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Abstract 

Sewage sludge management is one of the biggest concerns to the 

wastewater industry due to the increasing volumes produced and new 

stringent environmental regulations.  Hydrothermal Treatments (HT) are a 

good option for converting wet biomass such as sewage sludge into high 

value products. However, HT are still not well developed when compared 

with other waste processing treatments. One of the most promising areas for 

developing hydrothermal processing applications is in sewage sludge 

treatment facilities. Sewage sludge has been identified as a potential 

feedstock for hydrothermal processing that could make use of existing 

facilities currently in place in wastewater treatment works (WWTWs). In order 

to look for options aimed at reducing the costs of the WWT process and 

digestate management by delivering a sustainable and novel approach, the 

aim of this project is to assess alternatives to enhance the way sewage 

sludge is handled in WWTWs, by focusing on the use of hydrothermal 

processes and the potential of recovering energy and nutrients. The potential 

of integrating HT Processes with AD for sewage sludge treatment was 

evaluated. Hydrochar yields ranged from 38 to 68% at 160°C and from 29 

and 40% at 250°C for all thermal treated sewage sludge samples. The 

soluble fraction of organic carbon increased in primary sludge digestate 

(525%), secondary sludge digestate (808%) and sewage digestate sludge 

(675%) after thermal treatments compared with the untreated digestates. 

Figures from Biomethane Potential (BMP) tests showed that hydrothermal 

treatment enhanced methane production in all non-AD and AD sludge 

samples processed. Mass and energy balances were carried out from six 

proposed process configurations from different sewage sludge feedstocks 

and their digestates (primary, secondary and 1:1 Mix) in order to evaluate the 

waste generation, nutrients potential fate, net energy production and 

potential profit. The results showed the HTC at higher temperatures (250°C) 

seems to have more economic and environmental benefits. Scenarios that 

involved primary and mix sludge seemed to be the most suitable options in 

terms of the organic matter removal, energy harnessing and economic 

feasibility. 
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Chapter 1. Introduction 

1.1. Background 

Over the past decade, sludge management at Waste Water Treatment 

Works (WWTWs) has been considered one of the biggest concerns for water 

companies and environment protection agencies. In the UK, over 16 billion 

litres of waste water per day are collected and treated in 9,000 WWTWs 

before they are discharged to inland waters, estuaries or the sea (DEFRA, 

2012a). That implies the need for suitable treatment processes to be carried 

out in order to reduce potential risks to the environment and public health. As 

a result of that, around 1.4 million tonnes (dry weight) of sewage sludge are 

produced annually in the UK (DEFRA, 2012b).  

Sewage sludge can be used for the production of energy due to its large 

organic matter content (Kim et al., 2014). Anaerobic digestion (AD) has been 

commonly used for sewage sludge treatment as this feedstock does not 

need to be dried or dewatered before treatment, which reduces net 

operational costs. In the UK, around 75% of the total sewage sludge 

produced undergoes anaerobic digestion (DEFRA, 2012b). The main 

purpose of the anaerobic digestion process is to stabilise the organic matter 

present in sewage sludge before disposal and to produce bioenergy in the 

form of methane to reduce net energy costs. Sewage sludge contains 

complex biodegradable organic compounds that must be solubilised and 

broken down into smaller monomers before being assimilated by anaerobic 

bacteria (Gunnerson and Stuckey, 1986). According to Abelleira-Pereira et 

al. (2015) and Hindle (2013) only one half of the organic matter in sewage 

sludge is susceptible to anaerobic biodegradation, resulting in biogas 

formation. Anaerobic digestion is considered as an economical and 

sustainable technology for sewage sludge stabilisation, considering the 

beneficial production of methane that can be used to produce electricity and 

heat at WWTWs (Abelleira-Pereira et al., 2015, Hindle, 2013).  

After anaerobic digestion, the treated sludge contained in AD reactors 

(digestate) requires proper disposal. Currently, the main routes for the 

disposal of digestate in the UK includes some pre-treatment processes to 
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reduce moisture (thickening, dewatering, centrifugation, filtration, etc.), 

before final disposal on agricultural land (79%), incineration (18%) or 

landfilling (0.6%) (DEFRA, 2012b).  

However, the large quantities and characteristics of sewage sludge that are 

being produced, treated and disposed, have induced changes into the 

European Directive regarding requirements for sewage sludge application on 

agricultural land. Currently, the EU Sludge Directive 86/278/ECC only limit 

the presence of seven heavy metals for sewage sludge intended for 

agricultural use and sludge treated-soils. According to Dichtl et al. (2007), the 

European Commission is assessing whether the current Sludge Directive 

should be revised in order to set additional requirements, including the 

presence of organic compounds and more stringent limits for hazardous 

substances, which will demand higher quality requirements for treated sludge 

if the current disposal route to land is used. Because of these imminent 

changes, it is expected that the disposal of sewage sludge and digestate on 

land will no longer be accepted despite their valuable nutrient and organic 

material content. 

As a consequence, WWTWs will have to face the very difficult task of finding 

alternatives to current sewage sludge treatment and final disposal routes and 

therefore, there is a clear opportunity for developing innovative solutions that 

simultaneously help to deal with this emerging challenge and delivering 

sustainable targets set by the wastewater industry in terms of energy 

efficiency, renewable energy generation and nutrient recovery. Furthermore, 

the increasing amounts of sludge being produced in WWTWs encourage 

researchers and engineers to pay more attention to particular aspects of the 

current management of sewage sludge, especially considering the 

opportunities for bioenergy generation and resource recovery and reuse. The 

challenge here is to achieve an effective and sustainable approach delivering 

three important targets: (a) reduce the amount of “waste” returning to the 

environment; (b) generate an income stream from the recovery and reuse of 

valuable resources embedded in waste streams; and (c) reduce the overall 

treatment costs by considering the implications of new sewage management 
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options and the changes in the water, carbon and nutrient cycles within 

WWTWs (Abelleira-Pereira et al., 2015). 

Therefore, it is important to investigate new technologies capable of treating 

sewage sludge and change perceptions about using sewage sludge as a 

future energy resource (Almeida, 2010, Danso-Boateng et al., 2015, He et 

al., 2013, Kim et al., 2014). 

Hydrothermal processing is currently being considered as an alternative 

technology to further harness energy from sewage sludge and digestate (He 

et al., 2013, Zhao et al., 2014) and to reduce the issues related to current 

disposal of final solid products.  Hydrothermal processing involves the 

treatment of biomass in hot compressed water and depending upon process 

severity, can produce either a solid hydrochar, a biocrude or a syngas. The 

main aim of the hydrothermal processing routes is energy densification, 

which is produced largely by the removal of oxygen. Hydrothermal pre-

treatment can also be used to enhance the sludge solubilisation and 

subsequent biogas production when processed by anaerobic digestion (Wirth 

et al., 2015, Wang et al., 2010). Conventional Thermal Hydrolysis (TH) is 

carried out at 170°C and produces a sludge that is more biodegradable than 

the raw sludge (Shana et al., 2013). When it is applied at lower temperature 

in the presence of hydrogen peroxide, it is referred to as Advanced Thermal 

Hydrolysis (ATH) (Abelleira et al., 2012).  

Depending on the temperature and pressure that it is applied, the products 

from hydrothermal processes are different. At temperatures ranging from 

200°C to 250°C, the process is referred to as HT carbonization (HTC) and 

predominantly produces a solid biocoal like product called hydrochar; at 

intermediate temperatures of approximately 250–375°C, the process is 

known as HT liquefaction (HTL), primarily producing an oil referred to as 

biocrude; at the higher temperature range (i.e., greater than 375°C), the 

process is called HT gasification (HTG), predominantly producing a gas 

product containing CO, H2 and methane (syngas). The hydrochar produced 

from HTC can be co-fired with coal or used as soil amendment; the biocrude 

from HTL can be upgraded to a variety of fuels and chemicals, while the 
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syngas from HTG can be used for combustion or converted to hydrocarbons 

by either biological or catalytic processing (Biller and Ross, 2012).  

It is known that the digestate (i.e., sewage sludge following anaerobic 

digestion) still has large amounts of organic matter (Kim et al., 2014) and 

converting this organic matter by hydrothermal carbonisation into bio-coal 

may be possible, which in return would bring alternative disposal routes to 

digestate. Hydrothermal processing also generates a “process water" that is 

rich in organic compounds and cannot be directly disposed into the 

environment (Almeida, 2010, Becker et al., 2014, Kim et al., 2014, Stemann 

et al., 2013, Wirth et al., 2015, Zhao et al., 2014). The treatment of this 

“waste stream” is essential and it has been proposed that it can be treated 

anaerobically enhancing net biogas yields. 

According to Mumme et al. (2015) and Sridhar Pilli et al. (2015)  the 

integration of the HT step into the waste water systems is suggested to be 

energy positive. In fact, CAMBI® and BIOTHELYS ® are commercial high-

temperature processes that have been successfully developed as pre-

treatment steps for hydrothermal hydrolysis of sewage sludge, resulting in 

extra methane production to up to 43%, when compared with conventional 

AD processes without pre-treatment (Sridhar Pilli et al., 2015). However, HT 

as a post-treatment step after AD is an approach that is still under research 

and development, but preliminary findings have shown that this approach 

could be even more effective with regard to overall energy production from 

sewage sludge. Aragón-Briceño et al. (2017) found that thermal treatment of 

sewage sludge as a post-treatment step can improve the overall energy 

production up to 179% compared with the 43% extra energy of the thermal 

hydrolysis as pre-treatment. Therefore, further research on process 

conditions and overall benefits from hydrothermal processes as a post-

treatment step after AD is still needed. 

In this research project, it is considered that the use of Hydrothermal 

Treatments is not only a suitable option to effectively handle sewage sludge, 

considering future vetoes on sludge-to-land practices,  but it can also help to 

obtain valuable by-products (i.e., biochar, bio-oils, syngas, bio-fertilisers, 

etc.). 
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1.2. Aim, scope and objectives 

Due to the increasing amount of digestate produced in WWTWs, and a 

potential ban on the current final disposal route on agricultural land, there is 

a need to look for options aimed at reducing operational costs at WWTW, 

including digestate stabilisation and disposal, by delivering a sustainable 

approach.  Therefore, the aim of this project is to assess alternatives to 

enhance the way sewage sludge and digestate is handled in WWTWs, by 

focusing on the use of hydrothermal processes and the potential of 

recovering energy and nutrients. The scope of this project is to assess at lab 

scale such alternatives by introducing hydrothermal processes in sewage 

sludge management in modern WWTWs. 

 

The specific objectives for this research project are: 

 

 To evaluate the effect of temperature during HTC processing 

conditions of sewage digestate on product yields and the 

characteristics of the different by-products.   

 To evaluate the influence of solid loading on hydrochar and process 

water characteristics from HTC of sewage digestate.  

 To investigate the changes that occur in sewage sludge samples 

collected at various stages along treatment process units in a 

conventional WWTW, when subjected to hydrothermal processes at 

different temperatures.  

 To assess the integration of HTP with AD through mass and energy 

balances from proposed process configurations from different sewage 

sludge based on the results obtained from experimental analyses.   

1.3. Structure of Thesis 

This thesis is organized in nine chapters with the introduction section 

constituting the first chapter. In this chapter the background, aim, scope and 

objectives are highlighted. Chapter 2 presents a thorough literature review 

that focuses on the problematics of sewage sludge management in the UK, 
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AD as a common option to deal with sewage sludge and opportunities from 

hydrothermal treatments as potential processes to be integrated with the AD. 

Chapter 3 describes the general methodology followed for all the 

experiments carried out. Nevertheless, more detailed methodology is 

included in each result chapter. 

In chapters 4 to 7, the results are reported for each stage of this project. 

Every chapter has been written following a style similar to journal papers and 

hence, they contain several sections including an introduction, materials and 

methods, results and discussions, conclusions, summary and list of 

publications and awards derived from each chapter. 

Chapter 4: This chapter “Evaluation and comparison of product yields and 

bio-methane potential in sewage digestate following hydrothermal treatmen”t 

is related with objective 1. This research investigates the effect of process 

temperature on the characteristics of hydrochars and process waters from 

hydrothermal processing of sewage digestate and compares the yields and 

characteristics of the different products including the fate of nitrogen and 

phosphorus species. In addition, experimental biomethane potential (BMP) 

tests were conducted on process waters on their own and in combination 

with hydrochars to assess the effect that hydrochars may have on AD 

processes. The results from experimental BMP tests were compared to 

theoretical predictive models. 

Chapter 5: “Hydrothermal Carbonization of Sewage Digestate: Influence of 

the solid loading on hydrochar and process water characteristics” is related 

with objective 2. In this chapter the influence of solid loading on the 

composition of the resulting hydrochar and process water from sewage 

digestate is presented. An evaluation of product yields, solubilisation of 

organic carbon and biomethane potential of the process water is compared 

for 2.5-30% solid loadings at a HTC temperature of 250°C with a 30-minute 

reaction time. 

Chapter 6: “Evaluation and comparison of product yields and bio-methane 

potential from hydrothermally treated sewage sludge” is related with 

objective 3. In this chapter the potential of hydrothermal processing as a 
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novel alternative for sewage sludge treatment was evaluated. Primary, 

secondary and digestate sludge were treated using hydrothermal processes. 

The effect of process temperature was evaluated with regard to product 

yields, biomethane potential and solubilisation of organic carbon and 

nutrients. Tests at 160 and 250°C for 30-minute reaction time were carried 

out. 

Chapter 7: “Mass and Energy Integration Study of Hydrothermal 

Carbonization with Anaerobic Digestion of Sewage Sludge” is related with 

objective 4. In this chapter the potential of integration of HTC with AD for 

sewage sludge treatment was evaluated. Mass and energy balances were 

carried out from six proposed process configurations from different sewage 

sludge and digestates (primary, secondary and 1:1 Mix) in order to evaluate 

the waste generation, nutrients potential fate, net energy production and 

potential profit. 

Chapter 8 contains a general discussion that summarizes research findings 

and a critical analysis against published research in the field. Finally, Chapter 

9 presents the general conclusions from this research work and 

recommendations for further studies. 

  



8 
 

Chapter 2. LITERATURE REVIEW 

2.1. Water Supply in the UK 

According to the Drinking Water Inspectorate (2014), there are 53 million 

people benefiting from water supply services in the UK. That effectively 

means a total drinking water production of 13,707 million L/day, which is 

supplied by water treatment plants across the UK.  That water comes from 

different sources including surface waters (64.1%), groundwater (30.1%) and 

others considered mixed sources (5.8%) (DEFRA, 2012b) 

The main role of water companies in the UK is to collect, clean and deliver 

safe drinking water to their customers and to collect and clean waste water 

before returning it to the environment. 

One of the main ways in which water sources can be affected is by the 

amount of water abstracted to meet the increasing demand from the UK’s 

fast growing population, and by the quality of the discharged effluent from 

wastewater treatment systems. “Pollution imposes not only environmental 

costs through its effect on aquatic life, but also financial costs from the 

treatment of water for drinking. The accumulative cost of water pollution in 

England and Wales has been estimated at up to £1.3 billion per annum” 

(NAO, 2010). 

According to NAO (2010)  , water pollution derives from two sources:  

1. Point Source Pollution: It comes from a single identifiable source such 

as a factory or sewage treatment works. 

2. Diffuse pollution: It is caused by excessive or improper use of 

fertilisers, poor management of waste or livestock on farms, the run-

off of chemical from light industry or wrongly connected domestic or 

commercial drainage systems. It is very difficult to identify where the 

pollution is coming from the agricultural sector is considered the major 

contributor of diffuse pollution, but  urban sources contributes to 

diffuse pollution too. 

On average, 80% of all drinking water supplied to UK households will 

become domestic wastewater, and in addition to trade wastewater, it is 
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expected that the production of sewage and sewage sludge will continue 

increasing as a consequence of population and economic growth (NAO, 

2010). 

2.2. European Water Framework Directive (WFD) 

The European Water Framework Directive came into force in December 

2000 and became part of UK law in December 2003. It consolidates a 

number of pieces of EU legislation. 

The directive is designed to help, protect and enhance the quality of: 

1. Surface freshwater (including lakes and rivers). 

2. Groundwater 

3. Groundwater dependant ecosystems 

4. Estuaries 

5. Coastal waters out to one mile from low-water. 

The specific goal of the WFD is for all EU member states to achieve “good” 

ecological and chemical status for these water courses (Servern Trent 

Water, 2013). 

From the point of view of the UK Water Industry, the requirements of the 

European Framework are getting more stringent every day, the investment in 

maintenance is increasing and the profit is getting tight. This is reflected in 

higher bills for customers, increasing carbon emissions and higher debts to 

the companies and customers. Therefore, UK water companies have 

recognised the need to increase the efficiency of their water treatment 

systems and the production of renewable energy. To continue delivering 

effective services, the UK water sector has also identified the need to 

improve their processes through much greater innovation (Servern Trent 

Water, 2010).  

According to Servern Trent Water (2010), the EU framework policies do not 

consider: 

1. Sufficient account of the impact of carbon emissions or costumer bills. 

2. Supply issues are addressed using regionally focused, capital 

intensive solutions. It means that current regulatory framework 
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encourages the companies to look for a new water sources because 

the demand is increasing. 

3. Economic regulation no longer provides the right incentives. This 

affect the investment in innovation in the water companies because 

there are not sufficient money to encourage companies to create new 

technology. The companies have tended to apply standards, capital-

intensive solutions to meet regulatory requirements because that’s 

represent the “cheaper” option in the short term. It is not sustainable 

for them invest in long term solutions despite the fact that it may be 

profitable. 

This make believe that now is a critical time for the UK Water Sector with a 

stake in the industry to question what future direction they should take. 

Without significant changes to the policy and regulatory framework the sector 

does not look sustainable. While the framework has delivered higher 

customer and environmental standards, the consequences have been 

significant water company debt, higher bills to customers and increased 

carbon emissions (Priestley, 2015). 

In England, 35% of rivers achieved a good or very good status in 2017 under 

the actual Water Framework Directive, lightly lower compared from 36% in 

2012 (DEFRA, 2018). In 2010 in England, when new regulations 

implemented by the EU Drinking Water Directive for private supplies were 

introduced, 9.6% of water treatment plants did not pass the tests on public 

water supplies. In 2013 however , only 0.3% of tests on public water supplies 

failed to meet both EU and National Standards, due the new technologies 

that have been implemented (Drinking Water Inspectorate, 2014). However, 

the European Water Framework Directive requires Member States to 

achieve “good status” in all natural bodies by 2027. This will not be possible 

to achieve using current technologies and the strict standards but instead, 

UK government aimed to set out a longer term goal by 2050 (Priestley, 

2015). According to  DEFRA and The Environmental Agency (2018), the UK 

water companies will spend over £5 billion to benefit the natural environment. 

Neverthless, an assessment made by The Environmental Agengy (2015) 

showed that cost for meeting the WFD goals, that will benefit from preventing 
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deterioration and improving the water environment, would be around £23 

billion.  

2.3. Sewage Sludge in the UK 

According to DEFRA (2012b), about 11 billion litres of waste water in the UK 

were collected and treated in 9,000 WWTWs before the effluent was 

discharged to inland waters, estuaries or the sea. That implies the need for 

suitable treatment processes to be carried out in order to avoid potential 

damage to the environment and public health problems. 

The treatment of waste water has the objective of returning cleaner water to 

the environment. As a consequence large quantities of sewage sludge are 

generated. The sewage sludge comes from the organic matter used in 

treatment process or biosolids removed from the waste water being treated. 

Sewage sludge contains organic matter (i.e., carbohydrates, fats, proteins, 

faecal material, etc.) and chemicals. (DEFRA, 2002, DEFRA, 2012b).  

In the past, part of the sewage sludge was discharged to surface waters or 

into the sea. However in 1998, the European Directive required the cessation 

of these practices and made a call to find and use alternatives to re-use or 

dispose of sewage sludge (DEFRA, 2012b). The changes to re-use and 

disposal routes are shown in Table 2.1, where the baseline of 1992 is 

contrasted with the situation in 2008 and 2010. 

Table  2.1.- Sewage sludge reuse and disposal routes – tonnes dry solids (DEFRA, 2012b). 

Reuse or 

Disposal 

Route 

Sludge Discharged to Surface Waters Sludge Reused Sludge Disposed Total 

Pipelines Ships Others 
Soil & 

Agriculture 
Others Landfill Incineration Others 

 

1992 8,340 273,158 - 440,137 32,100 129,748 89,800 24,300 999,673 

2008 - - - 1,241,639 90,845 10,882 185,890 1,523 1,530,779 

2010 - - - 1,118,159 23,385 8,787 259,642 2,863 1,412,836 

 

One of the most commonly used alternatives for sewage sludge 

management is spreading on agricultural land, because the sludge can be 

used as an alternative soil building-material and fertiliser due to its 

phosphate content and for being a source of slow– release nitrogen for land 

restoration (DEFRA, 2012a). Nevertheless, the big quantities of sewage 
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sludge that are being produced and applied have induced changes into the 

European Directive regarding requirements for sewage sludge application on 

agricultural land. Because of those changes, it is expected that the disposal 

of sewage sludge on land will no longer be accepted despite its nutrient and 

organic material content, as lower limits for hazardous substances and 

higher quality requirements in general are likely to be imposed. With these 

new restrictions, sewage sludge will hardly be suitable for agricultural reuse 

(Dichtl et al., 2007). That makes think of new alternatives to deal with 

sewage sludge in WWTWs.  

The focus is on alternative sewage sludge treatment technologies that gain 

the most economical and ecological benefit from the sludge’s valuables. 

Several technologies for nutrient recovery, especially phosphorus have been 

developed. 

2.3.1.Sewage Sludge Management 

The large amount of sewage sludge generated at WWTWs, has made its 

treatment an important issue not only in the UK, but also worldwide. 

However, any approach to sludge management always needs to consider 

legal boundaries and operational costs before making a decision about the 

selected disposal method. 

Today around 1.4 million tonnes (dry weight) of sewage sludge are produced 

annually in the UK. The disposal methods include spread on farmland (58%), 

incineration (16%) and power generation via gasification (3.5%) and others 

(22.5%) including  direct application on forrests, compost or another methods 

(BIOMASS Energy Centre, 2011). 

Disposal methods in the UK for sewage sludge are described as follows 

(ISWA and EEA, 1997, Thames Water Ltd, 2008): 

 Agricultural use: The main objective is to utilise nutrients such as 

phosphorus and nitrogen and partly to utilise organic substances for 

soil improvement.  

 Composting:  Composting aims to stabilize biologically the sludge 

controlling pollution risks in order to develop agriculture or other end 
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use outlets exploiting the nutrient or organic value. Composting 

involves aerobic degradation of organic matter, as well as a potential 

decrease of the sludge water content, the efficiency of which depends 

on the composting process. Is considered a valuable soil improver. 

 Incineration: The process is done at high temperatures (over 800 

Celsius degrees) and consists of burning the waste and recovering 

some heat to reuse in the process. The waste generated is ash that 

mainly consists of heavy metals. 

 Landfilling: the process consists of placing the sewage sludge in the 

landfill as layers between each level. Landfilling will have the lowest 

priority in the waste hierarchy and will only be chosen when no other 

ways to dispose of the sludge exist. It is not an option when the place 

has a vulnerable geologic media. 

Moreover the sewage sludge can be dried and used for energy generation. 

Methods like combustion, gasification, pyrolysis and anaerobic digestion are 

often used. However AD is most common because does not need the sludge 

to be dried or dewatered before treatment (less operation costs). 

Researchers like Danso-Boateng et al. (2015) and He et al. (2013) mention 

that sewage sludge has attracted great attention as a promising feedstock for 

the production of renewable biofuels. 

2.4. Anaerobic Digestion in UK 

In last years, the number of researchers studying anaerobic digestion has 

increased due to its potential to support the production of valuable products 

in a biobased economy. The AD treatment of organic wastes decreases the 

amount of organic solids for final disposal and it is considered a clean 

technology based on its capacity to support bioenergy production (Wang et 

al., 2010).  That shows the importance of this technology in waste water 

treatment (Cano et al., 2014, Hindle, 2013). A wide range of wastes are 

susceptible to being degraded anaerobically, as it is reported by Carlsson et 

al. (2012): municipal wastes, organic wastes from food industry, energy 

crops, agricultural residues, manure and waste water treatment plant 

residues. 
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Conventional AD brings economic and environmental benefits.  One of the 

advantages of anaerobic digestion is the production of methane, which can 

be used as a source of energy for the production of electricity and heat. 

Furthermore, it can be used just like “natural gas” in many other applications 

(Abelleira-Pereira et al., 2015, Hindle, 2013).  

AD of solid residues is commonly practiced in municipal waste management 

to stabilize organic waste, reduce solid volume and at least partially disinfect 

solids prior to disposal. Many AD facilities have the added benefit of energy 

recovery via methane production (Elliott and Mahmood, 2007, DEFRA, 

2012b). The majority of anaerobic digesters operating in the municipal sector 

use single phase mesophilic reactors (Erdal et al., 2006). The use of 

thermophilic digesters has become more attractive due to their performance, 

better pathogen destruction and higher digestions rates, which allow the 

anaerobic digestion facilities to operate at higher loading rates with smaller 

reactor volumes (Erdal et al., 2006).  Thermophilic digestion can reduce the 

amount of difficult-to-degrade organic materials, thus improving the overall 

removal efficiency of organics. Negative aspects of thermophilic digestion 

include increased operator attention, higher odour release potential, higher 

susceptibility to process upsets and poorer quality of dewatering filtrate 

(Erdal et al., 2006, Tchobanoglous et al., 2003). Two stage digestion 

systems, which segregate the formation of volatile fatty acids from 

methanogenesis, have also been developed, improving the overall digester 

performance (Shana et al., 2011). 

According to ADBA (2015)  the AD sector in the UK grew 33% from 2013 to 

2014. It means that by 2014 in UK there were around 150 non wastewater 

anaerobic digesters plants and 250 anaerobic digesters plants serving 

WWTWs. Moreover, DEFRA (2012b) reported that 75% of sewage sludge 

generated from treatment processes undergoes anaerobic digestion. 

Anaerobic digestion technology for sewage sludge in wastewater treatment 

plants (WWTWs) has been widely spread for decades (Cano et al., 2014). 

During the anaerobic digestion process, sludge constituents are solubilised 

by bacterial action and accumulated in the aqueous phase (i.e., soluble 

chemical oxygen demand (COD) increases).  Soluble COD is in turn 
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fermented into volatile fatty acids (VFAs), which are ultimately converted into 

biogas (i.e., methane and carbon dioxide) by methanogens. This highlights 

the importance of considering sewage sludge as a process by product that 

can be considered as an income stream for WWTWs. In fact, there are a 

number of practical examples in which better use of sewage sludge can be 

made (Servern Trent Water, 2013): 

 Energy generation: Water companies can produce around 200GW/h 

of electricity from sewage sludge, which is about 25% of their total 

needs.  

 Fertiliser production. Sewage Digestate is rich in phosphorous and 

nitrogen and, when treated, it can be used as a secondary source for 

commercial fertilisers. 

 Phosphorous production. Phosphorous is a scare resource and is 

used in many other products as well as fertiliser, for steel production 

and in the manufacture of some detergents. 

In summary, recent escalation of energy costs and technical advances in 

anaerobic technology have subsequently made anaerobic digestion one of 

the most cost/effective alternatives to sewage sludge disposal, particularly 

because latest technological advances hold the potential for higher methane 

recuperation while using smaller reactors (Elliott and Mahmood, 2007). 

2.4.1.Anaerobic Digestion Pre-treatments 

In order to improve the AD performance, various technologies has been 

developed as pre-treatment of the sludge. The benefits of sludge 

solubilisation prior to anaerobic treatment are twofold; Firstly, the increase in 

the amount of released soluble substrate significantly increases VFA 

generation for subsequent improved gas production and secondly, 

pretreatment reduces the viscosity of the sludge, enabling a greater solids 

concentration to enter an anaerobic reactor. Higher feed solids either result 

in increased digestion times in an existing reactor or allow for a smaller 

reactor volume (Elliott and Mahmood, 2007). 

As it is showed in the Table 2.2, most of pre-treatments enhance the 

solubilisation of organic matter (COD), volatile solids reduction and gas 
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production. However, there are not a pre-treatment method that can be 

determined as being the best all round solution. 

 
Table ‎2.2.- Different Pre-treatments for enhance the anaerobic digestion. 

* Elliot and Mahmood (2007) 

  

Pre-treatment Principle Effect 

Ultrasound The process consists in appling high-frequency sound waves 

(generated by a vibrating probe) that makes that the cell walls 

ruptured due the pressure drop below the evaporating pressure  

forming gas bubbles. As a result of the gas bubbles, the 

temperature and pressure gradients increments in the liquid phase 

which ruptures cell membrane, releasing intercellular matter in the 

bulk solution.* 

COD removal: 11-

39%.Volatile solids reduction: 

54% (Khanal et al., 2006). 

Gas production increment: 

17% (Muller et al., 2003). 

Thermal It is the exposure of the sludge to high temperatures (105-200°C  to 

enhance the cellular disintegration and thus reduces the time 

required for hydrolysis step in the anaerobic digestion process.* 

COD removal: 60-

71%.Volatile solids reduction: 

36-59%. Gas production 

increment: 54-92% (Valo et 

al., 2004).  

Ozone oxidation Mechanistically ozone reacts with polysaccharides, proteins, and 

lipids (which are components of cell membranes), transforming 

them into smaller molecular weight compounds (Bablon et al., 

1991). In doing so, the cellular membrane is ruptured, spilling the 

cell’s cytoplasm. If the ozone dose is sufficiently high, 

mineralization of the released cellular components could also occur 

(Elliott and Mahmood, 2007). 

Volatile solids reduction is 

about 56% (Sievers et al., 

2004). 

Alkaline Heo et al (2003) demonstrated how alkali addition alone is capable 

of solubilizing Sludge.* 

COD solubilisation between 

28-38% and gas production 

was increased between 66-

88% (Heo et al., 2003). 

Mechanical The hydrolysis of cellular membranes can also be achieved by 

mechanical rupturing techniques. The two predominant techniques 

used are the Kady mill, which uses two counters rotating plates to 

produce shear (Increases the soluble COD in a 25%), and the wet 

milling, which is more of a grinding method.* 

COD solubilisation until 25%.* 

Enzymatic Enzymes: these products are used for accelerate the cellular 

degradation.* 
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2.5. Thermal Hydrolysis 

AD presents two main concerns in the process: low yield of the organic dry 

solids degradation efficiency (less than 30-50%) and low methane production 

at mesophilic conditions (Appels et al., 2011, Hindle, 2013, Ruiz-Hernando et 

al., 2014, Schievano et al., 2012, Strong et al., 2011, Weiland, 2010). 

It is known that the methane production and the organic dry solids 

degradation are directly related with the methanogenic process. The 

methanogenic process is limited by the hydrolysis rate of organic matter (i.e., 

flocs, micro flocs, aggregates of extracellular polymeric substances, 

recalcitrant compounds of proteins and lipids, as well as component of hard 

cell walls) and this rate could be limited when the hydraulic retention time is 

low. That’s increase the risk of washing out the methanogens population 

from digesters (Abelleira-Pereira et al., 2015, Carballa et al., 2011, Cano et 

al., 2014, Shana et al., 2013, Strong et al., 2011). Furthermore, the 

infrastructure has high costs and represents an obstacle for AD 

development. For these reasons many researchers are looking to improve 

the methane production throughout the enhancing of the hydrolysis rate 

(Abelleira-Pereira et al., 2015, Hindle, 2013). 

The recognition of the sludge hydrolysis stage as being the main rate limiting 

factor in anaerobic digestion of sewage sludge has led to the development 

and application of sludge pre-treatment technologies and thus the 

intensification of the process (Shana et al., 2013). 

The most widespread pre-treatment for AD used in Europe is the Thermal 

Hydrolysis Process (THP) where sludge is heated to about 170°C and 7 bar 

pressure for about 30 min and then anaerobically digested (Shana et al., 

2013). The aim of the THP is to break the long chain bonds of organic 

compounds to improve the physical and chemical properties of the sludge to 

be digested in the AD process (Wang et al., 2010). In addition, THP is used 

to accelerate the hydrolysis step leading to high solubilisation, pathogen 

reduction, good dewaterability and increase biogas production. The energy 

input needed for the hydrolysis process is thermal energy and could be 

satisfied from the energy production of the process, resulting in an 
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energetically self-sufficient process (Abelleira-Pereira et al., 2015, Pérez-

Elvira et al., 2008). 

The study of Cano et al. (2014) determined that a proper energy integration 

design could lead to important economic savings  (5€/ton) and TH can 

enhance up to 40% the income of the digestion plant, even doubling them 

when digestate management costs are considered. Moreover, THP 

increases the methane production up to 50% and makes the sludge 

digestion process more tolerant to organic matter shock load and improves 

sludge volatile reduction (VSR) from 30-50% to 50-60% (Cano et al., 2014, 

Panter, 2008).  

Perez-Elvira et al. (2010) reported 40% higher yield of biogas form the 

system TH+AD than from other conventional. Studies by Donoso-Bravo et al. 

(2011) reported 55% higher yield of biogas with TH + AD configuration. 

Abelleira-Pereira et al. (2015)  did a study of THP as pre-treatment and 

reported that THP improval the volatile solids removal (37.6%) and the net 

electricity production would be over 20% higher than conventional AD.  

Other researchers studied THP as an intermediate digestion step concluding 

there was an enhancement on the already digested sludge organic matter 

degradation, sludge mass reduction and biogas production (Shana et al., 

2013). Shana et al. (2011) also showed that the novel  intermediate THP 

configuration produced 20% more biogas compared to THP configuration 

(MAD + ITHP + MAD) with around 62% methane composition and 66% 

volatile solid reduction. 

One of the most common commercially available thermal processes used is 

the CAMBI process developed by a Norwegian company, Cambi. This 

process involves heating sludge to 165 °C for 30 min (see Figure 2.1) in 

which the biogas production increases as a result of 60% VS reduction. 

Other benefits of this process are the solid dewatering improvement and the 

increase of the digester capacity as a result of the lower viscosity of 

processed solids (Panter and Kleiven, 2005). The CAMBI process uses live 

steam to preheat the sludge to 100 °C minimizing operational and corrosion 

problems (Elliott and Mahmood, 2007, Weisz and Solheim, 2009). 
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Figure ‎2.1.- Conventional WWTW with enhanced energy production. 

2.6. Hydrothermal processes 

Thermal treatments have been used mainly for improving the feedstocks 

characteristics as they hydrolyse the feedstock to improve the methane 

generation or increase the energy densification producing chars, bio-oils or 

syngas. 

In Table 2.3, different thermal processes are listed with their respected 

process conditions and main product. Thermal treatments are commonly 

used to upgrade the characteristics of the biomass converting them into high 

energy density products. Thermal treatments such as torrefaction and 

pyrolysis are carried out in free oxygen and water conditions and 

temperatures ranging from 200 to 300°C and 500 to 1000°C respectively 

(Chen et al., 2015, Ronsse et al., 2013, Lee et al., 2012, Williams and 

Besler, 1996).  

The hydrothermal treatments are carried out in the presence of water at high 

pressure and temperatures. The main by-product will depend mostly on the 

temperature and pressure conditions. Conventional Thermal Hydrolysis (TH) 

is carried out at 170°C and produces a sludge that is more biodegradable 

than the raw sludge (Shana et al., 2013). The process refers to hydrothermal 

carbonization (HTC) when temperatures range from 200°C to 250°C, and 
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predominantly produces a solid biocoal like product called hydrochar; when 

temperatures range from 250°C to 375°C, the process is known as 

hydrothermal liquefaction (HTL) producing mainly an oil referred to as 

biocrude; when temperature range is greater than 375°C, the process is 

called hydrothermal gasification (HTG) and predominantly produces a gas 

product containing CO, H2 and methane called syngas. These by products 

can be used as fuel sources to produce more energy (Biller and Ross, 2012).  

 

Table ‎2.3.- Different thermal treatments used for improve the biomass characteristics 

Thermal 
Process 

Observations 

Process conditions for 
biomass 

Main 
product 

References 
Temperature 

range 
Pressure 

Slow pyrolysis Limited or free of Oxygen. 500 1 atm Char 
Williams P, 1996 and 
Ronsse et al 2013 

Fast Pyrolysis Limited or free of Oxygen. 650-1000 1 atm Bio-oil 
Williams P, 1996 and 
Ronsse et al 2013 

Torrefaction Absence of oxygen. 200-300 1atm Char 
Lee et al, 2012 and Chen 
et al 2015 

HTP In presence of water. Up to 180 1atm 
Hydrolized 

sludge 
Shana et al., 2013 and 
Sridhar et al., 2014 

HTC In presence of water.  200-250 10-40bar Char 
Danso Boateng, 2015 and 
Aragón-Briceño et al., 
2017. 

HTL In presence of water.  280-370 10-25Mpa Bio-crude 
Toor et al 2011 and Ekpo 
et al. (2015) 

HTG In presence of water. 
greater than 

370 
25Mpa Syngas 

Biller and Ross 2014 and 
Kruse et al 2005 

 

According to Almeida (2010), there is a change in the perception of sewage 

sludge because researchers consider that sewage sludge has the potential 

of be an interesting energy resource. It is known that the sewage sludge has 

great amounts of organic matter. Adopting this fact, that organic matter 

content in the digestate can be harnessed to produce by-products 

(hydrochar, bio-oil or syngas) that can be used as fuel sources. Although, the 

process waters coming from hydrothermal processes are rich in organic 

compounds and have the potential to be digested in an anaerobic reactor 

(Aragón-Briceño et al., 2017). Therefore, hydrothermal processes have been 

considered as alternatives technologies to develop to harness energy from 

sewage sludge (He et al., 2013).  
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The Thermal pre-treatment know as hydrothermal hydrolysis, has been 

shown to be a feasible, well established  and commercially implemented 

technology which helps to reduce volatile solids (VS) during AD, improve 

biodegradability (BD), increase the dewaterability, increases up to 43% 

methane production and produces a class A biosolid (Pilli et al., 2015).  

Companies like Veolia and CAMBI have successfully developed the pre-

treatment steps for hydrothermal hydrolysis (See Figure 2.1) (Aragón-

Briceño et al., 2017). Nonetheless Hydrothermal treatment as a post-

treatment step after AD is a novel approach that is still under research and 

development, but preliminary findings have shown that this approach could 

be even more effective with regard to overall energy production from sewage 

sludge – i.e., thermal hydrolysis can help to produce as much as 179% more 

energy when placed as a post-treatment step than when used as a pre-

treatment step for AD (See Figure 2.2) (Aragón-Briceño et al., 2017).  

A range of different solid wastes have been studied by hydrothermal 

treatments (e.g., municipal solid wastes, agricultural wastes, industrial 

wastes, etc.), but most of the studies covering hydrothermal treatment of 

sewage sludge digestate have focused on the characterisation of the 

resulting products (Berge et al., 2011a, Danso-Boateng et al., 2015, Escala 

et al., 2013, Kim et al., 2014, Nipattummakul et al., 2010). Less focus has 

been applied on the anaerobic digestion of the liquid products following 

hydrothermal treatment (Wirth et al., 2015, Wirth et al., 2012). However, still 

there is not much information about sewage sludge despite of having the 

potential to be a feedstock material for thermal treatments for its high 

hydrocarbons and inorganics compounds contents (Nipattummakul et al., 

2010).  
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Figure ‎2.2.- WWTW with hydrothermal treatment after AD. 

 

2.6.1.Hydrothermal Carbonization (HTC) 

HTC is carried out at temperatures between 150 to 200 °C and for different 

retention times. The process consists in concentrate the carbon in a stable 

and easy handable material. Furthermore upgrade the poor fuels into higher 

energy density solid fuels. The main product is the hydrochar, and is 

reported to have good nutrient properties for terrestrial plants and has been 

proposed as a source for soil amendment and also has the potential to be 

co-fired with coal. The hydrochar is a novel material that has been probed in 

many applications as a water purification material, fuel cell catalysis, energy 

storage, CO2 sequestration, drug delivery and gas sensors (Biller and Ross, 

2012, Danso-Boateng et al., 2015, He et al., 2013).  

The biochar has H/C and O/C ratios comparable to that of low-grade coal but 

a higher calorific value than such coals and for that reason can be used as a 

potential fuel source. The aqueous products from HTC contain a lot of 

organic compounds such as furans, phenols, acetic acid, and other soluble 

organic compounds (Danso-Boateng et al., 2015). Because of that, the 
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aqueous phase rich in organic compounds represents an issue and at the 

same time a challenge to be solved to avoid harm to the environment. 

The advantages of applying HTC to sewage sludge is that it produces an 

extra value product (biochar) and sanitisation of the sludge (Catallo and 

Comeaux, 2008, He et al., 2013).  

There are some authors that have done studies with higher temperatures 

than 200 °C and they still call it as HTC (Danso-Boateng et al., 2015, He et 

al., 2013). In the study carried out by Danso-Boateng et al. (2015), the 

authors concluded that the amount of carbon retained in hydrochars coming 

from primary sludge decreased as temperature and time increased with 

carbon retentions of 64–77% at 140 and 160 °C, and 50–62% at 180 and 

200 °C. Increasing temperature and treatment time increased the energy 

content of the biochar from 17 to 19 MJ/kg but reduced its energy yield from 

88% to 68%. He et al. (2013) recovered in the hydrochar 88% of carbon and  

removed 60% of nitrogen and sulphur. 

2.6.2.Hydrothermal Liquefaction (HTL) 

Hydrothermal Liquefaction of biomass consists of the conversion of biomass 

into liquid fuels and chemical by applying high temperatures and pressures 

for sufficient time to break down the solid biopolymeric structure of the liquid 

components (Elliott, 2011). As mentioned previously, the HTL is carried out 

at intermediate temperatures of approximately 200–375°C, primarily 

producing oil called biocrude that can be used as a biofuel (Biller and Ross, 

2012). That means a good advantage over the conventional incineration 

because represents it has a solution to the sludge disposal problems, plus an 

economical benefit (Itoh et al., 1994). 

However the products of HTL not only are composed by oils, also has a 

water fraction that is rich in organics, gas fraction and solid fraction which 

can be used as fuel sources as well.  

Actually there are many companies in Europe interested in developing and 

commercializing the technology of HTL. Nevertheless there are a lot of points 

to solve before as generate and standardize the process as is the optimal 

conditions and what to do with the wastes of the process.  
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HTL in sewage sludge has been studied also in many countries such as 

USA, UK and Japan because of its environmentally friendly approach. 

Biocrude can be produced from the dewatered sludge under conditions of 

300°C and 10 MPa. However there are no well defined or ideal operational 

conditions for HTL because the different types of sludge and this affect the 

biocrude production  (Liu et al., 2012).  

2.6.3.Hydrothermal Gasification (HTG) 

HTG is another promising thermal treatment for its viability, efficiency and for 

its clean conversion of wastes into energy with minimal impact. So mainly the 

HTG can add value to the wastes by transforming them into a low or medium 

grade heating fuels (Nipattummakul et al., 2010). 

HTG is carried out at temperatures greater than 375°C which it 

predominantly produces synthetic gas (syngas). Syngas is mainly composed 

of H2, CO, CO2, CH4 and light hydrocarbons, and the variability in 

composition will depend on the reaction conditions. The H2 production is 

favoured at temperatures greater than 500°C and below this temperature 

CH4 production is favoured  (Biller and Ross, 2012). 

That means that the sewage sludge due its high content of organic material 

and organic compounds, considered a good target to produce a clean fuel 

with HTG. HTG is a process that can reduce the amount the volume of the 

solid residue while is producing syngas and oil.  

2.7.  Nutrients pollution in wastewater 

Nutrient pollution is one of the most widespread around the world. The 

excess of nitrogen and phosphorus cause environmental problems that are 

hard to deliver and expensive to remedy. 

Nitrogen and phosphorus are widespread in nature (air, soil and water) and 

help to the growth of algae in aquatic life, which provide food and habitat for 

sea life. However in great amounts, the algae will grow a lot and will be 

harmful to the environment, reducing the amount of oxygen in the water and 

sometimes producing toxics that affect directly to the sea life (EPA, 2015). 



25 
 

According to the EPA (2015), the nutrient pollution sources can come from 

agriculture, storm water, waste water, fossil fuels and at home. 

It is known that the waste water, especially the sludge, is rich in nutrients 

such as nitrogen and phosphorous that are valuable and useful along the 

organic matter when the soils are depleted or subject to erosion. That 

means, the sewage sludge has the elements that allow it to be used as a 

fertiliser or soil improver (European Commission, 2015). 

2.7.1.Phosphorus 

With the constant growing population the generation of human wastes is 

alsogrowing up. Waste water is considered one of the main wastes 

generated from humans and it is known that it is one of the main 

contaminants of the environment because of its hazardousness (de-Bashan 

and Bashan, 2004). Due to the large amounts of organic compounds and 

other minerals many process have been developed to treat the wastewater. 

However the companies have the need to invest in better process that can 

be profitable, reliable and comply with the limits imposed by the 

governments. 

One of the most studied processes is related to phosphorus because 

phosphorus treatment has the potential to be a profitable process.  

Phosphorus is one of the most abundant elements on Earth. It is estimated 

that there are 7000 million tonnes of phosphate rocks as P2O5 remaining in 

reserves that could be economically mined.  According to Shu et al. (2006), 

the human population consumes 40 million tons of P as P2O5 each year and 

it is predicted that P demand will increase by 1.5% each year.  

Phosphorus is essential for all living organisms including humans who 

depend on phosphorous to lead healthy and productive lives and as an 

essential nutrient for crop production. Phosphorus represents the energy 

currency for organisms at cell level, and its availability often controls 

biological productivity; for that reason, in excess quantities, it is the cause of 

eutrophication (Le Corre et al., 2009, Shu et al., 2006).  Eutrophication is the 

enrichment of nutrients of surfaces waters or other media, leading to 



26 
 

excessive production of microbial algae resulting in toxic threat for the animal 

life and is the responsible for turning water green in water bodies in general. 

Human products such as fertilizers, detergents and insecticides contain a lot 

of amounts of P as phosphates. Essentially the overdose of P in water 

bodies in European Union (EU) countries comes from human sources in 

sewage and from livestock (Morse et al., 1993). For that reason the 

European legislation has regulated the maximun P concentration in effluents 

depending on the size of discharge (EC Urban Waste Water Treatment 

Directive 91/271/EEC, UWWTD, 1991).   

Nowadays traditional processes of P removal (biological and chemical), 

based on phosphorus fixation, are not enough, because they are efficient in 

the sense that they can reduce the P concentration in wastewater effluents to 

less than 1mg/L but they lead to the accumulation of phosphorus in the 

sludge which represents one of the main problems for the European Union, 

for the sludge disposal (Le Corre et al., 2009, Shu et al., 2006). 

The pressure of future changes in legislation has encouraged the research 

community and companies to focus on recovering phosphorus from 

wastewater in order to comply with the allowed limits and avoid increasing 

the sludge volume. 

2.7.2.Nitrogen 

Nitrogen is an essential element that is part of all animals and plants that you 

can find it in several ways in the nature. It is a very important element for the 

plant growth; therefore is an essential element for human survival. Despite 

the fact that there are great amounts of nitrogen surrounding us, the nitrogen 

is unavailable for plants and animals; the only way that we can obtain our 

nitrogen is through the food we eat.  

However nitrogen in big amounts is considered a pollutant. In water, nitrogen 

mainly comes from agriculture and sewage and that promotes 

eutrophication, and in the air the nitrogen mainly comes from combustion 

(NOx) that contributes to global warming (Lillywhite and Rahn, 2005). 

According to the report written by Lillywhite and Rahn (2005), in UK exists 

around  475 million tonnes of natural nitrogen (nitrogen that already form part 
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of the nature) and  4.7 million tonnes of reactive nitrogen (nitrogen that 

comes from external sources). Although the reactive nitrogen amount is 

small compared to the natural nitrogen; its impact is significant and will have 

consequences later (See figure 2.3). 

 

 

Figure ‎2.3.- Natural nitrogen versus reactive nitrogen in UK (Lillywhite and Rahn, 2005). 

 

The most common way to introduce nitrogen to the environment is the use of 

dewatered sewage sludge as a fertilizer. The sewage sludge is considered a 

good fertilizer for its high content of organic material and nutrients 

(phosphorus and nitrogen compounds). Nevertheless when the dried sewage 

sludge is applied to the soil for agriculture, the nitrogen compounds can filter 

through the ground until they reach the groundwater and enter the aquatic 

system.  

Many researchers have focused on removing the nitrogen in the previous 

stages before the drying step of the sewage sludge and use it as fertilizer. 

The nitrogen compound removal is carried out in the aerobic treatment stage 

by algae during the waste water treatment, but is expensive and the nitrogen 

is only absorbed and not recovered (or at least seems to be expensive to 

recover it). Also there are physic-chemical methods to recover nitrogen as 

struvite crystallization. 
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For that reason it is important to highlight the importance that nitrogen 

pollution has and look for new methods or improve the existing ones. 

2.7.3.Recovering treatments for phosphorus 

The most common method for phosphorus and nitrogen removal (which is 

one of the nutrients along with nitrogen that are targeted in wastewater 

discharge) is chemical precipitation and enhanced biological removal. 

Chemical precipitation increases sludge volume and decreases the 

biodegradability of the sludge making it an expensive sludge disposal option 

and non-viable for the future legislation requirements (Shu et al., 2006). 

Enhanced biological removal is very effective at removing nutrients, however 

it is the maintenance and energy cost that are expensive and it produces a 

lot of sludge with biomass. 

Another low-cost, low-tech process that control environmental pollution are 

constructed wetlands. These are a container (as small as a bucket or as big 

as a very large pond) planted with mainly aquatic, but sometimes with 

terrestrial plants. Waste water slowly flows either horizontally or vertically 

from one end to the other and, in the process, the outflow is cleaner. The 

roots of plants, especially aquatic macrophytes, both emergent and 

submerged, work as a giant biological filter that removes organic matter of all 

kinds. At the same time, microorganisms residing in the submerged roots in 

the wastewater are degrading other pollutants that are later absorbed by the 

plants. However despite being an economic process, is necessary a large 

aera of land to construct a wetland and the time of residence usually are long 

(de-Bashan and Bashan, 2004). 

It had to be mentioned that in cases, phosphorous is removed by converting 

phosphorous ions in wastewater into a solid fraction. This fraction can be an 

insoluble salt precipitate, a microbial mass in an activated sludge, or a plant 

biomass in constructed wetlands. These approaches do not recover the 

phosphorus in a sustainable way because it is removed with various other 

waste products, some which are toxic (de-Bashan and Bashan, 2004). For 

that reason the research community have started to look for more selective 

and high performance processes.  
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2.7.3.1.Struvite Crystallization 

Magnesium ammonium phosphate hexahydrate (MgNH4PO4 6H2O) 

commonly known as struvite, in the beginning was considered as one of the 

main concerns in the pipe line systems in waste water treatment plants due 

its crystal crusts that affects the efficiency of the treatment (Le Corre et al., 

2009, Uysal et al., 2010). However nowadays struvite is seen as one of the 

most promising compounds for recovery because it has the potential as a 

fertilizer product that could benefit the waste water companies and other 

industries (de-Bashan and Bashan, 2004, Le Corre et al., 2009, Shu et al., 

2006, Uysal et al., 2010).  

Struvite crystallization not only permits the recovery of phosphorus, but also 

part of the ammonium is recovered as well in a solid form. That is because 

the Struvite crystallisation occurs when the molar ratio of Mg:N:P is greater 

than 1:1:1. at alkali pH’s (7-11) (Münch and Barr, 2001). Uysal et al. (2010) 

obtained removal efficiencies of NH4-N and PO4-P of 89.35% and 95% (pH 

9) from the digestate of a full- scale digester when the molar ratio was 

1.5:1:1. Several authors indicate that the optimal pH for struvite 

crystallisation is around 9 (Münch and Barr, 2001, Uysal et al., 2010). 

According to de-Bashan and Bashan (2004) the theoretical potential for 

struvite recovery approaches to 67,000 tons of P2O5 fertilizer per year from 

the UK alone, and 270,000 tons from Western Europe. Authors as Shu et al. 

(2006) mentioned that the phosphorus that can be recovered from struvite 

crystallisation  is approximately 1kg of struvite from 100 m3 of wastewater. 

Furthermore Crystallisation is profitable compared to chemical and biological 

removal of phosphorus due to savings from the reduction in chemicals used 

for precipitation and sludge disposal. This technology provides opportunities 

to recover phosphorus sustainably from waste streams; even the recovered 

phosphorus product can be superior in quality to currently available 

phosphate rock. 

According to Le Corre et al. (2009), Japan is the only country where 

complete P removal and recovery from anaerobically digested sludge liquors 

as struvite has been implemented and the resulting product is sold to 

fertilizer companies. The recovery technologies currently tested are based on 
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the crystallization of phosphorus as hydroxylapatite (HAP) or struvite (MAP) 

using the sludge liquors generated from anaerobic digesters as their influent 

(See Figure 2.4). Suzuki et al. (2007) built a crystallisation reactor and 

struvite accumulation device for the removal and recovery of phosphorus. 

The reactor was fed with swine wastewater for 3.5 years with a maximum 

yield of struvite production of 171g per m3 of swine wastewater with 95% of 

purity at a maximum pH of 9. (Suzuki et al., 2007).  Münch and Barr (2001) 

achieved 94% of Ortho-P removal (influent of 64mg/L , effluent with 4mg/L) 

at pH of 8.5, and they concluded that  the use the MAP process (Struvite 

Crystallisation) is a suitable technology to remove and reuse phosphorus 

from wastewater treatment sidestreams. 

 

 

Figure ‎2.4.-  Process flowsheet of Enhanced Biological Phosphorus  and Nitrogen Removal 

(EBPR) wastewater treatment plant without sidestream treatment (A) and with sidestream 

treatment by MAP process (B) (Münch and Barr, 2001). 

2.8. Summary of literature review findings 

Having reviewed the relevant literature the key findings are summarised 

below:  

 The EU Directive will set stricter maximum limits for contaminants that 

would affect the current methods for sewage sludge disposal and the 

agricultural land disposal will no longer be allowed. 

 The most used treatment in the UK for sewage sludge disposal is the 

anaerobic digestion. This is because the benefits that brigs along use it 

as the methane production and a pathogen free solid that can be used as 

fertilizer. 
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 Thermal hydrolysis is an AD pre-treatment used in a commercial scale in 

the WWTWs with the aim to enhance the biogas production and reduce 

the total solids. 

 Hydrothermal treatments are good option for harness the properties of 

the biomass such as sewage sludge. Depending the process 

temperature, valuable by products can be obtained such as hydrochar, 

bio-oil and syngas. 

 One of the most common process to recover phosphorus and nitrogen is 

through struvite cristallization. This process consists in form compounds 

of nitrogen and phosphorus by adding magnesium or calcium salts. The 

struvite can be used as a material to prepare fertilizers. Therefore, this is 

the importance of track nutrients such as phosphorus and nitrogen. 

2.9. Statement of Research Problem and current Research Gaps 

According to the mentioned in the literature review there is an increasing 

amount of digestate produced in WWTWs and a possibility of a potential ban 

on the current final disposal route on agricultural land. Therefore, there is a 

need to look for options aimed at reducing operational costs at WWTW, 

including digestate stabilisation and disposal, by delivering a sustainable 

approach. The Hydrothermal processes seemed to be a suitable and 

profitable alternative to deal with the current sewage sludge management 

because of the high content of organic matter contented in the sewage 

sludge can be used in order to obtain fuels as biochar, biofuel and syngas. 

There are many studies regarding hydrothermal processes with many 

feedstocks but there are few studies about the integration of hydrothermal 

processes with AD. 

In this research, a  new approach of integrating hydrothermal treatments as 

AD post-treatment was studied in order to deal with the sewage digestate 

and harness all the properties from the sewage sludge  
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Chapter 3. Research Methodology and Analytical Methods 

 

This chapter describes the general the material and methods used in all 

research phases of the study of hydrothermal procesess as an alternative to 

conventional sewage sludge management. The methods described in the 

following sections are arrangend into four main parts, which are in line with 

the four research objectives proposed in this work: 1) Evaluation and 

comparison of product yields and bio-methane potential in sewage digestate 

following hydrothermal treatment, 2) Hydrothermal Carbonization of Sewage 

Digestate: Influence of the solid loading on hydrochar and process water 

characteristics., 3) Evaluation and comparison of product yields and bio-

methane potential from hydrothermally treated sewage sludge., and 4) Mass 

and Energy Integration Study of Hydrothermal Processing with Anaerobic 

Digestion of Sewage Sludge. 

3.1. Materials 

3.1.1.Seed Inoculum 

The seed inoculum was collected from Yorkshire Water’s Esholt WWTW in 

Bradford, UK. Esholt Sewage Treatment Works is the second biggest of the 

Yorkshire Water’s sewage treatment works serving around 760,000 people in 

Bradford and Leeds. 

The seed inoculum was collected from an anaerobic reactor used for sewage 

sludge digestion. The seed inoculum was incubated at 37°C in sealed bottles 

and fed every week with sewage sludge coming from Esholt WWTW to keep 

it active. The objective to keep it active was for use the same seed inoculum 

for all the BMP experiments and avoid variations coming from external 

sources.  

3.1.2.Sewage sludge samples 

For the first objective, the sewage digestate was collected from Knostrop 

WWTW in Leeds. This happened because in Esholt WWTW they had a 

problem to supply sewage digestate. 
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For the following research stages, the sewage sludge samples were 

collected at Yorkshire Water’s Esholt WWTW in Bradford, UK. Primary 

sludge (PS) was collected from primary sedimentation tanks, the secondary 

sludge (SS) was collected from the secondary sedimentation tank after 

activated sludge processing and the sewage digestate (SWD) was collected 

from the meshophilic anaerobic digestion reactor (MAD). All the samples 

were taken to the laboratory and storen in fridge/freezer at 4-5°C until for no 

longer than 6 months to prevent any enzymatic or chemical activity. 

3.2. Methods 

3.2.1.Feedstock characterization 

The different sewage sludge (PS,SS and SWD) were characterised 

according to standard analytical methods for Chemical Oxygen Demand 

(COD), Total Solids (TS), Suspended Solids (SS), Volatile Solids (VS), 

Volatile Fatty Acids (VFAs), Phosphorus (Total and Reactive), Total Kjeldahl 

Nitrogen (TKN), Ammonium and pH (APHA, 2005; He et al., 2013) (see 

Table 3.1). The VFAs analysis were performed using a gas cromatograph 

(Agilent 7890 A) (see Figure 3.1).  

Table ‎3.1.- APHA analyses for feedstock characterisation 

Analysis Method 

    

COD 5220-D  

TS, SS and VS 2540 B, 2540 E 

Phosphorus 4500 P  

Total Nitrogen 4500 C  

Ammonia 4500 B  

Volatile Fatty Acids 5660 D  
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Figure ‎3.1.- Gas cromatograph Agilent 7890 A. 

 

Furthermore, elemental analysis for Carbon (C), Hydrogen (H), Nitrogen (N) 

and Sulphur (S) were performed using a CHNS elemental analyser (CE 

Instruments, Flash EA 1112 Series) for dry sewage sludge (PS, SS and 

SWD). Proximate analyses were performed in a thermogravimetric analyser 

(Shimadzu, TGA-50) to determine moisture, ash and volatile matter. Total 

organic carbon (TOC) analyses were performed in a TOC analyser (HACH 

Lange, IL550 TOC/TIC Analyser). 

3.2.2.Hydrothermal treatments 

Thermal experiments were conducted in a non-stirred 500mL stainless steel 

batch Parr reactor (See Figure 3.2). In each batch experiment 220mL of 

sludge sample were loaded in the reactor and sealed. After treatment, the 

reactor was cooled down to 25°C.  

Solid products and liquid products were separated by filtration using a pre-

weighted Whatman filter paper. The liquid products were collected in a 

separate container and retired for their characterization.  
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Figure ‎3.2.- Thermal reactor used for the experiments. 

3.2.3.Characterization of the liquid products 

The process waters (PW) generated during hydrothermal treatment were 

processed following standard methods for the characterisation of wastewater 

samples, for Chemical Oxygen Demand (COD), Total Solids (TS), 

Suspended Solids (SS), Volatile Fatty Acids (VFAs), Total Phosphorus, 

Reactive Phosphorus, Total Kjeldahl Nitrogen (TKN), Ammonium and pH.  

Ultimate analysis was performed using a CHNS analyser (Elemental 

Analyser, CE Instruments Flash EA 1112 Series) of the totally evaporated 

process water. Total organic carbon (TOC) analyses were also conducted 

using a TOC analyser (HACH Lange IL550 TOC/TIC Analyser). 

3.2.4.Characterization of the solid products 

Solids samples (Hydrochar and sewage solid fraction) were dried overnight 

at 40°C in an oven and weighted afterwards. A CHNS analyser (Elemental 

Analyser, CE Instruments Flash EA 1112 Series) was used to perform 

ultimate analyses of dry hydrochars (see Figure 3.3). Proximate analyses 

were performed in a Thermogravimetric analyser (Shimadzu, TGA-50) to 

determine moisture, ash content and volatile matter. 
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Figure ‎3.3.- Elemental Analyser, CE Instruments Flash EA 1112 Series. 

3.2.5.Biochemical methane potential experimental (BMP) tests 

The Biochemical Methane Potential (BMP) tests followed the principles and 

methods described by (Angelidaki et al., 2009) and (Diaz-Baez et al., 2002). 

BMP tests were carried out for the different sewage sludge, slurries and 

process waters following hydrothermal treatment. The anaerobic digestion 

process for each batch was performed in 120mL bottles sealed with a rubber 

stopper and aluminium cap to avoid biogas leakage and incubated at 37°C 

(see Figure 3.4).  All BMP tests were carried out in duplicate and bottles 

containing only inoculum (blanks) were also incubated. The headspace of 

each bottle was filled with nitrogen to keep anaerobic conditions and avoid 

leaching of oxygen into the reactor. Test bottles were kept undisturbed at all 

time, apart from the periods when mixing occurred during biogas production 

measurements. Methane production was monitored by using a volumetric 

method following the absorption of CO2 in a solution of NaOH (3M) (Herrera 

and Niño, 2012) (See Figure 3.5). 

 

 

Figure ‎3.4.- BMP experiments. 

 



37 
 

 

Figure ‎3.5.- Biogas collection system. 

 

The experimental period for each BMP test lasted for 21 days; monitoring 

measurements were performed during days 0, 2, 4, 7, 10, 14, 18 and 21 

(See Table 3.2). For every measurement, a bottle was removed from 

incubation and sacrificed for the corresponding analyses. During each 

measurement, the following parameters were monitored: pH, COD and 

VFAs. TS, VS, TKN, Ammonium and Phosphorus (Total and reactive) were 

measured from samples collected at day 0 and 21. All the analyses were 

carried out in duplicate. 

 

Table ‎3.2.- Gantt chart for the BMP analyses. 

 

Day 0 1 2 3 4 7 8 9 10 11 14 15 16 17 18 21 

TS                                 

TSS                                 

TKN                                  

Ammonia                                 

T-phosphorus                                 

R-phosphorus                                 

VFAs                                 

Methane                                 

pH                                 

COD                                 
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3.2.6.Biogas composition 

Methane (CH4), carbon dioxide (CO2), nitrogen (N2), oxygen (O2) and 

hydrogen (H2) were measured in a gas cromatograph (Agilent 7890 A series) 

coupled with a thermal conductivity detector (TCD) to identify the mentioned 

gases.  

 

3.3. Data processing and analysis 

3.3.1.Biochemical Methane Production (BMP) 

In order to assess the performance of methane production by gram of 

organic matter added (measured as chemical oxygen demand – COD), the 

following formula was used: 

𝐵𝑀𝑃 =
𝑉𝐶𝐻4 − 𝑉𝐶𝐻4,𝑏𝑙𝑎𝑛𝑘

(𝑀𝑎𝑠𝑠 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑓𝑒𝑑 𝑖𝑛 𝑏𝑖𝑜𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑟)
     (3.1) 

where: 

BMP = Biochemical Methane Potential (mL of CH4/ g of COD added) 

VCH4 = Volume of methane produced in bottle (mL) 

VCH4, blank = Volume of methane produced in the blanks (mL) 

Mass of substrate = Mass of substrate as g of COD 

3.3.2. Theoretical BMP (BMPth) 

The calculation of theoretical BMP values, which are based on the elemental 

composition (C, H, N and O) of the samples, was made by using 

stoichiometric equations for maximum biogas production. Both the Buswell’s 

equation and the Boyle’s equation were used to calculate the theoretical 

BMP values for each tested sample (Tarvin and Buswell, 1934, Raposo et 

al., 2011). The difference between them is that the Boyle’s equation does 

consider the presence of proteins and ammonia in the reaction (Nielfa et al., 

2015). 

 

Buswell’s equation:   

BMP𝑡ℎ𝐵𝑊 =  
22400 (

𝑛

2
+ 

𝑎

8
− 

𝑏

4
)

12𝑛+𝑎+16𝑏
         (3.2) 
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Boyle’s equation: 

BMP𝑡ℎ𝐵𝑂 =  
22400 (

𝑛

2
+ 

𝑎

8
− 

𝑏

4
− 

3𝑐

8
)

12𝑛+𝑎+16𝑏+14𝑐
         (3.3) 

where n, a, b and c represent the molar fraction of C, H, O and N, 

respectively. 

3.3.3.Anaerobic biodegradability (BD) 

The anaerobic biodegradability of each sample can be calculated from the 

values reported from the experimental BMP (BMP exp) and the theoretical 

BMP (BMPTh), and gives an idea of the level of biodegradability of the 

feedstock under anaerobic conditions (Raposo et al., 2011): 

 

𝐵𝐷𝐶𝐻4(%) =  
𝐵𝑀𝑃𝑒𝑥𝑝 

𝐵𝑀𝑃𝑇ℎ
 𝑥 100       (3.4) 

 

3.3.4.Hydrochar Yield 

Hydrochar yield (Y), energy densification (Ed) and energy yield (Ey) were 

determined as follows: 

 

𝑌 (%) =
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑦 ℎ𝑦𝑑𝑟𝑜𝑐ℎ𝑎𝑟

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑦 𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘
∗ 100    (3.5) 

𝐸𝑑=𝐻𝐻𝑉𝑐ℎ𝑎𝑟𝐻𝐻𝑉𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘      (3.6) 

(%)=𝐸𝑑 × 𝑌         (3.7) 

where HHV is High Heating Value 

3.3.5.Carbon recovery in solid and liquid fractions after HT processing 

Carbon recovery in hydrochar (Hycrec) and liquid phase (Lqcrec) were 

calculated as follows: 

(%)𝐻𝑦𝑐𝑟𝑒𝑐 =

%𝐶𝐻𝑦𝑑𝑟𝑜𝑐ℎ𝑎𝑟

100
 𝑥 𝑐ℎ𝑎𝑟 𝑚𝑎𝑠𝑠

%𝐶𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘

100
 𝑥 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑦 𝐷𝑖𝑔𝑒𝑠𝑡𝑎𝑡𝑒 𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘

∗ 100  (3.8) 
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(%)𝐿𝑞𝑐𝑟𝑒𝑐 =
𝑇𝑜𝑡𝑎𝑙 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝐶𝑎𝑟𝑏𝑜𝑛 𝑥 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑒

%𝐶𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘

100
 𝑥 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑦 𝐷𝑖𝑔𝑒𝑠𝑡𝑎𝑡𝑒 𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘

∗ 100  (3.9) 

 

3.3.6.High Heating Value  

The heating value also called calorific value, defines the energy content of a 

biomass fuel and it is an important characteristic parameter for designing 

thermal systems regardless the biomass used. The Heating value can be 

reported as high heating value (HHV) or low heating value (LHV). The HHV 

is the heat released from the fuel combustion and their products have 

returned to the temperature of 25°C and considers latent heat of vaporization 

of water in the combustion products. On the other hand the LHV does not 

consider the latent heat vaporisation (Sheng and Azevedo, 2005). For this 

study the HHV was considered for the design of the thermal systems. In 

order to know the theoretical calorific value of the hydrochar, the Dulong 

equation reported by Channiwala and Parikh (2002) was used. 

𝐻𝐻𝑉 (𝑀𝐽𝑥𝐾𝑔−1) = 0.336 ( %𝐶𝑎𝑟𝑏𝑜𝑛) + 1.433 (%𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 − (
%𝑂𝑥𝑦𝑔𝑒𝑛

8
)) +

0.0942 (% 𝑆𝑢𝑙𝑝ℎ𝑢𝑟)          (3.10) 

3.3.7.Thermal treatment energy calculations 

The energy required for the thermal treatments was based on the energy 

required calculations to heat water in a closed batch system (Berge et al., 

2011a). Assuming that the heater has 100% resistance, there is no heating 

losses in the tank during the thermal treatment and the volume of the water 

remain constant, the energy required was determined by the followed 

equation:  

∆𝐸 = ∆𝑇 (𝑚𝐶𝑝 +  
𝑚𝑅

𝑉
 ) 𝑥 277𝑥103        (3.11) 

 

Where ∆E is the energy required to heat up the water in KWh, ∆T is the 

change in the temperature in K, m is the mass of the water in Kg, Cp is the 

heat capacity of the water, R is the constant of the ideal gases and V is the 

volume of the reactor in m3 
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3.4. Objective 1: Evaluation and comparison of product yields and bio-

methane potential in sewage digestate following hydrothermal 

treatment 

The assessment of the effect of temperature on the characteristics of 

hydrochars and process waters produced from hydrothermal processing of 

sewage digestate and the effect of hydrochars was performed. 

Subsequently, experimental biomethane potential (BMP) tests were 

conducted using process water on their own and in combination with 

hydrochars as substrate in order to assess the effect of hydrochars on the 

AD process. (see Figure 3.6).  

Due to the increase in energy consumption when increasing the temperature 

of hydrothermal treatments, hydrothermal carbonization’s (HTC) process 

temperature range (160 to 250°C) was selected to avoid an intensive energy 

consumption method (Biller and Ross, 2012). To cover this range and to 

determine which process temperature harness better the properties of the 

sewage digestate (SWD), in this set of experiments three different process 

temperatures were assessed, 160, 220 and 250°C with a residence time of 

30 minutes. The residence time was selected based on the optimum 

residence time of the commercialized large scale thermal hydrolysis system 

for wastewater (Sridhar Pilli et al., 2015).  

The characterization of the feedstock, hydrochars and process waters were 

performed as mentioned in sections 3.2.1, 3.2.3 and 3.2.4. The 

characterization of the SWD and the thermal by-products were used to 

calculate high heating value, hydrochar yield, energy densification, energy 

yield, Carbon recovery in hydrochar and liquid phase and theoretical BMP. 

The BMP tests were carried out using SWD, process waters (PW) and 

slurries (hydrochar + process water). For SWD and slurries, inoculum and 

slurry were mixed maintaining a ratio of solids of 1:1 with a total VS 

concentration of 10 gVS/L for the feedstock and 10g/L of VSS for the 

Inoculum. Process water was used with the same concentration of soluble 

COD used in the slurries (2g/L of COD), but using the same amount of solids 

for the inoculum (10g VSS/L). In oder to evaluate the influence of the 
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hydrochar addition in the anaerobic digestion process and biogas production, 

the analyses mentioned in section 3.2.5 were carried out. 

The results from experimental BMP tests were compared to theoretical 

predictive models in order to determine the best fit and to calculate the 

biodegradability of the samples. 

 

 

Figure ‎3.6.- Experimental design for objective 1. 

 

3.5. Objective 2: Hydrothermal Carbonization of Sewage Digestate: 

Influence of the solid loading on hydrochar and process water 

characteristics. 

In the hydrothermal carbonization, most of the potential energy comes from 

the solid by-product (Aragón-Briceño et al., 2017). In order to optimize the 

thermal treatment and harness the most the properties of the anaerobic 

digested sewage sludge, this objective aimed to investigate the influence of 

solid loading on hydrochar and process water characteristics from HTC used 

for processing sewage digestate (see Figure 3.7). 
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Samples of sewage digestate were collected from anaerobic digesters at 

Yorkshire Water’s Esholt WWTW in Bradford, UK.  A portion of that sample 

was stored at 4°C for subsequent characterisation in the laboratory. The 

remaining sample was centrifuged at 4,000rpm (3220 G) for 30 min and the 

aqueous fraction (digestate liquor) was separated from the solids and stored 

at 4°C before sample preparation. The solid fraction (digestate cake) was 

dried in an oven at 40°C for 7 days. The dry digestate and the liquor were 

used for the preparation of the actual digestate before undertaking 

hydrothermal treatment (HTC) at different solid concentrations (solid 

loadings). The concentrations prepared were 2.5, 5.0, 10.0, 15.0, 17.5, 20.0, 

25.0 and 30.0% w/w of solids in digestate samples. Solid loading 

concentrations were selected based on the maximum solid capacity input 

reported for biomass for a HTC plant (Child, 2014). 

According to the results analisys of the objective 1, the HTC experiments 

were conducted in a non-stirred 500mL stainless steel Parr batch reactor at 

250°C and 40 bar for 30 min, after which the reactor was cooled down to 

25°C before collection of the resulting processed samples (HTC slurries). 

The resulting HTC slurries were collected and prepared for characterization 

of solid and liquid products (see section 3.2.3 and 3.2.4). Solid (hydrochar) 

and liquid (process water) products contained in HTC slurries were 

separated by filtration using pre-weighted 1.2 µm WhatmanTM glass 

microfiber filter (Grade GF/C).  All HTC experiments were conducted in 

duplicate. Production yields and composition of hydrochars and the levels of 

solubilisation of organic matter and nutrients in process waters were 

evaluated. 

BMP tests were carried out on process water samples following the method 

described in section 3.2.5. To avoid inhibition coming from the substrate and 

to determine the maximum BMP, the inoculum concentration used in each 

BMP test was 10g/L of Volatile Suspended Solids (VSS) and the process 

water concentration was 2g/L of COD maintaining a volume ratio of 1:1 

(Wirth et al., 2015). Each BMP test was performed at 37°C for 21 days, in a 

series of 120mL bottles sealed with a rubber stopper and aluminium cap. 

The experimental biomethane potential (BMP) tests conducted on process 
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waters were used to present an overall energy balance for the proposed 

AD+HTC process. 

 

Figure ‎3.7.- Experimental design for objective 2. 

 

3.5.1.AD-HTC model 

A chemical process engineer software (Aspen plus®) was used to analyse in 

more detail the potential to combined AD and HTC processes; mass and 

energy balances of the proposed system were made in detail. HTC, AD and 

CHP (Combined Heat and Power) systems were modelled and 

interconnected. Aspen Plus V8.8® was used throughout with a ‘COMMON’ 

method filter and an ‘IDEAL’ base method.  
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3.6. Objective 3: Evaluation and comparison of product yields and bio-

methane potential from hydrothermally treated sewage sludge. 

To propose new process configurations for WWTWs in order to integrate 

HTPs as part of a comprehensive sewage sludge management strategy, it is 

importat to investigate the changes to sewage sludge samples collected 

along treatment process units in a conventional WWTW, when subjected to 

hydrothermal processes at different temperatures. 

The methodology was conducted according to Figure 3.8. Sludge samples 

were collected from primary sedimentation tanks (primary sludge - PS) and 

secondary sedimentation tank (secondary sludge - SS) at Esholt WWTW. All 

sludge samples were stored at 4°C after collection and then used for the 

hydrothermal treatments (HTT) prior to characterisation. In addition, primary 

(PS), secondary (SS) and a mix of 1:1 TS ratio of PS-SS sludge (MIX)  were 

processed by anaerobic treatment for 30 days in the lab, before further 

hydrothermal processing. Resulting samples were named as follows: 

digested primary sludge (ADPS); digested secondary sludge (ADSS); and 

digested mix of PS and SS (ADMIX). 

Thermal experiments were conducted as described in section 3.2.2 at 160°C 

for 30 min at 5 bar and at 250°C for 30 min at 40 bar.  

BMP tests were carried out with process water samples following the method 

described in section 3.2.5 using different sewage sludge and process water 

separated from HTC experiments.  

The characterization of the different sewage sludge, digestates, hydrochars 

and process waters were used to calculated the mass and energy balance of 

the process. 
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Figure ‎3.8.- Experimental design for objective 3. 

 

3.7. Objective 4: Mass and Energy Integration Study of Hydrothermal 

Processing with Anaerobic Digestion of Sewage Sludge 

This objective assesses the integration of HTPs with AD as a post-treatment 

to the AD of sewage sludge through mass and energy balances from 

proposed process configurations from different sewage sludge based on the 

results obtained from experimental analyses.  

Different sewage digestate were used to compare the energy production 

between them since the primary sludge have high organic content. 

Therefore, as stated by Pérez-Elvira and Fdz-Polanco (2012), the best option 

will be to segregate primary and secondary sludge in order to produce more 

energy in the overall system. 
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Six proposed scenarios were evaluated from the different sewage sludge 

and their digestates (PS, SS, MIX, ADPS, ADSS and ADMIX). The 

calculation of each scenario required a combination of real data from the 

experiments in this study, data from literature and reasonable assumption 

with regards to specific decision criteria. The calculations and scenarios from 

this study are not intended to be an accurate guide but rather to provide 

indicative effort for evaluation of the process. As part of a comprehensive 

sewage sludge management strategy, this study included an integral 

evaluation of  the products yields, waste generation, energy implications and 

potential economic benefits. 

The overall process of integrating hydrothermal processing with anaerobic 

digestion of sewage sludge is divided in four main processing areas. Firstly, 

the feed (PS, SS or MIX sludge) undergoes mesophilic anaerobic digestion 

processing (37°C) producing digestate (ADPS, ADSS or ADMIX) and biogas. 

The next process is compound by a thickener which concentrates the 

digestate to 15% of solids. Next, the thickened digestate is submitted to 

thermal processing (160 or 250°C) converting it to process water and 

hydrochar. The thermal recovery efficiency from the heat exchanger is 

considered in this stage. Then, a centrifuge is used to separate the 

hydrochar (solid fraction) from the process water (liquid fraction). The 

hydrochar is considered as a potential fuel source based on its high heating 

values (HHV) but non-energy recovery process is considered. On the other 

hand the process water is anaerobically treated at mesophilic conditions in a 

second reactor producing biogas as well. The biogas produced by the first 

and second reactors are mixed and combusted in a combine heat power 

(CHP) unit to produce the energy for the system. The energy produced from 

the biogas is used to cover the energy requirements of the hydrothermal 

system and the exceeding energy is used for other equipment (see Figure 

3.9) 

The assumptions adopted as a basis for the mass and energy balance of the 

different scenarios build in this study are presented in the methodology 

section of chapter 7. 
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Figure ‎3.9.- General process diagram for experimental design of objective 4. 
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Chapter 4. Evaluation and comparison of product yields and 

bio-methane potential in sewage digestate following 

hydrothermal treatment 

4.1. Introduction 

Over the past decade, sludge management at Waste Water Treatment 

Works (WWTWs) has been considered one of the biggest concerns for water 

companies and environment protection agencies. In the UK, over 16 billion 

litres of waste water per day are collected and treated in 9,000 WWTWs 

before they are discharged to inland waters, estuaries or the sea. As a result 

of that, around 1.4 million tonnes (dry weight) of sewage sludge are 

produced annually in the UK (DEFRA, 2012b).  

Sewage sludge can be used for the production of bioenergy due to its large 

organic matter content; in fact, nearly one half of the organic matter in 

sewage sludge is susceptible to anaerobic biodegradation, resulting in the 

formation of biogas (Abelleira-Pereira et al., 2015, Hindle, 2013) (Kim et al., 

2014). In the UK for instance, the anaerobic digestion (AD) process has 

become the most common alternative for SS treatment with the added 

benefit of energy generation from methane, which has helped to reduce the 

net energy consumption from the national grid for sewage treatment.  

Despite the progress made with regard to the development and 

implementation of pre-treatment processes aimed at increasing the 

anaerobic biodegradability of sewage sludge (mainly for secondary sludge), 

the resulting digested sludge (digestate) still contains large amounts of non-

biodegradable organic matter that can be harnessed for additional energy 

production, which makes it an interesting feedstock for thermochemical 

conversion (Mumme et al., 2015, Kim et al., 2014). Current practices for 

digestate disposal in the UK and across Europe include agricultural 

application, but upcoming changes in EU legislation would make digestate 

no longer suitable for this practice (Dichtl et al. (2007). As a consequence, 

WWTWs will have to face the very difficult task of finding alternatives to 

current sewage sludge treatment and final disposal routes. 
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Hydrothermal treatments (HT) are considered an alternative technology to 

harness energy from SS in the presence of water and avoid the energy-

intensive drying step required for other thermal processes (He et al., 2013). 

The main aim of the hydrothermal processing routes is energy densification 

via hydrochar production, which is produced largely by the removal of 

oxygen. After HT, the resulting hydrochars show moderate calorific value and 

are biologically inert, so they can be co-fired with coal or safely disposed in 

agricultural land as soil amendment (Bargmann et al., 2014, He et al., 2013, 

Biller and Ross, 2012).  Hydrothermal processing also generates a by-

product or “process water" rich in organic compounds that  cannot be directly 

disposed into the environment, but has been proved to be suitable for 

methane production via anaerobic digestion (Almeida, 2010, Becker et al., 

2014, Kim et al., 2014, Stemann et al., 2013, Wirth et al., 2015, Zhao et al., 

2014). 

The integration of a hydrothermal treatment step into waste water systems 

has been suggested to be energy positive (Mumme et al., 2015, Sridhar Pilli 

et al., 2015). In fact, commercial high-temperature processes like CAMBI® 

and BIOTHELYS® have been successfully developed as pre-treatment steps 

for hydrothermal hydrolysis of SS, which has resulted in improving methane 

production to  up to 43%, when compared with conventional AD processes 

without pre-treatment (Sridhar Pilli et al., 2015). Hydrothermal treatment as a 

post-treatment step after AD are still under research and development, but 

preliminary findings have shown that this approach could be even more 

effective with regard to overall biogas production from sewage sludge – i.e.,  

thermal hydrolysis can help to produce as much as 36% more biogas when 

placed as a post-treatment step than when used as a pre-treatment step for 

AD (Shana et al. (2011).  Therefore, further research on process conditions 

and overall benefits from hydrothermal processes as a post-treatment step 

after AD is still needed.   

A range of different solid wastes have been studied for hydrothermal 

processing, including microalgae and manures (Ekpo et al., 2015), municipal 

solid wastes (Berge et al., 2011a), sewage sludge (Danso-Boateng et al., 

2015), digestate (Kim et al., 2014), and wood chips (Stemann et al., 2013).  
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Most of the studies regarding hydrothermal treatment of sewage digestate 

have focused either on the characterisation of the resulting products (Berge 

et al., 2011a, Danso-Boateng et al., 2015, Escala et al., 2013, Kim et al., 

2014, Nipattummakul et al., 2010) or on the anaerobic digestion of the liquid 

products following hydrothermal treatment (Wirth et al., 2015, Hübner and 

Mumme, 2015, Wirth et al., 2012, Mumme et al., 2014).  Kim et al. (2014) 

demonstrated that hydrothermal carbonisation can be used to convert 

sewage digestate into a solid fuel by increasing the high heating value and 

carbon content in the resulting hydrochar. Danso-Boateng et al. (2015) 

reported the effect of process conditions in hydrochars and process waters 

characteristics and included data for  theoretical biomethane potential in 

process waters from treated primary sewage sludge. Hübner and Mumme 

(2015) showed that process waters from the pyrolysis of farm digestate can 

be converted into biogas without any additives or inoculum acclimation – i.e., 

COD removal rates of 63% and methane yields of up to 220 Lg-1
CODs. 

Mumme et al. (2014) showed the behaviour and biodegradability of biochars 

in anaerobic digestion and concluded that the addition of biochar to 

anaerobic digesters may contribute to reduce ammonia inhibition.  However, 

there are no studies that integrate the influence of process conditions during 

hydrothermal treatments of sewage digestate on the characteristics of 

hydrochars and process waters, and the fate of nutrients like nitrogen and 

phosphorus. 

This objective is aimed at making a contribution in that regard and hence, 

investigates the effect of process temperature on the characteristics of 

hydrochars and process waters from hydrothermal processing of sewage 

digestate and compares the yields and characteristics of the different 

products including the fate of nitrogen and phosphorus species.  In addition, 

experimental biomethane potential (BMP) tests were conducted on process 

waters on their own and in combination with hydrochars to assesses the 

effect that hydrochars may have on AD processes. The results from 

experimental BMP tests were compared to theoretical predictive models. 
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4.2. Results and discussions 

4.2.1.Chemical Oxygen Demand and nutrient balance of thermal 

products 

The COD, nitrogen and phosphorus content of the feedstock (Control) and 

their fate after hydrothermal processing are shown in Figure 4.1. The 

contribution of the gas was not considered because in all the cases the gas 

fraction was lower than 0.5%.  

The fate of phosphorous following hydrothermal treatment is shown in 

Figure 4.1a. The results indicate that the organic phosphorus fraction in the 

aqueous phase, initially reported as 64.4% of the total P present in the 

digestate, increases after hydrothermal treatment at 160°C and 250°C to 

79.7% and 86.6%, respectively. This is accompanied by a reduction in P 

content in the solid fraction from 21.7% in the raw feedstock (Control) to 19.4 

and 11% in the hydrochar after treatment at 160 and 250°C, respectively.  

Hydrothermal treatment at 220°C results in a decrease of organic P to 

10.9%. On the other hand, the inorganic phosphorous content (PO4
3-) initially 

at 13.9%, increased at 220°C to 51.3% whereas treatment at 160 and 250°C 

resulted in a decrease to less than 2.5%. Hydrothermal treatment at lower 

temperatures favours the extraction of organic P, which then releases 

inorganic P. As the temperature increases, further additional organic P can 

be released as more complex molecules start to hydrolyse. The fate of P 

during hydrothermal treatment is highly feedstock dependent and is linked to 

the levels of other metals present in the feedstock (Ekpo et al., 2015). The P 

associated with the hydrochar at 220°C is increased once more to 37%, 

maybe due to precipitation of some of the inorganic P with metals such as Al, 

Ca and Mg present in the hydrochar. The solubilisation of phosphorus by 

thermal treatments is important as it means that the phosphorus can be 

recovered by struvite precipitation and gives extra value to the process 

water. 

The fate of nitrogen following hydrothermal treatment is shown in Figure 

4.1b. The solubilisation of nitrogen is increased at higher temperature. The 

initial levels of nitrogen in the solid fraction decreased from 58.3% to 42.4%, 
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38.9% and 34.3% for the treatments at 160, 220 and 250°C, respectively. As 

it is shown in Figure 4.1b, after the thermal treatment, the nitrogen 

solubilized mostly in ammonia form (Inorganic nitrogen). The importance of 

solubilizing inorganic nitrogen and phosphorus is because the inorganic 

fraction is more susceptible to be up taken by the microorganisms or 

recovered by physic-chemical analyses (Le Corre et al., 2009, Jackson and 

Williams, 1985). 

Hydrothermal treatment results in the solubilisation of organic matter from 

the digestate (Figure 4.1c). The raw digestate (Control) initially contained 

4.6 wt% of solubilised COD in the liquid phase and this was increased to 

31.7 wt%, 32.6 wt% and 30.5 wt% after hydrothermal treatment at 160, 220 

and 250°C, respectively. The solubilisation of the organic matter into the 

aqueous phase is a result of hydrolysis releasing inorganic and organic 

compounds from carbohydrates, proteins and lipids  (Danso-Boateng et al., 

2015).  

The composition of carbon and the nutrient species in hydrothermal products 

will depend mainly on the nature of the feedstock and process temperature 

(Ekpo et al., 2015, Toor et al., 2011).  During hydrothermal treatment, the 

levels of water soluble products generally increase with reaction severity due 

to the combination of solubilisation of inorganics and increase in production 

of soluble organics hydrocarbons (Ekpo et al., 2015, Keymer et al., 2013, 

Qiao et al., 2011). 
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Figure ‎4.1. Fate of Phosphorus (a), Nitrogen (b) and organic matter (c) after hydrothermal 

processing of digestate samples (Control) for 30 min and at 160°C (5bar), 220°C (35bar) 

and 250°C (40bar). 

4.2.2.Hydrochar Characteristics 

According to Berge et al. (2011a) hydrochar characteristics depend primarily 

on their feedstock composition. The volatiles, ash content, elemental 

composition and yields of the hydrochars are presented in Table 4.1.  

According to Danso-Boateng et al. (2015) and Ekpo et al. (2015), hydrochar 

yields are influenced by reaction temperature and time. Hydrochar yields 

decrease with increasing temperature and reaction time. In the work reported 

herein, the highest yield of hydrochar was obtained at 220°C (73.4%), 

followed by the yields reported at 160°C (68.8%) and at 250°C (56.8%) 

(Table 4.1). These results match those reported by Danso-Boateng et al. 

(2015) and Ekpo et al. (2015) in primary sludge and sewage digestate.  

The ash content increases after hydrothermal carbonisation as shown in 

Table 4.1, from 31.77% in the feedstock to 45.11%. These levels of ash 

content from anaerobically digested sewage sludge were similar to the 

results that Ekpo et al. (2015), Danso-Boateng et al. (2015) and Berge et al. 

(2011a) reported (33.03 - 38.94%; 78.3 - 81.4%; and 58.8% dry basis, 
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respectively) at process temperatures of 160 -200°C, 250°C and 250°C 

respectively..  

The volatile matter content of the hydrochar decreases after thermal 

treatment, having the lowest value at 220°C (43.82%) followed by the results 

found at 160°C (49.65%) and at 250°C  (51.11%); our figures are below the 

reported values by Danso-Boateng et al. (2015) for anaerobically digested 

sewage sludge after carbonisation (55.33 - 66.17%). The reduction of volatile 

matter is due to chemical dehydration and decarboxylation and the increase 

in fixed carbon (FC). 

4.2.2.1.Elemental composition in Hydrochar 

The nitrogen content in the original digestate samples (5.04 wt%) is higher 

than the figures found in the hydrochar after hydrothermal treatment at 160, 

220 and 250°C (i.e., 4.19, 2.01 and 4.23 wt%, respectively). This suggests 

there is a 'sweet spot' where the nitrogen content is minimised. 

Reincorporation of nitrogen into the hydrochar may occur at higher 

temperatures as carbonisation reactions proceed more rapidly. A reduction in 

nitrogen content in the hydrochar corresponds to an increase in solubilised 

nitrogen. The oxygen content of the hydrochars is lower to the initial 

digestate. The initial oxygen content was 20.32 wt% and after hydrothermal 

treatment at 220°C and 160°C is observed to decrease slightly to 14.66 and 

15.46 wt% respectively; oxygen then reduces slightly to 14.78 wt% at 250°C. 

The hydrogen content of the hydrochar increases after treatment at 160°C 

and 250°C from 3.93% to 4.19 and 4.89% respectively, but reduces after 

220°C treatment to 3.91 wt%.  
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Table ‎4.1.- Proximate and ultimate analyses of the feedstock (digestate) and hydrochar. 

Sample Proximate Analyses 
 

Ultimate analysis 
Yield                

(%) 

  

Moisture 
(%) 

Ash (% dry 
base -db) 

Volatile 
matter (%db) 

Fixed 
carbon

a
 

(%db) 
 

C (%) H (%) N (%) O
b
 (%) S (%) 

  

Digestate 
(Control) 

4.66 31.77 55.81 7.76 
 

34.78 3.93 5.04 20.32 1.15 
 

            

Hydrochar 
           

160 °C - 30 
min 

2.56 38.63 49.65 9.16 
 

35.53 4.19 5.11 15.46 1.07 68.8 

220 °C - 30 

min 
2.02 45.11 43.82 9.05 

 
33.21 3.91 2.01 14.66 1.09 73.4 

250 °C - 30 
min 

2.81 36.88 51.11 9.21 
 

38.03 4.89 4.23 14.78 1.19 56.8 

a
 100 - (moisture + ash + volatile matter). 

b
 Calculated as difference between sum of C,H,N,S, ash. 

 

4.2.2.2.Energy characteristics of Hydrochar 

High heating values (HHV) of the hydrochars produced at different process 

temperatures are presented in Table 4.2. Temperature is reported to have a 

major influence on heating values improving HHV with increasing 

temperature (Danso-Boateng et al., 2015); however, this is feedstock 

dependent and not true for all feedstocks (Smith et al., 2016). Many authors 

have shown a reduced heating value for hydrochars produced from certain 

feedstocks compared to the original feedstocks (Berge et al., 2011a; Zhang 

et al., 2014). In this case, the HHV of the hydrochars generally increase but 

only slightly. The HHV of the original digestate is increased from 16.61 Mj kg-

1 to a maximum of 17.80 Mj kg-1 representing only a marginal energy 

densification. Assessment of the combustion behaviour of this fuel has not 

been performed. The hydrochar contains 36.88% ash and 4.2 wt% N and so 

it would still be classified as a low-quality fuel because of its low heating 

value and high ash content. Despite that, the HHV of the hydrochars 

produced are within a similar range to those reported by Danso-Boateng et 

al. (2015) for primary sludge (17.2 - 18.4 Mj kg-1) at process temperatures of 

160-200°C and retention times from 30 to 240min. This indicates that for 

sewage derived solids and digestates, the energy densification is quite low 

compared to other feedstocks and indicates that a significant amount of the 

energy in the original feedstock is in the soluble water fraction (process 

waters), which may be recovered via anaerobic digestion. 
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The calculation of energy yield provides a means of quantifying the energy 

remaining within the hydrochars from the original feedstock (Digestate), and 

is defined as the energy densification ratio multiplied by the mass yield of the 

hydrochar (Danso-Boateng et al., 2013). The energy yield depends a lot on 

the type of feedstock and decreases with increasing temperature agreeing 

with the results from Danso-Boateng et al. (2015).  The energy yields in our 

hydrochars ranged from 61.22% at 250°C to 70.05% at 160°C, but these 

values are significantly higher than the energy yield obtained by Berge et al. 

(2011a) for digestate  (41.5%) and more similar to the results by (Danso-

Boateng et al., 2015) for  sewage sludge (68 - 89%). Energy densification 

takes place when the solid mass decreases as a result of dehydration and 

decarboxylation reactions; that means the carbon content increases and the 

hydrogen and oxygen content decrease. Therefore, temperature and 

reaction time have significant influence on the energy densification of the 

hydrochar (Danso-Boateng et al., 2015, Danso-Boateng et al., 2013). The 

energy densification values for the hydrochars obtained herein were 1.02 (for 

carbonisation at 160°C), 0.96 (for carbonisation at 220°C) and 1.08 (for 

carbonisation at 250°C).  The values in our study were lower when compared 

with values obtained from primary sewage sludge by Danso-Boateng et al. 

(2015), which ranged from 1.02 to 1.28 at temperatures between 140 and 

200°C and reaction times between 15 - 240min. However, it has to be taken 

into account that digestates have a lower carbon content compared with 

primary sewage sludge due to anaerobic digestion in which organic carbon is 

released during its conversion into biogas (CH4 and CO2). 

 
Table ‎4.2.- Energy characteristics of hydrochar. 

Hydrochar 
HHV 

(Mj/Kg) 

Energy 
densification 

(Mj/Kg) 

Energy Yield           

(%) 

HyCrec 

(%) 

LyCrec 

(%) 
CSF 

Digestate (Control) 16.61 - - - - - 

160 °C - 30 min 16.97 1.02 70.05 70.28 32.65 0.26 

220 °C - 30 min 14.33 0.96 70.62 70.11 31.93 0.26 

250 °C - 30 min 17.80 1.08 61.22 62.04 33.99 0.23 

HHV: High heating value HyCrec: Carbon recovered in the solid fraction 
LyCrec: Carbon recovered in the liquid fraction CSF: Carbon Storage Factor 
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4.2.2.3.Carbon balance in the Hydrochar 

The carbon content of the hydrochars obtained after hydrothermal treatment 

are similar to those reported by Danso-Boateng et al. (2015) (36.63-39.24%) 

and Berge et al. (2011a) (32.6%). It is important to highlight that it is 

sometimes challenging to make direct comparisons between hydrothermal 

treatments conducted by different reserchers due to differences in reactor 

configurations, reaction conditions and solid loadings, all of which have a 

large influence on the characteristics of the products during carbonisation 

(Berge et al., 2011a).  

The carbon balance across solid and liquid products is presented in Table 

4.2. The fraction of carbon recovered in the biochar (HyCrec) as a percentage 

of initial feedstock carbon, indicates that the carbon in the solid fraction 

gradually reduces with increasing temperature. The lower value of the 

carbon recovery in the carbonisation at 250°C (62.04%) was due to a lower 

hydrochar yield. Nevertheless, the carbon recovery in the hydrochar 

increased to more than 70% after treatment at 220°C. The carbon recovery 

in the liquid fraction (LyCrec) is related to the Total Organic Carbon (TOC) 

obtained in the liquid fraction after carbonisation (see Table 4.3). Table 4.2 

also indicates that a similar fraction of Carbon in the liquid was recovered 

after hydrothermal treatment at each temperature. The carbon fraction that 

was transferred from the feedstock into the liquid phase ranged from 32.7% 

at 160°C to 31.9% at 220°C and 34.0% at 250°C, indicating that there was 

carbon solubilisation after hydrothermal treatment in agreement with (Danso-

Boateng et al., 2015).  

The carbon storage factor (CSF) is the mass of carbon remaining (stored) in 

the solid following the biological decomposition in a dry mass of feedstock 

(Barlaz, 1998) and a similar approach can be applied to the remaining 

carbon in hydrochars after HT processes. Berge et al. (2011a) have shown 

some evidence that after the HTC process (of municipal solids wastes) more 

carbon is stored within the hydrochar than if the waste material had been 

disposed uncarbonised. The CSFs of the digestate following hydrothermal 

treatment were 0.26, 0.26 and 0.23 for the treatments at 160°C, 220°C and 

250°C respectively. Therefore, CSF values decreased as the carbonisation 
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temperature increased, in agreement with the results reported by (Danso-

Boateng et al., 2015).  Indeed, higher levels of CSF were obtained in our 

study at lower temperatures from sewage sludge digestate ranging from 0.30 

(at 140°C) to 0.28-0.33 (at 160°C) and slightly lower values of CSF (0.26 to 

0.28) at the highest temperature tested (200°C). (Berge et al., 2011a) 

obtained lower values of CSF (0.14) from digestate after carbonisation at 

250°C. This assessment is potentially useful in understanding the behaviour 

of hydrochars if used as a carbon source for soil amendment.  

4.2.3.Characteristics of process waters 

The characterisation of the feedstock’s liquid fraction (Control liquor) and the 

process waters after hydrothermal treatment is shown in Table 4.3. The 

results show that the pH in the aqueous phase is influenced by temperature 

and is generally alkaline. The highest pH of 9.15 was observed after 

treatment at 160°C, this reduces to 7.14 as the temperature increases to 

220°C but then increases to 8.08 as the temperature increases to 250°C. 

The changes in pH are related to the presence of VFAs, amino acids and 

ammonia nitrogen that are generated during hydrothermal treatment (Qiao et 

al., 2011). The hydrolysis of organic material results in a significant increase 

in soluble carbon  (Wirth et al., 2015). In this case, the concentration of 

soluble Chemical Oxygen Demand (COD) increases 7-fold after 

hydrothermal treatment, increasing from 1,843 mg/L in the initial digestate, to 

12,992 mg/L after 220°C treatment; 12,642 mg/L after 160°C treatment; and 

12,164 mg/L after 250°C treatment. The same trend is observed for Total 

Organic Carbon (TOC) concentrations which shows a 10-fold increase from 

461 to 4,879 mg of TOC per litre.  
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Table ‎4.3.- Characterization of filtered digestate (Control liquor) and process waters after 

HTP. 

Parameter Control 
liquor 

160°C, 5bar, 
30min 

220°C, 35bar, 
30min 

250°C, 40bar, 
30min 

     

Soluble COD (mg/L) 1,843 12,642 12,992 12,164 

pH 7.78 9.15 7.14 8.08 

TKN (mg N/L) 1,493 2,066 2,191 2,354 

Ammonium (mg-N/L) 1,344 1,258 1,704 1,685 

Total  Soluble Phosphorus  (mg-

P/L) 
91.27 94.03 72.60 103.83 

Reactive Phosphorus (mg-P/L) 80.12 53.88 59.84 56.84 

VFAs (mg COD/L) 4.8 191.1 406.0 715.7 

TOC (mg-C/L) 461.56 4,686.77 4,583.71 4,879.33 

C (%) 30.53 45.77 49.21 67.97 

H (%) 4.44 6.77 6.32 6.56 

N (%) 10.19 11.11 12.31 6.56 

S (%) 0.74 1.85 2.41 1.82 

O (%)
a
 54.11 34.50 29.75 10.92 

a
 Calculated as a difference from the sum of C, H, N and S. 

The total soluble phosphorus concentration increases after 160°C and 250°C 

treatments (3% and 13.8% of P concentration, respectively) and decreases 

after 220°C treatment (21.5% of P). The concentration of reactive 

phosphorus decreased with respect of the feedstock between 32.7 and 

25.3% after hydrothermal treatment. 

There are many proteins in the digestate because of the large amount of 

organic matter from bacterial biomass. During hydrothermal treatment, the 

proteins hydrolyse and ammonium is released increasing the nitrogen 

concentration in the process waters (Keymer et al., 2013, Wilson and Novak, 

2009). The soluble nitrogen concentration increased with temperature from 

an initial concentration of 1,493 mgN/l to 2,066, 2,191 and 2,354 mgN/L for 

the treatments at 160°C, 220°C and 250°C, respectively. The concentration 

of ammonium nitrogen was lower although gradually increased with 

temperature. 

The concentration of Volatile Fatty Acids (VFAs) increased with temperature 

and corresponded to 191, 406 and 715 mg/L of COD for 160°C, 220°C and 
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250°C treatments respectively (see Table 4.3). Acetic acid makes the 

highest contribution to VFAs produced in all the treatments. 

Following hydrothermal treatment, the level of carbon in the aqueous phase 

is higher than in the hydrochars for all treatments, as shown in Tables 4.2 

and 4.3. The carbon composition in the hydrochar ranges between 33 and 

38%, whereas in evaporated residues of process waters, the carbon content 

ranges from 30 to 68%.  The carbon content increases at higher temperature 

agreeing with the results obtained from TOC analysis.  This demonstrates 

that for this type of feedstock, a large degree of solubilisation occurs 

following hydrothermal treatment, in agreement with previous reports from 

similar treatments (Ekpo et al., 2015, López Barreiro et al., 2015). 

In addition to carbon, the levels of hydrogen and nitrogen increase after 

hydrothermal treatment. Moreover, the sulphur content in the liquid fractions 

increased from 0.74% up to 2.81% after hydrothermal treatment; that may 

have implications on increasing the levels of H2S in the final biogas (or 

precipitation of metal sulphides), if process waters are recycled back into 

anaerobic digesters. 
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4.2.4.Anaerobic digestion of HT Slurries and Process waters 

The experimental determination of Biomethane Potential was performed for a 

period of 21 days and deemed to have completed once the daily production 

of biogas was less than 1% (Nielfa et al., 2015). During all the assays, 

soluble COD, VFAs, methane potential (BMP), and phosphorus and nitrogen 

species were measured. The organic composition of the substrates has a big 

impact on the performance of anaerobic digestion (AD) processes with 

regard to methane production and stabilisation of organic matter (Nielfa et 

al., 2015). Figure 4.2 presents the changes in soluble COD concentration 

during anaerobic digestion of the different substrates. The results indicate 

that the soluble COD was consumed by the consortium of anaerobic bacteria 

in most of the resulting slurries and their process waters to produce biogas. 

For the 250°C slurry, from the 4th to the 10th day there was a COD 

solubilisation that may have come from the hydrochar (see Figure 4.2a). The 

presence of hydrochar seems to affect the consumption of organic matter by 

anaerobic bacteria.  

The raw digestate (Control Slurry) and filtered digestate (Control Liquor) did 

not produce big changes in soluble COD consumption. That may be because 

the digestate and its filtered fraction has previously been treated by 

anaerobic digestion and only a small amount of organic matter is available 

for further biodegradation; however, that still represents a matter of concern 

for fugitive methane emissions if untreated digestate is disposed on land. 

The COD degradation efficiency of the Slurries and Process Waters within 

21 days were 56.6% for the raw digestate, 66.9% for the 160°C slurry, 84.6% 

for the 220°C slurry and 63.6% for the 250°C slurry. Process waters had 

similar degradation efficiency as the slurries where the filtered digestate had 

59.4%, and 69.1%, 79.6% and 63.8% for the 160°C, 220°C and 250°C 

process waters respectively.  These figures are lower than the results 

obtained by Wirth et al. (2015), who reported COD degradation efficiencies 

between 84 and 107% in process waters from anaerobically digested 

sewage sludge after HTC at 200°C for 6 hours. 
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a)  

 

b)  

 

Figure ‎4.2.- Changes in soluble COD of Slurries (a) and Process Waters (b) during BMP 

tests. 

During the anaerobic digestion process, substrate constituents are 

hydrolysed by bacterial action into soluble COD. The soluble COD is 

fermented and turned into VFAs and eventually converted into biogas by 

methanogenic bacteria. Yields of VFAs produced per mg soluble COD added 

(mg of VFAs/ mg of CODsol added) during the anaerobic digestion process of 

Slurries and Process Waters are shown in Figure 4.3. The 160°C HTP 

treatment did not improve the contribution to VFA formation from the 

hydrochar as the maximum VFA/COD concentration found from the slurry 
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sample (0.15 mg of VFAs/ mg of CODsol added, at day 2) was lower than the 

corresponding figures found in its process water (0.22 at day 2 and a 

maximum of 0.24 mg of VFAs/ mg of CODsol added, at day 4).  That may 

suggest potential inhibitory effects on VFA production caused by the actual 

nature of the hydrochar produced at 160°C.  For the HTP treatments at 

220°C and 250°C, the resulting hydrochar made a substantial net 

contribution towards VFA formation with an increment of 13.3% at 220°C and 

16.1% at 250°C, with regard to the highest figures found from process 

waters. For the 220°C slurry, the maximum yield found was 0.17 mg of 

VFAs/ mg of CODsol added at day 2 and the corresponding figure found in its 

process water was 0.15 mg of VFAs/ mg of CODsol added, also at day 2.  

The 250°C slurry produced 0.30 mg of VFAs/ mg of CODsol added after 7 

days, while the corresponding process water reported a maximum of 0.31 

mg of VFAs/ mg of CODsol added within the same period; the  maximum yield 

of VFA production was found from the slurry at day 14 (0.36 mg of VFAs/ mg 

of CODsol added). 

After reaching their maxima, VFA concentrations would decrease until they 

will be totally consumed by methanogenic bacteria; therefore, biogas 

production rates (see Figures 4.4a and 4.4b) are intrinsically related to VFA 

concentrations and based on our findings, it seems that HTC treatments at 

220°C and 250°C produce a hydrochar that enhance VFA production and 

hence, they would potentially contribute to higher methane yields. However, 

it seems that the net accumulation of VFAs reported from products obtained 

at 250°C (Figure 4.3) is the result of less VFA transformation into methane 

(Figure 4.4), which raises questions over the inhibitory effect that the 

hydrochar and the process water at 250°C may have over methanogenic 

bacteria.  
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a)  

 

 

b)  

 

Figure ‎4.3.- Normalised VFA production from Slurries (a) and Process Waters (b) during 
BMP tests. 
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a)  

 

b)  

 

 

Figure ‎4.4.- Cumulative methane production from Slurries (a) and Process Waters (b) 

during BMP tests. 

Previous studies using hydrothermal processes as a pre-treatment for 

anaerobic digestion have shown an increase in methane yields in BMP tests, 

due to the additional  solubilisation of organic matter achieved via thermal 

hydrolysis (Keymer et al., 2013). After hydrothermal treatment, the BMP 

increases between 17% and 58% compared with the control (175 mL of CH4/ 

g of COD). It is shown in Figure 4.4 that the BMP values for the slurries 
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following hydrothermal treatment were 236 at 160°C, 276 at 220°C and 205 

at 250°C, all reported in mL of CH4/ g of COD. Nevertheless, it is worth to 

provide further discussion to the results from the BMP test of the digestate 

treated at 250°C, as it seems that the methane production could have 

continued after the 21 days of the BMP test, considering the remaining VFA 

concentration (Figure 4.3). Therefore, the methane potential of the digestate 

treated at 250°C has been underestimated and it is inferred that the net 

methane production should have been higher than the results obtained at 

220°C after 21 days. The presence of hydrochar affects the production of 

biogas which is reflected in the delay of VFA production (Figure 3) and the 

subsequent delay in the production of methane (Figure 4). Also it was 

observed that an additional solubilisation of COD (Figure 4.2a) occurs after 

the VFAs reached the highest concentration. Although other factor that might 

influence is the presence of less digestible higher molecular weight organic 

compounds formed during the thermal process at that temperature (Danso-

Boateng et al., 2015), or other compounds that could delay methane 

production. 

The BMP values for process waters following hydrothermal treatment 

increased between 29% and 58% compared with the control sample (175 mL 

of CH4/ g of COD). The highest value was for the processed water of 220°C 

treatment (277 mL of CH4/ g of COD) followed by 160°C treatment (260 mL 

of CH4/ g of COD) and 250°C treatment (225.8 mL of CH4/ g of COD). The 

BMP values of process waters were similar to the slurries of the digestate 

after hydrothermal treatment for the treatments at 160 and 220°C and the 

hydrochars did not affect the anaerobic process unlike the 250°C slurry and 

its process water. 

A similar study was carried out by (Qiao et al., 2011) in which they use 

sewage sludge treated at 170°C for 1 hour; they also performed BMP tests 

on the slurry and the processed water.  The results showed an improvement 

of 65.5% in methane production from the slurry (257 mL of CH4/ g of VS) and 

147.5% (385 mL of CH4/ g of VS) of methane production of the process 

water with respect the raw sewage sludge (155 mL of CH4/ g of VS). 
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4.2.4.1.Nutrient solubilisation during the BMP test 

Figure 4.5 shows the soluble nitrogen fraction (soluble TKN and ammonium) 

before and after anaerobic digestion (i.e., at Day 0 and Day 21 of the BMP 

tests). It can be seen that after anaerobic digestion, with the exception of the 

slurry control and the processed water at 220 and 250°C treatment, the 

soluble TKN concentration increased from 3 to 26% in all the other 

substrates. However, these increases are within the error bars range and 

can be considered  null.  

It is necessary to track the ammonia concentration because it is thought that 

concentrations above 1.1g of N per litre can cause inhibition of the 

methanogens (Hansen et al., 1998). The ammonium concentration increases 

in all substrates after the anaerobic digestion between 4 and 39%. As a 

result, the nitrogen solubilised during the anaerobic digestion was mostly 

ammonium coming from the hydrolysis step of proteins and bacterial 

biomass. As a consequence, an increase in the nitrogen concentration, 

especially in ammonium is observed (Münch and Barr, 2001, Wilson and 

Novak, 2009). These findings match with previous studies of substrates such 

as algae after hydrothermal and anaerobic treatments, in which the soluble 

nitrogen concentration increased after anaerobic digestion (Keymer et al., 

2013, Ras et al., 2011).  
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a) Soluble TKN in slurries

 

b) Soluble TKN in process waters

 

c) Ammonium in slurry

 

d) Ammonium in process waters 

 

Figure ‎4.5. Changes in the concentrations of soluble TKN and ammonium in slurries (a and 

c) and process waters (b and d) before (Day 0) and after (Day 21) BMP tests. 

The total soluble phosphorus concentration after anaerobic digestion tends 

to increase. Figure 4.6 indicates that there is a solubilisation of phosphorus 

for all the substrates after anaerobic digestion ranging between 2 to 242% 

over the starting concentration, which is in agreement with the work 

conducted by (Münch and Barr, 2001). Most of the phosphorus solubilised 

was reactive phosphorus as shown in Figures 4.6c and 4.6d, where the 

concentration increased after anaerobic digestion. All the slurries had good 

solubilisation of reactive phosphorous. The highest solubilisation was for the 

160°C slurry with almost a 9-fold increase over the starting concentration. 
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comparable with that for the control slurry (236%); whereas for the slurries 

produced at higher temperature, the solubilisation of P is much lower (26-

54%), which may be due to interaction with the hydrochar.   

Those results represent an improvement in nutrient retention when 

compared with figures found in digestate cake (sewage sludge digestate 

after dewatering); that characteristic may also improve the release rate of P 

in the hydrochar when spread on land. Hydrothermal treatment of the 

process waters alone results in significantly less solubilisation of 

phosphorous (2 - 33%), with the majority of P coming from the biomass in 

the inoculum. The process waters did not experience major changes with 

regard to the concentration of reactive phosphorus probably due to the small 

amount of solids presented in the mixtures, which may indicate a high 

adsorption capacity of the hydrochar for phosphate species. 
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a) Total soluble phosporus in slurries

 

b) Total soluble phosphorus in process 

waters

 

c) Reactive phosphorus in slurries

 

d) Reactive phosphorus in process waters

 

Figure ‎4.6. Changes in Total Soluble Phosphorus and Reactive Phosphorus concentrations 
in slurries (a and c) and in process waters (b and d) before (Day 0) and after (Day 21) BMP 

tests. 
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is widely accepted, due largely in part to being relatively fast, reliable and 

economical. Nevertheless these equations do not differentiate between 

biodegradable and non-biodegradable organic matter (Lesteur et al., 2010, 

Nielfa et al., 2015). According to Labatut et al. (2011) the values of the 

theoretical formulas are always higher than the experimental ones because 

they do not account for the substrate biodegradability or metabolic 
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processes.  For example, the Buswell’s equation does not count the carbon 

that is locked in the cell protoplasm of new anaerobic bacteria (nearly 12%) 

(Labatut et al., 2011). Therefore, not all the biodegradable organic matter 

used by the bacteria contributes to the production of methane. 

To define how accurate Buswell’s and Boyle’s equations are in order to 

determine the methane yields in the hydrothermally treated substrates, a 

comparison between the experimental and theoretical BMP was carried out 

as shown in Table 4.4. The values of theoretical BMPs (BMPth) were 

calculated based on the elemental composition of the process waters with 

and without the presence of hydrochars.  Previously, authors have reported 

that the theoretical productivity decreases in substrates containing higher 

nitrogen, hydrogen and sulphur content, which can produce toxic 

concentration of ammonia and hydrogen sulphide (Denis and Burke, 2001).  

The Buswell’s equation predicts higher values than the Boyle’s equation. 

However, the BMPth values in both cases are higher than the experimental 

values. The Boyle’s equation has the closest match to the experimental 

values and that may be due to the fact that the model considers the 

presence of proteins and ammonia whereas the Buswell’s equation does not 

consider the presence of nitrogen (Nielfa et al., 2015).   

Some researchers have proposed that the theoretical methane yields are 

affected by reaction temperature and time during hydrothermal treatment 

(Danso-Boateng et al., 2015). The predictive equations both show similar 

trends, with the highest temperature for hydrothermal processing resulting in 

the highest BMPth. As the predictive calculations are based on elemental 

content, the control samples have a higher predicted BMPth than the 

hydrothermally treated samples. The biodegradability and methane yields of 

the substrates can also be determined by using values of BMPexp and 

BMPth (Raposo et al., 2011). The biodegradability represents the amount of 

organic material that is degraded during the anaerobic process. Table 4 

presents the biodegradability of the substrates based on both the Boyle’s 

and Buswell’s equations. 

The experimental BMP tests show that the lower temperature hydrothermal 

treatments produce higher BMP than the higher temperature processing. 
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This is probably due to inhibitory effects related to increasing process 

temperatures because of the formation of inhibitory compounds such as 

phenols, furans, etc (Biller and Ross, 2012, Danso-Boateng et al., 2015). 

The control shows the lowest BMP as expected. Comparison between the 

theoretical prediction and experimental figures generally indicates that for 

lower temperature processing (160 - 220°C), the equations provide a 

reasonable match. The experimental BMP is 96% of the theoretical BMPth 

determined by the Boyle equation and 70% of the BMPth determined by the 

Buswell equation. As the temperature rises to 250°C, the experimental BMP 

drops significantly to 44% of BMPth, however this still represents a 

significant enhanced biogas formation. The value of biodegradability in the 

digestate treated at 250°C does not represent the complete potential as this 

test was still generating methane after 21 days so this result may 

underestimate the true BMP. The biodegradability values provide more 

robust data for predicting overall enhanced energy recovery, which can be 

used to better calculate and assess energy balances for integrating AD and 

HTC at WWTWs. Based on the results in this study, it is likely that lower 

temperature hydrothermal treatment is more advantageous than higher 

temperature for processing sewage sludge digestate.   

For lower temperature hydrothermal treatment, slurry samples had similar 

biodegradability as process waters and the presence of hydrochars did not 

affect the biodegradation of the organic matter present in process waters. 

Biodegradability dropped for both process water and slurry following higher 

temperature processing indicating that inhibitory effects may occur.  
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Table ‎4.4.- Comparisons between experimental BMP and theoretical BMP. 

Sample 
BMPexp  (mL of CH4 

/g of COD added) 

BMPth Boyle's 

Equation (mL 
CH4 / g COD) 

BMP Buswell's 

eq.                  (mL 
CH4 / g COD) 

BD 

Boyle's 
Equation 

BD 

Buswell's 
Equation 

Control Slurry 174.6 251.0 303.7 70% 57% 

160° Slurry 235.9 271.6 353.9 87% 67% 

220° Slurry 276.1 289.3 384.4 95% 72% 

250° Slurry 205.0 403.0 513.2 51% 40% 

Control Liquor 175.4 251.0 303.7 70% 58% 

160°C Process 
Water 

260.0 271.6 353.9 96% 73% 

220°C Process 
Water 

277.2 289.3 384.4 96% 72% 

250°C Process 
Water 

225.8 403.0 513.2 56% 44% 

BD: Biodegradability; DT: Digestate treated; 

BMPexp: Experimental Biomethane Potential; BMPth: Theoretical Biomethane Potential. 

4.2.6.Energy production of the hydrothermal treatments. 

The energy production of the conventional AD is limited by the production of 

methane from sewage sludge in which 35 to 45% of the organic fraction is 

biodegradable (Shana et al., 2011). Thermal hydrolysis as a pre-treatment 

helps to improve biogas production up to 43% and COD removal up to 75% 

(Sridhar Pilli et al., 2015). However, the integration of thermal treatments 

following anaerobic digestion, not only improves digestate dewaterability by 

reducing moisture in the solid fraction, but also it was found that the solid 

fraction has the potential to be used either as a solid fuel or as a carbon 

source for soil amendment. 

Table 4.5 shows the energy production per kg of sewage sludge from 

different process configurations including conventional AD, thermal 

hydrolysis (TH) as a pre-treatment of AD processing (TH + AD) and different 

hydrothermal treatments as post-treatment steps following AD.  

The biogas production following thermal hydrolysis as pretreatment is better 

than the conventional AD and the hydrothermal treatments. However, the 

use of hydrochars as an energy source gives an added value to the 

hydrothermal treatments favouring the energy production. The additional 

energy that can be obtained from hydrothermal treatments comes from the 

hydrochar that can be used as a solid fuel and ranges from 153 to 179% in 
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comparison with the thermal hydrolysis that is just 43%. The results suggest 

a better use of the sewage sludge when hydrothermal treatment is used after 

AD.  

Table ‎4.5.- Energy production of different thermal treatment configurations for a 15% solids 

sewage sludge. 

  

Energy produced 
from CH4 per kg 
of feedstock (Mj) 

Energy produced 
in char per kg of 
feedstock (Mj) 

Overall energy 
produced per Kg 
of feedstock (Mj) 

        

Conventional AD 7.08 - 7.08 

*TH + AD 10.13 - 10.13 

AD + 160T + AD 8.09 11.68 19.77 

AD + 220T + AD 8.36 10.52 18.88 

AD + 250T + AD 7.86 10.10 17.96 

        
BMP of Mix sludge = 226 of CH4 /g of COD added (experimental value)  
*BMP of  THP Mix sludge = 323.2 of CH4 /g of COD added (assuming 43% additional production) (Sridhar Pilli et al., 2015) 
HHV of methane, 1m3 = 35.8Mj 

4.3. Conclusions 

Hydrothermal treatments improved the characteristics of the sewage 

digestate producing hydrochars and process waters rich in organic matter 

and nutrients. Anaerobic digestion was demonstrated to be a suitable option 

to treat process waters from hydrothermal treatments for further biomethane 

production. Processing of digestate at 250°C resulted in a hydrochar that 

enhanced the net production of VFAs, although delayed methane production 

(longer lag phase) and hence, higher methane production would be 

expected. The addition of hydrochar (250°C) to the process water delayed 

VFA production during anaerobic digestion. Hydrothermal processing of 

process water and slurries at lower temperature (160-220°C) produced high 

levels of biogas, with no detrimental effect due to the presence of hydrochar. 

The Boyle’s equation had a closer match to the values provided by 

experimental biomethane potential (BMP) tests at lower temperature. Further 

studies are needed to understand the influence of adding hydrochar on the 

quality and safety of the digestate for final disposal, as well as the impacts on 

AD processes due to process water recycling.  
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4.4. Summary 

In this chapter, the potential of hydrothermal processing as a novel 

alternative to treat the digestate has been be evaluated. The effect of 

temperatures is evaluated with respect to product yields, biomethane 

potential and solubilisation of organic carbon. Three different temperatures 

were evaluated: 160, 220 and 250°C at 30 minutes reaction time. The 

hydrochar yields obtained were 73.42% at 220°C, 68.79% at 250 °C and 

56.75% at 160°C treatment. It was found that the 250 °C treatment  lead to 

the production of the hydrochar with the best characteristics for energy 

production. The solubilisation of carbon was increased from 4.62% in the raw 

feedstock to 31.68%, 32.56% and 30.48% after thermal treatments at 160, 

220 and 250°C, respectively.  The thermal treatment enhanced the potential 

methane production in all products up to 58% for both, the whole fraction 

(hydrochar + processed water) and processed waters. However the BMP of 

the process water coming from the 250 °C treatment was sub-estimated. The 

Boyle’s and Buswell’s equation were used to calculate theoretical methane 

yields for all hydrothermal products.  Theoretical methane yields were 

compare with experimental data from biomethane potential (BMP) tests and 

it was found that the Boyle’s equation had closer agreement to BMP values. 

4.5. Publications and awards derived from this chapter 

  *Aragón C., Ross A. and Camargo-Valero M. (2017). “Evaluation and 

comparison of product yields and bio-methane potential in sewage 

digestate following hydrothermal treatment.”. Applied Energy, Volume 

208, 15 December 2017, Pages 1357-1369 . 

https://doi.org/10.1016/j.apenergy.2017.09.019 

 *Aragón C., Camargo-Valero M. and Ross A. (2017). Integration of 

hydrothermal carbonisation in the waste water treatment. In proceedings 

of the 1st International Symposium on Hydrothermal Carbonisation. 

Queen Mary, University of London, London, United Kingdom.  

 *Aragón C., Camargo-Valero M. and Ross A. (2016). Potential of sewage 

sludge digestate for energy and nutrient recovery. In proceedings of the 

https://doi.org/10.1016/j.apenergy.2017.09.019
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Resource Recovery from Waste (RRFW) Annual Conference 2016. 

Leeds, United Kingdom. 

 *Aragón C., Camargo-Valero M. and Ross A. (2016). Hydrothermal 

Processes as an Alternative to Conventional Sewage Sludge 

Management.  In proceedings of the 2nd AD Network (a BBSRC NIBB) 

Early Career Researcher conference (Poster presentation). University of 
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Chapter 5. Hydrothermal Carnonization of Sewage Digestate: 

Influence of the solid loading on hydrochar and process 

water characteristics. 

5.1. Introduction 

Sewage sludge (SS) is produced as part of routine operations at wastewater 

treatment works (WWTWs) and its management is still an important global 

issue due to the large amounts generated on a daily basis (He et al., 2013). 

In the UK, 1.4 million tonnes of sewage sludge (dry weight) are produced 

annually and around 75% of that undergoes anaerobic digestion (AD) 

(DEFRA, 2012b). Despite anaerobic treatment, the resulting sewage 

digestate is still rich in organic matter and hence, it has the potential to be 

used as a feedstock for the production of solid energy carriers (Almeida, 

2010, Danso-Boateng et al., 2015, He et al., 2013, Kim et al., 2014, Mumme 

et al., 2011, Yoshida and Antal, 2009). 

Hydrothermal carbonization (HTC) is considered an alternative technology to 

harness energy from sewage digestate, as wet feedstocks are perfectly 

suitable for this process – i.e., no need for energy intensive dewatering units, 

as it is the case in digestate pyrolysis.  HTC is conducted at temperatures 

ranging from 200 to 250°C and pressures ranging from 10 to 40 bar (Biller 

and Ross, 2012, Hübner and Mumme, 2015, Mumme et al., 2011, He et al., 

2013). HTC products include process waters rich in organic compounds 

suitable for anaerobic digestion and a charcoal like material (hydrochar) that 

can be used either as a solid fuel or as a soil amender (Biller and Ross, 

2012, Wirth et al., 2015, Danso-Boateng et al., 2015). Hydrochars often have 

a higher energy density than the feedstock due to deoxygenation (Biller and 

Ross, 2012) and process waters tend to concentrate soluble organic matter 

and nutrients like nitrogen and phosphorus compounds (Aragón-Briceño et 

al., 2017). The specific hydrochar and process water characteristics however 

are highly dependent on the choice of feedstock and process conditions 

(Zabaleta et al., 2017, Wirth et al., 2015).  

The integration of HTC into wastewater systems as a post-treatment step 

after AD is still under development, but commercial HTC processes are 
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already available – i.e., The Terranova® Ultra-Process (© TerraNova Energy 

GmbH, 2018). That offers potential energetic and economic benefits from the 

stabilisation of sewage digestate while  producing not only a solid fuel 

product that can be used in a coal fired power plant, but also carbon-rich 

process water for enhanced biomethane production in existing AD units at 

WWTWs (Aragón-Briceño et al., 2017). The majority of studies reported in 

published literature on the use of HTC for sewage digestate processing, 

have been conducted in batch reactors at laboratory scale.  Common 

findings lead to conclude that feedstock characteristics, as well as 

temperature and reaction time are the main operating conditions influencing 

hydrochar characteristics; in general, the higher the process temperature and 

the longer the carbonization time, the higher the carbon content and energy 

density of the resulting hydrochar (Aragón-Briceño et al., 2017, Zabaleta et 

al., 2017, Danso-Boateng et al., 2015, Ekpo et al., 2015, Wirth et al., 2015, 

Wirth and Mumme, 2013, Mumme et al., 2014, Escala et al., 2013, He et al., 

2013, Berge et al., 2011a). For sewage digestate in particular, HTC 

processing at high temperatures and short reaction times however (250°C, 

30min), can still produce a hydrochar with High Heating Values (HHV) in a 

range suitable to be used as solid energy carriers (Aragón-Briceño et al., 

2017). 

On the other hand, the influence of solid loading on the characteristics of the 

resulting hydrochar and process water has received less attention.  The only 

few examples reported in the literature using food waste as feedstock have 

concluded that higher solid loading contributes to higher hydrochar yields, 

carbon efficiencies and energy ratios(Zabaleta et al., 2017). Therefore, the 

influence of solid loading on HTC used for sewage digestate processing and 

its effect on the characteristics of the resulting hydrochar and process water 

have not been reported. Most importantly, there are no previous research 

works studying the influence of solid loading on the anaerobic 

biodegradability of the process water or its total bio-methane potential; 

scientific evidence is desperately needed in order to fill this gap and 

contribute to the better understanding of the overall energy production in an 

integrated AD+HTC system at sewage treatment works. 
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Therefore, the main objective of this study is to investigate the influence of 

solid loading on hydrochar and process water characteristics from HTC used 

for processing sewage digestate. Production yields and composition of 

hydrochars and the levels of solubilisation of organic matter and nutrients in 

process waters are presented.  Results from experimental biomethane 

potential (BMP) tests conducted on process waters are used to present an 

overall energy balance for the proposed AD+HTC process.  The results 

reported in this work would inform the potential for implementing a 

comprehensive treatment process that integrates AD and HTC for sewage 

sludge management at WWTWs. 

5.2. Methods 

5.2.1.1.Mass and energy balance 

Aspen plus was used to analyse in more detail the potential to combined AD 

and HTC processes; mass and energy balances of the proposed system 

were made in more detail. HTC, AD and CHP (Combined Heat and Power) 

systems were modelled and interconnected. Aspen Plus V8.8 was used 

throughout with a ‘COMMON’ method filter and an ‘IDEAL’ base method. The 

following assumptions were made: ambient conditions of 1 bar and 23°C and 

molar air composition assumed as 79:21 split of N2:O2 only. 

Experimental ultimate and proximate results of digestate sludge and 

associated hydrochar after HTC at 250°C and 40 bar were used to create 

‘nonconventional solid’ components for their representation in the model. 

Acetic acid was used as a model representation of COD for the liquid fraction 

of the digestate liquor and HTC process water, where there is 0.938g of 

acetic acid for 1.0g of COD.  

The HTC system begins with sludge contained in the stream labelled 

‘INLET’, which is pumped to a pressure of 40 bar and contains a flow of 100 

kg per hour. The pressurised sludge then exchanges heat with the HTC 

outlet in the heat exchange ‘HX’. The sludge is then heated to the desired 

HTC temperature of 250°C. The HTC reactor has been represented by a 

‘RYield’ block which allows the user to specify desired yields of components 

at a specific temperature and pressure. Experimental data has been used 
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accordingly so the reactor outlet’s holds hydrochar and process water in the 

quantity and composition found under lab under conditions (40 bar, 250°C). 

A separator block was used as representation of a centrifuge which splits the 

solid and liquid fractions. A heater block has been used before the AD unit to 

represent the thermal energy requirements of heating the process liquid to 

35°C. The process water is sent to an anaerobic digester that has been 

simulated in another RYield block at 35°C and 1 bar. Here, BMP lab results 

have been used to determine its outlet yield composition. A Separator block 

has been used to represent the extraction of biogas from the head space of 

the digester.  

After that, the biogas is then ready for processing in the combined cycle gas 

turbine system. It is first compressed to 8 bar before meeting compressed air 

(also at 8 bar) in the combustion furnace. The furnace has been simulated 

with an adiabatic ‘RGibbs’ block. Excess air was used to maintain a 

temperature that was below 1,100°C, generally used as the upper-limit 

operating temperature of furnace materials.  

The hot exhaust gas is passed through a turbine which recovers energy as 

electrical power based on the decompression from 8 bar to 1 bar. The 

decompressed exhaust gas, still carrying an abundance of thermal energy 

exchanges heat with compressed water (20 bar) to generate high pressure 

steam. The high pressure steam, passes through a turbine, decompressing 

to 1 bar and generating further electrical power. The remaining steam is 

cooled to 23°C in a ‘Heater’ block in order to determine the thermal power 

output of the system.  

The electrical power balance has been created using a ‘Mixer’ block that 

quantifies the net electrical power production via the summation of 

consumption from pumps and compressors with production from turbines. 

The power consumption for centrifuge has been set at 35 kWh/t as stated in 

Huber Technology (2018). The thermal power balance has been created 

using another ‘Mixer’ block that quantifies the net thermal power 

production/consumption based on the heat duties of heater blocks ‘HTC-

HEAT’, ‘AD-HEAT’ and ‘HEAT-EX’. The CHP efficiencies calculate the power 
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balances from blocks used only in energy recovery, whereas system 

efficiencies account for the pumps and heaters used during the HTC 

process.  

5.3. Results and discussions 

5.3.1.Mass balance  

The distribution of products from sewage digestate before and after HTC at 

different solid loadings is presented in Figure 5.1. The output mass of 

combined solid and liquid fractions was reduced after HTC treatment by 1.4 

to 3.5%. These values were slightly lower compared with the study carried 

out by Zabaleta et al. (2017), who reported mass losses between 2.3 and 

7.1% when food waste was under HTC processing at different solid loadings 

and different temperatures (180-200°C). The mass losses were attributed to 

the transfer of the initial carbon (2-11%) to the gas phase, mainly CO2, 

derived from the decarboxylation reactions (Berge et al., 2011a, Zabaleta et 

al., 2017). 

The solid fraction of the feedstock was reduced between 24 to 37% following 

HTC. That is due to solubilisation of some of the original biomass into the 

liquid phase during HTC, which includes both soluble inorganic and organic 

material (Aragón-Briceño et al., 2017, Ekpo et al., 2015). Nevertheless, as 

the solid loading increases, there is a slight increase in the yield of solid 

product following HTC (see Figure 5.1b).  
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Figure ‎5.1.- Changes in the feedstock after HTC at different solid loadings. a) Product 

distribution in Liquid, Solid and Gas fractions and b) Fate of solids from the feedstock 

5.3.2.Hydrochar characteristics 

5.3.2.1.Physical characteristics 

The yield of hydrochar generally increases with increasing solid loading in 

agreement with the results reported from food waste by Zabaleta et al. 

(2017). Hydrochar yields range from 67.9% at 2.5 wt% loading to 75.6% at 

25.0% loading (Table 5.1). The yields obtained in this study are similar to the 

values reported by Danso-Boateng et al. (2015) from primary sewage sludge 
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(60.5 to 81.1% at 4.5% solid loading) and slightly higher than the findings 

reported by Aragón-Briceño et al. (2017) from sewage digestate (56.8% at 

4.5% solid loading). 

The ash content of the resulting hydrochar reduces as the solid loading 

increases from 51.2% at 2.5% loading to 48.5% at 30% loading (Table 5.1). 

This suggests that less carbon is solubilised as the solid loading increases 

and correlates with a slight increase in hydrochar yield. The ash content of 

hydrochars are similar to those reported for hydrochar produced from 

sewage sludge (Aragón-Briceño et al., 2017, Ekpo et al., 2015, Danso-

Boateng et al., 2015, Berge et al., 2011b).  

The volatile matter content of the resulting hydrochars is similar at all solid 

loadings and ranges between 40.4 and 42.4%; however, the volatile matter 

content of the hydrochars is lower than the feedstock – i.e., 51.8% for the 

feedstock, while hydrochars had a minimum of 40.3% after HTC.
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Table ‎5.1.- Proximate and ultimate analyses of the feedstock (digestate cake) and hydrochar. 

Sample Proximate Analyses  Ultimate analysis Yield (%) 

  

Moisture (%) Ash (%db) Volatile matter (%db) Fixed carbon 
a
 (% db) 

  

C (%) H (%) N (%) O
b
 (%) S (%) 

 

Feedstock  2.1 36.7 51.8 9.3  33.3 4.61 4.0 20.3 1.2  

             

Hydrochar            

2.5%Hy 2.0 51.2 41.9 4.9  32.1 4.2 1.9 9.4 1.2 68% 

5%Hy 1.7 50.0 41.7 6.5  32.3 4.2 2.1 10.3 0.8 72% 

10%Hy 0.9 48.4 42.4 8.4  33.1 4.4 2.3 10.5 1.2 75% 

15%Hy 1.7 49.4 40.4 8.5  33.0 4.3 2.3 9.8 1.3 74% 

17.5%Hy 1.7 49.7 40.7 7.9  33.1 4.2 2.3 9.4 1.3 75% 

20%Hy 1.6 48.6 41.5 8.4  33.8 4.3 2.4 9.7 1.3 76% 

25%Hy 1.7 48.0 41.7 8.5  33.8 4.3 2.6 9.9 1.3 76% 

30%Hy 1.9 48.5 41.2 8.4  34.4 4.4 2.8 8.7 1.2 75% 

                       

a
 100 - (moisture + ash + volatile matter). 

b
 Calculated as difference between sum of C,H,N,S. 



87 
 

5.3.2.2.Elemental composition of the hydrochar 

The elemental composition of hydrochars following HTC are shown in Table 

5.1. The carbon content of the hydrochars increases with increasing solid 

loading (from 32.1% at 2.5% solid loading to 34.4% at 30.0 solid loading), but 

there only a slight increase in carbon content compared to the original 

feedstock was achieved at the highest solid loading tested (≥ 20% solid 

loading). Levels of oxygen are reduced significantly following HTC due to the 

occurrence of dehydration and decarboxylation reactions. Figure 5.2 shows 

Hydrogen-to-Carbon (H/C) and Oxygen-to-Carbon (O/C) ratios of the 

feedstock and hydrochars. The slight reduction of the H/C ratio in the 

hydrochars provides evidence for dehydration and decarboxylation during 

hydrothermal carbonisation (Danso-Boateng et al., 2015). Nevertheless, 

changes in solid loading did not provide a clear correlation with regard to its 

influence on dehydration and decarboxylation reactions, in agreement with 

the findings reported by Zabaleta et al. (2017). Nitrogen content in the 

hydrochar increases along with increments in solid loading (see Table 5.1); 

however, all hydrochars have a much lower N content (1.9 - 2.8%) when 

compared with the original feedstock (4.0%) as the hydrolysis of N-rich 

compounds during HTC promotes the accumulation of ammonium in process 

waters (Aragón-Briceño et al., 2017). 

 

Figure ‎5.2.- Atomic H/C and O/C ratios of feedstock and hydrochars following HTC (250°C 

and 30min retention time) at different solid loadings. 
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5.3.2.3. Energy characteristics of the hydrochar 

The energy density of hydrochars and feedstock are listed in Table 5.2. The 

Higher Heating Value (HHV) of the hydrochars are only slightly higher than 

the original feedstock (14.4 MJ kg-1), with a maximum value of 16.5 MJ kg-1 

at 30 wt% solid loading. This low level of energy densification is typical for 

wet feedstocks such as sewage digestates, which tend to result in larger 

levels of solubilisation of the organic carbon during HTC processing. There is 

a slight increase in HHV as solid loading increases and this corresponds to a 

higher carbon content in the resulting hydrochar. The energy densification 

values obtained for hydrochars ranged from 0.97 to 1.03 MJ Kg-1. The HHVs 

of the hydrochars produced were higher compared with the values reported 

by Berge et al. (2011a) for digestate (13.7 MJ Kg-1) and lower than those 

reported by Danso-Boateng et al. (2015) (17.2 – 18.4 MJ Kg-1) and Aragón-

Briceño et al. (2017) (17.8 MJ Kg-1) for primary sludge and digestate, 

respectively. The energy densification recovered within the hydrochar is 

considerably lower compared with other feedstocks, but indicates that a 

significant amount of the energy is present in the liquid fraction and 

potentially available for recovery via anaerobic digestion (Aragón-Briceño et 

al., 2017). 

The energy yield provides useful information about the amount of energy 

remaining within the hydrochar from the original feedstock. The energy yield 

showed a similar trend as HHV with ranges from 65.9 to 76.7% but it seems 

from 20% solid loading in HTC the energy yield are similar. 
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Table ‎5.2.- Energy characteristics of the feedstock and hydrochars. 

Hydrochar HHV (Mj/Kg) Energy densification 
(Mj/Kg) 

Energy Yield                  
(%) HyCrec (%) LyCrec (%) 

Feedstock 14.4 - - - - 

2.5%Hy 15.4 0.97 65.9 65.5 33.4 

5%Hy 15.3 0.97 69.8 69.9 35.8 

10%Hy 15.8 1.00 74.4 74.3 27.1 

15%Hy 15.7 0.99 73.1 73.0 16.9 

17.5%Hy 15.6 0.97 72.5 74.3 19.4 

20%Hy 15.9 1.00 76.2 77.6 18.6 

25%Hy 16.0 1.01 76.6 76.8 17.5 

30%Hy 16.5 1.03 76.7 77.1 20.5 

 

HHV: High heating value   HyCrec: Carbon recovered in the solid fraction 

LyCrec: Carbon recovered in the liquid fraction  

 

5.3.2.4. Carbon Balance 

Previous reports have observed that the carbon content in hydrochars 

produced from sewage digestate via HTC processing range from 10 to 39% 

(Aragón-Briceño et al., 2017, Danso-Boateng et al., 2015, Ekpo et al., 2015, 

Berge et al., 2011a). However, carbon yields are highly dependent upon 

feedstock composition and process conditions (i.e., temperature, pressure, 

solid loading, etc.) (Funke and Ziegler, 2010). The carbon content of the 

hydrochars is reduced after HTC compared to the feedstock (see Table 5.1), 

which is unusual and only observed for certain feedstocks such as sewage 

digestate. 

The carbon balance across the solid and liquid products is presented in 

Table 5.2. The carbon recovery in the hydrochar (HyCrec) increases as the 

solid loading increases. On the other hand, the carbon recovered in the liquid 

fraction (LyCrec) reduces as the solids loading increases. Funke and Ziegler 

(2010) reported that wet biomass can be almost completely dissolved into 
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the liquid fraction at low solid loading. This suggests that there is a saturation 

point in which solubility becomes important. The recovery of carbon in the 

hydrochar is likely to be influenced by the degree of polymerization occurring 

during HTC and the solubility restrains in the water. In this study, the  HyCrec 

ranged from 65.5 to 77.6% and LyCrec ranged from 16.9 to 35.8%. The 

values obtained are similar to those obtained by Aragón-Briceño et al. 

(2017). 

5.3.2.5.Nutrient balance 

The fate of phosphorus and nitrogen after HTC is shown in Figure 5.3a and 

Figure 5.3b. Figure 5.3a indicates that there is solubilisation of phosphorus 

into the liquid fraction (up to 25%) as reported by Aragón-Briceño et al. 

(2017). The solids loading showed an influence on the solubilization of the 

phosphorus, as the solids loading increased, the phosphorus solubilization 

decreased. However, in all the cases the majority of the phosphorus 

remained in the hydrochar (66.8 to 75.7%).  

Figure 5.3b shows that a significant proportion of nitrogen from the 

feedstock is solubilised into the liquid fraction after HTC treatment. The 

amount of nitrogen transferred from the feedstock into the water increased 

up to 48% of the total nitrogen contented into the liquid, leaving the nitrogen 

content in the hydrochar ranging between 15 to 50%. Solid loading, as 

observed for phosphorus, also significantly influences the level of nitrogen 

solubilisation in the process water following HTC. The levels of soluble N 

decrease as the solid loading increases. The change in feedstock N is due to 

the liquor containing much higher levels of soluble N than the press cake.  

The importance of tracking the fate of the phosphorus and nitrogen is that 

this will provideinformation about the final disposal or use of hydrochar 

(fertilizer) or process water (struvite precipitation). 
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a) 

 

b) 

 

Figure ‎5.3.- Mas balance distribution of Phosphorus (a) and Nitrogen (b) before and after 

HTC treatment at different solid loadings. 
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5.3.3.Characteristics of the process waters 

The composition of the process waters following HTC at different solid 

loadings are listed in Table 5.3. Properties such as pH and soluble 

hydrocarbons are measured by total organic carbon (TOC) and chemical 

oxygen demand (COD). The level of soluble inorganic species containing 

nitrogen are measured by total Kjeldahl nitrogen (TKN) and soluble 

ammonia, total and reactive phosphorus (TP and RP), and total solids (TS) 

and total volatile solids (TVS) are also measured.  The levels of volatile fatty 

acids (VFA) and the elemental composition of the process waters (CHNOS) 

are also measured on the evaporated process waters. All of these properties 

are shown to change with solid loading.dagadgfagafagagagadgfafgadgagf
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Table ‎5.3.- Characteristics of the control and process waters from different solids loading. 

  Process waters of different loadings 

Parameter Liquor 2.5% 5% 10% 15% 17.5% 20% 25% 30% 

                    

pH 7.7 7.9 7.84 8.11 8.11 8.09 8.17 8.28 8.29 

CODsol (mg/L) 2103 9575 14894 24114 33333 35461 44326 53192 72340 

TOC (mg/L) 657 3623 6953 10016 12277 13737 16215 19922 29778 

TKNsol (mg/L) 1463.0 2114 2716 4172 4634 4886 5726 6594 8064 

Ammonia (mg/L) 1316 1652 2016 2744 3080 3173 3733 4368 5264 

TP
b
sol(mg/L) 48.4 66.1 90.3 129.2 136.6 123.2 137.7 141.3 167.6 

RP
c
 (mg/L) 38.1 59.5 81.4 106.4 117.0 100.5 110.8 106.4 114.7 

TS (g/L) 2.4 5.0 8.2 15.1 17.6 21.3 26.2 26.9 39.0 

TVS (g/L) 1.7 4.6 7.6 14.4 16.5 19.8 24.5 25.4 36.8 

VFAs (mg of COD/L) 350 909 1265 2009 2317 2587 2814 3705 4606 

C (%) 43.9 44.1 48.0 52.2 51.9 51.8 52.7 53.1 53.1 

H (%) 5.4 4.8 5.6 6.8 6.4 6.5 7.0 6.8 6.4 

N (%) 3.5 5.6 6.8 7.8 7.5 7.5 6.7 7.5 6.9 

O
a
 (%) 47.1 44.1 38.2 32.0 33.0 32.9 32.7 31.4 32.4 

S (%) 0.1 1.4 1.4 1.2 1.3 1.3 1.0 1.2 1.1 

                    

a
 Calculated as difference between sum of C,H,N,S. 

b
 Total Phosphorus 

c
 Reactive Phosphorus
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5.3.3.1.pH  

The pH values of process waters are listed in Table 5.3. The results indicate 

that the pH of the process waters after HTC treatment increases with solid 

loadings for all sewage digestate samples from 7.7 to 8.3. Changes in pH are 

mainly related to the presence of organic and inorganic compounds (Qiao et 

al., 2011). The increasing pH is linked to the formation and solubilisation of 

ammonium and solubilisation of alkaline salts (Aragón-Briceño et al., 2017, 

Ekpo et al., 2015, Mumme et al., 2011). Furthermore, according to Berge et 

al. (2011a), the pH of an anaerobically treated waste can remain basic 

depending on its buffering capacity, which may hinder the initial hydrolysis 

step during the thermal process. 

5.3.3.2.Total Solids and Total Volatile Solids 

Table 5.3 lists the total solid (TS) and total volatile solid (TVS) concentration 

of process waters at different solid loadings. As expected, the TS 

concentration is directly related to the amount of solid loading. HTC results in 

the solubilisation of organic material following hydrolysis (Ekpo et al., 2015, 

López Barreiro et al., 2015). TS concentration in process waters increases 

from 2.4 g/L initially present in the digestate liquor to a maximum of 39 g/L in 

the process water at 30% solids loading. 

The solubilisation of total and volatile solids (TS and VS) into the process 

waters at different solid loadings are reported in Figure 5.4a and 

demonstrates a significant effect of the solid loading on the solubilisation of 

organic compounds. At high solid loadings, the concentration of TS and TVS 

are higher, but the solubilisation is lower due to saturation in the liquid 

fraction. The highest solubilisation was observed at 2.5% solid loading, which 

corresponded to 0.17g of TVS solubilised per gram of feedstock processed. 

As the solid loadings increases beyond 15.0%, the solubilisation became 

constant having values between 0.10 and 0.12g of TVS solubilised per gram 

of feedstock processed. 



95 
 

5.3.3.3.Chemical oxygen demand and Total Organic carbon 

The levels of water soluble products generally increase with reaction severity 

due to the solubilisation of inorganics and the increased production of soluble 

organics from hydrolysis (Ekpo et al., 2015, Keymer et al., 2013, Qiao et al., 

2011). However, the composition of carbon and nutrient rich compounds will 

depend mainly on the nature of the feedstock being treated and process 

temperature (Ekpo et al., 2015, Toor et al., 2011). 
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b) 
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d) 

 

Figure ‎5.4.- Solubilisation of (a) carbon rich compounds (Chemical Oxygen Demand (COD), 

VFAs (Volatile Fatty Acids) and Total organic carbon (TOC)); (b) nitrogen rich compounds 

(Total Kjeldahl Nitrogen (TKN) and Ammonium; (c) phosphorus rich compounds (Total 

Phosphorus (TP) and Reactive Phosphorus (RP)); and (d) solids (Total Solids (TS) and 

Volatile Solids (VS). 

 

The solubilisation of carbon compounds is due to hydrolysis, which releases 

organic compounds such as acetic acid, butanoic acid, alkenes, phenols, etc. 

(Danso-Boateng et al., 2015). Therefore, it is reflected in the increasing 

amount of COD and TOC measured in process waters. 

The COD concentration of the filtered sewage digestate (liquor) was 

2,100mg of COD/ L. After the HTC process, the COD concentration 

increased significantly between 9,500 and 72,300mg of COD/L depending on 

the solid loading during HTC processing. The solubilisation of organic 

compounds into process waters bring the possibility to recycle some of the 

carbon embedded in sewage digestate back into the anaerobic digester to 

boost methane yields, and to reduce fugitive emissions of methane from the 
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to be carefully added to anaerobic digesters as operational organic loading 

rates should not exceed design criteria as higher concentrations of COD may 

0

10

20

30

40

50

60

70

80

90

2.5% 5% 10% 15% 17.5% 20% 25% 30%

m
g 

o
f 

N
/ 

g 
o

f 
fe

e
d

st
o

ck
 

Solids Loading 

TKN Ammonia



98 
 

affect the balance between hydrolysis, acetogenesis and methanogenesis in 

anaerobic digestors. According to the study carried out by Hübner and 

Mumme (2015),  concentrations of organic matter in the feedstock exceeding 

30g of COD per L can permanently inhibit methanogenesis due to over-

acidification. Therefore, the right recirculation rate of process waters is a 

factor that must be considered when enhance methane production in 

anaerobic digesters is selected as the preferred route for the valorisation of 

process waters. 

TOC concentration in process waters follows the similar trend found for 

COD.  The concentration of TCO in the digestate liquor was 800mg of 

Carbon/L but after HTC, TOC concentration in process waters increased to a 

maximum of 27,900mg of Carbon/L at the highest solid loading tested. Both 

COD and TOC concentrations, increased with respect to the amount of 

solids in the mix (see Table 5.3). In the study performed by Stemann et al. 

(2013), COD and TOC concentrations increased similarly. An increase in the 

percentage of elemental carbon in the evaporated process waters was 

observed and ranged from 43.9 to 54.0%. Comparable results were reported 

by Aragón-Briceño et al. (2017) who used a similar sewage derived digestate 

and reported elemental carbon content in process waters ranging from 46 to 

68%. 

The solubilisation of organic matter in process waters was found to range 

between 240 and 360mg of COD solubilised per gram of feedstock 

processed (Figure 5.4b) and between 100 and 140mg of Carbon per gram 

of feedstock processed. That corresponds to an increased solubilisation 3 to 

4.5 times higher compared with the digestate liquor based on COD and 

between 4 and 6 times higher based on TOC (80mg of COD per gram of 

feedstock and 20mg of Carbon per gram of feedstock). The solubilisation of 

organic matter from the feedstock’s solid fraction increased until a maximum 

was found at 15% solid loading; however, carbon solubilisation becomes 

constant beyond this threshold (See Figure 5.4b),  as the aqueous phase 

seems to be saturated and any excess hydrolysed material could be 

concentrated on the hydrochar. The saturation concentration of hydrolysed 

organic compounds is important to consider as it is possible that additional 
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washing of hydrochars may liberate additional soluble organic compounds, 

this in turn may improve the properties of the hydrochars for further 

applications. 

5.3.3.4.Volatile Fatty Acids (VFA’s) 

Table 5.3 presents the concentration of VFAs in process waters, which 

indicates an increase in VFAs with increasing solid loading. In this context, 

VFA analysis refers to the presence of C1-C6 organic acids and includes 

acetic acid, propanoic acid, isobutyric acid, butyric acid, isovaleric acid and 

valeric acid. VFAs concentration ranges from 909 to 4,606 mg of COD/ L (2.5 

and 30% solids concentration, respectively). VFAs can be considered to 

appear from the decomposition of hydrolysis products during the HTC 

process (Berge et al., 2011a). Berge et al. (2011a) and Danso-Boateng et al. 

(2015) detected acetic, propanoic, and butanoic acids together with many 

other organic and inorganic compounds like aromatics, aldehydes and 

alkenes. The solubilisation of VFAs (Figure 5.4b) follows the same trend as 

the other parameters measured where higher levels of solubilisation were 

achieved for the lower solid loadings (2.5, 5.0 and 10%) and became 

constant beyond 15% of solids loading. 

5.3.3.5.Phosphorus 

The solubilisation of phosphorus in process waters following HTC is due to 

decomposition of complex organic phosphorus containing compounds (e.g., 

phospholipids, DNA and phosphates monoesters), which results in a 

combination of reactive (PO4
3-) and organic phosphorus compounds in 

solution(Dai et al., 2015, Ekpo et al., 2015). Table 5.1 shows the total and 

reactive phosphorus concentrations in the digestate liquor and process 

waters at different solid loadings. The results indicate that the concentration 

of phosphorus (total and reactive) increase as the solid loading increases. 

The concentration of total phosphorus ranged from 66 to 167mg P/L and for 

reactive phosphorus from 59 to 114mg P/L for process waters derived from 

mixes containing 2.5wt% to 30wt% solid loading (i.e., the difference between 

total and reactive phosphorus gives an estimate of the concentration of 

organic phosphorus compounds in solution). The results indicate that the 
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total and reactive phosphorus concentrations increase with increasing solid 

loading. However, once again, a saturation point is reached with the reactive 

phosphorus remaining relatively constant beyond a solid loading of 15%. 

Despite the increase of TP and RP in process waters, that only represents a 

small proportion of the total phosphorus originally present in the feedstock. 

The solubilisation of phosphorus in mg/g of feedstock (TP and RP) is shown 

in Figure 5.4c. The overall phosphorus solubilisation from the feedstock 

decreases as the solid loading increases. This is typical of HTC feedstocks 

containing counter ions such as Mg2+ and Ca 2+ that are capable of 

promoting P precipitation as PO4
3- on the hydrochar surface. 

In Figure 5.5a it is possible to observe that the percentage of phosphorus 

solubilised from the solid fraction ranged from 24 to 27%. This shows that the 

phosphorus transferred from the solid fraction to the liquid fraction remain 

constant independently of the solid loading. 

5.3.3.6.Nitrogen 

Sewage sludge contains large concentrations of organic matter from faecal 

material (primary sludge) and bacterial biomass (surplus activate sludge), 

that largely contributes to the presence of nitrogen compounds in anaerobic 

digesters processing sewage sludge. During anaerobic digestion, nitrogen 

compounds are taken up by anaerobic bacteria that mainly constitute the 

solid fraction of the digestate.  For that reason, when hydrothermal treatment 

is performed, proteins are hydrolysed resulting in the release of soluble 

ammonium in process waters (Keymer et al., 2013, Wilson and Novak, 

2009).  

Table 5.3 shows the concentration of TKN and ammonium in process waters 

from HTC. As expected, there is an increase in TKN and ammonium 

concentrations as the solid loading increases, with figures ranging from 

2,114 to 8,064mg N/L of TKN and from 1,652 to 5,264mg N/L of ammonium, 

at 2.5wt% and 30wt% solid loading respectively. 

The effect of solid loading on the solubilisation of nitrogen compounds 

follows a similar trend found with other organic and inorganic species 

(phosphorus and carbon containing compounds – i.e., TP, RP, COD, TOC, 
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TS, VS, etc.), and results in an increase in the concentration of nitrogen in 

process waters (soluble TKN and ammonium). The solubilisation of nitrogen 

compounds in mg of N/g feedstock (N reported herein using soluble TKN and 

ammonium analysis) is shown in Figure 5.4d. Nitrogen solubilisation ranged 

from 80.72 to 26.38 mg of N-TKN/g feedstock and from 63.8 to 17.47 mg of 

N-Ammonium/g feedstock within the solid loading tested (2.5 - 30 wt%); 

however, it seems that N solubilisation reaches a maximum at 15 wt% solid 

loading, which then becomes relatively constant at higher solid loadings. 

In Figure 5.5b shows the percentage of nitrogen extracted from the solid 

fraction exclusively into the process water. Nitrogen compounds present in 

the solid fraction of the anaerobic digestate were hydrolysed and solubilised 

into process water with efficiencies ranging between 43 and 66%.  However, 

it was observed that the percentage of nitrogen solubilised into the process 

waters was higher at low solid loadings, which could infer some dependency 

on process conditions (temperature, pressure, contact time, etc.).  
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a) 

 

 

b) 

 

 

Figure ‎5.5.- Percentage of Nitrogen (a) and Phosphorus (b) extracted from the original 

solids into process waters after HTC processing. 
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5.3.4.Anaerobic digestion and biomethane potential of process waters 

(BMP) 

The importance of measuring the methane production in process waters is 

because the potential positive energy implications in the HTC-AD system. 

According to Aragón-Briceño et al. (2017), process waters derived from 

sewage digestate are proven to be a suitable substrate for biomethane 

production via anaerobic digestion. Anaerobic biodegradability of HTC 

process waters should not be limited by hydrolysis as most of the complex 

organic matter has been already hydrolysed during thermal processing 

(Wirth and Mumme, 2013), however there are some organic inhibitors (e.g., 

phenols and PAHs) that can affect the anaerobic digestion process as a 

whole but mainly the methanogenesis step (Hübner and Mumme, 2015).  

Figure 5.6a shows the results from BMP tests for process waters generated 

at the different solid loading rates tested.  A significant increment in methane 

yields was observed when digestate liquor used as a control (131 mL CH4/g 

COD on average) was compared with process waters (228 – 301 mL CH4/g 

COD). It is worth mentioning that methane yields increased with solid 

loadings until a maximum was reached at 10% before decreasing. This may 

be due to process waters generated from higher solid loadings having higher 

levels of phenols as found by Berge et al. (2011a). Previous studies 

investigating the anaerobic digestion of HTC and pyrolysis derived process 

waters from digestate report methane yields ranging from 220 to 227mL of 

CH4 per g of COD (Aragón-Briceño et al., 2017, Wirth and Mumme, 2013). 

COD consumption during anaerobic processing is presented in Figure 5.6b.  

According to Becker et al. (2013), the anaerobic degradation of HTC process 

waters should not be limited by hydrolysis as only  limited concentrations of 

complex organic matter are in the aqueous phase following thermal 

treatment and hence, organic matter removal is expected to be higher from 

process waters. COD removal was found to range from 55 to 81%, being the 

process water coming from 2.5% of solid loading with the higher COD 

removal and the lowest from process water coming from 15% of solid 

loading.  VFAs were totally consumed with the exception of the control 

(Digestate Liquor) that showed no additional biogas production after day 9 th 
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(see Figure 5.6c). These results are similar to the values of COD removal 

(63.8%) reported at similar thermal conditions (250°C, 30min and 40bar) with 

sewage digestate (Aragón-Briceño et al., 2017) and match reported data 

from other studies with HTC and Pyrolysis process waters  treated 

anaerobically (32 to 75% COD removal) (Hübner and Mumme, 2015, Wirth 

and Mumme, 2013) 

Regarding to the biogas composition (Table 5.4), methane concentration 

ranged between 74 to 80% showing a good quality biogas coming from 

process waters at different solids loading, which was slightly higher than the 

figures obtained by Wirth and Mumme (2013) in HTC liquor from corn silage 

(70% methane). Therefore, net methane production seems to be slightly 

favoured by the increase in solid loading. 
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c) 

 

 

Figure ‎5.6.- BMP test results (a) from process waters - PW at different solid loadings and 

changes in COD (b) and VFA (c) concentration during BMP tests. 
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methane and can be solubilised through HTC. The biodegradability in the 

process water decreases as the solid loading increases.  

 

Table ‎5.4.- Comparison of the Experimental BMP v. theoretical BMP. 

Sample 
BMPexp  (mL 
of CH4 /g of 

COD added) 

BMPth‎Boyle’s‎
Eq.  (mL of CH4 

/g of COD) 
*BD‎Boyle’s‎eq COD removal 

Methane 
content in 

Biogas 

Control 134.6 431.5 36% 40% 63% 

Processed Water      

2.5% P.W. 301.5 337.5 89% 81% 74% 

5% P.W 321.7 370.3 87% 60% 77% 

10% P.W. 325.6 435.4 75% 57% 79% 

15% P.W. 306.8 360.4 85% 55% 78% 

17.5% P.W. 312.7 400.9 78% 55% 79% 

20% P.W. 302.1 403.1 75% 62% 80% 

25% P.W. 295.4 351.5 84% 60% 80% 

30% P.W. 288.2 368.2 78% 62% 80% 

          

 *BD: Biodegradability 

5.3.6.AD+HTC system analysis 

Previous studies have shown that the use of hydrothermal treatments as 

post-treatment rather than pretreatment has better benefits in terms of 

energy production (Aragón-Briceño et al., 2017). Table 5.5 shows the energy 

potentially produced by hydrochars and process waters estimated from HHV 

and experimental BMP values, as well as the net energy production from the 

methane produce by the anaerobic digestion of the sewage sludge. The 

amount of energy consumed was calculated based on the energy required to 

heat process waters from 25 to 250°C considering the corresponding solid 

loading in the 500mL HTC reactor. According to Berge et al. (2011a), the 

energy required to heat water in a closed system is small in comparison to 

that required to evaporate water in traditional dry thermochemical conversion 

processes. 

The results show that the potential energy embedded in the hydrochar 

increases as the amount of solids increase from 10.4 to 12.3Mj per kg of 
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hydrochar. Although, the energy consumption is smaller in those 

experiments with higher solid loadings (Zabaleta et al., 2017).  

On the other hand, the potential energy obtained from biogas coming from 

the process waters reduces as the amount of solid loading increases from 

3.9 to 1.3Mj per kg of hydrochar. This is because the methane potential in 

process waters is similar no matter the amount of solids is loaded in the HTC 

reactor. Therefore, overall potential energy produced did not show significant 

differences. 

The net energy balance showed to be a positive from 5% of solid loading in 

the HTC reactor and increase as the solids loading increases. Some authors 

found that solid loadings at and over 15% have showed a positive energy 

balance (Zabaleta et al., 2017). However, it has to be considered that sludge 

beyond 25% of solids, might not be suitable for a continuous flow system due 

to the problems of managing a highly viscous fluid. The sludge of 20% of 

solids seems to be the best option for HTC in order to harness all the 

properties of the sewage digestate. 

The hydrochars contribute with up to 50% of the overall energy produced 

when they are used as a solid fuel source. However, when they are disposed 

as soil amenders and not used as fuel source, the net energy produced 

drops. Despite of that, when the solid loading is over 15%, the net energy 

produced still produce a positive energy balance showing an increment in the 

energy production per kilogram of feedstock as the solid loading increases.  

  



109 
 

Table ‎5.5.- Energy production and consumption per kg of feedstock. 

Reaction 

a
Energy 

produced 
in char 

per kg of 

feedstock 
(Mj) 

b
Energy 

produced 

by AD of 
P.W. per 

kg of 

feedstock 
(Mj) 

d
Energy 

produced 
by the AD 

of the 
sewage 
sludge 

per kg of 
feedstock 

(Mj) 

Overall 
Energy 

produced 
by AD per 

kg of 

feedstock 
(Mj) 

Overall 

energy 
produced 
per Kg of 

feedstock 
(Mj) 

c
Energy 

consumed 
per Kg of 
feedstock 

(Mj) 

Overall 

Net 
Energy 
Balance 

(Mj) 

Net Energy 

Balance 
(Mj) (not 

considering 

hydrochar)  

  
    

  
    

  

2.5% Solids 10.4 3.9 7.08 10.9 21.4 40.7 -19.4 -29.8 

5% Solids 10.8 3.1 7.08 10.2 21.0 19.8 1.1 -9.7 

10% Solids 11.8 2.3 7.08 9.3 21.2 9.4 11.8 -0.1 

15% Solids 11.5 1.8 7.08 8.9 19.0 5.9 13.1 2.9 

17.5% Solids 11.1 1.6 7.08 8.7 18.7 4.9 13.8 3.8 

20% Solids 11.9 1.6 7.08 8.7 20.5 4.2 16.3 4.5 

25% Solids 12.1 1.3 7.08 8.4 20.5 3.1 17.4 5.3 

30% Solids 12.3 1.3 7.08 8.4 20.7 2.4 18.3 5.9 

              

a 
Values were determined according to the HHV of the hydrochars. 

b 
Values were obtained from the experimental BMP potential of the process waters and 

the relationship 1m
3
 = 35.8Mj (Passos and Ferrer, 2014). 

c
 Energy consumed were determined based in energy required to heat water from 25°C to 250°C 

in 500mL reactor. 
d
 Energy produced from the anaerobic digestion of sewage sludge reported by (Aragón-Briceño et al., 2017). 

 

Figure 5.7 shows the AD+HTC integration scenario built in Aspen. The 

scenario considers an inlet of 1 Ton of digestate sludge with 20% of solids. 

The mass balance showed a production of 13.92 kg of biogas and 153 kg of 

hydrochar per ton of sludge. Most of the nitrogen is solubilised within the 

liquid fraction (65%) after the HTC, which can used as a liquid fertiliser or for 

irrigation. On the other hand, despite of the solubilisation process during the 

HTC, the phosphorus that stays mostly into the solid fraction (96%). So it is 

important to consider the fate of nitrogen and phosphorus before use the 

hydrochars as a solid fuel source. 

The electrical and thermal power produced by the methane of the process 

water in the CHP unit (23.1 and 37.0 KWh respectively) covers nearly the 

electrical and thermal power consumption (-37.8 and -98.9 KWh 

respectively). However, the net energy and thermal power production of the 

system are negative (-14.7 and -61.9 KWh) when only the process water is 



110 
 

considered as the energy source (See Table 5.6). Furthermore, the 

computer simulation showed an electrical efficiency of 37% and a thermal 

efficiency of 59%. 

The inclusion of the hydrochar as a fuel source to the system, maximises the 

energy production turning positive the electrical and thermal production (99.6 

and 199.5 KWh) making the AD+HTC system self-sufficient. Moreover, the 

application of the HTC improves the dewaterability of the solid up to 70% 

making more efficient the centrifugation (Escala et al., 2013). 

 

Table ‎5.6.- Energy balance of the HTC-AD integration scenario for 20% solids of digestate 

sludge. 

Concept 
Electrical power 

production (KWh) 

Thermal power 

production (KWh) 

   

HTC-AD scenario (P.W. 

as only energy source) 
-14.7 -61.9 

Hydrochar potential 

energy  
114.3 261.4 

Total 99.6 199.5 

a
Electrical power efficiency of 35% for hydrochar slurry (Kempegowda et al., 2017) 

b
Thermal efficiency of 80% for heating biomass in fast pyrolysis (Shemfe et al., 2015) 
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Figure ‎5.7.- Aspen diagram for the integration of the HTC process at the end of a WWTW with a sludge of 20% of solids.
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5.4. Conclusions 

Solid loadings had a direct influence on hydrochar composition and its 

energetic properties. The carbon and nitrogen content in hydrochar 

increased as the solids loading increased. Similar trend occurred with the 

HHV and hydrochar yield. The process waters were also influenced by the 

solid loading increasing the concentration of carbon, nitrogen and 

phosphorus compounds, which increases the potential for resource recovery 

from sewage digestate. With regard to the accumulation of soluble organic 

matter in the process waters, a significant increment in methane yields was 

observed when digestate liquor used as a control for BMP tests (131 mL 

CH4/g COD on average) was compared with process waters anaerobically 

digested (228 – 301 mL CH4/g COD). The energy balance of the proposed 

AD+HTC process is positive beyond 5% of solid loading when the 

hydrochars are considered as a fuel source and when they are not, the 

energy balance is positive beyond 15% of solid loading. The sewage 

digestate of 20% solids seems to be the best option for carbonisation in 

terms management and energy. The AD+HTC scenario showed a significant 

positive energy balance when process water and hydrochar are considered 

as fuel sources. Although further studies are needed in order to better 

understand the influencing factors controlling process conditions that lead to 

improvements in the hydrothermal carbonisation of sewage digestate, this 

research work demonstrates the great potential from  combining AD and 

HTC as an alternative to conventional sludge management systems in 

wastewater treatment works. 

5.5. Summary 

In this chapter, the influence of solid loading on the composition of the 

resulting hydrochar and process water is presented. An evaluation of product 

yields, solubilisation of organic carbon and biomethane potential of the 

process water is compared for 2.5-30% solid loadings at a HTC temperature 

of 250°C with a 30-minute reaction time. Hydrochar yields ranged from 68 to 

75%wt. The concentration of organic carbon increased from 2.6g/L in the raw 

digestate to 72.3g/L in the process water following HTC at the highest solid 
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loading. Recycling process water from the HTC unit into the AD unit can 

enhance the energy production by bio-methane up to 54% when compared 

with the conventional AD. Calculations of energy balances indicate that high 

solid loading favours energy production. 

5.6. Publications and awards derived from this chapter 

 “Best platform presentation in session 2: Process Integration.” at The 3rd 

AD Network: Early Career Researcher (ECR) conference (2017). 

Birmingham, UK. 

 “Anaerobic Digestion Network: travel Bursary for Early Career 

Researcher – UK to Overseas (1500£)” to attend to the 15th IWA World 

Conference on Anaerobic Digestion (2017). Beijing, China. 

 *Aragón C., Camargo-Valero M. and Ross A. (2017). “Hydrothermal 

Carbonisation of Sewage Digestate: Influence of solid loading on 

hydrochar and process water characteristics.” In proceedings of the 15th 

IWA World Conference on Anaerobic Digestion. Beijing, China. 

 *Aragón C., Camargo-Valero M. and Ross A. (2017). “Hydrothermal 

Carbonisation of Sewage Digestate: Influence of solid loading on 

hydrochar and process water characteristics”. In proceedings of the 3rd 

AD Network (a BBSRC NIBB) Early Career Researcher conference. 

University of Birmingham, Birmingham, United Kingdom. 

 *Aragón C., Camargo-Valero M. and Ross A. (2019). “Hydrothermal 

Carbonisation of Sewage Digestate: Influence of solid loading on 

hydrochar and process water characteristics.” Submitted to Water 

Research journal on the 24/01/2019. 
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Chapter 6. Evaluation and comparison of product yields and 

bio-methane potential from hydrothermally treated sewage 

sludge. 

6.1. Introduction 

In recent years the use of biomass as a renewable resource for energy has 

gained more attention. In UK it’s produced annually around 1.4 million tonnes 

(dry weight) of sewage sludge. Anaerobic digestion is the most common 

option for sewage sludge (SS) treatment due the energy generation from 

methane (Aragón-Briceño et al., 2017). Nevertheless, one half of the SS is 

susceptible to anaerobic biodegradation resulting in biogas. 

One of the main limiting steps of the AD process is the solubilisation of the 

organics through hydrolysis. For that reason, the resulting digested sludge 

(digestate) from the anaerobic digestion still contains large amounts of non-

easy biodegradable organic matter that can be harnessed for additional 

energy production (Aragón-Briceño et al., 2017). Many pre-treatment 

techniques as thermal, biological, chemical, mechanical, physical and 

combinations has been studied by several researchers with the objective of 

enhance the sludge biodegradability by releasing the carbon and organic 

compounds from the microbes cells to the aqueous phase but the main 

drawback has been the economic constraints for scale them up and 

commercialize them (Pilli et al., 2015).  

Hydrothermal processing is currently being considered as an alternative 

technology to further harness energy from sewage sludge and digestate (He 

et al., 2013, Zhao et al., 2014) and to reduce the issues related to current 

disposal of final solid products. Hydrothermal processes (HTPs) involve the 

treatment of biomass in hot compressed water that can produce either solid 

hydrochar, a biocrude or a syngas, depending on process temperature and 

pressure. Some researchers have already identified the potential of sewage 

sludge as an energy source due its high organic matter content (Danso-

Boateng et al., 2015, Kim et al., 2014). HTPs applied to sewage sludge 

processing not only help to inactivate pathogens and further bacterial activity 

after disposal, but also produce valuable by-products like hydrochar.  
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However, during the HTP process water rich in organic compounds is 

produced and it cannot be disposed into the environment without further 

treatment (Becker et al., 2014). The solubilisation of organic compounds 

resulting from the hydrolysis of complex molecules in sewage sludge, makes 

the process water a potential feedstock for methane production via anaerobic 

digestion, which is something that very few researchers have covered in 

recent years (Aragón-Briceño et al., 2017, Wirth and Mumme, 2013, Becker 

et al., 2014, Mumme et al., 2011, Wirth et al., 2012). 

Despite of HTP’s commercial applications are still under development, in 

comparison with other waste treatment processes for sewage sludge (i.e., 

AD, composting, incineration, etc.), the treatment of high-moisture waste 

biomass like sewage sludge is considered one of the most promising area for 

the consolidation of HTPs (Mumme et al., 2015). Therefore, the challenge is 

to provide a smooth integration for coupling HTPs with existing infrastructure 

and treatment units at waste water treatment works in order to meet 

environmental targets regarding the safe disposal of sewage sludge and 

other operational targets linked to waste minimisation, recovery of valuable 

resources embedded in sewage sludge and overall reduction of treatment 

costs. The main objective of this study is to investigate the changes suffered 

by sewage sludge samples collected along treatment process units in a 

conventional WWTW, when subjected to hydrothermal processes at different 

temperatures.  Results are processed to evaluate and compare products 

yields and characteristics, as well as the biomethane potential of the 

resulting process waters. Research finding are used to propose new process 

configurations for WWTWs in order to integrate HTPs as part of a 

comprehensive sewage sludge management strategy. 
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6.2. Results and discussions 

6.2.1.Mass balance  

In Figure 6.1a the product distribution of sewage sludge at different 

temperatures after thermal treatment are presented. The different sewage 

sludge collected were tested with the higher concentration of solids found 

among all the different points of the WWTW that was at 2.5% of solids 

concentration and loaded into the hydrothermal reactor. This with the aim of 

solubilise as much organic compounds into the process water 

The mass of solid fraction was reduced after thermal treatment up to 72%. 

During the thermal treatment the solid lost led to the increase of the water 

soluble products due the solubilisation of organic and inorganic compounds 

from the original biomass into the liquid phase (Aragón-Briceño et al., 2017, 

Zabaleta et al., 2017, Ekpo et al., 2015, Keymer et al., 2013, Qiao et al., 

2011).  

Higher temperatures (250°C) showed more solubilisation of solids into the 

liquid fraction (see Figure 6.1) due the severity of the process. The primary 

sludge presented a solids reduction of 32% after the 160°C treatment and 

increased up to 60% at the 250°C treatment. The secondary sewage sludge 

showed the highest solid reduction (up to 72%) among the different sewage 

sludge in both thermal treatments. This might be due the biomass from the 

SS was more susceptible to hydrolysis through thermal treatments than the 

other sewage sludge (PS and Mix). The MIX sewage sludge presented a 

solid reduction as the treatment temperature increased (up to 52% and 64% 

at 160°C and 250°C treatment respectively). Furthermore, all digestates (PS, 

SS and MIX) showed higher solids reduction after the 250°C treatment 

compared with the 160°C treatment. That means the severity of the process 

helps to dissolve the remained organic matter contented in the digestate and 

therefore to harness their properties. 

The solid distribution is shown in Figure 6.1. Between 8 to 43% of the 

biomass solids were converted to gaseous components and just between 13 

to 34% were transferred to the liquid fraction. Zabaleta et al. (2017) stated 

that most of the gaseous components are mainly composed by CO2.  
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It is important to highlight that most of the energy content is within the 

hydrochar and secondly in the process water which has the potential to 

produce methane. For that reason, a lot of gasification results  can prove to 

be inconvenient for harnessing the properties of the feedstock. Figure 6.1 

shows that lower process temperatures did not generate a lot of gasification. 

The primary sludge treated at 160°C showed the best conditions for a 

feedstock because ony 8% was gasified and 24% of the total solids was 

solubilised. 

 

Figure ‎6.1.- Mass balance solid distribution of the thermal treatments of different sewage 

sludge at different temperatures. 

6.2.2.Characteristics of the process waters  

6.2.2.1.pH  

The pH is a feedstock dependant parameter tha has been proved to suffer 

changes during the thermal treatment because the organic compounds 

reactions (Qiao et al., 2011). The formation of ammonium and alkaline 

compounds can contribute to the pH increasing as the VFAs and acid 

compounds resulting from the hydrolysis contribute to the pH reduction 

(Aragón-Briceño et al., 2017). Although, the buffering capacity of the sample 
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is other factor that may hinder the initial hydrolysis step in the thermal 

process (Berge et al., 2011a). 

The pH of the different sewage sludge can be observed in Figure 6.2a. It 

seems that the samples that came from biological treatments (SS and 

digestates) prior thermal treatment favoured the production of alkaline 

compounds that made the pH increase. On the other hand, the rest of the 

samples which did not have a biological treatment prior the thermal treatment 

(PS and MIX) presented and slightly drop of the pH after the thermal 

treatments which suggest the formation of acid compounds. Some 

researchers have reported different pH values in PWs coming from different 

sewage sludge. For instance PWs coming from synthetic faecal sludge 

reported pH values from 3.8 to 7.8 at different treatment temperatures (140-

200°C) (Nyktari et al., 2017), pH values from 7.04 to 9.15 were reported in 

sewage digestate at treatment temperatures between 160 to 250°C (Aragón-

Briceño et al., 2017) and for PW coming from primary sludge treated at 

200°C the pH value reported was 7.7. 

a) 
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c) 

 

 

 

 

d) 

 

 

e) 

 

 

Figure ‎6.2.- (a) pH and concentration of (b) Total Solids(TS) and Total Volatile Solids (TVS), 

(c) Total Organic Carbon (TOC) (d) Chemical Oxygen demand (COD) and (e) Volatile Fatty 

Acids (VFAs) of the different sewage sludge’s process waters after  the different thermal 

treatment. 
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6.2.2.2.Total Solids and Total Volatile Solids 

In the Figure 6.2b is shown the total solid (TS) and total volatile solid (TVS) 

concentration of the raw liquors and process waters from different sewage 

sludge after different thermal treatments. As stated by Aragón-Briceño et al. 

(2017), the thermal treatments favours solids solubilisation (organics and 

inorganics) into the process waters due the hydrolysis process. For that 

reason, there was an increase of the TS and TVS concentration in all the 

different sewage sludge after the thermal treatment.  

The PS had the highest TS solubilisation after thermal treatment of 160°C 

and 250°C (307 and 321% respectively). This might be attributed to the high 

concentration of organics and inorganics available for hydrolysis unlike 

others sewage sludge that have been biologically treated. TVS represents 

most of the organics that are contented in the different sewage sludge which 

increased significantly after thermal treatments (from 2 to 6 times). Although 

the TVS fraction of the TS of liquors from the different sewage sludge prior 

thermal treatment ranged from 20 to 49%, but after thermal treatments, the 

TVS fraction increased up to 95%. The SS presented the highest TVS 

solubilisation which might be due its high amount of organics coming from 

the biomass of activated sludge were hydrolysed and released into the 

process water during the thermal treatment. 

Furthermore, the non-AD sludge showed a higher TS and TVS solubilisation 

than those which have been anaerobic digested previously. This might be 

during the AD treatment, organic compounds are consumed and transformed 

into biogas. However, still a big amount of organics remain into the AD 

sludge that can be harness with the thermal treatments. 

6.2.2.3.Chemical oxygen demand and Total Organic carbon 

In Figure 6.2c and 6.2d the TOC and COD concentration of liquid fraction 

from different sewage sludge of non-treated and thermally treated are 

presented. As the temperature reaction increased the TOC and COD 

concentration increased. This was due the severity of the reaction enhanced 

the solubilisation of the organics and inorganics. During the thermal 

treatments there is a solubilisation of the organics and inorganics due the 
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hydrolysis reflected in the increase of the COD and TOC levels in the liquid 

fraction (Aragón-Briceño et al., 2017, Ekpo et al., 2015, Keymer et al., 2013).  

The COD concentration of the non-treated sludge (filtered fraction) increased 

after the thermal treatments up to 3, 16 and 5-fold in process waters for the 

PS, SS and MIX respectively up to 5, 7 and 7.3-fold in process waters for 

PS, SS and MIX digestates respectively. Previous studies reported an 

increase of 7-fold of the COD concentration for sewage digestate after 160 

and 250°C treatments (Aragón-Briceño et al., 2017).  

The different non-AD treated sludge presented higher solubilisation rates 

than the AD treated sludge. The SS showed the highest COD solubilisation 

rate with 357 and 522 mg of COD per gram of feedstock, followed by the PS 

with 288 and 501 mg of COD per gram of feedstock, and the MIX sludge with 

277 and 464 mg of COD per gram of feedstock respectively at 160 and 

250°C treatment.  On the other hand, digestates presented lower 

solubilisation rates ranging from 158 to 316 mg of COD per gram of 

Feedstock. This might be due sludge without previous AD treatment have 

more organic matter available compared with those which not.   

The TOC concentrations showed that the carbon solubilisation were higher in 

non-AD treated sludge rather than those which had a previous AD treatment 

(see figure 6.2c). PS, SS and MIX presented an increase up to 3, 14.5 and 

5.9-fold respectively after thermal treatment and up to 5, 8 and 6.8-fold for 

PS, SS and MIX digestates. This means that the increase on the TOC 

concentration varied depending on the sewage sludge treated. Aragón-

Briceño et al. (2017) reported a 10-fold increase in the TOC concentration of 

sewage digestate after 160 and 250°C treatments. 

The TOC solubilisation rates went up to 167 and 240 for the non-AD treated 

sludge and 92 and 151 mg of TOC per gram of feedstock at 160 and 250°C 

treatment respectively for the previous AD treated sludge.  

The proximate analyses in the process waters showed a carbon 

solubilisation after the thermal treatments as well (see Table 6.1). The 

Secondary sludge presented higher carbon solubilisation in the liquid fraction 

after the thermal treatments from 11.8% in the original feedstock liquor to 
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35.9 and 39.8% of 160 and 250°C process waters respectively.  Most of the 

secondary sludge’s organic material in the solid fraction is mainly activated 

sludge bacteria which releases organics and inorganics within the liquid 

fraction during the thermal treatment. The primary sludge showed a low 

increasing in carbon percentage (from 27.6 up to 33.3%). This might be 

because the primary sludge comes from the settlement solids of the raw 

wastewater that carries all the complex organics and inorganics, mostly in 

the solid fraction, that are less susceptible to hydrolysis. The Mix sludge 

elemental carbon increased from 19 to 38% after both thermal treatments. 

The elemental carbon of process waters coming from the different digestates 

ranged from 38 to 43%.  

The elemental carbon values of digestates were slightly lower than reported 

by Aragón-Briceño et al. (2017) for sewage digestate who obtained from 46 

to 68% elemental carbon within the process water. The carbon solubilisation 

comes from the AD biomass which is hydrolysed during the thermal 

treatments. Nonetheless, despite of the different AD sludge presented high 

carbon solubilisation during the thermal treatment; most of the carbon 

released within liquid fraction seems to be less suitable for methane 

production than the carbon solubilized within the liquid fraction from non-AD 

treated sludge. 

6.2.2.4.Volatile Fatty Acids (VFAs) 

Figure 6.2e shows the VFAs concentration of the liquid fraction coming from 

the different sewage sludge prior and after different thermal treatments. 

Aragón-Briceño et al. (2017) reported that the VFA concentration increases 

as the reaction temperature increases in sewage digestate and is due 

solubilisation coming from the solid fraction of sewage. According to the 

reported by Aragón-Briceño et al. (2017) and Nyktari et al. (2017), the acetic 

acid makes the highest contribution to VFAs produced during the thermal 

treatment..  

The VFAs concentration in process waters from PS did not vary significantly 

despite of the different treatment temperatures. The VFAs concentrations 

were 4083 and 4155 mg of COD/L for 160 and 250°C respectively. The 
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160°C treatment presented higher VFAs solubilisation than the 250°C 

treatment in the process waters coming from the MIX sludge where the 

concentrations were 2875 and 2672 mg of COD/L respectively. For the 

biologically treated sludges (secondary sludge and digestates), the process 

temperature influenced the VFAs solubilisation showing an increase in the 

concentration as the the temperature increased. Furhtermore, the VFAs 

concentration were lower compared with non-biologically treated sludge.This 

might be that the primary sludge has not received any previous treatment 

that has degraded the organics contented in it, unlike secondary sludge and 

digestates where all the organic’s carbon compounds have been degraded 

by different bacteria. 
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Table ‎6.1.-Proximate analyses of the Process waters. 

Sample Ultimate analysis 

  C (%) H (%) N (%) O
a
 (%) S (%) 

Primary Sludge 27.59 4.40 3.79 64.03 0.18 

Secondary Sludge 11.81 1.26 14.92 71.92 0.09 

Mix Sludge 19.37 2.37 4.85 73.41 0.00 

AD Primary Sludge 31.07 4.03 3.64 60.51 0.75 

AD Secondary Sludge 19.68 2.49 2.30 74.57 0.96 

AD Mix Sludge 24.45 3.03 2.64 68.95 0.93 

            

Process Waters from 160 °C - 30 min- 5 Bar           

Primary Sludge  31.60 4.93 6.34 56.29 0.83 

Secondary Sludge 35.92 5.28 8.79 48.84 1.17 

Mix Sludge 38.39 5.68 6.95 48.02 0.96 

AD Primary Sludge 39.01 5.46 9.50 44.46 1.56 

AD Secondary Sludge 38.82 5.59 9.79 44.02 1.78 

AD Mix Sludge 38.38 5.41 9.66 44.82 1.73 

            

Process Waters from 250 °C - 30 min- 40 Bar           

Primary Sludge 33.35 5.22 6.76 53.77 0.90 

Secondary Sludge 39.82 5.79 8.58 44.43 1.38 

Mix Sludge 38.36 5.71 8.18 46.75 1.01 

AD Primary Sludge 43.49 6.56 10.28 37.65 2.03 

AD Secondary Sludge 37.98 6.02 9.83 44.30 1.86 

AD Mix Sludge 40.69 6.18 9.63 41.39 2.11 

            
a
 Calculated as difference between sum of C,H,N,S.           
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6.2.2.5.Phosphorus  

Figure 6.3a shows the phosphorus concentration of the liquid fraction of the 

different sewage sludge prior and after thermal treatment at different 

temperatures. The phosphorus solubilisation is carried on during the thermal 

process due the organic phosphorus compounds (complex phospholipids, 

DNA and phosphates monoesters) break down into phosphate (Dai et al., 

2015, Ekpo et al., 2015). Although, the fate of P is highly feedstock 

dependent during hydrothermal treatment and is linked to the levels of 

metals presented in the feedstock (Aragón-Briceño et al., 2017, Ekpo et al., 

2015) 

There was a clear influence of the temperature in the phosphorus 

solubilisation from the solid part among the different sewage sludge with 

exception of the secondary and mix sludge. The higher temperature was 

applied, the higher phosphorus solubilisation was obtained in AD treated 

sludge. Although it can be assumed that most of the phosphorus is contained 

in the solid fraction since the raw liquors presented low phosphorus 

concentration. There was a solubilisation up to 10% of Phosphorus at 250°C 

and up to 12% of Phosphorus at 160°C (See Figure 6.3d). However, the 

phosphorus concentrations in process waters coming from secondary sludge 

suggest that 250°C treatment enhanced the phosphorus fixation within the 

hydrochar unlike the 160 °C that improved the phosphorus solubilisation.  

Aragón-Briceño et al. (2017) reported that hydrothermal treatments at lower 

temperatures improves the extraction of organic P in sewage digestate than 

higher temperature treatments. Nonetheless, the 250°C treatment showed a 

higher inorganic phosphorus production (up to 3 times) in most of the 

different sewage compared with organic phosphorus production. Moreover, 

160°C treatment showed the same trend on digestates related to higher 

inorganic phosphorus production. 
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c) 

 

 

d) 

 

 

Figure ‎6.3.- Concentration of phosphorus and nitrogen of the different sewage sludge after  

the different thermal treatment: (a), Total Phosphorus and Reactive Phosphorus, (b) Total 

Kjeldahl Nitrogen (TKN) and Ammonia and solubilisation of the c) Nitrogen and d) 

Phosphorus. 
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6.2.2.6.Nitrogen 

In previous studies have been proven that during thermal treatment the 

proteins in sewage sludge hydrolyse forming ammonium which is released 

into the process waters (Aragón-Briceño et al., 2017). 

In Figure 6.3b the organic and inorganic nitrogen concentration of the liquid 

fraction of the different sewage sludge prior and after different thermal 

treatments are shown. The Total nitrogen solubilisation was influenced with 

the temperature applied to the different sewage sludge. As the temperature 

increased, the total nitrogen concentration increased. After the thermal 

treatment, the soluble nitrogen concentration increased up to 540% in the 

non-AD treated sludge at 250°C and up to 340% at 160°C and for the 

digestates there were an increase up to 70% at 250°C and up to 36% at 

160°C. These findings match with the results of Aragón-Briceño et al. (2017) 

in which the nitrogen concentration increased up to 50% at 250°C treatment 

and up to 45% at 160°C.  

The ammonia concentration (Inorganic Nitrogen) in the process waters 

increased after thermal treatments showing higher solubilisation in non-AD 

treated sludge (up to 204 and 431% at 160 and 250°C respectively) 

compared with digestates (up to 109 and 136% at 160 and 250°C 

respectively).  

6.2.3.Anaerobic digestion and biomethane potential of process waters 

(BMP) 

The BMP of different sewage sludge and their process waters derived from 

thermal treatment are presented in Figure 6.4. Thermal treatment enhanced 

the BMP of the different non-AD treated sludge up to 170%. The process 

waters coming from 250°C treatment showed higher BMP values than 160°C 

process waters (up to 68%), excepting process waters coming from 

secondary sludge digestate where the BMP did not vary significantly 

regardless the temperature (12%).   

The non-AD treated sludge presented higher BMP than digestates (up to 

52%). The Mix sludge due its high organic matter content, presented BMPs 

of 252 and 351 mL of CH4 per g of COD at 160 and 250°C respectively that 
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represented an increasing of 92 and 168% with respect to the untreated Mix 

sludge. The secondary sludge showed close BMP values in the different 

thermal treatments with 276 mL of CH4 per g of COD at 160°C and 312 mL 

of CH4 per g of COD at 250°C treatment. Thermal processes enhanced the 

BMP of the primary sludge increasing it up to 152% in the process water 

(208 and 325 mL of CH4 per g of COD for 160 and 250°C process waters 

respectively) compared with the untreated sludge (129 mL of CH4 per g of 

COD).  

On the other hand, digestates without thermal treatment showed BMP values 

of cero, meaning in non organic matter was available for methane 

conversion. After the thermal treatment, digestates BMP values increased 

from 0 up to 232 mL of CH4 per g of COD. There was not a significant 

difference between 160 and 250°C treatment for process waters coming from 

ADSS and ADMIX. However the BMPs of process waters coming from ADPS 

showed that the temperature influenced increasing the BMP value in 68% as 

the temperature increased. 

Previous studies investigating the anaerobic digestion of HTC have reported 

using PW from municipal sewage sludge treated at 170°C methane yields of 

256.6mL of CH4 per g of COD (Qiao et al., 2011); for PW from sewage 

sludge digestate treated between 160 to 250°C, the methane yields ranged 

from 178 to 277mL of CH4 per g of COD (Aragón-Briceño et al., 2017, Wirth 

et al., 2015) and for PW coming from PS treated at 200°C, the methane yield 

was 335mL of CH4 per g of COD (Nilsson E, 2017). 

There was a significant rising on the COD degradation in the process waters 

in comparison with the untreated sludge (see Table 6.2) (up to 97% of COD 

degradation). The thermal treatment reduces the concentration of complex 

organic matter during the hydrolysis which is reflected in the increasing of 

COD degradation during the anaerobic digestion (Becker et al., 2013). The 

160°C process waters coming from non- AD treated sludge (PS, SS and 

MIX) presented higher COD degradation than 250°C process waters. This is 

because at higher temperatures it is more susceptible to produce toxics as 

furans, phenols and other recalcitrant products that may affect the anaerobic 

bacteria (Hübner and Mumme, 2015). Nonetheless the 250°C process 
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waters coming from the AD treated sludge presented higher COD 

consumption than the 160°C process waters.  

These findings match with the reported in previous studies where the COD 

degradation during the anaerobic digestion ranged between 62 to 88% in 

HTC process waters from sewage sludge (Nyktari et al., 2017, Aragón-

Briceño et al., 2017, Wirth et al., 2015). 

The percentage of biodegradability (BD) increased as the temperature 

treatment increased (see Table 6.2). The MIX sludge showed the highest 

biodegradability among all the other sludge, prior (57%) and post 160 and 

250°C treatment (82 and 89% respectively). The SS presented a BD of 29% 

and after the 160 and 250°C treatments, the process waters BD incased to 

70 and 79%. The BD of the PS (33%) increased after thermal treatments to 

53% and 82% of 160°C and 250°C  process waters. 

The biogas composition of process waters is shown in Table 6.2. The 

untreated sludge presented methane percentage of 72, 66 and 72% for PS, 

SS and Mix Sludge respectively. The 160°C  and 250°C treatment produced 

a biogas with methane percentage between 60 to 79% and from 60 to 

77%respectively. With exception of the process water coming from primary 

sludge, the 250°C treated process waters presented higher methane 

percentage in the biogas than the 160°C process waters and untreated 

sludge. These results are similar to those obtained by  Wirth and Mumme 

(2013) in HTC liquor from corn silage where they obtained 70% of methane. 
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Figure ‎6.4.- BMP of the liquid fraction of the different sewage sludge prior and after thermal 

treatment.
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Table ‎6.2.- BMP, biogas composition and COD removal of the process waters. 

Sample 
BMP (mL CH4/ g of 

COD) 
BMP Boyle's eq.                  
(mL CH4 / g COD) 

BD Boyle's eq. 
Biogas composition 

COD REMOVAL 

  %CH4 %CO2 

Primary Sludge 129 181 71% 72 28 38% 

Secondary Sludge 116 350 33% 66 34 48% 

Mix Sludge 131 419 54% 72 28 44% 

AD Primary Sludge 0 359 0% 0 0 0% 

AD Secondary Sludge 0 353 0% 0 0 0% 

AD Mix Sludge 0 347 0% 0 0 0% 

              

Hydrochars from 160 °C - 30 min- 5 Bar             

Primary Sludge  208 460 45% 66 34 97% 

Secondary Sludge 276 485 57% 69 31 83% 

Mix Sludge 325 492 66% 68 32 86% 

AD Primary Sludge 130 467 28% 61 39 57% 

AD Secondary Sludge 207 554 37% 70 70 42% 

AD Mix Sludge 204 517 39% 79 79 37% 

              

Hydrochars from 250 °C - 30 min- 40 Bar             

Primary Sludge 325 294 110% 60 60 53% 

Secondary Sludge 312 373 84% 73 27 68% 

Mix Sludge 351 306 115% 77 23 75% 

AD Primary Sludge 218 378 58% 70 30 59% 

AD Secondary Sludge 212 363 58% 72 28 59% 

AD Mix Sludge 232 345 67% 74 26 60% 
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6.2.4.Hydrochar characteristics 

6.2.4.1.Physical characteristics 

Table 6.3 shows hydrochar yields and proximate characteristics. According 

to Danso-Boateng et al. (2015) and Ekpo et al. (2015) the reaction 

temperature affects the hydrochar yields. Hydrochar yields varied from 38 to 

69% for sludge treated at 160°C and from 20 to 40% for sludge treated at 

250°C. The Secondary sludge presented the lowest hydrochar yields after 

both thermal treatments at 160 and 250°C (38 and 30% respectively). The 

yields obtained in this study were lower in comparison with other values 

reported for hydrochar coming from sewage sludge that ranged between 57 

to 81.1% (Aragón-Briceño et al., 2017, Ekpo et al., 2015, Danso-Boateng et 

al., 2015). 

The ash content is strong related with the energy that we can harness from 

the hydrochar. If the ash content of a hydrochar is high, the less energy 

densification is presented. Ash content seems to increase as the reaction 

temperature increases. The ash content of the raw feedstock ranged from 

25.7 to 36.4%. After the 160°C treatment the ash content increased to 12-

27% and after the 250°C treatment the ash content increased to 53-61%.  

The ash content of digestate hydrochars are similar to reported by reported 

by Berge et al. (2011a) (55.8%) and slightly higher than Aragón-Briceño et 

al. (2017) (36.9%) at 250°C.  

The volatile matter of the feedstock decreased as the reaction temperature 

increased. The 250°C treatment had more influence in the volatile matter 

reduction that the 160°C treatment. The volatile matter reduction ranged from 

1 to 10% when the sludge as treated at 160°C and ranged from 14 to 29% 

when the sludge was treated at 250°C. However in both thermal treatments 

the digestates had higher volatile matter reduction than the non-AD treated 

sludge. 
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Table ‎6.3.-Proximate analyses of the feedstock (control) and hydrochar. 

Sample 

Proximate Analyses Yield 
(%) 

  Moisture (%) Ash (%db) Volatile matter (%db) Fixed carbon 
a
 (% db)   

Primary Sludge 6.80 25.67 57.87 9.66   

Secondary Sludge 7.29 28.20 54.81 9.70   

Mix Sludge 7.35 27.31 56.01 9.33   

AD Primary Sludge 7.48 36.26 48.02 8.25   

AD Secondary Sludge 6.60 35.12 49.85 8.43   

AD Mix Sludge 7.11 36.36 48.46 8.07   

            

Hydrochars from 160 °C - 30 min- 5 Bar           

Primary Sludge  4.87 28.75 57.30 9.09 69 

Secondary Sludge 5.51 35.88 53.36 5.25 38 

Mix Sludge 5.69 31.84 55.22 7.25 47 

AD Primary Sludge 5.47 44.18 43.95 6.40 50 

AD Secondary Sludge 5.40 43.87 44.97 5.76 55 

AD Mix Sludge 5.43 43.56 44.50 6.52 56 

            

Hydrochars from 250 °C - 30 min- 40 Bar           

Primary Sludge 2.94 40.53 47.50 9.03 39 

Secondary Sludge 2.86 45.26 42.28 9.59 30 

Mix Sludge 2.82 42.47 48.22 6.49 35 

AD Primary Sludge 2.76 56.08 35.49 5.68 37 

AD Secondary Sludge 3.19 55.43 35.60 5.78 40 

AD Mix Sludge 2.96 55.73 35.84 5.47 40 

            
a
 100 - (moisture + ash + volatile matter).           
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6.2.4.2.Elemental composition in hydrochar 

The ultimate analyses of the different sewage sludge and hydrochars are 

shown in Table 6.4. The untreated PS presented the same carbon content 

value after the 160°C treatment (40.3%) but after the 250°C treatment the 

carbon content in the PS sludge was reduced to 37.4%. The ADPS sludge 

presented lower carbon content (31.1%) than the PS due the prior biological 

treatment received. Unlike the PS, the ADPS´s carbon content was reduced 

to 28.9 and 27.3% after 160 and 250°C treatment respectively. The SS 

presented carbon content of 33.5% and after 160°C treatment it showed a 

small reduction on the carbon content  to 33.1% but after the 250°C 

treatment there was an increase to 36.1% showing carbon densification. The 

ADSS carbon content (32.2%) suffered a reduction after the 160 and 250°C 

treatments (29.4 and 27.5% respectively). The Mix Sludge carbon content 

(35.5%) suffered carbon densification increasing its carbon content after 160 

and 250°C thermal treatments (37.5 and 35.8% respectively). The ADMix 

carbon content (30.9%) presented a reduction after 160 and 250°C 

treatments (29.9 and 26.6%).The carbon reduction in hydrochars from 

different sewage sludge is similar to the observed by Ekpo et al. (2015) 

where the sewage digestate suffered a reduction up to 8% after thermal 

treatment. The carbon content of the different sewage sludge are similar to 

those reported by Aragón-Briceño et al. (2017) (33- 38%), Danso-Boateng et 

al. (2015) (36.6-39.2%) and Berge et al. (2011a) (32.6%).  

There was a reduction in the nitrogen content  between 0.5 to 2.3% after 

thermal treatment, presented in the hydrochars, in comparison to the original 

feedstock. This nitrogen reduction is given by the nitrogen released into the 

process waters during the thermal process (Aragón-Briceño et al., 2017). 

Oxygen content of hydrochars was lower compared to the original feedstock 

due the decarboxylation reactions carried out during carbonisation process 

(Danso-Boateng et al., 2015). 
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Table  6.4.- Ultimate analyses of the feedstock and hydrochar. 

Sample 
Ultimate analysis HHV         

(Mj kg
-1

) 

Energy 
densification (Mj 

Kg
-1

) 

Energy Yield           
(%)         

  C (%) H (%) N (%) O
a
 (%) S (%)   

Primary Sludge 40.3 6.6 3.3 23.7 0.4   18.9 - - 

Secondary Sludge 33.5 5.5 4.1 28.5 0.2   14.2 - - 

Mix Sludge 35.5 5.8 3.3 28.0 0.1   15.4 - - 

AD Primary Sludge 31.1 5.1 3.0 24.0 0.5   13.5 - - 

AD Secondary Sludge 32.2 5.2 3.4 23.5 0.6   14.2 - - 

AD Mix Sludge 30.9 5.0 3.0 24.1 0.7   13.3 - - 

                    

Hydrochars from 160 °C - 30 min- 5 Bar                   

Primary Sludge  40.3 6.3 2.1 22.5 0.1   18.2 0.99 67.8 

Secondary Sludge 33.1 5.3 3.3 21.7 0.7   14.6 1.06 40.2 

Mix Sludge 37.5 6.0 2.6 21.6 0.5   17.5 1.14 53.5 

AD Primary Sludge 28.9 4.5 2.1 19.8 0.5   12.8 0.94 47.6 

AD Secondary Sludge 29.4 4.6 2.4 19.1 0.6   13.2 0.93 51.1 

AD Mix Sludge 29.9 4.6 2.5 18.9 0.6   13.5 1.01 56.3 

                    

Hydrochars from 250 °C - 30 min- 40 Bar                   

Primary Sludge 37.4 5.3 1.0 15.6 0.1   16.8 0.93 36.4 

Secondary Sludge 36.1 4.6 1.9 11.6 0.5   16.5 1.19 35.5 

Mix Sludge 35.8 5.2 1.1 15.2 0.3   16.9 1.10 38.1 

AD Primary Sludge 27.3 3.8 1.1 11.4 0.3   12.3 0.93 34.2 

AD Secondary Sludge 27.5 3.8 1.3 11.6 0.4   12.2 0.90 35.8 

AD Mix Sludge 26.6 3.7 1.1 12.6 0.3   12.0 0.90 36.5 

                    
a
Calculated as difference between sum of C,H,N,S,ash.                   
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6.2.4.3.Energy characteristics in hydrochar 

The High Heating Value (HHV) of hydrochars coming from the non-AD 

treated sludge generally increase with exception of the PS (See Table 6.4). 

HHVs of SS and MIX sludge after hydrothermal treatment were higher than 

their original sample without treatment with a maximum of 16.5 and 17.5 Mj 

kg-1 respectively. The AD prior the thermal treatment influenced in the HHVs 

of the hydrochar. The digestates and the PS after the thermal treatment 

showed a HHV reduction betwwen 4 to 14%. The Assessment of the 

combustion behaviour of the hydrochar were not been performed. 

Hydrochar´s HHV are similar with the values reported by Berge et al. (2011a) 

for anaerobic digestion waste (13.7 Mj Kg-1), Danso-Boateng et al. (2015) 

(17.2 – 18.4 Mj Kg-1) and Aragón-Briceño et al. (2017) (14.3 – 17.8 Mj Kg-1). 

The energy densification of sewage derived solids and digestates is quite low 

(from 0.90 to 1.19) compared to thermally treated swine and chicken manure 

(1.27 and 1.49 respectivelty) and indicates that a significant amount of the 

energy in the original feedstock is accumulated in the process waters(Ekpo 

et al., 2015). 

6.2.5.Energy balance 

The integration of thermal treatments prior or following AD has proven not 

only the improving in dewaterability characteristics of the sludge by reducing 

the moisture in the solid fraction, but also it was found that improves the 

energy production if the solid fraction is included as a fuel source (Aragón-

Briceño et al., 2017).  

Table 6.5 shows the energy produced by different sewage sludge, 

hydrochars and process waters per kg of feedstock from different process 

configurations based on the HHVs, theoretical and experimental BMP. It was 

included configurations of conventional AD, two different thermal pre-

treatments and post-treatments (160 and 250°C) integrated with AD 

processing. This study only considered the energy consumed by the thermal 

treatments and it was calculated based on the energy required to heat water 

in a closed system is small in comparison to that required to evaporate water 
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in traditional dry thermochemical conversion process (Aragón-Briceño et al., 

2017, Berge et al., 2011b).  

The results show the net energy balance of all the scenarios from different 

sewage sludge were positives when the hydrochar is considered as a fuel 

source (See table 6.5). The PS sludge presented the highest net energy 

production (16.5 Mj*Kg-1) in all the scenarios followed by the SS sludge (12.3 

Mj*Kg-1) and Mix Sludge (12.1 Mj*Kg-1).  

The thermal treatments as pre-treatments increased the net energy balance 

of the different sewage sludge compared with the conventional AD system. 

After the 160°C pre-treatment, the net energy balance increased from up to 

8% for PS, from up to 136% for SS and up to 57% for MIX sludge. After the 

250°C pre-treatment, the net energy production increased up to 11% for the 

PS, up to 200% for SS and up to 66% for MIX sludge. In addition, the slurry 

pre treatment (solid and liquid fraction) presented up to 57% higher net 

energy balance compared when PWs is anaerobic digested and the 

hydrochar is taken as a fuel source. When the PWs are considered as the 

only energy source when thermal treatments are applied as pre-treatments, 

the net energy balance of the system reduces significantly resulting in some 

a negative energy balance. For that reason it is important the hydrochar 

inclusion as a fuel source within the system in order to make a more self-

sustainable. 

The Integration of the conventional AD and the thermal treatment as a post-

treatment showed in some scenarios higher net energy balance compared 

with the pre-treatments. The net energy balance increased up to 38, 141 and 

137% for PS, SS and Mix Sludge respectively when 160°C thermal treatment 

was applied and up to 15, 61 and 58% when 250°C was applied. In addition, 

the net energy balance only when the biogas is considered as the only 

energy source is significantly higher in comparison of the values obtained 

from the process waters when the thermal treatments are applied as pre-

treatments. 



139 
 

Table ‎6.5.- Energy production and consumption per kg of feedstock. Considering 20% of solids loading. 

    

b
Energy produced from 

CH4 per kg of feedstock 

(Mj) 

a
Energy produced in char 
per kg of feedstock (Mj) 

Overall energy produced 
per Kg of feedstock (Mj) 

c
Energy consumed 
in the HTx per Kg 

of feedstock (Mj) 

Overall Net 
Energy Balance 

per Kg of 

feedstock (Mj)  

Net Energy 
Balance only 

biogas considered 

per Kg of 
feedstock(Mj)  

                

Primary 

Conventional AD Sludge 12.0 - 12.0 - 12.0 12.0 

160TT + AD Slurry
d
 15.6 - 15.6 2.5 13.0 13.0 

250TT + AD Slurry
d
 17.5 - 17.5 4.2 13.3 13.3 

160TT + AD P.W.  1.7 12.5 14.2 2.5 11.7 -0.8 

250TT + AD P.W. 6.8 6.6 13.4 4.2 9.3 2.7 

AD sludge + 160T + AD P.W. 12.61 6.43 19.0 2.5 16.5 10.1 

AD sludge + 250T + AD P.W. 13.51 4.50 18.0 4.2 13.8 9.3 

          

Secondary 

Conventional AD Sludge 4.1 - 4.1 - 4.1 4.1 

160TT + AD Slurry
d
 12.2 - 12.2 2.5 9.7 9.7 

250TT + AD Slurry
d
 16.5 - 16.5 4.2 12.3 12.3 

160TT + AD P.W. 2.7 5.5 8.3 2.5 5.8 0.2 

250TT + AD P.W. 4.5 4.9 9.4 4.2 5.2 0.3 

AD sludge + 160T + AD P.W. 5.1 7.3 12.4 2.5 9.9 2.6 

AD sludge + 250T + AD P.W. 5.9 4.9 10.8 4.2 6.6 1.7 
          

Mix 

Conventional AD Sludge 4.3 - 4.3 - 4.3 4.3 

160TT + AD Slurry
d
 14.0 - 14.0 2.5 11.5 11.5 

250TT + AD Slurry
d
 16.3 - 16.3 4.2 12.1 12.1 

160TT + AD P.W. 1.9 8.2 10.2 2.5 7.7 -0.6 

250TT + AD P.W. 4.5 5.9 10.3 4.2 6.2 0.3 

AD sludge + 160T + AD P.W. 5.2 7.5 12.7 2.5 10.2 2.7 

AD sludge + 250T + AD P.W. 6.1 4.9 11.0 4.2 6.8 2.0 

a 
Values were determined according to the HHV of the hydrochars. 

b 
Values were obtained from the experimental BMP potential of the process waters and the relationship 1m

3
 = 35.8Mj (Passos and 

Ferrer, 2014). 
c
 Energy consumed were determined based in energy required to heat water from 25°C to 250°C in 500mL reactor. D Values obtained from Boyle’s equation of the hydrochar.
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6.3. Conclusions 

In conclusion, hydrothermal treatments improved the characteristics of the 

sewage sludge producing hydrochars and process waters rich in soluble 

organic matter and nutrients. Hydrochars from the different digestate sludge 

showed to have poorer production and energy characteristics than the 

hydrochars coming from the different non-AD treated sewage sludge. 

Nevertheless, the hydrochar’s energy characteristics are enough to enhance 

the overall energy production. The organics and nutrients solubilisation 

demonstrated to be feedstock dependant showing better solubilisation to the 

different non-AD sewage sludge in comparison to the different digestate 

sludge. Process waters showed to be suitable option for biomethane 

production, especially process waters coming from the digestate sludge 

which showed a significant improvement in biogas production. Most of the 

potential energy production comes from the hydrochar. Therefore, the energy 

production of the HTP treated sludge was higher when the hydrochar was 

considered than non HTP treated sludge. The integration of the HTPs as 

post-treatment after AD showed to a sustainable option in terms of energy 

production but still more studies needs to be done. 

6.4. Summary 

In this chapter, the potential of hydrothermal processing as a novel 

alternative for sewage sludge treatment was evaluated. Primary, secondary 

and digestate sludge were treated using hydrothermal processes. The effect 

of process temperature was evaluated with regard to product yields, 

biomethane potential and solubilisation of organic carbon and nutrients. 

Tests at 160 and 250°C for 30-minute reaction time were carried out. 

Hydrochar yields ranged from 38 to 68% at 160°C and from 29 and 40% at 

250°C. The soluble fraction of organic carbon increased up to 313.7% in 

primary sludge, 1427.7% in secondary sludge and 292.9% in digestate 

sludge, after thermal treatments. Experimental BMP values showed that 

hydrothermal treatment enhanced methane production in all sludge samples 

processed. The integration of the HTPs as post-treatment after AD showed 

to be the best option in terms of energy production. 
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Chapter 7. Mass and Energy Integration Study of 

Hydrothermal Processing with Anaerobic Digestion of 

Sewage Sludge 

7.1. Introduction 

The use of sewage sludge as a resource for renewable energy generation is 

gaining growing attention. The sewage sludge coming from waste water 

treatment works (WWTs) has been commonly treated by anaerobic digestion 

(AD) due its large organic matter content which leads  the biogas production 

and brings multiple environmental benefits (Aragón-Briceño et al., 2017, Kim 

et al., 2014, Berglund and Börjesson, 2006). It is considered an efficient and 

sustainable technology for sludge treatment and disposal (Pilli et al., 2015). 

The water industries in the UK, generate approximately 800GW/h of 

electrical energy from sewage sludge (Mills et al., 2014). The integration of 

anaerobic digestion into the WWTW has become the most benefit alternative 

for SS treatment because of the energy generation from methane helps to 

reduce the net energy consumption of the overall treatment. According to 

Berglund and Börjesson (2006), 40-80% of the energy content of the biogas 

produced corresponds to the overall energy input in a large-scale biogas 

plant.  Furthermore the inclusion of the AD brings associate benefits as mass 

reduction, odour removal and pathogen reduction (Pilli et al., 2015).  

Nevertheless, one of the main limiting steps of the AD process is the 

solubilisation of the organics through hydrolysis resulting in just one half of 

the organic matter in sewage sludge is susceptible to anaerobic 

biodegradation (Abelleira-Pereira et al., 2015, Hindle, 2013). For that reason, 

the resulting digested sludge (digestate) from the anaerobic digestion still 

contains large amounts of non-easy biodegradable organic matter that can 

be harnessed for additional energy production (Aragón-Briceño et al., 2017). 

Several researchers have studied different pre-treatment techniques 

(thermal, biological, chemical, mechanical, physical and combinations) with 

the aim of enhance the sludge biodegradability but the economic constraints 

for scale them up and commercialize them has been the main downside (Pilli 

et al., 2015).  
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In recent years, some researchers has proposed the hydrothermal 

carbonisation process (HTC) as an alternative to harness better the 

properties from the sewage sludge and reducing the waste generation 

(Aragón-Briceño et al., 2017, Zhao et al., 2014, He et al., 2013). HTC main 

objective is to transform biomass into a carbon-rich product applying heat 

(200-250°C) and pressure during a certain period of time (Biller and Ross, 

2012, Wirth et al., 2015, Danso-Boateng et al., 2015).  The main advantage 

of HTC is that it is carried out in presence of water avoiding the energy-

intensive drying step required for thermal processes (Aragón-Briceño et al., 

2017, Biller and Ross, 2012). Furthermore, the resulting products from the 

HTC are a solid hydrochar that can be used as a soil amender or fuel source 

and a process water rich in carbon and organics that can be used for 

produce biogas (Wirth et al., 2015, Becker et al., 2014, Wang et al., 2010).    

There are some companies who has developed HTC at commercial scale as 

Terranova Energy, SunCoal Industries, AVA-CO2 and Ingelia. According to 

the studies carried on by Child (2014) and Lucian and Fiori (2017), a HTC 

plant might cost from €1.5 up to €10million depending the treatment capacity 

(8,000 to 50,000 tonnes of feedstock).  Nevertheless, most of them focus on 

hydrochar production using mostly lignocellulocic biomass and just few use 

sewage sludge as main feedstock. Moreover, the integration of HTC as a 

post-step after the AD is a recent approach that is still under development 

and some authors suggest that the integration of a hydrothermal treatment 

step into waste water systems are energy positive (Aragón-Briceño et al., 

2017, Mumme et al., 2015).  

Some studies have found that the biogas production of the thermal 

hydrolysis as pre-treatment is better that the hydrothermal treatments as 

post-treatment but the use of hydrochars despite of being considered a low-

grade fuel gives an added value boosting up the energy production up to 

179% compared with the  43% of the thermal hydrolysis. This makes the 

integration of hydrothermal treatment as post-treatment a promising option to 

harness the energy from sewage digestate (Aragón-Briceño et al., 2017). 

Nonetheless, those studies just mention the energetic benefits of integrating 

hydrothermal processes with AD but did not considered other implications as 
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energy consumption, potential economic benefits and mass and energy 

balances (Aragón-Briceño et al., 2017). 

In order to meet with the environmental targets embedded in sewage sludge 

as waste minimisation, valuable products recovering and the overall 

reduction of treatment costs, the challenge is to provide integration studies 

for coupling HTC with the existing infrasctructure and treatment units at the 

WWTWs.  

The main objective of this study is to assess the integration of the HTC with 

AD through mass and energy balances from proposed process 

configurations from different sewage sludge based on the results obtained 

from experimental analyses.  Results are processed to evaluate and 

compare the products yields, waste generation, energy implications and 

potential economic benefits in order to integrate HTC as part of a 

comprehensive sewage sludge management strategy. 

7.2. Material and methods 

7.2.1.Process description 

The overall process of integrating hydrothermal processing with anaerobic 

digestion of sewage sludge is divided in four main processing areas. Firstly, 

the feed (PS, SS or MIX sludge) undergoes mesophilic anaerobic digestion 

processing (37°C) producing digestate (ADPS, ADSS or ADMIX) and biogas. 

The next process is compound by a thickener which concentrate the 

digestate to 15% of solids. Next, the thickened digestate is submitted to 

thermal processing (160 or 250°C) converting it into process water and 

hydrochar. The thermal recovery efficiency from the heat exchanger is 

considered in this stage. Then, a centrifuge is used to separate the 

hydrochar (solid fraction) from the process water (liquid fraction). The 

hydrochar is considered as a potential fuel source based in their HHV but 

non-energy recovery process is considered. On the other hand the process 

water is anaerobically treated at mesophilic conditions in a second reactor 

producing biogas as well. The biogas produced by the first and second 

reactors are mixed combusted in a combine heat power (CHP) unit to 

produce the energy for the system. The energy produced from the biogas is 
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used to cover the energy requirements of the hydrothermal system and the 

exceeding energy is used for other equipment. 

The aim of the process configuration is to integrate the hydrothermal 

treatment as a post-treatment to the anaerobic digestion of sewage sludge. 

The use of different sewage digestate is to compare the energy production 

between them since the primary sludge contains high organic matter. 

Therefore, as stated by Pérez-Elvira and Fdz-Polanco (2012), the best option 

will be to segregate primary and secondary sludge in order to produce more 

energy in the overall system. 

The assumptions adopted as a basis for the mass and energy balance of the 

different scenarios build in this study are presented in Table 7.1.  

7.2.2.Mass and energy balance 

This study is based on the experimental results obtained from laboratory 

experiments of this research carried on at University of Leeds (UK). Six 

scenarios were built with three different sewage sludge (Primary, Secondary 

and Primary-Secondary Mix) treated with two different hydrothermal 

temperatures.  

7.2.2.1.Sludge and anaerobic treated sludge samples  

Primary (PS), secondary (SS) and 1:1 mix of primary-secondary (MIX) 

sludge were obtained as it was described in section 3.2 and processed by 

anaerobic treatment for 30 days in the lab, before further hydrothermal 

processing. Resulting samples were named as follows: digested primary 

sludge – ADPS; digested secondary sludge – ADSS; and digested mix of PS 

and SS – ADMIX.
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Table ‎7.1.- Process assumptions and calculation basis considered for the mass and energy balances of the different scenarios. 

Description Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Data Source Reference 

Sludge to be treated (Kg/h) 1000 1000 1000 1000 1000 1000 Assumed - 

Feeding sludge PS SS Mix PS SS Mix Considered - 

Solids concentration (%DS) 15 15 15 15 15 15 Assumed - 

Anaerobic Digestion temperature (°C) 37 37 37 37 37 37 Experimental Values Section 3.2.5 

Anaerobic Digestion retention time (Day) 21 21 21 21 21 21 Experimental Values Section 3.2.5 

Raw sludge COD removal during AD (%) 38 48 44 38 48 44 Experimental Values Table 6.2 

Process Water COD removal during AD 
(%) 

47 42 37 59 59 60 Experimental Values Table 6.2 

Thermal treatment temperature (°C) 160 160 160 250 250 250 Experimental Values Section 3.6 

Thermal treatment retention time (H) 0.5 0.5 0.5 0.5 0.5 0.5 Experimental Values Section 3.6 

Recovery of heat energy from thermal 
treatment (%) 

85 85 85 85 85 85 Literature 
Shemfe et al. (2015) and 
Sridhar Pilli et al. (2015) 

Methane production of raw sludge (m
3
 of 

methane/Ton of COD) 
129 116 226 129 116 226 Experimental Values Table 6.2 

Methane production of Process Water (m
3
 

of methane/Ton of COD) 
130 207 204 218 212 232 Experimental Values Table 6.2 

Energy required for thermal treatment 
(MJ*Kg

-1
 of dry feedstock) 

3.6 3.6 3.6 5.9 5.9 5.9 Literature 
Aragón-Briceño et al. (2017) 

and Berge et al. (2011b) 

Hydrochar yield 50 55 56 37 40 40 Experimental Values Table 6.3 

Hydrochar HHV (MJ) 12.8 13.2 13.5 12.3 12.2 12.0 Experimental Values Table 6.4 

Solids separator Energy consumption 
(kW/DTon) - Centrifuge 

108 108 108 108 108 108 Literature Liu et al. (2013) 

Energy required for Mixing in the AD 
(kWh/Dton) 

18.3 18.3 18.3 18.3 18.3 18.3 Literature Berglund and Börjesson (2006) 
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7.3. Results and discussions 

7.3.1.Mass balance 

The experimental data obtained from the lab experiments and considerations 

were used for assess the mass and energy balance of the different thermal 

treatments integrated to anaerobic digestion and built the scenarios shown in 

Figure 7.1 and Figure 7.2. Six scenarios were built, compared and 

assessed considering three different sewage sludge (PS, SS and Mix) 

treated at two different temperatures (160 and 250°C). For this study 1000Kg 

as initial amount of sewage sludge was considered with 15% w/w of initial 

solid concentration. The initial solids concentration considered for the 

scenarios was based on the minimum solid concentration that shows positive 

energy balance. 

In Table 7.2 it is shown the COD and solid reduction of the proposed 

scenarios. The percentage of solids removed comes from the sum of solids 

volatilized during the thermal treatment and solids converted to biogas during 

the AD treatment. The results showed that higher thermal treatments trended 

to reduce more solids (See Table 7.2). The scenarios with the 160°C 

hydrothermal treatment integrated showed a solids reduction between 47 to 

56% and the scenarios with the 250°C hydrothermal treatment integrated 

presented between 62 to 68%. The PS and MIX scenarios did not show 

significantly differences in terms of solids reduction. However the secondary 

sludge’s scenarios, regardless the temperature treatment, presented the 

lowest percentage of solids removal with 47% at 160°C thermal treatment 

and 62% with 250°C thermal treatment. 

The overall COD reduction comes from the sum of COD volatilized during 

the thermal treatment and COD converted to biogas during the AD treatment. 

During the thermal treatment, most of the COD volatilized is normally 

converted into CO2 (Zabaleta et al., 2017). The COD reduction showed a 

similar trend as the solids reduction where higher temperatures presented 

higher reduction. The Mix sludge presented the higher COD reduction with 

58% at 160°C and 66% at 250°C thermal treatments. This was followed by 

the PS and SS where the COD reduction were 56 and 46% at 160°C and 61 
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and 51% at 250°C respectively. The COD remained within the process water 

after the AD treatment represented only the 4-7% for the all scenarios with 

160°C thermal treatment and 5-8% for all the scenarios with 250°C thermal 

treatment of the overall intial COD concentration. This means that most of 

the COD degraded is used for energy generation either from biogas or 

hydrochar. Moreover, the remaining liquid waste (AD processed water) might 

be used for irrigation due its high amount of nutrients or reused into the 

thermal treatment if more liquid is required for co-processing the sewage 

sludge with other biomass. 

In Table 7.2 is shown the methane and hydrochar production of proposed 

scenarios. The methane production showed not to be related with the COD 

and solids reduction. Scenarios 1 and 4, that used PS as initial feedstock, 

presented the best methane production with 57 and 67.5% respectively. This 

might be due the high organic content in the feedstock that has no receive 

any previous treatment. On the other hand the SS’s scenarios (2 and 5) 

presented lower methane production when both thermal treatments are 

integrated with 20.3 and 22.7% (160 and 250°C respectively). This might be 

due the previous biological treatment received which makes the COD less 

available for methane conversion.  

The amount of hydrochar produced during the hydrothermal treatment varied 

in all the scenarios because its feedstock and process conditions 

dependence.  Scenarios 1 to 3 presented higuer hydrochar production than 

scenarios 4 to 6. This is because as the temperature increase, less 

hydrochar is produced (Danso-Boateng et al., 2015). Moreover, the PS´s 

scenarios showed the lowest hydrochar production with 75.6 and 54.8Kg in 

scenarios 1 and 4 respectively. The MIX and SS’s scenarios presented 

similar hydrochar production with 82.5 and 83.6 Kg in scenarios 2 and 3 

when the treatment temperature was 160°C and 59.7 and 60.6Kg in 

scenarios 5 and 6 when the treatment temperature was 250°C respectively.
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Table ‎7.2.- Mass balance of the proposed scenarios. 

 
Sludge 

Process 
Temperature (°C) 

%Solids 
removed 

%COD 
removed 

Methane produced/ton of 
Sludge (m

3
) 

Hydrochar 
Produced (Kg)/ton 

of sludge 

Scenario 1 PS 160 56% 56% 57.0 75.6 

Scenario 2 SS 160 47% 46% 20.3 82.5 

Scenario 3 MIX 160 56% 58% 21.4 83.6 

Scenario 4 PS 250 68% 61% 67.5 54.8 

Scenario 5 SS 250 62% 51% 22.7 59.7 

Scenario 6 MIX 250 68% 66% 25.0 60.6 
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Scenarios 3 and 6 showed the most suitable for integrate HTC with AD for 

those existing AD plants due it means that there would be less modifications 

on the current WWTWs configurations. However, in terms of by-products 

production, the different approaches showed in scenarios 1 and 4 are the 

best options and can be considered as an alternatives for smaller plants 

without secondary treatment. On the other hand the approaches from 

scenarios 2 and 5 are not convenient due its low overall biogas and 

hydrochar production and quality. 

One of the most promising process for phosphorus recovery in the waste 

water sector is through formation and precipitation of ammonium magnesium 

phosphate (struvite) (Molinos-Senante et al., 2011). In Table 7.3 is 

presented the nitrogen and phosphorus balance and the potential struvite 

production per ton of sludge of the different scenarios. Some authors have 

demonstrated that during the thermal treatment there is a nitrogen and 

phosphorus solubilisation (Aragón-Briceño et al., 2017, Dai et al., 2015, Ekpo 

et al., 2015). Most of the nitrogen extracted is contented within the liquid 

fraction. The scenarios 2 and 5 extracted the highest nitrogen concentration; 

this due the SS that is mainly biomass from the aerobic treatment which their 

main function is to remove nitrogen and phosphorus from the waste water. 

Furthermore, most of the nitrogen solubilized during thermal treatment was 

ammonia, which may be used for struvite precipitation. 

On the other hand, most of the phosphorus remained within the solid 

fraction. The phosphorus extraction ranged from 0.03 to 0.07Kg per ton of 

sludge in those scenarios (1 to 3) with 160°C treatment and 0.8Kg per ton of 

sludge in those scenarios (4 to 6) with 250°C treatment. The majority 

phosphorus extracted was inorganic phosphorus (PO3
-3) ranging from 50 to 

75% of the total phosphorus extracted. Table 7.3 shows the potential struvite 

production of the different proposed scenarios. The highest struvite 

production were presented in scenarios 4 to 6 which corresponds to those 

treated with highest reaction temperature. 
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Table ‎7.3.- Nitrogen and Phosphorus balance and struvite production of the proposed scenarios. 

  

*NitrogenSol 

(Kg) 
*NitrogenLiq 

(Kg) 
*Ammonia 

(Kg) 
*PhosphorusSol 

(Kg) 
*PhosphorusLiq 

(Kg) 
*PO3 
(Kg) 

*Mg Addition 
(Kg) 

*Struvite 
Production (Kg) 

Scenario 1 1.8 3.8 3.1 1.0 0.03 0.02 0.00 0.02 
Scenario 2 2.6 5.8 4.6 0.8 0.07 0.04 0.01 0.04 
Scenario 3 2.3 4.8 3.8 0.8 0.04 0.02 0.00 0.02 

Scenario 4 1.3 4.6 3.7 0.7 0.08 0.06 0.01 0.06 
Scenario 5 1.9 6.8 4.7 0.6 0.08 0.04 0.01 0.04 
Scenario 6 1.6 5.7 4.7 0.6 0.08 0.05 0.01 0.05 

                  

*per ton of sludge 

   

a) 
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b) 
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c) 

 
 

Figure ‎7.1.- Mass and energy balance scenarios of the a) Primary Sludge, b) Secondary Sludge and c) Mix Sludge at 160°C thermal treatment. 
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a) 
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b) 
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c)  

 

 

Figure ‎7.2.- Mass and energy balance scenarios of the a) Primary Sludge, b) Secondary Sludge and c) Mix Sludge at 250°C thermal treatment.
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7.3.2.Energy balance 

In Table 7.4 a summary of the energy balance from the different porposed  

scenarios are presented. The energy production coming from methane were 

higher in those scenarios with the highest reaction temperature treatment. 

The scenarios 1 and 4, where the PS was treated, presented the highest 

energy production (221.1kWh and 261.6kWk respectively) because of their 

methane production. These were followed by scenarios 3 and 6 (MIX) which 

produced 82.9 and 96.8kWh respectively, and scenarios 1 and 5 (SS) which 

produced the least energy from biogas with 78.8 and 88kWh respectively.  

The energy production from methane showed to be enough to cover the 

energy needs of the system proposed scenarios (See Table 7.4). Most of the 

proposed scenarios presented a positive energy balance with exception of 

scenario 5. Scenarios 1 and 4 showed to be a suitable option in terms of net 

energy balance, producing extra 146.7 and 172.5 kWh per ton of sludge 

treated, followed by scenarios 3, 6 and 2 with 8.5, 7.6 and 4.4 kWh extra 

respectively. The extra energy produced can be used either for the total 

WWTWs energy needs or for selling.  

Despite of hydrochar’s characteristics from the different sewage sludge were 

like a low-grade fuel, the energy production was enhanced with the inclusion 

of the energy that come from the hydrochar. According to Aragón-Briceño et 

al. (2017), between 56 to 59% of the energy produced comes from the 

hydrochar. The scenarios with lower process temperature (1, 2 and 3) 

showed more potential energy from the hydrochar with 149.6 , 169.6 and 

176.4 kWh per ton of sludge in comparison with higher process temperature 

scenarios (4, 5 and 6) with 82.4, 90.5 and 89.7 kWh per ton of sludge. This is 

because the hydrochar production are higher at lower process temperature 

scenarios compared with scenarios with higher process temperature. The 

hydrochar fraction represented a contribution on the overall energy 

production between 40 to 68% for scenarios with 160°C treatment and 

between 24 to 51% for the scenarios with 250°C treatment. Therefore, the 

inclusion of the hydrochar as an energy source was directly reflected on the 

net energy balance which would contribute to the energy up to 97% for 
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scenarios with 160°C treatment and up to 100% for the scenarios with 250°C 

treatment. In previous studies, it has been demonstrated that the 

implementation of the thermal treatment at the end of the process favours 

the overall energy  production up to 179% in comparison with the traditional 

AD (Aragón-Briceño et al., 2017).  Nevertheless, more mass and energy 

balance calculations and considerations regarding to solids combustion need 

to be done in order to obtain an energy estimation of the hydrochar as a fuel 

source.
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Table ‎7.4.- Energy balance of the proposed scenarios. 

  

Sludge Process Temperature (°C) 
*Energy 

consumed 
(kWh) 

*Energy 
produced from 
Methane (kWh) 

*Net Energy 
balance (kWh)   

*Potential 
Energy from the 
hydrochar (kWh) 

*Net Energy 
balance (kWh) / 
Hy considered   

Scenario 1 PS 160 74.4 221.1 146.7 149.6 296.3 

Scenario 2 SS 160 74.4 78.8 4.4 169.6 173.9 

Scenario 3 MIX 160 74.4 82.9 8.5 176.4 284.6 

Scenario 4 PS 250 89.2 261.6 172.5 82.4 254.8 

Scenario 5 SS 250 89.2 88.0 -1.2 90.5 89.3 

Scenario 6 MIX 250 89.2 96.8 7.6 89.7 97.0 

              

*per ton of sludge 
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7.3.3.Economics  

In United Kingdom the tariff rates for electricity exportation from renewable 

sources is established by the Office of Gas and Electricity Markets (Ofgem, 

2018). This is a non-ministerial government department and an independent 

National Regulatory Authority, recognised by EU Directives and governed by 

the Gas and Electricity Markets Authority (GEMA). The tariff rates for 

anaerobic digestion depends on the plant capacity for electricity generation. 

In this study, the lowest tariff of 4.73 p/kWh was considered as the based 

tariff for the electricity produced by the methane (Ofgem, 2018). The same 

tariff was considered for potential electricity production from the hydrochar 

since there is not a clear information about it.   

In table 7.5 the summary of economic benefits of integrate HTC with AD are 

shown. The potential benefit from methane production ranged from £0 to 

£8.2 per ton of sewage sludge treated. The economic analysis for the PS 

scenarios (1 and 4) presented the highest benefit and showed an increase 

when the reaction temperature is higher (£6.9 per ton of sludge at 160°C and 

£8.2 per ton of sludge at 250°C).  The MIX scenarios (3 and 6) showed a 

benefit of £0.4 per ton of sludge, regardless the reaction temperature. The 

SS scenario 2 had the benefit of £0.2 per ton of sludge at 160°C reaction 

temperature and £0 per ton of sludge at scenario 5 because its negative 

balance.  

The benefit from the hydrochar production was slightly higher compared with 

the biogas production. The benefit showed to and increase when the reaction 

temperature is lower. Although, it seems that at 250°C reaction temperature 

the benefit is the same for the different sewage sludge (£4 per ton of sludge). 

The potential benefit from the hydrochar production might be increased if the 

co-processing with other feedstocks is considered in order to increase the 

quality properties of the hydrochar (Zhai et al., 2017). 

For this study, the price of the struvite was considered based on that average 

price for the struvite in the fertilizer market is £424.6 per ton (Molinos-

Senante et al., 2011).The potential benefit per ton of sludge ranged from £8 

to £16  when 160°C treatment was applied and between £18 to £23 when 
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the 250°C was applied. Nonetheless, despite of the cost of phosphorus 

recovering as struvite can be expensive ranging from £1.8 up to £7.1 per kg 

of P recovered, the struvite production from the process waters still showed 

to be a good opportunity area for increase the overall profit, especially if 

feedstocks with high phosphorus content are co-processed with the sewage 

sludge (Mayer et al., 2016, Molinos-Senante et al., 2011).  
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Table ‎7.5.- Potential economic benefits of integrating HTC with AD. 

  

Sludge 
Process 

Temperature (°C) 

Electricity production profit 
from methane per ton of 

sewage sludge (£) 

Electricity production profit 
from Hydrochar per ton of 

sewage sludge (£) 

a
Struvite production profit 

per ton of sewage sludge (£) 
Total profit per ton sludge (£) 

Scenario 1 PS 160 6.9 7.1 8.2 22.2 

Scenario 2 SS 160 0.2 8.0 16.1 24.4 

Scenario 3 MIX 160 0.4 8.3 8.1 16.9 

Scenario 4 PS 250 8.2 3.9 23.4 35.5 

Scenario 5 SS 250 0 4.3 18.0 22.3 

Scenario 6 MIX 250 0.4 4.2 21.0 25.6 

  
  

        

a
exchange rate £1=€1.1197 (Bank of England, 2018).
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In 2010, the average sewage sludge generation per person in UK was 

22.5kg of dry sewage sludge annually (DEFRA, 2012b, Office for National 

Statistics, 2013). Considering that a large size WWTW provides services to a 

100,000 population, which means a production of 15,000 ton of sewage 

sludge annually (15% of dry solids). In addition, according to Lucian and Fiori 

(2017) the price of an HTC plant treating 20,000 tons a year might reach 

£1,349,107. Considering these facts, the benefits from the integration of and 

HTC plant into a WWTW might be estimated. 

The economic benefit from biogas production would be up to £122,355, from 

hydrochar production would be up to £125,124 and from struvite production 

(without considering the price of Mg addition and pH regulation process) 

would be up to £351,569 per year depending the scenario (See Table 7.6). 

The scenarios where the 250°C treatment was applied showed the highest 

potential profit with £532,358 and £386,037 for scenarios 4 and 6 

respectively (See Table 7.6). 

To determine the return of investment time (ROI), the annual maintenance 

was considered (8% of the total cost of the plant) and a 5% of annual interest 

considered that the loan comes from an EU scheme (Lucian and Fiori, 2017). 

Considering these aspects, the net profit decreases significantly (see Table 

7.6). The ROI varied from 5 to 17 years for the energy positive scenarios. 

The PS and Mix sludge’s scenarios with the higher temperature process had 

lower ROI time with 5 and 10 years respectively. 
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Table ‎7.6.- Potential economic benefits of scaling up the scenarios. 

 Sludge Process Temperature (°C) 
*Profit per year of a WWTP 

supplying population of 
100,000 (£) 

**Maintenance 
cost per Year 

(£) 
Net Profit per year (£) ***ROI (years) 

   

   
 

Scenario 1 PS 160 333,637 107,928.57 225,708 17 

Scenario 2 SS 160 365,598 107,928.57 257,670 12 

Scenario 3 MIX 160 253,042 107,928.57 145,114 NA 

Scenario 4 PS 250 532,358 107,928.57 424,430 5 

Scenario 5 SS 250 333,777 107,928.57 225,849 17 

Scenario 6 MIX 250 384,037 107,928.57 276,109 10 

 

  

   
 

* Production of 15,000 ton of sludge with 15% of Solids per year. 

**Considered on 8% of the total cost of a 20,000 ton HTC plant with a cost of (Lucian and Fiori, 2017). 

**Considered as a Loan from the EU with a 5% annually interest.  
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The Scenarios 6 and 4 showed to be the most suitable scenarios in overall 

terms because of the organic matter removal, energy harnessing and 

economic feasibility. However many tests and considerations need to be 

done for have a complet understand about the HTC-AD integration. For 

instance, the cost of WWTW´s modifications should be considered and 

included and capacity of the WWTW´s. Furthermore the inclusion of a CHP 

unit and turbine need to be considered if the hydrochar produced are 

planned to be used as an energy source.   

7.4. Conclusions 

Hydrothermal carbonisation showed to be a suitable option for integration 

with anaerobic digestion. Higher temperatures (250°C) seems to have more 

economically and environmentally benefits. Scenarios that involved primary 

and Mix sludge showed to be the most sustainable options because of the 

organic matter removal, energy harnessing and economic feasibility, but still 

many aspects have to be considered as the cost of WWTW´s modifications 

or the addition of the complementary equipment for the hydrochar use as an 

energy source. Although co-processing feedstocks with AD sludge need to 

be considered as an option due it might enhance the energy properties of the 

liquid and solid products and therefore the overall profit. Further research is 

needed, incorporating real data available for HTC and AD (carried out 

especially using large scale plants) in terms of operation and energy use to 

provide a more detailed analysis for developing a standard cost benefit 

analysis of the intended integrated approach. 

7.5. Summary 

In this chapter, the potential of integration of HTC with AD for sewage sludge 

treatment was evaluated. Mass and energy balances were carried out from 

six proposed process configurations from different sewage sludge (pirmary, 

secondary and 1:1 Mix) in order to evaluate the waste generation, nutrients 

potential fate, net energy production and potential profit. The results showed 

the HTC at Higher temperatures (250°C) seems to have more economic and 

environmental benefits. Scenarios that involved primary and mix sludge 
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seemed to be the most suitable options in terms of the organic matter 

removal, energy harnessing and economic feasibility. 
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Chapter 8. General Discussions 

8.1. Introduction 

In recent years, sewage sludge management has been considered one of 

the biggest concerns in the wastewater industry for the environmental 

impacts linked to its high content of pollutants. Hydrothermal Treatments are 

a good option for converting wet biomass such as sewage sludge into high-

value products. The digestate following anaerobic treatment of sewage 

sludge has high organic matter content despite initial conversion into biogas 

and is normally spread on land or composted; however, this does not fully 

harness its full potential. In fact, sewage sludge digestate is a potential 

feedstock for hydrothermal processing and this route may produce higher 

value products. According to Mumme et al. (2015) and Sridhar Pilli et al. 

(2015)  the integration of the HT step into the waste water systems is 

suggested to be energy positive. However, HT as a post-treatment step after 

AD is an approach that are still under research and development, but 

preliminary findings have shown that this approach could be even more 

effective with regard to overall energy production from sewage sludge 

(Aragón-Briceño et al., 2017). Therefore, further research on process 

conditions and overall benefits from hydrothermal processes as a post-

treatment step after AD is still needed. 

In this proposed research project, it was considered that the use of 

Hydrothermal Treatments is not only a suitable option to effectively handling 

sewage sludge, considering future vetoes on sludge-to-land practices, but 

also we believe that they can help to obtain valuable by-products. 

The study of hydrothermal processes integration with anaerobic digestion 

based in wastewater treatment have included several laboratory 

observations and experiments in four areas: (a) Hydrochar valorisation, (b) 

Process water valorisation, (c) Nutrients fate and (d) Feasibility of 

hydrothermal treatment integration with AD. This chapter summaries the new 

findings found as part of the research work in these four areas, which will 

contribute to improve the knowledge about hydrothermal treatments on 

sewage sludge. 
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8.2. Hydrochar valorisation 

The production of hydrochar through HTC has the potential to become an 

environmental friendly conversion process. Hydrochar is a carbon-rich solid 

that has been reported to have rich nutriment properties for terrestrial plants 

and has been proposed as a source for soil amendment and also has the 

potential to be co-fired with coal. The hydrochar is a novel material that has 

been probed in many applications as water purification material, fuel cell 

catalysis, energy storage, CO2 sequestration, drug delivery and gas sensors 

(Biller and Ross, 2012, Danso-Boateng et al., 2015, He et al., 2013). 

According to Kruse and Dahmen (2018) the studies related with hydrochar 

and HTC have suffered a notorious development since the past years, which 

highlights the importance of developing a market for hydrochar with the 

emphasis on integration HTC within the “bio-refinery” concept. This 

represents a good opportunity for all the biological treatments such as AD 

that can be benefited by the production of hydrochars from HTC.  

The revalorisation of the sewage sludge and especially the digestate, is one 

of the key points on this research. Kim et al. (2014) demonstrated that 

hydrothermal carbonisation can be used to convert sewage digestate into a 

solid fuel by increasing the high heating value and carbon content in the 

resulting hydrochar. Hydrochars have H/C and O/C ratios comparable to that 

of low-grade coal but a higher calorific value that such coals, for that reason 

can be used as a fuel source. Furthermore, the addition of hydrochars can 

boost up to 179% the energy production in the HT-AD system if they are 

used as an energy source (Aragón-Briceño et al., 2017). In this regard, this 

research focused mainly on assessing the production, energy properties, 

carbon and nutrient content of the hydrochars.  

In the first objective, the effect of process temperature on the hydrochar 

characteristics coming from digestate was studied as a first step towards the 

evaluation of the new approach which is the integration of hydrothermal 

treatments as post-treatment. According to Danso-Boateng et al. (2015) and 

Ekpo et al. (2015), hydrochar yields are influenced by reaction temperature 

and time. Hydrochar production decrease with increasing temperature and 

reaction time. It was found that the highest yield of hydrochar was obtained 
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at 220°C (73.4%), followed by the yields reported at 160°C (68.8%) and at 

250°C (56.8%).  

Hydrothermal treatments showed a carbon densification. The carbon content 

of the hydrochars obtained after hydrothermal treatment increased from 

34.8% of the original digestate to 35.5 and 38% at 160°C and 250°C 

treatments respectively and decreased to 33.2% after the 220°C treatment. 

Similar results were reported by Danso-Boateng et al. (2015) (36.63-39.24%) 

and Berge et al. (2011) (32.6%) for primary and digestate sludge. It is 

important to highlight that it is sometimes challenging to make direct 

comparisons between hydrothermal treatments conducted by different 

researchers due to differences in reactor configurations, reaction conditions 

and solid loadings, all of which have a large influence on the characteristics 

of the products during carbonisation (Berge et al., 2011).  

The HHV of hydrochars is mostly influenced by the temperature and increase 

as the reaction temperature increases (Danso-Boateng et al., 2015); 

however, this is feedstock dependent and not true for all feedstocks (Smith et 

al., 2016). The HHV of the original digestate is increased from 16.61 Mj kg-1 

to a maximum of 17.80 Mj kg-1 when the maximum reaction temperature is 

applied, representing only a marginal energy densification between 2 to 8% 

compared with other studies where the energy densification achieve values 

up to 28% for hydrochars coming from primary sludge. However, it has to be 

taken into account that digestates have a lower carbon content compared 

with primary sewage sludge due to anaerobic digestion in which organic 

carbon is released during its conversion into biogas (CH4 and CO2). In this 

case, the HHV of the hydrochars generally increased but only slightly. On the 

other hand the HHV of the hydrochar coming from the 220°C treatment was 

lower than the original feedstock. Many authors have shown a reduced 

heating value for hydrochars produced from certain feedstocks compared to 

the original feedstocks (Berge et al., 2011a; Zhang et al., 2014). The HHV of 

the hydrochars produced are within a similar range to those reported by 

Danso-Boateng et al. (2015) for digestate and for wastewater solids and 

sludge (17.2 - 18.4 Mj kg-1). This indicates that for sewage derived solids and 

digestates, the energy densification is quite low compared to other 
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feedstocks and shows that a significant amount of the energy in the original 

feedstock is in the soluble water fraction (process waters), which may be 

recovered via anaerobic digestion. Furthermore the hydrochars produced 

can be classified as a low-quality fuel due to its HHV characteristics and their 

high ash content. 

Since the hydrochar quality from sewage digestate improved as the reaction 

temperature increased, the second objective was to assess the influence of 

solid loading on hydrochar characteristics from sewage digestate treated a 

250°C. The hydrochar production generally increased with increasing solid 

loading in agreement with the results reported for food waste by Zabaleta et 

al. (2017). The hydrochar yields ranged from 67.9% at 2.5 wt% loading to 

75.6% at 25% loading. The yields obtained in this study are similar with the 

values reported by Danso-Boateng et al. (2015) (60.5 to 81.1%) although 

slightly  higher than the yield reported by Aragón-Briceño et al. (2017) 

(56.8%) for a different sewage sludge. 

The carbon content of the hydrochars increase when increasing solid loading 

rate but there is only a slight increase in carbon content compared to the 

original feedstock from 33.3 to a maximum of 34.4% of the maximum solid 

loading percentage (30%). Previous reports have observed the carbon 

content in the hydrochar from digestate within a range from 10 to 39% 

(Aragón-Briceño et al., 2017, Danso-Boateng et al., 2015, Ekpo et al., 2015, 

Berge et al., 2011a). However carbon yields are highly dependent upon 

feedstock composition and the process conditions (temperature, pressure, 

solid loading, etc.) (Funke and Ziegler, 2010). The carbon content of the 

hydrochars is reduced after HTC compared to the feedstock, which is 

unusual and only observed for certain feedstocks such as sewage digestate. 

The HHVs of the hydrochars are only slightly higher than the original 

feedstock and increased from 14.4 MJ kg-1 to 16.5 MJ kg-1 at 30 wt% solid 

loading. This low level of energy densification is typical for feedstocks such 

as sewage digestates which tend to result in larger levels of solubilisation of 

the organic carbon (Danso-Boateng et al., 2015). There is a slight increase in 

HHV as solid loading increases and this corresponds to a higher carbon 

content in the hydrochar product as the loading increases. The HHV of the 
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hydrochars produced were higher compared with the values reported by 

Berge et al. (2011a) for digestate (13.7 MJ Kg-1) and lower than the values 

reported by Danso-Boateng et al. (2015) (17.2 – 18.4 MJ Kg-1) and Aragón-

Briceño et al. (2017) (17.8 MJ Kg-1).  

In oder to provide a smooth integration for coupling HTPs with existing 

infrastructure and treatment units at waste water treatment works, the third 

stage of this project focused on investigate the changes suffered on 

hydrochars from sewage sludge samples collected along treatment process 

units in a conventional WWTW, when subjected to anaerobic digestion and 

hydrothermal processes at different temperatures. Hydrochar production 

varied from 38 to 69% for sludge treated at 160°C and from 20 to 40% for 

sludge treated at 250°C. The SS had the lowest hydrochar yields in both 

thermal treatments at 160 and 250°C (38 and 30% respectively) followed by 

MIX (47 and 35% respectively) sludge and PS (69 and 39%). When the 

different sludge were submitted to AD treatment before the hydrothermal 

treatment, the hydrochar production increased for the SS and MIX sludge at 

both thermal temperatures and reduced for the PS digestate that was slightly 

lower than the other digestates. The yields obtained in this study were lower 

in comparison with other values reported for hydrochar coming from sewage 

sludge that ranged between 57 to 81.1% (Aragón-Briceño et al., 2017, Ekpo 

et al., 2015, Danso-Boateng et al., 2015). This suggests that the anaerobic 

digestion prior the thermal treatment helps to improve the hydrochar 

production for the SS and MIX sludge and has the opposite effect for the PS. 

The carbon content varied depending of the sewage sludge treated. The PS 

carbon content after the 160°C treatment did not show any change (40.3%) 

compared with the untreated sludge. On the other hand after the 250°C 

treatment the carbon content in the PS sludge was reduced to 37.4%. The 

ADPS sludge presented lower carbon content than the PS due the prior 

biological treatment received (31.1%). Unlike the PS, the ADPS´s carbon 

content was reduced to 28.9 and 27.3% after 160 and 250°C treatment 

respectively. The SS carbon content (33.5%) showed an slightly decrease 

after the 160°C treament (33.1%), but after the 250°C treatment there was 

an increase in the carbon content (36.1%) showing carbon densification. The 
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ADSS carbon content (32.2%) suffered a reduction after the 160 and 250°C 

treatments (29.4 and 27.5% respectively). The Mix Sludge carbon content 

(35.5%) suffered an increase after 160 and 250°C thermal treatments (37.5 

and 35.8% respectively). The ADMIX carbon content (30.9%) presented a 

reduction after 160 and 250°C treatments (29.9 and 26.6%). The carbon 

reduction in hydrochars from different sewage sludge is similar to the 

observed by Ekpo et al. (2015) where the sewage digestate suffered a 

reduction up to 8% after thermal treatment. The carbon content of the 

different sewage sludge are similar to those reported by Aragón-Briceño et 

al. (2017) (33- 38%), Danso-Boateng et al. (2015) (36.6-39.2%) and Berge et 

al. (2011a) (32.6%). The overall carbon reduction among the hydrochar from 

different sewage sludge showed that there was a solubilisation reflected on 

the TOC and COD concentration increase of the process waters.  

The High Heating Value (HHV) of hydrochars coming from the non-AD 

treated sludge generally increased with exception of the PS. HHVs of SS and 

MIX after hydrothermal treatment were higher than their original sample 

without treatment with a maximum of 16.5 and 17.5 Mj kg-1 respectively.  

The AD prior the thermal treatment affected the hydrochar quality when the 

digestate is submitted to thermal treatment. The different sewage digestates 

and the raw PS after the thermal treatment showed a HHV reduction 

between 4 to 14%. Hydrochar´s HHV are similar with the values reported by 

Berge et al. (2011a) for anaerobic digestion waste (13.7 Mj Kg-1), Danso-

Boateng et al. (2015) (17.2 – 18.4 Mj Kg-1) and Aragón-Briceño et al. (2017) 

(14.3 – 17.8 Mj Kg-1). The energy densification of sewage derived solids and 

digestates is quite low (from 0.90 to 1.19) compared to thermally treated 

swine and chicken manure (1.27 and 1.49 respectivelty) and indicates that a 

significant amount of the energy in the original feedstock is accumulated in 

the process waters(Ekpo et al., 2015). 

In this research work, the application of the HTC to sewage sludge showed 

to be a feasible option to revalorize it producing hydrochars rich in carbon 

and with good energy value. It was also demonstrated that the production of 

the hydrochar, carbon content and energy properties at high temperatures 

(250°C) are improved when the solids loading of the thermal treatment is 
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increased. The AD prior the thermal treatment reduce the quality of the 

hydrochars significantly but the production of the biogas is a benefit that has 

to be considered. However due hydrochar characteristics depend on the 

feedstock composition, temperature and solids loading conditions, more 

studies focused on the improvement of the quality of hydrochars from 

sewage sludge need to be done. 

8.2.1.Process water valorisation 

Hydrothermal processing also generates a liquid by-product or “process 

water" rich in organic compounds that cannot be directly disposed into the 

environment, but that has been proved to be suitable for methane production 

via anaerobic digestion (Almeida, 2010, Becker et al., 2014, Kim et al., 2014, 

Stemann et al., 2013, Wirth et al., 2015, Zhao et al., 2014). However as it 

was mentioned before, the specific hydrochar and process water 

characteristics are highly dependent on the choice of feedstock and the 

process parameters (Zabaleta et al., 2017, Wirth et al., 2015). Therefore, the 

properties of the process waters need to be measured in order to determine 

the potential for using as a feedstock for biogas production. 

The integration of HTC into a wastewater system as post-treatment step after 

AD offers a potential energetic and economic benefits for dewatering 

digestate producing a bio-coal that can be used in a coal fired power plant 

and enhanced biogas production by recycling process water into the AD unit 

(Aragón-Briceño et al., 2017).  

For that reason, in this research project, the methane potential was 

considered one of the most important characteristics to consider due its 

potential for energy production. The influence of the temperature conditions 

during the HTC on the process water characteristics was studied in the first 

objective. This aim was to determine the suitability of process waters for 

anaerobic digestion depending on the temperature of thermal treatment. The 

organic carbon and COD solubilisation were two of the most important 

factors that were considered.  

The increasing of soluble organic carbon and COD concentration within the 

process waters is given due the hydrolysis of organic material during the 
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thermal treatment (Wirth et al., 2015). The concentration of soluble COD 

increased 7-fold after hydrothermal treatment, increasing from 1,843 mg/L in 

the initial digestate, to 12,992 mg/L after 220°C treatment; 12,642 mg/L after 

160°C treatment; and 12,164 mg/L after 250°C treatment. The same trend is 

observed for TOC concentrations which shows a 10-fold increase from 461 

to 4,879 mg of TOC per litre. This demonstrates that for this type of 

feedstock, a large degree of solubilisation occurs following hydrothermal 

treatment, in agreement with previous reports from similar treatments (Ekpo 

et al., 2015, López Barreiro et al., 2015). 

The BMP assays were carried out using different process waters in order to 

evaluate their suitability for anaerobic digestion and biogas production. The 

COD degradation efficiency was 69.1%, 79.6% and 63.8% for the 160°C, 

220°C and 250°C process waters respectively. This proves that the organic 

fraction solubilised within the process waters can be degraded by anaerobic 

digestion. These figures are lower than the results obtained by Wirth et al. 

(2015), who reported COD degradation efficiencies between 84 and 107% in 

process waters from anaerobically digested sewage sludge after HTC at 

200°C for 6 hours. 

Previous studies using hydrothermal processes as a pre-treatment for 

anaerobic digestion have shown an increase in methane yields in BMP tests, 

due the additional solubilisation of organic matter achieved via thermal 

hydrolysis (Keymer et al., 2013). After hydrothermal treatment, the BMP 

values for process waters following hydrothermal treatment increased 

between 29% and 58% compared with the control sample (175 mL of CH4/ g 

of COD). The highest methane yields values were for the processed water of 

220°C treatment (277 mL of CH4/ g of COD) followed by 160°C treatment 

(260 mL of CH4/ g of COD) and 250°C treatment (225.8 mL of CH4/ g of 

COD). However, the BMP result of the 250°C treatment was considered 

underestimated since there was not a full consumption of VFAs during the 

assay time.  

Another important point to discuss is the biodegradability of the process 

waters. The biodegradability values provide more robust data for predicting 

overall enhanced energy recovery, which can be used to better calculate and 
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assess energy balances for integrating AD and HTC at WWTWs. The 

process waters from 160 and 220°C treatments had 96% of biodegradability 

compared with the 56% of the process waters from 250°C treatment. Based 

on the results in this study (1st objective), it is likely that lower temperature 

hydrothermal treatment is more advantageous than higher temperature for 

processing sewage sludge digestate. Nevertheless, the value of 

biodegradability in the digestate treated at 250°C does not represent the 

complete potential as this test was still generating methane after 21 days so 

this result may underestimate the highest BMP.  

Since the best hydrochar characteristics were obtained at 250°C treatment, 

in objective 2 this process temperature was selected to evaluate the effect of 

solids loading on the process waters characteristics. Furthermore, the levels 

of water soluble products generally increase with reaction severity due the 

combination of solubilisation of inorganics and increase in production of 

soluble organics hydrocarbons that may favor the biogas production (Ekpo et 

al., 2015, Keymer et al., 2013, Qiao et al., 2011).  

The solubilisation of carbon is due hydrolysis, releasing inorganic and 

organic compounds such as acetic acid, butanoic acid, alkenes, phenols, etc 

(Danso-Boateng et al., 2015). Therefore, it is reflected in the increasing 

amount of COD and TOC measured in the process waters. The COD 

solubilisation ranged between 240 to 360mg of COD per gram of feedstock 

processed and between 100 and 140mg of Carbon per gram of feedstock 

processed. That corresponds to an increase in solubilisation from 3 to 4.5 

times higher than the initial sample of sewage digestate based on COD and 

between 4 to 6 times higher based on the TOC (80mg of COD per gram of 

feedstock and 20mg of Carbon per gram of feedstock). However the 

solubilisation is improved when the solid loading is lower than 15% and the 

solubilisation becomes constant beyond 15% of solid loading. A similar trend 

is seen for food waste at different solid loadings by Zabaleta et al. (2017) in 

which studies, the ratio between TOC and the dry mass of the feedstock 

reduced as the solid loading increased. This influence of solubility is 

important as it is possible that additional washing of hydrochars may liberate 

additional soluble hydrocarbons into the process water, this in turn may 
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improve the properties of the hydrochars for further applications. Moreover, 

the solubilisation of the organics in process waters is a factor that must be 

considered when the anaerobic digestion is applied as a treatment route to 

avoid to surpass the limits that can inhibit methanogenesis due to over-

acidification. 

The effect of the solids loading on process waters BMPs showed a slight 

reduction in methane yield as the solid loading increases (up to 10%). This 

may be explained due the process waters generated from higher solid 

loadings may have higher levels of phenols as they were found by Berge et 

al. (2011a) in digestates. This is also reflected on the COD removal was from 

55 to 81%, being the process water coming from 2.5% of solid loading with 

the higher COD removal and the worst with 55% of removal was the process 

water coming from 15% of solid loading. 

The methane production seems to be slightly favoured by the solid loading 

because there is an increment on the methane percentage as the solid 

loading increase. Although, the methane concentration in the biogas ranged 

between 74 to 80%. These values are slightly higher than obtained by Wirth 

and Mumme (2013) in HTC liquor from corn silage (70%).  

The biodegradability in the process water decreases as the solid loading 

increase and ranged from 75 to 89%. These results above 70% corroborate 

what is was mentioned in the first objective in which the 56% of 

biodegradability obtained from the 250°C treatment was underestimated. 

Furthermore, the biodegradability of the process waters increased from 36 to 

89% compared with the digestate liquor (control). This demonstrates that the 

digestate still have some organic compounds that can be used to produce 

methane and can be solubilised through HTC.  

In the third objective the aim was to assess the characteristics of the process 

waters coming from the different sewage sludge (AD and non-AD treated) at 

different temperature treatments in order to obtain information to build and 

propose different process configurations. In this study, it was found that 

when the temperature reaction increases, the TOC and COD concentration 

increases for all the process waters coming from the different sewage 
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sludge. This is because the severity of the reaction favoured the 

solubilisation of the organics and inorganics. During thermal treatment, a 

solubilisation of organics and inorganics occurred due to hydrolysis or 

organic content which is reflected on the increase of the COD and TOC 

levels in the liquid fraction (Aragón-Briceño et al., 2017, Ekpo et al., 2015, 

Keymer et al., 2013). The COD concentration of the filtered non-AD treated 

sludge increased after the thermal treatments up to 3, 16 and 5-fold for the 

PS, SS and MIX respectively. The PS, SS and MIX digestates COD 

concentration also increased up to 5, 7 and 7.3-fold respectively after 

thermal treatment, showing there is still a substancial amount of organics in 

the AD sludge that can be harness with the thermal treatments. Previous 

studies reported an increase of 7-fold of the COD concentration for sewage 

digestate after 160 and 250°C treatments (Aragón-Briceño et al., 2017).  

The TOC concentrations showed that the carbon solubilisation was favoured 

for non-AD treated sludge rather than those which had a previous AD 

treatment. After 160 and 250°C treatments, PS, SS and MIX showed an 

increased up to 3, 14.5 and 5.9-fold respectively but digestates of PS, SS 

and MIX just increased up to 5, 8 and 6.8-fold respectively. Furthermore, this 

showed that the increase on the TOC concentration varied depending on the 

sewage sludge treated.  Aragón-Briceño et al. (2017) reported a 10-fold 

increase in the TOC concentration of sewage digestate after 160 and 250°C 

treatments. 

The thermal treatment improved the BMP of all process waters coming from 

different sewage sludge. The process waters coming from 250°C treatment 

had higher BMPs than 160°C process waters, excepting process waters 

coming from secondary sludge digestate where the BMP did not vary 

significantly regardless the temperature. The Mix sludge presented BMPs of 

252 and 351 mL of CH4 per g of COD at 160 and 250°C respectively, which 

represented an increase of 11 and 55% with respect to the untreated Mix 

sludge, which can attributed to its high organic matter content. The 

secondary sludge presented higher BMP at 160°C (276 mL of CH4 per g of 

COD) than primary sludge, but it seems there were no significant changes at 

250°C treatment where the BMP was 312 mL of CH4 per g of COD. Thermal 
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processing enhanced primary sludge BMP values for the process waters 

increasing them up to 152% (208 and 325 mL of CH4 per g of COD for 160 

and 250°C process waters respectively) compared with the untreated sludge 

(129 mL of CH4 per g of COD).  

After the thermal treatment, the BMP values of the digestates increased. 

There was not a significant difference on the BMP values between 160 and 

250°C treatment for process waters coming from ADSS and ADMIX. 

However, the the process temperature had an influence on the BMP values 

of process waters coming from ADPS. Previous studies investigating the 

anaerobic digestion of HTC have reported methane yields of 256.6mL of CH4 

per g of COD when using PW from municipal sewage sludge treated at 

170°C (Qiao et al., 2011); for PW from sewage sludge digestate treated 

between 160 to 250°C, the methane yields ranged from 178 to 277mL of CH4 

per g of COD (Aragón-Briceño et al., 2017, Wirth et al., 2015) and for PW 

coming from PS treated at 200°C, the methane yield was 335mL of CH4 per 

g of COD (Nilsson E, 2017).  

There was a significant rising of the COD degradation in the process waters 

in comparison with the untreated sludge. The thermal treatment leads to a 

decreased of the concentrations of complex organic matter during the 

hydrolysis which is reflected in the increasing of COD degradation during the 

anaerobic digestion (Becker et al., 2013). The non-AD treated 160°C process 

waters had higher COD degradation than 250°C process waters because at 

high temperatures more toxics are produced as furans, phenols and other 

recalcitrant products that affect the anaerobic bacteria (Hübner and Mumme, 

2015). Nonetheless, the 250°C AD treated process waters presented higher 

COD consumption than the 160°C AD treated process waters. These 

findings match with the values reported in other studies where the COD 

degradation during the anaerobic digestion ranged between 62 to 88% in 

HTC process waters from sewage sludge (Nyktari et al., 2017, Aragón-

Briceño et al., 2017, Wirth et al., 2015).  

Furthermore, the percentage of biodegradability (BD) increased as the 

temperature treatment increased. The MIX sludge presented the highest 

biodegradability among all, prior (57%) and post 160 and 250°C treatment 
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(82 and 89% respectively). The SS started with a BD of 29% and after the 

treatment at 160 and 250°C, the process waters showed a 70 and 79% of 

BD. The BD of the PS (33%) was enhanced by the treatment at 250°C which 

is evidenced by the  increase of process water BD up to 82% and up to 53% 

for process water treated at 160°C. 

Hence, it was demonstrated the feasibility of using the process waters 

coming from the HT treatments to produce biogas due its high carbon 

content. Moreover, the biogas showed methane concentrations ranging from 

60 to 80% depending on the feedstock and reaction conditions. 

Nevertheless, more studies need to be done considering the recalcitrant and 

inhibitory products that can affect the biogas production.  

8.2.2.Nutrients fate 

It is known that the wastewater, especially sewage sludge, has the elements 

that allow it to be used as a fertiliser or soil improver (European Commission, 

2015). This is because its richness in nutrients such as nitrogen and 

phosphorous that are valuable and useful along the organic matter. During 

thermal treatment great part of the nitrogen in ammonia form is solubilised 

from the sewage sludge as some part of the phosphorus as well. The track of 

the fate of nutrients represents an opportunity to determine the potential of 

the hydrochars to be used as soil amenders or nutrient recovery from the 

process waters produced during the thermal process. 

The temperature process showed to have significant role regarding to the 

phosphorus solubilisation. In the experiment done for complete the first 

objective, the total soluble phosphorus concentration increased after 160°C 

and 250°C treatments (3% and 13.8% of P concentration, respectively) and 

decreased after 220°C treatment (21.5% of P). . This was accompanied by a 

reduction in P content in the solid fraction from 21.7% in the raw feedstock 

(Control) to 19.4 and 11% in the hydrochar after treatment at 160 and 250°C, 

respectively. On the other hand, the concentration of reactive phosphorus 

decreased with respect of the feedstock between 32.7 and 25.3% after 

hydrothermal treatment. This means, the fate of P during hydrothermal 

treatment is highly feedstock dependent and is linked to the levels of other 

metals present in the feedstock (Ekpo et al., 2015). The P associated with 
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the hydrochar at 220°C increased once more to 37%, maybe due 

precipitation of some of the inorganic P with metals such as Al, Ca and Mg 

presented within the hydrochar. 

The soluble nitrogen concentration increased with temperature from an initial 

concentration of 1,493 mgN/l to 2,066, 2,191 and 2,354 mgN/L as the initial 

levels of nitrogen in the solid fraction decreased from 58.3% to 42.4%, 38.9% 

and 34.3% for the treatments at 160, 220 and 250°C, respectively.  The 

concentration of ammonium nitrogen was lower although gradually increased 

with temperature. This suggests that, during hydrothermal treatment, the 

proteins hydrolyse and ammonium is released increasing the nitrogen 

concentration in the process waters (Keymer et al., 2013, Wilson and Novak, 

2009). In addition to carbon, the levels of hydrogen and nitrogen increase 

after hydrothermal treatment. Moreover, the sulphur content in the liquid 

fractions increased from 0.74% up to 2.81% after hydrothermal treatment; 

that may have implications for levels of H2S in the final biogas (or 

precipitation of metal sulphides), if process waters are recycled back into 

anaerobic digesters. 

The nitrogen content in the original digestate samples of the solid fraction 

(5.04 wt%) was higher than the figures found in the hydrochar after 

hydrothermal treatment at 160, 220 and 250°C (i.e., 4.19, 2.01 and 4.23 

wt%, respectively). This suggests there was a 'sweet spot' where the 

nitrogen content was minimised. Reincorporation of nitrogen into the 

hydrochar may occur at higher temperatures as carbonisation reactions 

proceed more rapidly. A reduction in nitrogen content in the hydrochar 

corresponds to an increase in solubilised nitrogen. 

In the second part, the effect of solids loading indicates there significant part 

of the phosphorus is solubilized (up to 27%) into the liquid fraction. Although, 

there was a saturation point that was reached with the reactive phosphorus 

remaining relatively constant beyond a solid loading of 15%. That means that 

the solubilisation of the phosphorus became constant to in solids loading 

beyond 15%. The solubilisation of phosphorus following HTC was due 

decomposition of complex organic phosphorus containing compounds 

(phospholipids, DNA and phosphates monoesters) and results in a 
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combination of reactive (PO4
3-) and organic phosphorus (Dai et al., 2015, 

Ekpo et al., 2015). The majority of the phosphorus (66.8 to 75.7%) therefore 

remains in the char. 

Solid loading also significantly influenced the level of soluble nitrogen in the 

process water following HTC. The amount of nitrogen transferred from the 

feedstock into the water increased up to 48% of the total nitrogen contented 

into the liquid, leaving the nitrogen content of the hydrochar ranging between 

15 to 50%. In this mean, despite of the nitrogen content in the solid fraction 

(hydrochar) suffered a slightly increase as the solids loading increased, there 

was still a reduction in the nitrogen content with respect to the original 

feedstock which corresponded to the nitrogen released into the process 

waters as dissolved ammonia (Aragón-Briceño et al., 2017). 

In the third stage of this project, it was studied the fate of the phosphorus and 

nitrogen during the thermal treatment of the different sewage sludge.  There 

was a solubilisation up to 10% of Phosphorus at 250°C and up to 12% of 

Phosphorus at 160°C among the different thermal treated sewage sludge. 

However, the phosphorus concentrations in process waters coming from 

secondary sludge suggest that 250°C treatment favoured the phosphorus 

fixation within the hydrochar unlike the 160 °C that favoured the phosphorus 

solubilisation. Aragón-Briceño et al. (2017) reported that hydrothermal 

treatments at lower temperatures favours the extraction of organic P in 

sewage digestate. Nonetheless, the 250°C treatment seems to favour the 

Inorganic phosphorus production (PO4
-) in most of the different sewage 

sludge unlike the 160°C treatment that just favoured the inorganic 

phosphorus production in the different digestates. 

The soluble nitrogen concentration increased up to 540% in the non-AD 

treated sludge at 250°C and up to 340% at 160°C treatment and increased 

uo to 70% and 36% for digestates at 250°C and 160°C treatment 

respectively. Although, there was higher ammonia solubilisation in non-AD 

treated sludge (up to 204 and 431% at 160 and 250°C respectively) rather 

than digestates (up to 109 and 136% at 160 and 250°C respectively. This 

means for all the different sludge the total nitrogen solubilisation is influenced 
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by the temperature, as the temperature increase the total nitrogen 

concentration increases as well. 

On the other hand, hydrochars presented a reduction in the nitrogen content 

of the in comparison to the original feedstock. This nitrogen reduction is 

given by the nitrogen released into the process waters during the thermal 

process (Aragón-Briceño et al., 2017). 

The findings of this research project revealed that during the thermal 

treatments of sewage sludge more than 50% of the nitrogen contented within 

the solid fraction is released into the process waters, mostly in ammonia 

form. Contrarily to the phosphorus that showed a lower solubilisation (up to 

30%) coming from the solid fraction into the liquid fraction. 

8.3. Feasibility of hydrothermal treatment integration with AD 

In recent years, some researchers has proposed the hydrothermal 

carbonisation process (HTC) as an alternative to harness better the 

properties from the sewage sludge and reducing the waste generation 

(Aragón-Briceño et al., 2017, Zhao et al., 2014, He et al., 2013). The main 

advantage of HTC is that it is carried out in presence of water avoiding the 

energy-intensive drying step required for thermal processes producing a 

solid hydrochar that can be used as a soil amender or fuel source and a 

process water rich in carbon and organics that can be used for produce 

biogas (Aragón-Briceño et al., 2017, Biller and Ross, 2012) (Wirth et al., 

2015, Becker et al., 2014, Wang et al., 2010).    

According to Child (2014), a HTC plant can cost from €3 up to €10million 

depending the treatment capacity. Nevertheless, most of them focus on 

hydrochar production using mostly lignocellulocic biomass and just few use 

sewage sludge as main feedstock.  

The integration of HTC as a post-step after the AD is a recent approach 

under development that is suggested for the integration into waste water 

systems because its positive energy balance (Aragón-Briceño et al., 2017, 

Mumme et al., 2015). 
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In the fourth stage of this study, the objective was to assess the integration of 

the HTC with AD through mass and energy balances from proposed process 

configurations from different sewage sludge based on the results obtained 

from experimental analyses in previous stages of this research.  

The scenarios showed a WWTP which provides service to a 100,000 people 

would have a potential economic benefit from biogas production up to 

£122,355, from hydrochar production up to £125,124 and from struvite 

production (without considering the price of Mg addition and pH regulation 

process) up to £351,569 per year depending the scenario. The scenarios 

where the 250°C treatment was applied showed the best potential benefit 

with £532,358 and £386,037 for scenarios 4 and 6 respectively. 

The scenarios 4 and 6 (Primary sludge and Mix as main feedstocks 

respectively) showed the highest overall profit. However the scenario 6 

should be considered the most suitable along scenario 3 for integration of 

HTC with AD for those existing AD plants because implies that there would 

be less modifications on the current WWTWs configurations.  

This analyses can be considered as initial step to show the benefits of the 

integration of HTC with AD but still there are more variables that have to be 

considered in order to have a better prospect. 
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Chapter 9. Overall Conclusions and Recommendations 

9.1. Research conclusions 

The study aimed to assess alternatives to enhance the way how of the 

digestate is handled in the WWTP, by focusing on the use of hydrothermal 

processes and the potential of recovering energy and nutrients recovery. The 

following section summaries the key conclusions from the experimental 

studies. 

Hydrothermal treatments improved the characteristics of the sewage 

digestate producing hydrochars and process waters rich in organic matter 

and nutrients. The influence of the temperature showed that lower process 

temperatures favour hydrochar production. However, the quality of the 

hydrochar improves as the temperature increases. Anaerobic digestion was 

demonstrated to be a suitable option to treat process waters from 

hydrothermal treatments for further biomethane production. Processing of 

digestate at 250°C resulted in a hydrochar that enhanced the net production 

of VFAs, although delayed methane production (longer lag phase). The 

addition of hydrochar (250°C) to the process water delayed VFA production 

during anaerobic digestion. Hydrothermal processing of process water and 

slurries at lower temperature (160-220°C) produced high levels of biogas, 

with no detrimental effect due the presence of hydrochar. The Boyle’s 

equation had a closer match to the values provided by experimental 

biomethane potential (BMP) tests at lower temperature.  

Solid loadings had an influence in the hydrochar composition and its 

energetic properties. The process waters were influenced by the solid 

loading increasing the concentration and reducing the solubilisation of the 

carbon and nutrients. There was a slightly influence in the methane potential 

of the process waters coming from the different solid loading. The energy 

balance is positive beyond 5% of solid loading when the hydrochars are 

considered as a fuel source and when they are not considered, the energy 

balance is positive beyond 15% of solid loading. The sewage digestate of 

20% solids seems to be the best option for carbonisation in terms 

management and energy.  
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Hydrothermal treatments improved the characteristics of the different sewage 

sludge producing hydrochars and process waters rich in soluble organic 

matter and nutrients. Hydrochars from the different digestate sludge showed 

to have poorer production and energy characteristics than the hydrochars 

coming from the different non-AD treated sewage sludge. Nevertheless, 

adding the fact that previously the AD sludge has previously used for 

produce methane, the hydrochar’s energy characteristics are enough to 

enhance the overall energy production in the system and overcome the 

energy produced by the non-AD treated sludge. The organics and nutrients 

solubilisation demonstrated to be feedstock dependant showing better 

solubilisation to the different non-AD sewage sludge in comparison to the 

different digestate sludge. Process waters showed to be an option for 

biomethane production from sewage sludge, especially process waters 

coming from the digestate sludge which showed a significant improvement in 

biogas production. Most of the potential energy production comes from the 

hydrochar. Therefore, the energy production of the HTP treated sludge is 

higher when the hydrochar is considered than non HTP treated sludge. The 

integration of the HTPs as post-treatment after AD showed to be the best 

option in terms of energy production. 

This study developed a model in ASPEN plus software that demonstrated 

HTC-AD scenarios have a significant positive energy balance when process 

water and hydrochar are considered as fuel sources. 

Hydrothermal carbonisation showed to be a suitable option for integration 

with anaerobic digestion. Higher temperatures (250°C) seems to have more 

economically and environmentally benefits. Scenarios that involved primary 

and Mix sludge seemed to be suitable options because of the organic matter 

removal, energy harnessing and economic feasibility, but still many aspects 

have to be considered as the cost of WWTW´s modifications or the addition 

of the complementary equipment for the hydrochar use as an energy source.   
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9.2. Further research and considerations 

Further research is needed to improve our understanding on handling 

digestate in the WWTP using hydrothermal treatments as viable alternative. 

The following recommendations can be suggested for future works: 

 The BMP tests in this research were carried out in batch mode. For 

this reason more tests in continuous mode (CSTR) needs to be done 

to understand better the anaerobic digestion process and the capacity 

of the anaerobic bacteria to resist the accumulation of some inhibitory 

compounds. 

 Further studies are needed to understand the influence of adding 

hydrochar on the quality and safety of the digestate for final disposal, 

as well as the impacts on AD processes due to process water 

recycling. 

 Co-processing feedstocks with AD sludge should be considered as an 

option to enhance the quality of the liquid and solid products. 

Especially the combination of the sewage sludge with lignocellulosic 

products. 

 In this study the energy characteristics of the hydrochar were 

calculated based on the elemental composition and the usage of 

Dulong’s formula. It will be recommendable to carry on the analyses 

with a calorimetric pump. 

 It would be advised to investigate the potential of the hydrochars as 

soil amenders in future research. 

 Research on struvite precipitation in process waters needs would be 

recommendable. 

 Most of the research carried out on HTC-AD integration is laboratory-

based, making the assumptions to be difficult for real life occurrences. 

For an extensive energy balance as well as cost benefit analysis, it is 

essential to incorporate real data available for HTC and AD (carried 

out especially using large scale plants) in terms of operation and 

energy use. This will provide a more detailed analysis for developing a 

standard cost benefit analysis of the intended integrated approach.  

  



188 
 

References 

© TERRANOVA ENERGY GMBH. 2018. Available: http://terranova-
energy.com/en/. 

ABELLEIRA-PEREIRA, J. M., PÉREZ-ELVIRA, S. I., SÁNCHEZ-ONETO, J., 
DE LA CRUZ, R., PORTELA, J. R. & NEBOT, E. 2015. Enhancement 
of methane production in mesophilic anaerobic digestion of secondary 
sewage sludge by advanced thermal hydrolysis pretreatment. Water 
Research, 71, 330-340. 

ABELLEIRA, J., PÉREZ-ELVIRA, S. I., PORTELA, J. R., SÁNCHEZ-
ONETO, J. & NEBOT, E. 2012. Advanced Thermal Hydrolysis: 
Optimization of a Novel Thermochemical Process to Aid Sewage 
Sludge Treatment. Environmental Science & Technology, 46, 6158-

6166. 

ADBA, T. A. D. A. B. A. 2015. Anaerobic Digestion Market Report 2015. In: 
ADBA (ed.). London, United Kingdom: The Anaerobic Digestion and 
Bioresources Association. 

ALMEIDA, J. M. 2010. Gasificación de lodos de estaciones depuradoras de 
aguas residuals ubanas. PhD, Polytechnic University of Madrid. 

AMERICAN PUBLIC HEALTH, A., AMERICAN WATER WORKS, A. & 
WATER POLLUTION CONTROL, F. 1995. Standard methods for the 
examination of water and wastewater. Standard methods for the 
examination of water and wastewater. 

ANGELIDAKI, I., ALVES, M., BOLZONELLA, D., BORZACCONI, L., 
CAMPOS, J., GUWY, A., KALYUZHNYI, S., JENICEK, P. & VAN 
LIER, J. 2009. Defininf the biomethane potential (BMP) of solid 
organic wastes and energy crops: a proposed protocol of batch 
assays. Water Science & Technology, 59, 927 - 934. 

APPELS, L., LAUWERS, J., DEGRÈVE, J., HELSEN, L., LIEVENS, B., 
WILLEMS, K., VAN IMPE, J. & DEWIL, R. 2011. Anaerobic digestion 
in global bio-energy production: Potential and research challenges. 
Renewable and Sustainable Energy Reviews, 15, 4295-4301. 

ARAGÓN-BRICEÑO, C., ROSS, A. B. & CAMARGO-VALERO, M. A. 2017. 
Evaluation and comparison of product yields and bio-methane 
potential in sewage digestate following hydrothermal treatment. 
Applied Energy, 208, 1357-1369. 

BABLON, G., BELLAMY, W., BOURBIGOT, F., DANIEL, F., DORE, M., 
ERB, F., GORDON, G., B, L., LAPLANCHE, A., LEGUBE, B., 
MARTIN, G., MASSCHELEIN, W., PACEY, G., RECKHOW, D. & 
VENTRESQUE, C. 1991. Fundamental aspects in ozone in water 
treatment-application and engineering. Fundamental Aspects in 
Ozone Water Treatment - Application and Engineering. Boca Raton: 
Lewis Publishers. 

BANK OF ENGLAND. 2018. Daily spot exchange rates against Sterling 
[Online]. Available: 

http://terranova-energy.com/en/
http://terranova-energy.com/en/


189 
 

https://www.bankofengland.co.uk/boeapps/database/Rates.asp?Trave
l=NIxAZx&into=GBP [Accessed 19/07/2018 2018]. 

BARGMANN, I., MARTENS, R., RILLIG, M. C., KRUSE, A. & KÜCKE, M. 
2014. Hydrochar amendment promotes microbial immobilization of 
mineral nitrogen. Journal of Plant Nutrition and Soil Science, 177, 59-
67. 

BARLAZ, M. A. 1998. Carbon storage during biodegradation of municipal 
solid waste components in laboratory-scale landfills. Global 
Biogeochemical Cycles, 12, 373-380. 

BECKER, R., DORGERLOH, U., HELMIS, M., MUMME, J., DIAKITÉ, M. & 
NEHLS, I. 2013. Hydrothermally carbonized plant materials: Patterns 
of volatile organic compounds detected by gas chromatography. 
Bioresource Technology, 130, 621-628. 

BECKER, R., DORGERLOH, U., PAULKE, E., MUMME, J. & NEHLS, I. 
2014. Hydrothermal Carbonization of Biomass: Major Organic 
Components of the Aqueous Phase. Chemical Engineering & 
Technology, 37, 511-518. 

BERGE, N. D., RO, K. S., MAO, J., FLORA, J. R. V., CHAPPELL, M. A. & 
BAE, S. 2011a. Hydrothermal carbonization of municipal waste 
streams. Environmental Science and Technology, 45, 5696-5703. 

BERGE, N. D., RO, K. S., MAO, J., FLORA, J. R. V., CHAPPELL, M. A. & 
BAE, S. 2011b. Hydrothermal carbonization of municipal waste 
streams: Supporting Information. Environmental Science and 
Technology, 45, 5696-5703. 

BERGLUND, M. & BÖRJESSON, P. 2006. Assessment of energy 
performance in the life-cycle of biogas production. Biomass and 
Bioenergy, 30, 254-266. 

BILLER, P. & ROSS, A. B. 2012. Hydrothermal processing of algal biomass 
for the production of biofuels and chemicals. Biofuels, 3, 603-623. 

BIOMASS ENERGY CENTRE. 2011. Sewage Sludge [Online]. Surrey, UK: 
Crown. Available: 
http://www.biomassenergycentre.org.uk/portal/page?_pageid=75,187
22&_dad=portal&_schema=PORTAL [Accessed 4/08/2015 2015]. 

CANO, R., NIELFA, A. & FDZ-POLANCO, M. 2014. Thermal hydrolysis 
integration in the anaerobic digestion process of different solid wastes: 
Energy and economic feasibility study. Bioresource Technology, 168, 

14-22. 

CARBALLA, M., DURAN, C. & HOSPIDO, A. 2011. Should we pretreat solid 
waste prior to anaerobic digestion? An assessment of its 
environmental cost. Environmental Science and Technology, 45, 

10306-10314. 

CARLSSON, M., LAGERKVIST, A. & MORGAN-SAGASTUME, F. 2012. The 
effects of substrate pre-treatment on anaerobic digestion systems: A 
review. Waste Management, 32, 1634-1650. 

http://www.bankofengland.co.uk/boeapps/database/Rates.asp?Travel=NIxAZx&into=GBP
http://www.bankofengland.co.uk/boeapps/database/Rates.asp?Travel=NIxAZx&into=GBP
http://www.biomassenergycentre.org.uk/portal/page?_pageid=75,18722&_dad=portal&_schema=PORTAL
http://www.biomassenergycentre.org.uk/portal/page?_pageid=75,18722&_dad=portal&_schema=PORTAL


190 
 

CATALLO, W. J. & COMEAUX, J. L. 2008. Reductive hydrothermal 
treatment of sewage sludge. Waste Management, 28, 2213-2219. 

CHANNIWALA, S. A. & PARIKH, P. P. 2002. A unified correlation for 
estimating HHV of solid, liquid and gaseous fuels. Fuel, 81, 1051-

1063. 

CHEN, D., ZHENG, Z., FU, K., ZENG, Z., WANG, J. & LU, M. 2015. 
Torrefaction of biomass stalk and its effect on the yield and quality of 
pyrolysis products. Fuel, 159, 27-32. 

CHILD, M. 2014. Industrial-scale hydrothermal carbonization of waste sludge 
materials for fuel production. Master of Science Master of Science 
Thesis, LAPPEENRANTA UNIVERSITY OF TECHNOLOGY. 

DAI, L., TAN, F., WU, B., HE, M., WANG, W., TANG, X., HU, Q. & ZHANG, 
M. 2015. Immobilization of phosphorus in cow manure during 
hydrothermal carbonization. Journal of Environmental Management, 
157, 49-53. 

DANSO-BOATENG, E., HOLDICH, R. G., SHAMA, G., WHEATLEY, A. D., 
SOHAIL, M. & MARTIN, S. J. 2013. Kinetics of faecal biomass 
hydrothermal carbonisation for hydrochar production. Applied Energy, 
111, 351-357. 

DANSO-BOATENG, E., SHAMA, G., WHEATLEY, A. D., MARTIN, S. J. & 
HOLDICH, R. G. 2015. Hydrothermal carbonisation of sewage sludge: 
Effect of process conditions on product characteristics and methane 
production. Bioresource Technology, 177, 318-327. 

DE-BASHAN, L. E. & BASHAN, Y. 2004. Recent advances in removing 
phosphorus from wastewater and its future use as fertilizer (1997–
2003). Water Research, 38, 4222-4246. 

DEFRA. 2002. Sewage Treatment in the UK [Online]. London: Department 
for Environment, Food & Rural Affairs. Available: 
https://www.gov.uk/government/uploads/system/uploads/attachment_
data/file/69582/pb6655-uk-sewage-treatment-020424.pdf [Accessed 
3/08/2015 2015]. 

DEFRA. 2012a. Managing sewage sludge, slurry and silage [Online]. 
London: Department for Environment, Food & Rural Affairs. Available: 
https://www.gov.uk/managing-sewage-sludge-slurry-and-silage 
[Accessed 3/08/2015 2015]. 

DEFRA. 2012b. Waste water treatment in the United Kingdonm - 2012 
[Online]. London: Department for Environment, Food & Rural Affairs. 
Available: 
https://www.gov.uk/government/uploads/system/uploads/attachment_
data/file/69592/pb13811-waste-water-2012.pdf [Accessed 3/08/2015 
2015]. 

DEFRA. 2018. Surface Water Status [Online]. © Joint Nature Conservation 
Committee. Available: http://jncc.defra.gov.uk/page-4250 [Accessed 
06/10/2018 2018]. 

http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/69582/pb6655-uk-sewage-treatment-020424.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/69582/pb6655-uk-sewage-treatment-020424.pdf
http://www.gov.uk/managing-sewage-sludge-slurry-and-silage
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/69592/pb13811-waste-water-2012.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/69592/pb13811-waste-water-2012.pdf
http://jncc.defra.gov.uk/page-4250


191 
 

DEFRA & THE ENVIRONMENTAL AGENCY 2018. £5 billion investment by 
water companies to benefit the natural environment. 

DENIS, A. & BURKE, P. E. 2001. Dairy Waste Anaerobic Digestion 
Handbook. In: COMPANY, E. E. (ed.). Olympia. 

DIAZ-BAEZ, M., ESPITIA VARGAS, S. & MOLINA PEREZ, F. 2002. 
Digestion Anaerobia una aproximacion tecnologica, Bogota, 
Colombia, Universidad Nacional de Colombia 

UNIBIBLOS. 

DICHTL, N., ROGGE, S. & BAUERFELD, K. 2007. Novel Strategies in 
Sewage Sludge Treatment. CLEAN – Soil, Air, Water, 35, 473-479. 

DONOSO-BRAVO, A., PÉREZ-ELVIRA, S., AYMERICH, E. & FDZ-
POLANCO, F. 2011. Assessment of the influence of thermal pre-
treatment time on the macromolecular composition and anaerobic 
biodegradability of sewage sludge. Bioresource Technology, 102, 

660-666. 

DRINKING WATER INSPECTORATE. 2014. Drinking water 2013: Public 
water supplies in the Norther region of England. In: CROWN, ed., 
2014. London. 

EKPO, U., ROSS, A. B. & CAMARGO-VALERO, M. 2015. A comparison of 
product yields and inorganic content in process setreams following 
thermal hydrolysis and hydrothermal processing of microalgae, 
manure and digestate. Bioresource Technology, 200, 951-960. 

ELLIOTT, A. & MAHMOOD, T. 2007. Pretreatment technologies for 
advancing anaerobic digestion of pulp and paper biotreatment 
residues. Water Research, 41, 4273-4286. 

ELLIOTT, D. C. 2011. Hydrothermal Processing. Thermochemical 
Processing of Biomass. John Wiley & Sons, Ltd. 

EPA. 2015. Nutrient pollution [Online]. United States Environmental 
Protection Agency. Available: 
http://www2.epa.gov/nutrientpollution/sources-and-solutions 
[Accessed 16/10/2015 2015]. 

ERDAL, Z., SOROUSHIAN, F., ERDAL, U. & WHITMAN, E. Advanced 
digestion technologies implementation at inland empire utilities 
agency and enhanced biogas generation.  WEF Residuals and 
Biosolids Conference, 2006 Covington, KY., 10-12. 

ESCALA, M., ZUMBÜHL, T., KOLLER, C., JUNGE, R. & KREBS, R. 2013. 
Hydrothermal Carbonization as an Energy-Efficient Alternative to 
Established Drying Technologies for Sewage Sludge: A Feasibility 
Study on a Laboratory Scale. Energy & Fuels, 27, 454-460. 

EUROPEAN COMMISSION. 2015. Sewage Sludge [Online]. European 
Commission Available: http://ec.europa.eu/environment/waste/sludge/ 
[Accessed 16/10/2015 2015]. 

http://www2.epa.gov/nutrientpollution/sources-and-solutions
http://ec.europa.eu/environment/waste/sludge/


192 
 

FUNKE, A. & ZIEGLER, F. 2010. Hydrothermal carbonization of biomass: A 
summary and discussion of chemical mechanisms for process 
engineering. Biofuels, Bioproducts and Biorefining, 4, 160-177. 

HANSEN, K. H., ANGELIDAKI, I. & AHRING, B. K. 1998. ANAEROBIC 
DIGESTION OF SWINE MANURE: INHIBITION BY AMMONIA. Water 
Research, 32, 5-12. 

HE, C., GIANNIS, A. & WANG, J.-Y. 2013. Conversion of sewage sludge to 
clean solid fuel using hydrothermal carbonization: Hydrochar fuel 
characteristics and combustion behavior. Applied Energy, 111, 257-
266. 

HEO, N. H., PARK, S. C., LEE, J. S. & KANG, H. 2003. Solubilization of 
waste activated sludge by alkaline pretreatment and biochemical 
methane potential (BMP) tests for anaerobic co-digestion of municipal 
organic waste. Water Science and Technology. 

HERRERA, D. & NIÑO, D. 2012. Evaluacion del potencial de produccion de 
biogas a partir de aguas residuales provenientes de la industria 
palmera mediante digestion anaerobia. Chemical Engineering, 
Industrial University of Santander. 

HINDLE, M. 2013. ANAEROBIC DIGESTION IN THE UNITED KINGDOM. 
BioCycle, 54, 41-43. 

HÜBNER, T. & MUMME, J. 2015. Integration of pyrolysis and anaerobic 
digestion – Use of aqueous liquor from digestate pyrolysis for biogas 
production. Bioresource Technology, 183, 86-92. 

ISWA & EEA 1997. Sludge Treatment and Disposal. Management 
Approaches and Experiences, Copenhagen K, Denmark, European 
Environment Agency. 

ITOH, S., SUZUKI, A., NAKAMURA, T. & YOKOYAMA, S.-Y. 1994. 
Production of heavy oil from sewage sludge by direct thermochemical 
liquefaction. Desalination, 98, 127-133. 

JACKSON, G. A. & WILLIAMS, P. M. 1985. Importance of dissolved organic 
nitrogen and phosphorus to biological nutrient cycling. Deep-Sea 
Research, 32, 223-235. 

KEMPEGOWDA, R. S., TRAN, K.-Q. & SKREIBERG, Ø. 2017. Techno-
economic assessment of integrated hydrochar and high-grade 
activated carbon production for electricity generation and storage. 
Energy Procedia, 120, 341-348. 

KEYMER, P., RUFFELL, I., PRATT, S. & LANT, P. 2013. High pressure 
thermal hydrolysis as pre-treatment to increase the methane yield 
during anaerobic digestion of microalgae. Bioresource Technology, 
131, 128-133. 

KHANAL, S. K., ISIK, H., SUNG, S. & VAN LEEWEN, J. H. Ultrasound 
conditioning of waste activated sludge for enhanced aerobic digestion.  
Proceedings of the IWA Specialized Conference on Sustainable 
Sludge Management: State-of-the-Art, Challenges and Perspectives, 
2006 Moscow, Russia. 441-448. 



193 
 

KIM, D., LEE, K. & PARK, K. Y. 2014. Hydrothermal carbonization of 
anaerobically digested sludge for solid fuel production and energy 
recovery. Fuel, 130, 120-125. 

KRUSE, A. & DAHMEN, N. 2018. Hydrothermal biomass conversion: Quo 
vadis? The Journal of Supercritical Fluids, 134, 114-123. 

LABATUT, R. A., ANGENENT, L. T. & SCOTT, N. R. 2011. Biochemical 
methane potential and biodegradability of complex organic substrates. 
Bioresource Technology, 102, 2255-2264. 

LE CORRE, K. S., VALSAMI-JONES, E., HOBBS, P. & PARSONS, S. A. 
2009. Phosphorus Recovery from Wastewater by Struvite 
Crystallization: A Review. Critical Reviews in Environmental Science 
and Technology, 39, 433-477. 

LEE, J.-W., KIM, Y.-H., LEE, S.-M. & LEE, H.-W. 2012. Optimizing the 
torrefaction of mixed softwood by response surface methodology for 
biomass upgrading to high energy density. Bioresource Technology, 
116, 471-476. 

LESTEUR, M., BELLON-MAUREL, V., GONZALEZ, C., LATRILLE, E., 
ROGER, J. M., JUNQUA, G. & STEYER, J. P. 2010. Alternative 
methods for determining anaerobic biodegradability: A review. 
Process Biochemistry, 45, 431-440. 

LILLYWHITE, R. & RAHN, C. 2005. Nitrogen UK. In: HRI, W. (ed.). 
Wellesbourne, Warwick: The University of Warwick. 

LIU, B., WEI, Q., ZHANG, B. & BI, J. 2013. Life cycle GHG emissions of 
sewage sludge treatment and disposal options in Tai Lake Watershed, 
China. Science of The Total Environment, 447, 361-369. 

LIU, J., ZHANG, X. & CHEN, G. 2012. Overview of Bio-Oil from Sewage 
Sludge by Direct Thermochemical Liquefaction Technology. Journal of 
Sustainable Bioenergy Systems, 2, 112-116. 

LÓPEZ BARREIRO, D., BAUER, M., HORNUNG, U., POSTEN, C., KRUSE, 
A. & PRINS, W. 2015. Cultivation of microalgae with recovered 
nutrients after hydrothermal liquefaction. Algal Research, 9, 99-106. 

LUCIAN, M. & FIORI, L. 2017. Hydrothermal Carbonization of Waste 
Biomass: Process Design, Modeling, Energy Efficiency and Cost 
Analysis. Energies, 10, 18. 

MAYER, B. K., BAKER, L. A., BOYER, T. H., DRECHSEL, P., GIFFORD, M., 
HANJRA, M. A., PARAMESWARAN, P., STOLTZFUS, J., 
WESTERHOFF, P. & RITTMANN, B. E. 2016. Total Value of 
Phosphorus Recovery. Environmental Science & Technology, 50, 

6606-6620. 

MILLS, N., PEARCE, P., FARROW, J., THORPE, R. B. & KIRKBY, N. F. 
2014. Environmental & economic life cycle assessment of current & 
future sewage sludge to energy technologies. Waste Management, 
34, 185-195. 



194 
 

MOLINOS-SENANTE, M., HERNÁNDEZ-SANCHO, F., SALA-GARRIDO, R. 
& GARRIDO-BASERBA, M. 2011. Economic Feasibility Study for 
Phosphorus Recovery Processes. Ambio, 40, 408-416. 

MORSE, G. K., LESTER, J. N., PERRY, R., IMPERIAL COLLEGE OF 
SCIENCE, T. & MEDICINE 1993. The economic and environmental 
impact of phosphorus removal from wastewater in the European 
Community, Selper. 

MULLER, C., ABU-ORF, M. & NOVAK, J. The effect of mechanical shear on 
mesophilic anaerobic digestion.  WEF proceedings of the 76th Annual 
Technical Exhibition and Conference, 2003 Los Angeles, CA., 10-12. 

MUMME, J., ECKERVOGT, L., PIELERT, J., DIAKITÉ, M., RUPP, F. & 
KERN, J. 2011. Hydrothermal carbonization of anaerobically digested 
maize silage. Bioresource technology, 102, 9255-9260. 

MUMME, J., SROCKE, F., HEEG, K. & WERNER, M. 2014. Use of biochars 
in anaerobic digestion. Bioresource Technology, 164, 189-197. 

MUMME, J., TITIRICI, M.-M., PFEIFFER, A., LÜDER, U., REZA, M. T. & 
MAŠEK, O. 2015. Hydrothermal Carbonization of Digestate in the 
Presence of Zeolite: Process Efficiency and Composite Properties. 
ACS Sustainable Chemistry & Engineering, 3, 2967-2974. 

MÜNCH, E. V. & BARR, K. 2001. Controlled struvite crystallisation for 
removing phosphorus from anaerobic digester sidestreams. Water 
Research, 35, 151-159. 

NAO 2010. Tackling diffuse water pollution in England, London, National 
Audit Office. 

NIELFA, A., CANO, R. & FDZ-POLANCO, M. 2015. Theoretical methane 
production generated by the co-digestion of organic fraction municipal 
solid waste and biological sludge. Biotechnology Reports, 5, 14-21. 

NILSSON E. 2017. Anaerobic digestion trials with HTC process water. 
Master Program in Environmental and Water Engineering 
Dissertation, Swedish University of Agricultural Sciences: Division of 
Bioenergy. 

NIPATTUMMAKUL, N., AHMED, I., KERDSUWAN, S. & GUPTA, A. K. 2010. 
High temperature steam gasification of wastewater sludge. Applied 
Energy, 87, 3729-3734. 

NYKTARI, E., WHEATLEY, A., DANSO-BOATENG, E. & HOLDICH, R. 
2017. Anaerobic Digestion of Liquid Products following Hydrothermal 
Carbonisation of Sewage Sludge with different reaction conditions. 
13th IWA Specialized Conference on Small Water and Wastewater 
Systems & 5th IWA Specialized Conference on Resources-Oriented 

Sanitation. Athens, Greece.: Desalination Publications. 

OFFICE FOR NATIONAL STATISTICS. 2013. Revised annual mid-year 
population estimates, UK: 2001 to 2010 [Online]. Office for National 
Statistics. Available: 
https://www.ons.gov.uk/peoplepopulationandcommunity/populationan

http://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/annualmidyearpopulationestimates/2013-12-17


195 
 

dmigration/populationestimates/bulletins/annualmidyearpopulationesti
mates/2013-12-17 [Accessed 19/07/2018 2018]. 

OFGEM. 2018. Feed-In Tariff (FIT) rates [Online]. Office of Gas and 
Electricity Markets. Available: 
https://www.ofgem.gov.uk/environmental-programmes/fit/fit-tariff-rates 
[Accessed 19/07/2018 2018]. 

PANTER, K. Mass balance and energy balance in high solid digestion 
following thermal hydrolysis pre-treatment.  13th European Biosolids 
and Organic Resources Conference and Workshop. November, 2008. 
10-12. 

PANTER, K. & KLEIVEN, H. Ten years experience of full-scale thermal 
hydrolysis projects.  Proceedings of the 10th European Biosolids and 
Biowaste Conference., 2005 Wakefield, UK. 

PASSOS, F. & FERRER, I. 2014. Microalgae conversion to biogas: thermal 
pretreatment contribution on net energy production. Environmental 
science & technology, 48, 7171-7178. 

PÉREZ-ELVIRA, S. I. & FDZ-POLANCO, F. 2012. Continuous thermal 
hydrolysis and anaerobic digestion of sludge. Energy integration 
study. Water Science and Technology, 65, 1839-1846. 

PEREZ-ELVIRA, S. I., FDZ-POLANCO, M. & FDZ-POLANCO, F. 2010. 
Increasing the performance of anaerobic digestion: Pilot scale 
experimental study for thermal hydrolysis of mixed sludge. Frontiers of 
Environmental Science & Engineering in China, 4, 135-141. 

PÉREZ-ELVIRA, S. I., FERNÁNDEZ-POLANCO, F., FERNÁNDEZ-
POLANCO, M., RODRÍGUEZ, P. & ROUGE, P. 2008. Hydrothermal 
multivariable approach: Full-scale feasibility study. Electronic Journal 
of Biotechnology, 11, 7-8. 

PILLI, S., YAN, S., TYAGI, R. D. & SURAMPALLI, R. Y. 2015. Thermal 
Pretreatment of Sewage Sludge to Enhance Anaerobic Digestion: A 
Review. Critical Reviews in Environmental Science and Technology, 
45, 669-702. 

PRIESTLEY, S. 2015. Water Framework Directive: achieving good status of 
water bodies. 

QIAO, W., YAN, X., YE, J., SUN, Y., WANG, W. & ZHANG, Z. 2011. 
Evaluation of biogas production from different biomass wastes 
with/without hydrothermal pretreatment. Renewable Energy, 36, 3313-

3318. 

RAPOSO, F., FERNÁNDEZ-CEGRÍ, V., DE LA RUBIA, M. A., BORJA, R., 
BÉLINE, F., CAVINATO, C., DEMIRER, G., FERNÁNDEZ, B., 
FERNÁNDEZ-POLANCO, M., FRIGON, J. C., GANESH, R., 
KAPARAJU, P., KOUBOVA, J., MÉNDEZ, R., MENIN, G., PEENE, A., 
SCHERER, P., TORRIJOS, M., UELLENDAHL, H., WIERINCK, I. & 
DE WILDE, V. 2011. Biochemical methane potential (BMP) of solid 
organic substrates: Evaluation of anaerobic biodegradability using 

http://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/annualmidyearpopulationestimates/2013-12-17
http://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/annualmidyearpopulationestimates/2013-12-17
http://www.ofgem.gov.uk/environmental-programmes/fit/fit-tariff-rates


196 
 

data from an international interlaboratory study. Journal of Chemical 
Technology and Biotechnology, 86, 1088-1098. 

RAS, M., LARDON, L., BRUNO, S., BERNET, N. & STEYER, J.-P. 2011. 
Experimental study on a coupled process of production and anaerobic 
digestion of Chlorella vulgaris. Bioresource Technology, 102, 200-206. 

RONSSE, F., HECKE, S. V., DICKINSON, D. & PRINS, W. 2013. Production 
and characterization of slow pyrolysis biochar: influence of feedstock 
type and pyrolysis conditions. GCB Bioenergy, 5, 104-115. 

RUIZ-HERNANDO, M., MARTÍN-DÍAZ, J., LABANDA, J., MATA-ALVAREZ, 
J., LLORENS, J., LUCENA, F. & ASTALS, S. 2014. Effect of 
ultrasound, low-temperature thermal and alkali pre-treatments on 
waste activated sludge rheology, hygienization and methane potential. 
Water Research, 61, 119-129. 

SCHIEVANO, A., TENCA, A., SCAGLIA, B., MERLINO, G., RIZZI, A., 
DAFFONCHIO, D., OBERTI, R. & ADANI, F. 2012. Two-Stage vs 
Single-Stage Thermophilic Anaerobic Digestion: Comparison of 
Energy Production and Biodegradation Efficiencies. Environmental 
Science & Technology, 46, 8502-8510. 

SERVERN TRENT WATER 2010. Changing the course: Delivering a 
sustainable future for the water industry in England and Wales., 
Birminghan, United Kingdom, Servern Trent Water Ltd. 

SERVERN TRENT WATER 2013. Changing the course: Through the 
sustainable implementation of the Water Framework Directive, 
Coventry, United Kingdom, Servern Trent Water Ltd. 

SHANA, A., OUKI, S., ASAADI, M. & PEARCE, P. Application of an 
innovative process for improving mesophilic anaerobic digestion of 
sewage sludge.  16th European Biosolids and Organic Resources 
Conference, 2011. 

SHANA, A., OUKI, S., ASAADI, M., PEARCE, P. & MANCINI, G. 2013. The 
impact of intermediate thermal hydrolysis on the degradation kinetics 
of carbohydrates in sewage sludge. Bioresource Technology, 137, 
239-244. 

SHEMFE, M. B., GU, S. & RANGANATHAN, P. 2015. Techno-economic 
performance analysis of biofuel production and miniature electric 
power generation from biomass fast pyrolysis and bio-oil upgrading. 
Fuel, 143, 361-372. 

SHENG, C. & AZEVEDO, J. L. T. 2005. Estimating the higher heating value 
of biomass fuels from basic analysis data. Biomass and Bioenergy, 
28, 499-507. 

SHU, L., SCHNEIDER, P., JEGATHEESAN, V. & JOHNSON, J. 2006. An 
economic evaluation of phosphorus recovery as struvite from digester 
supernatant. Bioresource Technology, 97, 2211-2216. 

SIEVERS, M., RIED, A. & KOLL, R. 2004. Sludge treatment by ozonation - 
Evaluation of full-scale results. Water Science and Technology. 



197 
 

SRIDHAR PILLI, SONG YAN, R. D. TYAGI & R. Y. SURAMPALLI 2015. 
Thermal Pretreatment of Sewage Sludge to Enhance Anaerobic 
Digestion: A Review. Critical Reviews in Environmental Science and 
Technology, 45, 669-702. 

STEMANN, J., PUTSCHEW, A. & ZIEGLER, F. 2013. Hydrothermal 
carbonization: Process water characterization and effects of water 
recirculation. Bioresource Technology, 143, 139-146. 

STRONG, P. J., MCDONALD, B. & GAPES, D. J. 2011. Combined 
thermochemical and fermentative destruction of municipal biosolids: A 
comparison between thermal hydrolysis and wet oxidative pre-
treatment. Bioresource Technology, 102, 5520-5527. 

SUZUKI, K., TANAKA, Y., KURODA, K., HANAJIMA, D., FUKUMOTO, Y., 
YASUDA, T. & WAKI, M. 2007. Removal and recovery of 
phosphorous from swine wastewater by demonstration crystallization 
reactor and struvite accumulation device. Bioresource Technology, 
98, 1573-1578. 

TARVIN, D. & BUSWELL, A. M. 1934. The methane fermentation of organic 
acids and carbohydrates. Journal of the American Chemical Society, 
56, 1751-1755. 

TCHOBANOGLOUS, G., BARTON, F. & STENSEL, H. 2003. Wastewater 
Engineering Treatment and Reuse, New York, Metcalfe and Eddy Inc. 

THAMES WATER LTD. 2008. Consultation on Thames Water's Draft 
Strategic Proposals for Sewage Sludge Management [Online]. 
Thames Water Ltd. Available: 
http://thameswater.co.uk/cps/rde/xbcr/corp/draft-strategic-proposals-
for-sludge-management-full-report-190608.pdf [Accessed 4/08/2015 
2015]. 

THE ENVIRONMENTAL AGENGY 2015. Impact Assessment: Update to the 
river basin management plans for England's water environment. In: 
AGENGY, E. (ed.). 

TOOR, S. S., ROSENDAHL, L. & RUDOLF, A. 2011. Hydrothermal 
liquefaction of biomass: A review of subcritical water technologies. 
Energy, 36, 2328-2342. 

UYSAL, A., YILMAZEL, Y. D. & DEMIRER, G. N. 2010. The determination of 
fertilizer quality of the formed struvite from effluent of a sewage sludge 
anaerobic digester. Journal of Hazardous Materials, 181, 248-254. 

VALO, A., CARRÈRE, H. & DELGENÈS, J. P. 2004. Thermal, chemical and 
thermo-chemical pre-treatment of waste activated sludge for 
anaerobic digestion. Journal of Chemical Technology and 
Biotechnology, 79, 1197-1203. 

WANG, W., HOU, H., HU, S. & GAO, X. 2010. Performance and stability 
improvements in anaerobic digestion of thermally hydrolyzed 
municipal biowaste by a biofilm system. Bioresource Technology, 101, 
1715-1721. 

http://thameswater.co.uk/cps/rde/xbcr/corp/draft-strategic-proposals-for-sludge-management-full-report-190608.pdf
http://thameswater.co.uk/cps/rde/xbcr/corp/draft-strategic-proposals-for-sludge-management-full-report-190608.pdf


198 
 

WEILAND, P. 2010. Biogas production: current state and perspectives. 
Applied Microbiology and Biotechnology, 85, 849-860. 

WEISZ, N. & SOLHEIM, O. E. 2009. International Applications of the Cambi 
Thermal Hydrolysis for Sludge and Biowaste Treatment [Online]. 
Billingstad, Norway. Available: 
http://www.cambi.no/photoalbum/view2/P3NpemU9b3JnJmlkPTIyMD
AyNSZ0eXBlPTE [Accessed 21-April 2015]. 

WILLIAMS, P. T. & BESLER, S. 1996. The influence of temperature and 
heating rate on the slow pyrolysis of biomass. Renewable Energy, 7, 
233-250. 

WILSON, C. A. & NOVAK, J. T. 2009. Hydrolysis of macromolecular 
components of primary and secondary wastewater sludge by thermal 
hydrolytic pretreatment. Water Research, 43, 4489-4498. 

WIRTH, B. & MUMME, J. 2013. Anaerobic Digestion of Waste Water from 
Hydrothermal Carbonization of Corn Silage. Applied Bioenergy. 

WIRTH, B., MUMME, J. & ERLACH, B. 2012. Anaerobic treatment of waste 
water derived from hydrothermal carbonization. 20th European 
Biomass Conference and Exhibition. Milan, Italy. 

WIRTH, B., REZA, T. & MUMME, J. 2015. Influence of digestion temperature 
and organic loading rate on the continuous anaerobic treatment of 
process liquor from hydrothermal carbonization of sewage sludge. 
Bioresource Technology, 198, 215-222. 

YOSHIDA, T. & ANTAL, M. J. 2009. Sewage Sludge Carbonization for Terra 
Preta Applications. Energy & Fuels, 23, 5454-5459. 

ZABALETA, I., MARCHETTI, P., LOHRI, C. R. & ZURBRÜGG, C. 2017. 
Influence of solid content and maximum temperature on the 
performance of a hydrothermal carbonization reactor. Environmental 
Technology, 1-10. 

ZHAI, Y., PENG, C., XU, B., WANG, T., LI, C., ZENG, G. & ZHU, Y. 2017. 
Hydrothermal carbonisation of sewage sludge for char production with 
different waste biomass: Effects of reaction temperature and energy 
recycling. Energy, 127, 167-174. 

ZHAO, P., SHEN, Y., GE, S. & YOSHIKAWA, K. 2014. Energy recycling from 
sewage sludge by producing solid biofuel with hydrothermal 
carbonization. Energy Conversion and Management, 78, 815-821. 

 

 

http://www.cambi.no/photoalbum/view2/P3NpemU9b3JnJmlkPTIyMDAyNSZ0eXBlPTE
http://www.cambi.no/photoalbum/view2/P3NpemU9b3JnJmlkPTIyMDAyNSZ0eXBlPTE

