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Abstract 

Amazonian rainforests are home to Earth’s largest reservoir of biodiversity, 

providing crucial ecosystem services and storing approximately 17% of all global 

terrestrial carbon. Today, these forests are experiencing rapid, unprecedented 

changes due to climate impacts and anthropogenic disturbances. In recent 

decades, the region has experienced marked variability in deforestation, and after 

a long period of increase, the deforestation rates in countries like Brazil have 

sharply declined in recent years. However, little is known about the forest trends 

and the impact of different drivers in other Amazonian countries. The aim of this 

thesis, therefore, is to better understand and examine the current dynamics of 

forest loss across Amazonia and how intensive land uses such as gold mining 

influence forest loss, nutrient cycling and recovery patterns. Using remote sensing 

coupled with field observations, this research highlights new spatial patterns in 

Amazonian forest loss which point to a more complex pattern where new smaller-

scale drivers of forest loss are becoming progressively more important (Chapter 

2). The expansion of small-scale events were primarily driven by gold mining 

activities, particularly in northern Amazonia, with underestimation of forest loss 

occurring at sites driven by a mosaic of small-scale clearings (Chapter 3). Nutrient 

depletion was found to be the most important factor driving low biomass recovery 

in previously mined areas, with mercury contamination being of secondary 

importance (Chapters 4 and 5). Overall, small-scale gold mining can severely 

impair the forest’s ability to recover at abandoned mining pits and tailing ponds 

while recovery rates of woody biomass on the overburden zone were comparable 

to other secondary forests across the Neotropics following abandonment of 

pastures and agriculture (Chapter 5). Gold mining across the Amazon could 

potentially result in ~90,000 t C yr-1 less carbon being accumulated in relation to 

what would have accumulated under agriculture/pasture. Important conclusions 

from this work suggests that (1) national deforestation statistics need to include 

these small-scale events which are currently excluded from important official 

estimates such as Brazil’s PRODES, and (2) active rehabilitation and restoration 

are required in order to assist the disrupted successional processes at gold mining 

sites. The results presented here highlight the vulnerability of Amazonian forests 

to newer, more intense types of land uses such as small-scale gold mining. 
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1  
Introduction 

 

 

1.1 Threats to tropical forests  

 

Tropical forests are hotspots of carbon and biodiversity, storing 70% of all 

living biomass worldwide (Pan et al. 2011) and harbouring over half of the 

Earth’s terrestrial biodiversity (ter Steege et al. 2015). These diverse ecosystems 

provide a wide range of critical ecosystem services from regulating water cycles 

to recycling nutrients to the storage of carbon. Nowhere is this more evident than 

in the Amazon Basin, a composite of nine countries possessing the largest 

remaining expanse of tropical forest worldwide (Hansen et al. 2013), and storing 

approximately 100 billion tonnes of carbon in their vegetation and soils 

(Feldpausch et al. 2012, Phillips et al. 2017). Ecological processes (e.g. species 

composition, dispersal mechanisms and demography) within the Amazonian 

forests are remarkably complex, but are highly sensitive to environmental changes 

(ter Steege et al. 2013, Lewis et al. 2015). Of particular concern is the continued 

forest loss across the Amazon due to (1) climate change resulting from global 

warming and deforestation, and (2) anthropogenic disturbances (Figure 1.1).  

As these forests play a crucial role in Earth’s carbon cycle, even small 

changes in their dynamics may have significant regional or global consequences 

(Lenton 2011, Figure 1.1). For instance, Amazonian forests offset ~25% of 

anthropogenic emissions stemming from fossil fuels, the main driver of climate 

change (Pan et al. 2011, Grace et al. 2014). Recent large-scale deforestation 

events, however, have resulted in the release of approximately 1.8 million tons of 

atmospheric carbon dioxide annually between 2000 and 2010 (Song et al. 2015) 

and a reduced carbon storage potential (Foley et al. 2007). Further, recent research 

revealed that carbon gains in intact forests offset losses due to deforestation 

(Galbraith et al. In Review). However, the natural Amazonian carbon sink is also 

in decline (Brienen et al. 2015). Therefore, despite recent reductions in 
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deforestation across some Amazonian countries such as Brazil (Tyukavina et al. 

2017), the overall net effect is neutral (Galbraith et al. In Review).  

Regionally, deforestation may also affect climate by reducing the rate of 

evapotranspiration (Bonan 2008, Gloor et al. 2013, Spracklen and Garcia-Carreras 

2015), which in turn may affect ecosystem functioning and carbon dioxide fluxes 

during the transpiration process (Maeda et al. 2017). In western Amazonia, 

deforestation was shown to reduce rainfall by 20% downwind of the deforested 

area (Zemp et al. 2017), while meteorological stations in Rondônia, Brazil, 

indicated that seasonality of rainfall shifted due to forest loss. Here, the wet 

season was delayed by ~11 days in deforested regions while no change was 

observed in forested areas over the last 30 years (Butt et al. 2011).  Unlike intact 

tropical forests, tree species from land uses such as pasture and agriculture have 

far less leaf area and shallower roots (Jipp et al. 1998) and declines in 

evapotranspiration may further decrease rainfall, thereby reducing precipitation 

downstream of the deforested region (Spracklen et al. 2012, Figure 1.1). However, 

the importance of this effect varies according to the size and pattern of 

deforestation patches (Lawrence and Vandecar 2014). For instance, in smaller 

patches, precipitation increased downwind, resulting in net increase in rainfall 

over the entire deforested patch. As size of the deforested patch increased, the 

magnitude of precipitation and rainfall declined (Lawrence and Vandecar 2014).  

As the carbon dynamics of Amazonian forests are tightly coupled to 

variations in climate (Gloor et al. 2013), recent trends point to a variable 

seasonality when averaged over the entire Basin (Gloor et al. 2013, Marengo and 

Espinoza 2016). In the future, some areas across the basin are predicted to become 

hotter and drier with extreme climatic events such as El Niño–Southern 

Oscillation (ENSO) likely to be stronger in southern, eastern and north-central 

Amazon (Lejeune et al. 2015, Marengo and Espinoza 2016). ENSO events can 

cause extreme water deficits which decrease productivity, leading to widespread 

tree mortality, and can potentially weaken the carbon sink (Cavaleri et al. 2017).  

Concurrently, the catchment of the Amazon Basin is experiencing a 

substantial wetting trend which coincides with increasing tropical Atlantic sea 

surface temperatures (SST) (Gloor et al. 2013).  
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Figure 1.1 Causes and consequences of Amazonian forest loss. 
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This upward trend in SST may lead to increasing atmospheric water vapour 

transported across the northwestern Amazon while the southwestern Amazon may 

become drier due to shifting water circulation in the atmosphere from 

deforestation (Gloor et al. 2013).  

Non-ENSO related droughts have also hit the Amazon in recent years (2005 

and 2010). These were caused by warming of the tropical Atlantic, causing the 

rain-bearing inter-tropical convergence zone to shift northward, affecting both the 

seasonal parts of the basin as well as central and western Amazon (Lewis et al. 

2011). These large drought events may temporarily reverse the longterm forest 

carbon sink in the Amazon (Phillips et al. 2009, Feldpausch et al. 2016), leading 

to the release of approximately 1.1 Pg C yr-1 (Feldpausch et al. 2016). In addition 

to changes in the carbon cycle, nutrient pools are also detrimentally affected by 

forest loss, particularly nitrogen and phosphorus cycles (Davidson et al. 2007, 

Kaspari and Powers 2016). Whether these anomalies will persist in the future is 

uncertain and climate model predictions in Amazonia vary from strong drying to 

modest wetting (Boisier et al. 2015; Figure 1.1). Irrespective of the direction of 

climatic changes, species diversity and composition may shift in response, 

potentially impacting on the rate of carbon sequestration and the regenerative 

capacity of tree species (Allen et al. 2010, Toledo et al. 2011, Mok et al. 2012, 

Exbrayat et al. 2017).  

Additionally, an increase in global population and a concurrent increase in 

the exploitation of Amazonian forests for commercial and economic purposes 

have also resulted in significant impacts on both biodiversity and ecosystem 

services (Foley et al. 2007, Verboom et al. 2015). The net effect of these 

developments in the Amazon has resulted in the loss of millions of hectares of 

forest (FAO 2011), with many landscapes which were once dominated by old-

growth forests quickly becoming replaced by alternative land uses (Lambin and 

Meyfroidt 2011). As wealth increases globally, along with other social, political 

and market forces that monetize Amazonian forests, further pressure is placed on 

these forests through resource extraction and land conversion that aid in the 

development and progress of human societies (Lambin and Meyfroidt 2011, 

Arima et al. 2014).  

In determining the overall patterns of forest loss, it is important to recognize 

that land use change is complex as the underlying (indirect) and proximate (direct) 
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drivers are continually evolving across different temporal and spatial scales 

(Raunter et al. 2013, Nobre et al. 2016). Even within the Amazon Basin, the 

prevalence and drivers of forest loss shift across countries and even between 

Brazil and non-Brazilian countries (Killeen et al. 2007, IDEAM 2011, Asner et al. 

2013, Nepstad et al. 2014). The shifting rates of forest loss throughout Amazonia 

raises several questions as to what is driving these changes, particularly across 

countries; the extent of forest cover change, and the extent to which forests can 

recover from land use perturbations. 

As unprecedented changes occur across Amazonian forests, international 

concerns have increased regarding the global significance of forest loss. The 2015 

Paris Agreement under the United Nations Framework Convention on Climate 

Change (UNFCCC) acknowledged the importance of forests for limiting future 

temperature increase (UNFCCC 2015). This included setting global targets like 

the 20 Aichi Biodiversity Targets, aimed at halving the rate of forest loss by 2020 

(Target 5, CBD 2013), with incentives being negotiated to further reduce 

emissions from deforestation and forest degradation through forest restoration. 

Other international initiatives such as targets 14 and 15 of the Aichi Biodiversity 

Targets and the Bonn Challenge also recognise the carbon sequestration and 

biodiversity potential of recovering secondary tropical forests following 

anthropogenic land use disturbances (CBD 2013).  

In fact, recovering secondary forests in many countries now exceeds the 

cover of primary forests (Wright 2005, Poorter et al. 2016), and can potentially 

sequester 3.05 Mg C ha−1 yr−1, 11 times the uptake rates of old-growth Amazonia 

forests in 2010 (Houghton et al. 2015, Poorter et al. 2016). If allowed to persist, 

the second-growth potential across Latin America is substantial, with 240 million 

hectares available for offsetting carbon emissions from fossil fuel and industrial 

processes associated with these countries (Chazdon et al. 2016). Secondary forests 

may also help slow biodiversity loss by providing a habitat for forest-dwelling 

species and conserving distinct evolutionary lineages and high levels of 

evolutionary history (Chazdon et al. 2009, Edwards et al. 2017, Rocha et al. 

2018). For secondary forests retaining less than 100 Mg ha-1 of carbon, carbon 

and biodiversity were recently shown to be strongly and positively linked 

(Ferreira et al. 2018). This makes secondary forest an important component for 

biodiversity conservation and carbon storage. Recent syntheses of 
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chronosequences from tropical secondary forests have concluded that secondary 

forest biomass recovery rates are 1) mainly controlled by rainfall (Poorter et al. 

2016); 2) are faster in forests previously under pasture use than agricultural 

production (Martin et al. 2013); and 3) nutrient and biogeochemical processes, 

particularly nitrogen, recovers within 10-15 years of forest regrowth (Batterman et 

al. 2013). However, few studies have assessed the roles played by more intensive 

land uses such as mining for gold or other resources. Thus, we do not know how 

forest recovery and resilience (defined here a system's capacity to remain in the 

same state in the face of perturbations, Holling 1973) following these land uses 

compares with recovery from more traditional land uses such as pasture and 

agriculture.  

This study thus seeks to answer the following questions: How has the forest 

landscape changed across Amazonia within the last decade and what influence 

does intensive land uses such as gold mining have on the current extent and 

recovery of forest in the region? Are protected areas effective in curbing forest 

loss from gold mining activities? By examining current forest loss across 

Amazonia, we can assess how different drivers may interact in diverse ways to 

influence this landscape as well as determine how fragmented systems will 

influence forest functioning. Further, by exploring the secondary succession 

process of other types of land uses directly associated with human development 

may help us predict how tropical forests respond to future environmental changes 

and disturbance events, which is crucial for improving climate change projections, 

and for land management and conservation.  

 

1.2 Thesis Layout 

 

The aim of this thesis is to better understand the current dynamics of forest 

loss across Amazonia, and how other types of developmental land uses such as 

gold mining impacts forest recovery. As such, this thesis was divided into two 

components encompassing different spatial scales: a) assessing land use change 

across the entire Amazon (Figure 1.2 – blue and purple boxes) using remote 

sensing products; and b) focusing on how gold mining influences forest loss, 

nutrient cycling and recovery patterns in specific mining intensive regions of 
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Guyana (Figure 1.2 – orange boxes) through remote sensing and field 

observations.  

Chapter 1 explores the different drivers that influence forest loss across the 

Amazon Basin, followed by a description of features that are used to understand 

forest loss. A literature overview of remote sensing approaches used to quantify 

deforestation and forest recovery post-disturbance patterns is also presented 

(Figure 1.2 – blue box).  

Chapter 2 investigates the temporal and spatial changes of forest loss 

across Amazonia according to size distribution of clearings, hotspots and 

geographical density events using a global forest cover dataset (Figure 1.2 – 

purple box). 

Chapter 3 evaluates the extent of forest loss from the recent expansion of 

gold mining across Amazonia and assesses the accuracy of current high resolution 

satellite datasets in capturing gold mining-related forest loss (Figure 1.2 – orange 

box).  

Chapter 4 assesses the impacts of small-scale gold mining on soil and plant 

mercury and nutrients (nitrogen, phosphorus, cations) concentrations.  

Chapter 5 focuses on the regenerative abilities of forest biomass after gold 

mining-induced deforestation events and how these compare with other land uses 

such as agriculture and pasture.  

Chapter 6 summarises and integrates the main findings from the data 

chapters and discusses the implications for conservation and suggest future 

directions for investigation (Figure 1.2 – orange box).  
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Figure 1.2 Conceptual diagram that summarizes the aims of this thesis.  

Different colour boxes represent the different objectives of this thesis: blue 

represents the global assessment of threats to tropical forests and different drivers 

(Chapter 1), the purple box focuses on the dynamics of the proximate causes of 

deforestation across Amazonia (Chapter 2), the orange boxes focus specifically on 

the extent (Chapter 3), impacts (Chapter 4) and recovery of biomass (Chapter 5) 

from gold mining while the green box represents the overall implication for 

conservation and management (Chapter 6). 
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1.3 Drivers of deforestation in Amazonia 

 

Lambin et al. (2001) first conceptualised a simple way of categorizing 

different drivers of forest loss as either proximate (direct) or underlying (indirect). 

Underlying drivers are processes which have an indirect effect on forest loss, 

consisting of an interplay amongst demographic, economic, technological, 

institutional and socio-cultural factors (Figure 1.2). Proximate drivers are human 

activities which directly influence forest cover such as agriculture, pasture, 

logging, fires, infrastructure development such as roads and dams, and gold 

mining (Figure 1.2). In this section, I briefly describe how these drivers influence 

deforestation across Amazonia (Figures 1.2, 1.3).  

 

1.3.1 Underlying drivers  

 

Temporal and spatial patterns of deforestation have historically varied 

greatly from country to country (Figure 1.3) (Geist and Lambin 2001). Recent 

analysis suggest that economic globalization, rising incomes and increasing 

demands for commodities have accelerated forest conversion in high potential 

areas within the last decade (Lambin and Meyfroidt 2011). This has led to an 

increasing reliance on meat-based diets which has transformed old-growth forests 

into productive agriculture and pasture lands (Figure 1.3). For example, 

deforestation in the Brazilian Amazon is increasingly linked to globalized markets 

for timber, beef, soybean and biofuels (Rudorff et al. 2011). Moreover, the pace of 

forest loss in the region appears to be influenced by international demand for 

agricultural products once investments in infrastructure related to the national 

markets have integrated into the region (May et al. 2011). In the 1980s and 1990s, 

forest loss resulted primarily from smallholders clearing the forest for subsistence 

farming, but this shifted in the last decade to large-scale agriculture (Rudel 2007, 

Rudel et al. 2009). However, between 2002 and 2009, Rosa et al. (2012) showed 

that subsistence use once again dominated across the Brazilian Amazon, leading 

to 43% of all deforestation, whereas large-scale industries accounted for only 10% 

forest loss.  
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This shift in the pattern and size of forest loss clearings may result from 

changes in demand for different commodities and by different population 

pressures which manifests through forest loss across the region (Laurance 2015). 

As the demand increases, profits from deforestation vary extensively from a dollar 

to thousands of dollars, depending on the location, technologies and type of land 

use (Chomitz et al. 2007). In order to satisfy this demand, easier access to remote 

forests for land development and associated mechanization that increases 

production yield is required (Rademaekers et al. 2010). For example, in southern 

Brazil, forest loss surged in the 1970s due to agricultural mechanization (Chomitz 

et al. 2006), increasing at a rate of 3.66% annually between 1975 to 2010 (Contini 

and Martha 2010).   

Ultimately, this demand for commodities, while growing the local cash 

economy (Lambin et al. 2003), also increases disparities in the distributions of 

goods between rich and poor nations, with many Amazonian countries 

overborrowing relative to their ability to repay. For example, the debt crisis of the 

1980s highlighted the inability of many Amazonian countries to generate enough 

revenue to make payments to their mounting foreign debts (Pop-Eleches 2008). 

Thus, large sums of money were borrowed from the World Bank to finance 

massive agriculture, forestry, cattle ranching, mining and infrastructure projects. 

(Barbosa 2001). In turn, the World Bank rescheduled loan payments and provided 

new loans, called structural adjustments, which allowed Amazonian countries to 

institute economic policy reforms that encouraged them to spend less by 

devaluing currency, reducing government spending, liberalizing trade and 

privatizing government assets. While this ‘earn more’ and ‘spend less’ model 

facilitated some debt repayment, it increased forest loss across the region 

(Chakravarty et al. 2011). An analysis of the impact of loans at a local scale in the 

Peruvian Amazon indicated that forest loss rates were higher when loans were 

available for agriculture, with the highest rates found within 8 km of the Peruvian-

Brazilian Interoceanic highway (Alvarez and Naughton-Treves 2003).  

Other underlying drivers such as perverse subsidies also likely increase 

forest loss throughout the tropics. For instance, in Brazil, subsidies for cattle 

ranches approved by the Superintendency for Development of Amazonia 

(SUDAM) were a driving force for forest loss in the 1970s and 1980s (Fearnside 

2005). Alongside this, poor governance may see the continuation and approval of 
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contracts that lead to forest loss via two routes: (1) large firms with political 

power may influence government policies or choices regarding concessions 

during the early stages of the decision-making process, or (2) smaller firms may 

bribe state officials to overlook stipulations of a contract during any part of the 

extractive phase (Pfaff et al. 2010). Several studies indicate that forest loss across 

the Amazon is determined by different combinations of these underlying drivers 

in varying geographical and historical contexts (Geist and Lambin 2001, Lambin 

et al. 2001, 2013); the direct consequences of these factors will be discussed 

below (Figure 1.3).  
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Figure 1.3 Proximate drivers of forest loss (km2) across Amazonia. Missing data on individual graphs indicate no data found during 

the literature review1.
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1 Data for Figure 1.3 taken from Galbraith et al. (In review), FAO (2015), Asner et al. (2005, 

2013), Rahm et al. (2015), Guitet et al. (2012), FAO (2001), FAO (2015b), Ledec and Quintero 

(2003), Finer and Novoa (2015), Salo et al. (2011), Pacheco (2006, 2012), Müller et al. (2014), 

Tyukavina et al. (2017), Massé and McDermott (2017), WorldStat, 2007 

(http://en.worldstat.info/South_America/French_Guiana/Land), Vandegrift et al. (2017), Guyana 

Forestry Commission (2015), FAO (1993). It is important to note here that this figure was created 

using data from different sources across different timelines as a demonstration that no previous 

comprehensive analysis exists for comparison across all Amazonian countries. 

 

1.3.2 Proximate Drivers  

 

1.3.2.1 Agriculture & Pasture  

 Since the 1970s, global demand for agricultural products has led to the 

expansion of agricultural areas and pastures across much of Amazonia. In order to 

meet this increasing demand for agricultural products, large swaths of rainforest 

are destroyed, with a focus on expanding arable land. Lower production costs and 

fewer environmental regulations have helped Amazonian countries such as Brazil, 

Peru, Bolivia and Guyana to respond quickly to increased demand for crops such 

as sugarcane, soybean and oil palm (Pacheco 2012, Figure 1.3) and pasture-based 

products such as beef (Lobato et al. 2014). For instance, large-scale soybean 

plantations now cover more than 21 million hectares in Brazil (Gibbs et al. 2010). 

As China’s growing affluent classes consumes larger amounts of ration-fed 

poultry, pork and beef, soya continues to be the best source of vegetable protein in 

animal rations (Nepstad et al. 2008). With the world population expected to grow 

to 9 billion by 2050, and much of this growth forecast to occur in developing 

countries, the market demand for agricultural and pasture-based products will 

continue to increase.  

 Figure 1.4 indicates the increase of agricultural land fraction over time 

with Amazonian deforestation occurring across different parts of the region, from 

(i) the Andean Cordillera to Amazonian lowlands, a north-south axis over the 

western side of the region through Peru, Colombia, and Ecuador; (ii) from the 

south and east of Brazil to central Amazonia, (iii) from the North to South in 

Venezuela; and (iv) from the Atlantic coast along the Amazon River (Imbach et 

al. 2015). Here, Brazil followed by Peru show the largest variations in agricultural 

land use across the basin.  
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 The rate of deforestation has declined across the Brazilian Amazon by 

79% since 2005 (Assunção et al. 2012, Diniz et al. 2015), while agricultural and 

pasture outputs in the region have almost tripled during the same period 

(Assunção et al. 2012). Simultaneously, large-scale cattle ranching has also 

significantly expanded in Brazil since the 1990s with the number of cattle more 

than tripling (Fearnside 2008, Figure 1.5). Between 2001 and 2010, production 

increases corresponded to an area increase of 3 million hectares for cropland (soy) 

and 10 million hectares for pasture while deforestation across Brazil started to 

decreased by 2005 (Macedo et al. 2012). It is therefore clear that economic 

growth, particularly in Brazil, has become decoupled from deforestation (Macedo 

et al. 2012). Here, the efficiency of the land may have intensified where areas 

previously cleared have been re-utilized, thereby increasing the productivity of the 

land (Macedo et al. 2012, Lapola et al. 2014), despite cattle-dominated pastures 

decreasing over time in Brazil (Imbach et al. 2015, Figure 1.5). The Brazilian 

government contends that the fall in deforestation in 2004-2005 was a direct result 

of policy initiatives (such as the Soy and Beef Moratoria in 2006 and 2009 

respectively) which ensured increased land productivity (Killeen et al. 2007) as 

opposed to a reduction in the demand for commodities. Whether this decoupling 

effect exists in other Amazonian countries is yet to be documented. This is mainly 

based on the lack of historical forest loss trend data on individual non-Brazilian 

countries. Figure 1.3 is an example of the lack of comprehensive and consistent 

data. For instance, deforestation trends in Guyana, despite being low, indicate an 

increase from the 1990 figures; which was originally projected as zero (FAO 

2006). As a result of this seemingly limited forest loss, and large expanse of intact 

forests, the Governments of Guyana and Norway signed a Memorandum of 

Understanding (MoU) in 2009 to support Guyana’s Reducing Emissions from 

Deforestation and Forest Degradation (REDD+) scheme in order to stem future 

forest loss (Gruining and Shuford 2012, Laing 2018). Other partnerships based on 

the concept of “Payment for Ecosystem Services” (PES) where an economic value 

is assigned to standing forests as a means to combat climate change also ensued in 

~101 countries including Brazil, Ecuador, Colombia and Suriname (Kronenberg et 

al. 2015).  

Nevertheless, other Amazonian countries are experiencing similar economic 

scenarios linked to placing a higher premium on agricultural commodities such as 
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soybeans and timber than on standing forests (Nobre et al. 2016, Figure 1.4). In 

Bolivia, deforestation was initially driven by demand for sugar and cotton in the 

1970s, whereas the exponential growth from 1980s onwards coincided with 

infrastructural and agro-industrial expansion, particularly for soy and cocoa 

(UNODC 2006, Killeen et al. 2007). As agricultural expansion continued across 

Bolivia, a tripling of deforestation was also seen in protected areas (Killeen et al. 

2007), while cattle ranching accounted for 27% of forest loss between 1994 and 

2004 (Müller et al. 2012). 

 

Figure 1.4 Fraction of agricultural lands over two consecutive decades across 

Amazonia. Map from Imbach et al. (2015). 

 

This was further compounded by externalities such as Brazilian currencies, which 

played a noteworthy role in cattle-ranching investments, and therefore 

deforestation along the Bolivia-Brazil border (Killeen et al. 2008).  

Peru also saw a mosaic of forest loss from agriculture and pastures between 

2000 and 2012 (Lawson et al. 2014, Figures 1.4, 1.5), with oil palm monoculture 
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being the main driver, accompanied by economic incentives such as tax 

exemptions for oil palm cultivation (Dourojeanni et al. 2009, Gutiérrez-Vélez et 

al. 2011, Carrasco et al. 2014). From 2000 to 2010, an estimated 72% of 

industrial-scale high-yield oil palm expansion occurred in the Peruvian Amazon; 

particularly in old-growth forests (Gutiérrez-Vélez et al. 2011). Concurrently, 

pastures in Peru increased from 1950 until 2012 (Imbach et al. 2015), with a 

sudden decrease most likely correlated with other extractive industries such as 

gold mining (Asner et al. 2013). 

 

 

Figure 1.5 Planted/natural pastures over two consecutive decades across 

Amazonia. Map from Imbach et al. (2015). 

 

Similar deforestation drivers suggest analogous effects in Ecuadorian and 

Colombian Amazon biome (Figures 1.4, 1.5). Governmental initiatives to expand 

agricultural colonization in the Ecuadorian Amazon was the initial cause of forest 

loss; commencing in 1964 with land reform laws that led to 18.6% deforestation 
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between 1965 and 2000 in the eastern lowlands (Wasserstrom and Southgate 

2013). In Colombia, 75% of deforestation in its Amazon was a result of 

agriculture, a third of which was cleared for cattle ranching between 2000 and 

2005 (Castiblanco et al. 2013).  

 Comparatively, deforestation trends in Northern Amazonia (Venezuela, 

Guyana, Suriname and French Guiana) remain remarkably low (4.1%) relative to 

Western Amazon and Brazil between 1990 and 2011 (Killeen 2012, Figures 1.4, 

1.5). Multiple challenges such as the lack of accessibility, inactive development 

policies of the State and unavailable essential infrastructure and resources may 

explain why this region retains a relatively low deforestation rate (Rademaekers et 

al. 2010). However, this trend is changing as countries respond to international 

demands for commodities as a pathway for economic development. For instance, 

in Venezuela approximately 287,500 ha of forest was lost annually between 1990 

and 2000, while the rate of forest change increased by 6% between 2000 and 2005 

mainly due to cattle ranching  (FAO 2011, Pacheco et al. 2014).  

 

1.3.2.2 Logging 

 Over the past three decades, Amazonian forests have been threatened by 

increasing rates of forest loss from industrial logging. For instance, between 1996 

and 1997, approximately 9000 to 15 000 km2 has been logged (Asner et al. 2005). 

With over 800 million people depending on forests for timber and non-timber 

products (Chomitz et al. 2007), a central challenge for sustainable use of tropical 

forests was how to preserve the biodiversity and ecosystem services associated 

with forests while enhancing timber production. As such, selective logging was 

adopted as a viable forestry practice which involved the extraction of high-cost 

commercial tree species with a minimum trunk diameter (~40-60cm) (Salvini et 

al. 2014). This left non-commercial species unlogged, with only a small 

percentage of trees harvested, usually 1-10 trees per hectare (Edwards et al. 2014). 

Despite only harvesting a small number of trees, carbon sequestration rates may 

be affected by 47% (Asner et al. 2010). While conventional selective logging left 

the forest intact, little planned effort was made to reduce residual stand damage 

(Feldpausch et al. 2005b). As such, Reduce Impact Logging (RIL) was seen as a 

viable management option to further reduce damage and carbon accumulation as 
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coarse woody debris (CWD) production (see Feldpausch et al. 2005 for more 

details).  

Despite selective logging and RIL being less detrimental than clear-cut 

logging, and with at least one-third of the Amazon now officially designated as 

timber concessions (Laurance et al. 2014), it can still have negative outcomes, 

resulting in localized extinctions and changes to community composition 

(Edwards et al. 2014, Bicknell et al. 2015). Logging intensity, species selection 

and canopy damage from logging have direct effects on stand structure, stand 

development, including major shifts in species dominance, densities and 

recruitment, and subsequent logging cycles (Feldpausch et al. 2005b). The direct 

impact of logging still remains from the networks of roads, tracks, and clearings 

created by bulldozers, skidders, and other heavy equipment during cutting 

operations (Bicknell et al. 2015). These networks cause collateral tree mortality, 

soil erosion and compaction, forest structure changes such as vine and grass 

invasions, and microclimatic changes associated with disruption of the forest 

canopy (Asner et al. 2004, Guitet et al. 2012). Moreover, localized corruption in 

regulatory documents may also enable further deforestation. For instance, in the 

Peruvian Amazon, legal logging concessions enabled widespread illegal logging 

activities in 69% of all concessions (Finer et al. 2014), thus threatening forested 

areas. Illegal logging may also be conducted by poor households accessing larger 

sections of the forests as demonstrated in the Ecuadorian Amazon (Vasco et al. 

2017). In this regard, some authors have suggested that logged forests may take 

decades to fully recover (Osazuwa-Peters et al. 2015) with some insisting that it 

will negatively affect both carbon stocks (Berenguer et al. 2014, 2015) and 

ecosystem functioning (Foley et al. 2007, Edwards et al. 2014).   

 

1.3.2.3 Roads and dams 

 Road and infrastructure development such as dams have shown to sharply 

increase deforestation rates in remote regions across Amazonia. Historically, the 

Amazon has been identified as a source of massive growth in hydropower 

capacity (Nobre et al. 2016) with more than 120 large dams planned across 

Amazonia (Figure 1.6). The rise in dam development is predominantly driven by 

greater electricity demands (Lees et al. 2016) with the debate on the detrimental 
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impacts of hydropower infrastructure in Amazonia largely focused on the 

displacement of human populations and habitat loss.  

 

Figure 1.6 Total number of existing, planned and inventoried (registered sites) 

dams across Amazonia. Image from Dams for the Amazon Basin (http://dams-

info.org/en), Fundacion Proteger, International Rivers, and ECOA 

 

However the impacts of Amazonian dam projects have decisive ecological 

ramifications at local, regional and global scales with ~40 000 km2 of forest being 

lost (Tundisi et al. 2014) as well as the significant increases of greenhouse gas 

emissions (Kemenes et al. 2007), habitat loss, hydrological alterations through 

water level change and reduction of fish catch potential (Nobre et al. 2016). Due 

to a combination of human displacement, environmental impacts and little 

subsidies for current mega-dam building, the Brazilian Government recently 

announced that the era of building big hydroelectric dams in the Brazilian 

Amazon is ending (Branford 2018). Unfortunately, similar actions were not 

observed in other Amazonian countries.  

Further, expanding road networks across Amazonia can promote social and 

economic development, while bringing a multitude of environmental problems 

(Laurance et al. 2014, Figure 1.7). Assessments on the effects of roads in the 

http://dams-info.org/en
http://dams-info.org/en
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region showed that 95% of all forest loss occurred within a 5.5 km distance to 

roads (Barber et al. 2014a), with forest loss varying between 67% to 90% within 

25-100 km of main roads (Laurance et al. 2001, Alves 2002, Asner et al. 2006). In 

Bolivia, for example, 58% of forest loss took place within 5 km of pre-existing 

roads in the recently downgraded legal protection of the Isiboro-Sécure National 

Park and Indigenous Territory (TIPNIS) between 2001 and 2017 (Fernández-

Llamazares et al. 2018). As major roads open up large areas of forest to human 

settlement and much needed resources (Laurance et al. 2009), they also bring 

habitat and biodiversity loss, wildfires and overhunting, which may affect forest 

composition and structure due to changes in seed dispersals (Laurance et al. 

2014).  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 Major road network across Amazonia.  

Map generated using data from the 2013 integrated gROADS database 

(http://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1); 

Columbia University; and University of Georgia. 
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For instance, Espinosa et al. (2018) showed that jaguar density was 6-18 times 

less at sites with increased accessibility via roads in Ecuador, while Ahmed et al. 

(2014) estimated that Para state in Brazil lost an average of 83 species of forest-

associated birds between 2000 and 2008 due to road development and associated 

changes in vegetation structures. 

As deforestation tends to spread contagiously, new roads will spawn 

networks of secondary or tertiary roads, with images of fishbone-like patterns 

emerging that may likely increase the spatial extent of forest loss (Figure 1.8). 

This expansion of roads may also occur regionally and across borders, reinforcing 

the previous forest loss trends while creating new ones. Within Ecuador, ~3 

million hectares of forest was lost between 1990 and 2010 driven mainly through 

a shift from land settlements to more enterprise-driven activities with the 

discovery of oil (Rudel 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 An example of the fishbone-like forest loss along primary and 

secondary roads between 2001-2008 and 2009-2016 in Brazil. Data for map used 

the Global Forest Cover (GFC) product in Google Earth Engine. 
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This opened and extended the northern Ecuadorian Amazon to rapid road 

construction and networks such as the Quito-Lago Agrio Highway (FAO 2011). 

Road developments along the Brazilian-Peruvian border also led to 64% 

deforestation rate between 1999 and 2005, with associated secondary road access, 

driving further forest loss through migration, human settlements, shifting 

cultivation and land trafficking (usurpation, illegal appropriation, and commerce 

of lands) within the Peruvian Amazon (Oliveira et al. 2007).  

Despite roads playing a pivotal role in development, many are unmapped, 

with planning and management efforts extremely inadequate. Illegal roads may 

triple that of official roads (Laurance et al. 2014). In Brazil, for example, for every 

kilometre of legal road there are approximately three kilometre of illegal roads 

(Barber et al. 2014a), which further opens forested areas to illegal activities such 

as gold mining and logging, and may potentially create barriers for sensitive 

wildlife (Laurance et al. 2009). As road development and expansion continues, it 

increases the susceptibility of forests to further forest loss and fragmentation by 

exposing forest edges to increase disturbances. 

 

1.3.2.4 Fire 

 Different land use activities also increase forest susceptibility to fire across 

the Amazon, providing ignition sources via forest fragmentation (Nepstad et al. 

2008). Since the early 1970s, fire incidences soared across Amazonia as it was 

used as a primary tool for clearing forests in preparation for crops and pasture or 

to improve pasture forage. However, ignition sources frequently escaped beyond 

their intended boundaries into neighbouring forests (Cochrane et al. 2008, Figure 

1.9), creating further forest loss and fragmentation. In this regard, fire is often 

associated with forest edges and fragmentations as they influence the occurrence 

and intensity of fire regimes, leading to increase tree mortality and forest loss 

(Vedovato et al. 2016, Armenteras et al. 2017). From 1993 to 2007, fires burned 

over 1 billion hectares of open and fragmented forests compared to 0.33 billion 

hectares of dense forest (Alencar et al. 2015). 

 In turn, fire-related disturbances induce changes in forest structure (size, 

shape and patterns of remaining fragments) and species composition, which may 

lead to many local and global consequences, especially under expected climate 

change conditions (Barlow et al. 2016). For instance, between 2001 and 2010, 
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approximately 126-221 Tg C were emitted to the atmosphere in the Brazilian 

Amazon due to edge effects (Numata et al. 2011). 

 

 

 

 

Figure 1.9 Fire incidences across Amazonia from 2000-2008 and 2009-2018. 

Map created using data from MOD14A1.006: Terra Thermal Anomalies & Fire 

Daily Global 1km in Google Earth Engine. 

 

The return interval of a natural fire was historically estimated at ~500 -1000 years, 

but now fires occur every 5-10 years across the Amazon due to escaping 

agricultural fires (Pivello 2011). As most of the local species are not adapted to 

fire, their recovery may be hampered after repeated burns (Nobre et al. 2016, 

Massi et al. 2017), resulting in shifts in species composition. For instance, a 

woody non-fire-prone vegetation type may transition to a more herbaceous, 

flammable, and shade-intolerant vegetation type with frequent fire (Pinter et al. 

2011). As episodic patterns of post-burn tree recruitment are strongly influenced 

by the number of times a forest is burned, a different suite of pioneer species may 
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dominate the vegetation composition after each fire event due to destruction of 

residual seed bank, mortality of entire cohorts or pioneer species and/or soil 

fertility (Barlow and Peres 2008). Further, these events increase in extent and 

intensity due to major drought events such as El Nino (Jiménez-Muñoz et al. 

2016). Approximately 90% of all Amazonian forest burning occurs in El Nino 

events (Alencar and Vera 2006).  

 While historical fire regime, which result in the production of charcoal 

rich soils, terra preta, (Cordeiro et al. 2014), can be an important carbon pool for 

longterm storage, they occur on millennial scale biogeochemical cycling (Goulart 

et al. 2017, Koele et al. 2017). More modern fire incidences, which occurs on a 

much shorter timescale, tend to result in greater forest loss and reduction in 

above-ground biomass, primary productivity and disruption to biodiversity, 

energy and water cycles (Aragao et al. 2008, Cochrane et al. 2008). For instance, 

in the Brazilian Amazon, annual forest loss rates were closely linked to annual fire 

incidences from 1998 to 2005 (Aragao et al. 2008). However, in 2015 a drought-

induced decoupling of forest loss and active fires was found across the Brazilian 

Amazon with fire events rising to 80% of the 2005 values despite a 76% decline 

in deforestation rates (Aragão et al. 2018). This decoupling effect was seen across 

Brazil, Peru and Bolivia, which may suggest that these countries may be entering 

a new land-use and land cover change phase (Aragão et al. 2018), driven by 

changes in large-scale atmospheric circulation patterns, resulting in below-average 

rainfall over Amazonia. As rainfall pattern decreases, water deficits increase, with 

drought-induced water stress on forests negatively impacting on photosynthetic 

capacity, leading to widespread tree mortality. Droughts can also increase the rate 

of fire incidences in Amazonia associated with increase pasture management and 

deforestation fires, opening areas adjacent to forest edges, fragments and human-

modified forests, all of which are more susceptible to fire than large blocks of 

undisturbed primary forests. In this regard, degraded forests becomes even more 

susceptible to forest fires (Aragão et al. 2018).   

 

1.3.2.5 Gold Mining 

 Gold mining often triggers significant forest loss as large tracts of forests 

are cleared in order to access the gold (Alvarez-Berrios and Mitchell Aide 2015, 

Sonter et al. 2017), with associated transportation and infrastructural support such 
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as roads leading to auxiliary forest loss (Asner and Tupayachi 2017). Much of this 

forest loss stems from artisanal and small-scale gold miners who take advantage 

of increases in international gold prices as a result of global financial recessions, 

opening up forested areas across Amazonia that were historically not profitable 

for extraction (Swenson et al. 2011, Alvarez-Berríos and Mitchell Aide 2015).  

 Artisanal and small-scale mining (ASM) continues to be an integral source 

of revenue for the local population and migrant miners, often forming part of a 

diversified livelihood strategy in combination with agriculture (Cremers et al. 

2013). This is important as the ASM sector employs a greater number of people 

(Table 1.1) than large-scale mining, and has implications for deforestation trends. 

It is important to note that defining artisanal and small-scale mining (ASM) is 

problematic as the criteria used for classifying this type of mining is based on the 

production volume, size of claims and operational continuity (Hentschel et al. 

2002). However, these characteristics are often site-specific with cultural and 

economic anomalies, and may not be based solely on size of the mine or amount 

of ore displaced daily (Veiga et al. 2006). 

Despite this, it is generally accepted that ASM encompasses small, medium, 

informal, legal and illegal miners, with increased gold prices allowing for 

improved operations (Cremers et al. 2013). In fact, improved mechanization 

allows for a higher rate of return for the miner while simultaneously having a 

higher impact on the surrounding forests by uprooting trees, increasing 

sedimentation in rivers and higher deposits of mercury (Peterson and Heemskerk 

2001, De Theije and Heemskerk 2009, Balzino et al. 2015). As such, forest loss 

from gold mining is likely to be further exacerbated across Amazonia due to 

further increases in the mechanization of the mining process (Cremers et al. 

2013).  

 Given the unprecedented rise in gold mining in recent years, Alvarez-

Berríos and Mitchell Aide (2015) estimated that between 2001 and 2013, ~1680 

km2 of forest was cleared within gold mining sites across the Amazon. Other 

studies have shown similar increases. For example, in Guyana, deforestation rates 

increased three-fold by 2012 as gold price increased to US$1200 per ounce; with 

90% of forest loss attributed to increasing gold mining (Guyana Forestry 

Commission - Indufor 2013). 
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Table 1.1 Estimated total number of people employed in the Artisanal and Small-

scale Mining (ASM) sector across Amazonia. 

Country Estimated 

total # of  

individuals 

Data Sources 

Brazil 200 000 Sousa et al. (2011), Cremers et al. (2013) 

Peru 60 000 Cremers et al. (2013) 

Ecuador 92 000 Hentschel et al. (2002) 

Bolivia 80 000 Cremers et al. (2013) 

Colombia 182 000 Cremers et al. (2013) 

Venezuela 15 000 Veiga et al. (2006) 

Guyana 130 000 Guyana Forestry Commission and Indufor (2012) 

Suriname 20 000 Cremers et al. (2013) 

French Guiana 10 550 Legg et al. (2015) 

 

 

 In Brazil, Sonter et al. (2017) showed that 37 830 km2 of forests were 

cleared between 2005 and 2015. Likewise, Asner et al. (2013) observed a 400% 

increase in mining activities between 1999 and 2012 in the Madre de Dios region 

of Peru, resulting in a tripling of deforestation rate from ~5,350 acres per year to 

15,180 acres annually, while in Colombia, the average area of deforestation 

between 2000 and 2010 increased by 3000 km2 (Sánchez-Cuervo et al. 2012), 

partly due to FARC rebels turning to gold mining as an alternative source of 

revenue (Massé and Le Billon 2017).  

 Despite this increase in the extent of forest loss from gold mining, 

previous studies have been periodic, focusing mainly on mono-disciplinary 

subjects such as mercury impacts (Peterson and Heemskerk 2001, Hilson and 

Vieira 2007, Sousa et al. 2011), area-specific deforestation (Peterson and 

Heemskerk 2001, Swenson et al. 2011, Asner et al. 2012, Popescu et al. 2013) or 

socio-economics (Cremers et al. 2013), with no quantitative information on 

biomass recovery or nutrient cycling. Given the recent expansion of this sector 

across Amazonia, the geographic extent and ecological impacts of thousands of 

small mines have gone unexamined and remains to be properly quantified at a 

regional and temporal scale.  
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As forest trends in the Amazon Basin change profoundly, with marked 

decline of deforestation in Brazil, the reliability of different data sources becomes 

crucial. As demonstrated above, several studies have provided deforestation data 

from different land uses, with little consistency in time series. While the 

deforestation data in Brazil is considered relatively reliable due to consistent 

longterm monitoring via the Monitoramento do Desmatamento na Amazônia 

Legal por Satélite (PRODES) programme, for historical reasons, the PRODES 

data only considers deforestation above 6.25ha. Therefore, forest loss events 

smaller than 6.25ha are not captured. Furthermore, deforestation data for other 

Amazonian countries are not well quantified; with a strong indication that 

deforestation is increasing in Western and Northern Amazonia (Swenson et al. 

2011, Asner et al. 2013, Pacheco et al. 2014). As these proximate and underlying 

drivers of forest loss change across different Amazonian countries, they create a 

more fragmented landscape (Laurance 2004). Understanding this fragmentation 

pattern may help us understand (1) how drivers interact in diverse ways and how 

they vary along spatial and temporal scales, and (2) how a fragmented system will 

effect forest functioning and therefore regional and local climate in a tropical 

system.  

 

1.4 Metrics of forest loss 

 

The analysis of spatial disturbance patterns within landscapes has been 

widely applied to the study of terrestrial ecosystems. When a disturbance is 

caused within a forest, it is generally parameterized by its frequency (per unit time 

and per unit area) and intensity (spatial scale), creating patterns and processes that 

are associated with the structural attributes of forest tree communities (Kellner 

and Asner 2009, Kellner et al. 2009, Asner 2013). These disturbances often create 

tree gaps with the resultant forest experiencing multi-layered patches or 

fragments, which may create spatial heterogeneity or homogeneity, i.e. the 

increasing similarity of biotas of large geographical areas over space and time 

(Gámez-Virués et al. 2015, Vallejos et al. 2016). In most human-dominated 

landscapes, small (less than 100 ha) patches of forest loss are usually the norm, 

though patches or clearings greater than 1000 ha can be present (Laurance 2004, 
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Rosa et al. 2012). As the biotic and abiotic conditions vary between forest gaps 

and within these forest loss patches, regenerating trees and species diversity also 

varies (Laurance 2004). Forest-climate interactions are also strongly influenced by 

forest loss patches through edge effects, especially if land use practices repeatedly 

disturb fragmented margins, for example through fire (Cochrane et al. 2008).  

When clusters of patches increase along a spatial and temporal scale, they 

tend to form hotspots which can be used to identify regions of current and 

potential forest loss relative to their surroundings (Sanchez-Cuervo and Aide 

2013, Isobe et al. 2015). Hotspots can also be areas that exhibit statistically 

significant clustering in the spatial pattern of forest loss, with observed patterns 

independent of random processes or subjective decisions (Getis and Ord 1992, 

Harris et al. 2017). Another metric that can be used to determine the extent of 

forest loss across a region temporally is geographic density, i.e. how widespread 

forest loss events are, even if the disturbance itself is not intense. By studying 

these spatial metrics of forest loss, we can better understand how forest recovery, 

and the mosaic and dynamics of forests will fare now and in the future, especially 

in light of climate change.  

 

1.5 Forest Loss Detection 

 

Several datasets have become available which provide information on forest 

loss since the 1990s, the majority of which rely on one of two imagery 

instruments – Landsat or MODIS (Moderate Resolution Imaging 

Spectroradiometer). Using MODIS, Coca-castro et al. (2013) employed the real-

time (every 16 days) Terra-i monitoring system which incorporates rainfall and 

vegetation data to estimate land cover change in Amazonia from 2004-2016. 

MODIS-based systems such as Terra-i seek to address the time-lag issue for 

monitoring habitat change. This means that existing platforms are not yet capable 

of combining technical remote sensing data and analysis in a user-friendly 

interface. Alternatively, the Food and Agricultural Organization (FAO 2011) and 

Killeen (2012) initially utilized Landsat imagery to estimate forest change across 

Amazonia. By 2013, Hansen et al. (2013) employed data mining to the Landsat 

archive to quantify global tree cover change between 2000 and 2012, extended to 



29 

 

2017, mapping annual global cover extent, loss and gain at a high spatial 

resolution (30m). The Hansen et al. (2013) product is updated annually to provide 

wall-to-wall information on forest loss and gains globally, thus providing 

opportunities for quantifying trends in deforestation that were not historically 

available (Hansen et al. 2013). In this dataset, forests are defined by their physical 

attributes (i.e. tree or other vegetation exceeding a height of 5m, and >30% 

canopy cover prior to loss), rather than by their function or the land use. 

Therefore, this dataset not only include losses of primary forest, but also accounts, 

for example, for harvesting of commercial forestry and plantations. As such, I 

only considered forest loss and do not account for subsequent forest gain as a 

means to eliminate regrowth from other land uses such as plantations. Despite this 

limitation, GFC is still the best highest resolution map of global forest cover yet 

produced from 2000 to 2017.  

Both Terra-i and the GFC products have enabled an alternative to the United 

Nations’ Forest Resources Assessments (FRAs), which are hampered by 

inconsistencies in national reporting (Grainger 2008). The recent development of 

openly accessible and global satellite datasets has huge potential in facilitating 

countries that currently lack the capacity to develop independent forest monitoring 

and reporting systems (Goetz et al. 2015). They also provide an opportunity to 

estimate forest loss for non-Brazilian Amazonia, which to-date has been highly 

fragmented, with limited spatial and temporal coverage (see Figure 1.3) e.g. Perz 

et al. (2005). Using high resolution datasets such as Hansen et al. (2013) also 

allows for further exploration of forest loss metrics (as described in Section 1.4 

above) such as shifts in deforestation size classes over time which can determine 

potential deforestation agents such as large agri-businesses or small farmers (Rosa 

et al. 2012).  

 

1.6 Forest recovery from disturbance in the Neotropics and 

Amazonia 

 

As discussed above, Amazonian forests undergo a panoply of disturbances 

occurring at multiple and often interacting, spatial and temporal scales. It is often 

accepted that if left long enough, between 20 to 200 years depending on the 
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measured variable (Chazdon et al. 2007, D’oliveira et al. 2011), tropical forests 

may recover to pre-disturbance levels from historical natural events such as blow 

downs and fires (Asner et al. 2004, Espírito-Santo et al. 2014, Pfeifer et al. 2016, 

Massi et al. 2017). For the most part, these ecosystems have shown resilience to 

natural disturbances in the past, ranging from instantaneous localised tree-fall to 

longer-term regional climatic change. This is often attributed to the (1) distance to 

primary forests which affected seed dispersal (Mesquita et al. 2001), and (2) the 

ability to sprout after damage for numerous Amazonian tree species, along with 

the availability of a rich seed bank (from 500 to 1000 seeds of successional woody 

species per square meter, Wilson 2007). 

While these forests may likely recover from natural disturbances, the extent 

to which pre-Colombian human activities have shaped recovery patterns in 

modern Amazonian forests remains a matter of debate, simply because large 

swaths of the Amazon still remain unexplored (Roosevelt 2013, Levis et al. 2017, 

Palace et al. 2017). On one hand, some authors have suggested that Amazonian 

vegetation hid nutrient‐poor soils incapable of supporting large populations 

(Meggers et al. 2003), with post-Colombian activities playing a much larger role 

in shaping Amazonian forests (McMichael et al. 2017). On the other hand, large 

pre-Colombian populations with spatially heterogenic settlement patterns across 

Amazonia may have influenced floristic composition (Bush et al. 2015, Stahl 

2015, Levis et al. 2017, Palace et al. 2017), affecting the carbon cycle and global 

climate (Nevle et al. 2011). This pervasive historical human footprint across 

Amazonian forests may have dramatically altered woody plant regeneration due to 

repeated fire regimes (Bush et al. 2008). Intense or frequent fires often favours a 

distinctive suite of species from limited propagule sources, altering forest 

dynamics and composition (Balch et al. 2013). 

However, recent anthropogenic disturbances, often in novel forms and with 

greater intensities, may jeopardize the potential for forest recovery and thus 

compromise forest resilience (Jakovac et al. 2015, Moreno-Mateos et al. 2017). 

Research conducted in the last few decades has attempted to understand how and 

whether forests from different types of land uses can recover (Peterson and 

Heemskerk 2001, Martin et al. 2013, Poorter et al. 2016, Bürgi et al. 2017). In 

human-induced disturbances, the disturbance regime – the frequency, size and 

type of disturbance - is often prolonged with curtailing of the successional process 
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numerous times prior to the sites being completely abandoned (Turner 2010). For 

instance, where large agriculture activities are prevalent, establishment of 

vegetation is often achieved through seed dispersal which may slow succession. 

Successional pathways on anthropogencially altered lands often appear 

stochastic and extremely diverse, and may proceed differently from natural forest 

regeneration due to several factors. Firstly, forest recovery rates are related to 

biogeographical context. For example, recovery rates were found to be faster in 

Central American tropics than in Asia, while African forests recovered 

significantly faster compared to those in South America and Asia (Cole et al. 

2014). In the Amazon, inter-regional differences in the average rates of basal area 

and height growth were best explained by differences in soil types, reflecting 

differences in soil fertility (Moran et al. 2000, Zarin et al. 2005). Secondly, forest 

attributes may recover at different rates depending on intensity, duration and 

frequency of disturbance. For instance, aboveground biomass may occur within 

decades while other processes, such as species composition may require centuries 

compared to natural regenerative processes (Chazdon et al. 2016, Poorter et al. 

2016). Some disturbances such as from logging roads may recover quicker, with 

similar canopy cover, species diversity and leaf litter to nearby logged forests 

after 30 years (Kleinschroth et al. 2016). Moreover, under more traditional land 

uses such as agriculture and pasture, forests recovered on average 122 tons of 

aboveground biomass (dry matter) per hectare after 20 years, which corresponds 

to an uptake of 3.05 tons of carbon per hectare per year (Poorter et al. 2016). This 

rate of regrowth differed dramatically across Latin American sites, with larger 

rates associated with higher rainfall (Poorter et al. 2016). Biomass accumulation 

was found to be greater than 94% in Central Amazonia (Feldpausch et al. 2005a). 

Further, biomass recovery rates were faster in forests previously under pasture use 

than agricultural production (Martin et al. 2013). Thirdly, prior land use may 

influence different recovery and successional pathways. Pioneer species dominate 

the community during the first years of regeneration, leading to a forest 

composition very distinct from that of nearby old growth, particularly as some 

pioneer species can be very long lived (Chazdon 2003, Peña-Claros 2016). 

Studies across Latin America indicate that species from all functional groups such 

as shade-tolerant species establish themselves early in the successional process, 

and may continue to flourish even after canopy closure (van Breugel et al. 2007). 
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Two different floristic pathways were identified following land abandonment in 

Brazil, namely (1) Cecropia-dominated forests which arise on less severely 

impacted lands, and (2) Vismia-dominated forests which develop on more heavily 

used or more frequently burned areas (Steininger 2000, Mesquita et al. 2001). 

These pathways may become arrested or diverted by exotic species under extreme 

disturbances such as heavy grazing or high-impact logging due to residual 

vegetation and propagules sources being destroyed by fire or when soils are 

highly disturbed or compacted (Chinea 2002, Fine 2002, Chinea and Helmer 

2003, Zarin et al. 2005). Lower leaf area accumulation relative to biomass was 

observed to influence different canopy development pathways following recovery 

from pasture (Feldpausch et al. 2005a). However, little or no such data exists for 

recovery potential of more intensive land use change such as mining for gold or 

other resources (see dos Santos et al. 2006 for nutrient recovery in degraded soils 

after oil exploration). 

Despite potential recovery of forests, forest regrowth seems to stop short 

of 100% recovery, only achieving ~95%, due to either the onset of another 

disturbance event or the establishment of a lower forest proportion in the 

landscape as estimated through the percentage of fossil forest pollen (Cole et al. 

2014). Moreover, this ability to regrow and recover often depends, to a large 

extent, on the availability of seeds and the essential soil nutrients, nitrogen and 

phosphorus. Despite both nutrients being crucial for tree growth, nitrogen limits 

regrowth in young forests, recovering within 10-15 years after disturbance 

(Davidson et al. 2004a, Silva et al. 2006, Batterman et al. 2013); while the 

abundance or scarcity of phosphorus sets the pace of growth in older stands 

(Turner et al. 2018). To add further complexity, recovery patterns may be 

influenced by distance to forested areas, regional species pool and competition, 

site factors such as soil fertility and texture, landscape configuration such as forest 

cover spatial organization and extent, and regional species composition (Chazdon 

et al. 2007). Knowledge on recovery rates and responses of Amazonian forests to 

past forms of disturbances and drivers may facilitate our understanding of the 

capacity of these systems to respond to current and future events.  
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1.7 Study Sites  

 

Despite extensive research on forest loss in South America and its global 

impact (Malhi et al. 2008, Lawrence and Vandecar 2015, Spracklen and Garcia-

Carreras 2015, Spracklen et al. 2015), the largely intact forests of northern 

Amazonia has been relatively overlooked (Hammond et al. 2007a, Bovolo et al. 

2018). As such, in this study, measurement plots were installed in two important 

gold mining areas in Guyana, namely Mahdia and Puruni (Figure 1.10), from 

January to March, 2016, and subsequently re-censused in June to August, 2017 to 

provide the first quantitative measurements of forest biomass recovery from 

mining. Plot selection and date of abandonment was identified in collaboration 

with the Guyana Geology and Mines Commission (GGMC), the local authority 

that manages mineral resources within Guyana. Sites ranged in age from 0.6 to 3 

years since abandonment of mining activity, with recensusing 18 months later. 

Time since abandonment was further confirmed through examination of RapidEye 

satellite imagery from 2010 to 2017 (https://www.planet.com/), by counting the 

nodes on Cecropia obtusa species present within my sites (Zalamea et al. 2012) 

and by interviewing local miners who worked in the area previously.  

Both sites are utilized mainly by artisanal and small-scale miners. Mahdia 

has a long history of small scale and artisanal mining dating back to 1884 with the 

establishment of the area by Africans in search of gold following emancipation. 

Puruni was mainly the hub for the only large-scale operations of Peter’s Mine, a 

hard rock mine, which was discovered in 1904 and worked until 1916, with no 

gold mining activities outside of this area. Small-scale and artisanal mining in 

Puruni began during the late 1990s – early 2000s.   

Mean monthly temperature at Mahdia and Puruni vary little over the year 

and range between 24oC and 29.6oC. Mean annual rainfall is ~2900 mm and 2200 

mm respectively (WorldClim), with two pronounced rainy seasons (April to July 

and November to January) and two dryer seasons (August to October and 

February to March).  
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Figure 1.10 Field sites in Guyana, with image examples of plots at Puruni 

and Mahdia. 

Overburden and mining pit at 

Mahdia 

Mining landscape showing 

overburden and tailing pond at 

Mahdia 

Tailing Pond at Puruni 

Mining landscape showing 

overburden and mining pit with 

access road at Puruni 
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The alluvial soils are lateritic loam to sandy clay. Both sites are found at ~320 m 

elevation, along sedimentary rocks of the Guiana Shield (Hammond et al. 2007). 

For this reason, the sites contain large deposits of gold which may be more readily 

accessible to small and artisanal miners. 

Each plot was positioned so as to include three important zones of an 

artisanal gold mining site, namely the mining pit, the mine tailings (deposits of 

material left over after the gold has been separated from the ore) and the 

overburden (areas overlying the ore which are displaced during the mining 

process) (Figure 1.11). More information on the plot installation and the 

additional data collected is provided in Chapters 4-5.  

 

 

 

 

Figure 1.11 Zones of a small-scale mining process.  

These are (i) Overburden: areas overlying the ore which are displaced during the 

mining process, (ii) Tailing Pond: deposits of material left over after the gold has been 

separated from the ore, and the (iii) Mining pit. Image © M. Kalamandeen (2016). 
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1.8 Important knowledge gaps 

 

Despite their local and global significance, there are still many knowledge 

gaps concerning the dynamics and impacts of forest loss on Amazonian 

rainforests. Available resources are often lacking to collect real-time data on 

forest loss as it occurs. Until recently, a trade-off between spatial and temporal 

resolution existed, with higher-resolution sensors covering less area per day (Finer 

et al. 2018). As such, the availability of data on forest cover change is often dated 

when published, have limited time series, inconsistent definition of forest over 

time, questionable data reliability and may only have anecdotal knowledge for 

some Amazonian countries, with little information on non-Brazilian Amazonian 

countries. For instance, FAO reports such as its Global Forest Resource 

Assessments (FRAs) are dependent on government information, emphasizing the 

inconsistencies in methods and definitions of forests over time (Grainger 2008, 

Hansen et al. 2013). These reports also only capture net values for forest area 

changes, for example, forest loss in Guyana was estimated as zero from 1990-

2000 (FAO 2006).  

Despite the incredible wealth of information available within new global 

datasets such as the University of Maryland’s Global Forest Change (GFC) 

(Hansen et al. 2013) and Terra-i (Coca-castro et al. 2013) products, a 

comprehensive pan-Amazonian analysis that considers multiple aspects of 

deforestation, not restricted simply to national trends, over time has not been 

achieved to-date. For example, deforestation characteristics such as deforested 

patches, an indication of the success of land and conservation policies (Rosa et al. 

2012), have only been studied in the Brazilian Amazon for deforested patches 

>6.25 ha. Such information may also aid prioritizing the most important forest 

loss areas based on pattern (size and density), shape (linear) and location (overlap 

with areas of interest) (Finer et al. 2018) which can indicate (1) direct drivers such 

as agriculture or gold mining, (2) indirect drivers such as market forces that often 

determines appropriate policy action, and (3) future monitoring and conservation 

action based on a landscape assessment of hotspots. Little is also known about 

how effective protected areas are in stemming forest loss across Amazonia 

through a consistent time period. Understanding the current dynamics of forest 
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loss ultimately ensures that the goal of reducing deforestation can lead to actual 

policy or conservation action. Using the above datasets, I explore the temporal 

and spatial extent and distribution of forest loss features such as deforested 

patches, forest loss density and hotspots from 2001 to 2014 bringing clarity to 

important shifts in land use change across Amazonia and in protected areas 

(Chapter 2).  

Further, the deforestation dynamics identified in Chapter 2 may be used to 

further assess how intensive land uses such as gold mining influence forest loss 

across the Amazon. Gold mining and its impact on Amazonian deforestation is a 

fairly recent and pervasive phenomenon but is often overlooked in deforestation 

analysis due to its relatively small extent (Alvarez-Berrios and Mitchell Aide 

2015). Although gold mining is usually temporary, the impacts are profound and 

persistent (Sonter et al. 2017), with recent studies indicating the influence of 

mining activities on land use cover are through the territorial expansion of pasture 

and agribusinesses (Sonter et al. 2014). As northern Amazon (Venezuela, Guyana, 

Suriname and French Guiana) encompasses ~1 million km2 of continuous, intact 

tropical forest (Hammond et al. 2007), it may increasingly represent a greater 

share of the remaining closed forest cover of Amazonia, with multi-scale impacts 

across South America if ~28% of the current area is deforested (Bovolo et al. 

2018). The absence of forest loss information from gold mining is mainly due to 

(1) a lack of accurate mapping of mining areas due to the nature of the mining 

process which produces different types of land cover (e.g. barren soil, mining pits, 

water-bodies, degraded and recovering areas); and (2) a significant amount of 

small-scale mining occurs in relatively small areas (<10 000m2) which are only 

detectably by high resolution images (≤30m) (Lobo et al. 2018). Numerous 

authors have tried to assess how gold mining influences deforestation in 

individual countries, for example, in Peru (Swenson et al. 2011, Asner et al. 

2013), using relatively coarse remote sensing datasets such as MODIS (250m 

resolution) or inaccessible products such as CLASlite. However, evaluating the 

extent and pattern of gold mining influence on deforestation at a landscape level 

remains relatively unknown, particularly in areas with high cloud cover such as 

northern Amazonia. Further, little information exists on how gold mining impacts 

protected and conservation areas. In order to investigate gold mining-induced 

forest loss across the region, I explore the temporal and spatial extent and 
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distribution of forest loss in gold mining areas across northern Amazonia from 

2001 to 2016 to bring clarity to important shifts in land use change across region 

(Chapter 3). I also examined whether high-resolution satellite images such as GFC 

(30m resolution) are able to adequately detect small-scale gold mining through 

comparison with 5m resolution RapidEye satellite imagery.  

Additionally, little is known about the recovery process of forests from 

previously abandoned gold mining activities. In fact, only one previous study has 

attempted to evaluate the influence of gold mining on recovery of vegetation but 

used only visual assessment with no data from recensusing (Peterson and 

Heemskerk 2001). This is imperative as gold mining sites are often very dynamic 

with re-mining occurring several times on the same site, with little resting time in 

between mining activities. Compared to other land uses, gold mining is much 

more intensive due to the damage imposed. Therefore, it is unclear what may be 

influencing or limiting the ability of forests to recover within such sites. As such, 

with the collection of new data on plots established in previously mined regions, 

Chapters 4 and 5 will assess the impact of gold mining on soil and vegetation 

nutrients, and forest recovery dynamics at abandoned gold mining sites.  

 

1.9 Research aims and objectives 

 

1.9.1 Thesis aim 

The aims of this thesis is to better understand how deforestation dynamics 

have evolved over the current Amazonian landscape and examine the extent, 

patterns and timing of ecological recovery from the recent increase in small-scale 

gold mining activities.  

 

1.9.2 Thesis objectives 

Objective 1: Evaluate the spatial and temporal changes in forest loss across 

Amazonia 

1.1 Identify the hotspots (clusters of high rates of deforestation) of forest loss 

in the Amazon 

1.2 Assess the different sizes of forest loss clearings  
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1.3 Identify forest loss events of different geographical density and determine 

how this has changed over time.  

 

Objective 2: Evaluate the extent of forest loss from small-scale gold mining 

activities  

2.1 Determine the extent of forest loss from gold mining activities across 

northern Amazonia 

2.2 Quantify the accuracy of the 30m-resolution global forest cover product in 

detecting gold mining related forest loss events by assessing it with the 5m 

resolution RapidEye satellite imagery at two known gold mining sites  

 

Objective 3: Evaluate the impact of small-scale gold mining activities on soil and 

plant nutrients 

3.1 Assess the level of mercury concentrations in soil and vegetation at 

abandoned gold mining sites 

3.2 Examine the available exchangeable cations for nutrient cycling  

3.3 Quantify the levels of nitrogen and phosphorus in soils and vegetation 

across different mining zones 

 

Objective 4: Investigate patterns of biomass recovery from gold mining 

4.1 Determine the vegetation composition and biomass accumulation 

trajectories along abandoned gold mining sites 

4.2 Investigate how observed biomass recovery patterns from gold mining 

sites compare with secondary forests recovering from other land uses (e.g. 

pasture, agriculture) 

4.3 Assess which factors limit biomass recovery in previously mined gold 

mining sites 
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2                                  
Pervasive Rise of Small-

scale Deforestation in 

Amazonia 
 

 

2.1 Abstract 

 

Understanding forest loss patterns in Amazonia, the Earth’s largest 

rainforest region, is critical for effective forest conservation and management. 

Following the most detailed analysis to date, spanning the entire Amazon and 

extending over a 14-year period (2001-2014), this chapter reveals significant 

shifts in deforestation dynamics of Amazonian forests. Firstly, hotspots of 

Amazonian forest loss are moving away from the southern Brazilian Amazon to 

Peru and Bolivia. Secondly, while the number of new large forest clearings (>50 

ha) has declined significantly over time (46%), the number of new small clearings 

(<1 ha) increased by 34% between 2001-2007 and 2008-2014. Thirdly, small-

scale low-density forest loss expanded markedly in geographical extent during 

2008-2014. This shift presents an important and alarming new challenge for forest 

conservation, despite reductions in overall deforestation rates.  
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2.2 Introduction  

 

Amazon rainforest deforestation has been a major issue on the 

environmental agenda, driven by concerns about deteriorating ecosystem services, 

biodiversity loss and increasing carbon emissions (Davidson et al. 2012, Aragão 

et al. 2014, Finer et al. 2015). For example, loss of forest cover has been shown to 

result in sharp reductions in species richness in southern Amazonia (Ochoa-

Quintero et al. 2015). Furthermore, as the Amazon Basin accounts for ~ 5.4 

million km2 of contiguous tropical forests (Pokhrel et al. 2014) and 150 – 200 Pg 

of carbon (Feldpausch et al. 2012), changes in land use in Amazonia are expected 

to have significant regional and global climatic consequences (Coe et al. 2013, 

Lima et al. 2014), with potential impacts on climate and agriculture in other parts 

of South America and, via teleconnections, in other continents (Lawrence and 

Vandecar 2014).  

Despite its significance, comprehensive assessments of the dynamics of 

forest loss across the entire Amazon region are rare. In fact, the majority of 

regional-level studies to date have focused only on the Brazilian Amazon 

(Nepstad et al. 2009, Rosa et al. 2012, 2013, Aragão et al. 2014, Nogueira et al. 

2015). In part, this is due to the highly successful PRODES (Monitoramento do 

Desmatamento na Amazônia Legal por Satélite) programme, operated by the 

Brazilian Institute for Space Research (INPE), which provides annual estimates of 

deforestation for the entire Brazilian Amazon since 1988 based on 30m-resolution 

Landsat satellite images (INPE 2015). The PRODES data have been used to 

highlight the marked decline in deforestation in the Brazilian Amazon over the 

last decade, where deforestation was reported to have fallen from a record 27,772 

km2 in 2004 to 4,571 km2 in 2012 (INPE 2015). In this regard, PRODES enabled 

government actions through the Plano de Prevenção e Controle do Desmatamento 

na Amazônia (PPCDAm) programme that led to a revolutionary impact on 

reducing deforestation in the Brazilian Amazon (Brasil - Ministério do Meio 

Ambiente (MMA) 2013). This steered renewed optimism about Brazil’s capacity 

to contain Amazonian deforestation, with some authors predicting an end to 

deforestation of the Brazilian Amazon by 2020 (Nepstad et al. 2009).  
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PRODES-based studies, however, do not provide a complete picture of 

deforestation dynamics within the Basin for several reasons: 1) they do not 

consider deforestation events <6.25 ha; thus, smaller disturbances such as those 

associated with subsistence agriculture and artisanal or small-scale mining 

(typically < 5 ha) are not represented by PRODES unless accumulated over 

several years to >6.25ha (Lobo et al. 2016), 2) they only consider primary forests 

and do not account for secondary or regenerating forests and 3) they are restricted 

to Brazil (Hansen et al. 2008).  

Furthermore, trends in Brazil may not reflect those occurring in other 

Amazonian countries or regions. In Bolivia, for example, forest loss has 

accelerated from ~400 km2 y-1 in the 1960s to 2900 km2 y-1 by 2004 (Killeen et al. 

2007); while deforestation in the Colombian Amazon has also been reported to 

have increased over the last decade (Government of Colombia 2011, Armenteras 

et al. 2013). Other studies have highlighted sub-national, regional increases in 

deforestation. For example, significant increases in deforestation have been 

documented in the Madre de Dios region of Peru associated with a rapid surge in 

small-scale gold mining (Asner et al. 2013). Further, with increasing awareness of 

forest loss throughout the region, an exponential growth in protected areas was 

seen over the past decade as a means of protecting intact forest landscapes (Heino 

et al. 2015, Spracklen et al. 2015). Yet the effectiveness of protected area to curb 

forest loss using a uniform dataset that allowed for consistent forest extent 

comparisons over space and time has not been assessed. 

Recent advances in data availability and processing power have enabled 

the emergence of high-resolution regional and global forest cover change datasets 

spanning over ten years of data, such as the University of Maryland’s Global 

Forest Change (GFC) product (Hansen et al. 2013), based on hundreds of 

thousands of 30m-resolution Landsat satellite scenes, and the 250-m resolution 

Terra-i data (Coca-Castro et al. 2013) derived from USGS/NASA MODIS data, as 

described by Reymondin et al. (2012), allowing for in-depth assessment of forest 

loss extent and temporal dynamics. Thus, this chapter specifically addresses the 

following questions: 1) How has the spatial patterns of forest loss across 

Amazonia changed over a 14-year period (2001-2014)? 2) What are the temporal 

and spatial shifts of forest loss hotspots (clusters of high rates of deforestation) 

across Brazilian versus non-Brazilian Amazon? 3) Has the size of forest loss 
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patches and geographical density of forest loss events evolved across Amazonia 

within this timeline? 4) Are protected areas effective in reducing forest loss across 

Amazonia? For spatio-temporal analysis using the Terra-i product, see Appendix 

2.15. These analyses provide critical insights into shifts in potential drivers of 

deforestation (Rosa et al. 2012) and establish a barometer for evaluating the 

effectiveness of conservation strategies such as protected areas.  

 

2.3 Methods 

 

2.3.1 Deforestation datasets and overarching temporal patterns 

The Amazonian area of interest was defined following the boundaries 

proposed by Eva et al. (2005). This includes sections of nine countries: French 

Guiana, Suriname, Guyana, Venezuela, Colombia, Ecuador, Peru, Bolivia and 

Brazil. Deforestation data for the area of interest was obtained from the 30-m 

resolution Global Forest Change (GFC) data of Hansen et al. (2013), based on 

Landsat imagery. The Hansen et al. (2013) data was downloaded from 

http://earthenginepartners.appspot.com/science-2013-global-forest (Version 1.2). 

All results shown are for GFC Version 1.2, as this allowed analysis of the longest 

time series available. However, I also compared the results with GFC Version 1.0 

data over the period for which there is data for both products (2001-2012). This 

was done to explore the potential effects of reprocessing changes in v. 1.2, where 

the reprocessing algorithm was changed for the 2011-2014 period. In v 1.0, 

consistent processing was used throughout the entire time series (2001-2012). I 

applied no further processing to the Hansen et al. (2013) dataset. The analysis 

indicated that overall patterns were very similar for both versions of the GFC data, 

over the period where both versions were available (Appendix 2.9 and 2.10). The 

study region spanned thirteen GFC (Landsat) tiles which were clipped to match 

the boundaries of my area of interest. I restricted my analysis to the Tropical and 

Subtropical Moist Broadleaf Forest (herein called the TMBF) biome using the 

definition and extent from Nature Conservancy 

(http://maps.tnc.org/gis_data.html). The TMBF is defined as large, discontinuous 

patches centred on the equatorial belt, between the Tropics of Cancer and 

Capricorn, and characterized by low variability in annual temperature and high 

http://earthenginepartners.appspot.com/science-2013-global-forest
http://maps.tnc.org/gis_data.html
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levels of rainfall (>200 centimetre annually). These forests are dominated by 

semi-evergreen and evergreen deciduous tree species.  

Forest was defined as those pixels in GFC with >30% tree cover as per 

Kim et al. (2015). The total area deforested in the Amazonian region of each 

country was calculated annually for the GFC dataset (2001-2014). In the GFC 

dataset, deforestation was defined as a stand-replacement disturbance or the 

complete removal of tree cover canopy at the Landsat pixel scale (Hansen et al. 

2013); with the exclusion of pixels after a deforestation event annually. Forest 

gain areas were therefore not considered in this analysis so as to eliminate 

secondary regrowth as non-forests such as plantations. As mentioned in Chapter 

1.5, forests within the GFC dataset are defined by their physical attributes (i.e. 

tree or other vegetation exceeding a height of 5m, and >30% canopy cover prior 

to loss), rather than by their function or the land use. Therefore, this dataset 

included losses of primary and secondary forest, commercial forestry and 

plantations. Hansen et al. (2013) was able to assess tree cover through pre-

processing 654 000 Landsat scenes for the growing season, correcting and 

normalising them, irrespective of calibration or atmospheric conditions, and 

developing an automated process to remove all cloud and cloud shadow. A set of 

variables was then applied to extracted all valid observations for each pixel, 

including features related to average greenness, and trends in that greenness 

through time. Using an extensive network of training data gleaned mostly from 

manual interpretation of hyperspatial  (very high resolution, ≤5 m pixels) data, 

automated decision trees were set up to enable predictions of the percentage tree 

cover (in the year 2000), forest loss, and forest  gain  per  pixel (see Hansen et al. 

2013 for more details). The forest loss layer returned either ‘no change’, or a 

single year from 2001-2013 where loss occurred. Loss can occur only once using 

this algorithm, so such a pixel could never again be flagged as deforested. 

The PRODES shapefile was derived from http://maps.csr.ufmg.br/, and 

indicates annual deforestation rates in the Brazilian Amazon since 1997. To 

compare PRODES data with the GFC product, yearly masks were created using 

the PRODES primary forest and associated yearly forest loss pixels to subset 

annual GFC data. This allowed the removal of all non-primary forests and non-

forest regions from the analysis. Maps in figures 2.1, 2.3, 2.4, and Appendix 2.1, 

http://maps.csr.ufmg.br/
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2.5, 2.9 and 2.11 were generated using ArcGIS 10.4.1 software by Esri 

(Environmental Systems Resource Institute, www.esri.com).  

For all analyses described below I divided the dataset into two periods of 

equivalent length: 1) 2001 – 2007 and 2) 2008 – 2014 to allow for statistical 

analysis of non-normally distributed and non-trend data. I statistically evaluated 

the differences in means of relevant metrics for both periods using the non-

parametric Wilcoxon’s signed rank test as the data was not normally distributed. 

 

2.3.2 Analysis of size dynamics of deforested patches 

Deforested patches were defined as contiguous areas of forest that were 

cleared within a year. Deforested patches were classified into eight categories, 

namely ≤1 ha, 1- 6.25 ha, 6.25 - 50 ha, 50 - 100 ha, 100 - 200 ha, 200 - 500 ha, 

500 - 1000 ha and >1000 ha. This is the same size class breakdown used by Rosa 

et al. (2012), with the exceptions that I also consider deforestation patches ≤ 1 ha 

and 1-6.25 ha, which are below the annual deforestation threshold detected by the 

PRODES data analysed in this study.  

 

2.3.3 Analysis of spatial patterns of deforestation 

The GFC data were also used to investigate spatial patterns of 

deforestation density (number of deforested pixels per area), including their 

temporal dynamics using ArcGIS 10.4.1. To visualise deforestation density, I 

created a 10 x 10 km grid over the study area, within which total deforested area 

were classified within each gridcell into five categories following a log scale: 1) 

Negligible (<0.01 km2 per 100 km2 land area), 2) Light (0.0101– 0.1 km2 per 100 

km2 land area), 3) Moderate (0.1001-1 km2 per 100 km2 land area), 4) Heavy 

(1.0001-10 km2 per 100 km2 land area) and 5) Very Heavy (> 10.0001km2 per 100 

km2 land area). Annual data were grouped into two periods for analysis: 2001-

2007 and 2008-2014. I conducted additional sensitivity analyses to explore the 

implications of the assumed lower boundaries for ‘light’ deforestation on the 

results. To do this, I performed additional calculations where the lower boundary 

was doubled (set to 0.02 km2 per 100 km2) or trebled (set to 0.03 km2 per 100 

km2).  

To evaluate whether similar patterns were observed inside and outside of 

protected areas, I applied a protected area mask using shapefiles provided by The 

http://www.esri.com/
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World Database on Protected Areas (WDPA), which include protected areas from 

all IUCN categories as well as indigenous protected areas, biological and 

biosphere reserves, cultural sites, sustainable reserves and hunting preserves 

(www.protectedplanet.net). I also utilized river and roads shapefiles from 

HydroSHEDS (http://www.hydrosheds.org/) and gROADS database 

(http://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1) 

respectively to assess accessibility across Amazonia. Separate Wilcoxon signed 

rank tests were conducted for areas inside and outside of protected areas to 

investigate changes in deforestation density between the two focal periods (2001-

2007 and 2008-2014).  

For each of the two study periods (2001-2007 and 2008-2014), I also 

statistically evaluated the spatial clustering patterns of deforestation, using the 

Getis-Ord Gi* statistic (Getis and Ord 1992) in ArcGIS 10.4.1. Getis-Ord Gi* is a 

local clustering statistic and was used to statistically determine the occurrence of 

deforestation hotspots (Getis and Ord 1992). Spatial statistics such as Getis-Ord 

Gi* can assist in quickly identifying spatiotemporal trends of forest loss without 

the explicitly need for pre-existing information on what underlying factors are 

driving these trend as well as measure the degree of correlation of weighted 

features within a specified distance threshold (Harris et al. 2017). Based on 

prediction accuracy index (PAI), Gi* gave the best results in predicting the spatial 

extension of hotspots and the best mapping technique for capturing local clusters 

with statistically significant hotpots (Chainey 2010). This metric has been utilized 

previously for hotspot analysis mainly in the health and urban sectors 

(Bereitschaft and Debbage 2014, López-Carr et al. 2014). The statistic is 

Gi
*(d) =

wij (d) × x j
j=1

n

å

x j
j=1

n

å
where xj is the number of spatially mapped deforested 30-m 

pixels within a 10 x 10 km gridcell j and wij (d) is a weights matrix with values 

equal to 1 for gridcells located within a distance d from gridcell j and zero 

otherwise, and n is the total number of mapped deforestation rates (at locations 

j=1,...n).  These analyses were conducted using the spatial statistics tools in 

ArcGIS 10.4, using a fixed distance d of 100 km, where features within this 

distance are its neighbours while features further away are not. The distance band 



48 

 

of 100km was selected after running multiple Moran’s I statistics for a peak in z-

scores. Hotspots (clustered deforestation patches) have comparably large positive 

Gi* values while absence of clustering is indicated by Gi* values close to zero. To 

detect hotspots Z-scores (standard deviations of all Gi* values) and corresponding 

p-values for Gi* were calculated for each gridcell to determine whether forest loss 

in a given gridcell is statistically clustered relative to neighbouring gridcells 

compared to all gridcells in the study region (Getis and Ord 1992). Significant 

positive Z-scores denote local clustering of high deforestation counts indicating a 

significant hotspot.   

 

2.4 Results  

 

2.4.1 Spatio-temporal evolution of forest loss hotspots 

My analysis reveals important shifts in statistically significant forest loss 

hotspots (areas with concentrated forest loss activity) across Amazonia using a 

local clustering statistic, the Getis-Ord Gi* metric (see Methods). Over the first 

half of the study period (2001-2007), spatial hotspots of deforestation were 

concentrated along the widely known ‘arc of deforestation’ extending across the 

southern rim of the Brazilian Amazon from Pará to Rondônia, with an especially 

large hotspot in Mato Grosso (Figure 2.1). The only hotspot of note outside of 

Brazil during the 2001-2007 period was a relatively small region in western Santa 

Cruz state and bordering Beni state in Bolivia.  

The distribution of deforestation hotspots during the 2008-2014 period 

differs from that of the 2001-2007 period due to three major notable features: 1) 

the weakening of the Brazilian ‘arc of deforestation’ as a deforestation hotspot, 2) 

the  southward expansion of the Bolivian hotspot of deforestation and 3) the 

emergence of a new deforestation hotspot in Amazonian Peru. The apparent 

disappearance of the traditional ‘arc of deforestation’ is driven by a marked 

decline in the importance of Mato Grosso, and to a lesser extent Pará, as a forest 

loss hotspot. The Bolivian hotspot expanded rapidly from covering an area of 

~300 km2 in 2001-2007 to an area of ~9560 km2 in 2008-2014, thus representing 

the largest deforestation hotspot (at 99% confidence levels) over the Amazon 

during that period (Figure 2.1, Appendix 2.1). The Peruvian forest loss hotspot is 
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much smaller in area (2066 km2) than the Bolivian hotspot and only emerged 

during the second half of the study period. Accompanying the Peruvian hotspot is 

the emergence of a smaller, statistically weaker hotspot in western Colombia, also 

not evident during the first half of the study period. 

 

2.4.2 Temporal patterns of forest loss patch size 

I also found that mean forest loss patch size declined across Amazonia 

over the study period (2001-2014). Between 2001 and 2014, the mean forest loss 

patch size across the study region was 10.25 ha but varied considerably across 

countries, ranging from 0.5 ha in Ecuador to 15.6 ha in Brazil, (Appendix 2.2). 

Bolivia was the only country besides Brazil where mean forest loss patch size was 

>1 ha. I found a majority (96.4%) of deforested patches were below the 6.25 ha 

threshold considered by PRODES, with a large number of these (81.1%) below 1 

ha. In area terms, patches below 6.25 ha accounted for ~39% and ~34% of total 

Amazonian and Brazilian Amazon forest loss across our study period 

respectively.  

Mean patch size trajectories across time in Brazil and Bolivia were similar, 

increasing from 2001 up to 2004 and declining thereafter (Appendix 2.2). In both 

countries, mean patch size was significantly greater in 2001-2007 than in 2008-

2014 (W=49, p=0.0005).  Significant declines in mean size of forest loss patches 

between 2001-2007 and 2008-2014 were also found for Venezuela (W=41, 

p=0.038), French Guiana (W=45, p=0.006) and Guyana (W=43, p=0.017), but the 

total deforested area in these countries was much lower than in Brazil and Bolivia.   

The declining mean patch size of forest loss across Amazonia reflects both 

a decline in the number of larger forest loss patches and an increase in the number 

of smaller patches (Figure 2.2). The number of very large (>500 ha) deforested 

patches declined significantly over time (W=49, p>0.001) by 67% between 2001-

2007 and 2008-2014 (Table 2.1). This is driven by a 72% decline in very large 

forest loss patches in Brazil, the country with by far the greatest total number of 

forest loss patches, between the two time periods. Similarly, the number of very 

large forest loss patches in Bolivia also declined by 25% between both of my 

study periods.  
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Figure 2.1 Hotspots of Amazonian forest loss. 

Maps based on Getis Ord Gi* z-scores for GFC data for two time periods: 2001-2007 and 2008-2014 using ArcGIS 10.4.1 

(www.esri.com). Higher values indicate increased clustering of deforestation patches. 

http://www.esri.com/
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Figure 2.2 Change in deforested area (ha) of different size categories between 2001-2007 and 2008-2014 across Amazonia using the 

GFC dataset. 
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Table 2.1 Changes in the number of patches between 2001-2007 and 2008-2014 using the Hansen et al. GFC product. The 

significance of the difference between the two time periods (2001-2007 and 2008-2014) were estimated using the Wilcoxon signed 

rank test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Patch Size Mean number of forest loss patches % Difference 

between time 

periods 

Statistical 

Significance 2001-2007 2008-2014 

<1ha 2069303 2709837 30.95 W = 13, p = 0.16 

1 - 6.25 ha 445736 457348 2.61 W = 23, p = 0.9 

6.25 – 50 ha 110007 82481 -25.02 W = 44, p = 0.01 

50 – 100 ha 6965 3487 -49.93 W = 49 , p <0.001 

100 – 200 ha 2870 1230 -57.12 W = 49, p <0.001 

200 – 500 ha 1388 482 -65.31 W = 49, p <0.001 

500 – 1000 ha 336 102 -69.71 W = 47, p = 0.002 

>1000 ha 146 39 -73.24 W = 46, p = 0.004 
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There were also significant declines in forest loss patches of large and 

intermediate size (50-500 ha) by 27% (W=44, p=0.01), while the number of small 

forest loss patches (<6.25 ha) increased by ~34% (W=13, p=0.16) between the 

two study periods (Table 2.1). The overall pattern of increasing number of small 

forest loss patches was seen across all Amazonian countries (Appendix 2.3), 

although the multi-annual patterns of change varied according to country.  

In Brazil and Bolivia, the number of small forest loss patches increased 

gradually throughout the study period (see Figure 2.5) while in northern 

Amazonian countries (French Guiana, Guyana, Suriname, Venezuela) and in 

western Amazonian countries (Colombia, Ecuador, Peru) there were pronounced 

increases in small forest loss events in 2012, with forest loss rates rebounding 

back to close to previous levels in 2013. For example, the number of forest loss 

patches <1 ha increased by 354% in French Guiana and 318% in Suriname 

between 2011 and 2012.    

 

2.4.3 Geographical spread of deforestation events 

Considerable changes were also observed in the geographical patterns of 

deforestation density between the two study periods (Figure 2.3, Appendix 2.4, 

2.5). Whereas in 2001-2007, 45% of the 10 x 10 km gridcells in the study region 

were categorised as having negligible forest loss (<0.01 km2 per 100 km2), this 

declined to 35% in 2008-2014, despite overall Basin-scale declines in 

deforestation. On the other hand, the proportion of gridcells experiencing ‘very 

heavy’ deforestation (>10 km2 per 100 km2) declined by 66.7%, from 9% in 2001-

2007 to 4.5% in 2008-2014. Conversely, an increase in the number of gridcells 

experiencing ‘light’ (0.01 – 0.1 km2 per 100 km2) and ‘moderate’ deforestation 

(0.1 – 1 km2 per 100 km2) was observed, increasing from 19% and 17.5% of 

gridcells in 2001-2007 to 23% and 18% in 2008-2014 respectively. The number 

of gridcells classified as having ‘heavy’ (1-10 km2 per 100 km2) deforestation 

increased from 17% to 20% of gridcells between the two time periods.  

I tested whether patterns observed in protected areas differed from patterns 

observed outside of protected areas but found that temporal patterns were similar 

(Figure 2.4). Inside protected areas across the Amazon, the number of gridcells 

with negligible forest loss fell by 10% between 2001-2007 and 2008-2014 (W=13, 

p=0.2) while ‘light’ and ‘moderate’ deforestation increased by 18.4% (W=4, 
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p=0.3) and 30% (W=0, p=0.02) respectively. Conversely, ‘very heavy’ 

deforestation declined by 54% in protected areas between our two study periods 

(W=12, p=0.3), in line with patterns outside of protected areas.   

Overall, these results suggest a progressive encroachment of low-density, 

small-scale deforestation into areas of Amazonia such as Amazonas, Roraima and 

Amapá (Figure 2.3, Appendix 2.5), which historically have had negligible 

deforestation, as well as the northern Amazonian countries of French Guiana, 

Guyana and Suriname.   

  

2.4.4 Large-scale deforestation temporal patterns 

Overall, Amazonian forest loss based on GFC declined between the two 

study periods (Appendix 2.6), from 238 km2 yr-1 in 2001-2007 to 177 km2 yr-1 in 

2008-2014 (W=43, p=0.017). This is driven by statistically significant reductions 

in forest loss in Brazilian Amazonia which was 49.5% lower in 2008-2014 than 

2001-2007 (W=48, p=0.001) but is offset somewhat by increasing forest loss in 

the non-Brazilian Amazon, which was 35% higher in 2008-2014 than 2001-2007 

(W=1, p=0.001).  

During the first half of the study period (2001-2007), I found that forest 

loss outside of Brazil accounted for 9.7% of total Amazonian forest loss, rising to 

13.8% during the second half of the study period (2008-2014). The largest 

increases in forest loss occurred in Peru (106.73 km2 yr-1) and Bolivia (66.68 km2 

yr-1), which together accounted for 72.3% of the increasing deforestation trend in 

the non-Brazilian Amazon (Appendix 2.7). Although I observed significant 

differences between the focal study periods, there is also evidence of a 

stabilisation of total forest loss rates during the second study period (2008-2014, 

Appendix 2.6), i.e. there is no clear trend between 2008-2014 in deforestation 

rates.  

 

I also compared GFC-based deforestation estimates for Brazil with 

estimates from PRODES. For direct comparison with PRODES, I used the annual 

primary forest mask provided by PRODES to re-calculate forest loss with the 

GFC product. This removes any inconsistency between products due to potential 

deforestation of non-forest areas and secondary forests, while still preserving 

differences due to different size thresholds considered. Comparison of the GFC 
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forest loss temporal patterns for the Brazilian Amazon with deforestation data 

from PRODES revealed intriguing temporal differences between products. During 

the first three years of the study period (2001-2003), forest loss/deforestation 

estimates from GFC were on average ~34% lower than those of PRODES.  

Over time, however, GFC forest loss estimates become progressively 

greater than PRODES deforestation estimates, so that over the last three years of 

the study period (2012-2014), GFC estimates of forest loss are ~72% greater than 

deforestation rates from PRODES (Appendix 2.8), with maximum divergence 

observed in 2012 (the year in which the new Brazilian Forestry Code was 

enacted), when GFC forest loss estimates were greater than PRODES 

deforestation rates by a factor of 2.52. 

I found that this divergence can be at least partially explained by the 

increase in small-scale forest loss that are not incorporated within PRODES 

estimates. The fraction of total deforestation accounted for by patches <6.25 ha 

within the PRODES mask area increased from ~23% in 2004 to ~53% in 2013 

(Appendix 2.9).  
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Figure 2.3 Forest loss density (km2 forest loss per 100 km2 land area) in Amazonia.  

Map generated using the GFC product for two time periods: a) 2001-2007 and b) 2008-2014 in ArcGIS 10.4.1 

(www.esri.com). Histogram indicates the number of gridcells for each density class. 

http://www.esri.com/
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Figure 2.4 Forest loss density (km2 forest loss per 100 km2 land area) in Protected Areas across Amazonia. 

Map generated using the GFC product for two time periods: 2001-2007 and 2008-2014 using ArcGIS 10.4.1 (www.esri.com).  

For visualisation purposes, deforestation outside of protected areas is not shown.  [Source of PA shapefiles: World Database on 

Protected Areas (WDPA) and International Union for Conservation of Nature (IUCN)] 
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Figure 2.5 Forest loss across Brazil and Non-Brazilian Amazon based on GFC Hansen et al (2013) product according to patch sizes. 
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2.5 Discussion  

 

2.5.1 Emerging hotspots in Bolivia and Peru  

These findings paint a more complex picture of deforestation dynamics in 

Amazonia than has been reported thus far. While the widely-reported recent 

reduction in deforestation in the Brazilian Amazon is clearly observed in the 

analysis, I also highlight the growth of emerging deforestation hotspots in Bolivia 

and Peru. In 2001-2007, 99.5% of the area statistically defined as an Amazonian 

forest loss hotspot was found in Brazil, while in 2008-2014 this had fallen to 64%. 

This is associated with both the decline of deforestation in Brazil and the 

increasing importance of non-Brazilian deforestation hotspots. The declines in 

deforestation in the Brazilian Amazon are well-discussed in the literature and are 

likely associated with the implementation of the Plano de Prevenção e Controle do 

Desmatamento na Amazônia (PPCDAm) programme established in 2004 

(Nepstad et al. 2014).   

The new Peruvian hotspot, primarily in the Ucayali and San Martin 

regions of Peru, appears to be linked to the growth of palm oil agrobusiness 

(Chávez et al. 2014). In the Ucayali region, palm oil production commenced in 

2000 and steadily increased until 2010, with San Martin expanding between 2006 

and 2012. The completion of the Pacific or Interoceanic Highway from Brazil to 

Matarani Port in Peru in 2010, may have acted as a vector for the incursion of 

people and subsequent forest loss in this region.  

Similarly, large agricultural expansion also contributes as a driver of the 

deforestation hotspot in Santa Cruz, Bolivia. This region has been the focal centre 

of Bolivian deforestation for over two decades (Pacheco and Mertens 2004), but 

the analysis shows a pattern of intensifying deforestation activity during the 2008-

2014 period (Figure 2.1), so that the Santa Cruz region now represents the largest 

hotspot of deforestation in Amazonia. Much of this deforestation appears to be 

linked to the expansion of the soybean sector, and may be associated with a 

leakage of soybean plantations from Brazil as a result of the soybean moratorium 

established in Brazil in 2006 (Kaimowitz and Smith 2001, Rudorff et al. 2011, 

Gibbs et al. 2015).   
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2.5.2 Changing size distribution of deforested patches 

My analysis also points to a considerable expansion of small-scale 

deforestation events between the two study periods (Figure 2.2) which somewhat 

offsets the previously reported declines in larger deforestation patches (Rosa et al. 

2012) based on analysis of the PRODES data. This pattern is widespread, with 

increases in small-scale deforestation observed in almost all Amazonian countries 

(Appendix 2.2). Interestingly, the nature of these increases differs somewhat 

across countries. In Brazil and Bolivia, there is no obvious increasing trend up to 

2008, after which there are progressive increases in small-scale deforestation. In 

the northern Amazonian countries (e.g. Guyana, French Guiana, Suriname), the 

temporal pattern is characterised by a sharp peak in 2012 (Figure 2.5). Overall, the 

results lend support to recent findings suggesting an increased contribution of 

small landholders to deforestation in Brazilian Amazonia (Godar et al. 2014) but I 

did not explicitly test this link between small patch size and small landholders. 

Examining the spatial patterns of rivers and roads across Amazonia may 

demonstrate how small landholders accessed forested areas and the type of driver 

associated with mode of access (Appendix 2.13). For instance, forest loss close to 

rivers may be indicative of gold mining, except where paving roads such as the 

Interoceanic Highway through Madre de Dios in Peru greatly increased access to 

forests in that region  (Asner et al. 2010). Road networks have played a massive 

role in agriculture and palm oil expansion (Barber et al. 2014). However, the 

different national patterns may be indicative of different deforestation drivers 

across regions.   

The increasingly small size of deforestation patches in Brazil may also 

partially reflect attempts by larger landowners to evade monitoring of 

deforestation activities, which has recently been strengthened through the 

introduction of the PPCDAm programme (Assunção et al. 2013). PRODES has a 

size cut-off of 6.25 ha, though deforestation events are collected at ~0.1 ha but not 

presented to maintain consistency with long-term data. Therefore, small-scale 

deforestation activities are only reported if they accumulate beyond that threshold. 

Additionally, PRODES may consider these small clearings as selective logging or 

‘forests under use’ and not necessarily forest loss (Sato et al. 2011). Some of the 

forest loss events reported in Hansen et al. (2013) may also be due to the intense 

and increased degradation caused by forest fires and counted as deforestation 
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events. Due to methodological differences between PRODES and GFC, based on 

contextual and pixel-based classifications, respectively, degradation processes 

will not appear in PRODES estimates, but may inflate small deforestation 

estimates based on the GFC product. Therefore, causal attribution of small 

deforestation must be interpreted with caution. However, the same pattern was 

observed in Bolivia, where monitoring of deforestation and enforcement of 

penalties are not as effective as in Brazil (Brasil - Ministério do Meio Ambiente 

(MMA) 2013).  

The 2012 peak in deforestation in northern Amazonia coincides with the 

peak of the Amazon gold boom, marking the point when gold prices reached their 

highest historical value ($1,660/oz) (WWF-Guianas 2012). Between 2012 and 

2014, the price of gold fell by 28%; during this time, small forest loss activity in 

French Guiana, Guyana and Suriname declined back to baseline rates. Gold 

mining has recently been highlighted as an important driver of deforestation in 

both Peru (Asner et al. 2013) and northern Amazonia more generally (Alvarez-

Berríos and Mitchell Aide 2015). My analysis supports these findings but also 

suggests that, in the Guianas at least, the increases in deforestation associated with 

gold mining were relatively short-lived.    

 

2.5.3 Geographic spread of small-scale forest loss  

Small-scale forest loss events have not only increased in number but have 

also increased greatly in geographical spread across Amazonia. Forest loss density 

(in km2 per 100 km2) increased by an order of magnitude or more across large 

areas of the Amazon typically associated with very low deforestation rates, 

between 2001-2007 and 2008-2014 (Figure 2.3). This phenomenon occurs across 

the Amazon Basin, highlighting the dispersed nature of small forest loss events. 

Thus, remote areas of the Amazon, largely thought to be isolated from 

deforestation pressures (Potapov et al. 2008), are now being impacted much more 

than before.  

The small-scale nature of these events means that ultimately they would not 

be reported by monitoring systems such as PRODES which assume a much higher 

size threshold to be computed as deforestation. Additionally, in response to 

increasing awareness of rising small-scale forest loss events, the Brazilian 

government has plans to update its near real-time deforestation detection system 
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(DETER) (Diniz et al. 2015), which uses lower spatial resolution images than 

PRODES but with high temporal frequency, so that the threshold for deforestation 

has been reduced to 3 ha. Despite the DETER data being at a lower threshold, and 

in real-time, it is only available on a 3-monthly basis and is not included in the 

national deforestation statistics. This current trend of increasing small clearings 

would indicate that conservation efforts may now need to focus on fighting 

degradation and low density deforestation as large deforestation events are now 

relatively under control, despite an increase in these large scale events in 2015 and 

2016 (Marcos Adami, personal communication). This study suggests that 

inclusion of small deforestation patches in national estimates is very important, 

given the growing divergence I found between PRODES and GFC estimates 

(Appendix 2.9).  

In many areas, especially in the northern Amazonian countries (French 

Guiana, Guyana, Suriname, Venezuela), the geographical spread of small-scale 

deforestation events expanded greatly in 2012 (Appendix 2.3), mirroring the large 

increase in small deforestation events seen that year associated with the 

Amazonian gold boom. This suggests that the spatial footprint of deforestation 

tied to gold-mining activities in those countries is much greater than previously 

reported (Alvarez-Berríos and Mitchell Aide 2015), implying an important role of 

such activities in opening up remote areas of Amazonia to deforestation pressure, 

even if for short-lived periods.  

Attribution of the specific causes of observed increases in small-scale forest 

loss is challenging. However, there are very strong reasons to believe that the 

increased small-scale forest loss events observed are linked to anthropogenic 

activity rather than natural disturbances. Most natural disturbance events in 

Amazonia occur at the sub-pixel scale. For example, Espírito-Santo et al. (2014) 

found that 98.6% of natural carbon losses in Amazonia are due to small-scale 

mortality events (<0.1 ha) with mean disturbance areas of 0.01 to 0.03 ha across 

different field-based and LiDAR datasets, equivalent to 1/9 to 1/3 of a Landsat 

pixel. This of course does not exclude the possibility that there has been an 

increase in larger natural disturbance events between both periods. I found no 

clear evidence, however, of anomalous patterns in small-scale forest loss in 2005 

and 2010, the two large drought years encompassed by my study (Appendix 2.5). 

Further, a comparison of my forest loss density maps (Figure 2.3 and Appendix 
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2.5) with satellite-driven maximum climatological water deficit (MCWD), a 

measure of drought intensity that correlates with tree mortality (Lewis et al. 

2011), indicates that the epicentres of the 2005 and 2010 drought events do not 

strongly correlate with the geographical location of small-scale forest loss 

increase seen in this study (see Appendix 2.14). This is further supported with 

recent findings from Yang et al. (2018) which showed drought-related tree 

mortality focused in southwest Brazil, with northern Amazonia remaining 

relatively unchanged even with one or more lag years.  

Additional analysis also suggests that the observed increase in small 

deforestation events was not overly influenced by artefacts introduced by 

processing and classification problems. First, I found that my results were robust 

to the version of the GFC product used (Appendix 2.10 and 2.11), over the period 

for which I had data for both versions (2001-2012). Second, I found that the 

relative differences in increases in small-scale deforestation intensity between the 

two focal periods were robust to changes in the specific lower bounds used to 

delimit the ‘light’ deforestation category, with relative patterns between periods 

being maintained even after doubling and trebling of assumed deforestation cut-

offs for that class (Appendix 2.12). Although Hansen et al. (2013) report a global 

accuracy of 99.5% for tropical regions, there are still some misclassification 

errors, as there are with all large-scale deforestation products. However, I can 

think of no major reasons beyond changes in processing, evaluated by comparing 

two versions of the GFC product, to expect classification accuracy to vary over 

time.   

 

2.5.4 Implications for conservation efforts 

These results also suggest that the protected area network in Amazonia has 

had limited success combating the pervasive spread of small-scale deforestation, 

as the relative increases in small-patch deforestation events were similar inside 

and outside protected areas over the two study periods. These small-scale losses in 

forest cover now present a new and alarming challenge for conservation efforts in 

Amazonia, as they are inherently more difficult to monitor and control. Protected 

areas are seen as a cornerstone for reducing deforestation and carbon emissions. 

My results suggest that the management strategies of Amazonian protected areas 
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may need revising to account for the increasing threat of low-density, small-scale 

forest losses.  

In summary, this analysis of the high-resolution GFC data for Amazonia 

revealed three important insights. First, centres of high intensity deforestation 

have shifted away from the traditional arc of deforestation to Bolivia, Peru and the 

northeastern Brazilian Amazon. Second, there has been a marked increase in 

small-scale deforestation, partially offsetting the previously reported declines in 

deforestation of larger patch sizes. Thirdly, light deforestation events have spread 

pervasively across the entire Amazon in recent years, even in protected areas. 

Altogether these results raise awareness of new threats that national-level statistics 

do not capture and pose new challenges for conservation of Amazonian forests. 
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3                                           
Forest Loss from Small-Scale 

Gold Mining underestimated in 

Amazonia 
 

 

3.1 Abstract  

 

Small-scale gold mining has significantly increased across northern 

Amazonian forests, making it the leading driver of deforestation in countries such 

as Suriname and Guyana. Though there are increasing efforts to stop deforestation 

in the region, there is a lack of datasets on where and how much forest is lost 

through small-scale gold mining. Using the satellite data-based 30m-resolution 

Global Forest Cover (GFC) product, this chapter quantifies the extent of forest 

loss from gold mining between 2001-2008 and 2009-2016 in northern Amazon by 

analysing the patterns of forest change at known gold mining sites. I also assessed 

the ability of the GFC dataset in detecting gold-mining forest loss through a 

comparison to 5m-resolution RapidEye imagery in the Guyanese Amazon. The 

total forest area lost due to gold mining in 2009-2016 was ~926 km2 more than in 

2001-2008. Gold mining also impacted protected areas within the region, with 

forest loss increasing by 32% (114 km2) between the two study periods. Through 

analysis of remote sensing time series, the GFC product underestimated forest loss 

from gold mining by 74% in 2011-2016. This demonstrates that gold mining 

related forest loss across northern Amazonia has increased in extent and is higher 

than previously estimated, with GFC underestimating smaller forest loss events at 

a more regional scale. As such, post-processing and correcting this bias at a local-

regional scale is required in order to support better land management and 

conservation policies.  
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3.2 Introduction 

 

Small-scale deforestation in Amazonia has increased greatly in recent years 

(Kalamandeen et al. 2018, Chapter 2 of this thesis). However, ascertaining the 

contribution of different drivers to increasing small-scale deforestation is a 

substantial challenge. This chapter focuses specifically on the role of artisanal and 

small-scale gold mining activities, which have rapidly increased within the last 

decade across Amazonia (Alvarez-Berrios and Mitchell Aide 2015), in driving 

increases in small-scale deforestation in northern Amazonia. Despite widespread 

acknowledgement of its increased importance, the deforestation impacts of small-

scale gold mining remains poorly quantified.  

Historically, mapping forest loss from small-scale gold mining has been 

hindered by the availability of high resolution satellite images covering all nine 

Amazonian countries. Few countries in Amazonia except for Brazil have fully 

developed satellite monitoring systems for forest loss detection. With the recent 

availability of free, open and global datasets based on high resolution satellite 

images, the potential for assessing forest loss from small-scale activities has now 

become possible (Coca-castro et al. 2013, Hansen et al. 2013, Kalamandeen et al. 

2018), and may be the basis for Amazonian countries to develop their own 

monitoring systems (Mitchard 2016). Yet, only a handful of studies have 

attempted to estimate deforestation driven by gold mining in Amazonia (see Table 

3.1 for a summary). Of these, only one study focused on a spatial scale larger than 

national scale (Alvarez-Berrios and Mitchell Aide 2015), but this used relatively 

coarse (250m) resolution Moderate Resolution Imaging Spectroradiometer 

(MODIS) data to estimate forest loss, coupling this to a government database on 

mining in an effort to determine distribution of gold mining related deforestation. 

However, this resolution is too coarse to capture small-scale forest loss events, 

especially in areas such as northern Amazonia where the vast majority of 

deforestation events (96.4%) are below the resolution of a MODIS pixel (6.25ha) 

(Kalamandeen et al. 2018).  

In this context, greater resolution of forest loss detection is of course 

desirable. The 30m-resolution University of Maryland’s Global Forest Cover 

(GFC) (Hansen et al. 2013) dataset presents a higher-resolution alternative to 
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assess forest loss due to gold mining activity than has hitherto been possible 

through assessing patterns of forest loss at known gold mining sites. Small-scale 

mining is important across northern Amazonia, both in geographic extent and the 

number of mines (Hammond et al. 2007), and estimating forest loss where only 

artisanal and small-scale gold mining are known to operate may assist, to an 

extent, in distinguishing the type of gold mining that occurs in the region (i.e. 

small-scale versus large-scale activities). Overcoming the limits of detecting 

small-scale gold mining may also be achieved by using known small-scale gold 

mining areas as a proxy for practices (Reiche et al. 2013, Rahm et al. 2015).  

Further, many gold mining sites occurred in or around protected areas (PAs) 

(Alvarez-Berríos and Mitchell Aide 2015), with several studies reporting the 

occurrence of mining operations within PAs (Swenson et al. 2011, Alvarez-

Berríos and Mitchell Aide 2015, Asner and Tupayachi 2017). The creation and 

maintenance of PAs is considered one of the most effective ways to protect large 

areas of tropical forests. Collins and Mitchard (2017) showed that the majority of 

PAs experience little forest loss between 2000 and 2012. Though deforestation 

and degradation is still prevalent in the Amazon (Spracklen et al. 2015), the 

current extent and patterns of forest loss from gold mining within protected areas 

are poorly understood. Examining the current and future extent of gold mining 

pressures in PAs may be determined through assessing accessibility of PAs. 

Accessibility of PAs can be measured by evaluation of navigable rivers and roads 

that cross of form the boundaries of a given reserve (Peres and Lake 2003).  

In this chapter, I specifically address the following questions: (1) what is the 

extent of forest loss associated with gold mining in northern Amazonia across two 

time periods: 2001-2008 and 2009-2016 using the GFC dataset? (2) Are protected 

areas effective in curbing forest loss from gold mining induced forest loss? (3) 

How accurate is the GFC dataset in identifying gold mining-related deforestation 

through comparison with 5m-resolution RapidEye satellite images for two main 

gold mining areas in Guyana? This is the first analysis conducted to evaluate the 

accuracy of the GFC product as it relates to gold mining in the northern Amazon.  
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Table 3.1 Defining mining-induced deforestation by various studies across 

Amazonia. 

 

Studies Summary Defining gold mining sites 

Asner et 

al. (2013) 

Combined field 

surveys, airborne 

mapping, and high-

resolution satellite 

imaging to assess 

road and river-based 

gold mining in the 

Madre de Dios, Peru 

from 1999 to 2012 

using the Carnegie 

Landsat Analysis 

System-lite 

(CLASlite). 

 

 

 

The fractional cover data, along with 

CLASlite’s water-detection results, were 

classified to areas comprised of gold 

mining or clearings closely associated with 

gold mining (e.g., small clearings with 

miner huts and tents) using a Geographic 

Information System (ArcGIS 10.0; ESRI). 

The decision tree for gold mining was 

based on the presence of at least 25% bare 

substrate (for mining, includes bare soil 

and sand, tents, and other human-made 

objects) and standing water within each 

Landsat pixel. The resulting subpixel 

mapping classifications were evaluated 

using CAO high-resolution imagery and 

field data.   

Swenson 

et al. 

(2011) 

 

Analyzed satellite 

imagery from 2003 

to 2009 to identify 

mined areas in 

Madre de Dios, 

Peru.  

 

Distinct spectral signatures of mined areas 

were utilized by geographically isolating 

mining areas by hand-digitizing polygons 

around them that avoided rivers and 

naturally exposed soil and sand bars. An 

ISOData classification was applied and 

classes were separated into forest, edge or 

secondary forest, and mining by visual 

interpretation based on the image bands, 

tasseled-cap indices and the normalized 

difference vegetation index.  

 

Alvarez-

Berrios 

and 

Mitchell 

Aide 

(2015) 

 

Combined 

geographical mining 

databases Google 

Earth images and 

maps derived from 

MODIS MOD 12Q1 

imagery (250m 

resolution) from 

2001 – 2013 for 

Tropical Moist 

Broadleaf Forest in 

South America. 

Initially, a geographical database was 

created that included active or potential 

areas of gold extraction obtained from 

government and private mining GIS 

databases and by digitizing polygons 

around mining locations reported in peer-

reviewed articles, news articles, and 

reports between 2000 and 2013. To map 

gold mining-related forest cover change, 

annual land cover maps derived from 

MODIS MOD13Q1 Vegetation indices 

from 2001 to 2013 was created and 

overlaid with the geographical databases 

and Google Earth images.  

 

Reiche et Used a combination Defined mining-induced deforestation 
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al. (2013) 

 

 

of ALOS PALSAR 

Fine Beam Duel and 

Landsat Imagery of 

2007 and 2010 for 

detecting 

deforestation and 

forest degradation in 

central Guyana.  

based on the idea that the location of 

deforestation, i.e. it is within a mining 

area, therefore assumption is that 

deforestation is directly related to mining. 

Deforestation is based on overall accuracy 

for mapping forest land cover (FLC) and 

Kappa coefficient. Also noted was the 

observed signatures of degraded forest 

which has a lower HV and increased HH-

HV values compared to undisturbed forest.   

 

Sonter et 

al. (2017) 

Mining across 

Brazil from 2005 to 

2015 using satellite 

data and propensity 

score matching  

Assessed all types of mining activities, 

including gold, nickel, etc., using mining 

leases from 1960 to 2005 overlaid with 

Landsat TM imagery from 1985 and 2015.  

 

 

 

3.3 Methods 

 

3.3.1 Deforestation datasets and temporal patterns 

The northern Amazonian area of interest was defined using the boundaries 

of the Amazon Basin as proposed by Eva et al. (2005). This includes sections of 

four countries: French Guiana, Suriname, Guyana and Venezuela (Figure 3.1a). 

The deforestation data for area of interest was taken from the 30-m resolution 

Global Forest Change (GFC) data of Hansen et al. (2013), based on Landsat 

imagery. For this Chapter, I utilized Version 1.4, which included the years 2015-

2016, making it the longest time series to-date 

(https://earthenginepartners.appspot.com/science-2013-global-

forest/download_v1.4.html). No further processing was applied to the GFC 

datasets. I restricted my analysis to the Tropical and Subtropical Moist Broadleaf 

Forest (herein called the TMBF) biome using the definition and extent from 

Nature Conservancy (http://maps.tnc.org/gis_data.html). The TMBF is defined as 

large, discontinuous patches centred on the equatorial belt, between the Tropics of 

Cancer and Capricorn, and characterized by low variability in annual temperature 

and high levels of rainfall (>200 cm annually). These forests are dominated by 

semi-evergreen and evergreen deciduous tree species.  

Forests in the GFC data were defined as pixels with >30% tree cover (Kim 

et al. 2015), while forest loss was formally defined by Hansen et al. (2013) as a 

http://maps.tnc.org/gis_data.html
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stand-replacement disturbance or the complete removal of tree cover canopy at the 

Landsat pixel scale (30m); with the exclusion of pixels annually after a 

deforestation event. See Chapter 1.5 for limitations of the GFC dataset. Gold 

mining sites across northern Amazonia were geoferenced and digitized from two 

sources: (1) Alvarez-Berrios and Mitchell Aide (2015), which was created from 

government and private mining GIS databases, digitizing polygons around mining 

locations reported in peer-reviewed articles, news articles, and reports between 

2000 and 2013 and systematically reviewing high and medium-resolution images 

available in Google Earth (very high resolution imagery (VHR) from Digital 

Globe and Landsat; from 2001 to 2013 (see Methods in Alvarez-Berrios and 

Mitchell Aide, 2015); and (2) Rede Amazônica de Informação Socioambiental 

Georreferenciada (RAISG, 

https://geo.socioambiental.org/webadaptor2/rest/services/raisg/), which sourced 

their data from SERGEOTECMIN, Bolivia (2005), National Department of 

Mineral Produces-DNPM, Brazil (2011), Colombian Mining Cadastre, Colombia 

(2010),  Ministry of Non-Renewable Natural Resources, Ecuador (2010), Guyana 

Geology and Mines Commission, Guyana (2009), MINEM, Peru (2011), Natural 

Resource and Environmental Assessment-NARENA, Suriname and Ministry of 

Energy and Mines, Venezuela (2009). These mining polygons were then classified 

as active or potential (exploration/prospecting phases) gold mining activities (see 

Appendix 3.1 for location of gold mining sites).  

The total area deforested in the northern Amazonian gold mining region of 

each country was calculated annually for the GFC dataset (2001-2016) by 

clipping the GFC dataset using the mining polygons. These datasets include both 

illegal and legal gold mining areas, though mining activities within protected 

areas may be considered as illegal. The illegality of mining within a protected area 

is highly contextual and may be based on the timeline of legal declaration of a site 

versus the commencement of mining activities, and/or the delineation or 

adjustment of a site’s boundaries. Forest gain was not considered in this analysis 

as the GFC dataset captured all tree cover loss which may extend to plantations or 

recovering vegetation other than forests. Further, I assumed that forest loss within 

the stipulated gold mining sites resulted from gold mining and no other type of 

land use, though in reality this may not be the case.   

 

https://geo.socioambiental.org/webadaptor2/rest/services/raisg/
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3.3.2 Analysis of spatial patterns of deforestation 

The GFC data was also used to investigate spatial patterns of deforestation 

density (number of deforested pixels per area), including their temporal dynamics 

using ArcGIS 10.4.1. To visualise deforestation density at a more regional scale, I 

created a 5x5 km grid over the study area, within which total deforested area was 

classified into three categories following a log scale, as per Chapter 2: 1) 

Negligible (<0.01 km2 per 25 km2 land area), 2) Light (0.01– 1 km2 per 25 km2 

land area) and 3) Moderate (>1 km2 per 25 km2 land area). Annual data were 

grouped into two equal periods for analysis: 2001-2008 and 2009-2016. I did not 

attempt to map annual trends because it is known that GFC data often allocates 

deforestation events to incorrect years, due to the patchiness of cloud free data in 

this cloudy region of the world (Milodowski et al. 2016). Aggregating several 

years of data together negates this issue to a large degree. 

 To evaluate whether similar patterns were observed inside and outside of 

protected areas, we applied a protected area mask using shapefiles provided by 

The World Database on Protected Areas (WDPA) for northern Amazon, which 

includes protected areas from all IUCN categories as well as indigenous protected 

areas, biological and biosphere reserves, cultural sites, sustainable reserves and 

hunting preserves (www.protectedplanet.net). Legal mining areas have now been 

extended into several protected areas, particularly in Venezuela. Sequential buffer 

zones (5km, 10km and 20km) were created around gold mining sites to assess the 

extent of leakage of forest loss around these areas. I also utilized river and roads 

shapefiles from HydroSHEDS (http://www.hydrosheds.org/) and gROADS 

database (http://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-

access-v1) respectively to assess accessibility to protected areas.  

 

3.3.3 Statistical Analysis of spatial patterns of deforestation 

For the GFC deforestation analyses described above the dataset was divided 

into two periods of equivalent length: 1) 2001 – 2008 and 2) 2009 – 2016. I 

statistically evaluated the differences in means for both periods using the non-

parametric Wilcoxon’s signed rank test as the data was not normally distributed. I 

also conducted separate Wilcoxon signed rank tests for areas inside and outside of 

protected areas to investigate changes in deforestation density from gold mining 

between the two focal periods.  

http://www.protectedplanet.net/
http://www.hydrosheds.org/
http://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1
http://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1
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3.3.4 Comparison of GFC dataset with RapidEye satellite images 

In order to examine the accuracy of GFC for forest loss detection in gold 

mining sites, I used the 5m-resolution RapidEye images for two gold mining sites 

in Guyana, Mahdia and Puruni as a reference. Both sites are deforested primarily 

by artisanal and small-scale gold mining (Figure 3.1b). RapidEye satellite images 

were taken from www.planet.com for my area of interest. To estimate the size of 

both areas, a shapefile was created and area estimated in ArcGIS 10.4.1. An 

explanation is required here referring the circular shape of the RapidEye tiles of 

Figures 3.7, 3.8, 3.9 and 3.10. In order to access the RapidEye imagery, a radius 

of 10km2 of Mahdia and Puruni were required via a GeoJSON format (a format 

for encoding a variety of geographic data structures), with a circular image output.  

Only years where both products were available, with little cloud cover, were 

used for this comparison (2011-2016). Supervised maximum likelihood 

classification was performed on the RapidEye image in Excelis Software ENVI 

5.1 using four classes (gold mining, forests, non-forest and clouds) for 

classification (see Table 3.2 for description of classes). I further used benchmark 

maps derived from the Guyana Forestry Commission Monitoring, Verification 

and Reporting System (MRVS) data (Guyana Forestry Commission - Indufor 

2013) to exclude forest loss events in earlier years (i.e. 1990 -2010) in all 

RapidEye tiles to ensure a consistent timeframe across the two products. The 

MRV benchmark map was developed using 30m-resolution Landsat tiles and 5m-

resolution RapidEye tiles to establish forest loss activities from 1990-2010. 

Hence, to determine forest loss in the composite years (2011-2016) all 1990-2010 

forest loss events were masked using the MRVS benchmark map (Figures 3.8 and 

3.9) in ArcGIS 10.4.1.  

Spatio-temporal accuracy was based on three procedures. Firstly, spatial 

accuracy of the classification of classes in the RapidEye tile was assessed using a 

stratified random sampling in ENVI 5.1 leading to the generation of a confusion 

matrix, errors of commission (the fraction of values that were predicted to be in a 

class but do not belong to that class) and omission (the fraction of values that 

belong to a class but were predicted to be in a different class), and overall 

accuracy, producer accuracy and user accuracy for the confusion matrix. The 

overall kappa coefficient, k, for classified images, which assesses the agreement 

between classification and truth values was deduced. A kappa value of 1 

http://www.planet.com/
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represents perfect agreement while a value of 0 represents no agreement. The 

kappa coefficient is computed as follows: 

 

 

  

 Where i is the class number, N is the total number of classified values 

compared to truth values, mi,i is the number of values belonging to the truth class i 

that have also been classified as class i (i.e., values found along the diagonal of 

the confusion matrix), Ci is the total number of predicted values belonging to class 

i and Gi is the total number of truth values belonging to class i.  

 

Table 3.2 Definition of forest and non-forest classes. 

 

Class Definition 

Forest Land dominated by semi-evergreen and evergreen deciduous 

tree species, with canopy height of ≥ 5m. 

Gold Mining 

sites 

Land surface without any vegetation and are clusters of tiny 

pits which can be recognized on the image by their high 

brightness and texture. Some pits can be filled with water, 

however the presence of the dry pits which signify high mining 

intensity, is the key identifying factor.  

Clouds  Clouds, cloud shadows and haze were classed as clouds.  

Non-Forest Land surface without any vegetation.  

 

Secondly, to assess the GFC forest loss data and how well it correlated with the 

mining sites identified in the reference RapidEye image, I overlay the GFC 

polygons in the classified RapidEye tile and assessed the intersect of the two 

products in R using the rgeos package. Finally, field survey of the study area has 

been done for further classification accuracy using nine (9) plots each at Mahdia 

and Puruni. 
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Figure 3.1 Map indicating (a) northern Amazonian countries and (b) the 

location of key gold mining areas, Mahdia and Puruni in Guyana. 

(a) 

(b

) 

Venezuela 

Guyana 
Suriname 

French Guiana 
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3.4 Results  

 

3.4.1 Extent of forest loss from gold mining 

Across northern Amazonia, forest loss increased significantly at gold 

mining sites between 2001-2008 and 2009-2016 (W=1, p>0.001; Figure 3.2). In 

2001-2008, total forest loss in the region was ~836.4 km2 but grew by 111% to 

1762.8 km2 in 2009-2016. Within active mining areas, forest loss was estimated at 

471 km2 in 2001-2008 and 1178 km2 in 2009-2016, while deforestation in sites 

slated for prospecting and exploratory phases were ~366 km2 and 585 km2 across 

the two periods respectively. In contrast, forest loss outside of immediate mining 

areas increased 90% between the two time periods (W=12, p=0.03), from 2454 

km2 in 2001-2008 to 4662 km2 in 2009-2016 (Appendix 3.2). Forest loss also 

increased by 48.6% within a 20 km2 buffer zone surrounding mining areas from 

1124 km2 in 2001-2008 to 1670.2 km2 by the second half of the study period 

(Figure 3.3).  

Considerable changes also occurred in the geographical pattern of 

deforestation density (number of deforested pixels per area), between the two 

study periods within gold mining areas (Figure 3.2). In 2001-2008, 62% of the 

5x5 km gridcells in the study region were categorised as having negligible forest 

loss (<0.01 km2 per 25 km2) but this declined to 43.4% by 2009-2016. The 

proportion of gridcells experiencing ‘light’ (0.01-1 km2 per 25 km2) and 

‘moderate’ (>1 km2 per 25 km2) deforestation grew by 14.4% and 4.3%, from 

35.6% and 2.4% in 2001-2008 to 50% and 4.3% in 2009 – 2016 respectively.  

I also tested whether deforestation patterns observed in gold mining areas 

differed from patterns observed outside of gold mining areas and within a 5 km2, 

10 km2 and 20 km2 buffer zone around mining sites. For areas outside of mining 

sites, gridcells experiencing ‘light’ and ‘moderate’ deforestation increased by 16% 

and 2.13% respectively between 2001-2008 and 2009-2016, while ‘negligible’ 

gridcells decreased by 18% between the two study periods (Appendix 3.2). 

Similar patterns of forest loss were seen within the sequential buffer zone around 

mining sites, with gridcells having ‘negligible’ forest loss declining by 23% 

between 2001-2008 and 2009-2016, while ‘light’ and ‘moderate’ gridcells 
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increased by 20.7% and 2% respectively between the two time periods (Figure 

3.3).  

Mining activities were also observed inside and outside (Appendix 3.3) 

protected areas and within a 5 km2 and 10 km2 buffer zone (Figure 3.4). Between 

2001-2008 and 2009-2016, forest loss in protected areas grew by 32% from 242 

km2 to 358 km2, and occurred mainly along rivers (Figure 3.5).  

The majority of gold mining related forest loss in protected areas in 2001-

2008 occurred in Venezuela (217 km2), followed by French Guiana (14 km2), 

Suriname (8 km2) and Guyana (3.4 km2). By 2009-2016, gold mining related 

forest loss in protected areas in Venezuela increased to 293 km2, followed by 

Suriname (30 km2), and equally in French Guiana and Guyana (17.2 km2). Within 

the study period, gridcells with ‘negligible’ forest loss inside mining areas within 

protected areas decreased by 14.5% (W=16, p=0.02) while ‘light’ and ‘moderate’ 

gridcells grew by 12.5% (W=0, p=0.02) and 2% (W=10, p=0.5) respectively. 

Further, the buffer zones surrounding the mining areas in protected areas also saw 

similar temporal patterns. Gridcells with ‘negligible’ forest loss decreased from 

56% in 2001-2008 to 30% in 2009-2016, while ‘light’ and ‘moderate’ gridcells 

increased by 24% and 2% respectively.  

As the GFC data may lag across years, understanding annual trends may 

help us see the overall pattern of forest loss from gold mining. The largest forest 

loss values at gold mining sites in the first half of the study period were 

encountered in Venezuela (334 km2), followed by Suriname (270.1 km2), Guyana 

(200.8 km2) and French Guiana (33.1 km2). However, by 2009-2016, the highest 

forest loss events were seen in Suriname (819.5 km2), followed by Venezuela 

(459.3 km2), Guyana (455.8 km2) and French Guiana (36.1 km2). Overall, annual 

forest loss across northern Amazonia increased by 2 km2 and 12 km2 yearly in 

2001-2008 and 2009-2016 respectively, with peak deforestation occurring in 2012 

(244.7 km2) and 2016 (269.5 km2, Figure 3.6).  
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Figure 3.2 Forest Loss Density (km2 forest loss per 25 km2 land area) from 

gold mining activities across northern Amazonia.  

Map generated using data from the GFC product for two time periods:(a) 

2001-2008 and (b) 2009-2016. 

b) 2009 - 2016 

Venezuela 

       Guyana 

Suriname 

French Guiana 

a) 2001 - 2008 

Venezuela 

Guyana 

Suriname 

French Guiana 

Forest Loss Density 

(km2 forest loss per 25 km2 land area)  
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a) 2001 - 2008 

Venezuela 

          Guyana 

         Suriname 

French Guiana 

b) 2009 - 2016 

Venezuela 

        Guyana 

Suriname 

French Guiana 

Forest Loss Density 

(km2 forest loss per 25 km2 land area)  

Figure 3.3 Forest Loss Density (km2 forest loss per 25 km2 land area) in 

sequential buffer zones around gold mining activities across northern 

Amazonia. Map generated using data from the GFC product for two time 

periods: (a) 2001-2008 and (b) 2009-2016. Forest loss in gold mining areas 

are not shown. 
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Venezuela 

       Guyana 

      Suriname 

French Guiana 

(a) 2001 - 2008 

(b) 2009 - 2016 
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      Guyana 

         Suriname 

French Guiana 

Forest Loss Density 

(km2 forest loss per 25 km2 land area)  

Figure 3.4 Forest Loss Density (km2 forest loss per 25 km2 land area) from 

gold mining activities in protected areas and within buffer zones across 

northern Amazonia. Map generated using data from the GFC product for 

two time periods: (a) 2001-2008 and (b) 2009-2016. 
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Figure 3.5 Forest loss from gold mining activities along rivers and roads in 

Protected Areas (PAs) across northern Amazon (NA) based on GFC product 

(2001-2016).  

 

a) 2001 - 2008 

b) 2009 - 2016 
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Figure 3.6 Forest loss from gold mining activities across northern Amazon (NA) 

based on GFC product (2001-2016). 

 

 

3.4.2 Comparison of RapidEye versus GFC products  

The classification of the RapidEye tiles utilized three classes, namely, gold 

mining sites, forests and cloud cover (Figure 3.7). Validation was made for 

classification of the RapidEye images using a stratified random sample for 

Mahdia and Puruni (Table 3.3a, b). Here, the classified RapidEye image of 2011-

2016 in Mahdia had an overall accuracy of 99.9%, producer accuracy 99.7%, user 

accuracy 99.62% and overall kappa accuracy of 0.9 while in Puruni, overall 

accuracy of 99.4%, producer accuracy 99.6%, user accuracy 97.6% and overall 

kappa accuracy of 0.9. Error of commission and error of omission were relatively 

low for both sites when RapidEye images were classified and assessed using the 

stratified random sampling (Table 3.4) indicating that the classification of the 

classes were relatively good.  

The classified RapidEye images allocated 330.5 km2 and 390.4 km2 as 

forests with 16.8 km2 and 15.08 km2 labelled as gold mining in Mahdia and 
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Puruni respectively. Overall forest loss based on GFC product was 5.35 km2 in 

Mahdia and 9.06 km2 in Puruni.  

 

 

Table 3.3 Confusion Matrix (%) for Rapid Eye image (2011-2016) in (a) Mahdia 

and (b) Puruni using stratified random sampling. 

 

 

 

 

 

 

Table 3.4 Error of Commission and error of omission of the RapidEye classified 

image in Mahdia and Puruni.  

 

Class (%) Gold Mines Clouds Forests Total 

Gold Mines 99.74 0.26 0 100 

Clouds 0.26 99.67 0.07 100 

Forests 0 0.07 99.93 100 

Total 100 100 100 100 

Class (%) Gold Mines Clouds Forests Total 

Gold Mines 99.3 0.59 0.11 100 

Clouds 0.5 99.41 0.09 100 

Forests 0.2 0 99.8 100 

Total 100 100 100 100 

Sites Mahdia Puruni 

 

Classes 

Error of 

Commission 

(%) 

Error of 

Omission 

(%) 

Error of 

Commission 

(%) 

Error of 

Omission 

(%) 

Gold Mines 0.38 0.6 1.4 0.4 

Clouds 0.8 0.6 0.28 0.11 

Forests 0 0.07 0.1 0.5 

(a) 

(b) 
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At the two gold mining sites in Guyana, forest loss captured by the GFC and 

RapidEye products were relatively similar (Figure 3.7). When the MRVS pre-

2011 tiles were applied (Figure 3.8), between 2011 and 2016, there was 70.6% 

and 77.7% difference between the two products at Mahdia and Puruni respectively 

(Table 3.5). Intersection occurred when at least 25% of a GFC polygon 

overlapped with the classified RapidEye class (Figure 3.9). At Mahdia, GFC 

intersected the classified RapidEye tile at gold mining sites only 29.4% (an area 

covering 1.56 km2) while at Puruni the GFC-RapidEye gold mining intersected 

22.3% (an area covering 2 km2) (Table 3.5), with greater correlation occurring at 

Mahdia. The rate of forest loss indicated by the GFC product is much lower than 

RapidEye detection, significantly underestimating forest loss at both Mahdia and 

Puruni (Table 3.5, Figures 3.8 and 3.9).  

Validation using ground-truthing (field sites) showed that 44.4% of 

abandoned gold mining plots were classified within the RapidEye mining pixels 

while 11.2% of plots fell within the GFC forest loss pixels in Mahdia (Table 3.6). 

In Puruni, 55.6% and 44.4% of these plots intersected RapidEye mining sites and 

GFC forest loss polygons (Table 3.6). Intersection occurred between the field 

plots and the RapidEye-GFC mosaic if a pixel from the field plot correlated with 

any classes from the two products. An example of the intersection with field plots 

can be seen in Figure 3.10. Interestingly, 44.4% of abandoned gold mining plots 

were classified as forests in the RapidEye tile in Mahdia. 
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Table 3.5 Assessment (%) of GFC forest loss data correlating with the RapidEye 

classified image and MRVS pre-2011 image in Mahdia and Puruni.  

 

 

 

 

Table 3.6 Accuracy Assessment (%) of field sites within Rapid Eye, GFC and 

Forests pixels in Mahdia and Puruni. 

 

 

 

 

 

 

 

 

GFC 

Forest Loss 

(%) 

RapidEye 

Gold Mining 

Sites  

RapidEye 

Forests 

RapidEye 

Clouds 

MRVS 

Pre2011 

 

Total 

Mahdia 29.4 26.7 19.9 24 100 

Puruni 22.3 15.4 11 51.3 100 

Field Sites in 

Abandoned Gold 

mining areas (%) 

RapidEye 

Gold Mining 

Sites  

GFC        

Forest Loss 

Forests Total 

Mahdia 44.4 11.2 44.4 100 

Puruni 55.6 44.4 0 100 
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Figure 3.7 Forest loss detection using RapidEye Imagery (2011-2016) in Mahdia (top) and Puruni (bottom). Maps indicates (a) 

Original RapidEye image, (b) Supervised Maximum Likelihood Classification and (c) Supervised classification with pre-2011 MRV 

data. 

 

(a) (b) (c)  
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Figure 3.8 Comparison of forest loss detection with GFC, RapidEye and field sites (2011 - 2016) in Mahdia (left) and Puruni (right). 

Maps indicates supervised classification with 1990 - 2010 MRV (light pink), GFC data (dark blue) and field sites (deep pink). GFC 

was unable to detect gold mining activities based on RapidEye (yellow).  
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Figure 3.9 Intersection of GFC forest loss with RapidEye gold mining sites (2011 - 2016) in Mahdia (left) and Puruni (right).  
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Figure 3.10 Example of accuracy of RapidEye and GFC detection with field sites (2011 - 2016) in Mahdia (left) and Puruni (right). 
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3.5 Discussion 

 

3.5.1 Geographic spread of forest loss from small-scale gold mining and 

implications for conservation 

In this study, forest area affected by gold mining activities increased by an 

additional 926.4 km2 across northern Amazonia by the end of 2016. Much of this 

loss stems from deforestation within active and potential mining areas which 

increased by 60% and 37.5% respectively between 2001-2008 and 2009-2016. 

This analysis also showed that deforestation due to gold mining increased in 

extent after the 2008 financial crisis and again in 2012 when gold prices soared 

(Figure 3.5).  

Between 2001-2008 and 2009-2016, gold mining related forest loss extent 

also increased by 32% within  protected areas (Figure 3.4), indicating that 

protected area status does little to stem the onslaught from gold mining activities. 

A majority of total forest loss in protected areas (81% in 2009-2016) was seen in 

Venezuela’s protected areas. In 2016 the Venezuelan government opened the legal 

Arco Minero del Orinoco, an area spanning 112 000 km2 of forests and twelve 

protected areas (Rosales 2017) as a response to the current economic crisis. 

Guyana and Suriname had the biggest increase in mining activities in protected 

areas (403% and 298% respectively) between the two study periods. Mining 

activities observed within protected areas in other Amazonian countries may be 

regarded as illegal as these countries, despite some legal consignment of mining 

leases, may have restricted active mining in protected areas until further notice or 

upon decommissioning of protected areas. As mentioned previously (see 

Methods), the illegality of mining within a protected area is highly contextual and 

may be based on the timeline of legal declaration of a site versus the 

commencement of mining activities, and/or the delineation or adjustment of a 

site’s boundaries. 

Mining operations also occurred within a 10 km2 buffer zone surrounding 

gold mining activities that are present within protected areas. Here, buffer zones 

do not limit the spread of gold mining activities and may likely indicate a leakage 

of potential impacts on soil and vegetation to surrounding conservation areas, 

which seems accessible via rivers (Figure 3.5). This may have far-reaching 
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consequences such as mercury contamination of water, soil and vegetation which 

may have deleterious effect on biodiversity. In fact, Asner and Tupayachi (2016) 

observed that once the soils underlying the forests have been stripped of gold, new 

areas of forests are opened, with no known examples of large-scale restoration 

successes on previously mined landscapes (Roman-Danobeytia et al. 2015). This 

makes accurate detection coupled with enforcement integral to preventing further 

damage to the environment.  

Assigning specific causes of observed increases in small-scale forest loss 

witnessed in gold mining areas is challenging as current gold mining concessions 

do not delineate actual mines versus deforestation from other land uses such as 

selective logging prior to mining activities. It can be deduced that, at some point, 

on gold mining sites that mining activities will occur and as such forest loss is 

inevitable. Further, there is no evidence to indicate that the small-scale forest loss 

events in gold mining sites correlates with (1) the 2005 and 2010 droughts (see 

Appendix 2.14 for a comparison of maximum climatological water deficit and 

geographical location of small-scale forest loss increases) or (2) natural 

disturbance events in northern Amazonia at the sub-pixel scale (see Chapter 2.5.3, 

Espírito-Santo et al. 2014).   

 

3.5.2 Accuracy of GFC product in detecting forest loss from small-scale 

gold mining  

When the GFC product was tested for its accuracy in capturing gold mining 

activities at two known small-scale gold mining sites, Mahdia and Puruni, in 

Guyana, it was found that generally, temporal agreements between GFC and 

RapidEye is good where forest loss occurred within the period of interest, i.e. both 

GFC and RapidEye identified the general location of forest loss within a particular 

year (Figure 3.7, 3.8 and 3.9). However, the GFC product underestimated forest 

loss from gold mining by 70.6% and 77.7% at Mahdia and Puruni respectively 

from 2011-2016 relative to RapidEye.  

This underestimation may be explained by lags or delays in forest loss 

detection. Delays may occur due to (1) cleared areas being missed during the year 

when forest was felled, especially if (2) subsequent Landsat scenes were obscured 

by cloud cover. Lags would be expected in the GFC product due to the resolution 

of scenes. Here, the higher resolution RapidEye imagery permits the detection of 
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smaller scale disturbances (Figures 3.8 and 3.9) which may only be detected by 

GFC later if expanded in size and intensity, as may be the case when forest loss 

was viewed as a total (i.e. 2011-2016). These findings also concur with other 

studies examining the GFC product with RapidEye imagery on traditional land 

uses such as agriculture (Milodowski et al. 2016).  

While the spatial patterns of change indicated by GFC were relatively 

consistent with RapidEye, there were notable discrepancies in estimates of area 

deforested. Comparing across sites, the performance of the GFC product was 

notably better for Puruni than Mahdia, with the majority of GFC forest loss 

(51.3%) lagging within the MRVS pre2011 tile. As such, higher omissions were 

detected in Mahdia for mapped forest loss with a large number of pixels classified 

as either clouds (~27%) or pre2011 gold mining sites (~24%) (Figure 3.9, Table 

3.5). Here, cloud cover, a lag and the impact of forest clearance size may be 

driving the detection processes seen across sites. Further, differences seen across 

products may be due to (1) pre-1990 forest loss activities which may be captured 

by the RapidEye tiles, especially in Mahdia which has a long history of gold 

mining dating back to the 1880s (see Chapter 1.7), (2) the MRVS benchmark map 

may include mining activities within government concessions but exclude illegal 

gold mining which RapidEye can detect, and (3) the cloud algorithm used by GFC 

may detect the surface reflectance of gold mining sites as clouds, such as what 

may have occurred in Mahdia (see Figures 3.7 and 3.8).  

While GFC underestimated gold mining activities, it is important to note the 

advantages associated with this type of Landsat data including a long history of 

use, global acquisition, pre-processing and archiving of data, and free access to 

data. In contrast, RapidEye is costly and pre-processing and corrections are 

required. As such, Milodowski et al. (2017) suggested that areas of forest loss 

driven by a mosaic of small clearances may require a correction factor of +~25% 

in the GFC product to ensure comparable change estimates with those of 

RapidEye, while a correction of +~5-15% is required for large scale forest loss. 

This, however, was not tested in this study due to time limit.  
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3.5.3 Implication of gold mining underestimation and detection in 

Amazonia 

The results presented in this chapter are significant in that they demonstrates 

that (1) forest loss resulting from gold mining activities is increasing across the 

northern Amazon and within protected areas, and (2) the performance of large 

scale deforestation products like GFC varies dependent on type and size of 

disturbances, suggesting that a negative bias is likely in regions dominated by 

small-scale forest loss such as those occurring initially due to small-scale gold 

mining. Mining activities within highly biodiverse protected areas will have far-

reaching consequences on water, soil and vegetation which may reshape the 

dynamics of the forest landscape across Amazonia (from forests to bare lands). 

Further, if forest loss from gold mining activities are underestimated due to a lack 

of detection, it inherently becomes more difficult to monitor and control.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Gold Mining Sites across Amazonia digitized from Alvarez-Berríos 

and Mitchell Aide (2015) and RAISG (2012): blue polygons represent polygons 

that are currently exploited (370,396 km2) while red polygons indicate mining 

sites under exploration and/or prospecting licenses (1,382,024 km2). 
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Assuming that the underestimation of forest loss observed in our Guyanese plot 

applies more broadly to the Amazon, the implications are worrying, especially as 

370,396 km2 is under known active mining concessions with another 1,382,024 

km2 currently under prospecting for mining across Amazonia  (Alvarez-Berríos 

and Mitchell Aide 2015, RAISG 2012, Figure 3.11). 

Overall, the results presented here showed that expanding gold mining 

across the region will require at least sampling using global and open higher 

resolution (3m or 5m) forest cover imagery to accurately determine the level of 

underestimation of small-scale forest loss events, which can inform better 

enforcement and/or the development of conservation policies. 
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4                                               
Small-Scale Gold Mining 

Inhibits Soil and Plant Nutrient 

Cycling 
 

 

4.1 Abstract 

 

The recent expansion of small-scale gold mining has contributed to the 

transformation of the Amazonian landscape, causing widespread environmental 

damage associated with mercury contamination, soil erosion and aquatic siltation, 

and loss of biodiversity. However, the impacts on soil and vegetation nutrient 

cycling remain poorly known. Here I quantify mercury and nutrient 

concentrations in soil and vegetation in the mining pits, tailing ponds and 

overburden zones of two sites recovering from small-scale gold mining 

disturbance in Guyana. I also assessed mercury tolerance of the most dominant 

species in the abandoned mining plots. Based on the results, gold mining leads to 

increased mercury levels and a severe depletion of soil nutrients (exchangeable 

cations, nitrogen and phosphorus) on tailing ponds and mining pits, compared to 

overburden zones. Plant nutrient concentrations across plots largely reflected the 

patterns of soil nutrient concentrations, with greatly reduced foliar N and P in 

tailing pond vegetation relative to control and overburden vegetation. Mercury 

levels were also ~240 times higher in active mines than at abandoned mining 

sites, indicating mercury may be leaching to neighbouring areas. Andropogon 

bicornis, Cecropia obtusa, Miconia argyrophylla, Vismia angusta and Vismia guianensis 

were shown to be tolerant of mercury. These results highlight species which may be 

utilized for rehabilitation of sites and that active restoration is required using the 

overburden to enhance soil and vegetation nutrient levels.  
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4.2 Introduction  

 

As small-scale gold mining continues to flourish across Amazonia, with 

~1680 km2 of forest lost between 2001-2013 (Alvarez-Berrios and Mitchell Aide 

2015), it exposes ecosystems to novel perturbations, threatening their integrity and 

functioning (Asner et al. 2013, Alvarez-Berríos and Mitchell Aide 2015). 

Extracting gold requires a combination of forest removal, hydraulic abstraction of 

soil with water jets from high pressure hoses and processing the ore in sluice 

boxes and gold pans (Hammond et al. 2007). Gold is then recovered from the 

heavy fraction of the sediment by amalgamation with mercury, as it is cost 

effective and allows for easy separation from the surrounding soil (Veiga et al. 

2014). This gold-mercury complex is then burned in the open air. An estimated 

30-150 tons of mercury vapour was released into the Brazilian Amazon 

atmosphere during the 1990s alone from burning this gold-mercury complex 

(Pfeiffer et al. 1993), while historically approximately 0.3 to 1kg of mercury for 

every 1kg of gold is lost to rivers and soils through handling in field conditions 

and due to its volatility (Pfeiffer and de Lacerda 1988, Veiga et al. 2006, Swenson 

et al. 2011, Esdaile and Chalker 2018). This amalgamation process may be 

repeated 3 or 4 times to maximize gold extraction (Esdaile and Chalker 2018), 

with mercury rich tailings left in most mining sites.  

The majority of studies assessing the impacts of gold mining have focused 

primarily on mercury (Hg) pollution in aquatic systems in Amazonia (Mol et al. 

2001, Mol and Ouboter 2004, Santos-Francés et al. 2011, Laperche et al. 2014), 

whereas the impact on soil and vegetation is often neglected. For the few existing 

studies, data on the distribution and contamination of soils from gold mining is 

often limited to only one of the three mining zones, specifically the tailing pond 

(Arets et al. 2006, Garcïa-Sánchez et al. 2006, Guedron et al. 2009, Howard et al. 

2011, Santos-Francés et al. 2011, Grimaldi et al. 2015). The effects of gold 

mining on overburden and mining pit areas are rarely assessed. From Guedron et 

al. (2009), we know that mercury has a high affinity for organic matter, clay 

minerals and iron (Fe), aluminium (Al), and Manganese (Mn) oxides. Yet, the 

mining zones (overburden, mining pit and tailing pond) tend to vary in soil 

properties and structure, and hence, the retention capacity for mercury may also 
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vary. As natural vegetation may regrow on these areas, plants will uptake mercury 

and this may alter tree physiological functions by interfering with membrane 

functioning, water relations, protein metabolism, and seed germination (Espinosa-

Reyes et al. 2014). 

Further, important gaps remain in our knowledge on the role of small-scale 

gold mining on nutrient cycling (defined here as nutrient content), beyond the 

impacts of mercury. As many elemental cycles are coupled (Townsend et al. 

2011), the ability of vegetation to regenerate from gold mining is likely influenced 

by the availability of certain nutrients. For instance, soil nutrients (exchangeable 

cations, nitrogen and phosphorus) are crucial for the successful establishment of 

plants (Litaor et al. 2017). The removal of topsoil during the mining process has 

the potential to greatly alter soil and plant nutrient status, but these impacts have 

been little quantified. Furthermore, the relative roles of nutrient depletion and soil 

mercury in inhibiting forest recovery post-mining remain largely unstudied.  

Given that there is relatively limited information on how gold mining may 

impact on nutrient cycling, we can hypothesize potential changes based on more 

traditional land use disturbances caused by the complete clearance of forests such 

as agriculture, pasture and oil exploration (dos Santos et al. 2006, Powers and 

Marín-Spiotta 2017). While many intact lowland tropical systems are relatively 

poor in phosphorus and rich in nitrogen,  land use disturbances such as agriculture 

and pasture, can cause nitrogen losses and can drive relatively phosphorus-poor 

systems towards nitrogen limitation in the early stages of secondary succession 

(Davidson et al. 2004a, Markewitz et al. 2004). As such, while there can be a brief 

surge of nitrogen mineralization following disturbance, nutrient losses and lower 

mineralization rates in degraded lands may limit available nitrogen and 

phosphorus, restricting vegetation regrowth (Nagy et al. 2017).  

Several studies on forest recovery following deforestation have shown that 

nitrogen availability often controls how fast these systems can recover (Davidson 

et al. 2007, Batterman et al. 2013, Powers and Marín-Spiotta 2017). For these 

systems, nitrogen availability may recover over a time-scale of 10-15 years due in 

part to N2-fixers (Batterman et al. 2013). However, phosphorus recovery may be 

more restricted. Conversion to pastures and agricultural lands creates a shift from 

phosphorus (P) limitation in mature forests to nitrogen (N) limitation in disturbed 

areas, with P constraints remaining despite vegetation recovery (Davidson et al. 
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2007). Low N availability may sometimes persist even after recovery from 

traditional disturbances (Pellegrini et al. 2014), but is strongly coupled to plant 

community composition and the presence of N2-fixers (Batterman et al. 2013). 

When disturbances occur, legumes are often not abundant in recovering forests, 

and so mineralization of soil organic N is the most likely source of N needed to 

meet plant demand (Markewitz et al. 2004). Degraded sites such as pastures only 

possess ~2% of the N originally present in mature forest (149 kg N ha-1 yr-1 vs 46 

kg N ha-1 yr-1, Markewitz et al. 2004). Similarly, the level of phosphorus needed 

for growth may be species-specific, with no difference in community-wide 

response along a P gradient as some species may grow rapidly in infertile soils 

despite low P availability (Turner et al. 2018).  Some studies across Amazonia 

have shown ~50% loss of P in soils shortly after fires (see Markewitz et al. 2004). 

Exchangeable cations, which are important for plant growth, greatly change base 

on the level of disturbance. For instance, soil nutrient analysis conducted by dos 

Santos et al. (2006) in soils formerly under oil exploration indicated that topsoil 

removal impoverished soil cations P,  potassium (K), and Magnesium (Mg), with 

the exception of Calcium (Ca). dos Santos et al. (2006) also found that 

micronutrients concentrations (Fe, Mg and Mn) were also greater in soils formerly 

under oil exploration and may be linked to a significant reduction in soil pH 

levels. These metals are more soluble in acidic soils, and can dissolve to form 

toxic concentrations that may hinder plant growth. However, Markewitz et al. 

(2004) showed that degraded pastures possessed ~15% K, 11% Ca and 6% Mg 

compared to mature forests. Even lower Ca contents (3% compared to mature 

forests) were found in managed pastures where little woody material existed even 

after 10+ years since abandonment (Markewitz et al. 2004).  

As gold mining removes the top 3-5m layer of nutrient rich soils, it leaves 

behind mining pits and tailing ponds with previously lower layers now forming 

their top layer. Therefore, mining pits and tailing ponds are likely to be depleted 

in nutrients, potentially leading to slow recovery and altered vegetation 

composition. Overall, this may restrict the ability of subsequent gold mining sites 

to fully recover. However, whether or not this mining-nutrient feedback emerges, 

and on what scale it operates (for example, across mining zones or soil type) is 

unknown. 
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To address these knowledge gaps, I conducted fieldwork in two known 

small-scale gold mining regions in Guyana to assess the impact of gold mining 

activity on soil and vegetation nutrient cycling across different mining zones 

(overburden, tailing pond and mining pit) following abandonment of gold mining. 

For each site, I specifically assess (1) What are the levels of mercury 

concentrations in soils and vegetation at my two field sites and across different 

mining zones? 2) What are the levels of available exchangeable cations (Mg, Ca, 

K, Na, Al, Fe, Mn) across sites and mining zones? 3) How does nitrogen and 

phosphorus concentrations in soils and vegetation vary across mining zones and 

sites? and 4) What dominant species present in the abandoned mining sites may 

be tolerant to higher mercury concentrations? This is, to my knowledge, the first 

study to provide detailed, field-based information on the impacts on soil and plant 

nutrients across different mining features at abandoned gold mining sites.  

 

4.3 Methods 

 

4.3.1 Study site and field collection  

The study was conducted in two major gold mining sites in Guyana, 

namely Mahdia and Puruni, from January to March, 2016 (Figure 4.1). A 

description of both sites can be found in Chapter 1.7. At each of the two study 

sites, measurement plots were established on previously mined vegetation 

patches, ranging in age from 0.6 to 3 years since abandonment of mining activity. 

Sites were selected based on accessibility and abandonment. As gold mining sites 

tend to be re-mined, no site >3 years since abandonment was found. Each plot was 

positioned so as to include the three zones of artisanal gold mining sites, i.e. the 

mining pit, the mine tailings (deposits of material left over after the gold has been 

separated from the ore) and the overburden (areas overlying the ore which are 

displaced during the mining process). For reference, I also measured soil 

properties in (1) active tailing pond mines in both Mahdia and Puruni and (2) a 

reclamation site in Mahdia, which was planted with 5300 Acacia mangium trees 

since 2010. Acacia mangium is not native to Guyana and was planted in a 

previous mining pit. Acacia was selected for replanting as it fast growing, tolerant 

of low pH conditions and has a symbiotic relationship with nitrogen fixing 
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Rhizobium bacteria (GGMC 2011). The mercury concentrations on active sites 

provide further indication of the timescales for persistence of mercury in the soil.  

 Eight soil samples to 30 cm depth were collected with a 2.5 cm diameter 

corer in each plot, including old-growth control plots, in January to March, 2016. 

All soil samples were air-dried, mixed for homogeneity and brought back to the 

laboratory for determination of cation exchange capacity (CEC), total nitrogen 

concentration (TN), total phosphorus concentration (TP), mercury concentration 

and particle size distribution. Additionally, ten sunlit leaves from three individuals 

from the ten most dominant species (4 from overburden, 3 from the mining pit 

and 3 from the tailing pond) were collected in each plot, including old-growth 

control plots, in January to March, 2016. Dominant species within plots were 

Andropogon bicornis, Cecropia obtusa, Miconia argyrophylla, Vismia angusta, Vismia 

guianensis, sedges, and Scleria secans (Poaceae). All leaf samples were air-dried and 

brought back to the laboratory for determination of TN, TP and mercury 

concentration. Due to financial restrictions on lab analysis, I was only able to 

analyse material from one individual for each species per plot combination. 

 

4.3.2 Analysis of Exchangeable Cations, Particle Size and Bulk Density in 

Soils 

For determination of CEC, approximately 5g of soil was passed through a 

500-m sieve, to which 30 mL of silver-thiourea (Ag-TU) was added. Samples 

were shaken and centrifuged at 2000 rpm for 15 minutes and then analysed by 

inductively coupled plasma optical emission spectroscopy (ICP-OES) for 

exchangeable cations (Mg, Ca, K, Na, Al, Fe and Mn) as described by Dohrmann 

(2006). Due to financial restrictions on lab analysis, I was unable to analyse soils 

from the control sites. A range of methods described in BS: 1377:1967 (British 

Standards Institution 1967) was used to analyse the soil samples for texture and 

particle size. Confirmation was obtained for clay and silt fraction using laser 

diffraction (Brown et al. 1990), while soil bulk density analysis was done using 

the core method (Rowell, 1994).  

 

4.3.3 Analysis of Total Nitrogen and Total Phosphorus in Soils and Plants 

For determination of TN and TP, I utilized the method of Allen (1989) 

where approximately 0.25g soil and 0.25g of plant material were independently 
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passed through a 2-mm sieve with 4.4 mL of mixed digestion reagents (100 

volume hydrogen peroxide, concentrated sulphuric acid, lithium sulphate and 

selenium powder) added to each sample. Using a hot block, samples were heated 

gently to 300°C and were then left to cool and deionised water was added to make 

up a volume of 50 mL. Samples were then analysed using a Skalar SAN++ 

continuous flow autoanalyser.  

 

4.3.4 Analysis of Mercury in Soils and Plants 

Mercury (Hg) concentrations were determined using a closed vessel acid 

digestion method (Ure and Shand 1974) by passing 1g of soil and 3-5g of plant 

material independently through a 2-mm sieve. The open acid digestion method 

was initially tested but mercury was lost during the process, especially in areas 

where high mercury concentrations were expected to be high such as active mines, 

reported as low levels. A 5mL aliquot of concentrated nitric acid (HNO3) was 

added to each sample and the vessel was assembled with a Kevlar outer layer and 

run with a CEM MARS microwave digester programme for 30 minutes at 150oC. 

Samples were quantitatively transferred into 50 mL centrifuge tube. A 6% m/v 

aqueous potassium permanganate (KMnO4) solution was added drop wise with a 

permanent pink colour appeared in order to prevent loss of mercury and to remove 

oxides of nitrogen. The sample was then diluted to 50 mL and left overnight to 

allow the particulate residue to settle. The samples were then analysed by Thermo 

iCAP ICP-OES (soil) or ICP-OES-hydride generation (plant material). A total of 

60 soil and 70 leaf samples were examined. An annotation should be made here 

that mercury may have been lost from samples during storage as I was only able 

to analyse samples one year after collection due to financial constraints.  

 

4.3.5 Statistical Analysis 

To examine the effects of mining sites (Mahdia vs. Puruni) and individual 

zones (overburden, mining pit, tailing pond) on soil and plant material, linear 

mixed effects models were used, with a random intercept for each plot. Nutrient 

and mercury contents were log-transformed prior to analysis to satisfy 

requirements of normality and homogeneity of variance. These analyses were 

conducted using nlme package in R (Pinheiro et al. 2018). Similar mixed effects 

models (with mining zones and sites as fixed effects and plot as a random effect), 
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were constructed to examine how soil nutrient content (exchangeable cations, TN, 

TP) and soil Hg differed between the two mining regions and across the mining 

features considered. Mixed effects models were also used to examine differences 

among sites and zones for nutrient and mercury concentrations in plant materials 

with plot and plant species as random effects.  
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Figure 4.1 Map of location of soil and leaf samples 

Guyana: (a) Mahdia and (b) Puruni. 

Baseline map indicates mining, rivers, roads, 

cropland, and settlements from 2014. 

 

 

Figure 4.2 Map of location of soil and leaf samples 

Guyana: (a) Mahdia and (b) Puruni. 

Baseline map indicates mining, rivers, roads, 

cropland, and settlements from 2014. 

 

 

a) 

 

b) 
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4.4 Results  

 

4.4.1 Soil nutrient and mercury levels  

Significant differences were observed across mining zones (overburden, 

tailing pond and mining pit) for mercury concentration (p<0.0001), total nitrogen 

(p=0.004) and exchangeable cations (p=0.04) based on mixed effects models 

(Table 4.1), with study site showing no significance across all variables (Table 

4.1). Total phosphorus showed no significant differences across site (p=0.41) or 

mining zones (p>0.22), but did show clear directional trends in both Mahdia and 

Puruni sites, with mean values being greatest in the control plots, followed by the 

overburden plots, with the lowest values in the tailing pond.  

 

Table 4.1 Summary Results from Mixed-effects Models for Mercury 

concentrations, Total Nitrogen, Total Phosphorus and exchangeable cations 

(CEC) in soils 

 

Comparison among mining zones and between sites for total nitrogen 

showed overburden at Mahdia contained 247% and 160% more TN than tailing 

pond and mining pit respectively, while TP levels were 88% and 60% higher than 

tailing pond and mining pit (Table 4.2, Figure 4.2). Similarly, overburden features 

at Puruni contained more TN (1560% and 730% respectively) and TP (633% and 

5% respectively) than tailing pond and mining pit (Table 4.2, Figure 4.2). When 

compared to their respective control sites, the overburden zone at Mahdia and 

Puruni exhibited 145% and 254% less TN, while TP was 12.5% and 118% lower 

respectively. No vegetation was present in active mining sites.  

Mercury concentrations in the overburden zone were 60% and 50% lower 

than tailing pond and mining pit at Mahdia respectively, while mercury 

concentration at Puruni was 80% and 63% lower than the two mining zones 

 log(Hg) log(TN) log(TP) log(CEC) 

 F-value p-value F-value p-value F-value p-value F-value p-value 

Site 4.82 0.06 2.37 0.17 0.76 0.41 0.32 0.59 

Zone 16.11 0.0001 7.76 0.004 1.69 0.22 4.13 0.04 

Site*Zone  0.62 0.55 0.003 0.997 0.25 0.78 0.13 0.88 
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respectively (Table 4.2, Figure 4.2). In contrast, mercury concentrations were 

considerably higher in the overburden at both Mahdia (85%) and Puruni (33%) 

compared to old growth forests (Figure 4.2). 

A 48-to-120 fold increase in mercury concentration was observed at active 

mines in Mahdia compared to the abandoned mining zones, while in Puruni, 

active mines were 10-50 fold higher than abandoned mining zones (Figure 4.2). 

Substantially higher concentrations of mercury were also observed at active mines 

in Mahdia (800 fold increase) and Puruni (75 fold increase) compared to their 

respective old-growth forests (Figure 4.2). Although mining pits and tailing ponds 

had only been abandoned for 6 months to three years, their mercury 

concentrations were two orders of magnitude lower than active site 

concentrations. This suggests that leaching of mercury from soils of mining areas 

happens very quickly. This leached mercury likely enters water courses in the 

surrounding areas, but we did not quantify mercury concentrations in water 

bodies.  

Differences between mining zones were also found for exchangeable cations 

(Table 4.2, Figure 4.3). On the overburden Mg+, Ca+, K+ and Na+ cations were 

high at Mahdia and Puruni compared to tailing pond and mining pits (Figure 4.3). 

In contrast, concentrations of Al+, Fe+ and Mn+ cations were higher in the tailing 

pond and mining pit relative to overburden zones at both sites (Figure 4.3). A 

positive correlation was observed between exchangeable cations and other soil 

nutrients such as nitrogen (p<0.001) and phosphorus (p<0.05), but negatively 

correlated with mercury concentrations (p=0.6) across sites and mining zones 

(Figure 4.4). 

Exchangeable cations were also positively correlated with sandy and clay 

soils (Table 4.3, Figure 4.4), while mercury concentration was positively and 

significantly correlated with clay (p<0.05) soils. Soil bulk density was higher 

(>1.6 g/cm3) in the tailing ponds, mining pits and at active mine sites at both 

Mahdia and Puruni compared to the control and overburden zones (Table 4.3). TN 

and TP were positively correlated, but not significant, with silt and clay soils only 

(Figure 4.4).  
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Table 4.2 Mean soil nutrient concentrations with standard errors (mg/g) in different mining features in Mahdia and Puruni. 

 

 

Site Feature Hg TN TP Mg Ca K Na Al Fe Mn 

 

 

 

 

Mahdia 

Control 0.00003 ± 

0.00003 

2.55 ± 

1.27 

0.36 ± 

0.18 

- - - - - - - 

Overburden 0.0002 ± 

0.0001 

1.04 ± 

0.35 

0.32 ± 

0.07 

0.01 ± 

0.004 

0.04 ± 

0.01 

0.004 ± 

0.001 

0.004 ± 

0.001 

0.005 ± 

0.003 

0.003 ± 

0.002 

0.0006 ± 

0.0004 

Mining Pit 0.0004 ± 

0.0001 

0.4 ± 

0.21 

0.2 ± 

0.05 

0.0012 

± 

0.0003 

0.003 ± 

0.0003 

0.002 ± 

0.0007 

0.003 ± 

0.0002 

0.012 ± 

0.007 

0.003 ± 

0.001 

0.005 ± 

0.004 

Tailing Pond 0.0005 ± 

0.0001 

0.3 ± 

0.11 

0.17 ± 

0.1 

0.003 ± 

0.001 

0.006 ± 

0.003 

0.002 ± 

0.0004 

0.003 ± 

0.0002 

0.013 ± 

0.005 

0.005 ± 

0.003 

0.008 ± 

0.007 

Active Mine 0.024 ± 

0.007 

- - - - - - - - - 

Reclaimed Site Undetectable - - - - - - - - - 

 

 

 

Puruni 

 

Control 0.00004 ± 

0.00002 

2.94 ± 

1.47 

0.48 ± 

0.24 

- - - - - - - 

Overburden 0.00006 ± 

0.00004 

0.83 ± 

0.55 

0.22 ± 

0.19 

0.009 ± 

0.005 

0.03 ± 

0.02 

0.01 ± 

0.004 

0.005 ± 

0.001 

0.003 ± 

0.001 

0.0002 

± 

0.0001 

0.001 ± 

0.001 

Mining Pit 0.00016 ±  

0.00004 

0.1    

  ± 0.06 

0.21 ± 

0.16 

0.002 ± 

0.001 

0.004 ± 

0.002 

0.002 ± 

0.0004 

0.003 ± 

0.0003 

0.005 ± 

0.001 

0.001 ± 

0.0002 

0.005 ± 

0.004 

Tailing Pond 0.0003 ± 

0.0001 

0.05 ± 

0.01 

0.03 ± 

0.01 

0.002 ± 

0.002 

0.005 ± 

0.004 

0.002 ± 

0.001 

0.003 ± 

0.0003 

0.014 ± 

0.006 

0.0018 

± 

0.0007 

0.007 ± 

0.004 

Active Mine 0.003 ± 

0.002 

- - - - - - - - - 
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Figure 4.2 Mercury, Total Nitrogen and Total Phosphorus concentrations with standard error bars (mg/g) in soils from mining zones 

(overburden, tailing pond, mining pit) and active mines compared to old-growth sites at Mahdia and Puruni. Mercury levels were 

undetectable in the reclamation site. 
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Figure 4.3 Exchangeable cations (mg/g) in soils from overburden, tailing pond 

and mining pit in Mahdia and Puruni. 

 

 

Table 4.3 Soil texture and bulk density analysis across mining zones at 

abandoned gold mining sites in Mahdia and Puruni. 

 

 

Site Feature Sand % Silt % Clay % Bulk Density 

(g/cm3) 

 

 

Mahdia 

(n=7) 

Control 86.82 11.06 2.34 1.2 

Overburden 3.93 54.64 38.24 0.7 

Mining Pit 21.21 32.48 44.80 1.8 

Tailing Pit 38.32 17.54 36.28 2.3 

Active Mine 84.47 14.56 0.97 1.9 

Reclamation Area 92.93 1.01 6.06 1.5 

 

 

Puruni 

(n=6) 

Control 72.73 12.24 12.23 1.2 

Overburden 86.76 5.78 7.45 1.3 

Mining Pit 31.68 43.20 10.87 1.7 

Tailing Pit 73.27 18.83 4.42 2.2 

Active Mine 88.89 11.23 2.22 1.6 
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Figure 4.4 Correlation matrix of mercury concentration, soil nutrients (nitrogen and phosphorus), exchangeable cations (CEC) and 

soil textures with data distribution graphs (mg/g) and associated p-values. Red star (*) presents significant p-values. 
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4.4.2 Plant nutrient and mercury levels  

Mercury concentration (p=0.01), total nitrogen (p<0.0001) and total 

phosphorus (p<0.01) were significantly different in plant nutrient composition 

across mining zones (overburden, tailing pond and mining pit) based on mixed 

effects models (Table 4.4). Site was not found to be a significant predictor of plant 

concentrations of Hg, TN and TP.  

 

Table 4.4 Summary Results from Mixed-effects Models for Mercury 

concentrations, Total Nitrogen and Phosphorus concentrations in plants. 

 log(Hg) log(TN) log(TP) 

 F-value p-value F-value p-value F-value p-value 

Site 1.20 0.3 0.61 0.46 0.61 0.46 

Zone 11.49 0.01 68.08 <0.0001 5.88 <0.01 

Site*Zone 1.49 0.36 9.18 <0.001 0.63 0.54 

 

 

Difference across mining zones showed that the overburden at Mahdia 

contained an additional 190% and 104% TN than tailing pond and mining pit 

respectively, while TP levels were 151% and 77% higher compared to the two 

mining zones respectively (Table 4.5, Figure 4.5). Similarly, overburden zones at 

Puruni contained higher concentrations of TN (665% and 282% respectively) and 

TP (131% and 56% respectively) than tailing pond and mining pit (Table 4.5, 

Figure 4.5). Compared to their respective control sites, overburden zones 

contained 75% and 57% lower TN at Mahdia and Puruni respectively, while 

control sites contained 5.3% and 33% higher TP concentrations at the two study 

sties respectively (Figure 4.5).  

In contrast, mercury concentrations on the overburden was 82% and 25% 

lower than tailing pond and mining pit at Mahdia, while at Puruni, overburden 

zones had 89% and 25% lower mercury levels than the other two zones 

respectively (Table 4.5, Figure 4.5).  Mercury concentrations were 33% and 60% 

lower in control sites compared to overburden zones at Mahdia and Puruni 

respectively (Table 4.5). Reclamation area had 37% lower TN than old growth 

forests while containing an additional 22% TN relative to overburden zones at 

Mahdia. TP at the reclamation area was 138% and 126% lower than the control 

site and overburden zones respectively, while mercury concentration at the 
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reclamation area was 83% and 75% higher at the control site and overburden 

zones respectively (Table 4.5).  

 

Table 4.5 Mean plant nutrients with standard error (mg/g) in different mining 

features in Mahdia and Puruni. 

Site Zones Hg TN TP 

 

 

Mahdia 

 

Control 0.00002 ± 0.000003 27.84 ± 3.20 1.19 ± 0.22 

Overburden 0.00003 ± 0.00002 15.90 ± 1.39 1.13 ± 0.2 

Mining Pit 0.00004 ± 0.00001 7.78 ± 0.22 0.64 ± 0.09 

Tailing Pond 0.00017 ± 0.00005 5.48 ± 0.5 0.45 ± 0.11 

Reclamation Area 0.00012 ± 0.00005 20.28 ± 1.52 0.5 ± 0.03 

 

Puruni 

 

Control 0.000012 ± 0.0000005 32.02 ± 7.94 0.89 ± 0.11 

Overburden 0.00003 ± 0.00002 20.42 ± 3.76 0.67 ± 0.06 

Mining Pit 0.00004 ± 0.00001 5.34 ± 1.82 0.43 ± 0.14 

Tailing Pond 0.00027 ± 0.00011 2.67 ± 0.73 0.29 ± 0.1 

 

Based on the analysis of dominant species present within the plots, 

different plant species exhibited varying concentrations of TN, TP and Hg (Table 

4.6). In the overburden and tailing pond zones in Mahdia, Miconia argyrophylla 

contained the highest concentrations of mercury, while a seedling Carapa 

guianensis, though not dominant within the Mahdia plot where it was found, 

contained the highest mercury levels in the mining pit (Table 4.6). Analysis on the 

Carapa guianensis seedling was conducted as it is an important timber species in 

Guyana, with the seeds being utilized in cosmetic products. In contrast, Vismia 

angusta, which is common in secondary recovering forests, and sedges contained 

the lowest concentration of mercury across the three mining zones in Mahdia 

(Table 4.6). At Puruni, Cecropia obtusa had the highest mercury concentration on 

the overburden, while Miconia argyrophylla, Andropogon bicornis and sedges 

had the highest concentration of mercury in the tailing pond. The lowest 

concentrations of mercury was found in Miconia argyrophylla and sedges in the 

overburden and mining pit respectively at Puruni.  
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Figure 4.5 Mercury, Total Nitrogen and Total Phosphorus Concentrations with standard error bars (mg/g) in plant materials in 

Mahdia and Puruni.



113 

 

Table 4.6 Total Nitrogen, Total Phosphorus and Mercury Concentrations (mg/g) 

of different species that were dominant across different mining zones in Mahdia 

and Puruni. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TN and TP concentrations were higher in Cecropia obtusa, Vismia guianensis and 

Miconia argyrophylla at overburden zones at both sites, while Miconia 

argyrophylla and sedges exhibited higher concentration in tailing ponds and 

mining pits.  

 

4.5 Discussion 

 

4.5.1 Nutrient and mercury dynamics in soils and plants following gold 

mining 

Site Species Zone TN TP Hg 

 

 

 

 

 

Mahdia 

 

Andropogon bicornis Mining Pit  5.81 0.33 0.00005 

Andropogon bicornis Tailing Pond 4.57 0.45 0.0001 

Carapa guianensis Mining Pit  8.34 0.49 0.0007 

Cecropia obtusa Overburden 20.60 1.20 0.00007 

Miconia argyrophylla Mining Pit  9.52 0.69 0.00006 

Miconia argyrophylla Overburden 15.55 0.75 0.0007 

Miconia argyrophylla Tailing Pond 8.57 0.55 0.0002 

Sedges Mining Pit  7.55 0.96 0.00002 

Sedges Tailing Pond 5.58 0.37 0.00005 

Vismia angusta Overburden 14.86 2.21 0.000008 

Vismia guianensis Mining Pit  5.92 1.11 0.00004 

 

 

 

 

Puruni 

 

Andropogon bicornis Mining Pit  2.95 0.23 0.00002 

Andropogon bicornis Tailing Pond 2.78 0.22 0.0002 

Cecropia obtusa Overburden 23.66 1.04 0.00006 

Miconia argyrophylla Mining Pit  5.13 0.81 0.00004 

Miconia argyrophylla Overburden 27.06 0.65 0.000004 

Miconia argyrophylla Tailing Pond 3.54 0.57 0.0003 

Sedges Mining Pit  9.30 0.56 0.00001 

Sedges Tailing Pond 4.26 0.45 0.0008 

Vismia guianensis Overburden 17.68 0.53 0.00005 
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These results demonstrate that gold mining is an important agent of 

disturbance and soil degradation in tropical forest ecosystems. After mining, the 

soil lost structure and fertility through deficiency in the nutrient content and cation 

exchange capacity and an increase in mercury concentrations. This caused 

decreased soil fertility to levels insufficient to support normal plant growth 

(Binkley and Fisher, 2013), particularly in the mining pits and tailing ponds. In 

fact, no woody species was recorded as dominant or present within the mining pits 

or tailing ponds at either Mahdia or Puruni. In contrast, overburden zones 

exhibited higher fertility capacity while displaying lower mercury concentrations. 

This combination of rich nutrient levels and lower mercury concentration allowed 

for the successful establishment of woody species such as Cecropia obtusa, 

Vismia angusta and Vismia guianensis which dominated the overburden zones.   

As soil texture changed, the mining pits and tailing ponds showed higher 

retention of mercury due to its affinity to clay soils (Guedron et al. 2009), 

registering between ~0.0002 and ~0.0006 mg/g of mercury across these zones. 

The high level of soil degradation in mined pits and tailing ponds can be 

explained by the process of mineral extraction. As vast amounts of water is 

usually jetted onto soil surfaces at a very high pressure, disaggregation of the soil 

particles (Cremers et al. 2013) is prominent. The resulting gold-bearing slurry is 

then pumped into a sluice box, which collects gold particles, while mine tailings 

flow into either an abandoned mining pit or the adjacent forest (Peterson and 

Heemskerk 2001). As re-sedimentation takes place, the various size fractions 

settle in separate horizons of varying depths, giving rise to new textural 

classifications, different soil characteristics (Bradshaw 1997) and leaching of soil 

nutrients.  

While plants were found to be tolerant of an external level of 0.0001 mg/g 

of mercury, physiological and biochemical processes were inhibited between 

0.0005 – 0.1 mg/g mercury concentrations (Beauford et al. 1977). As mercury 

concentration increased, nutrient levels associated with fertility (i.e. TN, TP and 

exchangeable cations) decreased. Mined soils in the tailing ponds and mining pits 

at Mahdia and Puruni exhibited lower levels of nutrients (TN and TP) and cations 

(Mg+, Ca+, K+ and Na+) strongly connected with soil and vegetation growth rates 

(Sheoran et al. 2010) while containing higher levels of cations (Al+, Fe+ and Mn+) 

indicative of older, exhausted soils. The impact of nutrient availability can be seen 
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in the dominant species occurring in the overburden zone at Mahdia versus those 

on the mining pit at Puruni where similar mercury levels exist but nutrient levels 

vary. This suggests that nutrient requirements may influence vegetation growth 

more than mercury levels, though above 0.0005-0.1 mg/g, mercury concentrations 

start to inhibit the nitrogen fixing abilities of plants due to a breakdown of the 

nitrogen mineralisation process (Faassen 1973). Lower mercury levels associated 

with the overburden zone is likely due to the material being excavated prior to 

mercury application, while higher nutrient levels are likely associated with 

nutrient rich topsoil, which forms the majority of the overburden.  

Cation availability, bulk density and correlation with soil type is site and 

zone specific (Table 4.3, Figure 4.5) and potentially an artefact of different mining 

practices used at Mahdia and Puruni, although this was not recorded here. It is 

expected that soils with sandy texture (2.0 – 0.05 mm) cannot hold as much 

nutrients as finer textured soils like loam (<0.002 mm) and silt (0.05-0.002 mm) 

(Sheoran et al. 2010). Therefore, soils with low clay content (i.e. sandy soils) 

should have a lower propensity for vegetation regrowth and therefore lower cation 

levels. This is suggested by the results here, although non-significant (Figure 4.5). 

Additionally, soil compaction, with a bulk density higher than 1.6 g/cm3, directly 

limits plant growth and results in decreased capacity of soils to retain water and 

nutrients. Soils found at the mining pit and tailing pond zones at Mahdia and 

Puruni were found to have bulk density between 1.7 and 2.3 g/cm3 indicating that 

most plant species would be unable to extend their roots effectively through these 

soils.  

TP concentrations at both sites were similar between control and the 

overburden zone, indicating that P is a limited nutrient. Similarity in P 

concentrations between the overburden zones and their respective control sites 

may be due to the dumping of the original soils from the mining pit and tailing 

pond on the overburden zone. As P is a limiting nutrient, plants may expect to 

either function with less of it or cycle it more efficiently reflected in higher re-

absorption efficiency of P.  TP and TN levels at control plots at both Mahdia and 

Puruni were comparable to other Amazonian forests (Mercado et al. 2011).  

 Higher concentrations of mercury also differed between active mines and 

abandoned sites. Mercury levels in active mines were eight times higher in 

Mahdia than Puruni, potentially indicating (1) higher mercury use at this site, (2) a 
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longer history and/or reoccurring use of mercury which was reflected in the soil 

and vegetation of the tailing pond and mining pit, and (3) a higher retention of 

mercury in clay soils which was present in the Mahdia plots compared to the 

sandy soils in the Puruni plots. This difference between active and abandoned 

mines suggests that the majority of the mercury is not retained locally in the soils 

and may be transported out of the system to surrounding soils and waterways. 

Other studies have shown that mercury-rich tailings have been detected hundreds 

of kilometres away from mining sites (Diringer et al. 2015). If mercury is leached 

to neighbouring areas so quickly, this may lead to larger ecological impacts than 

previously estimated. Across Amazonia, the estimated level of mercury in soils 

was on average 0.0001 mg/g, with a reported range of 0.00005-0.00015mg/g 

(Santos-Francés et al. 2011). Mercury concentrations in active mines were ~3 to 

240 times higher at Puruni and Mahdia respectively than reported levels in the 

literature (Howard et al. 2011, Santos-Francés et al. 2011, Figure 4.3). However, 

mercury concentration in the overburden in Puruni was the only mining zone that 

was within the range of reported mercury levels, while all other zones were 

higher.  

As cation and nutrient (TN and TP) concentrations limit vegetation growth 

in most natural soils (Bell 2002, Mercado et al. 2011), the results presented here 

suggest that vegetation regrowth and soil fertility may decrease with increased 

mining activity in mining pit and tailing ponds, while overburden zones may 

recover to some extent. This indicates that refilling the mining pit and tailing 

ponds with the displaced overburden soils may improve rehabilitation at these 

zones. However, the effectiveness of rehabilitation has not been systematically 

tested.  

 

4.5.2 Implications for soil and vegetation recovery and rehabilitation  

These results indicate that the soils from the mining pit and tailing ponds 

are highly impoverished in terms of nutrients and high levels of mercury. Thus 

vegetation regrowth is likely to be very slow and few plants may be able to grow 

in such conditions. On the other hand, increased soil and plant nutrients on the 

overburden areas may permit plant recovery to former levels. As a result, the 

overburden may be effective as a restoration resource. To what extent refilling the 
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tailing ponds and mining pits with the overburden soils will aid recovery is not 

clear and should be further explored.  

Gold mining activities also modified both the composition and structure of 

vegetation, with very specific species occupying this landscape, and may be 

dependent on nutrient and mercury levels. A Miconia argyrophylla successional 

pathway was dominant at overburden zone in Mahdia while a combination of 

Miconia argyrophylla and Cecropia obtusa was abundant in Puruni. This suggests 

that the overburden successional pathway behaves similarly to more traditional 

land uses such as pasture and agriculture (Chazdon et al. 2007). The dominant 

species growing on the overburden may reflect those that are capable of fixing 

nitrogen, especially at Puruni, as nutrients were high and mercury concentrations 

relatively low. On the other hand, species in the tailing pond and mining pit may 

be tolerant of high mercury levels or have lower nutrient requirements. 

Andropogan bicornis, Miconia argyrophylla and sedges dominated in the tailing 

pond and mining pits across both locations, which may suggest that these species 

are able to utilise a shallower root system due to the high compaction of soils and 

may be tolerant to high mercury concentrations (>0.005 mg/g) and low nutrient 

levels (Table 4.6).  

From this study, possible species useful for phytoremediation and/or 

rehabilitation may be Miconia argyrophylla, Vismia angusta, Vismia guianensis 

and Cecropia obtusa on the overburden while Andropogon bicornis, Miconia 

argyrophylla and sedges may be important in mining pits and tailing ponds. 

Miconia argyrophylla emerges as a potential candidate species for 

phytoremediation across all three mining zones due to high concentrations of 

mercury in its leaf tissues. Tolerance to mercury can be mediated by 

bioaccumulation (i.e. survive despite concentrated contaminants) and 

bioexclusion (i.e. restrict contaminant uptake into their biomass) (Tangahu et al. 

2011). Bioexclusion can play an important role in phytoremediation (Ritchie and 

Raina 2016) and therefore the rehabilitation of mined sites. 

These findings offer an insight into how gold mining alters nutrient cycling 

and potentially offers a solution for recovery of these sites, indicating the 

prospective species for regeneration, while using the overburden for the potential 

rehabilitation of the tailing ponds and mining pits, theoretically increasing soil 

nutrient levels.  
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Through its current and continued expansion, gold mining will have serious 

impacts on soil and vegetation fertility levels across mined sites, consequently 

affecting forest regeneration in Guyana and Amazonia. It is important to note the 

lack of studies focused on soil nutrient levels and their influence in post-mining 

sites. Even at sites abandoned for 3 years, soil and vegetation nutrient levels were 

significantly lower in mining pits and tailing ponds with higher mercury 

concentrations, suggesting that it will take longer for plants to regrow within these 

zones and potentially lead to the establishment of a lower forest proportion 

compared to the overburden zone or primary forests (Cole et al. 2014). As local 

communities are modified through shifts in species diversity, ecosystem 

functioning may be affected leading to reduced evapotranspiration rate, decrease 

humidity and reduce regional rainfall (Morin et al. 2018). Ultimately, this will 

affect how resilient the recovered forests will be to future disturbances.   

 



119 

 

5                                        
Limited Biomass Recovery from 

Gold Mining in Amazonian 

Forests 
 

 

5.1 Abstract 

 

Gold mining has rapidly become more prevalent across the Amazon Basin, 

especially in northern Amazonia within the last 16 years. Despite the regional 

significance of gold mining, the ability of forests to recover remains almost 

completely unquantified. In order to assess biomass accumulation in abandoned 

gold mining plots, I installed nine 0.25 ha forest inventory plots in recently 

abandoned mines in two major mining regions in Guyana (Mahdia and Puruni), 

re-censusing them 18 months later, to provide the first ground-based 

quantification of gold mining impacts on forest biomass recovery. I further 

examined how observed biomass recovery patterns from gold mining at my study 

sites compare with published tropical forest chronosequence data from other land 

uses (e.g. pasture, agriculture), and which factors most limit biomass recovery in 

previously mined sites. This study found that woody biomass recovery rates in 

abandoned mining pits and tailing ponds are the lowest previously recorded in 

tropical forests, with close to no woody biomass recovery after 3-4 years. On the 

overburden (areas not mined but where excavated soil is deposited), however, 

recovery rates (0.63 - 3.5 Mg ha-1 yr-1) were comparable to those from other 

secondary forests (0.7 - 3.1 Mg ha-1 yr-1) across the Neotropics following 

abandonment of pastures and agricultural lands. I estimate that the slow recovery 

rates in mining pits and ponds currently reduces carbon sequestration across 

Amazonian secondary forests by ~90,000 t C yr-1. However, the significant 

recovery in overburden areas is heartening for potential remediation strategies and 
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suggests that back-filling of mining pits and ponds may help to promote biomass 

recovery.  

 

5.2 Introduction 

 

Within the last decade, gold mining activity has become more prevalent 

across the Amazon Basin, to the extent that it is now the major driver of 

deforestation in several northern Amazonian countries (Guyana Forestry 

Commission and Indufor 2012, Asner et al. 2013, Alvarez-Berríos and Mitchell 

Aide 2015). In Guyana, for example, gold mining has increased by 908% by area, 

since 1990 and now accounts for 94% of national deforestation (Guyana Forestry 

Commission and Indufor 2012, Guyana Forestry Commission 2015). Much of this 

forest loss stems from artisanal and small-scale miners, who respond rapidly to 

increases in international gold prices (Howard et al. 2011). These mining 

activities invariably lead to widespread environmental damage and deforestation, 

resulting in substantial soil erosion and contamination, increased fragmentation of 

forest patches and mercury pollution of rivers and streams (Veiga et al. 2006, 

Dedieu et al. 2014, Castilhos et al. 2015, Sonter et al. 2017).  

The extent of soil physical damage and chemical contamination associated 

with gold-mining activities sets it apart from other traditional drivers of 

deforestation such as conversion to pasture or small-scale agriculture, which 

generally do not significantly alter soil structure or nutrient content (Santos-

Francés et al. 2011, Wantzen and Mol 2013). Thus gold mining activity might be 

expected to arrest forest recovery rates compared to other land uses. Despite the 

importance of mining as a major driver of tropical forest deforestation, the 

impacts on forest biomass accumulation remain almost completely unquantified. 

In fact, only one previous field study has attempted to evaluate forest recovery 

following deforestation from gold mining in Amazonia (Peterson and Heemskerk 

2001), but this study performed only visual assessments of vegetated area 

following 1-4 years of recovery with no quantitative measurements. With the 

availability of high-resolution satellite imagery, other authors such as Novoa et al. 

(2016) have also visually assessed forest regeneration following gold mining, 

finding vegetation regrowth in previously mined areas in Peru. Yet, such studies 
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have not incorporate a field-based ground-truthing and do not consider the 

complex nature of mining sites, which typically consist of three distinct mining 

zones: (1) overburden: areas overlying the gold ore, including the topsoil, which 

are displaced during the mining process, (2) tailing pond: deposits of material left 

over after the gold has been separated from the ore, and the (3) mining pit. The 

intensity of the disturbance caused by mining is much higher in the tailing pond 

and mining pit than the overburden and thus recovery rates are expected to be 

lower for the former two zones. 

Several recent studies have shown that recovering, secondary forests, 

deliver a host of ecosystem services including maintenance of biodiversity, and 

significant accumulation of carbon in their biomass (Anderson-Teixeira et al. 

2013, Lohbeck et al. 2015, Chazdon et al. 2016, Poorter et al. 2016). Indeed, 

across the Tropics, secondary forests are thought to constitute a significant carbon 

sink, which in some estimates is larger than that of intact primary forests per area 

(Pan et al. 2011). However, other studies have indicated the rapid early 

accumulation of aboveground biomass, with a levelling off in old-growth forest 

sites where biomass is at its highest (Silver et al. 2000, Feldpausch et al. 2005a, 

2012b, Peña-Claros 2016). Recent syntheses of chronosequences from tropical 

secondary forests have concluded that secondary forest biomass recovery rates 1) 

are largely controlled by background rainfall conditions (Poorter et al. 2016), 2) 

only achieve 95% regrowth compared to old-growth forests (Cole et al. 2014), 3) 

differs between dry, moist and wet tropical forests (Saatchi et al. 2011), and 4) are 

faster in forests previously under pasture use than agricultural production (Martin 

et al. 2013), although Zarin et al. (2001) found no significant difference in 

biomass accumulation between former pastures and former slash‐and‐burn 

fallows. However, none of these syntheses contain chronosequences on previously 

mined areas. Thus, it is unclear how recovery of biomass and biodiversity 

following gold mining compares with recovery from more traditional land uses 

such as pasture and agriculture.  

 Further, species composition of secondary forests, in some cases, may not 

converge with that of old‐growth forest (Marin-Spiotta et al. 2008). In some cases, 

exotic species may dominate parts of the successional process and eventually 

form a large portion of the forest canopy, especially in highly disturbed 

landscapes (Grau et al. 2003, Feldpausch et al. 2007, Franklin 2007). As a result 
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of this decoupling between structural and floristic components of forest change 

(Chazdon et al. 2007), different parameters may result in different answers as to 

how well would tropical forest recover from more intense land use disturbances 

such as gold mining.  

To address these critical knowledge gaps, I established forest plots in focal 

gold mining regions in Guyana to investigate patterns of biomass recovery 

following abandonment of gold mining activity. Here, I specifically consider the 

following questions: 1) How has biomass changed over an 18-month period in 

nine recently abandoned gold mining plots (0.6 - 3 years since abandonment), 2) 

How observed biomass recovery patterns from gold mining at my study sites 

compare with published tropical forest chronosequence data from other land uses 

(e.g. pasture, agriculture), and 3) Which factors most limit biomass recovery in 

previously mined sites? This is the first study to provide detailed, recensused, 

field-based information on the regeneration of secondary forests following 

previous gold mining activity.  

 

5.3 Methods 

 

5.3.1 Study sites and sampling design 

This chapter utilized measurement plots installed in two known gold 

mining sites in Guyana, namely Mahdia and Puruni (Figure 5.1), from January to 

March, 2016, and subsequently re-censused in June to August, 2017 (see 

Appendix 5.1 for images from field sites for both censuses). A description of both 

sites can be found in Chapter 1.7.  

Nine 0.25 ha (50m x 50m) plots and a controlled old-growth forest plot 

(100m x 100m) were established at each site. Sites were selected based on the 

three mining zones being part of the same mining activity. However, 

approximately half of all plots (five in Mahdia and four in Puruni) were cut down 

and re-mined before the subsequent re-census in 2017. I only utilized plots which 

were present in 2016 and 2017. Each plot was positioned to include three 

important zones of artisanal gold mining sites, namely the mining pit, the mine 

tailings and the overburden (description and image of the zones are found in 

Chapter 1.7). Within each plot and within each mining zone (mining pit, 
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overburden, tailing pond), three nested subplots of 3m x 3m and 1m x 1m were 

established. All trees >2cm DBH (diameter at reference height of 1.3m) were 

measured in the larger 0.25 ha plot and identified to species level. All tree 

saplings 25-200 cm tall, and all tree seedlings 5-25 cm tall were identified and 

counted in the 3m x 3m and 1m x 1m subplots respectively. Nested subplots were 

also established in the 1-ha control plot, where all trees >10cm DBH were 

measured and recorded. 

Heights of larger trees were measured using a laser rangefinder, whereas a 

tape measure was used to measure the height of saplings and seedlings. In the re-

census in 2017, the diameter of all individuals still standing from the first census 

was re-measured, along with all new recruits > 2cm DBH in each 0.25 ha plot and 

>25cm and >5cm tall in our nested 3m x 3m and 1m x 1m subplots respectively. 

Trees not present in the second census but present in the first census were 

assumed to have died. 

 

5.3.2 Biomass calculations  

To calculate aboveground biomass (AGB) of individual trees (in kg), I used 

the allometric model of Chave et al. (2014):  

AGB=0.0673 × (ρD2H)0.976 

where ρ = wood density (g cm-3), D = DBH (cm) and H = height (m). This 

is a generic equation for tropical forests, based on a broad set of trees including 

primary and secondary forest species, and has previously been used for estimating 

biomass in young secondary forests (Poorter et al. 2016, Rozendaal et al. 2017). 

The Chave et al. (2014) allometric equation was used in this study as there is no 

specific published equation for smaller trees (i.e. <5cm DBH). Other authors such 

as Berenguer et al. (2015) have also demonstrated that the Chave et al equation 

can be used for assessing biomass in human-modified landscapes.  

Wood density values for species were obtained from the global wood 

density database available from the Dryad data repository (http://datadryad.org/). 

Where species-specific wood densities were not available, genus mean or familial 

mean wood densities were used (e.g. Baker et al. 2004). As the relative 

proportions of overburden, pit and tailing areas varied across plots, I rescaled the 

total biomass estimates for each zone so that all values are expressed on a 1-ha 

basis. For each plot, I calculated the aboveground biomass (AGB), the total 
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change in biomass between our two measurement censuses (∆AGB), the biomass 

change due to diameter growth (∆AGBGrowth), the biomass change due to 

recruitment of new trees (∆AGBRecruitment) and the biomass change due to 

mortality (∆AGBMortality). 

 

5.3.3 Comparison with published secondary forest chronosequences  

To place my study within the wider literature on tropical forest biomass 

recovery, I compared the AGB and ∆AGB values to published data for other 

tropical forests at 2-4 years since abandonment. Studies were retained in the 

comparison if they included: (i) at least one measurement of aboveground 

biomass for woody vegetation, (ii) the age or time since last disturbance occurred, 

(iii) the land use prior to abandonment, typically pasture or agriculture (Martin et 

al. 2013). Table 5.1 lists the published secondary forest AGB and ∆AGB data 

used for the comparative analysis. To allow for natural variation in aboveground 

biomass stocks, AGB was expressed as a proportion of the biomass stocks found 

in nearby old-growth forest plots, following approaches used in other published 

meta-analyses (Martin et al. 2013). If data from old-growth forests were not 

available in the reviewed studies, I utilized reference forest data from 

neighbouring plots (Johnson et al. 2016).  
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Figure 5.1 Map of field sites in Guyana: (a) Mahdia 

and (b) Puruni. 

Baseline map indicates mining, rivers, roads, 

cropland, and settlements from 2014 and STRM 

elevation (m). 

(a) 

(b) 
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One of the assumptions of this study is that all sites have been subjected to the 

same environmental conditions, though in practice this condition is rarely met 

(Johnson and Miyanishi 2008).  

 

Table 5.1 Sources of secondary forest chronosequences from different land uses. 

 

Data Source Land Use Countries 

Martin et al. (2013) Pasture, Agriculture Various 

Vieira (2013) Pasture Brazil 

Brondizio (unpublished) Pasture Brazil 

Marin-Spiotta et al. (2008) Pasture, Agriculture Peru, Brazil, French 

Guiana, Colombia, 

Venezuela, Ecuador 

Poorter et al (2016) Pasture, Agriculture Brazil, Bolivia, 

Colombia 

 

 

5.3.4 Statistical Analysis 

To examine the effects of mining sites (Mahdia vs. Puruni) and individual 

zones (overburden, mining pit and tailing pond) on AGB in census 1 and census 2, 

∆AGB, AGBMortality, AGBRecruitment and AGBGrowth, linear mixed effects models 

were used, with a random intercept for each plot. AGB in Census I and II, ∆AGB, 

AGBMortality and AGBGrowth data were log-transformed prior to analysis to satisfy 

requirements of normality and homogeneity of variance. For instance, ∆AGB was 

first translated (∆AGB + 1) and then log-transformed due to the occurrence of 

negative values in the dataset such as those present for AGBMortality: 

(∆AGBtransformed = log (∆AGB + 1 – min (∆AGB)). These analyses were conducted 

using nlme package in R (Pinheiro et al. 2018). Mixed effects models were used 

as they are statistically rigorous even with a small dataset as in this case and can 

accommodate flexible data structures e.g. data that is non-normally distributed. I 

also tested whether structural equation models (SEMs) would work as variables 

were autocorrelated and this model assumes all variables impact on each other 

(Nachtigall et al. 2003). However, SEMs require normally distributed continuous 
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variables and a minimum number of parameters e.g. a sample size of 200 

parameters which this study did not have (Nachtigall et al. 2003).  

Using the soil data from Chapter 4, I conducted a second set of analyses to 

evaluate the importance of different continuous variables (CEC, N, P, Hg, 

Distance to Forest Edge) in predicting variation in AGB in Census I and II, 

∆AGB, AGBMortality, AGBRecruitment and AGBGrowth across the study plots. For this 

analysis, I fitted generalized linear models in R, using the ‘log’ link option with 

the glm command. I compared models with all possible combinations of these 

variables but excluded interaction effects due to the larger number of variables in 

these analyses and relatively small sample size (n=27), so as to avoid model 

overfitting. Model selection was performed based on Akaike’s information 

criterion (AIC). Following Rozendaal et al. (2017), I  considered models differing 

by less than two AIC units as equally supported.   

Finally, I compared the AGB values at census 2 (following 2-4 years of 

recovery) with published biomass estimates from secondary forest 

chronosequence studies for similar stages of succession (2-4 years) following 

abandonment from other, more traditional land uses (agriculture and pasture). As 

it was recently shown that dry forests accumulate biomass more slowly than wet 

forests (Poorter et al. 2016), I restricted comparison location to moist, evergreen 

forests. For this comparison, I grouped the data from Mahdia and Puruni into 

three groups, one for each zone (overburden, mining pit and tailing pond) and 

treated all studies reporting recovery from agriculture as a single group and all 

studies reporting recovery from pasture as another group. Most studies do not 

provide detailed land use histories for each site, thus finer-scale groupings were 

not possible. For this analysis, I performed non-parametric Kruskal-Wallis tests, 

followed by post-hoc Dunn tests. 

 

5.4 Results 

5.4.1 Aboveground biomass dynamics during secondary succession  

Aboveground biomass in the control, old-growth plot in Mahdia (317.7 

Mg ha-1) was considerably higher than in the control, old-growth plot in Puruni 

(187.6 Mg ha-1).  However, mean aboveground woody biomass in the overburden 

plots was on average more than three times greater in Puruni in Census II than it 
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was in Mahdia (Figure 5.2, p<0.001), despite no significant difference between 

sites when plots were installed (Census I). In Puruni, overburden aboveground 

woody biomass following 4-5 years of forest recovery was 6.63 ± 1.63 Mg ha-1 

(3.46 ± 0.74 Mg ha-1 yr-1) , equivalent to 3.5% that of the control while in Mahdia, 

it was only 1.06 ± 0.38 Mg ha-1 (0.36 ± 0.36  Mg ha-1 yr-1), amounting to <1% of 

the control plot. In both Mahdia and Puruni, aboveground woody biomass was 

very low in the mining pit areas (mean AGB of 0 ± 0.03 Mg ha-1 yr-1 in Mahdia 

and 0 ± 0.05 Mg ha-1 yr-1 in Puruni, p>0.1) and tailing ponds (mean AGB of 0.01 

± 0.01 Mg ha-1 yr-1 in Mahdia and 0.03 ± 0.06 Mg ha-1 yr-1 in Puruni, p>0.1) 

(Figure 5.2). 

Figure 5.2 Mean above ground biomass (AGB) across mining zones (overburden, 

tailing pond & mining pit) in abandoned mining sites for Mahdia and Puruni. All 

abandoned sites were extrapolated to 1ha. 

 

In fact, in approximately half of my plots, there was no recorded woody 

aboveground biomass in the pits and tailing ponds. No trees >10cm in height were 

found on the mining pit or tailing pond across plots at both sites in both censuses. 

In both sites, virtually all of the aboveground biomass in pits and ponds was 

accounted for by non-woody grasses and sedges, such as Andropogon bicornis.  
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Based on destructive harvesting undertaken in Census II, herbaceous (non-

woody) aboveground biomass was estimated to be 0.03 ± 0.03 Mg ha-1 at Puruni 

and 0.17 ± 0.11 Mg ha-1 at Mahdia for the mining pit areas and 0.09 ± 0.07 Mg ha-

1 (Puruni) and 0.2 ± 0.08 Mg ha-1 (Mahdia) for the tailing pit areas. 

 

Figure 5.3 The contribution of tree growth, recruitment and mortality compared 

to annual biomass change between Census I and Census II for Mahdia & Puruni. 

Data was restricted to species on overburden and extrapolated to 1ha. 

 

Annual rates of overburden aboveground biomass change (ΔAGB) 

differed strongly between sites and zones (Table 5.2, Figure 5.3, p<0.0001). 

ΔAGB was positive in all overburden plots except for one plot in Mahdia, 

indicating overall net AGB accumulation, with estimated annual ΔAGB 

approximately 5-fold lower in Mahdia (0.63 ± 0.41 Mg ha-1 yr-1) than Puruni (3.46 

± 1.66 Mg ha-1 yr-1). Woody biomass changes between censuses (ΔAGB) for 

mining pit and pond zones were not significant in either site, remaining close to 

zero in both censuses. Tree recruitment (AGBRecruitment) was the main contributor 

to biomass increases for overburden areas in both sites, responsible for 80% and 

54% of the biomass increases in Mahdia and Puruni respectively, although 
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AGBRecruitment was ~3.4 times greater (p=0.19, Table 5.2) in overburden plots in 

Puruni (1.86 ± 0.77 Mg ha-1 yr-1) than in Mahdia (0.55 ± 0.26 Mg ha-1 yr-1). 

Furthermore, ΔAGBGrowth was ~12 times greater (p=0.04, Table 5.2) in Puruni 

(1.63±0.9 Mg ha-1 yr-1) than in Mahdia (0.13±0.5 Mg ha-1 yr-1). Biomass mortality 

losses (ΔAGBMortality), on the other hand, were on average 11 times higher 

(p=0.19, Table 5.2) in Mahdia (0.32±0.27 Mg ha-1 yr-1) than in Puruni (0.03±0.01 

Mg ha-1 yr-1). ΔAGBGrowth, AGBRecruitment and ΔAGBMortality were close to zero in 

mining pit and tailing pond plots.  

It is important to note that the results presented here on biomass may not 

reflect an effect of the 2015 El Nino event as all plots would have seen similar 

mortality rates. Analysis of mortality rate (see Condit et al. 1995 for mortality rate 

formula used) in neighbouring, long-term forest plots in Guyana (Iwok-22, Iwok-

21 and Iwok-11) between 2006 and 2017 indicate a mean mortality rate of 0.003% 

while the mortality rate at Mahdia and Puruni between the two censuses were 

0.1% and 0.03% respectively. Pioneer species such as those present at Mahdia and 

Puruni tend to have a higher mean mortality rate. The results here suggest that 

even if a lag was present with the 2015 El Nino event, it was not reflected in the 

mean mortality rate of long-term plots. However, the 2015 El Nino event may 

have impacts on observed climate anomalies, water deficits and heat stress which 

may still be documented.  

 

5.4.2 Forest composition and structure 

Taxonomic composition ranged widely across the plots and was not only 

very different between recovering secondary plots and nearby old-growth sites, 

but also between recovering forest plots in both sites (Figure 5.4). In the old-

growth control plots, Fabaceae was the most dominant family in terms of AGB 

contribution, accounting for 63% of total AGB in both Mahdia and Puruni. This 

was followed by Lecythidaceae, which accounted for 21% of total AGB in 

Mahdia and 26% in Puruni. In Mahdia, overburden areas were initially dominated 

by Anacardiaceae and Ulmaceae, jointly responsible for 71% of total AGB across 

all previously disturbed plots in Census I, and then by Clusiaceae and Urticaceae, 

which were jointly responsible for 66% of total AGB in Census II. In Puruni, 

Fabaceae and Urticaceae were the dominant families in terms of AGB 
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contribution, being jointly responsible for 77% of total AGB in Census I and 74% 

in Census II across overburden plots. 

Species composition varied considerably between sites and across plots 

within sites.  Important woody species present in Census I (1-3 years post-

abandonment) were Tapirira marchandii (Anacardiaceae, 1.3 Mg ha-1), Trema 

spp (Ulmaceae, 0.23 Mg ha-1) and Caryocar microcarpum (Caryocaraceae, 0.2 

Mg ha-1) in Mahdia and Zygia collina (Fabaceae, 3.03 Mg ha-1), Cecropia 

surinamensis (Urticaceae, 2.29 Mg ha-1) and Byrsonima aerugo (Malpighiaceae, 

0.7 Mg ha-1) in Puruni. In Census II, the species with the most biomass were 

Zygia collina (Fabaceae, 10.7 Mg ha-1) and Cecropia obtusa (Urticaceae, 9.09 Mg 

ha-1) in Puruni, while Vismia guianensis (Clusiaceae, 1.4 Mg ha-1) and Cecropia 

obtusa (Urticaceae, 1.04 Mg ha-1) dominated in Mahdia.  

Tree heights also varied across mature and abandoned sites. Maximum 

height in mature forests were 32.04m and 42.37m in Mahdia and Puruni 

respectively. In Mahdia, maximum tree height recorded on overburden areas was 

12m, but trees up to 23.5m were recorded in overburden areas of Puruni.  
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Table 5.2 Summary Results from Mixed-effects Models for Aboveground Biomass (AGB), Annual Biomass Change (ΔAGB), and 

Biomass Change resulting from Recruitment (∆AGBRecruitment), Mortality (ΔAGBMortality) and Tree Growth (ΔAGBGrowth). 

 

 log(AGBCensusI) log(AGBCensusII) log(ΔAGB) log(∆AGBRecruitment) log(ΔAGBMortality) log(ΔAGBGrowth) 

 F-value p-value F-value p-value F-value p-value F-value p-value F-value p-value F-value p-value 

Site 0.89 0.38 14.69 0.006 6.62 0.04 2.13 0.19 0.96 0.36 5.49 0.05 

Zone 5.63 0.02 71.98 0.0001 42.17 0.0001 18.45 0.0001 1.48 0.26 8.42 0.004 

Site*Zone 0.58 0.57 14.54 0.0004 13.08 0.001 2.37 0.13 1.85 0.19 3.98 0.04 
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Figure 5.4 Relative biomass contributed by families in Census I and Census II on 

the overburden, compared to control sites. All sites extrapolated to 1ha. 

 

5.4.3 Controls on Biomass Recovery  

The best supported models for explaining variation in AGBcensusII and 

annual biomass change (ΔAGB) involved combinations of total nitrogen and 

phosphorus, mercury and exchangeable cations (Table 5.3), with the models 

explaining 38-43% of the observed variation in AGB. Mercury concentrations, 

total nitrogen and distance to forest edge explained 70% of the observed variation 

in aboveground growth (AGBGrowth). Total nitrogen was particularly important, 

featuring in all best supported models for AGB, AGBGrowth and AGBMortality. 
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Overall predictive ability of the models was relatively weak for both AGBMortality 

and AGBRecruitment where the best models explained only 20-25% of the variations. 

Mercury content and exchangeable cations were found to be the most important 

predictors of AGBRecruitment. Phosphorus content was found to be less important 

than other predictors in driving variation in biomass recovery across plots. 

 

5.4.4 Biomass Recovery in Second-Growth Forests by land use 

Figure 5.5 depicts how biomass estimates for Census II from this study 

compare with published data for other moist Neotropical secondary forests of 

equivalent age (2-4 years post-abandonment) recovering from agricultural and 

pasture use. Compared to agriculture and pasture, biomass recovery rates for the 

mining pits and tailing ponds are the lowest documented for any land use thus far. 

However, biomass stocks in overburden areas are not significantly different to 

those for other sites previously under pasture and agriculture. The annual rates of 

aboveground biomass change (ΔAGB) of the overburden of abandoned gold 

mining sites at both Mahdia and Puruni were comparable to the only other multi-

census data published for second-growth forests across the Neotropics (see Table 

5.1 for published data used, Figure 5.6). For instance, Puruni (3.5 Mg ha-1) was 

similar in recovery to Nizanda, Mexico (3.1 Mg ha-1) while Mahdia (0.63 Mg ha-

1) was similar to Chamela, Mexico (0.7 Mg ha-1). Caution is necessary, however, 

as some of these estimates are from seasonally dry forests in Mexico, where 

recovery rates would be expected to be lower than for moister forests (Poorter et 

al. 2016). Further, forests established after agriculture appeared to recover 

biomass quicker than those following pasture and gold mining.  
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Table 5.3 Results of important continuous variables that may affect changes in aboveground biomass (AGB) in Census I and II, 

Annual Biomass Change (ΔAGB), and Biomass Change resulting from Recruitment (∆AGBRecruitment), Mortality (ΔAGBMortality) and 

Tree Growth (ΔAGBGrowth).  

 

Model (fixed effects) log(AGBCensusI) log(AGBCensusII) log(ΔAGB) log(∆AGBRecruitment) log(ΔAGBMortality) log(ΔAGBGrowth) 

ΔAIC R2 ΔAIC R2 ΔAIC R2 ΔAIC R2 ΔAIC R2 ΔAIC R2 

Hg + TP + TN + CEC + Distance 5.72 0.38 1.24 0.29 1.23 0.34 0.66 0.22 5.16 0.23 3.79 0.70 

Hg + TP + TN + Distance 5.30 0.38 9.22 0.38 6.85 0.43 7.07 0.20 3.17 0.23 1.85 0.70 

Hg + TP + TN + CEC 3.96 0.35 0.00 0.30 0.00 0.38 1.01 0.25 3.99 0.22 5.00 0.65 

Hg + TN + TP 3.33 0.37 7.24 0.38 4.88 0.43 5.14 0.19 2.09 0.22 3.04 0.64 

Hg + TP 8.57 0.20 8.51 0.27 8.21 0.30 3.28 0.20 5.64 0.08 35.13 0.34 

Hg + TN 1.41 0.37 5.26 0.39 3.01 0.42 4.03 0.17 0.50 0.22 1.86 0.64 

TN + CEC 1.62 0.34 14.91 0.25 14.61 0.24 10.71 0.03 2.44 0.19 15.14 0.56 

TP + CEC 6.85 0.19 15.97 0.15 16.79 0.12 10.79 0.02 6.25 0.06 17.73 0.44 

Hg + CEC 10.68 0.12 12.02 0.28 9.40 0.30 0.00 0.21 5.45 0.08 23.94 0.38 

TN + TP 1.80 0.34 14.23 0.26 14.33 0.23 11.19 0.01 2.03 0.18 13.80 0.58 

Hg + TP + Distance 10.53 0.20 10.33 0.25 10.20 0.30 5.21 0.21 6.29 0.12 37.05 0.33 

Hg + TN + Distance 3.36 0.37 7.23 0.38 5.01 0.42 5.91 0.18 1.72 0.24 0.23 0.69 

Hg + CEC + Distance 12.39 0.12 11.75 0.20 10.80 0.25 0.77 0.22 4.26 0.16 25.88 0.37 

TP + CEC + Distance 8.84 0.19 17.28 0.20 17.65 0.17 11.72 0.06 4.16 0.17 18.97 0.46 

TN + CEC + Distance 1.96 0.39 9.89 0.34 9.45 0.37 10.57 0.09 1.96 0.23 1.76 0.69 

CEC + Distance 11.50 0.08 18.67 0.11 18.77 0.11 9.75 0.06 2.26 0.16 29.90 0.31 

Hg + Distance 13.48 0.07 10.91 0.19 9.71 0.23 5.12 0.18 5.17 0.10 50.14 0.13 

TN + Distance 1.49 0.37 10.37 0.36 9.58 0.35 10.65 0.03 0.00 0.23 0.00 0.69 

TP + Distance 9.29 0.20 19.60 0.20 18.43 0.17 10.52 0.03 4.30 0.12 38.99 0.37 

Hg 11.62 0.06 11.35 0.24 8.39 0.27 3.23 0.17 5.26 0.02 48.14 0.14 

TP 7.46 0.18 19.16 0.13 18.39 0.09 9.25 0.01 4.88 0.04 38.61 0.31 

TN 0.00 0.33 13.00 0.27 12.63 0.24 9.44 0.00 0.73 0.19 16.48 0.58 

CEC 9.57 0.08 17.03 0.08 17.75 0.07 8.90 0.02 4.68 0.05 28.25 0.30 

Distance 13.27 0.00 23.19 0.05 20.38 0.06 8.66 0.03 3.22 0.09 52.57 0.03 

None (Intercept only) 11.37 0.00 22.62 0.00 19.99 0.00 7.45 0.00 3.90 0.00 51.51 0.00 



136 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Recovery of biomass in different land use, relative to undisturbed reference forests. 
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Figure 5.6 Comparison of annual biomass change of abandoned gold mining sites (overburden only) with six second-growth forests 

across the Neotropics (Dry Forests: CHM = Chamela, Mexico; NIZ = Nizanda, Mexico; Wet Forests: KIU = Kiuic, Mexico; MAN = 

Manaus, Brazil; CHJ = Chajul, Mexico; SAR = Sarapiqui, Costa Rica). 
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5.5 Discussion 

 

5.5.1 Successional Recovery of Biomass and Species Composition Post-

mining 

This analysis finds clear evidence that gold mining heavily disrupts the 

secondary succession process and therefore forest recovery in former mining pit 

and tailing pond areas, but not on the overburden. While woody biomass recovery 

rates on mining pit and tailing ponds were amongst the lowest ever recorded, 

recovery rates on overburden areas were comparable to those from secondary 

forests recovering from agriculture and pasture. 

The lack of woody biomass recovery, particularly on the mining pit and 

tailing pond, was found to be heavily influenced by available total nitrogen and 

mercury concentrations (Table 5.3). In Chapter 4, I showed that N content of soils 

across previously mined plots was much depleted relative to the control plots in 

both Mahdia and Puruni. This was especially true for the previously mined tailing 

ponds and mining pits. Nitrogen content in previously mined mining pits was only 

10-38% of that in overburden plots while nitrogen content in previous tailing pond 

areas was only 4-6% of that in overburden areas (Chapter 4, Table 4.1). Recovery 

of Amazonian secondary forests is known to be heavily linked to nitrogen 

availability (e.g. Davidson et al. 2004, Feldpausch et al. 2004). The substantial 

stripping of nitrogen from mining pits and tailing ponds means that the 

concentrations found in this study would represent the lowest reported for 

Amazonian soils, considerably retarding their recovery. Given the infertility, some 

form of amendments for successful plant growth and development are required in 

these zones, and may involve the addition of organic material and/or inorganic 

fertilizer. Fertilization experiments have shown that phosphorus additions to soil, 

when combined with nitrogen additions, can also boost biomass recovery in 

secondary forests (Davidson et al. 2004b). 

However, in this study, soil phosphorus content was not found to be an 

important predictor of biomass recovery following mining. Indeed, the differences 

in phosphorus content between overburden plots, which recovered well, and plots 

on previously mined tailing ponds and mining pits were not nearly as pronounced 

as for nitrogen. Previously mined tailing ponds and mining pits, which showed no 
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recovery in both sites, were found to contain 64-94% of the soil phosphorus 

content of the overburden plots.  

Whereas available N likely drives the differential recovery observed across 

mining zones, these analyses suggest that other factors such as species may likely 

drive the differences in accumulation rates observed at the two study sites 

(Mahdia and Puruni). Indeed, overburden biomass accumulated approximately six 

times more slowly in Mahdia than Puruni, despite actual N and P concentrations 

in overburden soils being on average higher in Mahdia than Puruni (Chapter 4, 

Table 4.1). Soil mercury content and exchangeable cations emerged as important 

secondary predictors of biomass accumulation metrics (Table 5.3) and may have 

ultimately led to between-site differences in biomass accumulation. Mercury 

concentrations on overburden soils in Puruni was the only mining zone that was 

within range of reported mercury levels, while all other zones were higher. The 

statistical analyses suggests an important role for mercury in inhibiting 

recruitment.  

Mercury concentrations have been found to strongly inhibit plant 

development and growth, but have differential impacts across taxa (Muddarisna 

and Krisnayanti 2015). My analyses suggest that mercury concentrations may 

have been particularly important for impairing woody plant recruitment (Table 

5.3). Comparison of the plant composition data for overburden plots at both sites 

revealed that an important difference between the compositions of the overburden 

vegetation is the near absence of leguminous woody species with the capacity to 

fix nitrogen in Mahdia (Figure 5.7). While abundance of Fabaceae is similar in 

control plots in both sites, the abundance of Fabaceae increases sharply during 

succession in Puruni but not in Mahdia. Nitrogen fixers are known to drive 

biomass accumulation in recovering secondary forests (Batterman et al. 2013) and 

their suppression in Mahdia may be associated with higher mercury loads 

inhibiting the establishment of N fixing bacteria (Nuraini et al. 2015, Rafique et 

al. 2015). Experimental studies have previously found that application of mercury 

markedly decreases germination of selected leguminous tree species (Iqbal et al. 

2014), including inhibiting the presence of nitrogen-fixing bacteria (Nuraini et al. 

2015). I hypothesise that similar mechanisms may be limiting the establishment of 

N-fixing trees in Mahdia.  
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It is important to note the almost complete lack of specific studies focused 

on understanding the tolerance of rainforest tree species to mercury outside of this 

thesis (Chapter 4). Targeted experiments which directly test this hypothesis that 

the germination capacity of nitrogen fixers may be disproportionately reduced by 

different soil mercury loads need to be undertaken. Some studies on agricultural 

crops have shown that N fixing bacterium from the genera Staphylococcus, 

Pseudomonas, Escherichia and Bacillus may be resistant to some levels of 

mercury contamination by converting mercury into a less toxic form, such as 

hydrogen sulphide (Nuraini et al. 2015, Rafique et al. 2015). However, these are 

likely to involve threshold responses and these thresholds likely differ according 

to plant taxa.  However, at present, there is simply no information in this regard. 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Relative Abundance of Fabaceae and Nitrogen-fixers for Mahdia and 

Puruni in Census I, Census II and Control. 

 

Exchangeable cations were also shown to influence mainly annual biomass 

change (ΔAGB) and biomass change from tree recruitment (ΔAGBRecruitment, Table 

5.3), and strongly correlated to soil fertility and the ability of new trees to enter 

the system, especially on the overburden zone. Distance to forest edge was 

significant for tree mortality (ΔAGBMortality) and tree growth (ΔAGBGrowth). This 

was driven by two of the Mahdia plots being further away from the primary forest 

edge than any of the other plots (Appendix Figure 5.1). 
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In many tropical studies, biomass recovery has been found to decline with 

increasing distance from forest edge (>2 km) (Thomlinson et al. 1996, Valois-

Cuesta et al. 2017) and this is linked to lower seed input from mature forest seed 

sources. However, all of my study plots were ≤1km from the nearest forest edge, 

which would allow for potentially high seed input for regeneration from nearby 

mature forests (Mesquita et al. 2015, Appendix 5.2). Recovery rates for plots 

located at roughly the same distance to edge were still much lower in Mahdia than 

Puruni, so this effect is likely of secondary importance in explaining the 

differences in recovery observed between the two sites. 

 

5.5.2 Implications for forest recovery and rehabilitation  

 Relative to other previous land uses, biomass recovery in previously 

mined pits and tailing ponds are the slowest recorded in the literature (Figure 5.5). 

In Guyana alone, an area of 879 km2 of forest was deforested due to gold mining 

and mining infrastructure in Guyana between 1990 and 2014 (Guyana Forestry 

Commission 2015). Across the entire Amazon, ~370,396 km2 of forests are 

currently found within active mining concessions (Alvarez-Berríos and Mitchell 

Aide 2015, RAISG 2012, Figure 3.11). Within these areas, 1680 km2 of tropical 

forest was lost to mining between 2001 and 2013 (Alvarez-Berríos and Mitchell 

Aide 2015), corresponding to an annual forest loss of ~130 km2 yr-1 over this 

period. Assuming that the pit/pond/overburden proportions observed in our 

Guyanese landscape applies more broadly over the Amazon, I estimated that gold 

mining results in ~90,000 t C yr-1 less carbon being accumulated in relation to 

what would have accumulated under agriculture/pasture. Given that a further 

1,382,024 km2 of Amazonia is currently under prospecting license for mining 

(Alvarez-Berríos and Mitchell Aide 2015, RAISG 2012, Figure S5), the gold 

mining-induced carbon deficit in Amazonia is expected to increase greatly over 

coming years. 

For most tropical forest ecosystems recovering from past clearing from 

pasture and agriculture, it takes 50-100 years to fully recover species diversity 

patterns (Martin et al. 2013). Given that recovery of woody biomass and diversity 

on tailing ponds and mining pits is practically non-existent even after 2-4 years 

following abandonment, one can expect that recovery within these systems to take 

significantly longer. The findings presented here indicate the limited and uneven 
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nature of forest regeneration in gold mining sites, and potentially reveals a very 

fragmented Amazonian landscape in the future. Clearly, gold mining is one of the 

most destructive land use disturbances, compared to pasture and agriculture, in 

terms of nutrient depletion, mercury contamination and disrupting the 

successional process, particularly in the mining pits and tailing ponds. As such, 

active recovery strategies may have to be applied.  

These results clearly show that nutrient (especially nitrogen) depletion 

may strongly influence ability to recover biomass and that nitrogen concentrations 

on overburden soils can be up to 20 times higher than those in previously mined 

pits and tailing ponds. This is linked to the excavation of topsoil from the mining 

pits and tailing ponds, which is subsequently dumped on overburden areas.  

A practical recommendation that emerges from this work is that the re-

filling of mining pits and tailing ponds with soils dumped on the overburden may 

go a long way to boosting forest recovery on those zones. The overburden should 

therefore be viewed as a strategic resource and its removal, storage and 

replacement to retain the physical and chemical properties should be protected. 

However, I also found evidence that high mercury concentrations may also retard 

forest recovery. Thus, if background mercury concentrations are high (e.g. in 

Mahdia), simply re-filling of mining pits and tailing ponds with the overburden 

soil may not automatically result in high biomass accumulation rates. Here, 

phytoremediation with native species may also aid restoration efforts. The optimal 

selection of plants requires carefully planned field trials as the 

germination/establishment sensitivity of different taxa to high mercury 

concentrations remains unstudied. Given their central role in driving biomass 

recovery, phytoremediation strategies which promote the functional integrity of 

nitrogen fixation processes need to further studied. Finally, a context of 

restoration of mined sites that involves planned decommissioning associated with 

positive management practices (e.g. pit re-filling) rather than the common practice 

of simple abandonment is required. 
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6                                            
Synthesis & Conclusion 

 

 

6.1 Research synthesis  

 

The Amazon Basin is experiencing rapid transition, driven in recent decades by 

agricultural expansion in the Brazilian Amazon (Davidson et al. 2012). This thesis 

highlights new spatial patterns in Amazonian forest loss which point to a more 

complex pattern where new smaller-scale drivers of forest loss are becoming 

progressively more important (Chapter 2). In northern Amazonia, I further 

showed that these changes are closely related to the expansion of gold mining 

(Chapter 3). In Chapters 4 and 5, I then documented the impacts of gold mining 

on soil and plant nutrient status and on forest recovery processes. This process 

will ultimately frame the dynamics of the Amazonian landscape in the future.  

My work was divided into two sections to assess (a) the spatial extent of 

different drivers of forest loss including gold mining across Amazonia using 

metrics of forest loss (Chapter 1.4), and (b) whether forests are able to recover 

following gold mining activities through an understanding of the mechanism 

responsible for regrowth from perturbations (Scheffer et al. 2015).  

 

The major findings of my thesis were as follows (Figure 6.1): 

1) Over the past 14-16 years, the Amazonian landscape have changed 

dramatically in terms of the type of driver that now influences forest loss, 

with small-scale activities becoming prevalent (Chapter 2).  

2) Small-scale gold mining has expanded extensively across northern Amazonia, 

increasing by 926.4 km2. This growth was also observed within protected 

areas where gold mining activities increased by 114 km2 between the two 

study periods (Chapter 3).  
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Figure 6.1 Summary of the main findings of the thesis. 
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3) Nutrient depletion was found to be the most important factor driving low 

biomass recovery in previously mined areas, with mercury contamination 

being a driver of secondary importance (Chapters 4 and 5).  

 

4) Woody biomass recovery rates on previously mined tailing ponds and mining 

pits were the lowest recorded in any tropical forests after 2-4 years after 

abandonment, but were within normal range in overburden zones (Chapter 5).  

 

In the following paragraphs, I summarize the main findings of each analytical 

chapter and how they contributed to achieving the aims of this thesis.  

 

6.1.1 Small-scale forest loss persistent and increasing across Amazonia  

To understand the dynamics of drivers of forest loss across the Amazon, 

remotely sensed data such as the Global Forest Cover (GFC) product based on 30-

m resolution Landsat satellite images and 250-m resolution MODIS-based Terra-i 

product were used to assess the extent of forest loss events (Chapter 2, Appendix 

2.13). The results of Chapter 2 indicate a shift of forest loss hotspots away from 

southern Brazil’s ‘arc of deforestation’ to Peru and Brazil. Further, the number of 

small patches (<6.25ha) increased significantly between 2001-2007 and 2008-

2014 across all Amazonian countries, extending in geographically remote areas 

which were previously considered isolated from deforestation pressures (Chapter 

2). In northern Amazonia, this expansion of small-scale events was primarily 

driven by gold mining activities which increased by 926.4 km2 between 2001-

2008 and 2009-2016 (Chapter 3). This increase in gold mining also impacted 

protected areas which saw an increase of forest loss by 114 km2 between the two 

time periods. Similar patterns of small-scale forest loss were also observed across 

all protected areas in the basin (Chapter 2). The results from protected area 

analysis in Chapters 2 and 3 suggests that protected areas have limited success in 

combating forest loss activities stemming from gold mining.  

 

6.1.2 Underestimation of small-scale forest loss events from gold mining 

I investigated whether remotely sensed products such as 30m-resolution Global 

Forest Cover (GFC) product are able to accurately detect forest loss from small-

scale mining. As such, I compared GFC with 5m-resolution RapidEye satellite 
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images in Chapter 3. This chapter showed that GFC underestimated forest loss by 

area from gold mining activities by an average of 74% at known gold mining sites 

in Guyana. Higher omissions of forest loss were detected at the Mahdia site 

(70.6%) compared to Puruni (77.7%). This may indicate that initial size of forest 

clearance may be driving the detection process. As such, there is a probability that 

underestimation of forest loss may occur at sites driven by a mosaic of small-scale 

clearings.  

 

6.1.3 Gold mining disrupts successional process in tailing pond and mining 

pit 

One drawback of using satellite data of percentage tree cover as an indicator 

of environmental impacts of land uses is that it does not consider other impacts 

such as mercury poisoning or depletion of nutrients through the gold extraction 

process. As such, fieldwork was conducted where I measured changes in the soil 

and vegetation composition to test the recovery potential, and assessed the 

characteristics (e.g. nutrient composition and mercury concentration) behind such 

transitions. Nitrogen depletion was the main factor driving low biomass recovery 

in previously mined areas (Chapters 4 and 5). Chapter 4 analysis also suggested 

that mercury contamination at gold mining sites may further constrain the ability 

of selected plant species to establish themselves, including nitrogen-fixing species 

which are important for driving biomass accumulation in recovering secondary 

forests. Overall, gold mining can severely impair a forest’s ability to recover, with 

preliminary evidence from Mahdia and Puruni, two gold mining study sites in 

Guyana, showing that abandoned mining pits and tailing ponds exhibit close to no 

woody biomass recovery even after 3-4 years of abandonment (Chapter 5). On the 

other hand, recovery rates of woody biomass on the overburden zone were 

comparable to other secondary forests across the Neotropics following 

abandonment of pastures and agriculture (Chapter 5). Thus, active rehabilitation 

measures are likely necessary to bolster recovery in previously mined tailing pond 

and mining pit zones but these have never been systematically evaluated. 

Assuming that the pit/pond/overburden proportions observed at my study sites 

applies more broadly over the Amazon, I estimated that gold mining results in 

~90,000 t C yr-1 less carbon being accumulated in relation to what would have 

accumulated under agriculture/pasture. 
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6.2 Research implications 

 

I showed that within the last 14-16 years small-scale forest loss has become 

pervasive throughout Amazonia (Chapter 2) with most of this clearing driven by 

gold mining activities in northern Amazon (Chapter 3). This result highlights the 

importance of small-scale deforestation events in determining total deforestation 

rates across each Amazonian country. While deforestation of large patches has 

steadily declined over time, deforestation of small patches (<1 ha) has increased 

over time. This is the most detailed assessment of forest loss across the entire 

Amazonian region (Chapter 2), which may help combat forest loss reporting 

inconsistencies for individual countries, helping them to achieve country level 

targets and accountability. Reporting and monitoring these forest loss changes is 

therefore critically important as Amazonian countries are required to document 

and record changes in forest extent, and therefore levels of deforestation-driven 

emissions, on a frequent basis under the Paris Agreement (UNFCCC 2015) and 

through schemes such as Reducing Emissions from Deforestation and Forest 

Degradation (REDD+). A key conclusion from this work is that national 

deforestation statistics need to include these small-scale events which are 

currently excluded from important official estimates such as PRODES. 

Small-scale forest loss also opens up areas previously thought to be remote 

(Chapter 2) and may act as a catalyst for further development in the region. 

Understanding these drivers of forest loss has important implications for 

understanding forest dynamics and the global carbon cycle, especially the role of 

Amazonian forest as a global carbon pool. If forest loss is driven mainly by small-

scale activities, detecting, monitoring and controlling them becomes inherently 

more difficult.  

Significant forest loss from small-scale activities, including gold mining, were 

also tenacious within protected area networks including buffer zones in Amazonia 

(Chapters 2 and 3). Far-reaching consequences relating to mercury contamination 

and nutrient depletion will be present in these highly biodiverse regions, perhaps 

in the long-term (Chapter 4). Ultimately, current conservation strategies are 

ineffective in stopping small-scale deforestation events such as gold mining. 

Potential long-term solutions may likely require active law enforcement and 
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perhaps a de-emphasis on the use of gold as a financial commodity (Asner et al. 

2013). The results presented in Chapters 2 and 3 also urge for a new way of 

mapping, detecting and tracking forest loss events across the Amazon.  

It was evident from Chapters 4 and 5 that biomass recovery from gold mining 

activities was severely hampered because of nutrient depletion and mercury 

contamination, particularly on the tailing pond and mining pit. The potential area 

of impact covers over 1173 km2 across northern Amazonia alone. As the 

successional processes are disrupted in these two mining zones, this indicates that 

active rehabilitation and restoration are required. In fact, restoration of former 

forested areas has been specifically outlined in the Paris Climate Agreement as a 

measure to limit global warming to below the 2oC above pre-industrial levels 

(UNFCCC 2015), with the Bonn Challenge aiming to restore 350 million hectares 

of deforested areas by 2030 (IUCN 2014, Verdone and Seidl 2017). Besides 

protecting intact forests, restoration of former forests is the largest natural 

pathway to ensuring removal of existing carbon emissions from the atmosphere 

(Griscom et al. 2017). The results presented in this thesis (Chapters 4 and 5) may 

help restorative efforts in gold mining regions to channel limited resources 

towards depleted zones such as tailing ponds and mining pits. This means that 

countries will have clear conservation investment targets for restoration. 

However, the data in this thesis is based mainly on legal gold mining activities 

with no information on illegal activities. As such, knowing the actual extent of 

gold mining across Amazonia will assist in determining (1) where recovery is 

required, (2) the type of recovery necessary.  

 

6.3 Future research directions 

 

In this thesis I assessed information from remotely sensed data to examine 

the drivers of forest loss across the Amazon and determine the extent of more 

intense land use such as gold mining in northern Amazon. This methodological 

approach of using remote sensing has the strength to examine gold mining 

activities throughout the entire Amazon, with products such as 5m-resolution 

RapidEye being able to accurately detect small-scale activities compared to the 

30m-resolution Landsat Global Forest Cover (GFC) and 250m-resolution MODIS 
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Terra-i products. As mentioned in Chapter 3, the accuracy of these products to 

detect different type of land uses is affected by cloud cover and scale of 

disturbance events: large-scale forest loss is easier to detect across all products. 

However, in Amazonian forests, forest loss and degradation are initially driven by 

more subtle processes that may be undetectable even at 30m-resolution, and may 

lead to underestimation of forest loss, as demonstrated in Chapters 2 and 3. 

Additionally, unlawful activities such as illegal gold mining often occurs in 

forests where full canopy clearance is not necessary. As such, combining products 

like the openly accessible GFC with complementary radar remote sensing may be 

more suitable to recording and detecting such disturbances. Hence, machine 

learning algorithms which are sensitive to small-scale forest loss events should be 

developed, potentially using radar, Landsat (GFC) and Sentinel time series. This 

machine learning algorithm can be developed further to map aboveground 

biomass across the Amazon based on FOTO and lacunarity analysis, a measure 

which determines multiple patterns across spatial and temporal scales that are 

inherent in high resolution imagery of forests (Butson and King 2006), that 

consider small-scale forest loss events.   

As Amazonian forests did not co-evolve with such intense land uses, 

investigations on how effective forest rehabilitation can be at former gold mining 

sites should be also conducted. As shown in Chapters 4 and 5, nutrient depletion 

is an important factor driving low biomass recovery in previously mined areas. 

Thus, it might be expected that refilling of pits and ponds with displaced 

overburden soil which is richer in nutrients would improve the recovery of 

vegetation. However, the efficacy of refilling has not been systematically tested. 

Mercury contamination at gold mining sites can further impair the ability of 

selected plant species to establish, including nitrogen-fixing species which are 

important for driving biomass accumulation in recovering secondary forests. 

Thus, targeted planting of native forest species that are more resistant to mercury 

stress may also enhance recovery, but this too remains untested in the field. As 

such, I propose testing the efficacies of different restoration strategies which 

involves establishing replicates of the following treatments: a) control, i.e. no 

active management, b) re-filling using the overburden with natural regeneration, 

c) re-filling with planting of mercury tolerant forest species, and d) re-planting of 

mercury-tolerant forest species without re-filling. By examining these treatments, 
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we can assess the effectiveness of restoration and examine which species are more 

suited for enhanced regeneration of gold mining sites. I have recently won 

funding to test these ideas in practice.  

Furthermore, the socioeconomic drivers and societal implications are 

complicated by a plethora of societal and political issues of gold mining all of 

which remain little studied and are likely complex. Poor people enter gold mining 

partly due to the perception of quicker returns of capital that can rapidly improve 

their economic status. Here, immediate prosperity is more highly valued than the 

long-lasting environmental impact. Due to this, it may be expected that in order 

for rehabilitation efforts to be achieved by these same people, their needs in terms 

of rapid financial or societal returns, should be prioritized through incentives. 

Further research into the causes and consequences of gold mining in tropical 

regions must therefore incorporate a social science perspective as well.  

Almost all ecological research of human impacts on forests looks at changes 

after they occur using space-for-time substitution by comparing where a type of 

disturbance has happened to a nearby undisturbed site. The assumption of this 

approach is that the only thing that differs between sites is this disturbance. 

However, sites may have very different biodiversity, species composition and 

functions before any disturbance occurs. One potential research direction would 

be to use a before-after-control-impact (BACI) method where studies assess 

biodiversity and other ecological functions to sites prior to disturbance, during 

disturbance and after disturbance following gold mining activities. The sites 

impacted by the disturbance and the controls are measured before and after gold 

mining activities, which helps us to disentangle the effects of disturbance and any 

differences between sites. Additionally, we can compare the space-for-time 

methods to before-after-control-impact (BACI) methods. The BACI method was 

recently used to assess logging impacts on the Brazilian Amazon (França et al. 

2016) but have not been extended to more intensive land uses such as gold 

mining.  
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6.4 Final Remarks  

 

The analysis conducted in this thesis on forest loss dynamics and impacts 

from gold mining activities within the last 14 – 16 years across Amazonian forests 

revealed four important insights. Firstly, there has been a significant shift in the 

size of forest loss events across the region with small-scale clearings offsetting 

previously reported declines in deforestation by larger patch sizes. Secondly, these 

small-scale clearings are pervasive within protected areas and buffer zones which 

have had limited success in combating the spread of small-scale activities such as 

gold mining. Thirdly, the extent of forest loss from small-scale gold mining is 

underestimated due to current remote sensing products which are unable to detect 

smaller clearings. Finally, gold mining activities severely inhibit forest recovery 

due to nutrient depletion and mercury contamination, with some zones exhibiting 

close to no woody biomass recovery even after 2-5 years of abandonment. The 

results presented here highlights the vulnerability of Amazonian forests to newer, 

more intense types of land uses such as small-scale gold mining. 
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Appendix 2.1 Bi-annual hotspots of forest loss (km2) across Amazonia (2001-2014) using the Getis-Ord Gi* analysis in ArcGIS 

10.4.1.  
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Appendix 2.2 Mean Deforested Patch Sizes (ha) across Amazonia, 2001-2014.    
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Appendix 2.3 Trajectory of area of small-scale forest loss (<1ha) across Amazonia, 2001-2014. 
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Appendix 2.4 Change (%) in number of 10x10 km gridcells between 2001-2007 and 2008-2014 for five different forest loss 

density categories. Negligible: < 0.01 km2 / 100 km2.  Light: 0.01 – 0.1 km2 /100 km2.  Moderate: 0.1 – 1 km2/ 100 km2.  Heavy: 1-10 

km2/100 km2.  Very heavy:  10-100 km2/100 km2. 
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Appendix 2.5 Bi-annual forest loss density (km2 deforested area over the target period per 100km2 land area) across Amazonia 

(2001-2014) using ArcGIS 10.4.1 (www.esri.com). 
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Appendix 2.6 Annual forest loss (km2) across Amazonia for 2001-2014, based on the Global Forest Change (GFC) product.  
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Appendix 2.7 Significant (p-value) of forest loss (km2) across Amazonia for Hansen et al GFC product, 2001-2014. The 

significance was calculated on the means of the two time periods (2001-2007 & 2008-2014) using the Wilcoxon signed-ranked test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Country GFC 

  Annual mean loss rate  

Significance of mean  
 2001-2007 2008-2014 

Bolivia 79.39 175.62 0.04** 

Colombia 65.29 -24.47 0.7 

Ecuador -1.22 0.71 0.01** 

Peru 70.84 130.85 0.004** 

French Guiana 0.11 0.26 0.62 

Guyana -4.87 -0.76 0.02** 

Suriname 0.32 11.62 0.001*** 

Venezuela -1.94 -8.09 0.1 

Brazil -273.66 -230.22 0.001*** 

*p < 0.1  

** p < 0.05    

*** p < 0.001 

 

*p < 0.1  

** p < 0.05    

*** p < 0.001 

 

*p < 0.1  

** p < 0.05    

*** p < 0.001 

 

*p < 0.1  

** p < 0.05    
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Appendix 2.8 Ratio of annual forest loss area for the Brazilian Amazon estimated from Hansen et al. GFC product relative to 

PRODES deforestation estimates. 

 

 

 

 

 

 

 

 

 

 

 

 

 



202 

 

Appendix 2.9 The fraction of total Hansen et al. GFC deforestation attributed to small patches <6.25 ha (PRODES threshold). 
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Appendix 2.10 Comparison of forest loss density (km2 forest loss per 100km2 land area) in Amazonia using the GFC (a) version 1.0 

and (b) version 1.2 products for two time periods: 2001-2007 and 2008-2012 using ArcGIS 10.4.1 (www.esri.com). 
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Appendix 2.11 Percent change forest loss density categories for GFC versions 1.0 and 1.2 for 2001-2007 and 2008-2012 across 

Amazonia. 
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Appendix 2.12 Forest loss density (km2 forest loss per 100km2 land area) in Amazonia, as calculated using the GFC Version 

1.2 product for two time periods: 2001-2007 and 2008-2014 using ArcGIS 10.4.1 (www.esri.com). Here, we (a) doubled and (b) 

trebled the lower classification to examine whether classification influenced our density results. Relative differences were sustained 

at 15.6% between 2001-2007 and 2008-2014 across all classifications. 
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Appendix 2.13 Forest Loss Density (km2) along primary roads and rivers between 2001-2007 and 2008-2014 in Amazonia.   
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Appendix 2.14 Comparison of 2005 and 2010 drought-related tree mortality using maximum climatological water deficit 

(MCWD, Lewis et al. 2011) with small-scale forest loss events from this study.  
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Appendix 2.15 Forest Loss Extent using Terra-i/MODIS product  

 

This analysis of deforestation patterns in Chapter 2 was repeated with the 

250-m resolution Terra-i data (Coca-Castro et al. 2013), derived from 

USGS/NASA MODIS data, as described by Reymondin et al. (2012) and 

processed by the International Centre for Tropical Agriculture (CIAT). As per my 

analysis of the Hansen et al. (2013) GFC forest loss product, I evaluated the 

spatial and temporal dynamics of deforestation across Amazonia from 2004-2014, 

specifically consider 1) forest loss hotspots, 2) size of forest loss patches and 3) 

the geographical density of forest loss events.  

For MODIS/Terra-i, 132 tiles representing forest loss between 2004 and 

2014 for Amazonia were downloaded from Terra-i (http://www.terra-i.org/terra-

i.html). Due to the difference in resolution of the MODIS/Terra-i data (250m 

resolution) and Landsat/Hansen (30m resolution), resampling the coarser 

resolution datasets to the high resolution dataset using “nearest neighbour” was 

necessary for suitable comparison. MODIS/Terra-i data commenced in 2004, 

therefore comparison with GFC was limited to 2004-2014 period. The Terra-i 

dataset was resampled to 30m-resolution in ArcGIS 10.4.1, without changing the 

value of deforested pixels. Similar processing as described in Chapter 2.3 

(Methods) above was used to define the extent of Amazonia and various features 

of forest loss using the Terra-i product. 

 

2.15.1 Extent of forest loss hotspots  

This analysis reveals significant difference in the spatial hotspots using the 

250m-resolution Terra-i product when compared to the 30m-resolution GFC 

product (Figure A2.13.1). In 2004-2008, hotspots were concentrated along 

Brazil’s arc of deforestation. The extent of forest loss hotspots in Brazil in the first 

period was 83% less than that captured by the GFC product. By 2009-2014, 

hotspots in Brazil’s arc of deforestation decreased by 76% from 9784 km2 to 2307 

km2, and was 88% lower than forest loss captured by the GFC product. Hotspots 

in Santa Cruz, Bolivia (382.47 km2) and Ucayali, Peru (21.08 km2) also emerged 

during the second half of the study period, while a statistically weaker hotspot was 

present near the Pilon Lajas Indigenous Territory Park in Bolivia. The Terra-i 

http://www.terra-i.org/terra-i.html
http://www.terra-i.org/terra-i.html
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product did not reveal hotspots in Colombia, which was detected by the GFC 

product.  

 

2.15.2 Forest loss patches 

Overall, the number of forest loss patches of intermediate (6.25 – 50 ha) 

and large (> ha) sizes grew between 2004-2008 and 2009-2014 (Figure 2.13.2). 

Intermediate patches grew by 46.5%, while clearings >100ha increased on 

average by 37.7%. Here, the number of small forest loss patches (1 – 6.25ha) 

declined by 13.5%, while very large patches (>1000ha) declined by 24% between 

2004-2008 and 2009-2014. Forest loss patches <1ha were not detected across both 

time periods. This contrasted with the GFC dataset in that only small forest loss 

patches (<6.25ha) grew while intermediate and large patches declined between the 

two study periods.  

 

2.15.3 Geographical Density of Forest Loss events  

Considerable changes were also observed in the geographical patterns of 

deforestation density between the two timelines and between the two products 

(Figure A2.13.3). In 2004–2008, 56% of the 10 × 10 km gridcells in the study 

region were categorised as having negligible forest loss (<0.01 km2 per 100 km2), 

this declined to 37% in 2009–2014. On one hand, the proportion of gridcells 

experiencing ‘moderate’ (0.1–1 km2 per 100 km2) and ‘heavy’ (1–10 km2 per 

100 km2) deforestation increased by 83% and 54% respectively, from 19% and 

~9% in 2004–2008 to 34.7% and 13.8% in 2009-2014 respectively. On the other 

hand, gridcells experiencing ‘light’ (0.01–0.1 km2 per 100 km2) and ‘very heavy’ 

(>10 km2 per 100 km2) forest loss decreased between the two study periods by 7% 

and 21% respectively. Gridcells experiencing ‘negligible’, ‘moderate’, ‘heavy’ 

and ‘very heavy’ forest loss agreed on the nature of the deforestation trend when 

compared with the GFC product. In contrast, gridcells categorised as having 

‘light’ deforestation decreased in the Terra-i product, while it increased using the 

GFC product.  

 

2.15.4 Large-scale deforestation temporal patterns  
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Regionally, both GFC and Terra-i products agreed on the nature of 

deforestation trends in Amazonia (Figure A2.13.4). However, there was 

substantial variability in annual deforestation rates between the two datasets from 

2004 to 2014. The Terra-i product reported a decline in forest loss by 391.08 km2 

yr-1 while Hansen et al. (2013) data detected a decrease of 1259.2 km2 yr-1. In the 

Brazilian Amazon, both datasets indicate a significant reduction in deforestation, 

by 1403.8 km2 yr-1 for the Hansen et al. dataset and by 589.25 km2 yr-1 for the 

Terra-i product.  
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Figure A2.15.1 Hotspots of Amazonian forest loss based on Getis Ord Gi* z-scores for Terra-i data for two time periods: 2004-

2008 and 2009-2014 using ArcGIS 10.4.1 (www.esri.com). Higher values indicate increased clustering of deforestation patches. 
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Figure A2.15.2 Change in deforested area (thousands of hectares) of different size categories between 2004-2008 and 2009-

2014 across Amazonia using the resampled Terra-i dataset. 
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On the other hand, both datasets reported a sharp increase in deforestation rate in 

non-Brazilian countries. Here, Terra-i reported an annual increase of 198.19 km2 

yr-1 from 2004-2014 while GFC reported an increase of 144.59 km2 yr-1. 

GFC-based deforestation estimates were higher compared with estimates 

from the MODIS-based Terra-i product and the PRODES data for Brazil (Figure 

A.2.13.5). Analysis of the MODIS-based Terra-i data revealed similar patterns to 

the GFC analysis (1403.81 km2 yr-1), although the magnitude of the decline in 

forest loss in the Brazilian Amazon was considerably lower when calculated using 

Terra-i data (589.3 km2 yr-1). The annual decline in deforestation in the Brazilian 

Amazon throughout the study period (2004-2014), as estimated by PRODES was 

1925.6 km2 yr-1. Thus, the decline in deforestation according to PRODES is 

37.1% greater than that calculated from the GFC data, and 2.27% greater than the 

Terra-i data (Figure A.2.13.5). Over time, both GFC and Terra-i forest loss 

estimates became progressively greater than PRODES deforestation estimates. 

Within the last three years (2012-2014), Terra-i estimates of forest loss are ~91% 

greater than deforestation rates from PRODES, with a maximum divergence 

observed in 2012 by a factor of 3, while the maximum divergence in GFC from 

PRODES was 2.52 (see Chapter 2.4.4).  

 

Overall, despite resampling to 30m-resolution, Terra-i product fails to 

detect much of the smaller forest loss activities that occurred across the Amazon. 

This has important implications for conservation and management efforts such as 

those applied to protected areas. For instance, if small-scale activities are 

neglected with only large scale activities reported, there may be an inclination to 

develop management strategies that only produce large scale forest loss events 

such as agriculture and pasture, while ignoring growing small-scale activities such 

as gold mining.  
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Figure A2.15.3 Forest loss density (km2 forest loss per 100km2 land area in Amazonia, as calculated using the Terra-i product 

for two time periods: 2004-2008 and 2009-2014 using ArcGIS 10.4.1 (www.esri.com). 
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Figure A2.15.4 Annual forest loss (km2) across Amazonia for 2004-2014 based 

on the Global Forest Change (GFC) and resampled Terra-i products.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2.15.5 Ratio of annual forest loss area for the Brazilian Amazon 

estimated from Terra-i product relative to PRODES deforestation estimates.  
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Appendix 3.1 Map of active and potential gold mining sites across Amazonia.  
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Appendix 3.2 Forest Loss Density (km2 forest loss per 25km2 land area) 

inside and outside of gold mining areas across northern Amazonia, as calculated 

using the GFC product for two time periods: (a) 2001-2008 and (b) 2009-2016. 
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Appendix 3.3 Forest Loss Density (km2 forest loss per 25km2 land area) 

inside protected areas indicating gold mining activities and associated buffer 

zones across northern Amazonia, as calculated using the GFC product for: (a) 

2001-2008 and (b) 2009-2016.  
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Appendix 5.2 Comparison of field plots in Censuses I and II.  
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Appendix 5.2 The relationship of distance to annual biomass change 

(ΔAGB) at Mahdia and Puruni.  

 


