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ABSTRACT 

Development is the result of a series of division, expansion and differentiation events, and the 

relationship between these events drives characteristics such as organ size and shape, patterning of 

tissues, and placement of specialised cells. Varying the rates of division, expansion and differentiation 

allows for plasticity in development.  This plasticity means that there are often several routes to the same 

developmental outcome: for example, increasing cell division will increase the distance between 

specialised cells or increase organ size, and so will increasing cell expansion. Hence, a question arises: why 

do plants maintain a certain size or cell placement through a specific route, such as increasing cell 

expansion? The reason for this could be that one route is more energetically favourable than another, and 

so a calculation of economy is responsible for certain developmental decisions. 

Stomata are pores on the surface of the leaf which, in their opening and closing, regulate gas exchange 

and the movement of water vapour between the interior of the leaf and its environment. Stomatal 

development is a plastic developmental process which is governed by a series of specific cell division and 

differentiation events, and therefore provides a suitable model for exploring the relationship between 

changes in plastic developmental processes and energetic cost to the plant. 

The work described in this thesis uses a combination of experimental and theoretical methods to further 

understand the range of cell division, expansion and differentiation events which result in the spacing of 

stomata within the abaxial epidermis of the model plant Arabidopsis thaliana and the economic costs of 

those processes, to develop an understanding of the economics of stomatal development. 
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1. GENERAL INTRODUCTION 

1.1 INTRODUCTION: THE ECONOMICS OF DEVELOPMENT 

Stomata are pores on the surface of the leaf, which regulate gas exchange between the leaf and its 

environment.  Water lost through stomata is a driving force for the transpiration stream, which is the 

transport of water from the roots, through the vascular system, up to the leaves (Fig. 1.1.1). 

The stomatal pore is formed of two guard cells, a pair of kidney bean or dumbbell shaped cells which 

regulate the opening and closing of the pore by fluctuating their turgidity through the import or export of 

solutes. These guard cells arise through a series of cell differentiation events and a patterning mechanism 

that ensures that stomata develop at least one cell away from each other. This patterning mechanism is 

important for the function of the pore, as the guard cells require solutes from their neighbours and 

adjacent pores reduce the gas diffusion capabilities of each pore (Papanatsiou et al. 2016) (Fig. 1.1.2). 

Development is determined by cell division, differentiation and expansion. Variation in these processes 

can therefore lead to plastic development, such as differences in organ size or changes in the proportion 

of specialised cells within an organ. For example, leaves grown under higher light conditions have 

increased numbers and layers of mesophyll cells compared to low light grown leaves. Characteristics such 

as organ size could be manipulated by producing more or larger cells, it is important to ask whether 

plants make developmental decisions based upon the relative economic costs of the different processes, 

and if there are noticeable differences in this economic cost. The economics of plant growth refers to the 

hypothesis that the plant reduces its metabolic requirements for growth by selecting the least energetically 

costly method of growing structures.  

Stomatal development is of particular interest when considering the economics of plant growth for 

several reasons:  stomata could be considered to be costly to maintain due to their reliance on active 

transport of solutes to function, they perform an important role, and their development is plastic. Cells 

assigned to the stomatal lineage are not committed to the stomatal development route until they develop 
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into guard cells (Nadeau & Sack 2003), and variation in the stomatal density of a plant has been proven to 

be regulated by environmental change.  This means that studying the energetic costs of different 

developmental routes that a plant can utilise to generate a certain stomatal density could provide 

information about the energetic requirements of plants under different conditions. This could be useful 

when scaled from individual plants to field scales to determine developmentally the most economic route 

of generating stomatal density, thereby reducing the amount of resources such as fertiliser needed for the 

growth of that crop per hectare. 

 
Figure 1.1.1: The transpiration stream. A diagram showing the movement of water through the 
plant. Water is absorbed from the soil through the roots (a), then transported through the vasculature 
(b) to the leaves along a gradient which is maintained by the evaporation of water from leaves, 
primarily through stomata (c). 

(c) 

(b

) 

(a) 
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Figure 1.1.2: (a): Leaf cross-section. Cartoon of the cross section of the leaf, showing the guard cells 
which surround the pore and the internal structure of the leaf, with the sub-stomatal chamber beneath 
the pore facilitating efficient gas exchange. (b) Cartoon of the leaf epidermis, with stomata highlighted 
in blue. 

1.2 REDUCING THE NEED FOR FERTILISER 

Why is it important that we should consider the efficiency of developmental decisions? Ultimately, this 

relates to Food Security and the costs associated with this. The term “food security” refers to the ability 

to sustainably produce enough food that is sufficiently nutritious.  Although the UK is a relatively food-

secure nation, it imports around 52% of its food from overseas, which reduces the sustainability (POST 

report 556 2017). The United Nations (UN) predicts that the world’s population will continue to increase 
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over the next century (fig. 1.2.1) and as such, it is important to not only find ways of increasing the 

amount of food produced globally, but also that this increase is sustainable. To this end, the UN has 

created a series of guidelines for sustainable development, and the second of these refers to maintaining 

secure food resources. The UN’s sustainable development goal (SDG) 2.4 is: 

By 2030, ensure sustainable food production systems and implement resilient agricultural practices that increase productivity 

and production, that help maintain ecosystems, that strengthen capacity for adaptation to climate change, extreme weather, 

drought, flooding and other disasters and that progressively improve land and soil quality (United Nations 2017a). 

Growing crops require nutrients from the soil such as nitrogen, phosphate and sulphur. Although these 

are found naturally in soil, repeated farming of the same land has the capacity to reduce the nutrient 

content, meaning diminishing crop yields (Bennett et al. 2001). Historically, this was remedied by leaving 

a field “fallow” to replenish itself, or by crop rotation (Sinclair 1998; White 1970). As the world’s 

population has grown rapidly since the start of the 20th century, the production of sufficient crops has 

relied on the use of fertiliser to re-introduce these nutrients into the soil (fig.1.2.2). However, the use of 

fertiliser has been shown to have negative impacts on the environment and cannot provide sustainable 

food security. Therefore, according to the UN’s SDGs, reducing the amount of fertiliser needed for crops 

would be a move towards more sustainable approach to food production. 

The global agriculture industry’s reliance on fertiliser impacts the environment in a number of ways. 

Firstly, nitrogen fertilisers are largely produced from natural gas using the Haber Bosch process- an 

energetically costly process which produces CO2 as a by-product, This means that the production of this 

fertiliser contributes to CO2 and methane production which contribute to global warming (Udvardi et al. 

2015). Also, overuse of nitrogen fertilisers results in the production of nitrogenous oxides, which is also 

an air pollutant (Ahlgren et al. 2010), and it is estimated that 50-70% of fertiliser added to the soil is lost 

to unintended processes, such as microbial activity in the soil. As well as this, leeching of fertilisers into 

local water systems results in algal blooms, and increase in the soil leads to an increase in pH which 

damages the quality of the soil. Fertiliser accumulation in the environment also has an impact on human 

health (Jones et al. 2013). 
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To increase the country’s food security, the British government encourages farming practices which 

reduce the reliance on fertiliser to increase yield (Parliamentary Office of Science and Technology 2017). 

The use of fertiliser is not seen to be a sustainable method of increasing food production, due in part to 

the energy required to produce nitrogenous fertiliser, and the lack of available phosphates. Therefore, as 

well as considering changes to farming practice and the development of more nutrient use efficient crops, 

other approaches may also be required to address sustainability. 

 
Figure 1.2.1: Projected Change in World Population 1950-2100: The reported world population as 
measured by the UN, and its predicted increase in the next 100 years, dependent on birth rate (United 
Nations 2017b). 
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Figure 1.2.2: Change in Nitrogenous and Phosphorous Fertilisers 1960-present: The change in 
(A) Nitrogenous and (B) Phosphorous fertilisers over time, as the total global use in tonnes of fertiliser 
per year(solid line) and average use per m2 of cropland (dotted line) (Lu & Tian 2017). 
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1.3 STOMATAL DEVELOPMENT 

In this thesis, the system that will be focused on is stomata and stomatal development begins in the 

protoderm of the developing leaf, though the process of producing stomata remains notably plastic 

throughout the development of the leaf. In order to understand the most economic method of producing 

a given stomatal density, it is important to understand the genetic pathways which facilitate the 

development of stomata. 

1.3.1 STOMATAL INDEX AND DENSITY 

 

There are two commonly used methods of measuring the frequency of stomata on the leaf epidermis: 

stomatal density (SD), which represents the frequency of stomata by the number per mm2; and stomatal 

index (SI), which represents the frequency of stomata as a percentage of the total number of cells on the 

epidermis. These two methods represent different definitions of stomatal frequency. SD represents the 

spatial arrangement of stomata on the leaf, and stomatal index represents the proportion of cells in the 

epidermis which have been assigned stomatal cell fate. SI is therefore often utilised to demonstrate 

changes in stomatal development, whereas stomatal density (coupled to guard cell size) is often more 

useful for determining physiological relevance. In wild-type plants, there is often a positive correlation 

between SD and SI, for example, light positively regulates stomatal development and growth at higher 

irradiances results in leaves that have both increased SD and SI compared to low light grown plants 

(Casson et al. 2009). However, mutations of regulatory genes or transgenic manipulation of these genes 

can lead to uncoupling of these parameters. For example, overexpression of the stomatal development 

gene SPEECHLESS (SPCH) results in a decrease in stomatal index, but little change in stomatal density 

(MacAlister et al. 2007a).  In this instance, this means that the transgenic plant is maintaining an optimal 

stomatal frequency through increased cell division or reduced cell expansion because the probability of a 

cell acquiring guard cell fate is lower than the wild type (fig. 1.3.1.1). One question that arises from these 

observations is whether these different developmental routes share the same metabolic cost. Whilst this 
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example involves a transgenic plant, it raises the question that, if plants have different developmental 

routes for generating a particular stomatal density, what is the most economical route?  

 

1.3.2 STOMATAL DEVELOPMENT 

 

Stomatal development begins in the protoderm of the developing leaf, where a protodermal cell takes on 

meristemoid mother cell (MMC) fate, a step that is poorly understood. Other protodermal cells develop 

into the epidermal cells which are not part of the stomatal lineage, which are called pavement cells.  This 

MMC then divides asymmetrically to create a smaller meristemoid cell (MC) and a stomatal lineage 

ground cell (SLGC), which is a cell derived from the stomatal lineage that is not currently assigned to the 

fate of developing into a guard cell. This meristemoid cell may undergo further rounds of asymmetric 

cellular division before differentiating into a guard mother cell (GMC). This GMC then undergoes a 

symmetrical division to create two guard cells, which form the stomatal pore (Fig. 1.3.2.1). The SLGC 

also has the potential to divide asymmetrically, producing a new MC. If a SLGC does not undergo an 

 
Figure 1.3.1.1: Stomatal index and Density:  Stomatal development begins in the protoderm, when 
cells are assigned to the stomatal lineage. However, stomatal development is plastic, and the same 
stomatal density can be seen in leaves with differing stomatal indices, due to changes in the rates of cell 
division, cell expansion and recruitment to the stomatal lineage. 

PROTODERM 
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asymmetrical division, it is considered to have exited the stomatal lineage and therefore develops into a 

pavement cell (Gonzalez et al. 2012; Pillitteri & Torii 2012; Peterson et al. 2010; Lau & Bergmann 2012). 

In these asymmetric divisions, the cell divides along an axis that deviates exactly 60° from the plane of the 

previous division (Dong et al. 2009). This orientated division plane is tightly controlled and must be 

maintained in order to establish the one cell spacing rule that applies to stomatal development. This rule 

exists to prevent two stomata developing next to each other, as stomatal opening works by the import of 

solutes from neighbouring cells, and therefore two stomata being neighbours would inhibit their opening 

as well as result in overlapping gas diffusion shells, which reduced the efficiency of gas exchange 

(Richardson & Torii 2013). The spacing rule is maintained through this asymmetric cell division, and 

through any subsequent rounds of spacing cell divisions, which are defined as when an SLGC undergoes 

an asymmetric division leading to the production of satellite stomata (see 5b in fig. 1.3.2.1). These 

amplifying divisions contribute significantly to epidermal development and give rise to around 44% of 

stomata present on the epidermis of the Arabidopsis Colombia-0 ecotype (Geisler 2000). 
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1.3.3 GENETIC REGULATION OF STOMATAL DEVELOPMENT 

Stomatal development is regulated through a signalling pathway of extracellular ligands and cell surface 

receptors, which regulate an intracellular signalling cascade that manages the activity of key transcription 

factors. The extracellular signalling factors that initiate this process belong to a family known as 

EPIDERMAL PATTERNING FACTORS (EPFs), namely EPF1 and 2, and the EPF-like 

STOMAGEN. These are small peptides which bind to a receptor complex on the cell surface, which 

consists of a Leucine Rich Repeat (LRR) receptor-like protein (RLP) called TOO MANY MOUTHS 

 

Figure 1.3.2.1: Stomatal Development: Stomatal development is brought about by a series of cell 
divisions and differentiation events. A protodermal cell develops into a meristemoid mother cell 
(MMC)(1), which divides asymmetrically to form a meristemoid and a stomatal lineage ground cell 
(SLGC) (2). This meristemoid can undergo another round of asymmetric cell division to produce 
another SLGC (3a) another two times (3b), to maintain an area of SLGCs around the meristemoid as it 
develops into a guard mother cell (GMC) (4), which divides symmetrically to produce the two guard 
cells which make a stoma (5). Alternatively, an SLGC can divide asymmetrically to produce another 
meristemoid (4b) along a division plane 60° from the original plane of division to maintain proper 
stomatal spacing (5b) Figure adapted from (de Marcos et al. 2017).   
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(TMM), a member of the ERECTA family of LRR receptor-like kinases (RLK) and also members of the 

SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) family RLKs (Gonzalez-Guzman 

2002; Cheung & Wu 2015). Depending upon the particular EPF ligand, binding of the ligand to these 

receptors activates a kinase cascade which results in the phosphorylation of a basic helix-loop-helix 

(bHLH) transcription factor, which in turn regulates gene expression events that lead to differentiation 

steps in the stomatal lineage (Fig. 1.3.2.1). The EPFs are separated into two groups- activators and 

inhibitors. EPF1 and 2 are inhibitors, and as such repress the formation of stomata. This function is vital 

in maintaining adequate spacing. In fact, EPF1 inhibits the formation of stomatal pairs and clusters 

specifically, essentially acting as a maintainer of the 1-cell-spacing rule mentioned in the section above. 

EPF2, on the other hand, inhibits stomatal development by inhibiting the production of meristemoid 

cells (Casson and Gray 2008; Hunt et al. 2010). EPFL9 or STOMAGEN is an activator of stomatal 

development. It is produced in the mesophyll and competitively inhibits EPF1/2 binding on their 

cognate receptors, namely the TMM-RLK receptor (Hronkova et al. 2015). 

The TMM protein has not been shown to extend into the cell interior- it does not have a regulatory 

kinase domain. It is suggested that the signal instead is transmitted into the cell by the associated RLK, 

which is known to belong to the LRR family of membrane proteins, as does TMM itself.  These RLKs 

are members of the ERECTA receptor family (ERf). It is suggested that TMM regulates the activity of 

the ERECTA-like receptor (ELR) and the SERK, increasing or decreasing its ability to respond to its 

ligand in response to extracellular concentrations of said ligand.  

The outcome of these interactions on the cell surface is the activation of a MAPK (mitogen-activated 

protein kinase) signalling cascade, wherein a MAPKKK (or MAP3K) activates MAPKKs (MAP2K), 

which in turn activate MAPKs. This cascade is involved in the regulation of all divisions within the 

stomatal development pathway. The MAPK signalling pathway is known to interact and regulate the 

function of the SPCH bHLH transcription factor, and is suspected to also affect the activity of MUTE 

and FAMA (Lampard et al. 2014). It is usually suggested that the signalling cascade inhibits these TFs, but 

there is evidence that in some cases, the cascade may increase TF activity. The above suggests that the 

MAPK cascade is possibly involved in the regulation of all steps in the stomatal development pathway. 
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 Molecular studies have shown that one particular MAP3K- christened YODA (or YDA) due to the 

green, wrinkled appearance of the knockout phenotype- has a deciding role in the cascade, activating the 

MAP2Ks 4/5/7/9 which in turn activate MAPK3/6 (Wang et al. 2007) . yda knockout mutants produce 

epidermes consisting almost entirely of guard cells suggesting that YDA is primarily involved in negatively 

regulating cell fates in the stomatal lineage (Bergmann et al. 2004) . 

These MAPK cascades regulate a series of bHLH transcription factors, namely SPEECHLESS, MUTE 

and FAMA; it is not absolutely clear whether targeting by the MAPK cascade leads to degradation or a 

change in activity of these TFs. Analysis of mutants in these genes show that they regulate consecutive 

steps in the stomatal development pathway (Pillitteri et al. 2008). SPCH is the first to be activated in this 

pathway, and regulates asymmetric entry divisions whereby a MMC or SLGC divides to produce a 

meristemoid cell and an SLGC. This is suggested because spch mutants do not develop any stomata, or 

even stomatal lineage cells- the leaf is covered in only pavement cells. SPCH activity is therefore required 

for the subsequent steps regulated by  MUTE and FAMA but experimental evidence suggests that these 

genes are not direct targets of SPCH (MacAlister, Ohashi-Ito & Dominique C Bergmann 2007; Adrian et 

al. 2015). 

MUTE is expressed in meristemoid cells and is required for the transition into GMCs. MUTE is found 

only in meristemoid cells that are differentiating into GMCs (Pillitteri, Bogenschutz, et al. 2008). The 

third gene, FAMA, regulates the division which transitions GMCs to guard cells. This is shown by 

analysis of overexpression FAMA, in which affected plants develop unpaired guard cells, and also 

develop guard cells in places other than the epidermis. 
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Figure 1.3.3.1: Stomatal Gene Regulation Pathway. Cartoon showing the gene regulation of 
stomatal development. Signaling factors EPF1, EPF2 and stomagen mediate the activity of the cell 
surface receptor complex made of the RLP TMM, a SERK and an RLK. The RLK activates a MAP3K 
signaling cascade including the protein YDA. This cascade results in the degradation of the bHLH 
transcription factor, thereby regulating gene expression.  
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1.3.4 MANIPULATION OF STOMATAL DEVELOPMENT 

With an understanding of how different genes are involved in stomatal development, it is possible to 

utilise genetic tools to manipulate the rate of stomatal development at different stages. This would entail 

altering the expression of genes involved in each stage of stomatal development, such as SPCH, MUTE, 

FAMA and YDA, and also other genes with less stomatal development specific function that will still 

affect stomatal density on the leaf, such as genes involved in the cell cycle. Comparison between wild type 

plants and knockout mutants wherein expression of the gene of interest (GOI) has been removed can be 

used to understand how loss of that gene expression affects development, and therefore the function of 

that gene can be inferred. Constitutive overexpression of GOIs can also be used for this purpose, and 

comparisons between knockouts and overexpression mutants can provide more insight into the function 

of a GOI and the influence of changes to its activity levels. Experiments of this kind have been 

performed to investigate the role of the stomatal development gene YDA (Lukowitz et al. 2004). 

To investigate the effects of genes where their constitutive overexpression results in a lethal phenotype, 

or to understand the effect of transient overexpression of genes of interest, it is possible to create 

inducible overexpression transgenic plants (Brand et al. 2006; Zuo et al. 2000). Systems using the hybrid 

 
Figure 1.3.3.2: Role of bHLH Transcription Factors in Stomatal development: The role of the 
bHLH transcription factors in mediating the differentiation events in stomatal development. SPCH 
mediates the asymmetric cell division that produces a meristemoid and a stomatal lineage guard cell 
(SLGC), MUTE mediates the differentiation of a meristemoid into a guard mother cell (GMC), and 
FAMA regulates the final symmetrical division which generates the two guard cells which make up the 
stoma. 
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XVE transcription factor have been widely used for this purpose (Brand et al. 2006; Lau et al. 2014; 

Ohashi-Ito & Bergmann 2006c; Tamnanloo et al. 2018; Liu et al. 2016; MacAlister & Bergmann 2011). 

This system relies on the hybrid XVE transcription factor, which is a combination of the DNA binding 

domain of the repressor LexA, the transactivating domain of VP16 and the regulatory region of the 

human oestrogen receptor (ER), the transcription of which is under the regulation of a given promoter. 

Transcription of the target gene is regulated through the use of a second construct containing the target 

gene and the LexA operator sequence cloned upstream of the target gene. The XVE transcription factor 

is found in the cytoplasm, and in presence of the ER ligand β-estradiol is relocated to the nucleus. Then, 

the LexA domain will bind to the LexA operator, and the VP16 transactivator will increase expression of 

the target gene.  

The XVE-mediated inducible expression system has previously been used to investigate the activity of 

stomatal lineage genes such as FAMA, MUTE and SPCH (Hachez et al. 2011; Han et al. 2018; Lau et al. 

2014). 

1.4 THE CELL CYCLE 

The maintenance of stomatal density in the epidermis relies not only on the rate of stomatal 

development, but on the rate of cell division and cell expansion as well. Cell division and expansion are 

linked processes- the cell division cycle is thought to consist of two separate cycles, cell division and cell 

growth. Changes in the rate of cell division with respect to the rate of growth will result in changes in cell 

expansion (Boniotti & Griffith 2002).  

Cell division in plants is similar in many ways to that of other eukaryotes, and consists of four discrete 

stages- G1, which is defined as the gap (G) between mitosis and DNA synthesis; S-phase, which is the 

phase of DNA synthesis (S); G2, the gap between DNA synthesis and mitosis; and M-phase, the phase of 

cell division or mitosis (M). Regulation of the cell cycle is maintained intracellularly through cell division 

checkpoints that prevent the cell from progressing through the cycle too early, or with damaged or 

improperly replicated DNA (Gutierrez 2009). These checkpoints are maintained by a family of proteins 

called cyclins, which regulate the activation of different stages of cellular division through the 
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phosphorylation of cyclin-dependent kinases (CDKs), which activate proteins involved in mitosis. The 

cyclic production of cyclins regulates the period of the mitotic cycle, as well as the periodic expression of 

CDK inhibitors such as KRP1, which prevent early cell division (Ren et al. 2008).  Production of cyclins 

can also be regulated externally, such as through the action of hormones such as brassinosteroids 

(Dewitte et al. 2007).  Cyclins also have a role in stomatal development, regulating the asymmetric ell 

divisions which gives rise to GMCs (Yang et al. 2014).  

1.5 MEASURING METABOLIC ACTIVITY IN ARABIDOPSIS THALIANA 

In order to determine which method of maintaining a given stomatal density is most energetically 

economic for the plant, it is important to be able to measure any changes in metabolic activity. This 

provides an indication of the energetic cost of any larger processes being carried out by the plant. An 

important marker of the metabolic activity of a plant is respiration, which is the process by which the 

plant breaks down larger molecules such as carbohydrates and proteins into carbon dioxide and water, 

thereby releasing the energy contained in the bonds within the larger molecules. This energy is then 

stored in ATP, which is universally used in the cell to generate energy through the conversion of ATP to 

ADP.  Therefore, metabolic activity can be measured through the change in cellular ATP concentration. 

This can be measured by collecting plant tissue, freezing and thawing the tissue to break open the cells, 

and then measuring the ATP concentration of the sample through the use of a luciferase assay. Luciferase 

assays utilise the firefly-derived luciferase enzyme, which emits light in the presence of ATP, to measure 

the concentration of ATP in a sample through the luminescence of the luciferase-treated sample (fig 

1.5.1). As ATP is the energy currency of the cell, and is used to provide energy for costly processes, 

significant changes in ATP concentration indicates a higher metabolic activity  (Song et al. 2006; 

Finkemeier et al. 2005; Jeter et al. 2004). 
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An alternate method of determining metabolic activity is to measure the amount of CO2 evolved by the 

plants. To do this, plants are fed 14C-labelled glucose and must then be incubated in the dark in order to 

diminish the effect of photosynthesis on CO2 evolution. The CO2 produced by the plants is collected in a 

KOH trap, and measured for 14C activity, giving the amount of 14CO2 evolved by the plant. This 

correlates with the respiration within the plant. The amount of respiration is an indicator of the metabolic 

activity of the plant in that as one increases, so does the other (Nunes-Nesi et al. 2005; Garlick et al. 

2002). 

1.6 MODELLING TISSUE DEVELOPMENT 

 

The mechanisms by which stomatal density is maintained in the epidermis are varied, and the interaction 

between factors varies over time. This makes the process of maintaining stomatal density difficult to 

understand through simply inferring a relationship from experimental data. One method of improving 

 
Figure 1.5.1: Luciferase Assay: Luciferase converts D-luciferin into oxyluciferin in the presence of 
ATP. This conversion generates light, The concentration of ATP in a sample can be calculated by 
creating a standard curve of the luminescence of different ATP concentrations, then comparing the 
sample results to this curve (adapted from (Thermo Fisher Scientific n.d.)). 
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our understanding is to develop a mathematical model of the development of the leaf epidermis, and its 

relation to stomatal density and index. 

Mathematical models allow for the investigation of interactions within a complex network of biological 

components, ranging in scale from predator-prey interactions in a specific environment, to movement of 

molecules within a single cell. The series of equations used to describe a system are derived from 

experimental data, and models are used to understand the relationship between different components of a 

model, or to predict how the whole system will behave under different conditions. 

1.6.1 BUILDING A MODEL 

The appropriate scale for modelling is chosen based on the nature of the information that is being sought 

through the creation of the model. Here, the aim is to understand how the arrangement of a certain cell 

type (stomata) is maintained through the number of cell division and differentiation events in the tissue 

(leaf epidermis). This means that it is appropriate to focus on modelling the development of the cells 

within the leaf epidermis specifically. 

Next, a method of modelling the tissue must be chosen. This depends on in what manner it is most 

appropriate to represent the tissue. A model can be created using a variety of methods, such as a series of 

Boolean operations, a more complex mechanical simulation of the growth and movement of cells within 

the tissue, such as a cellular-Potts model, or a series of linear differential equations. The development of 

the epidermis is modelled as a population of cell types which are connected together in a series of cell 

division and differentiation events, which can be described with a network of interactions (fig 1.6.1). This 

network contains relationships between cell types which are analogous to those in the stomatal 

development pathway, such as the relationship between MCs and SLGCs which means that divisions can 

result in an increase in either cell type dependant on the type of division, which spacing divisions 

generating an SLGC and being analogous to k2 and amplifying generating an MC and being analogous to 

k4 in fig 1.6.1. PC division is analogous to k3, and the rate of MC differentiation into GMC being 

analogous to k1.  
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The rate at which cells change into other cell types through these various events is described through a 

series of ordinary differential equations (ODEs). In the case of the hypothetical network of cell 

differentiation and divisions in the tissue consisting of cells of type A, B and C, as shown in fig 1.6.1, 

these equations would be:  

𝑑𝐴
𝑑𝑡

= 	𝑘'𝐶 − (𝑘+ + 𝑘-)𝐴	 (1.6.1) 

𝑑𝐵
𝑑𝑡

= 	𝑘+𝐵 (1.6.2) 

𝑑𝐶
𝑑𝑡

= 	𝑘-𝐴 +	(𝑘0 − 𝑘')𝐶 (1.6.3) 

 

Where k1 is the rate at which A differentiates into B, k2 is the rate of asymmetric division of A which 

generates a C type cell, k3 is the rate of division of C, and k4 is the rate of asymmetric division of C which 

generates an A type cell.  

Changes to the development of the tissue are represented by changing the parameters of this model, 

which represent the different developmental events seen in the tissue. Altering the rates of these events in 

the model by varying the parameter values allows for investigation of the effects of these events on the 

development of the tissue overall, and realistic changes to these parameter values can be predicted by 

finding the parameter values which fit the model’s output to match data on the changes in these cell types 

in the actual tissue in various conditions. This is referred to as fitting the model to the data. 
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1.6.2 MODELS OF PLANT TISSUE 

While there exist several models of various aspects of stomatal development in Arabidopsis, such as have 

focused on such properties as stomatal conductance and its relation to stomatal density, or the 

mechanism by which aspects of stomatal development occur (Dow et al. 2014). There has also been a 

model produced of the spatial distribution of signalling factors within the epidermis and its effect on the 

initiation of stomatal development (Horst et al. 2015). This model focuses on the regulation of SPCH 

expression through the movement of the EPFs and STOM, which provides insight into how the 

distribution of stomata through the epidermis can be regulated through the diffusion of these signalling 

molecules. However, this model does not explicitly show the changes in the types of cell which populate 

the cell epidermis over time, as SPCH expression triggers entrance into the stomatal lineage but does not 

directly produce stomata. A 2018 paper models the activation of MUTE over time and its role in the final 

symmetric cell division that generates a stoma and uses experimental data to tie MUTE activity to 

stomatal index and cell size (Han et al. 2018). This model helps elucidate the role of MUTE within 

 

Figure 1.6.1: Example Tissue Development Network: An example of a network of differentiation 
events which result in the development of cell types in a tissue. Cell type A can differentiate into B at a 
rate of k1 or divide to produce C at a rate of k2. C can also divide and produce A at a rate of k4 or 
divide symmetrically and produce another C at a rate of k3. 
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stomatal development but does not provide a complete picture of the relationship between all the cell 

types of the epidermis. The focus of this thesis is the changes in number and type of epidermal cell which 

relates most directly to the maintenance of stomatal density and therefore to the economy of that 

maintenance.  

There have also been models of the development of other specified cells within plant tissues. The Digiuni 

model of trichome development uses a series of ODEs to model the production of trichomes, the t-

shaped cells on the adaxial epidermis which trap a layer of air on the surface of the leaf (Digiuni & 

Schellmann 2008; Benítez et al. 2011), and the Savage model of root hair development uses a series of 

logical Boolean expressions (Savage et al. 2008). These models also simulate the action of extracellular 

signalling factors and their role in the production of these structures, whereas the aim of the work 

outlined in this thesis is to predict the changes in the number of each cell type over time and through the 

manipulation of cell division, differentiation and expansion. 

1.7 CONCLUSIONS 

It has been noted that in some conditions, the number of stomata per mm2 of the leaf (SD) and the 

number as a percentage of total cells (SI) are not correlated with each other. This suggests that a given SD 

can be maintained through increased cell division, increased cell expansion or increasing the number of 

cells on the epidermis assigned to the stomatal cell fate. It could be that one of these different methods of 

maintaining SD may be more energetically favourable than the other, and this project aims to determine 

the energetic efficiencies of these methods of maintaining different stomatal frequencies. through the 

analysis of changes in metabolic activity in plants which have increased cell division, cell expansion, or 

recruitment to the stomatal fate. 

In order to understand how changes to the rates of cell division and differentiation can affect the 

energetic efficiency of the plant, leaf development can be used as a model. Stomatal development is 

brought about through a series of asymmetric cell divisions regulated by bHLH transcription factors, and 

the interaction between these cell types and the other cell type present on the epidermis, known as 

pavement cells, is a network which can be modelled in the same way that other tissue structures have 
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been modelled in plants previously, such as trichome development on the adaxial leaf surface, and root 

hair development. 

This information might then be used to either determine which genotypes are most suited to a given 

environment, or to produce plants that are more water efficient. 

1.8 PROJECT AIMS 

 

1.  Investigate the effects of overexpressing tissue development genes on the patterning of the leaf 

epidermis. 

 

2. Discover a suitable method of measuring the energetic cost of different developmental processes. 

 

3. Build a mathematical model of stomatal development. 
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CHAPTER 2: MATERIALS AND METHODS 

All chemical reagents were purchased from Sigma-Aldrich or Fischer Scientific, unless otherwise stated. 

2.1 GROWTH CONDITIONS 

2.1.1 MAKING MEDIA 

All media-grown experiments used 1/2MS (Murashige & Skoog) media, pH 5.7. 1 litre of media contains 

2.2g MS medium plus vitamins (Melford, m0222.0050) in distilled water, adjusted to pH 5.7 with 

appropriate amounts of 0.1M KOH.  

For plants grown on solid media, 7 g of plant agar (Melford, P1001.1000) was added as a gelling agent. 

None was added for liquid media. Media was sterilised by autoclaving for 20 minutes at 121°C. 

2.1.2 SEED STERILISATION FOR TISSUE CULTURE 

Seeds were sterilised by soaking in 1 ml 70% ethanol for 2 minutes, followed by 2 ml 20% bleach and 

0.1% TWEEN for 20 minutes. The seeds were then washed with distilled, autoclaved water 3-5 times. 

Seeds were then left to stratify at 4°C in the dark for 48 hours, before being sown on solid 1/2MS media, 

the fabrication of which is described above (2.1.1). 

2.1.3 SOWING SEEDS ON COMPOST 

For all experiments where plants were grown on compost, seeds were sown on Levington Advance Seed 

and Modular Compost and left to stratify at 4°C in the dark for 48 hours. 

2.1.4 GROWTH CONDITIONS FOR CHAPTER 3.2- PHENOTYPIC ANALYSIS 

Seeds were sown, after sterilisation as described in 2.12,   on 90mm petri dishes containing 30 ml solid ½ 

MS media (made as described in 2.1.1) with the addition of either 10 µm ß-estradiol or a mock treatment 
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of ethanol. The plates were grown in an 8-hour photoperiod with a PPFD of 150 µmol m-2 s-1 . Seedlings 

were collected 7 d.p.g. and stained using FM4-64 (see section 2.2.13) 

2.1.5 GROWTH CONDITIONS FOR CHAPTER 3.3- RT-QPCR ANALYSIS 

Seeds were sown on compost as described in 2.1.3 and grown until 10 d.p.g. under an 8-hour 

photoperiod with a PPFD of 150 µMolm-2s-1. Seedlings were then harvested (100 mg of tissue per sample 

placed into 1.5 ml Eppendorf microfuge tubes) and frozen immediately in liquid nitrogen, for RNA 

extraction (see section 2.2.7). 

2.1.6 GROWTH CONDITIONS FOR CHAPTER 4.2- ATP ASSAYS 

Seeds were sown on compost as described in 2.1.3 and grown until 14 d.p.g. in a in an 8-hour 

photoperiod with a PPFD of 150 µMolm-2s-1 . Seedlings were then harvested (100 mg of tissue per 

sample placed into 1.5 ml Eppendorf microfuge tubes) and frozen immediately in liquid nitrogen, for 

protein and ATP assays. 

2.1.7 GROWTH CONDITIONS FOR CHAPTER 4.3- 14CO2 EVOLUTION ASSAYS 

Seeds were sown, after sterilisation as described in 2.12, on 90mm petri dishes containing 30 ml solid ½ 

MS media (made as described in 2.1.1) containing 1% sucrose. The seedlings were grown in a 9-hour 

photoperiod with a PPFD of 150 µMolm-2s-1. 14 d.p.g, plants were transferred to a 50 ml falcon tube 

containing 2.5 ml liquid ½ MS media and 10 µM estradiol or a mock treatment of ethanol at the 

beginning of the photoperiod, then returned to the growth conditions stated above for 9 hours. After 9 

hours, plants and media were transferred to black falcon tubes. 

 

2.1.8 GROWTH CONDITIONS FOR CHAPTER 5.2- MATURE PLANTS 

Seeds were sown on compost as described in 2.1.3 and grown until maturity (approx. 6 weeks) under a 9-

hour photoperiod with a PPFD of 150 µMolm-2s-1. Then, the 1st 9th, and most recently developed leaves 
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were taken from the rosette to make impressions of (as described in 2.2.6), as is the youngest leaf from 

the centre of the rosette. 

2.1.9 GROWTH CONDITIONS FOR CHAPTER 5.2- SEEDLINGS 

Seeds were sown on compost as described in 2.1.3 and grown until 3 d.p.g. in a 9-hour photoperiod with 

a PPFD of 150 µMolm-2s-1. The first true leaves were then excised, and epidermal impressions taken (as 

described in 2.2.6) from a sample of plants at the beginning of the photoperiod every day for 4 days. 

Plants treated with β-estradiol were sprayed with a solution of 10 µM β-estradiol, 0.01% Silwet and 

distilled water, or a mock treatment with ethanol in place of the β-estradiol, at the beginning of the 

photoperiod on the first day (i.e. 3 d.p.g.). 

2.2 EXPERIMENTAL PROTOCOLS 

2.2.1 MAKING - Β -ESTRADIOL STOCK 

A 10mM stock solution of β-estradiol was made by dissolving powdered β-estradiol in absolute ethanol 

followed by filter sterilisation using a 0.2μm acrodisc filter (VWR, 514-4136). 

2.2.2 TRANSGENIC ACCESSION LINES 

The transgenic lines were created prior to the experiments in this thesis by cloning cDNA constructs into 

either MDC150 CUT1proXVE; LexA-GFP or MDC150 35SproXVE; LexA-GFP depending on the 

desired promoter for the gene of interest; the CUT1 promoter drives expression within the epidermis 

whereas the CaMV35S promoter shows strong constitutive expression (Benfey et al. 1989; Kunst et al. 

2000). These constructs are based on those described in (Brand et al. 2006) . XVE is a transcription 

factor, which mediates the activity of the synthetic LexA promoter. XVE is activated by β-estradiol, and 

therefore any genes downstream of the LexA promoter on the cDNA construct are only active in the 

presence of β-estradiol (Zuo et al. 2000). Therefore, constructs containing the CUT1 promoter, will have 
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inducible expression only in the epidermis, whilst those driven by the CaMV35S promoter, will be widely 

expressed. 

2.2.3 TAKING LEAF IMPRESSIONS 

Impressions of the abaxial epidermis were taken by pressing the leaves abaxial-side down into 

ImpressPlus dental resin from Perfection Plus until the resin hardened. The leaves were then removed 

from the resin and then clear nail varnish was painted over the resin in a thin layer. This clear nail varnish 

was transferred onto Sellotape by applying the Sellotape to the painted resin and then peeling off. This 

was then attached to a microscope slide for imaging as described in 2.2.3. 

2.2.4 TAKING IMAGES 

Epidermal impressions were examined on a N-300M Brunel Microscope using a 20x objective and 

imaged using a Moticam 5 camera and ImageJ at a resolution of 1296x972 pixels (600 x 450μm). 

2.2.5 MEASURING STOMATAL INDEX AND DENSITY 

Stomatal counts were obtained by counting the cells present on images obtained using the protocol 

mentioned above (2.2.3). Cell numbers (stomata and all other cells) were counted within a reference 

frame of 400x400 µm. The counts were obtained by counting every cell or stomate of which more than 

half lay within the reference frame. To calculate the number of stomata per mm2, the number of stomata 

per 400x400 µM area was multiplied by 6.25 ([(1000x1000)/(400x400)]=6.25). Stomatal index was 

calculated by dividing the number of stomata by the total cell count within the reference frame (SI= 

[(Stomata)/(pavement cells + stomata)] x 100), expressed as a percentage. 

2.2.6. COUNTING EPIDERMAL CELL TYPES 

Epidermal cell counts were obtained by counting the cells of each type (GMC, MC, SLGC, PC and 

stomata) present on images obtained using the protocol mentioned above (2.2.2). Cell numbers were 

counted within a reference frame of 400x400 µm. The counts were obtained by counting every cell of 

which more than half lay within the reference frame. To calculate the number of each cell per mm2, the 
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number of cells per 400x400 µM area was multiplied by 6.25 ([(1000x1000)/(400x400)]=6.25). The 

effective cell count was derived by multiplying the cell count per mm2 by the average cell size, which was 

calculated by multiplying the total cell number in the reference frame by 6.25. 

SLGCs were differentiated from PCs by noting if the cell shares a border with another stomatal lineage 

cell- if not, the cell is classified as a pavement cell. 

 

2.2.7 RNA EXTRACTION 

Samples for RNA extraction were taken by placing 100 mg of tissue (approx. 15-20 seedlings) into a 1.5 

ml Eppendorf tube containing a 5mm steel ball bearing, then immediately frozen and stored in liquid 

nitrogen or at -80°C until the tissue was ground to a fine powder using a Qiagen TissueLyser II. RNA 

extraction was then carried out using a Zymo Quick-RNATM miniprep kit as per the manufacturer’s 

instructions, and the RNA stored at -80°C. 

2.2.8 CDNA SYNTHESIS 

RNA concentration (ng/μl) was determined using a Thermo Scientific Nanodrop Lite, and cDNA 

synthesis was carried out using the High Capacity cDNA Reverse Transcription Kit from Thermo 

Scientific, using a Bio-Rad t100 Thermal Cycler, with the cycling conditions: 25º  for 10 minutes, 37º for 

120 minutes, and 85º for 5 minutes. The volume of each component is listed below: 

Component Volume per reaction (μl) 

10x RT buffer 2 

25x dNTP mix 0.8 

10x random primers 2 

reverse transcriptase 1 

RNase inhibitor 0.5 

RNase free water 3.7 
Table 2.2.8.1: cDNA synthesis components 
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2.2.9 RT-QPCR 

rt-qPCR was carried out on a Bio-Rad CFX Connect real time PCR detection system using the SYBR 

Green Quantitative RT-qPCR Kit, using 20x diluted cDNA synthesised as described in 2.2.8. The cycle 

condition used was 95º for 3 minutes, followed by 40 cycles of 95º for 15 seconds, 57º for 15 seconds 

and 72º for 20 seconds. The volume of each component is as follows: 

Component Volume per reaction (μl) 

Primer stock 1 

SYBR green 2X mix 130 

Sterile water 15.6 

MgCl2 36.4 

Table 2.2.9.1 rt-qPCR components 

Primer sequences used are outlined in the table below: 

Primer Forward Reverse 

SPCH AACGGTGTCGCATAAGATCC CAAGAGCCAAATCTTCAAGAGC 

MUTE AACGTCGAAAGACCCTAAACCG TTAGCATGAGGGGAGTTACAGC 

FAMA GCTGCTAGGGTTTGACGCCATGA GGAGTAGAGGACGGTTTGTTCC 

YDA GAGTGCACAACAATTGGGGC CATCGACGGTTTCAGAGCCA 

CYCD3;1 GCTCACTGGGATTTCCTCAAC CCCGACAAATCTTGAATCGGA 

KRP1 ATCGACGGGGTACGAAGAGG CCATCGTTTTCCTCCCGCTA 

UBC21 GAATGCTTGGAGTCCTGCTTG CTCAGGATGAGCCATCAATGC 

Table 2.2.9.2 rt-qPCR primer sequences 
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2.2.10 PROTEIN ASSAY 

In order to determine the normalised ATP content for each sample, the protein concentration of that 

sample must be determined. The protein content in mg/ml is assayed for using 750µl Bradford reagent 

(Bio-Rad laboratories) and 250µl sample. Standards are derived from a 2 mg/ ml BSA solution. The 

standards are 0.01, 0.025, 0.05, 0.1, 0.15, 0.2 and 0.25 mg/ ml BSA and the optical density was measured 

at 595nm on a WPA Lightwave single assay spectrometer (Bradford 1976). 

2.2.11 ATP LUCIFERASE ASSAY 

The ATP activity was measured using the Molecular Probes ATP Determination Kit, a luciferase assay 

which measures ATP concentration through the activity of the luciferase enzyme, which directly binds 

ATP and emits light upon binding. The enzyme activity was measured using a luminometer, which 

measures the light emitted by the luciferase enzyme. Reaction mix was prepared as described below, and 

90 μl added to 10 μl of sample as prepared in 2.1.6: 

Component Volume (ml) 

distilled water 8.9 

20x Reaction Buffer 0.5 

DTT 0.1 

10 mM D-luciferin 0.5 

Luciferase 2.5 µl 

Table 2.2.11.1: ATP assay components 

2.2.12 14CO2 EVOLUTION ASSAY 

Plants were grown as described in 2.1.7 and transferred to black falcon tubes. 2.5 ml of 1% sucrose 1/2 

MS media with 14C-U-labelled glucose in ethanol added to the media was then transferred to each tube, 



 42 

such that the total activity of the labelled glucose in each tube was then 12 µCi. 0.6 ml microfuge tubes 

containing 0.6 ml 2M KOH were then added to the falcon, suspended above the media by inserting 

inside p1000 pipette tips placed inside the tube. These KOH traps were removed every 24 hours for 48 

hours, and the activity of the evolved 14CO2 dissolved in the KOH was measured using a Packard Tri 

Carb 3100TR Scintillation Analyzer, into which was inserted 20 ml Sarstedt scintillation vials containing 

0.2 ml of the sample mixed with 10 ml Perkin-Elmer emulsifier-safe scintillant. 

2.2.13 FM4-64 STAINING 

Plants were grown as described in 2.1.4, and then seedlings were submerged in a staining solution of 0.1% 

Sigma Aldritch Synapto-RedTM C2 in 2 ml distilled water for 20-30 minutes and then imaged under a 3W 

LED light emitting light at 520-530nm on a N-300M Brunel Microscope through the red filter as 

described in 2.2.3. 

2.3 DATA ANALYSIS 

Graphs were generated using the Python packages seaborn and matplotlib, or GraphPad Prism. 

2.3.1. ANALYSING IMAGE DATA 

For phenotypic analysis of seedlings, 24 image stacks of cotyledons were taken per condition, 12 of both 

the ß-estradiol and mock treated. Stomatal index and density were measured as described in 2.2.4 and 

analysed using an unpaired t-test, generated using the Python package scipy’s function t_test. 

2.3.1 ANALYSIS OF ATP ASSAY DATA 

For each condition, 3 biological reps of 100 mg of tissue (approx. 15-20 seedlings) were taken and 

measured 3 times to produce 3 technical reps. Results were analysed using an unpaired t-test, generated 

using GraphPad Prism. 
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2.3.3 ANALYSIS OF RT-QPCR DATA 

For each condition, 3 biological reps of 100 mg of tissue (approx. 15-20 seedlings) were taken and 

measured 3 times to produce 3 technical reps. Samples were analysed using the The 2-ΔΔCT method 

(Livak & Schmittgen 2001), which calibrates expression of the gene of interest (GOI) relative to a 

reference sample, and a reference gene, which here was UBC21.  

Relative expression of the GOI was calculated using the Ct value, which is the cycle at which fluorescence 

of the sample raised above background level and is proportional to concentration of the GOI within the 

sample. This Ct value is used to calculate ∆, which is the Ct of the GOI – Ct of the reference gene. The 

average ∆ is calculated for all the biological and technical reps, then the ∆∆ value is calculated by 

normalising these values to the ∆ of the reference sample (here the reference sample is plants grown 

without the inducer). The ∆∆ value is inverted and ln(-∆∆) is used to show the fold change in GOI 

expression in the sample relative to the reference sample. 

Changes in relative expression were analysed for statistical significance using  an unpaired t-test, generated 

using the Python package scipy’s function t_test. 

2.3.4 ANALYSIS OF 14CO2 EVOLUTION ASSAY DATA 

For each condition, 3 experimental vessels each containing 20 seedlings were used. The activity of the 

KOH traps was normalised against a control sample which contained no plant material.  Samples were 

analysed using an unpaired t-test, generated using the Python package scipy’s function t_test. 

2.3.5 ANALYSIS OF CELL POPULATION DATA 

For the 3 d.p.g. seedings, 6 images were used for each genotype and/or growth condition. Cell types were 

counted as described in 2.2.5 and sorted into a DataFrame for use with the Python package Pandas. 

Samples were then analysed using a Kolmogorov-Smirnov test, using the Python package scipy’s function 

kstest. 
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The line of best fit of the data was calculated using the Python package numpy’s function polyfit, fitting 

the dataset to a 1st order polynomial. 

2.4 COMPUTATIONAL MODELLING 

Models were built in Python 3.5.5 using the Anaconda package manager and the Jupyter Lab 

computational environment. 

2.4.1 MODEL ODE SOLVER 

ODEs were solved by defining a function containing the ODEs that outputted a 2D-array of the ODE 

outputs. This function was fed into the scipy function odeint, which solved the ODEs using parameter 

values determined by the user, over an array of timepoints defined as a numpy linear array ranging from 0 

to 72 with 1000 elements. Odeint outputs a 3D array of each variable’s solution for each timepoint in the 

array. 

2.4.2 FITTING TO DATA 

The parameter values for the ODEs were outputted into a function which calculates the sum of the least 

squares regression between the simulated output of the ODE solver and a first-order polynomial for the 

line of best fit of the data, calculated using the scipy function polyfit. This function is passed through the 

scipy.optimize function minimiser, which uses the L-BFGS-B optimisation algorithm to search for 

optimal parameter values, with each parameter value having a lower bound constraint of 0, and no upper 

bound constraint. 

2.4.3 TEST OF FITTING ALGORITHM 

To test the fitting algorithm, simulated data was generated by inputting 8 parameter values randomly 

generated using the numpy.random function random into the ODE solver outlined in 2.4.1. The fitting 

algorithm is then applied to this simulated dataset 300 times, each time using a different randomly 

generated set of parameter values as a starting point. The initial and the fitted parameter values are saved 
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in lists. The difference between the actual parameter values used to simulate the data and the initial 

parameter values is displayed in a kdeplot generated using the seaborn function sns.kdeplot, alongside a 

similar plot displaying the difference between the actual values and the fitted values. 

2.4.4 SENSITIVITY ANALYSIS 

Parameter values fitted to the Col-0 dataset were increased or decreased by an amount specified by the 

user (10%, 90% or 50% were used) and then the ODEs were solved using these changed parameter 

values. The results of these simulations were plotted on a point plot generated using the seaborn function 

sns.pointplot, with the upper and lower bounds of each variable’s value shaded using the matplotlib 

function plt.fill_between.  
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CHAPTER 3: ASSESSING TRANSGENIC LINES 

3.1. INTRODUCTION 

In order to investigate the relative contribution of cell differentiation, division and expansion on the 

regulation of stomatal density, transgenic lines were developed that allowed inducible expression of key 

regulators of these processes. These inducible expression lines make use of the XVE inducible 

transcription system, which was first outlined by Zuo, Niu and Chua in 2000 (Zuo et al. 2000). This 

system consists of a hybrid activator, named XVE after its three components- the DNA binding domain 

of bacterial transcription repressor LexA, the herpes-simplex transcriptional activator VP16, and the 

human oestrogen receptor, ER. The target gene is then cloned downstream of LexO operator sequences 

fused to a promoter of choice.  When the XVE activator is activated by the presence of β-estradiol, it will 

then bind to the LexO sequences and promote transcription of the target gene (fig.3.1.1). The XVE 

system has been used widely as a tool for localised gene expression in Arabidopsis and has also been used 

to investigate the effects of temporarily inducing overexpression of genes for which constitutive 

overexpression would be lethal to the plant, or in the very least severely detrimental (Brand et al. 2006; 

Lau et al. 2014; Ohashi-Ito & Bergmann 2006c; Tamnanloo et al. 2018; Liu et al. 2016; MacAlister & 

Bergmann 2011).  

For the purpose of investigating the effects of increased cell division, cell expansion, and recruitment to 

stomatal fate, six genes were investigated for their utility in inducible expression transgenic lines: ΔN-

YDA, SPCH, MUTE, FAMA, CYCD3;1, and KRP1. Constructs were made with two different 

promoters, CUT1pro, which is a cuticle-specific promoter, and CaMV35Spro, which is a promoter 

derived from the cauliflower mosaic virus that is constitutively active (Odell et al. 1985; Kunst et al. 

2000). SPCH, MUTE and FAMA regulate stages of stomatal development, outlined in more detail in the 

introduction (table 3.1.1). Therefore, differences in the expression levels of that these promoters produce 

must be taken into consideration when comparing the utility of transgenic lines, as CUT1 does not 

produce as large an increase in expression level as the 35S promoter does (Zheng et al. 2007; Li et al. 

2002). 
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Overexpression of SPCH promotes entry divisions within the stomatal lineage but also inhibits the 

progression of cells through to the latter stages of stomatal development. It is therefore useful to 

overexpress SPCH to investigate how changes in cellular division specifically affect epidermal 

development (Lampard et al. 2008). MUTE promotes the transition from meristemoid cells to guard 

mother cells, which means an increase in the number of stomata compared with other epidermal cell 

types. FAMA mediates the rate of guard cell production, which again means an increase in stomata 

(Pillitteri & Torii 2007; Pillitteri, Bogenshutz, et al. 2008). CYCD3;1 is a cyclin, the overexpression of 

which promotes cell division, and KRP1 overexpression blocks entry into mitosis, which inhibits cell 

division and therefore promotes cell expansion  (Menges et al. 2006; Jakoby et al. 2006). 

 

 

 
Figure 3.1.1: Inducible Overexpression of Target Gene Regulated by XVE system: The inactive 
XVE hybrid activator is activated in the presence of β-estradiol due to its oestrogen receptor. This 
active XVE activator then binds to the LexA operator sequence (LexO) due to its LexA DNA binding 
domain, which is fused to the promoter of the target gene and promotes transcription thereof due to 
its VP16 activator. This allows for inducible expression of the target gene in the presence of β-
estradiol. 
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cDNA construct Notation Expected Phenotype 

CUT1proCYCD3;1 iCYCD3;1 Increased cell division, localised to the 
epidermis. 

CUT1proMUTE iMUTE Increased stomatal development. 

35SproSPCH iSPCH Increased cell division, throughout the plant. 

35SproYFP-KRP1 iKRP1 Increased cell expansion, throughout the plant. 

35SproMUTE iMUTE Increased stomatal development. 

35SproFAMA iFAMA Increased stomatal development. 

35SproΔNYDA iΔN-YDA Inhibition of stomatal development. 

 

Table 3.1.1: Intended effect of overexpression of genes to be studied. 
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3.1.1 AIMS AND OBJECTIVES 

The aim of this chapter was to analyse epidermal development in the six XVE-mediated overexpression 

lines. 

Objectives 

1) To investigate whether the inducible overexpression lines show increased expression of the target gene 

when in the presence of the inducer. 

2) To analyse the phenotype of the transgenic lines following gene induction and determine if this 

correlates with the expected phenotype. 

 

 

3.2. INITIAL ASSESSMENT OF TRANSGENIC LINES 

 

Before the start of this project several lines were created per construct by Stuart Casson described in table 

3.1.1, and so a brief initial investigation of the inducible expression lines was conducted to find the line 

with the strongest phenotype. In some cases, due to poor transformation efficiency, there was only a 

single line available for a construct, and so that line was brought forward for in depth study. Analysis of 

these lines yielded only a single line per construct which had a sufficiently strong phenotype, and 

therefore a detailed analysis of the phenotype of each line was conducted. This involved imaging the 

cotyledons of seedlings grown to 7 d.p.g. on solid ½ MS media containing either β-estradiol or a mock 

treatment and noting any changes in the number of cell divisions, cell expansion or recruitment to the 

stomatal lineage.  

Observing these images (fig 3.2.1) reveals that the lines with the most visually distinct phenotypes are the 

inducible ΔN-YDA (iΔN-YDA), MUTE (iMUTE) and SPCH (iSPCH) overexpressor lines.  The iΔN-

YDA line shows fewer stomata, although not a total absence, whereas the iMUTE line shows several 

more stomata in the presence of the inducer. The ultimate concentration of the inducer used was 
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optimised using the  iSPCH line. The iSPCH line shows an increase in cells, which are small with less 

interdigitation than is shown in the mock treated plants of the same line.  
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Figure 3.2.1: Images of the Abaxial epidermis of inducible expression lines. 
Representative tracings of the abaxial epidermis of the XVE-mediated inducible expression 
lines; in the presence of the inducer (right) or a mock treatment (left). 

3.3. RT-QPCR ANALYSIS 

The XVE-mediated inducible expression lines were tested to verify that the constructs were indeed 

producing significantly higher levels of expression of the target gene in the presence of the inducer,  β-

estradiol. In order to investigate this, transgenic lines were grown to 10 d.p.g and then treated with either 

a mock treatment or 10µM ß-estradiol. Seedlings were collected 6 hours after treatment and RNA was 
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then extracted. Following cDNA synthesis, qRT-PCR analysis was performed to compare the relative 

transcript levels of the relevant genes in the mock versus treated samples (fig. 3.3.1, table 3.3.1). 

The iSPCH line shows the most significant change in expression, with a 37-fold change seen between the 

induced and non-induced expression levels, most likely due to its use of the 35S promoter, which results 

in a higher increase in relative expression, as discussed in the introduction. iΔN-YDA also shows a high 

fold increase of 9.6, and iMUTE and iCYCD3;1 have a more modest but still significant increase of 2.5-

fold and 3.2-fold respectively. iKRP1 has a small increase of 1.4-fold, but a t-test shows that this result is 

still significant. The iFAMA line shows a decrease of 0.6-fold when treated with the inducer, but this 

change is not significant. 

 
Figure 3.3.1: Changes in expression in the inducible overexpression lines: Graph showing the 
fold change in expression of the gene of interest in whole  seedlings, for each of the inducible 
overexpression lines in the plants treated with β-estradiol normalised to the expression in those plants 
treated with a mock treatment, which is set to a relative value of one. 
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 Average expression p-value 

iSPCH 37 0.0076 

iCYCD3;1 3.2 0.0057 

iKRP1 1.4 0.0301 

iΔN-YDA 9.6 0.0519 

iMUTE 2.5 0.0181 

iFAMA 0.6 0.4356 

Table 3.3.1: Changes in expression in the inducible overexpression lines: the fold change in 
expression of the gene of interest in each of the inducible overexpression lines in the plants treated 
with β-estradiol normalised to the expression in those plants treated with a mock treatment, and the p-
values produced from performing a Students t-test on this data. Values in bold have a p value ≤ 0.055. 

3.4 PHENOTYPIC ANALYSIS 

The lines were grown in the presence of the overexpression inducer, β-estradiol, or a mock treatment 

until the first true leaves had developed, and then the abaxial epidermis of the first true leaves was 

imaged. In the iMUTE and iFAMA lines, the plants were grown for a longer time, as these lines were 

grown at a different time in slightly different growth conditions (see materials and methods). Therefore, 

comparison across lines (e.g. comparison between iMUTE and iSPCH) is not possible with these results, 

but comparisons between plants of the estradiol and mock treated groups are viable.   

Comparisons between the images of mock and inducer treated plants showed that the iMUTE, iΔN-YDA 

and iSPCH lines had very obvious differences in the development of the epidermis in the presence of the 

inducer when compared to the mock treated plants: overexpression of MUTE yielded an immediately 

obvious increase in stomata, iΔN-YDA showed a marked absence of stomata, and iSPCH showed a high 

number of small cells with straight edges (fig 3.2.1). This corroborates the expected phenotypes for each 

of these genotypes as outlined in table 3.1.1. The small, straight-edged cells seen in the inducer-treated 

iSPCH plants could be simply due to rapid cell division events meaning that cells do not have time to 

develop the interdigitation seen in mature pavement cells, or it could be that these cells are all stomatal 

lineage cells, which are typically smaller, with straighter edges.  



 54 

The iCYCD3;1, iKRP1 and iFAMA lines do not have immediately obvious phenotypes, but investigation 

into the changes in stomatal index, stomatal and total cell density and average cell size showed that the 

iCYCD3;1 had increased stomatal index and stomatal density, as well as a decrease in average cell size and 

total cell density. All of these changes are likely to be due to an increase in the rate of cell division 

throughout the epidermis. Increased cell division yields a lower stomatal index, as there are a higher 

number of non-stomatal epidermal cells due to the higher rate of division. 

Density of stomata increases as cell size decreases, as there are fewer large pavement cells separating the 

stomata and decreasing their density. This is also evidenced by the corresponding decrease in total cell 

density (fig. 3.2.5.F). The cells are smaller, potentially for the same reason that they are smaller in the 

iSPCH line: an increased rate of division means that cells have less time to expand between rounds of cell 

division and this has been observed previously when cell division is stimulated (Dewitte et al. 2007). This 

can also be seen in fig.3.2.1.F, which shows some small, straight edged cells that are the product of recent 

cell division. 

The iMUTE line shows an increase in stomatal index, which is due to the overexpression of MUTE 

causing a higher proportion of epidermal cells to differentiate into stomata. The larger cell size and 

decreased cell density seen in fig. 3.2.4 and 3.2.5 could be the cause of the decreased stomatal density and 

is an indication that increased stomatal development may reduce the rate of cell division, which is 

discussed further in chapter 4.  

iΔN-YDA shows an increase in cell size, and a significant decrease in both stomatal index and density. 

The iKRP1 and iFAMA lines show results which are not in line with what is expected for their 

phenotype- iKRP1 shows increased stomatal density, whereas overexpression of KRP1 was expected to 

increase cell expansion and therefore decrease stomatal density, as the non-stomatal epidermal cells would 

increase in size and push the stomata further away from each other. The average cell size appears to 

increase in the inducer-treated plants, but this increase is not significant. This suggests that the 

overexpression is weak, as does the lack of change to stomatal index and density in the iFAMA line. 

Interestingly the inducer-treated line shows a decrease in cell size and an increase in density, which would 

not be expected in an FAMA overexpressor line as FAMA facilitates the final cell division in the stomatal 
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development pathway which generates guard cells from guard mother cell, and therefore its phenotype is 

recorded as being similar to that shown in the MUTE line, which shows an increased cell size in the 

presence of the inducer. 
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.  

Figure 3.2.2 Stomatal density in the transgenic lines: Stomatal density (mm2) in the inducible 
expression lines in the presence or absence of the inducer. * Students T-test p<0.05; ** Students T-test 
p<0.005 N=24. 
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Figure 3.2.3: Stomatal index in the transgenic lines: Stomatal index (%) of the inducible expression 
lines in the presence or absence of the inducer. * Students T-test p<0.05; ** Students T-test p<0.005,  
N=24. 
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Figure 3.2.4: Average Cell Size in the transgenic lines: Average cell size (total cells per mm2 /  1) 
in the inducible expression lines in the presence or absence of the inducer. * Students T-test p<0.05; ** 
Students T-test p<0.005 N=24. 
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Figure 3.2.5 Total cell density in the transgenic lines: Average cell size in the inducible expression 
lines in the presence or absence of the inducer. * Students T-test p<0.05; ** Students T-test p<0.005 
N=24. 
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Genotype treatment 
mean SI 

(% total cells) 
 

mean SD 
(mm2) 

 

mean cell size 
(mm2) 

Total cell 
density 
(mm2) 

iSPCH 
mock 27.0384 146.5278 0.001874 486.25 

est 23.0397* 147.5 0.001574* 643.125 

iCYCD3;1 
mock 24.2408 150.625 0.001659 635.625 

est 19.7166 177.3438 0.001116* 937.5* 

iKRP1 
mock 27.1373 141.25 0.001928 546.875 

est 24.7052 158.125 0.001598 663.75 

iFAMA 
mock 14.5420 84.375 0.001722 590.625 

est 13.1662 93.125 0.001404* 725.625* 

iMUTE 
mock 15.6308 82.8125 0.001887 550 

est 21.3352 58.3333 0.003795* 271.875* 

iΔN-YDA 
mock 24.7710447 95.7 0.00258556 387.991667 

est 15.4129635 40* 0.00327084 275* 

Table. 3.2.1 Phenotypic data for the inducible expression lines: Mean values of stomatal index 
(SI), stomatal density (SD) and average cell size for each of the inducible expression lines. Values in 
bold have a t-test p-value < 0.05, and with an asterix a of p-value < 0.005. Note that the iFAMA and 
iMUTE plants (italicised) were grown for longer, so are not comparable. 

 

Genotype Stomatal Index 
p-value 

Stomatal Density 
p-value 

average cell 
size p-value 

Total cell 
density p-value 

iSPCH 0.001 0.923 0.0044 0.0059 

iCYCD3;1 0.0272 0.0416 0.0037 0.0046 

iKRP1 0.2326 0.1658 0.1077 0.1011 

iFAMA 0.2419 0.321 0.0054 0.0036 

iMUTE 0.0144 0.0123 <0.0001 0.0001 

iΔN-YDA 0.0212  <0.0001  0.0217 0.0016 

Table 3.2.2 T-test results for phenotypic data: P-values for t-tests performed on the changes 
stomatal index (SI), stomatal density (SD) and average cell size in mock and β-estradiol - treated plants 
for each of the inducible expression lines. Results with a p value < 0.05 are in bold. 
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3.5 DISCUSSION 

 

Previously, XVE- mediated expression has been used in Arabidopsis to study the process of gene 

expression and the initial effect of that expression on the cell, as inducible expression allows for study of 

such processes as protein relocation in the presence of the target protein or determining the role of a 

particular gene in a process of cellular differentiation. The purpose of the XVE-mediated transgenic lines 

in this thesis, however, is to determine what the effect of initiating different epidermal processes which 

result in changes to the regulation of stomatal density is on the metabolism of the plant. To that end, it is 

important to verify that these lines experience a significant change in expression of the target gene in the 

presence of the inducer, so that a similarly significant change will occur in the development of the 

epidermis and also the metabolic rate of the plant. 

A series of rt-qPCR experiments showed that the fold change in expression of most of the constructs was 

significant, with iSPCH and iΔN-YDA showing the largest change in expression. The exceptions are the 

iFAMA and iKRP1 lines, the former of which shows no significant change and the latter of which shows 

only a small change in expression. Previous experiments conducted with inducible FAMA expressors 

show an increase in stomatal lineage cells and an increase in stomatal index and density (Ohashi-Ito & 

Bergmann 2006a; Tamnanloo et al. 2018), which is not seen in the results of the phenotypic assay of the 

iFAMA line. There is a significant reduction in cell size, and though changes to average cell size in 

inducible FAMA lines has not been previously studied, the increase in smaller stomatal lineage cells seen 

on the epidermis could yield a decreased average size and total cell density. The iKRP line was included 

for study because it was hypothesised that halting cell division by increasing expression of KRP1 would 

cause an increase in cell expansion. The iKRP1 line does not show a decrease in cell density and increase 

in cell size that would indicate increased cell expansion, and in fact the cell size in the presence of the 

inducer appears to be slightly smaller, although not significantly so. The line shows an increase in SD, 

which is not the predicted outcome as it is expected that an increase in cell expansion would push 

stomata further away from each other in the epidermis, thereby reducing density. Therefore, the iKRP1 

and iFAMA lines were not carried forward as iKRP1 did not show increased expansion and therefore 
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cannot be used to study the effect of cell expansion on the development of the epidermis or the 

metabolism of the plant, and iFAMA does not show increased recruitment to the stomatal lineage, and 

therefore cannot be used to study the effect of increased stomatal fate assignation on the development of 

the epidermis or the metabolism of the plant.   

To study the effect that changes to the rate of cell division in the epidermis will have on the epidermal 

development and the metabolism of the plant, two lines were studied: iCYCD3;1, a cyclin which is known 

to increase cell division when overexpressed, and iSPCH, which triggers cell division in stomatal lineage 

cells within the epidermis. Comparison between these two lines is important for understanding the 

metabolic and developmental significance of cells in the stomatal lineage. Both lines show a significant 

increase in expression, and a decrease in cell size which is likely to be caused by an increase in the rate of 

cell division. They also show a decrease in SI, caused by the increase in cell divisions meaning that there 

are more non-stomatal cells present in the epidermis and so the proportion of cells which are stomata 

decreases. Significantly, iCYCD3;1 shows an increase in stomatal density, which is correlated with the 

increase in total cell density and is caused increased division rates generating more stomatal lineage cells 

and therefore more stomata, and iSPCH shows no change in stomatal density, but does show an increase 

in total cell density. This is because overexpression of SPCH inhibits progression through the stomatal 

lineage, and therefore the increase in stomatal lineage cells does not correlate to the increase in stomatal 

density seen in iCYCD3;1. This difference in SD vs total cell density seen in the iCYCD3;1 when 

compared to the iSPCH line indicates that comparison between the iCYCD3;1 and iSPCH lines allows 

for isolation of the effects of increasing cell division in the stomatal lineage, but it is important to 

remember the effect of iSPCH on stomatal development in further experiments using these lines. 

 The iMUTE and iΔN-YDA lines were included in this study to investigate the effect of altering stomatal 

development on the development of the epidermis and its metabolic impact. Overexpression of MUTE 

has been shown to increase stomatal index and density (Han et al. 2018), which is what is seen in the 

phenotypic assay . The overexpression of YDA, including the regulatory domain-deficient ΔN-YDA 

variant used in this thesis, inhibits stomatal development, and this is also reflected in the decrease of both 

stomatal index and density seen in the phenotypic assay. The inhibition of stomatal development also 

provides an explanation for the increase in average cell size seen in the iΔN-YDA line, as the reduction in 
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stomatal development decreases the amount of smaller stomatal lineage cells, which increases the average 

cell size seen in the epidermis. The average cell size is also seen to increase in the iMUTE line, and this 

increase could be due to the increased differentiation occurring in the epidermis, which could halt cell 

division and therefore increase cell expansion. This is corroborated by the decrease in total cell density. 

This result suggests a relationship between developmental decisions that require cell differentiation and a 

reduction in cell division rate which can be explored in the proceeding chapters. 

In conclusion, the results discussed in this chapter show that the iSPCH, iCYCD3;1, iMUTE and iΔN-

YDA inducible expression lines show significant changes to the epidermis, whereas the iKRP1 line does 

not show significant phenotypic change, and the iFAMA line does not show significant changes in 

expression level. This indicates that iSPCH, iCYCD3;1, iMUTE and iΔN-YDA would be suitable tools 

for investigating changes in the rate of cell division or stomatal development in the epidermis.  
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CHAPTER 4: INVESTIGATING THE ECONOMIC COST OF 

STOMATAL DEVELOPMENT 

4.1 INTRODUCTION 

Plants must ensure that sufficient stomata are present to enable efficient gas exchange, whilst balancing 

this with water loss from the stomatal pore and the fact that stomata are also pathogen entry points. 

Achieving an appropriate stomatal density for the prevailing conditions involves cell fate decisions, cell 

division and cell expansion. The observed uncoupling of stomatal index and stomatal density between 

different genotypes of Arabidopsis and discussed in the chapter 1 of this thesis could perhaps be due to 

differences in the energetic costs of cell division, cell expansion, and recruitment of cells to the stomatal 

fate. If there is a difference in the amount of work being done by the plant (i.e., the metabolic cost) 

during these cellular events, perhaps due to differences in protein synthesis or carbohydrate production, 

then the less costly mechanism may be favoured. In this chapter, methods of discerning the energetic 

costs were investigated, and then the difference in these costs were measured.  

The creation of the inducible expression lines outlined in Chapter 3 provides the genetic tools to 

investigate the metabolic impact, if any, of overexpression of the target genes. Each gene was chosen with 

the aim of targeting key steps in epidermal development (e.g. cell division, cell expansion, stomatal fate 

determination). If an assay is carried out on an inducible line in the presence of either the inducer or a 

mock treatment, the only significant difference between the two assays will be the overexpression of the 

target gene and any subsequent downstream biological events (e.g. regulation of target genes). In this 

context, this means that the energetic cost of initiating one of the processes which are used to regulate 

stomatal density can potentially be measured.  

Theoretically, the concentration of intracellular ATP could either increase or decrease in situations which 

require more energy- the former could be due to an increase in ATP production being triggered by the 

costly process, the latter due to depletion of the ATP pool. However, research into the literature showed 

that one method of differentiating the energetic costs of different processes was to study changes in ATP 

levels – if a process is more energetically costly, carrying out that process will require a higher 
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concentration of ATP within the cell in order to provide the energy necessary to drive it, and therefore 

changes in cellular ATP levels would provide an indication of the costliness of any processes being 

studied  (Song et al. 2006; Finkemeier et al. 2005; Jeter et al. 2004). 

An alternative method that was utilised to investigate the potential metabolic cost of inducing the 

expression of our target genes was the 14CO2 evolution assay (Nunes-Nesi et al. 2005). In this assay, the 

plant is fed u-labelled 14C-glucose and the quantity of 14CO2 evolved by the plant, as determined by 

scintillation counting, provides an insight into the glycolytic activity of the organism. It was determined 

that this assay was more sensitive and reliable than the ATP assays, however it did require some 

refinement before it could be effectively used to measure any differences in the energetic cost in these 

experiments (Nunes-Nesi et al. 2005; Garlick et al. 2002). 

4.1.1 AIMS AND OBJECTIVES 

The aim of the research discussed in this chapter was to investigate whether the inducible expression lines 

assessed in chapter 2 could be used to determine the metabolic cost of different cellular process that 

contribute to the control of stomatal density. 

Objectives 

1) To develop an assay that would robustly measure metabolic changes during seedling growth. 

2) To use this assay to assess metabolic changes in the inducible expression transgenic lines. 

4.2 ATP ASSAYS 

In order to investigate the reliability and sensitivity of the ATP assay as a method of measuring changes in 

metabolism, Col-0 plants were grown on compost until 14 days post-germination (d.p.g), as this is when 

the first true leaves were seen to develop, and then sprayed with different concentrations of the herbicide 

3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), ranging from 5nM-5µM. DCMU is a photosynthetic 

inhibitor and it was predicted that blocking linear photosynthetic electron transport would result in a 

decrease in ATP production and this would be proportional to the concentration of DCMU used (Hsu et 

al. 1986). Samples were taken at 0, 1- and 4-hours post-spray, frozen with liquid nitrogen and boiled in 
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water to break open the cells, then assayed for ATP content using a luciferase assay (see Chapter 2). The 

ATP concentration is expressed in relation to protein content (determined using a Bradford Assay) to 

standardise the samples (fig. 4.2.1).  The assay was performed on two separate occasions to investigate 

variability.  

The ATP assay was also carried out on plants grown and harvested at high light and low light and plants 

grown at low light and transferred to high light for 1-hour pre-harvesting. High light conditions would be 

predicted to result in increased PETC and ATP production. Several independent replicates of these assays 

were performed to investigate the variability of the results. 

The DCMU treated plants did not show a drop in ATP as the concentration of DCMU rose, which is the 

outcome that would be expected as DCMU inhibits the rate of photosynthesis and therefore the 

requirement for ATP. Across the two experiments, the results were inconsistent, and changes which are 

significant in one experiment are not in the other (Fig.4.2.1A-B, table 4.2.1).  

A total of 6 experiments were carried out in which the plants were grown at high light, low light, or 

transferred from low light to high light for 1 hour prior to sample collection. Despite the fact that 

experiments 5 and 6 did yield the expected results of increased ATP concentration in those plants grown 

at high light, then a smaller increase in those transferred to high light when compared to the ATP 

concentration seen in the low light grown plants, experiments 1-4 do not show the same results (fig. 4.2.1 

C, table 4.2.2). Both sets of experiment showed inconsistent results that were not sufficiently repeatable, 

and so alternative means for investigating the economics of stomatal development were studied. 
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A

B

C

 

Figure 4.2.1: Luciferase assays following DCMU or light treatments: A) and B) Changes in the 
concentration of ATP per mg of protein in plants exposed to differing concentrations of the 
photosynthetic inhibitor DCMU in two independently repeated experiments.  C) The ATP 
concentration in plants grown and harvested at high light, low light, and those grown at low light and 
transferred to high light for 1-hour pre-collection. The data is grouped into different experiments 
carried out on different dates. 
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[DCMU] Time 
(h) 

assay mean 
[Protein] 
(mg/ml) 

mean 
[ATP] 
(pM) 

mean[ATP]/[Protein] 
(pM/mg) 

t-test 
results 

5µM 0 
 

1 0.8427 0.2207 0.2622 0.104 
2 0.4329 0.3337 0.771 0.927 

1 1 0.84 0.2162 0.2575 0.169 
2 0.4329 0.3507 0.81 0.174 

4 1 0.8477 0.2053 0.2423 0.104 
2 0.4329 0.3507 0.81 0.099 

500nM 0 
 

1 0.843 0.2046 0.2427 0.749 
2 0.4329 0.3507 0.81 0.090 

1 1 0.8436 0.2106 0.2497 0.006 
2 0.4329 0.3507 0.81 0.407 

4 1 0.8593 0.2106 0.2452 0.002 
2 0.4329 0.3507 0.81 0.490 

5nm 0 
 

1 0.846 0.2082 0.2462 0.877 
2 0.4329 0.3507 0.81 0.640 

1 1 0.8467 0.2138 0.2526 0.499 
2 0.4329 0.3507 0.81 0.027 

4 1 0.8376 0.2058 0.2458 0.157 
2 0.4329 0.3507 0.81 0.998 

 

Table 4.2.1: Results of Luciferase assays on DCMU concentration experiment. 
 

Experiment light 
condition 

[Protein] 
mg/ml 

absolute[ATP] 
pM 

[ATP]/[Protein] 
pM/mg 

t-test 
results 

1 
High Light 23.303821 10.29625912 1.907348315 0.139 
1hr transfer 2.176596 7.520899077 3.455349122 0.694 

2 
High Light 3.102614333 14.73864 4.321992509 0.362 
1hr transfer 2.783566 21.94306954 6.584974622 0.371 

3 
High Light 5.530494333 71.18277993 97.50830953 0.888 
1hr transfer 0.394594333 3.507261 207.7449798 0.001 

4 
High Light 1.888674333 211.6597955 116.3843252 0.238 
1hr transfer 0.884839333 209.6583957 248.7142328 0.276 

5 
High Light 2.542334333 131.682333 53.60584495 0.018 
1hr transfer 0.814804333 106.9718455 77.88758536 0.031 

6 
High Light 0.036221967 5900.706272 229917.5758 0.001 
1hr transfer 0.025766833 2659.221587 117103.4455 0.005 

 

Table 4.2.2: Luciferase assay data for on low/high light experiments. 
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4.3 14CO2 EVOLUTION ASSAYS 

Given that the ATP assay was not deemed suitable for our experiments, 14CO2 evolution assays were 

investigated as a method of measuring energetic cost to the plant. These assays are a method of 

measuring the respiration rate of the plant by measuring the amount of 14CO2 evolved when the plants are 

fed 14C-labelled glucose. Assays were carried out in the dark in order to remove the influence of 

photosynthesis on the rate of CO2 evolution. The protocol also necessitates the growth of plants in tissue 

culture, as it allows for reliable uptake of 14C-labelled glucose by the plants, as opposed to introduction 

into soil, which even when autoclaved to remove any microbial contamination has a less regular structure 

and hence could result in significant experiment and batch variation. 

These assays were carried out by introducing 12 µCi of 14C-labelled glucose in ethanol to the experimental 

vessel, which consisted of a 50ml falcon tube containing the seedlings in liquid ½ MS media and a 1.5ml 

tube of KOH used as a CO2 trap (fig. 4.3.1). For these experiments, seedlings were grown to 14 d.p.g on 

½ MS media under standard growth conditions (see Materials and Methods), transferred to the 

experimental vessel, then samples taken at regular intervals for 72 hours.  

 

Figure 4.3.1: Cartoon of experimental 
vessel for 14CO2 evolution assay. Plants 
are placed in liquid ½ MS media inside the 
vessel, and 14C- labelled glucose is added 
(A). 14CO2 evolved by the plant is then 
absorbed by the KOH trap (B) secured to 
the side of the vessel. The vessel is kept 
black to ensure that the plants remain in 
the dark and is sealed to prevent 14CO2 

escaping. 
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In the initial experiment, Col-0 seedlings were used in order to determine whether ß-estradiol affected the 

rate of 14CO2 evolution by altering the respiration rate of the plants. To this end, two sets of samples were 

included in this experiment: ß-estradiol, or a mock treatment, was introduced at the beginning of the 

experiment; or ß-estradiol was added 24-hours after the experiment had started 

(fig. 4.3.2, table 4.3.1). The former set of plants was included to determine if it might be suitable to add 

the inducer after the plants have been moved to the experimental vessel, so that the initial stress of being 

moved to the experimental vessel could be differentiated from the energetic changes caused by induction 

of the target gene. 

 

Figure 4.3.2: Results of 14CO2 Evolution assay of Col-0 plants over 48 hours. Plants were supplied 
with 14C-labelled glucose in a sealed vessel, and the concentration of 14CO2 produced was measured by 
assaying for 14CO2 activity absorbed by the KOH trap in the growth vessel. Samples were taken at 6, 
24, 30- and 48-hours post-labelling (t-test results in table 4.3.1). 

 

This experiment showed no significant variation in the rate of 14CO2 production between those plants 

placed in the experimental vessel into media containing ß-estradiol or a mock treatment (table 4.3.1) , and 

also no difference between those where the ß-estradiol was added at 24 hours post-initiation of the 

experiment and those where the inducer was added at the beginning of the experiment. It also provides 

further indication that the ß-estradiol introduction has no effect on 14CO2 evolution rate, as there is no 
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significant difference at 6 hours post-initiation between the control and the sample to which ß-estradiol 

was added at the initiation of the experiment, and also no significant difference at 30 hours between the 

control and the sample to which estradiol was added at 24 hours. These results therefore indicate that ß-

estradiol has no significant impact on 14CO2  evolution. 

The experiment also served to investigate how the rate of 14CO2  evolution changed over time. The initial 

experiments showed a relatively constant rate.  It must be noted that changes in the amounts collected are 

due to the length of time between collection; 6 hours for the timepoints at 6 hour and 30 hours, then 12 

hours for the 24 hour and 48-hour timepoints. This indicated that the assay was suitably stable and 

consistent, and that the estradiol would not cause unintended fluctuations in the rate of 14CO2 evolution.  

It was therefore determined that this assay was suitably robust and potentially sensitive enough to 

examine the inducible expression lines outlined in chapter 3. Comparison between the rates of 14CO2 

evolution between plants of each of these lines treated with the inducer and those treated with a mock 

treatment would provide an indication of the energetic costs of each process that the genes of interest 

regulate, as the difference between the rates of 14CO2 evolution in the presence or absence of ß-estradiol 

should be due solely to the increased expression of the gene of interest. 

Therefore, assays were carried out using these lines. The plants were grown on 7% agar plates in the light 

and in standard conditions until 14 d.p.g then transferred to the experimental vessel for 4 days, with 

samples collected every 24 hours.  

An initial experiment was carried out using the iSPCH line, which was placed in the experimental vessel 

for 4 days, with samples being collected every 24 hours (fig. 4.3.3). Because of concerns about carbon 

starvation during the light phase of the photoperiod due to the KOH trap removing the CO2 from the air 

in the vessel, a set of samples grown on 1% sucrose media was added to the assay. For this subset of 

samples, the liquid media in the experimental vessel also contained 1% sucrose.  

The results of this assay showed no significant difference between the rate of 14CO2 evolution in mock- 

and estradiol- treated samples, in either the presence or absence of sucrose. However, the variation in the 

14CO2 evolution of plants treated with the mock treatment and grown on sucrose (see day 1, fig. 4.3.3) 
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was noticeably higher than in the other conditions, and so repetition of this experiment was carried out to 

verify the results.  

 
Figure 4.3.3: Results of 14CO2 Evolution assay of iSPCH plants every 24 hours for 96 hours. 
Plants were supplied with 14C-labelled glucose in a sealed vessel, and the concentration of 14CO2 
produced was measured by assaying for 14CO2 activity absorbed by the KOH trap in the growth vessel. 
Samples were taken on days 1, 2, 3 and 4 post-labelling, with each sample being taken 24 hours apart. 
 

 

 Following this experiment, it was decided that future experiments would only be assayed for 48 hours, as 

the 14CO2 evolution rate dropped considerably after this time in the experiment, perhaps due to the stress 

of being in the vessel. It was also decided to include 1% sucrose in the experimental vessel media as the 

increased rate of 14CO2 evolution in the sucrose-added samples demonstrates a recovery from the daytime 

carbon starvation caused by the experimental design. Therefore, each line was placed in the vessel for 48 

hours, and only in the presence of the 1% sucrose media. 

The 48 hour experiment was carried out with each of the lines outlined in chapter 3, namely iSPCH, 

iMUTE, iFAMA, iKRP1, iΔN-YDA and iCYCD3;1. Chapter 3 indicates that there is no significant 

change in FAMA expression in the presence of the inducer in the iFAMA line, which provides an 

1 2 3 4
day

0

1

2

3

4

5

6

Ac
tiv

ity
 (n

C
i)

tube_type
minus sugar - est
minus sugar + est
plus sugar - est
plus sugar + est



 74 

explanation for the lack of significant change in 14CO2 evolution, and the low change in expression seen 

in the iKRP1 line perhaps also explains the lack of significant change in that line as well. 

The results of the experiments discussed in chapter 3 using the iSPCH line showed that inducing 

overexpression of SPCH resulted in increased cellular division in the stomatal lineage, and the results of 

these experiments showed that the rate of 14CO2 evolution increased in the presence of the inducer. The 

very large increase in SPCH expression in that line could also increase the energetic cost to the plant. 

Another line shown to increase cellular division was the iCYCD3;1 line, which again shows increased rate 

of 14CO2 evolution when overexpression is induced.  

The iΔN-YDA line does not show significant change in the rate of 14CO2 evolution, despite the results in 

chapter 3 showing that induction of YDA overexpression yielded significant reduction of the number of 

stomata on the epidermis. However, the iMUTE line has shown significant increase in stomatal index and 

density, and a reduction in the rate of 14CO2 evolution, although this reduction is not seen until 48 hours 

after introduction of estradiol. 
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Figure 4.3.4: Results of 14CO2 Evolution assay of inducible expression lines over 48 hours. 
Plants were exposed to 14C-labelled glucose in a sealed vessel, and the concentration of 14CO2 
produced was measured by assaying for 14CO2 activity absorbed by the KOH trap in the growth vessel. 
For each inducible line, seedlings were exposed to the inducer, ß-estradiol (est), or a mock treatment 
(minus est). Samples were taken at 24 and 48 hours post introduction of 14C-labelled glucose. 
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Time after 
labelling (h) Treatment 14CO2 evolved (µCi) t test results 

6 

mock 0.0008245 0.014 

estradiol, added at 
0h 0.0008423 0.961 

estradiol, added at 
24h 0.001423 0.161 

24 

mock 0.004771 0.974 

estradiol, added at 
0h 0.003352 0.353 

estradiol, added at 
24h 0.004736 0.236 

30 

mock 0.001889 0.132 

estradiol, added at 
0h 0.001047 0.109 

estradiol, added at 
24h 0.001206 0.261 

48 

mock 0.003649 0.902 

estradiol, added at 
0h 0.002657 0.437 

estradiol, added at 
24h 0.003838 0.642 

Table 4.3.1: Results of 14CO2 Evolution assay of Col-0 plants grown over 48 hours. The t-
test results are comparing the estradiol and mock treated samples at that time point. Results 
with p value ≤ 0.05 are in bold. 
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Genotype Day 
14CO2 Evolved (µCi) t test 

results 
mock treatment estradiol treatment 

SPCH 
1 0.008172 0.02438 0.02 

2 0.004568 0.007279 0.30 

MUTE 
1 0.01581 0.01000 0.14 

2 0.01075 0.005738 0.01 

FAMA 
1 0.02031 0.01755 0.64 

2 0.01291 0.01560 0.35 

KRP1 
1 0.01807 0.02921 0.12 

2 0.003721 0.004308 0.58 

YDA 
1 0.004429 0.002276 0.14 

2 0.004087 0.001541 0.71 

CYCD3;1 
1 0.001934 0.004087 0.05 

2 0.009048 0.009628 0.92 
 

Table 4.3.1: Results of 14CO2 Evolution assay of inducible expression lines over 48 hours. 
Results with p value ≤ 0.05 are in bold. 

4.4 DISCUSSION 

The purpose of the experiments outlined in this chapter were to find an experimental method that was 

suitable to determine the metabolic cost to the plant of pursuing different developmental mechanisms to 

achieve a desired stomatal density- namely changes in rate of cell division, cell expansion or changes to 

the proportion of cells in the epidermis recruited to the stomatal fate. This increased cell division or 

expansion may occur in the stomatal lineage in particular or the epidermis in general, and the choice may 

be due to an additional cost of maintaining stomatal lineage cells in particular.  

Initially, luciferase assays were used to assay the concentration of ATP in the plant. It was  hypothesised 

that high concentrations of ATP would indicate that the plant was carrying out a process which was 
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particularly costly, in a metabolic sense, as the plant has increased production of ATP to account for the 

increased metabolic cost of the process. The results of this ATP assay were normalised against the 

concentration of protein, to compensate for variation in tissue sampling. Although some of the ATP 

assays produced statistically significant changes in ATP levels (tables 4.2.1, 4.2.2) , the lack of consistency 

between replicates in the outcomes of these assays suggest that this method is not sufficiently robust or 

sensitive to be used to investigate what may be subtle changes in the energetics of the plant.  

The results of the ATP assays indicated that another method of quantifying the metabolic cost of 

different developmental decisions needed to be used. It was decided to instead investigate the rate of CO2 

evolution using a 14CO2 evolution assay. Here, the metabolic cost would be measured by comparing 

changes in the rate at which plants fed 14C-labelled glucose produces 14CO2. Increased rate of 14CO2 

evolution indicates a higher respiration rates, implying that process is energetically costlier to the plant. 

The 14CO2 evolution experiments showed a more promising level of repeatability. The results shown in 

fig. 4.3.4 have a variance of 3.17 x 10-5 and a mean of 1.42 x 10-2, whereas the ATP assays have a variance 

of 11588 and a mean of 70.68, which is clearly not suitable.  

Hence, 14CO2 evolution assays were carried out on six inducible overexpression lines of key genes 

involved in the developmental decisions of the leaf epidermis (these lines are discussed in more detail in 

chapter 3). Plants were grown on 1/2MS media until 14 d.p.g., then moved to the experimental vessel, 

where 14C-labelled glucose was added and the rate of 14CO2 evolution was measured at regular intervals. 

In the initial experiments, a noticeable feature of the CO2 evolution assays was the variation in evolved 

CO2 between timepoints.  The variation between the 6 hour and 30 hours, and 24 and 48-hour timepoints 

could be due to the time of day that these samples were taken. The 6 hour and 30-hour samples were 

taken at the beginning of the photoperiod which the plants had been grown in, and therefore represent 

the CO2 evolution overnight, and the 24 and 48-hour timepoints were taken at the end of the 

photoperiod and therefore represent the CO2 evolution during the day. Also, the time between 

measurement was variable- the KOH trap had only been in place for 6 hours at the 6 hour and 30-hour 

time points, whereas it was collecting CO2 for 18 hours at the 24 and 48-hour timepoints. Therefore, the 

difference between these two sets of timepoints can be put down to the plants’ circadian rhythm and the 
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differences in length of exposure of the trap. It was for this reason that a singular timepoint every 24 

hours was used going forward. 

Measuring the change in energetics in the first 48 hours post-induction allows for the effect of initiating 

the processes of cell differentiation that are used by the plant to achieve a desired stomatal density- 

increased cell division, either specifically within the stomatal lineage or more generally, increased cell 

expansion, or increased or decreased recruitment to the stomatal cell fate-  to be isolated from the end 

results. This is important because stomatal development is a process which involves several cell 

differentiation events, regulated by different genes, and in order to isolate the economic cost of each step 

these differentiation events must be separated from each other. Measuring the change in energetics so 

soon after induction in, say, the MUTE  overexpression line means that, if it is assumed that the cell cycle 

is approximately 24 hours, there have been no cell division events and therefore that the expression of 

FAMA has not yet increased. This means that any changes in energetic cost seen in this time can be 

ascribed to the activity of MUTE alone (Pillitteri, Bogenshutz, et al. 2008). 

The overexpression of SPCH increases the rate of 14CO2  evolution in the first 24 hours. Given that 

SPCH drives cell divisions within the stomatal lineage, this suggests that increasing SPCH activity 

increased the rate of metabolic activity inside the plant and therefore that increased cell division is more 

energetically costly. This is reasonable, as increased cell division requires increased production of SPCH 

as well as cell wall structures, replication and segregation of chromosomes and organelles and  other 

cellular components. This effect is no longer significant at the 48-hour timepoint, which is perhaps due to 

the more significant effect of prolonged time spent in the experimental vessel, which produces its own 

environmental stresses. If this increase in the rate of 14CO2 evolution was indeed due to an increase in cell 

divisions being energetically costly, then increasing the rate of cell division using another method would 

yield similar results. This is what is seen when analysing the iCYCD3;1 line, which also increases the rate 

of cell division, as evidenced in chapter 3, and similarly increases the rate of 14CO2 evolution.  

Overexpression of MUTE, however, decreases the rate of 14CO2 evolution. This effect is only seen 

significantly in the sample taken 48 hours post-labelling, although it is also present in the samples at 24 

hours, which may perhaps be due to the fact that while SPCH regulates the asymmetric cell division 
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characteristic of the stomatal development pathway, MUTE is not involved in regulating a particular cell 

division event, but is involved in promotion of the GMC fate (Davies & Bergmann 2014; Peterson et al. 

2010). This reduction in 14CO2 production 48 hours post-induction indicates that plants in which MUTE 

is overexpressed have a decreased metabolic rate. MUTE regulates the transition of meristemoid cells to 

guard mother cells, which does not involve a cell division. Comparing this result to the iSPCH and 

iCYCD3;1 result suggests that cell differentiation events which do not involve a cell division are less 

costly than division and expansion, perhaps due to the activity of MUTE suppressing cell division, as the 

increased cell size of induced-iMUTE plants shown in chapter 2 would indicate.  

The fact that significant changes were seen in some lines and not others also lends validity to the results 

for lines that showed no significant change in 14CO2 evolution: it suggests that increased expression of 

those target genes does not contribute significantly to the rate of 14CO2 evolution in the plant, though we 

cannot discount that the affected process was not sufficiently enhanced for a change in respiration to be 

measured. 

In summary, the results of this chapter suggest that 14CO2 evolution assays are a suitable method for 

detecting changes in metabolic activity in whole plants over a short time period, and that increased cell 

division is more energetically costly than increased cell expansion, which appears to have no significant 

change to the metabolic rate, and cell differentiation events which do not involve division appears to be 

less energetically costly, perhaps due to suppression of cell division. 

 

 

 

 

 

 



 81 

 

 

 

 

 

 

 

CHAPTER FIVE:  

MODELLING THE EPIDERMIS 

 

 

 

 

 

 

 

 

 

 



 82 

CHAPTER 5: MODELLING THE EPIDERMIS 

5.1. INTRODUCTION 

 

The investigation of how changes to the mechanism of maintaining a certain stomatal density within the 

leaf affect the metabolic requirements of that plant requires an understanding how these changes affect 

the development of the epidermis. To this end, an ordinary differential equation (ODE) model of the 

development of the leaf abaxial epidermis was created.  

An initial iteration of the ODE model was developed based on information available from the literature 

on the processes by which stomata are produced in the epidermis, outlined briefly below and in more 

detail in chapter 1. The series of cell differentiation events which lead to stomatal development are well 

characterised, but the tissue-wide implications of varying the rate of differentiation through different 

avenues has not been thoroughly investigated. 

Previous models of stomatal development have focused on the spatial distribution of signalling factors 

involved in the stomatal pathway, or the role of specific transcription factors in the regulation of stomatal 

development. However, the experimental work in the previous chapters of this thesis relates to the 

number of cells of different types present on the epidermis, and how changing the proportion of the 

epidermis that consists of each cell type affects the metabolism of the plant. To understand the changes 

to the epidermis brought about by increase cell division, expansion or differentiation, the model focuses 

on the relationship between the different cell types found in the epidermis, and how the proportions of 

those cell types change over time.  

Therefore, data were collected on the number of each epidermal cell type present on the leaf at a series of 

time points throughout the stages of leaf development, and the model built to predict how these cell 

types change in number over time. 
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5.1.1. AIMS AND OBJECTIVES 

The aim of this chapter was to develop a mathematical model that would aid in understanding the 

development of the leaf abaxial epidermis, focusing on changes in the total number of cells being 

recruited to the stomatal cell fate under differing conditions. 

Objectives 

1. To create a mathematical model of the development of the epidermis 

2. To fit the model to suitable experimental data and investigate suitable ranges for parameter 

values. 

5.2. DEFINING THE MODEL 

Stomatal development is brought about by a series of well-defined cell division and differentiation events. 

In the developing leaf, protodermal cells destined for the stomatal lineage develop into meristemoid 

mother cells (MMCs) (Nadeau 2002), which then divide asymmetrically into meristemoid cells (MCs) and 

stomatal lineage ground cells (SLGCs). This division is mediated by the bHLH transcription factor 

speechless (SPCH) (Pillitteri et al. 2007). MCs then mature into guard mother cells (GMCs), aided by the 

bHLH transcription factor MUTE (Pillitteri, Bogenshutz, et al. 2008). GMCs divide once more into the 

two guard cells that make up the stomate, and this final division is aided by the bHLH TF FAMA 

(Ohashi-Ito & Bergmann 2006c; Peterson et al. 2010).  

Protodermal cells not assigned to the stomatal cell lineage develop into pavement cells (PCs) (Hunt & 

Gray 2009; Fu et al. 2005), which are capable of symmetric division. In addition to this, SLGCs will 

‘mature’ into PCs after a sufficient amount of time and therefore is not considered part of the stomatal 

lineage. Also, MCs are capable of carrying out another round of asymmetric cell division, known as an 

amplifying division (Serna et al. 2002), which generates a new SLGC. 

By the time that the developing leaf is large enough to take epidermal impressions of for imaging, there 

are no protodermal cells or Meristemoid mother cells present in the epidermis. It would be possible to 

image these cells if an alternative method such as confocal microscopy were used, however this was not 
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practical because of cost and time considerations. Therefore, the model will represent the progression of 

the tissue from the age at which the leaf is first able to be imaged reliably, which is 3 d.p.g. This means 

that the initial stage of the model is an epidermis consisting of: MCs, GMCs, stomata, SLGCs and PCs. 

Protodermal cells and meristemoid mother cells are not included in the model.  

Initially, a vertex-based element model was considered, but this was ultimately rejected due to the fact 

that it was not feasible to produce sufficient data about specific cell divisions and cell wall expansion to 

inform such a detailed special model. Similarly, a Boolean model was considered to be too simplistic, and 

not produce enough insight into the workings of this system. Models which currently exist of stomatal 

development mostly relate gene expression to spatial distribution of proteins of interest (Wengier et al. 

2018; Robinson et al. 2011), however this project is focused more on the relationship between the 

proportions of different epidermal cell types and changes in stomatal index and density. Therefore, the 

relationship between different epidermal cells can be expressed as a network of cell division or speciation 

events (fig.5.2.1), and also as a series of ODEs: 

123
14

= 𝑘5	𝑆𝐿𝐺𝐶 −	(𝑘9 +	𝑘-)𝑀𝐶  (5.2.1) 

1;23
14

= 	𝑘9𝑀𝐶 − 𝑘+	𝐺𝑀𝐶  (5.2.2) 
1<=2
14

= 𝑘+	𝐺𝑀𝐶 	 (5.2.3) 
1<>;3
14

= 𝑘-𝑀𝐶 − (𝑘0 +	𝑘5	)	𝑆𝐿𝐺𝐶  	 (5.2.4) 
1?3
14

= 𝑘0𝑆𝐿𝐺𝐶 + 𝑘5	𝑃𝐶  (5.2.5) 
 

Where k0 represents the rate of MC differentiation into GMCs; k1 is the rate of GMCs dividing 

symmetrically to produce stomata; k2 is the rate of amplifying divisions which generate a new SLGC; k3 is 

the rate of SLGC maturation into PCs; k4 is the rate of PC division; and k5 is the rate of amplifying 

divisions which generate a new MC. 
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Figure 5.2.1: Model 
Network of stomatal 
development: A network 
diagram showing the cell 
division or differentiation 
events which occur in the leaf 
epidermis (MC= Meristemoid 
cell, GMC= guard mother 
cell, SLGC = stomatal lineage 
ground cell, PC= pavement 
cell). 

 

 

 

5.2.1. GENERATING APPROPRIATE EXPERIMENTAL DATA 

Data were generated to investigate the changes in the number of each cell type found on the leaf 

epidermis over time in the developing leaf to find suitable parameter values for the above ODE system. 

Initially a series of impressions were taken of the abaxial leaf epidermis from leaves of different ages 

taken from mature Col-0 plants: young, newly developed leaves; mature leaves and medium-aged leaves 

from the midpoint of the rosette. This was to provide a spectrum of leaves at different stages of 

development which have all come from the same plant, exposed to the same environmental conditions 

throughout development.  

This method was chosen over selecting leaves from the same developmental stage of the plant- e.g. the 

3rd true leaf to develop- from plants of different ages, because it was considered that the variation in 

environmental conditions over that time would be more significant than the difference in the internal 

plant environment at the time that each leaf developed when collected at the same time (fig.5.2.1.1).  
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Figure 5.2.1.1: Collecting data 
for estimating parameter 
values:  Leaves of different 
developmental ages were 
harvested from a mature plant (A). 
Arrows 1, 2 and 3 show the young, 
medium and mature leaves 
respectively (leaf selection is 
explained in more detail in 
Materials and Methods). Impressions 
were taken of the leaf abaxial 
surface, and the number of each 
epidermal cell type was counted. 
(B) A cartoon of an abaxial surface 
impression of a young leaf, with 
each cell type indicated. 
 

 

The number of cells on the leaf surface was approximated using the number of cells which fall into a 

square 0.2 x 0.2 mm in size from the centre of the leaf, avoiding the midvein. Measuring simply the cell 

count per mm2 results in a decreasing value for the number of each cell type over time, whereas it is 

expected that the total cell count should increase over time as the leaf grows. This is due to the fact that 

the cells grow in size, and so the cell count per mm2 decreases.  

To account for this, the cell count per mm2 was multiplied by the average cell size in mm2 (calculated by 

dividing the number of cells per mm2 by 1), providing an ‘effective cell count’, which is henceforth used 

to measure cell population size (fig.5.2.1.2). 
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Figure 5.2.1.2: Cell count vs effective cell count: Graphs showing the number of each 
epidermal cell type expressed as (A) the number of cells per mm2, and (B) the ‘effective cell 
count’- cells per mm2 x average cell size. 

Leaves were selected that were at different developmental stages to represent the development of a 

typical leaf, and so the different types of leaf represent different time points in the development of this 

typical leaf. However, they were collected at the same time from the plant, and as it is not practical to 

note when each individual leaf in the rosette develops, the actual time since the leaf first developed is not 

known. This means that an approximation of the ages of the leaves must be calculated. The difference 

between the ages of the leaves, represented as timepoints in the development of the leaf (t0, t1, and t2 

representing the age of the leaf at the young, medium and mature stages respectively) was approximated 

as follows: 
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If: 

𝑑𝑋
𝑑𝑡

= 𝑓(𝑋) 
(5.2.1.1) 

Were X is a cell type and f(X) is the rate of production of X, then 

𝑋(𝑡+) − 	𝑋(𝑡9)
𝑡+ − 𝑡9

= 𝑓(𝑋(𝑡9)) 
(5.2.1.2) 

Applying this to equations 5.2.1-5: 

𝑘+(𝑡+ − 𝑡9) = 	
<4CDE4E(4F)G<4CDE4E(4H)

;23(4H)
  (5.2.1.3) 

𝑘9(𝑡+ − 𝑡9) = 	
;23(4F)G;23(4H)I	JF(4FG4H);23(4H)

23(4H)
   (5.2.1.4) 

𝑃𝐶(𝑡+) 	− 	𝑃𝐶(𝑡9) = 	𝑘+(𝑡+ − 𝑡9)[
JL
JF
𝑃𝐶(𝑡9) −

JM
JF
𝑆𝐿𝐺𝐶(𝑡9)]   (5.2.1.5) 

𝑆𝐿𝐺𝐶(𝑡+) 	− 	𝑆𝐿𝐺𝐶(𝑡9) = 	𝑘+(𝑡+ − 𝑡9) O−
JM
JF
𝑀𝐶(𝑡9) +

JP
JF

JM
JF
𝑆𝐿𝐺𝐶(𝑡9)Q   (5.2.1.6) 

𝑀𝐶(𝑡+) 	− 	𝑀𝐶(𝑡9) = 	𝑘+(𝑡+ − 𝑡9) O− R
JS
JF
+	JH

JF
T𝑀𝐶(𝑡9) −

JP
JF
𝑆𝐿𝐺𝐶(𝑡9)Q   (5.2.1.7) 

 
 

 

The ratio between timepoints can therefore be calculated (fig.5.2.1.3).  Adding in experimental values for 

the total number of each cell type at each time point yielded the parameters shown in table 5.2.1.1. Some 

parameter values calculated are negative, which is not a viable solution. Therefore, it was decided that 

data collected in this manner does not provide enough information about the rate of cell division and 

differentiation events on the developing epidermis as the large difference between time points creates too 

much noise in the data and is not suitable for estimating parameter values for the model. 
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Parameter Value 

k0/k1 0.177275 

k1(t1-t0) 0.311475 

k2/k1 19.53115 

k3/k1 -4.377029 

k4/k1 -0.735772 

k5/k1 4.984442 

 

Table 5.2.1.1: Calculated Parameter Values: Parameter values calculated using equations 5.2.1.1-6.  
 

5.2.2. FITTING PARAMETER VALUES TO EXPERIMENTAL DATA 

Because using images taken from leaves of very different developmental stages resulted in too many 

variables that could introduce inaccuracy to the results of the model, it was decided that data taken over a 

shorter time period would be more reliable and that this data should be collected from very young leaves 

as this is when the majority of leaf development occurs (Gonzalez et al. 2012).  

Hence, impressions were taken of the abaxial leaf epidermis of a selection of Col-0 cotyledons every 24 

hours for 4 days. Different cotyledons were used for each time point, due to the difficulty of taking serial 

impressions of the same leaf. These samples were collected starting at 3 d.p.g., when the leaves are just 

large enough to take reliable epidermal impressions. The number of each cell type present was counted at 

each time point. (fig. 5.2.2.1, table 5.2.2.1). The cell type was determined by the distinctive shape of the 

cells in the case of stomata, Meristemoid cells and guard mother cells, and stomatal lineage ground cells 

were differentiated from pavement - cells by proximity to other stomatal lineage cells- if the cell is 

neighbouring a stomatal lineage cell, it was classified as a stomatal lineage guard cell. 

The results of the t-test show little variation in the data between the timepoints, further reiterating that 

this data is very linear and therefore challenging to model. 
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A) 

Figure 5.2.2.1: 
A)Effective cell 
count and (B) actual 
cell count per mm2 of 
epidermal cells in 
cotyledons: 
impressions were taken 
of the abaxial surface 
of cotyledons every 24 
hours for 72 hours, 
starting 3 d.p.g, and 
the number of each 
cell type was counted. 
 
Here is shown the 
difference between the 
nonspatial ‘effective 
cell count’ 
measurement, and the 
cell count per mm2. 

 
B) 

 

Fitting parameter values to the data generated from these experiments involved using the scipy minimiser 

function to minimise the outcome of a least-squares regression of the model output to a line of best fit of 

the data, outlined in more detail in the materials and methods section (chapter 2) (fig. 5.2.2.2, table 

5.2.2.2).  As the figure shows, there is little change in the data, which makes it difficult to fit appropriate 

parameter values to. 
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Figure 5.2.2.2: Fitting the model to experimental data: A comparison between the change in each cell 
type over time in the data (C) and the model with fitted parameters(A). The model parameters are fitted to 
minimise the difference between the model output (A) and the line of best fit of the data (B), generated 
using the numpy polyfit function. 

The results of this fitting do not provide a good estimation of the data. This is due to the fact that the 

actual number of pavement cells decreases over time, and the model does not account for this, which 

results in the increase in the number of PCs over time in the simulation results (fig. 5.2.2.2.A). This was 

determined to be due to the fact that as the PCs expand, they push against neighbouring cells and some 

end up neighbouring non-SLGC stomatal lineage cells, which causes them to be misidentified as SLGCs. 

Therefore, a new parameter, k7, was added to the model to account for the number of pavement cells 

which are misidentified as stomatal lineage ground cells at each timepoint.  

The discovery of this misidentification rate also led to the inclusion of a rate of misidentification for 

guard mother cells as meristemoid cells, as these cell types are also fairly similar. This parameter, k8, 

represents the rate of misidentification of guard mother cells as meristemoid cells. (fig.5.2.2.3)  

 

 

123
14

= 𝑘-	𝑆𝐿𝐺𝐶 −	(𝑘9 +	𝑘5)𝑀𝐶  (5.2.2.1) 

1;23
14

= 	𝑘9𝑀𝐶 − (𝑘+ +	𝑘U)	𝐺𝑀𝐶  (5.2.2.2) 

1<=2
14

= 𝑘+	𝐺𝑀𝐶  (5.2.2.3) 

1<>;3
14

= 𝑘5𝑀𝐶 − (𝑘- +	𝑘0	)𝑆𝐿𝐺𝐶 +	𝑘V	𝑃𝐶   (5.2.2.4) 

1?3
14

= 𝑘0𝑆𝐿𝐺𝐶 + (𝑘' − 𝑘V	)	𝑃𝐶  (5.2.2.5) 

A) B) C) 
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A) B) C) 

 

Figure 5.2.2.3: Revised 
network with error 
parameters: A diagram 
showing the network with 
the addition of k6 and k7, 
which represent the rate of 
inaccurate identification of 
PCs as SLGCs and GMCs as 
MCs respectively. 

Fitting this data to the model also yielded positive parameter values (fig 5.2.2.4, table 5.2.2.3), and so this 

method of data collection was considered suitable for providing information about the changes in the 

number of each epidermal cell type over time.  

 

Figure 5.2.2.4: Fitting the model with additional error parameters: A comparison between the change 
in each cell type over time in the data (C) and the revised model with fitted parameters(A). The model 
parameters are fitted to minimise the difference between the model output (A) and the line of best fit of the 
data (B), generated using the numpy polyfit function. 
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Time (d) Col-0 iMUTE iSPCH 

0 ~ 1 ~ 1 ~ 1 

1 0.7976 0.348326 0.5807 

2 0.9866 0.390107 0.7450 

3 0.8548 0.356303 0.3562 

 

Table 5.2.2.1: T-tests on cell population counts: T-test results 
at each timepoint for each genotype in presence and absence of 
inducer. 

Parameter Value 

k0 0.005713 

k1 0.019796 

k2 0.003868 

k3 0.002808 

k4 0.1 

k5 0 

 

Table 5.2.2.2: Fitted parameter values: parameter values 
generated to fit the model to the data.  
 
 
 

Parameter Value 

k0 0.00955 

k1 0.01984 

k2 0.004251 

k3 0 

k4 0 

k5 0 

k6 0.010507 

k7 0.004147 

Table 5.2.2.3: Revised network parameter values: parameter 
values generated to fit the model to the data. 
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5.2.3 MODEL ANALYSIS 

The sensitivity of the model to parameter variation was analysed by increasing or decreasing the 

parameter values found by fitting to the experimental data discussed in section 5.2.2 by 10% (fig.5.2.3.1). 

This did not yield a significant change in the model output, and so analyses with 50 and 90% variation 

were performed, which showed more noticeable changes (fig.5.2.3.2). 

The suitability of the fitting algorithm used to generate these parameter values was tested by creating 

simulated data using the model equations and a set of randomly generated parameters of known value, 

then fitting the model to this simulated data and analysing the difference between the fitted parameter 

values and the actual values. The simulation was run 300 times, and the difference between fitted and 

actual values in each simulation was compared to the difference between the initial values used as a 

starting point for the fitting algorithm and the actual values (fig 5.2.3.3).  

 

 

Figure 5.2.3.1: Sensitivity analysis: Graphs showing the model output with the parameter values 
generated by fitting to the data increased and decreased by 10%. The solid lines indicate the output 
with the fitted parameters, and the blue shading indicating the variation caused by increasing or 
decreasing each parameter by 10%. K7 and k2 were not included in this analysis as they were calculated 
to be zero in the fitting process. 
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 Figure 5.2.3.2: Sensitivity analysis at 50 and 90 percent: Graphs showing the model output with 
the parameter values generated by fitting to the data increased and decreased by 50% (A) or 90% (B). 
The solid lines indicate the output with the fitted parameters, and the blue shading indicating the 
variation caused by increasing or decreasing each parameter by the given percentage. K7 and k2 were 
not included in this analysis as they were calculated to be zero in the fitting process. 

 

 

 

 

 

A) 

B) 
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Figure 5.2.1.3: Histogram and kernel density estimate (KDE) plot showing difference between 
actual and calculated parameter values before and after fitting: The model odes were solved using 
randomly generated initial cell counts and parameter values. The fitting algorithm was used to fit this 
simulated data, and the difference between the initial guess values and the actual parameter values (A) 
was compared to the difference after the fitting algorithm was used (B). KS-test p -value = 8.2228x e-80  

 

5.2.4. APPLICATION TO OTHER DATASETS 

Fitting the model to other datasets provides insight into whether these parameter values change in any 

meaningful way when different developmental decisions are made by the plant.  

To investigate this, data was collected using the method outlined in section 5.2.1 from plants from the 

iSPCH, iCYCD3;1 and iMUTE lines discussed in chapter 3 in the presence and absence of the inducer, 

β-estradiol (fig.5.2.4.2).   

Investigation was carried out into the changes in parameter values generated by fitting to the data 

produced by counting the number of each cell type present in the plants in which overexpression is 

induced and those where expression of the target gene remains at WT levels (fig.5.2.4.2, table 5.2.4.1). 

These results are also compared to Col-0 plants which were also exposed to estradiol, to determine if 

there is an effect that is caused by the β-estradiol alone. 
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 Figure 5.2.4.1: Number of each cell type on the epidermis over time: Results of 
counting each type of epidermal cell on the abaxial surface of cotyledons at 24-hour intervals 
for 4 days. Here, Col-0 and iMUTE plants are treated with the inducer, β-estradiol, or a 
mock treatment. This figure shows the changes in cell types over time (right), a line of best 
fit to this data (centre) and a tracing of the epidermis with the different cells coloured in 
according to the key in fig. 5.2.1.1 (SLGC = blue, stomata = orange, GMC = green,  MC = 
purple, PC = red). 

Col-0 

iMUTE 
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 Figure 5.2.4.1: Number of each cell type on the epidermis over time: Results of 
counting each type of epidermal cell on the abaxial surface of cotyledons at 24-hour 
intervals for 4 days. Here, iSPCH and iCYCD3;1 plants are treated with the inducer, β-
estradiol, or a mock treatment. This figure shows the changes in cell types over time (right), 
a line of best fit to this data (centre) and a tracing of the epidermis with the different cells 
coloured in according to the key in fig. 5.2.1.1 (SLGC = blue, stomata = orange, GMC = 
green,  MC = purple, PC= red). 
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For the iSPCH line, the experiments carried out in chapter 3 indicate that induction of SPCH 

overexpression results in increased cell division in the stomatal lineage. Induction of SPCH 

overexpression yields an increase in k3,k4,k5,k0 and k2 which represent the rate of SLGC maturation and 

PC respectively, and a decrease in, k1, which is the rate of stomatal production from GMCs. k6 and k7 are 

the error parameters introduced in 5.2.2, and show an increase, in the presence of the inducer, of the rate 

of SLGC misidentification as PCs and GMC misidentification as MC respectively. (fig.5.2.4.3, table 

5.2.4.2). The iCYCD3;1 plants showed an increase in all parameters except k2, k3 and k7 which show no 

change.  

In the iMUTE plants, k0 (MC differentiation), k1 (GMC division to produce stomata and k4 (PC 

proliferation) all increase, and, k3 (rate of SLGC maturation) k5 (MC production through asymmetric cell 

division) decreases. k2 (rate of SLGC production through asymmetric cell division) does not change, and 

there is also a decrease in the misidentification of PCs (k6) and little change in the misidentification of 

GMCs in the presence of the inducer. The Col-0 plants show an increase in k2 (rate of SLGC production 

through asymmetric cell division and a decrease in k0 (MC differentiation) k3 (rate of SLGC maturation) 

and k4 (PC proliferation), and k6 and k7 (rates of PC and GMC misidentification respectively). As these 

changes are relative to the non-induced Col-0 control, it is possible that this is due to the effect of the 

inducer on the Col-0 plants, or it may be an indication of the normal variation in these parameter value.  

 

 

 

 

 

 



 100 

0 10 20 30 40 50 60 70
time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Simulation: SPCH mock
MC
GMC
PC
SLGC
STM

0 10 20 30 40 50 60 70
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ce
llC

ou
nt

Data
MC
GMC
PC
SLGC
STM

0 10 20 30 40 50 60 70
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 LOBF
MC
GMC
PC
SLGC
STM

0 10 20 30 40 50 60 70
time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Simulation: MUTE mock
MC
GMC
PC
SLGC
STM

0 10 20 30 40 50 60 70
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ce
llC

ou
nt

Data
MC
GMC
PC
SLGC
STM

0 10 20 30 40 50 60 70
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 LOBF
MC
GMC
PC
SLGC
STM

 

 

 

 

 

 Figure 5.2.4.2: Fitting the model to experimental datasets: A comparison between the change in 
each cell type over time in the data (right column) and the model with fitted parameters (left column). 
The model parameters are fitted to minimise the difference between the model output and the line of 
best fit of the data (right column), generated using the numpy polyfit function. The data shown is for the 
Col-0 (A), iMUTE (B) and iSPCH (C) lines in the presence of the inducer (right) or a mock treatment 
(left). 
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Figure 5.2.4.3: Changes in parameter values between induced and mock-treated iSPCH and 
iMUTE plants vs. Col-0: A graph showing the log of the percent difference in the parameter values 
when the plants are treated with estradiol, thereby inducing over expression of the target gene. 
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Col-0 iMUTE iSPCH iCYCD3;1 

Parameter mock est mock est mock est Mock est 

k0 0.005106 0.004456 0.017876 0.019857 0.044975 1.986293 0.03115 0.044381 

k1 0.015789 0.015005 0.030687 0.032726 0.037376 0.02792 0.031634 0.038811 

k2 0.005026 0.008764 0 0 0 0.040054 0 0 

k3 0.00002 0.000005 0.011515 0 0.001001 1.040369 0 0 

k4 0 0 0.007976 0.010458 0.001521 0.008158 0.00243 0.007397 

k5 0 0 0.000432 0.000054 0.001527 0.003296 0.000898 0.000928 

k6 0.004053 0 0.113237 0.015943 0.010861 5.742268 0.005832 0.010737 

k7 0.000037 0 0 0 0.009211 1.221303 0 0 

Table 5.2.4.1: fitted parameter values: parameter values generated to fit the model to the data. 
 

Parameter Col-0 iMUTE iSPCH iCYCD3;1 

k0 -
12.72905 

11.07948 4316.416 42.47432 

k1 -
4.966593 

6.64206 -
25.30058 

22.68639 

k2 74.39267 0 4.005407 0 

k3 -
73.35143 

-100 103880.8 0 

k4 0 31.11816 436.2177 204.424 

k5 0 -
87.55164 

115.8845 3.237936 

k6 -100 -
85.92062 

52770.15 84.11079 

k7 -100 0 13158.68 0 

Table 5.2.4.2:  Changes in parameter values between induced and mock-treated 
iSPCH and iMUTE plants vs. Col-0: table showing the percentage difference in the 
parameter values when the plants are treated with β-estradiol, thereby inducing over 
expression of the target gene, when compared to plants which have been given a mock 
treatment. 
   



 103 

5.3. MODEL REVISION  

The experiments outlined in chapter 3 revealed that the iFAMA line did not produce a significant change 

in phenotype, and therefore there was no way to investigate the relationship between the values of k0 and 

k1 in the model, as FAMA regulates the symmetrical cell division which produces two guard cells from 

one GMC.  

Because of this, a new network was designed wherein the MCs and GMCs were combined into a joint 

variable denoting a stomatal precursor cell, or SPC. This eliminates the need for the missing iFAMA line, 

as FAMA does not regulate the speciation of stomatal lineage cells, it simply prevents further symmetrical 

divisions after the initial division event which bisects a GMC into two guard cells. Therefore, the new 

network (fig.5.3.1) is described using the following ODEs: 

1<?3
14

= 	𝑘0	𝑆𝐿𝐺𝐶 − (𝑘9 + 𝑘+ − 𝑘V)𝑆𝑃𝐶  (5.3.1) 
1<=2
14

= 𝑘9	𝑆𝑃𝐶  (5.3.2) 
1<>;3
14

= 𝑘+𝑆𝑃𝐶 − (𝑘0 +	𝑘-	)𝑆𝐿𝐺𝐶 +	𝑘'	𝑃𝐶   (5.3.3) 
1?3
14

= 𝑘-𝑆𝐿𝐺𝐶 + (𝑘5 − 𝑘'	)	𝑃𝐶  (5.3.4) 
 

Figure 5.3.1: Modified model network 
with combined stomatal precursor cell 
variable Due to limitations with 
experimental data, the MC and GMC 
variables in previous model networks were 
replaced with a combined SPC (stomatal 
precursor cell) variable. 
 

Where k0 represents the rate at which SPCs differentiate into stomata, k1 represents the rate of 

asymmetric cell divisions which generate a SLGC, k2 is the rate at which SLGCs mature into PCs, k3 is 

the rate of asymmetric cell divisions which generate an SPC, k4 is the rate of misidentification of PCs as 
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SLGCs (combination of MCs and GMCs eliminates the need for a GMC/MC misidentification rate), and 

k5 is the rate of PC proliferation. 

Sensitivity analysis showed no noticeable change when the parameter values were varied by 10% (fig 

5.3.2) but increasing the variability to 50% and 100% showed some variation in model output (fig 5.3.3). 

Tests of the fitting algorithm using simulated data yielded similar results to the previous model (fig.5.3.4). 

A)  

B) 

C) 

Figure 5.3.2: Sensitivity analysis: Graphs showing the model output with the parameter 
values generated by fitting to the data increased and decreased by 10% (A), 50% (B) and 
100% (C). The solid lines indicate the output with the fitted parameters, and the blue 
shading indicating the variation caused by increasing or decreasing each parameter by 10%. 
K5 was not included in this analysis as it was calculated to be zero in the fitting process. 

 



 105 

 

The revised model was then fitted to the Col-0, iSPCH, iCYCD3;1 and iMUTE data sets (fig.5.3.3) (table 

5.3.1). In the iSPCH plants in the presence of the inducer, all parameters increase, except k0, the rate of 

stomata production. In the iCYCD3;1 line, all parameters increase except k2 and k4, the rates of SLGC 

maturation and PC misidentification respectively. 

The iMUTE plants showed an increase in k0, k2, and k4, which is the rates of stomatal production, SLGC 

maturation and PC misidentification respectively. They also show a decrease in k5, the rate of pavement 

cell division, and k3, the rate of meristemoid – generating amplifying divisions. 

Col-0 plants showed an increase in k0 (stomata production), k1 (SLGC production), k2 (SLGC maturation) 

and k4(PC misidentification.), and no change in k3 (PC division) or k3 (meristemoid-generating amplifying 

divisions). 

 

 

 

 

 

Figure 5.3.1: KDE plot showing difference between actual and calculated parameter values 
before and after fitting: The model odes were solved using randomly generated initial cell counts and 
parameter values. The fitting algorithm was used to fit this simulated data, and the difference between 
the initial guess values and the actual parameter values (A) was compared to the difference after the 
fitting algorithm was used (B). KS test p-value = 3.03254x e-68 
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Figure 5.3.5: Fitting the model to experimental datasets: A comparison between the change in 
each cell type over time in the data (right column) and the model with fitted parameters(left column). 
The model parameters are fitted to minimise the difference between the model output and the line of 
best fit of the data (left), generated using the numpy polyfit function. The data shown is for the Col-0 
(A), iMUTE (B) and iSPCH (C) lines in the presence of the inducer (right) or a mock treatment (left). 
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Figure 5.3.6: Changes in parameter values between induced and mock-treated iSPCH and 
iMUTE plants vs. Col-0: A graph showing the log of the percent difference in the parameter values 
when the plants are treated with estradiol, thereby inducing over expression of the target gene. 

 

  Col-0 iMUTE iSPCH iCYCD3;1 
 

mock est mock est mock est mock est 

k0 0.006539 0.0068 0.017892 0.020301 0.025162 0.019782 0.016295 0.025164 

k1 0.005132 0.006679 0.018944 0 0.000003 0.031505 0 0.008956 

k2 0.138073 0.167934 0.102871 0.186111 0 0.01299 0.184816 0.000633 

k3 0.000022 0 0.003597 0.000131 0.001773 0.005127 0.000992 0.001715 

k4 0.900113 0.920188 0.929184 1.693736 0.00703 0.089795 1.110234 0.015426 

k5 0 0 0.012237 0.011673 0.002488 0.008558 0.003029 0.007501 
 

Table 5.3.1: Parameter values for revised model fitted to data. 
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Parameter Col – 0 iMUTE iSPCH 

k0 3.22048 2.005347 -1.542635 

k1 1.199252 0 9.410885 

k2 1.531246 0.211736 4.343608 

k3 0 -0.037235 0.637268 

k4 3.803038 0.195016 2.465743 

k5 0 -3.078222 0.891745 

Table 5.3.1: Changes in parameter values between induced and mock-treated iSPCH and 
iMUTE plants vs. Col-0: table showing  the difference in the parameter values when the plants are 
treated with β-estradiol, thereby inducing over expression of the target gene. 

 

5.4 MAKING PREDICTIONS 

A test of the utility of the model is to compare the results of altering the parameter values to the pattern 

of variation seen in different epidermal phenotypes. To that end, counts of the epidermal cell types were 

taken in the manner described in 5.2.2 of phyB and cry1/cry2 mutant plants (fig. 5.4.1). These plants are 

known to have a decrease in SI and no change in SD in the phyB mutant and reduced SD and no change 

in SI in cry1/cry2 .  

 

Figure 5.4.1: 
epidermal cell 
counts of phyB and 
cry1/cry2 mutants: 
The frequency of the 
different cell types of 
the epidermis 
obtained from 
cotyledons (right), and 
a line of best fit of 
that data (left) for 
cry1/cry2 mutants 
(above) and phyB 
(below). 
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To simulate changes to the epidermis using the model, parameter values obtained from WT plants were 

increased or decreased by 90%, as the sensitivity analysis in section 5.2.3 shows provides appropriate 

variation in the parameter results. Using the modified network in section 5.3, two alternate sets of 

parameters were varied, so simulate decrease in stomatal index: decreasing k0 to simulate a decreased 

number of stomatal lineage cells becoming stomata; or increasing k1, k2 and k5, to simulate an increased 

number of cells not assigned to the stomatal cell fate, i.e. SLGCs and PCs (fig 5.4.2). This was also carried 

out with the previous iteration of the model with 8 parameters outlined in section 5.2.1, wherein 

decreased stomatal fate completion was represented by decreasing k0 and k1, and increased SLGC and PC 

cell production represented by increased k3 and k4(fig 5.4.3). Comparison of these results with the actual 

data suggests that k0 increases also (fig. 5.4.4.A) and varying the PC misidentification parameter also 

better describes the actual data (fig 5.4.4.B). 

A) B) 

Figure 5.4.2: Altering the 
parameters of the model:  
The results of using the 
initial cell counts from the 
phyB (A, C, E) and cry1/cry2 
(B,D,F) and varying the 
parameters of the model. 
Initially, parameters were 
used from the WT (A, B), 
then k0 was decreased 
(C,D), or k5 increased (E,F). 

C) D) 

E) F) 
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Figure 5.4.4: Altering the 
parameters of the model:  
The results of using the 
initial cell counts from the 
phyB (A, C, E, G) and 
cry1/cry2 (B,D,F, H) and 
varying the parameters of 
the model from section 
5.2.1. Initially, parameters 
were used from the WT (A, 
B), then k0  and k1  were 
decreased (C,D), or k5 and 
k4 increased (E,F), in 
comparison with the line of 
best fit generated from the 
data (G, H). 

C)  D) 

E) F) 

G) H) 
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Figure 5.4.4: Altering the 
parameters of the model:  
The results of using the 
initial cell counts from the 
phyB (A, C) and cry1/cry2 
(B,D) and varying the 
parameters of the model. k0 
was increased (A, B), or k6 
increased (C,D). 
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5.5. DISCUSSION 

Investigation of the information available in the literature on the development of stomata and other 

epidermal cells provided a solid base for the design of the model, however it also highlighted some gaps 

in the current knowledge of how epidermal patterning is brought about.  

Although the series of cell differentiation events which lead to the development of stomata is well 

defined, the tissue-wide spacing of stomata is not as well understood. The ratio of stomata to non-

stomatal epidermal cells, measured using the stomatal index, is used to define stomatal development 

differences between phenotypes, but there is less information about how changes in the number of other 

types of epidermal cell affect stomatal patterning. 

The progression of cell differentiation events through known pathways lends itself to modelling using a 

series of ODEs (fig. 5.2.1), into which it was anticipated that experimental data about the number of each 

epidermal cell type changes throughout the lifetime of a leaf could be used to investigate suitable 

parameter values for the model, however due to the variability in the cell numbers on each leaf which is 

largely because of the large timescale over which the data is collected, the data was difficult to fit to the 
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model (fig. 5.2.1.2). This was reflected in the fact that attempting to fit the model to the data generated in 

this fashion resulted in negative parameter values (table 5.2.1.1). Negative parameter values are not a 

viable solution, as it implies reverse differentiation, or that the rate of cell death is greater than the rate of 

cell division, which is not the case.  

It was decided instead to use cotyledons at 3 d.p.g. and image them every 24 hours for 3 days. Although 

this means that the full life span of the leaf cannot be measured in this way, as it would not be feasible to 

take epidermal impressions every 24 hours for the lifetime of the plant, it does mean that the time 

between measurements is known (fig. 5.2.1.4).  

Fitting the model to this new dataset, using the python module scikit to build a function to minimise the 

difference between the model output and a line of best fit of the data, showed that the model outputs did 

not match the results of the experiments (fig. 5.2.2.1). This is because the model equation for the change 

in pavement cells over time (equation 5.2.4) has only positive terms. Therefore, it was suggested that the 

reason the total number of pavement cells was seen to decrease over time was due to misidentification of 

pavement calls as stomatal lineage ground cells. The primary difference between the two cell types is that 

pavement cells are not a part of the stomatal lineage, and although this can be discerned by, for example, 

using a GFP-tagged SPCH line, this is not something that is immediately evident from an epidermal 

impression.  

The primary method of differentiating SLGCs from PCs was to determine whether the cell was touching 

another stomatal lineage cell (GMC, MC or STM). If the cell was touching one of these cells, it was 

determined to be an SLGC, else it was defined as a PC. However, as the PCs become larger, they can 

push past other cells, and the result is that a mature PC may have neighbouring cells that in the stomatal 

lineage and therefore be misidentified. Therefore, a parameter was added to the model, k7, to represent 

the rate of this misidentification. This caused the model to be scrutinised for other possible 

misidentifications, and it was determined that stomata are sufficiently distinct that this did not need to be 

considered, and that small MCs and GMCs would be unlikely to be mistaken for larger PCs or SLGCs, 

but that the difference between the typically angular MCs and the rounder GMCs may be subtle, and so 

k8 was added to reflect this (fig. 5.2.2.2). 
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Fitting the revised model with error parameters to the data yielded results that more closely reflected the 

data (fig. 5.2.2.3). The fitting algorithm was tested by generating simulated data using random initial 

variable and parameter values, then fitting the model to this data and comparing the difference between 

the actual and fitted parameter values to that between the actual parameter values and the randomly 

generated initial guess at the parameter values (fig. 5.2.1.3). This operation was performed 300 times. The 

fitted parameters do not all match the actual parameters exactly, due to the minimising algorithm finding 

a local minimum, but there is a significant peak in the distribution plot around 0. A two sample 

Kolmogorov-Smirnov (KS) test performed on the distribution of the difference between the initial 

parameter values generated at random and the actual parameters, and the difference between the fitted 

and actual parameters shows that the fitted parameters are significantly closer to the actual parameter 

values than the initial data. 

After the fitting algorithm was found to be suitable, the model was fitted to data from the inducible 

overexpression lines iSPCH, iCYCD3;1 and iMUTE, which in the presence of the inducer β-estradiol 

overexpress the stomatal development genes SPCH, which inhibits progression through the stomatal 

lineage and increases cell division in stomatal lineage cells, CYCD3;1, which promotes cell division 

throughout the epidermis, and MUTE, which facilitates the progression of MCs into GMCs. The changes 

that each of these genotype sees in the parameter values when treated with the inducer was recorded (fig. 

5.2.4.1, table 5.2.4.1). k6 and k7 vary through each genotype, however these are the error correction 

parameters and do not provide insight into the development of the leaf.   

When the model was fitted to the counts from the iSPCH and iCYCD3;1 plants grown in the presence 

and absence of the inducer, it was expected that in the iSPCH line the parameter values would change in a 

way which indicates an increase in cell division in the stomatal lineage in the presence of the inducer, as is 

suggested by the results of the experiments in chapter 3, and the iCYCD3;1 line would yield results which 

indicate a general increase in cell division (fig. 5.5.1). 
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Figure 5.5.1: Alterations to the parameter values in the different inducible expression lines: 
Diagram showing the changes to the parameter values of the model network when the target gene of each 
inducible expression line ( iCYCD3;1 (A), iSPCH (B) and iMUTE(C)) is overexpressed. Arrows in orange 
show an increase when the gene is overexpressed, and arrows in blue show a decrease. 

 

Fitting the parameters to the data shows a universal increase in all the parameter values except k1, the rate 

of stomata production from GMCs. This is consistent with what is expected, as although SPCH 

promotes cell division, it also inhibits stomatal production. The increase in k5, defined as the rate of PC 

division, is explained by the increased rate of k3, SLGC maturation, which is caused by rapid symmetric 

cell division in SLGCs generating more cells separated from other stomatal lineage cells, which means 

that they are now classified as PCs in the counting process. This also explains the increase in k6, which is 

the misidentification rate for PCs. Comparison of the iSPCH results with the iCYCD3;1 shows that the 

iSPCH line has an increase in k2 and k3 which is not seen in the iCYCD3;1 line, and a decrease in k1 

where iCYCD3;1 has an increase. This is due to the inhibition of stomatal development seen in the 

iSPCH line, which causes a decrease in the rate of stomatal production, but also an increase in the 

B) A) 

C) 
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number of SLGC-generating asymmetric cell divisions and SLGC maturation when compared to the 

iCYCD3;1 line which shows no specificity in cell division rates. The increase in k0 is larger in the iSPCH 

line than in iCYCD3;1, which is due to the lower number of MCs in the epidermis in the iSPCH plants, 

which means that a higher proportion of MCs must differentiate into GMCs in order to maintain the 

same stomatal density as is found in the mock treated sample, which is what is found in chapter 3. 

For the iMUTE line, it was expected that fitting the model to the plants which are overexpressing MUTE 

would show changes to the parameter values that indicate an increase in stomatal development and a 

decrease in cell division in the stomatal lineage when compared to the parameter values yielded from 

fitting the model to the data from plants not exposed to the overexpression inducer, as is indicated by the 

results of the phenotypic experiments discussed in chapter 3. The fitted parameters showed an increase in 

k0 and k1, which suggests an increase in stomatal development that is consistent with the literature as 

discussed in the introduction and the results of chapter 3. This increase in stomatal development also 

explains the decrease in k3, as more cells remain in the stomatal lineage instead of exiting through 

asymmetric division to generate another SLGC.  

The Col-0 plants should show little change in the values of k0-5, as experiments discussed in chapters 3 

and 4 show that estradiol does not appear to have an effect on Col-0 plants. There is however some 

variation in the values of k0-3, which are considerably less than those shown in the iSPCH line, but not 

less than that seen in iCYCD3;1 or iMUTE. Chapter 3 gives no indication that β-estradiol has a 

significant effect on the plant, and so this suggests that further experimentation is needed to understand 

the natural variation in the rates of epidermal cell division and differentiation. 

While these results are promising, data discussed in chapter 3 indicated that the inducible expression line 

that would be used to measure differences in the parameter values that would result from changes in the 

rate of GMC production, iFAMA, was not working effectively. This necessitated the modification of the 

network such that the MC and GMC variables were combined into one SPC variable (fig 5.3.1, equations 

5.3.1-4).  

This model was also subjected to fitting analysis using the same method discussed above (fig. 5.3.3), and 

the fitted parameters were significantly closer to the actual parameters than the randomly generated initial 
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values inputted into the fitting algorithm. Sensitivity analysis showed that the model is less sensitive to 

parameter variation (fig. 5.3.2). 

Fitting this new model to the data for the iSPCH induced and mock treated results yielded similar results 

as the previous model, showing an increase in all parameters except k0, here indicating an increase in the 

production of stomata. iCYCD3;1 shows an increase in k0 and no real change to k2 and k3, similarly to in 

the previous iteration of the model. 

The iMUTE lines show similar results to the previous iteration too, with an increase in the rate of 

stomata production and a decrease in the rate of PC division, which is the opposite of that seen in the 

previous iteration of the model and is another indication that variation in the number of PCs and SLGCs 

present on the epidermis needs further investigation. The results of the Col-0 data fitting show an 

increase in k0, k1, k2 and k4, which is what is seen in the previous iteration of the model also. 

Varying the parameter values to simulate changes in stomatal index and density helps understand the 

utility of the model to predict changes in the composition of the epidermis if the rates of cell division, 

expansion and differentiation are altered. To this end, epidermal cell counts were performed on phyB and 

cry1/cry2 plants. The phyB plants were expected to show an overall reduction in stomatal index, and no 

change in stomatal density, and the literature suggests that cry1/cry2 would yield a decrease in density but 

not index. Here, two hypotheses were tested: one, that stomatal density is decreased through a decrease in 

the production of stomata; and two, that stomatal index is decreased through increase in SLGC and PC 

division and differentiation. The variation of the parameters that most closely resembles the data is the 

latter option for both genotypes, which is not the expected result for cry1/cry2, although there is little data 

on the SI of this genotype at this age. The iteration of the model described in section 5.2.1 described the 

data best, which is due to the reduction in information about stomatal lineage development within that 

model due to the loss of the MC to GMC transition. This suggests that the section 5.2.1 model is more 

appropriate than the 5.3 model.  

However, an important shortcoming of the model is the differentiation between PCs and SLGCs, which 

is in part due to the relative size of these cells in comparison to the smaller stomata, meristemoids and 

guard mother cells. This is a significant outcome of the model, as it highlights a lack of distinction 
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between these cell types which could be further investigated in future work. Perhaps the difference 

between PCs and SLGCs could be determined using a spatial analysis of the arrangement of cells within 

the epidermis, or through more in-depth analysis of the developmental lineage of cells in the epidermis. It 

is something that is discussed at some length in chapter 3, and further investigation into the relationship 

between PCs and SLGCs could be a subject for further experimentation in the future. A combined 

PC/SLGC category similar to the SPC variable proposed in section 5.3 would reduce this issue, however 

one of the key envisaged uses of this model is to differentiate between stomatal lineage cells and non-

stomatal lineage cells, and so it would be preferable to keep these cell types in separate categories. 

Experimentally, this distinction could be investigated using reporter genes such as SPCH. 

In conclusion, the proposed model is based in a foundation of evidence from the literature and searching 

for plausible parameter values has suggested that the model is suitable for future work in predicting the 

stomatal patterning of Arabidopsis leaves under different conditions. 
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6. GENERAL DISCUSSION 

6.1 INTRODUCTION 

 

The broad aim of this project was to understand how the manipulation of plastic developmental pathways 

within a plant might result in changes in the energetic economy of the plant. Stomatal development was 

used as a model for this study, as it is a plastic process and is well studied.  Overall, this work was used to 

understand how changes to the development of the epidermis affect stomatal density, and what 

consequences these changes have on the metabolic rate of the plant. 

Inducible overexpression lines were investigated for their utility in inducing changes in cell division, cell 

expansion or recruitment to the stomatal lineage within the epidermis, so that these processes could be 

isolated and studied for their effect on the metabolic rate of the plant. Methods of measuring this change 

in metabolic rate were investigated. Following the development of a suitable method, this was then 

applied to the inducible expression lines to provide information about how changes in these 

developmental processes impact on the metabolic rate of the plant. 

In addition to this, a mathematical model was created to understand the development of the leaf 

epidermis over time, and changes to the rates of cell division and differentiation were investigated using 

the inducible expression lines mentioned above. 

6.2 USE OF INDUCIBLE EXPRESSION LINES 

As discussed in the introduction to this thesis (chapter 1), inducible expression of stomatal lineage genes 

has been used previously to determine the function of a particular gene within a network (Ohashi-Ito & 

Bergmann 2006b; Lee et al. 2017). In this project, inducible expression lines were used to manipulate 

specific developmental processes and through comparison to their controls, determine the metabolic and 

phenotypic impact of these processes. 
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Figure 6.2.1: Altering Cell Division and Cell Expansion with inducible transgenic lines: A 
diagram showing the relationship between cell division and expansion. The iMUTE and iΔNYDA lines 
(right) show decreased cell division and therefore increased expansion, whereas the iSPCH and 
iCYCD3;1 (left) show increased cell division and decreased expansion. 

 

Inducible expression lines were used in this project to study the effects of six genes on the development 

of stomata on the epidermis:  the stomatal development genes SPCH, MUTE, FAMA and YDA; and the 

cell division regulation genes CYCD3;1 and KRP1. These genes were chosen because of their effects not 

only on the number of stomata which develop, but also their effects on the number of other cells 

produced in the process, and their cell size. Although rt-qPCR showed that the iFAMA line does not 

show overexpression in the presence of the inducer, the other lines did show significant changes in 

expression and so could be assessed for their effect on stomatal development. The iKRP1 line did not 

show significant changes in stomatal index or cell size, but did show a significant increase in stomatal 

density, but as the rt-qPCR results did not indicate a large change in expression and the results were not 



 121 

as expected, it is possible that these results are an anomaly, and therefore the KRP1 line’s efficacy is not 

conclusive. 

The iSPCH, iMUTE and iΔNYDA lines showed the changes to the stomatal index and stomatal density 

that were expected from previous work with in the literature. They were also assessed for changes in 

average cell size, a parameter which has not been so rigorously examined in previous studies on the roles 

of these genes. The iSPCH line showed a decrease in cell size, which is to be expected from the increase 

in cell division that SPCH overexpression triggers. This reduces the amount of time the cell spends in S 

phase, and therefore the amount of growth that can be carried out before the next round of divisions. In 

contrast, the iΔNYDA line shows an increase cell size, which is due to the fact that overexpression of this 

constitutively active variant inhibits entry or progression through the stomatal lineage, resulting in fewer 

of the smaller stomata lineage cells and more of the larger pavement cells (fig. 6.2.1).  

The iMUTE line showed an increase in cell size, which is interesting as it suggests increasing stomatal 

differentiation may result in a decrease in cell division and therefore an increase in cell size. As there has 

been little written about changes in average cell size over the full epidermis in these genes, it is not known 

what causes this decrease in cell division. 

It is interesting to compare the results of the iCYCD3;1 and iSPCH lines, which were both expected to 

alter cell division. Increased expression of both led to comparable reductions in the stomatal index and 

yet had different impacts on stomatal density, which increased in the iCYCD3;1 line. Examination of 

average cell sizes indicate that inducing iCYCD3;1 resulted in a greater reduction in cell size compared to 

iSPCH, which would account for the difference in SD. This may be due to increased cell division 

throughout the epidermis, whereas in the iSPCH line, divisions were restricted to cells that had already 

entered the stomatal lineage at the time of induction. This shows that comparison between the iCYCD3;1 

and iSPCH results would indicate the effect of cell division specifically in the stomatal lineage, which is 

important for understanding the maintenance of stomatal density on the epidermis.  
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6.3 STUDYING ENERGETICS 

In order to understand the changes in metabolic economy that arise from altering the rates of cell 

differentiation and division in the different cell types on the epidermis, it was necessary to investigate 

methods of measuring the metabolic rate within the plant. Initially, ATP assays were investigated, but the 

results were so variable that it was not a stable method of measuring subtle changes in the metabolic rate 

of the whole plant. Therefore, 14CO2 evolution assays were used. 

The results of these experiments showed that the iSPCH and iCYCD3;1 showed a significant increase in 

14CO2 evolution in the presence of the inducer, which indicates that overexpression of these genes caused 

an increase in respiration rate, and therefore that this overexpression requires the plant to do more work. 

This could be due to the energetic cost of increased expression of the gene, which may be why there is a 

larger increase in the rate of 14CO2 evolution in the iSPCH line which also shows a larger increase in 

relative expression. However, it may also indicate that an increase in cell divisions, which were shown to 

increase in both lines in the previous chapter, is energetically costly to the plant. Also, the iMUTE line 

shows a decrease in the rate of 14CO2 evolution despite an increase in relative expression levels, indicating 

that the overexpression of MUTE results in a lower respiration rate. As the iMUTE line shows a decrease 

in cell division rate and 14CO2 evolution, and the iSPCH and iCYCD3;1 lines show an increase in cell 

division rate and 14CO2 evolution, it is likely that these two processes are correlated, which indicates that 

altering the rate of cell division within the epidermis would have an effect on the energetic efficiency of 

its development. 

Using 14CO2 evolution assays to provide an estimate of the work done in the plant is not a widely used 

protocol, but repeated iSPCH measurements and comparison of the iCYCD3;1 and iSPCH lines shows 

consistent results that correspond to similar changes in development and suggests that it is a suitable 

method of understanding the changes in the energetic costs for the plant. The experiments showed that 

results between different batches of experiment are slightly variable, which means that in order to study 

the differences between say, the iCYCD3;1 and iSPCH lines, further experiments would need to be 

conducted simultaneously on both lines due to the subtlety of the difference between those two results.  
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However, it is important to acknowledge that the conditions to which the plants are exposed during the 

experiment- being in the dark and in liquid media rather than soil- are quite far removed from the 

conditions that the plant would experience in nature. There are alternate methods of measuring 14CO2 

evolution such as growing the plants on soil in clear boxes in growth cabinets, however this is used with 

14CO2 to measure photosynthetic rate, and not the 14C-labelled glucose that is required to measure 

respiration rate (Duan et al. 2014). The plants are grown in the dark to avoid inaccuracy in measuring the 

CO2 evolution using a KOH trap, because in the light CO2 would be used in photosynthesis. However, 

extended time in the dark has an effect on cell division and expansion rates, as evidenced by hypocotyl 

extension in the dark (Ivakov et al. 2017). Also, stomatal development is known to be affected by light 

and darkness reduces stomatal development (Bertoni 2009),  perhaps due to the regulation of expression 

of key stomatal development genes by light-mediated ubiquitin ligase COP1 (Kang et al. 2009). 

An alternative method of measuring metabolic rate is to measure O2 consumption, however the methods 

of obtaining O2 consumption data are either destructive and would not be suitable for repeat readings or 

require a more mature plant (O’Leary et al. 2017). 

The purpose of these experiments was to understand the general change in metabolic rate in the plant, 

and so U-labelled 14C-glucose was used. However, it would be possible to investigate the changes in 

production of specific molecules, such as amino acids, with the use of specifically labelled glucose (Avin-

Wittenberg et al. 2015). This was not used in the project because it was not the intention of the thesis to 

specifically understand how changes in metabolism changed these rates. 

6.4 MODELLING THE EPIDERMIS 

When it comes to stomatal development, modelling the changes to cell types in the tissue provides insight 

into the implications of altering the routes of stomatal development across the epidermis in a way that 

modelling gene expression distribution does not. SPCH expression, for example, is important in the 

production of stomata, but simply modelling changes in its expression does not differentiate between 

meristemoids, guard mother cells and guard cells. The model also allows for incorporation of division and 

speciation events in cells which are not directly producing stomata, i.e. pavement cells and SLGCs. It was 
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also determined that a spatial model of the development of the epidermis was not suitable for the level of 

data which it was possible to collect within the scope of this project. As such, an ODE model of the 

changes in epidermal cell type over the course of the development of the leaf was the most suitable 

means of investigating the relationship between differentiation and division in the epidermis. 

A study of the literature regarding stomatal development on the abaxial surface revealed that the different 

cell types on the abaxial leaf surface are connected to each other in a network of cell division and 

differentiation events, and this led to the production of a series of equations which represent the net 

movement of cells between these different cell types through these different division and differentiation 

events. However, the difficulty of modelling a network of interconnected events in this manner is that it 

produces a very robust network, which is quite insensitive to parameter variation, as was shown in the 

sensitivity analysis.  

However, the application of this proposed model to experimental data of the number of each cell type 

over time indicated that the network could describe the changes in these cell types over time. Fitting the 

model to the data for the inducible expression lines showed that variation in the cell types over time in 

these lines was reflected in the variation of the appropriate parameters, and this indicates again that the 

network model is capable of describing the relationships between these cell types. 

This means that the cell type network model is capable of describing the relationship between the 

numbers of each cell type on the abaxial epidermis as they change over time and can also provide 

information about expected stomatal index and stomatal density if the rates of cell differentiation or 

division in each cell type is altered. 

Using this model to predict the changes to the number of cells within the epidermis in phyB and cry1/cry2 

mutants indicated that the changes in the relationship between stomatal index and density seen within 

these mutants is due to the proportion of the epidermis which consists of pavement cells compared to 

SLGCs, which suggests that this area of the stomatal development pathway plays an important role in the 

spatial arrangement of stomata, and also further highlights the need to understand the distinction between 

PCs and SLGCs. This was highlighted in the development of the model, as the inability to distinguish 

easily between the two cell types proved to be a significant difficulty within the model’s development.  
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6.5 OVERALL COMMENTS 

The work described in this thesis has highlighted some interesting insights into the mechanisms for 

maintaining stomatal density in Arabidopsis and their implication for the metabolic rate of the plant. The 

results of this project suggest that it is likely to be more energetically economic to achieve a given 

stomatal density by decreased cell division and increased cell expansion and recruitment to the stomatal 

lineage. Fitting the model to the data from the iSPCH line showed that inducing cell division reduces the 

rate of recruitment to the stomatal lineage, a result which is corroborated with the phenotypic data from 

chapter 3 that shows a decrease in stomatal index in the iSPCH plants in the presence of the inducer. The 

14CO2 evolution experiments indicate that this increase in cell division and recruitment to the stomatal 

lineage results in an increase in metabolic rate, indicating an increase in energetic cost. This is 

corroborated by the results of the 14CO2 evolution assay in the iCYCD3;1 line, which also shows an 

increase in metabolic rate that is correlated to an increase in cell division.  

The iMUTE line, which shows an increase in recruitment to the stomatal lineage and a decrease in cell 

division, shows a decrease in the rate of 14CO2 evolution, and therefore indicates a lower energetic cost of 

recruitment to the stomatal lineage.  It is the fact that metabolic rate is seen to increase in the iSPCH and 

iCYCD3;1 lines, which show increased cell division, and decrease in the iMUTE line, which shows 

decreased cell division but increased recruitment to the stomatal lineage, that suggests that increasing 

stomatal index to maintain stomatal density is a more energetically favourable method than increasing cell 

division. This relates to the decrease in stomatal index seen in plants exposed to environmental factors 

such as high CO2, where stomatal index decreases, and the increase in stomatal index seen in plants 

grown at high light (Tanaka et al. 2013; Hronkova et al. 2015). This alteration of index to alter density 

suggests that stomatal density is altered through increase of recruitment to the stomatal lineage rather 

than altering the rate of cell division, which corroborates the findings of this thesis as it has been found 

that cell divisions are more costly and therefore less favourable. Further investigation of the relationship 

between increased stomatal development and decreased cell division specifically within the context of 

altered CO2 and light conditions would provide more insight into whether plants truly favour the least 

energetically costly route for maintenance of stomatal density.  
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Comparison between the iΔNYDA line and the iCYCD3;1 and iSPCH lines indicates that decreasing 

stomatal density and index in most energetically favourable way involves a reduction in the recruitment of 

cells to the stomatal fate. Decreasing SD through increased cell division, and therefore decreasing total 

cell density, as seen in iCYCD3;1, is more energetically costly than the reduction of cell fate recruitment 

seen in iΔNYDA, as is indicated in fig. 4.3.4.B and E. This means that as increasing differentiation rather 

than cell division is a more energetically favourable method of increasing SD, so too is decreasing 

differentiation rather than increasing cell division. 

The results of the experimental and theoretical work carried out for this project, when combined 

together, provide the best insight into the tissue-wide implications of altering the rates of cell division, 

expansion and recruitment to the stomatal lineage. The model confirms changes to the rate of 

recruitment to the stomatal lineage by providing information about the relationship between those cells in 

the stomatal lineage and other epidermal cells, and how this relationship changes under different 

conditions and over time. The experimental work provides evidence that this alteration to the 

development of the epidermis has consequences to the stomatal index and stomatal density, and the 

metabolic rate of the plant.  

The tissue-wide implications of altering stomatal development has been studied in previous work, but this 

work has been focused on understanding the molecular mechanisms that govern stomatal development. 

This project has aimed to bring together the current understanding of stomatal development and use it as 

a model of how plastic development processes can alter the development of a tissue. 

6.6 FUTURE DIRECTIONS 

The model proposed in this project was created to enable understanding of the role of plastic 

development in the placement of stomata on the abaxial epidermis, and the current data that have been 

used to define the parametric variability of the model have relied on altering the cellular processes within 

individual cells. Another avenue to explore is the role of extracellular signalling factors such as EPF2. 

What would the effect of overexpression of EPF2 be on the rate of division in the non-stomatal lineage 

cells of the epidermis? Would inhibiting EPF2 expression indicate a more energetically favourable 
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method of increasing cell density than CYCD3;1, for example? Based on the data from the iSPCH and 

iΔNYDA lines, it would be predicted that EPF2 inhibition would be less energetically favourable than 

increasing SD through increase MUTE expression, due to the increased cell division (Hunt & Gray 2009).  

Because of the plasticity of stomatal development, it would be of great interest to revisit the type of data 

collected initially for the creation of the model, namely leaves at different developmental stages, which 

provides a more complete picture of the development of the leaf through to maturity. This is important 

because although the majority of the assignation of cells to the stomatal lineage occurs at a very early 

stage of development, the relationship between these stomatal lineage cells and pavement cells will 

change over time as the epidermal cells grow and divide. Therefore, it would be useful to devise a method 

of collecting data on these more mature leaves. The issue found in chapter 4 was that the data was too 

variable, which could be accounted for if repeated measurements could be obtained from the same leaf, 

however it is was not practical to carry out repeated epidermal impressions from the same leaf without 

damaging the plant. A more suitable method may be to use confocal microscopy to produce live images 

on the leaf. This approach has been used previously to take repeated images of a living plant (Heisler & 

Ohno 2014). 

The model highlights difficulty in differentiating between SLGCs and PCs, and GMCs and MCs in an 

image, and perhaps if more time were given for the project, a circularity analysis like that used by M 

Andriankaja et. al to differentiate between different cell types on the epidermis could be used. This would 

negate the need for misidentification parameters and could result in a more predictive model (Andriankaja 

et al. 2012). Alternatively, reporters for genes related to the differentiation of these cells could be used, 

such as spch and mute, or an analysis of individual leaves from an embryonic stage to developmental 

maturity would provide an accurate indication of the lineage of each cell, which would be useful in 

differentiating PCs and SLGCs. 

Application of the information derived from this model regarding the processes of maintaining a given 

stomatal density would suggest manipulation of the genes governing differentiation, such as MUTE and 

FAMA, would result in plants which can maintain a given stomatal density or index in a more 

energetically favourable method. However, investigation would be needed into the patterning of the 



 128 

epidermis of crop plants, for although there are similarities in stomatal development in crop grasses such 

as rice, barley and wheat, the arrangement of epidermal cells into files and the presence of defined 

secondary cells would mean some revision of the model before it could be used to predict stomatal 

patterning (Raissig et al. 2017).  
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APPENDIX: CODE AND DATA 

 

The python code and data used in this thesis can be found at the author’s github repository: 

https://github.com/rcdenleybowers/scripts-stomatal-development/tree/master 

It is divided into four categories: 

- Original model: code and data pertaining to section 5.2.1 of this thesis 

- 8- parameter model: code and data pertaining to sections 5.2.2-4 and 5.4 of this thesis which 

relates to the 8-parameter version of the model. 

- 6- parameter model: code and data pertaining to sections 5.2.3 and 5.4 of this thesis which relates 

to the 6 parameter version of the model. 

- Energetics data: code and data pertaining to the 14CO2 assays and rt-qPCR analysis in chapters 4 

and 3 respectively. 

The master branch also contains a PDF of this thesis and data from the phenological counts and 

ATP assays in chapters 3 and 4 respectively. 


