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Abstract 

Self-relevant material presents an encoding advantage termed the self-reference 

effect (SRE) in which rich pre-existing schemas allow such material to be efficiently 

encoded. Self-relevant material is also prioritised during information processing, 

acting as a powerful distractor. Furthermore, activation in the Default Mode Network 

(DMN), engaged during self-referential processing, has been linked to errors during 

tasks, suggesting self-focussed attention as a potential source of distraction. The 

current work explored whether individuals with a stronger SRE, thought to reflect the 

level of articulation of one’s self-schema, would perform worse at inhibitory control 

tasks that demand sustained attention on the external world. Study 1 and Study 2 

confirmed this hypothesis suggesting that poor performance in inhibitory control tasks 

is at least in part due to attention being diverted towards the self. Study 2 explored 

the neural underpinnings of such relationships using a cross-sectional resting-state 

analysis. Connectivity of regions involved in self-referential processing was explored 

in relation to inhibitory control efficiency scores revealing that individuals with 

stronger coupling to right inferior frontal gyrus performed better at a Go/No-Go task. 

Similarly, the Frontoparietal Control Network (FPCN) was more coupled to the ventral 

striatum, commonly associated with self-relevance assignment, when SREs were 

smaller. Study 1 also found stronger coupling between DMN and executive control 

regions for individuals with better memory in the non-self control condition (low SRE), 

whereas individuals with stronger within DMN coupling had high self-memory scores 

(high SRE) suggesting integration between DMN and FPCN reduces self-focus. Study 3 

measured self-focussed attention using the private self-consciousness scale and 

revealed the FPCN to be more coupled to fusiform/hippocampus in individuals with 

higher private self-consciousness scores, potentially reflecting episodic information in 

the working memory space. Overall we present substantial evidence supporting a 

strong relationship between self-bias and executive control both at the behavioural 

and neural levels.  
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 Chapter 1 - Introduction 

 

Who is the I that knows the bodily me, who has an image of myself 

and a sense of identity over time, who knows that I have propriate 

strivings? I know all these things, and what is more, I know that I 

know them. But who is it who has this perspectival grasp? . . . It is 

much easier to feel the self than to define the self. 

—G. W. Allport, Patterns and Growth in Personality 

 

In an attempt to study the nature of commonly used concepts such as memory, 

attention or self, psychologists and philosophers have stumbled across the hidden 

complexity that underlies these widely used concepts. Self-consciousness, self-

awareness, objective self, episodic self, are examples of this. The main focus of the 

current doctoral work was to study the abstract representation of one’s self, i.e., the 

self-schema. In particular, the current research was interested in how individuals 

differ in the degree to which they have developed and articulated their self-schema, 

as well as to how this relates to the intrinsic architecture of the brain and to their 

inhibitory control abilities.  

Evident prerequisites for the development of the self-schema are the ability to 

perceive the self as an object which in turn allows attention to be directed inwards. 

As will be discussed in future sections this objective representation of self is believed 

to be achieved through the semantic memory system. A safe assumption to make is 

that individuals who engage more in self-focussed attention will more commonly 

recruit the self-schema, which through its interaction with episodic memory, shall 

result in a deeper articulation of itself by allowing its revision, reinforcement and 

updating.  Building on previous literature exploring the enhancing role that pre-

existing information in the form of schemas has on encoding and retrieval (van 

Kesteren, Fernández, Norris & Herman, 2010; van Kesteren et al., 2013; van 

Kesternen, Rijpkema, Ruiter, Morris & Fernández, 2014; Ghosh & Gilboa, 2014; Ghosh, 
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Moscovitch, Colella & Gilboa, 2014), we developed our research question from the 

assumption that a deeper articulation and engagement of the self-schema shall result 

in a stronger memorial advantage for material processed in relation to the self. Study 

1 and Study 2 studied the relationship of this measure to inhibitory control 

performance. In addition, the first study explored how the magnitude of the self-

reference effect relates to the functional connectivity of memory-related regions, with 

a particular focus on regions involved in self-referential processing. The second study 

instead explored the functional connectivity of inhibitory control regions in relation to 

the magnitude of the self-reference effect.  

The first section of the introduction briefly presents some theories regarding 

how the objectification of self emerges (Duval & Wicklund, 1972; Mead, 1934). Due to 

its object-like nature this representation of self is highly related to the semantic 

system. Evidence that a highly resilient aspect of self, that of who we believe we are, 

is held as an abstraction and hence shares properties of semantic information is 

further presented (Klein & Lax, 2010). We then delve into reviewing the potential 

mechanisms underlying the emergence of the memorial advantage observed for 

material processed in relation to the self and introduce the neural correlates 

underpinning this effect. This section will help the reader understand the rationale 

behind using a self-descriptive task, thought to recruit the semantic self, as a means 

to obtain incidental memory scores reflective of the extent to which an individual has 

articulated their self-schema. Building on previous research demonstrating the role of 

the medial prefrontal cortex (mPFC) to self-referential processing and more 

specifically to the memorial advantage achieved through self-reference (Kelley et al., 

2002; Macrae, Moran, Heatherton, Banfield & Kelley, 2004) the first empirical chapter 

was directed at studying whether individual differences in the magnitude of the self-

reference could predict individual differences in the intrinsic architecture of this 

region. 

After having established the legitimacy of the magnitude of the self-reference 

effect as an indirect measure of the degree to which one has articulated their self-

schema, the next part of the introduction focusses on the detrimental aspects of 

excessive self-focussed attention. In particular, an overview of the evidence 
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demonstrating that self-relevant material acts as a powerful distractor is presented ( 

Geller & Shaver,1976; Moray 1959; Sui, He & Humphreys, 2012) alongside aspects of 

the neural mechanism underlying the salient properties of this material (Sui, Rotshtein 

& Humphreys, 2013a; Sui, Liu, Mevorach & Humphreys, 2013b). This doctoral thesis 

was particularly interested in this detrimental aspect of self-focussed attention and in 

particular its aim was to explore whether a direct relationship between the magnitude 

of the self-reference effect and an individual’s performance during inhibitory control 

tasks could be found. This was based on the notion that good performance on 

inhibitory control tasks requires sustained attention on the task, achieved through 

restraining oneself from processing self-relevant material. Hence we hypothesised 

that individuals with worse performance would present a stronger self-reference 

effect. This prediction was behaviourally tested and confirmed in the first empirical 

chapter suggesting the magnitude of the self-reference effect captures one’s tendency 

for self-focussed attention. The second empirical chapter replicated this finding and 

building on this existing relationship, a cross-sectional design was used to explore its 

neural underpinnings. In particular, the behaviour of regions involved in self-reference 

was studied in relation to the inhibitory control scores and similarly, the magnitude of 

the self-reference effect was used to explore the functional connectivity of regions 

involved in inhibitory control.  

 

1.1 Philosophical Aspects of the self 

1.1.1 Subjective and Objective Self 

The self, like language, is inherent to the human experience. Long theorised about in 

theology, psychology and philosophy, innumerable notions of self exist. Although it is 

beyond the scope of this doctoral thesis to present an extensive review or to formulate 

a theory of the self, one cannot ignore a principal distinction recurrently being made 

in the literature. This is the notion of the self as subject, or the “I” and the self as object 

or the “me” (Cooper 1992; James, 1981). The self as “I” refers to the subject who is 

aware of the qualia being experienced. An idea or feeling that it is “I” who is having 

this experience; this is the subjective self. Instead, when the knower’s attention 
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focuses on itself the “I” becomes the object of study. A meta-representation of the 

self is created, which constitutes the “me” or empirical self, what today is called the 

self-concept (Wylie 1974). Gallagher (2000) makes a similar distinction between what 

he calls the “minimal self” and the “narrative self”. The minimal self is defined as “an 

immediate subject of experience, unextended in time” (p.15) in opposition to the 

narrative self which depends largely on memory and language. The minimal self is pre-

reflective, non-conceptual and emerges from interactions with the environment, it is 

also tightly linked to the sense of agency and ownership. This is the most primitive 

sense of self, and it constitutes the embodied self, which is independent of the use of 

the first person pronoun (Gallagher, 2000). Despite differences across the different 

theories, a general division between objective and subjective self is recurrent 

throughout the literature. Although some attempts have been made in studying and 

describing the subjective component of the self (see Gallagher, 2000) it is the memory-

dependent self, the self as object that has been the target of most psychological 

experiments, including this doctoral thesis. 

  

1.1.2 Objectification of Self 

Considering we are interested in the object-like qualities of self, an overview 

of how this objectification of self is thought to emerge is briefly presented in this 

section.  Studies on children have commonly been used to study the development of 

self-reference and unravel when it is that the ability to observe the self as an object 

first emerges. Piaget (2002) for example asked children to select which blocks were 

nearest to a person sat opposite them. The children, failing to see themselves as a 

separate entity and understand that other perspectives beyond their own exist, 

selected those blocks which were closest to them instead of those closest to the other 

individual. This is defined by Piaget (2002) as absolutism, in which “the child, ignorant 

of his own ego, takes his own point of view as absolute” (p.197) . For the child there 

are no boundaries of the self and hence fails to understand that the self is an object, 

leaving him devoid of self-objectification and self-consciousness. 

Most explanations of how objectification of the self develops emphasize the 

importance of social interactions arguing towards a social origin theory. Mead (1934) 
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for example, believes that the individual lacks an innate ability to observe itself as an 

object and that this ability only becomes available through social interaction.  In 

particular, according to Mead (1934), it is through the development of an empathic 

relationship that the individual learns to visualise itself from an external point of view 

and develops a conscious awareness of itself as an object. Duval and Wicklund (1972) 

however point out that Mead’s social origin theory presupposes that the child is aware 

that other points of view different to its own exist, a presupposition that is in 

contradiction with the child’s absolutist point of view demonstrated by Piaget (2002). 

Instead, Duval and Wicklund (1972) argue that at the basis of self-consciousness is a 

differentiation process by which, through interaction with the environment and other 

individuals, the child’s perceptions, thoughts and actions become challenged, 

eventually leading to the realisation of itself as a separate and distinct entity. In both 

theories social interaction plays an important role in the development of self-

consciousness however for Duval and Wicklund (1972) the mechanisms that allow 

consciousness to focus on the self are inherent to the individual and no different than 

those mechanisms used to focus on any other object. The objectification does not 

occur through taking the perspective of another, like social origin theories propose. 

Instead the child must first recognise that other views exist. Once the child realises 

this, attention can begin to be directed towards the self. It is then that objective self-

awareness emerges. For Duval and Wicklund (1972) the main distinction that needs 

to be made refers to whether attention is focussed on the self (objective self-

awareness) or whether it is focussed elsewhere (subjective self-awareness).  

A main interest of the current doctoral thesis was to explore individual 

differences in this tendency to engage in objective self-awareness and whether, due 

to the internal focus of this type of cognition, we could find an impairment in tasks 

that require sustained external attention in those individuals with a stronger memorial 

advantage for items processed in relation to the self. As all instances of internal 

mentation, obtaining an objective measure is a challenging endeavour. The next 

section delves into different memory systems involved in representing the self and 

explains why a measure of one’s memorial advantage for self-related material can act 

as an objective measure of self-focussed attention, an assumption that we aimed to 

test and confirmed in the current doctoral work by demonstrating a negative 
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relationship between performance at executive tasks and an individual’s memorial 

advantage for self-related items. 

 

1.2 The Role of Memory and the Self 

An obvious prerequisite for self-consciousness is memory, for example one 

needs to have a memory of one’s actions to reflect upon them, or of one’s life events 

to understand where certain emotions might be rooted. Moreover, one needs a sense 

of how the self would judge such actions or respond to the environment, a point of 

reference of ideal self-behaviour.  This requires the activation of different processes 

such as retrieval of past episodes as well as judgement of them based on a personal 

sense of identity. The next section will present what the main systems that give rise 

to the self are, i.e., which systems provide the self with knowledge about itself. As we 

will discuss in the future section there is a difference between the system that 

provides the self with memories of past behaviours (episodic) and the system that 

provides the self with information about who one is (semantic). 

 

1.2.1 The Semantic Self 

Within declarative memory Tulving (1972, 1985) distinguished two systems- 

semantic and episodic. Whereas episodic memory is set on a time and space and has 

a narrative, semantic memory is composed of abstractions and is context-free. As 

such, retrieval of semantic information lacks a source, it lacks the self-referential 

quality present during episodic retrieval. However, a type of semantic memory that 

can be consider self-referential also exists. For example, one can have a sense of one’s 

personality, necessary to rapidly guide behaviour, or one can remember facts such as 

the place of birth of the self (Klein & Nichols 2012). These are both examples of self-

referential information held in the semantic memory system. Whereas philosophers 

like Locke (1841) theorised that it was episodic memory that provided the self with a 

sense of continuity and consistency we now know that the semantic system also plays 

a fundamental role in sustaining a sense of identity. Furthermore, as we will consider 

shortly, it has become apparent that the semantic self displays a certain degree of 

independence from the episodic memory system. It is important to make this 
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distinction between episodic and semantic self as the task in the current doctoral work 

was particularly aimed at recruiting semantic aspects of the self.  In particular, through 

the use of a self-descriptive task in which participants had to judge whether certain 

trait-adjectives described them or not, we aimed to measure the degree to which an 

individual has developed their semantic self.  

 

Evidence supporting that the retrieval of our personal identity is independent 

from episodic memory comes from both neuropsychology and behavioural 

experiments. For example, patients with severe episodic amnesia (for example patient 

H.M who underwent removal of a large portion of the medial temporal lobes) 

maintain an accurate sense of who they are despite severe episodic impairment (Klein 

& Nichols, 2012). Building on this, laboratory experiments have confirmed that 

memory of who we are is stored independently of episodic memory (Klein, Loftus, 

Trafton & Fuhrman, 1992). To test this, participants were asked to rate how much 

certain trait adjectives described them. This descriptive task was either preceded by 

an autobiographical task in which subjects had to recall an episode in which they 

displayed such a trait, or by a semantic task. This experimental setting allowed 

comparison of two competing theories regarding how these trait-descriptive 

judgements are made in relation to episodic memory. The first theory, the pure 

exemplar model, hypothesised that in order to make such judgements one needs to 

retrieve an episode in which an exemplifying behaviour of that trait was present. This 

would negate the existence of a semantic self or at least its independence from the 

episodic system. In contrast, pure abstraction models hypothesised that there is no 

need to recollect an episode and that instead personality trait judgements are made 

by accessing information that is stored as an abstraction, as a summary. If the 

abstraction model is true episodic recollection of a trait-exemplifying behaviour 

preceding the trait-judgment condition should not necessarily facilitate the trait-

judgement, a result which would suggest that access to the semantic self is somehow 

independent of episodic memory.  By measuring and comparing response times to 

judgements of trait adjectives made either after an autobiographical task 

(exemplifying such trait) or a semantic task (control) the authors found that for highly 

self-descriptive traits, priming the descriptive task with the autobiographical task did 
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not facilitate the response of the descriptive task. Instead, in cases in which the trait 

was not considered part of an individual’s image of self, the descriptive trials that were 

preceded by an autobiographical task were answered faster than if preceded by a 

semantic task. These results led the authors to suggests that the self holds an image 

of itself as an abstraction or schema composed of the highly self-descriptive traits. This 

image of self is independent of the episodic system and only when the trait adjective 

is not part of the self-schema is episodic memory necessary to make the descriptive 

judgement. 

The cases presented above suggest that retrieval of personality traits of the 

self is independent of episodic memory. Whether episodic memory is necessary to 

build that meta-representation has also been debated. Some neuropsychological 

cases suggest that in addition to retrieval, encoding of these trait summaries can also 

occur independently of episodic memory. For example, patient K.C, who after a 

motorcycle accident underwent personality changes and suffered severe episodic 

memory impairment, was still able to accurately describe his postmorbid personality 

despite being unable to recall any episodes in which he displayed such personality 

traits (Tulving, 1993; Klein, 2004). Similarly, autistic individuals, characterised by 

diminished episodic memory (Bowler, Gardiner & Grice, 2000; Crane & Goddard, 

2008; Lind, 2010), also seem to maintain a memory of who they are despite their 

episodic memory impairment. For example, patient R.J, an autistic patient with 

episodic performance similar to that observed in brain trauma induced amnesia, was 

able to report a view of himself that reliably correlated with the description given by 

his relatives (Klein, 2004). This suggests that the formation and updating of such self-

schema can occur online and not necessarily through rehearsal and reconstruction of 

episodes.  

Importantly, it seems like semantic self-knowledge is particularly resilient and 

is dissociated within the semantic system from generic knowledge about the world. In 

support of this, Klein describes the case of patient D.B whose amnesia expanded 

beyond episodic memory to the semantic memory system, but who however still 

maintained an intact memory of his personality (Klein, 2004; Klein, Rozendal & 

Cosmides, 2002). These experimental and neuropsychological cases suggest that 

neither the retrieval nor the acquisition of trait self-knowledge relies on episodic 



30 
 

memory retrieval and that instead there is a specialised system within the semantic 

system involved in the representation of the self. This representation of self is 

responsible for holding our sense of identity, as observed from the neuropsychological 

cases presented above, and hence should be activated whenever a judgement of 

either a past or present event is made, using our semantic self as a point of reference. 

Due to the evident role that the semantic representation of self plays in constructing 

a sense of who we are, part of the current doctoral thesis was targeted at measuring 

aspects of this representation of self. In order to engage this aspect of the self, 

participants were asked to decide whether certain trait-adjectives described them or 

not, a process that requires one to access information about one’s identity. 

Subsequently, participants were tested on their memory for the trait-adjectives they 

had judged in relation to themselves. These memory scores were controlled for overall 

memory by subtracting memory scores for items in a control, non-self-referential 

condition. Note that the memory measures obtained through the self-reference 

paradigm were episodic memory measures (i.e., Did you see this word before and if 

so in which condition did you see it?) however, the difference in performance in such 

measures will be driven by how well the items were encoded, which as we will discuss, 

is reliant on the articulation of the semantic self. 

We have so far presented neuropsychological and experimental evidence 

suggesting that an aspect of an individual’s sense of identity relies heavily on a 

semantic representation of the self. This meta-representation of self is highly resilient 

and to some extend independent from the episodic memory system and will be 

recruited during self-descriptive trait judgments. 

The following section presents evidence suggesting why memory scores for 

items processed when making the self-descriptive judgements can be indicative of the 

degree to which an individual has articulated their self-schema. It begins by presenting 

theories aimed at explaining mechanisms involved in successful encoding and retrieval 

of information. We then present studies which extrapolate these theories in order to 

explain why material processed in a self-referential manner presents a mnemonic 

advantage over other types of material. Lastly, we explain why, taking into 

consideration these theories, it is possible that individual differences in the memorial 
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advantage for self-related material might be reflecting an individual’s tendency for  

self-focussed attention.  

 

1.2.2 The Self-Reference Effect 

Whether in an episodic or in a semantic fashion, a common finding is that 

relating information to the self facilitates encoding and subsequent retrieval of such 

information. Rogers, Kuiper and Kirker (1977) were the first to report this. By 

comparing memory of self-referenced items judged during a descriptive task (Does 

this word describe you?) with memory of items judged during a semantic task (Finding 

a synonym to the word) the researchers found a mnemonic advantage for self-related 

material. This self-reference effect has also been replicated using objects. For 

example, Cunningham, Turk, Macdonald and Macrae (2008) demonstrated that 

objects which had been assigned to the self were remembered better than objects 

assigned to another subject. Many other studies have repeatedly replicated this effect 

(e.g., Bower & Gilligan, 1979; Keenan & Baillet, 1980) giving rise to a debate about 

whether self-referential processing has any special properties that distinguishes it 

from other types of processing.  

Several theories aimed at explaining the self-reference effect have been 

described, however, which theory best explains the phenomenon depends on the 

nature of the task being used to obtain the memory measures. The theory that has 

received most attention is the elaborative/organizational dual-process explanation 

(see meta-analysis by Symons & Johnson, 1997). This theory proposes that self-

reference promotes both elaboration and organization, processes which cause 

incidental encoding and aid retrieval. Elaborating on a word results in the activation 

of a network of associations related to such item, it is item specific. This network then 

acts as a trace that can guide and facilitate retrieval of the item. According to the depth 

of processing literature, the richer the elaborated trace, the stronger the facilitation 

during retrieval (Craik & Tulving, 1975). Whereas elaborative processing promotes the 

encoding of item-specific information, organizational processing highlights 

information common to a list of items, promoting encoding of the relational 

information between items within a hierarchical structure. Einstein and Hunt (1980) 
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demonstrated that relational and item specific processing are additive processes and 

contribute differently to retrieval processes. To demonstrate this, they measured 

retrieval after using an elaborative task (judging pleasantness of words in a list), an 

organizational task (organise words by categories) or both and found that a 

combination of both tasks promoted the higher recall rates. Along with organizational 

theorists (e.g., Tulving, 1964), they argued that organizational processing aids retrieval 

by allowing the formation of schemas and that once the retrieved schema has been 

activated, item-processing further aids retrieval through promoting discriminatory 

processes.  

In a second experiment Einsten and Hunt (1980) demonstrated that in addition 

to the type of the processing performed, the way the stimuli were presented also had 

an effect on retrieval. Presenting stimuli as a list of related items triggers an automatic 

processing of the relational properties of the items, so organization happens 

regardless of the presence of an organizational task or not. The effect of an 

organizational task would therefore be redundant and not provide any additional 

processing than that obtained by just reading the items in the list.  If instead the 

material is presented as a list of individual items, elaboration processes are 

automatically triggered regardless of the task, and a task that promotes elaboration 

would not provide any additional processing. In support of this theory, when lists of 

related words were studied, encoding was more enhanced by an elaborative task than 

by an organizational task. When instead the list was composed of seemingly unrelated 

items then the organisational task enhanced encoding to a higher degree than the 

elaborative task, suggesting that both processes contribute differently to encoding 

and that both the task as well as the way the material was presented had an impact 

on memory. 

Building on the findings of Einstein and Hunt (1980), Klein and Loftus (1988) 

included a self-referential condition and tested whether the self-referential condition 

acted either like an elaborative or an organisational task. The authors found that in 

the conditions in which the words in the list were unrelated (i.e, automatic 

elaboration), self-reference resulted in higher recall than elaborative processing but 

not in higher recall than when material was processed using a categorical task. In 

contrast, when the items in the list were related, self-reference enhanced recall to the 
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same extent than the elaborative task. Klein and Loftus (1988) concluded that self-

reference is unique in the sense that it promotes both elaboration and organization, 

independently of how the material is processed during encoding. If deeper 

elaboration and organisation lead to better encoding and retrieval, as is discussed 

above, then individuals who have a more elaborated construct of self should show a 

stronger memorial advantage than those who have a less elaborated construct and 

hence present a stronger self-reference effect. 

Deeper elaboration during encoding cannot however fully account for the self-

reference effect obtained when using descriptive tasks that rely on the semantic self. 

For example, self-descriptive judgements have short response times (Kuiper & Rogers, 

1979). If the mnemonic advantage for items judged in reference to the self over a 

semantic judgment was due to a deeper elaboration during encoding, one would 

expect longer response times during self-reference. Instead, trait-judgements, 

especially highly descriptive ones, produce fast responses (Judd & Kulik, 1980) 

suggesting that other mechanisms aside from elaboration and organization contribute 

to the self-reference effect. 

An alternative, non-mutually exclusive explanation for the self-reference 

effect, is presented by Rogers, Rogers and Kuiper (1979) who suggests that the 

memorial advantage for self-related material is due to the fact that the self is stored 

in semantic memory as a prototype.  According to Cantor and Mischel (1977) a 

prototype is “ a collection of the most typical or highly related features associated with 

a category label…….. and is thought to function as a standard around which a body of 

input is compared and in relation to which new input is assimilated into the set of 

items remembered about a given experience” (p.39). Previous research on cognitive 

prototypes predicts that response times for an item should be related to the degree 

to which the item resembles the prototype, with judgments for the more prototypical 

items resulting in faster responses. It also predicts that false recognitions will be more 

common for items that resemble the prototype (e.g., Bransford & Franks, 1971; 

Posner & Keele 1970).   

Using descriptive self-referential tasks both of these predictions, i.e., faster 

response times and higher false alarm rates for prototypical items, have been met, 

supporting the idea that the self is stored as a prototype. For example, the more an 
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item was felt as being part of the prototype, the shorter the response times were 

(Kuiper, 1981). In addition, during retrieval, a bias was found for items which were 

conceptually related to the prototypical self. In particular, items which had never been 

presented during encoding but held a strong resemblance to the prototype were more 

likely to be falsely remembered (Cantor & Mischel, 1977; Nasby, 1997; Rogers et al., 

1979). These findings suggest that there is a prototypical representation of self.  

During self-referential processing this cognitive structure is activated and, according 

to the prototype theory, enhances encoding by rapidly making information between 

the trait and the prototype salient.  

The idea of a prototype is closely related to the concept of a schema in the 

sense that a prototype is a hypothetical item that presents the most characteristic 

qualities of the schema. Whereas the term schema has been loosely used across the 

literature a common notion is that it is a network of associations built from several 

episodes (Ghosh et al., 2014). So, for example, the schema of bird would contain 

concepts such as flying, feathers, eggs or wings.  Considering this schematic bird-

concept, a robin would be a more prototypical bird than an ostrich or a penguin 

because ostriches and penguins can’t fly whereas robins can.  Extensive literature has 

demonstrated that during information processing having prior knowledge in the form 

of a schema facilitates encoding as well as retrieval (Ghosh & Gilboa, 2014; Ghosh et 

al., 2014; van Kesteren et al, 2010; 2013; 2014).  Building on this, Olson (1980) 

suggested that “as the semantic content of schema becomes more complex, abstract, 

interrelated, etc., deeper semantic encoding operations will tend to be more likely, 

easier and more efficient” (p.158).  Taking the information so far presented, it is 

therefore possible that the magnitude of the self-reference effect, i.e, how much one’s 

memory for self is better than memory for another control condition, is related to the 

degree to which someone has elaborated their self-schema. In particular, individuals 

who have more thoroughly developed their self-schema should have a stronger 

mnemonic advantage for self-related material than those who have not developed 

their self-schema as much.  

Further evidence suggesting that a stronger engagement in self-focussed 

attention results in a stronger mnemonic advantage for self-related material comes 

from a study by Agatstein and Buchanan (1984). Building on the idea of a private and 
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public aspect of self-consciousness introduced by Fenigstein, Scheier and Buss (1975), 

in which the private aspect relates to examining one’s behaviours, and the public to 

how others perceive one’s self, the authors designed a new version of the trait-

adjective self-reference paradigm targeted at distinguishing between a private and a 

public self-reference condition. The private self-referent condition asked participants 

to judge whether certain adjectives described them (Private self-referent), which was 

the same approach used in the current doctoral thesis. Agatstein and Buchanan (1984) 

however included a new condition in which participants had to judge whether a third 

person thought a certain trait-adjective described the participant (e.g., “Does Alice 

think you are punctual?”) thereby creating a public self-referent condition. In addition 

to the private and public self-referent conditions, self-consciousness was also 

measured through self-reports and participants were split into high and low private 

and public self-consciousness groups. The authors found that the memory differences 

in both conditions was dependent on which type of self-consciousness was 

predominant in the individual. Those in the high public/low private self-consciousness 

group had better memory for the items in the public but not the private self-referent 

condition than those in the high private/low public self-consciousness group. This 

study demonstrated that the degree to which one engages in a certain type of 

cognition affects the ease with which the system recruited encodes information.  

Building up on the idea that a stronger engagement in self-focussed cognition 

will results in a deeper articulation of the self-schema with a subsequent memory 

advantage for self-related items, the first empirical chapter of the current doctoral 

thesis measured the magnitude of the self-reference and explored whether 

differences in the self-reference effect could be correlated with the intrinsic functional 

architecture of certain brain regions previously related to self-related processing.  The 

next section presents an overview of which brain regions are of special interest to the 

current study.  

 

1.2.3 Neural Correlates of the Self-Reference Effect 

The self-reference effect refers to the mnemonic advantage that material 

processed in relation to the self holds. As we have discussed so far, this advantage is 
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thought to emerge thanks to a pre-existing and deeply elaborated network of 

associations related to our self-schema that gets activated during self-referential 

processing. Building on this we assume that individual differences in the magnitude of 

the memorial advantage for self-related material are indicative of differences in the 

degree to which one has elaborated one’s self- schema. In order to engage in such 

elaboration, attention will need to be focussed on the self, hence it is possible that the 

magnitude of the self-reference effect is capturing one’s tendency for self-focussed 

attention. The aim of the first empirical chapter was to study whether we could 

capture neural correlates underlying such differences in elaboration of the self-

schema. 

To study neural correlates related to self-focussed attention the current 

doctoral thesis implemented an approach based on the intrinsic architecture of the 

brain. Instead of looking at isolated peak activations during tasks we were interested 

in studying how the way in which regions communicate between each other when the 

mind is free from laboratory tasks is informative of the degree to which one engages 

in self-focussed attention. Previous literature using this resting-state functional 

connectivity approach has revealed that the brain is organised into distinct networks 

(e.g., Yeo et al., 2011), each network being composed of regions that are highly 

synchronised between them and poorly synchronised with regions outside of it. We 

first selected regions that have been commonly associated with self-referential 

processing during task-based analyses and explored whether their connectivity 

patterns to any other areas in the brain during rest were informative of the magnitude 

of one’s self-reference effect. The following section presents an overview of the 

literature that led us to select the mPFC as the region of interest in the resting-state 

functional connectivity analyses performed in the first empirical chapter.  

 

1.2.3.1 Self-Referential Processing in the Medial Prefrontal Cortex 

Research on the relationship between self and memory was first extended to the 

brain by Craik and colleagues (1999). Previous research on memory suggested a 

hemispheric encoding/retrieval asymmetry (Tulving, Kapur, Craik, Moscovitch & 

Houle, 1994) based on the observation that activation in the left prefronal cortex was 
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involved during encoding. Instead, retrieval processes engaged the right prefrontal 

cortex. Craik and colleagues (1999) argued that episodic retrieval inherently requires 

reference to the self, a process which is not necessary during encoding. Building on 

this the researchers hypothesised that self-reference might recruit regions involved in 

episodic retrieval. To test this the activity during several deep processing conditions 

was measured, including self-reference, as well as during a superficial processing 

control (syllable count) and a series of contrasts were performed. When comparing 

self-reference to the other conditions, results revealed activation in the right 

prefrontal cortex, an area previously associated with episodic retrieval, pointing 

towards the role of the self during episodic retrieval. In addition, activation in the 

mPFC was also found. A similar follow up study by Kelley and colleagues (2002) failed 

to replicate the right prefrontal activation but argued it could be due to differences in 

the neuroimaging method used, with the first study using PET and the second one 

using fMRI. Nonetheless, the study by Kelley and colleagues (2002) did replicate 

activation in the mPFC, reinforcing the involvement of this area during self-referential 

processing and pointing towards the mPFC as the fundamental neural correlate of self-

referential processing. Importantly, schema related activity has been localised mainly 

to the mPFC and more specifically to the ventromedial prefrontal cortex (vmPFC) 

(Ghosh & Gilboa 2014; Ghosh et al., 2014), overlapping with regions activated during 

self-referential processing, potentially related to the semantic representation of the 

self. 

A question that naturally followed was whether activation in this area was 

contributing to the self-reference effect directly. To test this, Macrae and colleagues 

(2004) measured activity during a self-descriptive task and subsequently tested 

participants incidental encoding of the items presented during the descriptive task. 

The authors found that activation in the mPFC predicted encoding, with activation in 

this region being higher for items that were subsequently remembered than for those 

forgotten. The results of this study expanded the role of the mPFC not only to self-

referential processing but also demonstrated activation in this regions to be directly 

related to the self-reference effect. 

Based on the findings so far mentioned, the mPFC seemed like an ideal candidate 

for studying the relationship between the semantic self, the self-reference effect and 
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the brain. The studies mentioned so far focused on peak activations during self-

referential processing. In the current doctoral work, we wanted to extend the 

literature by moving from a peak activation approach to a resting-state functional 

connectivity one. This approach has been used in the past, revealing how the intrinsic 

architecture of certain regions of the brain relates to psychological measures of 

functions that recruit those regions (e.g., Baird, Smallwood, Gorgolewski & Margulies, 

2013; Poerio et al., 2017; Sala-Llonch et al., 2012; Seeley et al., 2007). Considering 

activation in the mPFC is involved in the self-reference effect, could it be possible for 

individual differences in the magnitude of such effect to be related to differences in 

the intrinsic architecture of this region? The first question of the current doctoral 

thesis deals with this issue by measuring the memory for items presented during a 

descriptive self-other reference paradigm. It then uses these memory scores as 

regressors of interest in seed-based functional connectivity analyses of the mPFC 

during the resting-state as a means to study individual differences in functional 

connectivity related to the self-reference effect. Results obtained from such analyses 

will inform the literature as to which patterns of intrinsic architecture of the mPFC 

relate to individuals who present an increased self-bias.  

 

1.3 The Self and Attention 

The introduction so far has argued why the magnitude of the self-reference effect 

might be indicative of an individual’s tendency to engage in self-focussed attention. 

Furthermore, it has introduced studies that demonstrate an important role of the 

mPFC during self-referential processing leading to the first question of the current 

doctoral thesis: Is the functional connectivity of the mPFC related to the magnitude of 

the self-reference effect?  

After having explored how functional connectivity patterns of regions involved in 

self-referential processing relate to the magnitude of the memorial advantage for self, 

the second question of the current work turned to explore the relationship between 

one’s self-bias as measured through the self-reference effect and one’s inhibitory 

control efficiency. The rationale for this question was built from the idea that 

attentional resources are limited (Anderson, 2004; Kahneman, 1973;), resulting in a 
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recurring competition between processing of internal representations and processing 

of external stimuli. Good performance at inhibitory control tasks require sustained 

attention on the external world, hence we hypothesised that individuals with a 

stronger self-reference effect would be less efficient at inhibitory control, a finding 

that would confirm that the magnitude of the self-reference is indicative of one’s 

tendency to focus attention on the self. The following section foreshadows the 

relationship between self and attention, presenting evidence revealing self-relevant 

material to have a privileged position during information processing. In particular, we 

introduce evidence demonstrating that the brain perceives self-relevant material as 

salient, which in turn leads to the automatic reallocation of attentional resources 

inwards and away from the external world.  

 

1.3.1 The Self as Salient 

In addition to its mnemonic properties, the self has also been extensively 

studied in relation to attention. Self-relevant material is treated as particularly salient 

by the brain, acting as a powerful distractor by automatically capturing attentional 

resources. This was first demonstrated by Moray in 1959 using a dichotic listening 

task. During this task, participants were simultaneously presented with one set of 

stimuli through one ear and with another set of stimuli through the other ear and 

instructed to create an attentional barrier so that only the material presented through 

one of the sides would reach consciousness. In other words, they had to attend to one 

side whilst ignoring the other side. Subsequent tests on the participants’ memory for 

material presented on the to-be-ignored side revealed that participants successfully 

managed to suppress processing of that material except when presented with the 

subject’s own name, this stimulus being particularly efficient at breaking through the 

attentional barrier. These results demonstrated that material that is relevant to the 

subject has a stronger ability to automatically attract attention than other type of 

material and that it is therefore harder to inhibit. 

Expanding on this research Geller and Shaver (1976) demonstrated that the 

presence of mirrors and cameras, known to increase self-focussed attention, 

produced more interference during a Stroop Task. This interference, measured as 
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longer response times, indicates that the self automatically competes for attention 

with the task, leading to the subsequent impairment in performance.  Furthermore, 

the authors also compared the response times based on the self-relevance of the 

words and found that self-relevant words produced higher interference than neutral 

words. It is therefore not only one’s name or self that is salient, but more generally, it 

seems like salience increases with the degree of self-relevance of the material. 

In addition to response-time measures, the impact of self-relevance on 

attention has also been studied through directly measuring brain responses to 

material related to the self. For example, using EEG, Gray, Ambady, Lowenthal and 

Deldin (2004) studied the P300 event-related potential (ERP) during processing of 

autobiographical stimuli such as the subject’s hometown or middle name. Previous 

research has related this ERP to selective attention (Donchin & Coles, 1988) and found 

that its amplitude is proportional to the degree of attentional resources demanded by 

the task (Johnson, 1988) as well as to the stimulus relevance to the task (Farwell & 

Donchin, 1991; Squires, Donchin, Herning, McCarthy, 1977). Furthermore, its 

amplitude varies with the “emotional value” of the stimuli (Johnston, Miller & 

Burleson, 1986). Based on these findings the authors measured the P300 across three 

conditions: during the appearance of a red dot to which the subjects had been told to 

attend to, a condition expected to have a large P300 ERP, and during the presentation 

of both self-relevant and neutral stimuli to which participants had not been instructed 

to attend to. Comparing the P300 across the three conditions revealed that the ERP 

between the red dot condition and the self-relevant condition did not differ, both of 

these conditions eliciting a stronger ERP than the neutral condition, hence confirming 

that self-relevant material automatically recruits attentional processes.  

In a series of elegant experiments Sui (2012; 2013a; 2013b) has demonstrated 

that this effect of self-relevant material on attention does not only apply to 

autobiographical stimuli for which we are highly familiar. Instead, this effect is also 

observed for material which has been newly associated to the self during experimental 

conditions. To test this, different neutral shapes such as triangles or squares were 

assigned during the experiment to either the self or to different referents. Once the 

subjects had learned the shape-referent associations participants were presented 

pairs of shape-referents (e.g., triangle-self) and had to judge whether the presented 
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pairs were correct. As expected, performance was better for trials which contained 

the self-related shape (Sui et al., 2012). In a follow up study (Sui et al., 2013a) brain 

activity using fMRI was measured while subjects performed a similar shape-referent 

task and found that congruent self-related pairs elicited stronger activation not only 

in vmPFC commonly associated with self-related processing, but also in the left 

posterior superior temporal sulcus (LpSTS). The LpSTS is part of the ventral attentional 

network involved in bottom-up attentional processes (Corbetta & Shulman, 2002; 

DiQuattro & Geng, 2011). In other words, the LpTST is commonly activated when 

attention is automatically reoriented to salient stimuli in the environment. 

Importantly, the strength of coupling between the vmPFC and the LpSTS increased 

during judgment of pairs containing the self and was correlated to the behavioural 

efficiency during self-shape matching trials, suggesting this pattern of connectivity 

plays an important role in the automatic reorientation of attention towards self-

relevant material. More specifically, effective connectivity analyses revealed that 

vmPFC received the visual input before LpSTS and, through its projections to the 

attentional network region, triggered reorientation towards the self-related stimuli by 

recruiting LpSTS.  

Inspired by the shape-referent experimental design developed by Sui and 

colleagues, other studies have explored the effect that self-relevance has on 

perception of visual stimuli. Previous research revealed how peripheral cues that 

trigger covert attention over stimuli enhanced the perceived contrast in the stimuli 

(Carrasco, Ling & Read, 2004). Building on this, Macrae, Visokomogilski, Golubickis & 

Sahraie (2018) used stimuli that either had self-relevance or not as the peripheral cues 

and found that when the cue was self-relevant there was a heightened enhanced 

contrast than when it wasn’t, once again demonstrating that self-relevance facilitates 

stimulus processing.  

The evidence presented above situates the self and the material it relates to in 

a preferential position during information processing. As such, an enhanced 

performance can be observed when material related to the self has to be judged or 

remembered. A counter side to this  naturally follows. The more salient a stimulus is 

the more distracting it becomes. For example, Theeuwes (2010), measuring the effect 

on response time of distractors of different perceptual salience, demonstrated that 
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the most perceptually salient distractor caused the highest interference. Using a 

global-local hierarchical task, Sui and colleagues (2013b) have demonstrated that self-

related stimuli cause a similar interference to that of perceptual salience. In this task 

subjects were presented with a global, big shape perimeter (e.g., square) composed 

of smaller local shapes (e.g., triangles). As in previous experiments, the shapes had 

been assigned different referents and the participants were instructed to report either 

the local or the global shape. In trials in which the shape assigned to the self was 

presented on the opposite level to which the participant was being tested on 

(local/global), the response time performance was similar to that observed in a 

preceding experiment in which local or global salience had been visually manipulated 

previous to the shape-referent assignation, matching the behaviour of the most 

salient stimuli. Using a task based on these same principles, Mevorach, Shalev, Allen 

and Humphreys (2008) found that activity in the left intraparietal sulcus (IPS) was 

higher during the trials in which the target was less salient than the distractor. Using 

this IPS cluster as a region of interest in a future study, Sui and colleagues (2013b) 

found higher activation in this region during trials in which the self-shape was 

presented as a distractor. These studies demonstrate that the self, and material 

related to it, present the same qualities as salient material and as such should act as a 

powerful distractor. Furthermore, an inability to suppress self-focussed attention has 

been related to numerous psychopathologies such as depression, anxiety or even 

schizophrenia and psychopathy (for a review see Ingram, 1990). Despite the different 

behavioural expressions of these disorders, they seem to share this common feature 

which Ingram (1990) describes as self-absorption: a sustained and inflexible focus on 

the self.   

 

1.3.2 External Versus Internal Attention: A Network 

Perspective 

The last decade has experienced a paradigm shift in cognitive neuroscience by 

which the focus of attention has expanded from solely studying peak activations 

during tasks to studying connectivity between regions during not only tasks but also 

during the resting-state. This paradigm shift introduced the idea of brain networks, a 
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network being composed of regions that show higher synchrony between them than 

with regions outside of the network. With particular interest to the current doctoral 

thesis, studies of resting-state functional connectivity have revealed that regions 

involved in self-representation such as the mPFC form part of a larger and distributed 

network. This network is highly active during periods of rest, i.e., when the mind is 

free of task execution, the reason for which it was termed the default mode network 

(DMN) and originally considered a task negative network (Fox et al., 2005). This task-

negative perspective of the DMN rapidly shifted in face of evidence revealing DMN 

activation during several tasks. As previously mentioned, self-descriptive tasks 

activate the mPFC, one of the main hubs of the DMN (Kelley et al., 2002; Macrae et 

al., 2004; Northoff et al., 2006). More generally, activation in DMN regions such as 

medial temporal lobes or the posterior cingulate cortex has also been found during 

episodic and semantic retrieval (Hujibers et al., 2012; Maddock, Garret & Buonocore, 

2001) or during scene reconstruction (Irish et al., 2015; Sugiura, Shah, Zilles & Fink, 

2005), or in the angular gyrus during theory of mind tasks (Schurz, Radue, Aichhorn, 

Richlan & Perner, 2014; Seghier, 2013). In face of these findings it becomes apparent 

that this network is not a task-negative network but that instead it is engaged across 

multiple task states, especially during instances when attention is focussed on internal 

representations. Instead, deactivation in nodes of the DMN is commonly observed 

during processing of external stimuli (Raichle et al., 2001).  

As a result of this competition between the internal and external worlds, 

internal mentation leads to a state of perceptual decoupling by which responses to 

external stimuli become dampened. This was elegantly demonstrated by Barron, Riby, 

Greer and Smallwood (2011) who using EEG measured cortical responses to both 

target and distractor stimuli during an oddball task. Using the amount of task-

unrelated thought reported after every trial, researchers found a reduced amplitude 

in the P3a and P3b ERP components, commonly associated with distractor and target 

stimuli respectively, in individuals who reported higher task-unrelated thought. 

Hence, regardless of the stimuli’s task relevance, during internal mentation there is a 

general reduction in cortical responses related to processing of external stimuli. 

Activation in DMN regions has also been associated with faster responses in tasks in 

which performance did not depend on perceptual input. Instead, when tasks 
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depended on perceptual input, DMN activation was linked with worse performance 

(Smallwood et al., 2013) further supporting the DMN’s role in processing of internal 

representations. Similarly, as a result of perceptual decoupling, it is not surprising that 

DMN activation has been associated with instances of lapses of attention (Weissman, 

Roberts, Visscher & Woldorff, 2006), and errors during inhibitory control tasks (Li, Yan, 

Bergquist, Sinha, 2007). Perceptual decoupling is also indirectly inferred from the 

intrinsic network dynamics of the brain which display anticorrelated activity during 

rest between the DMN and externally oriented networks such as the dorsal attentional 

network (Fox et al., 2005; Fox, Zhang, Snyder & Raichle, 2009).   

A third network, the FPCN, is strategically positioned between the DMN and 

DAN (Vincent, Kahn, Snyder, Raichle & Buckner, 2008) and can flexibly couple to either 

depending on environmental task demands. For example, Spreng, Stevens, 

Chamberlain, Gilmore & Schacter (2010) compared activation and functional 

connectivity during an autobiographical and a visuospatial planning task and 

demonstrated that the FPCN changed its coupling to either the DMN or the DAN based 

on task demands, being actively engaged in both tasks. During the autobiographical 

planning task, the DMN was active and coupled to the FPCN whereas DAN was active 

and coupled to the FPCN during the visuospatial planning task. These results 

confirmed previous literature relating regions of the FPCN to executive control. For 

example, the dorsolateral prefrontal cortex, a main hub of the FPCN, is highly active 

during working memory tasks (Levy & Goldman-Rakic, 2000), tasks which rely on 

inhibitory control mechanism that give processing priority to task relevant material by 

blocking irrelevant material from reaching consciousness. Moreover, the FPCN forms 

part of the executive corticostriatal loop involved in suppression of both action and 

thought (Alexander & Crutcher 1990; Aron et al., 2007; Haber 2016). These results, 

combined with a study by Finn and colleagues (2015) which revealed the functional 

connectivity of the FPCN to be particularly subject-specific as well as particularly 

predictive of behavioural performance, suggest that the functional connectivity of the 

FPCN might be particularly informative of an individual’s ability to suppress irrelevant 

self-related material when necessary and instead focus on the task. 

A prediction that follows and one that we set out to test in the first two 

empirical chapters was that, considering the effects salience has on attention, 



45 
 

individuals with a more salient self should present reduced performance in tasks that 

require sustained attention on non-self-related material. If the magnitude of the self-

reference effect is indicative of the individual’s tendency to direct attention towards 

the self, and if this increased tendency results in higher perceptual decoupling, it is 

possible that individuals with a higher self-reference effect will be less efficient in tasks 

of inhibitory control which require sustained attention on external stimuli. In the first 

study we confirmed a relationship between inhibitory control and the mnemonic 

advantage for self-related material by correlating performance on a stop signal 

response time task (SSRT), classically used to measure inhibitory control, and the 

magnitude of the self-reference effect. Once having confirmed this behavioural 

relationship, the second empirical chapter explored its resting-state neural 

underpinnings. In particular, we hypothesised that functional connectivity of regions 

involved in self-referential processing might predict inhibitory control efficiency. 

Similarly, regions involved in inhibitory control might predict the magnitude of the 

memorial advantage for self-related material. Overall we expected the patterns of 

functional connectivity obtained using this cross-sectional design to shed light on the 

mechanisms that underlie appropriate control over the salient self.   

 

1.4 From an Objective Measure of Self-Focussed 

Attention to a Subjective Measure: The Self-

Consciousness Scale 

After having studied the relationship between the magnitude of the self-

reference effect and the functional connectivity of regions involved in memory such 

as the DMN, and executive control such as the FPCN, the third study took an 

alternative measure of self-focussed attention. Whereas the first and second studies 

demonstrated that the magnitude of the self-reference effect captures an aspect of 

one’s tendency to focus attention on the self, allowing this measure to be used as an 

indirect and objective measure of self-focussed attention, the third study used a 

classical, direct and subjective measure, namely the self-consciousness scale.  



46 
 

This scale, devised by Fenigstein and colleagues (1975) was designed 

specifically to measure individual differences in this trait. Using this questionnaire two 

major components of self-consciousness were obtained: a private and a public 

component. The private component measures an individual’s tendency to focus 

attention on one’s feelings and behaviours (e.g., ”I reflect about myself a lot”), 

whereas the public component measures the tendency to analyse how the self is 

perceived by others (e.g., “ I am very concerned about the way I present myself”). 

Despite the self is the focus of attention in both cases the public component has a 

social quality that the private one lacks. A third component, social anxiety, was also 

defined. Despite appearing as an independent component, this component was found 

to be mildly and consistently correlated to public self-consciousness. The authors 

argued that this is because public self-consciousness is a prerequisite to social anxiety, 

and whereas it does not automatically imply social anxiety, it is a potential by product 

of it. 

Extensive research has demonstrated that these components have predictive 

value. Not surprisingly, private self-consciousness correlates with one’s memorial 

advantage for items processed in a self-referential manner from the first person 

perspective (e.g., “Does punctual describe you?”)  (Agatstein & Buchanan, 1984; 

Nasby 1985). When instead subjects were asked to judge certain trait-adjectives in 

relation to one’s self but from an outsiders’ perspective (i.e., “Does Katie believe you 

are punctual?”) items judged in this condition were better recalled in individuals who 

reported higher public self-consciousness (Agatstein & Buchanan, 1984).  

The third empirical chapter of the current doctoral work selected large-scale 

networks from the brain parcellation peformed by Yeo and colleagues (2011) and 

studied their relationship to these measures of self-focussed attention. Considering 

the strong relationship between self and memory and self and attention we focussed 

on large-scale networks involved in memory such as the DMN and the limbic network 

and on networks involved in executive control, i.e., the FPCN. A summary of the 

measurements taken in the three studies is presented in Figure 1.1 
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Figure 1.1: Road map of the three empirical chapters. Behaviourally, Study 1 and Study 2 
explored the relationship between the magnitude of the self-reference effect and inhibitory 
control efficiency scores. Neurally, the magnitude of the self-reference effect was studied in 
relation to 1) the functional connectivity of self-related regions (Study 1) and 2) the functional 
connectivity of inhibitory control-related regions (Study 2). Study 2 also studied the 

functional connectivity of self-related regions in relation to inhibitory control efficiency 
scores.  Study 3 measured self-consciousness scale scores and studied their relationship to the 

functional connectivity of self-related and inhibitory control-related regions.  
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Chapter 2 - Knowing me, knowing you: Resting-

State Functional Connectivity of Ventromedial 

Prefrontal Cortex Dissociates Memory Related 

to Self from a Familiar Other 

This chapter is adapted from: de Caso, I., Karapanagiotidis, T., Aggius-Vella, E., Konishi, M., 

Margulies, D. S., Jefferies, E., & Smallwood, J. (2017). Knowing me, knowing you: resting-

state functional connectivity of ventromedial prefrontal cortex dissociates memory related 

to self from a familiar other. Brain and cognition, 113, 65-75. 

 

 

2.1 Abstract 

Material related to the self, as well as to significant others, often displays 

mnemonic superiority through its associations with highly organized and elaborate 

representations. Neuroimaging studies suggest this effect is related to activation in 

regions of mPFC. Incidental memory scores for trait adjectives, processed in relation 

to the self, a good friend and David Cameron were collected. Scores for each referent 

were used as regressors in seed-based analyses of resting-state fMRI data performed 

in ventral, middle and dorsal mPFC seeds, as well as hippocampal formation. Stronger 

memory for self-processed items was predicted by functional connectivity between 

ventral mPFC, angular gyrus and middle temporal gyri. These regions are within the 

DMN, linked to relatively automatic aspects of memory retrieval. In contrast, memory 

for items processed in relation to best friends, was better in individuals whose ventral 

mPFC showed relatively weak connectivity with paracingulate gyrus as well as positive 

connectivity with lateral prefrontal and parietal regions associated with controlled 

retrieval. These results suggest that mechanisms responsible for memory related to 

ourselves and personally-familiar people are partially dissociable and reflect 

connections between ventral mPFC, implicated in schema-based memory, and regions 

implicated in more automatic and controlled aspects of retrieval.  
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 2.2. Introduction 

A fundamental aspect of the brain is its ability to encode, update and retrieve 

information, processes that can occur in an automatic manner or through the 

application of conscious effort. Both encoding and retrieval are more likely when the 

information is personally relevant.  Strong automatic effects on memory are 

illustrated by the self-reference effect when incidental memory for material that is 

related to the self tends to be higher than for other types of material, such as items 

related to others (Kuiper & Rogers, 1979; Kelley et al., 2002) or semantically judged 

material (Rogers, Kuiper & Kirker,1977). The strong automatic encoding that occurs 

during self-reference is thought to reflect the rich associative structure of knowledge 

about who we are (Symons & Johnson, 1997). Knowledge of oneself provides a 

powerful schema through which information can be organised during encoding and 

retrieval. In contrast, memory for information with a less rich associative structure is 

more difficult to encode and retrieve.  

There is a growing body of evidence that memories with a rich associative 

structure depend upon the DMN, a large-scale network anchored by medial regions in 

the mPFC and the posterior cingulate cortex (Andrews-Hanna, 2012).  The DMN, and 

in particular the mPFC, show high levels of activation during tasks that require self-

reference (Johnson et al., 2002; Kelley et al., 2002; Macrae et al., 2004; D'Argembeau 

et al., 2005; Northoff et al., 2006) as well as for personally familiar referents, such as 

a close friend (Mitchell, Banaji, & Macrae, 2005), and when retrieving dominant 

semantic associations of words that come to mind relatively automatically (Binder et 

al., 2009; Davey et al., 2015). In all this cases memory encoding and retrieval are aided 

by the presence of previously formed schemas which are thought to be supported by, 

at least in part, the vmPFC (van Kesteren et al., 2010a; Ghosh et al., 2014). The notion 

that the DMN has an important role in the retrieval of information is also supported 

by studies that show strong coupling between the DMN and the hippocampus during 

successful retrieval (van Kesteren et al., 2010b; van Kesteren et al., 2012; Huijbers et 

al., 2011) as well as by studies that show that activity in the mPFC during the encoding 

phase of a self-reference paradigm predicts subsequent memory scores for items 
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encoded during self-reference (Macrae et al., 2004). Moreover, a related literature 

has shown stronger responses within the DMN during spontaneous retrieval states 

such as mind-wandering (Mason et al., 2007; Christoff et al., 2009; Starwarzyck et al., 

2011) in which internally generated information is processed. Activity in the DMN 

often leads to errors during tasks that depend on a detailed processing of perceptual 

input (Weissman et al., 2006; Li, Bergguist &Sinh,2007) and shows patterns of 

anticorrelation with regions involved in tasks involving controlled external attention 

at rest (Fox et al., 2005). These converging literatures are often taken as evidence that 

DMN can support spontaneous and undirected retrieval that interferes with ongoing 

processes requiring cognitive control (Anticevic et al., 2012). Together these parallel 

literatures implicate the DMN in the encoding and retrieval of personally relevant 

information into and from memory. However, recent research has also indicated that 

DMN sites can couple with regions implicated in executive control in situations that 

require memory retrieval to be controlled to suit the current demands (Spreng et al., 

2014). These and other findings (e.g., Konishi et al., 2015, Krieger-Redwood, et al., 

2016, Vatansever et al., 2015) suggest the DMN plays a more flexible role in memory 

processing than may have be recognised in the past. 

To elucidate a more nuanced view of the role of the DMN in memory retrieval 

the current study explored whether different patterns of functional connectivity  

could predict incidental memory scores and in particular, whether these differ for 

material with different levels of personal relevance. We asked participants who had 

already participated in a neuroimaging session in which we recorded resting-state 

activity to return to the laboratory to perform an incidental memory task. They made 

decisions about whether trait adjectives applied to three different referents: 

themselves, their best friend or David Cameron (UK Prime Minister). These referents 

differ on their strength of personal associations which should result in higher 

incidental memory scores for items related to the self than their best friend and the 

lowest retrieval for David Cameron. In addition, since memory for similar others are 

known to elicit similar DMN activation and may be organised using similar or 

overlapping schema (Mitchell et al., 2006), accurately retrieving information about a 

best friend may require that competition from self-processed items may be overcome, 
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which have been encoded in a similar way.  In contrast, items processed in relation to 

David Cameron will be more distinct and experience less interference. Individual 

variations in these scores were used to predict the functional connectivity in three 

sub-regions of the mPFC (ventral, middle, dorsal) taken from a decomposition of the 

DMN (Andrews-Hanna et al., 2010). Given evidence that the hippocampal formation 

is important in retrieval of information from memory, and this region is also a member 

of a subsystem of the DMN (Andrews-Hanna et al., 2010) this region was also selected 

as a seed region. In the decomposition of Andrews-Hanna et al. (2010), the 

hippocampal formation showed stronger connectivity to ventral mPFC than the other 

seed locations, and ventral mPFC has also been implicated in schema-based memory 

(van Kesteren et al.,2012; Spalding et al., 2015), giving rise to the prediction that this 

site may be particularly critical for self and best friend memory. In addition, we 

measured executive control via the stop signal response time task (SSRT, (Logan & 

Cowan, 1984; Verbruggen & Logan, 2009)) to explore whether strong automatic 

retrieval underpinning the self-reference effect was associated with problems in 

executive control. 

 

2.3 Methods 

2.3.1 Participants 

Forty healthy right-handed participants were recruited through advert and 

either received a monetary reward of £20 or course credits.  One participant had to 

be excluded from all analyses due to irregularities observed during fMRI scanning. Two 

further participants were excluded due to poor task performance, one from each task. 

Separate functional connectivity maps for each task were calculated with a total of 38 

participants (21 males) with an average age of 22.5 (SD = 2.9) years.  Approval for this 

project was granted by the York Neuroimaging Centre (YNiC) Ethics Committee and 

was in accordance with the ethical standards of the responsible committee on human 

experimentation (institutional and national) and with the Helsinki Declaration of 1975, 

as revised in 2008.  
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 2.3.2 Procedure 

2.3.2.1. Self-reference paradigm.  

This laboratory task involved an evaluation and a retrieval phase. During the 

evaluation phase (Figure 2.1A, top) participants were asked to make decisions about 

the association between adjectives and one of three referents (‘Self’, ‘Best Friend’ and 

‘David Cameron’). Adjectives were presented sequentially on-screen and participants 

were required to indicate whether each adjective applied to a particular referent by 

pressing ‘Y’ with the index finger of the right hand for ‘yes’ or ‘N’ with the index finger 

of the left hand for ‘no’. For each category, participants were presented with a list of 

18 unique adjectives presented in separate blocks and the order in which each 

category was presented was counterbalanced across participants. Each of the 18-item 

lists was also rotated across the different referents and the order of item presentation 

within each block was randomised. Stimuli were separated by an inter-stimulus 

interval of 2500ms during which participants were shown a blank screen with a 

fixation cross. Following the evaluation phase, subjects were presented with a surprise 

retrieval test in which they were sequentially shown words and asked whether or not 

that particular item had been presented in the previous phase. This retrieval phase 

(Figure 2.1A, bottom) contained all the words from the previous stage of the 

experiment, plus an equal number of new words. Items were presented in a random 

order and participants had to either press ‘Y’ if they thought the word had appeared 

before or ‘N’ if they thought it was a new word. All words were selected from a pool 

of normalized personality trait adjectives with meaningfulness and likeability ratings 

(Anderson, 1968). Positive, negative and neutral adjectives with the highest 

meaningfulness rating were selected for this experiment. Correct memory for each 

referent was calculated by subtracting the relative number of false alarms from the 

total number of correctly retrieved items. 
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2.3.2.2. Stop signal response time task (SSRT). 

We developed a version of a stop-signal task (Logan & Cowan, 1984; 

Verbruggen & Logan, 2009) using PsychoPy (Peirce, 2007). Figure 2.1B presents a 

schematic representation of the trial sequence for the task. The task featured 

arrowheads pointing either to the left (<) or to the right (>) staying on the screen for 

1000 msec independently of RT and interleaved by a 500 msec fixation cross. 

Participants were instructed to respond as quickly as they could, using the left and 

right arrow keys for the left and right arrowheads, respectively. Participants were also 

instructed to withhold  their respond when they heard a beeping sound (the stop 

signal) accompanying the arrowhead stimuli, which occurred in 20% of the trials (stop 

signal trials); the latency between the beep and the arrowhead presentation (stop 

signal delay or SSD) was initially set at 250 msec and was then varied with a staircase 

tracking procedure: when inhibition was successful and participants correctly 

withheld response in stop signal trials, SSD was increased by 50 msec; when inhibition 

was unsuccessful, SSD was decreased by 50 msec. Participants initially received on-

screen instructions, followed by a brief practice session (20 trials) and then moved on 

to the experimental session, which was composed of 150 trials divided in two equal 

blocks, allowing participants a quick break in between. The whole task lasted 

approximately 7 minutes. 

For each participant, a Stop Signal Response Time (SSRT) score was calculated 

by subtracting mean SSD from the untrimmed mean RT (Logan, Schachar, & Tannock, 

1997). Given the wide variance of error percentage in participants a Stop Signal 

Efficiency score was also calculated by dividing the SSRT score by the proportion of 

correct stop-signal trial responses. One participant with a stop-signal trial error 

percentage higher than 33% was excluded from the analysis. 
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2.3.3 Resting-state  

2.3.3.1. Scan acquisition 

Functional MRI data was acquired independent of task stimulus on a 3 Tesla 

GE scanner. Participants observed a fixation cross for a scan that lasted 7 minutes. The 

scan had a repetition time of 2 seconds, resulting in 210 volumes. We used interleaved 

slice-timing and isotropic voxel dimensions of 3 mm3 (matrix size of 64 X 64, 192mm 

field of view, and 32 slices) with a 0.5mm gap between slices. 

2.3.3.2. Pre-processing 

All fMRI preprocessing and analysis was performed using FSL. We extracted 

the brain from the skull using the BET toolbox for both the flair and the structural T1 

weighted images and these scans were registered to standard MNI152 (2mm) space 

using FLIRT (Jenkinson & Smith, 2001). Prior to conducting the functional connectivity 

analysis, the following pre-statistics processing was applied to the resting-state data; 

motion correction using MCFLIRT (Jenkinson et al., 2002); slice-timing correction using 

Fourier-space time-series phase-shifting; non-brain removal using BET (Smith 2002); 

spatial smoothing using a Gaussian kernel of FWHM 6mm; grand-mean intensity 

normalisation of the entire 4D dataset by a single multiplicative factor; highpass 

temporal filtering (Gaussian-weighted least-squares straight line fitting, with sigma = 

100 s; Gaussian lowpass temporal filtering, with sigma = 2.8s.) 

 

2.3.3.3 First level analysis 

Following these steps, the time series of 4 regions of interest were extracted. 

The seed regions corresponded to 3mm radius spheres centred around the following 

MNI coordinates: vmPFC (0,26,-18), anteriomedial Prefrontal Cortex (amPFC, -6,52,-

2), dorsomedial Prefrontal Cortex (dmPFC, 0,52,26) and the hippocampal formation 

(HF+, -22,-20,-26). These locations were selected based on previous literature 

(Andrews-Hanna et al., 2010) that decomposes the DMN into three subsystems, each 

mPFC location belonging to a different subsystem.  The time series for each location 

file:///U:/Documents/Offline/Copy_Insulated_from_the_moment_15_02_2015.docx%23_ENREF_11


61 
 

were averaged and used as an explanatory variable in a subject-level functional 

connectivity analysis, which also included the following nuisance regressors: the first 

five principal time-series components extracted from white matter (WM) and 

cerebrospinal fluid (CSF) masks in accordance with the CompCor method (Behzadi, 

Restom et al. 2007) and six motion parameters. WM and CSF masks were generated 

by segmenting each individual’s high-resolution structural image (using FAST in FSL). 

The default tissue probability maps, referred to as Prior Probability Maps (PPM), were 

registered to each individual’s high-resolution structural image (T1 space) and the 

overlap between these PPM and the corresponding CSF and WM maps was identified. 

Finally, these maps were thresholded (40% for the CSF and 66% for the 

WM), binarized and combined. The six motion parameters were calculated in the 

motion-correction step during pre-processing. Linear displacements in each of the 

three Cartesian directions (x, y, z) and rotations around three axes (pitch, yaw, roll) 

were included for each individual. No global signal regression was performed 

(Murphy, Birn et al. 2009). 

 

2.3.3.4. Second-level analysis. 

To understand how our psychological measures varied with the connectivity of 

the DMN seed regions, we used FSL to conduct a group-level regression of the 

connectivity matrices of each seed region. In this analysis we included the mean 

centred scores for the retrieval of items recalled for each item type as regressors of 

interest, and the mean movement during the scanning was included as a covariate of 

no interest. This procedure was repeated in an independent analysis using the SSRT 

scores instead of the self-other reference task scores. In these analyses the data were 

processed using FEAT version 5.98 part of FSL (FMRIB's Software 

Library, www.fmrib.ox.ac.uk/fsl) and the analyses were carried out using FMRIB's 

Local Analysis of Mixed Effects (FLAME).  A grey matter mask with a probability 

threshold of 40% was used as a pre-thresholding mask and the cluster-forming 

threshold was set as z-score of 2.3. For these analyses we controlled for Type I errors 

by controlling for the number of voxels in the brain (Worsley 2001), as well as the 

http://www.fmrib.ox.ac.uk/fsl
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number of seed regions and the two tailed nature of our comparisons yielding an alpha 

value of P<.005 FWE. The unthresholded maps from the contrasts reported in this 

paper are available at Neurovault at the following link: 

http://neurovault.org/collections/1373/ 

 

2.3.4 Neurosynth meta-analyses 

In order to study how the patterns of functional connectivity predictive of 

memory obtained in the current study were related to previous neuroimaging 

investigations, we performed a meta-analysis using the online Neurosynth database 

(Yarkoni et al., 2011).  We performed a meta-analytic decoding of the unthresholded 

maps produced in this study by uploading them onto Neurosynth. This allows the 

identification of the cognitive terms that are most likely to be associated with the 

specific image. We display the results of these terms in the form of word clouds in the 

relevant figures.  We also performed a specific meta-analysis of the relationship 

between the maps produced by our experiment, and the spatial maps that are 

generated by studies exploring the self. We performed a meta-analysis (903 studies) 

of the term “self” (http://neurosynth.org/analyses/terms/self/) and compared the 

corresponding map to the connectivity maps predictive of self memory obtained in 

the current study.  

 

2.4. Results 

2.4.1 Behavioural results  

A one-way analysis of variance (ANOVA) indicated a significant effect of 

referent on incidental memory performance (F (2, 76) = 21.58, p < .001, ηp 2 = .372,  

see Figure 2.1C), as measured during the retrieval phase of the self-other reference 

paradigm. Post-hoc Bonferroni corrected comparisons indicated that words referred 

to the Self were recalled better than best friend words (p < .01), and these were better 

recalled than David Cameron (p = .05) items. In addition, examination of the 

http://neurovault.org/collections/1373/
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confidence intervals for memory for David Cameron suggested it was at chance (95% 

CI [.46,.54], whereas memory for best friend (95% CI [.52,.60]) and self (95% CI 

[.61,.68]) were both above chance. Next we examined how the process of self-

reference was associated with a participant’s tendency for behavioural inhibition as 

measured by their efficiency on the SSRT. A linear regression with incidental memory 

for items processed in relation to the Self, Best Friend and David Cameron as 

independent variables and the SSRT inefficiency as the dependent variable, revealed 

a model that accounted for a 22% of the variance in behavioural inhibition scores [F 

(3, 36) = 3.14, p< .05, r2  = .22]. Higher memory for the Self was associated with less 

efficiency on the SSRT (standardized beta = .47, t(33) = 2.7, p < .01) (Figure 2.1D). 

Memory scores for best friend and David Cameron items were not a reliable predictor 

(standardized beta = .153, t(33) = 0.9, p = .35; standardized beta = -.34, t(33) =-1.9, p 

= 0.58, respectively).  

Figure 2.1: Behavioural results. A) Schematic representation of the self-reference task. Top 
row: Evaluation phase. Bottom row: Retrieval phase. B) Schematic representation of the stop 
signal response time task. C) Proportion of hits for each referent and error bars. Asterisks 
represent significant differences in memory performance across referents. D) Scatterplot 
reflecting the positive correlation between memory for self items and SSRT inefficiency. 
Acronyms: BF- Best friend, DC – David Cameron. 
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 2.4.2 RS fMRI analyses  

We conducted a series of multiple regressions in which the functional 

connectivity map of each region was the dependent variable. For each seed region we 

entered a measure of retrieval performance for each referent type (Self, Best Friend, 

David Cameron) as an explanatory variable. Independently we performed the same 

analysis using the SSRT efficiency scores instead of the memory scores. This SSRT 

measure did not reveal any patterns of functional connectivity predictive of inhibitory 

control for any of the seeded locations. 

Figure 2.2 displays the functional connectivity group maps for each seed 

location and Table 1 summarises the clusters that were predictive of memory 

performance and that passed correction for multiple comparisons, including 

correction for whole-brain analysis, two-tailed tests and the number of seeded 

locations. Clusters that passed the first two corrections but did not pass correction for 

the number of seeded locations are still included in the results but are presented 

separately (in yellow in Figure 2.3 and Figure 2.4). 

Figure 2.2: Seed regions (left column) and associated functional connectivity (FC) group maps 
(right column).     A) Dorsomedial Prefrontal Cortex (dmPFC) 0,52,26. B) Anteriomedial 
Prefrontal Cortex (amPFC) -6,-52,-2. C) Ventromedial Prefrontal Cortex (vmPFC) 0,26,-18. D) 
Hippocampal formation (HF+) -22,-20,-26. 
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 2.4.2.1 Ventromedial Prefrontal Cortex  

The functional connectivity of the vmPFC seed region predicted memory for 

self and best friend items. In particular, memory performance for self items was 

related to the functional connectivity between vmPFC and 3 clusters: right middle 

temporal lobe (rMTG) (Figure 2.3A, first row), left superior angular gyrus (lAG) (Figure 

2.3B, first row), and left medial and anterior temporal lobe (lMTG cluster) (Figure 2.3c, 

first row). In all cases, stronger functional connectivity between the vmPFC and these 

clusters predicted better memory for self-related items as seen in the corresponding 

scatterplots in Figure 2.3. The rMTG cluster did not pass correction for the number of 

seeded locations (and is therefore shown in yellow). 

In order to study the association between the clusters found and resting-state 

networks, these clusters were overlaid with the Yeo networks (Yeo et al., 2011). The 

pie charts presented in the grey panel in Figure 2.3 illustrate the overlap with the DMN 

(Network 7), FPCN (Network 6) and Limbic Network (Network 5) as defined by Yeo and 

colleagues (2011). These show the greatest overlap with the DMN (indicated in red) 

suggesting that functional coupling within the DMN is associated with increased 

memory for self-related items. In addition, the region in the rMTG shows overlaps with 

the FPCN (indicated in orange). .  

Functional connectivity between vmPFC and the paracingulate gyrus predicted 

relatively poor memory for best friend items (Figure 2.3D, first row).  Overlay of this 

cluster with the Yeo networks revealed a strong overlap with the DMN and with the 

Limbic Network (indicated in purple in the corresponding pie chart in Figure 2.3). 

Therefore, stronger connectivity within DMN was associated with poorer memory for 

best friend related items, a result that stands in contrast to the findings associated 

with the self.  

 In contrast, memory for best friend items was predicted by high levels of 

connectivity between the vmPFC and three clusters on lateral regions of cortex. In 

particular, stronger functional connectivity between vmPFC and left middle frontal 

gyrus (lMFG) (Figure 2.4A, first row), right superior supramarginal gyrus (rSMG) (Figure  
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Figure 2.3: Association between ventromedial prefrontal cortex (vmPFC) functional 
connectivity (FC) and better self memory (Panel A, B & C) and worse Best Friend (BF) memory 
(Panel D).  A) A region in Right Middle Temporal Gyrus (rMTG) was more coupled to vmPFC 
for individuals with better memory for self-related items. This cluster does not pass correction 
for the number of seeded locations. B) A Region of Left Angular Gyrus (lAG) showed stronger 
FC to vmPFC in individuals with stronger memory for self-related items. C) A Region of Left 
Middle Temporal Gyrus (lMTG) showed stronger FC to vmPFC for individuals with better 
memory for self-related items. D) A region of Paracingulate gyrus showed stronger FC to the 
vmPFC for individuals with reduced memory for BF items. Second Row: Scatterplots reflecting 
relationship between memory performance and FC between seed region and cluster. Third 
row: Overlap (yellow) between clusters and Default Mode Network (green). Grey panel: Pie 
charts and legend reflecting the percentage of the cluster that overlaps with each one the Yeo 
networks.    

 

2.4B, first row) and right middle and inferior frontal gyrus (rMFG) (Figure 2.4C,first 

row) predicted stronger memory for best friend items. The lMFG cluster did not pass 

correction for the number of seeded locations. These clusters were again overlaid with 

the 7 Yeo resting-state networks. The overlapping proportion of each cluster and the  
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Figure 2.4: Regions showing increased functional connectivity (FC) with the ventromedial 
prefrontal cortex (vmPFC) showing increased memory for Best Friend (BF). A) A region of left 
Middle Frontal Gyrus showing stronger FC with vmPFC for individuals with better memory for 
BF-related items. This cluster does not pass correction for the number of seeded locations. B) 
A region of right Super Marginal Gyrus showing stronger FC to the vmPFC in individuals with 
stronger memory for BF-related items. C) Right middle frontal gyrus (rMFG) cluster with 
stronger FC to seed region in individuals with better memory for BF-related items (MNI: x=47) 
. First row: Cluster corrected maps illustrating regions of the FC map that correlate with 
behaviour. Second row: Scatterplots reflecting relationship between memory performance 
and FC between seed region and cluster. Third row: Overlap (yellow) between clusters and 
the Dorsal Attention and Frontal Parietal Control Yeo networks (green). Grey panel: Pie charts 
and legend reflecting the percentage of the cluster that overlaps with each one the Yeo 
networks. 

 

Yeo networks is displayed in the pie charts in Figure 2.4. These clusters generally 

overlap with regions that are important in tasks that demand externally oriented 



68 
 

attention such as the FPCN and the dorsal attention network (DAN). This overlap can 

be observed in the third row of Figure 2.4, in which the DAN and FPCN have been 

displayed with the same colour (green) for visualization purposes. Unlike a heightened 

memory for self, better retrieval of trait adjectives related to a best friend was 

associated with coupling in regions involved in executive control that largely fall 

outside the DMN. 

2.4.2.2. Anteromedial Prefrontal Cortex 

The functional connectivity of this brain location did not predict individual 

differences in memory for any of the three referents.  

2.4.2.3. Dorsomedial Prefrontal Cortex 

The functional connectivity of the dmPFC seed region predicted individual 

memory for self-related items. Stronger functional connectivity between dmPFC and 

a cluster located in the right occipital lobe was correlated with better memory for self-

referent items (Figure 2.5A, first row). This cluster overlapped with the visual network 

as defined by Yeo et al.’s (2011) resting-state network analysis (see Figure 2.5). 

 2.4.2.4. Hippocampal Formation 

The regression analyses performed on the HF+ seed revealed effects for self-

related items: in particular, stronger functional connectivity between the seed region 

and a cluster in left ventral anterior temporal lobe (lvATL) (Figure 2.5B, first row) 

resulted in a better memory for self-related items. This cluster showed strong overlap 

with the Limbic Yeo Network (see right pie chart in Figure 2.5). Visualization of this 

overlap can be observed in the third row of Figure 2.5B. 

2.4.3. Neurosynth Decoding Meta-Analysis 

To provide a quantitative inference of our experimental data, the connectivity 

maps obtained for each seed region and for each regressor was decoded using 

NeuroSynth’s dataset (http://www.neurosynth.org/decode/). Figure 2.6 displays all 

the functional terms from which the corresponding neuroimaging data from the 

database had correlation values bigger than 0.1 for each contrast in our data.  From 

this meta-analytic decoding it can be seen that the functional connectivity map  

http://www.neurosynth.org/decode/
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Figure 2.5: Functional 

connectivity (FC) of dorsomedial 

prefrontal cortex (dmPFC)  and 

the hippocampal formation 

(HF+)  associated with stronger 

memory for the self .A) Cluster in 

the right occipital with stronger 

FC to dmPFC for individuals with 

better memory for self-related 

items. B) Cluster in the left 

ventral Anterior Temporal Lobe 

(lvATL) with stronger coupling to 

HF+ for participants with better 

memory for items related to the 

self. First row: Cluster corrected 

maps illustrating regions of the 

FC map that correlate with 

behaviour. Second row: 

Scatterplot reflecting 

relationship between memory 

and FC between seed region and 

cluster. Third row: A) Overlap 

(yellow) between limbic Yeo 

network (green) and right 

occipital cluster (red). B) Overlap 

(yellow) between Yeo visual 

network (green) and lvATL 

cluster.  Grey panel: Pie charts 

reflecting the percentage of the 

clusters that overlap with each 

Yeo network. 

obtained for stronger memory for self-related items was associated with studies from the 

database containing terms such as retrieval, autobiographical, emotion, mentalizing, 

semantics and theory of mind. In contrast, connectivity maps obtained for better memory 

for best friend were associated with terms such as working memory, working and task. 

Importantly the term self-referential was positively associated with the maps obtained 

for self memory and negatively associated with those obtained for best friend memory. 

These patterns of associations are consistent with the proposal that the map associated 

with self-related memory is associated with relatively automatic processes, and ones that 

are characteristic of the DMN, while the map associated with memory for a best friend is 

associated with relatively controlled processes. 
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 Figure 2.6: Neurosynth meta-analysis of the unthresholded images obtained for each 
significant contrast. A) Ventromedial Prefrontal Cortex (vmPFC) map B) Hippocampal 
formation (HF+) and C) Dorsomedial Prefrontal Cortex (dmPFC) maps associated with better 
memory for self-related items. D) vmPFC map associated with better memory for Best Friend 
(BF) related items. E) vmPFC map associated with worse memory for BF  items.  

 

Figure 2.7: Overlap (yellow) between Neurosynth meta-analytic map for term self (red) and 
clusters predictive of memory for self items (green). First row represents the seed region from 
where the clusters in green were originated. 

 

 2.4.4. Neurosynth “Self” Map Activations 

Finally, we formally compared the data produced through the individual difference 

analysis of resting-state functional connectivity approaches with a spatial meta-
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analysis of peak activations performed by Neurosynth (search term: “self”; 903 

contributing studies; http://neurosynth.org/analyses/terms/self/). The overlap 

between the meta-analytical map and the patterns of functional connectivity can be 

observed in Figure 7. It can be seen that there is overlap in several regions, most 

clearly in the left angular gyrus, and bilaterally in the lateral temporal lobe. 

 2.4. Discussion 

The current study set out to understand whether the functional architecture of the 

mPFC and the HF+ at rest predicted the strength of incidental memories produced 

when personality adjectives were related in terms of their applicability to different 

agents. Consistent with previous studies (Kuiper & Rogers, 1979; Kelley et al., 2002), 

the magnitude of incidental memory effects was related to the personal relevance of 

the individual to which a trait adjective was rated: Stronger memories were formed 

for words related to the self than a best friend and the weakest memories were 

produced when words were rated with respect to David Cameron (a non-familiar 

control), the latter not surpassing chance performance. Using the scores for each 

referent as regressors in an individual difference analysis of resting-state functional 

connectivity, we found that stronger memories following self-related processing were 

related to stronger functional coupling between the vmPFC and bilateral mid temporal 

lobe, and left angular gyrus, as well as coupling between HF+ and regions of lvATL. We 

also found that stronger memory for self related items was linked to coupling between 

the dmPFC seed and a region of medial visual cortex, a region that falls at the boundary 

of the DMN and the visual cortex. In contrast, successful retrieval of words encoded 

with respect to the best friend was linked to decoupling between the ventral 

prefrontal cortex and the paracingulate gyrus, plus coupling with lateral parietal and 

prefrontal regions. No patterns of functional connectivity predicted memory scores 

for items related to David Cameron possibly due to retrieval for these items being at 

chance. Finally, a meta-analytic decoding of the connectivity maps predictive of self 

and best friend memory supported our distinction between individuals who excel at 

memory for themselves, rather than their best friends: Memory for self was 

associated with terms such as theory of mind, autobiographical or self-referential  

http://neurosynth.org/analyses/terms/self/
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whereas enhanced memory for best friend was associated with terms like working 

memory.   

It is often assumed that the reason why items that are referred to the self form 

strong memories is because of the rich associative structure that is associated with 

our knowledge of who we are (Symons & Johnson, 1997): this self-knowledge provides 

a strong schema to support memory encoding and retrieval allowing it to be retrieved 

efficiently and automatically. Prior work has shown that schema-based memory 

engages vmPFC (van Kesteren et al., 2010a;  van Kesteren et al., 2012; Ghosh et al., 

2014; Mckenzie et al., 2014; Spalding et al., 2015) and our study suggests that a strong 

bias to remembering information rated to ourselves depends on forming a network 

between this region and lateral and anterior regions of the temporal lobe and the 

angular gyrus – regions that together make up the DMN (Raichle et al., 2001; Raichle 

& Snyder, 2007). Functional studies often implicate the DMN in situations when 

information from memory is often retrieved effortlessly, such as making global 

semantic associations (Bar et al., 2007; Wirth et al., 2011) periods of spontaneous 

thought (Mason et al., 2007) and the process of self-reference itself (Gusnard et al., 

2001; Macrae et al., 2004; Northoff et al., 2006). These are all states that can involve 

the automatic retrieval of information from memory. Behaviourally we observed that 

self-memory was correlated with relatively poor performance on the SSRT. The SSRT 

is a measure of inhibitory control and previous studies have shown that errors in 

response inhibition are linked to a lack of DMN deactivation (Li et al., 2007). Moreover, 

SSRT can be used to distinguish subjects with attention deficit hyperactivity disorder 

(ADHD) from normal controls (Sendereka et al., 2012). Previous research on ADHD has 

also revealed reduced DMN deactivations during complex tasks (Fassbender et al., 

2009) supporting the notion that successful executive control requires DMN 

deactivation. In addition, high activity in the DMN precedes lapses in cognitively 

demanding tasks (Weissman et al., 2006). Altogether our results therefore are 

consistent with the idea that self-relevant memories are supported by integrated 

activity within the DMN, a state that promotes the automatic and elaborated 

processing of associative information from memory that can at times be hard to 

inhibit. 
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Information related to best friends was retrieved more effectively than for the 

David Cameron control items. However, this type of memory was associated with a 

different network of regions than those observed for strong memories of the self. 

Better memory for a best friend involved a network that spanned the lateral surface 

of parietal and frontal cortex, including middle frontal and inferior frontal gyrus and 

supramarginal gyrus. Overlap with the Yeo networks, revealed that although this 

network was anchored in the vmPFC, these regions are a part of the dorsal attention 

and Frontoparietal Control networks, large-scale systems that are often activated by 

attention-demanding tasks (Collette et al., 1999; Corbetta & Shulman, 2002; Duncan, 

2010). Thus unlike a strong memory for the self, a tendency to remember items 

related to one’s best friend was linked to a coupling between ventral regions of the 

mPFC and regions beyond the broader DMN that are involved in goal-directed 

attention. Studies have shown that the lateral prefrontal cortex, particularly the 

inferior frontal gyrus, often activates when participants make semantic decisions that 

are more difficult either because the meaning is ambiguous or because participants 

must make links between stimuli that are only weakly related together (Noonan et al., 

2013). More generally, co-activation between the DMN and the lateral prefrontal 

cortex occurs when novel or complicated decisions have to be made based on memory 

such as during creativity (Beaty et al., 2014) or when we plan the future (Spreng et al., 

2010). Together the enhanced retrieval for best friend relative to the David Cameron 

control, as well as a functional connectivity network anchored in the vmPFC seed, 

suggest that memory for the best friend is likely to also benefit from an elaborate 

schema, perhaps one that is similar to that of the self (e.g., Mitchell et al., 2005).  

Importantly, this similarity with the self may mean that an accurate memory for close 

personal acquaintances is not only hampered by the weaker traces formed at 

encoding but may also depend on overcoming interference from associations with self 

memories and requires regions outside of the DMN that may function to guide 

retrieval in the face of interference. This possibility is supported by previous research 

which has commonly found inferior and dorsolateral prefrontal gyri, regions predictive 

of best friend memory in this study, to be involved in working memory processes 

(Curtis & D’Esposito, 2003). This hypothesis should be examined in future studies. 
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One general implication of our results is that vmPFC may act as a hub whose 

functional connectivity determines how schematic information is represented in the 

cortex. As well as connections to other regions of the mPFC, it can be seen from Figure 

2 that this region of cortex is connected to medial aspects of the temporal lobe, as 

well as other limbic regions. In topographical terms this region is therefore well placed 

to integrate affective and episodic information into the broader prefrontal cortex. 

Consistent with this view, our data shows that, across people, the nature of the 

patterns of connectivity it exhibits at rest has implications for aspects of social 

memory: A strong memory for self-relevant information was associated with greater 

integration within the DMN, whereas a stronger memory for best friend required 

integration with regions important for executive control. One implication of this view 

is that the vmPFC exhibits modes of cortical processing that reflect how different 

aspects of mnemonic and affective information dominate cognition. Although our 

current data are consistent with this hypothesis, it is impossible to infer whether these 

patterns exert their effect on memory during encoding or retrieval since the current 

study explored individual differences in resting-state functional connectivity rather 

than measuring online neural activity. Future studies exploring different patterns of 

functional connectivity during different types of social and non-social memory 

retrieval will help to address this question. 

It is worth considering certain limitations with the current data. Our study 

shows that better memory for different referents is associated with distinct patterns 

of functional connectivity however, the current study is unable to decipher whether 

the different patterns of functional connectivity predictive of memory for self and best 

friend items are indeed capturing the processing differences in referents per se, or 

whether instead they are reflecting differences in general memory strength. Future 

studies using a control memory task matched in accuracy to the reference task but 

instead employing a different memory manipulation such as elaborative semantic 

encoding will be able to address this issue.  

Regardless of these issues, our results suggest that information related to the 

self and to one’s best friend is supported by different patterns of functional 

connectivity with the vmPFC. Whereas information exclusively related to the self relies 
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on integration between this region and the DMN, remembering information about a 

similar other, benefits from integration between the vmPFC and executive control 

regions. We argue that this occurs because there are different strengths of association 

for the different types of memory. Memories associated with a best friend have 

weaker associations than do self-related. Consequently, remembering information 

about a personally significant other will requires additional executive control directed 

either to retrieve the weaker memory trace, or to correctly select the appropriate 

memory despite interference from the stronger, and often associated, memories 

about the self. 

Importantly, the current study found a negative correlation between inhibitory 

control and an individual’s self-bias, suggesting that reduced inhibitory control is 

related to one’s tendency to engage in self-focused attention. This in turn promotes 

states of perceptual decoupling that hinder task performance when sustained 

attention on the external world is required. The following chapter explores this 

relationship in more detail by using a cross-sectional design aimed at revealing 

patterns of functional connectivity in the resting-state that underpin this relationship.  
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Chapter 3 - Don’t you forget about me: The 

Self-Reference Effect and its Relationship to 

Inhibitory Control. 

 

3. 1 Abstract 

Self-relevant material automatically triggers reallocation of attention, leading 

to states of perceptual decoupling and errors during tasks. Contrarily to this 

detrimental effect, self-referential processing has a positive effect on encoding, 

termed the self-reference effect (SRE). The current study hypothesised that 

individuals with a stronger SRE, measured using a self/other reference paradigm, 

would be less efficient at inhibitory control measured using a Go/No-Go task (GNG). 

The neural underpinnings of such relationship was explored using resting-state fMRI 

in a cross sectional design: Patterns of functional connectivity of inhibitory control 

regions were studied in relation to the magnitude of the SRE. Similarly, functional 

connectivity of regions involved in self-reference was explored in relation to inhibitory 

control scores. Behaviourally, analyses confirmed a trade-off between inhibitory 

control and the magnitude of the SRE. Neurally, stronger coupling between executive 

control regions and ventral striatum was related to a reduced SRE. Instead, good 

inhibitory control was related to stronger coupling between self-referential regions 

and the right inferior frontal gyrus located in the salience network. The meaning of 

these patterns of functional connectivity and the role they might play in suppressing 

self-relevant information is discussed.   
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3.2 Introduction 

The DMN is characterised as a set of highly coupled regions that show 

deactivation when attention is externally oriented (Grecius, Krasnow, Reiss, Menon, 

2003; Raichle et al., 2001) and activations when information from memory is being 

processed (Spreng, Mar & Kim, 2009). As such, it is highly active during periods of rest 

in which the mind is free of task. This default state is characterised by spontaneous 

and effortless generation of thoughts, colloquially termed mind wandering (Seli et al., 

2018; Smallwood & Schooler, 2015). However, despite originally having been 

considered a task-negative network (Fox et al., 2005) further research revealed that 

tasks which recruit processes that are engaged during the mind wandering state, 

which are dependent on memory, also recruit the DMN, shifting the understanding of 

the processes carried out by this network from a task-negative one to a component 

process one. Examples of the processes the DMN is involved in are scene construction 

(Hassabis, Kumaran & Maguire, 2007; Hassabis & Maguire, 2007), mental time travel 

(Botzung, Denkova & Manning, 2008; Schacter, Addis & Buckner, 2007; Spreng et al., 

2009), narrative comprehension (Mar, 2011) and social cognition (Iacoboni et al., 

2004; Mar, 2011; Spreng & Grady, 2010; Spreng et al., 2009), a common characteristic 

to all being that they rely on retrieval of episodic and semantic memory. Of special 

interest to the current study, self-referential processing also engages the DMN. This 

was first demonstrated by Kelley and colleagues (2002) who found stronger activation 

in midline cortical regions of the DMN during processing of items in a self-referential 

manner than during a non-self referential condition. In addition, Macrae, Moran, 

Heatherton and Banfield (2004) found that encoding of items processed in a self-

referential manner was related to stronger activation of the mPFC, a main hub of the 

DMN, and a meta-analysis performed by Northoff and colleagues (2006) further 

revealed that the role of these regions during self-reference applies to different 

domains (e.g., emotional, facial, memory, spatial). These self-referential thoughts are 

often concerned with the individual’s personal goals, constituting a core component 

of mind-wandering and future planning (Fox & Christoff, 2018; Smallwood et al., 2011; 

Stawarczyk & D’argembeau, 2015).  
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In the presence of an immediate goal this self-referential mode of cognition 

needs to be suppressed as adequate performance of either internally or externally 

oriented tasks requires attention to be sustained on task-relevant information until 

the task’s goal is achieved. During memory retrieval carried out by the DMN the 

system enters a state of perceptual decoupling by which external stimuli are not 

processed thoroughly. Evidence for this account comes from EEG studies in which 

cortical responses to targets and distractors were reduced when the participants 

reported higher levels of mind wandering (Smallwood, Beach, Schooler & Handy, 

2008).  Consistent with the view that DMN activity leads to perceptual decoupling 

several studies have found reduced DMN deactivation preceding lapses of attention 

and errors during tasks (Li, Yan, Bergquist & Sinha, 2007; Weissman, Roberts, Visscher 

& Woldorff, 2006).  Further evidence comes from studies showing that activation in 

the posterior cingulate cortex, a main hub of the DMN, increases during successful 

retrieval as well as during unsuccessful episodic encoding (Daselaar et al., 2009; 

Huijbers et al., 2012) which relies on processing of external stimuli. Because the 

spontaneous occurrence of processes carried out by the DMN may reflect a shift 

towards a state of memory guided cognition, if not suppressed efficiently under 

situations when external task-based information should be prioritized, DMN activity 

can interfere with goal-directed behaviour. Hence, during encoding or goal-directed 

action towards the external world, recruitment of mechanisms capable of suppressing 

the DMN are fundamental.  

Although contemporary theories suggest that DMN must be suppressed during 

tasks that require encoding of detailed external information, the precise mechanisms 

by which this modulation occurs remain unclear. Research on inhibitory control 

mechanisms has revealed a set of regions consistently engaged during interference-

resolution tasks. In particular, Nee, Wager and Jonides (2007) conducted a meta-

analysis of 47 studies using a peak density analysis and reported a distributed set of 

regions engaged across a range of inhibitory control tasks. It consisted primarily of 

dorsolateral prefrontal cortex (dlPFC), inferior frontal gyrus, anterior cingulate cortex, 

anterior insula and posterior parietal cortex. This set of regions closely overlap with 

the FPCN defined in the parcellation by Yeo and colleagues (2011). Importantly these 
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set of regions have also been found to be anticorrelated with the DMN during the 

resting-state (Chai, Castañón, Öngür & Whitfield-Gabrieli, 2012; Fox et al., 2005) 

pointing towards the oppositional quality of DMN-related spontaneous cognition and 

FPCN-related controlled cognition.  

The current study aims to understand the potential mechanisms by which the 

DMN fails to be downregulated in instances when the context requires it. Smallwood 

and Andrews-Hanna (2013) argue for a context-regulation hypothesis based on studies 

that have shown that individuals with higher working memory report less instances of 

mind wandering during demanding tasks (Kane et al., 2007; Mcvay & Kane, 2009) 

whereas other studies have shown higher mind-wandering during low demanding 

tasks in individuals with high working memory (Levinson, Smallwood, & Davidson, 

2012). These results suggest that executive processes such as working memory, 

anchored in the FPCN, play an important role in regulating the occurrence of mind 

wandering in a manner that is dependent on the context.  

The strong resemblance between the DMN and tasks that require self-

focussed attention ( D’argembeau et al., 2005; Gusnard, Akbudak, Shulman & Raichle, 

2001), the high degree of self-relevant content recruited during mind wandering (Fox 

& Christoff, 2018; Smallwood et al., 2011; Stawarczyk & D’argembeau, 2015) and 

research revealing that self-relevant material has similar properties to salient 

perceptual stimuli (Humphreys & Sui, 2015; Humphreys & Sui, 2016; Sui, Lui, 

Mevorach & Humphreys, 2013) lead us to hypothesise that certain instances of lapses 

of attention might be due to a shift towards a mode of  self-relevant information 

processing. During these instances self-related information is probably signalled as 

more salient than task-related stimuli, with the resulting compromise on task 

performance. If this was the case, due to the reallocation of resources away from the 

task, individuals with a higher self-bias may perform worse on tasks that require 

sustained attention, such as tasks that depend on inhibitory control.   

In order to measure individual differences in self-bias we measured the 

magnitude of the self-reference effect, which refers to the mnemonic advantage that 

material processed in reference to the self has over other types of processing. Many 

studies have found a positive correlation between this measure and one’s tendency 
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to analyse the self, as measured through self-consciousness questionnaires (Agatstein 

& Buchanan, 1984; Hull, Van Treuren, Ashford, Propsom & Andrus, 1988; Nasby, 1985; 

Turner, 1980), suggesting that the heightened activation of self-related information 

required to engage in private self-consciousness results in a stronger mnemonic 

advantage towards material processed by this system.  Hence the magnitude of the 

self-reference effect could potentially be used as an objective measure of self-

focussed attention tendencies, the logic being that subjects with a reduced memory 

exclusively for self-related items (i.e who maintain a good memory performance on 

the control condition) have a reduced tendency for self-focussed attention. Contrarily, 

highly self-focused individuals will present a heightened memory exclusively for self-

related items. Using a self-other reference paradigm, a previous study by this group 

found that heightened incidental encoding for items in the self-condition was 

correlated with worse inhibitory control (de Caso, Poerio, Jefferies & Smallwood, 

2017).  

The current study aims to replicate this negative correlation between 

inhibitory control efficiency and the magnitude of the self-reference effect as well as 

to explore potential patterns of functional connectivity in the resting-state involved in 

this DMN-FPCN interaction. To do this, two behavioural measures, one for self-bias  

(the self-reference effect) and one for inhibitory control (a Go / No-Go task) were 

recorded.  These were used to understand the neural basis of the hypothesised 

interference between self-focus and effective external goal directed attention. We 

employed a localiser in a subset of participants to identify regions important for both 

self-reference and inhibitory control. To select the DMN regions of interest involved 

in self-reference a self/other reference localiser task was ran inside the scanner and 

the DMN defined by Yeo and colleagues (2011) was constrained by the map obtained 

for self > other contrast in the localiser task. The same procedure was used to obtain 

an inhibitory control region of interest. Using a Go/No-Go localiser task, the map 

obtained for the No-Go > Go contrast was used to constrain the FPCN defined by Yeo 

and colleagues (2011). If the process of self-reference interacts with inhibitory control 

processes then the magnitude of the self-reference effect might predict the functional 

connectivity of regions involved in inhibitory control. Similarly, functional connectivity 
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of regions involved in self-reference might predict inhibitory control. By applying this 

cross-sectional design this study aims to decipher patterns of functional connectivity 

that underlie the relationship between inhibitory control and the magnitude of one’s 

self-bias, informing the theory surrounding how control mechanisms regulate self-

focussed attention.  

3.3 Methods 

3.3.1. Participants 

A total of one hundred and thirty nine (89 females, Age=22.50, SD= 2.93 years) 

healthy right-handed participants completed a self/other reference paradigm outside 

the scanner. A subset of these subjects (N= 51 (31 females, Age =20.2, SD = 1.86 years)) 

was later re-invited to complete a Go/No-Go paradigm in order to obtain measures of 

their inhibitory control ability. Both these tasks were performed outside the fMRI 

scanner and resting-state fMRI data was collected for all of the participants. The 

behavioural z-scores obtained from both paradigms were used as regressors of 

interest in subsequent second level seed-based analyses.  

In order to select regions of interest for our seed-based analyses two localiser 

scans were performed. 21 subjects (13 females, Age=20.7, SD = 2.32 years) performed 

the Go/No-Go task inside the scanner in order to obtain areas more engaged during 

the No-Go than Go trials. 33 subjects (16 females, Age = 20.2, SD= 2.35 years) 

completed a self/other reference localiser task in order to obtain areas more highly 

active during self-referential processing than other-referential processing.  

Once our seed-based analyses were completed, the clusters obtained 

predictive of the behavioural scores were seeded in an independent data set and a 

conjunction analysis was performed using the functional connectivity group maps of 

each cluster in order to find common regions with functional connectivity involved in 

the relationship between self-reference and inhibitory control. A chart describing the 

flow of the whole experiment can be found in Figure 3.1.   

In exchange for their participation all subjects received either monetary 

reward or course credits. Approval for this project was granted by the York 

Neuroimaging Centre (YNiC) Ethics Committee and was conducted in accordance with 
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the ethical standards of the responsible committee on human experimentation 

(institutional and national) and with the Helsinki Declaration of 1975, as revised in 

2008. 

  

 3.3.2. Behavioural Procedure  

 

3.3.2.1 Self/Other Reference Paradigm 

 

The laboratory task measuring the self-reference memory advantage involved 

an evaluation and a retrieval phase displayed in the left panel of Figure 1. The 

evaluation phase consisted of two social conditions and one syllable count condition. 

In the social conditions participants were asked to make decisions about the 

association between adjectives and one of two referents (‘Self’ or ‘Lady Gaga’). In the 

syllable condition, participants indicated via button press whether the word on screen 

had three or more syllables or whether it had less. Adjectives were presented 

sequentially on-screen and participants were required to indicate whether each 

adjective applied to a particular referent/ had three or more syllables by pressing 

‘Y’ with the index finger of their right hand for ‘yes’ or ‘N’ with the index finger of their 

left hand for ‘no’. All words were selected from a pool of normalised personality trait 

adjectives with meaningfulness and likeability ratings (Anderson, 1968). An equal 

amount of positive, negative and neutral adjectives (40 adjectives /valence) with the 

highest meaningfulness rating were selected for this experiment. For each participant, 

these 120 words were randomly divided into two lists of 60 adjectives. One list 

contained all the items involved during the encoding phase, the other list contained 

the items that would be used as foils during the retrieval phase. This first encoding-

phase list was divided into three lists of 20 items, each of which was assigned to one 

of the three conditions (Self, Lady Gaga, Syllables). Finally, these condition-specific 

lists were subdivided into two 10-item lists, one list per experimental block.  

During encoding, participants were presented with these lists in separate 

blocks in an ABCCBA order allowing us to control for order effects within each 

participant. We also counterbalanced the order in which each category was presented 
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across participants. Each block was preceded by a screen indicating the specific 

condition and each block started after the participants button press. Stimuli were 

separated by an inter-stimulus interval of 5000ms during which participants were 

shown a blank screen with a fixation cross. Following the evaluation phase, 

participants were presented with a surprise retrieval test in which they were 

sequentially shown words and asked whether or not that particular item had been 

presented in the previous phase. This retrieval phase contained all the words from the 

previous stage of the experiment, plus an equal number of new words contained in 

the retrieval list. Items were presented in a random order and participants had to 

either press ‘O’ for old if they thought the word had appeared before or ‘N’ for new if 

they thought it was a new word. The old/new responses judged as “old” were followed 

by a source localisation judgement in which participants had to indicate using arrow 

heads whether they thought the old word had been presented during the self, the 

Lady Gaga or the syllable-count condition. Confidence ratings ranging from 1 (not 

confident at all) to 6 (very confident) for each old/new and source localisation 

judgements were also obtained. This paradigm allowed for 12 types of response types. 

Hits are considered old words that were correctly identified as old and correctly 

localised during the source localisation phase. This results in either “Self hits”, “Lady 

Gaga hits” or “syllable hits”.  Old words judged as new would be considered misses, 

again resulting in either a “self miss”, a “Lady Gaga miss” or a “syllables miss”. New 

words judged as new were considered “correct rejections”, and new words judged as 

old were considered “false alarms”. Based on the incorrect source localisation of these 

new words, these can further be subdivided into “Self false alarms”, “Lady Gaga false 

alarms” or “syllable false alarms”. The false alarms scores specific to each referent 

allowed us to control for guessing at a referent specific level by subtracting them from 

the hits. Lastly, if an old word from, for example, the syllable condition was judged as 

old but then incorrectly source localised as Lady Gaga it was considered a “wrong 

source localisation from syllables to Lady Gaga condition”.  

Due to the effect familiarity can have on memory (Bower & Gilligan, 1979; Kuiper& 

Rogers, 1979; Kuiper, 1982), at the end of the experiment participants were asked to 

rate, on a scale of 1 to 6, their familiarity to Lady Gaga. Bivariate correlations (r=.197, 
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p =.167 revealed an insignificant effect of familiarity ratings on Lady Gaga memory, 

hence the original Lady Gaga memory scores were used in all analyses.   

3.3.2.2. Go/No-Go Paradigm(GNG) 

The GNG paradigm used in the current study originally had four different 

conditions. Two of them were semantic and the other two perceptual. The stimuli in 

the semantic conditions were either words or pictures, depending on condition, 

whereas the stimuli in the perceptual conditions were obtained by scrambling the 

stimuli from the semantic condition. The two perceptual conditions varied in difficulty. 

All stimuli were framed by a box that was slanted to different degrees (slight slant, 

medium slant or pronounced slant). Each trial consisted of a fixation cross, followed 

by the stimulus and the duration of the fixations and stimuli were jittered between 

0.5-1s and 0.75-1.25s for fixation and stimulus respectively.  

This task was originally developed to probe semantic inhibition (Alam, Murphy, 

Smallwood & Jefferies, 2018), however, in the current study we were only interested 

in performance during the hard-perceptual condition so will only describe this 

condition in detail. The stop-signal cue in the perceptual conditions was the degree of 

the slant in the framing box in such a way that participants had to withhold their 

response when the degree of the slant increased. In the hard-perceptual condition the 

slant between the Go and No-Go trials only varied slightly, from a slight slant to a 

medium slant, in contrast to the easy-perceptual condition in which the slant varied 

from slight slant to pronounced. The hard-perceptual GNG task is displayed in the right 

panel of Figure 1 and further details of this task, including stimuli generation, can be 

found in Alam et al. (2018).  
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3.3.3 Neuroimaging Procedure 

3.3.3.1. Localiser Scans 

3.3.3.1.1. Self/Other Reference Localiser 

In order to obtain brain regions involved in self-reference 33 subjects 

performed a localiser scan inside the scanner. Similar to the encoding phase of the 

self-other reference paradigm described above, participants were presented with 

adjectives on the screen and depending on the experimental condition had to decide 

whether the adjective defined themselves (self-reference condition) or whether the 

adjective defined Barack Obama (control condition). A total of 30 neutral adjectives of 

similar word length were selected from a set of norms (Anderson, 1968) and two 15-

item lists were created, counterbalancing across participants the condition for each 

list. For each trial the experimental condition was indicated by either the word 

“MYSELF” or “OTHER” and just above it the target word was presented in lowercase.   

3.3.3.1.2. Go/No-Go Localiser Scan 

The same Go/No-Go task used to obtain behavioural performance was used in 

the scanner to obtain regions more active during the No-Go trials than during the Go 

trials.  

3.3.3.1.3. MRI Acquisition  

For both localiser scans structural and functional data were acquired using a 

3T GE HDx Excite MRI scanner with an 8-channel phased array head coil (GE) tuned to 

127.4 MHz, at the York Neuroimaging Centre. Structural MRI acquisition was based on 

a T1-weighted 3D fast spoiled gradient echo sequence (TR = 7.8 s, TE = min full, flip 

angle= 20°, matrix size = 256 x 256, 176 slices, voxel size = 1.13 x 1.13 x 1 mm). 

Functional data was recorded using single shot 2D gradient-echo-planar imaging (TR = 

3 s, TE = minimum full, flip angle = 90°, matrix size = 64 x 64, 60 slices, voxel size = 3 x 

3 x 3 mm3 , 180 volumes). A FLAIR scan with the same orientation as the functional 

scans was collected to improve co-registration between scans. 

3.3.3.1.4. fMRI Analysis  
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For both localiser scans functional and structural data were pre-processed and 

analysed using FMRIB’s Software Library (FSL version 4.1, 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/) (Smith et al., 2004). Individual FLAIR and T1 

weighted structural brain images were extracted using BET (Brain Extraction Tool, 

Smith, 2002). Structural images were registered to the MNI-152 template using 

FMRIB's Linear Image Registration Tool (Jenkinson & Smith, 2001; Jenkinson, 

Bannister, Brady & Smith, 2002). The functional data were pre-processed and analysed 

using the FMRI Expert Analysis Tool (FEAT). Individual subject analysis involved: 

motion correction using MCFLIRT (Jenkinson et al., 2002); slice-timing correction using 

Fourier space time-series phase-shifting; spatial smoothing using a Gaussian kernel of 

FWHM 6mm; grand-mean intensity normalisation of the entire 4D dataset by a single 

multiplicative factor; highpass temporal filtering (Gaussian weighted least-squares 

straight line fitting, with sigma = 100 s); Gaussian lowpass temporal filtering, with 

sigma = 2.8s. 

For the self/other localiser scan first level analyses modelled the two 

experimental conditions (i.e self and other). Explanatory variables (EV) modelled time 

periods of each condition. For the Go/No-Go localiser scan first level analyses 

modelled 10 EVs, only two of them being of interest to the current study:  the Go and 

No-Go time periods of the hard-perceptual condition.  Z stat maps were generated for 

each EV; Self-reference and Other-reference as well as hard-perceptual No-Go and 

hard-perceptual Go trials. These maps were then registered to a high resolution T1-

anatomical image and then onto the standard MNI brain (ICBM152). For both localiser 

scans, first level effects were entered into a group analysis using a mixed-effects 

design (FLAME, http://www.fmrib.ox.ac.uk/fsl) with automatic outlier detection 

(Beckmann, Jenkinson & Smith, 2003). The group analysis for the self-reference 

localiser included a self > other contrast and the group analysis for the inhibitory 

control included a No-Go > Go. Whole brain analyses were cluster corrected using a z 

statistic threshold of 3.1 (Eklund, Nichols & Knutsson, 2016) to define contiguous 

clusters.  We controlled the rate of multiple comparisons using Gaussian Random Field 

Theory at a threshold of p < .05 (49).  

 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/
http://www.fmrib.ox.ac.uk/fsl
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3.3.3.2. Resting-state  

3.3.3.2.1. Scan Acquisition 

Functional MRI data was acquired on a 3 Tesla GE scanner. Participants 

observed a fixation cross for a scan that lasted 9 minutes. The scan had a repetition 

time of 2 seconds, resulting in 210 volumes. We used interleaved slice-timing and 

isotropic voxel dimensions of 3 mm3 (matrix size of 64 X 64, 192mm field of view, and 

32 slices) with a 0.5mm gap between slices. 

3.3.3.2.2. Pre-processing 

All fMRI pre-processing and analysis was performed using FSL. We extracted the brain 

from the skull using the BET toolbox for both the flair and the structural T1 weighted 

images and these scans were registered to standard MNI152 (2mm) space using FLIRT 

(Jenkinson & Smith, 2001). Prior to conducting the functional connectivity analysis, 

the following pre-statistics processing was applied to the resting-state data; motion 

correction using MCFLIRT (Jenkinson et al., 2002); slice-timing correction using 

Fourier-space time-series phase-shifting; non-brain removal using BET (Smith, 2002); 

spatial smoothing using a Gaussian kernel of FWHM 6mm; grand-mean intensity 

normalisation of the entire 4D dataset by a single multiplicative factor; highpass 

temporal filtering (Gaussian-weighted least-squares straight line fitting, with sigma = 

100 s; Gaussian lowpass temporal filtering, with sigma = 2.8s.). 

3.3.3.2.3. First Level Analysis 

Following these steps, the time series of 2 masks of interest were extracted. 

One of this masks represented the region of interest related to self-referential 

processing and was obtained by constraining the DMN as defined by Yeo and 

colleagues (2011) to the regions related to self-referential processing obtained in 

self>other contrast applied to the self/other localiser scan. The resulting mask can be 

visualised in bottom row of the top panel in Figure 3.3. The second mask contained 

regions involved in inhibitory control and was obtained by constraining the FPCN as 

defined by Yeo and colleagues (2011) to the regions related to inhibitory control 

file:///U:/Documents/Offline/Copy_Insulated_from_the_moment_15_02_2015.docx%23_ENREF_11
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obtained in the No-Go > Go contrast applied to the Go/No-Go localiser. This mask can 

be visualised in the bottom row of the bottom panel in Figure 3.3.   

The time series for each voxel within each mask were averaged and used as an 

explanatory variable in a subject-level functional connectivity analysis, which also 

included the following nuisance regressors: the first five principal time-series 

components extracted from white matter (WM) and cerebrospinal fluid (CSF) masks 

in accordance with the CompCor method (Behzadi, Restom, Liau & Liu, 2007) and six 

motion parameters. The Yeo et al (2011) parcellations in non-linear MNI152 volume 

space were downloaded from 

https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011 and 

resampled from 1mm3 to 2mm3.  WM and CSF masks were generated by segmenting 

each individual’s high-resolution structural image (using FAST in FSL). The default 

tissue probability maps, referred to as Prior Probability Maps (PPM), were registered 

to each individual’s high-resolution structural image (T1 space) and the overlap 

between these PPM and the corresponding CSF and WM maps was identified. Finally, 

these maps were thresholded (40% for the SCF and 66% for the WM), binarised and 

combined. The six motion parameters were calculated in the motion-correction step 

during pre-processing. Linear displacements in each of the three Cartesian directions 

(x, y, z) and rotations around three axes (pitch, yaw, roll) were included for each 

individual. No global signal regression was performed (Murphy, Birn, Handwerker, 

Jones & Bandettini, 2009). 

 

3.3.3.2.4. Second Level Analysis. 

To understand whether the magnitude of the self-reference effect and 

inhibitory control scores varied with the functional connectivity of the areas involved 

in inhibitory control and self-referential processing, respectively, we used FSL to 

conduct two group-level regression of the connectivity matrices of each mask.  

The first analysis examined whether the functional connectivity of regions 

involved in inhibitory control could predict the magnitude of the self-reference effect. 

We included the z-scores for the memory scores obtained for the self-referential and 

https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011%20%20and%20resampled%20from%201mm3
https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011%20%20and%20resampled%20from%201mm3
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the other-referential conditions as regressors of interest and were interested in the 

contrasts 1) Self Down and  2) Self Down, Lady Gaga up.   The second analysis looked 

at whether the functional connectivity of the mask related to self-reference could 

predict the inhibitory control scores. In this analysis,  we included the efficiency z-

scores obtained from the GNG as regressor of interest. This technique allows us to 

examine regions within or outside the masks whose connectivity varies with particular 

traits (the magnitude of the self-reference effect and the inhibitory control scores 

respectively). 

In order to control for spurious correlations related to subject motion we 

included framewise displacement as a regressor of no interest in both analyses 

(Power, Barnes, Snyder, Schlaggar & Petersen, 2012) and automatic outlier detection 

was selected in seed-based analyses. See Sormaz et al., (2017) for a prior 

demonstration of this approach. In these analyses the data were processed using FEAT 

version 5.98 part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl) and the 

analyses were carried out using FMRIB's Local Analysis of Mixed Effects (FLAME). A 

grey matter mask with a probability threshold of 40% was used as a pre-thresholding 

mask and the cluster-forming threshold was set as z-score of 2.3. For these analyses 

we controlled for Type I errors by controlling for the number of voxels in the brain 

(Worsley, 2001), as well as the two tailed nature of our comparisons yielding an alpha 

value of p<.025 FWE.   

3.3.3.3 Conjunction Analysis 

Once the group level regression analyses were finalised the cluster obtained 

for the Self Up, Lady Gaga up contrast and the cluster involved in better inhibitory 

control were both independently seeded in a new data set (N=59) with the same MRI 

Acquisition, pre-processing and analysis parameters as the other data set. With the 

aim of finding regions simultaneously related to better inhibitory control and reduced 

self-reference effect a formal conjunction analysis using FSL’s “easythresh-conj” tool 

was performed (Nichols, Brett, Andersson, Wager & Poline, 2015).  

 

http://www.fmrib.ox.ac.uk/fsl
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3.3.3.4. Neurosynth Meta-analyses 

In order to study how clusters obtained in this study were related to previous 

neuroimaging studies, meta-analyses were performed using the online Neurosynth 

database (Yarkoni, Poldrack, Nichols, Van Essen & Wagner, 2011). In particular, we 

performed a meta-analytic decoding of 1) the unthresholded functional connectivity 

group map of the cluster obtained in the FPCN seed-based analysis predictive of 

memory of reduced self-reference effect, 2) the unthresholded functional 

connectivity group map of the cluster obtained in the DMN seed-based analysis 

predictive of inhibitory control efficiency, 3) the unthresholded functional 

connectivity group map of the mask obtained in the conjunction analysis. This was 

done by uploading the corresponding unthresholded maps onto Neuorsynth and 

performing a cognitive decoding of each map. This function allows the identification 

of cognitive terms in the database that are most strongly associated with the uploaded 

map. The results of these terms are displayed in the form of word clouds in the 

relevant figures. 
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Figure 3.1 : Flow chart describing all the steps performed in the current study. Two localiser 
scans were performed to select regions of interest for inhibitory control and self-referential 
processing. Behavioural scores for both paradigms were collected outside of the scanner and 
used as regressors in the seed-based analyses using a cross-sectional design. The clusters 
obtained in the seed-based regressions were seeded in an independent data set and the 

functional connectivity group maps used in a conjunction analysis. Meta-analytic decoding 

was performed on the functional connectivity group maps and the conjunction map in order 
to obtain cognitive terms in Neurosynth database related to each map. 
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3.4 Results 

The current study aimed to study the relationship between inhibitory control 

efficiency and the degree of self-bias as well as to explore patterns of functional 

connectivity underpinning such relationship. In order to calculate an individual’s self-

bias their memory for items processed in a control condition, namely in relation to 

Lady Gaga, were subtracted from the memory scores obtained for items processed in 

reference to the self, obtaining a measure of the magnitude of their self-reference 

effect. Efficiency  scores from a Go/No-Go paradigm were used as a measure of 

inhibitory control and the relationship between the behavioural scores obtained in 

each paradigm was analysed using a hierarchical regression analysis.  

To explore patterns of functional connectivity involved in the relationship 

between mnemonic advantage for self-related items and inhibitory control these 

behavioural measures were used to drive seed-based regression analyses using a 

behavioural-resting-state functional connectivity cross-sectional design. In particular, 

the memory scores related to the mnemonic advantage of self-related items were 

used to predict functional connectivity of regions involved in inhibitory control, 

whereas performance scores at the GNG task were used to predict patterns of 

functional connectivity of regions involved in self-referential processing. The regions 

of interest were selected through running localiser tasks for self-reference and 

inhibitory control and using the maps obtained for self > other and No-Go > Go to 

constrain the DMN and FPCN as defined by Yeo and colleagues (2011), respectively.  

Lastly, the clusters with functional connectivity predictive of behaviour 

obtained in our seed-based analyses were seeded in an independent data set to obtain 

their functional connectivity group maps and a conjunction analysis of these 

functional connectivity group maps was performed to extract regions that potentially 

coordinate the patterns of functional connectivity predictive of behaviour.  

The maps obtained for the localiser scans, the seed-based regressions and the 

functional connectivity of the cluster obtained, as well as the conjunction analysis of 

said functional connectivity group maps can be found in the following link: 

https://neurovault.org/collections/3904/. 
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3.4.1 Behavioural Results 

3.4.1.1. Self –Reference Effect 

Memory scores for each referent were calculated by counting how many 

words from each condition were source localised correctly. In order to control for 

guessing the number of new words erroneously assigned to each referent (false 

alarms) was subtracted from the number of correctly source localised words. In 

particular, the proportion of new words erroneously assigned to, for example, the 

syllable condition was subtracted from the proportion of old syllable-count words that 

were correctly source localised. This was done for the 3 conditions.  The memory for 

each referent is presented in the bar graph in Figure 3.2. 

A repeated measures analysis of variance (ANOVA) was conducted using the 

data from the 139 participants who completed the self-reference task.  The three 

memory measures were included as a within-subject factor (F(2,276) =394.4, p < 

.0001, ηp2 = .741) revealing a significant effect of condition on memory scores. Paired 

sample t-test revealed the expected mnemonic advantage of self-related material 

over both the Lady Gaga condition (t(138) =12.6, p <.0001, d = 1.07)  and the syllable 

count condition (t(138) = 28, p <.0001, d = 2.38 ). The memory scores between the 2 

control conditions were also significantly different t(138) = 15.1, p <.0001, d = 1.28) 

with Lady Gaga scores being significantly higher than syllable count scores. Figure 3.2 

shows these differences in memory performance across the 3 conditions.  

We repeated this analysis using only the subjects that completed the GNG task 

(N=51) to assure these results were consistent in our subsample. A significant effect 

of condition was again found (F(2,100)=106.9, p < .0001, ηp2 =.681) with memory for 

Lady Gaga being significantly higher than memory for syllables (t(50) = 7.9, p <.0001, 

d = 1.12) and memory for self-related items being significant higher than memory for 

Lady Gaga items (t(50) =6.9, p < .0001, d = .97). Hence our results replicate the well-

established mnemonic advantage that material processed in relation to the self holds.  

In both samples memory for syllables was not above chance performance (Full sample: 
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N=139, Mean = .32, SD = .17; Subsample N= 51, Mean = .33, SD = .2) and was therefore 

excluded  from the subsequent behavioural and resting-state analyses. 

 

3.4.1.2. Go/No-Go Paradigm 

Inhibitory control efficiency scores were calculated by dividing the response time at 

Go trials (when a response was required) by the accuracy on the No-Go trials (when a 

response was successfully repressed), RT = 0.5s, SD = .07; Accuracy = 70.22%, SD = 

17.87. Note that lower efficiency scores therefore represent better performance at 

the GNG task (Mean efficiency scores = .81, SD =.37). Five outliers were detected, all 

performing below 3 standard deviations from the mean. The scores of these 

participants were imputed to 2 standard deviations of the mean and these efficiency 

scores were used for further analyses (Mean efficiency scores after imputing for 

outliers = .78, SD = .3).  

Figure 3.2: Behavioural 
results. Top Left: Bar graph 
displaying memory scores for 
each condition after 
controlling for guessing by 
subtracting number of false 
alarms in each condition. Top 
Right: Scatterplot displaying 
the correlation between the 
SRE and inhibitory control 
(high values reflect worse 
efficiency).  Bottom: 
Interaction plot displaying the 
relationship between 
inhibitory control and 
memory for Lady Gaga items 
moderated by memory for 
self-related items. At high 
levels of performance at the 
Lady Gaga condition the effect 
of self-bias on inhibition 
becomes apparent. 
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3.4.1.3. Relationship between the Self-Reference Effect and 

Inhibitory Control 

For each control condition, the magnitude of the self-reference effect was 

calculated by subtracting the memory scores in either control condition from the 

memory scores in the self-referential condition. Next, bivariate correlations between 

these measures and the efficiency scores at the Go/No-Go task were carried out. A 

positive correlation was found when computing the self-reference effect by 

subtracting Lady Gaga memory scores from self-referential memory scores (r = .316, 

p = .024). Note that lower efficiency scores at the GNG represent better performance 

hence the positive correlation is reflecting that individuals with a stronger self-

reference effect have worse inhibitory control. The relationship between the self-

reference effect and inhibition is displayed visually in the scatterplot in Figure 3.2. 

A linear regression was performed in order to identify whether the aspect of 

the self-reference effect linked to inhibitory control was a result of better memory for 

the self or worse memory for Lady Gaga, both of which would result in a reduced self-

reference effect. Efficiency scores at the GNG were included as the dependent variable 

with the memory scores for Lady Gaga and self used as predictors. In addition, an 

interaction term between the two predictors was added in a hierarchical regression 

analysis. To avoid potentially problematic high multicollinearity with the interaction 

term, the variables were centred and an interaction term between self and Lady Gaga 

memory scores was created (Aiken & West, 1991). This interaction term accounted 

for a significant proportion of the variance in the inhibition efficiency scores (ΔR2 = 

.067, ΔF(1,47) = 4.22, p = 0.45, b = 2.27, t(47) = 2.03, p =.045). There was also a main 

effect of Lady Gaga memory on inhibition scores (B= -.78, t(47) = -3.2, p =.002). 

Regarding the self-referential condition, there was a trend towards a significant effect 

(B= .48, t(47) =1.8 , p=.076). 

To understand the interaction effect, the data was plotted and can be 

visualised in the line graph in Figure 3.2. This plot helps us distinguish individuals who 

have a low self-memory due to low overall memory, as measured through the low 

Lady Gaga memory score, from those whose low self-memory is not due to bad 
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encoding mechanisms (as inferred from their high Lady Gaga scores). From the line 

graph it can be seen that high performance at self-related memory has a detrimental 

effect on inhibition, and how this effect becomes apparent within subjects with high 

memory for the memory control condition (i.e, Lady Gaga items). In these subjects we 

can confirm that low scores for self are not due to a bad encoding/retrieval ability, as 

they present good memory in the Lady Gaga condition. Instead, the individuals with 

the best inhibitory control (lower scores) are not those with the best memory scores 

for both conditions, but those who, on top of having a good memory for the non-self 

control condition, have a reduced mnemonic advantage for self-related items. This 

strongly supports the idea that a mnemonic advantage for self-material is capturing 

an aspect of self-focussed attention that acts as a distractor, with low scores for self-

related material accompanied by high memory for the control condition potentially 

reflecting a reduced tendency to focus attention towards the self.  

 

3.4.2. Neuroimaging Results 

3.4.2.1 Selection of Seed Regions 

The aim of the study was to explore the neural mechanisms that describe the 

relationship between inhibitory control and one’s tendency for self-reference (as 

measured through the magnitude of the self-reference effect).  In particular, we 

wanted to know whether patterns of functional connectivity of areas activated in 

periods of self-reference relate to individual variations in inhibitory control, as well as 

whether patterns of functional connectivity of areas engaged during inhibitory control 

could predict the magnitude of one’s memory advantage for self-related items.  

Prior meta-analytic studies have shown that self-reference engages regions 

within the DMN (Northoff et al., 2006) whereas inhibitory control activates areas in 

the FPCN (Nee et al., 2007), making these networks seed region candidates for the 

functional connectivity behavioural regressions. To constrain the size of these regions 

of interest we ran two localiser tasks in subsets of our larger sample to identify aspects 

of these networks that are most relevant to the specific cognitive processes. A Go/No- 
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Figure 3.3: Generation of regions of interest for the seed-based analyses. A: Generation of 
seed region involved in inhibitory control. Top row displays the clusters obtained for No-Go > 
Go in the localiser scan. Middle row displays the Frontoparietal Control Network (FPCN) as 
defined by Yeo et al (2011). Bottom row displays the overlap between the FPCN and the areas 

obtained for No-Go > Go contrast. The relationship between the functional connectivity of 
this mask and the magnitude of the self-reference effect was explored in the first analysis.  B: 
Generation of seed region involved in self-referential processing. Top row displays the clusters 
obtained for self > other in the localiser scan. Middle row displays the Default Mode Network 
(DMN) as defined by Yeo et al (2011). Bottom row displays the overlap between the DMN and 

the areas obtained for self > other contrast. The relationship between the functional 
connectivity of this mask and efficiency scores at inhibitory control was explored in the 
second analysis   

Go task was performed to obtain regions engaged during inhibition (No-Go > Go, N = 

21 , see Methods). The comparison of No-Go > Go events revealed 6 clusters located 

in the right lateral prefrontal cortex, right and left superior parietal lobe, right 

occipitotemporal lobe, left occipital lobe and left frontal pole. More details about 

these clusters can be found in Table 1. In addition, a self/other reference task was also 
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scanned to obtain regions engaged during self-reference (N = 33, see Methods). 

Comparison of the process of self-reference with the control condition revealed 4 

clusters located in the mPFC, the left and right occipital lobes and the posterior 

cingulate cortex. Further details can be found in Table 2. The No-Go >  Go activation 

map, displayed in Figure 3.3A (top row) was then multiplied by the FPCN as defined 

by Yeo et al (2011) (Figure 3.3A, middle row)  in order to obtain the final inhibitory 

control related mask (Figure 3.3A, bottom row). Similarly the map obtained for self > 

other displayed in Figure 3B (top row) was multiplied by the DMN (Figure 3.3B, middle 

row), using the resulting map as the self-reference mask (Figure 3.3B, bottom row) in 

the subsequent seed-based behavioural regressions of inhibition scores. 

 

 3.4.2.2. Seed-Based Behavioural Regressions 

Having established regions of interest within DMN and FPCN that are sensitive 

to the process of self-reference and inhibition, respectively, we conducted two 

independent seed-based analyses  with the aim of identifying whether the patterns of 

functional connectivity from regions of importance for inhibition were predictive of 

the magnitude of the self-reference effect and vice versa. A group regression was 

performed on the functional connectivity maps of the inhibitory control region of 

interest (Figure 3.3A, bottom row) using the scores from the self-reference task as 

regressors (memory scores from the syllable count condition were not included). This 

analysis included the 139 participants who completed the self-reference task. Results 

revealed a pattern of functional connectivity from the inhibitory control region to a 

subcortical cluster to be predictive of memory for self-related items. This cluster is 

displayed in green in the glass brain at the top left of Figure 3.4. In particular, stronger 

functional connectivity between the FPCN and this cluster was related to reduced 

memory scores in the self-referential condition, as can be seen from the green 

scatterplot.  In addition, the contrast for Self Down, Lady Gaga up revealed a left-

lateralized subsection of this cluster encompassing the left thalamus and left striatum. 

This cluster is displayed in yellow in the bottom glass brain as well as in the axial and 

sagittal slices of Figure 3.4 and, as can be seen from the yellow scatterplot, as the 

magnitude of the self-reference effect gets smaller so does the decoupling between  
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Figure 3.4: Relationship between the functional connectivity (FC) of inhibitory control related 
regions and the magnitude of the self-reference effect (SRE). The top glass brain displays the 
subcortical cluster (green) found to be more coupled to the inhibitory control related seed 
region in subjects with a reduced self-memory, whereas the bottom glass brain displays the 
subsection of the subcortical cluster (yellow) found to be more coupled to the inhibitory 
control related seed region in subjects with a reduced SRE. The scatterplots show these 
relationships:x axis displays the connectivity between the seed region and these cluster and 
the y axis displays the memory scores. Groups were generated by median splitting the 
memory scores and the mean FC of each group is displayed in the bar graphs. The subcortical 
cluster obtained for the SRE was further used as a seed region to explore its functionality. 
The inflated brains at the bottom display the FC group map of this cluster, with warm colours 
indicating areas that are functionally coupled above average to the subcortical cluster and 
blue indicating areas that are coupled below average. The word cloud on the bottom right 
displays the results from a meta-analytic cognitive decoding of the FC group map using 
Neurosynth.  
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Table 3.1 
Clusters obtained for the No-Go > Go contrast using the inhibitory control localiser 

Cluster location Regions Peak Size p-value 

Right Lateral PFC Frontal pole 54, 14, 36 2589 1.75E-14 
 Middle frontal gyrus    
 Frontal orbital cortex     
 Insular cortex    
 Inferior frontal gyrus    
         pars opercularis    
 Precentral gyrus    
 Superior frontal gyrus 

 
   

Right Superior Parietal Lobe Supramarginal gyurs 46, -42, 48 2233 4.39E-13 
         anterior division    
         posterior division    
 Angular gyrus    
 Lateral occipital cortex    
         superior division    
 Superior parietal lobule 

 
   

Left Superior Parietal Lobe Supramarginal gyrus -38, -44, 42 1658 1.36E-10 
         anterior division    
         posterior division    
 Lateral occipital cortex    
         superior division    
 Postcentral gyrus    
 Superior parietal lobule 

 
   

Right occipitotemporal lobe Inferior temporal gyrus 54, -34, -20 1417 1.82E-09 
         posterior division    
         temporooccipital part    
 Lateral occipital cortex    
         inferior division    
 Middle temporal gyrus    
         temporooccipital part 

 
   

Left Occipital Lobe Temporal Occipital Fusiform 
Cortex 

-46, -72, -6 796 3.3E-06 

 Lateral occipital cortex    
         inferior division    
 Inferior temporal gyrus    
         temporooccipital part 

 
   

Left Frontal Pole Frontal pole -42, -40, 20 245 0.02 
     

Note: Coordinates are based on the Montreal Neurological Institute coordinate system. Regions are based 
on the Harvard-Oxford Cortical Structural Atlas 
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Figure 3.5: Relationship between the functional connectivity (FC) self-referential related 
regions and efficiency scores of the Go/No Paradigm. The sagittal and axial slices display the 
cluster (cyan) in the right insula/orbitofrontal cortex found to be more coupled to the self-
referential related seed region in subjects with better efficiency scores at the Go/No-Go 
Paradigm (lower scores). The scatterplot shows this relationship with the x axis displaying the 
connectivity between the seed region and this cluster and the y axis displaying the efficiency 
scores of the Go/No-Go Paradigm.  This cluster was further used as a seed region to explore 
its functionality. The inflated brains at the bottom left display the FC group map of this cluster, 
with warm colours indicating areas that are functionally coupled above average to the 
subcortical cluster and blue indicating areas that are coupled below average. The word cloud 
on the bottom right displays the results from a meta-analytic cognitive decoding of the FC 
group map using Neurosynth.  
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these regions. To visualise this effect, the sample was median split on the basis of their 

memory for self-items and Lady Gaga items, presented in Figure 3.4 in the form of a 

bar plot. For the yellow bar graph participants were then grouped in either of 4 groups 

based on their memory for self and Lady Gaga. The bar graphs display the mean 

functional connectivity in each group. It can be seen that the individuals with below 

median memory scores for the self-condition have the highest FPCN-striatal coupling. 

Note from the yellow bar graph that the magnitude of the coupling between FPCN and 

striatum is not informative of the memory in the control condition as not all individuals 

with a higher memory score for Lady Gaga have less or more functional connectivity 

than all individuals with reduced Lady Gaga memory, suggesting this pattern of 

functional connectivity is specifically related to the magnitude of the self-reference 

effect and not to overall encoding/retrieval mechanisms. Further details about these 

clusters can be found in Table 3. In order to assign a functional role to these subcortical 

clusters, we seeded the cluster obtained from Self Down, Lady Gaga up in an 

independent data set (see Methods) and performed a meta-analytic decoding of the 

connectivity map using Neurosynth (Yarkoni et al 2011). The functional connectivity 

group map of this subcortical cluster is displayed in the inflated brains at the bottom 

of Figure 3.4, along with a wordcloud containing the most associated cognitive terms. 

This analysis revealed terms such as “reward” and “anticipation”. 

Having documented a relationship between regions important for controlled 

processing and variation in self memory, our next analysis considers the same 

question from the opposite perspective. Using a subset (N=51) of the larger sample 

that had measures of inhibitory control, we examined how this variable was linked to 

functional variation in regions linked to the process of self-reference. In this case the 

midline cortical areas engaged during self-reference displayed a pattern of increased 

temporal correlation to the right insula and right orbitofrontal cortex predictive of 

inhibitory control efficiency. In particular, stronger functional connectivity between 

the self-reference seed region and this cluster was predictive of better efficiency 

scores during the inhibition task. This relationship can be seen in the scatterplot in 

Figure 3.5, where the x-axis represents the functional connectivity between the seed 

region and the right insula/orbitofrontal cortex and the y-axis represents the 
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efficiency during inhibition (smaller values represent better performance). The brain 

slices in Figure 3.5 display the location of the cluster. See Table 4 for further details. 

This cluster was subsequently used as a seed region to obtain its functional 

connectivity group map, displayed in the inflated brains located at the bottom left of 

Figure 3.5. Cognitive decoding of this functional connectivity group map using 

Neurosynth revealed behavioural terms linked to inhibitory control such as “response 

inhibition” and “stop signal” as well as terms linked to language (word cloud in Figure 

3.5).  

After having found patterns of functional connectivity related to both of our 

behavioural measures we conducted a formal conjunction analysis between the 

functional connectivity group maps obtained from seeding each cluster to examine 

potential underlying intrinsic architecture common to both effects. This conjunction 

analysis revealed that the functional connectivity group map of the 

insula/orbitofrontal cortex cluster and the functional connectivity group map of the 

subcortical cluster overlapped in regions that included cortical, striatal and thalamic 

regions. These regions are displayed in the inflated brains in Figure 3.6 while the word 

cloud describes the results of a meta analytic decoding of this network using 

Neurosynth. The pie charts in Figure 3.6 display the overlap between the cluster and 

each cortical and striatal network as defined by Yeo et al (2011), as well as the overlap 

of the cluster with the thalamic nuclei found in FSL’s Oxford Thalamic Connectivity 

Probability Atlas. The thalamic nucleus most involved in the conjunction map found 

was the nucleus that projects into the prefrontal cortex. This nucleus is the 

dorsomedial thalamic nucleus previously associated with the salience network (Seeley 

et al., 2007). The striatal network that overlapped most with the conjunction map was 

the executive network whereas the cortical network that overlapped most with the 

conjunction map was the salience network. These results clearly suggest that the 

relationship between the self-reference effect and inhibitory control is driven by 

interactions between the FPCN, the DMN and the salience network. 
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Figure 3.6: Conjunction analysis of the functional connectivity group maps obtained by 
seeding the subcortical and right insula clusters. The inflated brains display the conjunction 
map and the word cloud displays the results from a meta-analytic cognitive decoding of the 
conjunction map. The pie chart on the top right displays the proportion of the conjunction 
map that falls into cortical, striatal, thalamic or other (white matter) areas. The top left pie 
chart displays which thalamic nuclei (using FSL’s Oxford Thalamic Connectivity Probability 
Atlas) the conjunction map overlapped with. The bottom left pie chart displays the proportion 
of the cortical section of the conjunction map that overlaps with each of the cortical networks 
defined by Yeo et al (2011). Similarly, the bottom left pie chart displays the proportion of the 
striatal section of the conjunction map that overlaps with each of the striatal networks defined 
by Choi et al (2012).  
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Table 3.3 
Regions with functional connectivity to inhibitory control FPCN mask predictive of memory scores. 

Contrast Cluster location Regions Peak Size p-value 

Self Up Bilateral striatum Left Prefrontal  Thalamus -8, -24, 8 1852 2.8E-06 
  Right Prefrontal Thalamus    
  Left Putamen    
  Right Putamen    
  Left Caudate    
  Right Caudate    
  Left Accumbens 

 
   

Self Up, LG 
Down 

Left striatum Left Thalamus -8, -24, 8 797 0.0024 

  Left Putamen    
  Left Accumbens 

 
   

Note: Coordinates are based on the Montreal Neurological Institute coordinate system.  Regions 
are based on the Harvard-Oxford Subcortical Structural Atlas and on the Oxford Thalamic 
Connectivity Probability Atlas. LG = Lady Gaga 
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Table 3.4 
Regions with functional connectivity to self-referential DMN mask predictive of inhibitory control 

Contrast Cluster location Regions Peak Size p-value 

 Good inhibitory control Right OFC Frontal operculum cortex 40, 24, -4 430 0.02 
  Inferior frontal gyrus    

          pars triangularis    
          pars opercularis    
  Frontal orbital cortex    
  Insular cortex    

Note: Coordinates are based on the Montreal Neurological Institute coordinate system. Regions are 
based on the Harvard-Oxford Cortical Structural Atlas, OFC: Orbitofrontal Cortex 
 
 
 

 3.5 Discussion 

The current study found that as efficiency scores at inhibitory control got 

better the magnitude of the self-reference effect decreased. In particular, better 

inhibitory control scores were related to reduced memory for self-related material 

when this was accompanied by good memory scores on the non-self control condition, 

in comparison to inhibitory control when memory scores were high in both self and 

non-self conditions. This finding allows us to rule out the possibility that the reduced 

self-reference effect linked to inhibitory control was being driven by higher Lady Gaga 

scores, as this effect was still found within individuals with equally high memory for 

Lady Gaga. Following the assumption that a higher self-reference effect is indicative 

of an increased tendency for self-focussed attention, confirmed by the relationship 

found between the magnitude of the self-reference effect and inhibitory control 

efficiency, these results support our postulated theory that a salient self can act as a 

powerful distractor.  

Exploration of the neural resting-state correlates of this inhibitory control-self-

reference relationship revealed that the functional connectivity of the FPCN regions 

identified during No-Go trials predicted the magnitude of the self-reference effect. In 

particular individuals with a reduced self-reference effect, i,e those with the best 

inhibitory control, had stronger functional connectivity between inhibitory control 

regions and a subcortical cluster located in the ventral regions of the left caudate and 

putamen, as well as in the dorsomedial nucleus of the thalamus that projects to the 

prefrontal cortex (Groenewegen 1988; Ray & Price 1993). Meta-analytic decoding of 



114 
 

the functional connectivity of this subcortical cluster using Neurosynth related this 

cluster to terms such as “reward” and “anticipation”. Extensive research has found the 

ventral striatum to be involved not only in reward processing but also in assigning self-

specificity to stimuli (for a review see Northoff & Hayes, 2011), aiding our 

interpretation of why the functional connectivity of this subcortical cluster was 

predictive of the magnitude of the self-reference effect. In particular, stronger 

functional connectivity between the striatum and the FPCN was related to a reduced 

self-reference effect. Shedding light on why a stronger, and not a weaker, functional 

connectivity between reward and control systems lead to a reduced self-reference 

effect, Dong, Lin, Hu, Xie and Du (2015) have shown that the functional connectivity 

between the nucleus accumbens and the executive control network is inversely 

related to the functional connectivity between the accumbens and the reward system 

and that this relationship is disturbed in compulsive internet gamers. This lead the 

authors to conclude that these two systems (i.e., control and reward) act in a “pull and 

push fashion”, in such a way that the inhibition of motivational desires coded in the 

reward system is executed through strong control signals originated in the FPCN.  On 

the other hand, heightened motivational signals will instead lead to a failure of 

executive control over immediate rewards. Our current study found an enhanced 

functional connectivity between FPCN and the left accumbens linked to a reduced self-

reference effect. Hence, based on Dong’s research (2015) it is possible that this 

pattern of functional connectivity between FPCN and ventral striatum reflects an 

enhanced control over automated behaviour linked to mind-wandering about self-

relevant material. In support of this, neuropsychological research has found that 

patients with damage to regions in the FPCN show a hyper self-bias (Sui, Enock, Ralph 

& Humphreys, 2015), suggesting an inability of these patients to suppress salient self-

related material.  Hence, the enhanced functional connectivity between FPCN and 

reward systems, closely related to self-related processing (de Greck et al., 2008; Enzi, 

De Greck, Proesch, Tempelmann & Northoff, 2009; Ersner-Hershfield, Garton, Ballard, 

Samanez-Larkin & Knutson, 2009), might be reflecting one’s ability to suppress 

meaningful internal representations when the context requires it. In turn, it is 

plausible that this heightened suppression over self-related processing is manifested 

as the reduced self-reference effect linked to this pattern of functional connectivity.  
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In support of this suppressive role of the striatum, extensive research has 

shown that the striatum is a main component of the circuits involved in suppression 

and initiation of movement. For example, activity in striatum has been previously 

related to successful suppression of responses during stop-signal response paradigms 

(Aron & Poldrack 2006). Despite these structures have predominantly been studied in 

relation to initiation and suppression of movement, recent research has revealed 

these regions to also be recruited when thoughts need to be suppressed. In particular, 

a meta-analysis performed by Guo, Schmitz, Mur, Ferreira and Anderson (2018) found 

similar activations in the basal ganglia during a think/no think paradigm and a stop 

signal response task, suggesting a domain-general role of the basal ganglia for action 

and memory cancellation. Assuming the reduced self-reference effect linked to the 

FPCN-striatum pattern of functional connectivity emerges from a stronger tendency 

to suppress DMN-related material, our results suggest that this pattern of functional 

connectivity might be allowing the suppression of intrusive self-focussed attention, 

manifested as a reduced self-reference effect in the current study. 

Our other resting-state analysis using as seed region DMN regions identified 

during self-referential processing, revealed a pattern of functional connectivity 

predictive of GNG efficiency. In particular, stronger functional connectivity to a cluster 

in the right orbitofrontal cortex extending into the right insula predicted better 

inhibitory control. The functional connectivity of this cluster was related to terms like 

“response inhibition” and “stop signal”.  Extensive research has found the lateral 

orbitofrontal cortex, and in particular the pars opercularis to be related to inhibitory 

control. For example, Chambers and colleagues (2006) disrupted inhibitory control by 

applying transcranial magnetic stimulation to this area. In addition, performance at 

stop-signal paradigms is also disrupted by lesions to this region (Aron, Fletcher, 

Bullmore, Sahakian & Robbins, 2003).  In addition, a meta-analysis of OCD patients 

(Rotge et al., 2010), characterised by an inability to suppress self-referential thinking, 

uncovered a cluster located in the lateral orbitofrontal cortex that closely overlaps 

with the right orbitofrontal cluster found in the current study. Hence, it is possible that 

stronger functional connectivity between right orbitofrontal cortex and areas involved 
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in self-reference is linked to better inhibitory control through allowing suppression of 

self-referential cognition.  

In order to explore functional commonalties between the two clusters found 

in the current study (i.e., the subcortical cluster related to reward and the 

orbitofrontal cluster related to inhibitory control) a conjunction analysis of the group 

maps obtained for each cluster was performed. This conjunction analysis revealed a 

map that overlapped mostly with the salience network as defined by Yeo et al (2011). 

There was also a strong overlap with regions of the DMN, and on a lesser extent, with 

the limbic and FPCN networks. Using a subcortical parcellation of resting-state 

networks within the basal ganglia (Choi, Yeo & Buckner, 2012) we found that our 

conjunction map overlapped most strongly with regions of the basal ganglia 

functionally connected primarily to the FPCN but also to the DMN and the salience 

network. Taking into consideration the conjunction analysis our results point towards 

patterns of functional connectivity that connect the executive, salience and default 

mode networks through the striatum, in a manner that controls the balance between 

self-reference and inhibitory control.  

In addition to being related to self-specificity (Northoff & Hayes, 2011), the 

reward processing centres anchored in the striatum are part of the salience network 

(Seeley et al., 2007). These three concepts, (i.e., self-specificity, reward and salience) 

are closely associated:  stimuli that are relevant to the self (self-specificity) are those 

to which the self has assigned value to (reward) and hence will have a strong tendency 

to attract attentional resources (salience) anchored in the FPCN.  Several studies have 

suggested that the salience network, and in particular the insular cortex, plays an 

important role in coordinating the DMN and the FPCN networks. Sridharan, Levitin 

and Menon (2008) have shown that the right fronto-insular cortex, in close proximity 

with the cluster found in the current study and a main hub of the salience network, 

plays a casual role in activating the FPCN and deactivating the DMN during tasks that 

required external attention. Our analyses revealed that stronger functional 

connectivity between the right orbitofrontal cortex, strongly coupled to the salience 

network, and the DMN resulted in better inhibitory control, suggesting this DMN-

orbitofrontal cortex pattern of functional connectivity, through its coupling to the 
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salience network, might play a pivotal role in suppressing internally generated 

representations. In addition, Seeley and colleagues (2007) argue that, based on 

subjective salience, the salience network signals to the FPCN what information to 

operate on. It is therefore possible that instances of poor performance during 

sustained attentional tasks are due to internal representations processed in the DMN 

being signalled as more salient than external stimuli, attracting attentional resources 

away from the task. If this was the case, increasing the salience of task-stimuli through 

incentivising should improve task performance, as has repeatedly been observed in 

the literature (Jenkins, 1998; Leon & Shadlen, 1999).   

It is therefore possible that the psychological underpinning of failure at 

sustained attention, manifested as poor inhibitory control, relates to an excessive 

salience of self-related material that fixates attentional resources away from the task-

related material. If this self-related material acts as a powerful distractor, then 

individuals with a higher self-bias should have worse performance at inhibitory control 

tasks as we have observed in the current study. The current study cannot however 

rule out the opposite possibility, i.e., that the reduced inhibitory control linked to the 

self-reference effect does not originate from an excessive salient self but that instead 

the increased self-reference effect is the result of impaired inhibitory control. 

Whether a heightened self leads to worse inhibitory control or whether worse 

inhibitory control leads to a heightened self will have to be specifically addressed in 

future studies.  Both options are not mutually exclusive, however, based on the known 

distracting effect of emotions (Dolcos & McCarthy 2006; Mueller, 2011) and on the 

inherent salience of self-relevant material due to its high assigned value, it is tempting 

to speculate that the former option is more self-explanatory. In contrast, the latter 

option, i.e., bad inhibitory control leads to increased self-reference effect, would still 

leave unanswered why the inhibitory control is impaired in the first place. This effect 

was found in patients with damage to the FPCN however, considering the subjects 

used in the current study were healthy individuals, this option seems unlikely.  

Despite an inflexible tendency to direct attention towards the self is 

characteristic of many psychopathological conditions such as depression and anxiety 

(for a review see Ingram, 1990), which have extensively been related to impaired 
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executive function (Ansari & Derakshan, 2011; Kaiser et al., 2003), to our knowledge 

this is the first study that directly relates both of these measures, revealing a 

relationship within healthy subjects. The behavioural correlation found between the 

magnitude of the self-reference effect and inhibitory control, in combination with the 

cross-sectional design used in the resting-state analyses suggests that the magnitude 

of the SRE can be used as an objective measure of self-focussed attention and that 

self-related material can act as a powerful distractor.  In turn, the ability to suppress 

such material appears to be related to patterns of functional connectivity that couple 

the DMN, salience and FPCN networks through mechanisms that are anchored in the 

basal ganglia. 
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 Chapter 4: That’s me in the Spotlight: Neural 

Basis of Individual Differences in Self-

Consciousness 

This chapter has been adapted from: de Caso, I., Poerio, G., Jefferies, E., & Smallwood, J. 

(2017). That’s me in the spotlight: neural basis of individual differences in self-

consciousness. Social cognitive and affective neuroscience, 12(9), 1384-1393. 

 4.1 Abstract 

A long-standing literature implicates activity within the DMN to processes linked to 

the self. However, contemporary work suggests that other large-scale networks 

networks might also be involved. For instance, goal-directed autobiographical 

planning requires positive functional connectivity between DMN and FPCN networks. 

The present study examined the inter-relationship between trait self-focus (measured 

via a self-consciousness scale; SCS), incidental memory in a self-reference paradigm, 

and resting-state functional connectivity (FC) of large-scale networks. Behaviourally, 

we found that private SCS was linked to stronger incidental memory for self-relevant 

information. We also examined how patterns of FC differed according to levels of self-

consciousness by using the SCS data to drive multiple regression analyses with seeds 

from the DMN, the FPCN and the limbic network. High levels of SCS was not linked to 

differences in the FC of the DMN, however, it was linked to stronger coupling between 

FPCN and a cluster extending into the hippocampus, which meta analytic decoding 

using Neurosynth linked to episodic memory retrieval. Subsequent analysis 

demonstrated that trait variance in this pattern of FC was a moderator for the 

observed relationship between private SCS and enhanced memory for self-items. 

Together these findings suggest that interactions between the FPCN and hippocampus 

may support the memory advantage of self-relevant information associated with SCS 

and confirm theoretical positions that argue that that self-related processing does not 

simply depend upon the DMN, but instead relies on complex patterns of interactions 

between multiple large-scale networks. 
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4.2 Introduction 

Human cognition is characterised by the capacity for self-consciousness – the 

process through which we can become the subject of our own conscious experience. 

The degree to which individuals engage in self-consciousness appears early in 

development (Berthental & Fischer, 1978; Lewis & Brooks, 1978; Lipka & Brinthaupt, 

1992), and it can have both positive and negative outcomes in daily life. For example, 

the ability to reflect on our own thoughts and actions is crucial for the development 

of personal identity (Turner, 1978); however, when taken to extremes, the same 

process can result in excessive shyness or anxiety (Crozier, 2002). A well established 

measure of self-consciousness (Carver & Glass, 1976; Scheier & Carver, 1985; Scheier 

& Carver, 2013) divides the construct into three related, yet independent, dimensions: 

1) private self-consciousness, which describes the extent to which people introspect 

and examine hidden aspects of the self (e.g., their beliefs or values), 2) public self-

consciousness, which describes the extent to which people examine how public 

aspects of the self may be perceived by others (e.g., what impression others might 

form), and 3) social anxiety, which describes the extent to which people react to 

perceptions of their public self and evaluations from others. 

When people engage in self-conscious thought, schema containing self-

relevant information are activated (Nasby, 1985) and this information possesses 

special mnemonic qualities. For example, people have a robust tendency to remember 

information more effectively when it is processed with respect to the self, a bias 

resulting in better memory recall for self-related information (termed “The self-

reference effect”; Rogers et al, 1977). One possibility is that the self-reference effect 

is simply an indirect consequence of familiarity: self-relevant information is likely to 

be highly familiar and familiarity is known to facilitate encoding (Prentice, 1990). 

However, research has ruled out familiarity as the mechanism underlying the self-

reference effect because a self-referent bias has also been observed for neutral 

shapes (Humphreys & Sui, 2015) and everyday items (Cunningham et al., 2011). 

Instead, self-reference is thought to improve memory because of the rich network of 

associations associated with ourselves which in turn allows for the formation of 

stronger memory traces (Symons & Johnson, 1997). As well as its effect on memory, 
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self-relevant information has strong salient properties which impact on attention (Sui 

et al, 2015), with studies showing that one’s name (Harris & Pashler, 2004) or face 

(Bredart et al, 2006) can act like an efficient distractor. Moreover, other studies have 

shown that self-relevant information has similar properties to salient perceptual 

stimuli, automatically triggering the reallocation of attentional resources (Sui et al, 

2015). These experimental paradigms share similarities with more naturalistic mental 

processes such as mind-wandering, where salient self-relevant information becomes 

the focus of conscious attention when we are otherwise engaged in external tasks 

(Smallwood et al., 2011). Although mind-wandering can often be associated with task 

errors (McVay & Kane, 2009; Weissman et al., 2006), the reallocation of attention 

towards the self during a task may serve a broader function because it can facilitate 

the processing of personally meaningful goals that extend beyond the here-and-now 

(Medea et al., 2016; for a review see Poerio & Smallwood, 2016). 

Recent neuro-imaging work has examined the neural basis of the process of 

self-reflection, a process important for self-consciousness (Grant et al., 2002). Task-

based studies of self-reference often observe activity in the mPFC, as well as regions 

in the posterior cingulate cortex (Kelley et al., 2002, Macrae et al., 2004; Northoff et 

al., 2006), regions that collectively form what is known as the default mode network 

(DMN). This large-scale network tends to show a pattern of deactivation during 

demanding external tasks (Raichle et al, 2001) and shows coherent activity during the 

resting-state (Greicius et al., 2003).  In addition, the DMN has also been linked to states 

of self-generated thought, such as mind-wandering (for recent meta-analyses see Fox 

et al., 2015; Stawarczyk & D'Argembeau, 2015). Recent work, however, suggests that 

the DMN often works in tandem with the other networks when internal 

representation must be manipulated in a goal directed fashion. For example, regions 

of lateral frontal and parietal cortex (that together form the FPCN), become coupled 

with the DMN when autobiographical information is organised to form a plan (Spreng 

et al., 2010) and when identifying perceptual aspects of semantic processing (Krieger-

Redwood et al., 2016). Moreover, extensive research has related regions in the FPCN 

to sustained attention and working memory (Coull et al., 1996, Koechlin et al., 1999; 

Rottschy et al., 2012), processes that allow conscious manipulation of information. 

These findings, along with those from Spreng and colleagues (2010), suggest that 
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processing of self-related information present during self-consciousness may recruit 

the executive system anchored in the FPCN. It is a possibility that differences across 

individuals in their attentional preferences, i.e., how often one engages in self-

conscious thought versus other types of information, is reflected in the functional 

connectivity of the FPCN. 

Moreover, a study conducted by Eisenberger and colleagues (2005) found a 

relationship between activity in a cluster in the FPCN, namely in the dorsal anterior 

cingulate cortex, and self-consciousness during a vigilance task. Similarly, studies have 

shown that when participants hold social information in mind they use lateral regions 

of cortex linked to executive control processes (Meyer et al., 2012). In addition to the 

DMN and the FPCN, the limbic system may also play an important role in self-oriented 

cognition. Extensive research has shown that negative mood increases self-focussed 

attention (Sedikides, 1992) as well as mind-wandering (Poerio et al., 2013; Smallwood 

et al., 2009) and some studies have suggested that the effect of mood on information 

processing in turn predicts later behaviour (Gendolla, 2000). Moreover, neuroimaging 

research has shown a distinction within the mPFC between cognitive and affective 

components of self-oriented cognition (Moran et al., 2006) while the amygdala, a main 

hub of the limbic system, is important in a range of psychiatric conditions associated 

with disturbances in the self (Davidson 2002; Phan et al., 2006; Strakowski et al., 

1999). 

The current study aimed to determine the functional architecture that 

underpins different forms of self-consciousness (private, public and social anxiety) and 

to understand how this is related to the strength of a person’s memory for self-

relevant information. We recorded functional imaging data in a large cohort of 

participants during wakeful rest who later completed the three subscales of the Self-

Consciousness Scale (Scheier & Carver, 2013). Previous research has consistently 

found a positive relationship between private self-consciousness scores and the 

magnitude of the self-reference effect (Agatstein & Buchanan, 1984; Hull et al., 1988; 

Nasby, 1985; Turner, 1980) and so in this experiment we also measured incidental 

memory for self-relevant information in our participants. We hypothesised that 

differences in response on the self-consciousness scale should be reflected in the 

connectivity patterns of three large-scale networks (Default Mode, Frontoparietal 
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Control and Limbic). To select these large-scale networks we used a parcellation 

obtained by Yeo and colleagues who applied clustering techniques to resting-state 

data of 1000 individuals (Yeo et al., 2011).  

We were interested in (a) replicating prior findings linking high levels of private 

self-consciousness to better memory for the self, (b) identifying patterns of functional 

connectivity of the DMN, FPCN and Limbic networks associated with different aspects 

of self-consciousness and (c) determining whether any neurocognitive patterns linked 

to different types of self-consciousness explained the hypothesised self-memory 

advantage. 

 

4.3 Methods 

4.3.1 Participants 

A hundred and forty one healthy right-handed participants were recruited to the 

study; in exchange for participation they received a monetary reward or course 

credits. The sample had an average age of 22.50 (SD = 2.93) years. Approval for this 

project was granted by the York Neuroimaging Centre (YNiC) Ethics Committee and 

was conducted in accordance with the ethical standards of the responsible committee 

on human experimentation (institutional and national) and with the Helsinki 

Declaration of 1975, as revised in 2008. 

 

4.3.2 Procedure 

4.3.2.1 Self- Consciousness Scale 

Participants completed a 22-item version of the self-consciousness scale inventory 

(Scheier & Carver, 2013) from which three subscales can be derived: private self-

consciousness, public self-consciousness and social anxiety. Private self-consciousness 

is a measure of the tendency that an individual has to introspect and study one’s inner 

self and motives and was assessed with nine statements such as “I’m always trying to 

figure myself out”. Public self- consciousness refers to the tendency of an individual 

to think about what others think about him/her, and was assessed through seven 

statements such as “I care a lot about how I present myself to others” Finally social 
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anxiety was measured with six statements such as “It takes me time to get over my 

shyness in new situations”. Participants had to answer to each statement using a scale 

from 0 (not at all like me) to 3 (a lot like me). Items from each subscale were summed 

to create an overall score per scale.  

 

4.3.2.2. Self-Reference Paradigm 

This paradigm asked individuals to process words in either 1) relation to themselves, 

2) relation to an unfamiliar other (Lady Gaga) or 3) relation to the number of syllables. 

This judging phase was followed by a surprise retrieval phase in which participants 

were presented with a word and had to decide whether that word had been presented 

during the judging phase or whether it was a new word. A source localisation question 

followed all the words judged as old and memory scores were calculated for each 

condition. For more details of how the task was ran see Chapter 3.  

 

4.3.3 Resting-state 

4.3.3.1 Scan Acquisition 

Functional MRI data was acquired on a 3 Tesla GE scanner. Participants observed a 

fixation cross for a scan that lasted 9 minutes. The scan had a repetition time of 2 

seconds, resulting in 210 volumes. We used interleaved slice-timing and isotropic 

voxel dimensions of 3 mm3 (matrix size of 64 X 64, 192mm field of view, and 32 slices) 

with a 0.5mm gap between slices. 

 

4.3.3.2. Pre-processing 

All fMRI preprocessing and analysis was performed using FSL. We extracted the brain 

from the skull using the BET toolbox for both the flair and the structural T1 weighted 

images and these scans were registered to standard MNI152 (2mm) space using FLIRT 

(Jenkinson & Smith, 2001). Prior to conducting the functional connectivity analysis, 

the following prestatistics processing was applied to the resting-state data; motion 

correction using MCFLIRT (Jenkinson et al., 2002); slice-timing correction using 

Fourier-space time-series phaseshifting; non-brain removal using BET (Smith 2002); 
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spatial smoothing using a Gaussian kernel of FWHM 6mm; grand-mean intensity 

normalisation of the entire 4D dataset by a single multiplicative factor; highpass 

temporal filtering (Gaussian-weighted least-squares straight line fitting, with sigma = 

100 s; Gaussian lowpass temporal filtering, with sigma = 2.8s.). 

 

4.3.3.3. First Level Analysis 

Following these steps, the time series of 3 masks of interest were extracted. These 

masks corresponded to 1) the DMN, 2) the FPCN and 3) the limbic system as defined 

by the 7 network parcellation performed by Yeo and colleagues (Yeo et al., 2011) and 

can be visualised in Figure 4.2. The approach of selecting large-scale network masks 

was based on previous studies using dual-regression, in which networks obtained 

through ICA group analyses are used as regions of interest in subsequent seed based 

analyses (Zuo et al., 2010; Rytty et al., 2013; Smith et al., 2014). Instead of using ICA 

group masks as regions of interest the current study used a reliable parcellation based 

on 1000 subjects (Yeo et al., 2011). 

The parcellations in non-linear MNI152 volume space were downloaded from 

https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011 and 

resampled from 1mm3 to 2mm3. The time series for each voxel within each mask 

were averaged and used as an explanatory variable in a subject-level functional 

connectivity analysis, which also included the following nuisance regressors: the first 

five principal time-series components extracted from white matter (WM) and 

cerebrospinal fluid (CSF) masks in accordance with the CompCor method (Behzadi et 

al. 2007) and six motion parameters. WM and CSF masks were generated by 

segmenting each individual’s high-resolution structural image (using FAST in FSL). The 

default tissue probability maps, referred to as Prior Probability Maps (PPM), were 

registered to each individual’s high-resolution structural image (T1 space) and the 

overlap between these PPM and the corresponding CSF and WM maps was identified. 

Finally, these maps were thresholded (40% for the SCF and 66% for the WM), binarised 

and combined. The six motion parameters were calculated in the motion-correction 

step during pre-processing. Linear displacements in each of the three Cartesian 
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directions (x, y, z) and rotations around three axes (pitch, yaw, roll) were included for 

each individual. No global signal regression was performed (Murphy et al., 2009). 

 

4.3.3.4. Second Level Analysis. 

To understand whether our psychological measures of self-consciousness varied with 

either the between or within connectivity of the DMN, limbic and the FPCN, we used 

FSL to conduct a group-level regression of the connectivity matrices of each mask. In 

this analysis we included the residualised mean centred scores for the three self-

consciousness subscales as regressors of interest. In order to control for spurious 

correlations related to subject motion we included framewise displacement as a 

regressor of no interest, after controlling for four outliers by imputing their data to 2 

standard deviations (Power et al., 2012). See Sormaz et al., (2017) for a prior 

demonstration of this approach. This technique allows us to examine regions within 

or outside the network mask whose connectivity varies with particular traits (in this 

case different aspects of self-consciousness). In these analyses the data were 

processed using FEAT version 5.98 part of FSL (FMRIB's Software Library, 

www.fmrib.ox.ac.uk/fsl) and the analyses were carried out using FMRIB's Local 

Analysis of Mixed Effects (FLAME). A grey matter mask with a probability threshold of 

40% was used as a pre-thresholding mask and the cluster-forming threshold was set 

as z-score of 2.3. For these analyses we controlled for Type I errors by controlling for 

the number of voxels in the brain (Worsley 2001), as well as the number of masks and 

the two tailed nature of our comparisons yielding an alpha value of p<.008 FWE. 

 

4.3.4 Neurosynth Meta-Analyses 

In order to interpret neuro-cognitive patterns of functional connectivity predictive of 

self-consciousness, we performed a meta-analysis using the online Neurosynth 

database (Yarkoni et al., 2011). We performed a meta-analytic decoding of the 

unthresholded maps produced in this study by uploading them onto Neurosynth. This 

allows the identification of psychological terms that are most likely to be associated 

with the specific spatial pattern that our analysis highlighted providing a quantitative 

interpretation of our data (for a prior illustration of this technique see de Sormaz et 
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al., 2017). For the purposes of interpretation we selected the 15 terms most related 

to the current spatial maps and displayed them in the form of word clouds in which a 

larger font size indicated a greater probability of association. 

 

4.4 Results 

4.4.1 Behavioural 

4.4.1.1. Self-consciousness scale 

The three subscales (private, public and social anxiety) for the self-consciousness 

questionnaire were calculated for each individual. The public subscale was correlated 

with both the private (r = .40, p < .001) and the social anxiety scale (r = 0.35, p < .001). 

No significant correlations were found between the private and the social anxiety 

subscales (r = .11, p=.235). In order to control for these correlations, the standardised 

residual scores were used in further analyses. 

 

4.4.1.2. Self-Reference Paradigm  

The first aim of our study was to establish whether in our sample we found a reliable 

self-relevant memory advantage. A repeated measures one-way analysis of variance 

(ANOVA) using the proportion of hits for each referent as the within-participants 

factor indicated a significant effect of referent on incidental memory performance (F 

(2, 278) = 284, p < .001, ηp2  = .672) , as measured during the retrieval phase of the 

self-other reference paradigm. Post-hoc paired-samples t–tests were conducted to 

compare incidental memory across the three conditions (self, Lady Gaga, syllable 

count). Participants had significantly better memory in the self (M = 0.78, SD = 0.15) 

compared to the Lady Gaga (M = 0.62, SD = 0.19) condition; t(139) = 10.85, p < .001, d 

= .92; they also showed significantly better memory in the self condition compared to 

the syllable count(M = 0.4, SD = 0.18) condition; t(139)= 23.56, p < .001, d = 1.99. 

Participants also had significantly better memory in the Lady Gaga compared to the 

syllable condition; t(139) = 12.87, p < .001, d = 1.09 (Figure 4.1A). In addition, 

examination of the confidence intervals obtained from one-sample t-tests suggested 

memory for the syllable condition was at chance (95% CI [.37,.44], whereas memory 
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for Lady Gaga (95% CI [.60,.66]) and self (95% CI [.76,.81]) were both above chance 

performance. 

 

Figure 4.1: A) ANOVA results between memory scores for the 3 conditions. B) Scatterplot 
reflecting correlation between the standardised residual score for private self-consciousness 
and the magnitude of the self-reference effect (SRE). 

 

4.4.1.3. Private Self-Consciousness and Magnitude of the Self-

Reference Effect 

Next, we sought to identify whether in our sample individuals high in private self-

consciousness have a stronger memory when referring information to themselves 

rather than a familiar other (Agatstein & Buchanan, 1984; Hull et al., 1988; Nasby, 

1985; Turner, 1980). In order to explore this possibility, we conducted a repeated 

measures analysis of covariance (ANCOVA). The within-subject factors included the 

main effects for the incidental memory for self and Lady Gaga items (corrected for 

guessing). The different types of self-consciousness scores were included as between 

participant covariates. This analysis revealed a significant interaction between the 

incidental memory for the two referents and the private self-consciousness scale (F 

(1,116) = 5.041, p<.05). Post hoc analyses demonstrated a significant positive 

correlation between the magnitude of the self-reference effect and private self-

consciousness (r = .19, p < .035) (Figure 4.1B). Based on previous research revealing 

that familiarity has a significant influence on memory, familiarity ratings for Lady Gaga 



135 
 

were obtained at the end of the experiment. A partial correlation controlling for the 

Lady Gaga familiarity ratings still showed a positive and significant correlation 

between the private self-consciousness scores and the magnitude of the self-

reference effect both controlling for false alarms (r = .18, p = .030) and without 

controlling for false alarms (r = .19, p = .035). Together these analyses allowed us to 

establish in our sample that private self-consciousness is linked to a stronger memory 

for information referred to the self.  

 

 

4.4.2 Resting-state 

fMRI 

Next, we explored whether 

self-consciousness is reflected 

in the brain’s intrinsic 

connectivity by performing a 

seed based analyses on the 

DMN, FPCN and limbic 

networks defined by the 7 

network parcellation from 

Yeo and colleagues (Yeo et al., 

2011). We calculated the 

correlation between the time 

series for each of these 

networks and each voxel in the rest of the brain for each individual. The functional 

connectivity group maps obtained for each network can be visualised in Figure 4.3. 

Next, we used these spatial maps as the dependent variable in a series of multiple 

regressions using the standardised residuals of each component of the self-

consciousness scale as explanatory variables. Correction for multiple comparisons 

included a whole brain correction, correction for two-tailed tests and correction for 

the number of seeded locations (3), yielding an alpha value of p = .008 FWE. 
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Figure 4.3: Functional connectivity (FC) group maps. A) Default Mode network (DMN) B) 
Frontoparietal Control Network (FPCN). C) Limbic Network. Red and blue colours represent 
positive and negative functional connectivity, respectively.  

 

We found two patterns of functional connectivity that varied with different types of 

self-consciousness. The FPCN revealed a pattern of stronger functional connectivity 

between this network and a cluster with a peak in the temporal occipital fusiform 

cortex that extended into the hippocampus with greater levels of private self-

consciousness (Figure 4.4, top row). The unthresholded map for this contrast can be 

found at Neurovault at the following link: http://neurovault.org/images/39599/. 

Possibly due to the fusiform nature of the cluster, metaanalyitic decoding using 

Neurosynth revealed terms such as “objects”, however it also revealed terms such as 

“episodic”, “recognition” and “episodic memory” terms which are consistent with the 

hypothesised relationship between mnemonic processes and high levels of private 

self-consciousness. The limbic network revealed a pattern of functional connectivity 

to the occipital cortex predictive of social anxiety. In particular, stronger functional 

connectivity between these regions was predictive of higher social anxiety scores 

(Figure 4.4, bottom row). The unthresholded map for this contrast can be found at this 

link: http://neurovault.org/images/39600/ and meta-analytic decoding revealed this 

map to be related, among others, to the term “face”, which is in line with the social 

nature of this type of anxiety. Finally, analyses of the DMN did not reveal any patterns 

of functional connectivity predictive of either types of self-consciousness that passed 
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correction for multiple comparisons, although all unthresholded maps are available at 

the following URL:http://neurovault.org/images/43237/ and 

http://neurovault.org/collections/2284/. To understand these patterns of data in 

greater detail we extracted the connectivity with the relevant networks and the region 

identified through our analyses and plotted these as scatterplots in each figure. The 

details of these clusters can be found in Table 1.  

 

 Figure 4.4 Association between seed regions and clusters predictive of self-consciousness. Top 
row: results for the Frontoparietal Control Network. Bottom row: Results for the Limbic 
Network. A) Seed region. B) Cluster with functional connectivity (FC) predictive of self-
consciousness. C) Scatterplot reflecting relationship between FC and self-consciousness. D) 
Neurosynth’s meta-analytic decoding of cluster in B. 

 

4.4.3 Moderation Analysis 

Having identified that private self-consciousness is linked to better memory for 

information related to the self and that it is also associated with patterns of functional 

organisation at rest, we next explored whether the expression of better self memory 

can be related to these patterns of functional organisation. In these analyses we used 

the correlation coefficients between the FPCN and the cluster in the temporal occipital 

fusiform cortex as a moderator of the relationship between private self-consciousness 

and the task outcomes. Moderation analyses using PROCESS (Hayes, 2013) revealed 

that the functional connectivity between the FPCN and the temporal occipital fusiform 

cluster moderated the relationship between private self-consciousness and the 

magnitude of the self-reference effect, ΔR2 = .037, F(1, 119) = 4.846.08, p < .05. This 

can be visualised in Figure 4.5 in which the data has been divided using a median split 
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of the functional connectivity coefficients. Here it is apparent that the positive 

relationship found between private self-consciousness and the magnitude of the self-

reference effect is present in individuals with a high functional connectivity between 

the FPCN and the temporal occipital fusiform cortex (r = .334, p = .011) and absent in 

individuals situated below the median (r = .03, p = .812) (Figure 4.5B). 

Figure 4.5: Moderation of the relationship between memory for self-items and private self-
consciousness by the functional connectivity of the Frontoparietal Control Network (FPCN). A) 
FPCN (yellow) and cluster with functional connectivity (FC) to the network predictive of private 
self-consciousness (green).  B) Median split of FC between FPCN and cluster. Top: Scatterplot 
reflecting the lack of relationship between memory for self-items and private self-
consciousness in the below median group. Bottom: Scatterplot reflecting the positive 
correlation between memory for self-items and private self-consciousness in the above 
median group 

 
Table 4.1 
Regions that exhibit functional connectivity to seed dependent upon self-consciousness scores 

Seed Contrast Cluster Regions Peak  #voxels p-value 

FPCN Private Up Temporal post inferior temp 
temp occip fusiform 
parahippocampal 
hippocampus 

-48,-52,-28 1085 .006 

Limbic Social 
Anxiety Up 

Occipital inf lat occipital 
intracalcarine  
lingual gyrus 

-8,-90,10 1324 .001 

Note: Coordinates are based on the Montreal Neurological Institute coordinate system and 
regions are based on Harvard-Oxford Cortical Structural Atlas. 
Abbreviations: post: occip: occipital; posterior; temp: temporal  
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 4.5. Discussion 

Our data suggest that the tendency towards private self-consciousness is 

characterised by a memory bias for self-relevant information that is rooted in the 

functional organisation of the brain at rest. We replicated prior studies showing that 

high levels of private self-consciousness are associated with a mnemonic advantage 

for self-relevant information (Agatstein & Buchanan, 1984; Hull et al., 1988; Nasby, 

1985; Turner, 1980). Our functional connectivity analyses indicated that private self-

consciousness was also associated with strong connectivity between the FPCN and 

regions of lateral occipital cortex, fusiform cortex and hippocampus, a pattern that 

meta-analytic decoding suggests is often associated with functions including episodic 

memory. Critically, our moderation analysis demonstrated that these two effects are 

related: we found that the relationship between private self-consciousness and a 

heightened memory for the self was only present in participants who exhibited this 

episodic neural fingerprint at rest. Taken together, our results suggest that patterns 

of neural organisation associated with the effective retrieval of episodic details may 

be central to the ability to consciously reflect on who we are as indexed by private 

self-consciousness. 

They also support functional studies linking executive regions to process of 

self-consciousness (Eisenberger et al., 2005) and when working memory is focused on 

more personally relevant information (Meyer et al., 2012). Our study also raises the 

question of whether these patterns exhibited by individuals high on private self-

consciousness may also have a relationship to the thoughts experienced during the 

resting-state, a question that could be addressed using experience sampling after 

resting-state scans (for examples see Gorgolewski et al., 2014, Smallwood et al., 2016). 

Unlike private self-consciousness, we found that social anxiety was related to 

heightened connectivity between the limbic network and regions of visual cortex. It is 

not surprising that the functional connectivity of the limbic system predicted social 

anxiety scores, given the well documented links between these regions and emotion 

(Cardinal et al., 2002; Davidson 2002; Phan et al., 2006; Phelps & DeLoux, 2005; 

Strakowski et al., 1999). 



140 
 

Moreover, our analysis suggests that social anxiety is linked to heightened 

connectivity between the limbic system and regions of occipital cortex, a pattern that 

may explain the hyper vigilance to social cues that are often associated with this form 

of self-consciousness (Eysenck 1992; Mogg & Bradley 1998). Thus unlike private self-

consciousness, which was linked to heightened memory, our data is consistent with 

the view that social anxiety is linked to an attentional bias concerned with external 

attention, potentially to the reaction of other people to the public self (Bogels & 

Mansell, 2004; Mueller et al., 2009). It will be important in the future to determine 

whether the pattern of functional connectivity that we show supports social anxiety 

is a moderator for some of the attentional biases that this trait has been linked to in 

the past. 

Our analysis did not link the DMN to any of the types of self-consciousness 

measured in our study. Our analytic strategy highlights differences between types of 

self-consciousness, so it is possible that the absence of any observed associations with 

the DMN may be because this network plays a role common to all three types of self-

consciousness. Given evidence that the DMN is activated by states of self-focus 

(Andrews-Hanna et al., 2014; Northoff et al., 2006) perhaps the absence of an 

association with this system reflects the fact that it is generally important in all states 

of self-consciousness, rather than in the expression of specific types. On the other 

hand, our observation that private self-consciousness is described by the connectivity 

of the FPCN supports accounts of states of self-focus which have linked self-biases to 

the function of regions of the control networks such as the interparietal sulcus (Sui et 

al, 2015; Humphreys & Sui 2016). More broadly, our findings are consistent with 

theoretical positions that advocate a more complex component process architecture 

for states of higher-order cognition, such that different types of cognition emerge 

through the interaction of multiple different large scale networks (for examples see 

Ralph et al., 2016; Moscovitch et al., 2016; Smallwood and Schooler, 2015). For 

example, an emerging literature has begun to show that the DMN is important in many 

situations beyond those linked to internal focus, such as working memory (Konishi et 

al., 2015; Vatansever et al., 2015), social memory (Meyer et al., 2012), or demanding 

semantic task performance (Krieger-Redwood et al., 2016), observations that are 

consistent with the notion that the DMN acts to integrate information from across the 
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cortex (Margulies et al., 2016). For example, research exploring autobiographical 

planning has shown co-activation in the FPCN and medial temporal lobe structures 

(e.g., the hippocampus) when we consider future goals (Gerlach et al., 2011), 

particularly those that are high on episodic detail (Spreng, et al., 2010). It is possible, 

for example, that trait levels of private self-consciousness may relate to particular 

aspects of mental life characterised by simulations of the future that contain high 

levels of detail, a perspective that is supported by studies that have shown priming 

self-relevant information increases an individual’s tendency to consider events in the 

future (Smallwood et al., 2011). This is an important question for future research to 

address. 

One limitation of our study is that we focused on a relatively coarse description 

of neural function that is characterized by a neural parcellation that divides the cortical 

landscape into seven large-scale networks. Recent accounts of the DMN suggest that 

it can be subdivided into different sub-networks (e.g., Yeo et al., 2011, Andrews-Hanna 

et al., 2010). One of these sub-divisions, known as the medial-temporal subsystem, 

encompasses regions of posterior parietal cortex, but critically aspects of the medial 

temporal lobe. It is therefore possible that a more fine-grained analysis of the 

relationship between DMN sub-networks at rest and different aspects of self-

consciousness would have revealed a role for one of these subsystems. Although our 

coarse analysis revealed patterns of neural activity that described two out of three 

forms of self-consciousness it remains an open question whether looking at the 

behaviour of subsystems of the DMN at rest, or during tasks, may reveal a role for 

aspects of this large scale network in trait differences in self-consciousness. Not 

withstanding this limitation, our current study suggests that trait variation in private 

self-consciousness is related to the functional connectivity of the FPCN, and in 

particular to its communication with regions involved in episodic memory retrieval. 

This pattern of functional connectivity moderates the association between private 

self-consciousness and a heightened memory for self-relevant information, identified 

by prior investigations. Together these findings suggest that a greater capacity for the 

retrieval of self-relevant information may explain important aspects of the processes 

through which we become the subject of our own conscious evaluations. 
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Chapter 5 - General Discussion 

 

5.1 Main Questions 

 

The current doctoral thesis was aimed at exploring patterns of functional 

connectivity in the intrinsic architecture of the brain related to individual differences 

in self-bias. The first and second used the memorial advantage for self-related material 

as a potential measure of the degree of one’s self-schema articulation, with the first 

study exploring how this measure related with functional connectivity of DMN regions 

classically involved in self-referential processing and the second one exploring how it 

related to regions of the FPCN. The selection of regions of the FPCN for the second 

study was based on a behavioural finding from the first study, that of a negative 

correlation between one’s mnemonic advantage for self-related material and 

inhibitory control efficiency. The second study did not only replicate this behavioural 

finding, but also provided insight into its neural underpinnings using a cross sectional 

design: functional connectivity of regions involved in inhibitory control was explored 

in relation to the magnitude of the self-reference effect, and on a similar fashion, 

inhibitory control efficiency was used to predict the FC of regions involved in self-

referential processing.  The third study took an alternative measure of self-focussed 

attention using the self-consciousness scale devised by Fenigstein, Scheier & Buss 

(1975) and explored the functional connectivity of both the DMN and the FPCN. 

  

5.2 Summary of findings 

The first question of the current work was whether the functional connectivity 

of regions involved in self-referential processing was predictive of the magnitude of 

the self-reference effect. The self-reference effect was assumed to capture the degree 

to which an individual has developed their self-schema, a process thought to involve 

self-focussed attention. The functional connectivity of regions in the mPFC, classically 

involved in self-referential processing was explored in relation to the magnitude of the 

self-reference effect and a common pattern emerged from the results: a stronger self-
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reference effect was related to stronger functional connectivity within the DMN. The 

DMN is assumed to be involved in internal representations and as such is tightly linked 

to memory.  Different subsystems exist within the DMN, one being involved in 

episodic aspects of memory, another one in semantic ones (Andrews-Hanna, 

Smallwood & Spreng, 2014). Our results mainly revealed that a stronger interaction 

between these two systems was related to a stronger self-reference effect, a pattern 

that has previously been related to increased mind wandering (Poerio et al., 2017).  

Another important question we set to answer was whether there was a 

relationship between the magnitude of the self-reference effect and inhibitory 

control. The rationale for this was based on the salient properties of self-relevant 

material. Salient stimuli act as powerful distractors (Theeuwes, 2010), and hence we 

hypothesised that individuals with stronger self-reference effect would be less 

efficient at tasks that require sustained attention on the external world such as 

inhibitory control tasks, a finding that would suggest that the magnitude of the self-

reference can be indicative of one’s tendency to engage in self-focussed attention. 

This hypothesis was confirmed and replicated in study one and study two. 

Importantly, we explored the relationship between the functional connectivity of the 

FPCN and two measures of self-bias: the self-reference effect (study 2) and scores in 

the self-consciousness scale (study 3). We found that both of these measures 

predicted the functional connectivity of the FPCN. While the self-reference effect was 

predicted by the functional connectivity of this large-scale network to the basal 

ganglia (BG)  and, in particular, the nucleus accumbens, private self-consciousness was 

predicted by stronger functional connectivity between the FPCN and a cluster in the 

fusiform gyrus that extended into the hippocampus. Similarly, the first study found 

that regions of the FPCN were more connected to regions of the DMN in individuals 

with smaller self-references effects caused through enhanced memory in the familiar 

other condition. 

As we will discuss in the coming sections a pattern emerges in which stronger 

coupling between areas involved in executive control and self-representation results 

in a reduced self-reference effect, whereas enhanced functional connectivity between 

memory related areas involved in self-representation results in heightened mnemonic 

advantage for self-items. In particular, a reduced self-reference effect was related to 
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increased coupling between the FPCN and the nucleus accumbens, a central region of 

the reward system highly related to value-signalling and hence, self-relevance (Study 

2). Reduced magnitude of the self-reference effect, caused by increased memory for 

the unfamiliar-other condition, was also related to stronger coupling between regions 

of the FPCN and the vmPFC (Study 1). When instead the vmPFC coupled to regions in 

the DMN individuals presented a stronger self-bias caused by both an increased 

memory for self-items and a decreased memory for items in the unfamiliar-other 

condition. A summary of the patterns of functional connectivity related to self-

focussed attention can be found in Figure 5.1.  

 

Figure 5.1: Summary figure reflecting patterns of functional connectivity related to self-
focussed attention. The blue lines represent reduced coupling, the orange lines represent 
increased coupling, the dotted lines represent connections defined previously in the literature 
(Meredith & Totterdell 1999). The yellow boxes represent regions in the Default Mode 
Network. The boxes situated between the lines represent the behavioural outcome that was 
associated with the pattern of functional connectivity depicted by the particular line. ATL: 
Anterior Temporal Lobe; FPCN: Frontoparietal Control Network; MFG: Middle Frontal Gryus. 
Mesoli  
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5.3 The Relationship between the DMN and the SRE 

 

Self-focussed attention emerges as an interplay between a semantic 

representation of self and episodic memory that allows an individual to, for example, 

revise one’s behaviours. In other words, engagement in this processes requires a point 

of reference in which one’s values or personality are activated and used to make 

decisions or judgements.  Material related to the self has repeatedly been shown to 

be encoded better than other types of material (see meta-analysis by Symons and 

Johnson 1997). This is in part due to the vast network of associations related to the 

self which, by creating extensive memory traces, aids retrieval. This is further 

enhanced thanks to the activation of the self-schema during encoding. Following 

previous research suggesting memory performance is related to elaboration 

processes and to schema-activation we assumed that a stronger memorial advantage 

for self-related material would be indicative of the degree to which someone has 

developed their self-schema, in turn potentially reflecting an individual’s tendency to 

engage in self-focussed attention.  

Having obtained a potentially objective measure of self-focussed attention, we 

explored whether this measure was predictive of the intrinsic architecture of regions 

in the brain involved in self-referential processing. Self-referential processing has been 

related to activations in the DMN (see meta-analysis by Northoff et al., 2006), with 

particular consistency in the most anterior aspect of this network, i.e., the mPFC. This 

result was replicated in the second study in the current doctoral thesis in which a 

localiser task comparing activation during self-reference versus activation during 

other reference revealed the mPFC. Previous research has revealed this area to be 

particularly involved in the enhanced memorial properties of self-relevant material, 

with stronger activations during processing of self-referenced items resulting in 

enhanced subsequent retrieval of such items (Kelley et al., 2002; Macrae, Moran, 

Heatherton, Banfield & Kelley, 2004). Other areas such as the parahippocampal 

cortices and the left anterior prefrontal cortex were also involved in heightened 

encoding of self-relevant material, however these areas seem to have a more domain 

general and verbal role in encoding, respectively (e.g., Aguirre, Detre, Alsop & 
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D’Esposito, 1996; Fernandez et al., 1998; Li, Lu, Li & Zhong, 2010; Rombouts et al., 

1997; Stern et al., 1996;  Wagner et al., 1998) suggesting only the mPFC to be specific 

to the self-reference effect. Based on these findings, the first study explored how the 

functional connectivity of several regions of the mPFC related to the magnitude of the 

self-reference effect. 

The first study revealed that stronger self-reference effect was related to 

heightened coupling between the mPFC to other regions of the DMN, a network 

classically involved in processing of internal representations (Spreng, Mar & Kim, 

2009) which deactivates during processing of external stimuli (Raichle et al., 2001). 

This network is however not homogeneous, with clustering analyses revealing three 

different subsystems (Andrews-Hanna et al., 2014).  The first empirical chapter found 

that a higher memory for self-related items was associated with stronger coupling 

between two of these systems. As revealed in an analysis that fractionalised the DMN 

into subsystems (Andrews-Hanna et al., 2014), different portions of the mPFC belong 

to different subsystems: the ventral mPFC is part of the medial temporal subsystem 

which also includes areas in the medial temporal lobes; the anterior mPFC is part of 

the core subsystem which includes the PCC; and the dmPFC, in combination with the 

angular gyrus and the lateral and frontal temporal lobes, form the dorsomedial 

prefrontal subsystem. Whereas nodes in the medial temporal and the dorsomedial 

subsystems present strong correlations with the core subsystem, the correlations 

between them is much lower, suggesting a segregation of functions (Andrews-Hanna 

et al., 2014). In particular, the dmPFC is involved in semantic processes (e.g., Andrews-

Hanna et al., 2014; Mummery et al., 2000; Visser, Jefferies & Lambon Ralph, 2010; 

Visser, Jefferies, Embleton & Lambon Ralph, 2012)  and the medialtemporal one on 

episodic processes (e.g., Andrews-Hanna et al., 2014; Nyberg, McIntosh, Houle, 

Nilsson & Tulving, 1996; Race, Keane & Verfaellie, 2011; Schacter & Wagner, 1999 ). 

For example, when subjects are asked to think about the self in an episodic way, such 

as when they are asked to think about where they will be tomorrow, activation on the 

medial temporal subsystem increases. Note that activation in regions of this 

subsystem such as the hippocampal formation and the parahippocampal cortex are 

also heavily involved in encoding and retrieval (e.g., Epstein, Harris, Stanley & 

Kanwisher, 1999; Epstein, DeYoe, Press, Rosen & Kanwisher, 2011; Hayes, Nadel & 
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Ryan, 2007), processes that interact with schemas held in semantic memory, 

accounting for why the vmPFC, highly involved in schema activation, belongs to 

episodic subsystem principally anchored in the medialtemporal lobes. Instead, when 

subjects are asked about a certain aspect of themselves, a process that relies more on 

semantic than episodic material, increased activation is found in the dorsomedial 

prefrontal subsystem (Andrews-Hanna et al., 2014). Additionally, areas in this 

subsystem, like the angular gyrus, are also involved in social cognition such as theory 

of mind or mentalizing (e.g., Calarge, Andreasen & O’Leary, 2003; Schurz, Radua, 

Aichhorn, Richlan & Perner , 2014; Seghier, 2013). Evidently, both subsystems strongly 

interact. For example, during introspection the semantic self has to be activated and 

revised when judging one’s actions in a specific episode. 

In relation to this, Study 1 found that a stronger coupling between the two 

subsystems, in particular between the ventral mPFC (episodic subsystem) and the 

angular and middle temporal gyri (semantic subsystem) was related to enhanced 

memory for self-related items. Note that, based on this subdivision of the DMN, the 

vmPFC is considered an important node of the episodic medialtemporal lobe 

subsystem. However, the vmPFC also has a well-established role during tasks that 

require engagement of schemas, thought to rely on semantic memory (Ghosh & 

Gilboa, 2014). Given the vmPFC’s role both during self-referential processing, schema-

based encoding and episodic memory, it is tempting to suggest that this area is 

involved in the semantic representation of the self and in particular in how this 

representation interacts with episodic memory.  Importantly, the results suggest that 

an increased interaction between the episodic and the semantic subsystems is related 

to the enhanced encoding of self-related material. The increased interaction between 

both systems might be suggesting a heightened recruitment of the semantic self 

during the episodic reconstructions.  It is possible that this heightened activation of 

the semantic self, and in particular through its interaction with the episodic 

information, would in turn lead to the increased self-bias related to this pattern of 

functional connectivity. Importantly, increased integration between both subsystems 

has previously been linked to mind wandering (Poerio et al., 2017), a process which 

highly overlaps with self-referential processing, as can be seen from previous 
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literature (Gusnard, Akbudak, Shulman & Raichle, 2011; Spreng et al., 2009) as well as 

the results from the self > other contrast obtained in the localiser scan in Study 2.  

The discussion so far has argued that an increased memory for self items 

seems to be related to a stronger integration within DMN subsystems. Overall this 

higher integration between subsystems of the DMN results in a stronger within DMN 

synchrony. This result was similarly mirrored when exploring the memory for the non-

self condition. In this case, stronger coupling between the vmPFC and the 

paracingulate cortex, embedded within the DMN, was observed in individuals with a 

reduced memory for the control condition measuring memory for best friend items. 

Note that the individuals with the highest self-reference effect will not only present 

the strongest memory for self items but also the weakest memory for the control 

condition, hence once again, stronger functional connectivity across DMN regions 

results in enhanced self-reference effects. Overall our results thus far suggest that a 

stronger self-reference effect is related to a hyperconnected DMN. 

 

 

5.4 Self and Reward 

 

The results from the second study might help us understand why certain 

individuals more commonly activate self-related systems than others. In this study 

functional connectivity analyses of the FPCN revealed that a reduced self-reference 

effect was related to stronger coupling between the FPCN and the ventral striatum 

classically involved in reward. A growing number of studies have shown a strong 

overlap between self-related regions, in particular those involved in assigning 

personal relevance to stimuli, and the reward system, shedding light on why this 

reward related region was obtained for analyses of the self-reference effect.  

Consistent activations during processing of self-specific stimuli have been found in 

classic reward system regions such as the ventral striatum and ventral tegmental area, 

as well as in the vmPFC (de Greck et al., 2008; Enzi, De Greck, Proesch, Tempelmann 

& Northoff, 2009; Ersner-Hershfield, Garton, Ballard, Samanez-Larking & Knutson, 

2009). This is not surprising, as both self-specificity and reward rely on value-
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assignment, i.e., self-relevant material is that to which the self has assigned either 

positive or negative value to. Similarly, one needs to activate the semantic self in order 

to make everyday judgements. For example, “Did I behave in a correct way?”, “Was 

Mary wearing too much makeup?”, “Should Adam apologise to Tom?” are all 

examples in which one needs to access the semantic self which holds the belief system 

of who we are in order to answer these questions. Further supporting the relationship 

between the reward/value assignment system and self-relevant stimuli, other studies 

have found that performance for self-related material mirrors that of trials with high-

reward items, with both sorts of stimuli leading to an advantage during processing (Sui 

& Humphreys, 2015), an advantage possibly achieved through the effect both self and 

rewarding stimuli have over attentional resources. Hence, this close relationship 

between self and reward systems might account for why the functional connectivity 

of the nucleus accumbens, classically involved in reward processes, was found to be 

involved in the magnitude of the self-reference effect.  

 

5.5 Within and Between Functional Connectivity of 

Self-Referential and Executive Control Regions: 

Relationship to the Self-Reference Effect 

 

Whereas the nucleus accumbens is part of the reward system, and as such, is 

closely related to orbitomedial prefrontal cortex (Kringelbach, 2005), our functional 

connectivity results revealed that it was its coupling to the FPCN that was predicted 

by the magnitude of one’s self-bias. The ventral striatum, where the nucleus 

accumbens is located is part of the motivational corticostriatal loop, with the ventral 

striatum receiving strong projections from the orbitofrontal cortex. Another 

important corticostriatal loop is the executive loop connecting cortical regions 

involved in executive control such as the dorsolateral prefrontal cortex to the dorsal 

basal ganglia. Although these loops are highly segregated, recent research has shown 

that the corticostriatal circuits converge in the more rostral and ventral aspects of the 

striatum where the nucleus accumbens is located (Haber, 2016). Hence, since the 
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nucleus accumbens was obtained from seeding the FPCN, this pattern of functional 

connectivity seems to be indicating that a stronger integration between the executive 

and motivational corticostriatal loops is linked to a reduced self-reference effect. 

Considering that thinking about the self can be an automatic and even compulsive 

behaviour that results in a heightened self-bias, and that it is closely associated with 

the reward system, we turned to research on addiction to help us decipher why 

enhanced integration between the motivational and executive loops was related to a 

reduced self-reference effect.   

A hallmark of addictive behaviour is an inability to suppress actions that lead 

to immediate reward in the pursue of a later reward. Whereas the reward system is 

active during immediate rewards, delayed rewards recruit regions like the dorsolateral 

prefrontal cortex involved in executive control (McClure, York & Montague, 2004). 

Neurologically, addiction is related to an imbalance between these two systems. 

Whereas the reward system is overactive, with individuals displaying enhanced 

reward sensitivity and increased synchrony within the reward system, the executive 

system shows reduced functional links (Dong, Huang & Du, 2011; Dong, Hu & Lin, 

2013). Based on this imbalance, Dong, Lin, Hu, Xie and Du (2015) explored the 

functional connectivity of the reward and the executive control systems in internet 

gaming addicts, with a particular interest in the interaction between these two 

systems. Several seed regions in the reward and the control network were selected 

with the intention of exploring how the functional connectivity of the accumbens 

related to both systems. With special interest to the results obtained in the second 

empirical chapter, the authors found a negative correlation between the functional 

connectivity of the accumbens to the reward system and the functional connectivity 

of the accumbens to the control network in all subjects: as the functional connectivity 

of the accumbens to the FPCN increased, the functional connectivity of the accumbens 

to the rest of the reward system decreased, with this anticorrelation being more 

pronounced in gamers than in control subjects. Taking into account that the reward 

and the control system appear to compete for the functional connectivity of the 

nucleus accumbens, the stronger functional connectivity between the FPCN and the 

accumbens found in individuals with a reduced self-reference effect should also be 

related to a reduced functional connectivity between the accumbens and the other 
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regions of the reward/self system such as the orbitomedial prefrontal cortex. This 

reduced functional connectivity between main components of the reward system 

would be translated into a reduced synchrony within this system in subjects with 

reduced self-biases, which is the opposite of what is found in addicts.  Similar to 

addictive behaviour, self-focussed attention is automated, can occur compulsively and 

can be hard to inhibit (Ingram, 1990). Importantly, previous research has shown that 

controlling mind wandering is linked to better delaying of gratification (Ruby, 

Smallwood, Engen & Singer, 2013). Hence, this pattern of functional connectivity 

linked to a reduced self-reference effect might be reflecting the mechanism by which 

one successfully suppresses compulsive self-referential processing, a process that in 

turn would have an impact on the magnitude of the self-reference effect. 

Having found that a stronger coupling between regions that are highly 

connected to DMN regions (i.e., the accumbens) and regions in the FPCN resulted in a 

reduced self-reference effect, a similar pattern emerges when we consider the results 

for the best friend condition found in the first study. This study found that a stronger 

coupling between vmPFC and the FPCN resulted in better memory for the best friend 

items. If we consider the self-reference effect to be the difference between one’s 

memory for self items and one’s memory for items in the control condition, the 

individuals with an enhanced memory for the items in the control best friend 

condition will also be the ones with the smallest self-reference effect. Hence, taking 

this into account, a pattern emerges in which individuals with a reduced self-reference 

effect separate nodes that are commonly associated with the DMN, such as the vmPFC 

(study 1) or the accumbens (study 2), from the DMN and instead couple them to 

control regions in the FPCN. 

Instead, a stronger self-reference effect is observed in individuals in which the 

DMN is hyperconnected to itself, a pattern that has previously been linked to poor 

executive control (Poerio et al., 2017). Note that the first study revealed stronger 

functional connectivity between the vmPFC and the paracingulate gyrus for 

individuals with worse memory for best friend items. Meta-analytic decoding of this 

cluster associated this cluster with terms such as “reward”, “self-referential” or 

“value”. Instead of coupling to the paracingulate gyrus, the vmPFC seed region from 

which this pattern of functional connectivity was obtained coupled more to FPCN in 
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individuals with better memory for best friend items as discussed previously. Hence, 

taking into account that the best friend memory relates to the magnitude of the self-

reference effect, this dissociation in vmPFC’s functional connectivity supports the 

notion that the relationship between reward and executive control plays an important 

role in an individual’s self-reference effect magnitude. 

 

 

5.6 Self-Focussed Attention and the Frontoparietal 

Control Network 

 

5.6.1 Automatic and Controlled Processes Involved in the 

Self-Reference Effect 

In support of this apparent competition between the DMN and executive 

control processes, the first and second studies both found that individuals with a 

bigger magnitude of the self-reference effect (calculated by subtracting memory 

scores from an unfamiliar-other condition from memory scores at a self-reference 

condition) were worse at inhibiting responses. This replication was found despite both 

studies used different inhibitory control paradigms as well as slightly different 

memory measures. During the retrieval phase the first study only tested participants 

on their familiarity for the items, whereas the second study included a source 

localisation phase, resulting in both studies measuring related but slightly different 

measures. Additionally, the first study used a stop signal response time task whereas 

the second one used a Go/No-Go task. Despite using different measures, the negative 

correlation between the magnitude of the self-reference effect and inhibitory control 

efficiency was found in both studies, suggesting this to be a robust relationship.  

Some behavioural differences were however found. Whereas in both studies 

the magnitude of the self-reference effect correlated with inhibitory control, when 

the magnitude of the self-reference effect was broken down into the scores for self 

and the non-self memory control condition, scores in the non-self memory control 



159 
 

only correlated directly with inhibitory control in the second study, whereas in the first 

study only scores in the self condition correlated directly to inhibitory control.  A 

potential explanation underlying the different relationship found across studies for 

the non-self control condition might be the different nature of the memory scores. 

Whereas the first study measured familiarity scores, the second study included a 

source localisation phase and only considered hits those words that had been encoded 

in detail, as proven by an accurate source localisation. The fact that only the second 

study found a direct correlation between incidental encoding scores in the unfamiliar-

other control condition and inhibitory control suggests that inhibitory control is more 

strongly correlated with source memory than it is with familiarity memory in the case 

of the unfamiliar, non-self condition. Having said that, the magnitude of the self-

reference effect, which takes this unfamiliar other condition scores into account, was 

much more strongly correlated with inhibitory control (r =.426, p =.007) than merely 

the memory scores for self-items in the first study (r= .333, p =.038). In addition, when 

the relationship between both memories was controlled for by including both self and 

unfamiliar-other memory scores as regressors in a linear regression model, a 

significant model (F(2,36) = 4.8, p< .05, R2 = 21) was obtained in which both variables 

explained a significant amount of variance of the inhibitory control efficiency variable 

( self: standardized beta = .53, t(36) = 3, p < .005; unfamiliar-other: standardized beta 

=-.37, t(36), p <.05). In particular, better inhibitory control was associated with both 

reduced familiarity memory for self-related items and with increased familiarity 

memory for items in the control condition, shedding light on how the memory for self-

items and memory for non-self items is supported through different mechanisms: 

Whereas self-memory benefits from automatically orienting attention towards the 

self, memory for the other condition suffers and instead benefits from more 

controlled processes.  

5.6.2 Thought suppression and the self-reference effect: 

Cancellation or Prevention?  

The current doctoral work studied the relationship between tasks that require 

action inhibition and the self-reference effect. In the following section we discuss the 
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idea that the pattern of functional connectivity of the FPCN related to reduced self-

bias might be understood with respect to thought suppression mechanisms. 

Importantly, the following section delves into different suppression mechanisms such 

as cancellation and prevention in an attempt to decipher, on light of the results 

obtained in the second study, which one of these two suppression mechanisms is 

potentially involved in the reduced self-reference effect. 

The SSRT and GNG both measure action suppression and performance in both 

tasks is diminished in subjects with ADHD, a reason for which both tasks have 

commonly been used interchangeably as a measure of inhibitory control (Alderson, 

Rapport &Kofler, 2007; Dillo et al., 2010; Senderecka, Grabowska,Szewczyk, Gerc & 

Chmylak 2012; Wright, Lipszyc, Dupuis, Thayapararajah & Schachar, 2014). However, 

recent meta-analytic evidence suggests that these two tasks measure different 

aspects of inhibitory control: action cancellation and action prevention, respectively 

(Aron et al., 2007;  Guo, Schmitz, Mur, Ferreira & Anderson, 2018). In the SSRT all trials 

are Go trials, i.e, an action is being prepared in every trial and only after having started 

preparing the action is one indexed to cancel it through a beeping sound. The SSRT 

therefore measures efficiency at action cancellation. Instead, in the GNG the Go trial 

stimuli differ in colour from those in the No-Go trials, therefore, if close attention is 

being paid on a trial by trial basis, there should be no action initiation in the presence 

of the No-Go colour and in turn action prevention, instead of action cancellation, 

should be present. Despite these differences might appear subtle, evidence 

supporting that these two tasks rely on different processes is presented in a meta-

analysis performed by Guo and colleagues (2018). Comparing neuroimaging data of 

both tasks the authors found no overlap in brain activation between the SSRT and the 

GNG. Whereas the GNG recruited the left putamen, the SSRT was related to activation 

in the right caudate, among other cortical regions.  

Inhibition has mostly been researched in terms of action inhibition, however 

semantic inhibition is also a fundamental aspect of appropriate cognition and 

executive control. For example, research on semantics suggests that in order to 

retrieve words that are only weakly associated with a specific term, one must inhibit 

those words which are highly associated with it (Levy & Anderson 2002; Rafal & Henik, 
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1994). This is because highly associated words can act as distractors, impeding access 

to the weaker ones. Hence, controlled suppression of the automatic associations is a 

fundamental aspect of semantic control and one that is disrupted in semantic aphasia, 

a disorder characterised by an inability to access weaker associated items without the 

help of cues that aid such retrieval (Jefferies & Lambon-Ralph, 2006). A situation 

depicting this that we can all relate to is trying to recall someone’s name. If for some 

reason, for example similar phonetics, another person’s name comes to mind, this 

erroneous name can cause great interference and disrupt access to any other names. 

Equally so, if one is trying to focus on a certain task but keeps thinking about the plans 

for Friday night, task performance will likely be negatively affected. Suppression of the 

most highly associated or more salient information is therefore fundamental when 

tasks require our focus and it is this aspect of inhibition that we believe accompanies 

a reduced self-reference effect. Despite the current doctoral work has used tasks that 

measures action inhibition we will now present some evidence that suggests thought 

and action suppression share some mechanisms.  

 In order to study the relationship between thought and action suppression 

Guo and colleagues (2018) included data of a Think No Think (TNT) task in their meta-

analysis including data obtained from the GNG and the SSRT paradigms. The TNT has 

been used with the intention to measure one’s ability to suppress thought. In this 

paradigm subjects first have to learn pairs of words until they can remember them to 

a certain degree of accuracy. Subsequently, subjects are presented with one of the 

words in the pair, and depending on the colour of the word, they either have to 

remember the associated pair or suppress it from entering consciousness. In order to 

measure the suppression performance memory tests are completed at the end with 

the idea that those words that had had to be suppressed were recalled less than those 

that had to be recalled. The meta-analysis searched for the neural correlates of this 

task during thought suppression and compared them to those obtained for the SSRT 

and the GNG. The authors found that the neural correlates of retrieval suppression 

obtained in the TNT task were the same as those obtained for the SSRT leading the 

authors to conclude that thought suppression in the TNT was achieved through 

thought cancellation rather than through thought prevention.  
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The functional connectivity results of the FPCN related to the self-reference 

effect found in study 2 however revealed a cluster located in the left accumbens and 

putamen that resembled more the meta-analytic results found for the SSRT than for 

the GNG. A potential explanation for this is the nature of the TNT task used in the 

meta-analysis. In this task subjects first learned a pair of words. When latter shown 

one of the words in the pair they were asked to inhibit it. If the word pair has been 

deeply encoded, it is possible that exposure to one of the words automatically leads 

to the activation of the other word. Whether this automatic activation is avoided or 

whether it is only suppressed after it has occurred is a confound that the TNT used in 

the meta-analysis did not address.  To overcome this confound, Guo (2017) conducted 

an fMRI study of the TNT task in which they included intrusion ratings of the associated 

pair. After excluding from the test phase all pair-associates that had not been properly 

encoded, trials in which intrusions were not reported were considered to have been 

governed by prevention processes whereas cancellation processes where assumed to 

be engaged during trials in which intrusions were reported.  The authors found that 

downregulation of the hippocampus was associated with efficient retrieval 

suppression and dynamic causal modelling analyses revealed that this was achieved 

through a dlPFC-BG-hippocampus pathway. In particular, intrusion reduction was 

correlated with the dlPFC-BG coupling in such a way that a stronger coupling between 

these two regions resulted in a more pronounced intrusion reduction, resembling the 

pattern of functional connectivity related to a reduced self-reference effect in the 

second empirical chapter of this thesis and suggesting thought prevention to be 

responsible for the reduced self-reference effect. Furthermore, the results revealed 

found that both retrieval prevention and retrieval cancellation were marginally 

anticorrelated with BG-hippocampal coupling, supporting previous research 

suggesting that the BG and the dlPFC play an important role in the downregulation of 

the hippocampus (Benoit, Hulbert, Huddleston & Anderson, 2014; Benoit, Davies & 

Anderson, 2016; Gagnepain, Hulbert & Anderson, 2017; Levy & Anderson, 2012). 

Overall these finding strongly suggest that the  magnitude of the self-reference effect 

used in the current doctoral work is indicative of one’s ability to suppress intrusive 

thought. Furthermore, the results from these studies suggest that the aspect of 

inhibitory control efficiency that is related to reduced memorial advantage for self 
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memory found in the current doctoral work resembles that of thought prevention 

rather than that of thought cancellation and that this process is achieved through BG 

downregulation of the hippocampus triggered by BG-FPCN coupling.  

 

5.6.3 The Frontoparietal Control Network and Private Self-

Consciousness 

Further evidence suggesting an important role of executive control processes 

and self-focussed attention was found in the third study.  In this study an alternative 

measure of self-focussed attention was used. Instead of using the memory scores for 

self and other related material the functional connectivity of large scale networks was 

explored in relation to a self-reported measure of self-focussed attention measured 

through the self-consciousness questionnaire.  This study found that the functional 

connectivity of the FPCN and not the DMN predicted the degree to which an individual 

engaged in private self-consciousness. The private subscale of the self-consciousness 

questionnaire asks individuals to for example rate how often they reflect upon their 

feelings, behaviours or motifs, ultimately measuring the degree to which an individual 

engages in introspection.  Previous research has repeatedly found that one’s memorial 

advantage for self-related material is correlated with one’s tendency to think about 

one’s self, as measured through the private self-consciousness scale (Agatstein & 

Buchanan, 1984; Nasby 1985). Having explored how the functional connectivity of 

regions of the FPCN and several regions of the mPFC and hippocampal formation, 

located in the DMN and Limbic networks as defined by Yeo and colleagues (2011), 

were related to the magnitude of the self-reference effect, the third study used the 

self-consciousness scale as an alternative measure of self-focussed attention to 

explore how the patterns of functional connectivity of these networks related to this 

subjective measure of self-focussed attention. Surprisingly, the DMN didn’t reveal any 

patterns of functional connectivity predictive of self-consciousness. This was not the 

case for the FPCN, for which increased functional connectivity to an area of the medial 

temporal lobes was related to increased private self-consciousness. Despite 

neurocognitive decoding of this cluster revealed terms such as “navigation”, “objects” 
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or “encoding”, generally involved in processing of the external world, this cluster 

slightly overlapped with the hippocampus and was also related to terms such as 

“episodic memory”. Considering the role of the FPCN in working memory, an 

alternative but not mutually exclusive explanation is that the stronger coupling 

between the FPCN and this cluster in individuals with higher private self-consciousness 

could be indicating the increased time that these individuals spend revising their 

episodic memory, this being a prerequisite for private self-consciousness. During such 

revision, material from memory has to be kept in working memory, a process linked 

to the FPCN (Brunoni & Vanderhasselt, 2014), hence it is possible that this pattern of 

functional connectivity is reflecting the process by which the FPCN is manipulating 

information from episodic memory. Furthermore, this cluster was also related with 

terms such as “face” and embedded the right fusiform face are (FFA), particularly 

related to self-face processing. With special relevance to the current result, a study by 

Utevsky, Smith, Young and Huettel (2017) found that during social reward the 

functional connectivity of the FFA exhibited more coupling to the FPCN (relative to the 

DMN) suggesting that private self-consciousness might be motivated by future social 

reward.  

5.6.4. Summary of the FPCN Involvement in Self-Focussed 

Attention 

An overarching theme emerges from the results obtained in the three studies: 

The functional connectivity of regions involved in executive control located in the 

frontoparietal cortex is closely related to self-focussed attention. Whereas the second 

study found a pattern of functional connectivity to the ventral striatum possibly 

related to the suppressive role of the FPCN, the third study found a pattern of 

functional connectivity from FPCN to fusiform cortex extending into hippocampus 

possibly related to the role the FPCN plays in the maintenance of episodic information 

in working memory. Functional connectivity between the vmPFC and regions of the 

FPCN was also found in the first study in relation to the memory for the best friend in 

such a way that better memory for the non-self-referent was obtained when the 

vmPFC dissociated itself from the paracingulate gyrus, involved in reward processes, 
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and instead coupled to regions involved in working memory.  Overall results suggest 

that stronger coupling between FPCN to reward regions that are commonly activated 

during self-relevance results in reduced self-reference effect.  

5.7 Coupling between DMN and Salience network: 

Relationship to Go/No-Go efficiency 

The current work hypothesised that there would be a negative relationship 

between the magnitude of the self-reference effect and inhibitory control. The 

rationale for this was based on the salient and hence distracting properties of self-

relevant material by which, whilst having an enhancing impact on the self-reference 

effect, would interfere in sustained attention on the external world. After having 

explored the functional connectivity of inhibitory control regions in relation to the self-

reference effect, a second analysis explored the relationship between inhibitory 

control performance and the functional connectivity of regions involved in self-

referential processing.  

The results revealed that an enhanced functional connectivity between the 

self-referential regions and the right inferior frontal gyrus was predictive of better 

inhibitory control. Further functional connectivity analyses of the right inferior frontal 

gyrus revealed this cluster to be part of the salience network and meta-analytic 

decoding related it to terms such as “inhibition response” and “stop signal”.   It is 

important to note that although the right inferior frontal gyrus has commonly been 

related to inhibitory control processes (Aron, Robbins & Poldrack, 2004), activation in 

this region has also been found in cases in which no response inhibition was required. 

For example, Hampshire, Thompson, Duncan and Owen (2009), found that this region 

was recruited when important cues were presented regardless of whether a response 

was required. Their findings suggest that its previous association with inhibition tasks 

might have been driven by cue detection processes rather than by inhibition per se. 

In particular, the salience network, through its close relationship with interoceptive 

signals processed in the insula (Craig & Craig, 2009; Menon & Udin, 2010), is involved 

in the detection of stimuli that are salient to the individual (Perini et al., 2018). In the 
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case of laboratory tasks, as long as the individual is willing to engage in the task, the 

presentation of target cues should be processed as salient. In turn, this salience 

detection will redirect attentional resources according to the task demands in order 

to perform efficiently. However, if there is a failure at detecting the cue, subsequent 

performance in the task will be impaired. This interpretation would still account for 

why both transcranial magnetic stimulation and lesions in the right inferior frontal 

gyrus have been related to reduced efficiency at inhibitory control tasks (Aron et al., 

2004; Aron, Robbins & Poldrack, 2014; Chambers et al., 2006).  

The role of the salience network in directing attentional resources in 

accordance to the task has been demonstrated through both dynamic causal 

modelling (Goulden et al., 2004) and granger causality (Sridharan, Levitin & Menon, 

2008) analyses. Both methods replicated the same findings: the salience network 

plays a causal role in switching between networks, particularly through suppressing 

the DMN and activating the FPCN (Menon & Udin, 2010; Sridharan et al., 2008). 

Furthermore, aberrant functioning of these three networks is involved in many 

psychopathological states (Menon, 2011).  Hence, the pattern of functional 

connectivity found in which stronger coupling between the DMN and the salience 

network is involved in better performance at the GNG further supports the notion that 

appropriate interaction between these networks is a fundamental aspect of efficient 

cognition. In particular, our results, which reveal that stronger functional connectivity 

between DMN regions and salience network is involved in better inhibitory control, 

suggests that increased coupling between the DMN and the right inferior frontal gyrus 

is involved in the mechanisms which, through allowing the salience network to 

deactivate the DMN, result in higher inhibitory control efficiency.  

How does the impaired interaction between these three networks relate to 

psychology? What is motivating the excessive salience of self? These are questions 

that will have to be addressed in future studies, however previous literature on the 

right inferior frontal gyrus invites us to speculate about the role social cognition might 

be playing in the relationship between self-focussed attention, inhibitory control and 

the appropriate interaction between these networks. Eisenberger, Lieberman & 

Williams (2003) have shown that social rejection activates a region that overlaps with 



167 
 

the right IFG cluster found in the DMN analysis linked to inhibitory control efficiency. 

Moreover, social information is high in emotional content, known to be a powerful 

distractor (Dolcos & McCarthy, 2006; Mueller, 2011) and Levens & Phelps (2010) have 

implicated both the insula and the inferior frontal cortex in resolution of such 

emotional interference. This evidence suggests that this region is highly involved in 

interference resolution caused by emotional and socially relevant stimuli. As social 

animals, information about our reputation is valuable and hence should be signalled 

as salient, recruiting systems involved in self-evaluation and perspective taking 

anchored in the DMN. Hence, acquiring a good reputation can act as a strong 

incentive.  In fact, the same system involved in monetary reward is recruited during 

socially rewarding cues (Izuma, Saito & Sadato, 2008), including the insula. Building on 

such previous literature and on the results of the current doctoral thesis, a hypothesis 

to be tested in future studies is whether social reward is related to the patterns of 

functional connectivity found in the current work linked to self-focussed attention and 

inhibitory control.  

5.8 Concluding remarks 

The current work explored the relationship between different measures of 

self-bias and patterns of functional connectivity in the brain. It explored the self from 

a mnemonic and an attentional perspective by studying the degree of an individual’s 

self-bias as measured by 1) the magnitude of self-reference effect (Study 1 and Study 

2) and 2) private self-consciousness (Study 3) and relating these measures to the 

intrinsic architecture of regions involved in 1) self-representation supported by 

memorial mechanisms (Study 1 and Study 3) and 2) regions involved in executive 

control (Study 2 and Study 3). The results revealed that the magnitude of the self-

reference effect and the scores on the private self-consciousness, despite correlated, 

differ. In particular, the patterns of functional connectivity obtained from the FPCN 

suggest that whereas the magnitude of the self-reference effect seems to be capturing 

an individual’s tendency to suppress automatic retrieval of information (Study 2) in 

the form of self-focussed attention, the private self-consciousness is revealing a 

pattern of functional connectivity that might be representative of when retrieval of 
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self-related material is not suppressed and is instead manipulated in working memory 

(Study 3). Further research will have to confirm this interpretation by using methods 

of psychophysiological interactions that explore functional connectivity during tasks 

that monitor self-focussed attention or self-focussed suppression. Ideally, such results 

would reveal stronger functional connectivity between the FPCN and the ventral 

striatum during instances of self-suppression, following results from Study 2. This 

pattern of functional connectivity would revert during self-focussed attention and in 

turn the FPCN would increase its coupling to regions involved in episodic memory 

representing the maintenance of episodic memory in working memory, following 

results from Study 3.  

Whereas the DMN didn’t reveal any patterns of functional connectivity 

involved in self-consciousness, a stronger self-reference effect was related to stronger 

coupling between episodic and semantic subsystems of the DMN (Study 1). This 

increased interaction supports the notion that as the semantic self interacts with 

episodic memory, as revealed by the patterns of functional connectivity obtained from 

the vmPFC, the self-schema gets revised, updated and elaborated resulting in a 

stronger self-reference effect.  

The current work has:  

 Provided the literature on self with a novel application of the self-reference 

effect by interpreting its magnitude as an indirect measure of self-focussed 

attention, an interpretation that was confirmed by the observed negative 

correlation found with efficiency at tasks that require external attention. 

 Demonstrated that this measure is directly related to an individual’s inhibitory 

control efficiency, furthering understanding on the powerful distracting 

properties of self-related material. 

 Revealed patterns of functional connectivity of not only the DMN but also the 

FPCN that are related to ones’ tendency to direct attention inwards. 

 Left open questions about how and why two measures of self-focussed 

attention, that of the magnitude of the self-reference effect and private self-

consciousness differ.  
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List of Abbreviations 

ADHD 
 

Attention Deficit Hyperactivity Disorder 

amPFC 
 

Anteromedial Prefrontal Cortex 

BG 
 

Basal Ganglia 

dlPFC 
 

Dorsolateral Prefrontal Cortex 

dmPFC 
 

Dorsomedial Prefrontal Cortex 

DMN 
 

Default Mode Network 

ERP 
 

Event-related potential 

FFA 
 

Fusiform Face  

FC 
 

Functional Connectivity 

FPCN 
 

Frontoparietal Control Network 

GNG 
 

Go/No-Go  

HF+ 
 

Hippocampal Formation 

IPS 
 

Intraparietal Sulcus 

LpSTS 
 

Left posterior Superior Temporal Sulcus 

lvATL 
 

Left ventral Anterior Temporal Lobe 

mPFC 
 

Medial Prefrontal Cortex 

OFC 
 

Orbitofrontal cortex 

rMTG 
 

Right Middle Temporal Lobe 

rSMG 
 

Right Supramarginal Gyrus 

SCS 
 

Self-consciousness Scale 

SSRT 
 

Stop Signal Response Task 

vmPFC 
 

Ventromedial Prefrontal Cortex 
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