloch vector, as well as interdependent terms

between elements, the interdependence of the sums Sij constrains these terms. We were

able to prove a no-go theorem which states that a non-Bell-diagonal resource state is

necessary in order to simulate non-Pauli channels with this method, and were able to

characterise the channels possible to simulate using the specific resource states χγ . Upon

further inspection however, the composite nature of these channels meant that the stan-

dard teleportation protocol, followed by a local application of the remainder of the channel,

provided a better upper bound on these channels’ capacities. This is perhaps because the

noise in the classical channel Π leads to a lower-capacity simulated channel, yet our upper

bound is independent of Π. Whether the noisy teleportation protocol can provide better

bounds for other channels remains uncertain; an important step towards discerning this

would be to see if all channels simulated this way are composite, potentially with the first

component channel always a Pauli channel.

A natural generalisation of this research is the extension to d > 2 - akin to the gener-

alisation of Bowen and Bose. Though the Pauli matrices and noisy classical channel have

natural generalisations to higher dimensions, there exists no concise Bloch representation

for either the input nor the resource state, making the F-matrix representation redundant.

Generally, the simulated channel would depend on d4−1 parameters in the resource state,

subject to positivity constraints, and d4 − d2 free parameters for the classical communica-

tion channel. Most interest in higher dimensional channels is limited to channels which are

already teleportation covariant, and therefore this generalisation would be hard to present

and likely of little relevance to the field. A more reasonable application of theorem 2.4.1

could be to numerically optimise over resource states, in order to find the tightest bound

for general qubit channels. I have written a Matlab program using a least-squares approach

to determine whether there exists σ, Π which simulate a given channel - this approach

could be combined with ER-approximating semidefinite programs to find an upper bound.
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2.6 Discussion and Further Directions

Another area of investigation is port based teleportation [63], as another LOCC pro-

tocol candidate [84]. In this process, many copies of the maximally entangled states are

employed, to allow for teleportation of a state without the requirement of a corrective

unitary - at the cost of fidelity. This has been shown to LOCC simulate a depolarising

channel, with the probability of depolarisation decreasing as the number of maximally

entangled states used increases. By replacing these maximally entangled states with more

general qudit states, we will be able to simulate much more general channels - moreover,

it appears likely that methods such as “parallel teleportation” (in which one sends over

many copies of the state) and entanglement recycling (in which the resource state is reused

for another round of port based teleportation) can provide tight, asymptotic upper bounds.

Overall, this work takes its place in the literature as a proof-of-concept that the telepor-

tation protocol may be used as a template for LOCC simulation for more general channels

than previously thought - and provides an explicit example, the Pauli-damping channels

which are simulated this way. They are one of the few non-Pauli channels to be shown

non-trivially simulable, and the first using a two-qubit resource state.
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Chapter 3

Werner States and Phase Werner

States

The work presented in this chapter stems from a discussion of work between myself, Stefano

Pirandola, and Kenneth Goodenough, a PhD student at TU Delft. The original concept

to introduce a phase into the extremal Werner state was Kenneth’s idea, which I then

expanded to the full phase Werner and isotropic families, with input from the two parties

mentioned. I hope to develop these ideas sufficiently into a paper in the future.

3.1 Structure of this Chapter

The first section of this chapter will begin by introducing the family of Werner states, along

with the related isotropic states, and explain their importance among the development and

understanding of quantum information. The next section will then introduce the concept

of the phase Werner state, and its generalisation to the whole family, extending the concept

to phase isotropic states. The final section will then prove some properties of these states,

and discuss some conjectured (and disproved) results.

3.2 Werner States and their Role in Quantum Theory

Werner states, as they are now called, were first introduced by Reinhard Werner in [110],

in order to prove a remarkable result - there exist entangled states for which a local

hidden variable model can describe the measurement statistics of any local (projective)

measurements upon the state. This means that despite being entangled, these states
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Chapter 3: Werner States and Phase Werner States

cannot violate a Bell inequality. This result was extended in [7] to POVM measurements.

The consequence of this is that entanglement is a necessary condition for non-locality, but

not a sufficient one. We shall look at non-locality and Bell inequalities in more detail

in chapter 5, but non-locality is often thought of as what makes measurement statistics

“truly quantum”, and forms the basis of many quantum cryptographic protocols.

Definition 3.2.1 ( [110]) d-dimensional Werner states Wη,d are exactly the set of states

such that, for all d-dimensional unitaries Ud,

(Ud ⊗ Ud)Wη,d (Ud ⊗ Ud)
† =Wη,d. (3.1)

Definition 3.2.2 The d-dimensional flip operator Fd, is defined as

Fd :=
d−1∑
i,j=0

|ij⟩ ⟨ji| (3.2)

and has the effect of “swapping” two subsystems, with Fd |ϕ⟩ ⊗ |ψ⟩ = |ψ⟩ ⊗ |ϕ⟩.

Definition 3.2.3 ( [110]) The d-dimensional Werner states Wη,d can be parametrised

by one parameter η = Tr [FdWη,d], and explicitly expressed as

Wη,d :=
(d− η)Id2 + (dη − 1)Fd

d3 − d
(3.3)

with Id2 the d2 identity operator. The parameter η satisfies η ∈ [−1, 1].

These states have continued to have a remarkable influence on the development of quantum

information theory - often providing a counter example to a seemingly logical claim. One

of the most striking examples of this is the following theorem:

Theorem 3.2.4 ( [106]) The relative entropy of entanglement, ER(ρ), is not additive in

general. In particular, we have

ER(W−1,d ⊗W−1,d)

2
< ER(W−1,d), d ≥ 3. (3.4)

It is results such as this which has motivated the study of the regularised entanglement

measures we have seen in previous chapters. This property of subadditivity motivates the

work in the next chapter.
74



3.2 Werner States and their Role in Quantum Theory

3.2.1 Isotropic States

Sitting alongside their close cousins, isotropic states have also become an integral part of

quantum theory. They too exhibit the unusual property of admitting no non-local prob-

ability distributions for some levels of entanglement [1]. Moreover, they have been shown

to exhibit “super-activation of non-locality” - joint measurements on multiple copies of

entangled isotropic states can produce non-local distributions, despite being unable to do

so on a single copy.

Like the Werner states, isotropic states also exhibit an invariance under symmetry.

Definition 3.2.5 ( [57]) d-dimensional isotropic states Iη,d are exactly the set of states

such that, for all d-dimensional unitaries Ud,

(Ud ⊗ U∗
d ) Iη,d (Ud ⊗ U∗

d )
† = Iη,d. (3.5)

Definition 3.2.6 The d-dimensional maximally entangled operator, Md is defined as:

Md :=
d−1∑
i,j=0

|ii⟩ ⟨jj| . (3.6)

This is the (unnormalised) density matrix of the d-dimensional maximally entangled state,

|Φ⟩d. It relates to Fd in that FTB
d = Md.

Using this operator, we can give the exact expression of the isotropic states.

Definition 3.2.7 ( [57]) The d-dimensional isotropic states Iη,d can be parametrised by

one parameter η = Tr [MdIη,d], and explicitly expressed as

Iη,d :=
(d− η)Id2 + (dη − 1)Md

d3 − d
(3.7)

and are valid states for η ∈ [0, d].

From here on, we shall drop d, d2 subscripts from the operators I,F and M, as they shall

be clear from context.

Lemma 3.2.8 Werner states are related to isotropic states by partial transpose W TB
η,d =

Iη,d when η ∈ [0, 1]. This is the separable region for both families.
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Chapter 3: Werner States and Phase Werner States

Proof. The proof of this lemma is simple:

W TB
η,d =

(
(d− η)I + (dη − 1)F

d3 − d

)TB

=
(d− η)ITB + (dη − 1)FTB

d3 − d

=
(d− η)I + (dη − 1)M

d3 − d
= Iη,d.

�

3.2.2 Basic Properties of Werner and Isotropic states

In this part, we outline some of the basic properties of these families of states, so that we

may better understand them. The focus here will mainly be entanglement-based proper-

ties.

Lemma 3.2.9 Werner states are separable for η ∈ [0, 1] and entangled for η ∈ [−1, 0).

Isotropic states are separable for η ∈ [0, 1], and entangled for η ∈ (1, d].

Lemma 3.2.10 The relative entropy of entanglement of Wη,d is strictly subadditive for

the region η ∈ [−1,−2/d) and additive elsewhere, whilst the relative entropy of entangle-

ment is additive for isotropic states.

3.2.2.1 Eigensystems of Werner and Isotropic States

Werner states have the following eigensystem:

• d(d−1)/2 eigenvectors of the form (|ij⟩+ |ji⟩) /
√
2, with eigenvalue (1 + η) / (d(d+ 1)),

• d eigenvectors of the form |ii⟩, each with eigenvalue (1 + η) / (d(d+ 1)).

• d(d−1)/2 eigenvectors of the form (|ij⟩ − |ji⟩) /
√
2, (i > j) with eigenvalue (1− η) / (d(d− 1)).

These are easy to verify since (|ij⟩+ |ji⟩) /
√
2, |ii⟩ are eigenvectors of the flip operator

with value 1, whilst (|ij⟩ − |ji⟩) /
√
2 are eigenvectors with value -1; as Werner states are

linear combinations of F and I, it is easy to generate the above system.

One noticeable property is that the eigenvectors ofWη,d are independent of η, meaning

the family of Werner states (for a given dimension) are simultaneously diagonalisable - a
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3.2 Werner States and their Role in Quantum Theory

convenient property for calculating things such as relative entropy, as we shall see in the

next chapter.

Isotropic states have a similarly well structured eigensystem. They have:

• 1 eigenvector
∑d−1

i=0 |ii⟩ /
√
d, with eigenvalue η/d.

• d(d− 1) eigenvectors |ij⟩ , i ̸= j, each with eigenvalue (d− η) /
(
d3 − d

)
.

• d−1 eigenvectors |vk⟩ =
√
k/ (k + 1) |kk⟩−

∑k−1
j=0 |jj⟩ /

√
k(k + 1), k ∈ {1, . . . d−1}.

These also have eigenvalue (d− η) /
(
d3 − d

)
.

As before, these can be relatively easily verified - the eigenvector
∑d−1

i=0 |ii⟩ /
√
d is the sole

eigenvector of the rank 1 matrix M, with eigenvalue d - the other eigenvectors provide an

orthonormal basis for the nullspace of M. We can then use the same linearity argument

as for Werner states.

Given that we have these decompositions, we may easily give the negativity of both

states:

N(Wη,d) =
|η|+ |d− η| − d

2d
, (3.8)

N(Iη,d) =
|1− η|+ |1 + η| − 2

4
. (3.9)

3.2.3 Separability Criterion and Bound Entanglement

The isotropic states were introduced by Michal and Pawel Horodecki in order to provide

a sufficiency criterion for distilling states: the reduction criterion. By transforming states

into the form (3.7), and then providing an explicit protocol for the distillation of isotropic

states, this gives a method for distilling quantum states into maximally entangled Bell

pairs. The transformation used to obtain these states is known as twirling, which we

define in section 3.2.4.
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Figure 3.1: The negativity of the states Wη,4 and Iη,4. Both are 0 in the separable range

[0, 1].
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Figure 3.2: We also plot the log negativity of Wη,4, Iη,4, which provides an upper bound

to the entanglement of distillation.
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3.2 Werner States and their Role in Quantum Theory

Using these states, the Horodeckis were able to prove the following:

Theorem 3.2.11 (Reduction Criterion) For any separable state ρAB the following

must hold:

ρA ⊗ IB − ρAB ≥ 0, (3.10)

IA ⊗ ρB − ρAB ≥ 0 (3.11)

with ρA = TrB[ρAB], ρB = TrA[ρAB]. If a state violates either of these conditions, then it

is necessarily distillable. This means that we can distill n copies of the state into m Bell

pairs using LOCC operations only, achieving a conversion rate m/n > 0 - the optimal rate

is the distillable entanglement seen in chapter 1.

The reduction criterion is an example of a separability criterion, the violation of which

proves entanglement of the state. Another common separability criterion is the positive

partial transpose (PPT) criterion, which states:

Theorem 3.2.12 ( [81]) For any separable state ρAB, the partial transpose ρTB = (I⊗ TB) (ρ)

must be positive semidefinite. Thus if ρTB � 0 then ρ is entangled.

For identifying entangled states, the PPT criterion is stronger than the reduction criterion;

for example, entangled Werner states d ≥ 3 all satisfy the reduction criterion, but violate

the PPT criterion. Unlike the reduction criterion, violation of the PPT criterion does not

guarantee distillability. Instead, the following is true.

Theorem 3.2.13 If an entangled state ρ satisfies the PPT criterion, it is undistillable.

We call such states bound entangled states.

For H2 ⊗H2 and H2 ⊗H3, the PPT criterion is sufficient for separability; but for higher

dimensions explicit examples of bound entangled states have been found [60]. A natural

question that arises is - is PPT necessary for undistillability? Or do there exist negative

partial transpose (NPT) states ρTB � 0 which are undistillable also? This has led to the

following conjecture:

Conjecture 3.2.14 ( [57]) Entangled Werner states Wη,d with d ≥ 3 and

η ∈ [(2− d) / (2d− 1) , 0) are NPT bound entangled.
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Much like channel capacities, determining the distillability of states is in general difficult,

since it requires optimisation over all LOCC protocols, over any number of copies of the

state. Thus this conjecture has remained unresolved. Generally the conjecture is believed

true though, due to the following result.

Theorem 3.2.15 ( [35]) There are Werner states which are n-copy pseudo-undistillable

for all finite n.

Definition 3.2.16 ( [35]) a state ρ is n-copy pseudo-undistillable if, for all |ϕ⟩ with

Schmidt rank 2, ⟨ϕ| (ρ⊗n)
TB |ϕ⟩ ≥ 0.

This is called pseudo-undistillability as it implies there are no possible local projections

onto an entangled H2 ⊗ H2 state (which are always distillable [59]). If such a state

|ϕ⟩ =
√
λ0 |a0⟩ |b0⟩ +

√
λ1 |a1⟩ |b1⟩ with ⟨ϕ| (ρ⊗n)

TB |ϕ⟩ < 0 exists, the local projection is

PA ⊗ PB = (|a0⟩ ⟨a0|+ |a1⟩ ⟨a1|)⊗ (|b0⟩ ⟨b0|+ |b1⟩ ⟨b1|).

Lemma 3.2.17 Werner states Wη,d, η ∈ [−1, (2− d) / (2d− 1)) are 1-distillable.

Proof. In order to show this, we require there is a state |ϕ0⟩ such that ⟨ϕ0| (Wη,d)
TB |ϕ0⟩ =

⟨ϕ0| Iη,d |ϕ0⟩ < 0. Choosing |ϕ0⟩ = |00⟩+ |11⟩ /
√
2 gives

⟨ϕ0| Iη,d |ϕ0⟩ =
(d− 2) + (2d− 1)η

d3 − d
(3.12)

which is negative for η < (2− d) / (2d− 1). �

For the region [(2− d) / (2d− 1) , 0), Werner states are 1-copy pseudo-undistillable, and

conjectured to be NPT bound entangled.

The phase Werner states we introduce in section 3.3 have some properties which imply

they may be relevant to this problem, and we shall discuss some of the attempts we made

to strengthen this connection.

3.2.4 Twirling

When Werner states were first introduced, so too was an operation to generate such states,

based on their property that (U ⊗ U)Wη,d(U ⊗ U)† =Wη,d.

Theorem 3.2.18 ( [110]) For any state ρ, we have that∫
(U ⊗ U) ρ(U ⊗ U)†dU =Wη,d (3.13)
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with η = Tr [ρF].

The integral is done via the Haar measure of the unitary group - conceptually a volume

allowing “densities” of unitaries within the infinite group to be defined. Operationally,

this integration may be achieved by the application of random unitaries, or of certain

well-constructed finite sets [48]. The twirl operation is an LOCC operation, and one

may prove that the states Wη,d, η ∈ [0, 1] are separable by twirling the separable states

|u⟩ ⟨u| ⊗ (α |u⟩ ⟨u|+ (1− α) |v⟩ ⟨v|) to produce them [109]. As the partial transpose of a

separable state is itself separable, this also gives the separability of Iη,d, η ∈ [0, 1].

Isotropic states satisfy a similar property:

Theorem 3.2.19 ( [57]) For any state ρ, we have that∫
(U ⊗ U∗) ρ(U ⊗ U∗)†dU = Iη,d (3.14)

with η = Tr [ρM].

It is easy to think that there must exist many more similar twirling operations of the

form U ⊗ Ũ , but this turns out not to be the case. Twirls such as
(
U ⊗ V UV †) are equiv-

alent to Eq. (3.13) followed by a change in basis on the second subsystem. The twirling

U ⊗ U † is not valid, since the map h : U → Ũ needs to be a group homomorphism i.e.

h(U1)h(U2) = h(U1U2); for the conjugate transpose operation this is not the case, since

(U1)
†(U2)

† = U †
1U

†
2 = (U2U1)

† ̸= (U1U2)
†.

It is possible to use subsets of unitaries to define other, interesting twirls. An example

of this is the twirl O ⊗ O with O representative of an arbitrary real orthogonal unitary

(the unitaries exactly satisfying O = O∗). This maps to a set of states which are a linear

combination of both Werner and isotropic states.

3.2.5 Representations of Werner States

As mentioned before, Werner states are oft-studied and as a consequence are presented

(equivalently) in a variety of ways. I outline some of the most common here.
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• Expectation representation

The original representation introduced by Werner, expressed by the formula

Wη,d =
(d− η)I + (dη − 1)F

d3 − d
. (3.15)

With the nice property that η = Tr [FWη,d], this is the representation that will

be primarily used in the following chapters. The defining parameter η ranges

between [−1, 1], with η ∈ [−1, 0) entangled and η ∈ [0, 1] separable. The two

other important regions are η ∈ [−1,−2/d) for which the REE is subadditive, and

η ∈ [(2− d) / (2d− 1) , 0), the region conjectured to be NPT bound entangled.

• α-representation

Another common representation, the α-representation has explicit construction

Wα,d :=
I− αF
d2 − αd

, (3.16)

with α ∈ [−1, 1]. For this representation though, it is when α ∈ (1/d, 1] that the

Werner state is entangled, and for α ∈ [−1, 1/d] they are separable. The subadditive

region is α ∈ (3d/
(
d2 + 2

)
, 1], but the conjectured NPT region has the nice range

α ∈ (1/d, 1/2], and it is in this context that you normally see this representation

used.

• Symmetric representation

In order to understand this representation, we need to introduce two operators:

Psym :=
1

2
(I + F) Pasym :=

1

2
(I− F) . (3.17)

Acting on the Hilbert space, Psym and Pasym project onto the symmetric and anti-

symmetric subspaces respectively. The symmetric subspace is spanned by the states

|ii⟩ , (|ij⟩+ |ji⟩) /
√
2, which are left invariant by F, whilst the antisymmetric sub-

space is spanned by (|ij⟩ − |ji⟩) /
√
2, whose sign is flipped by F. We may then write

the Werner state as:

Wp,d := (1− p)
2Psym

d2 + d
+ p

2Pasym

d2 − d
(3.18)

The fractions serve just to normalise the projectors to trace 1 - and these normalised

versions are the extremal Werner states. The parameter p ranges between 0 and
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3.3 Introducing a Phase to Werner States

Representation Sep. Extremal Ent. Extremal Sep. Boundary Subadditive Boundary Conj. NPT Boundary

Expectation 1 -1 0 −2
d

2−d
2d−1

α -1 1 1
d

3d
d2+2

1
2

Symmetric 0 1 1
2

1
2 + 1

d
3(d−1)
4d−2

Antisymmetric −1
d−1 1 1

d+1
3

d+1
d−1
2d−1

Table 3.1: A comparison of various representations of Werner states, showing the impor-

tant parameter values for each.

1, and with entanglement for p ∈ (1/2, 1] (and thus separable for p ∈ [0, 1/2]).

Here the subadditive region is p ∈ (1/2 + 1/d, 1], and the conjectured NPT region

is p ∈ (1/2, 3(d − 1)/ (4d− 2)]. This representation can be useful studying convex

combinations of Werner channels, and is related to the expectation representation

by the simple relation p = (1− η) /2.

• Antisymmetric representation

This slightly unusual representation portrays the Werner state as a mixture of a

pseudo-antisymmetric operator, and the identity matrix:

Wt,d := t
I− dF
d2(d− 1)

+
I

d2
. (3.19)

For this description entangled states live in the region t ∈ (1/ (d+ 1) , 1], and sepa-

rable t ∈ [−1/ (d− 1) , 1/ (d+ 1)]. The subadditive region is t ∈ (3/ (d+ 1) , 1], and

the NPT conjectured region t ∈ (1/ (d+ 1) , (d− 1) / (2d− 1)]. This representation

is relatively rare, and we shall not make use of it here.

A brief summary of this information is provided in table 3.1.

3.3 Introducing a Phase to Werner States

Now that we feel comfortable understanding Werner states, we now look to generalise

them. The first step in the process was done by Kenneth Goodenough, a PhD student

at Delft. He started with the initial fact that the extremal entangled Werner state is the

(normalised) antisymmetric projector,

W−1,d =
2Pasym

d2 − d
=

2

d2 − d

∑
i>j

|ij⟩ − |ji⟩√
2

⟨ij| − ⟨ji|√
2

. (3.20)
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From this, we can define the extremal phase Werner state

W θ
−1,d :=

2

d2 − d

∑
i>j

|ij⟩ − eiθ |ji⟩√
2

⟨ij| − e−iθ ⟨ji|√
2

. (3.21)

We can see that the eigenvalues of this state remain unchanged, but the eigenvectors have

been changed by definition.

Learning about this, I thought a natural next step would be to generalise this state

for η, like the Werner states themselves. Since Werner states are characterised by F, the

logical step is to define Fθ.

Definition 3.3.1 The phase flip operator Fθ is defined:

Fθ := I− 2P θ
asym = I− 2

∑
i>j

|ij⟩ − eiθ |ji⟩√
2

⟨ij| − e−iθ ⟨ji|√
2

(3.22)

motivated by rearranging Pasym = (I− F)/2.

This operator has eigensystem:

Fθ |ii⟩ = |ii⟩ (3.23)

Fθ |ij⟩+ eiθ |ji⟩√
2

=
|ij⟩+ eiθ |ji⟩√

2
, i > j (3.24)

Fθ |ij⟩ − eiθ |ji⟩√
2

= −|ij⟩ − eiθ |ji⟩√
2

, i > j. (3.25)

Moreover, it can be written as

Fθ = F⊙



1 eiθ . . . . . . eiθ

e−iθ . . . . . . . . . ...
... . . . 1

. . . ...
... . . . . . . . . . eiθ

e−iθ . . . . . . e−iθ 1


(3.26)

where ⊙ denotes elementwise multiplication [A⊙B]ij = AijBij . We now have the operator

required to define the family of phase Werner states.

Definition 3.3.2 The phase Werner state W θ
η,d is defined as

W θ
η,d :=

(d− η)I + (dη − 1)Fθ

d3 − d
. (3.27)

The eigenvalues of Wη,d and W θ
η,d coincide, and thus η ∈ [−1, 1] define valid phase Werner

states.
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Lemma 3.3.3 For d = 2, phase Werner states are equivalent under local unitaries.

Proof. For d = 2, the extremal Werner state is W−1,2 = (|10⟩ − |01⟩) (⟨10| − ⟨01|) /2, just

the singlet state. Thus the unitary

I⊗ Zθ := I⊗

 1 0

0 eiθ

 gives (I⊗ Zθ)W−1,2(I⊗ Zθ)
† =W θ

−1,2. (3.28)

Applying Zθ to Wη,2, we find that (I⊗ Zθ)Wη,2(I⊗ Zθ)
† =W θ

η,2 for all η. �

Lemma 3.3.4 The states W θ
η,d and W−θ

η,d are equivalent under local unitary.

Proof. We begin by defining the d-dimensional unitary Ũ : |i⟩ → |(d− 1)− i⟩ - this is

indeed a unitary since it just permutes the computational basis. Applying this to P θ
asym(

Ũ ⊗ Ũ
)
P θ
asym

(
Ũ ⊗ Ũ

)†
=
(
Ũ ⊗ Ũ

) 2

d2 − d

∑
i>j

|ij⟩ − eiθ |ji⟩√
2

⟨ij| − e−iθ ⟨ji|√
2

(
Ũ ⊗ Ũ

)†
.

By defining i′ = (d− 1− j), j′ = (d− 1− i), and noting i > j ⇒ i′ > j′ this becomes

(
Ũ ⊗ Ũ

)
P θ
asym

(
Ũ ⊗ Ũ

)†
=

2

d2 − d

∑
i′>j′

|j′i′⟩ − eiθ |i′j′⟩√
2

⟨j′i′| − e−iθ ⟨i′j′|√
2

=
2

d2 − d

∑
i′>j′

(−eiθ) |i
′j′⟩ − e−iθ |j′i′⟩√

2

⟨i′j′| − eiθ ⟨j′i′|√
2

(−e−iθ)

=
2

d2 − d

∑
i′>j′

|i′j′⟩ − e−iθ |j′i′⟩√
2

⟨i′j′| − eiθ ⟨j′i′|√
2

= P−θ
asym.

We can use this result to show:(
Ũ ⊗ Ũ

)
F θ
(
Ũ ⊗ Ũ

)†
=
(
Ũ ⊗ Ũ

)(
I− 2P θ

asym

)(
Ũ ⊗ Ũ

)†
=
(
I− 2P−θ

asym

)
= F−θ

and (
Ũ ⊗ Ũ

)
W θ

η,d

(
Ũ † ⊗ Ũ †

)
=
(
Ũ ⊗ Ũ

)((d− η)I + (dη − 1)Fθ

d3 − d

)(
Ũ ⊗ Ũ

)†
=

(d− η)I + (dη − 1)F−θ

d3 − d

=W−θ
η,d .

�
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Given that we have defined these new phase Werner states, the next natural step to ask

is whether we can can define phase isotropic states? It looks like we are faced with a choice

- should we extend our definition of phase Werner states using partial transpose, or alter

the state-defining operator M as we altered F? It turns out that it is of no consequence -

both define the same family of states.

Definition 3.3.5 The phase isotropic state Iθη,d is defined as

Iθη,d :=
(d− η)I + (dη − 1)Mθ

d3 − d
, (3.29)

where

Mθ = M⊙



1 eiθ . . . . . . eiθ

e−iθ . . . . . . . . . ...
... . . . 1

. . . ...
... . . . . . . . . . eiθ

e−iθ . . . . . . e−iθ 1


. (3.30)

Iθη,d =
(
W θ

η,d

)TB

and in general its eigenvalues are dependent on θ.

In order to see that this is indeed the case, let us apply the partial transpose to

W θ
η,d. Since partial transpose respects addition, and the identity is invariant under partial

transposition, we need just consider
(
Fθ
)TB . Using Eq. (3.26) we see that there are three

types of nonzero element in Fθ:

• |ii⟩ ⟨ii| - diagonal elements. These are left unaffected by the partial transpose.

• eiθ |ij⟩ ⟨ji|, i > j - these are in the upper diagonal due to our ordering: 00, 01 . . .

These are mapped to eiθ |ii⟩ ⟨jj|, so remain in the upper diagonal, as i > j.

• e−iθ |ij⟩ ⟨ji|, i < j - these are in the lower diagonal and are mapped to e−iθ |ii⟩ ⟨jj|;

since i < j these remain in the lower diagonal.

From this we can conclude that indeed Mθ =
(
Fθ
)TB is given by Eq. (3.30).
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3.3 Introducing a Phase to Werner States

Corollary 3.3.6 Phase isotropic states are equivalent under local unitaries for d = 2.

Proof. We may write the following chain of equalities.

Iθη,d =
(
W θ

η,d

)TB

=
(
(I⊗ Zθ)Wη,2(I⊗ Zθ)

†
)TB

= (I⊗ Z∗
θ )W

TB
η,2 (I⊗ Z∗

θ )
†

= (I⊗ Z∗
θ )Iη,2(I⊗ Z∗

θ )
†.

�

Corollary 3.3.7 The states Iθη,d and I−θ
η,d are equivalent under local unitary.

Proof. Taking the same unitary Ũ as defined in lemma 3.3.4, we can see that(
Ũ ⊗ Ũ∗

)
Iθη,d

(
Ũ ⊗ Ũ∗

)†
= I−θ

η,d

following the same logic as corollary 3.3.6. �

The eigenvalues of the phase isotropic states are generally not independent of θ - in

fact, their dependence of θ is far from simple. Kenneth found them to be:

• (d− η) /
(
d3 − d

)
with multiplicity d(d− 1), and

• ((d− η) + (dη − 1) (1 + λk)) /
(
d3 − d

)
, k ∈ {0 . . . d− 1} where

λk :=
sin
(
(d−1)θ−kπ

d

)
sin
(
θ+kπ

d

) . (3.31)

These eigenvalues restrict the region for which Iθη,d is a valid quantum state1. We plot

this region for d = 3, 5 in figure 3.3. We see it is widest when θ = 0, ranging from 0 to

d as we expect, and narrowest when θ = π, where the phase isotropic state is valid in

the range η ∈ [(2− d) / (2d− 1) , 2/ (d− 1)]. The bound of ηc := (2− d) / (2d− 1) may

look familiar - it is the conjectured bound for NPT undistillable entanglement of Werner

states! As Iπηc,d is a valid quantum state, that means that W π
ηc,d

is a PPT state, and hence

undistillable. This seemed to me a big coincidence and, along with the fact that for d = 2

the phase Werner states are locally equivalent, led me to make the following conjecture.

1Since we require the state to be positive semidefinite.
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Figure 3.3: Comparison of the allowable range of η for valid Iθη,d states. Note the steep

incline around θ = 0 and the dip at θ = π.

Conjecture 3.3.8 The entanglement distillation of W θ
η,d is equal for all θ.

This conjecture is strictly stronger than conjecture 3.2.14 as not only does it conjecture

that for Werner states Wη,d the region η ∈ [(2− d) / (2d− 1) , 0) is NPT bound entan-

gled, but also that any phase Werner state W θ
η,d with a negative partial transpose in the

region η ∈ [(2− d) / (2d− 1) , 1] would also be bound entangled. This is possible in two

regions:[(2− d) / (2d− 1) , 0) and (2/ (d− 1) , 1].

Unfortunately, this stronger conjecture is false; the key to showing this is to limit our

consideration to the two extremal angles, θ = 0, π. This is because for these particular

values the eigenstates coincide, with different associated eigenvalues.

3.3.1 Entanglement Properties of π-Werner States

The eigensystem of Iπ,d is markedly simpler than that for general θ;

• d(d− 1) eigenvectors |ij⟩ , i ̸= j, each with eigenvalue (d− η) /
(
d3 − d

)
.

• 1 eigenvector
∑d−1

i=0 |ii⟩ /
√
d, with eigenvalue (2− (d− 1)η) / (d(d+ 1)).

• d−1 eigenvectors |vk⟩ , k ∈ {1, . . . d−1}. These have eigenvalue ((d− 2) + (2d− 1)η) /
(
d3 − d

)
.
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Figure 3.4: The negativity of Werner and π-Werner states; unlike Werner states, there

exists NPT π-Werner states with η > 0. Note the coincidence at η = −1; this holds for

all d.

The states |vk⟩ are the same defined in section 3.2.2.1. From this, we see that Iπ,d is

a valid state for η ∈ [(2− d) / (2d− 1) , 2/ (d− 1)]. Therefore, the negativity of W π
η,d is

non-zero for η ∈ [−1, (2− d) / (2d− 1)) and η ∈ (2/ (d− 1) , 1], and so for these regions

W π
η,d is NPT entangled - as shown in figure 3.4.

We can however, learn much more about these states by exploiting the results of [35].

In this paper, the authors study the states:

ρb,c,d := a
d−1∑
i=0

|ii⟩ ⟨ii|+ b
d−1∑

i,j=0, i<j

|ij⟩ − |ji⟩√
2

⟨ij| − ⟨ji|√
2

+ c
d−1∑

i,j=0, i<j

|ij⟩+ |ji⟩√
2

⟨ij|+ ⟨ji|√
2

(3.32)

with a = 1/d− (b+ c)(d− 1)/2, by the normalisation condition.

Whilst generally non-equal to the phase-Werner states, they coincide for

θ = 0 b =
1− η

d(d− 1)
c =

1 + η

d(d+ 1)
, (3.33)

θ = π b =
1 + η

d(d+ 1)
c =

1− η

d(d− 1)
. (3.34)

Using this, we can interpret their results for variables b, c to learn more about π-Werner

states. This gives us three important results.
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Theorem 3.3.9 States W π
η,d, η ∈ [(2− d) / (2d− 1) , 2/ (d− 1)] are separable.

These states are exactly the π-Werner states with a PPT. As a consequence, this tells

us all π-isotropic states are separable. This means that for θ = 0, PPT is equivalent to

separability for both Werner and isotropic states, and so too for θ = π. We can therefore

speculate that this equivalence holds for all values of θ.

Theorem 3.3.10 States W π
η,d, η ∈ [−1, (2− d) / (2d− 1)) are 1-distillable.

We show this is the case using the condition for 1-distillability - that there exists a state

|ϕπ⟩ satisfying ⟨ϕπ| (W π
η,d)

TB |ϕπ⟩ = ⟨ϕπ| Iπη,d |ϕπ⟩ < 0. The state |ϕπ⟩ = (|00⟩ − |11⟩) /
√
2

is an eigenvector of Iπη,d with eigenvalue ((d− 2) + (2d− 1)η) /
(
d3 − d

)
. Clearly, this has

Schmidt rank 2, and shows the 1-distillability of W π
η,d when η < (2− d) / (2d− 1).

Theorem 3.3.11 States W π
η,d, η ∈

((
d2 + 2d− 4

)
/ (d(2d− 3)) , 1

]
are 1-distillable.

In the same manner as theorem 3.3.10, we choose an explicit |ψπ⟩ with Schmidt rank 2

satisfying ⟨ψπ| Iπη,d |ψπ⟩ < 0. The state |ψπ⟩ is defined2

|ψπ⟩ :=
1

d
√
2

d−1∑
j=0

|j⟩

⊗

(
d−1∑
k=0

|k⟩

)
+

d−1∑
j=0

e2πij |j⟩

⊗

(
d−1∑
k=0

e−2πik |k⟩

) . (3.35)

The expectation for this state gives:

⟨ψπ| Iπη,d |ψπ⟩ =
(d2 + 2d− 4)− (d(2d− 3))η

d2(d2 − 1)
(3.36)

which is negative when η >
(
d2 + 2d− 4

)
/ (d(2d− 3)).

For d > 4, the region (
(
d2 + 2d− 4

)
/ (d(2d− 3)) , 1] is non-trivial. This means we

have a set of states W π
η,d, η ∈

((
d2 + 2d− 4

)
/ (d(2d− 3)) , 1

]
which are 1-distillable, while

theirWη,d counterparts are separable. This provides a counterexample to conjecture 3.3.8.

An interesting point is that
2

d− 1
≤ d2 + 2d− 4

d(2d− 3)
(3.37)

for all d > 2, and thus for d ≥ 4 the distillability of π-Werner states with

η ∈
(
2/ (d− 1) ,

(
d2 + 2d− 4

)
/ (d(2d− 3))

]
is still an open question - though [35] gives

they are pseudo 1-copy undistillable.

2In [35] this state is incorrectly defined with no negative in the exponent of the final sum.
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3.3.2 Distillation of Phase Werner States

3.3.2.1 Separability of Phase Werner States

We have seen that all Werner and π-Werner states with a positive partial transpose are

separable. This result follows from [35], in which all such states are written as convex

combinations of separable states of the form (3.32). Thus, we cannot apply this result for

general phase Werner states. Instead, we exploit a sufficient condition for separability,

given in [51]. The idea behind it is intuitive; if a state is “sufficiently close” to the max-

imally mixed state, it is unentangled. This is formalised mathematically in the following

theorem.

Theorem 3.3.12 ( [51]) The state ρ ∈ Hdρ is separable if

Tr[ρ2] ≤ 1

dρ − 1
(3.38)

where Tr[ρ2] is the purity of ρ, with Tr[ρ2] = 1 iff ρ is pure.

We can calculate

Tr

[(
W θ

η,d

)2]
=
d− 2η + dη2

d3 − d
. (3.39)

For phase Werner states dρ = dim
[
W θ

η,d

]
= d2, and thus we require

d− 2η + dη2

d3 − d
≤ 1

d2 − 1
⇒ η ∈

[
0,

2

d

]
. (3.40)

This criterion is not tight for Wη,d nor W π
η,d, whilst for general phase Werner states we

have two regions of uncertainty for the PPT states with η < 0 and η > 2/d. We conjecture

these are also separable, since this occurs for the extremal angles 0, π.

Although it is interesting for completeness whether these PPT phase Werner states are

separable, we know that these states are undistillable by theorem 3.2.13. Of more interest

to us is the distillation of NPT phase Werner states. Whilst we cannot use directly the

results of [35], we can generalise the result of theorem 3.3.10.

Theorem 3.3.13 States W θ
η,d, η ∈ [−1, (2− d) / (2d− 1)) are distillable.

Proof. To prove this result, we again provide an explicit |ϕθ⟩ such that ⟨ϕθ| (W θ
η,d)

TB |ϕθ⟩ <

0, implying 1-distillability. Inspired by the result that for θ = 0, |ϕ0⟩ = (|00⟩+ |11⟩) /
√
2,
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and for θ = π, |ϕπ⟩ = (|00⟩ − |11⟩) /
√
2, we make the ansantz that

|ϕθ⟩ =
(
|00⟩+ e−iθ |11⟩

)
/
√
2. We find that

⟨ϕθ| Iθη,d |ϕθ⟩ =
(d− 2) + (2d− 1)η

d3 − d
(3.41)

implying that phase Werner states with η < (2− d) / (2d− 1) are 1-distillable. Except for

θ = π, the state |ϕθ⟩ is not an eigenstate of Iθη,d. �

For the NPT region 2/ (d− 1) < η, we have no ansantz state akin to the one used to

prove theorem 3.3.11. Instead we use another distillation technique, relying on twirling.

3.3.2.2 Twirling Phase Werner States

Whilst phase Werner states are only equivalent under local unitaries for the special case

d = 2, we can still create Werner states from them in higher dimensions via twirling.

Labelling the Werner twirl (Eq. (3.13)) as TW , we necessarily have ED(TW (ρ)) ≤ ED(ρ),

since this twirl is an LOCC operation.

Performing a Werner twirl of W θ
η,d we find:

TW (W θ
η,d) =Wζθ,d, ζθ =

(1 + η) + (dη − 1) cos θ

d+ 1
. (3.42)

We know Werner states Wζ,d with ζ < (2− d) / (2d− 1) are distillable (ED(Wζ,d) > 0).

Thus, if
(1 + η) + (dη − 1) cos θ

d+ 1
<

2− d

2d− 1
(3.43)

then W θ
η,d is distillable by first twirling to a Werner state, then the projection onto the

{|0⟩ , |1⟩} ⊗ {|0⟩ , |1⟩} subspace. Rearranging Eq. (3.43) we require

η (1 + d cos θ) <
(2− d)(d+ 1)

2d− 1
− (1− cos θ). (3.44)

For cos θ < −1/d, this defines a range of positive values of η for which W θ
η,d are distillable

via this method. Figure 3.5 gives a plot of distillable η for d = 8, varying over θ - we see that

there indeed exist valid W θ
η,d, η > 0 distillable via this method - more counterexamples to

conjecture 3.3.8.

For θ = π, the condition (3.44) simplifies to:

η >
4 + d

2d− 1
. (3.45)
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Figure 3.5: The shaded region denotes states W θ
η,8 which are distillable after the Werner

twirling TW . The blue line is the criticial boundary given by Eq. (3.44).

This gives a non-trivial region η ∈ ((4 + d) / (2d− 1) , 1] of statesW π
η,d which are distillable

via Werner twirl when d > 5. This is illustrated in figure 3.6. We can compare this

condition to that of theorem 3.3.11 to find:

d2 + 2d− 4

d(2d− 3)
<

4 + d

2d− 1
(3.46)

when d > 2. Thus our twirling method is not an optimal distillation method, as there ex-

ists 1-distillable π-Werner which are twirled to 1-copy pseudo-undistillable Werner states.

It is therefore likely that condition (3.44) only defines a subset of the distillable phase

Werner states.

One more note should be made regarding twirling, especially as a lower bound for

distillability. We can also consider the isotropic twirl, TI , whose definition is given in

Eq. (3.14). We can calculate ED(TI(ρ)) exactly, since the twirled state is an isotropic

state. For θ-Werner states we obtain

TI(W
θ
η,d) = Iµ,d, µ =

1 + η

d+ 1
. (3.47)

Iµ,d is separable for all η, so we learn nothing about ED(W
θ
η,d). A more interesting twirl

is TI(Iπ2,2), where we obtain the state I0,2 - which is completely separable. From corollary
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Figure 3.6: The transformation TW
(
W π

η,d

)
=Wζ,d, for d = 2, 3, 6. The dashed line shows

when the resultant states becomes guaranteably distillable.

3.3.6 we know that Iπ2,2 is locally equivalent to the maximally entangled state I2,2 =

|Φ⟩ 2 ⟨Φ|; by twirling the state we have lost all of its entanglement! This example highlights

how such a twirl can completely miss the true entanglement of the state. A potential

solution (which would avoid the scenario above, but may not in general) would be to

define the “optimal twirl”

TI,opt = sup
V ∈U(d)

∫
(U ⊗ U∗) (I⊗ V ) ρ (I⊗ V )† (U ⊗ U∗)†dU (3.48)

and could potentially lead to better bounds.

3.4 Another Generalisation of Werner States

To end this chapter we introduce another set of states inspired by Werner states. They are

inspired by the observation that Werner states can be expressed as a convex combination

of all possible Bell pairs:

|Φ+
ij⟩ =

|ii⟩+ |jj⟩√
2

|Φ−
ij⟩ =

|ii⟩ − |jj⟩√
2

|Ψ+
ij⟩ =

|ij⟩+ |ji⟩√
2

|Ψ−
ij⟩ =

|ij⟩ − |ji⟩√
2
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taking i < j and i, j ∈ {0, . . . d− 1}. Let us consider convex combinations for which the

weights are independent of i, j; these are of the form:

ρ =

d−1∑
i,j=0, i<j

w+
s |Φ+

ij⟩ ⟨Φ
+
ij |+ w−

s |Φ−
ij⟩ ⟨Φ

−
ij |+ w+

a |Ψ+
ij⟩ ⟨Ψ

+
ij |+ w−

a |Ψ−
ij⟩ ⟨Ψ

−
ij | . (3.49)

For Werner states, we have that

w+
s =

1 + η

d(d2 − 1)
w−
s =

1 + η

d(d2 − 1)
w+
a =

(d− 1)(1 + η)

d(d2 − 1)
w−
a =

(d+ 1)(1− η)

d(d2 − 1)
. (3.50)

We may also express the π-Werner states in this manner:

w+
s =

1 + η

d(d2 − 1)
w−
s =

1 + η

d(d2 − 1)
w+
a =

(d+ 1)(1− η)

d(d2 − 1)
w−
a =

(d− 1)(1 + η)

d(d2 − 1)
. (3.51)

We see that the weights of |Ψ+
ij⟩ and |Ψ−

ij⟩ have been swapped3. We name this the z-

permutation of the weights. This is because, for d = 2, the unitary operation I⊗σz swaps

|Ψ+⟩ and |Ψ−⟩ and |Φ+⟩ and |Φ−⟩. It is important to note however, that this permutation

is not a local operation (except for d = 2). We define W z
η,d ≡ W π

η,d as the set of states

with the weightings in Eq. (3.51).

From this observation, we can see this naturally implies two more permutations to

consider: the x-permutation, performing |Φ+
ij⟩ ↔ |Ψ+

ij⟩ and |Φ−
ij⟩ ↔ |Ψ−

ij⟩; and the y-

permutation |Φ+
ij⟩ ↔ |Ψ−

ij⟩ and |Φ−
ij⟩ ↔ |Ψ+

ij⟩. These create new families of states W x
η,d

and W y
η,d respectively.

Explicitly, the weights for W x
η,d are:

w+
s =

(d− 1)(1 + η)

d(d2 − 1)
w−
s =

(d+ 1)(1− η)

d(d2 − 1)
w+
a =

1 + η

d(d2 − 1)
w−
a =

1 + η

d(d2 − 1)
. (3.52)

The weights for W y
η,d are:

w+
s =

(d+ 1)(1− η)

d(d2 − 1)
w−
s =

(d− 1)(1 + η)

d(d2 − 1)
w+
a =

1 + η

d(d2 − 1)
w−
a =

1 + η

d(d2 − 1)
. (3.53)

The statesW x
η,d are valid for the range η ∈ [−1,

(
d2 − d+ 1

)
/ (2d− 1)] - the only one of

the three permutations with a range larger4 than [−1, 1]. These states are NPT entangled

3This matches the definition of the phase Werner states.
4For η > 1, the weight w−

s is negative, and therefore no longer expressible as a convex combination.
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for two regions: η ∈ [−1, 0) and η ∈ (2/ (d− 1) ,
(
d2 − d+ 1

)
/ (2d− 1)]. Interestingly, one

can calculate

⟨Ψ+
ij | (W

x
η,d)

TB |Ψ+
ij⟩ =

η

d(d− 1)
, ⇒ ⟨Ψ+

ij | (W
x
η,d)

TB |Ψ+
ij⟩ < 0 when η < 0, (3.54)

⟨Ψ−
ij | (W

x
η,d)

TB |Ψ−
ij⟩ =

2− (d− 1)η

d(d2 − 1)
, ⇒ ⟨Ψ−

ij | (W
x
η,d)

TB |Ψ−
ij⟩ < 0 when η > 2

d− 1
.

(3.55)

The states W y
η,d are valid for the range η ∈ [−1, 1], and also NPT entangled for the

regions: η ∈ [−1, 0) and η ∈ (2/ (d− 1) , 1]. For these states one obtains:

⟨Ψ−
ij | (W

y
η,d)

TB |Ψ−
ij⟩ =

η

d(d− 1)
, ⇒ ⟨Ψ−

ij | (W
y
η,d)

TB |Ψ−
ij⟩ < 0 when η < 0, (3.56)

⟨Ψ+
ij | (W

y
η,d)

TB |Ψ+
ij⟩ =

2− (d− 1)η

d(d2 − 1)
, ⇒ ⟨Ψ+

ij | (W
y
η,d)

TB |Ψ+
ij⟩ < 0 when η > 2

d− 1
.

(3.57)

This means that NPT entanglement is equivalent to 1-distillability for the states W x
η,d,

W y
η,d, whilst the same cannot be said for Wη,d, W z

η,d.

States of form in Eq. (3.49) reduce to those of the form Eq. (3.32) when

w+
s =

a

d− 1
w−
s =

a

d− 1
w+
a = c w−

a = b. (3.58)

We speculate that these more general states (and the specific permutations applied to the

Werner states) could help in the process to understand NPT entanglement.

3.5 Discussion and Further Directions

The main aim of this chapter is to familiarise the reader with Werner and isotropic states,

knowledge of which is required for the results in the next chapter. Of particular use are

the eigensystems of the two classes of states - the independence of their eigenvectors from

the defining parameter η simplifies many of the calculations.

Also introduced was a new class of quantum states, the phase Werner states, along

with their counterpart, phase isotropic states. We conjectured a stronger version of the

conjecture made by Michal Horodecki and Pawel Horodecki in [57], which has remained

unsolved for over 20 years. Our stronger conjecture can be shown to be false from results

in the literature, notably [35] from which we obtained many properties of the specific phase
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Werner state when θ = π.

For the region η ∈ [−1, (2− d) / (2d− 1)), in which the Werner states are 1-distillable,

we were able to show that general phase-Werner states are also 1-distillable. Phase Werner

states with η ∈ [(2− d) / (2d− 1) , 0) and a negative partial transpose provide new can-

didates for NPT bound entanglement, and looking at these in more detail would be a

valid line of future research - the addition of a phase adding an extra layer of complexity.

Another interesting line of investigation would be try to extend the result for π-Werner

states regarding 1-distillability in the region η ∈ (
(
d2 + 2d− 4

)
/ (d(2d− 3)) , 1] for general

phase Werner states. This region is unlike [−1, (2− d) / (2d− 1)) in that there exist both

NPT and PPT phase Werner states, and so the lower bound for the 1-distillable region will

be dependent on θ. We were able to provide an (implicit) bound via the twirling process,

although comparison for θ = π implies that this is not tight, as there are π-Werner states

which are 1-distillable which do not result in a 1-distillable state after twirling. Something

we observed during calculations is that negativity of the state before and after the twirl is

preserved - an illustration of how negativity does not fully capture the notion of distillable

entanglement.

We also introduced an alternative characterisation of the Werner states in terms of

convex combinations of Bell pairs with symmetric weightings, and that these convex com-

binations generalise the states studied in [35]. Here we only proved some simple properties

for specific states of this form, and I believe a rigorous investigation of these states would

be worthwhile. In the case d = 2, the states simply reduce to Bell diagonal states5, which

are well understood, but for d > 2 many interesting results could be found.

The observation that the conjectured boundary for NPT bound entangled states at

(2− d) / (2d− 1) coincides with the boundary for PPT π-Werner states provides strong

motivation for studying these states further. We provide two generalisations of Werner

states which we hope may prove illuminating to researchers in the field.

5Which play an important role in chapter 2.
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Chapter 4

Holevo-Werner Channels

The work in this chapter will be based on two papers: “Adaptive estimation and dis-

crimination of Holevo-Werner channels” and “Converse bounds for quantum and private

communication over Holevo-Werner channels”. The authors of the former are Thomas

Cope and Stefano Pirandola, and the latter Thomas Cope, Kenneth Goodenough and

Stefano Pirandola.

4.1 Structure of this Chapter

This chapter begins by introducing the Holevo-Werner (HW) channels, through channel-

state duality with the Werner states discussed in the previous chapter. We are then

introduced to the field of quantum metrology, and prove some results bounding the optimal

discrimination of Holevo-Werner channels. Finally, we use the channel simulation results

introduced in chapter 2 in order to bound the secret key and quantum capacities of these

channels, exploiting the unusual entanglement properties of Werner states in order to show

the necessity of considering several entanglement measures.

4.2 Holevo-Werner Channels

We have already been introduced to Choi matrices in chapter 2, but we revisit them here.

The Choi matrix of a channel E : Hd1 → Hd2 is the state

(Id1 ⊗ E)
(
|Φ⟩ d1 ⟨Φ|

)
(4.1)

with |Φ⟩d1 =
∑d1−1

i=0 |ii⟩ /
√
d1. This map is an isomorphism between completely positive

trace-preserving maps E : Hd1 → Hd2 and density matrices on Hd1 ⊗Hd2 .
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We can use this map to consider the channel whose Choi matrix is the Werner state

Wη,d. The corresponding channel is known as the Holevo-Werner channel, defined as:

Wη,d (ρ) :=
1

d2 − 1

(
(d− η)Tr[ρ]I + (dη − 1) ρT

)
(4.2)

with η ∈ [−1, 1]. When ρ is a density matrix this reduces to

Wη,d (ρ) :=
1

d2 − 1

(
(d− η) I + (dη − 1) ρT

)
(4.3)

and hitherto we shall omit the Tr[ρ] term, as we are primarily concerned with sending valid

quantum states. It is interesting to note that, whilst transposition is not a completely

positive map (and thus not a valid quantum channel), it appears as the input-dependent

term of this channel. A particular instance of this channel which has been shown much

interest is the “extremal” Holevo-Werner channel,

W−1,d (ρ) =
1

d− 1

(
I− ρT

)
. (4.4)

Before we explore Holevo-Werner channels further, it is also worth looking at the

channel whose Choi matrix is the isotropic state Iη,d. We find this to be

Dη,d (ρ) :=
1

d2 − 1
((d− η) I + (dη − 1) ρ) , (4.5)

with η ∈ [0, d]. This has a similar form to Eq. (4.3), but without transposition. This chan-

nel is the well known depolarising channel, most commonly parametrised in the following

way:

Dp (ρ) = pρ+ (1− p)
I

d
, p ∈

[
− 1

d2 − 1
, 1

]
(4.6)

where with some probability1 p the state is transmitted, else it is instead mapped to the

maximally mixed state. The two forms are related by p = (dη − 1) /
(
d2 − 1

)
.

Lemma 4.2.1 Depolarising channels and Holevo-Werner channels are teleportation co-

variant.

Proof. We saw in chapter 2 that for a channel E to be teleportation covariant, there must

exists a set of unitaries {Vk} satisfying

E
(
UkρU

†
k

)
= VkE (ρ)V †

k , ∀ρ (4.7)

1Technically pseudo-probability, as p can take negative values.
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where {Uk} are the generalised Pauli matrices used in d-dimensional teleportation2. For

depolarising channels we can see that for an arbitrary unitary U :

Dη,d

(
UρU †

)
=

1

d2 − 1

(
(d− η) I + (dη − 1)UρU †

)
=

1

d2 − 1

(
(d− η)U IU † + (dη − 1)UρU †

)
= UDη,d (ρ)U

† (4.8)

whilst for the Holevo-Werner channels:

Wη,d

(
UρU †

)
=

1

d2 − 1

(
(d− η) I + (dη − 1) (UρU †)T

)
=

1

d2 − 1

(
(d− η)U∗IUT + (dη − 1)U∗ρTUT

)
= U∗Wη,d (ρ) (U

∗)†. (4.9)

Thus we set Vk = Uk for depolarising channels, and Vk = U∗
k for Holevo-Werner channels.

�

4.3 Metrology of Quantum Channels

Metrology, both is the classical and quantum regimes, is a huge area of study [101], and an

overview of the field could easily fill a thesis by itself. Most generally, the term “metrol-

ogy” refers to the study of measurement; this encompasses such concepts as the definition

and implementation of SI units, calibration of industrial devices, and the gravitational

wave detection experiments, among many others. Quantum metrology combines this field

with that of quantum information, looking to perform highly precise measurements by

exploiting features of quantum theory such as entanglement.

In this chapter, we shall focus on a specific scenario in which one is given n copies of

an unknown quantum state, which is known to be parametrised by a single variable θ.

Alternatively, one is allowed to utilise an unknown quantum channel (also parametrised

by a single variable θ) n times. This value n is referred to as the the number of probings

one is allowed to make. We want to know the precision, ∆θ, with which one can optimally

estimate θ, and how this precision scales with n. We are looking at adaptive estimation

2See chapter 1.
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of θ, where the choice of probe may change conditionally on the outcome of the previous

probe. For states, one can think of a probe as a measurement, while for channels it is

sending a known quantum state (or part of an entangled state) through the channel, fol-

lowed by measurement.

In classical systems the optimal parameter estimation precision necessarily scales as

(∆θ)2 ≈ 1/N , known as the shot noise limit. In quantum systems this scaling is also ob-

served when performing probing without entanglement. By incorporating entanglement

into the probing - for example sending part of a maximally entangled state through the

channel - then in some scenarios optimal probing may achieve (∆θ)2 ≈ 1/N2 - this is

known as the Heisenberg limit. It is this improvement which motivates much of the study

of quantum metrology.

We shall also in this chapter consider the related problem of binary discrimination -

in this scenario, one is again given an unknown state or channel belonging to a family

of states/channels which is parametrised by a single variable θ. This time however, one

is asked to determine between two possible values of θ. This is also known as quantum

hypothesis testing. We wish to know the minimal probability of an incorrect choice, perr.

In chapter 2 we saw the one-shot3 version of this problem for channels is characterised by

the diamond-norm.

This chapter takes advantage of the results in [86], which allow for the simplification

of adaptive metrological protocols for teleportation covariant channels - we shall present

and explain later in the chapter. First though we introduce some metrological concepts,

in order to understand the results presented here.

Consider sampling a (classical) probability distribution X, which is determined by some

unknown parameter θ. This gives a conditional probability distribution function f(x|θ),

defining the probability of outcome x given a specific θ. We could also consider this a

function of θ, in which we are given the “likelihood”4 of the underlying value determining

X being a certain θ value, given that we observed value x when X was sampled. From

3In which only a single probe is used.
4This function does not need to integrate to 1 over all θ - hence the term likelihood over probability.
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this, the Fisher Information I (θ) is defined, as the variance of the natural logarithm of

this likelihood function. The Fisher information is a measure of how much we can learn

about θ by sampling X, and we have the following important result:

Theorem 4.3.1 The Cramér-Rao bound states that any unbiased estimator θ̂ of a fixed

unknown θ is bounded

(∆θ̂)2 = Var
(
θ̂
)
≥ 1

I (θ)
(4.10)

where an unbiased estimator is a function θ̂ (X) such that E
(
θ̂
)
= θ.

In the quantum scenario, we have a similar task, except instead of sampling a probabil-

ity distribution we are measuring a quantum state, with the outcomes being determined

using quantum theory. The Fisher information was generalised for quantum scenarios

in [15]. In the quantum setting, we are trying to determine parameter θ using n probings

of the channel5. We are considering the most general adaptive case - this may involve

global quantum operations on output and to-be-inputted states, along with ancilla di-

mensions and outcome dependent operations - however we are limited to n probings of

the channel. Once we have performed n probes subject to the adaptive procedure Λ, we

process the resulting state space is into an unbiased estimator θ̂ for θ. As the quantum

behaviour of the channel is determined by the unknown parameter θ, for a given n,Λ

estimation there is associated a quantum Fisher information6 In,Λθ . In [15] it was shown

that, given an adaptive estimation method Λ, the associated variance of the estimator θ̂

satisfies the quantum Cramér-Rao bound,

Var
(
θ̂
)
≥ 1

In,Λθ

(4.11)

and thus the optimal estimator θ̃ (in which the variance is minimised) satisfies

Var
(
θ̃
)
= inf

Λ
Var

(
θ̂
)
≥ 1

supΛ I
n,Λ
θ

=:
1

Inθ
, (4.12)

with Inθ the quantum Fisher information optimised over all adaptive protocols.

We have discussed in previous chapters the difficulty of optimisation over adaptive

protocols in the context of entanglement measures, and the same is true in the metrological

5We focus on channels in this chapter, though the same argument applies equally to states.
6The superscript n refers to the n probings of the channel - this could equally be applied classically by

constraining n samplings of X.
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context. This is where the results of [86] come in. They prove that, due to channel

simulation of teleportation covariant channels, the following holds true.

Theorem 4.3.2 ( [86]) For a set of jointly7 teleportation covariant channels {Eθ}, de-

pendent on a single parameter θ, the optimal quantum Fisher information is given by

Inθ = lim
δθ→0

8n
1− F (χEθ , χEθ+δθ

)

dθ2
(4.13)

with F (ρ, σ) = Tr
[√√

ρσ
√
ρ
]
the quantum fidelity.

Corollary 4.3.3 Parameter estimation for θ defining {Eθ}, a set of jointly teleportation

covariant channels, cannot beat the shot noise precision.

Proof. The optimal quantum Fisher information for such channels is given by

Inθ = lim
δθ→0

8n
1− F (χEθ , χEθ+δθ

)

dθ2
= n lim

δθ→0
8
1− F (χEθ , χEθ+δθ

)

dθ2
:= nL(θ). (4.14)

Thus, for the optimal estimator of θ, θ̃:

Var(θ̃) ≥ 1

Inθ
=

1

nL(θ)
. (4.15)

As L(θ) is independent of n , at best Var(θ̃) can scale with with 1/n - this is the shot

noise limit. �

4.4 Metrology of Holevo-Werner Channels

The Choi matrices of Holevo-Werner channels are the Werner states. We have seen in

lemma 4.2.1 that Holevo-Werner channels of a given dimension are jointly teleportation

covariant; we may therefore apply theorem 4.3.2 to these channels. In order to do this,

we require the fidelity between two Werner states. In chapter 3 it was shown that the

eigenvectors of these states are dependent only on their dimension. We can therefore do

all calculations in this basis, where all Werner states are diagonal - a property we refer to

as “simultaneously diagonalisable”. This means that the fidelity simplifies:

F (Wη,d,Wζ,d) = Tr

[√√
Wη,dWζ,d

√
Wη,d

]
=
∑
i

√√
piqi

√
pi =

∑
i

√
piqi (4.16)

with {pi} , {qi} the eigenvalues of Wη,d,Wζ,d respectively. The eigenvalues of Wη,d are8:

7This jointly means the covariance unitaries Vk in Eq. (4.7) are θ-independent.
8See chapter 3.
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• (d(d+ 1)) /2 eigenvalues with value (1 + η) / (d(d+ 1)),

• (d(d− 1)) /2 eigenvalues with value (1− η) / (d(d− 1)).

This means the fidelity between the two Werner states is:

F (Wη,d,Wζ,d) =

√
1 + η

√
1 + ζ

2
+

√
1− η

√
1− ζ

2
. (4.17)

Therefore we have that:

F (Wη,d,Wη+δη,d) =

√
1 + η

√
1 + (η + δη)

2
+

√
1− η

√
1− (η + δη)

2
:= F (δη). (4.18)

In order to use this in Eq. (4.13), we shall Taylor expand the above function around δη ≈ 0.

This is justified, since we take the limit δη → 0 in the final formula.

First we consider F (0). It is easy to verify that

F (0) =
1 + η

2
+

1− η

2
= 1. (4.19)

We now differentiate F (δη) (with respect to δη), to obtain:

F ′(δη) =
(1 + η)

1
2

4 (1 + (η + δη))
1
2

− (1− η)
1
2

4 (1− (η + δη))
1
2

(4.20)

and so

F ′(0) =
(1 + η)

1
2

4 (1 + η)
1
2

− (1− η)
1
2

4 (1− η)
1
2

= 0. (4.21)

Differentiating again, we find:

F ′′(δη) = − (1 + η)
1
2

8 (1 + (η + δη))
3
2

− (1− η)
1
2

8 (1− (η + δη))
3
2

(4.22)

which we then evaluate at δη = 0;

F ′′(0) = − (1 + η)
1
2

8 (1 + η)
3
2

− (1− η)
1
2

8 (1− η)
3
2

= − 1

8(1 + η)
− 1

8(1− η)

=
−1

4(1− η2)
. (4.23)

Substituting these into the Taylor expansion

F (δη) = 1 + F ′(δη)δη + F ′′(δη)
δη2

2
+O(δη3), (4.24)
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Figure 4.1: This figure shows how the variance bound varies with η, as the number of

probes increases. This holds for all dimensions d.

we find

F (δη) = 1− δη2

8(1− η2)
+O(δη3) . . . (4.25)

and so

Inη ≤ lim
δη→0

8n
1− F (χEη , χEη+δη)

δη2
=

n

1− η2
. (4.26)

This gives us our first main result.

Theorem 4.4.1 For a fixed-dimension Holevo-Werner channel with unknown parameter

η, the optimal unbiased estimator η̂ must satisfy:

Var(η̂) ≥ 1− η2

n
(4.27)

and this limit is achievable in large n [86]. This is the standard shot noise limit.

This result has two interesting consequences: the first is that this bound is dimension-

independent; a surprising result which implies η is equally difficult to estimate regardless of

the channel’s dimension. Another interesting note is that the two channelsWζ,d,W−ζ,d, ζ >

0 are identically bounded, even though Wζ,d is an entanglement-breaking channel whereas

W−ζ,d is not. It is the trace norm ∥Wζ,d −W0,d∥1 = |ζ| which determines optimal estima-

tion.
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Figure 4.2: This graph for a single probe shows how the bound varies with the channel

dimension. Surprisingly, estimation of certain α values improves with higher dimension,

but deteriorates for others.

It is worth noting the dimensional independence is particular to the expectation rep-

resentation of the Holevo-Werner channels. If instead we were to use α-representation, we

would find:

Var(α̂) ≥
(
1− α2

)
(d− α)2

n(d2 − 1)
. (4.28)

Curiously, we find that this bound is greatest when α =
(
d−

√
d2 + 8

)
/4 - corresponding

to η =
(
4− d2 + d

√
d2 + 8

)
/
(
3d+

√
d2 + 8

)
. Since this does not correspond to the

maximal bound for Var(η̂) - simply η = 0 - we find that, depending on the parametrisation

used, the ease with which we can estimate a particular channel relative to the other

channels in the family varies. Despite this, we cannot exploit this property - for example

by estimating α with α̂, then converting9 to η̂ = − (1− α̂d) / (α̂− d). This is because of

the generalised Cramér-Rao bound, which states that an unbiased estimator T (X) of a

function f(θ) must satisfy

Var(T ) ≥ |f ′(θ)|2

I(θ)
, (4.29)

9This is a valid unbiased estimator for η.
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and thus

Var(η̂) ≥
(
1− α2

) (
d2 − 1

)
n(d− α)2

:= v(η(α)) (4.30)

where η(α) = − (1− αd) / (α− d). One finds that v(η(α)) =
(
1− η(α)2

)
/n, giving us the

same bound as Eq. (4.27).

4.4.1 Binary Discrimination of Holevo-Werner Channels

As stated before, we are also interested in the binary discrimination problem for Holevo-

Werner channels. We will consider the situation where we have one of two possible Holevo-

Werner channels of the same dimension, and we try to discern which using n channel

probes. As the two channels are teleportation covariant, we may employ the following

theorem.

Theorem 4.4.2 ( [86]) For two jointly teleportation covariant channels E0, E1, the opti-

mum error probability in discerning the channels after n probes is bounded by

1−
√
min{1− F 2n, nS}

2
≤ pmin ≤ Qn

2
≤ Fn

2
(4.31)

where F = F (χE0 , χE1) is the fidelity, Q is the quantum Chernoff bound (QCB) defined

below, and S is a function of the quantum relative entropy given by

S :=
(
ln
√
2
)
min{S(χE0∥χE1), S(χE1∥χE0)}. (4.32)

The quantum Chernoff bound is defined as:

Q := inf
s∈[0,1]

Tr
[
χs
E0χ

1−s
E1

]
(4.33)

and has the following operational definition.

Definition 4.4.3 ( [4]) Given n copies of a state known to be either ρ0 or ρ1, the minimal

probability of incorrectly identifying the state is bounded by:

pmin ≤ Qn

2
=

1

2

(
inf

s∈[0,1]
Tr
[
ρs0ρ

1−s
1

])n

. (4.34)

We can see that this operational definition extends to teleportation covariant channels.

We have already seen that for Werner states the fidelity is

F =

√
1 + η

√
1 + ζ +

√
1− η

√
1− ζ

2
. (4.35)
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Figure 4.3: A plot of ∆S. The yellow region denotes ∆S < 0, attained when |η| > |ζ|.

In order to calculate S we first calculate the relative entropy between two Werner states:

S(Wη,d∥Wζ,d) = Tr[Wη,d log(Wη,d)−Wη,d log(Wζ,d)] =
∑
i

pi log
pi
qi

(4.36)

where we have again exploited the shared eigenbasis between the two states. Substituting

in the eigenvalues of Wη,d,Wζ,d this gives:

S(Wη,d∥Wζ,d) =
d(d+ 1)

2

(1 + η)

d(d+ 1)
log

(
1 + η

1 + ζ

)
+
d(d− 1)

2

(1− η)

d(d− 1)
log

(
1− η

1− ζ

)
=

1 + η

2
log

(
1 + η

1 + ζ

)
+

1− η

2
log

(
1− η

1− ζ

)
. (4.37)

In order to determine which relative entropy to use for S, we may look at the function

∆S : = S(Wη,d∥Wζ,d)− S(Wζ,d∥Wη,d)

=
1 + η

2
log

(
1 + η

1 + ζ

)
+

1− η

2
log

(
1− η

1− ζ

)
− 1 + ζ

2
log

(
1 + ζ

1 + η

)
− 1− ζ

2
log

(
1− ζ

1− η

)
=

(
1 +

η + ζ

2

)
log

(
1 + η

1 + ζ

)
+

(
1− η + ζ

2

)
log

(
1− η

1− ζ

)
. (4.38)

Clearly we can see that∆S = 0 when |η| = |ζ|. By plotting∆S, we can show (numerically)

that ∆S < 0 when |η| > |ζ|, giving us that:

S =


ln
(√

2
) 1+η

2 log
(
1+η
1+ζ

)
+ 1−η

2 log
(
1−η
1−ζ

)
|η| ≥ |ζ|,

ln
(√

2
) 1+ζ

2 log
(
1+ζ
1+η

)
+ 1−ζ

2 log
(
1−ζ
1−η

)
|η| ≤ |ζ|.

(4.39)
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For the QCB we begin by noting again that our ability to simultaneously diagonalise

Werner states of equal dimension allows us to write:

Qs : = Tr
[
W s

η,dW
1−s
η,d

]
=
∑
i

psi q
1−s
i

=
d(d+ 1)

2

(
1 + η

d(d+ 1)

)s( 1 + ζ

d(d+ 1)

)1−s

+
d(d− 1)

2

(
1− η

d(d− 1)

)s( 1− ζ

d(d− 1)

)1−s

=
1 + ζ

2

(
1 + η

1 + ζ

)s

+
1− ζ

2

(
1− η

1− ζ

)s

. (4.40)

It is clear that the infimum Q = infs∈[0,1]Qs will not occur10 at s = 0, 1 as Q0 = Q1 = 1.

Thus we can instead take the infimum as s ∈ (0, 1). First, we must consider some singular

cases of Qs:

• η = ζ: Clearly for this scenario Qs = 1 for all values of s. We shall choose to take

s = 1/2 (the fidelity) here.

• ζ = 1: This simplifies Qs = ((1 + η) /2)s. Since (1 + η) /2 ∈ [0, 1], we achieve

infsQs = (1 + η) /2 as s→ 1−.

• ζ = −1: This time we obtain the simplificationQs = ((1− η) /2)s. Since (1− η) /2 ∈

[0, 1] also, we achieve infsQs = (1− η) /2 as s→ 1−.

• η = 1: In this case we find Qs = ((1 + ζ) /2)1−s. (1 + ζ) /2 ∈ [0, 1] also, giving

infsQs = (1 + ζ) /2 as s→ 0+.

• η = −1: For the final singular case, Qs = ((1− ζ) /2)1−s. Again (1− ζ) /2 ∈ [0, 1],

meaning that infsQs = (1− ζ) /2 as s→ 0+.

For other values of η, ζ, our function (4.40) behaves well and we can find the infimum by

more conventional means. Let us define the following:

k± :=
1± ζ

2
, a :=

1 + η

1 + ζ
, m :=

1− η

1− ζ
. (4.41)

so that

Qs = k+a
s + k−m

s = k+e
s ln(a) + k−e

s ln(m). (4.42)

Let us now compute the derivative in s

dQs

ds
= k+ ln(a)es ln(a) + k− ln(m)es ln(m). (4.43)

10Unless trivially the QCB is 1.
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By setting dQs/ds = 0, we derive

0 = k+ ln(a)es ln(a) + k− ln(m)es ln(m)

k+ ln(a)es ln(a) = −k− ln(m)es ln(m)

es ln(a)

es ln(m)
=

−k− ln(m)

k+ ln(a)

es(ln(a)−ln(m)) =
−k− ln(m)

k+ ln(a)

s (ln(a)− ln(m)) = ln

(
−k− ln(m)

k+ ln(a)

)

s =
ln
(
−k− ln(m)
k+ ln(a)

)
ln
(
a
m

) . (4.44)

Substituting back in our definitions of k±, a and m, we obtain

s =

ln

(
ζ−1
ζ+1

ln
(

1−η
1−ζ

)
ln
(

1+η
1+ζ

)
)

ln (1+η)(1−ζ)
(1+ζ)(1−η)

=: sη,ζ . (4.45)

To show this stationary point in a suitable candidate for the infimum, we must first show

sη,ζ ∈ [0, 1], ∀ η, ζ ∈ (−1, 1), η ̸= ζ. We first show that sη,ζ is positive - we do this by

considering both the denominator and numerator separately, and in two different cases:

Denominator, Case 1: −1 < ζ < η < 1.

In this scenario, both fractions (1 + η) / (1 + ζ) and (1− ζ) / (1− η) must necessarily be

greater than 1; thus the overall denominator is the logarithm of a value greater than 1,

and therefore positive.

Denominator, Case 2: −1 < η < ζ < 1.

Conversely, in this case both fractions (1 + η) / (1 + ζ) and (1− ζ) / (1− η) are less than

1, but positive, and so too is their product; forcing the overall denominator to be negative

when the logarithm is taken.

Numerator, Case 1: −1 < ζ < η < 1.

Since the denominator is positive, we thus require the numerator to be non-negative.

Equivalently, we require the following inequality holds:

ζ − 1

ζ + 1

ln
(
1−η
1−ζ

)
ln
(
1+η
1+ζ

) ≥ 1. (4.46)
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Since ζ + 1 > 0, and (1 + η) / (1 + ζ) > 1, we have the denominator of Eq. (4.46) is

positive, and thus we may rearrange the inequality to:

(ζ − 1) ln

(
1− η

1− ζ

)
− (ζ + 1) ln

(
1 + η

1 + ζ

)
≥ 0. (4.47)

Numerator, Case 2: −1 < η < ζ < 1.

Due to the negative denominator, we require a non-positive numerator - this requires the

inequality

ζ − 1

ζ + 1

ln
(
1−η
1−ζ

)
ln
(
1+η
1+ζ

) ≤ 1. (4.48)

Again ζ + 1 > 0, but in this case (1 + η) / (1 + ζ) < 1, and thus when multiplying out by

ln ((1 + η) / (1 + ζ)) we must flip the sign, to obtain the equation:

(ζ − 1) ln

(
1− η

1− ζ

)
− (ζ + 1) ln

(
1 + η

1 + ζ

)
≥ 0. (4.49)

Comparing Eq. (4.47) and Eq. (4.49), we see the condition for sη,ζ to be positive is the

same for both cases. Moreover, we can see this inequality holds iff

(
1− ζ

2

)
ln

(
1−ζ
2

1−η
2

)
+

(
ζ + 1

2

)
ln

(
1+ζ
2

1+η
2

)
≥ 0 (4.50)

holds. Substituting pη = (1− η) /2, pζ = (1− ζ) /2, we can rewrite the left hand side as

pζ ln

(
pζ
pη

)
+ (1− pζ) ln

(
1− pζ
1− pη

)
(4.51)

with pη, pζ ∈ (0, 1). This formula is the classical relative entropy, also known as the

Kullback-Leibler (KL) divergence, of two biased coin flips (in a different logarithmic basis).

Therefore we may use Gibbs’ inequality, which states that this quantity is always non-

negative (regardless of logarithmic basis). This proves the first statement, that sη,ζ ≥ 0.

In order to show sη,ζ ≤ 1, consider the sum of two non-negative values sη,ζ + sζ,η.

Using formula (4.45) we obtain:

sη,ζ + sζ,η =

ln

(
ζ−1
ζ+1

ln
(

1−η
1−ζ

)
ln
(

1+η
1+ζ

)
)

ln (1+η)(1−ζ)
(1+ζ)(1−η)

+

ln

(
η+1
η−1

ln
(

1+ζ
1+η

)
ln
(

1−ζ
1−η

)
)

ln (1+η)(1−ζ)
(1+ζ)(1−η)

(4.52)

where we have used − log(x) = log(x−1) on both numerator and denominator of sζ,η. We
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Figure 4.4: We plot the fidelity-based lower bound and the QCB (upper bound) to the

optimal error probability pmin in Eq. (4.31) for two HW channels Wη,d and Wζ,d in an

arbitrary finite dimension d ≥ 2. In panels (a)-(c), we set ζ = 0 and we plot the bounds

as a function of η, considering (a) n = 1, (b) n = 10, and (c) n = 100. In panels (d)-(f),

we repeat the study with the same parameters as before but setting ζ = 1/2.

see they share a denominator, so we shall focus on the sum of the numerators:

ln

ζ − 1

ζ + 1

ln
(
1−η
1−ζ

)
ln
(
1+η
1+ζ

)
+ ln

η + 1

η − 1

ln
(
1+ζ
1+η

)
ln
(
1−ζ
1−η

)


= ln
(1 + η) (1− ζ)

(1 + ζ) (1− η)
, (4.53)

where we have used the following basic properties: log(x) + log(y) = log(xy), − log(x) =

log(x−1), and −12 = 1. We can see that the numerator and denominator coincide, and so

sη,ζ + sζ,η = 1 - since both these values are non-negative, we can conclude 0 ≤ sη,ζ ≤ 1,

as required. Remembering that dQs

ds |s=sη,ζ = 0, it remains to show this value is a minima.

Looking at the second order differential, we find

d2Qs

ds2
= k+[ln(a)]

2es ln(a) + k−[ln(m)]2es ln(m). (4.54)

For all ζ ∈ (−1, 1), both k+, k− are strictly positive, and when η ̸= ζ we also have

ln(a), ln(m) ̸= 0 - thus their squares are positive too. Finally, e to the power of any

real value is strictly positive, and we so we may conclude d2Qs

ds2
> 0 for all values of s,

including sη,ζ . Thus our value sη,ζ is a true minima. Moreover, the limits s→ 0+, s→ 1−

for the non-singular η, ζ are 1, and therefore we may be confident our minimum achieves

the infimum. Incorporating this result alongside our singular cases, we have provided the

analytical QCB for Holevo-Werner channels.
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4.4.2 Quantum Chernoff Bound for Isotropic States

In addition to an analytic result for Holevo-Werner channels, we also present a closed

form for the QCB of two isotropic states - this could then be used to bound the binary

discrimination of two depolarising channels, as they are also jointly teleportation covariant

(from lemma 4.2.1). Like Werner states, isotropic states of the same dimension are also

simultaneously diagonalisable, and thus we have for two isotropic states Iα,d, Iβ,d that

Q = inf
s∈(0,1)

Qs, Qs := Tr[Isα,dI
1−s
β,d ] (4.55)

reduces to

Qs =
∑
i

rsi t
1−s
i

=
(α
d

)s(β
d

)1−s

+ (d2 − 1)

(
d− α

d(d2 − 1)

)s( d− β

d(d2 − 1)

)1−s

=
β

d

(
α

β

)s

+
d− β

d

(
d− α

d− β

)s

(4.56)

where we have taken {ri}, {ti} as the eigenvalues of Iα,d, Iβ,d respectively (which we saw

in chapter 3). Once again, we must first look at the singular scenarios:

• α = β: As with Werner states, we have Qs = 1, for all s. We again choose s = 1/2.

• β = d: This simplifies Qs = (α/d)s. Here we achieve infimum α/d at s → 1−, since

α/d ∈ [0, 1].

• β = 0: As Qs = ((d− α) /d)s in this scenario, we obtain infimum (d− α) /d at

s→ 1− using that (d− α) /d ∈ [0, 1] also.

• α = d: This simplifies Qs = (β/d)1−s, and thus the infimum is β/d at s→ 0+.

• α = 0: As this gives Qs = ((d− β) /d)1−s, the infimum is (d− β) /d at s→ 0+.

For all other values, we may differentiate Qs in the same manner as Eq. (4.44) to

obtain
dQs

ds
= l+ ln(aΩ)e

s ln(aΩ) + l− ln(mΩ)e
s ln(mΩ), (4.57)

where we have set

l+ =
β

d
, l− =

d− β

d
, aΩ =

α

β
, mΩ =

d− α

d− β
. (4.58)
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Setting this to 0, rearranging, and substituting back in our definitions, we obtain

the critical point:

s =

ln

(
β−d
β

ln
(

d−α
d−β

)
ln
(

α
β

)
)

ln
(
α(d−β)
β(d−α)

) =: sΩα,β. (4.59)

Although this point is dimension-dependent, we may transform α, β to η = (2α− d) /d ∈

[−1, 1], ζ = (2β − d) /d ∈ [−1, 1] to obtain the dimension-independent

sΩη,ζ =

ln

(
ζ−1
ζ+1

ln
(

1−η
1−ζ

)
ln
(

1+η
1+ζ

)
)

ln (1+η)(1−ζ)
(1+ζ)(1−η)

(4.60)

and we see that actually sΩη,ζ = sη,ζ . We have already shown sη,ζ to be a valid

minimum in the open interval (−1, 1), and therefore we may conclude sΩα,β achieves

the isotropic QCB, for the non-singular cases.

4.5 Capacities of Holevo-Werner Channels

In this section, we apply results from [82] and [85], which allow for the bounding of tele-

portation covariant channel capacities using entanglement measures. We have already

seen the application of some of these results in chapter 2, in the case of Pauli-damping

channels; however these bounds take on a specific character for Holevo-Werner channels

in that they may be subadditive - thus motivating the use of regularised entanglement

measures where possible.

To begin with, we recap some results that prove to be useful.

Definition 4.5.1 The relative entropy of entanglement (REE) of a state ρ is given by

ER (ρ) := min
σ∈sep

S(ρ∥σ) (4.61)

and is a valid entanglement monotone. This can be generalised to the n-copy version

En
R (ρ) :=

1

n
min
σ∈sep

S(ρ⊗n∥σ) (4.62)

and the regularised version,

E∞
R (ρ) := lim

n→∞

1

n
min
σ∈sep

S(ρ⊗n∥σ). (4.63)

This measure is (weakly) subadditive, namely E∞
R (ρ) ≤ . . . E

(n+1)
R (ρ) ≤ En

R (ρ) ≤ ER (ρ) .
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Theorem 4.5.2 ( [85]) For any teleportation covariant channel E , we can bound the

secret key capacity11 of the channel K(E) by

K(E) ≤ E∞
R (χE), (4.64)

with χE the Choi matrix of the channel.

We saw the proof of this in chapter 2 - in which it was shown that a channel E which can

be LOCC simulated over resource state σ satisfies the bound K(E) ≤ E∞
R (σ). We also

saw that for teleportation covariant channels we can take the resource state to be the Choi

matrix of the channel, χE . This gives the above result.

Corollary 4.5.3 For any n ∈ N, En
R (χE) is a valid upper bound on K(E) for a E tele-

portation covariant.

Proof. This simply follows from theorem 4.5.2, and the subadditivity of the REE. �

For many teleportation covariant channels, it occurs that E∞
R (χE) = ER(χE), and

thus the so-called single-letter bound ER(χE) is sufficient to provide the tightest bound

(via this method) - this occurs for Pauli channels, including the depolarising channel12

Dη,d. However, the extremal Werner state W−1,d, d ≥ 3 was the counterexample used

to disprove additivity of the REE, and thus we see that for the extremal Holevo-Werner

channel W−1,d when d ≥ 3 the n-copy and the regularised REE will provide tighter secret

key bounds for this channel than the single-letter version. Unfortunately E∞
R (W−1,d) is

not known; but we may exploit some other results in order to gain a more accurate picture.

For Wη,d the relative entropy of entanglement with respect to partial positive transpose

states (RPPT) is known, and so too is the regularised RPPT. We were introduced to this

measure in chapter 1, which is defined:

EP (ρ) := min
σ s.t. σTB≥0

S(ρ∥σ). (4.65)

11Also the two-way entanglement distillation and quantum capacities, since D2 = Q2 ≤ K.
12whose Choi matrix is the isotropic state.
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Theorem 4.5.4 ( [5]) The regularised RPPT for Wη,d, is given by

E∞
P (Wη,d) =


0 = EP (Wη,d) if η ≥ 0,

1+η
2 log (1 + η) + 1−η

2 log (1− η) = EP (Wη,d) if − 2
d ≤ η ≤ 0,

log
(
d+2
d

)
+ 1+η

2 log
(
d−2
d+2

)
̸= EP (Wη,d) if η ≤ −2

d .

(4.66)

You can see that for η ∈ [−2/d, 1], the RPPT is additive. Moreover, since ER(Wη,d) =

EP (Wη,d) - that is, the one-copy values coincide - we can conclude that ER(Wη,d) must

also be additive in this region, using the following chain of inequalities.

ER(Wη,d) = EP (Wη,d) = E∞
P (Wη,d) ≤ E∞

R (Wη,d) ≤ ER(Wη,d) (4.67)

remembering that for all separable states σ, σTB ≥ 0, and therefore minimising over all

PPT states will always give a lower/equal value than over separable states.

Whilst we are unable to provide the tightest bound for the region η < −2/d, we are

able to improve on the single letter bound - to do this, we exploit a result in [106], in

which it was proved that the state σ minimising En
R(Wη,d) necessarily satisfies:

(
U1
d ⊗ U1

d ⊗ . . . Un
d ⊗ Un

d

)
σ(U1

d ⊗ U1
d ⊗ . . . Un

d ⊗ Un
d )

†, (4.68)

for all unitaries on Hd, where each U i
d ⊗ U i

d acts on the d × d Hilbert space occupied by

the ith copy of Wη,d. States which are invariant under this action may be expressed as the

convex combination [5]:

σnx = x0W
⊗n
−1,d +

x1
n

(
W

⊗(n−1)
−1,d ⊗W1,d + . . .W1,d ⊗W

⊗(n−1)
−1,d

)
+ . . .

xk(
n
k

) (W⊗(n−k)
−1,d ⊗W⊗k

1,d . . .W
⊗k
1,d ⊗W

⊗(n−k)
−1,d

)
+ . . .+ xnW

⊗n
1,d , (4.69)

where x = (x0, x1, . . . , xn)
T satisfies xi ≥ 0 and

∑n
i=0 xi = 1. We also have an explicit

condition on x to ensure that σnx is PPT. This is [5] −1 1

1 d−1
d+1

⊗n

x′ ≥ 0, (4.70)

where

x′ =

(
x0,

x1
n

×n
. . .

xk(
n
k

)×(nk) . . . xn)T

. (4.71)

It was via this result that theorem 4.5.4 was obtained, by taking the limit as n → ∞. In

the paper [106], it was proved that for n = 2 the set of states of the form (4.69) which are
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separable and those which are PPT exactly coincide. Thus to minimise E2
R(Wη,d), we just

need to consider the states

σ2x = x0W
⊗2
−1,d +

x1
2

(W−1,d ⊗W1,d +W1,d ⊗W−1,d) + (1− x1 − x2)W
⊗2
1,d (4.72)

which satisfy

1− 2x1 ≥ 0, (4.73)

(d− 1)− 2dx0 + (2− d)x1 ≥ 0, (4.74)

(d− 1)2 + 4dx0 + 2(d− 1)x1 ≥ 0, (4.75)

where we have eliminated the dependent variable x2.

As Werner states of a given dimension are simultaneously diagonalisable, so too are

states of the form σnx - and moreover, the relative entropy between σny and σnx may be

expressed simply as

S(σny∥σnx) =
n∑

i=0

yi log

(
yi
xi

)
. (4.76)

Note that the state W⊗n
η,d is invariant under operation given in Eq. (4.68), and so may also

be expressed in the form (4.69). Setting W⊗n
η,d = σny gives

yi =

(
n
i

)
(1− η)(n−i)(1 + η)i

2n
. (4.77)

Plugging these values into Eq. (4.76) for n = 2 we find that

E2
R (Wη,d) = min

x0,x1

(1− η)2

8
log

(1− η)2

4x0
+

(1 + η)(1− η)

4
log

(1 + η)(1− η)

2x1

+
(1 + η)2

8
log

(1 + η)2

4 (1− x0 − x1)
(4.78)

subject to conditions (4.73)-(4.75). For convenience, we shall substitute variables with

p = (1− η) /2 - the symmetric representation - making our equation

E2
R (Wp,d) = min

x0,x1

p2

2
log

p2

x0
+ p(1− p) log

2p(1− p)

x1

+
(1− p)2

2
log

(1− p)2

(1− x0 − x1)
. (4.79)

It is worth remembering in this representation that Wp,d are entangled for p ≥ 1/2, and

ER(Wp,d) is subadditive for p > 1/2 + 1/d.
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In order to perform this minimisation, we shall take advantage of the Karush–Kuhn–

Tucker (KKT) conditions [14] - necessary conditions for a solution of a non-linear optimi-

sation to be optimal, which generalise the concept of Lagrangian multipliers.

Theorem 4.5.5 Consider an optimisation problem of the following form:

Minimise f(x), subject to gi(x) ≤ 0.

If x∗ is a local minima and f(x) is continuously differentiable at x∗, then the following

must be true: there exist λi, called KKT multipliers such that

−∇ f(x∗) =
∑
i

λi∇ gi(x
∗), (4.80)

holds, along with the following conditions:

gi(x
∗) ≤ 0 ∀i, (4.81)

λi ≥ 0 ∀i, (4.82)

λigi(x
∗) = 0 ∀i. (4.83)

Moreover, if f(x), gi(x) are convex, then such a point x∗ satisfying these conditions is the

global minima.

In our case,

f(x) =
p2

2
log

p2

x0
+ p(1− p) log

2p(1− p)

x1
+

(1− p)2

2
log

(1− p)2

(1− x0 − x1)
, (4.84)

and

g1(x) = 2x1 − 1, (4.85)

g2(x) = 2dx0 + (d− 2)x1 − (d− 1). (4.86)

f(x) is not well defined outside of the region X = {x |x0 ≥ 0, x1 ≥ 0, x0 + x1 ≤ 1}, and

thus the minimisation is limited to this region implicitly, without the need for explicit gi(x)

- it has also enabled us to remove condition (4.75), since it is satisfied by all x0, x1 ≥ 0.

f(x) is continuously differentiable everywhere in X except x0 = 0 when p ̸= 0, x1 = 0

when p ̸∈ {0, 1}, or 1− x0 − x1 = 0 when p ̸= 1 - in all cases it takes value ∞. Thus the

minimum value cannot occur at such points, and we can be confident any x∗ found is the

true global minima by the sufficiency condition. We may employ the sufficiency condition
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since g1(x) and g2(x) are linear, and thus convex, whilst the quantum relative entropy is

jointly convex in both terms - since we have fixed the first input (dependent on p), the

function f(x) is convex in x, since there is a one-to-one mapping between states of the

form (4.69) and x.

Substituting these functions into Eq. (4.80) gives us two equations

p2

2x0 ln(2)
− (1− p)2

2 ln(2)(1− x0 − x1)
= 2dλ2, (4.87)

(1− p)p

x1 ln(2)
− (1− p)2

2 ln(2)(1− x0 − x1)
= 2λ1 + (d− 2)λ2. (4.88)

whilst the conditions

λ1 (2x1 − 1) = 0 λ2 (2dx0 + (d− 2)x1 − (d− 1)) = 0 (4.89)

give us four possible cases.

Case 1: λ1 = λ2 = 0.

Substituting these into Eq. (4.87)-(4.88), we find that

x0 = p2, x1 = 2p(1− p). (4.90)

Using these values we obtain the condition that g2(x) = (2p − 1)(2p + d − 1) ≤ 0; this

only holds for p ∈ [(1− d) /2, 1/2], which provides a valid x1 value when p ∈ [0, 1/2]. This

solution gives x0 = y0, x1 = y1, and thus corresponds to the minimal solution f(x) = 0

for when Wp,d is separable - exactly the region p ∈ [0, 1/2].

Case 2: λ1 = 0, x1 = (d− 1− 2dx0) / (d− 2).

In this case, the solutions for our two unknown variables are much more complicated, and

are twofold:

λ2,α =
a−

√
b

4d(d+ 2)
x0,α =

a+ 2(d− 1) +
√
b

4d(d+ 2)
, (4.91)

λ2,β =
a+

√
b

4d(d+ 2)
x0,β =

a+ 2(d− 1)−
√
b

4d(d+ 2)
. (4.92)

with

a = 2d2p2 − 2d2p+ d2 + 2dp− d− 4p2 + 4p, (4.93)

b =
(
d2
(
2p2 − 2p+ 1

)
+ 2dp+ d− 4p2 + 4p− 2

)2 − 8(d− 1)d(d+ 2)p2. (4.94)
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Although complicated, we may still analyse whether they satisfy the KKT conditions.

λ2,α ≥ 0 iff p ≥ 1/2, whilst λ2,β ≥ 0 for all values of p. However g2(xβ) > 0 (and thus

invalid) for all values of p; but g2(xα) ≤ 0 in the regions p ∈ [0, 1/2] and p ∈ [1/2+ 1/d, 1]

- from this, we may conclude that the α solution is the global minima for the region

p ∈ [1/2 + 1/d, 1].

Case 3: x1 = 1/2, λ2 = 0.

Solving Eq. (4.87) and Eq. (4.88) we find that

x0 =
p2

4p2 − 4p+ 2
λ1 =

−4p2 + 4p− 1

2 ln(2)
. (4.95)

However,
(
−4p2 + 4p− 1

)
/ (2 ln(2)) < 0 for all values of p except p = 1/2, and thus is not

valid as a minima except for this value. Moreover, for p = 1/2 we have x1 = 1/2, x2 = 1/4

- so this solution is a special instance of the case below.

Case 4: x1 = 1/2, x2 = 1/4.

This time we obtain solutions for the two KKT multipliers:

λ1 = −4dp− d+ 4p− 2− 4dp2

2d ln(2)
λ2 =

2p− 1

d ln(2)
. (4.96)

Clearly our choices of xi are feasible, and satisfy the condition (4.83) - thus it remains only

to check when the values of λi are non-negative. For λ2 this occurs when p ≥ 1/2, whilst

for λ1 this occurs only for p ∈ [1/2, 1/2 + 1/d]. This should not surprise us, as the choice

of x0, x1 correspond to the separable state Wp=1/2,d ⊗Wp=1/2,d, giving the E2
R = ER for

the additive region.

For the subadditive region p ∈ (1/2 + 1/d, 1] our closest separable state is that given

by xα - which coincides with the separable state Wp=1/2,d ⊗Wp=1/2,d at the subadditivity

boundary p = 1/2 + 1/d. We can convert this state back into the expectation representa-

tion, in order to gain our result for η < −2/d.

E2
R (Wη,d) =

(1− η)2

8
log

(1− η)2

4x0
+

(1 + η)(1− η)

4
log

(1 + η)(1− η)

2x1

+
(1 + η)2

8
log

(1 + η)2

4 (1− x0 − x1)
(4.97)

with

x0 =
c+

√
d

8d(d+ 2)
x1 =

4(d+ 2)(d− 1)− c−
√
d

4(d2 − 4)
, (4.98)
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Figure 4.5: A comparison of the one-copy and two-copy Werner states’ REE, for varying

dimensions d > 2. These provide upper bounds for the secret key capacity of Wη,d.

where

c = d2
(
η2 + 1

)
− 2d(η − 2)− 2η2 − 2, (4.99)

d = d4
(
η2 + 1

)2 − 4d3η
(
η2 − 3

)
− 4d2

(
η4 + 3η2 − 1

)
+ 8dη

(
η2 − 3

)
+ 4

(
η2 + 1

)2
.

(4.100)

We plot this result for varying dimension in figure 4.5; by consequence of theorem 4.5.2,

it provides a tighter bound of the secret key rate of Wη,d than the single-copy REE.

4.5.1 Squashed Entanglement as a Secret Key Bound

In chapter 2, we referenced how there were two entanglement measures for which we may

upper bound the secret key capacity of a σ-simulable channel; The first is the one just

discussed, the (regularised) REE. As the REE is subadditive, it does not provide the best

bound for Holevo-Werner channels - the one-copy bound is not tight, whilst for n > 2 the

n-copy value is not known. Thus we look to the other entanglement measure to provide a

better bound, squashed entanglement [20]. We recap its definition here.

Definition 4.5.6 The squashed entanglement of a state ρAB ∈ HA ⊗HB is given by:

Esq (ρAB) =
1

2
min

ρ′ABE∈ΩAB

S(A : B|E) (4.101)
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where ΩAB is the set of density matrices ρ′ABE such that TrE [ρ
′
ABE ] = ρAB - the size

of the ancilla space HE is generally unbounded. The value S(A : B|E) is the quantum

conditional mutual information, given by

S(A : B|E) := S(ρ′AE) + S(ρ′BE)− S(ρ′E)− S(ρ′ABE) (4.102)

where S(ρ′AE) denotes the von Neumann entropy of the reduced state ρ′AE = TrB[ρ
′
ABE ].

This entanglement measure is strictly additive over tensor products - thus we avoid the

need for regularisation, which is our difficulty with the REE. Unfortunately, there is a

trade-off for this simplification - the optimisation over ΩAB is extremely difficult13 - this

is because of the unbounded ancilla dimensions HE . For Holevo-Werner states, we may

upper bound the secret key capacity by the squashed entanglement of its Choi matrix

Wη,d - which we then upper bound by choosing a particular ρ′ABE - thus we obtain an

analytical bound at the cost of having potentially chosen the non-minimising extension.

In order to upper bound Esq(Wη,d), we choose the extension where ρ′ABE is the pu-

rification of Wη,d - the pure Hd4 state W̃η,d ∈ HA ⊗ HB ⊗ HÃ ⊗ HB̃ which satisfies

TrÃB̃[W̃η,d] =Wη,d.

As W̃η,d is pure, we have that S(ρ′ABE) = S(W̃η,d) = 0. Moreover, ρ′E =Wη,d, and so

S(ρ′E) = S(Wη,d) = −
∑
i

pi log pi = −
(
1− η

2
log

(
1− η

d(d− 1)

)
+

1 + η

2
log

(
1 + η

d(d+ 1)

))
.

(4.103)

Finally, we compute S(ρ′AE) = S(ρ′BE) = log d. This means we have

Esq(Wη,d) ≤ Ẽsq(η) := log d+
1− η

4
log

(
1− η

d(d− 1)

)
+

1 + η

4
log

(
1 + η

d(d+ 1)

)
. (4.104)

We present a comparison of this bound in various dimensions in figure 4.6. We can

see from this formula we have certainly not chosen the optimal ρ′ABE , as for η = 0

we have Ẽsq(η) = log
(
d2/

(
d2 − 1

))
/4, whereas the optimal choice of ρ′ABE would give

Esq (W0,d) = 0, since this state is separable. Nevertheless , Ẽsq(η) provides a valid, easy

to calculate upper bound for the squashed entanglement.

13NP hard in fact [62].
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Figure 4.6: A comparison of Ẽsq (Wη,d) for entangled Werner states of varying dimension

- note the failure to reach 0 at η = 0.

There is one final bound to secret key capacity we may exploit for Werner states,

one which also relies on the squashed entanglement. This exploits the convexity of the

squashed entanglement [17]. We first note that

Wη,d =
(d− η)I + (dη − 1)F

d3 − d
= (1 + η)

dI− F
d3 − d

+ (−η)(d+ 1)I + (−d− 1)F
d3 − d

= (1 + η)W0,d + (−η)W−1,d. (4.105)

Therefore for entangled states η ∈ [−1, 0) we may write Wη,d as a convex combination

of the separable state W0,d and the extremal entangled state W−1,d. This means we may

write

Esq (Wη,d) ≤ (1 + η)Esq (W0,d)− ηEsq (W−1,d) = −ηEsq (W−1,d) (4.106)

since Esq (W0,d) = 0. In the paper [21], an analysis of the squashed entanglement for the

extremal state W−1,d was performed, and the following bound obtained:

Esq (W−1,d) ≤


log
(
d+2
d

)
if d even,

1
2 log

(
d+3
d−1

)
if d odd

(4.107)
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Figure 4.7: A comparison of our two upper bounds for Esq (Wη,d), for dimensions d = 4, 5.

Which bound is tighter is dependent on the value of η.

This gives us the following useful bound on the squashed entanglement

Esq (Wη,d) ≤ E∗
sq (Wη,d) :=


−η log

(
d+2
d

)
if d even,

−η
2 log

(
d+3
d−1

)
if d odd.

(4.108)

4.5.2 Comparing bounds, and use of the RPPT

For Werner states the regularised RPPT is exactly known; and although we cannot use

E∞
P (Wη,d) as an upper bound to the secret key capacity, we can use it as an upper bound14

for Q2. As for teleportation covariant channels we have that Q2(E) = ED(χE), we can

compare this bound to the logarithmic negativity15 of Wη,d, which we do in figure 4.8. In

figure 4.9, we present a comparison of the four considered secret key capacity bounds for

Wη,d, along with the regularised RPPT which bounds the two-way quantum capacity. In

figure 4.10, we show only the tightest bound across the whole entangled range η < 0. Each

of the four considered bounds is the tightest for some region of η, and therefore in order

to obtain the most accurate picture of a channel’s capacity we should not limit ourselves

to one entanglement measure.

14See chapter 2.
15Which is an upper bound on distillable entanglement for states.
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Figure 4.8: We can see that the regularised RPPT provides a tighter bound for Q2(Wη,4)

for all entangled η than the logarithmic negativity.
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Figure 4.9: A comparison of the various upper bounds for the secret key capacity K(Wη,4)

- the allowable range is given by the grey shading.
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Figure 4.10: The tightest bound for K(Wη,4) - note how all four entanglement measures

provide the best bound for certain regions of η.

4.6 Discussion and Further Directions

The first part of this chapter applied some cutting edge results in metrology to the unusual

Holevo-Werner channels, which we were able to exploit by proving these channels are

teleportation covariant - one of the few non-Pauli channels16 shown to have this property.

As a consequence of this, the optimal parameter estimation may only achieve the shot

noise limit. We also obtained the surprising result that entanglement-breaking is not the

determining factor in optimal estimation for these channels - although for teleportation

covariant states the optimal precision may be achieved [86] by sending half of a maximally

entangled state through the channel, the lack of dependence on entanglement-breaking

implies the same precision may be achievable with unentangled states also. We also

found that the choice of parametrisation is important for determining the role of the

channel’s dimension - for the expectation representation it plays no role, whilst for the α-

representation different values change their difficulty as the channel’s dimension increases.

We then progressed to the problem of binary discrimination of Holevo-Werner chan-

nels, providing for the first time analytic forms for the true quantum Chernoff bound for

16When d > 2.
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both Holevo-Werner and depolarising channels, allowing for more accurate bounding of

their binary discrimination.

After the discussion on metrology, we looked at bounding the capacities of Holevo-

Werner channels. The ability to bound the secret key distillation rate of a state by various

entanglement measures is a useful tool, and mirrors the use of entanglement measures to

bound other operational measures such as the distillable entanglement and entanglement

cost. The extension of this to channels in [85] by use of LOCC simulation was a huge

step; in the cases where the channel is teleportation covariant, it seemed to work par-

ticularly well, as for many channels the upper bound provided by the single-copy REE

coincided with the lower bound provided by coherent [69,91] and reverse coherent [43,83]

information, achievable lower bounds on quantum and secret key capacities, allowing for

the first time the capacities of several channels to be exactly determined; for example

the dephasing and erasure channels, along with important continuous variable channels

such as the pure loss channel. The aim of the work presented in this chapter was to look

at a channel for which, by construction, this upper bound would not work as well, since

the REE was known to be subadditive for Werner states. By calculating the analytical

form for E2
R, the two-copy REE, we saw that indeed there was a substantial difference

between the two, at the extremal value η = −1 already reaching a gap of 0.2 bits for the

smallest subadditive dimension d = 3. In the limit as d→ ∞ this gap reaches 0.5 bits, so

the one-copy bound becomes quite loose indeed. This suggests that for these states, an

alternative entanglement measure is preferable - from figure 4.10 we see that, for much

of the subadditive region, the best upper bound is provided by one of the two bounds

motivated by the squashed entanglement, which is strictly additive over tensor products.

In order to try and tighten the upper bound for K(Wη,d), one could try to obtain

E3
R (Wη,d). One possible way to do this would be to try and prove that all states of the

form shown in Eq. (4.69) which are PPT are also separable, for n = 3. This could be

done by using vertex enumeration17 to find the extremal states of this set subject to the

linear constraints in Eq. (4.70) with n = 3, and then show each of these extremal states

is separable. One could then apply the KKT conditions as with n = 2. There is no guar-

17Explained in detail in chapter 5.
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antee that separable and PPT states coincide for these states though, and furthermore

we cannot say how well E3
R will compare to our squashed entanglement-based bounds, for

the region where they are tightest. With this in mind, perhaps a more fruitful approach

could be try to obtain the true value of Esq(Wη,d) - as noted in [21], the coincidence of

E∗
sq (W−1,d) for even d, E∞

P (W−1,d) and EN (W−1,d) implies this may be the true entan-

glement of the extremal state, suggesting the best way to approach this problem would be

to generalise an extension of W−1,d achieving this value. An interesting question would be

to investigate whether the optimal extension ρ′ABE could change dependent on the range

of η, akin to the way either E∗
sq < Ẽsq or Ẽsq < E∗

sq depending on the region.

Another consideration to take into account is the conjecture that Werner states with

η ∈ [(2− d) / (2d− 1) , 0) are NPT bound entangled. If this conjecture is true, then

Q2(Wη,d) = 0 for this region, as for teleportation covariant channels states Q2(E) =

D2(E) = ED(χE). This would illustrate that our tightest bound for Q2, the RPPT, would

still be very loose. As there exist PPT bound entangled states from which a secure secret

key can be distilled, it is likely that we still have K(Wη,d) > 0 in this region and therefore

we have strong motivation to study these entanglement-based upper bounds.
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Chapter 5

Bell Polytopes and the Detection

Loophole

This chapter details work done in collaboration with Roger Colbeck, in which we have

used a linear programming algorithm to generate new Bell inequalities, and tested their

efficacy with regards to the detection loophole. We hope to turn this into a paper in the

near future.

5.1 Structure of this Chapter

This chapter begins with a review of Bell inequalities and their relevance to quantum

information, as well as an overview of some useful mathematical tools for studying them,

including polytopes and both linear and semidefinite programming. We then move on

to explain the linear programming algorithm used to obtain new Bell inequalities, before

presenting evidence for how they perform in regards to determining non-locality with

detection failures.

5.2 Bell Correlations and Non-locality: An Introduction

In 1935 Einstein, Podolsky and Rosen published a paper [39] containing a thought experi-

ment aimed to challenge the Heisenberg uncertainty principle. It started with two particles

(which we shall refer to as A and B) maximally entangled in position and momentum -

one can measure the one particle’s position or momentum, and the other particle will have

exactly the opposite value. Quantum mechanics allows for particles to have this property,
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and to retain it when separated such that they cannot interact. The paradox proposed

was as follows: the uncertainty principle asserts that both the position and momentum

of particle B cannot be exactly known. However, by measuring particle A, one can de-

termine exactly the position or momentum of particle B - without particle B having been

disturbed in any way. Thus one would expect to be able to measure the other property

exactly on B, since it has not previously been disturbed by measurement. In actuality

when measuring B this turns out not to be the case, and the value of the quantity not

measured on particle A turns out to be uncertain. Assuming that information cannot

be transferred from A to B about the measurement - due to the limitations of the speed

of light - and that every particle has an intrinsic position/momentum determining the

outcome of measurements, this gives a paradox - why does quantum theory not allow us

to measure exactly the position and momentum of particle B, when they must have exact

values - seeing as how we could measure either the position or momentum of A, in order

to determine B’s corresponding counterpart?

The solution favoured by the authors was that of hidden variables - that when the two

particles interacted to form the entanglement, there existed more fundamental variables

which determined the true properties of the particles - the quantum mechanical descrip-

tion only describes the behaviour because we do not have a more complex theory, in which

both position and momentum can be described exactly. Perhaps even we are unable to

ever measure these variables - yet they still determine the particles’ behaviours exactly.

Einstein was always a vocal critic of quantum uncertainty, disliking the idea that

probability is fundamental to physical behaviour. The argument over probability versus

hidden determinism continued until 1964, when John Bell [8] approached the problem. He

began with the assumptions made by Einstein et al. - so called “local realism” - that there

exists real properties intrinsic to the particles determining the outcomes of measurement,

and that measurements in one location cannot remotely affect the outcomes of distant

measurements. From these assumptions he was able to show that any model determined

by local hidden variables must satisfy a certain correlation relation for measurements -

known as Bell’s inequality. Furthermore, this inequality is violated by quantum mechanics;

and thus the assumptions made by Einstein et al. (and therefore the local hidden variable

model) must be false. Quantum mechanics is intrinsically random - there cannot be an
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underlying deterministic behaviour.

5.2.1 CHSH

Bell’s original inequality concerned the spin of maximally entangled particles - in par-

ticular requiring that the two measured particles are perfectly anti-correlated; measuring

in opposite directions will result in an identical outcome, whilst measuring in the same

direction giving exactly opposite outcomes - the same correlations analysed by the authors

of [39]. Whilst such perfect correlation is predicted by quantum mechanics, experimentally

this is impossible to achieve. Thus a big step was acheived in [23], in which the CHSH

inequality (named after the four authors) was introduced. They stated that, for any set of

two party measurements {A1, A2}, {B1, B2} with outcome values ±1, then the following

holds

⟨A1B1⟩+ ⟨A1B2⟩+ ⟨A2B1⟩ − ⟨A2B2⟩ ≤ 2 (5.1)

for any local hidden variable theory. In quantum mechanics, it is possible to achieve

2
√
2, known as Tsirelson’s bound, using maximally entangled states. The advantage of

this inequality is that any value greater than 2 provides a counterexample to the hidden

variable theory, allowing it to be tested with noisy states and measurements.

5.3 Preliminaries

5.3.1 Polytope Theory

Before we look in more detail at the world of Bell inequalities, it is worthwhile to take

a detour and familiarise ourselves with some concepts from geometry. In particular, it

is useful to understand at least the basics of a branch of geometry looking at polytopes.

There are two ways of defining a polytope.

Definition 5.3.1 The vertex representation (V-representation) of a polytope P is the set

of points {xi} such that

P =

{
x

∣∣∣∣∣x =
∑
i

λixi, λi ≥ 0,
∑
i

λi = 1

}
(5.2)

i.e. all convex combinations of the set of points xi.

Obviously this definition is not unique - we could always take the set {xi}∪{(x1 + x2) /2}

and it would define the same polytope. Thus when referring to the V-representation of a
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polytope, we are implicitly referring to the minimal V-representation, which is unique [49].

A polytope with this definition is also known as a convex hull, as P is the convex hull1 of

the points {xi}.

Definition 5.3.2 The half-space representation (H-representation) of a polytope P is a

finite set of linear inequalities, such that:

P = {x |Ax ≤ b} . (5.3)

Once again this representation is not unique - there may be redundant inequalities. There-

fore we refer to the minimal H-representation [49], which is again unique2. The inequal-

ities in the H-representation are known as “facet-defining inequalities”, as each equation

Aix = bi defines a supporting hyperplane of dimension strictly one less that that of the

polytope; and the intersection of the hyperplane with the polytope P defines a face of the

polytope (again of dimension dim[P]− 1) - these faces are known as facets. Any point in

the polytope satisfying Aix = bi is said to saturate the inequality.

The concept of a face is closely linked to that of interior points of a polytope. An

interior point xint of the polytope is a point such that there exists an ϵ > 0 where

Bϵ (xint) :=
{
x′ ∣∣ ∥x′ − xint∥ ≤ ϵ

}
⊆ P. (5.4)

Faces are then defined as non-empty intersections of a half-plane with the polytope, such

that no interior points of the polytope lie within the intersection. Given a d-dimensional

polytope, faces can range in dimension from the (d − 1)-dimensional facets down to the

0-dimensional vertices.

5.3.1.1 A Simple Example: The Cube

Consider a cube whose sides are of length 2, centred around the origin. This is a 3-

dimensional polytope, and its V-representation is:

Vcube = {x1 = (−1,−1,−1), x2 = (−1,−1, 1), x3 = (−1, 1,−1), x4 = (−1, 1, 1),

x5 = ( 1,−1,−1), x6 = ( 1,−1, 1), x7 = ( 1, 1,−1), x8 = ( 1, 1, 1)}

(5.5)

1The convex hull of a set X is the smallest convex set C(X) such that X ⊆ C(X).
2Up to the trivial multiplication of inequalities by a constant.
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which are the corners/vertices of the cube. We also give the H-representation

Hcube =


A =



1 0 0

0 1 0

0 0 1

−1 0 0

0 −1 0

0 0 −1


,b =



1

1

1

1

1

1




(5.6)

where we have just provided the set-defining matrix A and vector b. As you see, each

row Aix = bi gives a 2-dimensional face (and thus a facet) of the cube. Moreover, we may

obtain the 1-dimensional faces (edges) of the cube by taking two compatible equalities:

the first two rows define the edge λ(1, 1,−1)+(1−λ)(1, 1, 1), λ ∈ [0, 1], and the first three

rows taken together define the 0-dimensional face (vertex) (1, 1, 1). Generally, a (d − k)-

dimensional face of a d-polytope3 will satisfy exactly k equalities in the H-representation,

and can thus be seen as the intersection of exactly k supporting hyperplanes.

Note that we could express the cube polytope in both a vertex representation and a

half-plane representation. It turns out that this is always the case, and this forms the

result often called the the main theorem of polytope theory.

Theorem 5.3.3 (Minkowski-Weyl Theorem) Every bounded4 polytope admits a V-

representation and an H-representation of the form described above. If instead the poly-

tope is unbounded, both representations still exist with the V-representation instead given

by two sets: the vertex set {xi} and the ray set {rj}. The polytope then consists of all

points expressible as

P =

x

∣∣∣∣∣∣x =
∑
i

λixi +
∑
j

αjrj , λi ≥ 0,
∑
i

λi = 1, αi ≥ 0,

 . (5.7)

5.3.1.2 Facet Enumeration

The problem of finding the set of facets (the H-representation) given the extremal points

(the V-representation) is known as facet enumeration, or the convex hull problem. This

problem is generally difficult; one of the most popular algorithms [6] runs in O(ndk), with

3A polytope of dimension d.
4There exists N such that ∥x∥ < N, ∀x ∈ P.
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n the number of extremal points, d the polytope’s dimension, and k the number of facets.

In the worst case this can be of O(n⌊
d
2
⌋) [75]. The converse problem, known as vertex

enumeration, is equivalently hard - taking n as the number of facets and k as the number

of extremal points instead. This problem is known to be NP-hard in general [67]. As we

shall see later in the chapter, the problem of facet enumeration is particularly relevant in

quantum theory.

5.3.1.3 Dual Polytopes

Given a polytope P, it is possible to construct a graph known as a “face lattice” - an

ordered graph detailing subset inclusion of all faces of the polytope (from vertices up to

facets), the empty set, and the polytope itself. By taking this graph and reversing the

ordering one may create a new “hypothetical” face lattice. Any polytope D whose own

face lattice structure matches this hypothetical lattice is said to be a combinatorial dual

of P. Every polytope admits a dual and there exists an explicit construction we can use.

First we require that the origin of the polytope belongs to the interior of P; if this not the

case, a coordinate transform is required. Given this, the polar dual of P is defined:

P∆ :=
{
y
∣∣xTy ≤ 1, ∀x ∈ P

}
. (5.8)

Importantly these polar duals introduce the idea of duality between vertices and facets;

they have the easily verifiable property that:

P∆ =
{
y
∣∣xT

i y ≤ 1 ∀xi ∈ VP
}

(5.9)

and furthermore this turns out to be exactly the H-representation of P∆. Thus the vertices

of the primal polytope P are exactly the facets of the polar dual polytope P∆. Moreover,(
P∆
)∆

= P - meaning that the vertices of P∆ are the rows of A ∈ HP , provided the

inequalities have been normalised so that b = 1. This concept of the polar dual is one

that we shall return to later.

For our simple example of the cube, we can see that we have already cleverly chosen

our inequalities to be of the form b = 1. Thus we can immediately form the polar dual.

Vcube∆ = {y1 = (1, 0, 0), y2 = (0, 1, 0), y3 = (0, 0, 1),

y4 = (−1, 0, 0), y5 = (0,−1, 0), y6 = (0, 0,−1)}, (5.10)
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Hcube∆ =



A =



−1 −1 −1

−1 −1 1

−1 1 −1

−1 1 1

1 −1 −1

1 −1 1

1 1 −1

1 1 1



,b =



1

1

1

1

1

1

1

1





. (5.11)

This eight-sided shape with six vertices is a regular octahedron centred around 0.

5.3.1.4 Dimensions, Affine and Vector Spaces

So far we have been discussing the dimensions of polytopes without explicitly defining it.

To understand exactly what we refer to, we shall briefly outline affine and vector spaces.

For a vector space V (or rather subspace - we are taking subspaces of Rd, for some

dimension d) we may always find a basis, a set of vectors {zi}ki=1 which are linearly inde-

pendent and any v ∈ V can be expressed: v =
∑k

i βizi, βi ∈ R. The dimension of this

vector space is k, the number of basis vectors. Given a set of vectors X = {xi} we can

construct a vector space V(X) by taking all combinations
∑

i βixi, βi ∈ R, and find the

dimension of this space by taking the size of the largest linearly independent subset of X.

Given that same set X, we could also construct an affine subspace, A(X). This is the

set of points x = x1 + βi (xi − x1) , βi ∈ R. The dimension of this affine space is given

by the vector space obtained when A(X) is translated such that x1 is taken to the origin,

and thus dim [A(X)] = dim [V({xi − x1}]. The choice of x1 is not unique, and one may

choose any x ∈ A(X).

Finally, the dimension of a polytope5 is taken to be the dimension of the affine subspace

of its vertex set. Although the polytope (being restricted to convex combinations) is a

subset of the affine space, it is clear its dimensionality must be equal to that of the affine

5Or a face of a polytope - which is itself a polytope.
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space, since its extremal points are the vectors x1, x1 + (x2 − x1) . . . and therefore the

number of basis vectors required to fully describe the space must exactly coincide with

that of the full affine space.

5.3.2 An Introduction to Linear Programming

Linear programming refers to the methods used to solve a class of problems which require

the optimisation of a linear objective function over a set of variables constrained by a

series of linear equalities and/or inequalities. They have a strong practical application,

with much development of their study being motivated by economic theory and military

strategy; often these problems are formulated as the optimal use of limited resources. In

this section we shall introduce the canonical form of a linear programming problem, and

the most common methods for solving them. We shall also explain their relation to poly-

tope theory [107].

The canonical form of a linear programming problem is as follows: given a fixed c,q

and A,

maximise cTx subject to: Ax ≤ q, x ≥ 0. (5.12)

We also refer to this as the (canonical) primal form. It should be noted that all linear

programming problems can be converted into this form; if the problem instead asks to

minimise cTx then we may set c′ = −c; clearly our original problem is minimised when

c′Tx is maximised. If one of our constraints has that Akx ≥ qk, we may instead use

the equivalent constraint that −Akx ≤ −qk. Another common issue is that one of our

variables xk is bounded by some value other than zero. We may either add this constraint

to the matrix A, or redefine the variable xk so that it is correctly bounded.

Given a linear programming problem, there are three possibilities: if there are no x

which satisfy the constraints, then the problem is infeasible. If the domain of the variables

is unbounded in such a way that we may increase the objective function’s6 value indefi-

nitely, then we say the problem is unbounded. If neither of these are true, then the region

satisfying the constraints is known as the feasible region, and there exists with certainty

a finite optimal solution on this space.

6Objective function refers to cTx.
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Note that the constraints are of the form Ax ≤ q and x ≥ 0 - these are half-spaces,

and form a H-representation of a polytope, which is our solution space. Thus we have a

strong connection between linear programming and polytope theory.

Lemma 5.3.4 (The Maximum Principle [90]) The optimum value of the objective

function is achieved at an extremal point of the solution space polytope.

5.3.2.1 The Dual Problem

Every primal linear programming problem has a corresponding linear problem which we

call the dual problem; given a primal problem in the form (5.12), the dual problem is given

as

minimise qTy subject to: ATy ≥ c, y ≥ 0. (5.13)

Note that this problem too takes place over a polytope - one should be careful to not to

automatically connect this to the dual polytope, due to the manner in which it has been

constructed; note that the origin is never in the interior of the solution space polytope.

However we shall see later on there are some connections we may make.

Lemma 5.3.5 Linear programming problems are strongly dual; given an optimum solu-

tion x∗ for (5.12), and y∗ for (5.13), then cTx∗= qTy∗. If either the primal or dual is

unbounded, then the other is infeasible.

We can see that changing from the primal to the dual form switches the number of con-

straints and variables; the most efficient algorithms for linear programs utilise both the

primal and dual problem to find the solution. There is also another extremely important

result within linear programming, which we will take advantage of later on in the paper.

Theorem 5.3.6 (Complimentary Slackness.) The solutions x∗,y∗ to the primal/dual

of a linear program are optimal iff

(q−Ax∗)T y∗ = 0, and (5.14)(
ATy∗ − c

)T
x∗ = 0. (5.15)

5.3.2.2 Methods for Solving Linear Programming Problems

There are two main approaches for solving this class of problems. We shall provide a

qualitative explanation of them both here.
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• The simplex algorithm.

Formulated by George Dantzig [32], this algorithm begins by calculating the objective

function’s value at one vertex of the feasible polytope, known as the initial feasible

solution. It then moves along the polytope’s edges vertex to vertex in such a way

that the objective function is always non-decreasing. Provided the choice of edge

to follow in the scenario where there are multiple options is well chosen7, then this

method is guaranteed to find the global optimum in finite time. This method can

be done using exact values, and is practically efficient, although there exist non-

polynomial worst case scenarios. There exist other similar edge-following algorithms;

an example is the criss-cross method ( [98], [108]); however the simplex is the most

widely implemented, and the one we use here.

• Interior point methods [77].

Unlike the previous approach, interior point methods stay strictly inside the interior

of the feasible region, and takes successive steps closer to the optimal solution until

the sequence converges to within some allowed tolerance. Though different algo-

rithms choose their step determination differently, the general idea is to move along

the direction of the greatest change in the objective function with each successive

step. There exist particular algorithms which are polynomial for all problems, and

modern methods are efficient for numerical precision problems.

5.3.3 Semidefinite Programming

Related to linear programming is an area of convex optimisation known as semidefinite

programming. The canonical form of a semidefinite programming problem is:

minimise Tr
[
CTX

]
subject to Tr

[
AT

kX
]
= bk, k = 1, . . .m, X ≥ 0. (5.16)

Similar to linear programming, we have a linear objective function we wish to maximise:

Tr
[
CTX

]
=
∑

i,j CijXij . This time however, our variable space is that of the positive

semidefinite matrices - subject to a set of linear equalities, given by the matrices {Ak} and

vector b.

7Many suitable rules for this choice exist - Bland’s rule for example.
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Lemma 5.3.7 The problem:

minimise Tr
[
CTX

]
subject to

Tr
[
AT

kX
]
= bk, k = 1, . . .m1,

Tr
[
NT

j X
]
≤ qj , j = 1, . . .m2, X ≥ 0 (5.17)

can be written as a semidefinite programming problem.

Proof. For each inequality j = 1 . . .m2 define a slack variable zj . We can rewrite our

variable matrix as the block diagonal matrix

X ′ =


X

z1
. . .

zm2

 . (5.18)

Clearly X ′ ≥ 0 iff X ≥ 0 and zj ≥ 0, ∀j. We can now write the problem as

minimise Tr
[
C ′TX ′] subject to

Tr
[
A′T

k X
′] = bk, k = 1, . . .m1,

Tr
[
N ′T

j X ′] = qj , j = 1, . . .m2, X
′ ≥ 0 (5.19)

where

C ′ =


C

0

. . .

0

 A′
k =


Ak

0

. . .

0

 N ′
j =


Nj

δj1
. . .

δjm2

 .

(5.20)

This is the canonical form of a semidefinite programming problem. �

Corollary 5.3.8 Every linear program can be written as a semidefinite programming

problem.

Proof. One may convert the objective function

maximise cTx =
∑
i

cixi =
∑
i

CiiXii = Tr
[
CTX

]
≡ minimise Tr

[
(−C)TX

]
(5.21)

141



Chapter 5: Bell Polytopes and the Detection Loophole

where C and X are diagonal matrices with Cii = ci, Xii = xi. Each linear programming

constraint thus becomes

[A]jx ≤ qj → Tr[NT
j X] ≤ qj (5.22)

with Nj a diagonal matrix [Nj ]ii = [A]ji. We than then turn these inequalities into equal-

ities using the slack variables described in lemma 5.17. �

Similar to linear programming, every canonical semidefinite program has a dual form.

For a problem of the form (5.16), the dual is given by:

maximise bTy subject to
∑
k

ykAk + S = C, S ≥ 0. (5.23)

You can see that for the dual there are two variables; a semidefinite matrix S, and a real

vector y (sometimes called the multiplier vector).

Lemma 5.3.9 Semidefinite programming problems are weakly dual; the solution to the

primal X∗ and the solution to the dual {y∗, S∗} satisfy

Tr
[
CTX∗] ≥ bTy∗. (5.24)

Lemma 5.3.10 (Slater’s Condition) If both the primal and dual are feasible, and

there exists a strictly feasible solution X̃ > 0 to the primal or (ỹ, S̃) with S̃ > 0 to

the dual, then the optimal values of the primal and dual are achievable and coincide.

Thus in many cases, Slater’s condition gives us strong duality - though unlike linear

programming it is not guaranteed.

5.3.3.1 Methods for Solving Semidefinite Programming Problems

There does not exists a direct simplex method analog for semidefinite programs; this is

because the boundary consists of an infinite number of extremal points (in general). Thus

the majority of solvers utilise interior point methods; once again relying on objective-

reducing steps converging to the optimal solution. Like linear programming this can be

done in polynomial time, often utilising both the primal and dual form of the problem.

5.3.4 Conditional Probability Distributions and Polytopes.

Returning to quantum theory, we have seen how the idea of non-locality is key to what

is possible with quantum theory. In particular, we have seen how non-locality can be
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verified by use of a Bell inequality. This subsection will explain exactly how this is done

in more detail. The first step is to expand on Bell’s set-up. Consider a situation in which n

parties are spatially separated8, and each has m measurement choices (often referred to as

inputs), each of which has k outcomes (referred to as outputs). This is commonly called a

n-party, m, k Bell scenario. Since we will almost exclusively deal with two-party scenarios

in this chapter, we shall use the notation (m, k) to represent a two-party, m measurement

k outcome scenario. We will also use the notation (mA,mB, kA, kB) for situations where

the two parties have differing numbers of measurements/outcomes.

In the two party case, we can characterise the situation by the conditional probabilities

p(ab|xy) - that is, the joint probability of Alice obtaining outcome a given measurement

x whilst Bob obtains outcome b from y. Naturally we require that p(ab|xy) ≥ 0, and that∑
a,b p(ab|xy) = 1. We shall express this either as a vector π ∈ Rm2k2 , or as a matrix

Π ∈ Rmk×mk in the following way:

Π =



p(11|11) . . . p(1kB|11) . . . . . . . . . . . . p(11|1mB) . . . p(1kB|1mB)
... . . . ... . . . . . . . . . . . .

... . . . ...

p(kA1|11) . . . p(kAkB|11) . . . . . . . . . . . . p(kA1|1mB) . . . p(kAkB|1mB)
...

...
... . . . ...

...
...

...
...

... . . . ...
...

...

p(11|mA1) . . . p(1kB|mA1) . . . . . . . . . . . . p(11|mAmB) . . . p(1kB|mAmB)
... . . . ... . . . . . . . . . . . .

... . . . ...

p(kA1|mA1) . . . p(kAkB|mA1) . . . . . . . . . . . . p(kA1|mAmB) . . . p(kAkB|mAmB)



.

(5.25)

These two representations should be thought of as equivalent, and we shall move from one

to the other when convenient. We refer to the submatrix of Π corresponding to measure-

ment choices x, y as Π|xy, and Π(ab|xy) as shorthand for p(ab|xy) for a given distribution Π.

These are not the only constraints on our distribution though - it is widely accepted9

that, although non-local, spatially separated quantum probability distributions are no-signalling

- it is impossible to transmit information between parties by local operations (including

8Sufficiently separated to prevent communication.
9If one assumes the Born rule, this follows as a consequence.
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measurements) - mathematically this forces:∑
b

p(ab|xy) =
∑
b

p(ab|xy′), ∀a, x, y, y′ (5.26)

∑
a

p(ab|xy) =
∑
a

p(ab|x′y), ∀b, y, x, x′ (5.27)

You can see this condition means that Alice and Bob cannot learn the other’s measurement

choice from their local choices and outcomes alone. Although the vector π is in the space

Rm2k2 , the no-signalling and normalisation constraint means that the true dimension of

the no-signalling space is

t = m2(k − 1)2 + 2m(k − 1) (5.28)

or

t = mAmB(kA − 1)(kB − 1) +mA(kA − 1) +mB(kB − 1) (5.29)

when mA ̸= mB, kA ≠ kB.

An interesting result is that there exists no-signalling correlations which cannot be

achieved by quantum mechanics; the most famous example of these is the “PR box” [89]

which gives the following correlations, for outcomes a, b ∈ {0, 1} and measurement choices

x, y ∈ {0, 1}:

p(ab|xy) =


1
2 if a⊕ b = xy

0 else
(5.30)

which allow for a CHSH value of 4. The physical reason behind why quantum distributions

are more restricted than general no-signalling distributions is a topic of much research.

Regarding quantum distributions, there are a few definitions - some of which are prov-

ably not equivalent. The first construction is all distributions that can be written

p(ab|xy) = ⟨ϕ|Ma|x ⊗Mb|y |ϕ⟩ (5.31)

with |ϕ⟩ some quantum state, and {Ma|x} measurement operators satisfying Ma|xMa′|x =

δaa′ and
∑

aMa|x = I (and the same for
{
Mb|y

}
) - this may seem like we are dismissing

mixed states and POVMs, but we can always convert these into the above form using pu-

rification of mixed states and Naimark’s theorem. The above definition is ambiguous as to

whether to allow infinite dimensional states or not - it was recently shown in [25] the two

scenarios are non-equivalent; however for our purposes this distinction is not important.
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We shall refer to the set of correlations of this form as Q.

Alternatively, we may define the set of quantum correlations as those that may be

expressed

p(ab|xy) = ⟨ϕ|Ma|xMb|y |ϕ⟩ (5.32)

with Ma|xMa′|x = δaa′ and
∑

aMa|x = I (and for {Mb|y} as before) but now we condition

[Ma|x,Mb|y] = 0. This definition is equivalent to the description (5.31) for finite dimension

[102] but is not equivalent [96] for infinite dimensional spaces. We refer to this set of

distributions as Q′. This distinction will not play a role in the rest of this chapter; however

it is worth outlining.

5.3.4.1 Local Distributions

Within the set of allowable quantum probability distributions, there lie the set of probabil-

ity distributions which may be expressed as the consequence of a hidden variable theory.

These may be written

p(ab|xy) =
∫
Λ
q (λ) p(a|x, λ)p(b|y, λ)dλ (5.33)

where λ may be an arbitrary (or indeed infinite) number of variables with domain Λ,

and q(λ) an arbitrary probability density function. This may seem extremely general but

fortunately there exists another, neater way to characterise them. For a given number

of inputs/outputs, any local distribution can be expressed as a convex combination of

deterministic distributions,

{di} =
{
π
∣∣ p(ab|xy) = δa,axδb,by

}
(5.34)

i.e. the correlations for which every measurement choice for Alice and Bob will return a

specific outcome with certainty. This type of structure, in which every point in a set can

be written as a convex combination of a finite set of points is a polytope, as we have seen

earlier in the chapter. We denote the local polytope as L, with the V-representation of

L exactly the set {di}. We can see that the structure in Eq. (5.34) gives that there are

kmA
A kmB

B vertices in this set, for the (mA,mB, kA, kB) scenario.

We saw that the other way to represent polytopes is using the half-plane representation,

or H-representation. In this form we may express L as

L =
{
π
∣∣bT

i π ≤ ci ∀i
}

(5.35)
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i.e. a set of linear inequalities. These inequalities provide a criterion for determining local-

ity of probability distributions - they are Bell inequalities. The minimal H-representation

is exactly the set of inequalities defining the (d − 1)-dimensional facets of the polytope.

For the local polytope, the dimension is equal to that of the no-signalling space, t; and

the facets which define the polytope are known as either facet Bell inequalities or tight

Bell inequalities. As the H-representation is minimal, this set of facet Bell inequalities will

be sufficient to determine locality/non-locality. Due to the fact that converting between

the two representations is a non-trivial problem, and the rapidly growing dimension t, for

most (m, k) scenarios the full list of inequalities is not known.

By contrast, the set of all no-signalling distributions forms the no-signalling polytope

NS. For this polytope, the facet inequalities are known and are simply the positivity

conditions, but the extremal points giving VNS are generally not known, except for k = 2.

The set of quantum distributions does not form a polytope - whilst a convex set, there

are an infinite number of extremal points. This means the problem of determining whether

a probability distribution is quantum achievable is a difficult one in general. However, we

shall see there does exist a set of necessary and sufficient conditions we can apply.

5.3.5 The Quantum Hierarchy

We saw earlier in this chapter two equations, (5.31) and (5.32), defining the set of quan-

tum distributions. Unfortunately, given a probability distribution, it is very difficult to

determine if there exists states/measurements which achieve that distribution. In partic-

ular, the possibility of a high - or even infinite - dimensional state means that this search

can be almost impossible. Fortunately, a series of neccessary conditions was introduced

in [76], which utilise the branch of semidefinite programming optimisation we saw earlier

in the chapter. The conditions define an infinite series of sets Q1,Q2 . . . which in the limit

limi→∞Qi = Q′. Thus if one can determine that Π ∈ Qi ∀i, then Π ∈ Q′.

The idea is as follows: first, suppose there exists a quantum distribution of the form in

Eq. (5.32). One could then construct a set of operators O = {O1 . . . On}, each of which is a

combination of Ma|x and Mb|y under addition and multiplication. Using the properties of

theMa|x,Mb|y, one may write all possible linear constraints that the elements ⟨ϕ|O†
iOj |ϕ⟩
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must satisfy, as a function of p(ab|xy). As a simple example, set O1 = Ma1|x1
, O2 =

Ma2|x1
, O3 =Mb1|y1 . Then three such constraints would be:

⟨ϕ|O†
1O2 |ϕ⟩ = 0 (5.36)

⟨ϕ|O†
1O3 |ϕ⟩ = p(a1b1|x1y1) (5.37)

⟨ϕ|O†
1O3 |ϕ⟩ − ⟨ϕ|O†

3O1 |ϕ⟩ = 0 (5.38)

and so on. The set of all linearly independent constraints of this form can be written

F (O) =

∑
i,j

[Fk]ij ⟨ϕ|O†
iOj |ϕ⟩ = gk(Π)


k

. (5.39)

Consider now the question: does there exist a matrix Γ ≥ 0 such that

∑
i,j

[Fk]ijΓij = gk(Π), ∀k (5.40)

are satisfied? If there exists the quantum construction of the form (5.31), then such a

matrix must exist: we simply set Γij = ⟨ϕ|O†
iOj |ϕ⟩. This does not preclude however

other Γ existing satisfying these conditions. The semidefinite positivity comes from the

condition that

v†Γv =
∑
i,j

v∗i ⟨ϕ|O
†
iOj |ϕ⟩ vj = ⟨ϕ|

∑
i

v∗iO
†
i

∑
j

vjOj |ϕ⟩ = ⟨ϕ|V †V |ϕ⟩ ≥ 0. (5.41)

5.3.5.1 A Canonical Set of Operators

Given this necessary condition is dependent on choosing a set of operators, it is clear the

the strictness of this condition will depend on the set chosen. Fortunately for us; the

authors of [76] constructed a family of sets Sn, with the strictness increasing to define the

exact quantum set in the limit n→ ∞.

Definition 5.3.11 For a given scenario (mA,mB, kA, kB), the set Sn is defined as all

operators consisting of all non-equivalent products of length ≤ n of Ma|x,Mb|y, a ∈

{1 . . . (kA − 1)} , b ∈ {1 . . . (kB − 1)} , x ∈ {1 . . .mA} , y ∈ {1 . . .mB}, excluding null op-

erators. For example

S0 = {I} (5.42)

S1 = S0 ∪
{
Ma|x

}
∪
{
Mb|y

}
(5.43)

S2 = S0 ∪ S1 ∪
{
Ma|xMa′|x′

}
∪
{
Mb|yMb′|y′

}
∪
{
Ma|xMb|y

}
(5.44)
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Satisfaction of
∑

i,j [F (Sn)k]ijΓij = gk(Π), ∀k by some matrix Γ means that Π ∈ Qn, level

n of the quantum hierarchy.

The final outcome measurement operators are omitted as they are expressible as MkA|x =

I−
∑(kA−1)

a=1 Ma|x (and similarly for MkB |y) and so do not contribute any new constraints.

Similarly sequences Mb|yMa|x are omitted as the equivalent operator Ma|xMb|y may be

used. Finally, null operators (such as Oi =M1|1M2|1) are omitted as they only define the

trivial relation 0 = 0. These sets give a series of necessary conditions for a given distribu-

tion Π ∈ Q′ - there must exist a |Sn|× |Sn| matrix Γ satisfying all linear conditions F (Sn),

which depend on Π.

A Simple Example: m = k = 2.

Consider the simplest example, the (2, 2, 2, 2) scenario at level 1. The matrix Γ must be

of the form
O I M1|x1

M1|x2
M1|y1 M1|y2

I 1 p(1|x1) p(1|x2) p(1|y1) p(1|y2)

M1|x1
p(1|x1) α p(11|x1y1) p(11|x1y2)

M1|x2
p(1|x2) p(11|x2y1) p(11|x2y2)

M1|y1 p(1|y1) β

M1|y2 p(1|y2)

where we have omitted the lower quadrant as Γ is Hermitian. The greek letters are

free variables (satisfying Γ ≥ 0).

5.3.5.2 Bell Inequalities and Bell Inequality Classes

Suppose we have a Bell inequality bT
i π ≤ ci - is its representation unique? Clearly we

may multiply both sides by a constant, and it remains the same inequality. As with our

conditional probability distributions, we may also equivalently express them in matrix

form, Tr[BT
i Π] ≤ ci. More importantly though, the no-signalling constraints on our prob-

abilities mean that there remain other, non-trivial invariance operations we may perform.

To illustrate this, we will take a particular (2, 2) Bell inequality,

B =


0 1 0 1

1 0 1 0

0 1 1 0

1 0 0 1

 , Tr
[
BTΠ

]
≥ 1. (5.45)
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Taking the above matrix and applying our knowledge that, for no-signalling distributions,

p(11|11) + p(12|11) = p(11|12) + p(12|12), we see that the plane defined by

B′ =


−1 0 1 2

1 0 1 0

0 1 1 0

1 0 0 1

 , Tr
[
B′TΠ

]
≥ 1 (5.46)

within the no-signalling space is entirely equivalent.

We can also use the normalisation condition to define different representations of the

same inequality. We know that p(11|11)+p(12|11)+p(21|11)+p(22|11) = 1, and therefore

can define

B′′ =


−1 0 0 1

0 −1 1 0

0 1 1 0

1 0 0 1

 , Tr
[
B′′TΠ

]
≥ 0 (5.47)

and this too is a representation of the same inequality. Indeed, any transformation kB+s,

k ̸= 0 will preserve an inequality. In fact, the three matrices above are all representa-

tions of the CHSH inequality in Eq. (5.1), where the expectations have been converted

to probabilities, and then such transforms as seen above applied. When referring to a

Bell inequality, we are implicitly referring to all such representations. To check whether

two matrices B1, B2 represent the same Bell inequality, we can evaluate them both at the

extremal points of the local polytope, to obtain vectors c1, c2. If there exists a transfor-

mation kc1 + s = c2, we can conclude they are representations of the same inequality.

One final point we must consider is that of “nomenclature” - suppose we took the Bell

inequality of the form B, and relabelled Bob’s measurements, such that measurement 1 is

now referred to as measurement 2 and vice versa. We end up with BR, expressible as:

BR =


0 1 0 1

1 0 1 0

1 0 0 1

0 1 1 0

 , Tr
[
BT

RΠ
]
≥ 1. (5.48)

Clearly this is still a CHSH inequality, but it does not correspond to the same inequality

- it defines a different facet of the local polytope. Thus it is vital to distinguish between
149



Chapter 5: Bell Polytopes and the Detection Loophole

inequalities and inequality classes - the former refers to unique facets of the local polytope,

whilst the latter accounts for all facets that are unique up to relabelling of inputs, outputs

and parties. For the specific (2, 2) scenario, there are two Bell inequality classes: the

CHSH class consisting of 8 inequalities, and the trivial class, consisting of 16 inequalities

of the form p(ab|xy) ≥ 0.

For a general (mA,mB, kA, kB) scenario, the possibilities for relabelling grow rapidly.

For measurements we may choose any permutation from the symmetry group SmA and SmB

respectively, whilst for outcomes we may choose a permutation from SkA and SkB for each

measurement of Alice and Bob respectively. This means there are (kA!)mA (kB!)
mB mA!mB!

possible relabellings, or double this if mA = mB and we may swap parties (expressed as

transposition in the matrix representation). Despite this, relabelled inequalities are not

of much interest to us. This is because any relabelling between inequalities can also be

applied to probability distributions, meaning all inequalities in the same class will retain

the same properties.

For this reason, when discussing characterising a (mA,mB, kA, kB) scenario, we are

really interested in the full set of inequality classes - using these we can generate all the

inequalities by running through all relabellings for a representative of each class. It is

worth noting though that the size of each class is not an obvious result, since a relabelling

may result in the same inequality - we shall discuss how to combat this later in the chapter.

Since the number of extremal local distributions is n = kmA
A kmB

B for the (mA,mB, kA, kB)

scenario, we can see that the the problem of facet enumeration for the local polytope scales

badly, especially with the number of inputs. One potential loophole to this is that we are

only interested in the inequality classes - perhaps there is a technique allowing for the

quicker generation of just representatives of each inequality class, than of the full list of

facets. Some approaches to try and achieve this are detailed in this chapter.

5.3.5.3 The No-Signalling Polytope

As mentioned before, the set of no-signalling distributions is a polytope, which we denote

NS. The facet-defining inequalities for this polytope are simple - they are mAkAmBkB

inequalities of the form p(ab|xy) ≥ 0, one for each possible choice of a, b, x, y.
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Generally, the extremal points of NS are not known, except when the two parties are

limited to either 2 measurements or 2 outcomes - we shall focus on the latter. Before we

look at those, it is worth noting that the extremal local distributions introduced in section

5.3.4.1 are also extremal no-signalling distributions (and thus we always know this subset).

This is important for our picture of the no-signalling space, in which the local subset is

contained within the no-signalling one, with the extremal local points being extremal for

NS, whilst the facets of NS are always facets of the local polytope, L.

For the case when m = k = 2, all non-local extremal no-signalling points are of the

form

ΠPR =


1
2 0 1

2 0

0 1
2 0 1

2

1
2 0 0 1

2

0 1
2

1
2 0

 (5.49)

up to relabellings; these are the PR boxes [89], which achieve the maximal no-signalling

CHSH value. There are 8 such distributions.

When k = 2, the non-local distributions of NS take the form10 [65]:

S S S . . . S L . . . L

S A S/A . . . S/A L . . . L

S S/A S/A . . . S/A L . . . L
...

...
...

...
...

...

S S/A S/A . . . S/A L . . . L

K K K . . . K M . . . M
...

...
...

...
...

...

K K K . . . K M . . . M



(5.50)

with the following 2× 2 blocks:

S =

 1
2 0

0 1
2

 A =

 0 1
2

1
2 0

 K =

 1
2

1
2

0 0

 L =

 1
2 0

1
2 0

 M =

 1 0

0 0

 .

10Up to relabelling.
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For the scenario where Alice has mA inputs, and Bob has mB inputs, we must consider all

the 2mA by 2mB matrices of the form expressed in Eq. (5.50) - whilst the upper-leftmost S S

S A

 are always fixed, the blocks of outcomes K,L and M may then range from 0

to mA − 2 or mB − 2 occurrences respectively.

5.4 Completely Known Scenarios

For some (mA,mB, kA, kB) scenarios, all Bell inequality classes are known. We shall

present these below.

• (2,2,2,2)

The simplest scenario is which non-locality can be obtained, there are just two classes

of facet Bell inequality in this scenario - the trivial class of positivity inequalities

which is of size 16, and the CHSH class consisting of 8 inequalities of the form:

BCHSH =


0 1 0 1

1 0 1 0

0 1 1 0

1 0 0 1

 , Tr
[
BT

CHSHΠ
]
≥ 1 (5.51)

and relabellings of this. From this point on in the chapter, we shall omit writing the

Tr
[
BTΠ

]
≥ 1 - this bound should be assumed unless otherwise stated.

• (2,m,2,k)

In this scenario Alice is limited to just two inputs and two outputs, whilst Bob may

perform any m ≥ 2 measurements each with k ≥ 2 outcomes - despite this freedom,

all these scenarios retain just two inequality classes, again positivity and CHSH.

This scenario is illuminating in how lower dimensional facet inequalities remain facet

inequalities in higher dimensional scenarios; take for example the (2, 3, 2, 3) CHSH

inequality

BCHSH3 =


0 1 1 0 1 1 0 0 0

1 0 0 1 0 0 0 0 0

0 1 1 1 0 0 0 0 0

1 0 0 0 1 1 0 0 0

 . (5.52)
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Notice how there are no coefficients for the additional measurement - it is as if Bob

“never chooses” this measurement. For the remaining measurements, we see the co-

efficients for the third outcome are an exact copy of the second outcome coefficients;

Bob is treating these outcomes exactly the same. Thus the above inequality reduces

to the (2, 2, 2, 2) CHSH inequality, by ignoring the extra measurement and treating

outcome 3 as outcome 2 for each of Bob’s measurements, yet the BCHSH3 inequality

- and all possible relabellings - are facets of the (2, 3, 2, 3) local polytope. In this

chapter, we shall refer the the process of adding measurement outcomes as “lifting”

- this term is also used when adding an extra measurement; but we shall explicitly

state this when performed.

As facets of lower dimensional scenarios are also facets of higher dimensions, there

will be CHSH facets for all scenarios. Moreover, since there are more relabellings in

higher dimensions, the size of an inequality class will always increase.

• (3,3,2,2)

This is the first scenario in which a non-trivial, non-CHSH inequality is introduced.

Often referred to as I3322, it can be written

I3322 =



0 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 1


. (5.53)

Already this inequality showcases the complexity of quantum theory; not only is the

Tsirelson bound not known for this inequality, it is conjectured that to achieve the

bound infinite dimensional quantum states are required [78]. This is perhaps the

second best understood Bell inequality, yet already our knowledge is limited.

• (2,2,3,3)

Another relatively simple scenario, in which only a single extra output is added.
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Scenario Number of Inequality Classes Number of Facets Reference

(2, 2, 2, 2) 2 24 [23,42]

(2,m, 2, k) 2 2(2m − 2)(k2 − 2) + 4km [87]

(3, 3, 2, 2) 3 684 [27]

(2, 2, 3, 3) 3 1116 [27,28,66]

(3, 4, 2, 2) 6 12,480 [27]

(3, 5, 2, 2) 7 71,340 [34]

(4, 4, 2, 2) 175 36,391,264 [34]

Table 5.1: A list of the solved scenarios; included in this list are the trivial positivity

facets. For the final two a complete list of class representatives was not given, and we do

this here.

This too provides a new inequality class, I2233:

I2233 =



1 1
2 0 1 1

2 0

1
2 0 1 0 1 1

2

0 1 1
2

1
2 0 1

1 0 1
2 1 0 1

2

1
2 1 0 0 1

2 1

0 1
2 1 1

2 1 0


(5.54)

with the other two classes the trivial class and CHSH.

• (3,4,2,2)

There are 6 inequality classes for this scenario, which were presented in [27].

• Partially known cases

For the scenarios (3, 5, 2, 2) and (4, 4, 2, 2) the number of both facets and classes

are known, thanks to an isomorphism of two-outcome local polytopes to a class of

geometrically interesting “cut polytopes” [33]. The cut polytopes corresponding to

these scenarios were solved in [34], and we enumerate a full list of representatives of

each class for those local polytopes in this chapter.

For all other bipartite scenarios, the complete lists of Bell inequality classes are not

known - specific families of Bell inequalities, such as Imm22 [27] have been constructed,
154



5.5 An Algorithm for Generating Bell Inequalities

but as figure 5.1 shows, the number of classes jumps dramatically, so much so that these

constructed classes are but a drop in the ocean.

5.5 An Algorithm for Generating Bell Inequalities

5.5.1 Quantum Application of Linear Programming

Given an arbitrary no-signalling distribution, we would like some measure of “locality”

more informative than simply membership or not to the local polytope. One way to give

this locality could be using Bell inequalities; however, this raises this issue of which Bell

inequality to use, as in higher dimensions the inequality required may not even be known.

By contrast, we always know the local deterministic strategies, which correspond to the

extremal points of the local polytope; and moreover are a subset of the extremal no-

signalling (NS) points. Since our no-signalling space is a convex polytope, we may write

any no-signalling distribution as a (not unique) convex combination of extremal points.

We can therefore calculate the decomposition which maximises the weight of the local

extremal distributions - this problem can be formulated as a linear program, and works

even when the extremal non-local no-signalling points are not known.

Definition 5.5.1 ( [113]) We define the local weight of a no-signalling distribution q as

the solution to the problem:

maximise
∑
i

xi subject to:
∑
i

xidi ≤ q, xi ≥ 0. (5.55)

By defining c = 1 and A as the matrix (d1 . . .dn), we can express this as a canonical

primal linear programming problem.

If q is a local distribution, then the maximal value will be 1; similarly if we take an

extremal (non-local) NS point, such as a PR box, then the value of this program will be 0.

In general, we are able to split a NS distribution q into two sub-normalised distributions;

Ax∗, the local distribution which optimises cTx, and (q − Ax∗), a NS distribution with

no local part.

Corollary 5.5.2 If q is non-local, i.e. cTx∗ < 1, then the solution y∗ to the dual is a

Bell inequality.

Proof. Suppose we have that the local weight cTx∗ = k < 1. The dual problem of the

one seen in definition 5.5.1 is
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minimise qTy subject to: ATy ≥ 1, y ≥ 0. (5.56)

By strong duality, we have that qTy∗ = k. We also have that
∑

j Ajiyj ≥ 1, ∀i. This

means the product of y with each column of A, di, is always at least 1. Thus, we have a

Bell inequality y with local bound 1, violated by q, with all positive entries. �

We would like to exploit this result in order to generate all facet Bell inequalities for a

given scenario. In order to do this, we need to choose suitable q, and be sure it is possible

for every facet to be a possible solution for a dual problem of the above form.

For the choice of q, we look at the complementary slackness condition (theorem 5.3.6),

which gives us that:

(q−Ax∗)T y∗ = 0, (5.57)

and(
ATy∗ − c

)T
x∗ = 0. (5.58)

The first condition, Eq. (5.57), tells us that the optimum Bell inequality y∗ achieves value

0 at the non-local part of q, (q−Ax∗). Note that this is the minimal possible value, since

all elements of both y∗ and q − Ax∗ are non-negative. Furthermore, this implies each

extremal NS point in the decomposition of q−Ax∗ must achieve value 0.

The second condition, Eq. (5.58), implies that for all i either x∗i or
(
ATy∗ − c

)T
i

is

zero, as both values are non-negative. x∗i is non-zero iff the local distribution di is in the

local weight of q - for these points we are forced to conclude that diy
∗ = Aiy

∗ = ci = 1

i.e. that the local part of q saturates the local bound of y∗.

This suggest a suitable q may be an extremal no-signalling distribution, perhaps in

a convex combination with low-weighted local points. The following results support this

choice, by providing good evidence we will be able to generate every facet.

Theorem 5.5.3 For every (violatable) facet Bell inequality with non-negative entries and

local bound 1, there exists an extremal NS point such that the value of the Bell inequality

at that point is 0.
156



5.5 An Algorithm for Generating Bell Inequalities

Proof. Let πTy∗ ≥ 1 be a (violatable) facet Bell inequality. Let us pick a q such that

qTy∗ < 1 but qTb ≥ 1 for all other facet Bell inequalities b ̸= y∗. This is always possible

since y∗ is in the minimal H-representation of the local polytope. Therefore y∗ is the

optimum solution to the dual problem and so the complementary slackness theorem gives

qT
nsy

∗ = 0 where qns = (q−Ax∗), the non-local part of q. By convexity we can write qns

as a sum of extremal no-signalling distributions {nk}, each of which much satisfy nT
k y

∗ = 0

by linearity. �

The above theorem assumes non-negative entries and a local bound 1; however we have

the following lemma.

Lemma 5.5.4 All Bell inequalities can be written with non-negative coefficients and local

bound 1.

Proof. Suppose our inequality has the form11 bTπ ≥ k ̸= 1. Then we may transform

b′ = b+ (1− k) / (mAmB)1 - this satisfies b′Tπ ≥ 1. Now suppose b′ has negative coef-

ficients, the most negative of which is −α. By adding α uniformly to each coefficient, we

obtain an inequality b̃ with local bound 1 + α (mAmB) > 1. Finally we can divide each

coefficient of b̃ by 1 + α (mAmB), to obtain an inequality b̂ with all non-negative entries,

and local bound 1. If k = 1, we may skip the first transformation. �

Based on these results, we apply the following algorithm. We first present the algorithm

in the section below, and then break down and explain the steps and choices made. There

are two different versions presented, which will be justified.

5.5.1.1 A Linear Programming Algorithm for Bell Inequalities

We begin by choosing a scenario (mA,mB, kA, kB) we wish to find Bell inequalities for -

to take advantage of the no-signalling points, kA = kB must be set to 2. Also chosen is a

noise value η, with a small positive value.

Algorithm 1 (Algorithm 2)

1. The first step of the algorithm is to generate the subset of extremal no-signalling

distributions of the form (5.50), with only S and A components. We label this set

11We shall use bTπ and πTb interchangeably as context requires.
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ṼNS . Also generated is A = {d1 . . .dn}, and the polytope dimension t = (mA(kA −

1) + 1)(mB(kB − 1) + 1)− 1.

(1b) The set of permutations on the set of deterministic local points under all possible

relabellings, Ω, is generated.

2. A no-signalling point q is chosen from ṼNS . The dual problem

minimise qTy subject to: ATy ≥ 1, y ≥ 0 (5.59)

is then solved using the simplex method, giving optimal solution y∗ = b.

3. The vector cb = ATb gives the value of b at each local deterministic point. We

affinely fix this vector (explained in Section 5.5.6) to obtain vector ĉb.

4. The submatrix Ab is formed with columns {di} such that AT
bb = 1.

5. The matrix rank of Ab is calculated. If rank[Ab] = t, the dimension of the local

polytope, then b is added to our list of facet inequalities, and ĉb is stored with it.

Also stored is the tally of ĉb elements, Tb.

6. Two columns, dα,dβ are chosen from Ab, and a new “noisy” distribution

q′ =

(
1− 3η

2

)
q+ ηdα +

η

2
dβ (5.60)

is formed. The problem

minimise q′Ty subject to: ATy ≥ 1, y ≥ 0 (5.61)

is then solved to give optimum y∗ = b′.

7. The vector cb′ = ATb′ is calculated, and affinely fixed to give ĉb′ .

8. The submatrix Ab′ is formed with columns {di} such that AT
b′b′ = 1.

9. The matrix rank of Ab′ is calculated. If rank[Ab′ ] = t, then the tally Tb′ of ĉb′

elements is checked against all stored tallies.

10. If Tb′ is different to all stored tallies, then b′ is added to the facet inequality list. If

it is equal, then it is discarded.
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(10b) If Tb′ is found equal to a stored tally, we permute ĉb′ from Step 7 under every

permutation ω ∈ Ω. If it matches a previously stored vector, then we may conclude

they are inequalities belonging to the same class, and discard b′. If not, b′ is a new

facet inequality class and b′, ĉb′ and Tb′ are stored.

11. Steps 6-10 (6-10b) are then repeated for all possible pairs dα,dβ from Ab.

12. Steps 2 to 12 are then repeated for a new q from ṼNS , until all no-signalling points

have been checked. From here on, Step 5 is also checked in the manner of Steps 9-10

(9-10b).

The simplex algorithm we use is deterministic - although there are many possible optima

due to the degeneracy of the problem, rerunning the algorithm will output the same solu-

tion. Therefore in order to increase our list of inequalities we employ the technique that,

once the full algorithm above has been run, we can change the value of the noise parameter

in order to obtain different solutions.

5.5.2 Choice of the Simplex Algorithm

We already saw in corollary 5.5.2 how a non-local q will mean the solution to the dual

problem will be a Bell inequality - so why do we specify a particular solution method? The

reasoning is that we are looking to enumerate the facet Bell inequality classes of a given

scenario. In a linear programming problem, optimisation takes place over a (possible un-

bounded) polytope - and the dual problem takes place over a corresponding dual polytope.

We saw how, for the polar dual, the extremal points of the dual polytope corresponded

to the facets of the primal polytope. For the above linear program the primal polytope is

the local polytope; the dual polytope given by our dual problem is not the polar duel, but

nevertheless many of its extremal points still correspond to facet inequalities of the local

polytope. The simplex algorithm explores these extremal points, and thus our solution will

often result in a facet inequality. If we were to use the interior point method however; we

could end up with a solution corresponding to a convex combination of facet inequalities;

from which we would be unable to retrieve the facets. This problem is exacerbated by the

fact that an extremal no-signalling point often violates (even maximally) many different

inequalities.
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5.5.2.1 Possible Solutions for the Linear Program

Given the maximum principle (lemma 5.3.4) states that the optimal solution of the linear

program will be acheived at an extremal point of the solution space polytope, we wish

to know what the extremal points of problem (5.56) are, and are they the facet inequalities?

Due to the computational requirements, we are only able to enumerate these polytopes

for two scenarios12 (2, 2, 2, 2) and (3, 3, 2, 2), and so will have to test our predictions on

these scenarios. It should be noted however, that these are not in general representative

of (mA,mB, 2, 2) scenarios, due to the low number of inequality classes.

Performing vertex enumeration of the conditions dT
i y ≥ 1, y ≥ 0 we find the following

polytopes:

• (2,2,2,2)

The extremal points of the dual solution polytope are given in table 5.2. We see

this is an unbounded polytope, although the rays correspond to non-violatable Bell

inequalities. We also see there exist normalisation condition vertices, but the so-

lution will occur at a CHSH vertex - of which there are many redundant vertices

corresponding to the same inequality.

Type # Inequality Class Additional Info

Ray 16 Positivity conditions Each is of the form yi = δik, k ∈ 1 . . . 16.

Vertex 12 Normalisation condition Each of these satisfies yTq = 1, q ∈ NS.

Vertex 16 Positivity conditions

Vertex 104 CHSH

Table 5.2: The linear programming variable search space for (2, 2, 2, 2) - note that the

space is unbounded, although the problem itself is not.

Although these new and redundant vertices are not ideal, the algorithm does not

enumerate the full polytope, and our solution will necessarily be a CHSH (and

12We may also enumerate (2, 3, 2, 2) and (2, 2, 3, 3) - The first scenario does not provide any new classes,

whilst we do not know the extremal no-signalling points for the second.
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therefore facet) inequality, since the normalisation and positivity conditions are non-

violatable.

• (3,3,2,2)

The extremal points for this scenario are given in table 5.3. We see the number

of vertices grows enormously, and importantly we see the addition new “non-facet”

vertices, in comparison to the (2, 2, 2, 2) case. These correspond to Bell inequalities

defining lower dimensional faces; and are expressible as convex combinations of the

facet inequalities. They appear as vertices due to the additional constraints that

yi ≥ 0.

Type # Inequality Class Additional Info

Ray 36 Positivity conditions Of the form yi = δik, k ∈ 1 . . . 36.

Vertex 45 Normalisation condition

Vertex 144 Positivity conditions

Vertex 2952 CHSH

Vertex 248832 I3322

Vertex 442176 Non-facet inequalities These vertices correspond to lower dimensional faces of L.

Table 5.3: The linear programming variable search space for (3, 3, 2, 2) - we see here the

introduction of extremal points which correspond to non-facet Bell inequalities.

Our constraints that dT
i y ≥ 1 are intuitive, but the inequalities yi ≥ 0 appear simply

from the canonical form of the linear program. One could instead consider only the space

defined by dT
i y ≥ 1, ∀i. The extremal points of these polytopes are given in table 5.4 and

table 5.5 for the (2, 2, 2, 2) and (3, 3, 2, 2) scenarios respectively.

Type # Inequality Class Additional Info

Vertex 1 Normalisation Our lone vertex is simply the condition yTq = 1.

Ray 16 Positivity conditions

Ray 8 CHSH

Table 5.4: The alternative (2, 2, 2, 2) search space, allowing negative values.

We see that these solution space look very promising - except for a single vertex, every

ray corresponds to a facet inequality, with no degeneracy. We may allow negative values
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Type # Inequality Class Additional Info

Vertex 1 Normalisation Our lone vertex is again the condition yTq = 1.

Ray 36 Positivity conditions

Ray 72 CHSH

Ray 576 I3322

Table 5.5: The alternative (3, 3, 2, 2) search space, allowing negative values; we see no

non-facet vertices, but our facet vertices have become rays.

of y in linear programming by defining for each yk two new variables yk = y+k − y−k . We

then replace our conditions:

dT
i y ≥ 1, ∀i → dT

i y+ − dT
i y− ≥ 1, ∀i,

y ≥ 0 → y+ ≥ 0,y− ≥ 0.

Unfortunately, this new linear programming problem, with objective function qTy+ −

qTy− is unbounded, as we can no longer bound our objective function by 0 from below.

Therefore, this solution space cannot be used for our linear program.

We have seen earlier in the chapter there already exists a bounded polytope, whose

vertices are exactly the facet Bell inequalities; the polar dual of the local polytope. Al-

though 0 /∈ L, we can shift the origin to account for this. The natural choice for this is

the uniform distribution, in which every outcome has equal probability - this distribution

is also an equal mixture of every local extremal point. Once more, we use y = y+ − y−;

since the polar dual is bounded we will not obtain an unbounded problem. Despite this,

the polar dual is not a good choice, as we shall see in the results section.

5.5.3 Omission of the K,L,M components

Choosing no-signalling points of the form seen in Eq. (5.50) already proffers an advantage

when searching for Bell inequality classes - all violatable inequalities can be relabelled

appropriately to create a class member violated by a no-signalling point of this form. By

limiting the choice of q to these points, we do not remove any classes, but remove many

redundant relabelled inequalities. This form does not completely remove all equivalences

of no-signalling points under relabelling - this extra pre-processing step could be done to
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cut down on redundant inequalities further. One thing we can do with certainty though,

is to cut out all no-signalling points with K,L and M components. We prove this in the

following lemma:

Lemma 5.5.5 For every positive valued, local bound 1 facet b of the (mA,mB, 2, 2) local

polytope, there exists a facet b̂ in the same inequality class, and an extremal no-signalling

distribution q of the form in Eq. (5.50) whose blocks consist solely of S and A, such that

b̂Tq = 0.

Proof. By lemma 5.5.3 every facet inequality has at least one π ∈ VNS such that

bTπ = 0. We may always relabel π to obtain π̂ in the form Eq. (5.50), defining a new

inequality b̂ with b̂T π̂ = 0. Suppose that b̂Tq > 0 for all q in the form Eq. (5.50)

consisting only of S and A blocks. We define the subsets of measurements MK , ML such

that, for π̂:

Π̂|xy = K, x ∈ MK , y ̸∈ ML,

Π̂|xy = L, x ̸∈ MK , y ∈ ML,

Π̂|xy =M, x ∈ MK , y ∈ ML.

By assumption, at least one of MK ,ML must be non-empty. Suppose without loss of

generality it is MK . As b̂T π̂ = 0, and the coefficients of b̂ are non-negative, we can

therefore conclude

B̂(0b|xy) = 0, b ∈ {0, 1}, x ∈ MK , y ̸∈ ML, (5.62)

B̂(a0|xy) = 0, a ∈ {0, 1}, x ̸∈ MK , y ∈ ML, (5.63)

B̂(00|xy) = 0, x ∈ MK , y ∈ ML. (5.64)

Consider the subset DK ⊂ VL of deterministic distributions with pA(1|x) = 1, x ∈ MK .

Suppose there exists a saturating point dk ∈ DK i.e. that b̂Tdk = 1. Now consider another

deterministic distribution d′
k such that pA(0|x) = 1, x ∈ MK , pB(0|y) = 1, y ∈ ML, but

all other probabilities of dk are left unchanged. This means that all non-zero probabilities

in dk are mapped to a probability in d′
k whose coefficient in b̂ is either unchanged, or 0.

Thus we can conclude

1 ≤ b̂Td′
k ≤ b̂Tdk = 1, (5.65)

the lower bound coming from the requirement that b̂ is a Bell inequality. Thus we must
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have b̂Td′
k = b̂Tdk, and therefore:

B̂(10|xy) = 0 or B̂(11|xy) = 0, x ∈ MK , ∀y. (5.66)

with the choice determined by the deterministic choice of dk. Combining Eq. (5.66) with

Eq. (5.62) and Eq. (5.64) respectively implies

B̂|xy =

 0 0

0 γ

 or B̂|xy =

 0 0

γ 0

 , x ∈ MK , y ̸∈ ML, (5.67)

B̂|xy =

 0 γ1

0 γ2

 or B̂|xy =

 0 γ1

γ2 0

 , x ∈ MK , y ∈ ML. (5.68)

We can see that these coefficients imply that Π̂|xy, x ∈ MK , y ̸∈ ML can be replaced

with one of either S or A without increasing the value of b̂T π̂. If ML is empty, then

we can thus conclude that no saturating points lie in DK , as we have contradicted our

assumption. If ML is non-empty, then for our assumption to still hold it must be the case

that B̂|xy, x ∈ MK , y ∈ ML must be of the first form in Eq. (5.68); else we could replace

Π̂|xy with an S block. Furthermore, both γ1, γ2 ̸= 0, else we could again replace this block

with either S or A.

Consider now the setDL ⊂ VL of deterministic distributions with pB(1|y) = 1, y ∈ ML.

We may conclude that for any point dl ∈ DL,

1 ≤ b̂Td′
l < b̂Tdl (5.69)

where d′
l is the deterministic point setting pA(0|x) = 1, x ∈ MK , pB(0|y) = 1, y ∈ ML,

and leaving all other probabilities in dl unchanged. This is because all non-zero proba-

bilities are mapped to probabilities with Bell coefficients either the same or 0, while for

x ∈ MK , y ∈ ML they are mapped to Bell coefficients strictly less than before. Thus no

saturating points of b̂ lie in DL.

We have thus proved that, for a Bell inequality satisfying our assumption, that the

saturating extremal local distributions lie either in VL\DK or VL\DL, with a non-empty

exclusion. Since all deterministic distributions in this set have for at least one measurement

either pA(0|x) = 1 or pB(0|y) = 1, we can conclude

dim [A(VL\VDK
)] ≤ dim [(mA − 1,mB, 2, 2)] < dim [(mA,mB, 2, 2)]− 1 = dim [L]− 1,

dim [A(VL\VDL
)] ≤ dim [(mA,mB − 1, 2, 2)] < dim [(mA,mB, 2, 2)]− 1 = dim [L]− 1.
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This contradicts our assumption that b̂ is a facet, as its affine dimension is too low. Thus

we may conclude that such a b̂ is impossible, and we have proved our result. �

5.5.4 Addition of Local Distributions

The simplex algorithm is deterministic: solving the dual problem with the same q will

return us the same Bell inequality candidate. In order to increase the candidates, we

add a small amount of local noise to increase the number of input objective functions.

Moreover, complementary slackness tells us that
(
ATy∗ − c

)T
x∗ = 0. Provided that the

choices dα, dβ give the maximal local weight of q′, then the candidate inequality outputted

will be saturated by these local points - this will reduce the number of output solutions

corresponding to convex combinations of facets. If these local points do not provide the

maximal local weight, then different x∗i will be non-zero, and different local points will

saturate the candidate inequality. This still cuts down on on the likelihood on a non-facet

solution however.

As the dimension grows, and the number of extremal points corresponding to non-facet

inequalities grows, one could potentially add more local points in order to more stringently

constrain the resulting output.

5.5.5 Using Matrix Rank to Test a Facet

Once we have obtained a Bell inequality y∗, we wish to test if it is a facet inequality.

This means it must define a face of dimension (t − 1), with t the dimension of the local

polytope13. To check this, we calculate the matrix rank of Ay∗ , the matrix whose columns

are di such that y∗Tdi = 1; exactly the extremal local distributions which lie of the face

defined by y∗. The matrix rank gives the dimension of the vector space spanned by the

columns of the matrix, and I make the claim this is exactly greater than the dimension of

the face defined by y∗ by 1. Let us label the columns of Ay∗ as {d∗
i }

k
i=1. The matrix rank

of Ay∗ is therefore

rank [Ay∗ ] = dim [V ({d∗
1,d

∗
2, . . .d

∗
k})] ≡ dim [V ({d∗

1,d
∗
2 − d∗

1, . . .d
∗
k − d∗

1})] . (5.70)

13Given in Eq. (5.29).
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We also have that the dimension of the face defined by y∗ is given by the dimension of

the affine space Ay∗ := A ({d∗
1,d

∗
2 . . . ,d

∗
k}). For this space we have that:

dim [Ay∗ ] = dim [V ({d∗
2 − d∗

1,d
∗
3 − d∗

1, . . . ,d
∗
k − d∗

1})] . (5.71)

From this, we can see that

rank [Ay∗ ] =


dim [Ay∗ ] if d∗

1 ∈ V ({d∗
2 − d∗

1,d
∗
3 − d∗

1, . . . ,d
∗
k − d∗

1})

dim [Ay∗ ] + 1 otherwise
(5.72)

using the property that dim [V +W] ≤ dim[V] + dim[W] for vector spaces.

Suppose d∗
1 ∈ V ({d∗

2 − d∗
1,d

∗
3 − d∗

1, . . . ,d
∗
k − d∗

1}). Then there exist βi ∈ R such that

d∗
1 =

k∑
i=2

βi (d
∗
i − d∗

1) . (5.73)

This implies that

0 = d∗
1 −

k∑
i=2

βi (d
∗
i − d∗

1) ∈ Ay∗ . (5.74)

However, this cannot be the case: by the normalisation condition, the elementwise sum of

any point in Ay∗ must equal mAmB ̸= 0. Therefore we may conclude 0 ̸∈ Ay∗ and there-

fore rank [Ay∗ ] = dim [Ay∗ ] + 1, and so if rank [Ay∗ ] = t then y∗ is a facet Bell inequality.

5.5.6 Affine Fixing

Once an inequality y∗ has been determined to be a facet, we then wish to check whether

a representative of the facet inequality class has already been found. To do this, we use a

method called affine fixing, done in the following way.

We first calculate the vector cy∗ = ATy∗, which gives the value of y∗ at each local

extremal distribution. As some extremal points saturate the inequality, the minimum

element of this vector will be 1. We label the next lowest element γ > 1. We then perform

the affine transformation

ĉy∗ =
1

γ − 1
cy∗ +

γ − 2

γ − 1
(5.75)

which maps the lowest element (1) to 1, and the second lowest element (γ) to 2. As Bell

inequalities are invariant under transformations of the form kb+ s, k ̸= 0, this vector will
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be identical for all representations of y∗. It also gives us a representation

ŷ∗ =
1

γ − 1
y∗ +

γ − 2

γ − 1

1

mAmB
1 (5.76)

which we can be certain has local bound 1 and next lowest local extremal value 2. This

can be a useful standardisation to compare properties of Bell inequalities.

Now consider another facet inequality z belonging to the same class as y∗. As they

belong to the same class, there exists a relabelling ℓ which, when applied to z, gives a

representation of y∗; say ỹ∗. We could then take the vector cỹ∗ = AT ỹ∗, and apply the

affine fix to obtain ĉỹ∗ . Clearly ĉỹ∗ = ĉy∗ . Instead of this, we could have affine fixed

cz to obtain ĉz, then instead applied the relabelling ℓ to the local distributions, induc-

ing a permutation ωℓ. This would permute the elements of ĉz, and as the relabelling

ℓ : z → ỹ, we would obtain the vector ĉỹ∗ = ĉy∗ . Thus if two facet inequalities y∗ and

z belong to the same class, their affine vectors ĉy∗ and ĉz will be reorderings of each other.

In algorithm 1, we simply tally the elements of ĉy∗ and compare it to the tallies of all

stored facet inequalities, storing the inequality if it is non-equal to any already obtained,

and discarding it otherwise. If the tally does not coincide with the tally of any stored

inequalities, ĉy∗ cannot be a permutation of any previously stored ĉz and thus cannot

be of the same inequality class. Non-equality of the tally is not a necessary condition to

belong to a different class however; the two (4, 4, 2, 2) inequalities B1, B2 both have the

same “affine tally”, TB1 = TB2 , but do not belong to the same class. These inequalities

have been transformed in the manner described14 by Eq. (5.76). TB1 is given in table 5.6.

14For presentation, rather than removing the constant uniformly, we have taken it only from the (1, 1)

measurement pair.
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Local Value #di

1 48

2 96

3 64

4 32

5 16

Table 5.6: The affine tally of both B1 and B2.

B1 =



−1
2 −1

2 0 0 0 0 0 0

−1
2 −1

2 0 0 0 0 0 0

0 1 1 0 0 1
2 0 1

2

0 0 0 0 1
2 0 1

2 0

0 0 0 1 0 1
2

1
2 0

1 0 0 0 1
2 0 0 1

2

0 1 0 0 0 0 0 1

0 0 1 0 0 1 0 0



(5.77)

B2 =



−1
2 −1

2 0 1 0 0 0 1

1
2 −1

2 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 1
2

1
2 0

0 0 0 0 1
2 0 0 1

2

0 1 0 0 1
2 0 1

2 0

0 0 0 0 0 1
2 0 1

2



(5.78)

It is exactly because of this that we have the variation algorithm 2, to avoid throwing

away new facet inequalities. Before the search begins, the set of possible permutations of

the local points by relabelling, Ω, is generated and stored. Then when a facet inequality

y∗ is found, Ty∗ is first compared against that of the classes already found as before, but

if found to be equal to a stored tally Tz, rather than throwing the inequality away, we

instead apply all permutations ω ∈ Ω to ĉy∗ - if ω (ĉy∗) = ĉz we may conclude y∗, z are in
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the same inequality class and discard y∗, and if no such ω is obtained then we conclude

y∗ is a new class, and store y∗, ĉy∗ and Ty∗ .

The size of Ω is (kA!)
mA (kB!)

mB mA!mB!, so the storage space required grows very

rapidly. However, once the permutation set is generated, the variations can be checked

equal/non-equal quite rapidly.

5.5.7 Results - and Limitations

One of the most pertinent limitations to this algorithm is that is does not terminate once

all facet Bell inequalities have been found. In theory, it is possible for a variation of the

algorithm to guarantee finding all facet inequality classes: by cycling through every no-

signalling point adding every set of t linearly independent local deterministic points as a

small noise factor, one would guarantee finding every facet inequality - since one would

eventually hit a no-signalling point with value 0 at that inequality, with the deterministic

noise set a subset of the saturating deterministic points. These conditions are sufficient

for the facet to be the unique optimal solution. This would be an extremely unfeasible

algorithm to run, however. This means that in general we are running the algorithm with

no idea when to stop, or how close the number of inequality classes obtained is to the true

number of classes. With the exception of the (4, 4, 2, 2) and (3, 5, 2, 2) scenarios, where the

number of classes was enumerated in [34], the results presented below are necessarily lower

bounds only. We can obtain an upper bound to the number of facets from [75], but it is

orders of magnitude larger than our lower bounds, and thus provides little illumination of

the true number of classes - especially because the relation between number of facets and

number of Bell inequality classes remains obscure.

• (4,4,2,2)

For the (4, 4, 2, 2) scenario, we have enumerated all 175 inequivalent classes of Bell

inequality (including the trivial positivity inequality). Previously the most compre-

hensive list was 129 non-trivial inequalities given in [79], which employs an alterna-

tive linear-program based method of generation. Our generation of these inequalities

was performed on a standard desktop computer within a day or two - first running

algorithm 1, which generated 165 inequalities - after finding no new inequalities for

10000 iterations, we swapped to algorithm 2, which generated the remaining 9 (we
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Size of Class Number of Classes

64 1

288 1

9216 2

18432 4

24576 1

36864 4

49152 2

73728 8

98304 2

147456 61

294912 89

36391264 175

Table 5.7: The size of each facet class for the (4, 4, 2, 2) local polytope. The totals at the

bottom coincide with those presented in [34], as expected.

added the trivial inequality manually). A full list of these classes can be found at

http://www-users.york.ac.uk/~tpwc500.

In order to gain a clearer picture of this polytope, we also provide a table giving the

size of each class. This is given in table 5.7.

• (3,5,2,2)

For this scenario, it was given in [34] that there are 7 classes of facet. In [27], 6

classes were given for the (3, 4, 2, 2) scenario - which we know will be facet classes

for (3, 5, 2, 2) also. We enumerated the 7 classes of this scenario using algorithm 1

and compared to the 6 known, finding the new inequality class to be:

I3522 =



0 2
3 0 0 0 1

3 0 0 0 1
3

0 0 2
3 0 1

3 0 0 0 1
3 0

0 0 0 0 2
3 0 2

3 0 0 0

2
3 0 0 2

3 0 0 0 0 0 0

0 0 0 2
3 0 1

3 0 0 1
3 0

0 0 0 0 1
3 0 0 2

3 0 1
3


(5.79)
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We can also affine fix this to obtain:

Î3522 =



−1
2

1
2 0 0 0 1

2 0 0 0 1
2

−1
2 −1

2 1 0 1
2 0 0 0 1

2 0

0 0 0 0 1 0 1 0 0 0

1 0 0 1 0 0 0 0 0 0

0 0 0 1 0 1
2 0 0 1

2 0

0 0 0 0 1
2 0 0 1 0 1

2


(5.80)

• (4,5,2,2)

For the (3, 4, 2, 2) scenario, there are 6 inequality classes. For (4, 4, 2, 2), there are 175

classes - an extraordinary jump! However, this pales in comparison to the addition

of a further measurement choice. Running algorithm 1 for the (4, 5, 2, 2) scenario, we

have found a staggering 16, 642 inequality classes - and this is only a lower bound.

One cannot think of this even as a close lower bound, as we stopped this scenario

due to memory constraints.

• (3,3,3,3)

For this case, we do not know the full set of no-signalling extremal points - and

thus cannot use them as our objective function for the linear program. Instead,

we generate random quantum distributions. To do this, we generate a vector of 3

real elements αi; from this we define a normalised vector α̂i = αi/∥α∥ - such that∑
i α̂i

2 = 1. We take this to be the Schmidt coefficients of some pure entangled

(since there exists multiple non-zero coefficients) state, |ϕ⟩ =
∑3

i=1 αi |ii⟩. We then

generate 6 random unitaries
{
UA1 , UA2 , UA3 , UB1 , UB2 , UB3

}
, each unitary corre-

sponding to a measurement. Since the columns of each U i are orthonormal, we can

define projection operators P i
k := |[U i]Tk ⟩ ⟨[U i]Tk | satisfying

∑
k P

i
k =

(
U i
)†
Ui = I3.

Thus, we obtain the probability distribution:

p(ab|xy) = ⟨ϕ| (PAx
a ⊗ P

By

b ) |ϕ⟩ . (5.81)

We may then use this as the objective function. Using this, we were able to find

10143 inequality classes15. Once more this can be seen as a loose lower bound, being

stopped at an arbitrary point. Moreover, in the above generation we have limited

15In [92] a similar linear programming technique was used to provide 19 classes, of which 3 were found

here.

171



Chapter 5: Bell Polytopes and the Detection Loophole

Scenario # Extremal S/A points Min facet % Max facet % Mean %

(2, 2, 2, 2) 1 100% 100% 100%

(3, 3, 2, 2) 8 44.3% 80.6% 65.25%

(4, 4, 2, 2) 256 33.9% 66.7% 57.50%

Table 5.8: A survey of % success of obtaining a facet-defining solution.

ourselves to projective measurements, in dimension 3. We could easily generalise

this to higher dimension (one could take a d×d unitaries, and partition the columns

into three sets) or generate POVM elements instead. However, one should be aware

that projective measurements often result in a local distribution - and it is likely

POVM elements would increase the chance of this happening.

5.5.7.1 Facet Density

As mentioned previously, not every output is a facet inequality. Unfortunately it is too

difficult to enumerate the full polytopes in order to determine the exact proportion of

these, except in the low dimensional cases, so instead we shall employ an “operational”

test. In table 5.8, there is an analysis of how often a facet Bell inequality was obtained,

by performing 1000 runs over each S/A extremal no-signalling point. Note this makes

no reference to how often a new facet class was obtained, just to how often a facet was

outputted. It appears that the % success decreases as the dimension increases.

5.5.7.2 Use of the Polar Dual

Earlier in this chapter, we discussed the possibility of using the polar dual of L as the

solution space to our linear program. As the vertices correspond exactly to facet Bell in-

equalities, this would guarantee our solutions would be facet inequalities by the maximum

principle (lemma 5.3.4). In order to use the polar dual, we need to shift the origin, so

that it lies in the interior of L . The natural choice is the uniform distribution πu, where

p(ab|xy) = 1
kAkB

,∀a, b, x, y. For example, in the (2, 2, 2, 2) scenario this would map the
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extremal no-signalling point:

ΠPR =


1
2 0 1

2 0

0 1
2 0 1

2

1
2 0 0 1

2

0 1
2

1
2 0

→
−→
ΠPR =


1
4 −1

4
1
4 −1

4

−1
4

1
4 −1

4
1
4

1
4 −1

4 −1
4

1
4

−1
4

1
4

1
4 −1

4

 . (5.82)

We can see that we are now allowed negative values in our distributions, and in order to

keep the dual polytope as our solution space we must also relax our constraint that y ≥ 0.

Therefore our new linear program will be

maximise −→q Ty subject to: −→ATy ≤ 1 (5.83)

where −→
A is the matrix whose columns are the extremal local distributions with shifted

origins, (−→d 1 . . .
−→
d n). Notice the inequality sign is flipped from Eq. (5.59) in order to be

of the correct form for the polar dual, and consequently our optimisation have become a

maximisation. As the local polytope is bounded, so too is the dual polytope, and so the

objective function −→q Ty is bounded. However, our conversion of the problem into the form

in Eq. (5.83) means we no longer have a known bound on the objective function16. To

illustrate the problem with this, we perform the optimisation in Eq. (5.83), for all extremal

no-signalling points which are non-local −→q ∈ V−−→NS\V−→L . For the (4, 4, 2, 2) scenario, the

greatest solution obtained is 12
5 , and the least solution is 2. Unlike Eq. (5.59), the optimal

value varies with the no-signalling point used.

We now consider a particular (4, 4, 2, 2) Bell inequality of the form:

−→
B ex =



0 −4
5 0 0 0 0 0 −4

5

0 0 −4
5 0 0 0 0 0

0 0 0 0 0 −4
5 0 0

−4
5 0 0 −4

5 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −4
5 0 0 −4

5 0

0 0 0 0 −4
5 0 0 0



,Tr
[−→
B T

ex

−→
Π
]
≤ 1. (5.84)

16In the original form, we had that qTy ≥ 0.
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and a corresponding linear programming problem:

maximise qT−→b ex subject to: q ∈
−−→
NS. (5.85)

We may do this because the no-signalling constraints are linear equalities, whilst we know

the H-representation of NS is the set of positivity conditions, which may be shifted to

define −−→
NS. Performing this optimisation we find the maximal value to be 9

5 < 2. We can

therefore conclude there is no extremal no-signalling point that when used as the objective

function for Eq. (5.83), will give the solution y∗ =
−→
b ex - by using the dual polytope, we are

no longer able to generate all facet Bell inequalities using extremal no-signalling points.

However, one could still use the dual polytope by generating quantum distributions and

measurements, as seen for the (3, 3, 3, 3) scenario.

5.6 The Detection Loophole

In the introduction to this chapter we discussed Einstein et al.’s postulate that there ex-

isted “hidden variables”, which somehow determined quantum behaviour. Moreover, we

saw how Bell’s theorem gave an inequality for all models of this form - one which is violated

by quantum theory. This inequality takes in correlations17 between joint measurements.

This is slightly disingenuous - we cannot perform all such joint measurements on a single

state. To test the inequality, we require many joint measurements over several copies of

the same state. This in itself not a problem, since any observation of a violation will still

discount a hidden variable model across these states. What is a concern however, is that

experimentally we cannot guarantee a successful measurement with 100% certainty. If

we simply discount these failed detections, then it is possible [80] to obtain correlations

which violate a Bell inequality, but if the whole distribution (including detection failures)

is considered, admits a local hidden variable model.

It is perhaps reasonable to dismiss the concept that, within the machinations of the

universe, particles are behaving in such a way that when detected they are reliably appear-

ing to follow quantum mechanics, whilst in fact being determined by a different model,

as paranoid. Indeed, the important experiment detailed in [54] put paid to this idea, per-

forming an experiment free of this (and other) “loopholes” - this particular problem being

17Or joint probabilities, in alternative forms.
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referred to as the “detection loophole”. What is not paranoid however, is to consider this

problem in the context of quantum cryptography. One of the recent advancements quan-

tum cryptography offers is the concept of “device independent cryptography” [26,74] - in

which a secret key is established between parties using black box devices, where they know

nothing about the inner workings. In classical cryptography to trust such a device would

be impossible; they could simply be preprogrammed beforehand to spit out a seemingly

random string which is completely known to a malicious party. In quantum cryptography

however, the two parties may sacrifice some of their generated string in order to Bell test

the devices, and ensure the boxes are behaving in a quantum manner, excluding the pos-

sibility of a pre-programmed (i.e. hidden variable) scenario.

If the black boxes are allowed to offer no output however, then once more the attacker

may proffer a string which appears to violate a Bell inequality, but in fact has been

generated by only outputting outcomes desirable to the attacker. This means the failure

to output needs to be considered when Bell testing the device. This is especially pertinent

given that current commercial quantum cryptography devices, and likely future ones,

operate using quantum optics, where the practicalities of sending and detecting single

photons inevitably lead to detection failures. The user will want to ensure that any failures

to output are genuine errors in the protocol, rather than deliberately pre-programmed.

5.6.1 How to Treat Detection Failures

In this section, we shall focus on conditional probability distributions, rather than corre-

lations. We need to know how to treat probability distributions in the event of detection

failures. Before we do this it is worth mentioning that study of the detection loophole is

often split into two disciplines - asymmetric detection failure, where one party has a flaw-

less detector whilst the other detects with probability η, and symmetric detection failure,

where both parties have the same detection efficiency η. We shall focus on the latter here

- though there exist some scenarios where the asymmetric treatment may be appropriate;

perhaps Alice is using a diamond cavity, which has a high chance of successful detection,

then sending optically an entangled photon which Bob measures with a higher chance of

failure. A more realistic scenario is that both Alice and Bob’s devices both fail to detect

for some runs, succeeding with respective probabilities η1, η2 - by taking η = min {η1, η2}

we may simplify the maths while allowing us to “play it safe”.
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Mathematically, we treat the detection loophole in the following way: we begin with a

perfect (mA,mB, kA, kB) scenario with a conditional probability distribution π = {p(ab|xy)}.

Alice and Bob choose their measurement choice x, y respectively, and we assume that the

probability of successful detection for each of them is η. One of the following four things

occurs:

• Two successful detections.

With probability η2, both detections are successful, and Alice and Bob obtain re-

spective outcomes a, b, according to distribution π. The overall probability of this

outcome is η2p(ab|xy).

• Alice’s detection fails and Bob’s succeeds.

This occurs with probability η(1− η); η for Bob’s success, (1− η) for Alice’s failure,

and Bob’s outcome b is determined by his conditional distribution p(b|xy) ≡ p(b|y).

Therefore the overall probability is η(1− η)p(b|y).

• Alice’s detection succeeds and Bob’s fails.

This also occurs with probability η(1 − η), with Alice’s outcome a determined by

her conditional distribution p(a|xy) ≡ p(a|x). The probability of this outcome is

η(1− η)p(a|x).

• Both detections fail.

This occurs with probability (1− η)2, with no dependence on π.

With this in mind, we can define a new (mA,mB, kA + 1, kB + 1) probability distribution

πη with an extra outcome N . πη is constructed:

πη(ab|xy) = η2π(ab|xy),

πη(Nb|xy) = η(1− η)π(b|y),

πη(aN |xy) = η(1− η)π(a|x),

πη(NN |xy) = (1− η)2.

Notice that this in not a comprehensive treatment of all detection failure scenarios, as

it assumes the two devices fail independently. However, because the two devices are spa-

tially separated, this is the distribution we would expect if our experimental devices were

working “naturally”. If we saw significant correlation between detection failures of each
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party, we should definitely suspect the influence of a malicious third party. The above

structure is designed to probe distributions which appear natural, but instead could have

been pre-programmed.

Now that we have a (mA,mB, kA+1, kB+1) probability distribution, we know exactly

how to test it - using a (mA,mB, kA+1, kB+1) Bell inequality! If our distribution violates

an inequality, we know the underlying system is inherently non-local, and thus contains

randomness we can exploit. There are typically two schools of thought when it comes to

the Bell inequality used to test a particular inefficient distribution. The first is to take

an inequality that is a “lifting” of a (mA,mB, kA, kB) inequality - this can be thought of

operationally as treating every failure as one of the valid outcomes - mapping N to 0, for

example18. This was the approach taken by Clauser and Horne, who came up with the CH

representation [22] of the CHSH inequality to tackle this problem. By contrast, we may

also choose an inequality from a class that only appears in the (mA,mB, kA + 1, kB + 1)

scenario. This is treating the failure outcome as fundamentally a separate outcome. At

this point in time, it is not clear which is the better treatment generally, but in this chap-

ter we shall focus on using lifted inequalities.

Lemma 5.6.1 πη is non-local only if π is.

Proof. The distribution πη can be thought of as a convex combination of the following

distributions:

π,

πb|y := {p(ab|xy)| p(ab|xy) = δaNπ(b|y)} ,

πa|x := {p(ab|xy)| p(ab|xy) = δbNπ(a|x)} ,

πN := {p(ab|xy)| p(ab|xy) = δaNδbN} ,

in the following way:

πη = η2π + η(1− η)πa|x + η(1− η)πb|y + (1− η)2πN . (5.86)

18Note this can be measurement dependent - e.g. treating N as 0 for measurement 1, and N as 1 for

measurement 2.
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Distribution πN is local deterministic, whilst πa|x and πb|y are clearly local distributions,

as there exist no correlations between parties. Thus if π is local also, then πη can be

written as a convex combination of local distributions and therefore lies within L. �

Corollary 5.6.2 For η1 ≥ η2, πη2 ̸∈ L implies πη1 ̸∈ L.

Proof. Suppose πη1 ∈ L. As πη2 can be expressed as the convex combination

πη2 =
η22
η21

πη1+

(
η2 (1− η2)−

η22
η1

(1− η1)

)
πa|x +

(
η2 (1− η2)−

η22
η1

(1− η1)

)
πb|y

+

(
(1− η2)

2 − η22
η21

(1− η1)
2

)
πN (5.87)

we have that if πη1 ∈ L, then πη2 ∈ L also. This gives our result. �

5.6.2 The Best Inequalities (so Far)

The question of which Bell inequality is best to tackle the detection loophole is somewhat

ambiguous, and depends on your purpose. For example, do you want the secret key

verification rate to be robust against detection loophole noise? Or perhaps you prioritise

low dimensional states and measurements, since they are easier to create experimentally.

One undeniably important question is that of the detection threshold of a Bell inequality.

Definition 5.6.3 Given a Bell inequality b such that bTπ ≥ k, ∀π ∈ L, the detection

threshold ηc is

ηc := inf
η
∃ π ∈ Q, bTπη < k (5.88)

i.e. the lowest detection efficiency for which b can distinguish a non-local distribution.

We also may use the following, equivalent definition.

Definition 5.6.4 Given a Bell inequality b such that bTπL ≥ k, ∀π ∈ L, the detection

threshold ηc is

ηc := sup
η

∀ π ∈ Q, bTπη ≥ k (5.89)

i.e. the highest detection efficiency for which b cannot distinguish a non-local distribution.

The first threshold obtained was for the CHSH inequality: Garg and Mermin showed

[44] that, for maximally entangled states, so long as the efficiency was above 2/
(√

2 + 1
)
(≈
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82.8%, non-locality could be observed. As these were the states that achieved the maximal

violation for the CHSH inequality, it seemed reasonable that these would be the states

that could tolerate the lowest efficiency. This turned out not to be the case, as Eberhard

constructed [38] a state and measurements that gave CHSH violations down to an effi-

ciency of 2/3. Perhaps even more surprisingly, the optimal state achieving this threshold

is |ϕε⟩ =
√
1− ε2 |00⟩ + ε |11⟩, with ε → 0 as η → 2/3 - far from being the maximally

entangled state, the state achieving the lowest tolerable efficiency is almost unentangled!

In this scenario, a lifting of CHSH is being used; no-click (N) is being mapped to 1. More-

over, the limit η → 2/3 is achieved using qubit states and measurements.

Another significant result is given in [104], which looked at a particular (4, 4, 2, 2)

inequality, I44422, once again considering a lifting19. For maximally entangled (ququart)

states, they were able to show the tolerable efficiency was 76.98%, and they introduced

explicit ququart states and measurements achieving a minimum tolerable efficiency of(√
5− 1

)
/2 ≈ 61.80%. Interestingly the required state is of the form

|ψε⟩ =
√
(1− ε2) /3 (|00⟩+ |11⟩+ |22⟩) + ε |33⟩, with the threshold achieved as ε → 0 -

showing a similar form to the Eberhard state; a generalisation of the maximally entangled

state in which the final dimension has almost 0 weight.

There is also the important result of Serge Massar in [72]. He gave a set of dimension

dependent states and measurements for which the corresponding πη is non-local for η ≥

ηc → 0 in the limit as d → ∞. However, ηc ≤ 2/3 only when d ≥ 1600, and the

number of measurements required scales with 2d for both Alice and Bob. This means that

implementation of this method is practically impossible.

5.6.3 Limits of a Bell Inequality

Given a Bell inequality, we would like a lower bound on its detection threshold - to prevent

situations such as that which occurred with Eberhard, where the threshold is substantially

lowered by the discovery of a new state/measurement construction. To do this, we may

look at a superset of the set of quantum correlations. Suppose we have a set Q̃ such that

the quantum set Q satisfies Q ⊆ Q̃. Given an η value, if ∀π ∈ Q̃, bTπη ≥ k, then the

19Their binary outcomes were 1 and −1, mapping failure to −1.
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same must be true for Q, and we have obtained a lower bound on the detection threshold

of b. Furthermore, if one has an η such that, ∀π ∈ Q̃, πη ∈ L, then one has a lower

bound on all Bell inequalities’ (for that scenario) detection threshold, and for that partic-

ular efficiency no distributions are useful.

There are two obvious choices of Q̃. The first is Q̃ = NS, the set of all no-signalling

correlations. For kA = kB = 2 we know all extremal NS distributions, and can thus use

linear programming in order to determine the lower bound for the detection threshold.

This can be done using a binary chop method. The method is as follows:

1. Take the set20 of extremal non-local points VNS\VL = {nk}.

2. For each nk in turn, construct the inefficient distribution nk,η according to the

method in section 5.6.1.

3. Choose two values ηmax and ηmin such that nk,ηmax /∈ L and nk,ηmin
∈ L; we can

always choose ηmax = 1 and ηmin = 0 to ensure this.

4. Take η = (ηmax + ηmin) /2. Find the local weight w of nk,η, using the linear program

outlined in definition 5.5.1.

5. If w = 1, then nk,η is local and we set ηmin = η. If not, then nk,η is non-local and

we set ηmax = η.

6. Repeating Steps 4-5 we home in on the maximal η such that nk,η ∈ L; we do this

until we are satisfied with the precision. This value we call ηk.

7. Repeat the process 2-6 with each extremal nk, obtaining a set {ηk}. For ηL :=

min{ηk}, we can conclude by convexity that πηL ∈ L, ∀π ∈ NS. Thus we have

obtained our fundamental lower bound for the detection threshold. The results

of this process for various (mA,mB, 2, 2) scenarios are presented in table 5.9, and

compared to some previous bounds in the literature.

Using this method, we can see that Eberhard’s construction cannot be beaten for

CHSH - since 2/3 is the lowest possible for the (2, 2, 2, 2) scenario. It is surprising that

the best no-signalling efficiency is quantum achievable in this scenario - this does not hold

20We can take the subset given in section 5.3.5.3, since local/non-locality is preserved by relabelling.
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mA 2 3 4 5 6 1√
mB

2/(mB + 1)

mB

2 2/3 2/3 2/3 2/3 2/3 0.707 2/3

3 4/7 5/9 5/9 5/9 0.577 1/2

4 1/2 1/2 1/2 1/2 2/5

5 4/9 * 0.447 1/3

Table 5.9: The maximum detection efficiency such that any no-signalling distribution can

be generated classically. (5, 6, 2, 2) was not evaluated due to the high number of non-local

extremal points. The two columns are previous bounds given by [73].

in general.

The other sensible choice for Q̃ is any member of the semidefinite hierarchy Qi. Given

any Bell inequality b with local bound ≥ k, we can again use a binary chop method.

1. Choose an ηmax such that there exists a πηmax ∈ Q with bπηmax < k, and an ηmin

such that ∀π ∈ NS, πηmin ∈ L - again we may always take ηmax = 1 and ηmin = 0.

2. Set η = (ηmax + ηmin) /2. Solve the semidefinite program

w = min
Π∈Qi

Tr
[
BTΠη

]
. (5.90)

3. If w = k, then there exists no non-local πη, π ∈ Qi distinguishable by b, and we set

ηmin = η. If w < k, then we set ηmax = η and make a note of π.

4. Repeating Steps 2-3 we home in on the maximal η such that w = k; we do this until

we are satisfied with the precision. This gives us a lower bound of the detection

threshold for b, as well as a candidate π for achieving the threshold.

We can increase i to obtain tighter bounds on the detection threshold - if we receive the

same lower bound for several i, this implies we may have found the true threshold, in

which case we may look for quantum states and measurements achieving it; moreover,

they should reproduce distribution π.
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Inequality Q1 Q2 Q3 ηc

CHSH 66.67% 66.67% 66.68% 66.67%

I3322 60.00% 66.51% 66.69% 66.67%

I2233 64.95% 66.67% 66.67% 66.67%

I44422 50.03% 61.83% 61.85% 61.80%

Table 5.10: A comparison of detection thresholds, as given by CVX. Note the discrepancy

between the true value and the one outputted.

5.6.4 Implementation of The Semidefinite Search, and Results

To implement the search over levels of the semidefinite hierarchy, I used Matlab 2016a/2017a

(depending on the machine used), and some Matlab-specific toolboxes. The first is

CVX [46, 47] - a convex optimisation toolbox which allows the expression of semidefi-

nite variables, and the automatic conversion of “naturally written” constraints into the

formal semidefinite programming constraints. This comes with a built in semidefinite

solver SDPT3 [100], however, I instead primarily used the compatible MOSEK solver [2].

Finally, I also used the QETLAB toolbox [64], which allowed me to specify the Qi mem-

bership constraint. For all of this optimisation, I have used Bell inequalities of the form

local bound ≥ 1.

In table 5.10, I present the results for some known cases, from which we can see that our

binary chop only appears accurate to 10−3. This is unfortunate, since the CVX precision

parameter is set to 1.49×10−8, and our binary chop precision is set21 to 1.53×10−6. This

discrepancy is most likely due to the quantum violation being extremely small just above

the detection threshold. This limitation will come to be important later on, and I spent

much time trying to improve this. These attempts will be detailed in subsection 5.6.5.

5.6.4.1 (4,4,2,2) Scenario Test

Given that we have a complete list of the (4, 4, 2, 2) inequality classes, we wished to learn

whether there existed a Bell inequality with a lower detection threshold than I44422 for

this scenario. As we are using (4, 4, 2, 2) Bell inequalities to check (4, 4, 2, 2) probability

21By the number of iterations.
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distributions with an extra detection failure output, we need to lift our Bell inequalities

to the (4, 4, 3, 3) scenario. For each measurement choice for both Alice and Bob, we may

choose which output we map N to. This means that for every inequality we have 28 = 256

possible liftings to consider. We performed the binary chop method on all 256 liftings

for the 174 representatives of each non-trivial inequality class. In order to speed up the

process, we introduced a “cut” - before performing the binary chop, we tested each lifting

at η = 2/3 at level 1 of the hierarchy - if w = 1, then we can conclude that that particular

lifting cannot distinguish non-local distributions better than CHSH (and thus I44422), and

we move on to the next lifting. As this requires only one semidefinite program at the least

constrained hierarchy level, this speeds up the process considerably.

If a lifted Bell inequality gives a value w < 1 at η = 2/3, then we performed the binary

chop with level Q2 of the hierarchy, in order to have a reasonable run time. The results

of this test is that I44422 is the best for this scenario - it achieved 61.83% with the lifting

given in [104], again accurate up to 10−3, whilst the next best inequality had a detection

threshold of 64.95%. There are two liftings of I44422 achieving 61.83% - we present them in

figures 5.1 and 5.2. We omit the brackets and partition them into measurement choices,

and denote with arrows the output copied for the lifting.

Whilst no (4, 4, 2, 2) inequality was able to provide a lower detection threshold than

I44422, we do not rule out the possibility of a (4, 4, 3, 3) Bell inequality achieving a lower

threshold, by treating N as a separate outcome.
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↓ ↓ ↓ ↓

→ 0 1
2 0 0 0 0 0 1

2

0 0 1
2 0 1

2 0 0 0

0 0 1
2 0 0 0 1

2 0

→ 1
2 0 0 0 1

2 0 0 0

0 1
2 0 1

2 0 0 1
2 0

→ 0 0 0 0 0 1
2 0 0

0 1
2 0 0 1

2 0 0 1
2

→ 0 0 0 1
2 0 0 0 0

(5.91)

Figure 5.1: The first lifting of I44422, achieving the boundary. The arrows denote the choice

of coefficients for the third outcome N .

↓ ↓ ↓ ↓

0 1
2 0 0 0 0 0 1

2

→ 0 0 1
2 0 1

2 0 0 0

→ 0 0 1
2 0 0 0 1

2 0

1
2 0 0 0 1

2 0 0 0

0 1
2 0 1

2 0 0 1
2 0

→ 0 0 0 0 0 1
2 0 0

0 1
2 0 0 1

2 0 0 1
2

→ 0 0 0 1
2 0 0 0 0

(5.92)

Figure 5.2: The second lifting of I44422, achieving the boundary. This lifting is a relabelling

of the one used in [104].

5.6.4.2 (3,3,3,3) Scenario Test

By utilising parallelism and a research computing cluster, we were able to perform the bi-

nary chop over all 729 liftings of the 10143 Bell inequalities we obtained for the (3, 3, 3, 3)

scenario. This testing was also done at level Q2 of the hierarchy, with an initial cut

at η = 2/3. For this scenario, the best detection threshold achieved was 61.8% - the
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same as (4, 4, 2, 2) (up to 10−3). 8 inequality class representatives obtained this thresh-

old, and for these 8, the binary chop at the Q3 level was performed, and the efficiency

was non-increasing for 2. These 2 inequalities we believe will either be able to match

the threshold of I44422, or even better it by a small amount. These two inequalities are:

IA3 =

↓ ↓ ↓

→ 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0 1

1 0 1 0 1 0 0 1 0

0 0 0 0 1 1 0 0 1

0 0 0 1 0 1 1 1 0

→ 1 1 0 0 1 0 0 1 0

→ 0 0 0 0 0 0 1 0 0

0 1 0 0 0 1 0 0 0

0 0 1 1 0 0 0 0 0

IB3 =

↓ ↓ ↓

0 0 1 0 0 0 0 1 0

1 0 1 0 0 0 0 0 0

→ 0 0 0 1 0 0 1 0 0

1 0 1 1 0 0 0 0 0

→ 1 1 0 0 0 0 0 1 0

0 1 0 0 1 1 1 0 0

1 0 0 0 1 1 0 0 0

0 1 1 1 0 0 0 0 0

→ 0 1 0 0 0 0 0 0 1

It is curious to note that for each of these inequalities, there is a measurement with a

redundant outcome - for IA3 , Alice’s first measurement has identical coefficients for both

outcomes22 1, 2, whilst in IB3 Bob’s second measurement treats outcomes 2, 3 identically.

Moreover, this redundant outcome is the optimal lifting - IA3 treats 1, 2 and N as identical

for Alice’s first measurement, and similarly for IB3 . Whether this is merely coincidence,

or a hint at the structure of inefficiency-robust Bell inequalities, remains unclear.

5.6.4.3 (3,5,2,2) Scenario Test

Since we have also enumerated a single new (3, 5, 2, 2) inequality, it is also worthwhile

testing this inequality in order to determine its detection threshold. Searching over all

possible liftings, we obtained the values in table 5.11. Although the values in the table

Inequality Q1 Q2 Q3

I3522 64.62% 66.70% 66.71%

Table 5.11: Comparing the threshold values, it appears this inequality cannot beat CHSH.

22Labelling outcomes 1, 2, 3.
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for the higher levels of the hierarchy seem to suggest that this inequality does strictly

worse than CHSH, this is simply down to imprecision in the solver. To show this, we can

consider I3522 with Alice restricted to taking just the first and last measurements, and

Bob limited to his third and final measurements. This gives us the restricted inequality:

IR3522 =


0 1

3 0 1
3

1
3 0 1

3 0

0 1
3

1
3 0

1
3 0 0 1

3

 (5.93)

this is a CHSH inequality and so by restricting their choice of measurements, Alice and

Bob can always achieve the CHSH threshold. It is for this same reason that I3322 and

I2233 are able to achieve a threshold of 2/3.

5.6.5 Attempts to Improve Precision

In order to compare the known (4, 4, 2, 2) boundary with our (3, 3, 3, 3) candidates, I

attempted to improve the precision of our semidefinite solver, in order that we may trust

a higher number of decimal places. This list details some of my attempts to do this:

• Increase the internal CVX precision.

The most natural solution to the problem is to alter the “cvx_precision” parameter,

to hope for obtaining more precise results. When set to default, CVX states the

problem is “solved” when a precision of 1.49 × 10−8 is achieved, and “inaccurately

solved” if a precision of only 1.22 × 10−4 can be reached. By contrast, setting the

cvx_precision parameter to “high” these figures become 1.82×10−12 and 1.35×10−6

respectively. Whilst we have seen that the values do not match up with the precision

of our binary chop solutions, our hope is that this more stringent requirement will

improve our overall values. The results of this change in parameter are presented

in table 5.12. Contrary to the default precision setting, in which for all results

presented the “solved” tag was returned, for the high precision setting the status

“inaccurate/solved” was often returned - nevertheless, forQ3 the thresholds obtained

matched the known thresholds up to at least 10−4. Our two candidates IA|B
3 match

the lowest bound,
(√

5− 1
)
/2, up to this precision, suggesting that this may too be

the detection threshold for these Bell inequalities. We see also that for this level of

precision one of our I444422 liftings does not match this threshold, suggesting that the

lifting given by [104] is unique in achieving that value.
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Inequality Q1 Q2 Q3

CHSH 66.67% 66.67% 66.67%

I3322 60.00% 66.50% 66.67%

I2233 66.67% 66.66% 66.67%

I44422 (Lift 1) 50.00% 61.80% 61.86%

I44422 (Lift 2) 50.00% 61.80% 61.81%

I3522 64.03% 66.67% 66.67%

IA3 50.00% 61.48% 61.80%

IB3 50.00% 60.54% 61.80%

Table 5.12: The obtained detection thresholds obtained with the cvx_precision set to

“high”.

Inequality Q1 Q2 Q3

I44422 (Lift 1) 50.00% 61.80% 61.86%

I44422 (Lift 2) 50.00% 61.80% 61.81%

IA3 50.00% 61.48% 61.80%

IB3 50.00% 60.54% 61.80%

Table 5.13: The obtained detection thresholds obtained with the cvx_precision set to

“best”.

• Further increase the internal CVX precision.

The third option for increasing cvx_precision is “best” - for this, the tags “solved”

and “inaccurately solved” match those of the default setting, the values 1.49× 10−8

and 1.22 × 10−4; however instead of stopping once these precisions have been sat-

isfied, instead CVX looks to increase precision by continuing to solve the problem

until no progress can be made.

For this precision setting, the results for I44422, IA3 and IB3 can be found in table

5.13. One can see that the values match those obtained with the “high precision”

parametrisation; in fact, they are identical up to machine precision, implying the

solver is performing identically in each scenario. Thus we can reasonably conclude
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that we learn no more from the “best” option than we do from high precision, and

thus the exact relationship between the thresholds of the two inequalities remains

unclear.

• Alternate solvers.

Included with CVX are two open-source semidefinite solvers: SDPT3 and SeDuMi.

Running the optimal (4, 4, 2, 2) liftings with these solvers, we obtained the results

in table 5.14. Both solvers seem to match the accuracy of 10−3 - but the solver

Solver Lifting Bound Notes

SDPT3 1 61.86% Solver returns “Inaccurate/Solved” tag

SDPT3 2 61.85% Solver returns “Inaccurate/Solved” tag

SeDuMi 1 61.82% Solver returns “Inaccurate/Solved” tag

SeDuMi 2 61.81% Solver returns “Inaccurate/Solved” tag

Table 5.14: The detection thresholds returned by the pre-packaged CVX solvers; for each

case the status “Inaccurate/Solved” is returned.

status is returned as “Inaccurate/Solved” - this corresponds to a precision value of
√
1.49× 10−8 ≈ 1.22× 10−4; as this precision is less than that when CVX returns a

successful solution tag 23, these solvers only offer at best equal precision to MOSEK.

• Allowance for local errors.

Judging by the obtained values, we see that the binary chop is homing in on a

value higher than the true bound; we can conclude from this there is a critical

η∗ >
(√

5− 1
)
/2 for which an erroneous solution πη∗ with Tr

[
I4T4422Πη∗

]
≥ 1 is

returned, and thus the binary chop algorithm concludes that ηc ≥ η∗, and can never

home in on the true value. To account for this, we could instead conclude our

distribution is local only if Tr
[
I4T4422Πη∗

]
≥ 1 + ε, with ε an error parameter. One

could then “tune” this parameter ε, by performing a double binary chop.

1. First set two bounds of ε; εmin = 0, εmax = 0.1. Then set ε = (εmin + εmax) /2.

2. Perform the standard binary chop algorithm to determine ηc, using the locality

criterion Tr
[
I4T4422Πη∗

]
> 1 + ε. This will gives us an ε based boundary, ηεc .

23Which occurs when using MOSEK.
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3. If ηεc > ηc =
(√

5− 1
)
/2 then we conclude the same problem is still occurring,

and thus we set εmin = ε. If ηεc < ηc we conclude we are being “too generous”,

and set εmax = ε.

4. By repeating this process, we home in the most accurate error parameter.

Unfortunately, this tuning method fails consistently. This is because for all η < ηc,

the local bound 1 is exactly achievable - thus the solver returns a value of 1+ δ with

δ ≈ 10−8 (the solver’s touted precision) regardless of proximity to ηc. Moreover,

for values ηc < η < 61.83 (at level 2) our solver returns a value of the same form.

Thus the tuning method homes in an arbitrary ε ≈ 10−8, which bears no relation to

locality/non-locality.

• Quadratic description

Another attempt to improve the precision was to improve the precision of the vari-

ables themselves. Hitherto to now, all calculations have been done using the standard

double-precision format - in which each variable is stored using 64 bits. The semidefi-

nite solver SDPT3 has an implementation which allows for quadratic-precision, which

uses 128 bits instead. Unfortunately, this implementation is for C++ only - and thus

required manual input of the semidefinite hierarchy conditions, as opposed to be-

ing able to use QETLAB. The standard double-description C++ failed to solve the

semidefinite program due to “numerical inaccuracies”, whilst the quadratic descrip-

tion was too slow; failing to converge to a solution on any reasonable time-scale.

• Replacing CVX with YALMIP

YALMIP [70] is an extremely popular package which has been used to much success,

in projects such as [104] and [16]. Thus, I decided to try the same problems, using

YALMIP rather than CVX. Note that the solver choice, MOSEK, does not change;

both CVX and YALMIP are toolboxes that process problems to feed to the solver.

At the time of writing, a bug existed in the code, preventing the use of the QETLAB

Qi membership function with YALMIP. However, I could utilise the manual con-

straints generated for the C++ SDPT3. With these constraints, a critical efficiency

of 61.92% was obtained for I44422 in Q2, implying a worse precision than CVX (in

this instance).
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5.6.6 Quantum Realisations of the Detection Threshold

As stated in section 5.6.2, [104] explicitly gives a set of quantum states/measurements

achieving the detection loophole threshold for I44422 - this is how we may compare the per-

formance of the semidefinite program to the true threshold value. With this in mind, and

motivated by the numerical difficulties in implementing the quantum hierarchy, we turned

to this method in order to try to determine the true value of the detection threshold for

I
A/B
3 .

This search can be implemented by the aid of semidefinite programming. Before we

explain the full method, let us begin by explaining how one can use semidefinite program-

ming to find the quantum state and measurements maximally violating a Bell inequality,

B, for a (mA,mB, kA, kB) scenario.

Problem: minimise Tr[BTΠ], subject to p(ab|xy) = Tr[ρMa|x ⊗Mb|y].

1. Fix the dimension of the search. We constrain our search to quantum states ρ ∈ Hd2 ,

and POVM measurement operators Ma|x,Mb|y acting on Hd.

2. Generate a random quantum state ρ ∈ Hd2 . This can be done using the Random-

DensityMatrix function in QETLAB.

3. Generate mB random POVMs with kB outcomes. This can be done using the Ran-

domPOVM function in QETLAB. Note that this gives us mBkB operators of size

d× d which satisfy Mb|y ≥ 0,
∑

bMb|y = Id.

4. We can then formulate a semidefinite problem over Alice’s POVM elements,
{
Ma|x

}
- each of these must be positive semidefinite, which occurs iff the block diagonal

matrix

MA =


M1|1 0 0

0
. . . 0

0 0 MkA|mA

 ≥ 0. (5.94)

Since we have fixed ρ, {Mb|y}, the objective Tr[BTΠ] =
∑

a,b,x,y B(ab|xy)p(ax|xy) =∑
a,b,x,y

∑
i,j B(ab|xy)[ρ]ij [Ma|x ⊗Mb|y]ji is a linear function of MA (though we do

not explicitly give it here). Our constraints24 of MA are simply
∑

aMa|x = Id, ∀x.

24These can be written in the canonical form by taking the equality elementwise.
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5. We now repeat the same process with the elements
{
Mb|y

}
, using the

{
Ma|x

}
-defining

MA obtained from Step 4, and our state ρ.

6. Finally, we optimise the function Tr[BTΠ] over the density matrix ρ, using the MA,

MB obtained. Since we require ρ ≥ 0 in order for ρ to be a valid quantum state,

this too forms a semidefinite program, with the constraint Tr[ρ] = 1.

7. Repeat Steps 4-6, until the solution converges to a given precision.

8. Store the solution and optimal value, then return to Step 1 and repeat a set number

of times.

This method is known as the “see-saw method” - whilst the objective value is always non-

increasing for each given optimisation, it is not guaranteed to converge to the true minima

- this is because the function Tr[BTΠ] is not jointly convex in the variables ρ,MA,MB.

This means that is possible to get stuck in a local minima, where for each fixed pair of

ρ,MA,MB no improvement can be made by varying the other variable, yet there exists a

better minima which could be achieved by varying at least two of the three simultaneously.

Unfortunately, without fixing two of the set one fails to obtain a semidefinite problem, due

to the form of p(ab|xy). To counter this, we start the see-saw at many random starting

points in the solution space, with the hope that we “fall into” the correct minima for at

least one of these starting points. By this same logic, we can never be sure we have truly

found the global minima, unless we have a lower bound we may apply.

5.6.6.1 Application the Detection Loophole Problem

Let us return now to our problem - finding the detection threshold for our two Bell

inequalities. One thing we wish to know to for these two inequalities is - do they beat

the threshold ηc =
(√

5− 1
)
/2? Equivalently, does there exist a quantum distribution Π

such that Tr[I(A/B)T
3 Πηc ] < 1? Since Πηc is linearly dependent only on Π (having fixed η),

we can apply the see-saw method described above with the modified objective function

Tr[I
(A/B)T
3 Πηc ].

Performing this using YALMIP25 for d = 9, we were unable to find any solutions signif-

icantly different26 from 1. Bearing in mind the numerical errors previously encountered,

25With MOSEK.
26Greater than machine precision.
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we instead decided to increase η = 0.65 - with the aim of extrapolating the resultant

state/measurements to those achieving the boundary value. However, that too failed to

result in a non-local state. Thus could be due to four possibilities:

• Numerical issues - it is possible that still we are unable to achieve enough precision

to obtain the small violation attained by the optimal states.

• “Bad luck” - we simply did not choose a good random starting point which will lead

to the global minima.

• Dimension - it is possible the dimension required to achieve optimal violation is

higher than 9 - there is evidence to suggest I3322 may require infinite dimensional

states for optimal violation, so this possibility is not without precedent.

• Hierarchy inaccuracy - Despite the hierarchy appearing to converge on a value of

≈ 61.8%, it is possible that the true quantum boundary is higher than this, with

violation < 65% being achieved by non-quantum hierarchy states.

Of these potential issues, only the second is actionable, and thus we tweak the see-saw

method, in order to improve the likelihood of “falling down” the correct well.

Method 1: Triple Descent

1. Start with η = 1. Then perform the standard see-saw method, homing in on (hope-

fully) optimal ρ1, M1
A and M1

B.

2. Reduce η by a small step δη. Repeat the see-saw algorithm with this new η, but

starting with ρ1, M1
A and M1

B as the initial states and measurements.

3. repeat this process, for each η taking ρη+δη, Mη+δη
A and Mη+δη

B as the initial values,

until an η = ηL such that Tr[BTΠηL ] ≥ 1 is obtained after convergence. For this

run, the allowable efficiency is ηL.

4. Steps 1-3 are then repeated, with the minimal ηL taken over all runs.

The motivation behind this method is that for perfect efficiencies, violation of the inequal-

ity is significant, and thus easier for the see-saw to converge to. As the efficiency decreases,

and the violation gets smaller, we begin with “good candidate” states and measurements

more likely to obtain a violation. At the time of writing, using dimension 9 and δη = 0.01,
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the lowest ηL I was able to achieve was 0.67.

Method 2: Super See-Saw

1. Set η = 1, and ρ1 = |Φ⟩ d ⟨Φ|. See-saw between optimising MA and MB, converging

on M1,1
A and M1,1

B .

2. Reduce η by δη, and see-saw again between MA and MB, starting with M1,1
A and

M1,1
B and converging on M1,η

A and M1,η
B .

3. Repeat the process, for each η taking M1,η+δη
A and M1,η+δη

B as the initial values,

until reaching η1 such that Tr[BTΠη1 ] ≥ 1 is obtained after convergence.

4. Minimise Tr[BTΠη1 ] over ρ, using measurements M1,η1+δη
A and M1,η1+δη

B from the

previous η value. This gives an optimal state ρ2.

5. For the new optimal state ρ2, starting with M1,η1+δη
A and M1,η1+δη

B see-saw over the

measurements to obtain optimal measurements M2,η
A and M2,η

B .

6. repeat Steps 3-5 until an η = ηL is achieved such that both the measurement see-saw

and state minimisation give local (≥ 1) values.

We begin with the starting state ρ1 = |Φ⟩ d ⟨Φ| due to the results of [38] and [104], in

which the states achieving the detection threshold were of the form∑d−2
i=0

√
(1− ε2) / (d− 1) |ii⟩+ε |d− 1, d− 1⟩ in the limit as ε→ 0 - the maximally entan-

gled state is also of this form, for ε = 1/
√
d. Thus, the hope for this method is to “track”

this optimal family of states along ε, as the detection efficiency decreases. The lowest ηL
obtained with this method was ηL = 0.66, with d = 9 and δη = 0.01.

5.7 Summary

The use of Bell inequalities in practical quantum information is dominated by CHSH. This

is because of the difficulty involved in preparing quantum states with dimension higher

than 2, and performing non-binary measurements. At our current stage of development,

viability is the primary defining factor of an experiment before efficiency. At such a stage,

CHSH is the perfect candidate as it is the easiest to implement and allows experimentalists

to test violation of locality.
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This situation will not last forever though. Our techniques for generating, storing

and measuring quantum states will become more and more refined. As this occurs, the

trade-off between difficulty in implementation of higher dimensional scenarios, and the

benefits they confer will shift. It was with this shift in mind that research such as [104]

was performed - investigating the relatively low-dimensional ququart scenario, and show-

ing it outperformed the “benchmark” inequality that is CHSH - at least in terms of the

detection loophole.

It is with this low-dimensionality in mind that the research in this chapter has been

performed. The inequality generating method that forms the first half of the chapter

likely does not scale well as the dimensionality increases, due to it sometimes returning

non-facet solutions. Nevertheless, for low dimensions it churns out thousands of inequal-

ities with fundamentally different properties in a reasonable timescale. As the hunt for

low-dimensional Bell inequalities with properties suitable to specific quantum information

tasks intensifies - as I hope it will with the development of the field - then I believe this

method could provide a useful tool.

A natural comparison to draw is with the more rigorous method of obtaining Bell in-

equalities via the simplex algorithm - by choosing a trivial objective function, one can use

the simplex algorithm to pivot around the vertices of the polar dual of the local polytope.

At every pivot, a new facet Bell inequality will be found. One can even pivot in such a

way that every vertex will be visited exactly once. Yet the extreme degeneracy of the

facet classes means that this method is not practical - relabellings of inequalities are of

no interest to us. Whilst this method is certainly better in principle, it does not suit our

purposes. I believe improving the way in which we search for Bell inequalities would be a

reasonable direction for future research - given that one is only concerned with having a

representative of each Bell inequality class, enumerating all facets is definitely not neces-

sary. There are several symmetrical properties to be exploited - a simple example is that

every local deterministic distribution di is a saturating point for at least one representative

of every class - given a saturating point dj for Bell inequality b, the relabelling taking

dj → di will define a new inequality b′ with di as a saturating point.

Of course, not all research is done with an entirely practical motivation, and I had
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hoped to lower the detection threshold, by providing explicit states and measurements.

Unfortunately, I was unable to do this, and only able to present evidence of many Bell

inequalities which are likely not useful for this problem, as well as two candidate Bell

inequalities for which there is evidence that they either satisfy the same threshold, or

very slightly lower it. Trying to improve the precision of the semidefinite programming

involved may help in determining this, and I plan to contact someone in the field of convex

optimisation to achieve this.

There are other directions this work could be extended. All of the analysis in this chap-

ter has been performed using liftings of inequalities, in which detection failure is mapped

to a valid output. One could extend this analysis to treating detection failure as a separate

outcome. Unfortunately, we can only do this rigorously for the (2, 2, 2, 2) scenario since

we know all (2, 2, 3, 3) Bell inequalities. For this scenario we also know that all inefficient

distributions πη with η = 2/3 are local - as this is the detection threshold of CHSH, we

can be sure that I2233, the only new inequality for (2, 2, 3, 3), will not improve on this. One

could use our newly generated (3, 3, 3, 3) inequalities to look at (3, 3, 2, 2) distributions -

dealing with binary outcome measurements only may lead to greater precision than our

research on (3, 3, 3, 3) distributions.

In summary, this chapter has given an algorithm which generates new facet inequal-

ities to the local polytope. Using this, we have been able to generate thousands of new

inequalities in a variety of measurement-output scenarios. We have analysed their efficacy

in tackling the cryptographically-relevant problem of the “detection loophole” and shown

that, whilst most of the new inequalities are likely worse than the current optimal inequal-

ity in the literature, there are two new candidates of a similar dimension for which there is

evidence they may be able to marginally reduce the tolerable detection failure threshold.
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Conclusion and Summary

Entanglement is a complicated property to understand. For pure bipartite states it is easy

to quantify, but for mixed states, the possibility of convex combinations of states increases

the difficulty - so much so that the problem of determining bipartite separability has been

shown to be NP-hard in general [50]. There is no one defining measure for entanglement

- instead there exists a variety of measures satisfying certain well-reasoned properties.

Some of these are operational, such as the distillable entanglement or entanglement cost,

and require a difficult optimisation over all possible local protocols taken in the asymp-

totic limit. Others are algebraic, such as the relative entropy of entanglement (REE), or

squashed entanglement, and the relation between these measures and their operational

counterparts mean they can be used to bound the operational usefulness of states, or in

some cases exactly determine it. These more abstract entanglement measures are also

difficult to calculate in general; often requiring optimisation over infinite extensions or

asymptotic regularisation, but for some states these problems simplify and values can be

found. These problems are compounded when considering multi-partite scenarios. No

longer can even a maximally entangled state be agreed on - and many of the most popular

bipartite measures of entanglement do not generalise.

This thesis does not claim to solve any of the difficulties in understanding entangle-

ment. Instead, it looks at using entanglement as a tool to investigate capacities of quantum

channels. These capacities share many of the problems of entanglement: optimisation over

general protocols, the possibility of infinite dimensional states, and asymptotic limits. Un-

like with the entanglement of states however, there does not exist the same range of useful

abstractions of capacity which we can instead consider. There exist definitions of relative
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entropy of entanglement and squashed entanglement for channels, but they are calculated

as the supremum taken over all possible output states, over all protocols. The advantage

of channel simulation is to connect capacities of quantum channels to entanglement mea-

sures on states, in order to bound their value.

The limitation of channel simulation is that a specific LOCC simulation and resource

state is required; currently the only protocol which has been explored in great detail is

the teleportation protocol. Hopefully the range of protocols which are useful for channel

simulation will increase, or even a constructive method discovered where, given a channel

E , one can then construct resource state σE and LOCC protocol Λ simulating the channel,

allowing one to use the entanglement properties of σE to bound the two-way capacities of

E . An interesting open question is whether every channel is Choi-simulable, which would

give ED(χE) = D2(E) for all E - currently we know this only to be true for teleportation

covariant channels [85].

The noisy teleportation protocol introduced in chapter 2 is an attempt to widen the

range of simulable channels, by expanding the teleportation protocol with the addition of

classical noise. This goal was achieved, allowing for the first time dimension-preserving

non-Pauli channels to be simulated over a discrete-variable resource. We proved a no-go

theorem on the structure of the resource state in order to allow non-Pauli simulation, and

used it in order to choose a specific resource state, for which we completely characterised

the set of possible resultant channels - the “Pauli-damping” family. This work could be

extended to “noisy qudit teleportation” - however, we saw that for Pauli-damping chan-

nels this technique did not provide the best upper bound on secret-key capacity. This

highlights the importance of not only showing a channel can be LOCC-simulated, but

choosing a resource state which accurately conveys the properties of the channel. It is

for this reason that the question of whether channels are Choi-simulable is so important.

Furthermore, we were able to more accurately bound Pauli-damping channels due to their

composite nature; therefore an investigation into the simulation of irreducible channels

would also be productive.

Werner states have proved one of the most fruitful resources for teasing out the unusual

features of entanglement. For qubits, Werner states are equivalent under local unitaries
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to the isotropic states - a pseduo-mixture of a maximally entangled state and the identity

matrix. For d > 2 though, the properties of the two classes diverge. Entangled isotropic

states are always distillable, and entanglement measures are additive and easy to calcu-

late. By contrast, Werner states exhibit subadditivity of the REE, with the result that

for the parameter range η ∈ [−1,−2/d) the regularised REE is not known. Moreover,

the conjecture that bound entangled states exist with a negative partial transpose (NPT)

has stood for around 20 years, with certain Werner states the primary candidates. There

is much circumstantial evidence to support this conjecture but no one has been able to

prove it - in part due to the range of possible distillation procedures. In chapter 3 we

introduced a new family of states which generalised the Werner states by introducing a

phase component. These new states share many similarities with Werner states, and we

were able discern some of their entanglement properties to show that they provide new

candidates for NPT bound entanglement, which may lead to new insights on the problem.

Connected to Werner states by channel-state duality, the Holevo-Werner channels were

shown to be teleportation covariant in chapter 4, and consequently that the optimal pa-

rameter estimation may only scale with the shot-noise limit, the limit found in classical

estimation theory. We found that entanglement-breaking was not a factor in parameter

estimation of these channels, a property likely linked to the fact Werner states are simul-

taneously diagonalisable and so functions such as the quantum relative entropy simplify

to their classical counterpart. Choice of parametrisation greatly affects the influence di-

mension has on estimation - our favoured choice of the expectation representation was

dimension-independent, whilst the α-representation showed that estimation can improve

or become more difficult for different regions as dimension increases. We were able to

improve the bounds for binary discrimination of Holevo-Werner channels, by providing

the analytic form on the quantum Chernoff bound, and extending it to the depolarising

channel also.

In the second part of chapter 4, we applied entanglement-based upper bounds to the

secret key capacity of Holevo-Werner channels. By considering four different bounds we

were able to restrict the capacity more tightly than any one of them individually. One

of the entanglement measures used was the two-copy REE, calculated for general Werner

states here for the first time. We also used two alternative upper bounds on the squashed
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entanglement; a suitable choice as it is additive. Further work in this direction could be

to investigate the n-copy REE, n > 2 - it has been shown for the extremal Werner state

the the regularised REE and RPPT do not coincide [21] - but it is not known for which

n this first occurs. Another valid line of research would be to try to find the squashed

entanglement of entangled Werner states - this is not known even for the extremal Werner

state, though the upper bound provided by [21] coincides with the logarithmic negativity

and regularised RPPT for even dimensions, and thus is conjectured to be tight. Both of

these directions would improve the secret-key capacity bounds presented here. At this

time, it is unknown how the secret-key capacity of these channels relates to the conjecture

of NPT bound entanglement - although proof of the conjecture would prove the corre-

sponding Holevo-Werner channels have 0 two-way distillation capacity.

In the last chapter we looked at another important aspect of quantum information,

non-locality. By exploiting extremal no-signalling distributions - which are non-physical

- we were able to enumerate new Bell inequality classes, which may have useful applica-

tions in quantum protocols; particularly in the field of device independent cryptography,

where Bell inequalities are used to ensure non-locality, and thus the security, of the device.

Although the algorithm we presented does return non-facet inequalities, the reduction in

relabelling-equivalent solutions means that for lower dimensional cases were able to gen-

erate tens of thousands of new non-equivalent Bell inequality classes. A limitation of this

algorithm is that it does not terminate when all inequivalent Bell inequalities have been

found - meaning we could only provide a complete list of class representatives in scenarios

where the number of classes had been previously determined.

Finally, we turned to the problem of the “detection loophole” - a practically motivated

problem where detection failure means that outcome distributions cannot be trusted to

be non-local. First we provided tighter bounds on the critical efficiency for which below

that detection rate no distribution can be trusted, using the extremal no-signalling points

to do this. Then, motivated by obtaining the lowest possible efficiency for which non-local

distributions may still be determined with a low number of measurements/outcomes, we

tested all the enumerated Bell inequalities to see if they could better the current optimal

equality - which can discern non-local distributions down to 61.80% detection rate. We

found two candidate Bell inequalities which appear likely to match this bound, or perhaps
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even beat it by a small value, although were unable to determine the exact threshold

for these inequalities, or provide an explicit quantum state/measurements construction

achieving it. Since determining the threshold of an inequality is strongly linked to the use

of semidefinite programming, I hope to improve this using insight from an expert in the

field. We also restricted our testing to the case where detection failure is mapped to a pos-

sible successful outcome - treating it as a separate outcome is an avenue of future research.

This thesis has shown new insights into areas of research including channel simulation,

entanglement distillation and generation of Bell inequalities. The work presented here

may prove useful when considering larger problems such as the non-trivial simulation of

all quantum channels, whether all NPT states are distillable, and the minimal detection

efficiency for which we can close the detection loophole.
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Abbreviations
LOCC Local Operations and Classical Communication

PVM Projective Valued Measure

POVM Positive Operator-Valued Measure

PPT Positive Partial Transpose

NPT Negative Partial Transpose

REE Relative Entropy of Entanglement

RPPT Relative entropy of entanglement, with respect to Positive Partial Transpose

CCQ Correlated Classical Quantum

QCB Quantum Chernoff Bound

HW Holevo-Werner

PD Pauli-Damping

LP Linear Program

SDP SemiDefinite Program

EPR Einstein-Podolsky-Rosen

KKT Karush–Kuhn–Tucker

KL Kullback-Leibler

CHSH Clauser-Horne-Shimony-Holt

CH Clauser-Horne

NP Non-deterministic Polynomial time
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