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Abstract 

Background: Studies in adults have shown physiological protection of a ‘set-

point’ for weight, explaining why obese adults who diet eventually regain 

weight.  

Objective: We hypothesised that set-points for weight, and their physiological 

defence, are flexible in childhood but become fixed around puberty. We aimed 

to show that obese children who lost weight had less ‘reflex’ changes in satiety 

hormone profiles (that would drive weight regain), compared with adolescents 

who had experienced a similar degree of weight change. 

Method: Prospective cohort study. 41 subjects; 21 obese pre-pubertal 

children (age 3-7 years; 11 male) and 20 obese adolescents (age 14-18 years; 

10 male). Obesity defined as BMI >2.4 SDS. Subjects recruited as either 

‘reducers’ (relative/absolute weight loss of ≥ 10% in the preceding 9-15 

months) or ‘maintainers’ (controls). Measures: Resting Energy Expenditure 

(REE), bioelectrical impedance, and fasting and post-prandial (every 30 

minutes for 3 hours) satiety hormone profiles.  

Results: Post-pubertal adolescents had 31% lower Ghrelin concentrations 

(4%-51%, p=0.03) and 50% higher Amylin concentrations than pre-pubertal 

children (18%-91%, p=0.001). The association between Ghrelin, Amylin and 

GIP concentration and weight change was similar for both pre and post-

pubertal children (p=0.79, p=0.39, p=0.79 respectively). No associations were 

found for Peptide YY, Pancreatic Polypeptide, or active GLP-1. Regarding 

satiety, post-pubertal reducers reported less hunger and higher satiety than 

pre-pubertal children (p<0.05). REE in pre-pubertal weight reducers and 

maintainers were similar (50kcal lower, -143 to 242, p=0.6) but post-pubertal 

reducers had 250kcal lower REE compared to post-pubertal maintainers (-68 

to 572, p=0.1). 

Conclusion: Satiety hormone profiles were similar between pre and post-

pubertal subjects, and contrast with adult data where weight reduction leads 

to sustained increases in Ghrelin and reductions in the other hormones. These 

findings indicate that the physiological mechanisms which act to protect 

against weight change in adults develop later than in the adolescent years. 
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Chapter 1 Introduction 

1.1 Summary of Thesis Chapters 

In this chapter the definitions used in obesity and the different techniques 

available for measuring obesity are covered. Factors contributing to the 

aetiology of obesity are detailed such as dietary intake and food types, 

hypothalamic obesity and genetic elements. The theories underpinning body 

weight regulation and the evidence supporting them are explored, and the 

basic science of appetite regulation including the different satiety hormones 

involved, and factors influencing their production are discussed. The 

physiology behind pubertal development in males and females and the 

influence that obesity has on its progression is debated, and finally, different 

aspects of energy expenditure are discussed, including definitions, 

measurement with particular emphasis on the accuracy of the Medgem® 

Handheld indirect calorimeter, and the relationship of resting energy 

expenditure to obesity and weight loss. 

Chapter 2 covers more specific topics pertaining to paediatric obesity and the 

diagnosis, treatment and management of the condition and its associated co-

morbidities are discussed, with special significance given to the metabolic 

syndrome in children and adolescents. Areas covered include the prevalence 

of paediatric obesity, the impact of diet and lifestyle choices, the influence of 

socioeconomic factors and the effectiveness of obesity treatment 

programmes. Current pharmacological treatments and potential future 

therapies are discussed, and also the different surgical options available in 

adolescents, including how satiety hormone responses and weight regulation 

are affected by the different surgical procedures. 

The clinical implications of the set point theory and how it differs in children 

and adults are discussed in Chapter 3. The paper published in the New 

England Journal of Medicine by Sumithran et al 2011, detailing the long-term 

persistence of hormonal adaptations to weight loss in obese adults is 

explored, and how the findings from this paper formed the concept behind this 

research study.  

There were 3 distinct parts to the research study, the first of which is included 

in chapter 3, and was a scoping project looking at auxological data collected 

from all male patients attending the Weight Management Service from 2008 
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to 2014 at The Royal Children’s Hospital in Melbourne. The scoping project 

highlighted that there were insufficient post-pubertal obese male patients, 

which is why the decision was made to recruit female participants as well. The 

conclusions from the scoping project helped to inform the aims and outcomes 

of the thesis.  

The aim of the research was to carry out a pilot study to observe how satiety 

signalling varies in obese children and adolescents for a given level of 

preceding BMI SDS change, and to compare future weight trajectories and 

associated metabolic adaptations. 

Chapter 4 details all aspects of the empirical research study. Firstly the 

methodology, with particular emphasis on how the 41 participants were 

recruited and how the study groups were chosen, and then information 

regarding data collection, coupled with the measures used to collect the data. 

This is followed by a comprehensive section on the statistics used to analyse 

the data and why certain statistical models were chosen, namely linear mixed-

effect models. 

The results, in particular with respect to the satiety hormone responses 

recorded in the 4 different groups are presented, and the discussion 

concludes that there were no significant differences found in satiety hormone 

profiles between the pre and post-pubertal groups, so the findings did not 

support the study hypothesis. 

The third part of the empirical study is in chapter 5 and involves the follow-up 

period, where 23 of the original 41 participants had their resting energy 

expenditure and auxological measures repeated in clinic, on average 11 

months after they had their satiety hormone profiles carried out. The 

methodology is listed, but owing to the smaller participant numbers, the 

statistical analysis of the data was limited. The influence of fat free mass on 

resting energy expenditure is discussed, and how it changes with increasing 

age and puberty. 

Study results showed that pre-pubertal children had a higher resting energy 

expenditure adjusted for weight and fat free mass compared to post-pubertal 

children, which would help them to maintain a lower weight trajectory and 

prevent weight regain. In obese adolescents, physical activity, particularly if it 

promotes substantial fat oxidation, is important for weight maintenance after 

diet induced weight loss, and larger studies are still needed to explore the 

relationship between weight loss and resting energy expenditure in pre and 

post-pubertal adolescents. 
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The final chapter starts by revisiting the hypothesis for the study, namely that 

set-points for weight and their physiological defence are flexible in childhood 

but become fixed around puberty. This is followed by a summary of the 

research findings and how they relate to the hypothesis. While distinct 

variations were found in several specific hormones between the pre and post-

pubertal groups, there were no demonstrable differences in satiety hormone 

profiles between the two groups. These findings did not support our 

hypothesis and suggested that the physiological mechanisms involving satiety 

hormone responses which act to protect against weight change develop later 

than in the adolescent years. 

The resting energy expenditure results however found that the obese 

adolescents who lost weight experienced a similar reduction in resting energy 

expenditure to obese adults who lose weight, which would act to promote 

weight regain, and these findings did support the hypothesis, and is an area 

for further research development. 

The future direction of obesity research is then discussed, including new and 

exciting pharmacotherapy developments with satiety hormones, successful 

public health initiatives from other countries, electronic implants to supress 

appetite, and new and interesting theories regarding body weight regulation. 

The thesis concludes by looking at the overall picture of paediatric obesity and 

describes all of the factors that would need to be addressed in order to cure 

the condition. 
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1.2 Aetiology of Obesity 

The World Health Organisation (WHO) defines obesity as “abnormal or 

excessive fat accumulation that may impair health” (1). However, the National 

Health Service (NHS) defines obesity as “when a person is carrying too much 

body fat for their height and sex” (2), and uses Body Mass Index (BMI) to 

categorise individuals into overweight, obese and morbidly obese groups. 

Currently there is no statutory definition of obesity, and the aetiology of obesity 

is complex and has been attributed to several different factors. 

 

1.2.1 Definition of Obesity 

Unlike in adults, where there are universally accepted parameters of obesity, 

there is greater variation in defining “overweight” and “obesity” in children, 

owing to the fact that childhood is a time of growth and development (3). 

BMI, which is the weight in kilograms divided by the square of the height in 

metres, is expressed as a Standard Deviation Score (SDS) or Z score, which 

allows for comparisons between children of different ages and sex. 

An adult aged 18 years or over, would be classified as obese if their BMI 

exceeded 30kg/m2, and overweight if their BMI was greater than 25kg/m2. As 

a child’s BMI will change considerably from birth to adulthood, fixed cut-offs, 

such as those used in adults, cannot be applied in children. Instead thresholds 

are used, which are derived from a reference population, and they take into 

account the child’s age and sex. They are calculated by weighing and 

measuring a large sample of children in order to provide average BMI values 

for male and female children at different ages. An individual child’s 

measurements can then be compared to the reference population, and the 

degree of variation from the expected value determined. A child’s BMI Z score 

or SDS therefore indicates how many units (of the standard deviation) a child’s 

BMI is above or below the average BMI value for their age group and sex (3). 

Many countries have their own population specific thresholds for assessing 

BMI in children, so there are a number of child growth references available. 

There are however certain child growth references that are more commonly 

used in the UK and internationally.  

In the UK, the British 1990 growth reference (UK90) is used for population 

monitoring and clinical assessment in children aged ≥ 4 years, with the WHO 

(World Health Organisation) child growth standard used for children from 0-4 
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years. The UK90 BMI reference provides centile curves for BMI for British 

children from 0-23 years, based on 32,222 measurements taken between 

1978 and 1994. The BMI cut-offs used are: 

 2nd centile for underweight, 

 85th and 91st centile for overweight for population monitoring and 

clinical assessment respectively, and 

 95th and 98th centile for obese for population monitoring and clinical 

assessment respectively. 

Most published prevalence figures in the UK are based on the population 

surveillance thresholds of 85th and 95th centiles of the UK90 growth reference, 

while the 91st and 98th centiles of the UK90 reference are generally used to 

classify children as overweight and obese and in need of clinically 

intervention, although a diagnosis of obesity or overweight is rarely made on 

BMI measurements alone. The UK90 thresholds are rarely used outside of the 

UK(4, 5).  

In contrast, the International Obesity Task Force thresholds (IOTF) are widely 

used internationally. The IOTF thresholds are taken from BMI data from 6 

large cross-sectional surveys from Brazil, U.K, Hong Kong, the Netherlands, 

Singapore and the United States, and includes samples taken from 192,727 

children aged 0-25 years. Three grades of thinness are defined from 

equivalent adult BMIs of 16,17 and 18.5, having been derived by extrapolating 

from the adult BMI cut-offs of 25kg/m2 and 30Kg/m2 for overweight and obese 

respectively, and taking into account age and sex (6, 7). While the advantage 

of using the IOTF thresholds are that it allows international comparisons of 

levels of obesity in children to be made, there are disadvantages to averaging 

the centiles of several countries. It has been highlighted that the international 

definitions may not be appropriate to use with national data as they 

exaggerate the difference in prevalence between girls and boys, especially in 

under 5 year olds (8). Concerns have also been raised about the sensitivity of 

the IOTF values which are adequate at the lower overweight cut-off but are 

less robust at the obesity cut-off values (9). Consequently it has been 

recommended that for single country studies, definitions compatible with 

national reference curves would be more appropriate (8). 

The WHO 2007 growth reference was derived from a combination of the 

Multicentre Growth Reference Study (1997-2003) with samples from countries 

including Brazil, Ghana, India, Norway, Oman and the United States, in 

children aged 0-5 years, and pooled growth data from the USA National 

Centre for Health Statistics (1977) in 1 – 24 years olds. The WHO BMI 
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thresholds used are based on a single standard deviation spacing, with 

thinness < -2 SDS, Overweight between +1 SDS and < +2 SDS and Obese > 

+2 SDS. Although the WHO 2007 growth reference is used internationally it is 

not used as widely as the IOTF thresholds. 

The relevance of which growth reference data are used becomes important 

when comparing results from different studies, as it is vital to compare like 

with like. In this study, the UK90 growth reference were used, as this was felt 

to be the most appropriate for the cohort being studied.  

However, there is a lack of consensus regarding the definition of BMI in 

children, with various cut-off criteria based on difference reference 

populations. 

 

1.2.2 Measures of Obesity 

Obesity refers to a state where excess fat is stored in adipose tissue (10). BMI 

is a good measure of adiposity but it is limited by the fact that it cannot 

distinguish between fat and fat-free components of body weight, and can only 

give an indirect estimate of total body fat. In addition, as the distribution and 

percentage of fat varies depending on an individual’s sex and ethnicity, the 

significance of a particular BMI will also vary. Another disadvantage of BMI, is 

that height, which is one of the components in calculating BMI, is dependent 

on sex, age and relative leg length, and this is particularly relevant in growing 

children (11). 

However, BMI measurements remain a useful first point of problem 

identification, are easy to calculate and provide a useful routine screening tool. 

Current BMI cut-offs have relatively high specificity, but lower sensitivity, 

which means that non-obese children are unlikely to be wrongly diagnosed, 

whereas obese children may be missed (11).  

Different techniques have been adopted to measure fat in people, and they 

can be categorised depending on the general principle on which they are 

based into anthropometric, density-based, diagnostic imaging and 

bioelectrical impedance. 

The optimal technique to measure fat would be accurate, precise, accessible, 

inexpensive, acceptable, and well documented. While many of the commonly 

used reference methods such as Computerised Tomography (CT), Magnetic 

Resonance Imaging (MRI), densitometry and Dual Energy X-ray 

Absorptiometry (DEXA) fulfil the accuracy criterion, commonly encountered 
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problems include the cost, radiation, training of operators and accessibility to 

equipment, such that the optimal measurement technique, which is able to 

satisfy all the above criteria, does not exist (12). 

 

1.2.2.1 Anthropometric measures 

These are simple and inexpensive proxy measures of overall and central 

fatness, which do not have optimal accuracy and are unable to distinguish 

between fat mass and fat-free mass (12). 

1.2.2.1.1 Waist circumference 

Central fat, which is also described as intra-abdominal or visceral fat, is more 

pathogenic i.e. associated with more co-morbidities, and there is evidence that 

excess fat in children and adolescents is more likely to accumulate in the 

abdominal region (13) .  

Waist circumference measurement is a useful tool in the assessment of 

central obesity in overweight and obese individuals, as it is more closely 

correlated with intra-abdominal fat content and cardiovascular risk factors 

(14). However, training is required to perform waist circumference 

measurement accurately and different techniques exist. A common technique 

is to use a non-elastic measuring tape, applied horizontally to the ground and 

under tension, between the iliac crest and costal arch, following expiration by 

the patient (figure 1.1). The mean value from two measurements should be 

used to improve accuracy (15). 

Waist circumference is also subject to age, sex and ethnic specific alterations. 

While in adults, abdominal obesity is defined by waist circumferences of 

≥80cm in females and ≥94cm in males (16), there is no uniform cut-off value 

in children and adolescents, and many countries have their own specific 

percentiles for waist circumferences. In Australia, published standardised 

techniques exist for waist circumference measurements comparing them to 

reference data generated specifically from Australian children (17). 

Standard waist circumference measures may however miss an apron of fat 

termed panniculus, and it has been shown that pannicular rather than 

standard waist circumference measurements better correlate with absolute 

measures of fat mass, and their change over time in clinically 

overweight/obese youth (figure 1.1) (18). 
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Figure 1.1. Pannicular (left) versus standard (right) measurements of waist 
circumference. (18) 

As indicated by the red arrow, the tape position remains between the lower 

costal border and the iliac crest (dotted lines) in both measurements of waist 

circumference, but pannicular waist measurements include any apron of fat, 

whereas the tape is kept horizontal in the standard measurement.  

1.2.2.1.2 Waist to hip and waist to height ratios 

In adults, a greater waist to hip ratio indicates a relatively larger amount of 

abdominal fat, although it is influenced by several other factors, and is a poorer 

measure of body fat distribution in children (11). However, waist to height 

ratios are now being used more frequently in children to assess fat distribution 

as they have the advantage of being more age dependent, and a uniform cut-

off of 0.5 can be applied i.e. cardiometabolic risk factors are increased if the 

weight to height ration is > 0.5 (19, 20). 

1.2.2.1.3 Skin-fold thickness 

Subcutaneous fat can be used as an indicator of total fat, and can be 

measured by firmly grasping a fold of skin with callipers, such as the triceps 

skinfold, and raising it with no muscle included (figure 1.2). Skinfolds from a 

variety of sites can be included, representing both peripheral and trunk area, 

and equations can be applied to predict percentage body fat. While this is a 

cheap and relatively simple measurement to perform, some patients may be 

reluctant to undress to have it carried out, and measure reproducibility can be 

difficult, particularly if the patient is very obese (11). 
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Figure 1.2. Measurement of Triceps skinfold 

 

1.2.2.2 Body composition 

1.2.2.2.1 Hydrodensitometry 

If the density (weight per unit volume) of a human body is known,  then the 

relative proportions of fat and fat-free mass can be estimated by using specific  

equations (21). Hydrodensitometry involves weighing a patient both inside and 

outside of a large tank of water, and is based on Archimedes’ principle, that if 

the density of an object exceeds that of water then it will sink. Fat is less dense 

than water, whereas fat-free tissue (bone and muscle) is more dense than 

water. While this is often considered to be the gold standard for body 

composition assessment, it is time consuming, difficult to carry out in certain 

patients such as children, and is predominately used in research settings (11). 

1.2.2.2.2 MRI (Magnetic Resonance Imaging) and CT (Computerised 

Tomography) Scans 

MRI and CT scans can assess not only the overall fat mass but also its 

regional distribution, by using strong electromagnetic fields and a series of x-

rays respectively. While they can both produce cross sectional high-resolution 

images, they are expensive to use, and CT scans involve radiation exposure 

(11). 

 

1.2.2.2.3 Dual Energy X-ray Absorptiometry (DEXA) 

DEXA is used to calculate both fat and fat-free mass, and total and regional 

body composition, using a series of transverse scans with low energy X-ray 
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beams moving across the body inch by inch, collected by an external detector. 

The beams are differentially absorbed by various tissues in the body. DEXA 

has a high degree of accuracy compared to hydrodensitometry, and is 

primarily used to measure bone mineral density, although it can be used to 

indirectly measure fat mass. DEXA is simple and non-invasive and can be 

used over a wide range of ages and body sizes, although its use in assessing 

adiposity in children is mostly limited to research settings, as there is a cost 

implication, radiation, and it requires technical expertise (11). 

1.2.2.2.4 Bioelectrical Impedance (BIA) 

The human body consists primarily of water with ions, through which an 

electric current can flow, and water in the body is either extracellular 

(approximately 45%) or intracellular (approximately 55%). The body also 

contains non-conducting materials, such as body fat, which provides 

resistance to the flow of current, with adipose tissue being significantly less 

conductive than bone or muscle.  Bioelectrical impedance is based on the 

principle that electric current flows at different rates through the body 

depending on its composition, and there is a direct relationship between the 

concentrations of ions and the electrical conductivity, and an indirect 

relationship between the ion concentration and the resistance of the solution 

(22). 

Impedance is a drop in voltage when a small constant current, with a fixed 

frequency, passes between electrodes spanning the body (22). Lean body 

mass and fat mass can be calculated from the difference in conductivity. 

Advances in technology in BIA over the last decade have included increasing 

the number of contact electrodes from four to eight, using multi-frequency 

electrical levels to estimate the intracellular and extracellular fluids, and 

incorporating a digital scale to measure body mass (23). 

BIA is simple to perform, quick to carry out and non-invasive. The results are 

available immediately and are reproducible with <1% error when repeated. It 

also gives reliable measurements of body composition with minimal inter and 

intra-observer variability (22). However, there are factors which impact on the 

BIA results. BIA measurements assume that the body is a cylindrical shaped 

ionic conductor with homogenous composition, a fixed cross-sectional area, 

and a uniform distribution of current density. In reality, the human body is not 

uniform in length, cross-sectional area or ionic composition, and ethnic 

variation in terms of different body density and proportional limb length also 

influences the accuracy of BIA measurements, and needs to be taken into 

account. Empirical equations have been developed for estimating Fat Free 
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Mass (FFM) and Body cell mass by using sex, age, weight, height and race, 

but are not accurate when a generalised equation is applied for different ethnic 

groups (24).  

BIA measurements are affected by the consumption of food and drink, which 

is why an overnight fast prior to taking readings is recommended. Results can 

also be altered by moderate to intense physical activity 2-3 hours before the 

measurement, as well as the ambient temperature of the room (cold increases 

impedance). In addition, certain individual characteristics, such as where in 

the menstrual cycle a women is, may affect results, but this can be more 

challenging to standardise (22).    

1.2.2.2.5 Tanita BC-418 versus DEXA 

The Tanita BC-418 MA segmental body composition analyser (Tanita, Japan) 

is a single frequency hand to foot BIA device that uses 8 electrodes (figure 

1.3). It uses a single-point load cell weighing system in the scale platform, and 

estimates body composition in the standing position, and measures whole 

body and segmental estimates of fat (right arm, left arm, trunk, right leg, left 

leg). It uses an algorithm incorporating impedance, age, gender and height to 

estimate percentage Fat Mass (%FM) and categorizes individuals into two 

activity levels: standard and athlete. The athlete mode is characterised as a 

person 17 years or above, who should be involved in intense aerobic 

exercises for at least 10 hours a week, with a resting pulse rate of <60 bpm 

(23). The precision (coefficient of variation) of repeated measures for the 

Tanita BC-418 is on average 0.3% for %FM. 
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Figure 1.3. The Tanita BC-418 bioelectrical impedance device 

There are conflicting results regarding single frequency BIA, as some studies 

have shown that it is a valid estimator of body composition in healthy 

individuals, while others state that it overestimates the FFM, thereby 

underestimating %FM of the obese and overestimating %FM of athletes.  The 

criterion for selecting the athletic mode in the Tanita BC-418 is also 

questionable as it may not capture individuals who are more physically active 

than mainstream population, but do not meet the criteria as suggested by the 

manufacturer. 

Compared to DEXA, BIA provides systematically lower values for truncal and 

total %FM. The discrepancies increased with the degree of adiposity, 

suggesting that the accuracy of BIA is negatively influenced by obesity, 

although this was more evident in BIA devices using 4 electrodes rather than 

8 electrodes. Results from a study comparing DEXA (Prodigy GE Lunar 

model) specifically to the Tanita BC-418 found that the Tanita provided on 

average 2-6% lower values for %FM in men with a normal BMI and in women 

in all BMI categories (23). However, the study used the Prodigy GE Lunar 

DEXA as the reference standard, but the relative validity of this compared to 

a four component DEXA model (4C: water, bone mineral mass, fat and 

residual), which provides a more accurate measurement of FM and FFM,  

reported a non-differential overestimate of %FM compared to the four 

compartment model i.e. the Prodigy GE Lunar provided a higher estimate of 

%FM (23). 
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1.2.3 Lifestyle Induced Obesity 

Children need a careful balance between energy consumption and energy 

expenditure in order to maintain their recommended body weight, and to 

ensure adequate growth (figure 1.4). However, a small but persistent average 

daily energy imbalance can cause an individual to become overweight, 

because over a number of years it can lead to considerable gains in body 

weight. In childhood, the energy requirements vary during the different 

development stages, and there are several nutritional factors such as dietary 

behaviour, food selection and nutrient supply, which contribute to the 

development of adiposity. 

 

Figure 1.4. Components of dietary energy intake and energy expenditure that 
may impact the development of overweight and obesity in children and 
adolescents. 

 

1.2.3.1 Nutrition 

The offspring of overweight and obese women are at increased risk of being 

born large for gestational age, and of becoming overweight or obese as 

children and adults. The risk relates to maternal pre-conceptual weight, weight 

gain during pregnancy and maternal glucose metabolism during pregnancy 

and breastfeeding (25). 

During infancy, dietary intake has a greater impact on nutrient balance than 

energy expenditure. Early childhood feeding appears to be a major contributor 
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to childhood obesity. The type of infant feeding (breast milk vs formula milk) 

and also the rate of weight gain in infancy in the first year of life, are important 

factors linked to weight status in later childhood. A meta-analysis comparing 

breastfed with non-breastfed infants found a slight decrease in the odds of 

becoming overweight due to breast feeding (26). In addition, high protein 

intake from formula in infants is associated with a higher BMI, which is evident 

until 6 years of age (27). There is also some evidence that the early 

introduction of solid food when weaning infants may increase the odds of 

overweight in children (26). 

In the Kiel Obesity Prevention Study (KOPS), energy gain was calculated from 

the collected longitudinal data in normal weight children who maintained their 

weight and in those who became overweight. The mean energy gains were 

approximately 25 kcal/day for the children aged 6-10 years and approximately 

40 kcal/day for those aged 10 to 14 years (28). Therefore in children and 

adolescents, a small but regular decrease in daily energy intake, ideally 

combined with a moderate increase in daily physical energy expenditure, 

would in theory be enough to stop the progression of obesity. However, a 

Cochrane systematic review of 55 published interventions to prevent obesity 

in children found on average a small but significant relative reduction in BMI 

or a 0.3kg relative reduction during the intervention period (29), (as all children 

will gain weight as they grow, comparisons must be relative). Although an 

intervention achieving 0.3kg relative weight reduction would be of value in 

younger children, in older children a 0.3kg weight reduction would only 

represent 3-4% of the average change needed (to no longer be overweight or 

obese), and it would be an even lower percentage if the intervention were 

targeted at older children who were overweight or obese (30). 

 

1.2.3.2 Food types 

An important factor contributing to the nutritional cause of childhood 

overweight and obesity is the energy density of food, which is defined as the 

energy content (in kcal of KJ) per unit weight (g or 100g). Foods with a greater 

energy density are typically high in sugar and/or fat, contain little water or 

dietary fibre and are often low in micronutrients. Children and adolescents 

obtain approximately 20% of their energy intake from the added sugars in 

foods and beverages, with the long-term high consumption of sugar-

sweetened drinks in particular being associated with high body weight in 

adolescents, especially in females (31).  
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Fruits and vegetables have a high water and dietary fibre content, which 

makes them low energy density foods. Their consumption helps to reduce 

total energy intake by displacing high energy density foods from the diet, and 

the reduction in the glycaemic load of food may also alter the postprandial 

hormones involved in satiety initiation (32). Increasing dietary water intake is 

another way to reduce energy by displacing the consumption of sugar-

sweetened beverages. However, the association between increasing water 

intake and reducing daily energy by decreasing food intake is difficult to prove, 

and studies have yielded inconsistent results, primarily because of a lack of 

good quality studies (33) . 

It has also been suggested that increasing the amount of dairy in the diet leads 

to reduced adiposity in children (34).  

 

1.2.3.3 Environmental factors 

Parental dietary intake and familial nutritional behaviour are important 

components in the development of childhood nutritional habits. The parental 

intake of fruit and vegetables for example is positively correlated with the 

consumption of these foods in their offspring (35). Family meals are also 

associated with a number of health benefits for children, and significant 

associations have been found between positive family and parent level food 

related dynamics (parental food positive reinforcement, group enjoyment, 

food communication) and reduced risk of childhood obesity (36). Parents are 

encouraged to emphasize healthy food choices rather than restrictive eating 

patterns and to advocate moderation rather than overconsumption of food 

(37). 

The frequency of eating is also important, and children and adolescents who 

eat breakfast have more favourable adiposity indices and better nutrient intake 

than those who skip breakfast (38). In fact, observational studies have shown 

that adolescents, particularly males, who eat more frequently are more likely 

to have a lower body weight during childhood (39). However, it is essential 

that food portion sizes are also taken into consideration, as multiple, well 

controlled studies have shown that providing subjects with larger portions of 

food in a research setting leads to significantly higher energy intake (40, 41), 

although participants reported similar ratings of hunger and fullness despite 

eating larger portions of food (40). In children, portion size alone can account 

for 17 – 19% of the variance in energy intake (42), and children with a higher 
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BMI have been shown to consume portions of food that were as much as 

100% larger than those consumed by children with a lower BMI (43).  

There are several factors influencing why particular foods are selected, and 

food choices are usually made on the basis of taste, cost, convenience (which 

refers to the time spent on buying, preparing and cooking food) and to a lesser 

extent health and variety (44). Regarding the increasing risk of obesity, portion 

size in particular appears to be the primary determinant of energy intake, more 

so than energy density (42). Increasing portion sizes are particularly evident 

in pre-prepared convenience foods, and these foods are often high in fat, high 

in energy density, deficient in nutrients and have a greater number of food 

additives and flavourings. In addition, the practise of supersizing portions is 

relatively common in fast food outlets, with French fries and sugary drinks 

being typical items chosen. Another reason for the increased consumption of 

convenience foods is that in many developed countries they are relatively 

cheap, which is an important consideration when there are economic 

constraints, whereas the more nutrient dense lean meats, fish, fresh 

vegetables and fruit, often cost more (45). In a recent study looking at the 

household availability of ultra-processed foods and obesity in nineteen 

European countries between 1991 – 2008, the average household availability 

of ultra-processed foods ranged from 10.2% in Portugal to 50.4% in the UK. 

The study found a significant positive association between national household 

availability of ultra-processed foods and national prevalence of obesity among 

adults, and highlighted the need for public policies to promote the 

consumption of unprocessed foods, while also making ultra-processed foods 

less available and affordable (46).  

The food industry also targets children and adolescents through their 

marketing of convenience foods, and with early and repetitive exposure to 

advertisements, with the goal being to develop brand loyalty at a young age 

(47). 

 

1.2.3.4 Management and prevention 

To date, no country has managed to reverse its obesity epidemic, and while 

there have been areas of improvement, this is predominately from the 

plateauing of childhood obesity in countries where the prevalence was high 

(47). Based on research and practice, there is a consensus regarding the core 

policy actions that are needed to promote healthy diets, and these have been 

brought together in the NOURISHING framework, created by the World 
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Cancer Research Fund International (48). The framework identifies 3 domains 

(food environment, the food system, and behaviour-change communication), 

which cover 10 areas where policy actions can be taken, and the 

NOURISHING framework can be adapted to different countries around the 

world (figure 1.5). 

In order to prevent the development of obesity, it is important to take into 

consideration dietary patterns. For children and adolescents (2-18 year olds), 

it has been recommended that slow absorbing carbohydrates and plant-based 

foods should be the main dietary constituents, and plain water should be the 

main source of fluids. In addition, children should eat at least 4 meals a day, 

which should include breakfast, and the consumption of convenience food is 

discouraged (49).  

  

 

Figure 1.5. World Cancer Research Fund International NOURISHING 
framework (food policy framework for healthy diets and the prevention of 
obesity in children and adolescents). 

To have balanced diet, several different food types need to be combined from 

each of the main food groups, in the correct quantities. This information can 

be presented visually in different ways, one of which is the Food Pyramid, 

which was originally pioneered by the Harvard School of Public Health in 

America (50), and this has been adapted by the Irish Department of Health to 

provide guidance for adults, teenagers and children aged 5 years and over 

(figure 1.6). It also includes a serving size guide based on the hand rule, where 

the palm of the hand represents the recommended serving size of meat or 
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fish, whereas a clenched fist represents the amount of carbohydrate. In the 

UK, similar information is provided in the Eatwell guide, which uses a pie chart 

to represent the types of foods that should be eaten and in what proportion 

(figure 1.7) (51). 

Environmental factors associated with childhood obesity risk also need to be 

addressed, such as the marketing of foods aimed at children, regulating the 

nutritional quality of foods and their availability in schools, taxing sugar- 

sweetened beverages and labelling the front of packages with nutritional 

values, to name a few.   

Children from overweight and/or low socioeconomic status parents also have 

an increased risk of childhood obesity, and future intervention need to give 

specific attention to these children (52).   
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Figure 1.6. The Food Pyramid for adults, teenagers and children over 5 
years 
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Figure 1.7. The Eatwell guide (used in the UK to give a visual representation 
of the types and proportions of foods needed for a healthy and well 
balanced diet). 

 

1.2.4 Hypothalamic Obesity 

Hypothalamic Obesity (HyOb) has been defined as an intractable form of 

obesity that was initially described in patients with hypothalamic tumours and 

surgical damage. However, obesity that develops after a variety of insults to 

the hypothalamus, such as infections, trauma, infiltration, vascular problems 

and hydrocephalus, is now included in the definition, as well as acquired or 

congenital functional defects in central energy homeostasis (53).  

 

1.2.4.1 Aetiology 

The mechanisms underlying HyOb are complex and multifactorial, but it is 

damage to the Ventromedial hypothalamus that causes weight gain as a result 

of hyperphagia.  Hypothalamic damage in HyOb also compromises other 

functions of the hypothalamus and can lead to a lower resting metabolic rate, 

hypomobility, autonomic imbalance, insomnia and secondary hypopituitarism 

(growth hormone deficiency, hypogonadotrophic hypogonadism, secondary 

adrenal insufficiency, central hypothyroidism and diabetes insipidus) (53).  



21 
 

Leptin, which is a hormone synthesized in fat cells, is involved in the regulation 

of food intake and energy expenditure, by acting as a signal from the 

peripheral circulatory system to the hypothalamus. In HyOb, the disruption of 

leptin signalling, caused by the death of neurones in the ventromedial 

hypothalamus, prevents the integration of afferent leptin signalling, so that 

patients do not experience satiety or a sense of energy sufficiency (53). 

Consequently, children with HyOb exhibit intense hyperphagia with food 

seeking behaviours, which results in excessive weight gain, and occurs 

despite forced calorie restriction. The disruption in leptin signally is also 

associated with increased vagal tone, which results in insulin hypersecretion, 

which is in contrast to simple common obesity, where peripheral insulin 

resistance is the primary defect, leading to a compensatory β-cell response. 

Children with HyOb therefore have a higher insulin response to glycaemic 

load, although they frequently have normal fasting insulin levels (54).  

Craniopharyngiomas and Hypothalamic Obesity 

The survival rate for patients with Craniopharyngiomas, which are sellar 

embryonic malformations of low grade histological malignancy and low 

incidence (0.5-2/million/year), is high (92%). However, the quality of survival 

is frequently affected by HyOb, with 40-50% of patients with 

Craniopharyngiomas suffering from obesity or eating disorders following 

surgery. It is therefore vital that hypothalamic integrity is preserved in the 

surgical strategies used to treat craniopharyngiomas, and neurosurgeons now 

prefer stereotactic biopsy with radiation as the initial treatment of these 

tumours (55).  

Prader-Willi Syndrome 

Obesity is the leading cause of morbidity and mortality in Prader-Willi 

Syndrome (PWS), which is a genetic neurological disorder due to loss of 

paternally expressed, maternally imprinted genes within the long arm of 

chromosome 15 (q11 – q13), occurring in 1 in 16,000 births (56). These genes 

are widely expressed throughout the brain and hypothalamus. PWS has 

distinct nutritional phases, and hyperphagia and obesity develop after an initial 

phase of poor feeding and hypotonia. Although PWS is the most common 

cause of syndromal obesity, the exact mechanism for the development of 

obesity in PWS is still largely unknown, but it is thought that disruption in 

hypothalamic pathways of satiety control, in conjunction with abnormal satiety 

hormone responses to food intake, lead to hyperphagia and obesity (57). 

Patients with PWS have markedly increased levels of the satiety hormone 

Ghrelin (which is an appetite stimulant), in both the fasting and post-prandial 
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state when compared to controls (3-4 fold increase). However, the evidence 

linking hyperghrelinaemia with the development of hyperphagia in children 

with PWS is contradictory, and possible alternate causes of elevated ghrelin 

levels may be abnormal parasympathetic vagal innervation of the stomach 

and sympathetic tone  (58). These patients also have reduced energy 

expenditure because of hypotonia, and altered behaviour, such as temper 

tantrums if food is restricted. Obesity in PWS can only be prevented by strict 

supervision of food intake, and so far pharmalogical treatments of 

hyperphagia and surgical procedures have proved ineffective or with 

significant side effects e.g. Octreotide and increased risk of gallstone 

formation  (59) . 

  

1.2.4.2 Treatment of Hypothalamic Obesity 

HyOb is usually progressive and unresponsive to attempts to modify lifestyle 

through diet and exercise. Pharmacological treatment is also difficult and while 

several agents have been used to treat HyOb for limited periods (Octreotide, 

Triiodothyronine, Growth Hormone), no pharmaceutical therapy has had a 

consistent positive effect, although GLP-1 analogues may offer a new 

treatment of moderate to severe HyOb (60).   

It has been suggested that HyOb could be regarded as an extreme form of 

common obesity, as the efferent signals downstream of the leptin receptor 

neurone are similarly attenuated, therefore the study of HyOb has the potential 

to provide further clarification on the pathogenesis of common obesity in the 

general population (53). 

 

1.2.5 Genetics of Obesity 

Obesity is caused by both genetic and non-genetic factors. While the 

prevalence of rare monogenic forms of obesity has not increased significantly, 

there has been an increase in the prevalence of common obesity, which is a 

complex polygenic disease with both genetic and environmental components 

(61).  

 

1.2.5.1 Monogenic and Polygenic Obesity 

The evidence for the genetic component to obesity comes from family, twin 

and adoption studies. In one study, which was designed to assess genetic and 
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environmental influences involving 114 monozygotic twins, 81 dizygotic twins 

and 98 virtual twins (same age but unrelated siblings), the genetic variance 

contributed approximately 65% to heritability of BMI, while environmental 

factors contributed to the remaining balance (62). In childhood obesity, one of 

the crucial predictors for an increased risk is parental obesity, with one study 

involving 8,234 children demonstrating a four-fold increased risk of childhood 

obesity if one parent was obese and a 10 fold increased risk if both parents 

were obese (63). In addition, heritability estimates increase from early 

childhood through adolescence, owing to the genetic susceptibility genes 

interacting more strongly with environmental factors, such as the easy access 

to high calorie foods and the general reduction in energy expenditure (64).  

There is also a growing body of evidence demonstrating ethnic differences in 

the genetic predisposition to obesity, although many of the genetic variants 

responsible remain unidentified. Notable differences in the prevalence of 

obesity have been observed across diverse ethnic groups, with the Oslo 

immigration health study finding the highest prevalence of obesity among 

Turks (51%) and the lowest prevalence among the Vietnamese (2.7%), 

despite adjusting for lifestyle and socio-demographic factors (65). The Pima 

Indians of Arizona, have the highest prevalence of obesity (64% in men and 

75% in women), and are an example of the detrimental effects of transitioning 

from a traditional farming lifestyle to a more modern sedentary lifestyle (66). It 

is hypothesised that they possess thrifty genes, which were thought to exist in 

certain groups of people with hunter-gatherer evolutionary lifestyles, who had 

experienced periods of plenty and of famine, which had resulted in the natural 

selection of thrifty genes. These genes encode proteins that are involved in 

maintaining energy balance i.e. the conversion of food calories into fat when 

supplies are plentiful, but these genes no longer provide a survival advantage 

against starvation and instead they make the population more susceptible to 

obesity (67) . 

Explaining the heritability of common polygenic obesity has been a challenge 

because of the polygenic nature of the condition, combined with the strong 

influence of environmental factors. 

The two main approaches to investigate the genetics of obesity have been: 

1) Candidate Gene Approach: the analysis of candidate genes based 

on their known biological function related to regulation of metabolism. 

2) Genome Wide Strategies: This includes linkage analysis, where 

family based genome wide linkage scans assess the co-segregation of 

highly polymorphic genetic markers with a phenotypic trait/disease. 
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While this has been very efficient for monogenic forms of obesity, it has 

been less successful in polygenic obesity. This has led to the 

development of more advanced molecular biological techniques, and 

researchers are now able to employ Genome-Wide Association 

Studies (GWAS), which are a powerful tool in identifying genetic 

variants with a moderate effect size, and so far more than 30 

polymorphisms that are significantly associated with obesity have been 

revealed (68) . 

 

1.2.5.2 Childhood Obesity Susceptibility Genes 

Based on distinct genetic and phenotypic characteristics, there are 3 different 

types of childhood obesity, which are syndromic, non-syndromic and common 

obesity (69). 

Syndromic Obesity 

Well-known examples of syndromic obesity include Prader-Willi, Alstrom, 

Carpenter, Rubinstein-Taybi and Bardet-Biedel. There are approximately 30 

unidentified susceptibility genes responsible for rare monogenic forms of 

syndromic obesity, and generally, these children have extreme adiposity, 

intellectual disability and are physically dysmorphic (68). They can also have 

undefined neuroendocrine abnormalities, which may adversely affect the 

function of the hypothalamus, which has an important role in regulating energy 

balance. Children with syndromic obesity often have severe hyperphagia and 

reduce satiety, which then promotes weight gain. These syndromes often 

have complex genetics with several overlapping and undefined loci, which are 

thought to contribute to the altered regulation of energy balance (70).  

Regarding possible gene-diet interaction, a study involving patients with 

Prader-Willi Syndrome demonstrated that weight gain could be reduced and 

prevented by giving a low fat and modified carbohydrate diet (25% protein, 

20% fat and 55% modified carbohydrate). Children with Prader-Willi 

Syndrome have delayed gastric emptying because of ineffective stomach 

contractions. The diet was effective because of the increased absorption of 

carbohydrates, which then prevented hypoglycaemia and food craving 

behaviour (71).  

Non-Syndromic Obesity 

Non-syndromic obesity is defined as weight gain in the absence of other 

clinical symptoms. There are approximately 8 susceptibility genes that are 

responsible for rare monogenic forms of non-syndromic obesity, and they 
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include Leptin (LEP), Leptin Receptor (LEPR), Melanocortin-4 Receptor 

(MC4R), Proopiomelanocortin (POMC), Brain-Derived Neurotrophic factor 

(BDNF), Neurotrophic Tyrosine Kinase Receptor Type 2 (NTKR2), 

Prohormone Convertase 1 (PCSK1) and Single-minded Homolog 1 (SIM1) 

(69). These genes code for proteins that are involved in integrating peripheral 

and central neural signals in the hypothalamus via the leptin/melanocortin 

pathway, so are responsible for maintaining energy balance by regulating food 

intake and energy expenditure (72). Mutations in these genes cause severe 

hyperphagia and reduced satiety, which then leads to severe childhood 

obesity. While the restriction of a high fat diet may initially be partially 

successful in non-syndromic obesity, in the long-term weight reduction is 

difficult to maintain and is usually unsuccessful (69).  

 

 

Figure 1.8. Prioritisation for screening for monogenic obesity in children with 
early-onset severe obesity and hyperphagia. (73) 

Common Polygenic Obesity 

The GWAS approach enables a more comprehensive and unbiased strategy 

to identify causal genes related to obesity. It is also well established that in 

non-coding regions of the genome there are regulatory elements called 

enhancers and silencers, as well as genetics variants, which disrupt these 

elements and could confer susceptibility to certain complex diseases such as 

obesity (74).  
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Since 2007, many genetic loci have been implicated for BMI from the outcome 

of GWAS. Insulin-induced gene 2 (INSIG2) was the first locus to have a role 

in obesity to be reported using this method, although replication attempts 

yielded inconsistent outcomes (74). The fat mass and obesity association 

gene (FTO) was the second locus to be identified, and its primary influence is 

on BMI determination, which then in turn impairs glycaemic control, although 

the mechanism by which variants in FTO influences the risk of obesity remains 

largely unknown (75). Evidence that FTO is directly involved in the regulation 

of energy intake and metabolism comes from studies involving both FTO 

knockout and FTO overexpression mouse models, where lack of FTO 

expression leads to leanness, whereas enhanced expression of FTO leads to 

obesity (76, 77) . 

In childhood obesity, children’s phenotypes are less affected by co-

morbidities, treatment and environmental factors, which is in contrast to 

adults. Children also provide the opportunity to uncover genetic factors 

determining the risk of obesity, as the chronology of events and changes in 

metabolic alterations which ultimately result in obesity, can be recorded. 

Regarding genetic research studies in children, there have been fewer studies 

carried out compared to adults, and the studies have mainly focused on the 

replication of associations observed in adults i.e. variants of FTO and MC4R. 

However, two new loci (SGCCAG8 and TNKS/MSRA) have been identified for 

body weight regulation in a joint analysis of GWAS data for early onset 

extreme obesity (BMI ≥ 99th), in French and German study groups (78). As 

these two loci have never shown up in meta-analysis of GWAS on obesity in 

adults, they may represent susceptibility loci exclusively influencing childhood 

obesity.  

 

1.2.5.3 GOOS (Genetics Of Obesity Study) 

Following the discovery of Congenital Leptin Deficiency caused by mutations 

in the Leptin gene, the Genetics of Obesity Study (GOOS) was established 

(79). Led by Professor Farooqi, it aims to inform therapeutic strategies by 

understanding the fundamental mechanisms controlling body weight. To date, 

approximately 7000 patients have been recruited and 12 different gene 

disorders have been identified that can cause severe obesity in childhood. 

Recruitment criteria to the study includes severe obesity (BMI SDS >3), and 

early onset (before 10 years of age), with a particular interest in 

consanguineous families, families with a history of early obesity and children 

with developmental delay. In addition, the group are interested in exploring 
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how and why some individuals remain thin despite living in an obesogenic 

environment. So far, 2000 people (BMI < 18kg/m2) have been recruited to a 

UK cohort called STILTS (Study Into Lean and Thin Subjects) to explore the 

genes that protect them from gaining weight, and may allow them to burn 

calories more easily.  

1.3 Biology of Weight Regulation 

Historically, obesity has been viewed as a behavioural disorder, caused by a 

disrupted pattern of food intake. As such, the behavioural therapies employed 

to treat obesity have focused on dieting and modifying existing eating 

behaviours, and these have constituted the most common forms of treatment. 

However, the resistance of obesity to such lifestyle modifications has raised 

questions about the origin of obesity, and that obesity may actually be the 

natural physiological state for some individuals.  

Although the body weight of members of the general population can vary 

substantially, an individual’s body weight is relatively stable and varies 

typically only 0.5% over a 6-10 week period, with even weight changes over 

longer periods remaining relatively modest (80). This stability in body weight 

is suggestive of a homeostatic control, similar to body water and body 

temperature control. However, the only way to maintain a stable level of body 

weight is to balance the daily intake of energy with its expenditure. Therefore, 

if body weight is regulated, we would expect to see body energy perturbations 

to be met by compensatory adjustments in the intake and/or energy 

expenditure, leading to the active defence of an individual’s weight in order to 

maintain it at its normal level (81). 

An individual’s set-point for regulated body weight appears to be adjustable 

and will vary considerably over the life course in conjunction to naturally 

occurring physiological changes. The reason why adolescents and young 

adults appear to defend against weight loss more than children and older 

adults may simply represent an evolutionary adaptation associated with 

reproductive status, as future fertility requires the achievement and 

maintenance of a critical body weight/ or fat mass (82). In addition, it has been 

shown that the body is more efficient in protecting against weight loss during 

caloric deprivation compared to conditions of weight gain with overfeeding, 

which also suggests an adaptive role of protection in times of low food intake 

(83).  Experimentally, by manipulating specific hypothalamic sites, the set-

point for body weight can be adjusted, which highlights the primary role that 



28 
 

hypothalamic mechanisms play in setting the level at which individuals 

regulate body weight, with genetic, environmental and dietary influences on 

body weight also being expressed through these mechanisms (80). 

 

1.3.1 Set-point theory of body weight regulation 

It has been suggested that adults have a weight that is inherently determined 

and this is referred to as a ‘set-point’ for weight, and occurs through a 

combination of genetics, lifestyle and environmental factors (83). Several 

studies have shown that this set-point for body weight is strongly defended, 

despite variability in energy intake and expenditure (83).  

The set-point regulation model based on the concept of a negative feedback 

system around a target set-point, was first proposed in 1953 by Kennedy 

(figure 1.9) (84). However, it was the discovery of leptin in 1994, a hormone 

which is predominately produced by adipocytes and which interacts with 

receptors in areas of the brain that are linked to the regulation of energy 

balance, that provided compelling molecular evidence to support the feedback 

mechanism, and helped to re-establish Kennedy’s model for the regulation of 

body fatness, with leptin in its central role (84). In addition, the discovery of 

individuals with loss of function mutations in the gene encoding leptin, or in 

other genes in the neural pathways downstream from leptin, also provided 

support for the set-point model, as these individuals were extremely 

hyperphagic and obese (72). 

 

Figure 1.9. Set-point theory 

 

The Lipostatic model of body fat regulation based on a negative feedback 

system around a target set-point (84). 
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1.3.1.1 Evidence to support set-point theory 

There are many experimental studies in both animal and human models to 

support the existence of the set-point theory and the active defence of body 

weight. In rat experiments involving the restriction of the daily caloric intake 

for a group of male rats over several weeks to restrict their growth, once 

allowed to feed freely the rats quickly restored their weight to a level 

appropriate to their age and gender (85). Also, in a different study where rats 

had their body weights experimentally elevated by electrical stimulation of the 

lateral hypothalamus, a similar rapid and precise restoration to a normal body 

weight was observed once they were allowed to feed freely (86). Similar 

studies in humans have replicated these results, such as the semi-starvation 

study of Keys et al, where 32 male participants aged between 22 and 33 years, 

of normal weight, demonstrated a hyperphagic response to significant weight 

loss (25% of their body weight over a 24 week period) once released from 

their dietary restrictions, and the weight that they lost was regained in a 

relatively short time (87). Comparable studies involving people gaining weight 

have found that when overfeeding ceases, they lose the accumulated fat and 

return to a level approximating their original fatness, and also modulate their 

energy expenditure to resist the change in their food intake. These findings 

support the set-point model because the amount of weight loss or gain is less, 

and the speed that the weight returns to its baseline value is faster, than would 

be predicted in a passive system which is only regulated by unchanging 

average intake and expenditure levels, and it strongly suggests there is some 

active control over intake that is related to changes in body composition i.e. a 

discrepancy between adiposity and a set-point target (84). Indeed this 

phenomenon of weight regain following acute weight loss, and the failure of 

dieting as a long term strategy to tackle sustained weight loss, is often 

explained by using the set-point model and its defence of a specific body 

weight.  

 

1.3.1.2 Evidence against set-point theory 

Opponents of the set-point theory highlight its inability to account for the social 

and environmental factors associated with obesity, specifically the increasing 

prevalence of obesity that has occurred over the last 40 years, or why obesity 

tends to occur more frequently in certain groups, such as the least affluent 

members of Western populations (88). One explanation that has been 

suggested for the gradual increase in prevalence may be that people with high 
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metabolic susceptibility are the first to experience weight gain in response to 

an increasingly obesogenic environment.   

In addition, certain somatic and neuropsychiatric diseases and disorders such 

as tumour cachexia or anorexia nervosa, can rapidly affect weight gain or loss, 

implying that the tight regulatory system within the set-point model, can be 

substantially perturbed, and these perturbations can have long-term 

implications for body weight (84). 

Although individuals with mutations in the gene encoding leptin are obese, the 

majority of obese humans do not have any mutations in the leptin gene (89). 

In fact obese individuals with large levels of stored lipids actually produce 

abundant amounts of leptin, and while daily injections of leptin reduce body 

mass in a dose-dependent manner, the effect is much smaller than would be 

expected if a set-point system with leptin at the centre was in place (84). 

Finally, fat mass is integral to the set-point theory of body weight regulation. 

However, fat mass only accounts for a fraction of total body mass (ranging 

from as low as 5% to > 45%). The relatively constant body weight experienced 

by healthy individuals cannot be solely explained by the feedback loop 

between adipose tissue and the Central Nervous System (CNS), and if body 

weight is closely regulated then fat free mass must also be tightly regulated 

(84). 

 

1.3.2 Alternative theories of body weight regulation 

An alternative theory is the settling point model, which proposes that there is 

little active regulation towards a predefined body weight, but that body weight 

settles based on a number of factors, represented by the individual’s genetic 

predisposition, their interaction with their environment, and socioeconomic 

factors such as diet and lifestyle. Body weight then drifts around the level at 

which the group of factors that determine energy expenditure and food 

consumption achieve an equilibrium (83, 90).  An individual’s body weight 

would therefore remain stable as long as there were no long lasting changes 

in any of the factors that influence it. Therefore, using the settling point model, 

an obese person should experience a downward drift of their settling point 

without active resistance from the body, if they make long-term changes in 

their eating or exercising habits (83).  An analogy for body weight regulation 

in the settling point model is the level of water in a lake, where a natural 

equilibrium is present due to extra inflow of water, and the water in the lake 

will rise until outflow equals inflow (figure 1.10). The body energy stores 
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represent the lake, while rain is translated into energy input, and depth at 

outflow represents energy expenditure (90). Studies in humans involving 

subjects switching from a normal fat diet to a low fat diet eaten ad libitum, 

found that subjects lost body weight, but then regained their body weight when 

they returned to a normal fat diet, but did not exhibit any persistent effects of 

overfeeding (91), which would be expected in the set-point theory. However, 

in the settling point model it is difficult to establish exactly which factors are 

responsible for keeping weight balance, and it is unlikely that there is one 

single contributor. Therefore, while this model adequately accommodates 

social and environmental factors and gives an explanation for the world-wide 

increase in overweight and obesity, it struggles to take into account biological 

and genetic influences (84).  

Consequently, newer models for body weight regulation have been put 

forward, such as the “general model of intake regulation” and the “dual 

intervention point model”. These models aim to combine the uncompensated 

factors of the settling point model with the negative feedback concept, which 

is inherent in the set-point model (84). 
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Figure 1.10. Settling point system using levels of water in a lake.(84) 

 

  A -  In this schematic, the input to the lake is rain falling in the hills. The output of 

water from the lake is directly related to the depth of water at the outflow. The depth 

of the water in the lake reaches a settling point at which the outflow is equal to the 

inflow (indicated by the sizes of the arrows). 

  B -  If the amount of rainfall increases (denoted by the larger arrow), the level of 

water in the lake increases until a new settling point is reached, at which the outflow 

is equal to the inflow. 

  C -  Conversely, if the amount of rainfall decreases, the water level in the lake falls 

until a new settling point is reached, again where the outflow matches inflow.  

  D - The key characteristics of the settling point system are that a parameter of 

interest (e.g. body energy stores) has both inputs (energy intake) and outputs 

(energy expenditure). Importantly, for a settling point system to operate, one of 

these parameters must be independent of the size of the parameter of interest, and 

the other must vary in direct relation to the size of the given parameter (in this case 

the expenditure). The resulting settling point of the system varies in direct proportion 

to the unregulated flow. 
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1.3.3 Evidence supporting early plasticity in the regulation of set-

points for body weight 

Obese adults who lose weight exhibit strong physiological mechanisms which 

promote weight regain (81), and even extended treatment protocols are only 

associated with marginally improved outcomes (92). 

However in children, long-term maintenance of weight loss is highly 

achievable (93) and failure appears to be more associated with adverse social 

factors rather than strong physiological mechanisms acting to defend body 

weight (94).  

Additional evidence to support the physiological flexibility in body composition 

during the early years comes from studies that have examined the relationship 

between the timing of adiposity rebound and later obesity (95). This period, 

which is the inflection point at which BMI increases rather than decreases 

during normal growth, usually occurs at about 4-6 years of age, and may 

represent a critical window of opportunity for weight management in young 

children (96). 

It has been suggested that obesity in adulthood is merely a condition of altered 

energy regulation at an elevated set-point, and there is a wealth of evidence 

from genetically transmitted and diet induced forms of obesity in animal 

studies to support this (80). There is also limited data to indicate that these 

set-points for the regulation of body weight can be adjusted by early life 

factors, such as in rat studies, where maternal obesity during gestation 

increases the risk of later obesity in the rat offspring by altering neural 

pathways involved in energy homeostasis regulation (97, 98). Also, early post-

natal exposure of obesity-resistant offspring to the milk of genetically obese 

dams (female parent rats), alters the hypothalamic pathways involved in 

energy homeostasis causing them to become obese when fed a high fat diet 

as adult rats (97). 

 

1.3.4 Influence of obesity on pubertal development 

1.3.4.1 Puberty 

Puberty is the process of physical changes through which a child’s body 

matures into an adult body capable of sexual reproduction. It is initiated by 

hormonal signals from the brain to the gonad; the testes in a boy and the 

ovaries in a girl. On average, girls begin puberty at ages 9-11 years, and 

usually complete puberty by 15-17 years, whereas boys begin puberty at ages 
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10-12 years, and usually complete puberty by 16-17 years. Puberty which 

starts earlier than 8 years in a girl and 9 years in a boy is known as precocious 

puberty, and if there is an absence of secondary sexual characteristics by 13 

years in a girl or by 14 years in a boy, this is referred to as delayed puberty.  

Puberty follows a typical pattern of development. In girls, puberty usually starts 

with breast development, followed by pubic hair growth and finishes with 

menarche. In boys, true puberty starts with testicular enlargement, followed 

by pubic hair growth and enlargement of the penis. Pubertal development 

begins with activation of the hypothalamic-pituitary-gonadal axis (HPG), and 

the increasing production of Gonadotrophin-releasing hormone (GnRH) from 

the hypothalamus and the gonadotrophins Luteinising Hormone (LH) and 

Follicle Stimulating Hormone (FSH) from the pituitary gland. Clinically, 

pubertal status is classified using Tanner Stages; B1-5 for breast 

development, P1-6 for pubic hair development, and G1-5 for male genital 

development (99). However, as Tanner staging is dependent on the subjective 

evaluation of the examiner, there may be an element of bias, and in certain 

cases such as female obesity, there may be pseudo- or lipogynaecomastia 

instead of actual thelarche, which should be taken into consideration. The 

duration of pubertal development is usually over 4-5 years, although the actual 

timing of puberty is influenced by several factors such as genetics and 

ethnicity. On average black children enter puberty at an earlier age than 

Hispanic children, who have an earlier puberty than Caucasian children (100), 

although there is a large variation in the timing of puberty of up to 4 years 

within any given population. 

 

1.3.4.2 Effects of obesity on pubertal development 

The timing of puberty is integrally linked to weight gain and may play an 

important role in determining the degree of future weight gain (101). A rapid 

weight gain during infancy is associated with early pubertal development in 

both sexes, which supports the hypothesis that fast body growth and rapid 

weight gain during infancy influences pubertal development and brings about 

earlier maturation (102).  Normal pubertal development, and future fertility 

requires the achievement and maintenance of a critical body weight and/or fat 

mass (82). This forms part of the critical mass theory, where a critical fat mass 

of approximately 17% is required for menarche and a higher fat mass of 22% 

body weight is needed to maintain reproductive capacity. Therefore Anorexia 

nervosa and other medical conditions that negatively impact on weight, such 

as inflammatory bowel disease, delay puberty and are associated with 
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reductions in fertility in both men and women (103) whereas obesity is 

associated with earlier puberty, particularly in girls (101). However, there is a 

subset of obese children who can present with late puberty as detailed in a 

German study involving 1,383 overweight and obese children aged 10-16 

years, which found that obese children had later pubarche (where pubic hair 

develops independently from the activation of the HPG axis), menarche and 

voice break than their lean control group (104).  

The results of studies researching how childhood obesity influences the timing 

of puberty can be controversial, although there is agreement that the 

connection between obesity and pubertal development has pronounced sex-

dependent differences. 

 

1.3.4.3 Molecular mechanisms of puberty 

At a molecular level, evidence for a direct link between the regulation of weight 

and reproduction has been the finding that a hormone called the Gonadotropin 

Inhibitory Hormone (GIH) which acts as a molecular switch in the 

hypothalamus between reproduction and feeding (105). If weight is 

suboptimal, then increases in hypothalamic GIH occur which drive feeding and 

inhibit reproduction. Conversely, GIH levels decline when weight goes up, 

leading to an increase in gonadotropins and a decrease in feeding behaviours. 

In puberty, and also in pregnancy, leptin resistance is thought to have an 

important physiological role by allowing the build-up of fat mass that is 

essential for subsequent reproductive function (106). Serum leptin levels 

correlate with the amount of adipose tissue mass, and it is an important signal 

in human energy regulation, although there can be considerable variation in 

leptin levels between individuals with similar fat masses, implying that leptin’s 

role as a feed-back signal in the regulation of body weight is complex. The 

production of leptin is stimulated by insulin, and fasting insulin, when adjusted 

by age, sex and BMI, correlates with leptin, but only at selected pubertal 

stages and predominantly in females (107). 

Leptin levels are much higher in obese children compared to children with a 

normal BMI, and pubertal female children have higher levels than their male 

counterparts, even when obesity is corrected for (107). Several studies have 

shown a rise in serum leptin levels in girls starting from 7 years of age, through 

puberty and up until 15 years of age, whereas in boys, leptin levels temporarily 

rise and then reduce from approximately Tanner stage 2 back to pre-pubertal 

levels.  The rise in leptin correlates with the increase in body fat in females, 
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whereas the amount of fat decreases in male puberty, as muscle mass 

increases driven by testosterone secretion. It is thought that a threshold blood 

level of leptin in girls may be required in order to establish menses, with one 

study (108), finding that higher leptin levels up to 12ng/mL were associated 

with a decline in the age of menarche by 1 month for every 1ng/mL increase 

in leptin (109). 

The biological mechanisms that drive weight regain are highly complicated, 

and so far have only been studied in adult humans or animal models (81). 

However, it is plausible that the drive to weight regain, after acute weight loss, 

may be more pronounced during the reproductive years.  

 

1.3.4.4 Pubertal development in females 

In females, the study data evaluating the connection between childhood 

obesity and pubertal development is consistent and clear, with girls that have 

a high BMI SDS (>1.88) having a greater probability of menstruating sooner 

and presenting with an earlier pubertal development than lean girls (110, 111), 

although, many of the studies focus on outcomes rather than determining the 

causality of the earlier pubertal development. 

One study, which explored the effect of maternal obesity on the pubertal 

development of female off-spring, indicated that the daughters of mothers who 

were obese during pregnancy menstruated earlier than daughters of lean 

mothers (112). In addition, a longitudinal study from Switzerland examined 

650 girls aged 6-18 years. Although they did not find any significant 

differences in pubarche between lean and obese girls, there were significant 

differences in the timing of breast development, with obese girls reaching 

Tanner stage B3 at 11.6 years, whereas normal weight girls were 12.2 years 

(113). 

Height and weight however also directly affect the age of menarche, as 

demonstrated in the National Longitudinal Survey of Youth (114), where 

significant differences in BMI and height at the age of 6 years in different 

ethnicities were found. 

 

1.3.4.5 Pubertal development in males 

The link between male puberty and fat mass is more tenuous than in females, 

maybe because the evolutionary role of males in a successful pregnancy is 

the provision of sperm, so that their subsequent fat mass is irrelevant to the 
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progression of the pregnancy. However, there is insufficient data currently to 

rule out the role of leptin in the initiation of male puberty (109). 

Unfortunately, data connecting paediatric obesity and pubertal development 

in boys is limited and controversial. Two studies from Denmark have 

investigated obesity and pubertal timing in males. The first study investigated 

the secular trend of pubertal timing in boys over a 15-year period comparing 

1991-1993 with 2006 – 2008 (115). Puberty, which was defined as a testicular 

volume >3mls, was found to have started earlier in 2006 – 2008, and the BMI 

SDS was also significantly higher in that group. The study concluded that 

earlier pubertal development was associated with increasing BMI (115). The 

second study evaluated the voice break, which is another sign of pubertal 

maturation, in 436 choir-boys. The researchers found that the age at voice 

break decreased from 14 to 13.7 years within a 10-year period, and that an 

increasing BMI led to an earlier voice break (116). 

While many studies have connected childhood obesity with the earlier timing 

of pubertal development in boys, further studies are required in order to 

definitively prove this link. 

1.4 Satiety Signalling 

1.4.1 Regulation of satiety signalling 

An intimate knowledge of the changes in hormones and peptides that regulate 

body weight and control appetite is crucial to understanding and managing 

paediatric obesity. Appetite, which is the desire to eat, is controlled by 

interactions which form part of a psychobiological system which can be 

conceptualised on 3 levels: 

1. Psychological (hunger perception, cravings and hedonic sensations) 

and behavioural levels (meals, snacks, energy intake), 

2. Peripheral physiology and metabolic levels, 

3. Neurotransmitter level and metabolic interactions in the brain (117).  

Appetite is the synchronous operation of events and processes within these 3 

levels, and when appetite is disrupted, which can occur in certain eating 

disorders, these 3 levels become desynchronised. 

In order to maintain a stable body weight over a long period of time, food intake 

must be continually balanced with energy expenditure, and the hypothalamus 

plays a crucial role in this homeostatic process (118). Within the 

hypothalamus, the Arcuate Nucleus (ARC) is involved in the integration of 
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signals that regulate appetite and contains neuronal populations with 

opposing effects on food (figure 1.11) (118). Feeding is suppressed by the 

neurons co-expressing Proopiomelanocortin (POMC) and Cocaine and 

Amphetamine-regulated Transcript (CART), whereas food intake is stimulated 

by neurons which co-express Neuropeptide Y (NPY) and Agouti-related 

Peptide (AgRP). Both neuronal populations project to the Paraventricular 

Nucleus (PVN), although the ARC also communicates with other 

hypothalamic nuclei such as the Dorsomedial Nucleus (DMN), Lateral 

Hypothalamic area (LHA) and the Ventromedial Nucleus (VMN) (119). Of 

note, within the POMC neurons, α-melanocyte-stimulating hormone is 

produced which binds to melanocortin-4 receptors (MC4R) in the PVN to 

suppress food intake, and individuals who have MC4R mutations present with 

severe early-onset obesity (120), although abnormalities in the processing of, 

as well as mutations within the POMC gene can result in early-onset obesity, 

adenal insufficiency and red hair in humans (118).  

 

 

Figure 1.11. The ARC and the control of appetite. (118) 

(α-MSH, α-Melanocyte-Stimulating Hormone; GHS-R, Growth Hormone 

Secretagogue Receptor) 

The ARC is also accessible to peripheral circulating signals of energy balance 

via the underlying Median Eminence, and this part of the brain is not protected 

by the blood brain barrier. The blood brain barrier therefore has a regulatory 
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role in the passage of some circulating energy signals, as some of the 

Gastrointestinal hormones such as GLP-1 (Glucagon Like Peptide-1) and 

Peptide YY can cross the blood brain barrier, but others such as insulin and 

leptin cannot.  

The hypothalamus and the brainstem have extensive reciprocal connections, 

and within the brainstem, the Dorsal Vagal Complex, which consists of the 

Dorsal motor nucleus of vagus, Area Postrema and the Nucleus of the Tractus 

Solitarus (NTS), is critical in the interpretation and relaying of peripheral 

signals via the vagal afferent nerve fibres from the gut to the hypothalamus. 

Like the ARC and the Median Eminence, the NTS is in close anatomical 

proximity to the Area Postrema which also has an incomplete blood brain 

barrier, and can respond to peripheral circulating signals from the gut (119).  

The vagal afferent neurones within the brainstem express a variety of 

receptors including Cholecystokin 1 receptor (CCK1R), at which 

Cholecystokinin acts, Y2R, GLP-1 and Growth Hormone Secretagogue 

Receptor (GHS-R1) at which ghrelin acts (120). The NTS has a high density 

of Neuropetide Y binding sites including Y1 and Y5 receptors, but POMC 

neurons also exist within the NTS. The POMC neurons demonstrate Signal 

Tranducer and Activation of Transcription-3 (STAT-3) activation in response 

to the administration of leptin, which supresses food intake (119).  

Leptin is also able to influence the reward pathways of the brain and there is 

considerable evidence that the mesoaccumbal dopamine system is a key 

target for leptin. The rewarding nature of food can act as a stimulus to increase 

food intake and can overide the homeostatic requirements of the body. The 

mesoaccumbal dopamine system, which encompasses the Ventral 

Tegmental Area (VTA) of the midbrain to the Nucleus Accumbens, is central 

to reward-associated feeding behaviour, and it receives and integrates 

information about the rewarding value of foods with information about 

metabolic status (figure 1.12) (121). Endocannabinoid and opioid receptors 

also play an important role in increasing feeding related to reward. Stimulation 

of μ-opioid receptors in the nucleus accumbens has been shown to increase 

sweet, high fat food intake, and suppression of the endocannabinoid receptors 

has resulted in the successful anti-obesity treatment, Rimonabant (119). 

Unfortunately the drug was withdrawn in 2008 due to serious psychiatric side 

effects. Endocannabinoid receptors within the hypothalamus have also been 

shown to be reduced by leptin (118). 
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Figure 1.12. The central control of appetite. (118) 

(AP, Area postrema; ME, Median Eminance; NAc, Nucleus Accumbens; PFA, 

Perifornical Area; ARC, Arcuate Nucleus; PVN, Paraventricular Nucleus; LHA, 

Lateral Hypothalamic Area; NTS, Nucleus of the Tractus Solitarus) 

Problematic over-eating may therefore reflect a changing balance in reward 

circuits versus the control exerted by the hypothalamus, in addition to an 

altered hedonic “set-point”, such that susceptible individuals have a 

heightened responsiveness of the reward circuits to rewarding foods (121). 

Alternatively, it may be that increased signalling by the orexigenic gut 

hormone ghrelin may affect metabolic control, as ghrelin has also been shown 

to activate the mesoaccumbal dopamine system (121). While the exact 

mechanisms by which appetite is controlled remain to be fully elucidated, it is 

clear that the decision to eat is very complex and involves genetic, 

psychosocial, environmental and physiological processes. 
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Figure 1.13. Peripheral satiety signals relating to long-term energy stores 

 

Peripheral signals relating to long-term energy stores are produced by adipose tissue 

(leptin) and the pancreas (insulin). Feedback relating to recent nutritional state takes 

the form of absorbed nutrients, neuronal signals, and gut peptides. Neuronal 

pathways, primarily by way of the vagus nerve, relate information about stomach 

distention and chemical and hormonal milieu in the upper small bowel to the Nucleus 

of the Tractus Solitarius (NTS) within the dorsal vagal complex (DVC). Hormones 

released by the gut have incretin-, hunger-, and satiety-stimulating actions. The 

incretin hormones GLP-1, GIP (Gatric Inhibitory Polypeptide), and potentially 

Oxyntomodulin (OXM) improve the response of the endocrine pancreas to absorbed 

nutrients. GLP-1 and OXM also reduce food intake. Ghrelin is released by the 

stomach and stimulates appetite. Gut hormones stimulating satiety include CCK 

(Cholecystokinin) released from the gut to feedback by way of Vagus nerves. OXM 

and PYY (Peptide YY) are released from the lower gastrointestinal tract and PP 

(Pancreatic Polypeptide) is released from the islets of Langerhans (122). 
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1.4.2 Satiety hormones and peptide neurotransmitters 

The gastrointestinal tract (GI) is the largest endocrine organ, producing more 

than a 100 bioactive peptides from specialised endocrine cells that are 

interspersed throughout the luminal digestive tract and the pancreas (123). 

Hormones are secreted from the endocrine cells into the blood where they are 

carried to distant targets, whereas neurones secrete peptides into synapses 

or onto other cell types. Many of the same chemical transmitters in the GI tract 

are produced by endocrine and neural cells, such as Cholecystokinin (CCK) 

which plays important physiological roles both as a neuropeptide in the central 

nervous system and as a peptide hormone in the gut, where it is involved in a 

diverse number of processes such as satiety, digestion, memory and anxiety 

(124). 

Endocrine transmitters of the GI tract consist predominately of peptides (short 

chains of amino acids) that have extremely short half-lives, which allows for 

rapid initiation and termination of signalling. GI peptides that function mainly 

as hormones include: GIP (Gastroinhibitory Polypeptide), GLP-1, PP 

(Pancreatic Polypeptide), Peptide YY, and Insulin (124).  

The majority of the GI hormones are anorexigenic and are associated with 

satiety, except for ghrelin, which is an orexigenic hormone that promotes 

hunger (125). 
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Table 1.1. Effects of different gut and adipose tissue hormones on food 
intake and their changes in childhood obesity after weight loss. (125) 

 

Source Hormone Effect on 

food intake 

Post meal 

changes vs 

fasting 

Changes in 

childhood 

obesity * 

Changes 

after weight 

loss 

GI Tract Ghrelin Orexigen Decreased Decreased Increase or 

stable 

 PYY Anorexigen Increased Decreased Increase 

 GLP-1 Anorexigen Increased Unchanged Controversial 

 CCK Anorexigen Increased ----------------  ----------------- 

 GIP Anorexigen Increased ----------------  ----------------- 

Pancreas Insulin Anorexigen Increased Increased Decrease 

 PP Anorexigen Increased Decreased Increase 

 Amylin Anorexigen Increased Increased Decrease 

Adipose 

tissue 

Leptin Anorexigen Increased 

(after hours) 

Increased Decrease 

*Serum levels compared with lean 

Anorexigen (appetite suppressant) Orexigen (appetite stimulant) 

 

1.4.2.1 Ghrelin 

Ghrelin is a 28 amino acid peptide that was first identified in 1999 as a ligand 

for the secretion of growth hormone secretagogue receptor (GHS-R1a) (126). 

The highest concentrations of ghrelin are found in the stomach, followed by 

the duodenum, and it is the only known circulating orexigen, stimulating rather 

than inhibiting feeding behaviour.  

Acylated ghrelin is the active form (126), and it exerts its orexigenic effects via 

the arcuate nucleus in the hypothalamus. While ghrelin also stimulates growth 

hormone release via its action on the type 1a receptor in the hypothalamus, 

its orexigenic action is independent of its effect on growth hormone (118).  

It has been suggested than ghrelin has a role in both meal initiation and weight 

gain, as endogenous levels of ghrelin increase before meals and decrease 

after food intake (125). Ghrelin is thought to act as a hunger signal, and ghrelin 
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levels correlate negatively with BMI, so increase following weight loss. Prader-

Willi-Syndrome, a rare genetic condition characterised by severe obesity, is 

an exception to this, as ghrelin levels are approximately 4.5 times higher than 

in obese controls, although it is unknown whether the high ghrelin levels are 

a consequence or a cause of their obesity (126). 

In addition to lower circulating ghrelin levels, obese subjects also have an 

attenuated suppression of ghrelin i.e. a greater number of calories are needed 

before a significant suppression of fasting ghrelin levels are seen in the obese 

compared to the lean. It has been suggested that the attenuated ghrelin 

suppression in obese subjects may contribute to a lack of satiety after smaller 

meals (126). 

 

1.4.2.2 Peptide YY (PYY) 

Peptide YY belongs to a family of peptides that includes Pancreatic 

Polypeptide (PP) and Neuropeptide Y (NPY) (118). Circulating Peptide YY 

has two major forms: PYY1-36 which is cleaved to PYY3-36 by dipeptidyl 

peptidase, with the latter being the more physiologically active. Peptide YY is 

secreted predominately by L cells of the distal GI tract, and the amount 

secreted is directly proportional to the number of calories consumed, although 

the levels are also influenced by meal composition, with greatest levels seen 

after high fat meals (125). Peptide YY post-prandially inhibits gastric acid 

secretion and motility via neural pathways, and it exerts its anorexic effects 

through its agonistic properties on the Y2 receptors in the ARC, which inhibits 

NPY neurons, and  leads to reduced food intake (127). Peptide YY is also 

thought to effect energy expenditure and levels can remain raised for 6 hours 

post-prandially, with a peak at 1-2 hours.  Peripheral Peptide YY is able to 

cross the blood-brain barrier freely via non-saturable mechanisms, and it has 

been shown to decrease ghrelin levels, which also contributes to its effect on 

appetite (118). In addition, obese subjects have a blunted rise in Peptide YY 

after a meal which also impairs satiety and results in greater food intake, in 

contrast to subjects with anorexia nervosa, who have high Peptide YY levels 

(119). 

 

1.4.2.3 Pancreatic Polypeptide (PP) 

Unlike Peptide YY, circulating PP is unable to cross the blood-brain barrier, 

but it may exert its anorexigenic effects on the ARC via the area postrema and 
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also via the vagal pathway to the brainstem (118). It is secreted from cells in 

the pancreatic islets of Langerhans and in a similar manner to Peptide YY, 

circulating concentrations rise in proportion to the calorific load (119) and 

remain elevated for up to 6 hours post-prandially (118). PP inhibits the gastric 

emptying rate, exocrine pancreatic secretion, and gallbladder motility, and like 

Peptide YY it also reduces ghrelin levels.  

The release of PP is diurnal, with circulating concentrations being low in the 

early hours of the morning and highest in the evening. The levels of PP are 

thought to reflect long-term energy stores, with obese subjects having lower 

levels, although some studies have found no difference in PP levels between 

lean and obese subjects (118).  

 

1.4.2.4 Amylin 

Amylin is a pancreatic hormone, which is stored and released together with 

insulin by beta cells (119). Amylin reduces food intake, slows gastric emptying 

and reduces postprandial glucagon secretion in humans. When Pramlintide, 

which is a human amylin analogue, is administered it has been shown to 

reduce food intake and body weight by reducing meal size and inhibiting 

gastric emptying, and in patients with type 2 diabetes it has been shown to 

improve glycaemic control and cause weight loss (119). Amylin, which is an 

anorexigenic hormone, acts by inhibiting NYP release, although its anorectic 

action is also associated with the serotonin, histamine and dopaminergic 

system in the brain. Obese subjects have higher circulating levels of amylin 

than lean subjects, and increasing amylin levels in childhood is related to 

hypersecretion of insulin (125). 

 

1.4.2.5 Cholecystokinin (CCK) 

CCK was the first gut hormone found to be involved with appetite control. It is 

a meal termination signal that reduces both meal size and meal duration. It is 

found mostly in the upper small intestine and has multiple bioactive forms, and 

after eating CCK levels can remain elevated for up to 5 hours (125).  

CCK co-ordinates digestion by stimulating gallbladder contraction, enzyme 

release from the pancreas, increased intestinal mobility and by inhibiting 

gastric emptying (125). CCK acts via CCKA and CCKB receptors, with the 

former being found throughout the brain including the dorsomedial nucleus of 

the hypothalamus and in the pancreas, vagal afferent and enteric neurons, 
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whereas the latter receptors are also distributed in the brain, afferent vagus 

nerve and stomach. The CCKA receptor subtype mediates the anorexigenic 

effect on appetite by reducing levels of neuropeptide Y, a potent appetite 

stimulating peptide.  Signals of adiposity such as leptin also enhance the 

satiating effect of CCK (118). 

 

1.4.2.6 Gastric Inhibitory Polypeptide (GIP) 

Gastric Inhibitory Peptide, which is also known as Glucose-dependent 

Insulinotropic Peptide belongs, along with GLP-1, to a class of peptides called 

incretins, which stimulate a decrease in blood glucose levels, in response to 

nutrient intake that increases or enhances glucose stimulated insulin secretion 

(128). Both hormones are proglucagon derived peptides (118). 

GIP is secreted by K cells in the proximal small intestine, and the GIP receptor 

is widely expressed throughout the intestinal tract, in adipose tissue and 

several areas of the brain (119). GIP induces insulin secretion, which is 

stimulated in response to glucose, and the amount of insulin secreted is 

greater when glucose is administered orally rather than intravenously. GIP 

also has significant effects on fatty acid metabolism via stimulation of 

lipoprotein lipase activity in adipocytes (128). 

 

1.4.2.7 Glucagon-like Peptide 1 (GLP-1) 

Proglucagon is expressed in the pancreas, NTS of the brainstem and the L-

cells of the small intestine, and depending on the tissue, the enzymes 

prohormone convertase 1 and 2 cleave proglucagon into different products; 

glucagon in the pancreas, GLP-1, GLP-2 and Oxyntomodulin in the brain and 

intestines (119).  

GLP-1 and Peptide YY are co-secreted from the L-cells of the intestine, and 

GLP-1 has a potent incretin effect i.e a greater stimulation of insulin secretion 

elicited by oral glucose administration compared to an intravenous glucose 

infusion, despite inducing similar levels of glycaemia. This incretin effect is 

defective in patients with type 2 diabetes (129). 

GLP-1 has two biologically active forms with equipotent biological activity, 

GLP-1 7-36 and GLP-1 7-37, with the former being the major circulating type in 

humans. GLP-1 binds to receptors in the hypothalamus (ARC and 

dorsomedial nucleus) and the brainstem (NTS), which are key appetite related 

sites (118). GLP-1 levels increase after a meal and fall in the fasted state, but 
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they also rise in anticipation of a meal (119). GLP-1 inhibits gastric emptying 

and acid secretion, it supresses glucagon secretion and may also reduce 

energy intake and enhance satiety (125). GLP-1 is rapidly degraded by the 

enzyme Dipeptidyl Peptidase-IV (DPP-IV), resulting in a short circulating half-

life, and Exendin-V, which is a DPP-IV resistant GLP-1 receptor agonist that 

occurs naturally in the saliva of the lizard heloderma, has been developed for 

the treatment of type 2 diabetes (118). 

While leptin stimulates the release of GLP-1, obese individuals are often leptin 

resistant which may explain why obese individuals have lower GLP-1 levels 

(128), and intravenous administration of GLP-1 in both lean and obese 

individuals decreases food intake in a dose-dependent manner (118). 

However, the role of GLP-1 in childhood obesity remains poorly understood, 

with conflicting post weight loss level changes reported in the literature (125). 

 

1.4.2.8 Insulin 

Insulin plays an important role in the long-term regulation of energy balance 

(119). Like leptin, levels of plasma insulin are proportional to adipose tissue, 

so that plasma insulin levels increase at times of positive energy balance and 

decrease at times of negative energy balance (118). However, unlike leptin, 

insulin secretion rapidly increases after a meal, with insulin crossing the blood 

brain barrier via a saturable receptor-mediated process, at levels that are 

proportional to the circulating insulin levels. It then acts at the ARC, where 

insulin receptors are highly expressed, to decrease food intake and body 

weight (119). 

Insulin levels are determined by peripheral insulin sensitivity, of which visceral 

fat is a key determinant. In paediatric obesity, increased blood insulin levels 

indicate peripheral and central insulin resistance, with weight loss resulting in 

improved insulin sensitivity, and a reduction in hyperinsulinaemia (125). 

 

1.4.2.9 Leptin 

The obesity gene (ob) encodes a peptide hormone called leptin, which is 

produced by adipose tissue, and was discovered in 1994 (107). Leptin 

production is stimulated by glucocorticoids and insulin (125), and the amount 

of leptin produced correlates positively with adipose tissue mass. Food intake 

also affects leptin levels with restriction over a number of days resulting in a 

suppression of leptin levels, whereas refeeding reverses the effects, so that 
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circulating leptin levels reflect both energy stores and food intake. Leptin is 

also secreted in a diurnal and pulsatile pattern, with a peak at night, but leptin 

levels are dependent more on daytime feeding rather than the endogenous 

circadian clock (119). 

Leptin is transported across the blood brain barrier by a saturable process, 

and it acts by inhibiting the NPY/AgRP neurons and stimulating the 

POMC/CART neurons in the hypothalamus to exert its anorexigenic effect. 

The leptin-receptor (Ob-Rb) has multiple isoforms resulting from alternative 

mRNA splicing and post-translational processing, and these can be divided 

into 3 classes; long, short and secreted (118). The long form, has a long 

intracellular domain which is needed for the action of leptin on appetite, and 

this intracellular domain binds to Janus Kinases (JAK) and to STAT3 

transcription factors, which are needed for signal transduction i.e activates the 

JAK/STAT pathway to inhibit signalling (118). 

Starvation reduces the transportation of leptin across the blood-brain barrier, 

and it is the short form of the receptor that is proposed to have a role in this 

mechanism, whereas the secreted form of the receptor modulates the 

biological activity by binding to leptin in the circulation (118). 

Leptin deficiency in humans caused by a homozygous ob gene mutation is 

rare, and individuals have low leptin levels, hyperphagia and obesity, which 

can be reversed by subcutaneous administration of recombinant leptin, which 

reduces fat mass, hyperinsulinaemia and hyperlipidaemia (119). Obesity in 

humans however is associated with high leptin levels, which because of the 

increased leptin resistance and decreased leptin signalling in the brain, does 

not lead to appetite suppression and lower food intake that might be expected 

with higher leptin levels (130). The leptin resistance may then lead to 

ineffective appetite suppression and changes in the set-point of energy 

homeostasis which would then result in the defence of a higher level of body 

fat i.e. lipostatic model of regulation of body fat regulation (125). While leptin 

deficiency has profound effects on body weight, the high leptin levels seen in 

obesity are less potent at restoring weight, implying that leptin is primarily 

important in periods of starvation, and has a lesser role in times of plenty 

(118).  

 

1.4.3 Effect of different macronutrients on satiety hormones 

Studies have been conducted in both adults and younger children and 

adolescents to investigate the effect that different meal compositions have on 
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the postprandial response of various satiety hormones. Of the paediatric 

studies carried out, a Randomised Control Trial (RCT) (131) examined the 

postprandial responses of active ghrelin and PYY in obese and normal-weight 

adolescent girls following specific macronutrient dense standardised meals. 

26 girls (13 obese and 13 non-obese) aged between 12 and 18 were recruited. 

The test meal was based on metabolic needs and calculated as 130% of 

calories based on the Resting Energy Expenditure (REE), which was 

determined during the baseline visit using indirect calorimetry. The caloric 

content of the breakfast test meal was 25-30% of the metabolic needs and 60-

65% was either fat, protein or carbohydrate with the remaining 35-40% split 

between the other two macronutrients. Subjects were then randomised to the 

order that they would receive the high fat, high protein or high carbohydrate 

breakfast. The results showed that obese girls had a greater percent increase 

in active ghrelin after the high carbohydrate breakfast than normal weight girls 

and a lower percent increase in PYY after high fat. Obese girls then ate more 

at lunch 4 hours afterwards following a high fat and high carbohydrate meal, 

but not after high protein. A similar study in 32 pre-pubertal children (7-11 

years) (132), also found that the PYY response following a high protein meal 

(44%) was significantly greater than after the high carbohydrate (88%) or high 

fat (81%) meal. 

Another study (133), examined 10 pre-pubertal obese boys and compared 

high fat (52%) and moderate fat (27%) meals with changes in gastrointestinal 

hormones and appetite. They found that the moderate fat meal was able to 

more sufficiently suppress appetite, and that the glucose and insulin increases 

were higher. In contrast with adult studies the post prandial PYY levels were 

similar after high fat and moderate fat meals, as were the CCK and ghrelin 

levels, although GLP-1 was significantly higher following the high fat meal. 

The authors concluded that a moderate fat meal is preferable to a high fat 

meal as it induced a better postprandial metabolic nutrient balance and 

appetite suppression.  

With respect to mixed meal post prandial responses in children, a study (134) 

in adolescent females demonstrated a blunted post prandial response in the 

obese subjects compared to the control group after consuming a meal 

containing 55% carbohydrate, 25% protein and 20% fat.  

The implications of the findings in the paediatric studies therefore point, at 

least in part, towards high protein meals (>40%) as a possible strategy in 

managing paediatric obesity because of the advantageous increase in post 

prandial PYY levels that may be elicited (135). 



50 
 

1.4.4 Effect of weight changes in the circulating levels of satiety 

hormones involved in the homeostatic regulation of body 

weight 

While several studies have been carried out to explore the different 

physiological adaptations to weight loss between children/young adolescents 

and adults in terms of serum levels of the major known gut and adipose tissue 

derived hormones, the results obtained are often inconsistent and 

controversial. In addition, some satiety hormones have been studied in greater 

depth than others. For example, Peptide YY levels may increase following 

weight loss in obese children, which is in contrast to obese adults, and as 

Peptide YY has been shown to reduce food intake, this potentially has 

important health implications for the treatment and prevention of obesity. 

One study (127), looked at total PYY and insulin levels in obese and normal 

weight children aged 9 - 13 years, and the effect that weight loss had in the 

obese cohort following completion of a 1-year outpatient weight reduction 

programme. They found that obese children had significantly lower PYY levels 

than lean children, and that PYY levels increased significantly in children with 

the most effective weight loss, which would potentially help them to maintain 

their lower weight, but that PYY levels decreased in children who gained 

weight. There were no differences in PYY levels between girls and boys or 

between pre-pubertal and pubertal children (127). Similarly, another study, 

whose patient cohort had a mean age of 10.9 years, found that PYY levels 

also increased in obese children who lost weight after a 1 year lifestyle 

intervention (136). These findings however, were not replicated in research 

looking at PYY, ghrelin and GIP responses following a mixed meal in 30 

female adolescents with anorexia nervosa, obesity or normal weight (134), or 

in an American study with 32 children, of whom 12 were obese and 20 were 

normal weight (137). The age range of the children in the study cohorts were 

12 - 18 years and 7 – 11 years respectively. The older mean age of 14 years 

may have had an impact on the results obtained in the former study, who 

reported that the postprandial peak of PYY was attenuated in obese school 

age female children compared to normal weight controls, which is similar to 

the findings in adult studies (134). In the latter study, (137) which was looking 

at younger children, a positive correlation was found between percentage fat, 

BMI and PYY levels in children, although there was a significant difference in 

ethnic background and race between the normal weight children and the 

overweight children. This may account for the disparate findings, as ethnicity 

can significantly affect PYY levels, with African-American children having 
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lower fasting and post prandial PYY levels (135). The data obtained from 

these studies on PYY highlight how contradictory the findings can be, and that 

different variables such as age, sex and ethnicity should be taken into account 

when interpreting results.  

Ghrelin, which is the only known orexigenic satiety hormone, is involved in 

meal initiation, as demonstrated by increasing levels before meals and 

decreasing levels after food intake. During weight loss in obese adults, a 

compensatory increase in ghrelin occurs which contributes to the challenges 

experienced in maintaining weight loss (125). While a Spanish study found 

increasing ghrelin levels in obese children who had successfully lost weight 

over a 3-month period, akin to that found in adult studies (138), this was in 

contrast to a German study involving 37 obese children with a median age of 

10 years. Instead, they found no significant change in ghrelin levels in their 

obese children who experienced substantial weight loss following their 1-year 

lifestyle intervention weight loss programme (139) the findings of which would 

support the different physiological response to weight loss experienced in 

children compared to adults.   

Several of the other satiety hormone responses in children and adolescents 

were also analysed during the same German study, before and after 

participation in their 1-year lifestyle intervention program called “Obeldicks”. 

They found that PP levels, while lower at baseline in obese children compared 

to lean controls, increased significantly and tended to normalise in those 

children who had experienced substantial weight loss when compared with 

children who had not managed to lose weight, although PP levels did not 

appear to correlate with insulin or leptin concentrations (140). As PP is an 

anorexigenic hormone, this finding would be advantageous in maintaining 

weight loss. The levels of Amylin, another anorexigenic satiety hormone, 

which causes a reduction in meal size and inhibits gastric emptying, were 

found to be significantly higher in obese children compared to normal weight 

controls and following significant reduction in weight, a pronounced decrease 

in amylin was also seen i.e. this would act to promote weight regain (141). 

While studies have been carried out to investigate the effect of weight loss on 

different satiety hormones, there remains a paucity of literature involving 

children and Cholecystokinin, which controls appetite by reducing food intake, 

and also the role of GLP-1 in childhood obesity. Therefore, additional studies 

are still required to provide further evidence to support the theory that the 

energy homeostasis mechanisms regulated via satiety hormones following 

weight loss in children, are different to those seen in adults (142). 
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1.5 Resting Energy Expenditure 

1.5.1 Definition of Resting Energy Expenditure 

Resting Energy Expenditure (REE) is the energy needed by the body to 

maintain basic biological functions such as controlling normal body 

temperature, breathing air and pumping blood, and in the majority of 

individuals it constitutes up to 70% of the Total Energy Expenditure (TEE). 

The TEE comprises the REE, the Activity Energy Expenditure (AEE), which 

constitutes 15-30% of the TEE, and the Thermic Effect of Feeding (TEF), 

which is the increase in energy expenditure associated with digestion and 

storage of food, and constitutes 5-10% of the TEE (figure 1.14). The TEE can 

be influenced by physical activity, with energy expenditure increasing during 

exercise, which then raises the TEE and may also increase the REE (83). In 

children, growth on a daily basis is too small to measure, except in rapidly 

growing infants (143).  

 

Figure 1.14. Components of Total Energy Expenditure 

The Basal Metabolic Rate (BMR), is the rate at which the human body 

consumes energy when it is physically and mentally resting, in order to 

maintain important bodily functions such as cell division, breathing and nerve 

cell function. While the terms REE and BMR are often used interchangeably, 

they are different, with the REE being approximately 5% higher than the BMR, 

due to the increased energy demands of the brain and muscle components 

when awake compared to the metabolic rate expended during sleep. There is 
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also a difference in the way the BMR and REE are measured. Basal metabolic 

measurements take place under rigorous conditions, and require the patient 

to sleep in the laboratory, to undergo a fast of 12-14 hours, with the test 

conducted under controlled conditions of humidity and temperature. REE 

(which is also referred to as the Resting Metabolic Rate), requires less 

restrictions in its measurement compared to the BMR, as subjects do not need 

to sleep for 12-14 hours in an energy metabolism laboratory with controlled 

humidity and temperature, or to fast for 12 hours prior to measurement. REE 

is not as accurate as BMR, and gives slightly higher calorie estimations 

compared to BMR. However, REE provides an easy and realistic 

measurement and is significantly cheaper to carry out (143-145). 

 

1.5.2 Measurement of Resting Energy Expenditure 

The individual variation in REE is due to several different factors, such as age, 

gender, ethnicity, physical fitness level, body size and body composition. REE 

typically reduces with age due to loss of lean body mass and reduction in 

metabolic activity. Adult females have more fat in proportion to muscle 

compared to males and they have a metabolic rate that is 5-10% lower than 

males of the same height and weight. Larger individuals have more tissue, 

therefore their metabolic activity is greater than that of smaller individuals. 

However, most of the inter-individual variation in REE can be accounted for 

by differences in Fat Free Mass (FFM), as body composition plays a 

significant role in REE, of which FFM is the primary determinant (146).  

The ability to accurately assess energy expenditure is important in the 

management of nutritional obesity, in terms of creating a negative energy 

balance by providing well-balanced, calorie-reduced diets in combination with 

increasing physical activity. However, it can also be useful in guiding 

nutritional support in children with chronic illnesses and malnutrition (146, 

147). 

There are 3 different approaches to measuring energy expenditure and the 

accuracy, reproducibility and reliability of the measurements obtained vary 

considerably, as does the complexity and cost of the different techniques. 

 

1.5.2.1 Direct Calorimetry 

In direct calorimetry, the rate of heat loss from the subject to the calorimeter 

is measured. It enables the heat produced from both aerobic and anaerobic 
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metabolism to be quantified by measuring heat exchange between the body 

and the environment. Radioactive and convective heat losses account for 

approximately 80% of the total heat loss, while evaporative heat loss accounts 

for 20%. The 3 main types of direct calorimeter are isothermal, heat sink and 

convection systems. The measurement error of each of these techniques is 

1%, 3% and 1-2% respectively. While direct calorimetry remains the gold 

standard means of measuring human metabolic rate, direct calorimetry 

techniques are in general very expensive to run and require significant 

expertise, and offer relatively little extra compared to the cheaper and less 

complex indirect calorimetry methods (148, 149).   

 

1.5.2.2 Indirect Calorimetry 

In indirect calorimetry, oxygen consumption and/or carbon dioxide production 

is measured and converted to energy expenditure using formulae. There are 

4 main ways to measure energy expenditure by indirect calorimetry. 

Total Collecting Systems 

This is where the expired air is collected in either an airtight rigid structure, 

such as the Tissot Gasometer, or in a portable flexible bag, such as the 

Douglas bag. In the Douglas bag, the volume of the expired respiratory gases 

in the bag is measured (using a mass flow meter) and the sample is analysed 

to determine the concentration of oxygen and/or carbon dioxide (149). The 

energy expenditure measurements taken with the Douglas bag incur a very 

small error (<3%) and it is often referred to as the gold standard for indirect 

calorimetry, because each variable is measured independently via calibrated 

and traceable instrumentation (150).  

Open Circuit Indirect Calorimeter Systems 

In open-circuit systems, energy expenditure can be recorded over several 

hours or days, and the person inspires air, and then the expired gases are 

analysed. There are two types of open-circuit system. In the Ventilated open-

circuit system, the subject breathes into a container through which air is 

drawn, and the expired air is drawn out of the collection device using a pump, 

and the flow rate is accurately measured, and then the air is analysed for 

oxygen and/or carbon dioxide content. The methods used to collect the 

expired air vary considerably, with the least complex ways being to use a 

mouthpiece or mask, canopy or transparent hood. A more complex approach 

is to have the subject placed in a chamber/room of known volume, which also 

contains sensing equipment that can quantify physical activity. In an 
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Expiratory collection system, the subject inspires from the atmosphere and 

expires via a non-return valve into a measureable unit (149).  

Confinement Systems (Respiratory Chambers) 

Confinement systems are rarely used now as they have been superseded by 

other techniques. The subject is placed in a gas tight sealed container of 

known volume, and oxygen consumption and carbon dioxide production are 

estimated by changes in the concentration of these gases in the chamber air 

over a period of time (149). 

Closed Circuit Systems 

Closed circuit systems are also now seldom used. They consist of a sealed 

respiratory gas circuit in which concentrations of gas are measured over time 

(149).  

 

1.5.2.3 Non-Calorimetric measures 

Energy expenditure is predicted by extrapolation from physiological 

measurements and observations. 

Isotope Dilution, Doubly Labelled Water 

In this method, both the hydrogen and oxygen of water are labelled with stable, 

non-radioactive isotopes called Deuterium and oxygen-18 (D2O18). The stable 

isotope dilution and elimination of D2O18 forms the basis for measuring body 

composition and energy expenditure (151). Subjects are given doubly labelled 

water orally, once baseline samples of blood, urine and saliva have been 

collected. The isotopes then mix within the body water space, and repeat 

samples of blood, urine and saliva are collected 7-21 days later, and D2 and 

O18 are measured using mass spectrometry. The changes in D2 and O18 in 

body water can then be calculated over time, so that CO2 and energy 

expenditure can be worked out. Using this technique, energy expenditure can 

be measured over 7-21 days with an error of 6-8% (149).  

Physiological Measurements 

Heart rate and energy expenditure are related, but not linearly related, 

because cardiac stroke volume changes with changing heart rate. The 

precision of heart rate prediction of energy expenditure is dependent on 

several co-variables that can affect heart rate such as exercise, posture and 

emotion. However, despite the errors incurred, heart rate monitors are 
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portable, unobtrusive and measurements can be taken over several days 

(149).   

Predictive Equations for REE 

REE can be calculated by different predictive equations, which are based on 

anthropometric and body composition parameters. However, some of the 

equations were developed in groups of normal weight subjects while others 

were developed in overweight subjects. Equations used include McDuffie, 

Derumeaux, Schofield, FAO/WHO/UNU, Harris-Benedict and Lazzer-Satorio. 

The accuracy of the equations at predicting the REE varies considerably, 

particularly when used in severely obese children and adolescents, with 

Harris-Benedict and Derumeaux significantly underestimating the REE, while 

Schofield and McDuffie overestimate the REE. The Lazzer-Sartorio equations 

have been found to give a more accurate estimation of REE in severely obese 

children and adolescents, compared to the other equations (152).  

 

1.5.2.4 MedGem® Handheld Indirect Calorimetry Device 

The MedGem® (MG) is a portable handheld indirect calorimetry device, and 

was developed as an alternative to the traditional indirect calorimetry systems. 

It displays the REE (also known as the Resting Metabolic Rate) in calories/day 

and the VO2 in ml/day. It measures the VO2 and then calculates the VCO2 

based on an assumed respiratory quotient (RQ) of 0.85 (where the RQ is 

derived as a ratio of VCO2 / VO2), which is a value considered to be 

representative of a typical Western diet or mixed diet (153).  

Before each measurement, the MG is autocalibrated, and it is programmed to 

collect data when the first breath is detected, and it continues until a either a 

steady state or 10 minutes is reached, however, data collected in the first 2 

minutes are not used in the subsequent calculations. Sensors measure the 

relative humidity, temperature and barometric pressure, and all of this 

information is used in the internal calculations from which the REE is derived 

using a modified Weir equation, and assumes a constant Respiratory Quotient 

(RQ) of 0.85 (154).  

The principle mechanism underlying the MG is the deactivation of ruthenium 

in the presence of oxygen, where the amount of ruthenium deactivated is 

proportional to the concentration of oxygen. The volume of inspired and 

expired air is measured using ultrasonic sensing technology (154).  
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When using the MG, each subject either sits upright or is supine, while wearing 

a nose clip, and places a disposable mouthpiece in position while ensuring 

they maintain a firm seal (figure 1.15). Subjects should rest for 10-15 minutes 

before the measurement is taken, and measurements should be carried out 

at least 4 hours after exercise and after eating food or consuming caffeine. In 

patients who smoke, the measurement should be performed at least 1 hour 

after nicotine use (150, 154). 

The position the subject is in when the measurement is recorded needs to be 

taken into consideration as it can affect the REE value, as previous research 

has shown that there is a 70 kcal/day increase in REE when the subject is 

seated rather than supine (150).  

 

Figure 1.15. How to use a MedGem® handheld indirect calorimetry device 
to measure REE. 

There have been several validation and comparison studies conducted to 

determine if the MG is accurate and reliable at measuring REE. A systematic 

review  (150) looking at this included 12 studies (10 adult and 2 paediatric), 4 

of which (3 adult and 1 paediatric) compared the MG to the Douglas Bag 

system (which is often referred to as the gold standard for indirect calorimetry). 

The MG measurement was not significantly different from the Douglas bag 

system (mean difference in adults ± 1% i.e. 1559 vs 1568 kcal/d and in 

paediatrics ± 1%). The intraclass reliability of the MG ranged from 0.97 to 0.98, 

and the interclass reliability of the MG ranged from 0.91 to 0.97 i.e. the MG 
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was found to have excellent repeatability and agreement with the Douglas bag 

(150). Based on this data, the MG was found to be a valid and reliable indirect 

calorimeter for energy assessment in most children and adults.  

More recent studies have looked at the validity of the MG in assessing REE 

in overweight and obese children and adolescents. In one study (155) 

involving 39 overweight and obese children and adolescents (age 15.2 ± 1.9 

years) and 15 normal weight adolescents, subjects had their REE measured 

in the supine position using the MG and also by standard indirect calorimeter 

(SensorMedics VMax). The MG was found to have a lower REE than the 

VMax (1600 ± 372 kcal/d compared to 1727 ± 327 kcal/d respectively) in the 

overweight and obese adolescents. This particular study concluded that the 

MG significantly underestimates the REE in overweight adolescents 

compared to standard indirect calorimetry (155). However, other studies have 

shown conflicting results regarding REE comparisons between portable and 

standard indirect calorimeters. In a study involving 100 non-obese children 

aged 10-13 years, the MG was found to overestimate the REE by 8% when 

compared to a traditional indirect calorimeter, although the researchers 

concluded that the MG was a valid tool in the assessment of REE in children 

(153). Another study with 19 overweight and obese subjects aged 17-19 

years, compared portable to traditional indirect calorimeters found no 

significant difference in REE measurement between the two devices (P = 

0.22), with an intraclass correlation coefficient of 0.91, indicating the portable 

indirect calorimeter to be reliable and valid for assessing the REE in 

overweight and obese adolescents (156).  

Despite the inconsistencies, most studies agree that there are benefits in 

using the MG in overweight and obese children and adolescents, to produce 

an individually measured REE, which can serve as a starting caloric goal in 

diet prescription. This can provide additional motivation to make small 

changes to the nutritional intake, and if combined with an increase in physical 

activity, it may help to prevent weight gain (155).  The MG remains a practical 

alternative to traditional indirect calorimetry, but further studies are required to 

assess its effectiveness as a weight loss tool.  

 

1.5.3 Fat Free Mass and Resting Energy Expenditure 

The body is composed of water, protein, minerals and fat. A two-component 

model of body composition divides the body into a fat component and a fat-

free component. The total amount of fat consists of essential fat and storage 
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fat. Essential fat serves as metabolic fuel for energy production and normal 

bodily functions, and includes fat found in bone marrow, the heart, muscles 

and in the lipid-rich tissues of the CNS, whereas storage fat is found in adipose 

tissue and is also located around internal organs, where it serves to provide 

protection and insulation. 

Lean Body Mass (LBM) is different to Fat Free Mass, although the terms are 

sometimes used interchangeably, because LBM represents the weight of 

bones, muscles, ligaments, tendons and internal organs, so also includes a 

small percentage of essential fat, as there is essential fat in bone marrow and 

in internal organs. FFM does not contain any fat, so in the two-model 

component of body composition, the sources of essential fat are estimated 

and are subtracted from the total body weight to obtain the FFM. 

There is a strong relationship between FFM and REE, as FFM consists of 

metabolically active tissue, and is the largest contributor to REE. REE to FFM 

is therefore a function of the volume of energetic cells relative to the FFM 

compartment, and is influenced by age, body weight and gender (157). During 

adolescence, FFM is composed of 42% skeletal muscle, 8% organ tissue, with 

the remainder being made up of bone and extracellular fluid. Nearly all of the 

REE is accounted for by the liver, heart, kidneys and brain, which generate 

approximately 450 kcal/day, and skeletal muscle (approximately 15 kcal/day), 

while bone and extracellular fluid contribute <1 kcal/day (158). The REE of 

organs is therefore considerably greater than that of skeletal muscle, and as 

adolescents transition to adulthood, they increase their skeletal muscle to 

organ ratio, which results in a decreased REE to FFM (157). However, during 

puberty, children have higher levels of REE, and this is due to the effects of 

growth, higher Na+-K+ ATPase activity (159), changes in hormonal status and 

higher proportions of skeletal glycolytic fibres (160). Young obese adolescents 

have 1.8% greater hydration of FFM compared to their normal weight 

counterparts, which suggests that obese youth have a relatively smaller 

contribution of the more metabolically active tissues to FFM, so that the ratio 

of REE to FFM is decreased (158). 

While the preferred measurement of body composition in young people would 

include a combination of measures of fat, water, protein and mineral content, 

which is referred to as a 4-compartment model, this is expensive and 

technically challenging to carry out. The less accurate but more practical 2-

compartment model, which divides the body into FM and FFM is used instead, 

and FFM is often calculated by DEXA or BIA. Reference data for children and 



60 
 

adolescents has since been established for body composition, which is 

necessary to standardise measurements for age, gender and size (161, 162).  

While BMI is widely used as a surrogate measure of adiposity, it is a measure 

of excess weight relative to height, rather than excess body fat. In children 

and adolescents, the interpretation of BMI is also complicated by the changes 

that occur in weight, height and body composition during growth. BMI levels 

are highly correlated with % body fat in adults, but there is a weaker 

association in children and adolescents, most likely because of the effect of 

growth (163).  

As FFM and FM vary with height, weight and age, it can be difficult to 

determine whether an individual has a high or low FFM or FM. In order to 

assess the relationship between BMI, FM and FFM among children, the FFM 

and FM can be normalised for height by dividing the FFM and FM by the height 

squared to give the Fat Mass Index (FMI measured in kg of fat mass/height2) 

and the Fat Free Mass Index (FFMI measured in Kg of fat-free mass/height2). 

This allows the evaluation of FFM and FM relative to body size. As the BMI, 

FM and FFM are all standardised for height, the contribution of FM and FFM 

to BMI can then be easily assessed, and one set of recommended ranges, 

independent of height and age, can be used (161).  

 

1.5.4 Impact of obesity on Resting Energy Expenditure 

Obesity has an effect on energy expenditure and several studies have shown 

that the TEE is elevated with increasing BMI, and that some people who are 

obese may have a TEE that is approximately 40% higher than that found in 

non-obese individuals (164). Energy expenditure is higher in obese individuals 

because of the increase in FM and FFM that accompanies obesity. However, 

some obese patients have an inability to respond to overfeeding with the 

normal increase of energy expenditure, with evidence suggesting that obese 

people may have individual variations in energy expenditure (83).  

Recent studies have indicated that in obese people FFM is strongly positively 

associated with daily energy intake and meal size, so the greater the amount 

of FFM in a person, the greater the daily energy consumed and the larger the 

individual meal size. In contrast, fat mass (whose primary function is storage), 

has a mildly negative association with food intake in obese patients i.e. fat 

mass has a strong inhibitory negative effect on food intake in lean subjects, 

and while this effect remains in obese individuals, it significantly weakens as 

the amount of adipose tissue increases. Therefore, appetite control would 
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appear to be influenced by metabolism associated with FFM and the energy 

requirements associated with REE, in addition to signals from adipose tissue 

and gastrointestinal peptides (165).  

Obese individuals often continue to feel hungry and are driven to eat, despite 

the large amounts of stored energy in the body. It has been suggested that as 

obese individuals have large amounts of adipose tissue and also additional 

FFM, it would be expected that they would have a persistent drive to eat that 

would be stronger than a non-obese individual of the same age, due to the 

larger FFM and higher REE. Consequently, as people become fatter it 

becomes easier for them to overeat, and the fatter they become the weaker 

the inhibitory action of their stored fat is to help them resist the drive to eat 

(165). 

 

1.5.4.1 Sedentary Behaviour 

Childhood obesity has been attributed to a decline in TEE, which has been 

shown to be secondary to an increasingly sedentary lifestyle amongst 

children, which is often established at an early age (166).  

Physical activity and sedentary behaviour in adolescents has been studied 

extensively. In two international studies; the Global school based student 

health study (167), and the Health behaviour in school-aged children study 

(168), the main findings were that 80.3% of 13-15 year olds were physically 

active for less than 60 minutes a day, and that 66% of the boys and 68% of 

girls aged 13-15 years spent at least 2 hours a day watching Television (TV) 

i.e. excessively sedentary behaviour. 

There appears to be a dose-response relationship between increasing 

sedentary behaviour and unfavourable health in young people, with TV 

viewing being the sedentary behaviour with the most negative impact on 

health. The reason screen time increases adiposity is because it reduces the 

time spent on physical activity, and increases energy intake (169). TV 

watching in particular has been associated with eating foods that have a high 

calorie density, and this has been linked to TV advertising (170). One study 

found that when children watched televised food advertisements, they 

increased their food intake by 45% when they were allowed to eat freely (171).   

There are several other factors that also determine sedentary behaviour, such 

as age, gender, socioeconomic status, parental habits and environmental 

factors.  
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Sedentary behaviour tends to increase with age. Longitudinal studies have 

shown that screen time as well as the total sedentary time increase during 

early adolescence, and a UK study found that 5 years after entering 

adolescence the weekly time spent in front of screens increased by 2.5 hours, 

which was matched by a significant decrease in physical activity, that was 

more marked in girls than in boys (172). These results were confirmed in the 

HELENA study (173), which showed that girls watch more TV than boys and 

that boys engage in more sustained physical activity than girls.  

Low socioeconomic status is associated with high screen time, particularly TV 

viewing, and before the age of 7 years, this association is a consistent finding 

(174). Children from a high socioeconomic status however are not exempt 

from sedentary behaviour, and one study demonstrated that they were in fact 

more sedentary than children from a lower status (175). They engaged in 

activities other than TV viewing though, highlighting that the type of sedentary 

behaviour is more important than the total sedentary time, as time spent 

watching TV is particularly harmful.  Results from studies concerning the 

association between TV viewing time and whether mothers work have been 

inconsistent (176), although the crucial role that parents play regarding the 

development of sedentary behaviours is indisputable.  

Parental lifestyle encourages certain behaviours in children. Children whose 

parents spent more than 2 hours watching TV, were 5 times more likely to also 

spend more than 2 hours watching TV. Half of the families in the study (177) 

were found to own more than 11 multimedia devices, and it has been shown 

that as the number of devices rises so does the amount of time that parents 

spend watching TV. Parents’ perception of the safety of the proximal 

environment also impacts on children’s sedentary behaviours, as children in 

rural areas were more likely to play outdoors compared to their inner city 

counterparts, and screen time has been found to rise as traffic density 

increases (178).  

It has been shown that parental ability to set limits on children’s screen time 

directly correlates with a lower level of sedentary behaviour (179). It is 

therefore essential that management and prevention strategies involve 

parents, to enhance their awareness of the impact their behaviour has on their 

children and to encourage them to promote outdoor activities.  
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1.5.5 Effect of weight loss on Resting Energy Expenditure 

When weight loss occurs, resting metabolism decreases by an amount that is 

significantly greater than would be expected from the loss in metabolically 

active tissue. It is this compensatory adaptive down regulation in REE, 

coupled with a decrease in the serum concentrations of thyroid hormones 

(180), that is frequently cited as the cause for weight regain after weight loss 

through calorie restriction in obese adults. It is also accompanied by feelings 

of hunger, driven by changes in satiety hormone responses, which leads to 

an increase in food intake (181). 

These factors act to minimise weight loss while facilitating a rapid restoration 

of the previously lost weight, which would support the theory that body energy 

is also regulated around a set-point. However, it is possible that if weight loss 

is maintained for a prolonged period of time, then a new set-point may be 

established with long term adjustments to energy expenditure, so that the lost 

weight is not regained (180). 

In adolescent obesity, the major objectives of weight reduction programmes 

are to: 

1. Decrease fat mass in order to reduce the metabolic disorders which 

predispose obese adolescents to severe metabolic complications and 

comorbidities, such as hypertension, type 2 diabetes and 

cardiovascular disease. 

2. Promote physical activity and support/provide motivation to enable 

individuals to continue to practise physical activities. 

3. Preserve and possibly increase FFM to enhance daily energy 

expenditure and improve long-term weight regulation. 

4. Influence food choices and behaviour so that energy balance can be 

improved. 

In obese adolescents, severe energy restrictions result in significant 

decreases in FM and FFM (182), which causes reductions in energy 

expenditure and leads to weight regain. However, physical training without 

energy restrictions has been shown to preserve and even increase FFM (and 

energy expenditure), but the reduction in FM is not as significant (183). 

In a study (184) involving 26 obese adolescents aged 12-16 years (12 male, 

14 female), weight was lost over a 9 month period (mean BMI decrease of 8.1 

kg/m2 and 6.3 kg/m2 in males and females respectively). Energy expenditure 

was affected by weight loss, with REE, BMR and sedentary energy 

expenditure significantly lower at the end of the 9-month weight reduction 
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programme, even after adjusting for FFM. In the 4-month follow-up period 

after the weight reduction programme, 12 of the 26 adolescents maintained 

their weight loss, while 10 gained 6.6kg of body weight (5.8kg of FFM) (185). 

The results of the study confirmed that a Multidisciplinary Team (MDT) 

approach to weight loss can be beneficial, but acknowledged that reductions 

in energy expenditure contributed to the weight regain in the adolescents 

following the weight loss programme.  

Physical activity has been shown to be important in maintaining weight loss, 

although some obese adolescents are limited in the physical activity they can 

perform. Ideally physical activity which promotes considerable energy 

expenditure is preferred i.e. promotes substantial fat oxidation with minimal 

subjective perception of effort and exercise (186). Walking and jogging would 

therefore be preferred over cycling and swimming, but in some obese children 

and adolescents with joint pain, cycling and swimming would be more suitable 

in the first instance.  

There is no definite consensus on the amount of physical activity needed to 

prevent weight gain or weight regain, and 60 minutes a day of either moderate 

or vigorous intensity aerobic activity is recommended, although the intensity, 

duration and type of exercise needs to be taken into consideration (187). It is 

also important that the physical activity is age appropriate and enjoyable, if 

longer lasting effects are to be seen. 
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Chapter 2 Childhood and adolescent obesity 

2.1 Background. 

2.1.1 Prevalence of obesity 

Obesity, and particularly paediatric obesity is a major health concern, and is 

estimated to cost the NHS in England  £6.1 billion per year (188). In Australia 

the situation is similar, with obesity costing the Australian economy $21 

billion/year, and this figure is likely to increase substantially in the next few 

decades, as evidence shows that school children are still getting larger, with 

currently 2.3 million children and adolescents being classified as either 

overweight or obese (189).  

In England, the National Child Measurement Program (NCMP), provides 

children’s weight status at ages 4-5 years and 10-11 years. It began in 2006, 

and currently involves 17000 schools and over a million children. Data 

collected from the program has shown that more than a third of children are 

now leaving primary school overweight or obese. The prevalence of childhood 

obesity is also closely correlated to socioeconomic status, with a child living 

in the most deprived 10% areas in England being more than twice as likely to 

be obese as a child living in the least deprived 10% areas in England (188). A 

recent study has investigated how height, weight and BMI have changed 

between 1953 and 2015 using data from 4 British cohort studies of children 

born in 1946, 1958, 1970 and 2001 (190). They assessed changes from 

childhood to adolescence at age 7, 11 and 15 years, and also changes in 

socioeconomic inequalities over time. The study found that in the late 

twentieth and early twenty-first centuries that socioeconomic equalities in 

weight reversed i.e. lower socioeconomic position was associated with lower 

weights in 1946, 1958 and 1970 cohorts but it was associated with a higher 

weight in the 2001 cohort. The authors concluded that changes in dietary 

intake and eating habits since the 1970’s, compounded by an increase in 

sedentary behaviours, had contributed to the inequalities in weight and BMI 

(190). However, the study was not able to accommodate for the change in 

ethnic diversity which has occurred, as children from most ethnic minority 

groups (Black African, Caribbean, and Pakistani) in England are more likely 

to be obese than white caucasian children. In addition, approximately 7% of 

children and young aged 5-15 years in the UK have obesity at a level likely to 

be associated with comorbidities and over 1% of adolescents have extreme 

obesity with a BMI SDS of ≥ 3 (191). 
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2.1.2 Significance of paediatric obesity 

Extreme paediatric obesity (>99th percentile of BMI for age) now affects more 

children than those affected by cancer, cystic fibrosis, HIV, and Type 1 

diabetes combined (192). Detrimental effects as a consequence of obesity 

include a clustering of cardiovascular risk factors termed the “metabolic 

syndrome” (193), which affects around 1 in 4 obese children and increases 

their medium term chance of heart disease by a factor of 10 (194),  while 

approximately 1 in 10 children will have pre-diabetes (impaired glucose 

tolerance) (193), a condition which progresses to type 2 diabetes as weight 

continues to increase (195). 

Adolescent type 2 diabetes is also an emerging problem in both Australia 

(196) and the UK, and although it remains less common than Type 1 diabetes 

at the present time (197), it is associated with the development of early 

complications (198). In the only long-term follow-up study of individuals who 

developed obesity-related Type 2 diabetes in adolescence, it was found that 

within 15 years of diagnosis, 1 in 20 had developed a need for permanent 

kidney dialysis, and 10% had died (199).  

2.2 Metabolic Syndrome 

2.2.1 Definition of Metabolic Syndrome 

The metabolic syndrome has been described using several other names 

throughout the years, such as Syndrome X (1988) and Insulin resistance 

syndrome (1992), and it has long been recognised that certain risk factors for 

cardiovascular disease occur in clusters. In 2001, the National Cholesterol 

Education programme (NCEP) first coined the term “metabolic syndrome” as 

the presence of 3 out of 5 risk factors: central obesity, hyperglycaemia, 

hypertriglyceridaemia, high-density lipoprotein (HDL) and hypertension (200). 

However, due to varying definitions, a consensus statement made by the Joint 

Task Force in 2009, provided clarification on the diagnostic criteria for 

metabolic syndrome in adults, which included 3 of the following 5 criteria 

(201): 

1. Elevated waist circumference  

2. Systolic blood pressure (BP) of ≥130mmHg / diastolic BP of ≥ 85mmHg 

or on anti-hypertensive treatment. 
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3. Fasting blood glucose of ≥100 mg/dL (5.6 mmol/L) or on treatment for 

hyperglycaemia. 

4. Triglycerides of ≥150 mg/dL (≥1.7 mmol/L) or on treatment for elevated 

triglycerides. 

5. HDL (High Density Lipoprotein) cholesterol ≤ 40 mg/dL (≤1.03mmol/L) 

in males and ≤ 50 mg/dL (≤1.29mmol/L) in females or on treatment for 

reduction of HDL cholesterol. 

Currently, there are no consensus guidelines or diagnostic criteria for 

metabolic syndrome in the paediatric population. This is because definitions 

are more complicated due to the different ranges that need to be covered, and 

also because of the limitations in the normal cut-off and reference ranges used 

for various parameters. In 2007, the International Diabetes Federation (IDF) 

proposed a definition of metabolic syndrome in children and adolescents aged 

10 – 16 years, which is clinically applicable, and also allows for the 

development of symptoms with age (table 2.1) (202). However, it is 

considered to be quite conservative, but until better definitions of the metabolic 

syndrome in children and adolescents are available, it is proposed that the 

IDF definition is used in practise.  Owing to the many definitions of paediatric 

metabolic syndrome, it is difficult to estimate the true prevalence of metabolic 

syndrome in children and adolescents. In a systematic review of 85 studies in 

children (203), the median prevalence of metabolic syndrome in whole 

populations was 3.3% (range 0 – 19.2%), in overweight children it was 11.9% 

(range 2.8 – 29.3%) and in obese children it was 29.2% (range 10 – 66%), 

with non-obese, non-overweight populations having a range of 0.1 – 1%. The 

authors also found evidence that ethnicity and geography are important to 

metabolic syndrome prevalence in children, and a clustering of risk factors 

associated with metabolic syndrome has been demonstrated in certain adult 

populations, such as East Asians, Asian Indians, Native Americans, Japanese 

Americans and Hispanics (204). 
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Characteristics Age 

6 to <10 years 10 to <16 years      ≥ 16 years 
  

Definition of 

adiposity 

WC >90th 
percentile 

WC >90th 
percentile 

WC >90th 
percentile 

Blood glucose 

 

No set value FBG >5.6mmol/L 

(100mg/dL) 

FBG >5.6mmol/L  

(100mg/dL) 

Dyslipidaemia No set value TG >1.7mmol/L 

(150mg/dL) 

HDL <1.03mmol/L 

(40mg/dL) 

TG >1.7mmol/L 

(150mg/dL) 

HDL <1.03mmol/L 

(40mg/dL) 

Blood pressure No set value Systolic 
>130mmHg 

Diastolic 
>85mmHg 

Systolic 
>130mmHg 

Diastolic 
>85mmHg 

Table 2.1. International Diabetes Federation (IDF) criteria for the definition of 
metabolic syndrome in children and adolescents. (202) 

(WC, Waist circumference; FGB, Fasting Blood Glucose; TG, Triglyceride; HDL, High 

Density Lipoprotein) 

 

 

2.2.2 Pathogenesis of Metabolic Syndrome 

Although obesity is commonly thought to be the antecedent of metabolic 

syndrome, lean individuals can also have metabolic syndrome, suggesting 

that obesity is a marker of metabolic syndrome rather than a cause. This is 

clearly illustrated in the syndrome of lipodystrophy (an absence of 

subcutaneous fat) where all fat is stored in liver and muscle, causing severe 

insulin resistance and diabetes (205). Metabolic syndrome can therefore arise 

from too much or too little fat, and 40% of the normal weight population have 

the same metabolic dysfunction as the obese, although 20% of the obese 

population are actually metabolically normal (206).  

While the pathogenesis of metabolic syndrome is still not completely 

understood, the interaction between insulin resistance, inflammation and also 

fat, are thought to play a key role in its development.  
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2.2.2.1 Insulin Resistance 

The central pathogenetic feature of the metabolic syndrome is insulin 

resistance, which refers to reduced glucose uptake in the whole body, in 

response to physiological insulin levels.  

Insulin mediates its effect on target tissues via specific membrane receptors, 

and it stimulates glycogen synthesis and inhibits hepatic gluconeogenesis and 

glycogenolysis (207).  

In metabolic syndrome, the number of insulin receptors is reduced, and this 

down-regulation is triggered by existing hyperinsulinism. Insulin is also an 

anabolic hormone, so is a negative regulator of β-adrenergic stimulated 

lipolysis, and with insulin resistance, leads to reduced insulin-mediated 

inhibition of lipolysis. In the presence of increased body fat mass, this causes 

an increase in the level of circulating free fatty acids (FFA). FFAs precipitate 

and perpetuate insulin resistance and hyperinsulinism in 3 ways: 

1. They reduce insulin binding to its receptor, so decrease insulin 

clearance in the liver. 

2. High levels of FFAs significantly impair glucose utilization in muscle. 

3. They impair glucose uptake by inhibiting the tyrosine phosphorylation 

of insulin receptor substrate-1. 

The resulting hyperglycaemia causes permanent stimulation of insulin 

secretion, which results in a reactive hyperinsulinaemia, and high levels of 

FFAs also directly stimulate insulin secretion by the β-cells (207). 

There is however a clear association between the degree of obesity i.e. 

visceral fat mass, and adverse metabolic changes. Visceral fat mass in 

particular contributes to the development of insulin resistance and impaired β-

cell function, as well as to the development of dyslipidaemia.  

Adipose tissue also secretes adipokines, many of which interfere with the 

regulation of glucose homeostasis, and visceral adipose tissue in particular 

produces large amounts of insulin resistance-promoting adipokines. One of 

the features of obesity-associated insulin resistance is chronic inflammation 

of the adipose tissue, and these inflammatory changes can be observed very 

early on in the development of obesity-related comorbidity i.e. before a 

significant increase in the circulating insulin concentration (200). 

Exercise and physical activity however have a positive effective on insulin 

sensitivity and on pro-inflammatory activity i.e. reduction of serum interleukin-
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6 concentrations. Life style intervention programmes have been found to be 

more effective than pharmacotherapy for the prevention of progression from 

impaired glucose tolerance to type 2 diabetes in obese adults, and it is thought 

that the same is true for obese children and adolescents. It has also been 

shown that functionally healthy adipose tissue, which is characterized by high 

insulin sensitivity, and a high fat storage capacity, is essential for healthy 

metabolism and the prevention of the development of the metabolic syndrome 

(208).  

 

 

 

Figure 2.1. Proposed mechanism for the clustering of metabolic syndrome 
traits and the increased risk of type 2 diabetes mellitus and 
cardiovascular disease. (209) 

(CRP, C-Reactive Protein; FFA , Free Fatty Acids; IL-6 , Interleukin-6; LDL-C , Low 

Density lipoprotein Cholesterol; PAI-1, Plasma Activator Inhibitor 1; TNF-α , Tumour 

Necrosis Factor α) 
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2.2.3 Clinical Features of Metabolic Syndrome 

Clinical features seen in metabolic syndrome include: 

 

2.2.3.1 Visceral obesity 

Obesity is an important component of the metabolic syndrome and the 

development of type 2 diabetes and cardiovascular disease. Visceral fat 

accumulation, independent of the degree of obesity, is strongly associated 

with both childhood metabolic syndrome and cardiovascular disease later on 

in life. Visceral adiposity can be estimated using waist circumference, waist to 

hip and waist to height ratios and MRI, and it has been suggested that waist 

measurements should be incorporated routinely in paediatric screening, as it 

could improve cardiometabolic risk stratification among children (210).  

 

2.2.3.2 Dyslipidaemia 

In adolescents, an increased triglyceride to HDL ratio can be used as a marker 

for elevated LDL, with a ratio of ≥ 3 indicative of more LDL particles and a 

higher risk for cardiovascular disease, owing to the atherogenic effect of LDL 

(211). The risk of pancreatitis is increased with concentrations of triglycerides 

>5 mmol/L. 

 

2.2.3.3 Hypertension 

Blood Pressure should be measured with the patient in an upright sitting 

position using the right arm, and using the correct cuff width (this needs to 

cover at least 80% of the upper arm length). In children and adolescents, the 

measured values should be interpreted using reference values which take into 

account age, sex and body height (209).  

 

2.2.3.4 Glucose intolerance and Type 2 diabetes 

Acanthosis nigricans is a brown hyperpigmentation of the skin, which typically 

occurs in the neck and armpits, and is a clinical sign associated with 

hyperinsulinaemia (figure 2.2). Glucose intolerance (impaired fasting glucose) 

and T2DM develop as a result of deterioration of β-cell function and 

subsequent reduction in insulin secretion capacity. 
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Figure 2.2. Acanthosis nigricans  

 

While the gold standard for measuring insulin resistance is the euglycaemic 

hyperinsulinaemia clamp, this is an invasive and expensive method. The oral 

glucose tolerance test (OGTT) is a more clinically applicable test, and is 

performed following the guidelines of the American Diabetes Association 

(212). Fasting levels of glucose and insulin are measured, and then an oral 

dose of liquid glucose (1 gram of glucose/kg body weight to a maximum of 75 

grams) is given to the patient, and the blood glucose is measured at 120 

minutes. 

Impaired fasting glucose is defined as a fasting glucose ≥ 100 and < 126 

mg/dL (5.6 – 6.9 mmol/L). 

Impaired glucose tolerance is diagnosed if the blood glucose is ≥ 140 and < 

200 mg/dL (7.8 – 11 mmol/L) at 120 minutes (table 2.2) (212). 

In the absence of unequivocal hyperglycaemia, results can be confirmed by 

repeating the test. However, OGTT results have shown high intra-individual 

variability. In addition, the test does not consider insulin response and so 

cannot detect hyperinsulinaemia, which is the first sign of impaired glucose-

insulin metabolism (213). As puberty is a major factor influencing glucose 

tolerance in children and adolescents, with the increased secretion of growth 

hormone in puberty contributing to the differences in insulin sensitivity, 

screening for type 2 diabetes usually begins at age 10 years or at the onset 
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of puberty (whichever comes first) to 19 years of age, as per the 

recommendations of the American Diabetes Association (212). However, 

progression from insulin resistance to glucose intolerance and/or T2DM is 

variable among individuals, which is why routine monitoring for the 

development of T2DM symptoms is essential.  

Table 2.2. Cut-off values for glucose and HbA1c 

Parameter HbA1c (%) FPG 2h PG OGTT 

Diabetes >6.5 >7.0 mmol/L 

>126 mg/dL 

>11.0 mmol/L 

>200 mg/dL 

Impaired 

Glucose 

Tolerance 

5.7 – 6.4 5.6-6.9 mmol/L 

100-125 mg/dL 

7.8-11.0 mmol/L 

140-199 mg/dL 

Normal ≤5.7 ≤5.6 mmol/L 

≤99 mg/dL 

≤7.8 mmol/L 

≤139 mg/dL 

FPG = fasting plasma glucose; 2h PG OGTT = plasma glucose at 120 mins after 

ingestion of 1g/kg (max 75g) glucose 

 

2.2.3.5 Non-alcoholic Fatty Liver Disease (NAFLD) 

NAFLD represents a spectrum of damage to the liver that varies in severity 

from asymptomatic steatosis, to non-alcoholic steatohepatitis (NASH) with 

inflammation, to advanced fibrosis with cirrhosis, which can lead to 

hepatocellular carcinoma. NAFLD is defined by having liver fat >5% liver 

weight (not caused by alcohol consumption) and is strongly associated with 

insulin resistance (214). Owing to the increase in obesity prevalence in 

children and adolescents, there has been a corresponding increase in the 

incidence of NAFLD, and it is now the most common cause of liver disease in 

children. Diagnosis of NAFLD is challenging as a liver biopsy is required, 

although suggested recommendations are biannual screening for NAFLD by 

measuring aspartate aminotransferase (AST) and alanine amino transferase 

(ALT), and ultrasound imaging of the liver may also be helpful (200).  

 

2.2.3.6 Polycystic Ovary Syndrome (PCOS) 

PCOS is characterised by hyperandrogenism, menstrual irregularities and/or 

ovulatory dysfunction, and polycystic ovaries. It is commonly associated with 
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obesity and insulin resistance in adolescent females, and monitoring and 

frequent screening for the development of metabolic syndrome in affected 

females is recommended (215).  

 

2.2.3.7 Inflammatory Markers 

Obesity is associated with a pro-inflammatory state secondary to the 

increased production of inflammatory cytokines by hypertrophic adipose cells. 

These cells are more resistant to insulin’s action to suppress lipolysis and they 

secrete increased amounts of pro-inflammatory chemokine monocyte 

chemoattractant protein-1. Other inflammatory markers secreted by 

adipocytes include Interleukin-6, tumour necrosis factor-α, and C-Reactive 

Protein (CRP) (216). While CRP can be used for cardiovascular risk 

stratification in adults, the exact relationship between CRP and metabolic 

syndrome in children remains unclear (217).  

 

2.2.4 Screening for Metabolic Syndrome in children and 

adolescents 

History and examination constitute the first step in screening for metabolic 

syndrome, and the presence of parental obesity, which is a major risk factor, 

should also be included in the evaluation (218). The signs and symptoms for 

associated comorbidities such as obstructive sleep apnoea, which can be 

identified with polysomnography, should also be included (218). It is 

recommended that screening for fatty liver disease using ALT and AST levels, 

should be performed bi-annually, starting at the age of 10 years for children 

with obesity, or for those who are overweight with other risk factors (219).  

In a study published in 2015 that examined trends in dyslipidaemia in youth, 

20.2% were found to have abnormal levels of total and HDL cholesterol. (220) 

The US National Lipid Association provides annual updates of lipid lowering 

therapies, as well as hyperlinks to resources and separate recommendations 

for children, adolescents and adults <21 years of age (221).   

Routine screening for dyslipidaemia with non-fasting HDL lipid profile is 

recommended for all obese children between 9 and 11 years and should be 

repeated between 12 and 16 years. For those children aged 2 – 8 years, a 

fasting lipid profile should be carried out (222). In those whom lifestyle 

modification is ineffective, and aggravating factors have been excluded, 

omega-3 fatty acids, fibrates or niacin should be trialled. (221)  
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Hypertension prevalence ranges from 3.8% to 24.8% in overweight and obese 

youth, with the rates of hypertension increasing in a graded fashion as 

adiposity increases (223). BP should be obtained annually using an 

appropriately sized BP cuff, starting at 3 years of age, and results should be 

compared to age, height and gender adjusted reference ranges (222). Any 

elevated BP should be confirmed with repeated measurements, and any child 

with a sustained elevation in their BP at or above the 95th percentile when 

measured by manual auscultation, should undergo evaluation for a secondary 

cause (224). Ambulatory Blood Pressure Monitoring (ABPM) is also a valuable 

tool in the diagnosis of hypertension in children with obesity, because of the 

higher prevalence of masked hypertension. While lifestyle interventions are 

recommended to lower BP, pharmacotherapy should not be withheld in obese 

youth if weight loss does not occur, and the updated 2017 American Pediatric 

guidelines for screening and management of hypertension in children and 

adolescents provides a comprehensive guide and discussion about drug 

choices (223). 

Screening for T2DM is recommended in in overweight and obese children with 

any 2 of the following risk factors: 

1. Family history of T2DM in first or second degree relative. 

2. Specific race/ethnicity (Native American, African, Asian, pacific 

Islander). 

3. Signs of insulin resistance (e.g. acanthosis nigricans). 

4. History of being small for gestational age. 

5. Maternal history of diabetes or gestational diabetes during the child’s 

gestation. 

Screening should begin at 10 years of age or at the onset of puberty, 

whichever occurs first, and should be repeated every 3 years. OGTT remains 

the gold standard for the diagnosis of diabetes (225). 

  

2.2.5 Tracking of Paediatric Obesity 

The term “tracking”, which is often used in relation to metabolic syndrome, 

means the persistence of an individual’s risk factors from childhood to 

adulthood, in addition to the increasing expression of those risk factors with 

age i.e. if evidence of metabolic syndrome is found in a child, symptoms are 

likely to persist to later in life and the clinical symptoms will continue to develop 

with age (226). 
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Obesity is associated with widespread, damaging effects on health (227, 228), 

mainly because of the tracking of weight across the life-course (226), meaning 

that if we can improve outcomes from paediatric obesity programmes, then 

large scale reduction in obesity-related adult disease will follow (229).  

2.3 Major complications associated with childhood obesity 

The most common obesity associated complications in children and 

adolescents are primarily related to metabolic abnormalities and mental health 

concerns (figure 2.3) (230). In addition to the clinical features of metabolic 

syndrome, other obesity associated comorbidities include Obstructive Sleep 

Apnoea (OSA), Orthopaediatic complications such as Slipped Capital 

Femoral Epiphyisis (SCFE) and urogenital complications (urolithiasis and 

stress urinary incontinence) (230). 

The prevalence of OSA amongst obese children and adolescents can be as 

high as 60% (231), and currently polysomnography (sleep study) is the gold 

standard for diagnosing OSA. It is characterised by snoring, and recurrent 

partial (hypopneas) or complete (apnoeas) obstruction of the upper airway. 

The number of apnoeic and hypopneic events per hour of sleep is expressed 

as apnoeic/hypopnea index (AHI) on polysomnography. This is then used to 

characterised the severity of OSA; AHI up to 1.5 events/hour is mild, 1.5 – 5 

events/hour is moderate and >5 events/hour is severe (232). In OSA, the 

episodes of airway obstruction can be due to increased airway collapsibility 

due to mechanical or neuronal factors, with hypertrophy of the adenoids +/- 

tonsils being the most common mechanical factor. OSA is also associated 

with systemic hypertension, changes in ventricular structure and function and 

arterial stiffness i.e. increased cardiovascular burden, and OSA is also 

frequently associated with sleep disruption and fragmentation. Adeno-

tonsillectomy is recommended as the first step in the management of OSA 

and it can improve obstructive symptoms in up to 80% of obese children with 

OSA (233), however, morbidly obese children are more likely to fail treatment 

and up to 50% continue to have OSA. Consequently, Positive Airway Pressure 

has become the standard of care, in addition to weight loss strategies (234).  

Cross-sectional studies have also shown an association between short sleep 

duration and an increased risk of overweight or obesity in children and 

adolescents, with a systematic review of 12 studies giving a pooled odds ratio 

of 1.89 (95% CI 1.43 – 1.68) for short sleep duration and obesity (235). 

Interventions targeting sleep may result in improved weight and body 
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composition in adolescents with obesity, and strategies might include an 

earlier bedtime and removal of electronic screen devices from the bedroom. 

Improving sleep quality may also have additional benefits, such as improved 

mood, school performance and general health (230) .  

After smoking, obesity is the second biggest preventable cause of cancer in 

the UK. Obese children are more likely to become obese adults and obese 

adults are more at risk of cancer, with the risk being greater the longer a 

person is overweight, and with the more weight they gain.  The evidence 

linking obesity to cancer risk comes predominantly from large cohort studies, 

which means it can be difficult to establish cause and effect. However, despite 

limitations in study designs, there is consistent evidence that higher amounts 

of body fat are associated with increased risks of a number of cancers (236) 

including endometrial cancer (237), oesophageal adenocarcinoma (238), 

gastric cardia cancer (239), liver, kidney, pancreatic and colorectal cancer 

(240), multiple myeloma (241), meningioma (242) and breast cancer in both 

men and women (243, 244). Possible mechanisms by which obesity could 

affect cancer risk include: 

 Obese individuals have chronic low-level inflammation, which over time 

can cause DNA damage which can lead to cancer (245). 

 Testosterone is converted to oestrogen in adipose tissue and adipose 

tissue also produces excess amounts of oestrogen and higher levels 

have been linked to increased risks of breast, endometrial and ovarian 

cancer. 

 Obese individuals have increased levels of insulin and IGF-1 

(hyperinsulinaemia) and many cancer cells express elevated levels of 

IR-A, a form of insulin receptor with a high affinity for insulin and related 

growth factors. High levels of insulin and IGF-1 have been linked to the 

development of colon, kidney and endometrial cancers (246). 

 Adipose cells produce adipokines which can stimulate or inhibit cell 

growth 

 Adipose cells also have direct and indirect effects on other cell growth 

regulators such as mTOR (Mammalian Target of Rapamycin) and 

AMP-activated protein kinase (247). 

Currently, several areas of research are exploring mechanisms that link 

obesity with cancer, and how avoiding weight gain or losing weight can affect 

the risk of cancer. 
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Figure 2.3. Management of obesity associated comorbidities. (230) 

(ACE – Angiotensin Converting Enzyme, CPAP – Continuous Positive Airway 

Pressure) 
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2.4 Prevention and treatment of childhood and adolescent 

obesity 

Obesity is a complex and multifactorial disease, so requires a multifaceted 

treatment approach to managing it, which takes into account both the external 

environment and the internal physiological mechanisms underpinning it, as 

well as the chronic nature of the condition. 

 

2.4.1 Obesity treatment programmes 

Obesity treatment programmes usually comprise of exercise and dietary 

modifications with behavioural therapy techniques, and they are the first line 

of treatment in paediatric obesity (248). A plethora of different weight 

management programmes are available, such as WATCH IT, HENRY and 

MEND (Mind, Exercise, Nutrition, Do it!), although there is a wide variation in 

local provision (249). Most weight reduction programmes are provided via 

outpatient clinics, and interventions lasting at least 6-12 months are needed 

to produce longer-term success (250, 251). However, obesity interventions 

programmes in schools, via the internet and using telephone coaching have 

not been associated with changes of BMI in obese children (252). Their limited 

effect can be explained partly by the absence of parental involvement. Parents 

control the health behaviour of their children and are important role models 

with respect to eating and exercise behaviour, therefore their involvement in 

any lifestyle intervention is important if it is to be effective (252). In addition, 

many existing paediatric obesity programmes which involve parents often fail 

to engage fathers, and innovative strategies are needed to make participation 

more accessible to fathers (253).  

In children, a strict hypocaloric diet is no longer recommended as a weight 

reduction intervention, as it can adversely affect growth and development 

(254). In addition, energy requirements of children, even of the same age and 

sex, can vary significantly, owing to differences in genetic background and 

levels of physical activity (255). Despite insufficient supporting evidence, most 

dietary lifestyle modifications in children aim to reduce the calorie intake by 

approximately 30% (248), although whether a low-fat or low-carbohydrate diet 

is more advantageous is debatable. Of note, a reduction in the intake of 

sweetened drinks is the only dietary intervention in children proven in RCTs 

to be effective (256).  
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Sporting activities also constitute an important part of obesity treatment 

programmes, with the aim of the sessions being to reduce body weight but 

maintain lean body mass by improving muscle strength, and also increasing 

aerobic and anaerobic fitness. However, physical activity interventions have 

been found in RCTs and meta-analyses to have no effect on the BMI of obese 

children (250, 251), although it is associated with more favourable 

cardiovascular risk factors (252). Reducing sedentary behaviour by limiting 

screen time has become the latest focus, and has demonstrated favourable 

results on weight status in younger children (257).  In obese adolescents, 

NICE guidance recommends aiming for weight loss of 0.5 – 1.0 kg per month, 

based on British Dietetic Association recommendations (258), however in 

younger children, weight maintenance is preferred over weight loss so as not 

to affect normal development and growth.  

Behavioural strategies are routinely used to support changes in diet and 

physical activity, and help to facilitate long-term maintenance of these 

changes. Behavioural therapy approaches have been proven to be effective 

in several RCTs and meta-analyses (259), and commonly used techniques 

include impulse control techniques, self-reflection curves, problem-solving 

strategies and model learning via parents. More recently, behavioural 

therapies have moved towards solution-focused theories and family based 

interventions, which avoid assigning blame and instead highlight strengths 

rather than weaknesses. Motivational interviewing can also be used to 

increase motivation and help with the setting of goals (260), although goals 

must be concrete, developmentally relevant and achievable, and need to be 

reviewed regularly in clinical sessions in order to be effective (230).  

 

2.4.1.1 Services for the management and treatment of overweight and 

obesity in children 

A classical commissioning pyramid as shown in figure 2.4, is used to illustrate 

how services for the management and treatment of overweight and obesity in 

children is organised within NHS England (261). There are 4 levels or tiers. 

Tier 1: Primary care and community advice. Public health measures, simple 

interventions and opportunistic advice to families based within primary care. 

Tier 2: Primary care with community interventions. There is a wide variation 

in the weight management programmes available, some of which are 

commissioned such as MEND, Alive & Kicking and More Life. Typically, the 
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weight management programmes last for 10-12 weeks, and are based in the 

community, with children and young people attending once or twice a week. 

Tier 3: A specialist MDT to provide an intensive level of input. NICE 

recommends referral to tier 3 specialist obesity services for children with early 

onset severe obesity, those with very severe obesity, those who have failed 

to lose weight with Tier 2 programmes, those who have relapsed or children 

with significant comorbidities (258). Unfortunately, tier 3 services are seldom 

commissioned and the lifestyle interventions are often indistinguishable from 

those at tier 2. Service provision in children is often fragmented and specialist 

MDT obesity clinics are rarely commissioned. 

Tier 4: Specialised complex obesity services (medical management, obesity 

surgery and other elements of specialised MDT care). The commissioning of 

tier 4 bariatric services for obese adolescents is currently being reviewed by 

NHS England, and bariatric surgery in exceptional circumstances is included 

in the NICE recommendations for childhood obesity (262).  

 

Figure 2.4. Commissioning pyramid for the organisation of weight 
management services for children. (262) 

It is also important that the identification and assessment of obesity related 

co-morbidities are considered by referring clinicians (table 2.3), as often 

community weight management programmes do not routinely screen for 

weight-related co-morbidities (262).  
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Enquiry/investigation Rationale 

Family history and age-
onset obesity 

Children with a very strong parental history of obesity 
and early-onset obesity (<5 years) are more likely to 
have a monogenic cause for their obesity. 
 

Assess growth and 
puberty 

Children with endocrinopathy tend to be short and 
overweight, while those with nutritional obesity tend 
to be tall and overweight (compared with mid-
parental height). Individuals with endocrinopathies 
such as Cushing’s show arrested growth. 
 

Blood pressure 
Up to 20% children with severe obesity may have 
hypertension. 
 

Liver function tests 

Non-alcoholic fatty liver disease (NAFLD) as a 
consequence of obesity is common. An ALT >twice 
the upper limit of normal range suggests fatty liver. 
 

Lipids 
Risk of raised cholesterol and triglycerides is 
increased sevenfold in severe obesity. 
 

Fasting insulin and fasting 
glucose 

If the fasting insulin and glucose are raised with a 
high HOMA score (>4.5), consider an oral glucose 
tolerance test. 
HOMA is a measure of insulin resistance 
HOMA= Fasting insulin (mU/L) x Fasting glucose mmol/L 
                                                   22.5 

Thyroid function 

Exclude hypothyroidism though modest rises in TSH 
are common in obese children. It is not 
recommended that mild subclinical hypothyroidism 
(TSH <10.0) is treated. 
 

Consider obstructive sleep 
apnoea 

Enquiring about snoring and consideration of a 
screening questionnaire may assist in identifying 
those who may need further investigation for 
obstructive sleep apnoea. 
 

Enquire about menstrual 
irregularities and hirsutism 

In overweight/obese girls, ovarian hyperandrogenism 
is common and menstrual irregularities and hirsutism 
frequently occur. Investigation of follicle stimulating 
hormone (FSH), lutenising hormone (LH), sex 
hormone binding globulin (SHBG) and testosterone 
may be indicated. 
 

Consider screening for 
vitamin D deficiency 

Vitamin D deficiency is common in overweight/obese 
children as a consequence of vitamin D deposition in 
fatty tissues and diet. 

 

Table 2.3. Investigations to consider for screening of weight related 
comorbidities. (262) (HOMA, Homeostatic Model Assessment) 
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2.4.1.2 Effectiveness of obesity treatment programmes 

The effectiveness of obesity treatment programmes can be defined in various 

ways, such as a reduction in BMI or weight outcomes, improvements in 

obesity-associated complications, or a change in weight gain trajectory.  

Obesity treatment programmes have been found to be effective in reducing 

obesity when compared to standard care (i.e. self-help), following analysis of 

>60 RCTs involving >5,500 children (250, 251). Success rates are higher in 

children compared to adults, with the best results achieved by younger 

children, (aged 8-12 years), who are less overweight (263). The mean 

reduction of BMI-SDS of obesity treatment programmes for obese children 12 

months after onset ranges from -0.2 to -0.6 BMI-SDS (250-252, 264). In 

addition, a decrease in BMI SDS of ≥ 0.25 (equivalent to a reduction of 1 BMI 

or a stable weight of over 1 year in a growing child) has been associated with 

improvements in cardiovascular risk factors, intima-media thickness, 

androgen excess in PCOS and NAFLD (248, 264, 265).  

Interestingly, in the few studies carried out in children to analyse the long-term 

effect of obesity treatment programmes i.e. changes in weight status ≥ 5 years 

after the end of treatment, the achieved weight loss secondary to the 

intervention was sustained for 5 – 10 years, which is in contrast to adult 

studies, where the majority of participants regained weight (263). However, 

obesity treatment programmes have not been found to be successful in 

extremely obese adolescents (252). 

It is important to recognise that there are several limitations of obesity 

treatment trials, and also many reasons why obesity treatment programmes 

fail to be effective. The trials tend to have relatively short follow-up periods, 

have small sample sizes and have insufficient numbers of children from low 

socioeconomic status or from different ethnic groups, which may explain why 

RCTs tend to overestimate the effectiveness of obesity treatment programmes 

(250). Some of the reasons for intervention failure include a reluctance by 

families to participate in obesity treatment programmes, high rates of attrition 

from clinical trials, and the premature cessation of exercise programmes, with 

several meta-analyses in children and adults supporting the continuation of 

exercise in order to sustain long-term (3 – 5 years) weight loss and weight 

maintenance (266). Genetic background also influences the response to 

treatment and children who already have features of the metabolic syndrome 

are less likely to respond (252). Finally, it can be difficult to assess the 

effectiveness of obesity prevention programmes because while there is an 

evidence base for the effectiveness of different single parameters (e.g. 
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negative correlation between weight status and high media time), the 

effectiveness of combined parameters still needs to be evaluated. However, 

the time needed to really show preventative effects and whether they are cost-

effective may take many decades, and research funding is usually restricted 

in both time and amount (267).   

 

2.4.2 Prevention of paediatric obesity and barriers to 

implementing effective prevention strategies 

2.4.2.1 Prevention of paediatric obesity 

Prevention is better than cure forms the crux of many public health initiatives, 

and is the strategy employed for managing several chronic diseases. As so 

many people are affected by obesity and its associated health, social and 

economic consequences, all levels of prevention are required to effectively 

tackle the problem. 

Public health science defines 3 different levels of prevention, which include: 

1. Universal prevention and health promotion – This is where information 

is directed towards the whole population, irrespective of their weight 

status, with the most common method for disseminating information 

being provided by government funded institutions e.g. TV advertising, 

posters, leaflets and websites. 

2. Selective prevention – these measures only address those groups who 

are at risk of obesity e.g. low socioeconomic status, genetic 

predisposition, families with obese parents.  

3. Targeted or Indicated prevention – efforts are directed towards children 

and young people who are already obese with the aim being to prevent 

further increases in body weight.  

Behavioural and environmental prevention are 2 modes of prevention which 

are applicable to all 3 levels of prevention. The former addresses the individual 

person or family, and there is an expectation that health behaviour will change 

(micro level of prevention). The latter is concerned principally with creating 

health promoting living spaces and surroundings, which are accessible to the 

whole population (macro level of prevention) (267).  

The UK spends only around £638 million on obesity prevention programmes 

each year, whereas the cost of treating obesity and its consequences alone 

costs the NHS at least £5.1 billion, although more recent figures put this at 

£6.1 billion. By 2050, the UK wide costs attributable to overweight and obesity 
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are projected to reach £9.7 billion, with costs to the wider economy estimated 

to reach £49.9 billion per year (268).  

 

 

Figure 2.5. Costs of obesity. (268)  

The sugar intake for many children is still too high, with 4-10 year olds 

consuming twice as much sugar as they should, and teenagers having three 

times as much (figure 2.6). Current national policies to tackle childhood 

obesity include the introduction of a soft drinks sugar levy across the UK, 

which came into force in April 2018. According to the National Diet and 

Nutrition study, sugary soft drinks provide 26% of the total sugar intakes for 

11 – 18 years in England, and a single 330ml can of a soft drink with added 

sugar can contain 35 grams of sugar.  The levy relates to the total sugar 

content on drinks with more than 5g per 100 ml, while a heavier levy is 

imposed on drinks with 8g per 100ml. Other countries have introduced similar 

measures, such as Mexico, which has one of the world’s worst weight 

problems, and introduced a 10% tax on sugar-sweetened drinks in 2014, and 

saw a 12% reduction in the sales of fizzy drinks in the first year (269).  Several 

other countries have already imposed levies on unhealthy foods, such as 

chocolate and sweets in Norway. Some argue that the policy did not go far 

enough and should have included fruit smoothies and milk-based drinks, while 

opponents argue that the levy will lead to job losses and a significant fall in 

the economic contribution from the soft drink industry. 
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Figure 2.6. Recommended maximum daily amounts of added sugar for 
children. (270) 

The revenue the levy generates will be invested in programmes to reduce 

obesity and increase physical activity and encourage healthy eating in school 

age children. Public Health England (PHE) also have a broader structured 

sugar reduction programme, and have set a target of reducing the sugar 

intake from a number of foods that children commonly eat by a fifth by 2020. 

PHE have identified 10 types of products: yogurts, sweet spreads, breakfast 

cereals, ice creams and lollies, sweet and chocolate confectionary, biscuits 

and puddings, which covers all of the 10 groups of foods except for breakfast 

pastries and cakes (270). 

In 2013, the government brought in new consistent, front of pack, food 

labelling, combining red, amber, green colour-coding and nutritional 

information to show how much fat, saturated fat, salt and sugar, and calories 

were in food products (figure 2.7).  The traffic light system for labelling foods 

was part of the governments work to reduce obesity levels by making it easier 

for people to make healthier food choices. It was also a way to get businesses 

to take action to reduce the amount of calories, salt and trans-unsaturated fat 

in foods, by signing up to the Responsibility deal pledge and using the traffic 

light labelling system on the front of their packaging (271). However, food and 

drink companies are under no obligation to use it, and unfortunately, some 

companies use the minimal amount of nutritional labelling required on their 

packaging, which some consumers find confusing and misleading i.e. the 

Nutrition Labelling and Education act of 1990 requires the disclosure of total 
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sugars on the nutrition facts label for processed food, however, there are 56 

different names for sugar, most of which are unknown to the public (272).  

 

Figure 2.7. Traffic light system for labelling foods. (271) 

Finally, campaigns led by celebrity chefs have helped to raise the profile of 

paediatric obesity and have led to successful interventions such as the 

introduction of healthier school dinners (Jamie Oliver) and documentaries 

(Britain’s Fat Fight by Hugh Fearnley-Whittingstall). Both chefs also recently 

gave evidence to MPs at the Health and Social Care Committee, along with 

academics and health and fiscal experts, regarding their assessment of the 

governments’ childhood obesity strategy, and advising on what they expect 

from the next part of the plan.  

 

2.4.2.2 Barriers within paediatric obesity 

Parents play a crucial role in the prevention of childhood obesity, however up 

to 75% of parents do not recognise that their child is overweight, and even 

when they do, 40% do not appreciate the health risks associated with obesity 

(273). In families with paediatric obesity, the parents appear to lack confidence 

in their own abilities to manage their child’s weight, and this is evident in their 

higher expectations towards schools, where they expect their child to be 

educated in how to eat healthily. They also want the clinician and other 

members of the MDT involved in their child’s care to adopt a mediating role.  
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Most affected families also have a lower socioeconomic status with the 

accompanying financial constraints this brings (274). 

The social economic status of an area is commonly measured using one or 

more of the following indicators; unemployment rate, proportion of educational 

levels, material possessions, median income and single parents. Evidence 

from studies (275, 276) suggests that low socioeconomic status is related to 

an increased prevalence of overweight or obesity in children and adolescents. 

Reasons for this may be: 

 A lack of resources, such as parks or recreational facilities for physical 

activities. 

 A decrease in formal and informal institutions that monitor and 

supervise children’s behaviour e.g. parents modelling healthy food and 

exercise behaviour and schools’ influence on healthy behaviour 

 Unhealthy behaviour in peers e.g. fast food consumption, physical 

inactivity and shared perceptions regarding body shape (277).  

In the last decade, consumption of food away from the home has increased 

by 29% in the UK, while the number of fast food outlets has increased 

dramatically (278). In a study looking at area deprivation and the food 

environment over 18 years in Norfolk, the number of takeaway food outlets 

rose by 45%, with the highest absolute increase in density of outlets in areas 

of highest deprivation (43% increase) as oppose to areas of least deprivation, 

which saw a 30% increase over the same time period (279). Research has 

linked exposure to takeaway food outlets to increased consumption of 

takeaway food, and overconsumption of takeaway food has been strongly 

linked to low diet quality and to weight gain (280). An association has also 

been found between consumption of fast food at lunchtime and exposure to 

fast food outlets around schools for children (281). Diets and body weight 

could therefore be improved if policies restricting takeaway food access were 

instigated, with particular focus around the workplace and schools. 

Industrialised consumer societies show high prevalence rates of overweight 

and obesity, which is shaped by the priorities and influence of different 

stakeholders (government, health, industries, media and general public). The 

government of a country has a fiduciary duty to the health and welfare of its 

population, and through the NHS, the government in the UK provides 

healthcare to all legal residents, so has an important role in setting the agenda 

for obesity prevention and management. Industries, such as food industries, 

pharmaceutical industries and electronic industries, are driven by wanting to 

sell their products to all potential consumer groups, including children, and are 
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supported by commercial advertising. The media also aim to share their 

information, but are often funded by the commercial advertising of the 

industries (272).  

High calorie, low nutrient “junk” food brands last year spent 27.5 times more 

on advertising their products than the amount available for the UK 

government’s flagship healthy eating campaign (Change 4 life), with the top 

18 companies (crisps, confectionary and sugary drink brands) spending over 

£143 million/year on advertising (282). Marketing strongly influences 

children’s food preferences, requests and consumption. While marketing to 

children is not new, methods currently employed are more intense and 

pervasive. Television still predominates, but product placement in toys, 

games, educational materials, songs and films, cartoon and celebrity 

endorsements, and stealth campaigns (word of mouth, text messages and the 

internet) all aim to teach children to recognise brands and pester their parents 

to buy them (283). Currently, the efforts of the food industry and government 

agencies to promote healthier foods falls woefully short of their potential, and 

if the food industry does not change its practice voluntarily then government 

must enact legislation mandating the shift. Initiatives such as banning food 

advertising meant for children before 9pm or prohibiting the use of cartoon 

characters to promote unhealthy foods to children younger than 12 years, 

have been employed by other countries, and while these actions have not 

eliminating childhood obesity in these countries, they have helped to slow 

current trends (283). While the general public are free to make their own 

decisions regarding their health choices, the present infrastructure within 

industrialised countries promotes obesogenic behaviour, making the long-

term implementation of a healthy lifestyle difficult. Therefore, in order to make 

long-term changes towards health promotion there needs to be a public will 

and public pressure, as some of the involved stakeholders within industrialised 

societies have a conflict of interest, so cannot be relied upon to fully support 

universal obesity prevention and health promotion (284).  

 

2.4.3 Pharmacological management of paediatric obesity 

Pharmacotherapy is one example of a biologically based treatment that can 

be used as an adjunct to lifestyle modification to improve long-term weight 

loss outcomes. Despite the important role that pharmacotherapy could 

potentially have in the treatment of obesity, and the increasing number of 

obesity medications approved in adults, few agents have been evaluated in 
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children and adolescents for this indication, and the therapeutic options 

remain limited. Orlistat remains the only medication available with weight loss 

as a specific licensed indication, and although the Federal Drug Administration 

(FDA) has approved Orlistat for use in individuals aged over 12 years, its use 

in the UK and the rest of Europe, remains off licence. Two medications, 

Rimonabant and Sibutramine, had been used previously for weight loss in 

children with good effect, but were withdrawn several years ago due to 

adverse effects on mental health and increased cardiovascular risks 

respectively (249). A 2016 Cochrane review provided data for trials of current 

anti-obesity pharmacotheraphy in children and adolescents. In addition to 

Orlistat and Metformin, which both result in a reduction in weight in favour of 

active intervention (of around 2 kg), ongoing trials for Topiramate and GLP-1 

receptor agonists (GLP1R) were identified (285).  

In contrast to adult obesity, where anti-obesity drugs are recommended when 

lifestyle changes have failed to help the person lose weight or there are 

associated comorbidities, NICE does not recommend drug therapy in children 

unless (258): 

a) there are severe life-threatening comorbidities like sleep apnoea or 

raised intracranial pressure in a child less than 12 years, or  

b) when physical or significant psychological comorbidities are present in 

children 12 years or older. 

In addition, it is recommended that they are referred to and managed within a 

specialist clinic (multidisciplinary team) with experience of prescribing in this 

age group. Despite the limited data available regarding the use of anti-obesity 

drugs in children and adolescents, there is reported to have been a 15-fold 

increase in the prescribing of these medications in children < 18 years in the 

UK between 1999 and 2006 (286). 

 

2.4.3.1 Orlistat 

Orlistat is a reversible gastric and pancreatic lipase inhibitor that limits the 

gastrointestinal absorption of dietary cholesterols by approximately 30%, in 

patients eating a 30% fat diet (i.e. a reduction of approximately 200 calories 

per day) (287). As Orlistat causes a reduction in plasma fat-soluble vitamin 

levels, which may affect adolescent growth and development, the concomitant 

administration of a daily multivitamin is recommended (288). The usual dose 

of Orlistat is 120mg three times daily with meals or within an hour of the meal, 

and the main side effects are gastrointestinal (such as increased stool 
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frequency, fatty/oily stools), but these are generally mild to moderate, and 

transient in nature (289).   

A number of trials have evaluated the use of Orlistat in children and 

adolescents, but many of the studies involved small numbers of participants 

and were of short duration. A systematic review looking at the safety and 

efficacy of anti-obesity drugs in children and adolescents (290), included one 

of the largest published trials of Orlistat in adolescents (aged 12-18 years) 

with patients randomised to receive either Orlistat (n=357) or placebo (n=182) 

three times daily for a year, in conjunction with diet, behavioural and lifestyle 

modifications (289). All participants were maintained on a nutritionally 

balanced hypocaloric diet, which produced an initial weight loss of up to 1kg 

per week. By the end of the study , the mean BMI was 0.55 kg/m2 lower in the 

Orlistat group, but higher in the placebo group by 0.31 kg/m2 (p=0.001) and 

no significant changes were seen in serum cholesterol levels or in insulin and 

glucose (markers of insulin sensitivity). While Orlistat has been studied in a 

relatively small number of paediatric patients, trials have reported a significant 

decrease in BMI from baseline varying from 0.5 to 4.09 kg/m2, with study 

completion rates of 65 – 100%, and reported medication adherence rates 

between 73 and 98%, with the variation in results being due to differences in 

study design and patient populations (291). However, one UK study 

suggested that 45% of individuals prescribed Orlistat take it for less than a 

month, suggesting that gastrointestinal side effects may be more significant 

than reported in other studies (286).  

Currently, data suggesting the extended use of Orlistat is lacking, with 

evaluations varying between 3 to 15 months (291), and a trial period of Orlistat 

of 6-12 months is currently recommended by NICE. In addition, data from 

paediatric trials suggest that Orlistat may be safe and effective as an adjunct 

to diet and behavioural modification in obese children aged >8 years. One 

paediatric study looking at Orlistat use in pre-pubertal children (n=11, aged 8 

– 12 years), found a total weight loss of approximately 4kg (292), however 

longer term studies to confirm the safety of Orlistat in this younger population 

are still required.  

Cetilistat is another gastrointestinal lipase inhibitor that is currently being 

investigated. In a multi-centre study involving 612 adults, similar weight 

reduction was seen for Cetilistat and Orlistat over 12 weeks in obese adults 

with type 2 diabetes treated with Metformin (293). While fewer GI side effects 

were experienced with Cetilistat compared to Orlistat, the weight reduction 

was similarly modest. 
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2.4.3.2 Metformin 

Metformin is a biguanide derivative, which is approved for the treatment of 

type 2 diabetes in adults and children over 10 years, but not for obesity. It 

activates adenosine monophosphate-activated protein kinase, to reduce 

hepatic glucose production, decrease intestinal glucose absorption, and 

increase insulin sensitivity, by improving peripheral glucose uptake and use. 

Metformin also inhibits fat cell lipogenesis, and by increasing glucagon-like 

peptides, it may also reduce food intake. Modest weight loss and a reduction 

in insulin resistance is associated with its administration, and it has been 

shown to prevent or delay the onset of type 2 diabetes.  Its main side effects 

are gastrointestinal disturbances, with lactic acidosis being a very rare 

complication (0.05 per 1000 patient years) (249, 294). 

There are very few studies on the effect of Metformin as a weight loss 

treatment, and most are of short duration, ≤ 6 months.  The longest study  

(295) was for 48 weeks with daily Metformin (extended-release) or placebo in 

conjunction with a lifestyle intervention programme. It was a multicentre, 

randomised, double-blind placebo-controlled trial, involving 77 obese 

adolescents, which were the subjects who had shown 80% medication 

compliance following a 4-week single blind placebo run-in phase.  The BMI 

change in those patients who completed the trial was significantly different, 

with -0.9 kg/m2 in the Metformin group versus +2.2 kg/m2 in the placebo arm, 

but there was no significant change in total fat mass, abdominal fat or insulin 

with Metformin treatment. There have been two recent paediatric Metformin 

trials, the first of which included 66 children and adolescents (aged 7-8 years) 

with obesity, randomised to either lifestyle modification alone or lifestyle 

modification plus Metformin, for 6 months (296). Compared to the control 

group, Metformin reduced BMI (-1.3 kg/m2 control-subtracted difference) and 

waist circumference, but did not reduce markers of inflammation.  The second 

trial included 151 children and adolescents (aged 8 – 18 years) with obesity 

who were randomised to either Metformin (1500mg per day) or placebo for 6 

months (297). Metformin significantly reduced BMI (-1.07 kg/m2 placebo-

subtracted difference) and BMI SDS (-0.1 SDS units placebo-subtracted 

difference) compared with placebo, but there were no statistically significant 

differences between groups in cardiometabolic risk factors at 6 months.  

In conclusion, Metformin has a modest impact on weight, but does not appear 

to be particularly efficacious for weight reduction, and larger, long-term 

randomised placebo controlled trials are needed to evaluate its effect on 

weight loss alone. 
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2.4.3.3 Exenatide 

GLP-1 is a naturally occurring incretin produced in the GI tract. GLP1R 

agonists were originally used for the treatment of type 2 diabetes, because 

they enhance glucose-stimulated insulin secretion, but obesity management 

has become an additional indication for this drug class, owing to the effect 

they have on appetite suppression and weight loss, via delayed gastric 

emptying and reduced food intake (249). Exanitide is a GLP-1 agonist that 

has been trialled in youth with severe obesity. During the 3 month, 

randomised, placebo-controlled phase of the trial involving 26 obese 

adolescents, Exanitide elicited a greater reduction in percentage change in 

BMI (-2.7% placebo-subtracted difference) and absolute BMI (-1.13 kg/m2 

placebo-subtracted difference) compared with placebo. BMI was further 

reduced (cumulative reduction of -4%) during the following 3-month open label 

extension (298). Liraglutide, which is another GLP-1 agonist, has been 

associated with a dose-dependent mean weight loss of 4.8 – 7.2kg, as 

compared with 2.8 kg with placebo after 20 weeks in obese individuals without 

type 2 diabetes (299). However, studies documenting the long-term safety, 

efficiency and side effects of GLP-1 agonists in children and adolescents are 

still required.  

2.4.3.4 Potential future paediatric therapies 

A number of potential therapies are currently under investigation.  

Octreotide, is a somatostatin analogue that inhibits glucose-dependent insulin 

secretion from the pancreatic β-cells. There are 3 studies (294, 300, 301) that 

have evaluated Octreotide for weight loss in paediatric patients with 

hypothalamic obesity, who are thought to have increased insulin production in 

response to the stimulation of hepatic glucose production, as a consequence 

of their hypothalamic damage. The studies demonstrated either small weight 

losses or reduced weight gain in Octreotide-treated patients. The major 

adverse effect from Octreotide is the development of cholelithiasis (occurs in 

up to 44% of subjects), and its subcutaneous administration is a major 

obstacle to its wide spread use, and currently Octreotide is not recommended 

for treatment of obesity outside of clinical trials (301).   

Pramlintide, is a synthetic analogue of Amylin, and is approved for the 

treatment of type 1 and type 2 diabetes, and produces small amounts of 

weight loss in obese and diabetic adults. In one study in adults with and 

without type 2 diabetes, a placebo-subtracted weight loss of up to 2.7kg was 

found after 16 weeks of Pramlintide 240μg three times a day (302). Although 
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small trials of Pramlintide have been reported in adolescents with type 1 

diabetes, there have not been any paediatric weight loss studies involving the 

drug. Pramlintide has also been used in combination with Metreleptin, which 

is a leptin analogue that works by increasing insulin sensitivity by reducing the 

accumulation of fat in organs, and the combination of these two drugs has 

resulted in significant weight loss (303).   

As body weight is defended by multiple internal physiological mechanisms, it 

would seem reasonable to tailor obesity treatment to the targeting of multiple 

weight-regulating pathways at the same time. This has led to the development 

of combination therapies. Since 2012, four new obesity medications have 

been approved for use in adults by the FDA in the US. Lorcaserin (selective 

serotonin receptor agonist), the combination of Phentermine (norepinephrine 

reuptake inhibitor) and Topiramate (GABA-ergic anticonvulsant drug), the 

combination of Naltrexone (opioid receptor blocker) with Bupropion 

(dopamine reuptake inhibitor) and Liraglutide. At 1 year, the placebo-

subtracted weight loss with these agents varied from approximately 3 -10% 

(304). The manufacturers of these medications have stated that they plan to 

start performing paediatric trials in the next few years, although the pace of 

paediatric evaluation is very slow, and very few paediatric obesity trials have 

been reported.   

With respect to future pharmacological treatments, research needs to focus 

on conducting trials with sufficient power and long-term follow-up to ensure 

that the long-term effects of any pharmaceutical intervention are 

comprehensively assessed, which in turn should generate and drive an 

increase in high quality trials of new medications in paediatric obesity (285). 

 

2.4.4 Psychological management of paediatric obesity 

The impact of childhood obesity on psychological health and general well-

being is often underestimated. In children with obesity, internalizing and 

externalizing disorders and behaviours such as anxiety and hyperactivity are 

common, and on a day to day basis they are more relevant to families than 

the metabolic risk factors that are associated with obesity (305). These 

psychological issues can also complicate the implementation of and 

adherence to management strategies, and the assessment and treatment of 

mental health by professionals (e.g. psychologist) is a vital part of the weight 

management team.  
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There is a clear correlation between obesity and earlier pubertal development, 

with the latter causing psychological burden for girls and boys. Obese boys 

may also have lipogynaecomastia, which can have significant negative effects 

on quality of life and self-esteem (306). Childhood obesity has been found to 

be negatively associated with psychological comorbidities such as 

depression, emotional and behavioural disorders, compromised perceived 

quality of life and self-esteem, and these can be enduring in nature and may 

continue into adult life (307). Adolescence is a particularly complex 

developmental stage, during which self-identity is developing, and a sense of 

belonging is central. Complicated positive or negative psychological sequelae 

are linked to rapid changes in BMI, and are related to increases in social 

acceptance or continued marginalisation.  

Unfortunately weight stigmatisation is widespread, and leads to psychological, 

social and physical health consequences. However, health-care professionals 

have an important role to play in reducing the negative effects of obesity 

stigmatisation, and clinical care can be improved through role modelling, using 

appropriate language and terminology, and by ensuring a safe and welcoming 

environment (308). 

 

2.4.5 Adolescent bariatric surgery 

The number of adolescents having bariatric surgery has increased over the 

past decade, most likely due to increasing rates of adult bariatric surgery, 

coupled with the fact that in children with severe obesity, non-surgical 

treatments have a limited effect (309). The most common types of bariatric 

procedures performed in adolescents include Roux-en-Y gastric bypass 

(RYGB), Laparoscopic Adjustable Gastric Banding (LAGB), and Sleeve 

Gastrectomy (SG), and in the majority of cases all 3 procedures are performed 

laparoscopically. RYGB involves creating a small gastric pouch below the 

gastroesophageal junction and connecting a Roux-en-Y limb of jejunum to the 

pouch. It is both a restrictive and malabsorptive procedure. LAGB and SG 

however are both restrictive procedures. In LAGB, a band is placed around 

the proximal aspect of the stomach, below the gastroesophageal junction, and 

a catheter is attached to the band which is connected to an infusion port on 

the abdominal wall, and by injecting saline the band can be tightened or 

loosened. In SG, most of the stomach is removed, leaving a tabularized 

stomach which is 85-90% smaller than its original size (310) (figure 2.8). More 

extreme malabsorption accompanies the biliopancreatic diversion operation, 
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in which a short distal common channel length of small intestine severely limits 

caloric absorption, with a sleeve gastrectomy also being carried out (311). 

Owing to concerns about long-term nutrient deficiencies associated with 

malabsorption procedures, as well as lower long-term weight loss associated 

with LAGB procedures, SG, which is a relatively new procedure, is often 

recommended for adolescent patients (312). In some patients, an intragastric 

balloon can be inserted endoscopically to provide short-term weight loss. The 

silicon balloon is filled with liquid and partially fills the stomach, creating a 

feeling of fullness. The maximum time it can be left in place is 6 months, and 

indications for use may be in morbidly obese adults prior to obesity surgery, 

younger children, or in patients with learning difficulties (261). 

Best-practice guidelines on adolescent bariatric surgery were published in 

2012 by the American Society for Metabolic and Bariatric surgery pediatric 

committee (313), in order to provide more uniformity and guidance in this 

complex area of obesity management in children.  Adolescent patient criteria 

includes: 

 BMI ≥35kg/m2 and with major co-morbidities (T2DM, moderate to 

severe OSA, pseudotumor cerebri or severe NASH). 

 BMI ≥40kg/m2 and with other co-morbidities (hypertension, glucose 

intolerance, dyslipidaemia). 

 Post-pubertal or have completed 95% of estimated growth. 

 Demonstrate an understanding of the lifestyle changes needed after 

surgery. 

 Psychosocial assessment to demonstrate they are capable of making 

an informed decision and understand the risks and benefits of surgery. 

 Social support so that together with their family they are able to adhere 

to the pre- and post-operative recommendations. 

In addition, all operations should be performed in a specialised bariatric 

surgery centre (313). 
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Figure 2.8. Common surgical procedures for weight loss. (311) 

 

The results of outcomes following adolescent bariatric surgery are limited by 

the small sample size and short follow-up times of several of the studies, 

coupled with the heterogeneity among studies and their retrospective nature. 

The longest follow-up to date is from a retrospective analysis of 33 

adolescents who had been followed-up for 21 years after a variety of gastric 

bypass surgery modifications (314). The mean age of the cohort was 16 years 

with a mean BMI of 52 kg/m2, and after 14 years the average BMI was 

maintained at 38 kg/m2.  However, 5 patients (15%) regained all or most of 
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their lost weight (314). While it is difficult to ascertain the degree of weight 

regain in adolescent patients after RYGB, it is thought to be as high as 20% 

(315). In a meta-analysis of bariatric surgery in 637 paediatric patients (316), 

the average weighted mean BMI difference from baseline to 1 year was shown 

to be -13.5 kg/m2. When analysed by surgery type, RYGB, LAGB and SG 

were associated with an average BMI loss at 12 months of -17.2 kg/m2, -10.5 

kg/m2 and -14.5 kg/m2 respectively, based on 3 studies (316). Improvements 

in obesity-related comorbidities are quickly seen in adolescents following 

bariatric surgery, with one German study reporting rates of diabetes, 

hypertension, and sleep apnoea reduced by approximately half in 167 

adolescents and young people following gastric bypass, LAGB, or SG at 18 

months of follow-up (317). In fact glycaemic control in patients with diabetes 

often improves almost immediately after surgery, preceding any significant 

weight loss, which suggests that alterations in gastric hormones that augment 

insulin secretion (the incretins) may be altered in gastric bypass, and this 

phenomenon is also seen in adults (128). The largest report on outcomes after 

SG involved 108 children and adolescents aged 5 – 21 years, and found that 

resolution rates for dyslipidaemia were 70%, hypertension was 75%, sleep 

apnoea was 91% and diabetes and prediabetes was 94% and 100% 

respectively (318). 

Unfortunately there is a paucity of long-term safety data in adolescents 

undergoing bariatric surgery, although shorter-term information is available. 

The Teen-Longitudinal Assessment of Bariatric Surgery study (319) collected 

standardized data from multiple centres performing bariatric surgery, and 

reported on the perioperative outcomes of 242 adolescents aged 19 years or 

younger who had bariatric surgery in the U.S from 2007 – 2011. The average 

age was 17.1 years, with a median BMI of 50.5 kg/m2, and 51% of patients 

had ≥ 4 major co-morbidities. There were no deaths reported in the 30 days 

following the procedure, although the majority of complications occurred 

before discharge from hospital, with 5% (13 patients) having a major 

complication (bowel obstruction, gastrointestinal leak/sepsis, transfusion for 

post-operative bleeding, splenectomy for intraoperative splenic injury, and 

anticoagulation for Deep Vein Thrombosis), and 8% having a minor 

complication, with urinary tract infection being the most common. Overall, 

within 30 days of surgery, 19 patients (8%) experienced a major complication 

and 36 (15%) had a minor complication (319). However, the main long-term 

risks of bariatric surgery in adolescents are nutritional, with LAGB and SG this 

is related to reduced intake of food, and in RYGB it is malabsorption as well 

as reduced food intake. Adolescents have a variable but low rate of adherence 



99 
 

to vitamin supplementation, so are more vulnerable to developing nutritional 

deficiencies (320). Recommended supplementation includes a chewable 

multivitamin, calcium citrate with vitamin D, vitamin B12 and iron, with annual 

monitoring for iron deficiency anaemia, calcium, vitamin B12, vitamin D and 

Parathyroid Hormone recommended (128). 

NHS England guidance recommends that follow-up post gastric band insertion 

should be for a minimum of 5 years in a specialised unit, and in patients who 

have received a gastric bypass or sleeve gastrectomy, then life-long follow-up 

is required, although this can be in a shared care agreement with local 

paediatric or adult tier 3 units (261).   

Post-operatively there can be an improvement in psychosocial functioning, 

with a short-term study from Sweden (321) involving 37 adolescents, 

demonstrating an overall significant improvement in symptoms of depression, 

anxiety and self-concept from baseline to 4 months after RYGB, with no 

change in anger or disruptive behaviour. However, 16% of adolescents went 

on to exhibit deterioration in 2 or more of these aspects, highlighting the 

importance of close psychological monitoring following bariatric surgery.  

There can also be negative sequelae following bariatric surgery, such as the 

development of disordered eating (binge eating, night eating and purging), the 

presence of excess skin following significant weight loss, and increased 

fertility which can leave vulnerable females at increased risk of unwanted 

pregnancies (322). It is also important to ensure equitable access to this 

treatment, as disparities have been identified in adult studies, with fewer 

African Americans, Hispanics, low-income individuals and males undergoing 

bariatric surgery than would be expected (323).  

While adolescent bariatric surgery appears to be an effective treatment option 

for certain patients for whom other interventions have failed, further long-term 

studies are required in order to monitor potential complications, to identify if 

weight loss and improvements in metabolic risks are maintained into 

adulthood, (324) and also to determine which patients benefit most from 

surgery.  

 

 

 

 



100 
 

2.4.6 Evidence for the importance of satiety hormones in body-

weight regulation from bariatric surgical studies 

Changes in the enteric hormones involved in the gut-brain axis have also been 

implicated in the anorexigenic and weight reducing effects of bariatric surgery 

(128). It is thought that in RYGB the re-arrangement of the GI tract alters the 

release of different GI satiety hormones, thereby eliciting an endocrine 

response that results in profound changes in metabolism and body weight as 

demonstrated by significant reductions in appetite and earlier sensation of 

satiety following meals. It is therefore hypothesised that non mechanical 

factors may play a part in the long-term weight loss experienced following 

RYGB, possibly through the establishment of a new set-point for body weight 

(128). 

RYGB produces a greater reduction in obesity related co-morbidities 

compared to gastric banding or sleeve gastrectomy, and patients are more 

likely to maintain their weight loss following the procedure. Several studies 

have shown that RYGB alters the release of several of the satiety hormones 

produced in the gastrointestinal system, and of particular significance is the 

dramatic increase in the post-prandial rise in the anorexigenic hormone PYY, 

possibly due to a more rapid delivery of nutrients to the distal ileum, which is 

only seen after RYGB and not LAGB (128). The effects of bariatric surgery on 

ghrelin however, remain inconsistent, with some adult studies demonstrating 

a decrease in ghrelin levels within 24 hours of RYGB surgery (325) and also 

several months following surgery (326). In contrast, other studies have found 

an increase in ghrelin levels following RYGB (327) while others have reported 

no differences in pre or post- surgical ghrelin levels (328). There is also 

insufficient data in adolescents, as there is only a single study in an adolescent 

with hypothalamic obesity secondary to radiation therapy for 

craniopharyngioma, which evaluated the change in ghrelin after RYGB, and 

although a reduction in peak and basal active ghrelin and insulin levels were 

observed, overall ghrelin profiles were not affected (329).  

Following RYGB surgery, an increase in REE after the procedure has been 

observed in animal models, which is different to the response after weight loss 

through food restriction, where a compensatory reduction in REE occurs. This 

difference, in addition to the favourable changes in satiety hormone 

responses, may explain why patients are more successful in maintaining long-

term weight loss following RYGB, in contrast to purely dietary restriction 

methods, although as yet no definitive association in human models have 

been made between energy expenditure changes and RYGB. However, a 
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study from Chile  (330) demonstrated that after a RYGB, patients who had an 

initial lower REE before surgery had an increase in their REE, while those 

patients who had a normal or increased REE before surgery did not 

experience a significant change in their REE afterwards, even when FFM was 

adjusted for. 
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Chapter 3 Identifying differences in the defence of body 

weight across the life course 

3.1 Concept behind the research. 

While most obese adults can lose weight in the short term, the majority regain 

their weight in the longer term (81). It has been suggested that adults have a 

weight that is inherently determined, and this is referred to as a set-point for 

weight, and occurs through a combination of genetics, lifestyle and 

environmental factors (83). Several studies have shown that this set-point for 

weight is vigorously defended despite variability in energy intake and 

expenditure (83). While the set-point for body weight in adults is maintained 

at a relatively stable level for long periods, this trend is not seen in children. 

Clinical evidence supports the view that young obese children who lose weight 

following simple lifestyle intervention, appear to slim down (331) and keep the 

weight off (93, 250). This raises the question of when does an individual’s set-

point for weight become determined. In fact differences in outcomes from 

obesity interventions exist across the whole of the life-course, with life-style 

based obesity programmes achieving good long-term outcomes in childhood 

(93, 250), but are associated with weight regain in post-pubertal adolescents 

(332) and young adults (333), but not in older adults (334), prompting 

questions about what determines these age-related differences.  It was 

therefore postulated that set-points for weight are flexible in early life, but 

become fixed at around the time of puberty, and remain so until post-

reproductive years. This novel idea had never before been tested and formed 

the concept behind the research. 

This led to the hypothesis that plasticity exists in the regulation of body weight 

in young children, which allows for alterations in long-term weight status 

following a period of clinical obesity, but that this ‘flexibility’ disappears by 

post-pubertal adolescence, and then re-emerges again later in adult life. 

Two key studies provided direct evidence to support this hypothesis. In 2009, 

an adult obesity study by Proietto et al recruited 50 obese adults from a 

specialist obesity clinic to study the physiological adaptations which occur with 

weight change (335). A ten week intervention delivered an extremely low-

calorie diet, providing just 500 to 550 calories a day, to those with a mean 

baseline weight of 95.4kg and BMI of 34.7 kg/m2. By the end of the 

intervention, the mean (Standard Error) weight loss was 13.5 (0.5) kg. At that 

point the 34 participants who remained in the study stopped dieting and began 
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working to maintain the lower weight. Counselling was provided, delivering 

nutritional and physical activity advice, but despite the patient’s best efforts, 

they slowly began to regain weight, and after a year the mean (SE) weight 

regained was 5.5 (1.0) kg. The participants also reported feeling more hungry 

and pre-occupied with food than before they had lost weight. However, the 

comparison of circulating changes in satiety hormones in response to a 

standard breakfast meal revealed the most interesting findings. In association 

with the weight loss there was a significant increase in ghrelin (associated with 

feelings of hunger) and decreases in PYY, amylin and CCK (all associated 

with reduced feelings of fullness) following the meal (figure 3.1). Furthermore 

these changes were still evident 1 year after the intervention, highlighting just 

how vehemently the adult body protects against weight loss.  

 

Figure 3.1. Mean (+/- SE) postprandial levels of ghrelin, PYY, Amylin and 
CCK at baseline (black circles), 10 weeks following weight loss (blue 
squares) and 62 weeks (red triangles). (335) 

At approximately the same time, the clinical utility of a novel device called a 

Mandometer®, aimed at retraining eating behaviours, was being studied in 

obese adolescents. It was initially developed to encourage individuals with 

anorexia and bulimia nervosa to eat more (336). The device consists of a 

portable weighing scale (upon which a plate of food is placed) which is 

connected to a small computer that shows the patient how quickly they are 

eating. The study investigators were interested to see whether using this 

device, alongside provision of general lifestyle advice, could improve weight 

loss in obese adolescents. The study was an RCT involving 106 peri-pubertal 

obese adolescents (337), and the baseline BMI was almost identical to the 

adult study described above (33.8kg/m2). The use of the Mandometer® was 

associated with significant reductions in weight when compared to standard 
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life-style based treatment alone (338), with reductions in BMI almost identical 

to the adult study described above (-2.5kg/m2 vs -2.8g/m2). However, following 

the intervention in the adolescent obesity study, the adolescents continued to 

keep the weight off, and satiety hormone profiles following an oral glucose 

load moved in the opposite direction to that seen in the adult study, where 

weight regain rather than sustained weight loss, had been the more common 

outcome. Instead of increases in ghrelin, levels were significantly reduced, 

and instead of reduction in PYY there were significant increases, both of which 

would be compatible with a state of enhanced satiety which would favour long 

term maintenance of weight loss (337). These data are shown in figure 3.2, 

and with the adult data in figure 3.1, emphasize the different physiological 

adaptations to weight loss between peri-pubertal adolescents and adults. 

  

 

Figure 3.2. Ghrelin and PYY levels during the oral glucose tolerance test at 
baseline and 12 months after the intervention. (337) 

 

It is not possible however to make direct comparisons between the two 

studies, as the interventions were very different, with markedly different study 

designs, and they were undertaken over different time periods. Therefore it 

was felt that a single study assessing weight loss, weight regain and 

associated physiological responses in young children, adolescents, younger 

and older adults was warranted.  
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The original aim of the study was to compare future weight trajectories, and 

associated metabolic adaptations, following a period of weight loss in obese 

children, adolescents, young and older adults. 

The experimental paradigm would be to delineate future weight trajectories, 

and associated physiological drivers to weight regain in 4 age groups of obese 

individuals (pre-pubertal children, post-pubertal adolescents, young and older 

adults) following a 6-12 month intervention which achieved >10% relative or 

absolute weight loss (see figure 3.3), to compare: 

a) Age-related patterns of weight regain, and 

b) The homeostatic mechanisms associated with these weight changes. 

 

 

 

Figure 3.3. Experimental paradigm for study design. Black dots represent 
obese patients undergoing a 1 year programme (solid line), and the 
hashed red arrowed lines represent hypothesised outcomes. 

 

 

This research plan was submitted as a multicentre National Health and 

Medical Research Council (NHMRC Australia) grant application in the 2012 

funding round, but was not successful primarily because of an absence of 

supporting preliminary data in children and adolescents.  

Consequently, this led to the current study looking at satiety signalling in 

obese children and adolescents before and after puberty, to provide important 

data for a future multi-centre study in Melbourne, Australia, involving both 

children and adults. 
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3.1.1 Life-style based obesity interventions in adults 

Although initial weight loss is achievable with lifestyle change in the majority 

of obese adults, more than 90% will ultimately regain weight after dieting, 

highlighting the tight regulatory set-points for body weight acting to prevent 

against weight loss (97). This has led to change in direction in adult obesity 

research away from simply quantifying degrees of weight loss using different 

approaches, and more to understanding their role in prevention of weight 

regain and achieving long-term maintenance of weight loss (333).  

There is evidence that older adults have better outcomes with lifestyle 

orientated weight loss programmes. In a RCT which evaluated the effects of 

diet and/or exercise in 107 obese adults aged ≥ 65 years, those randomised 

to dietary restriction obtained a mean persistent reduction in weight of 10% at 

1 year, compared with <1% in the control group (334), which was a favourable 

amount compared with outcomes in younger adults over the same duration 

(339). However, no follow-up data are available to show whether these 

individuals are at the same risk of even longer-term weight regain when 

compared with younger adults. The physiological differences in metabolism 

between younger and older adults would suggest that older adults are less 

likely to regain weight than younger adults (340, 341), but meta-analysis of 

weight maintenance in obese adults who have lost weight, have not directly 

examined the effects of baseline age or of the duration of pre-existing obesity 

(263). To date, no studies have directly compared outcomes relating to weight 

gain in younger versus older adults. 

 

3.1.2 Significance of Research 

The successful prevention and treatment of paediatric obesity is critical to the 

prevention of adult obesity. The longer an individual is obese, the greater is 

their risk of weight related disease or death (342). However, an 

epidemiological study has shown that overweight and obese children and 

adolescents who grow up to be non-obese adults, have the same weight-

related disease in adulthood as if they had never carried any excess weight 

(226). The problem is that most overweight and obese children grow up to be 

obese adults (343), as weight tracks across the life course (344, 345). 

In addition, it has been shown that a diagnosis of metabolic syndrome in 

childhood which resolves by adult life, is associated with complete resolution 

of risk for later carotid-intima media thickness, which is a marker for 

cardiovascular damage, and type 2 diabetes (346), emphasizing the plasticity 
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that the childhood years offer in recovering from a weight related metabolic 

insult. 

Together, these findings provide the greatest incentive to developing effective 

programmes to successfully prevent and treat overweight and obese youth, 

as they promise the greatest long-term health benefits (229). 

 

3.1.3 Weight Management Service (WMS) at The Royal Children’s 

Hospital, Melbourne 

The Weight Management Service (WMS) at The Royal Children’s Hospital in 

Melbourne, Australia, is the largest paediatric obesity service in the Southern 

hemisphere. The Multidisciplinary Team includes a consultant paediatric 

endocrinologist and paediatric gastroenterologist, a weight management 

nurse, a dietician, a psychologist, a social worker and an exercise 

physiologist. There are currently 450 patients aged ≤ 16 years in the WMS, 

and approximately 6 new and 20 follow-up patients are seen each week. 

Referral criteria to the service includes: 

 Age ≤ 10 years with obesity (BMI > 95th centile). 

 Age > 10 years with obesity (BMI > 95th centile)  and established 

comorbidity (obstructive sleep apnoea, hyperlipidaemia, orthopaedic 

problems such as slipped upper femoral epiphysis, polycystic ovary 

syndrome, hypertension, non-alcoholic fatty liver disease, type 2 

diabetes/insulin resistance). 

 Aged <5 years with rapid weight gain. 

 

3.1.4 Childhood Overweight BioRepository of Australia (COBRA) 

All of the patients within this study had originally been recruited to the 

Childhood Overweight BioRepository of Australia (termed “COBRA”). COBRA 

collects baseline environmental, clinical and anthropometric data, whilst also 

simultaneously storing blood samples from patients for genetic, metabolic and 

hormonal profiles. It was established in 2009 to investigate the development 

of weight related co-morbidity in target populations with established obesity, 

with the aim of early identification of both risk factors and potential solutions, 

which would allow further refinement of obesity prevention and treatment 

programmes (347). The Royal Children’s Hospital (RCH) at Melbourne is the 

parent site, and all overweight and obese patients referred to the Weight 

Management Service are approached for enrolment to COBRA. This project 
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has full ethical approval and is now well established. The response rate 

among eligible participants has been high, as has the level of compliance, 

ensuring a comprehensive level of data collection (347). As of 2016, 

approximately 500 patients have been enrolled to COBRA. 

 

3.1.5 Scoping Project: Auxological data looking at all male 

patients attending the WMS from 2008 – 2014 who had 

attended clinic 5 or more times 

Owing to inherent differences in body composition between maturing males 

and females (348), and also the associations that exist between obesity and 

puberty (101), it was originally proposed that the study would only be 

undertaken in males.  

Using the COBRA database, a scoping project looking at auxological data 

collected from all male patients attending the WMS at The Royal Children’s 

Hospital, Melbourne, between 2008 and 2014, who had attended the WMS 

five times or more were reviewed, with the aim of observing trends in weight 

and BMI trajectories over time in males at different stages of childhood and 

adolescence.  

The male patients were divided into 3 groups; post-pubertal males aged ≥ 14 

years, peri-pubertal males aged 10 – 14 years, and pre-pubertal males aged 

< 10 years. In each group, the weight and also the BMI SDS was plotted 

against the decimal age for each patient, in order to observe how the 

trajectories changed over time for each group. 

The post-pubertal group had  6 patients and the general trend for the majority 

of patients was that both the weight and BMI SDS increased over time (figures 

3.4 and 3.5).  In the peri-pubertal group there were 18 patients, and both the 

weight and BMI SDS remained static in the majority of patients (figures 3.6 

and 3.7). Finally, in the pre-pubertal group there were 16 patients and the 

weight increased over time but the BMI SDS decreased (figures 3.8 and 3.9).  

These observations appeared to support our hypothesis that pre-pubertal 

children had greater flexibility in changing their body weight trajectories 

compared to post-pubertal adolescents. It also became apparent from the 

scoping project that there would be insufficient post-pubertal males to recruit 

to the study for it to be undertaken only in males. It was therefore decided that 

females would also be recruited. 
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Figure 3.4. Tracking of weight over time in post-pubertal males aged ≥ 14 
years recruited to COBRA between 2008 and 2014 

 

 

 

Figure 3.5. Tracking of SDS over time in post-pubertal males aged ≥ 14 
years recruited to COBRA between 2008 and 2014  
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Figure 3.6. Tracking of weight over time in peri-pubertal males aged 10 - 14 
years recruited to COBRA between 2008 and 2014 

 

 

 

Figure 3.7. Tracking of SDS over time in peri-pubertal males aged 10 - 14 
years recruited to COBRA between 2008 and 2014 
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Figure 3.8. Tracking of weight over time in pre-pubertal males aged < 10 
years recruited to COBRA between 2008 and 2014  
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Figure 3.9. Tracking of SDS over time in pre-pubertal males aged < 10 
years recruited to COBRA between 2008 and 2014  
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3.1.6 Preliminary data leading to this study 

It has been shown that: 

 Childhood obesity is associated with significant morbidity (193), 

particularly through the tracking of obesity through the life-course (349), 

but that long-term disease risk can be completely ameliorated by the 

prevention of tracking of obesity from childhood to adulthood (226). 

 A diagnosis of metabolic syndrome in childhood is significantly more 

labile than in adulthood (350), possibly due to the changes in BMI 

trajectories which occur throughout the childhood years, requiring a 

different approach to its treatment in young people compared with 

adults (351). 

 Although the detrimental effects of obesity on the juvenile 

cardiovascular system are evident at a young age, only risk factors 

present in later childhood and adolescence are associated with long-

term carotid-intima media thickness (352). 

 Younger age at presentation to a paediatric obesity service is 

associated with the greatest reductions in BMI SDS (331). 

 The timing of puberty is integrally linked to weight gain and may play 

an important role in determining the degree of future weight gain (101). 
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3.2 Aims of Thesis 

Aim: 

The aim of this research was to carry out a pilot study to observe how satiety 

signalling varies in obese children and adolescents for a given level of 

preceding BMI SDS change, and to compare future weight trajectories and 

associated metabolic adaptations. 

Primary Outcome: 

The primary outcome was the subsequent change in BMI SDS following the 

period of attempted weight change, in pre-pubertal children versus post-

pubertal adolescents. 

Secondary Outcomes: 

The secondary outcomes included a) differences in circulating satiety 

hormone concentrations for a given level of BMI change in obese pre-pubertal 

children and post-pubertal adolescents, by comparing the circulating changes 

in satiety hormones in response to a standard test meal in both groups after a 

period of weight loss, b) changes in body composition, resting energy 

expenditure and fasting Triiodothyronine (T3) levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



115 
 

Chapter 4 Satiety signalling in obese children and 

adolescents 

4.1 Methodology 

4.1.1 Study Design 

This was a prospective cohort study, with a retrospective element. 

 

4.1.2 Study Participants 

Patients from COBRA (347) (Childhood Overweight BioRepository of 

Australia), who were already regularly attending the Weight Management 

Service, were considered for recruitment to this study.  

41 subjects; 21 obese pre-pubertal children (aged 3-7 years; 11 male) and 20 

obese adolescents (aged 14-18 years; 10 male) were recruited from the 

paediatric obesity service at The Royal Children’s Hospital in Melbourne. The 

age ranges for the two groups were chosen to avoid the main period of time 

that pubertal maturation most commonly occurs (10 -13.99 years in males and 

9 -12.99 years in females). Pubertal development was clinically assessed 

using Tanner stages and those in true puberty i.e. testicular volume ≥ 4mls to 

<15mls in males and Tanner breast stage >1 to pre-menarche in females, 

were excluded. 

Power for the study was calculated from a similar study in adults (335), and a 

formal statistical power calculation was not carried out. 

 

4.1.2.1 Inclusion criteria 

Inclusion criteria to this study required a Body Mass Index Standard Deviation 

Score (BMI SDS calculated using the UK 1990 growth reference data) of ≥ 2.4 

taken 9 – 15 months prior to when the satiety hormone profile would be carried 

out. 

The SDS value of 2.4 as the cut off for obesity was based on the paper by 

Cole et al (6). Dataset 4.1 is taken from the paper and shows the centiles and 

z scores for obesity corresponding to a BMI of 30 kg/m2 at age 18 years in 6 

datasets, derived from fitted LMS (Lambda Mu Sigma) curves. As shown in 

the dataset, the z score of 2.4 is above the threshold for obesity in the UK 
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population, and Australia has a similar dataset. If an SDS of 2 was used as 

the threshold the concern would be that the cohort were not strictly obese, 

which is why a value of 2.4 was used instead.  

Dataset 4.1. Centile and z scores for obesity corresponding to a BMI of 30 
kg/m2 at age 18 years in 6 datasets, derived from fitted LMS curves. (6) 

Country Males Females 

Centile Z score % 
above 
cut off 

Centile Z score % 
above 
cut off  

Brazil 99.9 3.1 0.1 98.0 2.1 2.0 

UK 99.1 2.37 0.9 98.8 2.25 1.2 

Hong Kong 96.9 1.86 3.1 98.2 2.1 1.8 

Netherlands 99.7 2.71 0.3 99.7 2.73 0.3 

Singapore 98.3 2.12 1.7 99.0 2.33 1.0 

USA 96.7 1.84 3.3 96.0 1.76 4.0 

 

The study included both males and females, as the initial scoping project had 

highlighted that there were insufficient post-pubertal males to carry out the 

study with only male participants.  

As oestradiol exerts a cyclical effect on some of the satiety hormone 

responses it was thought that it may affect the results obtained in the post-

pubertal females (353) depending on where in their menstrual cycle they were 

when they had their bloods taken. It was therefore decided that where 

possible, the post-pubertal females would have their blood tests taken for their 

satiety hormone profiles during the second half of their menstrual cycle.  

There is no evidence for a gender effect on satiety hormone responses in pre-

pubertal children.  

 

4.1.2.2 Exclusion criteria 

Patients with identified hormonal, medical or genetic reasons were excluded, 

and also those with significant illness, including diabetes, or on medications 

known to affect body weight or appetite. Smoking, present or past history of 

eating disorders, and previous bariatric surgery also resulted in exclusion. In 

addition, those in true puberty, and at a stage where increases in circulating 
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testosterone or oestrogen and growth velocity are typically seen were 

excluded.  

 

4.1.2.3 Consent 

As part of their enrolment to COBRA, all of the participants had already signed 

a consent form, which allowed the use of their data and biologically stored 

samples in any future ethically approved studies without requiring the COBRA 

research group to re-contact the participant for consent. In this study we were 

using the participant’s original auxological and epidemiological data collected 

at their enrolment to COBRA, and we had also considered carrying out satiety 

hormone profiles on the original stored serum samples, but due to financial 

constraints we were not able to do this. 

Participants to this study were still required to consent to having additional 

blood tests taken for the satiety hormone profiles before and after eating the 

standardised test meal, and to having an assessment of their Resting Energy 

Expenditure, as these represented additional measures to those normally 

carried out as part of the standard clinical practise at the WMS at The RCH.  

This study was therefore submitted as a new project to ethics, with separate 

information and consent forms, although the study is essentially a “run-on” 

project from COBRA. 

Ethics approval for this study was authorised by The Royal Children’s Hospital 

Human Research Ethics Committee (HREC No. 33115C), and written 

informed consent was obtained for all participants.  

Children with the maturity to determine their own willingness to consent 

(approximately age 16 years and older) were permitted to sign their own 

informed consent, with a separate copy on record signed by the parent. In 

cases where informed consent had been provided by a parent/guardian, the 

child was given the opportunity to provide their own consent to participate, at 

age 18 years. This was to ensure explicit permission from the participant was 

obtained once they had reached the legally defined age of adulthood.  

 

4.1.3 Data Collection 

All patients recruited to this study received a comprehensive medical, 

auxological and biochemical review as part of their enrolment to COBRA, 

although the majority of the measures carried out represent standard clinical 

practice for patient management in the WMS at The RCH. 
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4.1.3.1 Medical History 

A full medical history was obtained from each child on enrolment to COBRA 

using a standardised data collection sheet. Specific information collected 

included: 

 Maternal and paternal obesity status (BMI ≥ 30) 

 Maternal smoking during pregnancy 

 Duration of breast feeding (exclusively for > 3 months) 

 Birth weight >4kgs vs ≤ 4kgs 

 Basic demographics 

 Socioeconomic status and family dynamics 

 Ethnicity, which was defined by self-identification.  

This information allowed for confounding variables to be accounted for in order 

to minimise their impact on our findings. 

  

4.1.3.2 Auxology 

Every child was weighed (SECA chair scales, model no. 9567021099) and 

their height recorded using a stadiometer (Holton Ltd stadiometer, 

CRYMMYCH Pembs UK). BMI was calculated and BMI Standard Deviation 

Scores (SDS) were generated using UK90 standardised growth reference 

data. Body composition was assessed by bioimpedance, which was 

measured using a Tanita Body Composition Analyser (Model BC-418) (22). 

Pubertal staging was performed by the method of Tanner and Whitehouse. 

Baseline information from the participants’ initial enrolment to COBRA was 

used. 

 

4.1.3.3 Medical examination 

A complete medical examination was carried out as part of routine clinical 

care, and also for recruitment to COBRA. Specific details relating to obesity 

and its causes and consequences were already documented. A paediatric 

endocrinologist carried out the pubertal assessment on each participant. 

 

4.1.3.4 Grouping 

Participants in pre (n=21) and post-pubertal (n=20) groups were divided into 

4 groups of 10, with 2 “reducer” groups (one pre-pubertal and one post-
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pubertal) and 2 “maintainer” groups (one pre-pubertal and one post-pubertal). 

The reducer groups comprised obese patients who had achieved a relative or 

absolute weight loss of ≥ 10 % in the preceding 9 – 15 months, whereas 

participants in the maintainer groups had not. This was calculated as follows. 

At baseline, the BMI SDS for each participant was calculated and the 

predicted weight 9-15 months later determined, assuming the same BMI SDS. 

We then calculated their weight change as the difference between their 

expected weight and their actual weight at the time of their baseline satiety 

hormone profiling. This was expressed as a percentage by dividing by the 

original observed weight, so that participants could be categorised as either 

weight reducers (≥10% weight loss) or weight maintainers (<10% weight loss) 

(figure 4.1). 

The aim in the pre-pubertal children was that they would have achieved weight 

maintenance (leading to a 10% relative reduction in weight, alongside 

absolute reductions in BMI as they continue to grow) while in the post-pubertal 

adolescent group they would need a combination of absolute and relative 

weight reduction in order to achieve the 10% target. 
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Figure 4.1. Calculation of weight loss 
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4.1.3.5 Intervention 

All of the participants in each of the 4 groups received the same standard 

clinical care through the specialist multidisciplinary WMS at RCH. This 

comprised assessment of their physical activity, sleep, psycho-social health 

and diet, while auxological measures (weight, height and waist circumference) 

were repeated at each 3 monthly clinic visit. However, while the intervention 

is the same for all 4 groups, those children in the maintainer groups (pre and 

post-pubertal) did not achieve a relative or absolute weight loss of ≥10% in 

the preceding 9 – 15 months, while those in the reducer groups (pre and post-

pubertal) did. 

 

4.1.4 Measures 

4.1.4.1 Anthropometry 

To minimise differences in levels of dehydration, participants initially had 

weight and height measured between 8-9am following an overnight fast. Body 

composition was then assessed by bioelectrical impedance (Tanita BC-

418MA Segmental Body Composition Analyser - Tanita Corporation, Tokyo, 

Japan) (22). Age per se is not a limitation for using the Tanita BC-418 and the  

degree of resistance encountered (electrode placement) is the rate limiting 

factor. There are also derived predictive equations that can be applied to 

younger age ranges which will enable Bioimpedance based prediction of Free 

Fat Mass and Fat Mass values which are close to DXA results (354) . 

 

4.1.4.2 Satiety hormone profiling 

An indwelling peripheral cannula was sited following application of topical 

anaesthetic cream (+/- nitrous oxide sedation in younger children). Fasting 

blood samples were collected prior to a standard breakfast (details below), 

with samples then taken every 30 minutes afterwards (30, 60, 90, 120, 150 

and 180 minutes). Fasting blood samples were analysed for concentrations of 

insulin, glucose, ghrelin, active Glucagon-like Peptide 1 (GLP-1), total Gastric 

Inhibitory Polypeptide (GIP), amylin, Pancreatic Polypeptide (PP) and total 

Peptide YY (PYY). Triiodothyronine (T3) was also measured as it appears to 

play an important role in the biological response to dieting (81) . Post prandial 

blood samples were analysed for circulating levels of ghrelin, active GLP-1, 

total GIP, amylin, PP and total PYY. 
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Blood was collected into prepared tubes, which were spun within 20 minutes 

of collection in a centrifuge at 23 degrees at 3000 rpm for 10 minutes. Plasma 

was divided into aliquots and frozen for later analysis. Collection tubes were 

lithium heparin (insulin, T3), glucose oxalate (glucose) and EDTA tubes 

containing dipeptidyl IV Inhibitor (Epitope), protease Inhibitor cocktail (Sigma) 

and serine protease inhibitor (Pefabloc SC; Roche Diagnostics) for GLP-1, 

amylin and ghrelin measurements respectively, as well as samples being 

taken for GIP, PYY and PP. All Aliquots were stored at -80oC. Satiety 

hormones were analysed by Cardinal Bio-research. The Intra assay and Inter 

assay concentration variables respectively were similar. 

The Intra assay and Inter assay concentration variables respectively were 4% 

and 3% for Ghrelin, 4% and 7% for GIP, 5% and 4% for PP, 4% and 3% for 

PYY, 4% for Amylin and 5% for active GLP-1. 

 

4.1.4.3 Standardised breakfast meal 

The standard breakfast consisted of cereal with milk and a milkshake, which 

was consumed within 15 minutes. One of the main challenges was palatability 

and food preferences in such a wide age range of children and adolescents 

(3-18 years). Other considerations included:  

 Ability to eat the breakfast meal within a short 15 minute timeframe 

 Food structure and the need to have a rapid gastric emptying time 

 Requirement for minimal food handling and preparation with the 
utilisation of pre-prepared foods where possible, and  

 Ability of the foods to be extremely consistent in terms of macronutrient 
composition. 

The specific need to replicate macronutrient content from a published study in 

adults was the key driver of the macronutrient composition (335). As such, the 

proportions were 16% Protein, 51% Carbohydrate and 33% fat. A mid-point of 

Estimated Energy Requirements (EER) of 3-8 year olds and 9-17 year olds 

was calculated for both boys and girls. The breakfast meal was then deemed 

‘ideal’ if it contained between 20-25% of EER across each age group.  For 9-

10 year olds only, the defined breakfast meal contains 29-30% of EER. For 

the reasons listed above, Coco Pops was chosen as the breakfast cereal, 

which may appear an unusual choice for a paediatric obesity study, but 

unfortunately healthier alternatives were not able to fulfil the essential criteria 

required of the standardised breakfast meal.  
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Breakfast for 3- 8 year olds (figure 2a) 

25g Kellogg’s Coco Pops with a 150 ml carton of ready to drink cows full cream 

milk, Milo milk shake containing 70ml full cream milk, 16 g full cream milk 

powder and 8g of Milo powder.  

Breakfast for 9-17 year olds (figure 2b) 

30g (1 individual packet) of Kellogg’s Coco Pops with a 150 ml carton of ready 

to drink cows full cream milk, Milo milk shake containing 250ml full cream milk, 

12g dry full cream milk powder and 25g Milo powder. 

Four participants had special dietary needs and were provided with suitable 

alternative foods that kept the energy within 20-25% of requirements, but used 

the same percentage macronutrients as the standard breakfast meal. 

Figure 4.2. Standardised breakfast meal for 3-8 year olds (a) and 9-17 year 
olds (b) 

 

Figure 2a 

 

Figure 2b 
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4.1.4.4 Hunger and satiety ratings 

Each participant was asked to rate their subjective appetite using a standard 

visual analogue scale (VAS). This comprised of two questions, “how hungry 

do you feel?” and “how full do you feel?”, and subjects were asked to mark 

along the single 100mm line, which was anchored at the extremes with “not 

at all” and “extremely”. This was repeated every 30 minutes, just prior to blood 

sample collection, over a 3 hour period. 

 

4.1.4.5 Resting Energy Expenditure 

REE was measured in all fasted participants (prior to the insertion of the 

indwelling cannula) using a MedGem® hand-held indirect calorimetry device 

(figure 4.3), which has been shown to be valid and reliable in adolescents and 

young children (150, 153). Age per se is not a rate limiting factor for using the 

MedGem®, instead it is the operating range of the device (upper limit for 

airflow cannot exceed 1.5L/min for 5 consecutive breaths, minimum peak 

airflow of 100mL/sec and a minimum breathing frequency of 2 breaths per 

minute) (355). 

The children and adolescents rested quietly for 15 minutes before the 

procedure and were all seated in the same upright position holding the 

MedGem® to their mouth. After ensuring that there was a tight seal around 

the disposable mouthpiece and that the nose clip was in place, each 

participant breathed normally into the device for 10 minutes while either 

listening to music or watching television. Participants had 3 consecutive 

attempts to successfully complete the measurement; interruption to airflow 

due to coughing or talking being the most common reason for repeating the 

procedure. 
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Figure 4.3. MedGem® hand-held indirect calorimetry device 

 

 

 

4.1.5 Follow-up Period 

Following the standardised breakfast meal and blood sample collection for 

satiety hormone profiling, participants continued to receive routine follow up 

through the hospital’s obesity service every 3 months. Anthropometric 

measures (weight, height, BMI, waist circumference and body composition) 

were recorded. At 6 - 18 months, participants fasted for 4 hours prior to their 

clinic appointment and the REE was repeated using the MedGem® hand-held 

indirect calorimetry device.  
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4.2 Statistics 

For the preliminary data, Excel was used to produce the graphs showing how 

weight and BMI SDS tracks with age in male youth separated into 3 different 

age groups (< 10 years, 10 – 14 years, and >14 - 18 years). 

Excel was also used to calculate the mean average and standard deviation 

values for the demographic characteristics for all the participants at baseline 

and at the time of the satiety hormone profiles as shown in Table 1. 

Regarding the satiety hormone profiles, 41 participants (21 pre-pubertal and 

20 post-pubertal) had 7 blood samples taken at 7 different time points, 30 

minute apart over 3 hours; time 0 (fasting pre-prandial sample taken directly 

prior to eating the standardised breakfast), 30 minutes, 60 minutes, 90 

minutes, 120 minutes, 150 minutes and 180 minutes. Each blood sample was 

analysed for 6 different satiety hormones (Ghrelin, GLP-1, GIP, PP and Total 

Peptide YY). Satiety scores were also collected from all the participants at 

each of the 7 time points. 

The analyses of the 3 hour satiety hormone profiles and the satiety scores 

were performed by fitting linear mixed-effect models, which was chosen 

because it takes into account the hierarchical model (also known as multilevel 

data structure), as we have multiple measurements on one person taken over 

7 different time points. We did not use standard regression models because 

they require that all the observations are independent, however in this study, 

there are several measurements taken from each individual over different time 

points which means that the values are not independent, and are more similar 

within the same person than would be expected if measured on a different 

person. This then violates the assumption of independence and leads to 

incorrect standard errors, confidence intervals and p values, which is why in 

this study we have used linear mixed effect models for the analyses.  

Area under the curve (AUC) analysis is another standard way to assess and 

compare differences in hormone profiles, but was not used in this study, as it 

was a less efficient use of the data collected i.e. less powerful, compared to 

the linear mixed effects models that were used, especially in light of the low 

numbers of participants involved. We did carry out AUC analysis as a 

sensitivity analysis, but as the results did not add anything, it was not included. 

In addition, AUC makes an assumption that it is an average over time that is 

the main feature, but in this study it was the rate of change in the different 

satiety hormone profiles, and the depth of the dip and the height of the peak 
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of the hormone concentrations that were of interest, and these cannot be 

modelled in an AUC approach. 

The statistical analyses were performed using the Stata statistical software 

package rather than SPSS statistical software package, because of its ease 

and flexibility in fitting a range of linear mixed effects models. 

All the satiety hormone concentrations were first log-transformed, because it 

is an assumption of the linear mixed effects models that were used. The 

methods of estimating the impact of the different variables in the linear mixed 

effects model used restricted maximum likelihood, as this is the most valid 

method for linear mixed effects models, owing to the small numbers in the 

study. 

Pre and post-prandial hormone and satiety score profiles were modelled with 

pubertal status and weight loss status as fixed effects, and both child and time 

point as a random effect (to allow for random error between different children, 

as well as across different time points), with changes in hormone and satiety 

score profiles over time modelled by including the appropriate interaction 

terms. This allows for different mean hormones / satiety score profiles / 

trajectories over time between males and females, weight loss reducers and 

weight maintainers and pre-pubertal children and post-pubertal adolescents 

i.e. it formally models the different effects of these groups. 

While the analysis was carried out to identify if the difference in satiety 

hormone profiles of children losing weight and those maintaining a similar 

weight varied between pre and post-pubertal children, owing to the small 

numbers in each of the 4 groups (11 in the pre-pubertal weight reducer group, 

10 in the pre-pubertal weight maintainer group, 10 in the post-pubertal weight 

reducer group and 10 in the post-pubertal weight maintainer group), there was 

insufficient power to generate any significant P values when comparing these 

4 different groups. However, by combining all the pre-pubertal children (weight 

reducers and weight maintainers with n=21) and comparing them to all the 

post-pubertal adolescents (weight reducers and weight maintainers with 

n=20) there was sufficient statistical power to generate significant P values. 

We conducted a number of sensitivity analyses to assess the robustness of 

our results to choice of model (linear mixed effects model) by: 

 Using exact weight loss included as a continuous variable rather than 

categorised, and, 

 Combining all pre-pubertal children and comparing to all post-pubertal 

adolescents, combining all weight reducers (≥ 10% weight loss in pre- 
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and post-pubertal groups) and comparing with all weight maintainers 

(<10% weight loss in pre and post-pubertal groups), and comparing 

results for all males (pre and post-pubertal) and all females (pre and 

post-pubertal). 

  

One participant had incomplete information for their 180 minute hormone 

concentrations, but was complete for all other measures. As a sensitivity 

analysis, analyses were repeated without this assumption. The observation at 

150 minutes was imputed for this individual. 

Where a hormone concentration was less than the lower limit of detection, a 

value equal to half that limit was used, which is a standard technique that is 

commonly employed. 

Finally, no formal statistical power calculation was carried out for this research 

study, and instead the study sample size was derived from the adult study 

carried out by Sumithran et al. Power calculations are based on how much an 

outcome changes over time in one group relative to the other (the group by 

time interaction in the repeated measures design). This benefits from the 

increased precision of the measures repeated at seven time points (0, 30, 90, 

120, 150 and 180 minutes post-prandially). For the 41 participants recruited 

in total (approximately 20 to 21 in each group being compared), the study had 

at least 80% power to detect a relative change (at p<0.05) between two 

approximately equal-sized groups of 15% per hour. For example, if Ghrelin 

started at 100 pg/ml in both groups at time zero, but had grown to 115 pg/ml 

in one group by 60 minutes post-prandially, to 130 pg/ml by 120 minutes, and 

to 145 pg/ml by 180 minutes. Similar power would be achieved for the other 

satiety hormones, with adjustment for their different correlation structures. 

The study was therefore adequately powered to detect medium to large sized 

effects overall. The above effect size that the study was adequately powered 

to detect is similar to the change in post prandial AUC (the weighted average) 

for Ghrelin seen in Sumithran et al. So overall this study was adequately 

powered for a reasonably realistic effect that others have found before, albeit 

in a different context.  
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4.3 Results 

4.3.1 Study Participants 

Of 74 eligible patients, 43 were successfully recruited. Twelve were un-

contactable, 17 declined and cannulation proved too difficult in 2 (1 pre-

pubertal female and 1 post-pubertal female). There were no significant 

differences in baseline characteristics between those enrolled and not 

enrolled. Patient characteristics in the 9-15 months prior to the study, and at 

the time of the baseline satiety hormone profile are shown in Table 4.1. The 

only significant difference was that there were more males in the pre-pubertal 

reducer group than females, as it was not possible to balance for sex during 

the recruitment period. 

One pre-pubertal male in the reducer group had been started on Topiramate 

for epilepsy between baseline values and satiety hormone profile. In addition, 

another pre-pubertal male also in the reducer group was in early puberty (4ml 

testes) at the time of the satiety hormone profile. The analyses were therefore 

re-run excluding these two patients and the estimates were similar. Three of 

the post-pubertal adolescents (one female reducer and two male maintainers) 

were also taking fluoxetine intermittently during the study. 
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Table 4.1. Characteristics of the participants at baseline and at the time of 

their satiety hormone profile* 

Baseline 

(Values 

taken  

9-15 

months 

before 

satiety 

hormone 

profile) 

Characteristic Pre-

Pubertal 

Reducer 

(N = 11) 

Pre-

Pubertal 

Maintainer 

(N = 10) 

Post-

Pubertal 

Reducer 

(N = 10) 

Post-

Pubertal 

Maintainer 

(N = 10) 

Age (yr) 5.3 ± 1.6 7.1 ± 0.7 15.1 ± 1.6 14.7 ± 0.9 

Weight (Kg) 45.1±10.5  45.7 ± 6.1 103.3±25.4 111.3±24.7 

Height (cm) 122.9±13.7 132.8 ± 7.7 164.6±10.1 169.8 ± 5.6 

BMI 29.8 ± 4.6 26.3 ± 4.1 37.6 ± 6.4 38.2 ± 6.5 

BMI SDS 4.9 ± 1.1 3.4 ± 0.8 3.4 ± 0.5 3.4 ± 0.5 

Time Interval 

(months) a 

12.7 ± 2 11.1 ± 2.7 11.8 ± 3.2 11.5 ± 2.7 

Male Sex (%) 9 (82) 2 (20) 6 (60) 4 (40) 

Satiety 

Hormone 

Profile 

 

Age (yr) 6.3 ± 1.6 8 ± 0.6 16.1 ± 1.6 15.6 ± 0.8 

Weight (Kg) 48.3 ± 13.3 52.7 ± 6.1 99.8 ± 19.5 119.2±25.2  

Height (cm) 130.4±13.6 138 ± 7.7 166.8±11.0 170.8 ± 5.5 

BMI 28.4 ± 5.3 27.9 ± 4.6 35.5 ± 5.3 40.6 ± 6.6 

BMI SDS 4.2 ± 1.3 3.3 ± 0.8 3.1 ± 0.5 3.6 ± 0.5 

Fat (%) 38.5 ± 8 40.5 ± 8.9 42.2 ± 9.7 47.8 ± 6.4 

REE 

(Kcal/day) 

1197 ± 247 1247 ±160 1852 ± 279 2104 ± 393 

O2 Produced 

VO2 (ml/day) 

181.3±35.8 185.5±36.5 266.9±40.3 319.2±76.4 

*Plus-minus values are means ±SD. BMI denotes body-mass index, calculated as 

the weight in Kg divided by the square of the height in metres. BMI SDS denotes 

body-mass index Standard Deviation Score and allows for comparisons between 

children of different ages and sex (UK90 growth reference). 

a Time interval between characteristics taken at baseline and characteristics at the 

time of the satiety hormone profile. 
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The post-pubertal group only had 2 reducers who had achieved weight loss 

≥10%. The remainder of the post-pubertal group was therefore made up of 

post pubertal adolescents who had lost weight (average weight loss in the 

post-pubertal reducer group was 7%), as opposed to the maintainer group 

which comprised post pubertal adolescents who had gained weight (average 

weight gain in the post-pubertal maintainer group was 5%). However, when 

we repeated our analysis incorporating actual percentage weight gain or loss, 

we found that interactions for GIP and Amylin between reducers and 

maintainers were the same, even when percentage weight loss was modelled 

as a continuous variable (Table 4.2). 
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Table 4.2. Overall differences in hormone concentrations and post-prandial 

hormone response trajectories between maintainers and reducers with weight 

as a continuous variable. 

Group Hormonal 

regulator 

of Appetite 

Comparison 

of means 

95% CI Overall  

P-value 

P-value for 

diverging 

trajectories 

Reducers 

vs 

Maintainers 

Ghrelin 

(pg/ml)a 

1.008 0.99-1.03  P=0.39 P=0.35 

 Peptide YY 

(pg/ml)a 

1.003 0.99-1.01  P=0.51 P=0.41 

 GIP 

(pg/ml)a 

0.999 0.99-1.01  P=0.91 P=0.07 

 PP (pg/ml)a 1.007 0.99-1.03 P=0.51 P=0.81 

 Amylin 

(pg/ml)a 

0.992 0.98-1.01 P=0.24 P=0.008 

 Active 

GLP1 

(pmol/l)a 

1.00 0.97-1.03 P=0.99 P=0.16 

 Insulin 

(mu/l)a 

0.989 0.97-1.01 P=0.38 P=0.24 

 Glucose 

(mmol/l)b 

-0.002 -0.02 to 

0.01 

P=0.75 P=0.93 

 T3 (pmol/l) b 0.04 -0.001 to 

0.08 

P=0.06 P=0.31 

 How hungry 0.07 0.02-0.12 P=0.007 P=0.48 

 How full 0.04 -0.10 to 

0.01 

P=0.11 P=0.81 

a Values are log-transformed, so estimates represent the ratio of means. Estimates 

quoted are for mean hormone concentration in first named category divided by mean 

for second named category, i.e. post-pubertal / pre-pubertal. 

b Values are not log-transformed, so estimates represent the difference in means. 

Estimates quoted are for mean hormone concentration in first named category minus 

mean for second named category, i.e. post-pubertal - pre-pubertal. 
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4.3.2 Satiety Hormone Profiles 

4.3.2.1 Acylated Ghrelin 

Post-pubertal adolescents had 31% lower ghrelin concentrations (95% CI: -

4% to -51%, p=0.03) than pre-pubertal children, but displayed similar post-

prandial profiles (figure 4.4, table 4.3). However, the difference in post-

prandial response of ghrelin between maintainers and reducers in the pre-

pubertal group was similar to the difference between maintainers and 

reducers in the post-pubertal group (p=0.79). Contrary to our hypothesis, the 

post-pubertal reducers did not exhibit a greater increase in ghrelin 

concentration compared to the other 3 groups (figure 4.6).  

 

4.3.2.2 Peptide YY 

When all pre-pubertal children were compared to all post-pubertal 

adolescents, there was no evidence of any difference in average Peptide YY 

concentrations (-6%, 95% CI: -23% to +14% higher, p=0.52), and both groups 

had similar post-prandial profiles (p=0.86). The association between Peptide 

YY concentration and weight change was similar for both pre and post-

pubertal children (p=0.17). The pre-pubertal reducers did not demonstrate any 

greater increase in Peptide YY post-prandial concentrations compared to the 

other groups (figure 4.6).  

 

 

 

 

 

 

 

 

 

 

 

 



134 
 

Figure 4.4. Post prandial response trajectories for active Ghrelin, Peptide 
YY, GIP, PP, Total Amylin and Active GLP-1, comparing all pre-
pubertal children to all post-pubertal adolescents over 3 hours post 
prandially 
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Table 4.3 . Overall differences in hormone concentrations and post-prandial 

hormone response trajectories between pre- and post-pubertal children, 

and all weight maintainers and reducers 

Groups Hormonal Regulators 

of Appetite 

Comparisons 

of meansc 

95% CI Overall 

P-valuec 

P-value for 

diverging 

trajectories d 

 

Post-pubertal  

 vs 

Pre-pubertal 

Ghrelin (pg/ml)a 0.69 (0.49 - 0.96) P=0.03 P=0.68 

Peptide YY (pg/ml)a 0.94 (0.77 - 1.14) P=0.52 P=0.86 

GIP (pg/ml)a 1.02 (0.77 - 1.36) P=0.87 P=0.09 

PP (pg/ml)a 0.67 (0.44 - 1.03) P=0.07 P=0.93 

Amylin (pg/ml)a 1.50 (1.18 - 1.91) P=0.001 P=0.55 

Active GLP1 (pmol/l)a 0.69 (0.41 - 1.17) P=0.16 P=0.94 

 

Reducers  

vs 

Maintainers 

Ghrelin (pg/ml)a 1.05 (0.73 - 1.50) P=0.80 P=0.28 

Peptide YY (pg/ml)a 0.93 (0.77 - 1.14) P=0.50 P=0.50 

GIP (pg/ml)a 0.91 (0.69 - 1.20) P=0.48 P=0.05 

PP (pg/ml)a 1.16 (0.75 - 1.79) P=0.51 P=0.51 

Amylin (pg/ml)a 0.83 (0.63 - 1.08) P=0.16 P=0.03 

Active GLP1 (pmol/l)a 0.69 (0.41 - 1.17) P=0.17 P=0.31 

Post-pubertal  

 vs 

Pre-pubertal 

Insulin (mu/l)a 2.35 (1.53 - 3.6) P<0.0001 P=0.07 

Glucose (mmol/l)b 0.27 (0.01 - 0.54) P=0.05 P=0.06 

T3 (pmol/l) b 0.75 (-1.6 - 0.11) P=0.09 P=0.64 

Reducers  

vs 

Maintainers 

Insulin (mu/l)a 0.82 (0.50 - 1.35) P=0.44 P=0.90 

Glucose (mmol/l) b -0.02 (-0.3 - 0.26) P=0.89 P=0.81 

T3 (pmol/l) b 0.57 (-0.31 - 1.4) P=0.20 P=0.64 

a Values are log-transformed, so estimates represent the ratio of means. Estimates 

quoted are for mean hormone concentration in first named category divided by mean 

for second named category, i.e. post-pubertal / pre-pubertal and reducer / maintainer. 

b Values are not log-transformed, so estimates represent the difference in means. 

Estimates quoted are for mean hormone concentration in first named category minus 

mean for second named category, i.e. post-pubertal minus pre-pubertal and reducer 

minus maintainer. 



136 
 

c Comparisons are ratio of means for log-transformed outcomes (Ghrelin, Peptide 

YY, GIP, PP, Amylin, Active GLP-1, insulin), but difference in means for non-log-

transformed outcomes (Glucose, T3). 

d P-value for test of whether trajectories diverge post-prandially. 
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4.3.2.3 Gastric Inhibitory Polypeptide 

When all the weight reducers (pre- and post-pubertal) were compared to all 

the weight maintainers, the reducer group was slower to reach maximum peak 

GIP concentration compared to maintainer groups (p=0.05) (figure 4.5). When 

all pre-pubertal children (reducers and maintainers) were compared to all 

post-pubertal adolescents (reducers and maintainers), there was no evidence 

of any overall difference in average GIP concentrations (+2%, 95% CI: -23% 

to +36%, p=0.87), and no evidence of a difference in post-prandial profiles 

(p=0.09). Furthermore, the association between GIP and weight change did 

not vary by age group (p=0.79) (figure 4.6).  

 

4.3.2.4 Pancreatic Polypeptide 

There was no evidence of a mean difference in PP concentrations between 

pre-pubertal children and post-pubertal adolescents (-33%, 95% CI: -56% to 

+3%; p=0.07). There was also no evidence that post-prandial profiles diverged 

over time (p=0.93). The association between PP and weight change did not 

vary by age (p=0.81) (figure 4.6). 

 

4.3.2.5 Amylin 

Post-pubertal adolescents had substantially higher mean amylin 

concentrations (+50%) than pre-pubertal children (95% CI: +18% to +91%; 

p=0.001). However, there was no evidence that these post-prandial profiles 

diverged (p=0.55). The association between amylin concentration and weight 

change was similar for both pre- and post-pubertal children (p=0.39).  

 

 

 

 

 

 

 



138 
 

Figure 4.5 . Post prandial response trajectories for Active Ghrelin, Peptide 
YY, GIP, PP, Total Amylin and Active GLP-1, comparing all weight 
reducers (pre- and post-pubertal) to all weight maintainers (pre- and 
post- pubertal) over 3 hours post prandially. 

 

 

4.3.2.6 Active GLP-1 

There was no evidence of any overall difference in active GLP-1 
concentrations between pre- and post-pubertal subjects (31% lower, 95% CI: 
-59% to +17%; p=0.16), and no evidence that their combined profiles diverged 
(p=0.94). The difference in post-prandial response of active GLP-1 between 
maintainers and reducers in the pre-pubertal group was similar to the 
difference between maintainers and reducers in post-pubertal adolescents 
(p=0.53) (figure 4.6). The pre-pubertal maintainer group had higher 
concentrations of active GLP-1 than the other three groups, but post-prandial 
profiles did not differ. 

While all participants had fasting glucose, insulin and T3 levels taken at the 

time of their satiety hormone profile, only some had baseline values taken 9-

15 months before their satiety hormone profile was carried out, 41% (n=17) 

had baseline glucose, 49% (n=20) had baseline insulin and 22% (n=9) had 

baseline T3 levels. 
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As expected, insulin concentrations were twice as high in the post-pubertal 

group than the pre-pubertal group (ratio = 2.35, 95% CI 1.53 to 3.60, p<0.001) 

(table 4.3). 
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Figure 4.6. Post prandial response trajectories for active Ghrelin, Peptide YY, 
GIP, PP, Total Amylin and Active GLP-1, comparing pre-pubertal 
reducers and maintainers and post-pubertal reducers and maintainers 
over 3 hours post prandially 
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4.3.3 Appetite Ratings 

Post-pubertal adolescents reported feeling less hungry and more full than pre-

pubertal children. The post-pubertal group reported being less hungry by 2 

points on the VAS (95% CI: 1 to 3 points lower, p<0.001) and more full by 1 

point (95% CI: 0 to 2 points, p=0.03) (table 4). However, profiles did not 

diverge post-prandially (p=0.81 and 0.21 respectively). 

The association between satiety and weight change did not vary by pubertal 

status (p=0.17 for hunger and p=0.23 for how full) (figure 4.7). 

 

 

 

Figure 4.7. Ratings of appetite using validated visual analogue scales at 
baseline and over 3 hours post prandially, comparing pre-pubertal 
reducers and maintainers and post-pubertal reducers and maintainers 
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Table 4.4. Overall differences in post-prandial satiety scores and post-

prandial satiety response trajectories between pre- and post-pubertal children 

and all weight maintainers and reducers 

Group Parameter Overall 

difference in 

means 

95% CI P-value for 

difference 

P-value for 

diverging 

trajectories 

Post-pubertal 

 Vs  

Pre-pubertal 

How hungry -2.15 -3.11 to -1.20 P<0.0001 P=0.81 

How full 1.20 0.15 to 2.26 P=0.03 P=0.21 

Reducers Vs 

Maintainers 

How hungry 0.69 -0.46 to 1.84 P=0.24 P=0.48 

How full -0.20 -1.32 to 0.92 P=0.73 P=0.83 
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4.3.4 Correlations between appetite ratings and satiety hormones 

Associations between all the hormone concentrations and satiety scores were 

calculated using Pearson’s correlation (table 4.5). As expected, there were 

strong positive correlations between how hungry the participants were and 

ghrelin concentrations (r= 0.4), Amylin and Insulin concentrations (r= 0.7) and 

GIP and PYY concentrations (r= 0.5). Strongly negative correlations included 

ghrelin and insulin concentrations (r= -0.6) and PYY and Amylin 

concentrations (r= -0.3). 

 

4.3.5 Resting Energy Expenditure 

As expected, REE was higher in post-pubertal adolescents compared to pre-

pubertal children (+757 kcal, 95% CI: +574 to +940, p<0.001). REE in pre-

pubertal weight reducers and maintainers were similar (-50kcal, 95% CI: -242 

to +143, p=0.6) but post-pubertal reducers had 250kcal lower REE compared 

to post-pubertal maintainers (95% CI: -572 to +68, p=0.1). 
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Table 4.5. Correlation between baseline hormone concentrations, satiety, 
insulin, T3 and glucose 

 

 Ghrelin PYY GIP PP Amylin GLP-1 How 
Hungry 

How Full Insulin T3 

PYY r=0.00          
 p=0.98          

GIP r=0.04 r=0.50         
 p=0.82  p=0.0008         

PP r=-0.04 r=0.09 r=-0.02        
 p=0.80 p=0.57 p=0.91        

Amylin r=-0.31 r=0.23 r=0.42 r=-0.32       
 p=0.05 p=0.15 p=0.007 p=0.04       

GLP-1 r=-0.00 r=0.16 r=0.00 r=-0.09 r=-0.06      
 p=0.98 p=0.31 p=0.98 p=0.59 p=0.72      

How 
Hungry 

r=0.37 r=0.14 r=0.12 r=0.17 r=-0.27 r=0.06     

 p=0.02 p=0.38 p=0.44 p=0.29 p=0.09 p=0.70     

How 
Full 

r=-0.17 r=0.08 r=0.11 r=-0.25 r=0.27 r=0.07 r=-0.53    

 p=0.29 p=0.63 p=0.51 p=0.12 p=0.09 p=0.66 p=0.0004    

Insulin r=-0.58 r=-0.15 r=0.08 r=-0.19 r=0.74 r=-0.01 r=-0.44 r=0.1710   
 p=0.0001 p=0.34 p=0.60 p=0.24 p<0.0001 p=0.94 p=0.004 p=0.29   

T3 r=-0.06 r=0.17 r=0.37 r=0.27 r=0.03 r=-0.01 r=0.11 r=-0.02 r=0.05  
 p=0.72 p=0.30 p=0.02 p=0.09 p=0.88 p=0.96 p=0.48 p=0.89 p=0.76  

Glucose r=-0.46 r=0.18 r=-0.01 r=0.07 r=0.29 r=0.00 r=-0.38 r=0.31 r=0.55 r=-0.07 
 p=0.003 p=0.26 p=0.97 p=0.65 p=0.06 p=0.99 p=0.02 p=0.05 p=0.0002 p=0.67 
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4.4 Discussion 

A large body of evidence supports adults having a ‘set-point’ for weight (83, 

84, 335, 356)  but no studies have yet evaluated the degree of drive to weight 

regain in young obese children following a period of weight loss, or undertaken 

comparative studies of weight regain and its physiological drivers before and 

after puberty. We studied the physiological changes in satiety hormone 

profiles between young and older obese children/adolescents who had lost 

weight. While we found distinct variations in several specific hormones, there 

were no demonstrable differences in satiety hormone profiles between the two 

groups. 

Although body weight is tightly regulated, excess nutrient intake over long 

periods may alter energy balance set points, which includes the gut-brain axis 

and adipose tissue-brain axis. In obesity, this would make weight reduction 

even more challenging as evolutionary defense mechanisms actively try to 

maintain elevated levels of body fat (125). This has been clearly demonstrated 

in an adult obesity study (335), where weight loss resulted in changes in the 

levels of appetite regulating hormones (increased ghrelin and decreased PYY, 

leptin, amylin, GIP, PP and GLP-1 levels), and caused increased subjective 

sensations of appetite. These compensatory physiological adjustments act to 

promote weight gain and were still evident 12 months after the initial weight 

reduction. This contrasts to obese children, where long-term maintenance of 

weight loss appears more achievable (93).  

The results of this study did not replicate those seen in adults. There was no 

post-prandial rise in ghrelin following weight loss in pre- or post-pubertal 

children, although other studies in obese children have shown ghrelin levels 

to be unaffected by preceding weight loss (139, 357). 

Gastric Inhibitory Polypeptide is released from the gastrointestinal tract and 

promotes energy storage (335), and stimulates lipoprotein lipase activity in 

adipocytes (358). We found that when all reducers (pre and post-pubertal) 

were compared to all maintainers (pre and post-pubertal), the reducer group 

was slower to reach their maximum peak GIP concentration compared to the 

maintainer group. This is consistent with a previous study in obese children 

which demonstrated that after a dietary intervention lasting 3 – 7 months, 

fasting GIP levels also decreased (359). A slower rise in GIP concentrations 

may help to prevent an excessive insulin response in participants who lose 

weight (134). In contrast, obese adults experience a greater secretion of GIP 
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following diet induced weight loss (335), possibly to increase fat storage, 

which would act to promote weight regain.  

Peptide YY is an anorexigenic peptide that reduces food intake (135), as is 

Pancreatic Polypeptide (PP), which slows gastric emptying and reduces 

ghrelin levels. Studies in obese adults have demonstrated that weight loss 

reduces fasting and post prandial Peptide YY levels (335), which would act as 

a compensatory response to promote weight gain. The results in children and 

adolescents however are conflicting. In our study, there was no evidence of 

any difference in average Peptide YY or PP concentrations when pre-pubertal 

children were compared to post-pubertal adolescents, and the pre-pubertal 

reducer group (BMI SDS decrease >0.5) did not demonstrate any greater 

increase in post-prandial Peptide YY concentrations compared to the other 

groups.   

Findings in this study are similar to those found in two previous RCTs, where 

no association was seen between moderate weight loss (BMI SDS decrease 

<0.5) and fasting Peptide YY and GLP-1 levels in adolescents (360, 361), but 

is in contrast to another study which found that Peptide YY and PP levels 

increased significantly in obese children with the most effective weight loss 

(BMI SDS decrease >0.5) and that Peptide YY levels decreased in patients 

with weight gain (127). Possible explanations for these inconsistencies may 

be related to differences in study design, degree of weight loss, duration and 

types of interaction, whether total PYY or the active isoform PYY3-36 was 

measured and the pubertal status of the participants.  

Amylin is synthesised and released with insulin from the beta cells in the 

pancreas, and inhibits nutritional intake by causing a reduction in meal size 

and inhibiting gastric emptying (125). High amylin levels in childhood are 

linked to hypersecretion of insulin, and amylin is thought to play a significant 

role in the development of type 2 diabetes (125). Previous studies have shown 

that in adolescents, amylin levels decrease with weight loss (141). In our 

study, the combined post-pubertal adolescent group had substantially higher 

levels of amylin compared to the pre-pubertal group, with the post-pubertal 

maintainer group having the highest concentrations of amylin. 

Regarding subjective sensations of appetite, in this study, post pubertal 

adolescents felt less hungry and reported being more full than pre-pubertal 

children, which is concordant with the higher ghrelin levels seen in the pre-

pubertal group. However, research using VAS in younger children have 

demonstrated that they are more likely to register extreme responses, being 

less able to distinguish between different levels of hunger (362), which may 
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have influenced the results. We also found that the association between 

satiety and weight change did not vary by pubertal status, which is consistent 

with other paediatric obesity studies (359, 361). 

In obese adults, caloric restriction results in a profound reduction in energy 

expenditure (363) and this compensatory adaptive down-regulation is 

frequently cited as one of the causes of weight regain. In children, there are 

currently insufficient data to establish if this phenomenon also occurs. Our 

results show that while REE in pre-pubertal reducers and maintainers were 

similar, post-pubertal reducers had 250Kcal lower REE compared to post-

pubertal maintainers. These findings indicate that obese adolescents who lose 

weight may experience a similar reduction in REE to that seen in obese adults 

who lose weight, which would act to promote weight regain, but that this 

reduction in REE is not evident in obese pre-pubertal children who lose 

weight.  

This study has several strengths. As participants were already attending the 

Weight Management Service and were also enrolled in COBRA, we had 

complete data at baseline and at the time of the satiety hormone profiles, thus 

avoiding high attrition rates typically seen in studies involving long-term weight 

loss. Furthermore, we believe this is the first study to properly exclude puberty 

as a confounding variable, thus adding considerable new knowledge to the 

literature  

There are however several important limitations. Although we achieved 

acceptable power for the main comparisons (all pre-pubertal children vs all 

post-pubertal adolescents, all weight reducers vs all weight maintainers, and 

all males vs all females), power to detect significant interactions between 

hormones and weight change was lower. The study was adequately powered 

to detect medium to large sized effects overall. 

For subgroup analysis with approximately 20 subjects in total (approximately 

10 in each of the 4 groups), the study would have had 80% power to detect a 

relative change (at p<0.05) only if the groups diverged by 22% per hour post-

prandially. For example, if Ghrelin started at 100 pg/ml in each group at time 

zero, but had grown to 122 pg/ml after 60 minutes, to 144 pg/ml after 120 

minutes and to 166 pg/ml after 180 minutes. Our study was therefore unlikely 

to have adequate power to detect more realistic sized effects within the 

subgroups. To achieve adequate power within the subgroups for more realistic 

effects would need approximately double the numbers to be recruited within 

each subgroup than those that were obtained i.e. 80 patients in total and 20 
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in each of the 4 subgroups (pre-pubertal reducer and maintainer and post-

pubertal reducer and maintainer). 

There were also more males in the pre-pubertal reducer group than females, 

as it was not possible to balance for sex during the recruitment period. This 

was reflected in our study results, with 82% of the participants in our pre-

pubertal reducer group being male, but only 20% were male in our pre-

pubertal maintainer group. There were also more males in our post-pubertal 

reducer group compared to the post-pubertal maintainer group (60% and 40% 

respectively).  

Secondly, various drugs can affect body weight as a side effect, but often the 

weight change is statistically non-significant. However, Topiramate and 

Fluoxetine are associated with weight loss (364), and one of the patients 

within this study was started on Topiramate for his epilepsy while three others 

were intermittently taking Fluoxetine.  

Thirdly, the post pubertal group only had 2 reducers who had achieved weight 

loss ≥10%. The post-pubertal adolescent group require a combination of 

absolute and relative weight reduction in order to achieve the 10% target, 

whereas the pre-pubertal group benefit more from the effects of growth. 

However, when we repeated our analysis incorporating actual percentage 

weight loss, we found that interactions for GIP and Amylin between all weight 

reducers compared to all weight maintainers still held even when percentage 

weight loss was modelled as a continuous variable. 

Pre-pubertal children of both sexes from the age of 4 years, grow at 

approximately the same rate until the adolescent growth spurt (5 - 6 cm/year 

and 2.5 kg/year). Although pre-pubertal children have greater growth than 

post-pubertal adolescents, post-pubertal adolescents who have just attained 

their peak height velocity are still growing, and experience a period of 

decelerating height velocity until growth ceases because of epiphyseal fusion 

at approximately 15 years in females and 18 years in males, with males 

experiencing an average height velocity of 5.7cm/year two years after peak 

height velocity at 14 years (365, 366). The implication of this is that differences 

in growth between the pre-pubertal and post-pubertal groups would not have 

had a significant impact on the results obtained as both groups continued to 

experienced growth.  

Finally, we did not have a group of adults in order to directly compare our 

findings within this study with those already published. 
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Both the MedGem® hand-held indirect calorimetry device and Tanita BC-418 

have been validated for use in children aged 7 years and over. In this study 

children as young as 4 years of age were successfully able to follow 

instructions and cooperate during the measurements of both REE and 

Bioelectrical Impedance. However, age per se is not a rate limiting factor for 

using these devices but instead for the MedGem® it is the operating range of 

the device  (355), and for the Tanita BC-418 it is the degree of resistance 

encountered (electrode placement) (354).  

In conclusion, our study demonstrates that satiety hormone profiles are similar 

between pre and post-pubertal subjects, and appear to contrast with 

previously published adult data and our hypothesis, where weight reduction 

leads to sustained increases in Ghrelin and PP, and reductions in other satiety 

hormones. Consistent with adult obesity studies, and our hypothesis, the REE 

in post pubertal adolescents who had lost weight was lower than the post 

pubertal maintainer group who had not lost weight, while the REE in the pre-

pubertal reducer and maintainer groups were similar. Larger studies exploring 

the role of REE in maintaining weight loss in younger children are therefore 

required. Taken together, these findings indicate that the physiological 

mechanisms which act to protect against weight change may develop later 

than in the adolescent years. 
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Chapter 5 Effect of weight loss on Resting Energy 

Expenditure 

5.1 Methodology for the Follow-up period. 

Following the standardised test meal and blood sample collection for satiety 

hormone profiling, participants continued to receive routine follow-up through 

The Royal Children’s hospital’s weight management service every 3 months. 

Anthropometric measures (weight, height, BMI, waist circumference and body 

composition) were routinely recorded at these clinic appointments.  

 

5.1.1 Study Design 

This was a prospective cohort study with a retrospective element. 

 

5.1.2 Study Participants 

The participants for the follow-up period of the study were taken from the 

original 21 obese pre-pubertal children aged 3-7 years and 20 obese post-

pubertal children aged 14-18 years, who had been recruited from the weight 

management service at the RCH in Melbourne. All of the subjects that had 

been recruited had an initial BMI SDS >2.4, and the participants had been 

divided into pre- and post-pubertal groups, and then the groups had been 

further sub-divided into maintainer or reducer groups, giving 4 groups. The 

reducer groups comprised obese patients who had achieved a relative or 

absolute weight loss of ≥ 10% in the preceding 9-15 months, whereas 

participants in the maintainer group had not.  

The participants had attended The RCH following an overnight fast, and had 

their body composition recorded using BIA, and their REE measured using 

the MedGem® hand-held calorimetry device. Blood samples had been 

collected to measure satiety hormone levels before and every 30 minutes after 

eating a standardised breakfast meal. Each participant had also been asked 

to rate their subjective appetite sensations using a standard visual analogue 

scale, which was completed every 30 minutes just before the blood sample 

collection over a 3 hour period.  

Six – twelve months following their satiety hormone profile, participants were 

contacted by telephone by the weight management nurse, and asked if they 
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would fast for 4 hours prior to their routine morning clinic appointment, so that 

their REE could be repeated using the MedGem®, along with their BIA and 

auxological measurements. Consent for the re-assessment of the REE at the 

follow-up clinic appointment had already been obtained when participants had 

been recruited to the study, and the measurement of REE at the time of the 

satiety hormone profile and at follow-up had been included in the ethics 

application.  

 

5.1.3 Data Collection 

Every child was weighed (SECA chair scales, model no. 9567021099) and 

their height recorded using a stadiometer (Holton Ltd stadiometer, 

CRYMMYCH Pembs UK). BMI was calculated and BMI SDS were generated 

using UK90 standardised growth reference data. Body composition was 

assessed by bioimpedance, which was measured using a Tanita Body 

Composition Analyser (Model BC-418). Pubertal staging was not repeated at 

the follow-up appointment unless there was a clinical indication for it. 

 

5.1.4 Measures 

5.1.4.1 Anthropometry 

To minimise differences in levels of dehydration, participants fasted for 4 

hours before having their weight and BIA measured. All the clinic 

appointments were in the morning.  

 

5.1.4.2 Resting Energy Expenditure 

REE was measured in exactly the same way as it had been previously, when 

participants had attended for the satiety hormone profiles. The participants 

had all fasted for 4 hours and the post-pubertal group were asked about their 

smoking habits, as REE values are affected by smoking within 4 hours of the 

measurement being taken. Fasted participants had their REE measured using 

the MedGem® hand-held indirect calorimetry device. The children and 

adolescents rested quietly for 15 minutes before the procedure and were all 

seated in the same upright position holding the MedGem® to their mouth. 

After ensuring that there was a tight seal around the disposable mouthpiece 

and that the nose clip was in place, each participant breathed normally into 

the device for 10 minutes while either listening to music or watching television. 
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Participants had 3 consecutive attempts to successfully complete the 

measurement. 
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5.2 Results 

5.2.1 Study participants 

Of the original 41 participants, 23 subjects had their REE repeated at a routine 

clinic appointment 6-12 months after their satiety hormone profile, having 

fasted for 4 hours before their clinic appointment. In the pre-pubertal group 

there were 6 participants in the reducer and 7 in the maintainer sub-set. In the 

post-pubertal group there were 5 participants in both the reducer and 

maintainer groups (figure 5.1). 

Reasons for subjects not having their REE values repeated at follow-up, 

included participants having left the service because the family had moved 

away from the area, or the child’s weight had normalised and the family no 

longer required the weight management service. The most common reason 

was because participants had not fasted for 4 hours prior to attending their 

clinic appointment.  

 

 

Figure 5.1. Time line and grouping for the study with participant numbers. 
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In table 5.1 are the characteristics of the 41 participants taken at the midpoint 

in the study, which was at the time of their satiety hormone profile, and also 

of the 23 participants at follow-up, which was on average 10.6 months after 

the midpoint.  As expected, the REE was higher in post-pubertal adolescents 

compared to pre-pubertal children. The REE in pre-pubertal reducers and 

maintainers was similar at both time points, and post-pubertal reducers had 

250kcal lower REE compared to post-pubertal maintainers at the midpoint, 

and the difference had reduced to 159 kcal by follow-up. 
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Table 5.1. Characteristics of the 41 participants taken at the midpoint in the 
study (at the time of the satiety hormone profile) and of the 23 
participants at follow-up. 

MID- 

POINT 

Satiety 

Hormone 

Profile 

 

Characteristic Pre-

Pubertal 

Reducer 

(N = 11) 

Pre- 

Pubertal 

Maintainer 

(N = 10) 

Post-

Pubertal 

Reducer 

(N = 10) 

Post-

Pubertal 

Maintainer 

(N = 10) 

Age (yr) 6.3 ± 1.6 8 ± 0.6 16.1 ± 1.6 15.6 ± 0.8 

Male (%) 9 (82) 2 (20) 6 (60) 4 (40) 

Weight (Kg) 48.3 ± 13.3 52.7 ± 6.1 99.8 ± 19.5 119.2 ± 25.2 

BMI 28.4 ± 5.3 27.9 ± 4.6 35.5 ± 5.3 40.6 ± 6.6 

BMI SDS 4.2 ± 1.3 3.3 ± 0.8 3.1 ± 0.5 3.6 ± 0.5 

Fat (%) 38.5 ± 8 40.5 ± 8.9 42.2 ± 9.7 47.8 ± 6.4 

REE (Kcal/d) 1197± 247 1247 ± 160 1852 ± 279 2104 ± 393 

O2 Produced* 181.3± 35.8 185.5 ± 36.5 266.9± 40.3 319.2 ± 76.4 

REE/weight** 25.4 ± 4.2 23.7 ± 1.8 18.9 ± 3.2 17.8 ± 1.7 

REE/FFM** 41.4 ± 6 40.9 ± 8.4 32.9 ± 4.4 34.5 ± 4.5 

FOLLOW 

UP 

(Average 

time to 

follow-up 

in 

months 

10.6±5.3) 

 N = 6 N = 7 N = 5 N = 5 

Age (yrs) 6.4 ± 1.1 9.0 ± 0.9 17.3 ± 1.6 16.7 ± 0.7 

Male (%) 4 (60) 2 (29) 3 (50) 3 (60) 

Weight (Kg) 50.2 ± 7.8 59.9 ± 9.0 108.2± 18.8 129.0 ± 15.8 

BMI 29.7 ± 5.6 29.0 ± 5.8 38.4 ± 5.5 42.9 ± 3.5 

BMI SDS 4.4 ± 0.9 3.18 ± 0.7 3.4 ± 0.6 3.81 ± 0.2 

Fat (%) 32.9 ± 4.9 33.5 ± 11.0 39.1 ± 10.9 43.7 ± 6.8 

REE (Kcal/d) 1402 ± 236 1528 ± 491 1967 ± 453 2126 ± 312 

O2 Produced* 212.3± 44.5 235.1 ± 45.3 277.6± 64.9 306.4 ± 45.0 

REE/weight** 28 ± 2.5 25.5 ± 6.6 18.4 ± 2.2 16.6 ± 2.7 

REE/FFM** 57.1 ± 17.8 

(N = 3) 

60.4 ± 19 

(N = 4) 

42.3 ± 12.8 31 ± 4.6 

*VO2 in ml/day      **kcal/kg/day 
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However, when the REE was adjusted to account for weight, the kcal/kg/day 

was greater in the pre-pubertal group compared to the post-pubertal group at 

the midpoint (at the time of the satiety hormone profile), and this trend was 

also seen at follow-up. As FFM is the metabolically active tissue and is the 

largest contributor to REE, changes in REE per kg of FFM were also looked 

at. At the midpoint, (which was when the participants entered the study), a 

complete data set for all 41 participants was available, and the REE/FFM 

values confirmed that the pre-pubertal groups had higher values compared to 

the post-pubertal groups. 

Unfortunately, owing to the high attrition rates typically seen in studies 

involving long term weight loss, there were only 23 participants at follow-up, 

which made it harder to interpret the REE/FFM values, because results were 

limited by the small sample size. This also meant that there was insufficient 

power to generate significant P values at follow-up, when comparing the 4 

different groups (pre- and post-pubertal reducer and maintainer) and also 

when the groups were combined e.g. all pre-pubertal (maintainer and reducer) 

compared to all post-pubertal (maintainer and reducer).  

The characteristics of all the participants at all 3 time points in the study 

(baseline, midpoint and follow-up) are shown in table 5.2. 
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Table 5.2. Characteristics of all the participants taken at each time point in 
the study 

Baseline 

(Values 

taken  

9-15 

months 

before 

satiety 

hormone 

profile) 

Characteristic Pre-

Pubertal 

Reducer 

(N = 11) 

Pre-

Pubertal 

Maintainer 

(N = 10) 

Post-

Pubertal 

Reducer 

(N = 10) 

Post-

Pubertal 

Maintainer 

(N = 10) 

Age (yr) 5.3 ± 1.6 7.1 ± 0.7 15.1 ± 1.6 14.7 ± 0.9 

Weight (Kg) 45.1 ± 10.5 45.7 ± 6.1 103.3 ± 25.4 111.3 ± 24.7 

BMI 29.8 ± 4.6 26.3 ± 4.1 37.6 ± 6.4 38.2 ± 6.5 

BMI SDS 4.9 ± 1.1 3.4 ± 0.8 3.4 ± 0.5 3.4 ± 0.5 

Time Interval 

(months) † 

12.7 ± 2 11.1 ± 2.7 11.8 ± 3.2 11.5 ± 2.7 

Midpoint 

(Satiety 

Hormone 

Profile) 

 

Age (yr) 6.3 ± 1.6 8 ± 0.6 16.1 ± 1.6 15.6 ± 0.8 

Weight (Kg) 48.3 ± 13.3 52.7 ± 6.1 99.8 ± 19.5 119.2 ± 25.2 

BMI 28.4 ± 5.3 27.9 ± 4.6 35.5 ± 5.3 40.6 ± 6.6 

BMI SDS 4.2 ± 1.3 3.3 ± 0.8 3.1 ± 0.5 3.6 ± 0.5 

Fat (%) 38.5 ± 8 40.5 ± 8.9 42.2 ± 9.7 47.8 ± 6.4 

REE 

(kcal/day) 

1197 ± 247 1247 ± 160 1852 ± 279 2104 ± 393 

O2 Produced 

VO2 (ml/day) 

181.3± 35.8 

 

185.5 ± 36.5 266.9 ± 40.3 319.2 ± 76.4 

Follow-

up 

 N = 6 N = 7 N = 5 N = 5 

Time Interval 

(months) # 

9.6 ± 4.6 11.0 ± 5.9 10.3 ± 5.4 11.6 ± 5.3 

Age (yr) 6.4 ± 1.1 9.0 ± 0.9 17.3 ± 1.6 16.7 ± 0.7 

Weight (Kg) 50.2 ± 7.8 59.9 ± 9.0 108.2 ± 18.8 129.0 ± 15.8 

BMI 29.7 ± 5.6 29.0 ± 5.8 38.4 ± 5.5 42.9 ± 3.5 

BMI SDS 4.4 ± 0.9 3.18 ± 0.7 3.4 ± 0.6 3.81 ± 0.2 

Fat (%) 32.9 ± 4.9 33.5 ± 11.0 39.1 ± 10.9 43.7 ± 6.8 

REE 

(kcal/day) 

1402 ± 236 1528 ± 491 1967 ± 453 2126 ± 312 

 

O2 Produced 

VO2 (ml/day) 

212.3± 44.5 235.1 ± 45.3 277.6 ± 64.9 306.4 ± 45.0 

Total Time 

interval 

(months) 

22.3 ± 4.6 21.9 ± 6.1 20.8 ± 6.7 22.8 ± 4.2 

*Plus-minus values are means ±SD. BMI denotes body-mass index, calculated as 

the weight in kg divided by the square of the height in metres. BMI SDS denotes 

body-mass index Standard Deviation Score and allows for comparisons between 

children of different ages and sex (UK90 growth reference). 
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† Time interval between characteristics taken at Baseline and characteristics at the 

time of the satiety hormone profile. 

# Time interval between characteristics taken at the time of the satiety hormone 

profile and follow-up 
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Figures 5.2, 5.3, and 5.4 depict different parameters (REE, BMI z-score, VO2, 

Fat mass %, Truncal fat mass %), plotted against the date of measurement 

for the participants at the 3 different time points; baseline, satiety profile (mid-

point) and follow-up.  

Figure 5.2 shows the different parameters against the date of measurement 

for the participants at the 3 different time points, when all pre-pubertal children 

are compared to all post-pubertal adolescents. The pre-pubertal children had 

an increase in the REE and VO2 from mid-point to follow-up. 

Figure 5.3 shows the different parameters against the date of measurement 

for the participants at the 3 different time points when all maintainers (pre and 

post-pubertal) are compared to all reducers (pre and post-pubertal). 

Figure 5.4 shows the different parameters against the date of measurement 

for the participants at the 3 different time points when all females (pre and 

post-pubertal) are compared to all males (pre and post-pubertal). 

Figure 5.5 shows the different parameters against the date of measurement 

for the participants at the 3 different time points in each of the 4 groups (pre 

and post-pubertal reducers and pre and post-pubertal maintainers). While the 

post-pubertal adolescents have a higher REE compared to the post-pubertal 

children, the REE has not been adjusted for FFM or body weight.   
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Figure 5.2. Different parameters, (REE, BMI z-score, VO2 , Fat mass % and 
Truncal fat mass %), plotted against the date of measurement for the 3 
different time points in the study (baseline, midpoint and follow-up) for 
all the pre-pubertal participants (reducers and maintainers) compared 
to all the post-pubertal participants (reducers and maintainers). 
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Figure 5.3. Different parameters (REE, BMI z-score, VO2 , Fat mass % and 
Truncal fat mass %) plotted against the date of measurement for the 3 
different time points in the study (baseline, midpoint and follow-up) for 
all the maintainers (pre and post-pubertal) compared to all the reducers 
(pre and post-pubertal). 
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Figure 5.4. Different parameters (REE, BMI z-score, VO2 , Fat mass % and 
Truncal fat mass %) plotted against the date of measurement for the 3 
different time points in the study (baseline, midpoint and follow-up) for 
all females compared to all males. 
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Figure 5.5. Different parameters (REE, BMI z-score, VO2 , Fat mass % and 
Truncal fat mass %) plotted against the date of measurement for the 3 
different time points in the study (baseline, midpoint and follow-up) for 
each of the 4 groups (pre-pubertal reducer and maintainer, and post-
pubertal reducer and maintainer). 
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Figure 5.6, is a bar chart representing the FFM adjusted for REE taken from 

all 41 participants at the midpoint in the study, comparing the 4 groups (pre-

pubertal reducers and maintainers and post-pubertal reducers and 

maintainers), and shows that the values are greater in the pre-pubertal groups 

compared to the post-pubertal groups. 

 

 

 

Figure 5.6. REE adjusted for Fat Free Mass in pre- and post-pubertal 
reducers and maintainers at the midpoint (at the time of the satiety 
hormone profile). 

 

 

 

 

 

 

 

 

 

 

 

 

 



165 
 

5.3 Discussion 

In this study, we found that the REE in the post-pubertal adolescent reducers 

was lower than the post-pubertal maintainers, which is a finding that is 

consistent with adult obesity studies, where calorie restriction causes a 

profound reduction in energy expenditure, which leads to weight regain in 

adults (181). As expected, the post-pubertal adolescents had a higher REE 

than the pre-pubertal children, but when this was adjusted to account for body 

weight and also for FFM, the pre-pubertal groups (maintainer and reducer), 

had higher values in kcal/kg/day than the post-pubertal groups. In addition, 

the post-pubertal reducer group had a lower REE adjusted for FFM compared 

to the post-pubertal maintainer group at the time of the satiety hormone profile, 

as shown in figure 5.6, which is also consistent with results from adult studies 

(181).   

Puberty was excluded in this study, one of the reasons for this was because 

pubertal children have a higher absolute REE and Total Daily Energy 

Expenditure than pre-pubertal children. The difference is predominately 

because of FFM, but rapid growth and puberty related hormones are also 

factors, although even in pubertal adolescents who are experiencing their 

growth spurt, growth only contributes 2-4% of their daily energy requirements 

(367).  

Adolescents are at increased risk of developing obesity during puberty, as this 

is a period of growth, changing diet and also changing energy needs. 

Adolescent obesity often persists into adulthood, and females are particularly 

at risk owing to the pubertal increase in fat mass that they experience (368), 

and this was reflected in the higher proportion of females in the post-pubertal 

maintainer group. During adolescence the relative increase in fat mass is 13% 

in girls, while the level decreases by 4% in boys, so that adolescent boys have 

on average 20kg more FFM than girls (369).  

At any given BMI, body fat and muscle mass can vary substantially. Therefore, 

an accurate assessment of body composition allows a more precise 

evaluation of nutritional status and exercise habits. Several studies (368, 370-

372) have emphasised the importance of determining the fat mass and FFM 

by direct measures rather than relying on BMI when assessing obesity. The 

REE can then be adjusted for FFM, as FFM has a major impact on REE. When 

the REE is adjusted for FFM, the REE is not noticeably different between 

obese and lean subjects, suggesting that tissue and organ metabolic rate is 

not significantly different between subjects that are obese and lean.   
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As Fat mass and FFM vary with height, age and weight, it can be difficult to 

determine whether an individual subject has a low or high FFM or fat mass 

using only the absolute values of these parameters. Some researchers (162, 

163) advocate the use Fat Free Mass Index (FFMI) and Fat Mass Index (FMI) 

to eliminate any differences in FFM or fat mass due to height, and to enable a 

more accurate nutritional assessment. Comprehensive reference data for 

paediatric body composition (SDS for 5 – 20 year olds) with which to interpret 

the individual measurements are now available (161).  One study involving 

1196 subjects aged 5-18 years, found the variability of FFMI to be 

approximately 50% of that in the FMI, and that the accuracy of BMI as a 

measure of adiposity varied greatly according to the degree of fatness, with a 

high BMI-for-age being a good indicator of excess fat, but less reliable in 

thinner children, where BMI differences were more likely due to differences in 

FFM (163). The FFMI also allows weight loss to be properly monitored. If for 

example a patient has a significantly lower FFMI than predicted, an increase 

in physical activity incorporating anaerobic resistance training may be useful. 

Or if a patient is losing weight but not changing their relative body fat, the FMI 

will show the amount of body fat store lost, which may act as a motivating 

factor to help patients to continue with their weight loss.   

In this study, the REE was adjusted for weight and FFM, as each participant 

had their body composition measured using BIA. Several studies (163, 370, 

371, 373, 374) have also adjusted the REE for body weight and FFM, as 

differences in absolute values of the REE often disappear once this is done.  

In research involving 221 subjects aged 6 – 17 years (113 males and 108 

females) (375), REE was measured using a ventilated indirect calorimeter. 

The REE was first expressed as absolute values, and was found to increase 

with age in both genders, with a significant difference between genders in the 

12-17 year age group. The REE was then adjusted for body weight and FFM, 

and was found to decrease with age in both genders, but a gender gap was 

still observed in the 12-17 year old group following the adjustment i.e. females 

had a lower REE adjusted for FFM compared to males (375). The researchers 

concluded that the metabolic activity of FFM decreases with age, due to an 

increase in skeletal mass which is less metabolically active, and that during 

puberty, the gender specific changes in body composition directly influences 

REE. Another study (371) which investigated the effect of body composition, 

age, sex and pubertal development on REE in 371 obese and non-obese 

children and adolescents aged 9.5 – 16.5 years, found that the absolute REE 

was significantly lower in non-obese compared to obese subjects. However, 

when the REE was adjusted for FFM, the difference became non-significant. 
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They also found a difference between genders which remained significant 

even after adjusting the REE for FFM, and there was a slight but significant 

decrease in REE adjusted for FFM in the older adolescents, demonstrating 

the effect that age has on REE (371).  

While there is evidence to support younger children having a higher REE 

relative to body weight and FFM compared to older post-pubertal adolescents 

and adults, there is also evidence that there is a gender difference, and when 

the REE is adjusted for FFM (and expressed as per kg of FFM), it is 

significantly higher in boys than in girls, by 3% and 6% in pre-pubertal and 

pubertal subjects respectively (371).  

REE is higher in obese individuals because of the increase in FM and FFM 

that accompanies obesity. Studies in adults and children linking the 

development of obesity to lower REE have been inconclusive, mainly because 

body composition is not routinely included in studies, but also because the 

follow-up period can be very variable. Certain groups of individuals such as 

the Pima Indians of Arizona, are uniquely prone to developing obesity, in part 

because they have a relatively low resting metabolic rate, and this has led to 

suggestions that the development of obesity is due to a lower than expected 

REE. However, this theory has been refuted by a UK study (376) involving 

307 healthy school children (170 boys and 137 girls). REE and body 

composition were measured by indirect calorimetry and DEXA respectively on 

7 occasions each year between 7 – 13 years, and the effect of REE on change 

in weight and body composition were analysed at 7 years. REE was also 

adjusted for FM and FFM. The results showed a small but statistically 

(negative) significant interaction between gain in fat and REE in boys but not 

girls i.e. in boys, fat was exchanged for FFM. However, they were unable to 

demonstrate any interaction between weight change and REE over 6 years, 

and their conclusion was that REE does not provide an explanation for 

childhood obesity (376).  

It is known that obese children spend less time in physical activities and more 

time in sedentary activities than their age-matched counterparts (377). 

Sedentary and physical activities were assessed in a study of 50 non-obese 

and 27 obese adolescents, aged 14 years ± 0.3 years (377). As expected, the 

sleeping and sedentary energy expenditure were 19% higher in the obese 

subjects compared to the non-obese, but were similar following adjustment for 

body composition. However, energy expenditure associated with physical 

activity (walking on a treadmill in whole body calorimeters), was 51% lower in 

obese adolescents compared to non-obese subjects, after adjustment for 
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body composition (P<0.001) (377). Other studies have reported similar 

findings, with the energy expenditure of obese children and adolescents for 

moderate and sports activities being 20% and 25% of non-obese subjects 

respectively (369). It also appears that physical activity is essential for weight 

maintenance after diet induced weight loss in obese adolescents, particularly 

if the activity promotes substantial fat oxidation e.g. walking rather than cycling 

(152).  

Limitations of the follow-up component of this study, included the small sample 

size at follow-up, which meant there was insufficient power to generate any 

significant P values when comparing the 4 separate groups (pre and post-

pubertal reducers and pre and post-pubertal maintainers), or combinations of 

the groups (all pre-pubertal children vs all post-pubertal adolescents). We had 

also wanted to carry out REE measurements in the non-obese siblings of the 

paediatric diabetic patients at The RCH for comparison. However, owing to 

time restraints in terms of gaining ethics approval and also carrying out the 

investigations, this was not possible.  

In conclusion, pre-pubertal children have a greater REE adjusted for weight 

and FFM compared to post-pubertal adolescents, which would help them to 

maintain a lower weight trajectory and prevent weight regain. In the last 

decade there has been a decline in research interest in energy expenditure, 

with the majority of studies occurring in the mid-1990’s to mid-2000’s, which 

most likely coincided with the emergence of relatively affordable indirect 

calorimeters. However, larger studies are still needed to explore the 

relationship between weight loss and REE in pre and post-pubertal children 

and adolescents, and in particular the effect that physical activity has on REE, 

as this will help to inform our strategies for preventing and treating childhood 

obesity. 
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Chapter 6 Final Discussion and Future Directions 

6.1 Final discussion. 

6.1.1 Study hypothesis 

In this study we hypothesised that set-points for weight, and their physiological 

defence, are flexible in childhood but become fixed around puberty. We aimed 

to show that obese pre-pubertal children who lost weight had less ‘reflex’ 

changes in satiety hormone profiles (that would drive weight regain), 

compared with adolescents, who had experienced a similar degree of weight 

change. We therefore expected post-pubertal adolescents to have similar 

satiety hormone responses to obese adults who lose weight i.e. post-prandial 

increase in ghrelin (associated with feelings of hunger) and decreases in PYY 

and amylin (all associated with reduced feelings of fullness).  However, while 

we found distinct variations in several specific hormones between young and 

older obese children/adolescents who had lost weight, there were no 

demonstrable differences in satiety hormone profiles between the two groups. 

Also in contrast with adult studies were the results from the subjective 

sensations of appetite. In this study post-pubertal adolescents felt less hungry 

and reported being more full than pre-pubertal children, whereas in adult 

obesity studies, participants reported feeling more hungry and pre-occupied 

with food than before they had lost weight, which is concordant with the higher 

ghrelin levels seen in obese adults following weight loss.  

These findings therefore did not support our hypothesis, and it would appear 

that the physiological mechanisms involving satiety hormones responses, 

which act to protect against weight change, may develop later than in the 

adolescent years. These results however may be advantageous for post-

pubertal adolescents trying to lose weight, as it means that their higher body 

weight is not as vigorously defended by internal physiological mechanisms, 

which in theory would make it easier for them to maintain a lower body weight 

compared to obese adults.  

While the absence of a 19 to 25 year old group for comparison was a limitation 

of this study, the future multi-centre research study in Australia looking at 

weight trajectories, and associated physiological drivers to weight regain in 4 

different age groups, will include a young adult cohort. This should provide 

further clarification on exactly when an individual’s set-point for body weight 

becomes fixed.  
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Regarding REE, our results showed that while REE in pre-pubertal reducers 

and maintainers were similar, post-pubertal reducers had a lower REE 

compared to post-pubertal maintainers. These findings indicate that obese 

adolescents who lose weight may experience a similar reduction in REE to 

that seen in obese adults who lose weight, which would act to promote weight 

regain, but that this reduction in REE is not evident in obese pre-pubertal 

children who lose weight. In addition, pre-pubertal children have a greater 

REE adjusted for FFM compared to post-pubertal adolescents, which would 

also help to prevent weight regain.  

REE is an area for potential future development, as the MedGem® hand-held 

indirect calorimetry device, which was used to measure REE in this study and 

has been shown to be valid and reliable in adolescents and young children, 

could be used in an outpatient clinic setting to monitor REE over time. Those 

children with the highest REE adjusted for FFM would in theory have the 

greatest chance of improving their future weight trajectory and maintaining 

their lower weight in the longer-term. Children identified as having a lower 

REE adjusted for FFM however may need earlier adjuvant obesity support 

with pharmacotherapy or more intense physical activity programmes in order 

to achieve and maintain a lower weight trajectory.  

It is recognised that there remains a paucity of data looking at satiety hormone 

responses in children and adolescents following weight loss, and that study 

results are often confounded by the physiological changes that occur during 

puberty, such as increased insulin resistance and changes in FFM in relation 

to FM. We believe this was the first study to properly exclude puberty as a 

confounding variable, thus adding considerable new knowledge to the 

literature, although further research is needed to determine the pre and post-

prandial satiety hormone responses to weight loss in children and 

adolescents.  

6.2 Future direction 

There have been several interesting discoveries and developments in the field 

of paediatric obesity recently, ranging from pharmacotherapy treatments to 

successful implementation of large-scale public health initiatives, to novel 

research findings, which may have significant implications for the future 

prevention and management of obesity. 
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6.2.1 New treatment developments  

6.2.1.1 New developments in pharmacotherapy – Sustained release 

Oxyntomodulin analogue (OX-SR) 

Oxyntomodulin is a gut hormone that causes weight loss by reducing appetite 

and increasing energy expenditure. Exactly how oxyntomodulin works 

remains unclear as it can activate both glucagon and GLP-1 receptors, 

although no specific receptor has been identified. The research team at 

University College London have developed a sustained release 

oxyntomodulin analogue (OX-SR), which produces a significant increase in 

energy expenditure in Wister rats. The energy expenditure increase occurs 

via activation of the glucagon receptor, and this receptor is essential for OX-

SR’s sustained effects on energy expenditure. OX-SR is slightly more potent 

at both the GLP-1 and Glucagon receptors than oxyntomodulin, and has a 

sustained release from a subcutaneous depot, taking 6 days for plasma levels 

to be undetectable, as opposed to 1 day for the same dose of oxyntomodulin. 

A single dose of OX-SR was found to increase energy expenditure in Wister 

rats, when measured by indirect calorimetry, with oxygen consumption 

increasing by 10% over 12 hours (378). 

While many drugs can increase energy expenditure, their use as anti-obesity 

treatments have been withdrawn due to significant side effects (e.g. 

amphetamines and levothyroxine cause cardiovascular side effects). Dual 

and even triple agonist therapies combining GLP-1, GIP and glucagon 

receptor activities are actively being trialled for obesity and diabetes with 

encouraging results (379-381), but the development of future dual agonist 

analogues will need a careful balancing of GLP-1 and glucagon receptor 

activities, in order to preserve the optimal effects of both. 

6.2.1.1 Successful implementation of Public Health Initiative – 

Amsterdam Healthy Weight programme 

The childhood obesity and overweight rate in Amsterdam in 2012 was 21%, 

which was much higher than the national average in the Netherlands of 13%, 

and the highest percentage of overweight or obese children were of Turkish 

or Moroccan descent. To address this problem the city of Amsterdam 

(population 851,600), looked for a long-term sustainable change in behaviour, 

which culminated in the Amsterdam healthy weight programme (382). 

Preventative measures included the first 1000 day approach, making schools 

healthy, investing in neighbourhoods and communities, in order to construct 

the city in a way that would promote healthy lifestyles and create a healthy 
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food environment. They also focused on obesity management by targeting 

morbid obesity in children and developing better obesity treatment 

programmes. Finally, they invested in education, digital facilities and 

communication. They also worked with individuals to instigate actions at a 

community and population level. They did this by organising focus groups, 

panels and organised meetings, which resulted in the co-production of 

solutions to obesity with the communities. The combination of all of these 

efforts were required to bring about change. 

Following the launch of the Amsterdam Healthy Weight Programme, the whole 

city managed to reduce the total number of overweight and obese children by 

10% within the first 2 years, which equates to 2000 fewer overweight children. 

Importantly, the programme was especially successful for children from low 

socioeconomic backgrounds. The Amsterdam Healthy Weight Programme 

was started in 2013 and has a 20 year plan, and its final aim is for a healthy 

weight in all young people in Amsterdam by 2033 .  

6.2.1.2 Novel research developments 

Faecal Microbiota Transplantation (FMT): The human gut microbiome is the 

collection of microorganisms, their gene products and corresponding 

physiological functions found in the human GI tract (383). Following the 

discovery that the ratio of Firmicutes to Bacteroidetes (F:B ratio) and energy 

harvest capacity differs in obese versus lean animal and human subjects 

(384), the gut microbiome has been implicated as having an important role in 

obesity. Both obese animal and human subjects have been found to have 

altered gut microbiota (reduced bacterial diversity and altered colonic 

fermentation) compared to their lean counterparts. The gut microbiome can 

be classified into High Gene Count (HGC) or Low Gene Count (LGC). The 

former is most often seen in lean individuals and is associated with greater F. 

prausnitzii and butyate levels, whereas the later is seen more often in obese 

individuals and is associated with lower butyrate production but higher levels 

of Bacteriodetes (385). Diet induced weight loss interventions in obese 

individuals (LGC group) can partially restore these changes, which confirms 

that there is plasticity within the gut microbiome. 

Faecal Microbiota Transplantation (FMT) aims to restore gut microbiota by 

transfering faeces from a healthy (lean) individual to a sick (obese) individual. 

It has been used extensively to treat Clostridium difficile infection, but there 

are only a small number of studies looking at its success in treating obesity. 

In an animal study involving the transfer of stool from monozygotic or dizygotic 

twins discordant for obesity into ‘humanized’ germ-free mice, the recipient 
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mice showed an increase in adiposity i.e stool was transferred from obese 

mice to normal weight mice, and the normal weight mice then became obese. 

This study confirmed that it is possible for obesity-associated metabolic 

phenotypes to be transferred (386) which means that in the future, obesity-

related disorders could potentially be managed by the therapeutic 

manipulation of the gut microbiome. In a small human RCT investigating the 

effects of FMT on the metabolic syndrome, FMT was transferred from healthy 

lean subjects to patients with metabolic syndrome. 6 weeks after transfer, 

there was an increased insulin sensitivity and gut microbial diversity, 

particularly of Roseburia intestinalis, which produces butyrate (387), which is 

known to play an important role in promoting insulin sensitivity in mice (388). 

In the future targeted microbiome therapeutics could be used in clinical 

practice, but further studies are needed to assess the metabolic changes 

following FMT. 

Body Weight homeostat that regulates fat mass independently of Leptin: 

Scientists in Sweden have discovered a new leptin-independent body weight 

homeostat (gravitostat) that regulates fat mass. There is epidemiological 

evidence for an association between the number of hours spent in a sitting 

position and several metabolic diseases such as obesity, diabetes and 

cardiovascular disease (389, 390). However, the mechanism for the 

antiobesity effect of standing is unclear. In this study (391), mice with diet 

induced obesity were loaded with capsules of different weights, which were 

implanted in their abdomen or subcutaneously on their backs. The increased 

loading was found to reversibly decrease the biological weight by reducing 

food intake, with the mice losing almost as much weight as the artificial load. 

The loading also resulted in an improvement in glucose tolerance and a 

reduction in fat mass.  

It is well establised that osteocytes are able to sense changes in bone strain 

(392). In this study, it was hypothesised that the homeostatic regulation of 

body weight and fat mass by osteocytes in reponse to changes in body weight 

was mediated by a bone derived cirulating factor (sclerostin,osteocalcin, 

FGF23, and lipocalin 2). However, increased loading did not significantly alter 

the expression of any of the four main bone-derived circulating factors, 

although the body weight reducing effect of increased loading was was lost in 

mice who were depleted of osteocytes. The authors therefore concluded that 

increased body weight activates a sensor dependent on osteocytes of the 

weight-bearing bones, which induces an afferent signal to the brain, which 

decreases body-weight by reducing food intake, in order to keep body weight 
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constant. Conversely, excess sitting time would result in decreased loading of 

osteocytes in the weight-bearing long-bones, so that the homeostatic 

regulation of body weight does not activate the afferent signal to the brain, 

resulting in obesity i.e. obese patients need to spend more time stood up, 

weight-bearing, in order to activate afferent signals to the brain to reduce their 

food intake. Further studies exploring this novel body-weight regulation 

system are still warranted, and could potentially lead to a better understanding 

of the causes of obesity, and pave the way for new anti-obesity treatments.  

Electronic implant to reduce obesity: Researchers from Imperial College in 

London have developed a microchip which can be attached to the Vagus 

nerve within the peritoneal cavity, which can process chemical impulses in 

order to suppress appetite (393). While gastric pacemakers and vagus nerve 

stimulators have been used previously with mixed results, this microchip can 

identify chemicals rather than just electrical impulses, which makes it a more 

selective and precise instrument. The intelligent implantable modulator is also 

different because it does not just send stimulating impulses, but instead reads 

and processes electrical and chemical signatures of appetite within the vagus 

nerve, and can send electrical impulses to the brain in order to reduce or stop 

the urge to eat i.e. mimics the signals the brain normally receives from the GI 

system following a meal to supress appetite. In the future, the electronic 

implant could provide a more effective alternative to bariatric surgery, and has 

the advantage of being reversible and potentially simpler and cheaper. The 

project, which is called, Intelligent implantable modulator of Vagus nerve 

function for treatment of obesity (i2MOVE), received over 7 million euros in 

funding from the European Research Council in 2013, and research is 

ongoing.  

There are however other teams working on Vagus nerve implants to treat 

obesity. EnteroMedics, a US based company, have developed an implant 

(VBloc®) (394) which intermittently blocks the Vagus nerve using electrical 

impulses. A clinical trial of the VBloc® device involving 239 patients showed 

that more than half of those using it had lost at least 20% of their excess body 

weight, although results were not as good as had been expected. Another US 

company, IntraPace, has European approval for its Abiliti® device (395), 

which uses Vagus nerve stimulation to reduce food consumption.  
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6.2.2 Conclusion 

The obesity epidemic is a looming crisis that requires immediate action. While 

some have questioned the forecasts of experts and have doubted the far-

reaching impact of obesity, any residual scepticism is gradually being eroded 

away by accumulating evidence. Others would prefer to defer efforts directly 

addressing the problem and instead place hope in the development of new 

drugs or surgical procedures that might offer a quicker solution, or argue that 

the costs of action are too great, ignorant to the fact that future survival 

depends on solving the problem.  

The good news is that solutions to the problem are readily available, but while 

broad consensus exists with respect to the dietary and lifestyle habits needed 

to prevent and treat childhood obesity, a co-ordinated and comprehensive 

strategy for encouraging children to eat healthily and exercise more is sadly 

lacking.  A successful strategy would need to include the strict legislation and 

regulation of fast-food advertising, with incentives and farm-subsides for the 

promotion of nutrient-dense rather than calorie-dense produce, and the 

provision of healthy lunches and regular physical activities at school. Parental 

involvement is key, and parents must take responsibility for the welfare of their 

own children, by limiting their screen time, providing high quality food and 

modelling healthy eating and exercise behaviours. However, their efforts 

should not be undermined by the marketing campaigns of the manufacturers 

of unhealthy foods, and by governments who have a conflict of interest in 

regulating them. The early identification and implementation of effective, 

accessible, well-resourced obesity treatment programmes, which take into 

account the internal physiological mechanisms regulating body weight, are 

also an essential component to successfully preventing and treating 

overweight and obese youth, and are critical to the prevention of adult obesity. 

In conclusion, childhood obesity can be cured, but only with the exercising of 

both social and personal responsibility, and only then will we be able to change 

the shape of things to come (396). 
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