
Extending the Real Time Specification for Java

for Cache Coherent NUMA Architectures

Abdul Haseeb Malik

Submitted for the Degree of Doctor of Philosophy

University of York

Department of Computer Science

January 2012

Abstract

The recent past has seen single processing systems becoming obsolete and multipro-

cessor systems taking over as the architecture of choice. More scalable architectures

are being introduced to keep up with the ever increasing computational require-

ments. Inevitably the software industry has to keep up and provide tools which

would allow easy development of parallel applications on these complex architec-

tures. Programming languages unable to support these architectures will become

obsolete and new languages will be developed designed to serve the purpose. Ex-

isting languages that have the potential of coping with such architectures will be

extended.

Java is an object oriented language which provides features like platform indepen-

dence and concurrency by design. It is supported on a wide range of computational

devices starting from high performance computing servers to small hand held mo-

biles. This makes Java a very popular language, with a large pool of programmers.

Therefore, it is not strange to see Java being extended for different multiprocessor

and distributed systems.

The Real-Time Specification for Java (RTSJ) was introduced as a high level

platform for developing real-time applications. It has been gaining popularity since

its inception and is being increasingly used for real time development. The recent

version of RTSJ (i.e. RTSJ 1.1) has included some support for multiprocessors.

The changes that have been introduced are largely related to the scheduling and

dispatching of threads in symmetric multiprocessors. It is assumed that the memory

allocations will not affect the timing properties of the system and it will be accessed

uniformly. This thesis argues that these changes are not enough to support shared

memory multiprocessors on RTSJ; and the following issues need to be addressed:

iii

• In shared memory multiprocessors, uniform memory access (UMA) systems

are not scalable and will be replaced by cache coherent non-uniform memory

access (cc-NUMA) systems. Locality can largely affect the performance of

applications and cause unpredictable delays in real-time applications on cc-

NUMA systems. These delays are caused by the distributed memory layout

in cc-NUMA and can be reduced by giving applications more control and

visibility into the allocation policies of threads and memory.

• The increased computational power of multiprocessors encourages the plat-

form to be shared by multiple applications. In such an environment, real-time

applications require temporal guarantees from the platform to meet their tim-

ing requirements.

The key contribution of this thesis is to extend the programming model of RTSJ

to provide programmers with locality constraints. Existing support in RTSJ for

locality is shown to be very limited and a new locality model is presented which

enables programmers to develop portable applications. Applications are divided

into multiple partitions and temporal guarantees are provided to partitions allowing

them to be analyzed in isolation from the rest of the system.

A prototype of the aforementioned model is implemented and tested. A series

of experiments are conducted to prove the effectiveness of the model. In particular,

the effect of locality is highlighted by performance measuring in a multithreaded

environment.

iv

Contents

Abstract iii

Acknowledgements xix

Declaration xxi

1 Introduction 1

1.1 The Real-time Specification for Java 3

1.2 Cache Coherent Non-Uniform Memory Access (cc-NUMA) Archite-

cuture . 5

1.3 Support for Multiprocessors in RTSJ 8

1.4 Motivation . 9

1.5 Hypothesis . 11

1.6 Thesis Aims . 11

1.7 Thesis Structure . 12

1.8 Summary . 13

2 Literature survey 15

2.1 Parallel Programming on Multiprocessors 16

2.1.1 Parallelism . 16

2.1.2 Locality . 17

2.2 Real Time Systems and Multiprocessors 21

2.3 Java on Multiprocessors . 24

2.3.1 Java on Distributed Systems 24

2.3.2 Java on Shared Memory Multiprocessors 30

v

Contents

2.3.3 Discussion . 31

2.4 Summary and Requirements . 31

3 Existing Support for cc-NUMA Architectures 33

3.1 Linux Support for cc-NUMA . 34

3.1.1 Discovering the Architecture 34

3.1.2 Allocating Threads and Objects 36

3.1.3 Supporting Group Budgets . 38

3.2 RTSJ and its Support for Multiprocessors 39

3.2.1 The AffinitySet Class . 43

3.2.2 The Physical Memory Framework 45

3.2.3 Processing Group Parameters (PGPs) 47

3.3 Supporting cc-NUMA Systems . 50

3.3.1 Representing the NUMA Architecture 53

3.3.2 Pinning Schedulable Objects to Processors 57

3.3.3 Allocating Objects on Specific Nodes 58

3.4 Limitations . 60

3.5 Summary . 62

4 Locality Model 65

4.1 Architectural Model . 66

4.1.1 Abstractions for Basic Architectural Components 68

4.1.1.1 The Abstract Component Class 68

4.1.1.2 The Processor Class 69

4.1.1.3 The Memory Class 71

4.1.1.4 The Device Class . 72

4.1.2 Abstractions for Architecture Representation 72

4.1.2.1 Location . 72

4.1.2.2 The Locale Class . 73

4.1.2.3 The Neighbourhood Class 73

4.1.2.4 The District Class 74

4.1.3 Interface to the Architecture 74

vi

Contents

4.1.4 Discussion . 75

4.2 Application Model . 77

4.2.1 ExecutionSite: Abstraction for Controlling Execution 77

4.2.1.1 Threads/Schedulables Instantiation 80

4.2.1.2 Memory Areas Instantiations 80

4.2.1.3 Retrieving Local Heap and Immortal 80

4.2.1.4 Basic Resource Reservation Operations 81

4.2.2 Place: A Logical Location . 81

4.2.3 Locality : Allocating ExecutionSite 83

4.2.4 Local ImmortalMemory and Local Heap 85

4.2.5 Conforming to the RTSJ . 87

4.2.5.1 RTSJ Rules . 88

4.2.5.2 Required Semantics of the Locality Model 89

4.2.5.3 Using the Factory Pattern 90

4.2.6 The Default Execution Model 91

4.2.7 Example . 92

4.2.7.1 Static Allocation of Execution Sites 92

4.2.7.2 Implicit Allocation of Execution Sites 95

4.3 Resource Reservations . 98

4.3.1 Interface . 99

4.3.1.1 External Contract 102

4.3.1.2 Partitioned Reservations 103

4.3.2 Scheduling: The ReservationScheduler Class 105

4.3.3 Admission Control . 106

4.3.4 Cost Enforcement . 108

4.3.5 Discussion . 108

4.4 Summary . 111

5 Implementation 115

5.1 Implementation Overview . 116

5.1.1 Implementing the AffinitySet Class 117

5.1.2 Access to the Local Memory 118

vii

Contents

5.1.3 Extensions Required for the Locality Model 120

5.2 Implementing the Architecture Representation 122

5.3 Implementing the Application Model 127

5.3.1 Creating Places . 128

5.3.2 ExecutionSite Creation . 129

5.3.3 Thread/Schedulables Creation 133

5.3.4 MemoryArea Creation . 135

5.4 Implementing Reservations Model . 136

5.4.1 Cost Enforcement . 138

5.4.2 Priority Assignment . 139

5.5 Summary . 141

6 Evaluation 143

6.1 Programmability . 144

6.2 Portability . 147

6.3 Performance . 149

6.3.1 The Producer/Consumer Problem 149

6.3.2 The Prime Sieves Example . 153

6.3.2.1 Effect of the Locality Model on Performance 155

6.3.2.2 Trade-off between Locality and Load Balancing . . . 157

6.4 Predictability . 162

6.4.1 Dispersions . 162

6.4.1.1 Locality Model vs. Normal Case 162

6.4.1.2 Local vs. Remote . 163

6.4.1.3 Locality vs. Load Balancing 164

6.4.2 Temporal Isolation . 165

6.5 Overheads . 168

6.5.1 Architecture Representation 168

6.5.2 Application Model . 169

6.5.2.1 Creating Places . 170

6.5.2.2 Creating an ExecutionSite 171

6.5.2.3 Realtime Thread Creation 172

viii

Contents

6.5.2.4 Realtime Thread Startup Latency Without Reserva-

tions . 173

6.5.2.5 Memory Area Creation 174

6.5.2.6 Allocation Time Test 176

6.5.3 Reservation Model . 177

6.5.3.1 Creating ReservationServers 177

6.5.3.2 Realtime Thread Startup Latency using Reservations 178

6.6 Summary . 180

7 Conclusions and Future Work 181

7.1 Summary . 181

7.2 Contributions . 183

7.3 Future Work . 184

Appendix 189

A Memory Access Timings on Cache Coherent NUMA Systems 189

A.1 Comparing Local And Remote Memory Accesses 192

A.2 Comparing Access Timings for Different Inter-Connect Speeds 192

A.3 Comparing Access Timings for Different NUMA Distances 195

B The Producer Consumer Example 197

B.1 Statically Allocating ExecutionSites 197

B.2 Allocating ExecutionSites Dynamically by the Runtime 202

B.3 Allocating ExecutionSites with Reservations 206

C Building JRate on 64bit Systems 211

D Schedulability Analysis 213

D.1 Scheduling Model . 213

D.2 Top Level Schedulability Test . 214

D.3 Local Schedulability Test . 214

ix

Contents

E The Prime Sieves Example 221

E.1 Without Using the Locality Model 221

E.2 Using the Locality Model . 225

F Overheads of Libcgroup 231

F.1 Overheads Creating a ReservationServer/Place 231

F.2 Attaching a Thread to a ReservationServer 233

F.3 Summary . 234

References 236

Abbreviations 237

List of Classes 239

x

List of Figures

1.1 The Uniform Memory Access(UMA) Architecture 6

1.2 The Non-Uniform Memory Access(NUMA) Architecture 7

1.3 Time Taken by memcpy() . 10

2.1 The bounded delay model for single processors 23

2.2 Java DSM built over existing DSM 28

2.3 Native Java DSMs . 28

2.4 Java DSM with built-in DSM . 29

3.1 Memory classes in the RTSJ . 41

3.2 Schedulable objects in RTSJ . 42

3.3 Scheduling in RTSJ . 43

3.4 The AffinitySet Class . 45

3.5 Capacity on a single processor . 48

3.6 Single global capacity on multiple processor 48

3.7 Partitioned equal capacities on multiple processors 49

3.8 Partitioned different capacities on multiple processors 49

3.9 A 4 Node NUMA Architecture based on AMD Opteron 50

3.10 Memory Hierarchy of a NUMA System 51

3.11 Creating an LTPhysicalMemory area 59

3.12 Scope stack for a ThreadGroup . 62

4.1 Abstractions for Architecture Representation 69

4.2 System Representation at the JVM level 76

4.3 Memory Areas in the Locality Model 85

xi

List of Figures

4.4 Scope stack showing memory access violations 89

4.5 Remote allocation of producer/consumer 94

4.6 Local allocation of producer/consumer 97

4.7 Global Budget . 100

4.8 Partitioned Budget . 101

4.9 The Locality Model . 113

5.1 Simulating global scheduling in Linux 118

5.2 Memory access timings . 121

5.3 Sequence diagram: building the Architectural Representation 123

5.4 Graphical Output of lstopo(hwloc) 127

5.5 Implementing the Locality model using the Control Groups 128

5.6 Sequence diagram: initializing the virtual platform 130

5.7 Sequence diagram: creating an execution site using a factory method 132

5.8 Creating and starting thread using the Locality model. 133

5.9 Sequence diagram: Creating a LTPhysicalMemory area 137

5.10 Over-run on a single processor . 141

6.1 Architectural Representation of a single processor system 148

6.2 Architectural Representation of a two processor SMP 149

6.3 Execution times for local producer consumer problem using the lo-

cality Model . 150

6.4 Execution times for remote producer consumer problem using the

locality model . 153

6.5 Sieve of Eratosthenes . 154

6.6 Prime numbers for all N . 155

6.7 Number of threads created for all N 155

6.8 Execution times for generating all prime numbers less than N=20000

using the locality model . 157

6.9 Execution times for generating all prime numbers less than N=20000

in the normal case . 160

xii

List of Figures

6.10 Comparison of execution times using the locality model under differ-

ent configurations . 161

6.11 Architecture representation overheads 169

6.12 Places Creation . 170

6.13 ExecutionSites Creation . 171

6.14 Real-time Threads Creation . 172

6.15 Real-time threads startup latency without reservations 174

6.16 Scoped memory Area Creation Timings 175

6.17 Object Allocation Timings . 176

6.18 ReservationServer Creation . 178

6.19 Real-time Threads Startup Latency 179

7.1 Execution sites in a real-time Java application 186

A.1 memcopy() timings(in seconds) for different interconnect speeds . . . 194

A.2 Comparing Access Timings for Different NUMA Distances 195

D.1 Scheduling Architecture of Execution Sites on a Processor Based Bud-

get . 215

D.2 Bandwidth requirements of T1T2T3 219

(a) All tasks’ bandwidth calculation 219

(b) α1, α2 plane for all tasks’ bandwidth 219

F.1 cgroup init() timings . 231

F.2 cgroup new cgroup() timings . 232

F.3 cgroup add controller() timings . 232

F.4 cgroup set value string() timings . 233

F.5 cgroup create cgroup() timings . 233

F.6 cgroup attach thread() timings . 234

xiii

List of Tables

3.1 Distances based on bus accesses for Figure 3.9 52

3.2 System Locality Information Table for Figure 3.9 53

3.3 The System Resource Affinity Table (SRAT) for architecture in fig-

ure 3.9 showing 16 processors . 54

3.4 The System Resource Affinity Table (SRAT) for architecture in fig-

ure 3.9 showing memory . 54

4.1 The Component Class . 69

4.2 The Processor Class . 70

4.3 The ProcessorType Interface . 70

4.4 The Cache Class . 71

4.5 The Memory Class . 71

4.6 The Device Class . 72

4.7 The abstract Location Class . 73

4.8 The Locale Class . 73

4.9 The Neighbourhood Class . 74

4.10 The District Class . 74

4.11 The Platform Class . 75

4.12 The ExecutionSite Class . 79

4.13 The Place Class . 82

4.14 The final Locality Class . 85

4.15 The HeapPhysicalMemory Class . 87

4.16 Memory assignment rules in the RTSJ 88

4.17 Scope stack inheritance rules in RTSJ 90

xv

List of Tables

4.18 The PartitionedParameters Class . 102

4.19 The ExternalContract Class . 102

4.20 The ClusterContract Class . 103

4.21 The PartitionedReservation Class . 104

4.22 The ReservationScheduler Class . 105

4.23 The ReservationServer Class . 108

5.1 The LocalMemory Class . 119

5.2 The ESRealtimeThread Class . 134

5.3 The ESNoHeapRealtimeThread Class 134

6.1 Execution times (in microseconds) for local producer/consumer . . . 151

6.2 Execution times (in microseconds)for remote producer/consumer . . . 152

6.3 Execution times (in milliseconds) statistics for the prime sieves in the

locality model case . 158

6.4 Execution times (in milliseconds) statistics for the prime sieves in the

normal case . 159

6.5 Analyzing the execution times of all cases 161

6.6 Architecture representation overhead (milliseconds) statistics 169

6.7 Places creation execution times in microseconds 171

6.8 ExecutionSites Creation Execution Times in Microseconds 172

6.9 Real-time Threads Creation Execution Times 173

6.10 Real-time threads startup latency (in microseconds) without reserva-

tions statistics . 174

6.11 Scoped memory Area Creation Timings (milliseconds) Statistics . . . 176

6.12 Object Allocation Timings (milliseconds) Statistics 177

6.13 Creating ReservationServer Timings (microseconds) 178

6.14 Real-time Threads Startup Latency (in microseconds) Statistics . . . 179

A.1 memcpy() timings (in milliseconds) with N0-N1 interconnect at 200Mhz193

A.2 memcopy() timings (in seconds) for different interconnect speeds . . . 194

A.3 memcopy() timings (in seconds) with N0-N1 interconnect at 1Ghz . . 196

xvi

List of Tables

D.1 Symbols used for schedulability analysis 216

D.2 Workload for the execution site . 217

D.3 Candidate interfaces of the execution site 219

F.1 LibCGroup Overhead statistics . 235

xvii

Acknowledgements

This thesis would have not been possible without the guidance and support of my

supervisor, Professor Andy Wellings. I am greatly indebted to him for his time,

understanding, patience and support. His invaluable advice and support guided me

my ideas into this thesis.

I would like to thank all the members of the RTS Group especially Professor

Alan Burns, Dr. Neil Audsley, Dr. Rob Davis, Dr. Yang Chang and Dr. Mo-

hammad AlRahmawy for their help and support. A large part of my work involved

implementation work on Linux and I was lucky to have two gurus of Linux, Seyeon

Kim and Sitsofe Wheeler. I am grateful for their time and advice which made my

job easier.

I would like to thank all my friends, Furqan Aziz, Muhammad Haseeb, Tasawer

Khan, Usman Khan, Dr. Ahmad Shahid, Thomas Richardson, Shiyao Lin and Emad

Al-Oqayli for giving me strength, self belief and all the enjoyable moments.

My family has been supportive of me throughout my Ph.D. I would like to thank

my wife, my son Abdullah and my daughter Hafsah for their patience, sacrifices and

support. I also thank my sister, for encouraging me throughout my work. Lastly,

but not the least, I would like to thank my father for guiding and supporting me in

every possible way, and my mother for her love, support and patience.

xix

Declaration

I declare that the research described in this thesis is original work, which I undertook

at the University of York during 2007 - 2012. Except where stated, all of the work

contained within this thesis represents the original contribution of the author.

Some parts of Chapter 4 are based on the paper presented in the 8th International

Workshop on Java Technologies for Real-time and Embedded Systems (JTRES 2010)

entitled A Locality Model for the Real-Time Specification for Java [Malik et al.,

2010].

xxi

Chapter 1

Introduction

Java is a platform independent, strongly typed and secure language which has gained

considerable popularity since its inception in 1994. It is a high level language which

has a syntax very similar to C and C++, however, it discards the complexities

of these languages to provide the programmers with a simple and powerful envi-

ronment. Applications designed for Java follow the Write Once, Run Anywhere

(WORA) philosophy, hence, applications must be able to run anywhere without

prior knowledge of the target hardware and software platform. As a result, Java

applications are being used on a range of platforms from large server machines to

small embedded devices such as mobiles.

The real-time specification for Java (RTSJ) extends the Java programming lan-

guage to provide a platform for the programmers to develop and execute applications

that have some specific timing constraints. Typically real-time applications monitor

events in the real world and then responds to those events in an appropriate man-

ner within a finite period of time. Some real-time systems can tolerate occasional

deadlines misses (in soft real-time systems) while in others missing the deadlines is

as bad as producing a wrong result (in hard real-time systems). In order to sup-

port such systems, a large number of extensions have been made to the standard

Java technology especially to the scheduling and the memory models to make the

execution of programs more predictable.

Recent years have seen a change of paradigm in the computing world from single

processor systems to multiprocessor systems. Single processor systems had reached

1

Chapter 1: Introduction

the physical limits of speed and a large amount of effort and cost was required for the

little gain in performance [Asanovic et al., 2006]. As a result, now single processor

systems are becoming obsolete and vendors are replacing them with multi-cores. In

2004, Intel canceled the development of two of their high speed microprocessors to

focus on the development of multi-core processors [Flynn, 2004]. Newer architectures

are replacing high-clock-speed processors with many simpler and smaller processing

elements. The number of cores in future system will be in thousands [Asanovic

et al., 2006]. In order to support such parallelism, the memory sub-system also

becomes distributed. These architectures will be capable of producing very high

performance; however, their programming will be more complex than in the single

processor case.

Real-time systems are also increasing in size and complexity and the only archi-

tectures that will be able to satisfy the needs of these applications will be multipro-

cessors. At the same time, it is quite possible that the real-time systems may be

sharing the same platform with many other applications. These applications can be

of different criticality levels and may have diverse timing requirements. Typically,

real-time systems require timing requirements of all the different applications run-

ning simultaneously with the real-time application to be known a priori to ensure

that timing requirements are met. However, on large systems it becomes nearly

impossible to do the global analysis of the system. Hence, architectural complexity

and tight timing constraints make the development of real-time systems on mul-

tiprocessor architectures extremely difficult. The usual objective of programming

platforms for these systems is to hide the complexity of the architectures so that

the programmers are not distracted by low-level architectural issues. However, for

real-time systems, the programming languages need to provide high level constructs

with semantics to use the underlying architecture predictably and efficiently. If

achieved, this will lead to programmers being more productive and at the same

time predictability and performance of the applications will also increase.

Java’s built-in support is adequate to make sure it runs seemlessly on shared

memory multiprocessors even if memory access timings become non-uniform. How-

ever, for real-time applications, the programmer will want more control over the

2

1.1 The Real-time Specification for Java

allocation policies of threads and objects. The current RTSJ, i.e. RTSJ 1.02, does

not support multiprocessors, however, a number of extensions have been proposed

for RTSJ 1.1, these are discussed in Section 1.3. The focus of these changes is to pro-

vide a set of tools to support the construction of parallel real-time Java systems for

symmetric multiprocessor systems (SMPs) having uniform memory access timings.

In such systems, there is little to be gained (performance wise) from the program-

mer having direct control over where data is stored. From a schedulability analysis

perspective, the programmer may still require control over where threads are exe-

cuted, but control of where data is placed has no effect. However, in systems where

memory timings change depending in the processor from which it is being accesses,

then in such systems, control of data becomes very important because remote ac-

cesses can cause unpredictable delays. These delays not only effect the performance

of applications but can lead to very pessimistic worst case timing analysis.

In this thesis, we focus on the support that we can provide in RTSJ for soft

real-time systems to execute on cache coherent non-uniform memory access (cc-

NUMA) systems by providing them resource guarantees. Calculating the worst case

execution time (WCET) for such systems is out of the scope of this thesis, however,

the effect of non-uniform memory access (NUMA) on the execution times will be

analysed.

Section 1.1 gives an overview of the RTSJ, followed by Section 1.2 which discusses

different types of shared memory multiprocessors which include uniform and non-

uniform memory access systems. Section 1.3 outlines the existing support for mul-

tiprocessors in RTSJ. Section 1.4 presents the motivation of supporting cc-NUMA

systems in RTSJ followed by the hypothesis in Section 1.5 and the aims of the thesis

in Section 1.6. Section 1.7 outlines the basic structure of the thesis. Section 1.8 is

the last section which summarizes the whole chapter.

1.1 The Real-time Specification for Java

The correctness of a real-time system depends on two things: the logical results of

the computation and the time at which they are produced. Real Time Systems are

3

Chapter 1: Introduction

defined by [Young, 1982] (as cited in [Burns and Wellings, 2001]) as “any information

processing activity or system which has to respond to externally generated input

stimuli within a finite and specified period”. Meeting the deadlines does not mean

that the system should be super fast; rather it requires the system to be predictable.

Real-time Systems can be classified broadly in to hard or soft real-time. Hard real-

time systems are very strict in terms of their timing requirements and missing any

specified deadline can have catastrophic consequences. Examples of hard real-time

systems include flight control system of a combat aircraft, braking system on a car or

some industrial process control system. Soft real-time systems on the other hand are

much more relaxed in terms of their timing requirements and occasionally deadlines

can be missed, however, missing the deadline can lead to degraded quality of service

and usually does not have any critical consequences. Examples of soft real-time

systems include audio/visual systems which require a specific frame rate to ensure

an enjoyable experience.

Since its introduction, Java was designed to be a high performance language

with dynamic features such as garbage collection and just in time compilation. In

addition there was no support to implement different scheduling policies for thread

scheduling within the application. Mostly it relied on the OS scheduler to dispatch

threads for execution; which meant that it is quite possible that the highest priority

thread might be waiting because a low priority thread cannot be preempted. In

order to support real-time systems (RTSs), the Java community has developed the

RTSJ which makes a number of extensions to make the execution of the program

predictable. Among these changes the most important are the changes that have

been introduced to bound the delays of the garbage collector and introduce a new

scheduling model to support different scheduling policies.

The Java Language Specification [Gosling et al., 2005] implicitly defines the

behaviour of the garbage collector by defining the life cycle of a Java object. Most

Java virtual machines (JVMs) implement the lifecycle by using a garbage collector

that traverses through all the unreachable objects to reclaim the memory in the heap.

In such environments, garbage collector disrupts the normal program execution and

causes unpredictable delays, which are not desirable in real-time systems.

4

1.2 Cache Coherent Non-Uniform Memory Access (cc-NUMA) Architecuture

The RTSJ introduces new memory areas which are not affected by the garbage

collector. These memory areas include the scoped memory areas and the immortal

memory area. The scoped memory areas are coarse grained memory areas where

objects are not collected individually, however, the entire memory area is reclaimed.

Immortal memory areas are never collected, therefore, any object allocated inside

here remains forever. These new memory areas provide an alternative to the heap

memory area which is the only memory area used for object allocation in Java.

The RTSJ also introduces new threads which are capable of avoiding any in-

terference from the garbage collector. These threads implement a new interface,

Schedulable, which attach these threads with scheduling parameters. The Schedula-

ble interface is implemented by RealtimeThread and AsyncEventHandler classes and

are called schedulable objects or simply schedulables. The scheduling parameters

are used to implement different policies and executing schedulables along with the

new memory areas allows RTSJ control over the behaviour of the garbage collector.

1.2 Cache Coherent Non-Uniform Memory Ac-

cess (cc-NUMA) Architecuture

Shared memory multiprocessors (SMMPs) consist of a number of processors con-

nected together with the help of shared memory. Processors communicate with

each other with the help of shared variables [Hennessy and Patterson, 2006]. An

important characteristic of the SMMP is the presence of a single address space for

all processors. The single address space enables the processors to access memory

using simple load and store instructions.

SMMPs can further be classified as uniform memory access (UMA) and non uni-

form memory access (NUMA) depending upon the uniformity of the time taken by

different processors to access memory. UMA is a computer architecture defined as “a

multiprocessor in which all processors work through a central switching mechanism

to reach a shared global memory” [Quinn, 1994].

The multiprocessors which follow UMA architecture are Symmetric Multiproces-

sors (SMPs) [Hennessy and Patterson, 2006]. SMPs have 2 or more homogeneous

5

Chapter 1: Introduction

processors which are connected to a shared memory through a common bus. Al-

though there are multiple processors, the memory is uniformly accessible by all of

them, hence all data is at the same distance from all the processors as shown in

Figure 1.1. The examples of SMPs are SGI Power Challenge, DEC Alpha Server

8400, CDC6600, IBM Power4 and IBM Power 5.

On an SMP, each processor has equal priority to access the shared memory and

I/O devices. The shared memory bus (or the shared memory controller) becomes

congested during memory accesses as multiple processors use the bus simultane-

ously. A single OS image runs on top of the SMPs and handles the hardware. As

the number of processors increases, bus contention becomes a problem which results

in high latency memory accesses. The use of large caches reduces the use of the

bus. They provide low latency access to the memory and reduce the bandwidth re-

quirement of the processors. Each processor is able to cache data, and with multiple

caches around it is possible that the data is cached at more than one place. This

requires that the data in different caches and in the memory is coherent. Updates

performed by a processor should become visible to all processors before they use it.

This requires the implementation of cache coherent protocols which ensure consis-

tency of data in caches. These protocols have been discussed in detail in [Hennessy

and Patterson, 2006].

Figure 1.1: The Uniform Memory Access(UMA) Architecture

NUMA is a shared memory multiprocessor which does not support constant time

memory access. According to [Quinn, 1994] “in most NUMA architectures, memory

is organized hierarchically, so that some portions can be read and written more

quickly by some processors than by others”. SMPs do not scale very well because

resources are shared with equal priority given to all nodes which causes congestion.

6

1.2 Cache Coherent Non-Uniform Memory Access (cc-NUMA) Architecuture

NUMA systems however are somewhat distributed in nature; some memory banks

are closer to some processors while farther from others. They are typically created

by coupling SMPs together by connecting the memory controllers through a high

speed interconnect; as a result NUMA systems scale better than a SMP. While a

processor can access all memory areas, still latency of memory accessed depends on

where the memory is allocated. Figure 1.2 shows a generic 4 node NUMA system.

Figure 1.2: The Non-Uniform Memory Access(NUMA) Architecture

Each processor has low latency access to one or more memory banks that are

nearer to the processors and higher latency access to the rest. Still latency of the

farthest memory banks is very small as compared to distributed systems due to

high speed interconnects. Like SMPs, a single OS image is present over the NUMA

systems. The important thing to note is that in NUMA architectures, the global

address space is provided at the hardware level. This means that all processors can

access any memory word with simply load and store instructions. NUMA distance

is measured in hops or by latencies.

Cache coherent NUMA (cc-NUMA) is a type of NUMA which allow data to be

cached from remote memory. Most of the NUMA machines are cache coherent and

like SMPs they also require cache coherence protocols to keep data consistent. Non

cache coherent NUMA (ncc-NUMA) machines only allow data from local memory

to be cached, though processors are able to access remote memory but they cannot

store the data from remote memory in their cache.

Remote accesses have high latency; if the accesses are frequent then data can be

migrated or replicated in the local memory [Bolosky et al., 1989]. The SGI 3000 fam-

ily is a NUMA architecture based on the 64 bit Intel Itanium 2 processor [Woodacre

et al., 2003]. This architecture uses 10 bits for specifying nodes, theoretically it

7

Chapter 1: Introduction

can support up to 1024 nodes or 2048 processors i.e. each node has two processors.

These nodes are connected by a high speed interconnect, NUMALink, which pro-

vides low latency access to memory on other nodes. For desktops, AMD Opteron

and Athlon families are based on the HyperTransport link and are capable of pro-

viding support for NUMA systems. The behaviour of an application depends on

the number of components (processors, memory and devices) in a system and how

they are inter-connected to each other. Because of the wide variety of multi-core

architectures, it is necessary to make some assumptions of what is and what is not

supported. In this thesis, we consider a reference NUMA architecture. NUMA sys-

tems are shared memory multiprocessors where memory is physically distributed

among nodes. Nodes can have a number of processor memories directly attached to

it. Nodes are connected by a very high speed interconnect which allows fine grained

access to remote memory. Usually NUMA systems have the following properties:

• A single address space exists.

• Cache coherency may exist globally or partially.

• Memory access latencies may vary when different processors access the same

memory bank.

1.3 Support for Multiprocessors in RTSJ

On multiprocessors, the multi-threading model of Java enables Java applications to

use more than one processor thereby effectively speeding up the application (assum-

ing there is 1-1 mapping between Java threads and operating system threads). This

allows non real-time applications to execute unchanged on multiprocessors. How-

ever, the availability of many processors completely changes the scheduling model for

a real-time systems. Therefore, real-time Java applications require multiprocessor

scheduling models to be supported by the Java platform.

A number of extensions have been outlined for RTSJ-1.1 [Dibble and Wellings,

2009], which mainly focus on supporting different scheduling models available in

state of the art multiprocessor real-time scheduling theory. These changes involve

8

1.4 Motivation

pinning real-time threads and bound asynchronous event handlers to specific pro-

cessors, clarification of the logical dispatching model on multiprocessors and the

behaviour of processing group parameters on multiprocessors.

Although SMPs have nice properties from a programmability perspective, as

previously mentioned they do not scale well due to contention on the shared buses

accessing the memory banks. NUMA architectures on the other hand use different

busses to access different memory banks, allowing all processing cores to access all

the main memory banks; however, the access time will vary from core to core. As

a result, performance of a program can be increased by keeping data local to its

accessing threads. Therefore, new high level semantics need to be introduced at the

language level to support such systems.

1.4 Motivation

Single processor systems will become less frequent while multiprocessors are in-

creasing in popularity. NUMA systems are more scalable multiprocessors and it is

likely that this architecture will be used more and more as the platform of choice.

Real-time programming will become increasingly difficult with traditional low-level

languages on complex multiprocessor architectures.

Real-time Java is a developing real-time language which provides high level ab-

stractions for real-time programming, therefore, this makes real-time Java a suit-

able language which can be extended for such systems. Supporting NUMA systems

means there are performance benefits to be had and the behaviour of the application

can be made more deterministic.

Cache coherent NUMA (cc-NUMA) has a memory hierarchy which is physically

distributed. This makes it a more scalable architecture than the conventional UMA

based SMP system. However, the memory distribution affects the application be-

haviour on the system because of the introduction of remote memory accesses which

have higher latencies. In such systems, there are considerable benefits to be had by

allocating related threads and data close to each other.

For example, Figure 1.3 shows the performance benefits that can be had by

9

Chapter 1: Introduction

keeping data local while using the memcpy() function. This function copies a chunk

of memory from one place to another. The figure shows that there is a large per-

formance difference when executing the memcpy() function on local memory when

compared to the remote memory. This figure is based on results obtained by execut-

ing the TAU benchmark1 on a small cc-NUMA system. More details can be found

in Appendix-A.

0

500

1000

1500

2000

2500

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

1
6

0
0

1
7

0
0

1
8

0
0

1
9

0
0

2
0

0
0

T
im

e
 i

n
 M

il
li

se
co

n
d

s

Memory Size (in MB)

Local Remote

Figure 1.3: Time Taken by memcpy()

Multiprocessors encourage platform sharing among applications, these applica-

tions can have different timing requirements and can be of different criticality levels.

The Linux OS also supports multiple applications executing at the same time, both

real-time and non real-time. Typically for real-time systems, it is required that

the system should be globally analyzed and worst case timings of all applications

which can be sharing the platform with the real-time application should be taken

in consideration. On such a large system, it is nearly impossible to analyze all the

different permutations that the applications can have to run simultaneously with the

1http://www.nic.uoregon.edu/tau-wiki/Guide:Opteron NUMA Analysis

10

1.5 Hypothesis

real-time application. Instead, it is more efficient and flexible to isolate the applica-

tion and provide resource guarantees. Such an approach, removes any dependencies

that the application has regarding the hardware or sharing the platform with other

applications.

1.5 Hypothesis

The current RTSJ does not have appropriate support mechanism to enable pro-

grammers to easily develop portable and deterministic soft real-time applications for

NUMA systems. However, it is possible to enhance the ability of RTSJ platforms by

providing visibility into the underlying architecture, controlling the allocation policies

and finally supporting resource reservation for guaranteeing timeliness and temporal

isolation. These extensions will enable programmers to develop more deterministic

and portable applications.

1.6 Thesis Aims

This thesis mainly concerns the execution model of real-time Java programs on

cc-NUMA shared memory multiprocessors. The major aim of the research is to

enhance the programming model of RTSJ to enable programmers to develop portable

real-time Java applications on a shared and open environment. To support the

hypothesis, the following objectives are considered:

1. To investigate the limitations in existing RTSJ to develop portable real-time

Java applications on cc-NUMA architectures.

2. To propose new high level abstractions which make the real-time Java virtual

machine (RTJVM) aware of the hardware resources available for the applica-

tion.

3. To propose new high level abstractions to manage the allocation policies of

threads and objects in order to minimize the non-determinism caused by the

memory distribution in the NUMA system.

11

Chapter 1: Introduction

4. To support static and dynamic allocation of applications on hardware.

5. To support temporal guarantees to applications to ensure they meet their

timing requirements.

6. To demonstrate that such a model can be implemented by presenting a pro-

totype implementation.

7. To analyze the proposed model to check for improvements in performance and

predictability.

Achieving these objectives would facilitate the development of portable real-time

Java applications on cc-NUMA architectures.

1.7 Thesis Structure

In accordance with the motivations and objectives of the research, the thesis is

organized with seven chapters. Brief descriptions of the remaining chapters are

given below:

Chapter 2. Literature Survey: The chapter reviews three different areas. First

existing parallel programming languages are reviewed and issues of parallelism

and locality are discussed. Next, existing work on real-time systems on multi-

processors is reviewed. An open and shared environment is considered and the

support required for soft real time systems is discussed. Java is discussed as

the language of choice for parallel programming and how it is used in different

contexts of multiprocessors, starting from shared memory multiprocessors to

distributed systems. Lastly a set of of requirements are derived which need to

be supported towards the goals of the thesis.

Chapter 3. Existing Support for cc-NUMA Architectures: The chapter dis-

cusses the extensions made in order to support real-time systems in Java and

the support RTSJ has for multiprocessors. The chapter highlights support

provided for cc-NUMA systems in Linux and RTSJ. This chapter focusses on

the physical memory framework of RTSJ and how it can be used to represent

12

1.8 Summary

NUMA nodes which can then be used for explicit memory allocation, this

chapter also looks in detail at the AffinitySet class that has been proposed for

RTSJ 1.1 and using it to pin schedulable objects to processors. At the end of

the chapter, limitations are outlined in the existing RTSJ for the development

of portable real-time applications for cc-NUMA systems.

Chapter 4. Locality Model: The chapter presents a locality model for the RTSJ

which overcomes the limitations outlined in Chapter 3. New abstractions are

presented to represent NUMA architectures along with design patterns which

are used to create memory areas and schedulable objects (and Java threads).

Extensions are presented to the physical memory model and a new memory

area, PhysicalHeapMemory, is proposed. A new abstraction ExecutionSite to

provide locality on a cc-NUMA system. It also discusses open-systems and how

contracts can be used to map applications onto NUMA systems. Contracts are

discussed in the context of execution sites and open systems based on these

execution sites are discussed.

Chapter 5. Implementation: The chapter explains the details of the implemen-

tation of the prototype.

Chapter 6. Evaluation: The chapter evaluates the Locality model. A set of ex-

periments are also performed to evaluate the locality model in terms of per-

formance. Overheads of the Locality model and the prototype are presented.

Chapter 7. Conclusions and Future Work: Finally, in the last chapter, con-

clusions are drawn and recommendations are made for future work.

1.8 Summary

This is the introductory chapter of the thesis which discusses the non-determinism

caused as a result of cc-NUMA Systems. This chapter discusses shared memory

architectures and gives an overview of the RTSJ along with some of the features it

has to support multiprocessors. The chapter further outlines the hypothesis, goals

and objectives of this thesis ending with the structure of the rest of the thesis.

13

Chapter 2

Literature survey

This thesis combines practices from both parallel computing and real-time system

communities into the real-time Java programming language to support large scale

systems on cc-NUMA architectures.

The goal is to provide programmability, performance, portability and predictabil-

ity on shared memory architectures where memories have variable access timings.

The chapter highlights issues of parallelism, locality and resource guarantees to

achieve the goals of the thesis.

The chapter reviews the existing literature in the following areas:

1. Parallel programming on multiprocessors

2. Real time systems and multiprocessors

3. Java based programming languages on multiprocessors

Cc-NUMA systems are now entering main stream computing due to the scalabil-

ity issues of traditional SMPs. Real-time systems’ transition from single processor to

multiprocessors is a very active research area with the emphasis being on scheduling

on SMPs. However, cc-NUMA systems have been around for quite some time in

the High Performance Computing (HPC) community. The Java platform has also

provided a base for extension for parallel programming. In this chapter we discuss

multiprocessors in all these three cases. A set of requirements is extracted to sup-

port large scale parallel applications on cc-NUMA multiprocessors in the context of

RTSJ.

15

Chapter 2: Literature survey

Section 2.1 reviews parallel programming languages especially in the HPC com-

munity in terms of parallelism and locality. Section 2.2 discusses real-time systems

and multiprocessors. Section 2.3 presents the Java platform in the context of mul-

tiprocessors. Finally, section 2.4 summarizes the chapter.

2.1 Parallel Programming on Multiprocessors

The HPC community has vast experience in parallel programming and while other

communities are making the inevitable shift to multiprocessors, a number of things

can be learnt from the evolution of parallel programming in HPC.

In this section we review different approaches taken in the literature to provide

parallelism and locality on NUMA systems.

2.1.1 Parallelism

Parallelism has been the main focus of programming on shared memory multipro-

cessors. The HPC community focuses on increasing both run-time performances,

by maximizing parallelism in applications, and to increase productivity of program-

mers.

Early work in parallel programming was concentrated towards automatically par-

allelizing where compilers and runtime systems were used to extract parallelism from

sequential programs. The advantage of such an approach is that existing applications

need not be modified for the speedup. High Performance Fortran (HPF) [Koelbel

et al., 1994] automatically parallelizes operations on matrices and vectors to be

performed on separate processors. However, extracting parallelism from sequential

programs is very limited and it does not allow the application to fully exploit the

parallelism that is on offer at the hardware level.

In order to achieve better performance, parallelism needs to be expressed in

applications to exploit the parallelism available at the hardware level.

The POSIX threading library [IEEE, 2008] allows explicit parallelism where

threads are created and managed explicitly.

OpenMP [OpenMP, 2008] follows a different strategy where programmers use

16

2.1 Parallel Programming on Multiprocessors

directives to tell the compiler the existence of a parallel region. OpenMP is much

easier to use as the compiler manages the threads, workload is implicitly divided

and threads are implicitly synchronized based on programmer’s directives of syn-

chronization.

Java follows a similar approach to the POSIX threading library where threads

are created and managed explicitly by the programmer. X10 [Charles et al., 2005]

replaces the existing threading mechanism by light weight threads called activities.

These activities are managed implicitly in place of Java’s existing explicit model.

The RTSJ uses the same threading model as standard Java. RTSJ has integrated

it with scheduling parameters which allow implementation of scheduling policies to

control the order in which threads will be executed. This thesis uses the same

threading model for parallelism and concentrates on providing locality on a cc-

NUMA system.

2.1.2 Locality

An application requires efficient mapping onto the hardware architecture to achieve

better performance. This performance on a NUMA system depends on the thread

and memory allocation policies. Portability of performance is also very important

on portable platforms (such as Java), that is to get the best performance regardless

of the underlying machine without having to modify the application or the execution

environment. Applications which are not supposed to be portable (often in the case

of an embedded system) are required to extract the best performance out of the

system, however, for portable applications mapping policies should be focussed on

achieving portability of performance.

On a cc-NUMA system, related threads and objects need to be placed close

together to each other. This reduces the number of remote accesses resulting in a

better performance of the application. However, not all mapping strategies follow

the same rule. Generally, the following strategies can be adopted during application

mapping:

1. In the first approach the mapping is done by the runtime without any knowl-

edge of the application. This approach is commonly used in operating systems

17

Chapter 2: Literature survey

such as Linux where threads and memory are allocated based on load balanc-

ing.

Threads are evenly spread across a number of processors and are migrated

in case of any load difference between processors. The Linux scheduler tries

to balance load in a hierarchical fashion in a cc-NUMA system where it first

tries load balancing at the node level and then proceeds to balance the load

between the nodes [Aas, 2005].

For the allocation of memory, a number of different policies can be used.

Touch policies are very common for memory allocation where the allocation

is based on the pattern of data being accessed. For example, the first touch

policy allocates the memory local to the processor which accesses the data

for the first time. Another policy is the next touch policy which allocates

the data on the local memory when it is accessed the second time and is

considered to perform better than the first touch policy [Goglin and Furmento,

2009]. Memory interleaving is another policy where data is allocated in a

round robin fashion among the nodes. Such a policy does not consider locality

among threads and data but rather tries to achieve maximum bandwidth while

accessing the data.

These approaches certainly have the advantage that applications are very

portable across such platforms and benefit from these policies. However, the

performance of the applications is far from the peak performance which can

be achieved on the system. In this case, the relationship among threads and

between threads and data is ignored which can help in improving the perfor-

mance of the system.

2. The second approach is based on applications that have been designed to

run on specific platforms. Allocations are done explicitly by the programmer

requiring significant effort and become extremely difficult and complex in the

case of large systems.

The architecture of the system is analyzed and then thread affinities and mem-

ory affinities are used to statically map the application on the architecture.

18

2.1 Parallel Programming on Multiprocessors

Following are some of the examples of programming models using this ap-

proach:

• The Sequoia programming language [Fatahalian et al., 2006] is designed

specifically for embedded systems. It is an extension of C which enables

programmers to statically map applications on platforms with non stan-

dard memory architectures. It represents the architecture as a virtual

tree and explicitly manages data movements between memory banks. It

requires programs that can be broken down into a hierarchy of isolated

units of execution and then physically mapped onto the architecture.

• The RTSJ provides physical and raw memory access. Objects are created

using physical addresses of memory and similarly raw memory can be

accessed through their memory addresses (in case of memory mapped

I/O) or their port number.

This approach has been designed to extract the maximum performance out of

the system; however, applications are not portable. Threads and data can be

co-located with devices using this approach.

3. The third approach tries to combine the above two approaches to provide

portability and performance. The mapping is based on the negotiations of the

application and the architectural platform.

At the architecture level, the operating system can provide detailed informa-

tion on the target machine. For example, the information can include number

of processors, organization of caches, organization of the memory banks on

NUMA machines etc. The application needs to be aware of the processors,

memory and devices in a system and how they are connected. A single system

image hides all the information regarding the hardware and presents a sim-

ple environment for the applications to execute on. Processors and memory

devices are usually hidden by the single system image provided by operating

systems and the application executes as if it has a single processor and single

memory. However, operating systems also provides libraries and APIs which

publish the information of the hardware.

19

Chapter 2: Literature survey

At the application level, information can be provided regarding the behaviour

of the application. Determining the sharing patterns of threads and data

is an important step before the threads/data can be allocated. [Tam et al.,

2007] suggest that the sharing patterns of threads should be detected online

and threads should be grouped once this pattern is known. The advantage

of using this approach is that threads can be dynamically regrouped during

different phases of a program based on changing relationships between threads,

however, the overheads are very high. Most modern programming languages

X10 [Saraswat, 2010], Fortress [Allen et al., 2007], Chapel [Diaconescu and

Zima, 2007] depend on the programmers to define the relationship among the

components of the application.

Following are some the examples of programming languages that adopt this

approach:

• The Fortress [Allen et al., 2007] programming language provides an ex-

tensive library of language contructs called Distributions which allow the

programmers to specify data distribution and locality. Fortress provides

regions which abstractly describe the architecture of the hardware on

which the application is running. Each region contains an execution level

where the threads reside and a memory level where the objects reside.

The programmer is enabled to place threads in a particular region and

objects in most cases are placed local to the thread calling the construc-

tor.

• The X10 language [Saraswat, 2010] has multiple non-overlapping places ;

these are virtual locations which group together multiple activities (threads)

and objects. Physical location of places can change depending upon the

load balancing policy. Activities and objects remain in the same place for

their lifetime and are unable to migrate to other places. Remote access

is only possible by spawning asynchronous activities which are used to

communicate between two places.

• Chapel [Diaconescu and Zima, 2007] provides locales which represent

20

2.2 Real Time Systems and Multiprocessors

units of uniform memory access (nodes). There is no difference between

local and remote access as there is in X10. Chapel also allows program-

mers to distribute objects into specific locales and objects are not bound

to a single locale for their lifetime.

This approach provides a balance between portability and performance. This

is required when the application is portable but still requires threads and data

to be co-located. The execution of an application is closely tied to the structure

of the hardware. Portable applications need to adapt to target architecture

for better performance and efficient use of resources.

As part of this thesis, we focus on providing an environment which will allow

the programmers to develop applications with portable performance by supporting

a programming model which in similar to the third approach described as above. In

addition, the model will also extend support available in the RTSJ to access physical

and raw memory on cc-NUMA systems.

2.2 Real Time Systems and Multiprocessors

The paradigm shift towards multiprocessors increases the motivation for sharing

the platform and most modern general purpose operating systems allow a number

of different applications to run on a platform simultaneously. Executing real-time

systems on shared platforms requires the system to behave as if the platform is

dedicated to the real-time application where resources are provided to it according to

its scheduling parameters and any other application should not be able to cause any

disruptions during its execution. In other words the system should be able to provide

temporal isolation (or temporal protection) to the real-time application. [Buttazzo

et al., 2005] puts it as “the temporal protection property requires that the temporal

behaviour of a task is not affected by the temporal behaviour of the other tasks

running in the system”.

Temporal isolation can be provided to applications by resource reservation mech-

anisms where resources are guaranteed to the application/component in a timely

21

Chapter 2: Literature survey

manner so that their timing requirements are met. In the case of a multi-threaded

application/component resource reservation mechanisms can be applied to the thread

level. Essentially multi-threaded applications need a hierarchical scheduler where

at the global level the application is competing against other applications for re-

sources. Within the application/component threads compete among themselves for

the available resources.

A server is a CPU execution accounting and enforcing mechanism which has a

capacity and a replenishment period, it makes sure that an activity or a group of

activity does not use more than the capacity and replenishes the capacity periodi-

cally. Execution-time servers have mainly been used to service aperiodic activities

without affecting periodic and sporadic activities. Aperiodic activities do not have

well defined release characteristics; as a result they can have an unbounded demand

for processor time while competing with periodic and sporadic activities. Running

these aperiodic activities at a lower priority than periodic or sporadic means, they

get very little chance to run and they often have poor response times. As a result

servers have been used to provide a lower response time for aperiodic tasks.

Alternately, servers have also been used to build compositional real-time embed-

ded systems. The focus of the servers shifts to make sure that components actually

get the execution time that they have been guaranteed.

[Deng et al., 1997] were the first ones who used hierarchical scheduling to provide

temporal isolation for multithreaded applications. Each application was allocated a

dedicated constant utilization server (CUS) with a maximum utilization factor Ui.

Later a bandwidth sharing server (BSS) was used to provide temporal isolation in

multithreaded applications. Both of these approaches require the global scheduler

to be aware of the timing parameters of tasks inside an application. In the case of

open systems, such information might not even be present because of the presence

of non-real time threads which do not have scheduling parameters (such as WCET

and deadlines).

[Mok et al., 2001] present a resource partition model where a resource parti-

tion is a periodic sequence of disjoint time intervals. This approach is based on the

2-level hierarchical scheduler where at the first level (application scheduler), tasks

22

2.2 Real Time Systems and Multiprocessors

within a task group are scheduled while the second level scheduler (global sched-

uler) is responsible for assigning partitions to task groups. Both these schedulers

are completely isolated at runtime because the global scheduler does not require the

timing parameters of the tasks within each task group. The bounded delay model

was proposed in [Mok et al., 2001] which generalizes the partition model to accom-

modate an on-line global scheduler. The bounded delay model can be represented

by the interface (α,△), where α is the bandwidth while △ is the bound on the

bandwidth for which it will be unavailable.The bounded model for single processors

can be represented by the Figure 2.1.

Figure 2.1: The bounded delay model for single processors

These approaches were defined for single processor systems, in case of multi-

processors, the presence of multiple processors increases the complexity of providing

resource reservation when applications/components want concurrency on these plat-

forms essentially allowing them to run in parallel on different processors.

The following resource models can be used for resource reservations on multipro-

cessors:

• The Periodic Model (P, Θ, m’)–The multiprocessor periodic resource model

(MPR) was presented in [Shin et al., 2008] which was based on the idea of

having virtual cluster based scheduling. In this model, any application was

allocated a number of periodic tasks or servers. These servers were statically

allocated on processors having the period P and they were assigned a cumula-

tive budget Θ. Application level tasks were then scheduled globally on top of

the servers. The MPR model was specified by an interface (P, Θ, m’), where

m’ is the maximum level of parallelism.

• Bandwidth ω – Another interface based on the total bandwidth ω of applica-

tions was presented in [Leontyev and Anderson, 2009]. The idea was to allocate

23

Chapter 2: Literature survey

the bandwidth ω onto ⌊ω⌋ processors and then globally schedule the remaining

bandwidth on the remaining processors using a periodic server. This interface

was designed for soft real time systems and did not have any notion of period.

• Bounded delay multipartition (BDM) – The multi supply function extended

Bounded Delay Model for multiprocessors [Bini et al., 2009b] where all the

processors had the same (α,△) repeated for m processors. This multi sup-

ply function was next generalized in the parallel supply function [Bini et al.,

2009a] which allowed different processors to contribute differently to the bud-

get. Based on the parallel supply function, interfaces are derived in [Lipari

and Bini, 2010] to reduce the pessimism.

2.3 Java on Multiprocessors

Java has been used in a number of distributed and high performance systems where

high level APIs have been provided to support parallel and distributed applications.

In this section, we will focus on the different Java based extensions that have targeted

distributed systems and shared memory multiprocessors.

2.3.1 Java on Distributed Systems

On a distributed system, Java threads and Java objects are distributed between the

nodes of the distributed multiprocessor which do not share a single address space.

This, however, should not restrict Java threads from accessing all objects irrespective

of the location of threads and objects. This means when a thread running on one

node accesses an object on another node then either the code of the thread should be

transferred to the remote node or the data from the remote node should be retrieved.

Java provides an API, the Java RMI (remote method invocation), which allows

the JVM to invoke methods of objects running on another JVM. Java RMI’s stub

and skeleton architecture gives the impression that the method is being executed

locally while the reality is that it executes on a remote node and returns the re-

sults. This allows the programmer to distribute objects on various machines, and

invoke methods on objects on a remote machine. Java RMI provides lease-based

24

2.3 Java on Multiprocessors

distributed garbage collection. Remote objects are considered alive when they have

been referenced within a certain period of time i.e. lease period. When the lease

expires and it is not renewed, the objects become available for garbage collection.

The problem with Java RMI is that it requires the programmer to manage and dis-

tribute the computation explicitly. This makes RMI programming difficult because

the programmer has to put extra effort to program interfaces and classes which do

not help him in solving his actual problem.

Java distributed shared memory systems (DSMs) provide the Java platform over

a distributed system by hiding its distribution and providing a single system im-

age (SSI). Java DSMs provide a higher level of abstraction than Java RMI. While

Java RMI requires the programmer to explicitly distribute computation load among

the nodes, Java DSMs on the other hand automatically maps threads to different

processors and provide a shared heap where the objects can be placed.

The following highlights design and implementation issues of Java DSMs:

1. In a Java DSM the following changes are required to different memory areas:

(a) Implementing the heap – The heap is a memory area which is shared

by all threads. In order to extend the heap to Java DSMs the objects

should be accessible by all the threads irrespective of the location of the

thread or the physical location of the object. One way of doing this is by

implementing the heap over an existing DSM.

(b) Implementing the method area – The method area stores the code, which

is shared by all threads. In order to extend it to multiple processors, it

should be copied to all nodes of the cluster. Multijav first looks for class

bytecode in its local memory, then asks the root node to send the desired

class bytecode.

(c) Implementing the stack – The stack is a JVM memory area which is

private to a thread. The stack contains frames which are pushed when

a method is invoked and is popped when a method returns. Normally

in the case of a Java DSM there is no need to make any changes to

implement the stack. But when a thread is distributed over a number

25

Chapter 2: Literature survey

of nodes as it is in the case of method shipping in cJVM [Aridor et al.,

1999]. Then the stack is also distributed along with the thread. Here the

thread is required to have a global id. Even after the distribution the

stack is required to be traversal and it should give the correct value on

calling the Thread.currentThread().

2. The following scenarios can be envisaged to provide access to a remote object:

(a) Method Shipping – Method shipping is used when remote accesses are fine

grained and rare, then it is possible to redirect the code to the home node

of the object. The thread is not migrated but only the method executes

remotely on the object and then returns back to the home node. This

approach uses mechanisms such as remote procedure call (RPC) such as

Java RMI. However, this is at a higher level than RMI and the commu-

nication between thread and remote object is handled by the runtime.

This approach has been followed in cJVM [Aridor et al., 1999].

(b) Object replication – Object replication is used when remote accesses are

coarse grained and frequent, and multiple nodes try to access the object

simultaneously. The object replication approach allows multiple nodes

to simultaneously read the objects. The original copy of the object re-

mains on the home node, which is updated consistently in case of any

write and all other copies are invalidated. This approach is used by JES-

SICA (Java Enabled Single System Image Computing Architecture) [Ma

et al., 2000], Jackal [Veldema et al., 2001], JavaSplit [Factor et al., 2006],

JESSICA2 [Zhu et al., 2002] and Hyperion [Antoniu et al., 2001].

(c) Thread migration – Thread migration is usually used to balance the load,

but it can also be used to provide access to remote object. It is different

from method shipping in a way that in method shipping the control of

execution returns backs to the original node after the execution of the

method on the remote node. In order to perform thread migration, all

the associated data also has to be migrated along with the thread, which

makes it a costly approach. Migrating the thread is not viable every time

26

2.3 Java on Multiprocessors

it has to access a remote object.

(d) Object migration – Object migration only benefits in the case when re-

mote accesses are frequent from a single node, then the object can be

migrated to the remote node. However, in a shared memory environment

(in Java) objects can be referenced by more than one thread, therefore,

it is not viable to migrate the object every time it is referenced.

While all of the above enable threads to access remote objects, the top two

are the only ones that are actually used for providing distributed access in

Java DSMs. The bottom two are used for load balancing; they can be used

for providing remote access to objects.

3. Java DSMs can be implemented using the following approaches:

(a) Java DSMs built over existing DSMs: In a Java DSM which has been

built on already existing DSM subsystem as shown in Figure 2.2, effi-

cient channeling of information from a JVM to the DSM subsystem is

very difficult and causes performance lapses. Page based DSMs such as

Treadmarks [Amza et al., 1996] which have been used in JESSICA [Ma

et al., 2000] and Java/DSM [Yu and Cox, 1997] causes false sharing.

The implementations use the API provided by the DSM subsystem for

memory and thread management.

(b) Native Java DSMs: Java DSMs that have been based on interpreter

JVMs(JESSICA, Java/DSM) as shown in Figure 2.3, are unable to pro-

vide the performance which can be provided by native machine code. As

a result a number of Java DSMs i.e. Jackal and Hyperion opted to trans-

late Java code into native code for achieving performance in the long run.

Such approaches do not use the JVM and do not benefit from the security

and portability provided by the JVM.

(c) Java DSMs with built-in DSM: In this approach the JVM is modified to

provide a distributed shared heap at the JVM level as shown in Figure 2.4.

This approach has been followed by cJVM and JESSICA2. cJVM is an

27

Chapter 2: Literature survey

Figure 2.2: Java DSM built over existing DSM

Figure 2.3: Native Java DSMs

interpreter based Java DSM which uses the master/proxy model to give

an illusion of distributed shared heap. JESSICA2 uses JIT execution to

improve performance.

4. In order to utilize the hardware efficiently, the computational workload re-

quires to be distributed among the nodes. JESSICA and JESSICA2 provide

transparent thread migration at runtime. While other Java DSMs such as

cJVM use the load balancing function to place the thread on a node but once

it is placed on a node then it remains on that node during its lifetime.

5. Most Java DSMs provide locality. Objects are created local to the thread. In

case of object replication, a local copy of the object is created on every node

where it is accessed. Only in method shipping we get remote accesses which

28

2.3 Java on Multiprocessors

Figure 2.4: Java DSM with built-in DSM

can affect the performance of the application badly.

6. The size and structure of the unit of coherence is an important factor in

determining the performance of a Java DSM. Structured unit such as an object

provide better locality of reference and less false sharing as compared to a

page, which is an unstructured contiguous array of memory locations which

can contain unrelated data. Coarse grained units of coherence increase the

network traffic and cause more false sharing as compared to fine grained units.

The cost of accessing and updating a large memory chunk is considerably more

than a small one but it can provide better locality of reference.

7. Memory consistency is an important part of Java DSM. Communication among

the nodes is slow and often performance decreases in systems which have com-

municate very frequently. Sequential consistency models cause more overhead

than relaxed consistency models. Therefore most of the Java DSMs have used

relaxed memory models in order to provide better performance. For example,

JavaSplit uses home based lazy release consistency (HLRC) [Zhou et al., 1996].

This protocol allows multiple writers. It allows object replication of the object

at remote nodes and uses invalidation for memory consistency.

8. Local objects have very low maintenance costs as compared to shared objects.

Majority of the objects created are local and very few of them are shared.

Dealing with them separately can result in improved performance. JavaS-

plit [Factor et al., 2006] distinguishes between local and shared objects on a

29

Chapter 2: Literature survey

node at runtime. Local objects do have low synchronization and no communi-

cation costs as compared to shared objects and the majority of the objects are

local objects. This way JavaSplit is able to reduce much of the synchronization

and communication overhead. Only objects accessed by more than one thread

are termed as shared nodes. The shared objects are given a global thread id

and can be replicated by the DSM subsystem on other nodes.

2.3.2 Java on Shared Memory Multiprocessors

The Java programming language has built in support for multi-threading. This

allows the Java threads to execute in parallel over a multiprocessor. Java threads

are limited to shared memory architectures and are not able to benefit from more

scalable architectures found in distributed systems (without using DSM). However,

on shared memory multiprocessors, existing multithreaded applications can execute

without any problem with the appropriate speedup values. Concurrency utilities

introduced in Java 1.5 specification provide extra features (thread pools, blocking

queues etc.) to make concurrent programming easier.

Java has also been extended to use annotations which are similar to the directives

used in the OpenMP specification. Annotations can be used to instruct compiler

to create parallelism which can be used by the runtime to create Java threads.

Implementation like JaMP [Klemm et al., 2007] and JOMP [Kambites et al., 2001]

use this model. These approaches provide a higher level model than Java threads

and are gaining more popularity due to the ease with which the programmers can

write parallel code.

On a cc-NUMA system, [Tikir and Hollingsworth, 2005a] provide a distributed

heap over a cc-NUMA system. The garbage collector is optimized to migrate objects

to provide locality which improves the performance of a parallel benchmark by upto

41%. [McIlroy, 2010] have used annotations to group together threads into teams of

threads for co-allocating threads which improves the performance of the application.

The JVM can also be used in heterogeneous environments.

30

2.4 Summary and Requirements

2.3.3 Discussion

With new architectures there has been a debate of either creating new parallel

languages from scratch which suit these architectures or to extend existing languages

because it is not easy to convince programmers to learn new languages.

Parallel programming can be complex for programmers, especially when they

migrate from a sequential to a parallel environment where they have to explicitly

express parallelism.

Java is a popular high level language which is the reason why so many attempts

have been made to extend it for parallel architectures. Extensions that have been

provided for the Java language mainly focus on the increase of performance. How-

ever, even in the parallel environment, the first priority is programmability, the

ability of the programmer to create parallel programmes e.g. the main objective of

providing a single system image in a Java DSM is to improve programmability.

Real-time programming language design is difficult in its own capacity. Inte-

grating parallel and real time programming can become very complex. This is the

reason why we have selected real-time Java to provide a high level platform for

parallel programming. This thesis is limited to supporting soft real-time systems

on cc-NUMA systems. However, the work presented should be extendible for more

complex heterogeneous architectures.

2.4 Summary and Requirements

This chapter has focused on two separate areas of related work: how parallel lan-

guages have evolved to cope with a variety of multiprocessor architectures, and the

mechanisms that real-time systems provide to support the scheduling of large scale

real-time systems. Based on this review, we can extract out the following require-

ments for real-time programming of large non-uniform memory architectures within

the context of Java-based systems:

1. Locality – to improve performance on a cc-NUMA system, the system needs

to provide the ability to allocate threads/objects on certain processors. To

31

Chapter 2: Literature survey

provide portable performance, the ability to co-locate threads/objects needs

to be provided.

2. Architecture aware JVM – to support portable performance code, it is neces-

sary to have a JVM which is aware of the architecture.

3. Resource Reservations – to support real time requirements in a shared envi-

ronment, it is necessary to provide resource reservations.

32

Chapter 3

Existing Support for cc-NUMA

Architectures

In Chapter 2, we reviewed the mechanisms provided by parallel programming lan-

guages to exploit locality and considered the impact of allowing real-time systems

to share platforms with other applications. Based on the review, the following

requirements were derived to support soft real-time programming on cc-NUMA ar-

chitectures:

• the OS should be able to discover the architecture

• the OS and and the programming language should be able to co-locate tasks

and objects

• the OS and the programming language should provide resource reservations

• the OS and the programming language should be able to site a thread/object

on a physical proximity domain

This chapter will review existing support provided in RTSJ on Linux. Through-

out this thesis we have used the Linux OS as an example of a main stream op-

erating system that has kept track of advances in computer architectures and has

responded quickly to provide appropriate support for those advances. Consequently

in Section 3.1, we review the support that Linux provides for cc-NUMA systems,

and whether it is capable of supporting real-time applications on these architectures.

33

Chapter 3: Existing Support for cc-NUMA Architectures

The RTSJ, as of version 1.1, provides more support for multiprocessor embedded

system. Although targeted at SMP architectures, it provides a set of mechanisms

that can be used to access the underlying processor and memory architecture. In

Section 3.2, we present an overview of the RTSJ and its support for multiprocessors.

Section 3.3 presents a reference cc-NUMA architecture and the existing support

in Linux and RTSJ is evaluated to against the requirements derived in Chapter 2.

Section 3.4 outlines the limitations of the existing features and finally the chapter

is summarized in Section 3.5.

3.1 Linux Support for cc-NUMA

Linux is an open source general purpose operating system which is being used on

a range of platforms. It was never designed to support real-time systems and it

had very high response times. The Linux kernel has the backing of a very active

community. Early versions of the Linux kernel were non-preemptible i.e. any task

running inside a kernel or a driver needed to finish before anything else was allowed to

execute [Dietrich and Walker, 2005]. Linux 2.0 supported symmetric multiprocessors

by using a single spin lock (the big kernel lock) which allowed only one task to be

running kernel code at one time. This was a serious bottleneck for multiprocessors

as the processing was still sequential. Later, locks were distributed based on critical

regions rather than having a single lock for the whole kernel. However, any task

inside the critical region was still non-preemptible and response times were still

very high. The realtime-preempt patch has been included in the mainline in the

Linux kernel 2.6.18 as a configuration option; it tries to minimize the amount of

non-preemptible code.

3.1.1 Discovering the Architecture

Making the application NUMA aware requires the OS to be able to detect all pro-

cessors, memory and devices and inform the application about the topology of the

system. Operating systems in general have struggled to provide the appropriate

application-level support for multiprocessor. The main hurdle is the abstraction

34

3.1 Linux Support for cc-NUMA

layer at the hardware level which is provided to hide the complexity of the under-

lying architecture. This abstraction layer not only hides the complexity but it also

removes the transparency which is essential to develop predictable systems.

In order to provide some transparency, the Advanced Configuration of Power

Interface (ACPI) specification 3.0 [Corporation et al., 2005] has been developed to

establish industry common interfaces. The goal is to enable robust operating system

(OS)-directed motherboard device configuration and power management of both de-

vices and entire systems. The ACPI has optional support for NUMA architectures.

It defines the concept of a system locality (or proximity domain) and provides in-

formation about the “distances” between them. Each proximity domain is given an

integer identifier. An operating system can assume that two devices in the same

proximity domain are tightly coupled, but it cannot make any assumption on the

distances between the domains given only their ids. Instead, two tables are pro-

vided: the system resource affinity table (SRAT) and the system locality distance

information table (SLIT). The former allows the domain of a device to be obtained

and the latter the relative distance between the domains to be determined. The OS

can choose to optimize its behavior based on the information in these tables.

The Linux kernel parses these tables on boot up and presents this information

at the application level in the form of APIs and libraries. Libraries in different

operating systems can differ in support and format, e.g. Linux uses the sysfs to

publish the information and libraries such as Libnuma are build on top of the file

system. Other operating systems have other low level system calls to discover the

underlying hardware resources.

Based on the existing support in operating systems, a portable framework has

been developed by the MPI community to introduce portable interfaces for obtaining

this information [Broquedis et al., 2010]. The hwloc framework gathers information

about processors, caches, memory, nodes in a NUMA system etc. on different operat-

ing systems such as Linux, Windows, Solaris, AIX, Darwin etc. and provides a high

level abstraction to these resources at the application level. For more complex multi-

core heterogeneous systems, the multi-core association is developing the multi-core

resource API (MRAPI) which will allow the system to query different attributes of

35

Chapter 3: Existing Support for cc-NUMA Architectures

processors, memory and devices (Metadata Primitives in the MRAPI) [Holt, 2009].

3.1.2 Allocating Threads and Objects

The Linux operating system has evolved quickly to support different allocation poli-

cies for threads and objects. The following section highlights these policies:

1. Thread binding – On multiprocessors, the OS is supposed to provide support

for different scheduling policies from fully partitioned to global scheduling.

In Linux, each processor has its own run queue, which enables dispatching

threads individually on a fixed processor. Once a thread is allocated to a

processor it stays in its run queue until it is either moved to another processor

by changing its affinity or through load balancing. Although Linux does not

have a single queue for multiple processors for true global scheduling, however,

it uses load balancing on real time tasks to make sure that the highest priority

threads present in all the run queues are running at any particular instant

of time 1. When there is more than one real time thread in a run-queue, the

lower priority real time thread is migrated to a CPU on which it can run. This

migration happens at the following events:

(a) A real time thread becomes schedulable however it finds a higher priority

thread already running in the run-queue on which it has been allocated.

In such a case it is pushed to another run queue where it can run.

(b) When a CPU finished any task, instead of executing a lower priority

thread it pulls a higher priority task which is waiting in another queue

to get dispatched.

Linux allows the programmers to pin task to particular processors by providing

the system call sched setaffinity(). The thread in such a case will not migrate to

any processor outside the affinity set of the thread and the migration respects

its affinities. More information on this can be found in Section 5.1

1http://kerneltrap.org/Linux/Balancing Real Time Threads

36

3.1 Linux Support for cc-NUMA

2. Memory placement – On NUMA systems, a number of different optimizations

can be made regarding memory placement. In terms of real-time systems it is

very important to be to able determine where the memory will be present when

it is accessed. Therefore, it requires the OS to be able to place the memory

on a memory node and then ensure that the memory will remain there for the

lifetime of the application. In the default case, Linux enforces a first touch

policy for memory which essentially means that without any memory binding

policy, it will try to allocate the memory on the same node as the thread

which has touched it first. Linux provides a NUMA API [Kleen, 2004] which

includes new system calls at the kernel level to support different scheduling

policies and different memory allocation policies. At the programmer level,

a library is provided which enables the programmer to place memory on a

specific node and execute a thread on a specific CPU [Lameter, 2006]. In

terms of memory allocations, the following policies can be defined:

• mbind default – Allocate memory on the local node (the node that the

thread requesting allocation currently is running on).

• mbind preferred – Try to allocate on a particular node first. If this fails,

allocate anywhere.

• mbind bind – Allocate on a specific set of nodes. Allocation will fail if

the nodes are unable to provide the memory.

• mbind interleave – Spread out memory allocations over all available nodes.

The physical space is very limited, therefore, it is very common for operating

systems to swap some of the pages out to the disk and then swap them back

in to the memory when required. The memory allocation latencies suddenly

increase when the system runs out of physical memory and existing pages

have to be swapped out in order to accommodate new pages in the virtual

address space. The dynamic use of the physical memory means that it is not

necessary that the virtual address will map onto the same physical address.

Hence, physical addresses backing the virtual memory can change or even

disappear (in case it has been swapped out). In case the memory gets swapped

37

Chapter 3: Existing Support for cc-NUMA Architectures

out, it is not guaranteed that it will be placed on the same node when it is

swapped in. The reason for this can be that the memory has been accessed

by a thread on a node which is on a node other than the one from which

it was swapped out from. From the real-time perspective, this behaviour is

completely unacceptable, especially on a NUMA system, where the problem

is exacerbated because a page allocated on one node is swapped back in on

another node which the real-time application is unaware of. Therefore, it is

required that the memory that will be accessed by the real-time application

should always remain at the same place as it was. This is possible by locking

the memory so it cannot be swapped out. Linux provides a system call mlock()

which does exactly that. On a system with a large physical memory, the

swapping space can be completely disabled to make sure that the memory will

not be swapped out.

3.1.3 Supporting Group Budgets

The paradigm shift to multiprocessors has motivated the sharing of the platform by

applications having different timing requirements. Real-time applications on such

systems require resource guarantees from the platform because a global analysis

of the whole system is not viable. In order to provide guarantees, the platform

needs to support group budgets. Group budgets have traditionally been used to

support aperiodic activities as discussed in [Wellings and Kim, 2008]. In Linux,

control groups2 provide a mechanism to partition groups of tasks and then manage

resources allocated to each partition. A control group (cgroup) is a file system,

where tasks can be added to it and then be arranged hierarchically. By default

all tasks belong to the root cgroup. Each resource (CPU, memory etc.) has an

associated controller which limits resources to tasks based on the cgroup they belong

to. Building the mainline kernel by enabling the CONFIG RT GROUP SCHED

option, provides the support for real-time group scheduling. The real-time group

scheduling can be used along with the cgroup filesystem to provide group budget

2http://www.mjmwired.net/kernel/Documentation/cgroups.txt

38

3.2 RTSJ and its Support for Multiprocessors

for a set of tasks (process/ threads). The real time group scheduling allows explicit

allocation of CPU bandwidth to task groups3. The bandwidth can be set by the

following two parameters:

1. cpu.rt runtime us allows to set the budget (Q in microseconds) of the task

group

2. cpu.rt period us allows to set the period (T in microseconds) of the task group

In every period T, the group is allocated the budget Q.

Once the budget expires, the group is blocked until the arrival of the next period.

In Linux, the scheduler tick function is called periodically after a time period, T

which is called by a high resolution timer. This function maintains the different

CPUs accounting parameters and checks for budget exhaustion. On each scheduling

event (at the scheduler tick(), task deactivation, task pre-emption) the collective

execution times of all tasks are compared to the budget value until it exceeds the

budget at which point all tasks are descheduled.

A sporadic server patch has been presented in [Faggioli et al., 2010] which changes

the real-time group scheduling of Linux. The changes mainly involve the behaviour

of threads and instead of blocking, threads are re-entered in a lower priority queue

once the budget has expired. It also makes changes to how the budget is replenished

after each period. Group scheduling with sporadic servers not only supports tempo-

ral isolation but it is also very efficient in terms of CPU utilization. [Checconi et al.,

2009] presents a hierarchical multiprocessor reservations model for Linux which is

based on the multi-supply function [Bini et al., 2009b]. In addition, SCHED EDF is

being developed which extends the existing real time group scheduling to incorporate

EDF.

3.2 RTSJ and its Support for Multiprocessors

Java is a high level programming language which has always favoured programmer

productivity and portability. It provides features like automatic memory manage-

3http://www.mjmwired.net/kernel/Documentation/scheduler/sched-rt-group.txt

39

Chapter 3: Existing Support for cc-NUMA Architectures

ment and Just-In-Time (JIT) compilation to make programming easier; however,

these features add unpredictability to the platform. From the real-time perspective,

garbage collection is a main source of unpredictability. In most JVMs, the garbage

collector starts at unpredictable moments and stops the flow of the program to re-

claim memory. This results in unpredictable interruptions and delays which are not

acceptable in real-time systems.

The Real-Time Specification for Java (RTSJ) extends the Java platform to en-

able programmers to write high level, portable code with real-time properties. It

introduces new memory areas (in addition to the Java heap) and extends the Java

threading model along with new scheduling policies. It does not make any changes

to the Java syntax and provide backward compatibility to Java applications allowing

environments compatible with RTSJ to execute existing Java applications.

The following summarizes important enhancements made by the RTSJ to sup-

port real-time programming in Java:

• Memory areas – Standard Java only provides the heap memory area for object

allocation to the programmers. However, the heap memory area is garbage

collected which can cause unpredictable delays. In order to minimize the

effect of garbage collection, RTSJ introduces two new types of memory areas:

the immortal memory and the scoped memory. Figure 3.1 provides the class

hierarchy of the memory areas in RTSJ which shows classes representing the

immortal memory area and scoped memory area.

The immortal memory area is represented by an ImmortalMemory, which is a

singleton class. Only one immortal memory area exists in a RTSJ application

and behaves much like the Java heap memory. The difference exists in the

lifetime of objects on both memory areas. Objects allocated on the heap

are reclaimed by the garbage collector if they are no longer used, however,

objects allocated on the immortal memory area are never reclaimed even if

they have do not have any live references to them. Programmers can use the

immortal memory area for object allocation and in addition, all static objects

are allocated in the immortal memory area by default. The immortal memory

area needs to be used carefully because any object, once allocated, exists till

40

3.2 RTSJ and its Support for Multiprocessors

Figure 3.1: Memory classes in the RTSJ

the end of the application causing a potential memory leak.

Scoped memory areas are represented by the ScopedMemory class. Scoped

memory areas are created by the programmers and contain objects with well

defined life times. Two different types of scoped memory areas can be cre-

ated by the programmers: LTMemory (linear time memory) and VTMemory

(variable time memory). The time taken to allocate objects in LTMemory

is linear depending on the size of the object. VTMemory on the other hand

can employ optimizations for faster object allocations. The scoped memory

regions use reference counting to determine how many schedulable objects are

active within the region and when the count turns zero, than the memory is

available for reuse.

The RTSJ also provides classes to use physical memory. The physical memory

areas allow programmers to allocate objects on physical memory directly. The

physical memory classes are discussed in detail in Section 3.2.2.

• Schedulable objects – RTSJ introduces schedulable objects which implements

the Schedulable interface as shown in the Figure 3.2. The schedulable interface

41

Chapter 3: Existing Support for cc-NUMA Architectures

Figure 3.2: Schedulable objects in RTSJ

is implemented by the RealtimeThread and the AsycnEventHandler. The Re-

altimeThread can freely move between different memory areas and can access

all three types of memory areas: heap, immortal memory and scoped mem-

ory areas. The RealtimeThread is sub-classed by the NoHeapRealtimeThread

which can only use the immortal and scoped memory areas. NoHeapReal-

TimeThreads are threads that typically have higher priority than the garbage

collector and cannot use the Java heap or cannot reference any object on the

heap.

• Scheduling – Figure 3.3 shows new classes introduced in the RTSJ to im-

plement scheduling policies. An abstract class of Scheduler is provided for

the feasibility analysis which checks if a given set of schedulables is feasible

based on a scheduling algorithm. RTSJ provides a PriortyScheduler which

provides preemptive fixed priority scheduling. It makes sure that the schedu-

lable object with the maximum priority is running at any point of time. The

behaviour of the schedulable objects (or schedulables) can be specified by their

ReleaseParameters, SchedulingParameters and the MemoryParameters. The

ReleaseParameters specifies timing characteristics of the schedulable objects

42

3.2 RTSJ and its Support for Multiprocessors

Figure 3.3: Scheduling in RTSJ

e.g. the starting time of the schedulable and the type of schedulable i.e. peri-

odic, sporadic or aperiodic etc. The SchedulingParameters define the eligibility

criteria for selection (e.g. priority) of schedulable when the scheduler wants to

dispatch a new schedulable. ProcessingGroupParameters provide a mechanism

for cost enforcement for a group of schedulables.

The rest of this section discusses the RTSJ features that can be used to support

cc-NUMA systems. A number of new features have been accepted as part of the JSR-

282 where RTSJ was being extended for multiprocessors with the focus particularly

on SMPs. Here we consider some of the features that are a part of RTSJ 1.1 which

can be used to support cc-NUMA systems.

3.2.1 The AffinitySet Class

On a multiprocessor, any thread has the choice to run on a number of different

processors. Global scheduling and fully partitioned scheduling are the two main

scheduling policies that exist for thread scheduling on multiprocessors. In addition,

a number of hybrid approaches also exist which essentially combine the two. In Java,

43

Chapter 3: Existing Support for cc-NUMA Architectures

the int availableProcessors() method in java.lang.runtime provides the number of

available processors but no more support is provided in the API in this respect.

Therefore, in order to support these scheduling policies, a new AffinitySet class (as

shown in Figure 3.4) has been proposed for RTSJ 1.1. This new class associates real-

time threads and bound asynchronous event handlers to particular processors4. It

is assumed that each processor has its own logical queue and a schedulable object in

the ready state may be present on one or more queues in the system depending on its

affinity. Processor affinities could have been added to the existing release parameters,

however, in order to avoid major changes to the existing API, a new class has been

specified. AffinitySets in RTSJ can be divided in two different categories

• An array of pre-defined AffinitySets can be provided by the implementation

which can enforce a particular scheduling arrangement. A pre-defined affin-

ity set can contain one or more processors which can be used with methods

such as getHeapSoDefault, getJavaThreadDefault, getNoHeapSoDefault, getP-

GroupDefault to set defaults for Java threads and schedulable objects.

• AffinitySets can also be generated by the application by using the generate()

method. This allows the application to generate affinity sets at runtime which

are suited for that platform without compromising the portability of the ap-

plication. As it is possible that the OS will not allow global scheduling, no

application generated affinity sets can contain more than one processor.

The AffinitySet class enables schedulables to be scheduled by a range of multi-

processor scheduling policies (i.e. global, fully partitioned or mixed) if the policy is

supported by the OS. From the perspective of a NUMA system, global scheduling

on the entire multiprocessor might not be desirable because of the physical cluster-

ing of processors (with respect to memory). However, scheduling threads globally

on a NUMA node can be desirable for an application. In such a case, the pre-

defined affinity sets can be used to represent processors on a NUMA node leading

to schedulables being pinned down to a particular node.

4http://rtsj.pter.org/jsr282/Affinity/index.html

44

3.2 RTSJ and its Support for Multiprocessors

Figure 3.4: The AffinitySet Class

All threads in RTSJ are associated with an affinity set which is either set explic-

itly, or it is inherited from the parent or a default value has been set. The default

affinity sets returned by getHeapSoDefault, getJavaThreadDefault, getNoHeapSoDe-

fault, getPGroupDefault are used only if a thread cannot inherit affinity from the

parent, as in the following cases:

1. Java threads do not inherit affinity from schedulable objects.

2. Schedulable objects do not inherit affinity from Java threads.

3.2.2 The Physical Memory Framework

One of the most important extension to the Java platform made by the RTSJ is

the introduction of new memory regions (scoped and immortal memory areas). The

purpose of these memory areas is to prevent any kind of delays that can be caused

by the garbage collector. In addition, the specification also defines new classes

which enables the programmer the capability to access the physical memory and I/O

devices. Following are some of the scenarios where accessing the physical memory

45

Chapter 3: Existing Support for cc-NUMA Architectures

directly can be useful:

• Embedded systems are low in resources and have real time requirements. They

have very limited amount of memory that needs to be used efficiently, therefore,

they require low level access to the connected devices in order to use them more

efficiently.

• Demand paging is known to affect determinism strongly. Allocating directly

on the physical memory avoids the demand paging mechanism of the kernel,

as the physical memory already has been allocated.

• In addition, accessing the physical memory directly can help to avoid congested

shared busses and if there is a specialized device or memory e.g. if we have

very fast memory then we will want to allocate the most frequently used data

on it.

The RTSJ supports the creation of immortal and scoped memory areas directly

on the physical memory by providing ImmortalPhysicalMemory, LTPhysicalMemory

and VTPhysicalMemory classes. These memory areas maintain their characteristics

with the only difference that their backing store5 is created directly on the physical

memory by either specifying the location or the type of memory where they are to

be created. The RTSJ allows provides a PhysicalMemoryTypeFilter and a Physi-

calMemoryManager to enable programmer access to the physical address space.

Normally programmers have no idea about the underlying memory architecture

because the operating system hides all the complexity and shields the programmer

from any hardware related issues. This can result in inefficient usage of the hard-

ware resources which results in the higher memory access times. The overall effect

of this can be degradation in performance or, in case of real-time applications, non-

deterministic behaviour from the application. This can be avoided by making the

5The backing store is the memory which is represented by the MemoryArea object which would

otherwise not be visible to the Java code. The backing store can be created using malloc() etc. It

is important to note that each Java object in RTSJ will be associated with two memory areas: the

memory area where the the object is allocated and the backing store which the memory represented

by it.

46

3.2 RTSJ and its Support for Multiprocessors

application and the JVM aware of the underlying hardware resources. Therefore, a

representation of the hardware is required which can be presented to the program-

mers. The PhysicalMemoryTypeFilter can be used to represent the different types

of memory that are available to the application for use. According to the RTSJ,

any memory device that has a special characteristic should have an associated filter

to allow access to this memory. For a NUMA system, each node has a separate

non-overlapping range of memory addresses. The PhysicalMemoryTypeFilter can

be used to represent the memory of a node which can be used by the application to

understand the architecture of the system.

3.2.3 Processing Group Parameters (PGPs)

Processing group parameters is an optional feature of the RTSJ which groups to-

gether a number of schedulable objects and associates a cost for them for every

period P. Implementations that support processing group parameters are required

to make sure that the cost is not exceeded by the schedulables that are associated

with that processing group parameter. Processing group parameters require a group

budget to be allocated for them by the operating system. On multiprocessors, pro-

cessing group parameters can be implemented by the following approaches [Wellings

and Kim, 2008].

1. The processing group parameter can be allocated a budget on a single pro-

cessor. Although the processing group parameter might be able to execute

on other processors, it is only provided a guarantee on that processor. The

processing group parameter if it wants to use the budget will only be able

to use a single processor at any instant of time wasting all the computation

power that could otherwise be used. This approach can be seen in Figure 3.5.

2. The second case is when the processing parameter provides a single global

budget on multiple processors. All the threads in the processing group will

share the budget irrespective of the processor on which they are executing. The

budget can be used very efficiently, however, it is very difficult to implement

(see Figure 3.6).

47

Chapter 3: Existing Support for cc-NUMA Architectures

Figure 3.5: Capacity on a single processor

Figure 3.6: Single global capacity on multiple processor

48

3.2 RTSJ and its Support for Multiprocessors

PGP

ProcessorProcessor Processor

Capacity1 Capacity3Capacity2

Capacity1 = Capacity2 = Capacity3

Figure 3.7: Partitioned equal capacities on multiple processors

PGP

ProcessorProcessor Processor

Capacity1 Capacity3Capacity2

Capacity on each processor can be
different

Figure 3.8: Partitioned different capacities on multiple processors

3. The processing group parameter is allocated a number of budgets which are

fixed to specific processors. All the processors provide the same amount of

budget. This is very similar to the first approach where the budget was only

restricted to one processor (see Figure 3.7).

4. The processing group parameter is provided budgets on specific processor like

in the previous case, however, here the budget that each processor provides is

different (see Figure 3.8).

Due to the implementation challenges in detecting budget overruns in the case

of global scheduling in multiprocessors, it has been proposed for RTSJ-1.16 that

schedulables associated with a processing group parameters will only be able to

execute on the same processor.

6http://www.rtsj.org/docs/V1.1AlphaProg.html

49

Chapter 3: Existing Support for cc-NUMA Architectures

3.3 Supporting cc-NUMA Systems

In this section, a 4 node cc-NUMA system is presented as a case study to analyze

the existing support in the OS and the RTSJ. This system is a 16 core system based

on 4 AMD Opteron chips as shown in Figure 3.9. Some features of this system are

discussed below:

C3

C2

cH
T

XBAR

cHT H
T

SR
I

MCT

C1

C0

cH
T

XBAR

cHT

H
T

SR
I

MCT

H
T

XBAR

cHT cH
T

C1

C0

H
T

XBAR

cHT

cH
T

SR
I

MCT

I/O

I/O

I/O

DRAM DRAM

DRAM DRAM

N2 N3

N0 N1

Link

Link

Link Link Coherent
HyperTransport

I/O

NcHT
Link

 C0, C1, C2, C3 CPU Cores
cHT Coherent HyperTransport
HT HyperTransport
MCT Memory Controller
N0-3 Nodes
NcHT Non-coherent HyperTransport
SRI System Request Interface
XBAR Crossbar

C3

C2

C3

C2

C1

C0

C3

C2

SR
I

MCT

C1

C0

Figure 3.9: A 4 Node NUMA Architecture based on AMD Opteron

1. The system has four sockets, each socket filled by a quad-core AMD Opteron

chip. All four AMD Opterons are connected via the coherent HyperTransport

(cHT). The cHT is a high speed point to point link between the Opterons. In

50

3.3 Supporting cc-NUMA Systems

the rest of the thesis, each core will be referred as a processor and the Opteron

chip will be referred as a node.

2. The system has 4 nodes and a total of 16GB of DRAM memory. Each node

has an integrated memory controller and is connected to 4GB of DRAM which

is local to all the processors on that node. At boot time, all nodes locate their

local memory and map it onto a single physical global address space [AMD,

2003]. Usually the higher order bits of the physical address determine to which

node the address belongs. The physical address space (PAS) is not necessarily

contiguous i.e. there can be holes in it.

3. The cHT is responsible for keeping the caches coherent at node level. Generally

cache coherence is not scalable, therefore, cache coherency for large NUMA

systems may be available partially.

4. The latency of memory access depends on the location from where the memory

is being accessed. It is not necessary that all the nodes are directly connected

to each other; however there must be an indirect path that exists between the

nodes through other nodes. Figure 3.10 shows the memory hierarchy of a cc-

NUMA system. Although all processors will have the same view of memory,

the access time will depend on the location of the data in the hierarchy.

Figure 3.10: Memory Hierarchy of a NUMA System

5. In Figure 3.10, distance is measured as the number of hops from the processor

accessing the data to the memory bank where the data resides. In addition

51

Chapter 3: Existing Support for cc-NUMA Architectures

to different levels of memory, there are also multiple levels of caches (L1, L2

etc.) which affect the access timings. Interconnects on a chip are very fast

when compared to an off-chip memory access. Therefore, if allowed by the

cache coherency protocols, data fetched from caches connected to the other

processors can be faster than an off-chip memory access. The distances for

Figure 3.9 are given in Table 3.1.

Distances Memory(N0) Memory(N1) Memory(N2) Memory(N3)

Node0(N0) 1 2 2 3

Node1(N1) 2 1 3 2

Node2(N2) 2 3 1 2

Node3(N3) 3 2 2 1

Table 3.1: Distances based on bus accesses for Figure 3.9

The latency of memory accesses depends on the saturation (communication

traffic) of resources as well as the distance. [AMD, 2006] discusses in detail

how distances and saturation of resources affects the latency.

The ACPI specification [Corporation et al., 2005] defines a System Locality

Information Table (SLIT) to describe the distances between Localities. Local-

ities are considered to be SMP nodes and all processors, memory and devices

belonging to the node are part of the locality. SLIT stores the latency values

from one locality to another. The distance from a locality to itself is normalized

to 10 and the rest of the values are scaled based on the local value. Table 3.2

shows the distances for the reference architecture generated by Linux-2.6.27.

The generated values show diagonal values of 10, and all the rest as 20. How-

ever, distance between N0-N3 should not be the same as N0-N1. The reason

being for this is that the SLIT has not been setup properly and only shows

difference between local and remote memory (and the not the actual differ-

ence of latencies between nodes). For the same architecture we do show that

a difference in latencies does exist between nodes with distance=1 hop and

distance=2 hops (see Appendix A.3).

There are two points worth making about this example architecture:

52

3.3 Supporting cc-NUMA Systems

Distances Memory(N0) Memory(N1) Memory(N2) Memory(N3)

N0 10 20 20 20

N1 20 10 20 20

N2 20 20 10 20

N3 20 20 20 10

Table 3.2: System Locality Information Table for Figure 3.9

1. The architecture physically supports a coherent memory model. By this we

mean that the individual processors see the same physical memory because

the local caches are kept coherent.

2. There can be significant performances increases by ensuring that when cache

misses occur, all main memory accesses are local.

3.3.1 Representing the NUMA Architecture

During the booting process, the OS parses the SRAT and develops further APIs to

effectively represent this data. The SRAT for the architecture in Figure 3.9 is shown

in Table 3.3 and Table 3.4.

Table 3.3 represents information of the processors, the important information is

available in the third (Proximity Domain (PD)) and fourth column (APIC) of the

table. The APIC (Advanced Programmable Interrupt Controller) is the processor

number which corresponds to a PD which shows which node the processor belongs

to. The OS parses this table and finds there are 4 proximity domains (nodes) and

a total of 16 processors (0-15).

Table 3.4 represents information of the memory present in the system. It shows

there are 6 ranges of physical memory with the Base Address in the fourth column

and the Address Length in the fifth column. Each range belongs to a node which is

in the third column i.e. PD (Proximity Domain).

The following considers how we can use RTSJ to represent the architecture:

1. Representing the Processors – On a NUMA system, the implementation should

be able to support pre-defined affinity sets which contain processors corre-

53

Chapter 3: Existing Support for cc-NUMA Architectures

Subtable Length Proximity APIC Flags Reserved

Type (ST) Domain(PD)

00 10 00000000 00 00000001 00000000

00 10 00000000 01 00000001 00000000

00 10 00000000 02 00000001 00000000

00 10 00000000 03 00000001 00000000

00 10 00000001 04 00000001 00000000

00 10 00000001 05 00000001 00000000

00 10 00000001 06 00000001 00000000

00 10 00000001 07 00000001 00000000

00 10 00000002 08 00000001 00000000

00 10 00000002 09 00000001 00000000

00 10 00000002 0A 00000001 00000000

00 10 00000002 0B 00000001 00000000

00 10 00000003 0C 00000001 00000000

00 10 00000003 0D 00000001 00000000

00 10 00000003 0E 00000001 00000000

00 10 00000003 0F 00000001 00000000

Table 3.3: The System Resource Affinity Table (SRAT) for architecture in figure 3.9

showing 16 processors

ST Length PD Base Address Address Length Flags Res

01 28 00000000 0000000000000000 00000000000A0000 0..1 00..00

01 28 00000000 0000000000100000 00000000C7F00000 0..1 00..00

01 28 00000000 0000000100000000 0000000038000000 0..1 00..00

01 28 00000001 0000000138000000 0000000100000000 0..1 00..00

01 28 00000002 0000000238000000 0000000100000000 0..1 00..00

01 28 00000003 0000000338000000 0000000100000000 0..1 00..00

Table 3.4: The System Resource Affinity Table (SRAT) for architecture in figure 3.9

showing memory

54

3.3 Supporting cc-NUMA Systems

sponding to the processor distribution in the nodes. For the architecture pre-

sented in Figure 3.9, the following four pre-defined affinity sets should be

defined:

AffinitySet affinity[0]={0,1,2,3}

AffinitySet affinity[1]={4,5,6,7}

AffinitySet affinity[2]={8,9,10,11}

AffinitySet affinity[3]={12,13,14,15}

The RTSJ provides an interface to get default affinity sets for different schedu-

lable objects default affinity sets for threads (getPGroupDefault()), schedu-

lable objects using the heap (getHeapSoDefault()), NoHeapRealTimeThread

(NoHeapSODefault()), processing groups (getPGroupDefault()).

No such interface is provided for NUMA nodes which specifically returns affin-

ity sets of NUMA nodes. Without such an interface programmers can use the

AffinitySet.getPredefinedSets() to retrieve the affinity sets of the nodes of the

NUMA system. However, programmers need to have specific knowledge of the

architecture and implementation to correlate which affinity set belongs to a

node in the NUMA.

2. Representing the Memory – The memory of a NUMA node is to be represented

to allow specific access to a node memory. A PhysicalMemoryTypeFilter rep-

resents any memory type that has any special characteristics. A filter is like a

device driver which is either the responsibility of the device vendor or the JVM

to provide the filter for any particular type of memory. A memory belonging

to a particular node is different from conventional memory types because a

node memory has it’s properties only because of the configuration on which

it has been setup unlike the memory any other memory type or device which

has some inherent property which requires a particular filter in order to access

it. Therefore, it is the responsibility of the JVM on a NUMA system which

needs to provide filters for all the different nodes of the system depending on

how it has been configured. These filter make sure that the individual node

55

Chapter 3: Existing Support for cc-NUMA Architectures

memory is available for explicit allocation of objects. The memory type filter

will statically save the memory range of the node assuming that the mem-

ory range of each node will remain same during runtime. For the example

system, we need to represent memory devices on all nodes. Therefore, we

need four filters one for each node to provide access to all the memory in the

system. The following code snippet shows four filters being created where

NodeMemory is a type that implements the PhysicalMemoryTypeFilter and

the PhysicalMemoryName interfaces:

// This code needs to be implemented the JVM.

// If not then the programmer will have to implement

// this for access to individual memory of a node.

long base [][] = new long[nodes][maxRanges];

long sizes [][] = new long[nodes][maxRanges];

base [0][0]= 0; // equal to 0000000000000000

size [0][0]= 655360; // equal to 000000000010000

base [0][1]= 1048576; // equal to 000000000100000

size [0][1]= 3354394624; // equal to 00000000 C7F00000

base [0][2]= 4294967296; // equal to 000000100000000

size [0][2]= 939524096; // equal to 0000000038000000

base [1][0]= 5234491392 // equal to 0000000138000000

size [1][0]= 4294967296; // equal to 000000100000000

base [2][0]= 9529458688 // equal to 0000000238000000

size [2][0]= 4294967296; // equal to 000000100000000

base [3][0]= 13824425984 // equal to 0000000338000000

size [3][0]= 4294967296; // equal to 000000100000000

NodeMemory memory [0]=

new NodeMemory(base[0],size [0]);

NodeMemory memory [1]= new NodeMemory(base[1],size [1]);

NodeMemory memory [2]= new NodeMemory(base[2],size [2]);

NodeMemory memory [3]= new NodeMemory(base[3],size [3]);

// we need to create four PhysicalMemoryName objects

java.lang.Object nodememory0=new java.lang.Object ();

java.lang.Object nodememory1=new java.lang.Object ();

java.lang.Object nodememory2=new java.lang.Object ();

56

3.3 Supporting cc-NUMA Systems

java.lang.Object nodememory3=new java.lang.Object ();

PhysicalMemoryManager.registerFilter(nodememory0 ,memory [0]);

PhysicalMemoryManager.registerFilter(nodememory1 ,memory [1]);

PhysicalMemoryManager.registerFilter(nodememory2 ,memory [2]);

PhysicalMemoryManager.registerFilter(nodememory3 ,memory [3]);

The problem with this code, in fact with the physical memory model is that

memory has to be accessed through physical addresses only and RTSJ requires

physical access to all the address space. This might be acceptable in an em-

bedded system where all the physical memory be directly accessible from user

space, however, this is an extreme scenario for the stability of any general pur-

pose OS. In Linux on x86 architecture, the /dev/mem provides access to the

physical address space but limits it to only the I/O space. A patch7 provides

access to all physical address space, however, it is supposed to be used for the

RTSJ compliance test, accessing the physical memory might cause the system

to crash.

3.3.2 Pinning Schedulable Objects to Processors

The AffinitySet class discussed in Section 3.2.1 allows programmers to pin schedula-

ble objects to specific processors. Pre-defined affinity sets corresponding to proces-

sors of a NUMA node can be used to allocate threads to processors within a NUMA

node. The following code shows setting affinity of a SO on a NUMA node:

AffinitySet [] set1 = new

AffinitySet[AffinitySet.getPredefinedAffinitySetCount ()];

set1=AffinitySet.getPredefinedAffinitySets ();

// If SO is a schedulable object and we know that set1 [0] is

// a NUMA node then the affinity to the node can be set as:

AffinitySet.set(set1[0], SO);

Setting the affinity to all the processors on a NUMA node will allow the schedu-

lable object to be globally scheduled on these processors, but only if the OS provides

7http://lwn.net/Articles/184783/

57

Chapter 3: Existing Support for cc-NUMA Architectures

multiprocessor global scheduling.

3.3.3 Allocating Objects on Specific Nodes

The RTSJ has a number of different memory areas on which an object can be

allocated. These memory areas differ from each other based on their lifetimes and

how memory is freed from objects that are no longer active. The following considers

how locality can be ensured with the different RTSJ memory areas:

• Immortal Memory Area – A single immortal memory instance exists in a

RTJVM which is shared by all schedulable objects. This instance is created

during the initialization phase of the RTJVM and throughout the life time of

the application it may stay on the same memory address depending on how it

has been implemented. This does not allow any allocations to be directed on

specific nodes, however, a physical immortal memory area can be created on

a specific node which can be used to allocate objects on that particular node.

• Scoped Memory – Like the physical immortal memory area, the RTSJ physical

memory framework also provides physical scoped memory areas e.g. the LT-

PhysicalMemory and VTPhysicalMemory. These memory areas can be used

to allocate objects on scoped memory areas on a specific node in a NUMA

system.

Physical memory areas can be created on a node by passing the type of a memory

area. Figure 3.11 shows a sequence diagram to create a LTPhysicalMemory, which

shows the following steps:

1. The constructor of the LTPhysicalMemory is called as shown in the following

snippet:

LTPhysicalMemory ltm= new LTPhysicalMemory(nodememory0 , size);

2. The constructor of LTPhysicalMemory then asks the manager create a physical

memory area with the name nodememory0 with the required size.

58

3.3 Supporting cc-NUMA Systems

3. The manager then finds the memory type filter for the memory name and then

asks the filter for a physical memory region with the required size. The filter

returns the physical memory address that is free with the required size.

4. The manager then asks the filter to find a virtual address best suited for the

physical memory. The filter finds it and returns it back.

5. The manager now asks the filter to prepare the memory by initializing the

physical memory by allocating it a virtual address. After the initialization the

memory area is passed backed to the constructor.

It is important to note that the reference of nodememory0 is not visible to the

application through the specification. Either the runtime or the programmer need to

implement it. In theory, programmers can create a filter however, it is very difficult

for the programmers because filters are very low level which require understanding

of the kernel, Java runtime and the memory subsystem.

:Application

1. new LTPhysicalMemory(nodememory0, size)

:LTPhysicalMemory

2.private_interface(nodememory0,size)

Memory[0]
:MemoryType

Filter
PhysicalMemory

Manager

3.find(from,size)

RTJVM

4. vfind(from,size)

5. initialize(...)

Figure 3.11: Creating an LTPhysicalMemory area

59

Chapter 3: Existing Support for cc-NUMA Architectures

3.4 Limitations

Using existing features in the RTSJ such as the AffinitySets and the PhysicalMem-

oryTypeFilter to support open applications on a NUMA system has the following

limitations:

• Limited Support – Existing features do not support all the requirements de-

scribed in Section 2.4. Static allocation is supported where, threads and ob-

jects can be allocated individually on separate nodes to provide locality. How-

ever, it requires a lot of effort from the programmer and for larger NUMA

system or a complex application, it becomes very complex to ensure locality

because affinity has to be set for every thread and the programmer has to keep

track where other related objects are allocated.

It can been seen that schedulable objects can be grouped together in process-

ing groups parameters, however, on multiprocessors threads associated with

a PGP will execute sequentially undermining the parallelism available to the

application. These is no facility to allow multiple processing groups (PG) to

be associated with a single schedulable object.

The RTSJ does not provide any design patterns which will enable dynamic

mapping of applications on the platform. Applications have requirements for

usage of resources and resources in a NUMA system are clustered together in

NUMA nodes. Though resources from different nodes can be used by a thread

group, however, to avoid non-deterministic behaviour, a thread group must be

mapped onto a single node. This mapping then in essence should be based

on the resource requirement of the thread group and the RTJVM needs to

provide guarantees to thread groups. No such support exists in the RTSJ at

the moment.

• Accessing the Physical Memory Model – The physical memory framework

allows programmers to have access to all the physical address space. In an

operating system such as Linux, there are concerns over the security of the

overall system. Although the RTSJ comes with a security manager which

60

3.4 Limitations

should make sure that the applications do not misbehave, however, potentially

there is a danger of messing up the system because the existing RTSJ does

not say which addresses are safe to access. Accessing the physical memory

directly from an application can create an arbitration problem when more

than one application accesses the physical memory directly. Within a single

application, the physical memory manager keeps a record of the addresses that

have already been used. No such protection is available to isolate memory from

other applications.

• Portability – The architecture of the system is hard coded in the application.

Code is not portable across platforms and porting the application will require

significant change to the source in order to port for some other architecture.

• Code Locality – No support for the locality of code exists at the moment.

Consider the case where the thread is executing on one processor and data is

also local to it. However, the method area, which contains the code and the

static variables may be on a remote area.

• Local Heap – While existing RTSJ features allow creation of Immortal and

Scoped memory areas on NUMA nodes, no such support exists for the heap.

Normally the physical location of the heap is not known on a NUMA archi-

tecture, however, the RTJVM can be implemented to allocate the heap by

distributing it across the NUMA nodes [Tikir and Hollingsworth, 2005b]. In

such a configuration the heap will be divided such that all nodes will have a lo-

cal heap, so objects can be placed locally for all processors. Even if local heaps

can be ensured for all processors, while performing GC and compaction the

objects may move around. Therefore, the garbage collector should be aware

of the boundaries of the NUMA nodes and should respect these boundaries

when moving the objects. In addition, the application might want to allocate

objects on a specific remote heap. Based on these requirements there is a

need to extend the RTSJ physical memory types to include physical heaps.

This will not only allow the programmer to partition the heap between the

memory banks but it will enable the programmer to target specific heap for

61

Chapter 3: Existing Support for cc-NUMA Architectures

Figure 3.12: Scope stack for a ThreadGroup

the allocation of objects.

• Thread Grouping – Thread placement by grouping them together is an easier

task for programmers and it is especially beneficial when groups are allowed

to be placed dynamically on a node. In Java, grouping of threads is provided

by the ThreadGroup class. A thread group contains references to threads or

thread groups, hence, thread groups are structured as a tree. In the case of

RTSJ, thread groups violate the memory assignment rule (see Figure 3.12)

e.g. thread groups need to reference any real-time threads which are created

on scoped memory areas, however, no references are allowed from a heap or an

immortal memory area to a scoped memory area. Therefore, real time threads

cannot be a part of any thread group and the Thread.getThreadGroup() returns

null.

Processing group parameters is another way where a number of threads can

be associated to the same object and a group budget can be allocated to the

group of threads but again it will make threads sequential on a multiprocessor.

3.5 Summary

This chapter summarized the physical memory model, the affinity set class and the

processing group parameters which can be used to support open applications on

a cc-NUMA system. However, a number of limitations were made in the existing

specification which have been listed at the end of the chapter. The remainder of the

62

3.5 Summary

thesis sets out to remove these limitations.

63

Chapter 4

Locality Model

In the previous chapter, we analyzed existing features of the RTSJ to deploy real-

time applications on a cc-NUMA system. It was concluded that the existing features

available in the specification are not sufficient, and a number of extensions are re-

quired to design and deploy real-time Java applications while maintaining portability

and determinism. The following requirements are outlined for this purpose:

• R1 – The existing support for representing the architecture is very limited.

The previous chapter showed that effective abstractions are needed to define

the architecture which will define individual components in the systems and

define the topology of their interconnections.

• R2 – Resources in the NUMA system are grouped together into clusters (or

a UMA sub-system). These clusters can only be used effectively if the ap-

plication is small enough to fit onto one UMA sub-system, otherwise, the

application needs to be modular/partitioned (or based on components) such

that there are no strong dependencies among these modules. New abstractions

are needed which can group together threads and objects and are compliant

with the RTSJ.

• R3 – Temporal isolation needs to be provided for thread groups/applications.

This will enable them to execute in a timely manner even when the platform

is being shared with other scheduling entities (tasks, components and appli-

cations).

65

Chapter 4: Locality Model

• R4 – In case of embedded real-time systems, programmers would like to map

their application/thread group statically on a cc-NUMA system. Support for

such allocations should be provided.

• R5 – For performance portability of applications across platforms, implicitly

mapping of thread groups on resources needs to be supported.

• R6 – The physical memory type filter is a good abstraction to provide ex-

plicit access to a node memory. However, using the physical memory directly

jeopardizes the security of the system and moreover it is not widely available

creating potential implementation issues. Therefore, explicit access to node

memory needs to be provided by APIs provided by the OS.

Based on these requirements, a locality model is presented in this chapter which

defines new abstractions which can be categorized as following:

1. Architectural model – makes the JVM NUMA aware and provides an API for

programmers to have more visibility.

2. Application model – allows partitioning and allocation of the application max-

imizing locality.

3. Resource reservation model – describes how resources can be guaranteed for

the thread groups.

The chapter is structured in a number of sections, Section 4.1 discusses the

architectural model which is used to represent the architecture. Section 4.2 discusses

the application model followed by Section 4.3 discussing the resource reservation

model. Section 4.4 is the last section which summarizes the locality model presented

in the chapter.

4.1 Architectural Model

The goal of the architectural model is to make the application and the JVM aware

of the hardware architecture. This requires the runtime to be able to discover the

66

4.1 Architectural Model

hardware components and their topology in the system and then provide an interface

for the application.

The memory sub-system in a NUMA sub-system behaves differently at different

levels, the following definitions provide an insight into memory properties in NUMA

and different sub-systems:

• Processor: A processing element that also has an associated cache. We assume

all the processors within a system will have the same instruction set.

• Memory: Memory that is connected to one or more processors through a bus,

and is directly addressable by all processors.

• Device: I/O devices which are connected to one or more processors through a

bus.

• Multicore Processor: A chip with more than one processing core. These pro-

cessing cores share a cache.

• Uniform Memory Access (UMA) System: A system that ensures uniform main

memory access time for all processors(one or more). Processors usually share

a single bus to access memory and devices. Processors, memory and devices

are the basic building blocks of a UMA system. Symmetric Multiprocessors

(SMPs) are a type of UMA system which have two or more processors.

• Cache Coherent NUMA (cc-NUMA) System: A multiprocessor system where

processors have different latencies when accessing the same memory. A single

address space exists and caches are kept coherent. Usually a group of UMA

subsystems compose a cc-NUMA system.

• NUMA System: A multiprocessor system where processors have different la-

tencies when accessing the same memory, but the caches are not coherent as

they were in the case of a cc-NUMA system. Still a single address space exists

in NUMA systems. The usual building blocks of a NUMA system are UMA

and cc-NUMA subsystems.

67

Chapter 4: Locality Model

As it can be seen that at different levels in the NUMA system there are different

characteristics of memory e.g. at the cc-NUMA level we have cache-coherence and

a single address space but we do not have uniform access time. Therefore we use

different abstractions which will guarantee the type of memory that is provided.

These abstractions can be categorized as following:

1. Abstractions that are used for basic components i.e. processors, memory and

devices.

2. Abstractions that are used to represent multi-processor systems that are con-

stituted from the basic components.

3. An interface class to provide access to the architecture representation.

The basic hardware components of every system are considered to be processor,

memory and devices. These components are then connected by busses and then

interconnected to form a multiprocessor system. Figure 4.1 shows the classes that

are used to represent the different hardware components of the system. In the rest

of this section we will define all these classes in detail. It is assumed that the details

of the architecture are available to the application at runtime either in the form of

support from the operating system [Broquedis et al., 2010] or as a configuration file

provided by the underlying platform to help the RTJVM find all the components of

the system.

4.1.1 Abstractions for Basic Architectural Components

A number of new abstractions that represent the basic components of a NUMA

systems. These components include the processors, memory and devices. In the

model each of these components have been given a separate class that can be shown

in Figure 4.1.

4.1.1.1 The Abstract Component Class

The Component class represents a basic building block of the NUMA sub-system.

It is extended by classes Processor, Memory and Device to be able to create the

68

4.1 Architectural Model

Figure 4.1: Abstractions for Architecture Representation

basic building blocks of the systems.

Class

public abstract class Component

Methods

int distance(Component toComponent)

Returns distance from this component to another component.

public Locale getLocale()

Returns the Locale of the component.

Table 4.1: The Component Class

Each component has a distance to other components, this distance is based on

the System Locality Information Table (SLIT). This is a standard table that has

been introduced by the ACPI specification and has been discussed in detail in the

previous chapter in Section 3.3. It is worth noting here that distance is a package

private attribute which can be used only by the runtime for mapping optimizations

and is not visible to the programmers.

4.1.1.2 The Processor Class

Instances of the Processor class represents a logical processor which can have its own

cache. The class provides support for different types of processors by introducing

69

Chapter 4: Locality Model

the ProcessorType, which is a tagging interface that is used to identify the types of

processors and is used in the method getType(). Each processor can have a number

of Cache objects which can either be shared or private to the processor.

Class

public class Processor extends Component

Methods

public ProcessorType getType()

Returns the type of the Processor.

public Cache[] getCaches()

Returns an array of the caches belonging to the Processor.

public AffinitySet getAffinitySet()

Returns the AffinitySet for this Processor.

Table 4.2: The Processor Class

In this thesis, we assume that all the processors will be of the same type. Later

this work can be extended for more heterogeneous architectures (see future work in

Chapter 7). The ProcessorType interface is provided to enable different processors

types to be defined.

Interface

public interface ProcessorType

Table 4.3: The ProcessorType Interface

The cache belonging to each processor is represented separately by a Cache class.

This class is shown in the above table which provides more information on the type,

size and level of the cache. It also provides a getProcessors() method which returns

all the processors which are attached to the Cache. In case of a shared cache an

array of Processors will be returned.

70

4.1 Architectural Model

Class

public class Cache

Methods

public int getCacheType()

Returns 0 = instruction, 1 = data and 2 = Associative.

public int getLevel()

Returns the level of the cache 1 = L1, 2=L2 etc.

public long getSize()

Returns the size of the cache in bytes.

public Processor [] getProcessors()

Returns Processors attached to this cache.

Table 4.4: The Cache Class

4.1.1.3 The Memory Class

Instances of the memory class represent a memory device. A memory in RTSJ is any

memory where the programmer can create a memory area. This memory area then

allows the programmers to allocate objects. The following class is used to instantiate

all memory devices which allow the programmer to create a memory area.

Class

public class Memory extends Component

Methods

public PhysicalMemoryName getType()

Returns the name of the memory. The name is the same identi-

fier used in the physical memory model.

public long getBase()

Returns the starting address of the memory if known.

public long getSize()

Returns the size of the memory in bytes.

Table 4.5: The Memory Class

The RTSJ already has a physical memory framework (discussed in chapter 3)

which registers all memory devices. This class will instantiate all memory devices

registered in the physical memory framework and the memory on each node of the

NUMA system. The model enables programmers to find local memory for each

71

Chapter 4: Locality Model

processor and vice versa.

4.1.1.4 The Device Class

Instances of the device class represent a device. It integrates with RawMemory

classes to provide access to the device. The API can be used to find local processors

to each device.

Class

public class Device extends Component

Methods

public RawMemory-

Name

getType()

Returns the name of the device. The name is the same identifier

used in the raw memory classes.

Table 4.6: The Device Class

4.1.2 Abstractions for Architecture Representation

These abstractions represent a multiprocessor system which is a combination of

processors, memory and devices. The purpose of these abstractions is to represent

the topology of the system. The model does not use any interconnects or busses

to show the relationship between basic hardware components, rather, a hierarchical

model is used where the memory at each level provides different characteristics.

4.1.2.1 Location

Location is a new RTSJ programming abstraction that represents a locality in the

NUMA system. It is made up of processors, memory and devices which the runtime

provides to the programmer.

72

4.1 Architectural Model

Class

public abstract class Location

Methods

public Processor[] getProcessors()

Returns processors in the current Location.

public Memory[] getMemory()

Returns memory in the current Location.

public Device[] getDevices()

Returns devices in the current Location.

Table 4.7: The abstract Location Class

4.1.2.2 The Locale Class

A locale is a programming abstraction that represents a UMA subsystem. It guar-

antees the application of having uniform access time when accessing main memory,

cache coherence and a single address space.

Class

public class Locale extends Location

Methods

public Neighbourhood getNeighbourhood()

Returns the Neighbourhood to which this Locale belongs.

public District getDistrict()

Returns the District to which this Locale belongs.

public AffinitySet getAffinitySet()

Returns the AffinitySet for this Locale.

Table 4.8: The Locale Class

4.1.2.3 The Neighbourhood Class

A neighbourhood is an abstraction that represents a cc-NUMA system. It guarantees

the application of having cache coherence as well as a single address space but it

does not guarantee uniform access time to all the main memory.

73

Chapter 4: Locality Model

Class

public class Neighbourhood extends Location

Methods

public Locale[] getLocales()

Returns an array of Locales in the Neighbourhood.

public District getDistrict()

Returns the District to which this Neighbourhood belongs.

public AffinitySet getAffinitySet()

Returns the AffinitySet for this Neighbourhood.

Table 4.9: The Neighbourhood Class

4.1.2.4 The District Class

A district is an abstraction that represents a NUMA system. It guarantees that a

single address space will be present for execution, however it does not make any

guarantees for cache coherence or uniform access times. The non-availability of

cache coherence makes it unsafe to allow programs to execute within a district.

However, districts do enable us to obtain the neighbourhoods of locales which can

be used to host RTJVMs and execution sites. A district is composed of one or more

neighbourhoods.

Class

public class District extends Location

Methods

public Neighbourhood[] getNeighbourhoods()

Returns an array of Neighbourhoods in the District.

public Locale[] getLocales()

Returns an array of Locales in the District.

Table 4.10: The District Class

4.1.3 Interface to the Architecture

The Platform class is a static class which provides an interface to the whole archi-

tecture. The architecture is build during the initialization of the RTJVM using the

buildPlatform() method. This is a package private method and we will use it only

74

4.1 Architectural Model

before the application starts. However, for dynamic architectures this method can

be used on an event a new hardware component has been added. All methods in

the Platform class are static and can be used by the application as an interface to

the architecture.

Class

public final class Platform

Methods

static void buildPlatform()

Builds the architecture representation.

public static District getDistrict()

Returns the singleton District reference.

public static Neighbourhood[] getNeighbourhoods()

Returns an array of Neighbourhoods in the District.

public static Locale[] getLocales()

Returns an array of Locales in the District.

public static Processor[] getProcessors()

Returns an array of all processors in the District.

public static Memory[] getMemory()

Returns an array of all memory types in the District.

public static Device[] getDevices()

Returns an array of all the devices in the District.

Table 4.11: The Platform Class

4.1.4 Discussion

In this section, an architecture representation model was presented. The objectives

of this model are as following:

• Enabling the programmers to query about the system.

• Making the RTSJ run time platform NUMA-aware.

The architectural model provides a portable way to represent the topology of

the NUMA system. It is also compatible with RTSJ physical memory framework

allowing programmers and the Raw Memory model. By allowing the retrieval the

75

Chapter 4: Locality Model

memory and devices using the getMemory() and getDevices() methods in the Loca-

tion classes, the model provides an interface for programmers to physically allocate

memory and access device registers. In the rest of the chapter, support is provided

to build a runtime which is NUMA aware. Implementation details are provided in

Chapter 5.

As an example of the architecture model, the cc-NUMA system that was pre-

sented in Section 3.9 is represented. It consists of 4 UMA nodes, each then further

contains 4 processors and a memory. The corresponding architecture is built by the

JVM which is presented in Figure 4.2.

Figure 4.2: System Representation at the JVM level

76

4.2 Application Model

4.2 Application Model

This section discusses how computations of an application are partitioned into

groups of threads. These groups can be then mapped onto a virtual resource hosted

on UMA sub-system. The section introduces the following new abstractions:

• ExecutionSite

• Place

• Locality

ExecutionSite is a new abstraction which allows the programmer to create real-

time threads and memory areas. The resources for these threads and memory areas

will be provided by the Locality class which handles the creation and mapping of the

ExecutionSite. A Place represents a virtual resource which hosts an ExecutionSite.

In addition to the new abstractions, the section also discusses the following:

• Conformance to the RTSJ memory assignment rules

• Local Immortal and Heap memory areas

• Executing existing RTSJ applications

4.2.1 ExecutionSite: Abstraction for Controlling Execution

ch4:classES) The execution site is an abstraction which is designed to minimize

remote accesses on a NUMA system. It provides factory methods to create thread-

s/schedulables and memory areas. Resources can be guaranteed to an ExecutionSite

with PartitionedReservations (see Section 4.3). It is the responsibility of the pro-

grammers to identify and distribute closely related threads in an ExecutionSite. The

following requirements exist for the mapping of an ExecutionSite:

1. a single address space

2. cache coherence

3. uniform main memory access

77

Chapter 4: Locality Model

The mapping makes sure that they are placed local to each other and avoid any

delays caused due to the NUMA architecture. Execution sites support composability

at two different levels, first the execution site is composed of a number of schedulable

objects and secondly, a number of execution sites combine together to form a real-

time Java application. In the model, the only schedulable objects (in RTSJ) that are

supported are real-time threads. The model is trivially extendable to asynchronous

and bound asynchronous event handlers.

Class

public class ExecutionSite

Fields

SchedulingParameters priority

Methods

public Thread createJavaThread(Runnable logic)

Creates a Java Thread on this ExecutionSite.

public RealtimeThread createRealtimeThread(SchedulingParameters scheduling, Re-

leaseParameters release, MemoryParameters memory, Memor-

yArea area, Runnable logic)

Creates a RealtimeThread on this ExecutionSite.

public NoHeapReal-

timeThread

createNoHeapRealtimeThread(SchedulingParameters

scheduling, ReleaseParameters release, MemoryParameters

memory, MemoryArea area, Runnable logic)

Creates a NoHeapRealtimeThread on this ExecutionSite.

public RealtimeThread createRealtimeThreadIfFeasible(SchedulingParameters

scheduling, ReleaseParameters release, MemoryParameters

memory, MemoryArea area, Runnable logic)

First performs a feasibility analysis for the ExecutionSite using

the parameters of the new RTT. Then creates a RealtimeThread

in the current ExecutionSite if it is feasible. Returns null if not

feasible.

public NoHeapReal-

timeThread

createNoHeapRealtimeThreadIfFeasible (SchedulingPa-

rameters scheduling, ReleaseParameters release, MemoryParam-

eters memory, MemoryArea area, Runnable logic)

Same as above but for the NoHeapRealtimeThread.

public MemoryArea createMemoryArea(int MemoryAreaType, long size)

78

4.2 Application Model

Methods

Creates a MemoryArea in the current Location. Memor-

yAreaType tells which MemoryArea to create. MemoryAreaType

= 0 LTMemory, 1 VTMemory, 2 LTPinnableMemory and 3 VT-

PinnableMemory.

public MemoryArea createMemoryArea(int MemoryAreaType, long size, Runnable

logic)

Same as above but also passes logic which will be executed in the

newly created MemoryArea.

public AffinitySet getAffinitySet()

Returns the affinity set for this ExecutionSite.

public HeapPhysicalMem-

ory

getHeap()

Returns the physical heap memory for this ExecutionSite.

public ImmortalPhysi-

calMemory

getImmortal()

Returns the physical immortal memory for this ExecutionSite.

public PartitionedReser-

vation

getReservation()

Returns the reservation for this ExecutionSite.

public MemoryParame-

ters

getMemoryParameters()

Returns the memory parameters for this ExecutionSite.

public boolean guarantee(PartitionedReservation reserve)

Returns true if the platform accepts to provide the requested guar-

antees.

public boolean destroy()

Returns true if the platform accepts to remove any guarantees

allocated to this execution site.

Table 4.12: The ExecutionSite Class

The execution site is a cluster of threads and objects kept together to provide

locality. The reason why a new abstraction was proposed instead of simply using

the processing group parameter was that the execution site is not only a group of

threads but it is virtually a stripped down version of a JVM which is capable of

executing a RT-Java program. An execution site is complete with its scheduler,

79

Chapter 4: Locality Model

memory areas and group of threads.

The methods provided in the ExecutionSite class can be divided into following

four types:

4.2.1.1 Threads/Schedulables Instantiation

Creating a thread in an execution site means that the thread will be executing on

the processors on which the execution site is allocated. The factory method sets the

affinity of the thread/schedulable to the affinity of the ExecutionSite and attaches

it to the reservations of the ExecutionSite.

4.2.1.2 Memory Areas Instantiations

Execution sites should be able to provide local memory areas to enable threads to

allocate objects on the same node where they reside. There are two types of memory

areas that are used by the programmers that should be local to the ExecutionSite:

1. Memory areas that are created by the JVM at startup and that remain alive

throughout the life of the application. These memory areas include the Heap

and Immortal memory area.

2. Memory areas that are created by the programmer. These memory areas

include the scoped memory areas.

The execution site provides factory methods to create scoped memory areas.

When a scoped memory area is being created using the factory, then the backing

store is kept local to the execution site.

4.2.1.3 Retrieving Local Heap and Immortal

The runtime should make sure that a local immortal and local heap memory is cre-

ated on every node of the cc-NUMA system. The method ExecutionSite.getHeap()

returns the reference to the local heap and similarly ExecutionSite.getImmortal()

method returns the local immortal memory area. Each execution site is given a

limit on memory usage which cannot be exceeded. Objects allocated inside the lo-

cal memory area should be globally accessible in the application (only if the accessor

80

4.2 Application Model

has the reference). The scope stack treats all local heaps and immortals as a single

heap or immortal entity. This essentially means that if the object is placed on heap,

the memory assignment rules do not care which local heap it exists on. Since ob-

jects can be referenced across individual heaps and immortals, there should be no

problem of having a single heap and immortal on the scope stack. More details can

be found in Section 4.2.4.

4.2.1.4 Basic Resource Reservation Operations

An ExecutionSite can be guaranteed a set of resources. This reservation provides

temporal guarantees to the ExecutionSite. Resource reservations have been dis-

cussed in detail in Section 4.3.

The method getReservation() can be used to check if the execution site has been

guaranteed resources or not. If it returns null, then the platform does not provide

any guarantees. In case the programmer wants to change the existing guarantees of

the execution site, guarantee(...). This method will return true if the platform does

indeed allocate it the required resources and false if the platform is unable to do so.

The destroy() method can be called for releasing any guarantees that have been

made by the scheduler for the execution sites.

4.2.2 Place: A Logical Location

Place is a virtual resource which is created when the application is instantiated.

This class is not visible to the programmers and provides resources required by the

ExecutionSite.

After building the representation of the architecture, a Place is created on each

Locale. Each Place is given temporal and spatial guarantees on a Locale which are

initialized with default values. These guarantees can be renegotiated with the OS

at runtime.

81

Chapter 4: Locality Model

Class

class Place

Constructor

Place (Locale local, long heapSize, long immortalSize, RelativeTime[] defaultbudget,

RelativeTime[] defaultperiod, int numProcessors)

Methods

PhysicalHeap getHeap()

Returns the heap which is local to this Place.

PhysicalImmortalMemory getImmortal()

Returns the Immortal memory which is local to this Place.

ClusterContract getContract()

Returns the contract which is allocated to this Place.

ClusterContract setContract(ClusterContract contract)

Sets the contract for this Place.

boolean setHeapSize(long size)

Sets the size of the heap memory on this Place.

boolean setImmortalSize(long size)

Sets the size of the immortal memory on this Place.

boolean setBackingStoreSize(long size)

Sets the size of the backing store for scoped memory areas on this

Place.

Locale getLocale()

Returns the Locale hosting the Place.

ExecutionSite [] getExecutionSites()

Returns the ExecutionsSites mapped on this Place.

boolean addExecutionSite(ExecutionSite site)

Maps a new ExecutionSite on this Place.

Table 4.13: The Place Class

The temporal guarantees are based on a ClusterContract (see section 4.3) which

consists of a budget and period on each processor on the node.

It is allocated a local heap and an immortal memory area which can be later

used by all ExecutionSites which are hosted on this Place. The Place class provides

two package private methods getHeap() and getImmortal(). Each Place has a local

heap and a local immortal memory area that is shared by all the execution sites

82

4.2 Application Model

(as shown in Figure 4.3). When the execution sites are mapped on a Place, each

execution site provides an object of memory parameters which specify the memory

requirements of the execution site.

One or more execution sites can be mapped on to a Place which allow the

programmer to create real-time threads and memory areas. The Place keeps a

reference to all the execution sites that are mapped onto the locale and it serves as

a resource manager for each execution site as it keeps a track of the guarantees that

are provided to them.

4.2.3 Locality : Allocating ExecutionSite

This class acts like an interface between the ExecutionSites and the Locales and

provides the necessary mapping between them during the allocation of Execution-

Sites. The initialize(...) builds the Places on all Locales before the application

starts executing.

The execution site can be created by using a number of factory methods in the

Locality class, where all the factory methods accept a locale from the programmer.

This is used as a hint for the allocation process of each locale. This does not

break the portability of the application because programmers cannot create locales

themselves and the only reference that they can get is from the Platform class or the

Locality class. Guarantees are only provided if the locale on which the execution site

is being mapped has enough resources. In case null is passed as a parameter for the

locale then it is upto the runtime to allocate the execution site on an appropriate

locale. This selection is made on the basis of available resources on a Place and the

requirements of each Execution Site.

Class

public final class Locality

Methods

static boolean initialize(long initialHeapSizes, long initialImmortalSizes, Rel-

ativeTime defaultbudget[], RelativeTime defaultPeriod[], int

numProcessors)

Returns true if virtual resources are build.

public static boolean isLocalityModelSupported()

83

Chapter 4: Locality Model

Methods

Returns true if the current runtime supports the Locality model

and false otherwise.

public static Locale getLocale(ExecutionSite site)

Returns the Locale on which the site is mapped onto.

public static Neighbour-

hood

getCurrentNeighbourhood()

Returns the Neighbourhood which is hosting this JVM.

public static Execution-

Site

createExecutionSites(Locale smp)

Returns an ExecutionSite. Takes smp as a parameter which allows

the JVM to map the executionSite on that locale. In case of null,

the RTJVM can map the execution site on any of the locales.

public static Execution-

Site

createExecutionSites(Locale smp,int numProcessors)

Returns an ExecutionSite. Takes smp as a parameter which allows

the JVM to map the ExecutionSite on that locale. In case of null,

the RTJVM can map the execution site on any of the locales. Also

accepts the minimum parallelism required by the ExecutionSite as

an numProcessors. This factory tries to create an ExecutionSite

with a default budget.

public static Execution-

Site

createExecutionSites(Locale smp, RelativeTime[] budget, Rel-

ativeTime[] period, int numProcessors, MemoryParameters mem-

oryreq)

Returns an ExecutionSite. Takes smp as a parameter which allows

the JVM to map the executionSite on that locale. In case of null,

the RTJVM can map the execution site on any of the locales.

Takes budget, period and numProcessors to request a Reservation.

Also requests for memoryreq. Creates the ExecutionSite with or

without the guarantees.

public static Execution-

Site

createExecutionSitesIfFeasible(Locale smp, RelativeTime[]

budget, RelativeTime[] period, int numProcessors, MemoryPa-

rameters memoryreq)

Same as above but it is created only if feasible.

public static Execution-

Site[]

getExecutionSites(Locale loc)

Returns execution sites in the Locale loc.

84

4.2 Application Model

Methods

static Place [] getPlaces()

Returns all the Places hosted on the platform. Used only by the

implementation.

static Place getPlace(Locale loc)

Returns the Places hosted on the Locale loc. Used only by the

implementation.

Table 4.14: The final Locality Class

4.2.4 Local ImmortalMemory and Local Heap

Figure 4.3 shows the arrangement of the memory areas in the Locality model, where

each Place has a local heap, local immortal memory area and local backing store

for the scoped memory areas. Execution sites mapped onto a particular Locale

share the local heap and immortal memory areas provided by the place. the Mem-

oryParameters of each ExecutionSite specify its memory requirements. During the

initialization of a Place, the initialize method passes the initial memory size of the lo-

cal heap and local immortal memory area. If required the size of these local memory

areas can be renegotiated at runtime. The implementation can enforce a maximum

limit on the size of these memory areas.

 Application(RTJVM) . . . Place NPlace 2

 Local
 Heap2

 Local
 IMM2

Local
BS2

Place 1

Main Heap
 Local
 Heap1

. . . Local HeapN

Main Immortal
 Local
Immortal1

. . . Local ImmortalN

Main BS
 Local
 BS1

. . . Local BSN

Initial
Size max

Initial
Size

max

Initial
Size

max

ESa

ESa

ESa

ESb

ESb

ESb

ESb.getHeap().

ESb.getImmortal().ImmortalMemory.instance()

HeapMemory.instance()

BS: Backing Store
ES: Execution Site

Figure 4.3: Memory Areas in the Locality Model

The problem with this model is that the Heap and Immortal memory area is

required to provide local allocation context on different nodes of a NUMA system.

85

Chapter 4: Locality Model

ImmortalMemory and the Heap memory areas are singletons which means only

a global memory area exists. For example, the ImmortalMemory area is created

during the initialization of the runtime and its reference can be retrieved using the

ImmortalMemory.instance() method. Similar is the case with the heap memory

area. In order to be able to create local heaps and immortals, the following two

strategies can be envisaged:

1. The heap and immortal memory areas are distributed (on all Locales) during

the initialization of the JVM.

2. Instances of heap and immortal memory areas are created in addition to default

heap and immortal.

The first approach leaves it upto the implementation to provide the local heap

and immortal memory area. We, however, have chosen the second approach because

of the following two reasons:

1. Local heap and immortals can be referenced individually instead of the global

heap.

2. The RTSJ already provides a class to create the physical immortal memory

area. This physical immortal memory area extends the singleton immortal

physical memory area. There is no such support for a physical heap, however,

new architectures with distributed memory systems motivates the need of hav-

ing an automatically managed memory area which can be physically allocated

on a particular memory bank.

In terms of life spans and memory assignment rules in the RTSJ, the heap is very

similar to the immortal memory area. The only difference is that garbage collection

is enabled for the heap. New multi-core architectures with NUMA memory sub-

systems motivate the need for a physical heap. The physical heap can be very useful

in environments where programmers want to create memory areas on specific nodes

and are automatically managed. Therefore, we propose that a physical heap should

be added to the RTSJ with similar physical properties to the physical immortal

memory area. The following class can be used for the HeapPhysicalMemory

86

4.2 Application Model

Class

public class HeapPhysicalMemory extends MemoryArea

Constructor

// Constructors similar to the ImmortalPhysicalMemory

Methods

//Methods inherited from the Memory Area class omitted

Table 4.15: The HeapPhysicalMemory Class

The main problem of having a physical heap is garbage collection. Garbage

collection for real-time Java has been a challenging research area and lies outside

the scope of this thesis. A general observation is that because garbage collection is

performed on the virtual address space (because it is in user space), therefore we

can avoid garbage collections problems by conforming to the following rules:

1. A local heap memory object is created during the initialization of the JVM,

when the initialize method of the Place class is called.

2. The execution site is passed a reference of the heap on the locale and no

constructors are allowed to create new heap memory areas at runtime.

3. The virtual addresses of the heap are setup as normal.

4. The garbage collector should be aware of the boundaries of the local heaps and

respects the boundaries by not moving one local heaps object into another.

These rules are set only in the context of the locality model (they may not be

applicable in the case of a general physical heap memory). Irrespective of how the

garbage collection is actually implemented, the garbage collector should be compat-

ible with the locality model if it follows this basic set of rules.

4.2.5 Conforming to the RTSJ

In the Locality model, an ExecutionSite, thread/schedulable, and a memory area are

created using the factory method. In this subsection, we outline memory assignment

rules of the RTSJ, required semantics of the locality model and then implementing

these semantics using factory methods.

87

Chapter 4: Locality Model

Memory Area Heap Immortal Scoped

Heap allowed allowed not allowed

Immortal allowed allowed not allowed

Scoped allowed allowed allowed only if reference is

to same scope or outer scope

Table 4.16: Memory assignment rules in the RTSJ

4.2.5.1 RTSJ Rules

RTSJ allows more than one memory area where the programmers can allocate ob-

jects. However, memory areas behave differently based on their type, e.g. in an

immortal memory area, objects are also immortal even if they cannot be referenced

anymore. On the other hand, scoped memory areas have a reference count of the

number of schedulables using the memory area. The scoped memory area can be

reclaimed when the reference count becomes zero even if objects inside it are still

being referenced.

In order to provide a consistent memory management model, the RTSJ intro-

duces a set of rules to avoid issues such as dangling pointers. The memory manage-

ment model in RTSJ enables schedulables to be associated with a MemoryArea by

calling its enter() method. When a memory area is entered, it becomes its alloca-

tion context and all new allocations are made from the newly entered memory area.

Each schedulable object maintains a stack of memory areas it enters which is called

its scope stack. The RTSJ defines the following set of rules:

• Accessing Scoped Memory Areas – RTSJ restricts any references from the heap

or the immortal memory area to the scoped memory area. In addition, there

can be no references to inner scoped memory areas in the case of nested scopes.

Table 4.16 shows the complete set of rules. Figure 4.4 shows that Scope 2 is an

inner scoped memory area for Scope 1 because of their position on the scope

stack. Therefore, references are allowed from Scope 2 to Scope 1, however, the

opposite are not allowed.

• Single Parent Rule – All scoped memory areas that are being used have only

88

4.2 Application Model

Scope 2

ImmortalMemory

Scope 1

S
co

pe
2.

en
te

r(
)

A C

B

X

Figure 4.4: Scope stack showing memory access violations

one parent. This parent is either the nearest scoped memory below it on the

scope stack or a primodial memory (in case of the outermost scope). The

primodial memory area represents the heap, immortal and physical immortal

memory areas.

• Heap Access – The NoHeapRealtimeThread instances are not allowed to allo-

cate or reference any object in the heap.

• Scope Inheritance – When a new schedulable is created it inherits the scope

from the parent based on rules given in table 4.17.

4.2.5.2 Required Semantics of the Locality Model

The goal of the locality model is to be able to group together tightly coupled threads

and objects and allocate them on a particular node. Execution sites, memory areas

or threads/schedulables can be created by a schedulable/thread executing in any

allocation context. Following are the required semantics:

1. ExecutionSites are placed in the immortal memory area on the required Locale

where they are accessible to all schedulables within the application whether

they belong to the ExecutionSite or not.

89

Chapter 4: Locality Model

Current Memory Area Initial Memory

Area

Resulting Stack

1 heap heap only heap

2 heap not heap heap + initial memory area

3 immortal immortal only immortal

4 immortal not immortal immortal + initial memory

area

5 scopedA scopedA (or null) parent’s stack upto scopedA

6 scopedA scopedB parent’s stack upto scopedA

+ scopedB

Table 4.17: Scope stack inheritance rules in RTSJ

2. Creation of memory areas require that the backing store for the memory area

are allocated on the Locale where the ExecutionSite is allocated.

3. Creation of threads/schedulables require that the the affinity should be set and

in case the ExecutionSite has any guaranteed reservations, then the schedula-

bles also need to be attached to these reservations. The stack is private to a

thread which is created at the time of the creation of the thread. The stack is

used quite regularly by a thread therefore it is important that it is also local

to the thread.

4.2.5.3 Using the Factory Pattern

The factory method allows the freedom of implement the desired behaviour without

changing the existing semantics of RTSJ. Following are the factory methods provided

by the Locality model:

1. The factory method used to create execution site checks for the admission

control policy. The schedulable object then enters the local immortal memory

area of the place where the ExecutionSite will be allocated. All parameters are

also copied. The ExecutionSite object is created with or without any resource

guarantees and control returns to the original memory area.

90

4.2 Application Model

2. The factory method used to create memory areas makes sure that the backing

store is allocated local to the ExecutionSite. It does not affect the memory

assignment rules.

3. The factory method used to create threads/schedulables set the affinities for

the threads/schedulables along with any reservations. The stack of the thread

is created on the local node when the object of the thread is being created. It

is not affected by any of the RTSJ memory assignment rules.

4.2.6 The Default Execution Model

Existing RTSJ applications are supported, but are susceptible to higher latencies

caused due to remote accesses. A concurrent Java application contains a number

of threads which share a set of objects. There exists a pattern of communication

among these threads which determine how closely they are related to each other.

On a NUMA system, resources are clustered in cc-NUMA and UMA sub-systems.

Each of these groups provide different behaviour of the memory sub-system.

Typically a Java application executes on a set of resources that provide a single

address space and cache coherence. In case of a cc-NUMA system, the Java ap-

plication does not care about the memory access timings if a single address space

and a cache coherence is provided. In order to provide backward compatibility with

standard Java applications, the following cases can be envisaged for the runtime:

1. The runtime creates a default execution site and places all threads and objects

in the default execution site. The execution site can be mapped onto a Place

as any other execution site discussed in the locality model.

2. Threads and objects in the application are spread around the cc-NUMA sys-

tem. For more deterministic timing behaviour, execution sites can be created.

For the case of the Locality model we choose the latter approach because the

former limits the parallelism available.

No restrictions have been made on the schedulables to communicate with schedu-

lables in other execution sites, the main reason for this is because the programmers

91

Chapter 4: Locality Model

know that the cost of such an operation will have high overheads, therefore, it is the

responsibility of the programmers to avoid such behaviour as much as possible.

4.2.7 Example

An example is presented based on the producer consumer problem showing how the

locality model can be used. The objective of which is to create two threads which

share an object. One threads writes and the second thread reads the shared object.

The architecture representation is already built before the main method of the

Java application is executed. Implementation details of how the architecture is built

is presented in Section 5.2.

4.2.7.1 Static Allocation of Execution Sites

The following code shows the creation of two execution sites which are used to create

threads/schedulables and memory areas:

import javax.realtime .*;

public class ProducerConsumer extends RealtimeThread {

public void run() {

// The producer and consumer are allocated on two different

// ExecutionSites. Both ExecutionSites are manually allocated

// on different Locales.

// We retrieve the Locales to create the ExecutionSite

Neighbourhood n1 =

Locality.getCurrentNeighbourhood ();

System.out.println(n1);

Locale [] locs = n1.getLocales ();

// We create two ExecutionSites on separate Locales

92

4.2 Application Model

ExecutionSite site1 =

Locality.createExecutionSite(locs [0]);

ExecutionSite site2 =

Locality.createExecutionSite(locs [1]);

// We create a Pinnable Memory Area on the first

// ExecutionSite. Then we create the shared object and

// set as a portal.

long MEMSIZE = 10 * 1024 * 1024;

final int worksize = 1000;

int workload = 100;

final LTPinnableMemory mem =

site1.createMemoryArea (2, MEMSIZE);

mem.enter(new Runnable () {

public void run() {

mem.pin ();

BufferObject sharedBuffer =

new BufferObject(worksize);

mem.setPortal(sharedBuffer);

}});

// Creating the Producer. The Producer will execute in

// the newly created memory area and will write for

// workload = 100 times in the shared object.

RealtimeThread pro =

site1.createRealtimeThread(null , null , null , mem ,

new Producer(mem , workload));

// Creating the Consumer. The Consumer will execute in

// the newly created memory area and will read for

// workload = 100 times in the shared object.

RealtimeThread con =

site2.createRealtimeThread(null , null , null , mem ,

new Consumer(mem , workload));

pro.start ();

con.start ();

93

Chapter 4: Locality Model

}

// The main function creates a real -time thread because

// a normal Java thread cannot enter a scoped memory area.

// The real -time thread will be created which will setup

// the scoped memory area and create threads in

// ExecutionSites. The created thread will be placed on

// the cc -NUMA by the runtime on any of the processors.

public static void main(String [] args) {

ProducerConsumer rt = new ProducerConsumer ();

rt.start ();

}}

In the above code, two real-time threads (producer and consumer) are created on

two different execution sites as shown in Figure 4.5. The execution sites are allocated

on separate Locales. The reference of the Neighbourhood is retrieved where the JVM

is hosted. The reference to the Locales are retrieved from the Neighbourhood object.

The Locales are passed explicitly in the factory method of the ExecutionSite to force

the allocation on specific Locales.

ES1

N1

Loc1

200 MHz

1GHz

1GHz

1GHz

P
ro

du
ce

r

Shared
Object

ES2

C
on

su
m

er

Loc0

Loc3Loc2

Neighbourhood 0

Figure 4.5: Remote allocation of producer/consumer

94

4.2 Application Model

A scoped memory area LTPinnableMemory1 is created on the first execution

site. The shared object is created on this memory area and is set as the portal2 of

the scoped memory area.

Two real-time threads are created using factory methods provided in the Exe-

cutionSite class. The producer thread is created on the first ExecutionSite which

is local to the shared object. While the second thread is allocated on the second

execution site.

The code shows how threads and objects can be explicitly allocated on particular

locations. Such a configuration allows the co-allocation of threads/objects to par-

ticular devices or processors. The full code of the program including the producer

and consumer classes is provided in Appendix B.1.

4.2.7.2 Implicit Allocation of Execution Sites

Now, the following code shows co-allocation of threads/objects without specifying

the physical location:

import javax.realtime .*;

public class ProducerConsumer extends RealtimeThread {

public void run() {

// We create an ExecutionSite which is mapped by the

// runtime.

ExecutionSite site =

Locality.createExecutionSite(null);

// We create a Pinnable Memory Area on the

// ExecutionSite. Then we create the shared object and

// set as a portal.

1In RTSJ, a pinnable scoped memory area is not reclaimed even if all schedulable objects exit

the memory area. Normally scoped memory areas are reclaimed once all schedulables exit.
2A portal allows an object allocated on a scoped memory area to be shared among schedulables

active in the memory area.

95

Chapter 4: Locality Model

long MEMSIZE = 10 * 1024 * 1024;

final int worksize = 1000;

int workload = 100;

final LTPinnableMemory mem =

site.createMemoryArea (2, MEMSIZE);

mem.enter(new Runnable () {

public void run() {

mem.pin ();

BufferObject sharedBuffer =

new BufferObject(worksize);

mem.setPortal(sharedBuffer);

}});

// Creating the Producer. The Producer will execute in

// the newly created memory area and will write for

// workload = 100 times in the shared object.

RealtimeThread pro =

site.createRealtimeThread(null , null , null , mem ,

new Producer(mem , workload));

// Creating the Consumer. The Consumer will execute in

// the newly created memory area and will read for

// workload = 100 times in the shared object.

RealtimeThread con =

site.createRealtimeThread(null , null , null , mem ,

new Consumer(mem , workload));

pro.start ();

con.start ();

}

// The main function creates a real -time thread because

// a normal Java thread cannot enter a scoped memory area.

// The real -time thread will be created which will setup

// the scoped memory area and create threads in

// ExecutionSites. The created thread will be placed on

// the cc -NUMA by the runtime on any of the processors.

96

4.2 Application Model

public static void main(String [] args) {

ProducerConsumer rt = new ProducerConsumer ();

rt.start ();

}

}

The code creates one execution site without specifying the Locale. The execution

site is allocated by the runtime on any of the available Locales based on the allocation

policy3 that is being used. Both schedulables and shared object are created on the

only execution site created as shown in Figure 4.6. This configuration is used when

the physical allocation of threads and objects is irrelevant, however, inter thread

co-allocation is required. The full code of the program including the producer and

consumer classes is provided in Appendix B.2.

ES1

N1

Loc1

200 MHz

1GHz

1GHz

1GHz

P
ro

du
ce

r

Shared
Object

C
on

su
m

er

Loc0

Loc3Loc2

Neighbourhood 0

Figure 4.6: Local allocation of producer/consumer

3A simple allocation policy is used which is based on the available resources on a Place. The

objective is not to find the optimal allocation policy rather providing a mechanism where different

policies can be used.

97

Chapter 4: Locality Model

4.3 Resource Reservations

The locality model assumes an open system where multiple applications are sharing

the same resources. Real-time Java applications based on the locality model consist

of a number of execution sites which require guarantees from the system for resource

usage. An execution site(ES) is a collection of real-time threads mapped on a cc-

NUMA sub-system which has been designed to run on multiple processors at the

same time. Each ES has temporal and memory requirements, which the RTJVM

should be able to provide. The temporal guarantees for the execution sites should

allow it to execute over multiple processors, however, they are restricted to a single

locale. In this section, the following four mechanisms will be presented for the

locality model:

1. Interface – An interface for the application to specify its requirements.

2. Admission Control – Admission control for the applications based on the eval-

uation of their requirements.

3. Scheduling – A scheduling policy which provides temporal guarantees.

4. Cost Enforcement – Measuring consumed computation time and ensuring ap-

plications do not over run the reservation.

[Mercer et al., 1994] outlines the above mechanisms as a basic requirement

for manage resource reservations. Based on these requirements the interface will

represent the temporal and memory requirements of an Execution Site. It allows an

execution site to request the runtime guaranteed resources. The admission control

mechanism allows the runtime to decide if an Execution Site can be guaranteed the

required resources. The mechanism should ensure that admitting the execution site

should not affect any other guarantees provided by system. Once the execution site

is admitted it is up to the scheduler to make sure that the execution site receives

the resources that were guaranteed. However, if an execution site tries to overruns

the guaranteed resources, a bounding mechanism needs to be in place which will

make sure that all overruns are bounded. This will provide isolation to Execution

98

4.3 Resource Reservations

sites enabling programmers to analyze their execution sites in isolation to the rest

of the system.

Details on these mechanisms for the Locality model are discussed in the rest of

the section.

4.3.1 Interface

The interface of an execution site describes the computational resources it requires.

The requirements of an execution site can be divided as implicit or explicit require-

ments. The implicit requirements for an execution site include that the execution

site can only be mapped onto a locale and use shared caches whenever available. The

explicit computational requirements include temporal and memory requirements of

the execution site. The explicit requirements are passed as an interface to the run-

time to request resources for the Execution Site.

The memory requirements of the Execution Site can be represented by the Mem-

oryParameters class. This class is part of the RTSJ specification and is used both

for the purposes of admission control by the scheduler and for the purposes of pacing

the garbage collector. Similarly, in the case of an Execution Site, this class can be

used for describing the memory requirements and enforcing the limits on memory

allocation when using the new operation. When a schedulable object exceeds its

allocation or allocation rate limit, the error is handled as if the allocation failed be-

cause of insufficient memory. The object allocation throws an OutOfMemoryError.

In the case of the Locality model, a partitioned budget is proposed as shown in

Figure 4.8. Here the budget is reserved on a per processor basis instead of making

it globally available on all processors. The rationale for this is as follows:

The resource reservation model that was presented in [Wellings et al., 2009] used

an interface represented by the tuple: {C, T, minPro, maxPro} where C is the

minimum available budget within a maximum period, T. The other parameters are

minPro and maxPro representing the minimum and maximum number of processors

required. This model was based on the assumption that the underlying hardware

will be an SMP model. Therefore the budget, C, will be available globally on all

processors as shown in Figure 4.7.

99

Chapter 4: Locality Model

Figure 4.7: Global Budget

In the case of the Locality model, a partitioned budget is proposed as shown in

Figure 4.8. Here the budget is reserved on a per processor basis instead of making

it globally available on all processors. The rationale for this is as follows:

• Processors in cc-NUMA are arranged in clusters and Execution Sites require

a Reservation which is limited to a UMA node instead of the whole cc-NUMA

system. Therefore a partitioned approach is needed either on every processor

or every node.

• Implementing a cost accounting strategy is very difficult and not very scalable

because a global budget requires sharing and synchronization of variables by

a large number of threads using the budget. The shared variables will be

updated very frequently by all threads executing in parallel. Race conditions

can occur unless a lock is provided for mutual exclusion. Such an approach is

not feasible for large number of threads.

As a result a partitioned approach has been taken to provide budgets on individ-

ual processors. The interface that will be used by the Execution Site is represented

by the tuple: {Θ [] ,T [] , m}. Where m is the number of processors and Θ is

100

4.3 Resource Reservations

Figure 4.8: Partitioned Budget

the budget on a single processor with period T. The following describes the new

reservation model based on partitioned reservations:

• The application has an external contract with the OS which can be broken

down into a number of cluster contracts where budget is specified on each

processor. A cluster contract is a set of processor budgets provided on an

UMA sub-system.

• When an execution site requests for a reservation, it is allocated a partitioned

reservation on a set of processors each represented by a PartitionedParameter.

The PartitionedParameter is a tuple of {int ProcessorIndex, RelativeTime

Budget, RelativeTime Period}.

• The scheduler should be NUMA aware. It schedules Threads and Schedulables

globally on the processors where the respective execution site has some budget

available.

101

Chapter 4: Locality Model

Class

public class PartitionedParameters

Constructor

public PartitionedParameters(int processor, RelativeTime budget,

RelativeTime period)

Methods

public int getProcessorId()

Returns the processor index.

public RelativeTime getBudget()

Returns the budget guaranteed on the processor.

public RelativeTime getPeriod()

Returns the period on the processor.

Table 4.18: The PartitionedParameters Class

4.3.1.1 External Contract

The External Contract provides an interface to the scheduler to manage the contracts

on all the Locales. The following provides the ExternalContract class.

Class

public final class ExternalContract

Methods

public static Cluster-

Contract

createClusterContract(RelativeTime [] budget,RelativeTime []

period, int numProcessors, Locale loc)

Creates a new Cluster Contract

public static Cluster-

Contract

getClusterContract(Locale loc)

Returns the cluster contract on a locale

public static boolean updateClusterContract(ClusterContract contract, Locale loc)

Updates a cluster contract, returns true if successful and false if not.

public static boolean deleteClusterContract(ClusterContract contract)

Deletes a cluster contract and returns true if successful and false if

not.

Table 4.19: The ExternalContract Class

102

4.3 Resource Reservations

A ClusterContract is a partitioned budget provided to an application on a par-

ticular Locale. It is provided in the following table:

Class

public class ClusterContract

Constructor

ClusterContract(RelativeTime [] budget, RelativeTime [] period, int numProcessors, Locale local)

Methods

PartitionedParameters [] createContract()

Requests the OS to create a Contract on a particular SMP

node.

boolean setPeriod(RelativeTime Period, PartitionedParameters

res)

Changes the period on a particular processor.

boolean setBudget(RelativeTime setBudget, PartitionedParame-

ters res)

Changes the budget on a particular processor.

Locale getLocale(RelativeTime Period, PartitionedParameters

res)

Returns the Locale of the Cluster.

Table 4.20: The ClusterContract Class

4.3.1.2 Partitioned Reservations

Each ExecutionSite is allocated a PartitionedReservation. All threads in an Execu-

tionSite are attached to the reservation. The PartitionedReservation class is given

in the following table:

Class

public class PartitionedReservation

Constructor

public PartitionedReservation(RelativeTime [] maxPeriod, RelativeTime [] minBudget,

int numProcessors)

Methods

public PartitionedParame-

ters []

getPartitionedParameters()

103

Chapter 4: Locality Model

Methods

Returns the parameters which specify how the reservation

has been guaranteed. If null, the reservation has not been

guaranteed by the scheduler.

public PartitionedParame-

ters []

createReservation()

Requests the scheduler to create a reservation on a pro-

cessor with these parameters. No guarantees will be given

by the scheduler. If returns null, then it is not feasible.

Otherwise returns the affinity set of a processor.

public PartitionedParame-

ters []

createReservationIfFeasible()

Creates the reservation only if it is guaranteed.

public boolean setPeriod(RelativeTime Period, PartitionedParameters

res)

Changes the period on a particular processor.

public boolean setBudget(RelativeTime setBudget, PartitionedParame-

ters res)

Changes the budget on a particular processor.

public PartitionedParame-

ters []

changeIfFeasible()

Requests the scheduler to change the reservation only if

feasible.

public boolean ifFeasible()

Checks if all the schedulables attached to this ExecutionSite

are feasible.

public boolean addToFeasibility(Schedulable schedulable)

Informs the scheduler that the resource demands of the

schedulable should be considered for feasibility analysis.

public boolean removeFromFeasibility(Schedulable schedulable)

Removes the schedulable from the feasibility analysis of the

reservation.

Table 4.21: The PartitionedReservation Class

104

4.3 Resource Reservations

4.3.2 Scheduling: The ReservationScheduler Class

On a cc-NUMA system, a global reservation model cannot be used because the Ex-

ecution Site requires a Reservation on an SMP cluster and not the whole cc-NUMA

system. Therefore, a partitioned approach is used to provide Reservations where

CPU time is reserved on every processor. The scheduler creates a PartitionedReser-

vation for the Execution Site which contains (Θi,Ti) ∀i = 1....m, where m is the

number of processors. In order to manage the PartitionedReservation, a Reserva-

tionScheduler class has been provided.

The ReservationScheduler extends the scheduler class and implements the meth-

ods provided in the scheduler class. In addition, it also adds a number of methods

to add the Reservation to the feasibility analysis. It returns an array of Parti-

tionedParameters where each pair of (budget, period) is associated with a particular

processor.

Class

public class ReservationScheduler extends Scheduler

Methods

PartitionedParameters [] addToFeasibility(PartitionedReservation reserve, Locale

loc)

Adds the Execution Site to the feasibility analysis and al-

locates a reservation with PartitionedParameters[] to the

execution site

PartitionedParameters [] addIfFeasible(PartitionedReservation reserve, Locale loc)

Only adds a reservation if it is feasible

PartitionedParameters [] changeIfFeasibile(PartitionedReservation reserve, Locale

loc)

Changes the reservation only if it is feasible

PartitionedReservation [] getPredefinedReservations (Locale loc)

returns a set of pre-defined reservations.

Other methods of the Scheduler class omitted

Table 4.22: The ReservationScheduler Class

105

Chapter 4: Locality Model

4.3.3 Admission Control

The admission control policy determines if a new ExecutionSite can be created on

a Locale or not. When an ExecutionSite is created, the following scenarios exist:

• ExecutionSite with no guarantees – The ExecutionSite does not require any

guarantees and only wants the threads to be grouped together. The createEx-

ecutionSites (Locale smp) factory method is used where the Locale smp may

or may not be defined. If the Locale is defined, then an ExecutionSite is cre-

ated on that Locale. Otherwise the ExecutionSite will be placed on any Locale

with the most resources available. In any case the ExecutionSite is not refused

admission because no guarantees are needed.

• ExecutionSite with default guarantees – The createExecutionSites (Locale smp,

int numProcessors) requires default guarantees from the Locale smp. If smp

is defined, an execution site created with the default or the minimum avail-

able budget values. An ExecutionSite is created even if no guarantees are

provided. If smp is not defined, the ExecutionSite is placed on a Locale with

the maximum available resources.

• ExecutionSite creation irrespective of guarantees –The createExecutionSites

(Locale smp, RelativeTime[] budget, RelativeTime[] period, int numProcessors,

MemoryParameters memoryreq) requires a reservation with {budgeti, periodi}

for numProcessors along with memreq memory requirements. If smp is defined,

then the executionsite is always created on that Locale but if smp does not

have the available resources than no guarantees are provided to the Execution

Site. If smp is not defined, then the execution site is created on the Locale

which is the locale with the maximum amount of resources available which

can guarantee the required guarantees.

• ExecutionSite creation only if guaranteed – The createExecutionSitesIfFeasible

(Locale smp, RelativeTime[] budget, RelativeTime[] period, int numProcessors,

MemoryParameters memoryreq) requires a reservation with {budgeti, periodi}

for numProcessors along with memreq memory requirements. If smp is defined,

106

4.3 Resource Reservations

then the executionsite is always created on that Locale but if smp does not

have the available resources than no execution site is created. If smp is not

defined, then the execution site is created on the Locale which is the locale with

the maximum amount of resources available which can guarantee the required

guarantees. If no Locale can provide the desired resources, then execution site

cannot be created.

In terms of admission control for the threads to be created. There are three

types of methods that can be used to create Java threads and schedulables on an

execution site. These methods are discussed below:

1. createJavaThread (Runnable logic) – This factory creates a Java thread on an

execution site. It sets the affinity of the thread to the affinity of the Execu-

tionSite.

2. createRealtimeThread (SchedulingParameters scheduling, ReleaseParameters

release, MemoryParameters memory, MemoryArea area, ProcessingGroupPa-

rameters group, Runnable logic) – Creates a real-time thread with the affinity

set of the execution site. It attaches the thread to the reservation of the

ExecutionSite.

Another method, createRealtimeThreadIfFeasible, with the same parameters is

provided which checks the feasibility before creating the real-time thread. If

the thread is feasible within the budget of the reservation, then it is created

and attached to the feasibility analysis.

3. createNoHeapRealtimeThread (SchedulingParameters scheduling, ReleasePa-

rameters release, MemoryParameters memory, MemoryArea area, Processing-

GroupParameters group, Runnable logic) – Creates a no heap real-time thread

on the execution site and the affinity is set to the affinity of the execution site.

The createNoHeapRealtimeThreadIfFeasible method can be used to perform an

online feasibility analysis before creating this thread. If the thread is feasible

within the budget of the reservation, then it is created and attached to the

reservation.

107

Chapter 4: Locality Model

Different admission control and feasibility analysis policies can be implemented.

An example of such the admission control policy and feasibility analysis has been

presented in Appendix D.

4.3.4 Cost Enforcement

All execution sites have been guaranteed a budget and they are temporally isolated

from each other. In order for the temporal isolation to hold, it is very necessary that

the executions sites do not over-run their budget. Therefore, a cost accounting and

enforcement mechanism should be in place to ensure execution sites do not over-run

their budget.

For each ExecutionSite, servers are created for each processor on which the ex-

ecution site has been guaranteed the budget. For each partitioned parameter, an

execution time server can be represented by the tuple Budget, Period, Affinity,

Priority. The server cannot execute on more than one processor, therefore, the

cardinality of the AffinitySet should be 1. The following shows an execution time

server in the ReservationServer class.

Class

class ReservationServer

Methods

ReservationServer(RelativeTime C, RelativeTime T, AffinitySet pro,

SchedulingParameters priority)

Table 4.23: The ReservationServer Class

4.3.5 Discussion

The Scheduler needs to provide temporal guarantees to the execution site. These

guarantees can be provided to an execution site by using a two-level preemptive

fixed priority hierarchical scheduling in the locality model. According to this model,

each execution site has a local scheduler to schedule all enclosed threads. The

hierarchical scheduler provides temporal isolation and reduces the the complexity

of the schedulability analysis in the case of a shared platform. Unfortunately, the

RTSJ does not support hierarchical scheduling although a number of proposals have

108

4.3 Resource Reservations

been made [Zerzelidis and Wellings, 2010]. [Wellings et al., 2009] have proposed the

following semantics change for the RTSJ:

“Schedulable objects assigned to the same reservation must run in priority or-

der. However, there is no assumption that schedulable objects assigned to different

reservations run in priority order.”.

This reservations then in effect provide hierarchical scheduling if a reservation

has been guaranteed by the scheduler. Therefore, building on this model we assume

that hierarchical scheduling is providing reservations that can be guaranteed by the

scheduler.

The producer/consumer example presented in Section 4.2.7.2 has been extended

to provide guarantees to the ExecutionSite where producer and consumer are cre-

ated. The ExecutionSite site requests some temporal guarantees. Assuming the

runtime creates a reservation for site, we create the producer and consumer threads

using the factory of site which attaches them to the reservation allowing them to

use the guaranteed budget. The following code snippet shows the creation of an

execution site which requests a partitioned reservation:

import javax.realtime .*;

public class ProducerConsumer extends RealtimeThread {

public void run() {

// In order to specify the requirements of the Execution Site ,

// we create the budget and the period arrays.

int numProcessors = 2;

RelativeTime [] budget = new RelativeTime [numProcessors];

RelativeTime [] period = new RelativeTime [numProcessors];

budget [0]= new RelativeTime (500 ,0);

period [0]= new RelativeTime (1000 ,0);

budget [1]= new RelativeTime (500 ,0);

period [1]= new RelativeTime (1000 ,0);

// We create an ExecutionSite which is mapped by the

// runtime. The mapping is based on the required budget

109

Chapter 4: Locality Model

// parameters.

ExecutionSite site = Locality.createExecutionSite(null ,

budget , period , numProcessors , null);

// We create a Pinnable Memory Area on the ExecutionSite.

// Then we create the shared object and set as a portal.

long MEMSIZE = 10 * 1024 * 1024;

final int buffersize = 1000;

int workload = 1000;

final LTPinnableMemory mem =

site.createMemoryArea (2, MEMSIZE);

mem.enter(new Runnable () {

public void run() {

mem.pin ();

BufferObject sharedBuffer =

new BufferObject(buffersize);

mem.setPortal(sharedBuffer);

}});

// Creating periodic parameters.

RelativeTime start = new RelativeTime (0, 0);

RelativeTime C = new RelativeTime (200, 0);

RelativeTime D = new RelativeTime (1000, 0);

RelativeTime T = new RelativeTime (1000, 0);

PeriodicParameters releaseParams = new

PeriodicParameters(start ,T,C,D,null ,null);

// Creating the Producer. The Producer will execute in

// the newly created memory area and will write for

// workload = 1000 times in every period. The thread

// will be added to the reservation and will use the

// guarantees provided to the reservation. In the case

// the budget is exhausted , Producer will have to wait

// for the replenishment of the budget.

RealtimeThread pro = site.createRealtimeThread(null ,

110

4.4 Summary

releaseParams , null , mem , new Producer(mem , workload));

// Creating the Consumer with the same timing properties.

RealtimeThread con = site.createRealtimeThread(null ,

releaseParams , null , mem , new Consumer(mem , workload));

pro.start ();

con.start ();

}

// The main function creates a real -time thread because

// a normal Java thread cannot enter a scoped memory area.

// The real -time thread will be created which will setup

// the scoped memory area and create threads in

// ExecutionSites. The created thread will be placed on

// the cc-NUMA by the runtime on any of the processors.

public static void main(String [] args) {

ProducerConsumer rt = new ProducerConsumer ();

rt.start ();

}}

Details of how the partitioned reservations are implemented are presented in

Chapter 5 and the complete example including the producer and the consumer

classes have been attached in Appendix B.3.

4.4 Summary

This chapter started by presenting a set of requirements to enable developers to

design and deploy portable real-time Java applications. In response to these re-

quirements, we summarize the Locality model presented in this chapter to check if

the requirements been met.

The locality model provides a number of new abstractions which are aimed to

provide locality and visibility into the architecture of the system. The following

support has been provided for locality:

111

Chapter 4: Locality Model

• In response to R1 – The architectural model represents the basic components

of the NUMA system and describes its topology.

• In response to R2 – The application model enables programmers to partition

the application into ExecutionSites which can be allocated onto a virtual set

of resources represented by the Place.

• In response to R3 – Each ExecutionSite is provided a PartitionedReservation

on a Place which guarantees resources to the ExecutionSite and provides tem-

poral isolation to the Schedulables attaches to it.

• In response to R4 – All devices (including memory and processors) that are

present on the system are represented. The references to all such devices can

be retrieved from the Platform class. The Locale containing the device can be

retrieved by device.getLocale(). Now an execution site can be created on this

Locale along with threads and memory banks.

• In response to R5 – The ExecutionSite can be allocated dynamically by the

runtime.

• In response to R6 – Implementation of the physical memory type filter is an

implementation issue and will be addressed in Section 5.1.2.

Figure 4.9 shows the locality model where each Place has a ClusterContract on

a Locale. The combination of all the ClusterContracts form an ExternalContract

which is a contract between the OS and the application. The following chapter will

discuss the implementation details of the Locality model.

112

4.4 Summary

 External
 Contract
 with OS

Locale

P P

P P

M

Place

ES

R
es

er
va

tio
n

ES

R
es

er
va

tio
n

Cluster
Contract

Locale

P P

P P

M

Place

ES

R
es

er
va

tio
n

ES

R
es

er
va

tio
n

Cluster
Contract

Figure 4.9: The Locality Model

113

Chapter 5

Implementation

The previous chapter introduced a locality model for the real-time specification for

Java. The locality model integrates practices from high performance computing and

the real-time systems community to support cc-NUMA architectures in the real-time

specification for Java (RTSJ). It relies on programmer’s knowledge of the application

and allows the programmer to group together related objects and threads. Each

group is then reserved resources based on the requirements of the groups.

This chapter discusses a prototype implementation of the locality model which

extends an existing open-source RTSJ implementation to incorporate the features

introduced by the locality model. In this chapter we will discuss the following:

• Implementation of the Architectural Model

• Implementation of the Application Model

• Implementation of the Resource Reservations Model

All of the above models have been presented in the previous chapter. Section 5.1

provides an overview of the implementation model and discusses the tools that have

been used. Section 5.2 then discusses the discovery of the basic hardware compo-

nents and creating a representation of the NUMA system. Section 5.3 discusses the

creation of a virtual platform on the NUMA system, the creation of ExecutionSites,

creation of threads and the creation of memory areas. Section 5.4 discusses how

resource reservations are allocated. Section 5.5 is the last section which provides a

summary of the whole chapter.

115

Chapter 5: Implementation

5.1 Implementation Overview

The locality model has been implemented using JRate [Corsaro and Schmidt, 2002]

as the basic platform. It is fundamentally an extension of the GCJ compiler and

libgcj runtime library which also supports native threads required for true paral-

lelism, however, JRate only works with an older version of GCJ (such as GCJ-3.3.x)

and has not been ported to more recent versions. JRate was selected because it was

the only open source RTJVM which supported true parallelism using native threads.

JRate can be used under two different environments: Linux and Marte OS [Ri-

vas and Gonzlez Harbour, 2001] . While Marte OS provides more hard real-time

capabilities, Linux is selected for the support it can provide on a cc-NUMA system.

Following are some of the features of JRate/Linux:

• JRate supports native threads. It uses the native POSIX threading library

(NPTL). Each Java thread corresponds to a pthread.

• JRate is compliant with the RTSJ 1.02 and does not support the AffinitySet

class. No other support is provided in GCJ which would allow one to bind

threads to processors.

• JRate has very limited support for the Physical Memory Areas. It uses the

/dev/mem file to access the physical address space. However, this file can only

provide access to the I/O space and access to the physical memory on x86/x64

on Linux cannot be provided.

• Typically Linux requires 64bit in order to support cc-NUMA systems. JRate

does not directly build on a 64bit (tested using AMD Opteron) multiprocessor.

A number of changes are required to the source and script files build it on such

systems which have been listed in Appendix C.

In order to provide locality, it is necessary for the runtime to be able to allocate

threads and memory on particular nodes. Therefore the following changes needs to

be supported before implementing the locality model:

116

5.1 Implementation Overview

5.1.1 Implementing the AffinitySet Class

The AffinitySet class has been implemented in JRate. The AffinitySet class is based

on the following Linux specific function:

sched_setaffinity(pid_t pid , size_t cpusetsize ,

cpu_set_t *mask)

The mask structure contains the processors on which the affinity will be set for

the task pid (or tid) which is the task identification number on Linux. A num-

ber of operations can be performed on the mask to set processor e.g. CPU ZERO,

CPU SET, CPU CLR, CPU ISSET and CPU COUNT1. The sched setaffinity binds

the thread to processors, the scheduler then respects the affinity of a thread by

scheduling the threads only on the set of processors which are part of the thread

affinity. Other OSs have similar support which can be used e.g. Solaris has Proces-

sor bind.

The AffinitySet class allows the implementation of different scheduling policies

on multiprocessors, from fully partitioned to global scheduling. In the JRate/Linux

environment,each processor is considered to have a separate run-queue. On each

processor the thread with the highest priority is elected for execution. In case of

real-time threads,

Figure 5.1 shows a simple experiment showing response times of 64 real-time

threads scheduled based on the push, pull mechanism on the Linux 2.6.27. The

experiment is done on a 16-processor system. Threads are created in an increasing

priority order and threads are essentially allocated to Linux run-queues. However,

still the highest priority tasks complete before lower priority tasks effectively simu-

lating the global scheduling policy on per processor run-queues in Linux.

The AffinitySet class allows the programmers to pin task to particular processors.

The thread in such a case will not migrate to any processor outside the affinity set

of the thread and the migration respects it’s affinities.

1for more information http://linux.die.net/man/3/cpu set

117

Chapter 5: Implementation

Figure 5.1: Simulating global scheduling in Linux

5.1.2 Access to the Local Memory

As has been explained in Chapter 3, with the physical memory model, it is not safe

to use actual physical addresses for the system RAM. The main requirement we have

is to be able to allocate memory on a particular node without posing any danger to

the stability of the system.

JRate uses the /dev/mem file with the mmap(...) to access the physical address

space. The /dev/mem is limited to provide only provide access to the I/O space on

most systems including the x86/x64 architecture.

Our goal is to be able to create a memory area on a specific node and lock it

there so that it does not move from there in case of swapping. The following class

shows a LocalMemory (in response to requirement R6 presented in Chapter 4) class

which implements the PhysicalMemoryFilter and provides access to the memory on

a UMA sub-system (Locale):

118

5.1 Implementation Overview

Class

public class LocalMemory implements PhysicalMemoryTypeFilter

Constructor

public LocalMemory (Locale loc)

Methods

public Locale getLocale()

Returns the Locale of this.

long map(long size)

Allocates a memory area and returns the virtual address.

boolean unmap(long address)

Frees the memory and returns true if successful.

//Methods from the PhysicalMemoryTypeFilter Omitted

Table 5.1: The LocalMemory Class

The map(...) method allocates on a particular node and then locks the memory

there. The following steps are defined to implement this method:

1. Allocating on a Particular Node – This can be done using different OS libraries

e.g. the NUMA API [Kleen, 2004] or the hwloc [Broquedis et al., 2010] library.

The NUMA API provides the following function to allocate on a particular

node:

numa_alloc_onnode(MEMSIZE_IN_BYTES , nodeNUM);

This function first tries to allocate memory on a particular node, however, if it

cannot allocate memory on that node then it falls back on other nodes. This

can however be disabled using numa set strict(.)2 which causes the function

to fail if the memory is not available. This function replaces the malloc to

allocate on a particular node.

Therefore, the memory type filter for a node memory in RTSJ uses the NUMA

API to allocate memory on the node instead of using the physical addresses.

Once we get a virtual address we can register the memory with the physical

memory manager. The node memory that have been registered with the phys-

ical memory manager will not have physical address but rather an associated

2http://linux.die.net/man/3/numa set strict

119

Chapter 5: Implementation

type. Strictly speaking, the node memory is not a physical memory area as the

memory is not accessed directly and no physical addresses are attached with

it, however, since it does represent distinct memory characteristic that can be

used just by specifying it’s type, which is why we use the physical memory

filter for accessing it.

2. Filling in the Memory – All numa on alloc(...) (or malloc(...)) returns is a

pointer in the virtual address space. No physical memory is allocated to them

initially. In order to guarantee that the created memory is actually being

backed by physical memory, the memset(...) function is used.

3. Locking the Memory – Figure 5.23 shows the latencies of memory allocation

in an LTMemory area when we keep on allocating objects. The latencies

suddenly increase when the system runs out of physical memory and existing

pages have to be swapped out in order to accommodate new pages in the virtual

address space. From the real-time perspective, this behaviour is completely

unacceptable, especially on a NUMA system, where the problem is exacerbated

because a page allocated on one node is swapped back in on another node which

the real-time application is unaware of.

Therefore, we lock the memory using the mlock() after it has been allocated.

5.1.3 Extensions Required for the Locality Model

In order to implement the locality model, the following tools can be used:

• Hwloc – Based on the existing support in operating systems, a portable frame-

work has been developed by the MPI community to introduce portable inter-

faces for obtaining this information [Broquedis et al., 2010]. The hwloc frame-

work gathers information about processors, caches, memory, nodes in a NUMA

system etc. on different operating systems such as Linux, Windows, Solaris,

3The values have been measured for Timesys Reference Implementation of RTSJ running on a

single processor system with 512 MB of RAM.

120

5.1 Implementation Overview

Figure 5.2: Memory access timings

AIX, Darwin etc. and provides a high level abstraction to these resources at

the application level.

• Control Groups – Control group (cgroup) is a file system, where tasks can be

added to it and then be arranged hierarchically. By default all tasks belong

to the root cgroup but they can be added to any CGroup. However, the task

can only exist in only cgroup at any particular time. Each resource (CPU,

memory etc.) has an associated controller which limits resources to tasks

based on the cgroup they belong to. Building the mainline kernel by enabling

the CONFIG RT GROUP SCHED option, provides the support for real-time

group scheduling. The real-time group scheduling can be used along with the

cgroup filesystem to provide group budget for a set of tasks(process/ threads).

The real time group scheduling allows explicit allocation of CPU bandwidth

to task groups4. An API is provided in the libcgroup5 which can be used to

perform basic operations on CGroups.

The rest of the chapter describes the implementation in detail.

4http://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt
5http://libcg.sourceforge.net/

121

Chapter 5: Implementation

5.2 Implementing the Architecture Representa-

tion

This section discusses the implementation of the Architectural representation in the

Locality model. In order to represent the architecture, the real-time JVM must have

the following capabilities:

1. Discovering the underlying architecture components (processors, memory and

devices) and map the logical abstractions to the physical components.

2. Building the NUMA hierarchy in terms of Locales, Neighbourhoods and Dis-

trict and then providing the Platform interface.

It is assumed that the architecture of the system remains static throughout the

lifetime of the application. This is done during the initialization of the JVM before

the main method of the Java application is started. Figure 5.3 shows a sequence

diagram to build the architecture which shows the following steps:

1. The buildPlatform(Memory[] mem, Device[] dev) is called in the Platform

class. The memory and devices that have been registered with the Physi-

calMemoryManager and the devices which can be used to access RawMemory

are passed. Devices cannot be discovered using the hwloc library. Instead only

special devices that have been registered with the RTSJ Raw memory factory

can be used.

2. The initializeTopology() is called to initialize system topology. It further calls a

native method, nativeInitializeTopology() which initializes the topology in the

hwloc library. The topology in hwloc is arranged in a hierarchical structure

which is represented by the hwloc topology t structure. Once the topology

is initialized, the topology structure can be queried for information on the

topology.

hwloc_topology_t topology;

122

5.2 Implementing the Architecture Representation

Figure 5.3: Sequence diagram: building the Architectural Representation

123

Chapter 5: Implementation

void javax :: realtime :: Platform :: nativeInitializeTopology ()

{

hwloc_topology_init (& topology);

hwloc_topology_load(topology)

}

A graphical output from the hwloc is shown in the Figure 5.4 for the architec-

ture given in Section 3.2.

3. The singleton district object is created.

4. The native method getNumNeighbourhoods() is used to retrieve the number

of cc-NUMA sub-systems in the district. In hwloc, a Neighbourhood corre-

sponds to the HWLOC OBJ MACHINE object which is a set of processor and

memory with cache coherence. The following code shows this native method:

jint javax :: realtime :: Platform :: getNumNeighbourhoods ()

{

return hwloc_get_nbobjs_by_type(topology , HWLOC_OBJ_MACHINE);

}

5. We create an instance of Neighbourhood for each cc-NUMA sub-system.

6. The native method, getNumLocales(), is called for the number of Locales in

the system. In hwloc, a Locale is represented by the HWLOC OBJ NODE

object. The indices of the array correspond to the Id of the locale used by

Linux normally from 0 to numLoc -1. The following code shows this native

method:

jint javax :: realtime :: Platform :: getNumLocales ()

{

return hwloc_get_nbobjs_by_type(topology , HWLOC_OBJ_NODE);

}

7. The native method, getNeighbourhood fromLocale(...), is called to retrieve the

Neighbourhood to which this Locale belongs to. The following C++ code

returns the index of the Neighbourhood this native method:

124

5.2 Implementing the Architecture Representation

jint javax:: realtime :: Platform :: getNeighbourhood_fromLocale

(jint localeNum)

{

hwloc_obj_t obj = hwloc_get_obj_by_type(topology ,

HWLOC_OBJ_NODE , localeNum);

return hwloc_get_ancestor_obj_by_type(topology ,

HWLOC_OBJ_MACHINE , obj)->os_index;

}

8. We create an instance of Locale for each UMA sub-system.

9. The native method, getNumProcessors(), is called for the number of processors

in the system. This method returns the number of processors in the system.

The hwloc defines processors using the HWLOC OBJ PU object. The follow-

ing C++ code shows this native method:

jint javax:: realtime :: Platform :: getNumProcessors ()

{

return hwloc_get_nbobjs_by_type(topology , HWLOC_OBJ_PU)

}

Processors in Linux are numbered from 0 to numProc - 1. From each pro-

cessor object, we can find the cache information of the processor using the

HWLOC OBJ CACHE. The cache object can be used to return the size, level

of cache and if it is a shared cache.

10. The native method, getLocale fromProcessor(...), is called to retrieve the Lo-

cale to which this processor belongs to. The following C++ code returns the

index of the Locale this native method:

jint javax:: realtime :: Platform :: getLocale_fromProcessor

(jint cpu)

{

hwloc_obj_t obj = hwloc_get_obj_by_type(topology ,

HWLOC_OBJ_PU , cpu);

return hwloc_get_ancestor_obj_by_type(topology ,

HWLOC_OBJ_NODE , obj)->os_index;

}

125

Chapter 5: Implementation

11. We create an instance of the Processor class for each processor.

12. The native method, getMemorySize fromLocale(...), is called to retrieve the

size of the memory on each Locale. In hwloc, the memory on a Locale is

represented using the hwloc obj memory page type s which contains the size

of the memory. Each memory is attached to a node and can be retrieved from

the HWLOC OBJ NODE object.

jlong javax :: realtime :: Platform :: getMemorySize_fromLocale(jint

localeNum)

{

hwloc_obj_t obj = hwloc_get_obj_by_type(topology ,

HWLOC_OBJ_NODE , localeNum);

return obj ->memory.local_memory;

}

13. A LocalMemoryType is created for each local memory on a Locale (see Sec-

tion 5.1.2) and an instance of the Memory class for each locale.

14. Once all these objects are built, the finalizeTopology() sets up the library to

be used by the application.The method then calls the finalizeTopology() in

the Locale calls to set all the references. The following Java code shows the

method:

static void finalizeTopology () {

for (int i = 0; i < getNumLocales (); i++) {

localesArray[i]. finalizeTopology ();

}

nativefinalizeTopology ();

}

The finalizeTopology() also calls nativeFinalizeTopology, which is a native

method to clean up the hwloc topology. The following C++ code shows the

native method:

void javax :: realtime :: Platform :: nativeFinalizeTopology ()

{

hwloc_topology_destroy(topology);

}

126

5.3 Implementing the Application Model

Figure 5.4: Graphical Output of lstopo(hwloc)

The Platform class is provided as an interface for the application to access this

representation.

5.3 Implementing the Application Model

In this section, the implementation details of the Application model will be pre-

sented.

Figure 5.5 shows an RTSJ application based on the Locality model. For each

Place, a cgroup is created with the memory controllers and cpuset of the Locale.

In the application, there are a number of ExecutionSites. Each ExecutionSite has

a number of ReservationServers represented in the figure as RS. The RS cgroup

provides the cost enforcement control files for the period and runtime. The Lo-

cality model uses a partitioned approach for reservations, Linux provide a parti-

127

Chapter 5: Implementation

tioned approach by replicating the budget and period values on all processors in the

cgroup6 [Checconi et al., 2009].

root

Place

RSRS

T TT

RS

T T

Place

CGroup

Thread

Figure 5.5: Implementing the Locality model using the Control Groups

5.3.1 Creating Places

Figure 5.6 shows a sequence diagram to create the virtual platform which provides

the essential resources to host the application. Places are created on all available

locales during the initialization of the JVM. A Place represents a virtual resource

on a Locale. It is created on every Locale present in the topology. The architecture

needs to be built before the creation of the Places. The following steps are taken:

1. The initialize(...) method is called by the runtime in the Platform class. The

parameters passed to this method specify the initial MemoryParameters and

the ClusterContract for the Place.

2. A loop is created, in each iteration a Locale is selected for the creation of the

Place.

3. A new instance of the Place is created on the Locale.

4. A PhysicalImmortal memory area is created on the Place.

6http://lwn.net/Articles/420408/

128

5.3 Implementing the Application Model

5. A PhysicalHeap memory area is created on the Place.

6. A native method, createCgroup() is called which creates a cgroup in the Linux

kernel. The native method uses the libcgroup library to create the cgroup by

using the function cgroup create cgroup(...).

7. The factory provided in the ExternalContract is used to create a cluster con-

tract. The ExternalContract class is used an interface to create and manage

the ClusterContracts.

8. The factory method then creates a new ClusterContract.

9. For each processor on the ClusterContract, a PartitionedParameters instance

is created. This instance shows the cumulative bandwidth being used by the

ExecutionSites on the Place. The period is set to in all cases to 1 second for

the Place. This value is set based on the limitation of Linux.

5.3.2 ExecutionSite Creation

An ExecutionSite is a group of tasks that have reservation defined for it. Figure 5.7

shows a sequence diagram illustrating the steps to create an ExecutionSite. The

ExecutionSite will be shared by a number of Schedulables. The ExecutionSite will

use the heap and immortal memory provided by the Place as local memory.

1. An execution sites map onto a locale, the factory methods are provided at

the Locality class to allow the RTJVM decide the allocation of an execution

site. All these factories accept a locale object which allow the programmer to

manually place the execution site.

2. When this object is null, then it is upto the RTJVM to automatically map

the execution site on any locale. This mapping can be based on a number

of factors which include load on the system, requirements of the execution

site and availability of resources on the system. Each ExecutionSite object is

placed on an immortal memory area local to the place where it is created.

129

Chapter 5: Implementation

Linux

:Application Locality :Place
:Physical
Immortal :Locale

External
Contract

:Cluster
Contract

1. initialize(..)

2. Select locale

3. new(...)

jRate

:Partitioned
Parameters Cgroup

:Physical
Heap

 loop [For all Locales]

5. new(...)

4. new(...)

7. createClusterContract(...)
8. new(...)

6. createCgroup(...)

9. new(...)

Figure 5.6: Sequence diagram: initializing the virtual platform

130

5.3 Implementing the Application Model

3. Checks if the creation of an ExecutionSite on the selected locale is feasible.

If the locale was passed as a parameter in step 1, then no guarantees are

provided, however, the ExecutionSite is still created on the required Locale.

In case the locale is selected in step 2, then another locale is selected. In case

of the ExecutionSite not being feasible on all locales, then the selected locale

can be used without providing any guarantees.

4. Gets the reference of the Place on the selected Locale.

5. The current allocation context (memory area) is changed to the Immortal

memory area of the Place.

6. All parameters of the ExecutionSite are copied to the new memory area using

the clone() method.

7. An instance of ExecutionSite is created.

8. The PartitionedReservation is created for the ExecutionSite.

9. If guarantees are to be provided to the ExecutionSite, then the Partitione-

dReservation constructor calls the addToFeasibility() method in the scheduler

for guarantees from the scheduler. An admission control test (such as the

one described in Appendix D.2) is executed to check if guarantees can be

provided to the ExecutionSite and on which processors. The addToFeasibil-

ity(...) method adds the reservation and provides a set of PartitionedParam-

eters which specify the processors on which the reservation have been made.

10. A PartitionedParameters instance is created for each processor specifying the

budget guarantees on that processor.

11. A ReservationServer is created for the cost enforcement of each Partitione-

dReservation.

12. The ReservationServer calls the native method createCgroup() to create and

set the parameters of the cgroup. The runtime and period are replicated on

131

Chapter 5: Implementation

all the CPUs7 which is consistent with the requirements of the Locality model.

Setting the parameters even once is sufficient as a single interface exists for

all processors in the cgroup. The native method uses the libcgroup library to

create the cgroup by using the function cgroup create cgroup(...)

13. Once an executionsite has been created, it is then registered with the Place

on which it has been hosted.

Linux

:Application Locality :Place
:Physical
Immortal

:Execution
Site :Locale

:Partitioned
Reservation

:Reservation
Scheduler

1. createExecutionSite(..)

alt
9. addToFeasibility(...)

3. Check if feasible, if not, select next locale If
Locale selected in 2,

10. new()
11. new()

2. Select locale if not selected

4. Get Place on selected locale

5.executeInArea(place.getImmortal(), ...)

6. copy all
parameters

7. new(...)

13. Register the execution site

jRate

:Partitioned
Parameters

:Reservation
Server

cgroup

12. createCgroup
(budget,period)

8. new()

[If guarantees can be
provided]

Figure 5.7: Sequence diagram: creating an execution site using a factory method

7http://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt

132

5.3 Implementing the Application Model

5.3.3 Thread/Schedulables Creation

Factories are provided in the ExecutionSite class to create threads and schedulable

objects.

Linux

:Application
:Execution

Site
:ESRealtime

Thread
:AffinitySet

:Partitioned
Reservation

1. createRealtimeThread(..)

jRate

Cgroup

2. new(...)

3. AffinitySet.setAffinity(...)

4. this.reservation.addRealTimeThread(...)

6.pthread_create(«, Runnable)

alt [If reservation
 server is
defined]

5. rtt.start(..)

:Runnable pthread

7.attachThread

Figure 5.8: Creating and starting thread using the Locality model.

RealtimeThreads and and NoHeapRealtimeThreads are required to have a ref-

erence of their ExecutionSite. Therefore the following implementation classes have

been used to associate them with ExecutionSites.

133

Chapter 5: Implementation

Class

class ESRealtimeThread extends RealtimeThread

Constructor

ESRealtimeThread (SchedulingParameters scheduling, ReleaseParameters release,

MemoryParameters memory, MemoryArea area, Runnable logic, ExecutionSite ES)

Methods

ExecutionSite getExecutionSite()

Returns the ExecutionSite for this thread.

boolean attachThread(this.getExecutionSite().getReservation())

Attaches this thread to the reservation of the ExecutionSite.

Table 5.2: The ESRealtimeThread Class

Class

class ESNoHeapRealtimeThread extends NoHeapRealtimeThread

Constructor

ESNoHeapRealtimeThread (SchedulingParameters scheduling, ReleaseParameters release,

MemoryParameters memory, MemoryArea area, Runnable logic, ExecutionSite ES)

Methods

ExecutionSite getExecutionSite()

Returns the ExecutionSite for this thread.

boolean attachThread(this.getExecutionSite().getReservation())

Attaches this thread to the reservation of the ExecutionSite.

Table 5.3: The ESNoHeapRealtimeThread Class

Figure 5.8 shows a sequence diagram for the creation of a RealtimeThread using

the factory method provided in the ExecutionSite. The following steps are shown

to create RealtimeThreads:

1. The factory method createRealtimeThread() is used to create real-time threads.

This is used instead of the constructor normally used for the creation of

real time thread. The Runnable logic is passed as a parameter to the fac-

tory along with SchedulingParameters, ReleaseParameters, MemoryParame-

ters and MemoryArea.

134

5.3 Implementing the Application Model

2. The ESRealtimeThread class extends the RealtimeThread class. We create an

instance of this class passing all the parameters to the constructor.

3. The static method of AffinitySet class is used to set the affinity of the real-time

thread to set it to the AffinitySet of the ExecutionSite.

4. The addRealtimeThread() for the reservation is called to include the thread to

the feasibility analysis. This feasibility analysis makes sure if all threads will

meet their timing requirement within the budget allocated to the reservation.

5. The thread is now started.

6. JRate actually creates a pthread when the Java thread is started.

7. If the ReservationServer of the ExecutionSite is defined then the native method

attachThread() is used to physically attach the thread to the associate cgroup

of the PartitionedParameter. The task ID (tid in Linux) is retrieved and

then added to the cgroup of the ExecutionSite using the cgroup attach task()

function in libcgroup.

5.3.4 MemoryArea Creation

Figure 5.9 shows a sequence diagram to create a scoped memory area on an Execu-

tionSite. The folowing steps are shown to be undertaken:

1. Factories are provided in the ExecutionSite to create scoped memory areas.

The figure shows a factory method requesting the creation of LTPhysicalMem-

ory .

2. The requested memory area is selected which in this case is LTPhysicalMemory

because the factory method receives 0 as a parameter which corresponds to

LTPhysicalMemory (see Table 4.12).

3. The constructor of the LTPhysicalMemory area is called to tell the construc-

tor to allocate the memory on LocalMemory instance which is local to the

ExecutionSite.

135

Chapter 5: Implementation

4. The constructor calls the map method of the LocalMemory (registered with

the PhysicalMemoryManager).

5. The LocalMemory calls a native method, nativeMap() which is responsible of

allocating the memory.

6. The native method uses the NUMA API to allocate the memory. Factories are

provided in the ExecutionSite to create scoped memory areas. The represent-

ing the scoped memory area is placed on the heap memory/immortal memory

area (in case of NoHeapRealtimeThread creating a scoped memory).

7. memset(...) is called to make sure all pages are touched forcing the kernel to

allocate these pages now instead of waiting until they are used first.

8. Once all the pages are allocated in physical memory. The virtual addresses

are locked using the mlock() call.

In case the memory area is being reclaimed, the unmap() method is called in the

LocalMemory instance to unlock and free the memory.

5.4 Implementing Reservations Model

The previous section has already discussed the following basic operations of the

resource model:

1. Creation of a PartitionedReservation (in Section 5.3.2) which is performed

during the creation of the ExecutionSite. PartitionedParameters and Reser-

vationServers if the admission control check is successful.

2. Attaching a thread to a ReservationServer (in Section 5.3.3).

This section discusses the support provided in Linux to provide partitioned reser-

vations. The goal is to provide CPU usage budget on a per processor basis using

the support available in Linux. The following issues needs to be considered when

implementing the resource reservations:

136

5.4 Implementing Reservations Model

Linux

:Application :ExecutionSite

1. createMemoryArea(0,..)

jRate

:LTPhysicalMemory

2. select the
LTPhysicalMemory area

3. new LTPhysicalMemory(...)

:LocalMemory

4. map()

:nativeLM

5. nativeMap()
6. numa_alloc_onnode(..)

7. memset(...)

8. mlock(...)

Figure 5.9: Sequence diagram: Creating a LTPhysicalMemory area

137

Chapter 5: Implementation

• A two level hierarchical scheduler is proposed which essentially provides a

partitioned approach at the top level. At the bottom level a global scheduling

scheme is proposed.

• In order to be compatible with the RTSJ, the implementation is based on fixed

priority scheduling at both levels.

JRate supports native threads which are scheduled by the OS scheduler. Since

the Linux scheduler is also based on fixed priority, the RTSJ only sets the priority

of threads and leaves the rest to the OS scheduler. Similarly, atwo level hierarchical

scheduler needs to be emulated using a single scheduler which flatly schedules all the

threads present in the system. Emulating a hierarchical scheduler has been based

on the following two mechanisms:

1. Providing a cost accounting and enforcement mechanism on each processor.

2. Setting the priority of threads appropriately.

The following discusses how partitioned reservations can be implemented on

Linux using the control groups and are compliant with the RTSJ.

5.4.1 Cost Enforcement

The scheduler creates a number of ReservationServers for each Reservation. A

cgroup is created for the set of ReservationServers belonging to the same Reser-

vation. The ReservationServers are created inside the cgroup of the place on which

the ExecutionSite is hosted. For the ReservationServers, the following controllers

are added to the cgroup:

• cpu – The cpu controller provides control files for the runtime and period of

the cgroup.

• cpuset – The cpuset allows to set which processors are assigned to the cgroup.

The budget will be provided only on these processors.

138

5.4 Implementing Reservations Model

The Linux kernel 2.6.27 provides a CPU throttling mechanism8 which limits the

CPU usage time used by a thread or a group of threads (tasks in case of Linux).

The time can be explicitly set in the user space by the following two parameters:

cpu.rt runtime us and the cpu.rt period us. The cpu.rt runtime us parameter sets

the budget(Q in microseconds) of the task group and the cpu.rt period us allows to

set the period (T in microseconds) of the task group. The budget/period parameters

are set for all execution sites which limit the CPU time usage for that group. The

budget/period is replicated on all the processors belonging to the execution site.

Once the budget on a processor expires, the group is blocked until the arrival of the

next period, T.

All threads are attached to their respective groups. The throttling mechanism

ensures that the threads do not over-run their budgets.

This, however, only limit the usage of the CPU time and does not enforce any

guarantees that the time will be provided.

5.4.2 Priority Assignment

The Linux scheduler always select the real-time task with the highest priority ir-

respective to which group it belongs as long as there is budget available. In order

to provide a hierarchical scheduler to provide guarantees to the execution site, each

execution site has a priority.

The following assumption is required for the priorities of the RealtimeThreads:

“priorities assigned to threads in one execution site cannot be compared with prior-

ities assigned to threads in other execution sites”.

Since all threads are native and are scheduled by a single scheduler, global prior-

ities are set based on priority of the execution site. Threads on each execution site

form a range of priorities. The priority ranges of two execution sites do not overlap

to make sure that each execution site gets the time that was guaranteed.

All schedulable objects in RTSJ are scheduled at the same level based on pre-

emptive fixed priority, in order to implement hierarchical scheduler based which can

8http://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt

139

Chapter 5: Implementation

provide some guarantees, the following observations have been made for implement-

ing hierarchical scheduling:

• Each execution site has a priority (or a priority range) which determines the

order in which each of them will get their guarantees.

• Threads inside an execution site should be allocated priorities relative to their

execution site. Therefore, each execution site will have in fact a range of

priorities and ranges of execution sites should not overlap.

• The priority range is usually very limited which will limit the number of ex-

ecution sites and threads. However, the restriction of an execution site to

be mapped on a single locale effectively distributes the priority ranges into

different dispatching domains based on the number of locales.

• The cost accounting and enforcement can be provided by the execution time

servers which will not allow any over-runs and once the budget is exhausted,

the execution site will have it’s priority reduced.

• The execution site will wait for the budget to be replenished while lower pri-

ority execution sites execute. After the budget is replenished, the execution

site will be allowed to execute again.

When the budget expires on a CPU, the task cannot be descheduled before the

next scheduler tick() arrives. Therefore, the task does overrun the allocated budget

although by a small amount.

Figure 5.10 shows that the budget is exhausted at QEx but the thread keep on

executing until the next tick arrives i.e. tk at Qov, which is the instant at which the

thread actually stops executing on the ith processor. Therefore, the total over-run

is upper bounded by Ptick on each processor. On m processors, the overrun is upper

bounded by m ∗ Ptick.

140

5.5 Summary

Figure 5.10: Over-run on a single processor

5.5 Summary

In this chapter, an implementation of the Locality model is presented which has been

based on JRate. JRate was first extended to support AffinitySets and access to local

memory. The architectural model is implemented using the hwloc library. The ap-

plication model has been based on cgroups where each Place and ReservationServer

corresponds to a cgroup. Libcgroup is used to manage the cgroup filesystem in the

kernel. The resource reservation model is based on the throttling mechanism which

provides budgets on individual processors.

141

Chapter 6

Evaluation

Chapter 4 introduced a locality model, an extension to the RTSJ’s existing semantics

to handle cache coherent non uniform memory architectures. Chapter 5 then showed

that such a model is implementable in a general purpose OS, Linux. In this chapter

the model and its implementation will be evaluated against the following goals:

• Programmability

• Portability

• Performance

• Predictability

The chapter evaluates the architectural representation, application model and

the resource reservation model in terms of the above mentioned goals. Section 6.1

discusses the programmability of the locality model reviews the effectiveness of the

abstractions to deal with cc-NUMA architectures. Section 6.2 discusses the porta-

bility of the locality model. Section 6.3 discusses the performance of the locality

model. Section 6.4 discusses predictability in the locality model. Section 6.5 dis-

cusses the overheads in the locality model and finally section 6.6 summarizes the

chapter.

143

Chapter 6: Evaluation

6.1 Programmability

The locality model has made no change to the syntax or semantics of the RTSJ API.

Factory methods are provided instead of making extensive changes to the API.

In order to avoid widespread changes to the RTSJ API, we introduce factory

methods to create threads and memory areas. The only change required to create

a schedulable object and memory area in the locality model is to use the factory

provided instead of using their constructors. This is similar to the approach adopted

in RTSJ version 1.1 for affinity sets. Examples have been provided in chapter 4, the

following reviews how the locality model changes the programming model using

these examples:

• Programmers can still use the existing programming model of RTSJ, however,

using new factory methods on cc-NUMA will increase performance and provide

a more predictable environment.

• The programmer needs to create an ExecutionSite before creating a schedula-

ble object or a memory area. The Execution site can be created and allocated

explicitly as shown in the following snippet:

.

// We create Execution Sites statically on all available

// Locales.

Neighbourhood n1 = Locality.getCurrentNeighbourhood ();

Locale [] locs = n1.getLocales ();

ExecutionSite [] sites = new ExecutionSite[locs.length];

for (int i = 0; i < locs.length; i++) {

sites[i] = Locality.createExecutionSite(locs[i]);

}

.

The ExecutionSite can also be allocated by the runtime as shown in the fol-

lowing snippet:

.

ExecutionSite site = Locality.createExecutionSite(null);

.

144

6.1 Programmability

In the above cases, no reservations have been made for any temporal or spatial

resources. The following code snippet shows creation of an ExecutionSite with

reservations and allocated on a Locale by the runtime:

.

// In order to specify the requirements of the Execution Site ,

// we create the budget and the period arrays.

int numProcessors = 2;

RelativeTime [] budget = new RelativeTime [numProcessors];

RelativeTime [] period = new RelativeTime [numProcessors];

budget [0]= new RelativeTime (500 ,0);

period [0]= new RelativeTime (1000 ,0);

budget [1]= new RelativeTime (500 ,0);

period [1]= new RelativeTime (1000 ,0);

// We specify the memory requirements of the ExecutionSite in

// terms of the MemoryParameters.

MemoryParameters mp = new MemoryParameters (8192 , 8192, 8192);

// We create an ExecutionSite which is mapped by the

// runtime. The mapping is based on the required budget

// parameters.

ExecutionSite site = Locality.createExecutionSite(null ,

budget , period , numProcessors , mp);

.

• A schedulable object (RealtimeThread) in RTSJ can be created as following:

.

RealtimeThread t1= new RealtimeThread (..., Runnable logic));

.

Alternately, in the locality model the following factory can be used to create

a RealtimeThread:

RealtimeThread t1 = ES.createRealtimeThread (..., Runnable logic)

The factory makes sure that the RealtimeThread has an affinity to the Exe-

145

Chapter 6: Evaluation

cutionSite. The RealtimeThread is also added to the reservation of the Exe-

cutionSite.

• A scoped memory area in RTSJ is created as shown in the figure:

.

LTMemory mem = new LTMemory(MEMSIZE);

.

Alternately, the locality model provides a factory method for the creation of a

LTPhysicalMemory. The factory makes sure that the memory area is created

with its backing store local to the ExecutionSite.

.

// The first parameter 0 shows that an LTPhysicalMemory

// is to be created.

LTPhysicalMemory mem = ES.createMemoryArea (0,MEMSIZE);

.

• The model does not provide any restrictions on accessing remote memory areas

or external threads accessing memory areas because by doing so, the model

will be become very restrictive and complex for programmers. Therefore, it is

up to the programmers to make sure that there is very little communication

between execution sites.

• The locality model does not make any changes to the threading model of stan-

dard Java and RTSJ. Thread creation, work distribution and synchronization

are the responsibilities of programmers. While implicit parallelism is being

adopted by performance oriented platforms for shared memory multiproces-

sors [OpenMP, 2008], the model sticks to the explicit model to avoid extensive

changes to threads, schedulables and the entire RTSJ specification. In addi-

tion, such systems have not yet matured in the real-time systems community

and lack the necessary backing of proper scheduling theory.

Therefore, no extra complexity is added for the programmer to deal with in terms

of creating threads/schedulables and memory areas in the locality model.

146

6.2 Portability

6.2 Portability

Real-time Java applications respects the portability of Java. Most extensions apart

from the physical memory and raw memory in RTSJ are portable. The following

discusses the portability of applications in the locality model:

• Architectural model – The architectural model provides a portable way rep-

resenting the architecture, where the runtime creates the representation on

runtime.

The model uses AffinitySet instances throughout the model. While a processor

has always been represented using an integer on platforms, but using an integer

across platforms can break the portability of the application. Instead the

AffinitySet instances is used to represent processors. It cannot be instantiated

directly by the programmer, it is rather generated by the AffinitySet class

based on the available number of processors.

The architectural model only includes get methods and does not provide a

way for the programmers to instantiate any instances. The runtime builds the

platform based on the available resources. The programmers can query the

system for available resources and use them instead of hard coding them in

the application.

The architectural representation, however, remains static during the lifetime

of an application and requires support from underlying OS to dynamically

change based on events related to hardware changes.

The implementation is based on hwloc which has been provided for a variety

of platforms. This adds evidence to the portability of the Architectural model.

• Application model – The application model provides abstractions to group

together threads and objects. This supports co-allocation of threads/objects

for better performance on any platform. In addition, it also provides support

to co-allocate threads and devices by specifying the locale on which the Exe-

cutionSite is going to be mapped. However, even in that case devices/Locales

are retrieved from the architecture representation generated at runtime.

147

Chapter 6: Evaluation

• Resource Reservation model – Real-time systems typically have very strict

timing requirements and require a dedicated system. We have provided an en-

vironment where resources can be guaranteed to real-time systems. Although

this environment is not suitable for hard real-time guarantees. However, for

soft-real time systems it provides platform independence. The real-time sys-

tem can execute on any platform which guarantees the required resources.

However, the locality model does make changes to the runtime. Therefore, ap-

plications built using the locality model need to be supported by the runtime. This

is very similar to how Java provides portability i.e. the application can run on any

architecture that is supported by the JVM.

The implementation of Locality Model presented in Chapter 5 has been built

and tested on the following three architectures:

1. A single processor system with 512MB of RAM. Figure 6.1 shows the ar-

chitecture of the system which has 1 District, 1 Neighbourhood, 1 Locale, 1

Processor and 1 Memory.

District

Neighbourhood

Memory

Processor

Locale

Figure 6.1: Architectural Representation of a single processor system

2. A dual core system with 2GB of RAM. This is an SMP which has 2 proces-

sors. Figure 6.2 shows the architecture of the system which has 1 District, 1

Neighbourhood, 1 Locale, 2 Processors and 1 Memory.

3. A cc-NUMA system which has been discussed throughout the thesis which was

presented in Figure 3.9 and its architectural model illustrated in Figure 4.2.

148

6.3 Performance

District

Neighbourhood

Processor

Locale

Memory

Processor

Figure 6.2: Architectural Representation of a two processor SMP

6.3 Performance

The development of benchmarks inevitably lag behind the introduction of new ar-

chitectures. In our case, the situation is exacerbated because we are envisaging that

future real-time embedded systems will become more highly parallel than current

systems. There is currently little experience with these systems and how they can be

analyzed to determine their timing properties. For these reasons, we illustrate the

performance gains, by using execution time as a metric on the producer/comsumer

problem and prime number generation using the sieves of Eratosthenes.

The platform used for these experiments is a 16-processor cc-NUMA system

based on the AMD Opteron architecture as shown in Figure 3.9. The hypertransport

between node0 and node1 is set at 200 MHz for all these experiments (for more

details see Appendix A.2). JRate/Linux 2.6.28 is used as the software platform for

these tests.

6.3.1 The Producer/Consumer Problem

In this experiment, two threads are created: the producer writes a block of memory

and the consumer reads it. The shared object is locked when the producer is writing

and the consumer is reading. The locality model will be used to test the effect of

locality.

Test Settings The execution time is measured for the following two different cases:

• Local – In this case both threads are created on one ExecutionSite that is

allocated to a particular locale. This case has been presented in the example

149

Chapter 6: Evaluation

in Section 4.2.7.1.

• Remote – In the remote case, the producer and consumer are created on two

different ExecutionSites that are then statically allocated to different locales.

This case has been presented in the example in Section 4.2.7.2.

The experiment is executed using different size of Workload starting from 500 ,

1000, ..., 20000. Workload is the amount of data being shared between the producer

and consumer. In both cases, we measure the time for both threads (producer and

consumer) to finish.

0

100

200

300

400

500

600

700

800

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

6
0

0
0

6
5

0
0

7
0

0
0

7
5

0
0

8
0

0
0

8
5

0
0

9
0

0
0

9
5

0
0

1
0

0
0

0

1
0

5
0

0

1
1

0
0

0

1
1

5
0

0

1
2

0
0

0

1
2

5
0

0

1
3

0
0

0

1
3

5
0

0

1
4

0
0

0

1
4

5
0

0

1
5

0
0

0

1
5

5
0

0

1
6

0
0

0

1
6

5
0

0

1
7

0
0

0

1
7

5
0

0

1
8

0
0

0

1
8

5
0

0

1
9

0
0

0

1
9

5
0

0

2
0

0
0

0

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Workload

Figure 6.3: Execution times for local producer consumer problem using the locality

Model

Results Figure 6.3 shows a boxes and whiskers diagram to show the execution

times calculated for the local case and Figure 6.4 shows a similar diagram to show

the execution times for the remote case. The statistical analysis of the execution

times for the local case is given in Table 6.1. The statistical analysis for the remote

case is presented in Table 6.2.

Results Analysis The following show the effect of locality on performance:

• Average value – The average value for both the local case and the remote case

are shown in Table 6.1 and Table 6.2 respectively for the producer consumer

test. The average execution time in the remote case are longer than the values

150

6.3 Performance

Workload Average STD Count Min 90% 95% 99% Max

500 16.96 1.58 1000 13.51 18.01 18.75 20.05 26.31

1000 32.86 3.13 1000 24.81 35.59 36.96 38.19 38.23

1500 48.26 6.26 1000 31.23 51.89 53.82 56.92 77.34

2000 65.88 4.67 1000 49.21 69.83 71.18 74.92 80.64

2500 79.56 9.37 1000 50.62 85.43 85.85 89.9 106.98

3000 98.68 7.69 1000 80.43 103.9 108.68 111.52 138.5

3500 114.88 12.3 1000 85.22 121.31 125.95 167.11 180.7

4000 130.29 8.97 1000 101.68 137.2 138.55 145.74 152.58

4500 148.17 13.93 1000 110.25 158.44 161.44 207.53 210.44

5000 161.26 12.67 1000 120.25 169.61 178.26 190.31 190.41

5500 181.35 7.75 1000 160.34 188.59 191 198.75 204.21

6000 197.75 10.5 1000 161.69 206.7 213.55 221.7 221.86

6500 216.79 10.08 1000 197.73 227.51 229.98 247.7 270.94

7000 231.44 13.6 1000 200.59 245.93 253.38 264.14 281.49

7500 248.42 13.11 1000 225.28 267.26 269.14 274.9 281.41

8000 264.04 14.78 1000 231.13 278.39 285.48 299.15 335.16

8500 280.19 15.53 1000 240.43 297.11 306.31 314.29 325.56

9000 295.47 13.79 1000 266.21 309.94 319.57 325.64 330.91

9500 313.48 18.85 1000 269.93 332.64 341.38 358.17 362.8

10000 326.68 17.13 1000 291.22 344.22 356.58 370.28 379.71

10500 343.53 16.28 1000 299.63 359.94 374.04 386.69 391.86

11000 364.19 18.36 1000 321.4 391.66 397.62 402.38 405.25

11500 374.85 17.64 1000 339.21 391.11 408.88 423.9 425.8

12000 394.19 15.4 1000 366.29 409.1 426.39 433.87 438.55

12500 417.28 16.21 1000 391.17 440.89 454.29 460.92 467.82

13000 424.53 18.15 1000 392.2 440.84 454.27 479.55 486.81

13500 444.21 22.99 1000 383.37 468.11 484.17 500.07 500.81

14000 459.73 25.14 1000 400.39 487.86 502 517.34 519.93

14500 477.27 22.99 1000 434.15 500.22 516.69 544.43 559.51

15000 496.05 23.9 1000 455.6 532.48 544.81 560.45 560.77

15500 507.36 22.74 1000 461.3 527.74 550.4 561.69 597.53

16000 530.32 27.69 1000 481.52 569.79 588.92 606.08 623.14

16500 542.91 21.5 1000 500.01 564.4 583.54 589.85 599.4

17000 562.25 22.95 1000 521.13 585.03 606.9 631.43 637.8

17500 573.97 26.62 1000 521.15 599.39 626.99 645.57 645.89

18000 592.84 21.28 1000 548.42 617.36 621.27 655.21 655.28

18500 612.87 30.49 1000 564.77 657.49 672.22 711.41 713.32

19000 624.52 25.45 1000 573.49 652.04 674.36 692.37 709.55

19500 643.9 30.42 1000 584.47 689.21 694.96 726.45 728.45

20000 661.18 26.78 1000 598.47 690.08 714.42 722.21 728.85

Table 6.1: Execution times (in microseconds) for local producer/consumer

151

Chapter 6: Evaluation

Workload Average STD Count Min 90% 95% 99% Max

500 24.97 2.42 1000 23.1 26.36 31.57 33.23 33.58

1000 46.2 5.81 1000 25.95 51.55 51.81 52.54 63.51

1500 72.43 5.16 1000 66.34 77.6 82.34 88.66 88.68

2000 96.6 6.69 1000 89.59 102.82 103.48 123.37 127.96

2500 120.96 10.54 1000 108.7 131.31 135.93 144.83 187.61

3000 144.32 9.89 1000 129.17 153.38 154.33 167.95 197.67

3500 167.88 13.12 1000 141.8 178.79 181.03 217.66 222.8

4000 184.48 11.82 1000 150.45 202.49 204.41 210.37 224.38

4500 210.37 10.64 1000 190.68 227.54 228.39 231.52 231.89

5000 239.11 14.75 1000 192.7 254.37 256.63 259.86 306.15

5500 266.48 18.47 1000 205.34 283.21 288.45 300.09 375.61

6000 290.31 21.42 1000 258.65 307.68 325.87 377.55 377.73

6500 311.56 26.47 1000 280.49 334.82 390.15 391.79 392.76

7000 332.97 17.6 1000 304.78 355.25 357.5 378.74 394.85

7500 344.14 27.8 1000 281.17 377.75 382.51 385.11 385.72

8000 372.58 27.46 1000 293.12 406.55 410.71 427.99 434.43

8500 400.1 19.23 1000 358.95 428.55 431.33 433.6 438.26

9000 431.39 25.56 1000 349.96 456.08 462.75 496.77 499.94

9500 457.05 40.58 1000 423.16 540.8 551.33 584.45 590.99

10000 479.23 26.88 1000 414.11 511.37 514.25 547.89 552.84

10500 512 66.95 1000 465.59 538.84 713.72 756.36 762.53

11000 526.94 30.77 1000 471.12 560.73 566.77 600.36 616.32

11500 549.6 30.34 1000 488.12 586.19 591.85 610.77 617.91

12000 577.5 39.38 1000 526.75 643.43 653.65 659.89 702.17

12500 590.89 34.98 1000 544.46 647.29 663.52 668.36 670.54

13000 612.69 28.87 1000 560.23 656.57 662.38 664.79 679.91

13500 638.11 33.48 1000 592.84 682.08 690.67 708.3 727.13

14000 667.46 38.68 1000 581.83 710.46 718.8 738.32 740.56

14500 695.79 42.79 1000 640.81 751.73 759.3 802.79 803.92

15000 710.28 38.75 1000 665.97 758.03 763.16 814.17 815.25

15500 746.17 40.21 1000 690.37 791.47 795.72 834.71 836.74

16000 758.64 39.58 1000 703.39 807.98 811.17 823.96 832.74

16500 787.72 45.85 1000 703.88 842.8 848.59 860.98 924.16

17000 791.21 46.53 1000 691.1 853.78 857.57 872.41 913.33

17500 820.72 41.21 1000 753.98 885.51 895.72 902.27 933.34

18000 855.51 43.53 1000 807.63 911.88 923.58 964.89 987.55

18500 864.46 45.92 1000 783.31 931.08 936.86 944.93 949.63

19000 896.75 52.23 1000 828.85 975.34 1005.28 1040.24 1068.18

19500 930.27 68.26 1000 862.36 1061.93 1066.32 1124.75 1125.65

20000 938.22 50.71 1000 880.52 1004.9 1012.64 1131.07 1155.85

Table 6.2: Execution times (in microseconds)for remote producer/consumer

152

6.3 Performance

0

200

400

600

800

1000

1200

1400

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

6
0

0
0

6
5

0
0

7
0

0
0

7
5

0
0

8
0

0
0

8
5

0
0

9
0

0
0

9
5

0
0

1
0

0
0

0

1
0

5
0

0

1
1

0
0

0

1
1

5
0

0

1
2

0
0

0

1
2

5
0

0

1
3

0
0

0

1
3

5
0

0

1
4

0
0

0

1
4

5
0

0

1
5

0
0

0

1
5

5
0

0

1
6

0
0

0

1
6

5
0

0

1
7

0
0

0

1
7

5
0

0

1
8

0
0

0

1
8

5
0

0

1
9

0
0

0

1
9

5
0

0

2
0

0
0

0

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Workload

Figure 6.4: Execution times for remote producer consumer problem using the locality

model

for the local case. At N=500, the average execution time for the remote case

is 24.97 us compared to 16.96 us for the local case. At N=20000, the average

in the remote case is 938.22 us compared to locale case’s 661.18 us.

• Minimum value – The minimum value for both the local case and the remote

case are shown in Table 6.1 and Table 6.2 respectively for the producer con-

sumer test. The minimum time in the remote case are longer than the values

for the local case. At N=500, the minimum execution time for the remote case

is 23.1 us compared to 13.51 us for the local case. At N=20000, the minimum

in the remote case is 880.52 us compared to locale case’s 598.47 us.

This experiment highlights the effect of locality on a cc-NUMA system and show

that the locality model can be used to increase the performance of an application

by keeping threads and objects local to each other.

6.3.2 The Prime Sieves Example

The basic motivation to conduct this experiment is to measure the impact of locality

and thread placement in a highly parallel application. Therefore, we choose an

already parallel algorithm and we will be measuring the execution times of the same

153

Chapter 6: Evaluation

number of threads in different configurations1. We conduct an experiment where we

generate prime numbers by the Sieve of Eratosthenes.

Figure 6.5: Sieve of Eratosthenes

Figure 6.5 shows the generation of primes, where each sieve is a real-time thread

which receives a stream of integers; it then forwards this stream to a newly created

sieve after some processing. The real-time threads are created dynamically through-

out the life time of the application, as each newly created sieve then goes onto create

a new sieve. The buffering used to communicate between sieves are the shared data

items. Each buffer is only accessed by two sieve threads and therefore the buffer

should be kept local to the threads for fast access.

Due to the presence of large instruction caches, the code gets cached in for the

first time a cache miss occurs. Any subsequent access to the method code should be

a cache hit and hence will not affect the overall timing. Therefore, the performance

of the application depends on the following two factors:

1. Distributing the load evenly across the platform.

2. Ensuring locality where ever it is possible.

We create four ExecutionSites, one ExecutionSite on each Locale. Threads are

dynamically created using factory methods of the ExecutionSites. The selection of

the ExecutionSite for thread creation is based on load balancing and locality.

1Note, that this is not the traditional measure of speed-up which is often used to show how

an application performance can be improved by the addition of extra processors. Here, we are

measuring the effect that locality has in highly parallel applications.

154

6.3 Performance

6.3.2.1 Effect of the Locality Model on Performance

This experiment determines the effect of locality model on the performance of the

a highly parallel application.

Test Settings In this experiment we generate all prime numbers less than N. Start-

ing from N = 500, and increasing the value of N, to N = 20000 to analyze how the

locality model works under different levels of parallelism.

Figure 6.6 shows the primes generated for each value of N e.g. for N = 20000,

the maximum prime that is created is 19997.

4
9

9

9
9

7

1
4

9
9

1
9

9
9

2
4

7
7

2
9

9
9

3
4

9
9

3
9

8
9

4
4

9
3

4
9

9
9

5
4

8
3

5
9

8
7

6
4

9
1

6
9

9
7

7
4

9
9

7
9

9
3

8
4

6
7

8
9

9
9

9
4

9
7

9
9

7
3

1
0

4
9

9

1
0

9
9

3

1
1

4
9

7

1
1

9
8

7

1
2

4
9

7

1
2

9
8

3

1
3

4
9

9

1
3

9
9

9

1
4

4
8

9

1
4

9
8

3

1
5

4
9

7

1
5

9
9

1

1
6

4
9

3

1
6

9
9

3

1
7

4
9

7

1
7

9
8

9

1
8

4
9

3

1
8

9
7

9

1
9

4
8

9

1
9

9
9

7

0

5000

10000

15000

20000

25000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

P
r
im

e
 N

u
m

b
e

r

N

Figure 6.6: Prime numbers for all N

For each new prime a new thread (sieve) is created e.g. in the case of N = 20000,

a total of 2262 threads are created (sieves) which can be shown in Figure 6.7 and

record the time taken to generate 14983 which is the last prime number in our list.

9
5

1
6

8

2
3

9

3
0

3

3
6

7

4
3

0

4
8

9

5
5

0

6
1

0

6
6

9

7
2

5

7
8

3

8
4

2

9
0

0

9
5

0

1
0

0
7

1
0

5
9

1
1

1
7

1
1

7
7

1
2

2
9

1
2

8
4

1
3

3
5

1
3

8
7

1
4

3
8

1
4

9
7

1
5

4
7

1
6

0
0

1
6

5
2

1
6

9
8

1
7

5
4

1
8

1
0

1
8

6
2

1
9

1
2

1
9

6
0

2
0

1
4

2
0

6
4

2
1

1
8

2
1

5
8

2
2

1
2

2
2

6
2

0

500

1000

1500

2000

2500

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

T
h

r
e

a
d

N
u

m
b

e
r

N

Figure 6.7: Number of threads created for all N

For this experiment, we analyze the following cases:

155

Chapter 6: Evaluation

• Normal – In this case, we do not use the locality model. Prime numbers

are generated using standard jRate. The code for this case is presented in

Appendix E.1.

• Locality Model – In this case, we generate prime numbers using the locality

model. Four execution sites are statically created, one on each locale. We dis-

tribute 8 threads in each of the four ExecutionSites and then start again until

all threads are allocated. The code for this case is presented in Appendix E.2.

Results Figure 6.8 and Figure 6.9 give a comparison of the time taken to generate

the prime numbers by both the cases for all values of N. Detailed statistics for the

results have been attached in Table 6.3 (for the normal case) and Table 6.4 (for the

locality model).

Results Analysis The following analyzes the results in Figure 6.8 and Fig-

ure 6.9:

1. Average – The average execution times for both the locality model and the

normal case are shown in Table 6.4 and Table 6.3 respectively. The average

values in the normal case are larger than the values for the locality model. At

N=500, there is very little difference between the average values of the locality

and the normal case with average values 117.1 ms and 142.75 ms respectively.

However, the average values for the normal case increase very rapidly and

at N=20000, the average execution time in the normal case is 8065.49 ms

compared to locality model’s 4190.72 ms which is almost half.

2. Minimum – The minimum execution times for both the locality model and the

normal case are shown in Table 6.4 and Table 6.3 respectively. The results

of the minimum values are similar to the results of the average case. At

N=500, the minimum values of the locality and the normal case 111.99 ms

and 120.85 ms respectively. However, like the average values, the minimum

execution times for the normal case increase very rapidly and at N=20000,

the minimum execution time in the normal case is 6822.97 ms compared to

locality model’s 3951.64 ms.

156

6.3 Performance

The normal case does not use the locality model and leave it up to the operating

system and the JVM to decide how the application is distributed over the set of

processors. This results in the very high execution times. This is because Linux

cannot guarantee locality, without any hint from the application, the operating

system does not constrain threads and memory to a particular location. Without any

affinity provided from the programmer, threads move around on different processors

of the system. This results in a very high number of data cache misses and on a

cc-NUMA system, the cost of a cache miss is usually very high especially if locality

is not guaranteed.

The locality model comparatively performs much better then the normal case.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

6
0

0
0

6
5

0
0

7
0

0
0

7
5

0
0

8
0

0
0

8
5

0
0

9
0

0
0

9
5

0
0

1
0

0
0

0

1
0

5
0

0

1
1

0
0

0

1
1

5
0

0

1
2

0
0

0

1
2

5
0

0

1
3

0
0

0

1
3

5
0

0

1
4

0
0

0

1
4

5
0

0

1
5

0
0

0

1
5

5
0

0

1
6

0
0

0

1
6

5
0

0

1
7

0
0

0

1
7

5
0

0

1
8

0
0

0

1
8

5
0

0

1
9

0
0

0

1
9

5
0

0

2
0

0
0

0

T
im

e
 i

n
 m

il
li

s
e

c
o

n
d

s

N

Figure 6.8: Execution times for generating all prime numbers less than N=20000

using the locality model

6.3.2.2 Trade-off between Locality and Load Balancing

In this experiment, the effect of load balancing and locality is measured. We generate

all prime numbers less than 15000 and record the time taken to generate 14983 which

is the last prime number in this case.

Test Settings The total number of dynamically created real-time threads is 1754

in this experiment and the performance depends on how these threads are allocated

along with their objects on the cc-NUMA system. As the threads are being created

157

Chapter 6: Evaluation

N Average STD Count Min 90% 95% 99% Max

500 117.1 3.59 1000 111.99 118.83 120.11 135.34 136.28

1000 185.42 4.02 1000 176.3 190.76 191.52 192.25 196.7

1500 256.55 6.68 1000 239.92 265.56 268.19 270.14 270.89

2000 327.53 6.84 1000 312.4 335.33 341.04 343.93 349.46

2500 403.87 6.9 1000 391 411.53 415.81 425.52 425.76

3000 482.12 9.93 1000 459.71 494.27 497.59 504.29 509.34

3500 557.73 8.45 1000 532.04 568.14 569.71 578.78 582.66

4000 632.7 9.06 1000 609.62 641.51 646.11 654.87 658.16

4500 710.73 10 1000 683.94 723.09 724.07 726.26 737.92

5000 792.63 12.29 1000 761.51 806.83 810.82 819.6 822.61

5500 873.63 10.1 1000 849.16 886.32 889.25 899.16 906.42

6000 959.5 11.02 1000 927.49 971.58 973.7 979.25 980.38

6500 1048.58 13.15 1000 1007.61 1064.01 1069 1077.18 1088.66

7000 1143.51 12.14 1000 1111.28 1159.41 1162.72 1171.56 1177.92

7500 1222.38 14.36 1000 1178.57 1239.25 1242.75 1254.1 1255.46

8000 1319.6 14.48 1000 1280.03 1335.72 1339.93 1345.89 1350.47

8500 1412.05 14.48 1000 1379.4 1431.62 1436.75 1439.39 1439.57

9000 1510.51 19.56 1000 1466.2 1536.32 1540.59 1543 1548.21

9500 1616.74 23.17 1000 1562.39 1645.55 1653.11 1680.82 1682.95

10000 1724.59 27.96 1000 1673.41 1759.28 1787.48 1807.33 1808.5

10500 1840.01 29.65 1000 1779.91 1885.64 1891.5 1909.61 1912.22

11000 1926.18 30.95 1000 1864.82 1968.2 1979.82 1999.14 2004.62

11500 2055.2 29.24 1000 1973.01 2093.4 2104.81 2129.37 2144.53

12000 2149.22 38.89 1000 2080.85 2199.05 2222.93 2259.52 2275.78

12500 2267.23 40.69 1000 2190.14 2327.93 2339.51 2345.93 2349.93

13000 2401.7 40.11 1000 2292.15 2452.69 2457.13 2471.33 2489.82

13500 2524.36 37.58 1000 2400.25 2567.69 2583.47 2605.91 2609.67

14000 2622.14 45.3 1000 2484.61 2668.04 2687.04 2706.89 2707.94

14500 2747.34 51.22 1000 2590.99 2817.19 2822.68 2841.04 2845.46

15000 2873.36 50.79 1000 2677.44 2940.07 2956.4 2984.87 2985.81

15500 3004.06 54.18 1000 2864.17 3070.45 3090.64 3106.36 3120.6

16000 3134.9 45.68 1000 3009.01 3190.79 3201.76 3216.53 3221.16

16500 3229.82 58.18 1000 3096.11 3293.96 3315.91 3349.83 3387.89

17000 3362.99 52.75 1000 3248.79 3426.62 3440.23 3462.25 3469.26

17500 3503.82 59.98 1000 3356.92 3572.5 3598.3 3622.68 3700.24

18000 3617.58 60.44 1000 3447.22 3681.39 3703.18 3721.78 3725.58

18500 3786.65 65.81 1000 3640.1 3864.74 3875.95 3918.89 3920.41

19000 3890.75 70.91 1000 3698.92 3974.83 3992.24 4002.95 4013.43

19500 4047.24 70.24 1000 3831.25 4138.31 4162.18 4166.33 4166.5

20000 4190.72 82.5 1000 3951.64 4280.76 4307.53 4341.79 4341.86

Table 6.3: Execution times (in milliseconds) statistics for the prime sieves in

the locality model case

158

6.3 Performance

N Average STD Count Min 90% 95% 99% Max

500 142.75 20.46 1000 120.85 171.29 172.74 174.49 189.57

1000 251.22 42.46 1000 203.45 306.37 308.72 321.86 327.29

1500 370.46 62.42 1000 299.47 455.83 461.49 472.43 480.38

2000 493.21 85.65 1000 395.91 612.87 616.28 618.84 630.54

2500 617.55 110.38 1000 479.38 780.17 791.64 804.1 839.76

3000 781.28 133.49 1000 566.61 954.29 958.37 967.17 986.14

3500 901.41 159.13 1000 709.11 1129.95 1138.71 1145.86 1192.87

4000 1032.75 167.49 1000 815.62 1301.32 1308.95 1338.39 1342.69

4500 1233.42 193.53 1000 982.47 1499.06 1511.68 1516.41 1517.31

5000 1385.36 225.96 1000 1084.53 1703.42 1707.67 1716.06 1724.49

5500 1595.69 237.83 1000 1282.36 1891.81 1904.51 1911.07 1919.45

6000 1693.07 264.93 1000 1307.76 2107.53 2121.9 2144.51 2159.43

6500 1910.91 280.99 1000 1497.18 2327.82 2337.05 2374.38 2382.52

7000 2099.04 312.08 1000 1680.76 2540.2 2564.22 2587.98 2591.29

7500 2220.96 310.16 1000 1788.66 2578.94 2753.9 2781.31 2790.38

8000 2508.23 348.1 1000 2008.77 2983.38 2993.24 3032.02 3070.17

8500 2596.25 364.96 1000 2186.48 3122.97 3189.45 3285.42 3305.15

9000 2845.69 393.43 1000 2219.46 3424.72 3494.52 3507.4 3513.16

9500 3109.55 415.37 1000 2440.17 3665.83 3726.19 3753.57 3754.82

10000 3241.49 450.62 1000 2609.54 3860.21 3933.67 3990.9 4000.95

10500 3554.4 466.39 1000 2876.27 4136.6 4166.84 4190.73 4196.39

11000 3654.08 453.93 1000 2987.49 4299.76 4351.63 4399.55 4403.88

11500 3805.32 501.39 1000 3189.85 4614.06 4646.03 4693.17 4739.31

12000 4030.44 531.53 1000 3325.84 4842.81 4888.7 4922.86 4931.64

12500 4267.78 560.56 1000 3448.62 4996.36 5086.68 5113.15 5151.52

13000 4422.87 570.7 1000 3739.21 5335.87 5372.15 5460.64 5504.7

13500 4838.31 555.75 1000 4027.62 5612.64 5643.08 5709.76 5732.17

14000 4944.5 587.53 1000 4144.67 5809.47 5899.04 5974.47 5983.67

14500 5135.97 596.82 1000 4351.91 6026.05 6101.28 6209.72 6287.86

15000 5504.1 661.74 1000 4523.15 6404.16 6472.55 6504.23 6538.29

15500 5736.84 718.48 1000 4742.31 6725.97 6758 6810.37 6813.94

16000 6015.78 713.36 1000 4824.67 6958.23 7030.1 7085.43 7186.66

16500 6292.75 736.6 1000 5119.25 7256.07 7315.56 7369.05 7413.55

17000 6333.17 745.41 1000 5489.59 7519 7564.92 7651.8 7662.81

17500 6631.89 743.39 1000 5639.37 7780.07 7891.93 8002.36 8016.12

18000 6888.99 756 1000 5789.94 8066.14 8152.84 8206.4 8280.5

18500 7216.11 823.34 1000 6161.51 8428.02 8499.27 8604.83 8617.68

19000 7411.13 863.11 1000 6297.76 8702.13 8737.25 8811.13 8841.82

19500 7760.46 887.66 1000 6563.79 9052.27 9126.35 9198 9202.23

20000 8065.49 880.23 1000 6822.97 9337.62 9431.52 9503.19 9593.61

Table 6.4: Execution times (in milliseconds) statistics for the prime sieves in

the normal case

159

Chapter 6: Evaluation

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

6
0

0
0

6
5

0
0

7
0

0
0

7
5

0
0

8
0

0
0

8
5

0
0

9
0

0
0

9
5

0
0

1
0

0
0

0

1
0

5
0

0

1
1

0
0

0

1
1

5
0

0

1
2

0
0

0

1
2

5
0

0

1
3

0
0

0

1
3

5
0

0

1
4

0
0

0

1
4

5
0

0

1
5

0
0

0

1
5

5
0

0

1
6

0
0

0

1
6

5
0

0

1
7

0
0

0

1
7

5
0

0

1
8

0
0

0

1
8

5
0

0

1
9

0
0

0

1
9

5
0

0

2
0

0
0

0

T
im

e
 i

n
 m

il
li

s
e

c
o

n
d

s

N

Figure 6.9: Execution times for generating all prime numbers less than N=20000 in

the normal case

dynamically, when a thread is created we have to decide in which locale it should be

placed among the available 4 locales. Therefore, we distribute newly created threads

in the following ways:

• Case 1 – We distribute 1 thread in each of the four locales and then start

again until all 1754 threads are allocated. In this case, the dynamic load on

the system will be properly balanced but there will be no locality between

threads.

• Case 2 – We distribute 8 threads in each of the four locales and then start

again until all 1754 threads are allocated. In this case, the dynamic load on

the system will be properly balanced but the locality has also improved when

compared to case 2.

• Case 3 – As there are 1754 threads, we allocate all these threads in the first

ExecutionSite. In this case we have very highly locality but the load on the

system is imbalanced.

Results Figure 6.10 gives a comparison of the time taken to generate the prime

numbers in all the 4 cases discussed. Each case is executed 1000 times, and the

times are shown for each iteration. Table 6.5 provides the statistics of these results.

160

6.3 Performance

2000

2500

3000

3500

4000

4500

5000

5500

6000

0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 i

n
 m

il
li

s
e

c
o

n
d

s

Iterations

Case 1 Case 2 Case 3

Figure 6.10: Comparison of execution times using the locality model under different

configurations

Average STDDEV Min 90% 95% 99% Max

Case 1 3466.78 74.63 3233.51 3562.79 3586.84 3625.91 3665.54

Case 2 2890.94 51.28 2703.28 2955.26 2972.77 2999.62 3032.96

Case 3 5310.33 115.59 4790.45 5454.63 5485.04 5555.56 5705.63

Table 6.5: Analyzing the execution times of all cases

Results Analysis

The following analyzes the results in Figure 6.10 and Table 6.5:

• In case 2, we have both locality between the threads and load balancing. This

produces the best results.

• Case 1 has load balancing but no locality as each thread is allocated on a

different ExecutionSite on a different Locale. The difference between case 1

and case 2, shows the effect of locality.

• In case 3, we illustrate the tradeoff between locality and load balancing. Al-

though locality is strong, it cannot compensate for uneven distribution of load.

161

Chapter 6: Evaluation

In summary, using the locality model significantly improves the performance if

we have a balance between locality and the load distribution of the system.

6.4 Predictability

The locality model provides guarantees to ExecutionSites. These guarantees can be

used to meet the timings requirements of the schedulables inside the ExecutionSite.

Appendix D provides a schedulability analysis that is compatible with the locality

model. The purpose of providing this schedulability analysis is to show that the

the resource reservation model is inline with the real-time scheduling theory for

multiprocessors.

This section highlights the effect of the locality model on the predictability of

real-time Java applications.

6.4.1 Dispersions

Execution times on a cc-NUMA system vary because of varying memory access

timings in the cc-NUMA system. The following shows the effect of locality on these

dispersions:

6.4.1.1 Locality Model vs. Normal Case

The prime sieves example that was performed for all N values ranging from 3 to

20000, measured the execution times for the Locality model and the Normal case

to compare the difference that makes by allowing the application to handle the

allocation policies instead of the OS. The following presents the dispersion values

measured in this test:

• Standard deviation – The standard deviation for both the locality model and

the normal case are shown in Table 6.4 and Table 6.3 respectively. The stan-

dard deviation values in the normal case are larger than the values for the

locality model. At N=500, the standard deviation value for the normal case is

20.46 ms compared to 3.59 ms for the locality model. This standard deviation

162

6.4 Predictability

in the normal case is roughly about 6 times the standard deviation values of

the locality model. The standard deviation in the normal case increases very

rapidly when compared to the locality model and at N=20000, the standard

deviation in the normal case is 880.23 ms compared to locality model’s 82.5

ms. Now the standard deviation is roughly 11 times higher in the normal case

compared to the locality model.

• Percentiles – The percentiles presented in the Table 6.4 and Table 6.3 show

that the average value is much closer to the 90%, 95% and 99% in the locality

model when compared to the normal case. For example, at N=500, the locality

model has an average of 117.1 ms, 90% is 118.83 ms, 95% is 120.11 ms, 99%

is 118.83 ms. For the same value of N, the normal case has an average of

142.75 ms, 90% is 171.29 ms, 95% is 172.74 ms, 99% is 174.49 ms. This trend

increases as we continue to increase the values of N.

• Inter-quartile Range – The boxes in Figure 6.8 are much smaller than the

boxes in Figure 6.9 which show that the inter-quartile range (IQR) for the

locality model is much smaller than the normal case. At N=500, the IQR for

the locality model is equal to 2.4 ms whereas for the normal case it is equal to

34.82 ms.

All these statistics show that the dispersion of execution times is less in the case

of the locality model when compared to the normal case.

6.4.1.2 Local vs. Remote

The producer/consumer example measured the difference between the local and

remote case. It is the important to note that the locality model was used in both

cases and in the remote case, the producer was allocated on N0 of the reference

architecture along with the shared object and the consumer was allocated on N1.

The speed between N0-N1 was set at 200MHz. In the local case both producer

consumer were kept local along with the shared object. The following presents the

dispersion values measured in this test:

163

Chapter 6: Evaluation

• Standard deviation –The standard deviation for both the local case and the

remote case are shown in Table 6.1 and Table 6.2 respectively for the producer

consumer test. The standard deviation values in the remote case are roughly

about double than the values for the local case. At N=500, the standard

deviation value for the remote case is 2.42 us compared to 1.58 us for the local

model. This standard deviation in the remote case is roughly about 1.6 times

the standard deviation values of the local case. At N=20000, the standard

deviation in the remote case is 50.71 us compared to locale case’s 26.78 us

which is approximately about double.

• Percentiles – The percentiles presented in the Table 6.1 and Table 6.2 show

that the average value is much closer to the 90%, 95%and 99% in the local case

when compared to the remote case. For example, at N=500, the local case has

an average of 16.96 us, 90% is 18.01 us, 95% is 18.75 us, 99% is 20.05 us. For

the same value of N, the remote case has an average of 24.97 us, 90% is 26.36

us, 95% is 31.57 us, 99% is 33.23 us. This trend continues as we increase the

value of N.

• Inter-quartile Range – The boxes in Figure 6.3 are much smaller than the

boxes in Figure 6.4 which show that the inter-quartile range (IQR) for the

local case is much smaller than the remote case. At N=500, the IQR for the

local case is equal to 0.98 us whereas for the remote case it is equal to 2.28 us.

All these statistics show that the dispersion of execution times is less in the local

case when compared to the remote case even though the locality model was being

used for both cases.

6.4.1.3 Locality vs. Load Balancing

The prime sieve example was repeated to find how load balancing and locality affect

the execution times. For a fixed value of N, i.e. N=15000, we have three cases

as described in the Section 6.3.2.2. The following presents the dispersion values

measured in this test:

164

6.4 Predictability

• Standard deviation – The standard deviation for all three cases is presented

in the Table 6.5. The standard deviation value for case 1 is 74.63 ms, case 2

is 51.28 ms and case 3 is 115.59 ms.

• Percentiles – The percentiles for all three cases is presented in the Table 6.5.

For case 1, the average value is 3466.78 ms, the 90% value is 3562.79 ms, the

95% value is 3625.91 ms and the 99% value is 3665.54 ms. For case 2, the

average value is 2890.94 ms, the 90% value is 2972.77 ms, the 95% value is

2999.62 ms and the 99% value is 3032.96 ms. For case 3, the average value

is 5310.33 ms, the 90% value is 5485.04 ms, the 95% value is 5555.56 ms and

the 99% value is 5705.63 ms. Therefore the percentile values are closest to the

average in case 2, followed by case 1 and lastly case 3.

All these statistics show that the dispersion values are least when there is proper

load balancing along with locality. The dispersion is the highest when the load is

unbalanced on the system.

6.4.2 Temporal Isolation

The locality model provides temporal isolation to threads in an ExecutionSite from

any external threads. Let us consider the following example:

import javax.realtime .*;

public class test1 extends RealtimeThread {

public void run() {

Neighbourhood n1 = Locality.getCurrentNeighbourhood ();

Locale [] locs = n1.getLocales ();

// Parameters are created for the ExecutionSite showing the

// requirements of the ExecutionSite

int numProcessors = 1;

RelativeTime [] budget = new RelativeTime [1];

RelativeTime [] period = new RelativeTime [1];

RelativeTime [] budget1 = new RelativeTime [1];

RelativeTime [] period1 = new RelativeTime [1];

165

Chapter 6: Evaluation

budget [0]= new RelativeTime (40 ,0);

period [0]= new RelativeTime (100 ,0);

budget1 [0]= new RelativeTime (40 ,0);

period1 [0]= new RelativeTime (100 ,0);

MemoryParameters mp1 =

new MemoryParameters (2048, 2048 ,2048);

MemoryParameters mp2 =

new MemoryParameters (2048, 2048 ,2048);

ExecutionSite site1 = Locality.createExecutionSite(locs[0],

budget , period , numProcessors , mp1);

ExecutionSite site2 = Locality.createExecutionSite(locs[0],

budget1 , period1 , numProcessors , mp2);

// PriorityParameters are created to pass as parameters to

// the factory to create threads.

PriorityParameters pri1=new PriorityParameters (25);

PriorityParameters pri2=new PriorityParameters (20);

// PeriodicParameters object is created to pass as

// parameters to the factory to set the period of a periodic

// thread.

RelativeTime start = new RelativeTime (0, 0);

RelativeTime C = new RelativeTime (20, 0);

RelativeTime D = new RelativeTime (100, 0);

RelativeTime T = new RelativeTime (100, 0);

PeriodicParameters releaseParams = new

PeriodicParameters(start ,T,C,D,null ,null);

// Create the higher priority thread on site1. The thread

// is created to occupy the processor but it will be suspended

// as soon as the the budget expires. It will be able to execute

// as soon as the budget is replenished.

RealtimeThread rtt1 = site1.createRealtimeThread(pri1 , null ,

null , null , new misBehaving ());

RealtimeThread rtt2 = site2.createRealtimeThread(pri2 ,

166

6.4 Predictability

releaseParams , null , null , new periodicThread ());

rtt1.start ();

rtt2.start ();

}

public static void main(String [] args) {

test1 rt = new test1 ();

rt.start ();

} }

// This class implements a runnable which executes

// indefinitely in a loop to keep the CPU busy.

public class misBehaving implements Runnable {

public void run() {

while(true);

} }

import javax.realtime .*;

public class periodicThread implements Runnable {

public void run() {

RealtimeThread rTT =

RealtimeThread.currentRealtimeThread ();

Clock c1 = Clock.getRealtimeClock ();;

for (int i = 0; i < 1000; ++i) {

rTT.waitForNextPeriod ();

AbsoluteTime at= c1.getTime ();

System.out.print("\tPeriod:" + i + "\t");

System.out.println(at.getMilliseconds ()+ "␣ms␣"

+ at.getNanoseconds () + "␣ns");

} } }

This example can be explained as following:

1. Two ExecutioneSites, site1 and site2, are created on Locale 0. Both site1 and

site2 require some temporal guarantees which are requested in the form of

167

Chapter 6: Evaluation

budget and period arrays. The guarantees required in this case are only on

one processor. We assume that both ExecutionSites are guaranteed budget

on the same processor. This will cause maximum intereference between both

ExecutionSites.

2. A thread is created on each ExecutionSite, rtt1 and rtt2. rtt1 has a higher

priority than rtt2. However, since both threads belong to different Execution-

Sites, their priorities cannot be compared.

3. Both threads will execute upto a maximum of their allocated budget in that

period. In case any thread exhausts the budget, it will be suspended until the

next replenishment period. Therefore, rtt1 which is the misbehaving thread

in the example will be suspended once it exhausts the budget allowing rtt2 to

execute even though both threads are executing on the same processor.

The Locality Model is capable of providing temporal isolation, however, the

implementation does not produce the correct behaviour on Linux. Higher priority

threads keep on executing even after exhausting the budget not allowing any CPU

time for lower priority ones. Therefore, with the existing support in Linux (throttling

mechanism), temporal isolation cannot be provided for real-time applications which

require period values that are less than one second.

6.5 Overheads

This section outlines the overheads of the locality model and the overheads of the

prototype implementation.

6.5.1 Architecture Representation

The overhead of building the architectural representation is a one time overhead

which is generated during the initialization of the JVM. It is independent from the

application that will execute on the JVM. This is an overhead which is introduced

in the locality model and does not exist in standard RTSJ JVMs.

168

6.5 Overheads

Test Settings The execution time of the Platform.buildPlatform(memory, devices)

is measured for the reference cc-NUMA architecture. The prototype implementa-

tion has been based on the hwloc library and implementation of the Architecture

Representation has been detailed out in Chapter 5.

Results Figure 6.11 shows the time taken to build the representation of the archi-

tecture. Table 6.6 lists the statistics for the executions times.

0

2

4

6

8

10

12

14

16

Locality Model

T
im

e
 i

n
 m

il
li

s
e

c
o

n
d

s

Overhead

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100
T

im
e

 i
n

 m
il

li
s
e

c
o

n
d

s

Iterations
Locality Model

Figure 6.11: Architecture representation overheads

Results Analysis No comparisons can be provided because the overhead in intro-

duced by the locality model. Overheads introduced during the initialization phase

of the runtime before the application has actually started executing are usually not

very critical because of the nature of real-time applications where tasks are usually

periodic and execute for a long period of time. However, this overhead can be very

critical for small applications (in terms of execution times).

Avg. STD Count Min 90% 95% 99% Max

LM 12.68 0.35 100 12.11 13.17 13.32 13.41 13.47

Table 6.6: Architecture representation overhead (milliseconds) statistics

6.5.2 Application Model

In this subsection, the overheads for the basic operations of the locality model are

measured and analyzed.

169

Chapter 6: Evaluation

6.5.2.1 Creating Places

Places are created for the reference architecture. A Place is created on each Locale,

which includes the creation of a cgroup and creating physical memory areas on each

Locale.

Test Settings In this experiment, 4 Places are created and a physical heap and a

physical immortal memory area is created each of size 2 MB. The time is measured

for the method Locality.initialize(...).

Results Figure 6.12 shows the overhead that is generated as a result of creating

Places on a cc-NUMA system. Table 6.7 provides a statistical analysis of the timings.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Places Creation

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Overhead

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 200 400 600 800 1000

T
im

e
 (

m
ic

ro
se

co
n

d
s)

Iterations

Figure 6.12: Places Creation

Results Analysis This overhead is similar to the overhead of building the architec-

ture representation of the system because both occur before the application has any

chance to execute. We consider these overheads non-critical in the sense that they

will be generated when the platform is being setup for the application and will not

cause any deadline misses or any unpredictable delays when real-time tasks (with

hard or soft timing constraints) are executing.

No comparisons can be provided, however, the overheads of creating Places in

the prototype implementation can be divided into the following two major costs:

1. The creation of cgroups. The cgroup library has very high latencies that have

been presented in Appendix E.1. The sizes of the memory areas to be created.

Section 6.5.2.5 shows the the cost to create a memory area in the locality

model.

170

6.5 Overheads

In addition, this overhead also depends on the number of Locales on the system.

More Locales means more cgroups to be created and memory areas to be created.

Avg. STD Count Min 90% 95% 99% Max

LM 31043.08 2413.77 1000 24650 34207.7 35325.7 37264.39 39644

Table 6.7: Places creation execution times in microseconds

6.5.2.2 Creating an ExecutionSite

The overhead to create an ExecutionSite is measured in JRate in the locality model.

The overhead includes the time taken to perform the admission control mechanism

and if the Locale is not defined, the selection of a Locale.

Test Settings We measure the time taken for Locality.createExecutionSite(...).

Results Figure 6.13 gives the timings of creating an ExecutionSite. Table 6.8

presents the statistical analysis of the execution timings measured for the creation

of the ExecutionSites.

0

1000

2000

3000

4000

5000

6000

Locality Model

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Overhead

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Iterations

Figure 6.13: ExecutionSites Creation

Results Analysis Table 6.8 provides a statistical analysis of the time to create an

ExecutionSite. The overhead includes the admission control for the ExecutionSite

on a Locale. The reason for the large dispersion of values is because if admission

control fails on one Locale then it starts again on another Locale. A simple admission

test is used described in Appendix D.2.

171

Chapter 6: Evaluation

Avg. STD Count Min 90% 95% 99% Max

LM 3012.6 499.07 1000 1930 3622.3 3723.15 4563.03 4999

Table 6.8: ExecutionSites Creation Execution Times in Microseconds

6.5.2.3 Realtime Thread Creation

The overhead to create a RealtimeThread is measured in JRate with and without

using the locality model.

Test Settings Execution times are measured for the following:

1. RealtimeThread rtt = new RealtimeThread(..., Runnable logic)

2. RealtimeThread rtt = ES.createRealtimeThread(..., Runnable logic)

Results Figure 6.14 gives a comparison of the timings to create a RealtimeThread

with and without using the locality model. Table 6.9 provides a statistical analysis

of the time to create a RealtimeThread.

150

170

190

210

230

250

270

290

310

Locality Model Normal

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Overhead

0

50

100

150

200

250

300

350

0 200 400 600 800 1000

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Iterations
Normal Locality Model

Figure 6.14: Real-time Threads Creation

Results Analysis The following conclusions can be drawn from the measurements

presented in Table 6.9 and Figure 6.14.

• Average – The average time taken by the locality model is higher than the

normal case.

• Standard deviation – The standard deviation is higher for the locality model

but there is very little difference between them.

172

6.5 Overheads

• Percentiles – There is roughly no difference between the distance of the per-

centiles from the average for both cases.

The overhead while creating the RealtimeThread is the time used to set the

affinity attributes and adding the thread to the feasibility analysis of the reservation.

JRate does not actually create a Pthread when this method is called, it is actually

created when the start method is called.

Avg. STD Count Min 90% 95% 99% Max

LM 241.65 7.23 1000 227 247 253 268.02 298

Normal 211.53 6.78 1000 201 217 224 234.02 259

Table 6.9: Real-time Threads Creation Execution Times

6.5.2.4 Realtime Thread Startup Latency Without Reservations

In this experiment we measure the time taken to start a thread both in the case of

JRate and using the locality model. It is important to note here that the thread

created using the locality model belongs to an execution site which has no reserva-

tion servers defined. The case where a thread is created on an ExecutionSite with

reservation servers has been discussed in Section 6.5.3.2.

Test Settings The following cases are discussed:

1. Normal – A RealtimeThread is created and then we measure the latency to

start the thread. This is the time between rtt.start() is called till the thread

starts executing.

2. Locality Model – An ExecutionSite is created which has no reservation. A

real-time thread is created using the factory, and then it is started. Then time

measured for the rtt.start() till the thread starts execution.

Realtime priority is set for the thread is set to make sure that the thread is

dispatched without suffering any delays from other real-time threads.

Results Figure 6.15 and Table 6.10 show the startup latencies for real-time threads

in both cases.

173

Chapter 6: Evaluation

0

100

200

300

400

500

600

Locality Model Normal

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Overhead

0

100

200

300

400

500

600

0 200 400 600 800 1000

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Iterations
Normal

0

100

200

300

400

500

600

0 200 400 600 800 1000

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Iterations
Locality Model

Figure 6.15: Real-time threads startup latency without reservations

Results Analysis There are no overheads in the startup latency when real-time

threads are created using Locality Model or Normally using JRate. However, when

a thread is started on an execution site with reservation then there is an overhead

given in Section 6.5.3.2.

Avg. STD Count Min 90% 95% 99% Max

LM 393.44 59.63 1000 281 462 471 492 522

Normal 397.36 61.1 1000 279 470 478 495.02 528

Table 6.10: Real-time threads startup latency (in microseconds) without reservations

statistics

6.5.2.5 Memory Area Creation

The time taken to create the memory area is measured for the locality model and

standard JRate.

Test Settings The time is measured for the creation of a MemoryArea which is of

174

6.5 Overheads

the size of 10 MB . The time is measure for the following method calls:

1. Normal – LTMemory mem = new LTMemory(10*1024*1024)

2. Locality Model – LTPhysicalMemory mem =

ES.createMemoryArea(0,10*1024*1024);

Results Figure 6.16 shows the time taken by the locality model and the normal

case to create the memory area. Table 6.11 provides the statistics analysis of the

timings.

1

10

100

1000

10000

Locality Model Normal

T
im

e
 i

n
 m

il
li

s
e

c
o

n
d

s

Overhead

1

10

100

1000

10000

0 200 400 600 800 1000

T
im

e
 (

m
il

li
se

co
n

d
s)

Iterations
Normal Locality Model

Figure 6.16: Scoped memory Area Creation Timings

Results Analysis The following conclusions can be drawn:

1. Average Measures – The average values show that the memory areas created

in the locality model take very little time as compared to the Normal case.

One reason for this is locality and the other reason is how both have been

implemented. Details of the implementation of the memory areas have been

provided in Chapter 5.

2. Dispersion Measures – From the data reported in Table 6.11 and Figure 6.16,

it can be seen that the 90%, 95% and 99% values are very close to the average

value. Therefore, using the locality model factory to create a memory area is

much more predictable on a cc-NUMA system when compared to using the

scoped memory area constructor.

175

Chapter 6: Evaluation

Therefore, no overheads are generated to create memory areas, infact the timings

are less and more predictable compared to the normal case. The normal case in

Figure 6.16 shows two different bands of execution timings. These bands are created

because the memory area is created without specifying any node. This results in

memory areas being created on nodes having different latencies, hence, forming two

different bands.

Avg. STD Count Min 90% 95% 99% Max

LM 25.56 1.17 1000 22.95 25.88 25.97 28.33 45.36

Normal 1899.24 485.7 1000 1090.81 2205.39 2218.2 2271.29 2445.74

Table 6.11: Scoped memory Area Creation Timings (milliseconds) Statistics

6.5.2.6 Allocation Time Test

This test measures the allocation time for objects in an LTMemory area. The results

we obtained are presented and analyzed below.

Test Settings The time is measured for the creation of an array of bytes which is

of the size 8 MB . The time is measured for memory areas created in the Normal

case and the locality model.

Results Figure 6.17 shows the time taken by the locality model and the normal

case to create the array of bytes. Table 6.12 provides the statistics analysis of the

timings.

3.5

4

4.5

5

5.5

Locality Model Normal

T
im

e
 i

n
 m

il
li

s
e

c
o

n
d

s

Overhead

0

1

2

3

4

5

6

0 200 400 600 800 1000

T
im

e
 (

m
il

li
se

co
n

d
s)

Iterations
Normal Locality Model

Figure 6.17: Object Allocation Timings

Results Analysis The following conclusions can be drawn:

176

6.5 Overheads

1. Average Measures – The average values show that the allocation time using the

locality model takes less time when compared to the Normal case. Although

the difference is little but still the locality model is quicker to allocate the

memory area.

2. Dispersion Measures – From the data reported in Table 6.12 and Figure 6.17,

it can be seen that the 90%, 95% and 99% values are very close to the average

value. Therefore, using the allocation times using the locality model are more

predictable on a cc-NUMA system when compared to the Normal case..

Therefore, no overheads are generated to the allocation timings, infact the allo-

cation times are less and more predictable compared to the normal case.

Avg. STD Count Min 90% 95% 99% Max

LM 3.64 0.03 1000 3.58 3.67 3.7 3.79 3.88

Normal 4.1 0.38 1000 3.9 5.11 5.13 5.15 5.47

Table 6.12: Object Allocation Timings (milliseconds) Statistics

6.5.3 Reservation Model

In this subsection we will measure the overheads generated due to the Reservation

model. Some of the measures have already been included above when an Execution

site was created or a RealtimeThread was created.

6.5.3.1 Creating ReservationServers

ReservationServers are created to provide guarantees. The overheads in the case

when no reservation was guaranteed was measured in Section 6.5.2.2. In this case

we separately measure the time taken to create a ReservationServer. See Section 5.4

for implementation details.

Test Settings An ExecutionSite is created with some temporal requirements. The

scheduler now creates ReservationServer to provide the guarantees. The prototype

has been based on cgroups. We measure the time taken to create the reservation

server.

177

Chapter 6: Evaluation

Results Figure 6.18 shows the time taken to create a ReservationServer. Table 6.13

provides the statistical analysis of the timings.

0

2000

4000

6000

8000

10000

12000

ReservationServer Creation

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Overhead

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000

T
im

e
in

 m
ic

r
o

s
e

c
o

n
d

s

Iterations

Figure 6.18: ReservationServer Creation

Results Analysis The following conclusions can be drawn:

1. Average Measures – The average values show that creating the reservation

server takes a long time. This is because a cgroup is created which corresponds

to the ReservationServer of an ExecutionSite.

2. Dispersion Measures – The dispersion measures show a large amount of vari-

ance. The standard deviation values are large along with the distances between

the the average value and the percentiles (90%, 95% and 99%).

This shows the prototype that has been based of cgroups is not very efficient

and it needs to be improved once more support is added in Linux for better resource

management.

Avg. STD Count Min 90% 95% 99% Max

LM 6205.38 1221.33 1000 4114 8026.1 8783.3 10004.24 10592

Table 6.13: Creating ReservationServer Timings (microseconds)

6.5.3.2 Realtime Thread Startup Latency using Reservations

The latency is measured to start the thread. This is the same experiment as de-

scribed in Section 6.5.2.4. However, in this case the thread is being started on an

ExecutionSite which has a reservation.

178

6.5 Overheads

JRate creates the RTT when the start() method is called for a thread. The

priority and the affinity attributes are already set for the pthread. However, cgroups

are Linux only mechanism and the Linux thread id (tid) is used to attach the

thread which can only be done after the thread has actually started. For more

implementation details see Section 6.5.2.4.

Results Figure 6.19 shows the time taken to start a thread and attach it to a

ReservationServer compared to the Normal case. Table 6.14 provides the statistical

analysis of the timings.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Locality Model Normal

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Overhead

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200 400 600 800 1000

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Iterations
Normal Locality Model

Figure 6.19: Real-time Threads Startup Latency

Results Analysis The following conclusions can be drawn:

1. Average Measures – The average values show that starting the threads takes

around 8 times more execution time.

2. Dispersion Measures – The dispersion measures presented in Table 6.14 also

show an increase in the amount of variance.

Avg. STD Count Min 90% 95% 99% Max

LM 3161.22 245.95 1000 2606 3418 3561.3 3712.2 3926

Normal 397.36 61.1 1000 279 470 478 495.02 528

Table 6.14: Real-time Threads Startup Latency (in microseconds) Statistics

Breaking up this cost of the startup, we find that the major contribution to

the overhead is caused by calling cgroup attach thread(). The timings for this

179

Chapter 6: Evaluation

call given are given in the Appendix F. Child threads inherit the cgroups. Op-

timizations are made to reduce the overheads based on the fact that we do not call

cgroup attach thread().

6.6 Summary

This chapter presents the evaluation of the locality model. It evaluates the local-

ity model in terms of effectively expressing the cc-NUMA architecture to develop

portable real-time Java applications. The initial goals of the thesis were to build to

a locality model which would combine real-time and parallel computing in real time

Java. The main objectives of the thesis were to be able to create a platform which

would provide programmability, portability, performance and predictability.

This chapter reviews the locality model in terms of these objectives. It has shown

that the locality model provides a high level programming model to write portable

application. Experiments show that the locality model increases the performance

of a multi-threaded application. It also provides a more predictable platform on a

cc-NUMA system.

The locality model has small overheads, in case of a parallel environment, the

overheads are not noticeable. On the other hand, the overheads in case of reserva-

tions are high because of the libcgroup library. As a result, the implementation is

not very efficient when working with cgroups.

180

Chapter 7

Conclusions and Future Work

This is the last chapter of the thesis which concludes the work that has been done. It

also provides an outline for future work. Section 7.1 summarizes the work presented

in the thesis. Section 7.2 discusses the contributions of this thesis. Section 7.3

provides the future directions that can be taken after this work.

7.1 Summary

The RTSJ provides a high level real-time programming platform. It is an ideal plat-

form to be extended for new multiprocessor architectures. A basic set of require-

ments is extracted from existing parallel programming languages and the real-time

systems community to be able to develop large scale parallel applications in RTSJ on

cc-NUMA architectures. For non-real-time and non-performance-critical Java ap-

plication, cc-NUMA architecture presents no new problems. The presence of cache

coherence means that programmers need not be concerned with where components

of their program execute. They can delegate full responsibility to the JVM.

For applications that have predictability and performance requirements, delega-

tion to the JVM will not necessary produce acceptable results, as the JVM is unable

to exploit application-specific knowledge. Whilst a JVM may monitor a running ap-

plication and try to optimize its performance (analogous to JIT compilation), this

inevitably undermines predictability.

The existing mechanisms of RTSJ which can be used to support cc-NUMA sys-

181

Chapter 7: Conclusions and Future Work

tems are analyzed, especially RTSJ’s physical memory model and the AffinitySet

class. It is argued that although both used together can provide the programmer

a way of controlling the allocation policies, however, still it falls short of handling

cc-NUMA systems.

To support the programming of cc-NUMA architectures in the RTSJ, the pro-

gramming model is extended to allow the programmer to express locality constraints.

A new locality model is presented which is based on the existing physical memory

model along with some extensions and the resource reservations.

The Architectural representation defines new abstractions that are defined in the

Locality model and provide transparency to the JVM to make it aware of the hard-

ware resources available for the application. Programmers can query the runtime

for any information on the topology of the NUMA system. A Platform class is

provided as an interface to the architecture representation. The representation is

portable because it is built by the runtime based on existing resources. It allows

programmers to allocate schedulables/objects local to any available device.

The Application model provides an ExecutionSite class. It is the main class

around which the whole model revolves. The ExecutionSite contains a group of

threads which can be scheduled by a local scheduler and can be provided with

temporal and spatial guarantees. The runtime provides dynamic allocation of the

ExecutionSite. The objective of having an ExecutionSite is to provide portable per-

formance by keeping related objects/schedulables together and guaranteeing them

resources. Instances of ExecutionSite class can be independently analyzed because

of the guarantees.

The resource reservation model provides resource guarantees to the application.

Resource guarantees makes timing requirements of a soft-real time system portable.

Any system that can provide the required guarantees can host the real-time sys-

tem. For timing requirements, the resource reservation model provides budgets on

individual processors. This approach has less overhead when compared to a global

budget and it scales much better.

A prototype implementation has been developed for the Locality model. The

model is evaluated using performance measures. Results show that the Locality

182

7.2 Contributions

model can be used by programmers to provide locality which considerably improves

the performance.

An existing schedulability analysis is used to show that the locality model is

compliant with existing scheduling theory for multiprocessors. Using the model on

a cc-NUMA system narrows down the range of execution times, hence providing a

much more predictable model.

In summary, the Locality model on RTSJ provides a high level platform for cre-

ating highly parallel applications on cc-NUMA systems with portable performance.

7.2 Contributions

The following major contributions have been made in this thesis:

1. The RTSJ’s existing mechanisms which can be used to support cc-NUMA

systems is analyzed, especially RTSJ’s physical memory model and the Affin-

itySet class. It is argued that although both used together can provide the

programmer a way of controlling the allocation policies, however, still it falls

short of handling cc-NUMA systems. Also it cannot be used for guaranteeing

resources on a platform shared by many applications.

2. A new locality model is presented which is based on the existing physical

memory model along with some extensions and the resource contracts that

have been outlined by [Wellings et al., 2009]. Compared to the existing support

provided for cc-NUMA systems in the RTSJ, the locality model provides the

following:

• New abstractions which make the RTJVM aware of the hardware re-

sources available for the application. The primary requirement for intro-

ducing new language abstractions is to be able to manage the allocation

policies of threads and objects in order to minimize the non determinism

caused by the memory distribution in the NUMA system. In other words,

tightly coupled threads and objects should be kept local to each other to

183

Chapter 7: Conclusions and Future Work

avoid remote accesses, which cause added delay. Unrelated threads and

objects should be separated out to avoid any competition for resources.

• Applications can be mapped statically based on the input of the pro-

grammer or it can be mapped dynamically based on the requirements of

the application.

• Temporal guarantees are provided to applications based on resource reser-

vations.

3. A prototype implementation has been developed. An empirical analysis is

presented which evaluates the locality model.

7.3 Future Work

The work presented in this thesis combines two different areas: real-time Java and

parallel programming. This integration has been getting attention recently due to

the influx of multiprocessors which opens a number of research areas for the future.

Some of the future work that can be done after this thesis is as following:

• Code Locality – In Java, code is in the form of byte-code. This bytecode is

spread across a number of Java class files which can be dynamically loaded

by the JVM from the disk, internet or any other location. Loading the class

files is the responsibility of a class loader which needs to make sure that the

correct class file is loaded which will not jeopardize the security of the Java

application and the system as a whole. Once the class file is loaded, it is

thought to be present in a logical memory area called the method area. The

structure and organization of the information in the method area is not defined

by Java rather it is left to the implementation to decide how the method area

is implemented. Code locality is as important as data locality, if not more so.

So far our model has looked at placement of threads and placement of objects.

However, code for a schedulable object is in the method area, therefore it is

necessary to make sure that code also remains local to the thread.

184

7.3 Future Work

In the locality model, it is assumed that each execution site has a local method

cache as shown in Figure 7.1. This method cache is a logical unit and can ei-

ther be explicitly implemented in software or it can be representing the actual

hardware instruction cache attached to the processor. The method area in

most cases has read only classes which can be replicated across the platform.

In systems with large caches, classes are loaded on the first cache miss and re-

main in the cache unless the system is very heavily loaded with computational

processes. In such a case, the hardware cache does act as a cache and there is

no need to implement one in software. In cases where there are no hardware

caches, an implementation can also implement a method cache on the same

principle of a cache to provide local access to code. Method caches have been

implemented in the case of hardware based Java processor [Schoeberl, 2004].

Method caches can be implemented in software in the following cases:

– The cache is too small or there is no cache memory and the instructions

are being fetched from a remote memory very frequently.

– A high speed scratchpad memory is present.

The case of a scratchpad is interesting because it is also an on-chip high speed

memory like the cache but it can be accessed explicitly by the processor.

Therefore, all the contents in the scratch pad memory are directly under the

control of software, unlike the normal cache where the hardware implicitly con-

trols the cache. [Wellings and Schoeberl, 2009] have used the physical memory

model to allocate physical scoped memory areas on scratchpads.

A complete analysis needs be done for the Locality of code and how it affects

the timings and performance of an application on architectures that may or

may not have large caches.

• Garbage Collection – In real-time systems, garbage collection has been a chal-

lenge because of the unpredictable delays it can cause. A HeapPhysicalMem-

ory area is proposed in Chapter 4. The HeapPhysicalMemory requires the

garbage collector to support a distributed shared memory heap. The general

185

Chapter 7: Conclusions and Future Work

Figure 7.1: Execution sites in a real-time Java application

behaviour of the garbage collector has been described, however, a detailed and

more thorough study is required to design and implement garbage collection

for such a system.

• Heterogeneous Architectures – The Locality model assumes cache coherence

and a single address space. However, modern architectures with extreme levels

of parallelism do not provide these because of scalability issues. Therefore, a

distributed address space exists which is similar to the case of Java DSMs.

However, in this case we have very fast interconnects connecting the nodes.

The Locality model has provided a base which can be extended for these

architectures.

• Application Mapping – The Locality model has been based on on the premise

that the programmers have the knowledge of the relationship between compu-

tations and data. Therefore, they can distribute related computations/data

into separate components. We do not use any static analysis to find relations

among threads/objects, or the relationship between ExecutionSites. It would

be interesting to see how mapping can be optimized based on relationships

between ExecutionSites.

• Adaptive scheduling – Adaptive scheduling is a very flexible mechanism for

soft-real time systems. The scheduling parameters are gradually adapted to

186

7.3 Future Work

the requirements of the application improving the overall QOS without going

through any of the analysis required for real-time systems. It would definitely

have been very useful in the Locality model because the current model depends

on the cost (average or worst case execution time (WCET)) parameter of

the schedulable to check for the feasibility analysis. This cost, however, is

not portable because the execution times of a schedulable will be different

on different architectures. With adaptive scheduling, cost will be redundant

because budget can be fine tuned for the schedulable to ensure all timing

requirements are met.

187

Appendix A

Memory Access Timings on Cache

Coherent NUMA Systems

This appendix tries to give an insight into the difference of memory access timing of

a cc-NUMA system. The cc-NUMA system that is used to measure these timings

is based on the AMD Opteron processor that has been described in Chapter 3.

The Reference architecture is a 4 node system where nodes are connected by a

hypertransport interconnect. The hypertransport interconnects have fixed speed

except for N0-N1 interconnect which can be set speeds from 200 MHz to 1 Ghz.

The TAU benchmark1 measures the time taken by the memcopy() on a cc-NUMA

system. The measurements are calculated by allocating memory on one node and

then using memcopy() from all CPUs on the system. The TAU profile code has

been slightly changed to use the NUMA API to make the memory allocations which

is shown in the following listing:

#include <sched.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/time.h>

#include <string.h>

#include <numa.h>

1http://www.nic.uoregon.edu/tau-wiki/Guide:Opteron NUMA Analysis

189

Appendix A: Memory Access Timings on Cache Coherent NUMA Systems

#define MEM_MB 512

#define MEM_SIZE MEM_MB *1024L*1024L

#define ITER 40

#define numNodes 4

double getTime () {

struct timeval tp;

static double last_timestamp = 0.0;

double timestamp;

gettimeofday (&tp, 0);

timestamp = (double) tp.tv_sec * 1e6 + tp.tv_usec;

return timestamp;

}

int getNumCPU () {

cpu_set_t mask;

if (sched_getaffinity (0,sizeof(cpu_set_t),&mask)) {

fprintf (stderr , "Unable␣to␣retrieve␣affinity\n");

exit (1);

}

int nproc = 0;

for(int i=0; i<CPU_SETSIZE; i++) {

if(CPU_ISSET(i,&mask)) {

nproc ++;

}

}

return nproc;

}

void memtest(char *ptr) {

for (int i=0; i<ITER; i++) {

memcpy(ptr , ptr+(MEM_SIZE /2), MEM_SIZE /2);

}

}

void setCPU(int cpu) {

cpu_set_t mask;

190

CPU_ZERO (&mask);

CPU_SET(cpu , &mask);

sched_setaffinity (0, sizeof(cpu_set_t), &mask);

}

void test(int node , int nproc) {

setCPU(node);

char *ptr ;

ptr=(char*) numa_alloc_onnode(MEM_SIZE ,node);

if (!ptr) {

fprintf (stderr , "failed␣to␣malloc\n");

exit (1);

}

printf ("\nMemory␣allocated␣on␣node␣\%d\n", node);

// make sure it all gets paged in

for (long j=0; j<MEM_SIZE; j++) {

ptr[j] = j;

}

for (int i = 0; i < nproc; i++) {

setCPU(i);

double start = getTime ();

memtest(ptr);

double end = getTime ();

printf ("\%d:␣time␣=␣\%G␣seconds\n", i, (end - start)

/ (1000*1000));

}

if (ptr)

{free (ptr);}

}

int main (int argc , char **argv) {

int nproc = getNumCPU ();

for (int i = 0; i < numNodes; i++) {

test(i,nproc);

}

return 0;

}

191

Appendix A: Memory Access Timings on Cache Coherent NUMA Systems

A.1 Comparing Local And Remote Memory Ac-

cesses

Figure 1.3 shows the difference of average timings that memcpy() takes when called

on local and remote memory. The code of the experiment has been presented in the

above listing, however, the experiment has been run for different sizes for memory

as shown in Table A.1.

Table A.1 shows the timings that been been presented in Figure 1.3. The con-

figuration for both cases have been discussed as following:

1. Local – The calling thread is set an affinity of CPU 0 which is on node 0 (N0).

The allocated memory is also on N0.

2. Remote – The calling thread is set an affinity of CPU 4 which is on node

1(N1). The allocated memory is on N1. The interconnect between N0-N1 is

set at 200 MHz for maximum NUMA effect.

A.2 Comparing Access Timings for Different Inter-

Connect Speeds

In this section, the average access timings are measured for different speeds of the

hypertransport interconnect. The timings are measured for the code presented in the

above listing. Memory is allocated on N0 and then it is accessed from all processors

(CPU0-CPU15).

Figure A.1 shows that at 200 Mhz, the NUMA effect is much stronger and by

increasing the speed of the hypertransport, there is relatively little difference between

local and remote accesses. Table A.2 shows the timings that been been presented

in Figure A.1.

192

A.2 Comparing Access Timings for Different Inter-Connect Speeds

Memory Average local Average remote

size (MB) timings (msec) timings (msec)

1 0.63 0.935

100 31.941 105.441

200 61.625 210.181

300 91.653 315.298

400 122.231 420.667

500 149.499 525.987

600 181.718 630.978

700 213.159 736.466

800 240.176 841.406

900 270.036 947.289

1000 299.864 1051.624

1100 329.061 1157.036

1200 358.79 1262.172

1300 389.17 1368.537

1400 419.883 1473.261

1500 449.788 1577.477

1600 480.74 1682.466

1700 510.86 1787.171

1800 537.791 1893.184

1900 563.688 1997.752

2000 587.23 2103.004

Table A.1: memcpy() timings (in milliseconds) with N0-N1 interconnect at 200Mhz

193

Appendix A: Memory Access Timings on Cache Coherent NUMA Systems

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 t

a
k

e
n

 i
n

 s
e

co
n

d
s

Accessing CPU

200 Mhz

400 Mhz

600 Mhz

800 Mhz

1 Ghz

Figure A.1: memcopy() timings(in seconds) for different interconnect speeds

Accessing CPU 200 Mhz 400 Mhz 600 Mhz 800 Mhz 1 Ghz

0 6.0817 6.0649 6.06175 6.0888 6.0847

1 6.0458 6.0639 6.01307 6.0767 6.0811

2 6.0796 6.0592 6.0337 6.0569 6.1045

3 6.0161 6.0594 6.0543 6.0455 6.08005

4 23.1111 11.8398 8.4652 7.4037 6.82737

5 22.9993 11.807 8.4398 7.4026 6.80297

6 22.9789 11.7843 8.4365 7.3926 6.8039

7 22.88 11.7811 8.4307 7.4106 6.81347

8 6.6417 6.6555 6.6412 6.59707 6.6711

9 6.6866 6.6365 6.6404 6.5961 6.6723

10 6.6303 6.6387 6.6413 6.59527 6.6831

11 6.6405 6.6324 6.6391 6.5955 6.6879

12 21.4359 10.7361 7.8188 7.2746 7.3145

13 21.4277 10.7336 7.7956 7.2526 7.2971

14 21.4166 10.7301 7.9001 7.2516 7.2963

15 21.4109 10.7295 7.7872 7.2445 7.2891

Table A.2: memcopy() timings (in seconds) for different interconnect speeds

194

A.3 Comparing Access Timings for Different NUMA Distances

A.3 Comparing Access Timings for Different NUMA

Distances

In this section, the average access timings are measured for different distances in

the reference cc-NUMA system. The timings are measured for the code presented in

the above listing. Memory is allocated on all nodes (N0-N3)and then it is accessed

from all processors (CPU0-CPU15). The hypertransport has been fixed at 1Ghz for

this experiment.

Figure A.3 shows that even at 1 GHz (where there is relatively a smaller difference

between local and remote as shown in Appendix A.2), there is a difference between

access timings for different distances. Table A.3 shows the timings that been been

presented in Figure A.3.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 t

a
k

e
n

 i
n

 s
e

co
n

d
s

Accessing CPU

Node 0

Node 1

Node 2

Node 3

Figure A.2: Comparing Access Timings for Different NUMA Distances

195

Appendix A: Memory Access Timings on Cache Coherent NUMA Systems

Node 0 Node 1 Node 2 Node 3

0 6.0847 6.88567 6.71876 7.34818

1 6.0811 6.8728 6.70025 7.33028

2 6.1045 6.87879 6.71103 7.33988

3 6.08005 6.85637 6.71503 7.30562

4 6.82737 6.0927 7.28917 6.73425

5 6.80297 6.09081 7.28875 6.7129

6 6.8039 6.06427 7.28572 6.72728

7 6.81347 6.09453 7.28033 6.69464

8 6.6711 7.29282 6.01796 6.94492

9 6.6723 7.29512 6.01569 6.93868

10 6.6831 7.29513 6.01554 6.96131

11 6.6879 7.29553 5.99562 6.92187

12 7.3145 6.67127 6.95835 6.04381

13 7.2971 6.65693 6.94246 6.02323

14 7.2963 6.65564 6.94517 6.01734

15 7.2891 6.4572 6.93403 6.0493

Table A.3: memcopy() timings (in seconds) with N0-N1 interconnect at 1Ghz

196

Appendix B

The Producer Consumer Example

This appendix contains the full source for the Producer/Consumer problem that

has been presented in Chapter 4. The full source of the example presented in

Section 4.2.7.1 is presented in Section B.1. The example presented in Section 4.2.7.2

is presented in Section B.2. The example presented in Section 4.3.5 is presented in

B.3.

B.1 Statically Allocating ExecutionSites

import javax.realtime .*;

import java.util.LinkedList;

public class ProducerConsumer extends RealtimeThread {

public void run() {

// The producer and consumer are allocated on two different

// ExecutionSites. Both ExecutionSites are manually allocated

// on different Locales.

// We retrieve the Locales to create the ExecutionSite

Neighbourhood n1 =

Locality.getCurrentNeighbourhood ();

197

Appendix B: The Producer Consumer Example

System.out.println(n1);

Locale [] locs = n1.getLocales ();

// We create two ExecutionSites on separate Locales

ExecutionSite site1 =

Locality.createExecutionSite(locs [0]);

ExecutionSite site2 =

Locality.createExecutionSite(locs [1]);

// We create a Pinnable Memory Area on the first

// ExecutionSite. Then we create the shared object and

// set as a portal.

long MEMSIZE = 10 * 1024 * 1024;

final int worksize = 1000;

int workload = 100;

final LTPinnableMemory mem =

site1.createMemoryArea (2, MEMSIZE);

mem.enter(new Runnable () {

public void run() {

mem.pin ();

BufferObject sharedBuffer =

new BufferObject(worksize);

mem.setPortal(sharedBuffer);

}});

// Creating the Producer. The Producer will execute in

// the newly created memory area and will write for

// workload = 100 times in the shared object.

RealtimeThread pro =

site1.createRealtimeThread(null , null , null , mem ,

new Producer(mem , workload));

// Creating the Consumer. The Consumer will execute in

// the newly created memory area and will read for

198

B.1 Statically Allocating ExecutionSites

// workload = 100 times in the shared object.

RealtimeThread con =

site2.createRealtimeThread(null , null , null , mem ,

new Consumer(mem , workload));

pro.start ();

con.start ();

}

// The main function creates a real -time thread because

// a normal Java thread cannot enter a scoped memory area.

// The real -time thread will be created which will setup

// the scoped memory area and create threads in

// ExecutionSites. The created thread will be placed on

// the cc-NUMA by the runtime on any of the processors.

public static void main(String [] args) {

ProducerConsumer rt = new ProducerConsumer ();

rt.start ();

}}

class Consumer extends RealtimeThread {

int worksize;

int workload;

final LTPinnableMemory mem;

public Consumer(LTPinnableMemory mem , int workload) {

this.mem = mem;

this.workload = workload;

}

public void run() {

BufferObject sharedBuffer = (BufferObject) mem.getPortal ();

int consume = 0;

while (consume < workload) {

synchronized (sharedBuffer) {

199

Appendix B: The Producer Consumer Example

try {

while (sharedBuffer.producing) {

sharedBuffer.wait ();

}

} catch (InterruptedException e) {

e.printStackTrace ();

}

DataBlock block = sharedBuffer.Consume ();

consume ++;

sharedBuffer.producing = true;

sharedBuffer.notifyAll ();

}}}}

class Producer extends RealtimeThread {

int worksize;

int workload;

final LTPinnableMemory mem;

public Producer(LTPinnableMemory mem , int workload) {

this.mem = mem;

this.workload = workload;

}

public void run() {

BufferObject sharedBuffer = (BufferObject) mem.getPortal ();

int produce = 0;

while (produce < workload) {

synchronized (sharedBuffer) {

try {

while (sharedBuffer.producing == false) {

sharedBuffer.wait ();

}

} catch (InterruptedException e) {

e.printStackTrace ();

}

200

B.1 Statically Allocating ExecutionSites

sharedBuffer.Produce(new DataBlock(worksize));

produce ++;

sharedBuffer.producing = false;

sharedBuffer.notifyAll ();

}}}}

class BufferObject {

public boolean producing = true;

int workload;

LinkedList buf = new LinkedList ();

public BufferObject(int workload) {

this.workload = workload;

}

public int getWorkload () {

return this.workload;

}

public void Produce(DataBlock dataBlock) {

buf.add(dataBlock);

}

public DataBlock Consume () {

DataBlock block =

(DataBlock) buf.removeFirst ();

return block;

} }

class DataBlock {

public DataBlock(int size) {

byte[] bytes = new byte[size];

} }

201

Appendix B: The Producer Consumer Example

B.2 Allocating ExecutionSites Dynamically by the

Runtime

import javax.realtime .*;

import java.util.LinkedList;

public class ProducerConsumer extends RealtimeThread {

public void run() {

// We create an ExecutionSite which is mapped by the

// runtime.

ExecutionSite site =

Locality.createExecutionSite(null);

// We create a Pinnable Memory Area on the

// ExecutionSite. Then we create the shared object and

// set as a portal.

long MEMSIZE = 10 * 1024 * 1024;

final int worksize = 1000;

int workload = 100;

final LTPinnableMemory mem =

site.createMemoryArea (2, MEMSIZE);

mem.enter(new Runnable () {

public void run() {

mem.pin ();

BufferObject sharedBuffer =

new BufferObject(worksize);

mem.setPortal(sharedBuffer);

}});

// Creating the Producer. The Producer will execute in

// the newly created memory area and will write for

// workload = 100 times in the shared object.

RealtimeThread pro =

site.createRealtimeThread(null , null , null , mem ,

new Producer(mem , workload));

202

B.2 Allocating ExecutionSites Dynamically by the Runtime

// Creating the Consumer. The Consumer will execute in

// the newly created memory area and will read for

// workload = 100 times in the shared object.

RealtimeThread con =

site.createRealtimeThread(null , null , null , mem ,

new Consumer(mem , workload));

pro.start ();

con.start ();

}

// The main function creates a real -time thread because

// a normal Java thread cannot enter a scoped memory area.

// The real -time thread will be created which will setup

// the scoped memory area and create threads in

// ExecutionSites. The created thread will be placed on

// the cc-NUMA by the runtime on any of the processors.

public static void main(String [] args) {

ProducerConsumer rt = new ProducerConsumer ();

rt.start ();

}

}

class Consumer extends RealtimeThread {

int worksize;

int workload;

final LTPinnableMemory mem;

public Consumer(LTPinnableMemory mem , int workload) {

this.mem = mem;

this.workload = workload;

}

203

Appendix B: The Producer Consumer Example

public void run() {

BufferObject sharedBuffer = (BufferObject) mem.getPortal ();

int consume = 0;

while (consume < workload) {

synchronized (sharedBuffer) {

try {

while (sharedBuffer.producing) {

sharedBuffer.wait ();

}

} catch (InterruptedException e) {

e.printStackTrace ();

}

DataBlock block = sharedBuffer.Consume ();

consume ++;

sharedBuffer.producing = true;

sharedBuffer.notifyAll ();

}}}}

class Producer extends RealtimeThread {

int worksize;

int workload;

final LTPinnableMemory mem;

public Producer(LTPinnableMemory mem , int workload) {

this.mem = mem;

this.workload = workload;

}

public void run() {

BufferObject sharedBuffer = (BufferObject) mem.getPortal ();

int produce = 0;

while (produce < workload) {

synchronized (sharedBuffer) {

try {

while (sharedBuffer.producing == false) {

204

B.2 Allocating ExecutionSites Dynamically by the Runtime

sharedBuffer.wait ();

}

} catch (InterruptedException e) {

e.printStackTrace ();

}

sharedBuffer.Produce(new DataBlock(worksize));

produce ++;

sharedBuffer.producing = false;

sharedBuffer.notifyAll ();

}}}}

class BufferObject {

public boolean producing = true;

int workload;

LinkedList buf = new LinkedList ();

public BufferObject(int workload) {

this.workload = workload;

}

public int getWorkload () {

return this.workload;

}

public void Produce(DataBlock dataBlock) {

buf.add(dataBlock);

}

public DataBlock Consume () {

DataBlock block =

(DataBlock) buf.removeFirst ();

return block;

} }

class DataBlock {

205

Appendix B: The Producer Consumer Example

public DataBlock(int size) {

byte[] bytes = new byte[size];

} }

B.3 Allocating ExecutionSites with Reservations

import javax.realtime .*;

public class ProducerConsumer extends RealtimeThread {

public void run() {

// In order to specify the requirements of the Execution Site ,

// we create the budget and the period arrays.

int numProcessors = 2;

RelativeTime [] budget = new RelativeTime [numProcessors];

RelativeTime [] period = new RelativeTime [numProcessors];

budget [0]= new RelativeTime (500 ,0);

period [0]= new RelativeTime (1000 ,0);

budget [1]= new RelativeTime (500 ,0);

period [1]= new RelativeTime (1000 ,0);

// We create an ExecutionSite which is mapped by the

// runtime. The mapping is based on the required budget

// parameters.

ExecutionSite site = Locality.createExecutionSite(null ,

budget , period , numProcessors , null);

// We create a Pinnable Memory Area on the ExecutionSite.

// Then we create the shared object and set as a portal.

long MEMSIZE = 10 * 1024 * 1024;

final int buffersize = 1000;

int workload = 1000;

final LTPinnableMemory mem =

site.createMemoryArea (2, MEMSIZE);

206

B.3 Allocating ExecutionSites with Reservations

mem.enter(new Runnable () {

public void run() {

mem.pin();

BufferObject sharedBuffer =

new BufferObject(buffersize);

mem.setPortal(sharedBuffer);

}});

// Creating periodic parameters.

RelativeTime start = new RelativeTime (0, 0);

RelativeTime C = new RelativeTime (200, 0);

RelativeTime D = new RelativeTime (1000, 0);

RelativeTime T = new RelativeTime (1000, 0);

PeriodicParameters releaseParams = new

PeriodicParameters(start ,T,C,D,null ,null);

// Creating the Producer. The Producer will execute in

// the newly created memory area and will write for

// workload = 1000 times in every period. The thread

// will be added to the reservation and will use the

// guarantees provided to the reservation. In the case

// the budget is exhausted , Producer will have to wait

// for the replenishment of the budget.

RealtimeThread pro = site.createRealtimeThread(null ,

releaseParams , null , mem , new Producer(mem , workload));

// Creating the Consumer with the same timing properties.

RealtimeThread con = site.createRealtimeThread(null ,

releaseParams , null , mem , new Consumer(mem , workload));

pro.start ();

con.start ();

}

// The main function creates a real -time thread because

// a normal Java thread cannot enter a scoped memory area.

207

Appendix B: The Producer Consumer Example

// The real -time thread will be created which will setup

// the scoped memory area and create threads in

// ExecutionSites. The created thread will be placed on

// the cc -NUMA by the runtime on any of the processors.

public static void main(String [] args) {

ProducerConsumer rt = new ProducerConsumer ();

rt.start ();

}}

// The Consumer thread class

class Consumer extends RealtimeThread {

int worksize;

int workload;

final LTPinnableMemory mem;

public Consumer(LTPinnableMemory mem , int workload) {

this.mem = mem;

this.workload = workload;

}

public void run() {

BufferObject sharedBuffer = (BufferObject) mem.getPortal ();

int consume = 0;

while(true){

this.waitForNextPeriod ();

while (consume < workload) {

synchronized (sharedBuffer) {

try {

while (sharedBuffer.producing) {

sharedBuffer.wait ();

}

} catch (InterruptedException e) {

e.printStackTrace ();

}

208

B.3 Allocating ExecutionSites with Reservations

DataBlock block = sharedBuffer.Consume ();

consume ++;

sharedBuffer.producing = true;

sharedBuffer.notifyAll ();

} } } } }

// The producer thread class

class Producer extends RealtimeThread {

int worksize;

int workload;

final LTPinnableMemory mem;

public Producer(LTPinnableMemory mem , int workload) {

this.mem = mem;

this.workload = workload;

}

public void run() {

BufferObject sharedBuffer = (BufferObject) mem.getPortal ();

int produce = 0;

while(true){

this.waitForNextPeriod ();

while (produce < workload) {

synchronized (sharedBuffer) {

try {

while (sharedBuffer.producing == false) {

sharedBuffer.wait ();

}

} catch (InterruptedException e) {

e.printStackTrace ();

}

sharedBuffer.Produce(new DataBlock(worksize));

produce ++;

sharedBuffer.producing = false;

sharedBuffer.notifyAll ();

} } } } }

209

Appendix B: The Producer Consumer Example

// The buffer list

class BufferObject {

public boolean producing = true;

int workload;

LinkedList buf = new LinkedList ();

public BufferObject(int workload) {

this.workload = workload;

}

public int getWorkload () {

return this.workload;

}

public void Produce(DataBlock dataBlock) {

buf.add(dataBlock);

}

DataBlock Consume () {

DataBlock block = (DataBlock) buf.removeFirst ();

return block;

} }

// The shared object

class DataBlock {

public DataBlock(int size) {

byte[] bytes = new byte[size];

}

}

210

Appendix C

Building JRate on 64bit Systems

Jrate is an extension of GNU GCJ. JRate is required to be build from GCC source

files which include the gcc core, g++ and gcj components. the On most systems,

jRate can be built using with the usual ./configure and GNU make mechanism.

However, on most recent systems, the following steps are required to built it on a

recent Linux version on 64-bit hardware:

• JRate is only compatible with GCC-3.3.x and has not been ported to newer

versions of GCC. It patches the GCC-3.3.x sources to include the real-time

support in the GCJ compiler and runtime. Building jRate requires an already

installed version of GCC to start the bootstrap of the GCC-3.3.x which has

been patched to include JRate. It is important to note that GCC-4.x and later

versions cannot directly bootstrap GCC-3.3.x without actually patching the

GCC-3.3.x sources. Therefore, the easiest way is to install GCC-3.3.x and use

it to build jRate.

• The last stable version of jRate-3.7.2 is not compatible with 64 bit systems.

Updated sources from the svn repository can be downloaded from

http://svn.sourceforge.net/jrate which can than be built.

• Multilib should be disabled. Passing disable-multilib as an argument to the

configure does not work, therefore, either the script files need to be changed

or an easy way is to change the Makefile explcitly in the end to make sure

multilib is disabled.

211

Appendix D

Schedulability Analysis

The objective of this appendix is to present a schedulability analysis which is com-

patible with the Locality model. This will prove that the abstractions presented

in the locality model are in line with the existing state of the art scheduling the-

ory for multiprocessors. This can also be used to generate new parameters for the

ExecutionSite.

The analysis provided does not consider blocking time as it is out of the scope

of the thesis.

D.1 Scheduling Model

An application based on the Locality model has one or more execution site. Each ex-

ecution site consists of schedulable objects. Each schedulable object is characterized

by its release parameters which include execution time Ci, a period or a minimum

inter-arrival interval Ti, a deadline Di. In this schedulability analysis, we will only

be considering a constrained deadline model where the deadlines of the threads are

less than or equal to their deadline. Moreover, deadline monotonic priority ordering

(DMPO) is used for the assignment of schedulables.

Each execution site is allocated a PartitionedReservation which acts as a virtual

multiprocessor system for the ExecutionSite, where each processor is represented

by the ReservationServer object. The ReservationServer object specifies the budget

and period guaranteed on a particular processor that is guaranteed by the top level

213

Appendix D: Schedulability Analysis

scheduler. Figure D.1 shows that for each ExecutionSite a number of Reservation-

Servers (SS1, SS2 etc.) are created which provide budget on particular processors.

D.2 Top Level Schedulability Test

A fully partitioned scheduling policy is adopted at the top level. Each Reservation-

Server object is set an affinity to a particular processor and has an active priority.

The priority of the ReservationServer object is assigned based on the rate monotonic

priority ordering. The admission control policy uses the Liu and Layland utilization

test [Liu and Layland, 1973] to check if a particular partitioned parameter is feasible

on a processor or not.

∑N
i=1

Ci

Ti
≤ N(2

1
N − 1) (D.2.1)

For every ReservationServer object in a PartitionedReservation, the utilization

test is applied, the processor is allocated if it is feasible, otherwise the next avail-

able processor is checked until the match is found. The admission control policy

described in Section 4.3.3 is applied. Due to the limitations of the implementation,

all ReservationServers belonging to the same ExecutionSite have the same budget

and period. As a result all ReservationServers have the same priority (i.e. of the

schedulable which is within the priority range of the ExecutionSite). All Reser-

vationServers belonging to the same ExecutionSite have a collective cgroup which

performs the actual cost accounting and enforcement on all processors. For more

details see Section 5.4.

D.3 Local Schedulability Test

The execution site can be allocated a fixed budget on different processors using the

ReservationServer. In this subsection, we will use the bounded delay multi-partition

for the schedulability of threads inside an execution site.

According to the parallel supply function (PSF) [Bini et al., 2009a], the execution

site is schedulable on a set ReservationServers represented by {Yk}mk=1 if

214

D.3 Local Schedulability Test

Figure D.1: Scheduling Architecture of Execution Sites on a Processor Based Budget

∩
i=1,...,n

∪
k=1,...,m kCi +Wi ≤ Yk (Di) (D.3.2)

where n is the number of tasks, m is the number of processors, Yk is the parallel

function on each processor and Wi is the maximum interfering workload defined

as the maximum amount of work that can be done by higher priority tasks in an

interval [a, b) after which task Ti will miss deadlines.

W FP
j =

∑j−1
i=1 Wj,i (D.3.3)

Wj,i is the interfering workload and i is the set of indices of tasks of priority

higher than Tj and can be calculated

W j,i = Nj,iCi +min {Ci, Dj +Di − Ci −Nj,iTi} (D.3.4)

where Nj,i is the number of releases of a higher priority task

Nj,i =
⌊
Dj+Di−Ci

Ti

⌋
(D.3.5)

While all the values in equation D.3.2 can be calculated from the task set except

the PSF {Yk}mk=1 itself. In order to calculate the PSF for the ExecutionSite, we

215

Appendix D: Schedulability Analysis

Yk(t) the parallel supply function on the interval t

Ci computation time of the ith task.

Di deadline of the ith task.

Ti period of the ith task.

Wj interfering workload experienced by the jth task.

I the BDM interface

m number of processors

αi availability of ith processor

βk bandwidth on the first k processors

△ bound on the delay between availability. in case of the

worst case platform Πwc

Table D.1: Symbols used for schedulability analysis

further need to use the bounded delay model (BDM). The symbols used in the

following are described in listed in Table D.1. The BDM is defined in definition 3

in [Lipari and Bini, 2010] as following:

An interface I is a bounded-delay multipartitition (BDM) interface I such that

I = (m,△, [β1, ..., βm]) with △ ≥ 0,

∀k = 1, ...,m 0 ≤ βk − βk−1 ≤ 1 (D.3.6)

∀k = 1, ...,m βk − βk−1 ≥ βk+1 − βk (D.3.7)

Now according to theorem 1 in [Lipari and Bini, 2010], the delay on all processors

in the worst case platform is the same, therefore,the PSF {Yk}mk=1 is equal to the

following:

Y wc
k (t) = βk(t−△)0 =

∑k
i=1 αi(t−△)0 (D.3.8)

where

1 ≥ α1 ≥ α2 ≥ ≥ αm (D.3.9)

216

D.3 Local Schedulability Test

therefore, the schedulability condition in equationD.3.2 becomes

∩
i=1,...,n

∪
k=1,...,m kCi +Wi ≤ βk(Di −△)0 (D.3.10)

or

∩
i=1,...,n

∪
k=1,...,m

∑k
j=1 αj (Di −△) ≥ kCi +Wi (D.3.11)

Let us consider an execution site which has three real time threads such that T1

= {2,8,8}, T2={3,9,9}, T3={1,10,10} as shown in Table D.3. Priorities are assigned

to these tasks based on their deadlines. Therefore, T1 has the highest priority and

T3 has the lowest(assuming higher values represent higher priority). We calculate

the workload for all three tasks using equation D.3.3 .

C T D Priority Interfering Workload

T1 2 8 8 19 0

T2 3 9 9 18 4

T3 1 10 10 17 10

Table D.2: Workload for the execution site

Now let us consider that the ExecutionSite has been allocated 3 Reservation-

Servers: SS1 ={9, 10}, SS2 = {9, 10} and SS3 = {9, 10}. For the bounded delay

model, an execution time server which which has a budget of P every Q period of

time we have processors m = 3, αi =
Qi

Pi
and maximum delay i.e. △i = 2P − 2Q

which is maximum time the processor i will not be available. The case where no

processor will be available is △ = 2. Based on these values we calculate the interface

I = (m,△, [β1, ..., βm]) that is available to the ExecutionSite:

α1 =0.9

α2 =0.9

α3 =0.9

I = [3, 2, (0.9, 1.8, 2.7)]

Now we calculate the required interface by the task, where the task set will be

schedulable. This calculation is done using equation D.3.11 in the following steps:

217

Appendix D: Schedulability Analysis

1. The bandwidth requirement of each task Ti is calculated based on the max-

imum execution time requirements Ci, the maximum workload interference

Wi, deadline of the task Di, number of processors and lastly the delay bound.

Therefore, in order to solve the equation D.3.11, we first need to calculate

kCi+Wi

(Di−△)
for all values of k where k = 1, ...,m. This is calculated as following:

i=1 k=1 α1 ≥0.33333334

k=2 α1 + α2 ≥ 0.6666667

k=3 α1 + α2 + α3 ≥ 1.0

i=2 k=1 α1 ≥1.0

k=2 α1 + α2 ≥1.4285715

k=3 α1 + α2 + α3 ≥1.8571428

i=3 k=1 α1 ≥1.375

k=2 α1 + α2 ≥ 1.5

k=3 α1 + α2 + α3 ≥ 1.625

For each task Ti, the bandwidth values on 1, 2, 3 processors have been calcu-

lated. The possible solution set for each task consists of all solutions possible

for different values of k.

2. After calculating, the bandwidth requirements of each task we need to calculate

the bandwidth requirement of the execution site. This can be done by taking

the intersection of all the solutions of all the tasks. We end up with a number

of critical points which are on the edge of the solution space of α1, α2, α3 space

and can be seen as black dots in Figure D.2(a) and Figure D.2(b). These points

are given in Table D.3 At these points the execution site becomes schedulable

while before hitting these points it was not. All the red area is the set points

where the execution site is schedulable.

The interfaces shown in Table D.3 show that on three processors, the execution

site will require at least an overall bandwidth of 1.86. On the other hand, it

can be seen that the same execution site will require a bandwidth of 1.50 if

it is mapped onto only 2 processor with each processor providing 0.62. As

218

D.3 Local Schedulability Test

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4
 0.6
 0.8

 1

a3

a1

a2

a3

(a) All tasks’ bandwidth calculation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

a2

a1

(b) α1, α2 plane for all tasks’ bandwidth

Figure D.2: Bandwidth requirements of T1T2T3

β1=α1 β2 α2 = β2 − β1 β3 α3 = β3 − β2 I = [m,△, (β1, ..., βm)]

0.62 1.24 0.62 1.86 0.62 [3, 2, (0.62, 1.24, 1.86)]

0.75 1.50 0.75 1.50 0 [3, 3, (0.75,1.50,1.50)]

Table D.3: Candidate interfaces of the execution site

the number of processors increases, the analysis becomes more pessimistic but

allocation becomes more flexible as it is easier to map an execution map with

its bandwidth spread across a number of processors. Based on these results,

the task set in the ExecutionSite is schedulable on the PartitionedReservation

provided. The task set would have been schedulable even if two processors

were used with availability 0.9.

The BDM can also be used to determine the required Interface for any Execu-

tionSite. This can be used to request the required reservation for the ExecutionSite.

219

Appendix E

The Prime Sieves Example

This appendix contains the full source for the primes of Eratosthenes problem that

has been used in Chapter 6 for evaluation. SectionE.1 is the source code without

using the Locality model. Section E.2 provides the source code using he Locality

model.

E.1 Without Using the Locality Model

import javax.realtime .*;

import java.util.LinkedList;

public class PrimeNum extends RealtimeThread {

AbsoluteTime t;

Clock c;

final int N;

public PrimeNum(Clock c, AbsoluteTime t, int N) {

this.c = c;

this.t = t;

this.N = N;

}

public void run() {

// Generate a buffer containing all odd numbers starting

221

Appendix E: The Prime Sieves Example

// from 3 to less than N.

Buffers oddBuffer = new Buffers ();

for (int i = 3; i <= N; i = i + 2) {

IntClass newnum = new IntClass(i);

oddBuffer.numList.add(newnum);

}

// In order to terminate the program we pass -1.

// The program will terminate if the prime is -1.

IntClass newnum = new IntClass (-1);

oddBuffer.numList.add(newnum);

// A sieve is created.

Seive Seive1 = new Seive(oddBuffer , 0, c, t);

RealtimeThread t1 = new RealtimeThread(null , null ,

null , null , null , Seive1);

t1.start ();

}

public static void main(String [] args) {

// All primes will be generated less than N.

// We measure time starting now till we find

// the last prime.

final int N = 15000;

Clock c1 = Clock.getRealtimeClock ();

AbsoluteTime at = c1.getTime ();

PrimeNum firstThread = new PrimeNum(c1, at, N);

firstThread.start ();

}

}

class Seive extends Thread {

Buffers numBuffer;

int threadNumbers;

222

E.1 Without Using the Locality Model

public Clock c;

public AbsoluteTime at;

public Seive(Buffers numBuffer , int threadNumbers , Clock c,

AbsoluteTime at) {

this.numBuffer = numBuffer;

this.threadNumbers = threadNumbers;

this.c = c;

this.at = at;

}

public void run() {

this.threadNumbers ++;

IntClass primeObject;

int prime = 0;

int primeNumber;

// The numBuffer is shared between two sieves.

// The sieve receiving the numbers waits if there are no numbers

// in the buffer.

synchronized (numBuffer) {

try {

if (this.numBuffer.numList.isEmpty ()) {

numBuffer.wait ();

}

primeObject = (IntClass) this.numBuffer.numList.removeFirst ();

primeNumber = primeObject.number;

// This is the first number which is always a prime number.

// All multiples of this number will be filtered out and then

// passed to next sieve.

// If the Number is -1 then the program terminates as this is

// the last sieve.

if (primeNumber != -1) {

boolean nextSeive = false;

223

Appendix E: The Prime Sieves Example

while (! nextSeive) {

if (this.numBuffer.numList.isEmpty ()) {

numBuffer.wait ();

}

primeObject = (IntClass) this.numBuffer.numList.removeFirst ();

prime = primeObject.number;

if (!(prime % primeNumber == 0)) {

nextSeive = true;

}

}

Buffers newnumBuffer = new Buffers ();

synchronized (newnumBuffer) {

newnumBuffer.numList.add(primeObject);

newnumBuffer.notify ();

}

// Creates a new sieve.

Seive S2 = new Seive(newnumBuffer , threadNumbers , c,

this.at);

RealtimeThread Seive2 = new RealtimeThread(null , null ,

null , null , null , S2);

Seive2.start ();

// Pass any numbers to the newly created sieve which are not

// multiples of the prime of this sieve.

if (prime != -1) {

while (prime != -1) {

while (this.numBuffer.numList.isEmpty ()) {

numBuffer.wait ();

}

primeObject = (IntClass) this.numBuffer.numList

.removeFirst ();

prime = primeObject.number;

if (prime % primeNumber != 0) {

synchronized (newnumBuffer) {

newnumBuffer.numList.add(primeObject);

newnumBuffer.notify ();

224

E.2 Using the Locality Model

}}}}}

else {

// This is executed by the last sieve and displays the time

// taken to generate all the primes.

AbsoluteTime at2 = c.getTime ();

RelativeTime rt1 = at2.subtract(at);

System.out.println("Time␣Taken␣in␣Milliseconds="

+ rt1.getMilliseconds () + "." + rt1.getNanoseconds ());

}

}

catch (InterruptedException e) {

e.printStackTrace ();

} } } }

class Buffers {

LinkedList numList = new LinkedList ();

}

class IntClass

{

public int number;

public IntClass(int num) {

this.number=num;

} }

E.2 Using the Locality Model

import javax.realtime .*;

import java.util.LinkedList;

public class PrimeNum extends RealtimeThread {

AbsoluteTime t;

Clock c;

int N;

225

Appendix E: The Prime Sieves Example

public PrimeNum(Clock c, AbsoluteTime t, int N) {

this.c = c;

this.t = t;

this.N = N;

}

public void run() {

// Generate a buffer containing all odd numbers starting

// from 3 to less than N.

Buffers oddBuffer = new Buffers ();

for (int i = 3; i <= N; i = i + 2) {

IntClass newnum = new IntClass(i);

oddBuffer.numList.add(newnum);

}

// We create Execution Sites statically on all available Locales.

Neighbourhood n1 = Locality.getCurrentNeighbourhood ();

Locale [] locs = n1.getLocales ();

ExecutionSite [] sites = new ExecutionSite[locs.length];

for (int i = 0; i < locs.length; i++) {

sites[i] = Locality.createExecutionSite(locs[i]);

}

// In order to terminate the program we pass -1.

// The program will terminate if the prime is -1.

IntClass newnum = new IntClass (-1);

oddBuffer.numList.add(newnum);

// A sieve is created in the first ExecutionSite.

// We pass the index of the ExecutionSite on which the sieve is

// created along with references of the ExecutionSites.

// The real -time thread is passed the local memory area to set the

// allocation context of the new thread.

int ThreadsinES = 0;

int ExecutionSiteIndex = 0;

Seive Seive1 = new Seive(oddBuffer , sites , ExecutionSiteIndex ,

ThreadsinES , c, t);

RealtimeThread t1 = sites[ExecutionSiteIndex].

226

E.2 Using the Locality Model

createRealtimeThread(null , null , null ,

sites[ExecutionSiteIndex]. getHeap(), Seive1);

t1.start ();

}

public static void main(String [] args) {

Platform.buildPlatform(null , null);

long initialHeapSizes = 0;

long initialImmortalSizes = 0;

RelativeTime [] defaultbudget = null;

RelativeTime [] defaultPeriod = null;

int numProcessors = 3;

Locality.initialize(initialHeapSizes , initialImmortalSizes ,

defaultbudget , defaultPeriod , numProcessors);

// All primes will be generated less than N.

// We measure time starting now till we find

// the last prime.

int Num = 15000;

Clock c1 = Clock.getRealtimeClock ();

AbsoluteTime at = c1.getTime ();

PrimeNum firstThread = new PrimeNum(c1, at, Num);

firstThread.start ();

}

}

class Seive extends Thread {

Buffers numBuffer;

int threadNumbers;

public Clock c;

public AbsoluteTime at;

ExecutionSite [] ES;

int ESindex;

public Seive(Buffers numBuffer , ExecutionSite [] ES ,

int ESindex , int threadNumbers , Clock c,AbsoluteTime at)

227

Appendix E: The Prime Sieves Example

{

this.numBuffer = numBuffer;

this.threadNumbers=threadNumbers;

this.ES=ES;

this.ESindex = ESindex;

this.c = c;

this.at = at;

}

public void run () {

this.threadNumbers ++;

IntClass primeObject;

int prime =0;

int primeNumber;

// The numBuffer is shared between two sieves.

// The sieve receiving the numbers waits if there are no numbers

// in the buffer.

synchronized(numBuffer) {

try {

if (this.numBuffer.numList.isEmpty ()) {

numBuffer.wait ();

}

primeObject = (IntClass) this.numBuffer.numList.removeFirst ();

primeNumber = primeObject.number;

// This is the first number which is always a prime number.

// All multiples of this number will be filtered out and

// then passed to next sieve.

// If the Number is -1 then the program terminates as this

// is the last sieve.

if (primeNumber != -1) {

// If 8 sieves are added to this execution site consecutively

// then move on to the next ExecutionSite on another Locale.

// This is to balance the load among the ExecutionSites.

228

E.2 Using the Locality Model

if (this.threadNumbers ==8) {

if (this.ESindex == this.ES.length -1) {

this.ESindex = 0;

} else {

this.ESindex ++;

}

this.threadNumbers = 0;

}

boolean nextSeive=false;

while(! nextSeive) {

if (this.numBuffer.numList.isEmpty ()) {

numBuffer.wait ();

}

primeObject = (IntClass) this.numBuffer.numList.removeFirst ();

prime = primeObject.number;

if (!(prime%primeNumber ==0))

{

nextSeive=true;

}

Buffers newnumBuffer =new Buffers ();

synchronized(newnumBuffer) {

newnumBuffer.numList.add(primeObject);

newnumBuffer.notify ();

}

// Creates a new sieve on the ExecutionSite

// identified by the ESindex.

Seive S2=new Seive(newnumBuffer , this.ES ,

this.ESindex , threadNumbers ,c,this.at);

RealtimeThread Seive2=ES[this.ESindex]. createRealtimeThread(

null ,null ,null ,this.ES[this.ESindex]. getHeap(),S2);

Seive2.start ();

// Pass any numbers to the newly created sieve which are

229

Appendix E: The Prime Sieves Example

// not multiples of the prime of this sieve.

if (prime != -1) {

while (prime !=-1) {

while (this.numBuffer.numList.isEmpty ()) {

numBuffer.wait ();

}

primeObject = (IntClass)

this.numBuffer.numList.removeFirst ();

prime = primeObject.number;

if (prime%primeNumber !=0) {

synchronized(newnumBuffer) {

newnumBuffer.numList.add(primeObject);

newnumBuffer.notify ();

}}}}}}

else{

// This is executed by the last sieve and

// displays the time taken to generate all the primes.

AbsoluteTime at2=c.getTime ();

RelativeTime rt1=at2.subtract(at);

System.out.println("Time␣Taken␣in␣Milliseconds="

+ rt1.getMilliseconds () + "." + rt1.getNanoseconds ());

} }

catch (InterruptedException e) {

e.printStackTrace ();

}}}}

class IntClass {

public int number;

public IntClass(int num) {

this.number=num;

}

}

class Buffers {

LinkedList numList = new LinkedList ();

}

230

Appendix F

Overheads of Libcgroup

This appendix contains the overheads caused by the Libcgroup library.

F.1 Overheads Creating a ReservationServer/Place

The cgroup is created for each Place and ReservationServer. In this section we

present overheads of all calls that need to made to create a cgroup.

Initializing the Cgroup Library Figure F.1 shows the overhead of initializing

the cgroup library.

0

100

200

300

400

500

600

700

800

900

cgroup_init()

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Overhead

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Iterations

cgroup_init()

Figure F.1: cgroup init() timings

Creating the Cgroup Internally Figure F.2 shows the overhead of creating

an internal cgroup datastructure.

231

Appendix F: Overheads of Libcgroup

0

10

20

30

40

50

60

70

80

90

cgroup_new_cgroup()

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Overhead

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Iterations

cgroup_new_cgroup()

Figure F.2: cgroup new cgroup() timings

Adding Controller to a Cgroup Figure F.3 shows the overhead of adding a

controller to the cgroup structure in the internal cgroup structure.

0

10

20

30

40

50

60

70

80

cgroup_add_controller()

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Overhead

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Iterations

cgroup_add_controller()

Figure F.3: cgroup add controller() timings

Setting Values of a Control File Figure F.4 shows the overhead of setting

values of the controller in the internal cgroup structure.

232

F.2 Attaching a Thread to a ReservationServer

0

10

20

30

40

50

60

70

80

cgroup_set_value_string()

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Overhead

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Iterations

cgroup_set_value_string()

Figure F.4: cgroup set value string() timings

Creating a Cgroup Figure F.5 shows the overhead of physically creating a

cgroup in the kernel.

0

2000

4000

6000

8000

10000

12000

cgroup_create_cgroup()

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Overhead

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Iterations

cgroup_create_cgroup()

Figure F.5: cgroup create cgroup() timings

F.2 Attaching a Thread to a ReservationServer

A thread needs to be attached to a cgroup which corresponds to a collective set

of ReservationServers in the Locality model. The startup latency of a real-time

thread shows a large overhead when the thread is attached to the cgroup using the

cgroup attach thread() call.

Attaching a Thread to a CGroup Figure F.6 shows the overhead of attaching

a thread to a cgroup.

233

Appendix F: Overheads of Libcgroup

0

1000

2000

3000

4000

5000

6000

cgroup_attach_task()

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Overhead

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000

T
im

e
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

Iterations

cgroup_attach_task

Figure F.6: cgroup attach thread() timings

F.3 Summary

The functions can be categorized into the following two categories:

1. that changes the internal cgroup structures

2. that communicate with the Linux kernel

The first type of functions have low overheads, and the second ones have high

overheads. Table F.1 shows the summary of all the overheads that have been

presented in this appendix. It is clearly visible that cgroup attach thread() and

cgroup create cgroup() communicate with the kernel that is why they have a large

overhead and the dispersion in the values is also very high. [Bagnoli, 2010] have used

ioctl()1 instead of using libcgroup to communicate with the kernel and have shown

that such the overheads can be reduced by using alternate ways of communicating

with the kernel.

1http://www.kernel.org/doc/man-pages/online/pages/man2/ioctl.2.html

234

F.3 Summary

Average STD Count Min 0.9 0.95 0.99 Max

cgroup init() 621.34 35.43 1000 557 668.2 688.1 725.06 815

cgroup new cgroup() 48.9 8.09 1000 22 58 60 67 77

cgroup create cgroup() 5341.34 1206.65 1000 3310 7163.4 7896.9 9069.9 9586

cgroup add controller() 24.48 5.97 1000 12 33 35 49 68

cgroup set value string() 33.25 6.07 1000 18 41 44 55 67

cgroup attach task 3219.04 541.66 1000 1822 3930.2 4129.8 4504.02 5363

Table F.1: LibCGroup Overhead statistics

235

Abbreviations

ACPI Application Programming Interface

API Application Programming Interface

APIC Advanced Programmable Interrupt Controller

BS Backing Store

BDM Bounded Delay Multi-partition

CC-NUMA Cache Coherent Non-Uniform Memory Access

cHT Coherent HyperTransport

DSM Distributed Shared Memory

EDF Earliest Deadline First

ES ExecutionSite

HPC High Performance Computing

HT HyperTransport

JEOPARD Java Environment for Parallel Real-Time Development

JVM Java Virtual Machine

NUMA Non-Uniform Memory Access

OS Operating Systems

237

PD Proximity Domain

RMI Remote Method Invocation

RTJVM Real-time Java Virtual Machine

RTS Real Time System

RTSJ Real Time Specification for Java

SLIT System Locality Information Table

SMP Symmetric Multiprocessor

SMMP Shared Memory Multiprocessor

SRAT System Resource Affinity Table

SSI Single System Image

UMA Uniform Memory Access

WCET Worst Case Execution Time

238

List of Classes

Cache An abstraction for a cache attached to a processor.

Component An abstract class sub-classed by the Processor,

Memory and Device classes.

ClusterContract Represents temporal guarantees of a Place on an

SMP node.

Device An abstraction for a physical device.

District An abstraction representing a NUMA system.

ESNoHeapRealtimeThread A NoHeapRealtimeThread created in an

ExecutionSite.

ESRealtimeThread A RealtimeThread created in an ExecutionSite.

ExecutionSite An abstraction which provides locality and and

temporal isolation by grouping threads and objects.

ExternalContract A system wide contract between the OS and the

RTJVM about the guarantees of resources.

HeapPhysicalMemory A physical Heap Memory Area.

Locale An abstraction representing a Uniform Memory

Access (UMA) Symmetric Multiprocessor (SMP).

239

Locality A final class which maps the ExecutionSites on a

Locale.

LocalMemory Abstraction representing a memory on a node;

implements the PhysicalMemorytypeFilter.

Location An abstraction which represents a multiprocessor.

Contains Processors, memories and Devices.

Memory An abstraction for a physical memory device.

Neighbourhood An abstraction representing a Cache Coherent

Non-Uniform Memory Access (CC-NUMA) system.

PartitionedParameters Represents the budget guarantees on a particular

processor.

PartitionedReservation The contract between an ExecutionSite and the

RTJVM defining the temporal resources guaranteed

to that ExecutionSite.

Place A set of resources on each Locale which are shared

by all ExecutionSites allocated on that Locale.

Platform An interface to the Architectural Model used to

query information about the system.

Processor An abstraction for a processor.

ProcessorType A Java Interface for defining different types of

processors.

ReservationScheduler A sub-class of the scheduler class which allows

admission control of ExecutionSites.

ReservationServer An abstraction which provides cost enforcement on a

processor.

240

References

[Aas, 2005] Aas, J. (2005). Understanding the Linux 2.6.8.1 CPU Scheduler. SGI,

2005. http://josh.trancesoftware.com/linux/linux cpu scheduler.pdf, accessed on

August 22, 05.

[Allen et al., 2007] Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.-W.,

Ryu, S., Jr., G. L. S. and Tobin-Hochstadt, S. (2007). The Fortress Language

Specification. Technical report Sun Microsystems, Inc.

[AMD, 2003] AMD (2003). BIOS and Kernel Developer’s Guide for AMD Athlon

64 and AMD Opteron Processors. Technical report.

[AMD, 2006] AMD (2006). Performance Guidlines for AMD Athlon 64 and AMD

Opteron ccNUMA Multiprocessor System. Technical report.

[Amza et al., 1996] Amza, C., Cox, A., Dwarkadas, S., Keleher, P., Lu, H., Raja-

mony, R., Yu, W. and Zwaenepoel, W. (1996). TreadMarks: shared memory

computing on networks of workstations. Computer 29, 18 –28.

[Antoniu et al., 2001] Antoniu, G., Bougé, L., Hatcher, P., MacBeth, M.,

McGuigan, K. and Namyst, R. (2001). The hyperion system: compiling mul-

tithreaded java bytecode for distributed execution. Parallel Comput. 27, 1279–

1297.

[Aridor et al., 1999] Aridor, Y., Factor, M. and Teperman, A. (1999). cJVM: A

Single System Image of a JVM on a Cluster. In Proceedings of the 1999 In-

ternational Conference on Parallel Processing ICPP ’99 pp. 4–, IEEE Computer

Society, Washington, DC, USA.

241

References

[Asanovic et al., 2006] Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Hus-

bands, P., Keutzer, K., Patterson, D. A., Plishker, W. L., Shalf, J., Williams,

S. W. and Yelick, K. A. (2006). The Landscape of Parallel Computing Research:

A View from Berkeley. Technical Report UCB/EECS-2006-183 EECS Depart-

ment, University of California, Berkeley.

[Bagnoli, 2010] Bagnoli, G. (2010). Design and development of a mechanism for

low-latency real time audio processing on Linux.

[Bini et al., 2009a] Bini, E., Bertogna, M. and Baruah, S. (2009a). Virtual Multi-

processor Platforms: Specification and Use. In Proceedings of the 2009 30th IEEE

Real-Time Systems Symposium RTSS ’09 pp. 437–446, IEEE Computer Society,

Washington, DC, USA.

[Bini et al., 2009b] Bini, E., Buttazzo, G. and Bertogna, M. (2009b). The Multi

Supply Function Abstraction for Multiprocessors. In Embedded and Real-Time

Computing Systems and Applications, 2009. RTCSA ’09. 15th IEEE International

Conference on pp. 294 –302,.

[Bolosky et al., 1989] Bolosky, W., Fitzgerald, R. and Scott, M. (1989). Simple but

Effective Techniques for NUMA Memory Menagement. SIGOPS Oper. Syst. Rev.

23, 19–31.

[Broquedis et al., 2010] Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N.,

Goglin, B., Mercier, G., Thibault, S. and Namyst, R. (2010). hwloc: A Generic

Framework for Managing Hardware Affinities in HPC Applications. In Parallel,

Distributed and Network-Based Processing (PDP), 2010 18th Euromicro Interna-

tional Conference on pp. 180 –186,.

[Burns and Wellings, 2001] Burns, A. and Wellings, A. J. (2001). Real-Time Sys-

tems and Programming Languages: ADA 95, Real-Time Java, and Real-Time

POSIX. 3rd edition, Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA.

242

References

[Buttazzo et al., 2005] Buttazzo, G., Lipari, G., Abeni, L. and Caccamo, M. (2005).

Soft Real-Time Systems: Predictability vs. Efficiency (Series in Computer Sci-

ence). Plenum Publishing Co.

[Charles et al., 2005] Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra,

A., Ebcioglu, K., von Praun, C. and Sarkar, V. (2005). X10: an object-oriented

approach to non-uniform cluster computing. SIGPLAN Not. 40, 519–538.

[Checconi et al., 2009] Checconi, F., Cucinotta, T., Faggioli, D. and Lipari, G.

(2009). Hierarchical Multiprocessor CPU Reservations for the Linux Kernel. In

Proceedings of the 5th International Workshop on Operating Systems Platforms

for Embedded Real-Time Applications (OSPERT 2009), Dublin, Ireland.

[Corporation et al., 2005] Corporation, H.-P., Corporation, I., andPhoenix Tech-

nologies Ltd., M. C. and Corporation, T. (2005). Advanced Configuration and

Power Interface Specification, Revision 3.0a.

[Corsaro and Schmidt, 2002] Corsaro, A. and Schmidt, D. C. (2002). The Design

and Performance of the jRate Real-Time Java Implementation. In The 4th Inter-

national Symposium on Distributed Objects and Applications, DOA 2002, Lec-

ture Notes In Computer Science; Vol. 2519 pp. 900 – 921,.

[Deng et al., 1997] Deng, Z., Liu, J.-S. and Sun, J. (1997). A scheme for scheduling

hard real-time applications in open system environment. In Real-Time Systems,

1997. Proceedings., Ninth Euromicro Workshop on pp. 191 –199,.

[Diaconescu and Zima, 2007] Diaconescu, R. and Zima, H. (2007). An Approach To

Data Distributions in Chapel. Int. J. High Perform. Comput. Appl. 21, 313–335.

[Dibble and Wellings, 2009] Dibble, P. and Wellings, A. (2009). JSR-282 status

report. In Proceedings of the 7th International Workshop on Java Technologies

for Real-Time and Embedded Systems JTRES ’09 pp. 179–182, ACM, New York,

NY, USA.

[Dietrich and Walker, 2005] Dietrich, S. and Walker, D. (2005). The Evolution of

Real-Time Linux.

243

References

[Factor et al., 2006] Factor, M., Schuster, A. and Shagin, K. (2006). A platform-

independent distributed runtime for standard multithreaded Java. Int. J. Parallel

Program. 34, 113–142.

[Faggioli et al., 2010] Faggioli, D., Bertogna, M. and Checconi, F. (2010). Sporadic

Server revisited. In Proceedings of the 2010 ACM Symposium on Applied Com-

puting SAC ’10 pp. 340–345, ACM, New York, NY, USA.

[Fatahalian et al., 2006] Fatahalian, K., Horn, D. R., Knight, T. J., Leem, L., Hous-

ton, M., Park, J. Y., Erez, M., Ren, M., Aiken, A., Dally, W. J. and Hanrahan,

P. (2006). Sequoia: programming the memory hierarchy. In SC ’06: Proceedings

of the 2006 ACM/IEEE conference on Supercomputing p. 83, ACM, New York,

NY, USA.

[Flynn, 2004] Flynn, L. J. (2004). Intel Halts Development Of 2 New Microproces-

sors.

[Goglin and Furmento, 2009] Goglin, B. and Furmento, N. (2009). Enabling high-

performance memory migration for multithreaded applications on LINUX. In

Parallel Distributed Processing, 2009. IPDPS 2009. IEEE International Sympo-

sium on pp. 1 –9,.

[Gosling et al., 2005] Gosling, J., Joy, B., Steele, G. and Bracha, G. (2005).

Java(TM) Language Specification, The (3rd Edition) (Java (Addison-Wesley)).

Addison-Wesley Professional.

[Hennessy and Patterson, 2006] Hennessy, J. L. and Patterson, D. A. (2006). Com-

puter Architecture, Fourth Edition: A Quantitative Approach. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA.

[Holt, 2009] Holt, J. (2009). Designing an Industry Standard API to Manage Mul-

ticore System Resources.

[IEEE, 2008] IEEE (2008). IEEE Std 1003.1-2008 Portable Operating System In-

terface (POSIX) Technical Standard, vol. 1,.

244

References

[Kambites et al., 2001] Kambites, M. E., Obdrlek, J. and Bull, J. M. (2001). An

OpenMP-like interface for parallel programming in Java. Concurrency and Com-

putation: Practice and Experience 13, 793–814.

[Kleen, 2004] Kleen, A. (2004). An NUMA API for Linux.

[Klemm et al., 2007] Klemm, M., Bezold, M., Veldema, R. and Philippsen, M.

(2007). JaMP: an implementation of OpenMP for a Java DSM. Concurrency

and Computation: Practice and Experience 19, 2333–2352.

[Koelbel et al., 1994] Koelbel, C. H., Loveman, D. B., Schreiber, R. S., Steele, Jr.,

G. L. and Zosel, M. E. (1994). The high performance Fortran handbook. MIT

Press, Cambridge, MA, USA.

[Lameter, 2006] Lameter, C. (2006). Local and Remote Memory: Memory in a

Linux/NUMA System.

[Leontyev and Anderson, 2009] Leontyev, H. and Anderson, J. (2009). A hierarchi-

cal multiprocessor bandwidth reservation scheme with timing guarantees. Real-

Time Systems 43, 60–92.

[Lipari and Bini, 2010] Lipari, G. and Bini, E. (2010). A Framework for Hierarchical

Scheduling on Multiprocessors: From Application Requirements to Run-Time

Allocation. In Proceedings of the 2010 31st IEEE Real-Time Systems Symposium

RTSS ’10 pp. 249–258, IEEE Computer Society, Washington, DC, USA.

[Liu and Layland, 1973] Liu, C. L. and Layland, J. W. (1973). Scheduling Algo-

rithms for Multiprogramming in a Hard-Real-Time Environment. J. ACM 20,

46–61.

[Ma et al., 2000] Ma, M. J. M., Wang, C.-L. and Lau, F. C. M. (2000). JESSICA:

Java-enabled single-system-image computing architecture. J. Parallel Distrib.

Comput. 60, 1194–1222.

[Malik et al., 2010] Malik, A. H., Wellings, A. and Chang, Y. (2010). A locality

model for the real-time specification for Java. In Proceedings of the 8th Inter-

245

References

national Workshop on Java Technologies for Real-Time and Embedded Systems

JTRES ’10 pp. 36–45, ACM, New York, NY, USA.

[McIlroy, 2010] McIlroy, R. (2010). Using Program Behaviour to Exploit Heteroge-

neous Multi-Core Processors. PhD thesis, Glasgow, UK.

[Mercer et al., 1994] Mercer, C., Savage, S. and Tokuda, H. (1994). Processor capac-

ity reserves: operating system support for multimedia applications. In Multimedia

Computing and Systems, 1994., Proceedings of the International Conference on

pp. 90 –99,.

[Mok et al., 2001] Mok, A., Feng, X. and Chen, D. (2001). Resource partition for

real-time systems. In Real-Time Technology and Applications Symposium, 2001.

Proceedings. Seventh IEEE pp. 75 –84,.

[OpenMP, 2008] OpenMP (2008). The OpenMP Application Program Interface.

[Quinn, 1994] Quinn, M. J. (1994). Parallel computing (2nd ed.): theory and prac-

tice. McGraw-Hill, Inc., New York, NY, USA.

[Rivas and Gonzlez Harbour, 2001] Rivas, M. and Gonzlez Harbour, M. (2001).

MaRTE OS: An Ada Kernel for Real-Time Embedded Applications. In Reliable

SoftwareTechnologies Ada-Europe 2001, (Craeynest, D. and Strohmeier, A., eds),

vol. 2043, of Lecture Notes in Computer Science pp. 305–316. Springer Berlin /

Heidelberg. 10.1007/3-540-45136-6 24.

[Saraswat, 2010] Saraswat, V. (2010). Report on the Programming Language X10.

Language specification IBM.

[Schoeberl, 2004] Schoeberl, M. (2004). A time predictable instruction cache for a

java processor. In In On the Move to Meaningful Internet Systems 2004: Work-

shop on Java Technologies for Real-Time and Embedded Systems (JTRES 2004),

volume 3292 of LNCS pp. 371–382, Springer.

[Shin et al., 2008] Shin, I., Easwaran, A. and Lee, I. (2008). Hierarchical Scheduling

Framework for Virtual Clustering of Multiprocessors. In Real-Time Systems, 2008.

ECRTS ’08. Euromicro Conference on pp. 181 –190,.

246

References

[Tam et al., 2007] Tam, D., Azimi, R. and Stumm, M. (2007). Thread clustering:

sharing-aware scheduling on SMP-CMP-SMT multiprocessors. SIGOPS Oper.

Syst. Rev. 41, 47–58.

[Tikir and Hollingsworth, 2005a] Tikir, M. and Hollingsworth, J. (2005a). NUMA-

Aware Java Heaps for Server Applications. In Parallel and Distributed Processing

Symposium, 2005. Proceedings. 19th IEEE International p. 108b,.

[Tikir and Hollingsworth, 2005b] Tikir, M. M. and Hollingsworth, J. K. (2005b).

NUMA-Aware Java Heaps for Server Applications. In IPDPS ’05: Proceedings

of the 19th IEEE International Parallel and Distributed Processing Symposium

(IPDPS’05) - Papers p. 108.2, IEEE Computer Society, Washington, DC, USA.

[Veldema et al., 2001] Veldema, R., Hofman, R. F. H., Bhoedjang, R. A. F., Jacobs,

C. J. H. and Bal, H. E. (2001). Source-level global optimizations for fine-grain

distributed shared memory systems. SIGPLAN Not. 36, 83–92.

[Wellings and Schoeberl, 2009] Wellings, A. and Schoeberl, M. (2009). Thread-

Local Scope Caching for Real-time Java. In Object/Component/Service-Oriented

Real-Time Distributed Computing, 2009. ISORC ’09. IEEE International Sym-

posium on pp. 275 –282,.

[Wellings et al., 2009] Wellings, A. J., Chang, Y. and Richardson, T. (2009). En-

hancing the platform independence of the real-time specification for Java. In

JTRES ’09: Proceedings of the 7th International Workshop on Java Technologies

for Real-Time and Embedded Systems pp. 61–69, ACM, New York, NY, USA.

[Wellings and Kim, 2008] Wellings, A. J. and Kim, M. S. (2008). Processing group

parameters in the real-time specification for Java. In Proceedings of the 6th

international workshop on Java technologies for real-time and embedded systems

JTRES ’08 pp. 3–9, ACM, New York, NY, USA.

[Woodacre et al., 2003] Woodacre, M., Robb, D., Roe, D. and Feind, K. (2003).

The SGI AltixTM3000 Global Shared-Memory Architecture. Technical report.

247

References

[Young, 1982] Young, S. (1982). Real-Time languages: design and development.

Ellis Horwood Publishers, Chichester, UK.

[Yu and Cox, 1997] Yu, W. and Cox, A. L. (1997). Java/DSM: A Platform for Het-

erogeneous Computing. Concurrency and Computation: Practice and Experience

9, 1213–1224.

[Zerzelidis and Wellings, 2010] Zerzelidis, A. and Wellings, A. (2010). A framework

for flexible scheduling in the RTSJ. ACM Trans. Embed. Comput. Syst. 10, 3:1–

3:44.

[Zhou et al., 1996] Zhou, Y., Iftode, L. and Li, K. (1996). Performance evaluation

of two home-based lazy release consistency protocols for shared virtual memory

systems. SIGOPS Oper. Syst. Rev. 30, 75–88.

[Zhu et al., 2002] Zhu, W., Wang, C.-L. and Lau, F. (2002). JESSICA2: a dis-

tributed Java Virtual Machine with transparent thread migration support. In

Cluster Computing, 2002. Proceedings. 2002 IEEE International Conference on

pp. 381 – 388,.

248

