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Abstract

In this thesis the TOMCAT chemical transport model is used to investigate the processes which

control the concentrations of CO and O3 in the Arctic troposphere. Particular focus is on under-

standing the main sources of CO, O3 and NOy species in the Arctic, distinguishing between natural

and anthropogenic sources and the current drivers of interannualvariability (IAV).

First results from a new version of TOMCAT, with extended hydrocarbon chemistry and heteroge-

neous uptake of N2O5, shows better agreement with observed CO from MOPITT, surface stations

and aircraft. Changes in simulated burdens demonstrate the importance of NMHC as a source of

CO, O3 and PAN in the troposphere and show that the complexity of chemical schemesmay have

contributed to previously reported inter-model differences. The high PAN sensitivity to additional

NMHC is particularly important in the Arctic as it is the dominant source of NOx in the Arctic

lower troposphere, producing up to 30% of total O3 in the summer.

This thesis contains the first source contribution analysis to consider impactsof fire emissions

throughout the year in comparison to anthropogenic sources. Anthropogenic emissions are found

to be the largest source of Arctic CO (48%), followed by methane (25%) and fires (13%). In

summer, fire and anthropogenic sources contribute equally to the total CO burden. Boreal fires

are the dominant source of O3 and NOx compared to anthropogenic emissions. North America

contributes the largest amount (30%) to the total anthropogenic CO burden, followed by East

Asia (26%), Europe (23%) and South Asia (9%). In contrast, North America makes the largest

contribution (9%) to the Arctic O3 burden, followed by Europe (7%) and then Asia (6%). Overall,

CO shows that the Arctic is most sensitive to emissions changes in Europe, then North America

and then Asia.

Fire emissions are the dominant driver of current Arctic CO IAV, causing84-93% of observed

variability. A statistically significant correlation is found between observed CO and the El Nĩno

3.4 index due to a link with fires. El Niño is strongly associated with increased fire emissions in

regions of North, Central and South America, Africa, and Asia. In contrast, El Nĩno is associated

with reduced fire emissions in eastern North America, Europe, southern Asia and Australia. The

temperature dependence of fires in several regions indicates that fire activity will increase in a

warmer climate.

Model simulations show that meteorology is responsible for 0-25% of Arctic CO IAV. During

positive phases of the NAO, Arctic CO is increased in winter but is reducedin summer. This is the

first time that the effect of the NAO on transport to the Arctic has been considered throughout the

year, showing a seasonal evolution in the Arctic response. El Niño is shown to increase transport

from South Asia during winter and spring.
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Chapter 1

Motivation and aims

1.1 Motivation

Since the industrial revolution, emissions of trace gases from the combustionof fossil fuels have re-

sulted in increased atmospheric concentrations of greenhouse gases such as carbon dioxide (CO2)

and methane (CH4). Greenhouse gases absorb outgoing long-wave radiation and therefore con-

centration changes in these gases can affect global temperatures. Observed global surface tem-

peratures have increased by 0.74°C since 1906, during this period of industrialisation, providing

evidence that human activities are perturbing the Earth’s radiation budget(IPCC, 2007).

Figure 1.1 shows observed sea surface temperature (SST) anomalies averaged over the whole

globe and over different latitude bands relative to the 1880-1890 mean SST. There is a positive

trend in all regions, however, the 60°N-90°N latitude band clearly exhibitsa much higher tem-

perature anomaly, with an overall increase of 2.25°C. In the Arctic, the periods of warming and

cooling prior to 1970 have been attributed to natural climate variability. However, the post-1970

warming has been shown to be caused by increased concentrations of greenhouse gases (Johan-

nessen et al., 2004; ACIA, 2005). Analysis of observed SSTs, during this period of human-induced

warming, revealed that temperatures in the region north of 60°N have beenincreasing at a rate of

0.09°C per decade during the 20th century compared to 0.06°C per decade for the whole of the

Northern Hemisphere (ACIA, 2005). This faster rate of warming in the Arctic has been termed

‘polar amplification’ and is due to feedback mechanisms, such as sea-ice-albedo feedbacks, where

melting ice leads to increased absorption of solar radiation, which further enhances warming in

the Arctic (Serreze and Francis, 2006). Climate model projections performed as part of the IPCC

(Intergovernmental Panel on Climate Change) report are shown in Figure 1.2. The amplified rate

of warming is clearly seen in the Arctic and suggest that this increased rate of warming is likely

1
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Figure 1.1Area-weighted mean observed surface temperature anomalies (°C), relative to the 1880-
1890 mean, for different latitude bands (adapted fromShindell and Faluvegi(2009)). The obser-
vations are from the Met Office Hadley Centre’s sea Ice and Sea Surface Temperature data set,
HadISST1 (Rayner et al., 2003).
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to continue throughout the 21st century with a temperature increase of up to6°C in the Arctic by

2100 (Christensen et al., 2007).

Climatic changes such as increased precipitation, reduced sea-ice and snow cover, increased river

discharge to the ocean and melting of permafrost have already been observed in the Arctic (ACIA,

2004). The Arctic climate is intrinsically linked to the rest of the globe and therefore the observed

changes have global implications. Reduced surface albedo, due to less ice and snow, results in

increased absorption of short-wave radiation increasing temperatures further (Christensen et al.,

2007). The formation of cold dense water in the Arctic is also important as it causesdeep down-

welling which drives part of the global oceanic circulation known as the thermohaline circulation

(Clark et al., 2002). Increased input of freshwater into the Arctic ocean from increasedprecip-

itation and river discharge reduces its salinity and density, thereby reducing this downwelling

(Rahmstorf, 2000). This also has implications for global atmospheric circulation which is linked

to ocean currents. Any shift in oceanic and atmospheric circulation will affect temperature and

precipitation patterns globally as they both act to transport moisture and heatpoleward from the

equator. Melting of glaciers is also expected to cause a rise in sea level (Bindoff et al., 2007). As

a whole, increased temperatures in the Arctic are expected to have wide-reaching consequences,

affecting the whole of human society, animal populations and plant species (ACIA, 2004).

For this reason, it is vital for anthropogenic emissions to be reduced in order to mitigate the im-

pacts of climate change, allowing time for populations to adapt to regional changes. CO2, the

largest contributor to radiative forcing, has a very long lifetime and therefore the benefits of emis-

sion reductions will not be seen for a long time (Forster et al., 2007; Quinn et al., 2008). It has
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Figure 1.2 Mean projected surface temperature change (°C) for 2020-2029 (left) and 2090-2099
(right) from multi-model simulations for different IPCC emissions scenarios:B1 (top), A1B (mid-
dle) and A2 (bottom) (taken fromSolomon et al.(2007)). The emission scenarios represent dif-
ferent partitioning between the usage of fossil fuel and renewable energies, with B1 being equally
reliant on both and A2 being most reliant on fossil fuel.

been suggested that emission reduction policies should firstly target precursors of relatively short-

lived greenhouse gases, such as CH4 (9-12 years) (Prinn et al., 1995; Forster et al., 2007) and

ozone (O3) (∼22 days) (Stevenson et al., 2006), to mitigate immediate climate change, whilst also

reducing CO2 concentrations for future benefits (Quinn et al., 2008). Tropospheric O3 is the third

most important greenhouse in terms of its contribution to global radiative forcing (Forster et al.,

2007) and has been estimated to have contributed 0.3°C to total global warming and∼0.4-0.5°C

to Arctic warming during winter and spring since 1880 (Shindell et al., 2006a). O3 is produced

photochemically in the atmosphere and processes which control its abundances in the Arctic are

poorly understood (Shindell et al., 2006a; Law and Stohl, 2007; Jacob et al., 2010). Other gases

which do not trap outgoing longwave radiation can also contribute to increasing temperatures

indirectly. For example, increased emissions of carbon monoxide (CO) andnon-methane hydro-

carbons (NMHC) can affect the oxidising capacity of the atmosphere by reducing hydroxyl radical

(OH) concentrations, increasing the lifetime of gases such as CH4 and O3 (Forster et al., 2007).

It is therefore important to understand the sources and sinks of pollution inthe Arctic which are

contributing to the changing climate in order to mitigate global increases in temperature. Particular

emphasis should be on which anthropogenic regions are contributing the most to concentrations

of trace gases in the Arctic. This will allow the implementation of effective emissionreduction
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polices to be put in place to curb the impacts of climate change. Due to the location of the boreal

regions, fires have the potential to affect Arctic composition. Boreal fires are largely caused by

lightning strikes to the ground and modelling studies have shown that a doublingof CO2 is likely

to increase the frequency of lightning across the northern hemisphere and lead to dryer and warmer

climatic conditions, increasing overall fire risk (Flannigan and Van Wagner, 1991; Stocks, 1993;

Price and Rind, 1994; Stocks et al., 1998; Flannigan et al., 2001). It is not well known how fires

impact the Arctic and therefore an understanding of how current levels of biomass burning affects

Arctic composition will also allow us to understand how the climate may be affected inthe future.

Understanding how fire emissions and anthropogenic emissions affect theArctic overall will allow

us to understand whether anthropogenic emission reduction policies will reduce concentrations in

the Arctic.

Three-dimensional (3-D) global chemical transport models (CTMs) areuseful tools for studying

issues such as these, where the problem is dominated by long-range transport of pollution from a

wide range of sources. The Arctic is characterised by very low temperatures, a stable boundary

layer, snow/ice-covered surfaces and a strong seasonal solar radiation cycle. Modelling Arctic

composition is particularly challenging due to these complexities. Previous assessments, using

spatially limited observations only at the surface, identified that CTMs show large deviations from

both the observed and simulated means of short-lived pollutant concentrations, such as CO and O3,

in the Arctic (Shindell et al., 2008). This suggests a lack of understandingin terms of the chemical

and transport processes controlling such budgets. This has implications for more complex climate

models which are used to predict Arctic and global climate response to emissionchanges using the

chemical mechanisms from CTMs. Models need to be constantly evaluated with in-situ data so we

can better understand and reduce model limitations and errors, making more accurate simulations

of global climate and atmospheric composition possible in the future.

1.2 Aims

The main focus of this thesis is to improve our understanding of the main sources of Arctic CO

and O3 using a global chemical transport model, TOMCAT, to simulate the export of pollution

polewards. The specific research aims are to:

1. Evaluate the ability of chemical transport models to simulate Arctic tropospheric com-

position. The TOMCAT model is compared to newly available trace gas measurements

from the POLARCAT-summer 2008 aircraft campaign in combination with surface obser-

vations and satellite measurements to better understand model weaknesses. Particular focus

is paid to CO, O3 and NOy species.
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2. Quantify the main sources of trace gases within the Arctic. Novel CO tracer experiments

are used to track mid-latitude pollution emissions from anthropogenic, fire andbiogenic

emissions to quantify their contributions to Arctic burdens between 1997-2009. The major

Northern Hemispheric anthropogenic emission regions are differentiated between, along

with natural and man-made fire contributions. The impact of the regional anthropogenic

and boreal fire emissions are then also estimated for O3 and NOy species.

3. Investigate the processes which control observed interannualvariability of CO in the

Arctic. An integral part of understanding future changes in the burdens of atmospheric trace

gases in the Arctic is to better understand the current processes which lead to recent observed

variability. A range of model simulations are used to compare the impact of meteorology

and fire emissions on the interannual variability in CO between 1997-2009. Changes in

transport to the Arctic during different modes of naturally occurring climateoscillations,

such as the NAO, PNA and El Niño are also considered. Drivers of fire emissions variability

are also studied.

1.3 Layout of this thesis

Background descriptions of the atmosphere, long-range transport, tropospheric chemistry and cli-

mate of the Arctic are given in Chapter2, along with a discussion of the current state of knowledge

and literature, which are relevant to the work presented in this thesis. The TOMCAT CTM, which

is used throughout this thesis, is described in Chapter3. Model updates which have been devel-

oped and tested as part of this thesis are also discussed here, including 1) newly implemented

emission estimates, 2) an extension of organic chemistry and 3) a treatment of heterogeneous up-

take of N2O5 by aerosol. Testing and evaluation of the newly updated version of the TOMCAT

model, in comparison to surface observations of CO, NOy and O3, and satellite measurements of

CO, are shown in Chapter4. Contributions to Arctic burdens of CO and O3 from anthropogenic

and fire sources are estimated in Chapter5. This chapter also considers how the Arctic sensitivities

to anthropogenic regional sources vary seasonally due to different transport pathways. The sources

of inter-annual variability of CO are discussed in Chapter6, focusing on meteorological variations

in transport patterns and changes in emissions from biomass burning. Theinfluence of climate

modes on both transport and fire emissions are also further investigated in this chapter. Chapter7

compares TOMCAT to aircraft data from the POLARCAT campaign and investigates the sensitiv-

ity of O3 to Arctic PAN. Finally all results are summarised in Chapter8 along with a discussion

of how they have addressed the aims presented in Section1.2 and suggestions of possible future

work.





Chapter 2

Background

2.1 The atmosphere

The atmosphere is a layer of gases which lies above the Earth’s surface,mostly composed of ni-

trogen (∼78%), oxygen (∼21%) and argon (<1%). Water vapour is the fourth most abundant gas,

which is mostly present in the lower atmosphere, varying in concentration dueto evaporation and

precipitation. Trace gases and particles make up the rest of the atmosphere, which are affected by

both natural and human emissions from the surface of the Earth. The atmosphere can be separated

into different layers characterised by changes in temperature and pressure. The lowermost part

of the atmosphere is called the troposphere, which is defined by a decrease in temperature with

altitude. The troposphere contains 80% of the mass of the atmosphere and experiences rapid ver-

tical mixing due to surface heating. Above the troposphere lies the stratosphere, which is defined

by an increase in temperature with altitude due to absorption of ultraviolet (UV)radiation by the

ozone layer. The tropopause is where these two regions meet. The heightof the tropopause is

determined by the extent of vertical mixing in the troposphere, with an average height of∼18 km

in the tropics and∼8 km at the poles. Due to the stable conditions of the tropopause (warm air

in the stratosphere overlying colder denser air), air is mixed very slowly between the two layers.

Above these layers, are the mesosphere, thermosphere and exosphere.

The troposphere can be further separated into the free troposphere (FT) and the boundary layer

(BL). The BL is the lowest part of the troposphere, defined as the region of air which is influenced

by the Earth’s surface and responds more quickly to surface temperature changes than the FT. The

FT is the region of air above the boundary layer extending up to the tropopause. The height of the

boundary layer depends on the meteorological conditions, with lower boundary layer heights in

stable conditions. In general, the boundary layer extends from the surface up to 500 m to 3,000 m

altitude.

7
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Emissions of trace gases from human activities, such as combustion and land-use change, perturb

the natural state of the atmosphere. This can be seen in global atmospheric concentrations of gases

such as carbon dioxide (CO2) and methane (CH4), which have long enough lifetimes (>9 years)

to accumulate in the atmosphere and have shown marked increases since the pre-industrial times

(IPCC, 2007). Observations suggest that other shorter lived gases such as ozone (O3) have also in-

creased (Hough and Derwent, 1990; Vingarzan, 2004). Concentrations of O3 are affected through

anthropogenic emissions of nitrogen oxides (NOx=NO+NO2), carbon monoxide (CO) and non-

methane hydrocarbons (NMHC). Modelling studies suggest that greateranthropogenic emissions

of O3 precursors are the cause of the observed increase (Wang and Jacob, 1998; Vingarzan, 2004).

These increasing concentrations have important implications for both air quality and climate. Most

trace gases are emitted in the BL, once emitted their fate is controlled by chemical processes and

the general circulation of the atmosphere. These are now described in Sections2.2- 2.4.

2.2 General atmospheric circulation

The circulation of the troposphere can be generalised into three cells whichhave formed as a result

of uneven heating of the Earth’s surface and the rotation of the Earth. The influx of solar radiation

at the equator is greater than at the poles and results in a surplus of energy at the equator and a net

loss of energy at the poles. Atmospheric and oceanic circulation acts to transport excess energy

poleward. This alone would result in a single circulation cell known as the Hadley cell, however,

the rotation of the Earth results in an affect known as the Coriolis force causing two additional

cells, the Ferrel cell and the Polar cell. As the Earth is a rotating sphere, points on the Earth’s

surface move at different speeds depending on their latitude. It can begeneralised to result in a

deflection of air to the right of its travel direction in the Northern Hemisphere (NH) and to the left

in the Southern Hemisphere (SH). The three cells are shown in Figure2.1and are now described

in more detail.

Hadley cell

Strong surface heating at the equator causes the air to become buoyant and rise. This air then moves

along the tropopause northward to around 30°N or southward to around30°S, where it cools and

descends. This creates an area of low pressure at the equator and anarea of high pressure at around

30°N and 30°S. This pressure gradient drives air along the surfaceback towards the equator and

completes the Hadley cell (see Figure2.1). Due to the Coriolis force, the winds travel in an east to

west direction, creating what are known as the trade winds. Air from the SH and the NH converges

at the equator forming the Intertropical Convergence Zone (ITCZ). This convergence also acts to
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intensify uplift in the equatorial region which is characterised by extensive cloud and rainfall due

to high rates of evaporation and uplift.

Ferrel cell

At 30°N and 30°S descending air, which does not move equatorward aspart of the Hadley cell,

moves towards the high latitudes. This air is deflected from the west to the eastdue to the Coriolis

force, resulting in the so-called westerlies. At around 60°N/S warm, moist air rises which then

moves equatorward along the tropopause back to the region at 30°N/S, where it sinks back down

to the surface. This generalised cell of rising and sinking air is known as the Ferrel cell (see Figure

2.1).

When there is sufficient instability caused by large north-south temperaturegradients and very

strong upper levels winds, the general westerly flow breaks downs into large-scale eddies. This is

known as baroclinic instability and generates the mid-latitude weather systems which characterises

this region’s weather. Alternating high and low pressure systems move slowlyeastwards creating

a wavelike flow known as Rossby waves. Troughs and ridges formed in this flow transport cold air

equatorward and warmer air poleward.

Figure 2.1Schematic of global circulation taken fromSeinfeld and Pandis(2006).
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Polar cell

At around 60°N/S some air moves along the tropopause towards the poles where it cools and

descends to the surface, forming the polar high. Air at the surface completes the polar cell by

moving back along the surface towards 60°N/S to the region of divergence (see Figure2.1). The

Coriolis force deflects the surface winds towards the west forming the polar easterlies. This cell is

the weakest of all three cells. At the surface where the mild mid-latitude westerlies meet the cold

polar easterlies a region of convergence is formed known as the polar front.

2.3 Atmospheric transport of anthropogenic trace gases

Interest in long-range transport of emissions largely began when O3 concentrations were found

to be at their highest downwind of source regions (White et al., 1976; Parrish et al., 1993). This,

along with modelling studies, suggested that emissions from one continent could influence another

(Berntsen et al., 1999; Jaffe et al., 1999). The fact that emissions could cross political boundaries

meant that increasing anthropogenic emissions was a global problem. The major anthropogenic

emissions regions of North America, Asia and Europe are all located in the NH(see later in Figure

3.1). For this region, the majority of research to date has focused on the transport pathways of

emissions from these regions. Most gases are emitted in the BL, therefore processes which mix

air out of the BL to the FT prevent the build-up of harmful gases. However, once in the FT, these

gases can be transported globally by large-scale advection. The processes that enable boundary

venting and long-range transport are now described.

2.3.1 Advection

Advection is the horizontal movement of air by wind that can transport gases and aerosols over

both small and large distances. Winds are generated by pressure gradients where air moves from

regions of high pressure to areas of low pressure. The gradient in pressure controls the strength of

the wind and the balance between this pressure gradient force and the Coriolis force determines

the direction of the wind. In winter in the NH, when land and sea temperature gradients are at their

greatest, winds are at their strongest. As mentioned previously, the Hadleycell, Ferrel cell and

Polar cell experience different prevailing wind directions. It is this that determines the dominant

export pathways for long-rang transport of emissions once in the FT.

The majority of export from North America and East Asia occurs in the FT where the prevail-

ing westerlies in the mid-latitudes cause emissions from North America to be transported to the
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Atlantic and Europe and emissions from East Asia to be transported to the Pacific and North Amer-

ica (Stohl, 2001). Due to the positioning of Europe near the exit of the jet stream, the region is

dominated by subsidence resulting in low-level transport being more important (Stohl, 2001). In

winter, the dominant export pathway of emissions from Europe are in the BLpolewards towards

the Arctic due to the lack of convection (Stohl, 2001; Duncan and Bey, 2004). Upper level trans-

port is important in the summer for Europe when deep convection exists to lift emissions to the FT

(Fischer et al., 2003; Huntrieser et al., 2002).

2.3.2 Convection

Convection acts to rapidly transfer energy, gases and particles vertically. Two types of convection

exist, free and forced. Forced convection is the upward or downwardmovement of air caused

by the convergence/divergence of winds which forces air to rise/sink or the horizontal flow over

topographic features which force the air to be lifted. The movement of air over topographical

barriers can result in swirling motions known as eddies. They mix air in the BL and multiple

eddies of different sizes generate turbulence. Free convection occurs from heating of the ground

from solar radiation which is conducted to the air, making the air buoyant, causing it to rise.

Studies have shown convection to be an important process for venting the BL during summer over

both North America and Europe, and in some cases, the dominant process toexport emissions of

CO, O3, NMHC and NOy to the FT (Thompson et al., 1994; Purvis et al., 2003; Choi et al., 2005;

Kiley and Fuelberg, 2006). Convection is particularly important over South Asia where export

of pollutants is largely controlled by the seasonally varying monsoon. Duringthe NH summer

deep moist convection, caused by the wet phase of the monsoon, lifts emissions into the upper

troposphere (UT) where they can then be transported large distances with the prevailing easterlies

(Liu et al., 2003; Lawrence, 2004; Park et al., 2009). With the lack of deep convection during the

winter dry phase of the monsoon, export of emissions occurs mostly in the BLtowards the ITCZ,

which can take several days (de Gouw et al., 2001; Phadnis et al., 2002). Convection is also an

important mechanism for the export of fire emissions from the Earth’s surface, where intense heat

creates so-called pyro-convection, lifting emissions high into the UT (Fromm and Servranckx,

2003; Damoah et al., 2006). Once in the UT, fire emissions can be transported on hemispheric

scales (Forster et al., 2001; Dirksen et al., 2009).

2.3.3 Warm conveyor belts

In the mid-latitudes, baroclinic instability leads to the formation of cyclones. An air-stream, known

as a warm conveyor belt (WCB) makes up the eastern part of a typical mid-latitude cyclone, which

moves ahead of the surface cold front. The WCB draws air from the surface northward, causing
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it to ascend into the mid to upper troposphere. It is this process that is believed to be responsible

for the majority of pollution export from the BL throughout the year in North America and East

Asia (Stohl and Trickl, 1999; Cooper et al., 2001; Stohl, 2001; Stohl et al., 2002; Cooper et al.,

2004). WCBs over Europe have also been observed to export emissions from Europe to the lower

and mid troposphere (Bethan and Vaughan, 1998), however, the formation of such air-streams are

more infrequent and shallower compared to North America and East Asia (Eckhardt et al., 2003)

and are therefore deemed to be less important.

2.4 Background chemistry

Once pollutants have been emitted into the atmosphere the concentrations are also affected by

chemical reactions, which are influenced by temperature and availability of sunlight. This section

gives an overview of the chemical species and reactions in the troposphere, which will be discussed

in this thesis. The summary is largely based on the description given inSeinfeld and Pandis(2006).

2.4.1 Ozone

Ozone is a reactive gas which is found in the greatest concentrations in thestratosphere. In the

troposphere, the largest sources are transport from the stratosphere or photochemical production

from NOx, NMHC and CO and CH4. O3 is important as it is a greenhouse gas and irritant to

humans, therefore there is much interest in understanding its sources andsinks. Table2.1 shows

the global tropospheric budget of O3 calculated by two different chemical transport models. This

shows that O3 is balanced by equal sources and sinks, with photochemical production and loss

being the largest terms.

Ozone is also important in the troposphere because it is the main source of thehydroxyl radical

(OH). The OH radical is highly reactive and its abundance controls the atmospheric lifetime of

most species in the troposphere (Logan and McElroy, 1981). It is formed when O3 is photolysed

at wavelengths less than 330 nm which yield an excited oxygen atom (O(1D)) (reaction2.1). The

excited state oxygen atom has enough energy to react with water vapour (H2O) to yield two OH

radicals (reaction2.2):

O3 +hv→ O2 +O(1D) (2.1)

O(1D)+H2O→ OH +OH (2.2)
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Ozone formation is largely dependent on the availability of NOx. Most NOx is emitted as NO and

is rapidly converted to NO2. NO2 is photolysed by wavelengths<424 nm to produce NO and

atomic oxygen, O (reaction2.3). The oxygen atom then reacts with molecular oxygen to form O3

(reaction2.4). O3 can then react with NO to reform NO2 and O2 (reaction2.5). During the day,

background tropospheric concentrations of O3 are much larger than NOx, which means that O3 is

not depleted by this reaction apart from in cities due to very high NOx concentrations.

NO2 +hv→ NO+O (2.3)

O+O2 +M → O3 +M (2.4)

NO+O3 → NO2 +O2 (2.5)

During the daytime the main sink of NOx is by reaction with OH to form nitric acid (HNO3) (reac-

tion 2.6). HNO3 is efficiently lost from the atmosphere by wet deposition. At nighttime, reaction

2.3 no longer occurs which means the photochemical source of O3 is eliminated. If emissions

of NOx still occur at night then O3 will be depleted quickly by reaction with NO (reaction2.5).

Therefore at night the majority of NOx is in the form of NO2. NO2 also reacts with O3 to form

nitrate (NO3) (reaction2.7). This can then react with NO2 to form dinitrogen pentoxide (N2O5)

(reaction2.8). The heterogeneous reaction of N2O5 on aerosol forms nitric acid (HNO3) through

reaction2.9. Reaction2.9is one of the major removal mechanisms of NOx along with reaction2.6

and is particularly important in the Arctic in winter (Tie et al., 2003).

NO2 +OH+M → HNO3 +M (2.6)

Table 2.1Estimates of the global tropospheric O3 budget (in Tg(O3)/yr). The first column is taken
from the study byWang and Jacob(1998) and the second column was calculated by the TOMCAT
model fromBreider(2010).

Reference
Wang and

Jacob(1998)
Breider
(2010)

Sources
In-situ production 4100 4334
transport from the stratosphere 400 644

Total sources 4500 4978

Sinks
In-situ chemical loss 3680 3420
Dry deposition 820 1554

Total sinks 4500 4974
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Figure 2.2 O3 concentrations (ppbv) simulated by a photochemical model shown as a funtion of
hydrocarbon and NOx emissions. The thick black line demonstrates the non-linear production
efficiency of O3. Taken fromJacob(1999b).

NO2 +O3 → NO3 +O2 (2.7)

NO2 +NO3 +M → N2O5 +M (2.8)

N2O5(g)+H2O(aerosol) → 2HNO3 (2.9)

When NOx is available, ozone production can be further enhanced by the presence of CO, CH4 and

NMHC. The production of O3 from NOx is not linear and for very high concentrations of NOx the

production efficiency of O3 is reduced. This is shown in Figure2.2by the thick black line which

represents the production of O3 as a function of NOx and NMHC. This is the reason why higher

rates of O3 production are found downwind of large urban centres, where the NOx concentrations

are lower (Parrish et al., 1993).

2.4.2 Carbon monoxide

CO is an important trace gas in the atmosphere due to its interaction with OH. Increased emissions

of CO can reduce the global tropospheric OH concentrations, increasing the lifetime of the green-

house gas methane (CH4) (Isaksen and Hov, 1987). CO oxidation can also lead to the formation

of O3, another important greenhouse gas (Logan and McElroy, 1981). Even though CO is not a
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greenhouse gas, it is still considered to have an indirect global warming potential (GWP) due to

its influence on CH4 and O3 (Forster et al., 2007). CO is a useful tracer of combustion and is used

in studies to understand impacts of anthropogenic and biomass burning sources (e.g.Jaegĺe et al.

(2003); Fisher et al.(2010); Sodemann et al.(2011)).

CO can be both emitted directly from natural and anthropogenic sources orproduced in the at-

mosphere from chemical reactions. Table2.2 shows different estimates of the major sources and

sinks of the global tropospheric CO budget. Direct emission at the Earth’ssurface and in-situ pro-

duction of CO in the atmosphere are estimated to be of equal importance in terms oftotal global

tropospheric sources. Oxidation of methane by OH and direct emission from biomass burning are

major sources of CO, each accounting for∼30% of the total global source. Another major source

is direct emission of CO from fossil fuel combustion and industrial processes which accounts for

∼23% of total sources. These sources vary in importance depending on location. Biomass burning

and methane oxidation are particularly important in the tropics and SH (Duncan et al., 2007) due

to high rates of methane oxidation (Bloss et al., 2005) and large fire emissions (van de Werf et al.,

2004). In the NH, fossil fuel sources dominate due to large anthropogenic emissions (Duncan

et al., 2007). Oxidation from naturally emitted isoprene, terpenes and methanol also contribute a

reasonably large portion to the budget of CO according to the estimates shown. Other sources of

CO are oxidation of both natural and anthropogenic NMHCs which can be oxidised by OH to CO

and minor direct emissions from oceans and vegetation.

The main sink of CO is reaction with OH and to a lesser extent through dry deposition by uptake

in soils. When CO reacts with OH it forms CO2 and a hydrogen atom (H), which then reacts very

quickly with O2 to form HO2. As the second part of the reaction is so fast it can be shortened to:

CO+OH+O2 →CO2 +HO2 (2.10)

The hydroperoxy radical (HO2) formed from this reaction is particularly important in controlling

the ratio of NO and NO2 when they are present:

HO2 +NO→ NO2 +OH (2.11)

NO2 formed from this reaction can then take part in reactions2.4-2.5 to produce O3. Otherwise

HO2 can react with itself to form H2O2, which is a temporary reservoir of HOx (OH + HO2):

HO2 +HO2 → H2O2 +O2 (2.12)
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Table 2.2Estimates of global tropospheric CO budget (in Tg(CO)/yr).

Reference
Hauglustaine
et al.(1998)

Bergamaschi
et al.(2000)

Ehhalt et al.
(2001)

Duncan
et al.(2007)

Sources
In-situ production

Oxidation of CH4 795 800 778-861
Oxidation of Isoprene 268 270 170-184
Oxidation of Terpene 136 0 68–71
Oxidation of industrial
NMHC

203 110 72–76

Oxidation of biomass
NMHC

30 45–57

Oxidation of acetone 20 21
Oxidation of methanol 95–103

Sub-total in-situ oxidation 881 1402 1230 1279–1403
Direct emission

Vegetation 100 150
Oceans 49 50
Biomass burning 768 700
Fossil and domestic
fuel

641 650

Sub-total direct emissions 1219 1458 1550

Total sources 2100 2860 2780

Sinks
Surface deposition 190
OH reaction 1920

Total sinks 2110

H2O2 +hv→ OH+OH (2.13)

H2O2 +OH → HO2 +H2O (2.14)

Reaction2.13yields two OH molecules and reaction2.14produces one molecule of HO2. Overall,

reaction2.14 results in a loss of one HOx molecule. H2O2 is soluble and can therefore be lost

through wet deposition resulting in a loss of two HOx molecules from the atmosphere.

2.4.3 Methane oxidation

A similar mechanism to the CO oxidation route also exists for methane. CH4 reacts with OH

to form the methyl radical (CH3) (reaction2.15), which reacts very quickly with O2 to form the

methyl peroxy radical (CH3O2) (reaction2.16). CH3O2 then reacts with NO to form NO2 (reaction

2.17), which can then be involved in the cycle of reactions2.3to 2.5. CH4 has a very long lifetime
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(approximately 9-12 years), which is determined by OH , however, due to itshigh concentrations

it is still important in tropospheric chemistry.

CH4 +OH →CH3 +H2O (2.15)

CH3 +O2 +M →CH3O2 +M (2.16)

CH3O2 +NO→CH3O+NO2 (2.17)

The methoxy radical (CH3O) reacts with O2 to form formaldehyde (HCHO) and HO2. This is so

fast that this is often shortened with reaction2.17to:

CH3O2 +NO+O2 → HCHO+HO2 +NO2 (2.18)

The CH3O2 radical produced in reaction2.16can also react with NO2, HO2 or another CH3O2

radical.

Formaldehyde is a common product of hydrocarbon oxidation and undergoes two main reactions

in the atmosphere; one with OH and the other by photolysis. The photolysis of HCHO has two

channels, reaction2.19 and 2.20. Reaction2.19 results in formation of H and HCO. H reacts

rapidly with O2 to form HO2 (see Section2.4.2) and HCO can also react quickly with O2 to form

CO and HO2. Reaction2.20results in the formation of CO and H2.

HCHO+hv→ H +HCO (2.19)

HCHO+hv→ H2 +CO (2.20)

Reaction with OH results in HCO and H2O:

HCHO+OH → HCO+H2O (2.21)

All pathways of HCHO result in the formation of CO, explaining why in-situ production is a large

source of CO (see Table2.2).

2.4.4 Reactive nitrogen

Reactive nitrogen (NOy) is the sum of NOx and all compounds that are products of the atmospheric

oxidation of NOx. This includes HNO3, N2O5 and peroxyacetyl radical (CH3CO3NO2) (PAN). As
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already mentioned HNO3 formation is the dominant sink of NOx in the atmosphere due to rapid

wet deposition. PAN is an important reservoir species as it has a lifetime of upto a few months

in cold temperatures compared to NOx, which has a lifetime of the order of a fews days near

the surface (Moxim et al., 1996). This means PAN can be transported long distances in the free

troposphere due to the low temperatures. PAN is formed in the atmosphere from the oxidation of

many NMHC. Production from acetaldehyde (CH3CHO) with OH is detailed below:

CH3CHO+OH →CH3CO+H2O (2.22)

CH3CO+O2 +M →CH3CO3 +M (2.23)

CH3CO3 +NO2 ⇄ CH3CO3NO2 (2.24)

Reaction2.24is temperature dependent and when temperatures are sufficiently high, PAN decom-

poses and releases NO2 back into the atmosphere. It has been shown that PAN is an efficient

mechanism for transporting NOx to remote locations where it can affect the regional O3 budget

(Moxim et al., 1996).

2.5 The Arctic climate

The Arctic is commonly referred to the as the area north of the Arctic Circle at 66°33’ N. This

is an imaginary line which is the southern most point where the sun does not set on the summer

solstice. Other definitions also exist, for example the area north of the tree line(the northern

limit of upright tree growth) or the area where the average daily summer temperature does not

rise above 10°C. These three definitions are shown in Figure2.3. It is the high latitude location

of the Arctic that shapes the climate. The Arctic shows a strong latitudinal dependence on the

amount of incoming radiation, with the length of the polar day (complete daylight) and the polar

night (complete darkness) ranging from 1 day at the Arctic circle to 6 months at the North Pole.

The highest elevation of the sun at noon is much shallower than at lower latitudes and accounts

for the fact that the poles receive much less solar radiation causing strong latitudinal temperature

gradients. The Arctic region consists of ocean surrounded by two largeland masses, Eurasia and

North America, and many islands, the largest being Greenland (see Figure2.3). The Arctic Ocean

is covered by floating sea-ice year-round, with a maximum coverage in winter and a minimum in

summer. Permanent land ice also covers large parts of Greenland and somesmaller mountainous

regions in Siberia, Canada, Svalbard and Iceland. Permafrost (perennially frozen soil) is also

present over most of the land areas. Snow covers much of the ground,permanent sea ice and land

ice throughout the year. Snow and ice are particularly important for the Arctic climate for three

reasons. Firstly, they have a high albedo, reflecting a large amount of incoming solar radiation,
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reducing the amount absorbed in comparison to land and ocean, lowering the ground and surface

air temperature (SAT). Secondly, they have a high emissivity, allowing strong surface cooling

through the efficient loss of infrared radiation. Thirdly, they have high insulating properties. If the

snow or ice are suitably thick, they can completely prevent heat transfer between the air and the

land/ocean. This allows strong cooling of air at the surface.

Figure 2.3 Map showing three definitions of the Arctic region: the tree line (green line),the 10
degrees Celsius isotherm (red line) and the Arctic Circle at 66°33’ N (purple line). Taken from
http://nsidc.org/arcticmet/basics/arcticdefinition.html
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2.5.1 Temperature and precipitation

The seasonality in solar radiation controls the seasonal evolution of temperature and precipitation

and the ice/snow coverage results in particularly strong regional gradients. For example, in January

the mean SAT in parts of Siberia, the central Arctic Ocean and Iceland are approximately -40°C,

-25 to -32°C and 0°C, respectively (Serreze and Barry, 2005). Over Siberia, extensive surface

cooling in the snow-covered regions results in a high pressure system forming over most of the

region. Topographical features of the regions and subsidence in the high pressure system cause

very low temperature to form in valleys. Over the central Arctic Ocean, the presence of snow

and ice limits the amount of heat transported to the atmosphere allowing the surface air to cool.

However, the SATs are modulated through the formation of leads and polynyas (regions of open

water where the sea-ice separates). In these regions, heat and moisture exchange between the air

and the ocean prevents the temperature from dropping even lower. NearIceland, the ocean remains

largely uncovered allowing heat and moisture exchange to occur keepingthe SAT above freezing.

This is also the region of the North Atlantic storm track which transports heat from the more

southerly latitudes. In the summer, temperatures over the central Arctic Ocean reach near 0°C and

snow-covered land can reach between 10-20°C (Serreze and Barry, 2005). Increased incoming

radiation causes some of the snow and ice to melt. Uncovered land and oceanhas a much lower

albedo and therefore more absorbed solar radiation increases the SAT through conduction.

Tropospheric inversions refer to meteorological conditions where warmair is overlying cooler

air the near the surface. They are a common occurrence in the Arctic winterdue to strong sur-

face cooling but can also occur in the warmer seasons. Inversions create stable conditions where

turbulence is suppressed reducing dry deposition of gases and aerosols at the surface.

Due to cold temperatures, humidity (the amount of moisture in the air) is also low. Insum-

mer, increased temperatures increase humidity, however it still remains belowthe global average

(Serreze and Barry, 2005). Like temperature, precipitation shows a strong seasonal and regional

dependence. Cloud cover is at a minimum in winter (∼60%) and a maximum in summer (∼80%)

(Serreze and Barry, 2005). In summer, most clouds are low-level stratus which is associated with

drizzle and higher rates of wet deposition (Barrie, 1986). Regional differences exist with an an-

nual mean of around 200 mm around parts of the Canadian Arctic and 1000mm in the Northern

Atlantic (Serreze and Barry, 2005). In the Atlantic, high rates of precipitation are associated with

the location of the Atlantic storm track, with a minimum in summer and maximum in winter.
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2.6 Atmospheric transport to the Arctic

To understand the transport pathways to the Arctic, it is useful to consider the mean state of at-

mospheric circulation and how this can change with season. Figure2.4 shows the climatological

circulation patterns at 1000 hPa for winter (December to February) and summer (June to August)

which control pollution transport to the Arctic. During the winter months there are three pro-

nounced pressure centres; intense low pressure systems over Iceland and the north Pacific and a

high pressure system over north-eastern Siberia. In the NH air moves anticlockwise round a low

pressure system and clockwise round a high pressure system. This causes the Icelandic low and

the Siberian High to collectively draw air from parts of Europe and Siberia directly into the Arc-

tic. The importance of anti-cyclonic transport of air into the Arctic was highlight by Raatz and

Shaw(1984) andRaatz(1989). Due to low precipitation rates around high pressure systems (due

to subsidence) pollutants which would undergo wet deposition can be transported to the Arctic.

Consideration of this meteorology led scientists to conclude that Eurasia is likelyto be the dom-

inant source of Arctic pollution in the winter and spring (Barrie, 1986). The low pressure centre

over the Pacific leads to transport of emissions from East Asia to western North America, which

can eventually be transported to the Arctic over western Canada along with any emissions from

western North America. Emissions from the eastern region of North America will be transported

along the more southerly portion of the Icelandic low to Europe which can eventually join emis-

sions from this region to be transported into the Arctic. During the summer, horizontal advection

is not as intense due to weaker pressure gradients (as indicated by the more widely spread isobars).

The Icelandic low becomes much weaker and moves to the northwest, the Azores High becomes

stronger, Asia is dominated by a extra-tropical low pressure system and the Pacific low is replaced

by a high pressure system. The weaker circulation and positioning of the pressure centres means

that transport of pollution to the Arctic will be slower and less efficient in the summer.

Stohl(2006) used a Lagrangian model to study the seasonal transport pathways to the Arctic from

the three major emissions regions of North America, Europe and Asia. The study identified three

main pathways of transport to the Arctic which varied in terms of importance depending on the

source region and season. The three pathways were:

1. Low-level transport followed by ascent in the Arctic

2. Low-level transport alone

3. Uplift outside the Arctic followed by descent in the Arctic

They found that European emissions can follow all three pathways duringthe winter and the first

and second pathway during the summer. However, Asian and North American emissions tended
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Figure 2.41000 hPa climatological height field (in Dams=Decimetre) for January, December and
February (top) and June, July and August (bottom). Arrows represent the dominant transport
pathway of air. Taken fromBottenheim et al.(2004).
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to only follow the third pathway due to export mechanisms which vent the pollutedBL and higher

potential temperatures which cause the air parcels to rise as they follow lines ofconstant potential

temperature (isentropes) poleward. The different transport mechanisms cause a vertical structure

in the Arctic atmosphere where higher altitudes are more easily affected by emissions from North

America and Asia and the lower altitudes are more easily affected by emissions from Europe and

Siberia (Klonecki et al., 2003). Stohl(2006) found that an important characteristic of the different

transport pathways was varying deposition rates related to the thermodynamic signatures of the air

parcel. For example, European emissions tended to have low potential temperature values which

meant that the air was more easily transported at low levels. Air parcels fromAsia tended to take a

lot longer to reach the Arctic and travel at much higher altitudes where they experienced repeated

ascending/descending motions. This motion meant that the Asian air masses experienced high

levels of wet deposition prior to reaching the Arctic. In contrast, low-leveltransport of European

air masses was followed by ascent in the Arctic resulting in high levels of wet deposition within the

Arctic. The different rates of deposition along transport pathways wasalso previously highlighted

in a review byBarrie (1986). Figure2.5 shows the January mean precipitation rates in the NH

with the dominant transport pathways of air from North America, Europe and East Asia. Air

originating from North America experiences the largest precipitation rates,air originating from

East Asia experiences less but still large precipitation rates and air from Europe experiences very

low precipitation rates. This highlights an important consideration when evaluating models. The

ability of the model to reproduce the observed concentrations of trace species in the Arctic will be

closely related to the accuracy of modelled transport pathways. The modelwill need to diagnose

precipitation rates if it is to capture the wet deposition of gases such as HNO3. Also, the model

must be able to capture different transport patterns in order to be able to reproduce the vertical

structure of trace gases and pollutants.

2.6.1 Atmospheric blocking

The pressure systems shown in Figure2.4 represent the mean state of atmospheric transport to

the Arctic. On a time-scale of days, the mid-latitude weather patterns are determined by fluctua-

tions between states of baroclinic stability and instability which drive the formationof cyclones

and anticyclones (low and high pressure regions). In periods of high baroclinic instability, merid-

ional atmospheric exchange increases and has been associated with larger Arctic concentrations

of pollutants in spring (Iversen and Joranger, 1985). One atmospheric state that is believed to

increase transport to the Arctic is that of blocking (Iversen and Joranger, 1985). This occurs when

a high pressure ridge forms above a low pressure trough, which ‘blocks’ the westerlies in the mid-

latitudes. The pressure systems cause the westerly jet stream to split into two sections, one with a

poleward flow and the other with a southward flow (Austin, 1980). This poleward flow can exist



Chapter 2.Background 24

for up to 15 days (Austin, 1980) and has a maximum occurrence in the North Atlantic in winter

and autumn (Tyrlis and Hoskins, 2008) encouraging direct flow into the Arctic.

2.6.2 Polar dome

Another feature of Arctic meteorology that is important in terms of atmospheric transport from

lower latitudes is seasonal evolution of the ‘polar dome’ or ‘polar front’. Due to the lack of

sunlight in winter, extremely low surface temperatures form within the Polar cell resulting in large

temperature gradients between the Arctic and the mid-latitudes. This large temperature contrast

results in lines of constant potential temperature forming a closed dome around the Arctic (Barrie,

1986). This suggests that transport from sources south of the polar frontwill have a limited impact

on the lower tropospheric composition of the Arctic and direct emissions into thepolar dome

will be particularly important (Iversen, 1984). During the winter, the polar front extends as far

as 40°N, over the cold snow covered areas of Siberia and Canada andmoves to around 70°N in

summer when temperatures in the Arctic increase (Bottenheim et al., 2004) (see Figure2.6). This

is why air from North America and Southern Asia has a limited impact on the surface in winter

and European and Siberian emissions, which are directly emitted into the polar dome, provide a

large source of pollutants to the Arctic (Rahn, 1981; Barrie, 1986; Klonecki et al., 2003).

2.6.3 North Atlantic Oscillation and transport to the Arcti c

Some recent studies have shown that transport to the Arctic can be influenced by the North Atlantic

Oscillation (NAO) (Eckhardt et al., 2004). Positive and negative phases of the NAO represent

changes in the gradient in pressure between the semi-permanent Icelandic low and Azores High

in the North Atlantic region. During positive phases, anthropogenic emissions of CO have been

shown to be elevated in the Arctic in a modelling study byEckhardt et al.(2004). This will be

discussed in more detail in Chapter6.

2.7 Arctic air pollution

The Arctic has very few local pollution sources due to a small human population. However some

sources exist from industrial processes such as mining (e.g. Norilsk in Russian Arctic). As seen in

Figure2.3, the Arctic is surrounded by North America and Eurasia, making these the mostlikely

source of pollution in the Arctic. This section now describes previous studies documenting the

discovery of the spring Arctic haze and Arctic atmospheric composition research.
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Figure 2.5Monthly mean January precipitation (mm) in the NH with average transport pathways
to the Arctic from North America, Europe and Asia depicted with the arrows. Taken fromBarrie
(1986).

Figure 2.6Average Location of the Arctic front in January and July. Taken fromBottenheim et al.
(2004).
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2.7.1 Discovery of the Arctic haze

The Arctic was previously believed to be a clean unpolluted region of the world with only small

local emission sources. However, in the 1950s pilots observed layers ofhaze in the Arctic during

spring, indicating that the Arctic was a receptor of atmospheric pollution fromsome unknown

source (Shaw, 1995). Later studies suggested that this haze came from anthropogenic emissions at

lower latitudes (Rahn, 1985). To properly understand the so-called spring Arctic Haze, scientists

began to investigate the likely sources of the haze, what it consisted of andwhat controlled its

occurrence. This was aided by analysis of surface measurements and aircraft campaigns, such

as AGASP (Arctic haze and the Arctic Gas and Aerosol Sampling Program),which took place

throughout the 1980s with particular focus on the spring (e.g.Schnell(1984)). This confirmed

that the Arctic Haze occurred throughout the Arctic in distinct layers throughout the troposphere

(Schnell and Raatz, 1984). The most abundant component of the haze was found to be sulphate

aerosols (formed mostly from sulphur dioxide emissions) (Rahn, 1985; Pacyna, 1995). Surface

observations showed a strong seasonality in sulphate concentrations with maximum concentrations

occurring during the spring and minimum concentrations during the summer. They also found

elevated concentrations of other aerosols within the haze, such as black carbon (BC) and nitrate

(Heintzenberg, 1989). Trace gases such as CO, CO2, CH4, O3, PAN and other organic species

were also found to be elevated within haze layers (Khalil and Rasmussen, 1984b; Hov et al., 1984;

Rahn, 1985; Conway et al., 1985; Pacyna, 1995).

2.7.2 Early source contribution studies

Due to the dominant component of Arctic haze being sulphate, most early source contribution stud-

ies focused on understanding the sources of this aerosol.Rahn(1981) used ratios of manganese

(Mn) and vanadium (V) measured at the surface in the Arctic to differentiate between anthro-

pogenic and natural air masses of different origins, assuming V will be enriched in air which has

come from an anthropogenic origin. This method was also used byRaatz and Shaw(1984) and

Rahn(1985). All three of these studies suggested Eurasia to be the dominant source of anthro-

pogenic pollution in the Arctic during spring, with North America contributing very little to Arctic

haze. However, some debate still exists to whether this method is accurate dueto unaccounted

sources of V (Przybylak, 2003). Barrie et al.(1989) used a chemical transport model to study

the main sources of sulphur throughout the year and found that North America only contributed

6% to the Arctic sulphur burden with the rest from Eurasian sources. Overall, it was generally

accepted that Arctic haze was a product of inefficient removal processes in the stable cold Arctic

atmosphere coupled with efficient transport patterns in the winter and spring from Eurasia (Barrie,

1986; Shaw, 1995).
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2.7.3 Recent source contribution studies

Trend analysis of observed trace species at surface stations in the Arctic indicate there may have

been a change in the anthropogenic source contributions to the Arctic.Quinn et al.(2007) showed

that surface concentrations of sulphate at Arctic stations in the 1990s decreased by 30 to 70%.

This was attributed to a reduction in emissions with the breakup of the Soviet Union. However,

more recently between 1997 and 2003, aerosol light scattering has increased by 50% (Quinn et al.,

2007). Analysis of O3 observations at surface stations in the Arctic showed a reduction in O3

during the 1980s to the mid-1990s but have since shown a small increase after that (Oltmans et al.,

1998, 2006; Helmig et al., 2007). However, O3 trend analysis is difficult to draw statistically

significant evidence from due to the lack of long-term observations. Together, these recent trends

suggest that the amount of pollution reaching the Arctic has begun to increase again after a decline.

Total energy consumption in Asia is estimated to have more than doubled between1980 and 2003,

resulting in a large increase in Asian emissions (Ohara et al., 2007). In particular, increases of

28% for BC, 64% for CO, 108% for NMHC, 119% for sulphur dioxide (SO2), and 176% for NOx

have been estimated byOhara et al.(2007). This may have an important influence on the amount

of aerosols and trace gases found in the Arctic. A modelling study byKoch and Hansen(2005)

showed South Asia to be the dominant source of BC in the Arctic due to the recent emission

increases in Asia in contrast to emission reductions in Europe and North America. However,Stohl

(2006) argued that the presence of the polar dome limited the impact of South Asia on theArctic

and found Europe to be a more important source of BC in winter and summer. As with first source

contribution studies, these two studies are both concerned with the main sources of Arctic aerosol.

There are currently very few studies that have estimated the regional contributions to the Arctic

burdens of trace gases. Trace gases which have different sources, different lifetimes and are not

efficiently lost by wet deposition may exhibit different sensitivities to source regions. For this

reason, it is important to also estimate the source contributions for important gases such as O3

and its precursors, considering the seasonality of sources due to changing transport patterns. A

large fraction of early source contribution studies have focused on winter and spring due to the

general belief that emissions were not efficiently transported to the Arctic during summer and

concentrations of aerosols and trace gases generally exhibiting a summer minimum (Barrie et al.,

1989; Jaffe et al., 1991) due to more efficient wet and dry deposition with increased precipitation

and turbulence (Shaw, 1995). However, observations have shown that European, Asian and North

American emissions along with natural sources (such as fires) can affect the Arctic throughout the

year (Pacyna and Ottar, 1985, 1989; Harriss et al., 1992).

The only source contribution study to consider O3 and CO throughout the year was conducted

by Shindell et al.(2008). They used output from several CTMs to study the source contributions

from anthropogenic emissions from North America, Europe and Asia. Using CO as a tracer for
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anthropogenic pollution, they found European emissions to be most importantin the lower tropo-

sphere and North American emissions to be most important in the upper troposphere. To study the

sensitivity of Arctic O3 to emissions from North America, Europe and Asia they reduced emis-

sions of NOx by 20% in all the CTMS. They found that O3 was most sensitive to North America,

followed by Europe and then East Asia. Only one other study has considered trace gas transport to

the Arctic.Fisher et al.(2010), also used CO as a tracer of mid-latitude pollution sources in April

2008 and found Asian anthropogenic emissions to dominate the total column of CO.

2.7.4 Biomass burning as a source of Arctic pollution

Biomass burning is another potential source contributor to the Arctic. Due to the proximity of

the boreal forests in Canada and Siberia, they have the potential to contribute a large fraction to

observed trace gases during the summer boreal fire season. Biomass burning emits large quantities

of CO, NOx and aerosols to the atmosphere and can result in O3 production downwind of emissions

(Kasischke et al., 2005; Real et al., 2007). Chemical signatures of biomass burning have been

found in ice cores, indicating that fire emissions at lower latitudes can be transported to the Arctic

(Legrand et al., 1992; Whitlow et al., 1994). Plumes of biomass burning emissions have also been

observed within the Arctic in the 1990s during the ABLE-A (Arctic BoundaryLayer Experiment)

and ABLE-B aircraft campaigns that took place in July-August in 1988 and 1990 (Wofsy et al.,

1992; Harriss et al., 1992, 1994). During these campaigns, efficient conversion of NOx to PAN

was observed in fire plumes (Wofsy et al., 1992), which resulted in low production of O3 due

to low NOx concentrations (Wofsy et al., 1992). However, the biomass burning sourced PAN

transported to the Arctic could then decompose to release NOx and produce O3 at a later date.

This impact of fires on O3 has not been well studied and warrants further examination. Due to

increased temperatures and drying in the boreal regions, it is thought that fires will increase in the

future (Flannigan and Van Wagner, 1991; Stocks, 1993) and it is believed that this may already

be occurring (Soja et al., 2007). Therefore there is a need to better understand the overall impact

that fires have on the Arctic. Emissions from agricultural burning in springfrom eastern Europe

have also been observed to perturb concentrations of gases in the Arctic(Stohl et al., 2007). Any

changes in agricultural practices in the mid-latitudes of the NH could also be important for the

Arctic.

2.7.5 Radiative importance of ozone in the Arctic

Radiative forcing is used to assess and compare the anthropogenic and natural drivers of climate

change (Forster et al., 2007). A recent study byQuinn et al.(2008) demonstrated the Arctic

response to gases and aerosols found in the Arctic. They calculated seasonally averaged values
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of the surface temperature response in the Arctic to concentrations of O3 and showed that O3

contributes significantly to the surface temperature response throughoutthe year. Hansen et al.

(1997) demonstrated that the O3 response is greater at higher altitudes. This has implications for

O3 transported from different regions which are believed to show a strongaltitudinal dependency.

2.7.6 Tropospheric ozone within the Arctic

Due to the radiative importance of O3 and its suspected increase in the Arctic, many studies have

focused on trying to understand what controls the abundance of O3 in the Arctic. Like many other

trace species, O3 exhibits a spring maximum and a summer minimum in the Arctic. Most past stud-

ies have focused on the springtime maximum. There have been several hypotheses regarding the

cause of this feature at high-latitudes. Some studies have suggested that an accumulation of O3 and

its precursors occurs over the winter due to a lack of removal processes (Honrath and Jaffe, 1992).

It has also been suggested that the springtime maximum is caused by an increase in the influx

of stratospheric O3 (Logan, 1985). During February and March 2000, the TOPSE (Tropospheric

Ozone Production about the Spring Equinox) campaign was undertaken tostudy the transition

from winter to spring between 40°-80°N to try and understand the drivingprocesses of the spring-

time maximum (Atlas et al., 2003). Measurements in conjunction with models have shown that

even though the transport of stratospheric O3 to the troposphere is larger in the spring (Dibb et al.,

2003; Browell et al., 2003; Emmons et al., 2003), the O3 maximum is driven by increased rates

of photochemistry (Emmons et al., 2003; Stroud et al., 2003). However, one study also showed

that during the TOPSE campaign latitudes between 60°-80°N experienced net destruction of O3

along the flight tracks and therefore transport of O3 from lower latitudes is particularly important

(Wang et al., 2003). This is also in agreement withStroud et al.(2004) who found net import

of O3 was required to reproduce the observed ozone concentrations in their model. However, all

studies showed that O3 production was sensitive to the concentrations of NOx and HOx. Very little

is known about what controls the abundances of these species in the Arctic (Jacob et al., 2010).

An important reservoir of NOx is PAN, which is formed from NO2 and the peroxyacetyl radical

(CH3CO3) (see Section2.4.4). PAN is stable at low temperatures and has been observed to be the

dominant NOy species in the Arctic during winter and spring (Singh et al., 1992; Bottenheim et al.,

1993). Compared to NOx, which is relatively short-lived, PAN is capable of undergoing long-range

transport which means it can contribute to the O3 budget at remote locations by acting as a source

of NOx when it thermally decomposes. It has been suggested that PAN may be an important source

of O3 in spring in the Arctic when temperatures increase (Penkett and Brice, 1986). It has also

been suggested that enhanced NOx during stratospheric intrusions may drive production of O3 in

the upper troposphere, acting as an important source of O3 (Liang et al., 2009). It is clear that
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our understanding of what controls the concentrations of O3 in the Arctic is still not complete. In

particular, O3 during other seasons apart from spring have not been well studied.

O3 chemistry is further complicated in the Arctic due to the occurrence of what have been termed

ozone depletion events (ODEs). During spring, when sunlight increases in the Arctic, but temper-

atures are still low (below -20°C), ODEs are a common occurrence observed every year, generally

between March and May (Simpson et al., 2007). These events were first witnessed in the 1980’s

when O3 was shown to be depleted to near zero levels during polar sunrise (Bottenheim et al.,

1986; Barrie et al., 1988; Oltmans et al., 1989). Measurements showed that air with depleted

ozone also contained elevated levels of bromine compounds with back-trajectories suggesting the

air to have originated over the Arctic Ocean (Sturges et al., 1993). It is now generally understood

that bromide (Br−) coming from sea salt releases reactive bromine (Br) which reacts with O3

rapidly. Generally most of the ODEs are observed below 400 m in the boundary layer, however,

some events have been observed where O3 is depleted up to 4 km (Solberg et al., 1996) and can

also have extend over a horizontal distance of up to 2 km (Ridley et al., 2007). As O3 is the primary

source of OH, this can have important implications for the oxidising capacity ofthe atmosphere

(Simpson et al., 2007). There is the need for this to be included in models to properly understand

O3 and tropospheric chemistry in the Arctic.

2.8 Atmospheric modelling of the sources and chemistry of the tro-

posphere

2.8.1 Modelling studies of carbon monoxide

A recent study byShindell et al.(2006b) showed that in general models are able to capture the

features of CO observed by a satellite instrument. However, all models wereunable to capture the

high concentrations of CO during winter and spring in the Northern Hemisphere. This was largely

attributed to an underestimate of emissions from Asia in the inventory used. They also found errors

in biomass burning to contribute to model-observation biases. Model-to-modeldifferences were

also found to be quite large, with a spread of 35 ppbv (45% of the mean) andwere partly attributed

to differences in the models treatment of wet deposition, OH concentrations,NMHC emissions

and NMHC chemistry scheme complexity.

2.8.2 Modelling studies of ozone

A recent study byWild (2007) compared results from several CTMs to understand what causes the

biggest differences in simulated O3 budgets. The study found emission inventories to result in the
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biggest differences amongst models with the models using more recent emission inventories com-

paring better to ozonesonde data. The next largest difference was found to be lightning emissions

showing that better constraints on this would improve our ability to model O3 in the troposphere.

Models with coarser grids (a range 300 to 600 km were considered) alsooverestimated the strato-

spheric influx of O3 and underestimated dry deposition. This study did not consider differences

between the chemical schemes used in the models, which are also likely to causemodel-to-model

differences.

2.8.3 Modelling the Arctic troposphere

Shindell et al.(2008) compared seventeen different models and found large differences between

simulated CO and O3 in the Arctic. They found that model variability for O3 was largely due

to differences in chemical schemes. In particular, models were unable to capture the low spring

concentrations at Barrow, in Alaska, if they did not include bromine chemistry. Causes of CO

model variability differed depending on altitude. Surface Arctic CO differences were dominated

by East Asian emissions and at higher levels model-to-model variability was due to transport and

chemistry. This demonstrates that our ability to accurately model Arctic climate andcomposition

is still limited and indicates we do not yet fully understand the processes that are important within

the Arctic. It is worth noting here, that due to the limited availability of observations, comparisons

were only done at two surface stations. The recent international aircraft campaign POLARCAT

(Polar Study using aircraft, remote sensing, surface measurements and models of climate, chem-

istry, aerosols and transport), which took place in 2008, aimed to provide avaluable dataset to

assess models within the Arctic. This dataset is described and used in Chapter 7 to evaluate the

TOMCAT model during the summer.

2.9 Summary

If we are to reduce concentrations of O3 and trace gases in the Arctic to offset further enhanced

warming then there is a need to have a better understanding of the differentseasonal source con-

tributions from different anthropogenic regions. Most of our understanding of the main source

regions is based on old emission inventories of sulphur dioxide from the 1980s. It is clear that

there have been large changes in the distribution of emissions, with Asia quickly becoming a large

source of trace gases in the Northern Hemisphere. Also, Arctic sensitivityto O3 produced from

different regions is likely to vary to that of aerosols due to complicated chemistry and NOx reser-

voir species such PAN, which are able to be transported to this remote region. Therefore, there is

a need to quantify the impact of the industrialised regions in the Northern Hemisphere to estimate

the efficiency of emission reduction policies on O3. One possible source of Arctic O3 is from
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natural sources such as fires in the boreal regions. It is important to gain an understanding of how

sensitive the Arctic is to emissions from fires because their frequency andintensity are predicted

to increase in the future as the climate warms. This will help us to distinguish possible increasing

trends in trace gases due to natural and anthropogenic sources. In thisthesis, these questions are

addressed using the chemical transport model, TOMCAT, which will be described more detail in

Chapter3.
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The TOMCAT chemical transport

model

3.1 Introduction

Offline chemical transport models (CTMs) are useful tools for studying how different processes

affect the chemical composition of the atmosphere on varying spatial and temporal scales. They

resolve the movement of chemical species through large-scale horizontaland vertical advection

and smaller sub-grid scale processes such as convection and boundary layer mixing. Meteorolog-

ical analyses read in by the model are used to resolve these transport mechanisms. As well as

transport, the concentrations of chemical species in the atmosphere are also affected by emission

fluxes at the surface, chemical loss and production and wet and dry deposition. Emissions from

both natural sources and anthropogenic activities are usually obtained from emissions inventories

which provide regional or global estimates of fluxes of different species. CTMs can be applied to

many problems. They are often used in combination with in-situ observations to help understand

the transport and chemical mechanisms which control concentrations of chemical species leading

to new understanding of certain processes (e.g.Emmons et al.(2003); Jacob et al.(2005); Mao

et al.(2010)). They are also commonly used to study source-receptor relationships which is useful

for understanding the sensitivity of a region to different sources (e.g.Wild and Akimoto(2001);

Cook et al.(2007)). Regional and global budgets of atmospheric species can also be estimated

(e.g.Duncan et al.(2007)).

One such CTM, TOMCAT, has been used throughout this thesis to understand the chemical and

transport processes which are important in influencing the chemical composition of the Arctic

atmosphere. This chapter describes the TOMCAT model and several updates which have been

implemented as part of this thesis. The standard version of TOMCAT is outlinedin Section3.2.

33
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Updates to the standard TOMCAT chemistry scheme are discussed in Section3.3. New emissions

datasets which have been processed for use in this thesis are presentedin Section3.4

3.2 TOMCAT: A global chemical transport model

The TOMCAT model is a Eulerian three-dimensional (3-D) global CTM (e.g.Stockwell and

Chipperfield(1999); Chipperfield(2006)). The model calculates the transport of mass between

grid boxes across 6 faces. Large-scale horizontal and vertical motionis calculated from fields

which are read in and interpolated to the TOMCAT grid from the European Centre for Medium-

Range Weather Forecasts (ECMWF) analyses. The use of offline analyses mean that the model is

constrained by observational data, which is assimilated into the reanalyses.To avoid inconsisten-

cies between horizontal and vertical winds after this interpolation, the vertical motion is diagnosed

from horizontal divergence instead of using vertical velocity fields from the analyses. Tracer ad-

vection in the meridional, zonal and vertical direction is based on thePrather(1986) scheme which

conserves the second-order moments. This scheme conserves mass andmaintains tracer gradients

(Chipperfield, 2006). Gas-phase chemical loss and production, wet and dry deposition, treatment

of moist convection, and boundary layer mixing are all treated in TOMCAT. The model extends

from the surface up to 10 hPa and for tropospheric studies uses aσ - p coordinate system, with

near-surface levels following the terrain (σ ) and higher levels (>100 hPa) using pressure levels

(p). All simulations used in this thesis have 31 vertical levels and a horizontal resolution of 2.8°×

2.8° (128 longitudes and 64 latitudes).

3.2.1 Sub-grid scale parameterisations

The Holtslag and Bolville(1993) scheme is used for sub-scale boundary layer mixing. The in-

clusion of this scheme into a CTM is described byWang et al.(1999). The parameterisation

determines the height of the planetary boundary layer (PBL) explicitly and includes transport by

eddies in unstable conditions and entrainment of air at the top of the PBL. When convection is

absent, vertical diffusion is included up to 3 km. Moist convection is based on theTiedtke(1989)

scheme, which calculates tracer mass flux rates due to convective updrafts, entrainment/detrain-

ment in clouds, large-scale subsidence and turbulent mixing, which is forced from the large-scale

horizontal winds (u andv), temperature (T) and humidity (q).
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3.2.2 Wet and dry deposition

Dry and wet deposition are important loss channels for gas-phase species in the atmosphere and

need to be considered by CTMs. Dry deposition describes the uptake of atmospheric species

at the surface of the Earth. The efficiency of uptake is dependent on species, meteorological

conditions and surface type. Wet deposition is the scavenging of trace gases from the atmosphere

by precipitation and depends on cloud formation, precipitation rates and the solubility of gases.

TOMCAT uses the dry and wet deposition scheme which were shown to perform better than other

schemes in the study byGiannakopoulos et al.(1999). The rate of dry deposition (rd (s−1)) is

calculated as a function of the deposition velocity (Vd, (ms−1)) of the relevant species (which are

included in the model as a look-up table, and are dependent on season and surface type) and the

height of the lowest model level (H):

rd =
Vd

H
(3.1)

Vd is extrapolated to the middle of the lowest model level using the vertical diffusion coefficient

which is a function of wind velocity, surface roughness and stability of the boundary layer and is

calculated within the PBL scheme. The vertical diffusion coefficient is a function of wind speed,

surface roughness and boundary layer stability which means this is also factored into the deposition

rates.

Wet deposition is parameterised according to the proportionality of the removal rate (R) to the

concentration of the species (C) as follows:

R= −rC (3.2)

wherer is the local removal frequency (s−1) and is taken from the model-derived large-scale and

convective precipitation.

3.3 Updates to the TOMCAT chemistry scheme

3.3.1 Standard chemistry scheme

TOMCAT contains a detailed tropospheric chemistry scheme which includes Ox-HOx–NOx-CO-

CH4 chemistry and C1-C3 hydrocarbons (Law et al., 1998; Arnold et al., 2005). TOMCAT also

includes the oxidation of isoprene based on the Mainz Isoprene Mechanism scheme (Pöschl et al.,

2000). The implementation of this scheme into TOMCAT is described byYoung (2007). The
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chemical reactions are implemented via a software package, ASAD (Carver et al., 1997). There

are a total of 62 species with 42 being advected. Shorter lived species are grouped into families

for advection between grid boxes (i.e. NOx and Ox). ASAD is provided with a set of 122 bi-

molecular, 16 termolecular and 37 photolysis reactions. The bimolecular and termolecular kinetic

rates are mostly taken from the International Union of Pure and Applied Chemistry (IUPAC)1 and

the Leeds Master Chemical Mechanism (MCM)2. Photolysis rates are calculated online using the

code ofHough(1988) which considers both direct and scattered radiation. Within TOMCAT, this

scheme is supplied with surface albedo, monthly mean climatological cloud fields and ozone and

temperature profiles.

3.3.2 Addition of monoterpene and C2-C7 hydrocarbon chemistry

As part of this work the model’s chemistry scheme was updated to account for missing sources

of carbon from higher hydrocarbons which were not previously emittedin the model. The model

was developed to include ethene (C2H4), propene (C3H6), butane (C4H10) and toluene (C7H8)

emissions. The degradation of these species and subsequent productswere based on the ExTC

scheme based onFolberth et al.(2006). Biogenic emissions and oxidation of monoterpenes were

also included based on the MOZART-3 scheme (Kinnison et al., 2007). A full list of reactions

is given in AppendixA. The chemistry was implemented by Dr Stephen Arnold3 and evaluation

of the new scheme was done as part of this thesis. First results and comparisons to the standard

model are shown in Chapter4.

3.3.3 Addition of heterogeneous uptake of N2O5 by aerosols

Heterogeneous chemistry is known to affect the global concentrations ofO3, OH and NOx in

the troposphere (Jacob, 2000). One important reaction is the reaction of N2O5 on the surface of

aerosols to form HNO3:

N2O5(g)+H2O(aerosol) → 2HNO3 (3.3)

This is important in the troposphere when there is no sunlight to photolyse NO3 therefore allowing

time for the formation of N2O5 (See reactions2.7-2.9 in Section2.4). This makes this reaction

particularly important in the Arctic during winter (Tie et al., 2003). HNO3 is highly soluble and

is therefore efficiently lost through wet deposition making this an important losschannel for NOx

1http://www.iupac-kinetic.ch.cam.ac.uk/
2http://mcm.leeds.ac.uk/MCM/
3University of Leeds, Leeds, UK
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Table 3.1List of γ values used in TOMCAT for heterogeneous uptake of N2O5 by aerosol based
on Evans and Jacob(2005) with the uptake coefficient on dust reduced from 0.1 to 0.02 based on
Mogili et al. (2006).

Aerosol Type Reaction Probability
(T=temperature (K), RH= relative humidity (%))

Sulphate γ = α ×10β

α = 2.79×10−4 +1.3
×10−4×RH−3.43
×10−6×RH2 +7.52
×10−8×RH3

β = 4×10−2× (T−294) (T≥ 282K)
β = −0.48 (T< 282K)

Organic Carbon γ = RH×5.2×10−4 (RH< 57%)

Black Carbon γ = 0.005

Sea Salt γ = 0.005 (RH< 62%)
γ = 0.03 (RH≥ 62%)

Dust γ = 0.02

from the atmosphere. The standard version of TOMCAT only included the gas-phase form of the

above reaction using an upper limit reaction rate. A scheme has been included in TOMCAT to

account for this heterogeneous reaction based on the parameterisation of Evans and Jacob(2005).

The parameterisation was adapted for TOMCAT and used byBreider(2010) who used the newly

developed coupled TOMCAT-GLOMAP CTM with online aerosol and gas phase chemistry, con-

sidering loss by sea-salt and sulphate aerosol. However, as the work presented here only uses

the TOMCAT CTM, which does not include aerosols, it was necessary to use prescribed monthly

mean aerosol fields. These were calculated by the aerosol model GLOMAP (Mann et al., 2010)

and read in offline. This method is computationally cheaper but means that the version used in this

thesis will not have co-located aerosol and gases in plumes for heterogeneous reactions, which

will likely introduce some error in the loss rates of NOx in highly polluted cases. However, it is

assumed that the overall monthly loss of NOx will provide a better estimate of NOx concentrations

in the Arctic than not accounting for this process in the model.

When a gas molecule strikes the surface of a particle not every collision will lead to a reaction.

Therefore, an estimate of the probability of collision resulting in a reaction is needed when consid-

ering heterogeneous chemistry in a model. This is represented by the reactive uptake coefficient

(γ) which has a value between 0 and 1 and is estimated through laboratory experiments. There

is large uncertainty in the values ofγ for different aerosol types and better quantification of these
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are still required (Macintyre, 2010). This uncertainty has important implications for modelling

with simulated OH and NOx concentrations being sensitive to the chosen (γ) value (Macintyre and

Evans, 2010). The scheme included in TOMCAT considers externally mixed sulphate, organic

carbon, black carbon, sea salt and dust. Theγ values that are used in TOMCAT for the simulations

shown in this thesis are given in Table3.1. They are the same as used byEvans and Jacob(2005),

except for dust, and vary as a function of temperature, humidity and aerosol composition. The

overall γ value used is weighted according to mass of each aerosol type. Adapting the scheme

used byBreider(2010) for TOMCAT was done by Dr Stephen Arnold. The evaluation and de-

velopment of the scheme was done as part of this thesis and first results are discussed in Chapter

4.

3.4 Emissions

The standard version of TOMCAT uses emissions created for the Third Assessment Report of the

Intergovernmental Panel on Climate Change (IPCC TAR) (Houghton et al., 2001). These emission

files include surface continental anthropogenic emissions, ship emissions,aircraft emissions and

biomass burning emissions. The biomass burning emissions are a climatology of monthly biomass

burning emissions calculated from the Global Fire Emissions Database (GFED) (van de Werf et al.,

2006) (referred to in this thesis as the climatological emissions). Emissions of NOx from lightning

are coupled to convection in the model and therefore vary in space and time according to the

seasonality and spatial pattern of convective activity (Stockwell et al., 1999). Biogenic isoprene

and acetone emissions were taken from the POET inventory (Granier et al., 2005) which calculates

emissions using a vegetation canopy model. Isoprene emissions are scaled according to the diurnal

cycle online. Biogenic monoterpene emissions are not treated directly in the model, however, an

additional 7 Tg of acetone is emitted to account for production from the oxidation of monoterpenes

based onJacob et al.(2002). Methane in the model is emitted and then scaled up to a global mean

concentration of 1800 ppbv. This gives regional differences due to emissions whilst maintaining

the concentration of methane globally. All emissions are read into TOMCAT on a1°×1° grid and

are regridded within the model to the TOMCAT grid.

3.4.1 Anthropogenic and ship emissions

As part of this thesis, the anthropogenic emissions used in TOMCAT were updated. Two different

datasets were implemented into TOMCAT and are described here. The first isa newly available in-

ventory created for the IPCC Fifth Assessment Report (AR5) which gives an estimate of emissions

for the year 2000 (Lamarque et al., 2010). The second inventory, Streets v1.2, was updated for
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Table 3.2Global annual total anthropogenic and natural emissions used in the TOMCAT model
(in Tg(species)/yr)) from different inventories: AR5 anthropogeniconly (1st column), Streets
v1.2 anthropogenic only (2nd column), natural POET emissions only (3rd col.), AR5+POET
(4th col.), Streets v1.2 + POET (5th col.) and the standard TOMCAT emissions prior to updates
(TAR+Natural) (6th col.).

Emissions (Tg(species)/yr)
Anthropogenic only Natural Anthropogenic and Natural

Species AR5 Streets POET AR5+POET Streets+POET TAR+Natural
NOx 104.87 107.70 26.32 131.19 134.02 113.85
CO 609.46 595.08 180.40 789.86 775.48 567.52
C2H4 7.72 6.81 5.02 12.74 11.84 7.26
C2H6 3.33 6.34 1.01 4.34 7.35 6.56
C3H6 3.46 3.04 1.00 4.46 4.04 -
C3H8 4.03 5.68 1.83 5.86 7.50 7.67
C4H10 10.38 41.49 - 10.38 41.49 -
C5H8 - - 536.79 536.79 536.79 568.66
C7H8 7.03 25.34 - 7.03 25.34 -
C10H16 - - 81.68 81.68 81.68 -
CH2O 3.18 2.99 - 3.18 2.99 0.75
CH3OH 5.69 0.93 230.04 235.73 230.97 4.46
CH3CHO 1.92 2.00 - 1.92 2.00 2.23
CH3COCH3 2.85 0.54 23.82 26.67 24.36 22.23

modelling studies associated with the POLARCAT campaign which took place in 2008 4. These

datasets are described in more detail in Sections3.4.1.1and3.4.1.2and total annual emissions

for all species are shown in Table3.2. The distribution of annual emissions for CO and NOx are

shown in Figures3.1and3.2showing any regional differences.

3.4.1.1 IPCC Fifth Assessment Report emissions (AR5)

This dataset provides monthly mean estimates of emissions on a 0.5°×0.5° horizontal grid for

the year 2000 and is described in detail byLamarque et al.(2010). The ship emissions vary

from month to month, although the land-based anthropogenic emissions do not.Regional in-

ventories EMEP, EPA and REAS were used for Europe, North America and Asia, respectively.

Where evaluated regional inventories were not available, the EDGAR-v4global anthropogenic

inventory was used. The anthropogenic emissions include contributions from the sectors shown

in Table3.3 and the ship emissions include fishing, international and domestic shipping. These

emissions were downloaded in netcdf format from ftp://ftp-ipcc.fz-juelich.de/pub/emissions and

processed them for TOMCAT. All the sectors in Table3.3and the ship emissions were added to-

gether for each species and regridded to 1°×1°. In some cases, not all of the TOMCAT species

4http://www.cgrer.uiowa.edu/arctas/emission.html
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Figure 3.1Total annual anthropogenic and natural CO (Gg/yr) emissions from the standard model
based on TAR (top, left), the Streets v1.2 2008 and POET inventories (top,right) and the AR5
2000 and POET inventories (bottom).

were available therefore lumped groups were used instead. This was the case for TOMCAT emit-

ted species methanol, acetaldehyde and acetone, where the alcohols, alkanals and ketones IPCC

lumped groups were used, respectively.

3.4.1.2 Streets v1.2 anthropogenic emissions

For the POLARCAT campaign, an inventory was created by David Streets5 and Qiang Zhang6

which consolidated emission estimates from the most up to date published regional inventories to

account for regional changes in emissions, similar to that described inZhang et al.(2009). The

inventory uses CAC 2005, EMEP 2006 and USNEI 2002 for Canada, Europe and North America,

respectively. Asian emission estimates are described byZhang et al.(2009) based on the year

2006. Where regional datasets were not available or suitable the inventory uses the EDGAR v3.2

FT2000 global inventory which is scaled to the year 2000 from 1995 according to trends. The

5Argonne National Laboratory, US
6Argonne National Laboratory, US
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Figure 3.2Total annual anthropogenic and natural NOx (Gg/yr) emissions from the standard model
based on TAR (top, left), the Streets v1.2 2008 and POET inventories (top,right) and the AR5 2000
and POET inventories (bottom).

Streets v1.2 inventory is available for download7 and provides emissions of CO, NOx and VOCs.

The VOCs were speciated by Louisa Emmons8 according to the method used byLamarque et al.

(2010) for the AR5 emissions. These emissions were received from Emmons and formatted them

for TOMCAT.

3.4.2 Natural emissions

Natural emissions account for a large quantity of trace gases found in theatmosphere (e.g.,Guen-

ther et al.(2006)). The AR5 and Streets v1.2 anthropogenic inventories therefore required natural

emissions to be added to them. Emission estimates for natural sources such as NOx from soils

and CO from oceans were taken from the POET inventory (Granier et al., 2005). Isoprene and

monoterpene emissions were calculated by the Model of Emissions of Gases and Aerosols from

Nature (MEGAN) as described byEmmons et al.(2010). These were provided by Louisa Emmons

7http://www.cgrer.uiowa.edu/arctas/emission.html
8National Center for Atmospheric Research, USA
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Table 3.3List of anthropogenic sectors for AR5 anthropogenic emissions

Sector number Sector name
1 Energy production
2 Industry
3 Land transport
4 Maritime transport
5 Aviation
6 Residential and commercial
7 Solvents
8 Agriculture
9 Agricultural waste burning on fields
10 Waste

Table 3.4Global total CO biomass burning emissions for July 2008

Emissions (Tg(species)/month)
Species GFEDv2 GFEDv3 FINNv1

CO 381.1 276.6 418.5

along with the Streets v1.2 emissions. Previously, TOMCAT did not include emissions of biogenic

methanol which is believed to be a large source of carbon in the atmosphere (Jacob et al., 2005)

and this was also added to the model.

3.4.3 Biomass burning emission inventories

Biomass burning emission estimates are commonly derived following the relationship described

by Seiler and Crutzen(1980):

E = A×B×CE×EF (3.4)

whereA is the area burned,B is the fuel loading (mass of biomass per unit area),CE is the

combustion efficiency (ratio of biomass burnt to total available biomass),EF is the emission factor

for the species in question (kg of species released per kg of dry matter (DM) burned). These

parameters can be obtained from observational data, model data and laboratory experiments. All

of the emission inventories used in this thesis were regridded to 1°×1° horizontal resolution and

converted to molecules/cm2 for use in this thesis. The total annual CO emissions for 2008 for each

inventory are shown Table3.4and the distribution of emissions is shown in Figures3.3.
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Figure 3.3Total CO biomass burning emissions (Tg(CO)/year) for 2008 from GFED v2 (top, left),
GFED v3.1 (top, right) and FINN v1 (bottom).

3.4.3.1 Global Fire Emission Database version 2 (GFED v2)

Version 2 of the Global Fire Emission Database (GFED v2) combines modelling tools and satellite

data to estimate fire emissions. A detailed description of the dataset is given byvan de Werf

et al. (2006). Burned area was calculated from MODIS retrievals based onGiglio et al. (2006).

Fuel loads were calculated by considering net primary productivity (NPP) and losses within a

biogeochemical model. Combustion completeness was prescribed in their modeland considered

both seasonal effects and differences among fuel type based on observations. For this thesis,

monthly mean carbon emission estimates on a 0.5°×0.5° horizontal resolution were downloaded

from http://www.falw.vu/ gwerf/GFED/GFED2/. The carbon emissions were converted to dry

matter burned by multiplying by 0.45, assuming carbon emitted was 45% of dry matterburned

(DM) according tovan de Werf et al.(2006), which was then use to calculate emissions for three

different vegetation types. A vegetation map provided with the carbon emissions online allowed 3

types of forest to be distinguished; savannah/grasslands, temperate forest and boreal forest. After

DM was calculated it was then multiplied by emission factors (shown in Table3.5) to get emissions

for the species emitted in TOMCAT. The emissions factors are based onAndreae and Merlet
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Table 3.5Emission factors for different vegetation types used to calculate GFED v2 emissions.

Species Emissions Factors (g/kg DM)
Savannah/Grasslands Tropical Forest Extratropical Forest

NOx 2.12 2.26 3.41
CO 61.5 100.9 105.6

C2H4 0.82 1.48 1.18
C2H6 0.32 1.12 0.72
C3H6 0.34 1.14 0.57
C3H8 0.09 1.04 0.27
C4H10 0.025 0.056 0.128
C5H8 0.026 0.218 0.103
C7H8 0.177 0.241 0.403

C10H16 0.014 0.000 0.223
CH2O 0.71 2.22 2.155

CH3OH 1.47 2.95 1.88
CH3CHO 0.5 2.26 0.979

CH3COCH3 0.48 0.63 0.673

(2001) but were updated in 2008 by Andreae Merlot9, provided by Guido van de Werf10.

3.4.3.2 Global Fire Emissions Database version 3 (GFED v3.1)

GFED v3.1 uses the same method and model as GFED v2 to derive carbon emission estimates.

However, some minor differences do exist and are described byvan de Werf et al.(2010), the

main one is the use of updated burned area estimates (Giglio et al., 2010). Giglio et al. (2010)

compared GFED v3 area burned estimates to GFED v2 and found they increased by about 15%

when averaged globally, with some substantial regional differences (>50%). Europe area burned is

substantially lower whereas Middle East area burned is substantially highercompared to GFED v2.

They also show that when they compare GFED v3.1, GFED v2 and other area burned estimates

to independent observational area burnt data for USA and Canada, GFED v3.1 has the highest

correlation, giving a higher confidence in the newer version. Another development in GFED v3.1

dataset now means that emissions are estimated for six different fires types; Savannah, woodland,

deforestation, forest, agriculture and peat. The dominant fire type in each 0.5°×0.5° grid-box is

shown in Figure3.4.

9Max Planck Institute for Chemistry, Mainz, Germany.
10VU University (Vrije Universiteit), Amsterdam, Netherlands.
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Figure 3.4 The dominant fire type in each 0.5°×0.5° grid-box in the GFED v3.1 fire emissions

inventory taken fromvan de Werf et al.(2010).

3.4.3.3 FINN v1 inventory

The FINN dataset was first described and used inWiedinmyer et al.(2006). MODIS Fire and

Thermal Anomalies Product (Giglio et al., 2003) were used to identify fire locations which use

both MODIS sensors onboard two polar orbiting satellite platforms, Aqua andTerra. Each pro-

vides daily thermal observations over nearly the entire globe on both daytime and nighttime passes.

Satellite datasets which identify land use, vegetation types, and percentage vegetative cover were

used in combination with available regional data to assign fuel loadings for pixels in which fires

were identified. Land cover was assigned by the Global Land Cover Dataset for 2000 (GLC2000)

which gives 29 land cover types, emission factors for each of these types were assigned based on

the currently available estimates in the literature (Wiedinmyer et al., 2006). An updated version of

this inventory was created for the POLARCAT campaign at a daily temporal resolution (Wiedin-

myer et al., 2011) and is used for this thesis. The inventory was processed by Louisa Emmons and

formatted for use in TOMCAT as part of the work for this thesis.

3.4.4 Summary

In this chapter the standard version of the TOMCAT chemical transport model has been described.

As part of this thesis several developments have been implemented into the model to better simu-

late the troposphere. The new extended hydrocarbon chemistry scheme has been described, now

including ethene, propene, butane and toluene emissions. Natural monoterpene emissions and
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chemistry have also been included explicitly. A scheme for uptake of N2O5 onto aerosol has been

adapted for the purposes of this thesis. The impacts of these updates havebeen tested and are

discussed in Chapter4. The standard emission inventories have also been updated with natural

emissions from methanol are now included along with the implementation of two new anthro-

pogenic inventories (Streets v1.2 and AR5) and three new biomass burningemission inventories.

These new inventories are used throughout this thesis for simulations with theTOMCAT model.



Chapter 4

TOMCAT model development and

evaluation

4.1 Introduction

First simulations of the standard version of the TOMCAT model performed for this thesis showed

that the model underestimated tropospheric CO in the Northern Hemisphere (NH). In-situ chemi-

cal production is an important source of CO accounting for approximately 50% of the total global

tropospheric source (Hauglustaine et al., 1998; Bergamaschi et al., 2000; Ehhalt et al., 2001; Dun-

can et al., 2007). Oxidation of industrial non methane hydrocarbons (NMHC) has been estimated

to contribute up to 14% (203 Tg(CO)/yr) to this global production of secondary CO, which is 7%

of the total global source (Bergamaschi et al., 2000). The major anthropogenic emission regions

are located in the NH and therefore emissions of hydrocarbons that are not accounted for in the

standard version of the TOMCAT model would lead to an underestimation in the production of

secondary CO in this region, contributing to the NH underestimate. As CO is used as a tracer

of anthropogenic and natural sources in this thesis, this underestimate waspartly addressed by

developing the TOMCAT model to account for some of the missing sources ofcarbon by includ-

ing additional NMHC emissions and subsequent chemical processing. Anthropogenic sources of

ethene, propene, butane and toluene have been implemented in this work andcontribute an addi-

tional 28.6 Tg(C)/yr on top of the already emitted 21.0 Tg(C)/yr of NMHC, increasing the total

mass of carbon from anthropogenic NMHC emissions by 136%. Emissions ofmonoterpenes from

vegetation are another important source of carbon. Most emissions occur in the tropics due to the

high temperatures and abundance of vegetation, however, they are alsoemitted during the sum-

mer in the mid-northern latitudes and boreal regions and therefore could beimportant in the NH.

Bergamaschi et al.(2000) estimated that oxidation of terpenes (including monoterpenes) can con-

tribute up to 10% (136 Tg(CO)/yr) to secondary CO and 5% to the total globalsources of CO. By

47
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adding natural monoterpene emissions, which emit an extra 72 Tg(C)/yr, along with natural emis-

sions for the new organic species, ethene and propene, which emit 5.2 Tg(C)/yr, the total carbon

natural emissions in TOMCAT are increased by 13.4%.

It is well established that the heterogeneous uptake of N2O5 by aerosols is a major atmospheric

sink of NOx in the troposphere (Ravishankara, 1997; Jacob, 2000; Tie et al., 2001). This reaction

is significant at night when there is no sunlight for the photolysis of NO3 making it possible for

it to react with NO2 to form N2O5. This reaction is therefore particularly significant in the polar

regions during the long dark winter period, causing very low concentrations of NOx (Tie et al.,

2003). Modelling has shown that the inclusion of this reaction in a global 3D CTM can reduce

NOx and O3 burdens by up to 50% and 9%, respectively (Dentener and Crutzen, 1993), showing

that this reaction has important implications for tropospheric composition. As thefocus of this

thesis is on Arctic composition, the TOMCAT model has been developed to include the hydrolysis

of N2O5 to simulate O3 and NOx in this region more accurately.

As part of this thesis, these two updates have been developed and tested.The impact of these

updates on simulated tracer burdens and distributions are discussed in Section 4.3. Global mean

OH is assessed as an indicator of the model’s oxidising capacity in Section4.4. The model is

then compared to observations to see whether the developments have improved the simulation of

trace gases. The ability of the model to simulate CO is discussed in Section4.5 with the aid of

retrievals of CO from the satellite instrument MOPITT and also in comparison to surface station

observations. Ozone and some reactive nitrogen and NMHC species arethen also compared in

Sections4.6-4.8. The overall findings from this chapter are then summarised in Section4.9

4.2 Model setup

Three simulations were performed to assess the impact of the new extended organic chemistry

and the uptake of N2O5 by aerosol. These are summarised in Table4.1. The CTRL simulation

was performed using the basic setup of the ‘standard’ version of the TOMCAT model as described

in Chapter3, without the new organic and heterogeneous chemistry, but with updated emissions.

The NEWC simulation uses the same set-up as the CTRL simulation but includes the new organic

chemistry (see Section3.3.2). The HETC simulation includes both the new organic chemistry

and the heterogeneous uptake of N2O5 by aerosol. A more detailed description of the treatment

of N2O5 hydrolysis in TOMCAT is given in Section3.3.3. For each simulation, TOMCAT was

spun-up for 1 year and then run for the whole of 2008 using ECMWF ERA-40 winds. The IPCC

AR5 anthropogenic emissions, POET natural emissions and GFED v2 monthly mean biomass

burning emissions for 2008 were used for these simulations as they offered an improved surface

flux estimate compared to what was previously used in the standard version of the model. These
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Table 4.1Summary of model simulations

Simulation
ID

Description Emissions

CTRL Control simulation AR5 anthropogenic emissions, POET
natural emissions, GFED v2 2008
biomass burning emissions.

NEWC Additional hydrocarbon and monoter-
pene emissions and chemistry.

AR5 anthropogenic emissions, POET
natural emissions, GFED v2 2008
biomass burning emissions.

HETC Same as NEWC but with heteroge-
neous uptake of N2O5 on black carbon,
organic carbon, dust, sulphate and sea-
salt. (dustγ = 0.02).

AR5 anthropogenic emissions, POET
natural emissions, GFED v2 2008
biomass burning emissions.

emissions were updated for the purpose of this thesis and are described inmore detail in Section

3.4. For the year 2008, model output was saved every 3.75 days, giving output at 00:00, 06:00,

12:00 and 18:00 UTC from which monthly means were calculated.

4.3 Impact of extended hydrocarbon chemistry and uptake of N2O5

by aerosol

4.3.1 Changes in global mean burdens

The global monthly mass burdens from each of the simulations have been calculated for CO, O3,

HOx, HNO3, PAN, NOy and NOx and are shown in Figure4.1. The percentage difference for these

species between NEWC and CTRL and HETC and NEWC are shown in Figure4.2. Consider-

ing the difference between NEWC and CTRL isolates the impact of the addition of new organic

chemistry. CO is increased by 4-5% (14-18 Tg) from the CTRL to the NEWC simulation due

enhanced secondary production of CO from the oxidation of additional hydrocarbons in NEWC.

The biggest increase is observed in NH summer/autumn due to the higher ratesof photochemistry.

Ultimately, the additional NMHC and CO lead to more O3 production and therefore the total mass

burden is increased by 2-4% (8-11 Tg). The total mass burden of OH does not seem to be largely

affected by the increased burden of NMHC. By considering the percentage difference in Figure

4.2, it can be seen that OH is not affected in January and February. This isbecause the majority

of the anthropogenic emissions occur in the NH, where OH concentrations are already very low at

this time of the year with reduced rates of oxidation of NMHC. As the concentrations of OH in the
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Figure 4.1 Monthly mean total tropospheric mass burdens (Tg) of CO, O3, OH, HO2, HNO3,
PAN, NOy, NO and NO2 from the CTRL, NEWC and HETC simulations.

Figure 4.2 Percentage difference in monthly mean total tropospheric mass burdens ofCO, O3,
OH, HO2, HNO3, PAN, NOy, NO and NO2 from NEWC-CTRL and HETC simulations.
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NH increase towards summer, OH is reduced by up to 1% in NEWC due to reaction with the addi-

tional hydrocarbons and CO. Conversely, HO2 is increased by 3-4% due to the oxidation pathways

of the additional hydrocarbons resulting in more formaldehyde and HO2 production (see Section

2.4). Formaldehyde can also go on to yield another HO2 molecule (Jacob, 1999a), boosting the

oxidising capacity of the atmosphere by an overall increase in HOx (see Section4.3.2). One of the

most significant impacts of the organic chemistry is upon the formation of PAN. The total mass

burden of PAN is increased by 40-75% with the biggest increase occurring during the NH winter

when the thermal decomposition of PAN is slower due to the lower temperatures.The total PAN

is more sensitive to the NH winter because of larger concentrations of NOx in the NH. This large

increase in PAN occurs because the new organic chemistry scheme includes many more pathways

which lead to the production of CH3CO3 which reacts with NO2 to form PAN. Due to the oxides

of nitrogen, NO and NO2, being locked up in this reservoir species, HNO3, NO and NO2 are all

reduced by up to 3%, 8% and 7%, respectively. HNO3 is efficiently wet deposited due its high

solubility and therefore acts as a sink of reactive nitrogen from the atmosphere. As more NOx

forms PAN instead of HNO3, the total global burden of total reactive nitrogen, NOy, is increased

by 11-17%. In the NH summer, NO2 increases by up to 2% relative to the CTRL simulation due

to the breakdown of PAN which releases NO2. This increase in NO2 could also contribute to the

extra formation of O3 that is modelled.

Figures4.1 and4.2 also show the impacts of the heterogeneous uptake of N2O5 by aerosol by

comparing HETC and NEWC. As expected, NOx is affected quite significantly, with NO and NO2

being reduced by 10-20% and 10-27%, respectively. In agreement with previous studies (Dentener

and Crutzen, 1993; Tie et al., 2003), the biggest reductions occur in January and February where

the total NOx burden is reduced by up to 46%. The smallest difference occurs in Junewhen NOx is

reduced by 20%. This is because the conversion of NOx to HNO3 by reaction2.7-2.9 is important

during darkness and at low temperatures making this efficient in the NH winterwhere there are

also high concentrations of NOx. Due to this new pathway, the global burden of HNO3 increases

by 3-8%, with the biggest increases occurring in winter. As more NOx is being converted to HNO3,

PAN shows a reduction of 4-11%, also with the biggest reduction in winter. As the formation of

HNO3 acts as a sink of NOx from the atmosphere, overall, NOy is reduced by up to 10% in winter.

As NOx controls the production of O3 in the troposphere, the total burden of O3 is also reduced by

4-6%. The maximum reduction occurs in March and the minimum in July, similar to the findings of

Tie et al.(2003). The biggest reduction of O3 does not coincide with the biggest reduction in NOx.

In the NH in January and February the lack of sunlight would slow O3 production and therefore

the impact on O3 through NOx would not be seen until spring (Tie et al., 2003). As OH is formed

from the photolysis of O3, the burden of OH is also lowered by 7-8%. Due to a smaller global

OH burden, CO has a longer lifetime increasing the global burden by 5-6%.Overall, the N2O5

hydrolysis results in the annual mean burdens of NOx, O3 and OH being reduced by 30%, 6% and
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8%. The response in NOx and O3 are slightly smaller compared withDentener and Crutzen(1993)

who found a 50% and 9% reduction in NOx and O3 respectively, however, a similar reduction of

OH of 9% was observed. The percentage differences of burdens calculated by different models are

likely to be sensitive to the treatment of other processes and initial burdens of the aforementioned

species therefore the different percentage difference may reflect this. In general, the TOMCAT

model captures the response of NOx, O3 and OH in agreement with previous studies (Dentener

and Crutzen, 1993; Jacob, 2000; Tie et al., 2001, 2003).

4.3.2 Changes in the distributions of species

The seasonal zonal mean volume mixing ratio of CO from the CTRL simulation for DJF, MAM,

JJA and SON are shown in Figure4.3. There is a clear inter-hemispheric difference due to larger

emissions in the NH. The CO concentrations also decrease with increasing altitude as the distance

from the surface fluxes increases. In the NH, the seasonal maximum andminimum of CO occur in

DJF and JJA, when OH concentrations are at their lowest and highest, respectively. The seasonal

cycle is not as distinct in the SH as it is in the NH, but it is still visible, with a maximum in JJA

and a minimum in DJF. The absolute and percentage difference in CO from NEWC compared to

CTRL are also shown in Figure4.3. Including the additional hydrocarbon emissions and chemistry

increases the background CO by 1-5 ppbv (2-5%) in the SH and up to 5-9ppbv (2-10%) in the

NH. There is a larger impact on CO in the NH due to the location of the source regions. The

largest seasonal difference occurs during SON, in agreement with Figure 4.2, due to an increase

in secondary production of CO from the oxidation of hydrocarbons. Inlate summer and early

autumn biogenic emissions peak, driving the seasonal maximum response in CO. The absolute

and percentage difference between the HETC and the NEWC simulations arealso shown in Figure

4.3. Similar to the NEWC simulation, the largest increases occur in the NH.

Figure4.4 shows the seasonal zonal mean concentrations of O3 from the CTRL simulation. As

with CO, there is a gradient between the two hemispheres due to more NMHC andNOx emissions

in the NH which are precursors of O3. Unlike CO, the mixing ratio of O3 increases with altitude.

As emissions are transported away from the surface they begin to produce O3. Also, near the

tropopause, the influence of stratospheric-tropospheric exchange (STE) can be seen. The seasonal

maximum of O3 occurs in MAM in the NH, thought to be due to an increase in photochemical

production (Monks, 2000; Atlas et al., 2003). The absolute and percentage difference in O3 from

NEWC compared to CTRL are also shown in Figure4.4. As seen in Section4.3.1, O3 is increased

by 1-4 ppbv (3-9%) in the NH troposphere. The SH is not largely affected (less than 1 ppbv

difference) by the increase in NMHC due to lower anthropogenic emissions. The absolute and

percentage difference between the HETC and the NEWC simulations are alsoshown in the third

and bottom panel of Figure4.4. As found in Section4.3.1ozone is decreased by the inclusion
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Figure 4.3 Zonal mean seasonal CO absolute concentrations (ppbv) from the CTRLsimulation
(top row), absolute differences from NEWC-CTRL (ppbv) (second row), absolute differences from
HETC-NEWC (ppbv) (third row), percentage differences from NEWC-CTRL (%) (fourth panel
down) and percentage differences from HETC-NEWC (%) (bottom row).

Figure 4.4As Figure4.3but for O3 (ppbv).
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of the hydrolysis of N2O5 which reduces NOx and therefore O3 production. The biggest impact

is in the NH in MAM due to the higher concentrations of NOx in this region. However, the SH

also shows a reduction in O3 throughout the year due to the presence of aerosols, with a maximum

reduction in SON during the biomass burning season.

Figure4.5 shows the seasonal zonal mean concentrations of NOx (NO + NO2) from the CTRL

simulation. The largest concentrations of NOx are seen in the NH lower troposphere near large

anthropogenic emission regions. The SH has very low background concentrations with larger

concentrations occurring in JJA and SON during biomass burning seasons. As the lifetime of

NOx is shorter than CO, it is much less well-mixed, leading to strong concentration gradients.

The stratosphere also has very high concentrations of NOx, which acts as a source to the upper

troposphere. The absolute and percentage difference in NOx from NEWC compared to CTRL are

also shown in Figure4.5. The addition of new NMHC emissions result in a decrease in NOx by up

to 90 pptv, with the maximum effect occurring in the NH during winter. As mentioned in Section

4.3.1 this is because of the increased formation of PAN which is more stable in winter.These

reductions are confined to the regions of maximum concentrations of NOx near the surface in the

NH. The percentage difference shows a different pattern to the absolute changes, with a maximum

winter reduction in NOx of 40% at 400 hPa instead of the surface. This is due to much lower

background concentrations in this region, meaning a smaller absolute change can result in a larger

percentage difference.

Figure4.5also shows the absolute and percentage difference in HETC compared to NEWC. N2O5

uptake reduces NOx by more than 150 pptv near the major emission regions with the biggest

impact occurring in DJF. The smallest impact occurs in JJA where a maximum of70 pptv is lost at

the surface in the NH. As with the NEWC simulation, the maximum percentage differences occur

at higher altitudes due to the low concentrations, with NOx being>70% lower than in NEWC.

HETC shows that N2O5 uptake also occurs in the SH and explains the loss of O3 in HETC in the

same region which was seen in Figure4.4. The maximum impact occurs in MAM with up to 60%

of NOx being lost. Again, the percentage and absolute difference show different patterns.

The seasonal zonal mean HOx (OH + HO2) from the CTRL simulation is shown in Figure4.6.

The distribution of HOx is related to the amount of incoming solar radiation. Therefore the tropics

have the highest concentrations and the maximum is centred either south or north of the equator

depending on the season. The maximum concentrations occur in the NH in JJAdue to the larger

concentrations of O3 in this region which is the main source of OH. The absolute and percentage

difference in HOx in NEWC compared to CTRL are also shown in Figure4.6. The addition of

NMHC increases HOx by up to 0.4 pptv mostly between 50°S and 70°N. In JJA, the increase in

HOx is shifted to between 30°S and 90°N when photochemistry is more active in the NH. From

Figure 4.2 it is known that this increase in HOx is mostly due to an increase in HO2 from the
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Figure 4.5 Zonal mean seasonal NOx absolute concentrations (pptv) from the CTRL simulation
(top row), absolute differences from NEWC-CTRL (pptv) (second row), absolute differences from
HETC-NEWC (pptv) (third row), percentage differences from NEWC-CTRL (%) (fourth row) and
percentage differences from HETC-NEWC (%) (bottom panel).

Figure 4.6As Figure4.3but for HOx (pptv).
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oxidation of NHMC and CO. As with NOx, the biggest percentage difference occurs in a different

location to the maximum absolute difference due to the low background concentrations. For HOx,

NEWC shows the largest percentage difference in the high northern latitudes during winter where

concentrations are increased by up to 30%. The absolute and percentage difference in HOx in

HETC compared to NEWC are also shown in Figure4.6. N2O5 hydrolysis has a more spatially

complicated affect on HOx. In DJF, regions between 50°S and 50°N show different responsesin

HOx because OH is decreased, due to less O3, whilst HO2 is increased (not shown). The total HOx

response therefore depends on the magnitude of changes in the OH and HO2 concentrations. In

other seasons, the overall affect of N2O5 uptake by aerosol is to lower HOx by up to 0.16 pptv.

Overall, the addition of the NMHC and N2O5 hydrolysis has been shown to have substantial im-

pacts on the troposphere. However, as yet it is unknown whether thesechanges discussed here

actually improve the simulated tracers. For this reason, it is now important to compare these three

simulations to observations.

4.4 Evaluation of simulated hydroxyl radical

The hydroxyl radical (OH) is the primary oxidant in the troposphere andtherefore it is a useful

measure of the oxidising capacity of chemical transport models. Due to its very short lifetime,

OH is very difficult to measure (Heard and Pilling, 2003). However, it can be inferred from gases

whose primary loss channel is through reaction with OH if the sources are well understood. In this

section OH simulated by TOMCAT is compared to global OH estimated by this method.

4.4.1 Calculation of global mean OH

As recommended byLawrence et al.(2001), the tropospheric global mean OH concentration has

been calculated, weighted by airmass ([OH]M) and the methane reaction rate ([OH]CH4), for CTRL,

NEWC and HETC. [OH]M is generally considered as an indicator of the oxidising capacity of the

atmosphere for a uniformly distributed gas whose reaction with OH is not dependent on tempera-

ture and pressure (Lawrence et al., 2001). The [OH]CH4 considers the distribution of OH, giving

more weight to areas of high temperatures due to the temperature dependence of the reaction rate.

These different measures can be found in the literature for comparison toother models.

Firstly, the airmass-weighted OH concentration was calculated from:

[OH]M =
∑(M · [OH])

∑M
, (4.1)
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where M is the mass of each grid box and the sum is over the whole of the troposphere. Secondly,

the global mean methane-reaction-weighted OH concentration was calculatedby:

[OH]CH4 =
∑(k ·M · [CH4] · [OH])

∑(k ·M · [CH4])
, (4.2)

where,k=1.85×10−12exp(−1690/T), which is the reaction rate of methane with OH used by the

TOMCAT model taken from IUPAC1. The monthly mean temperature from the model was used to

calculatek. The lifetime of methane (τCH4) is inversely proportional to methane-reaction-weighted

OH concentration (Lawrence et al., 2001) and is therefore equal to:

τCH4 =
∑(M · [CH4])

∑(k ·M · [CH4] · [OH])
. (4.3)

For these calculations, the tropopause was defined in two ways. The firstmethod used the TOM-

CAT potential vorticity (PV) and potential temperature (θ ) to find grid boxes located within the

troposphere which was defined as the region where PV is between -2 and2 pvu andθ is less than

380 K following the method ofArnold et al.(2005). The second method used a climatological

tropopause as recommended byLawrence et al.(2001) which was calculated as follows:

ρcli = 300−215(cos(φ))2, (4.4)

whereφ is the latitude andρ is the pressure.

4.4.2 Comparisons of global mean OH with previous studies

The annual mean values of [OH]M, [OH]CH4 andτCH4 have been calculated for simulations CTRL,

NEWC and HETC and are shown in Table4.2. Using the climatological tropopause yields a

lower [OH]M compared to using the PV andθ model fields to define the tropopause, however,

there is little difference in the [OH]CH4. This is because the [OH]CH4 is more sensitive to OH

concentrations in the lower troposphere in the tropics as this is where the majority of methane is

oxidised (Lawrence et al., 2001; Bloss et al., 2005), making the tropopause height less important.

This is also the case with the methane lifetime as this is derived from [OH]CH4.

Studies byKrol et al. (1998) andPrinn et al.(2001) used observed concentrations of methyl chlo-

roform (CH3CCl3), whose main sink is reaction with OH, to infer global mean OH.Krol et al.

(1998) estimated OH to be in the range of 0.9 - 1.16×106 molecules/cm3 andPrinn et al.(2001)

1http://www.iupac-kinetic.ch.cam.ac.uk/
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estimated an airmass-weighted mean of 0.94 x 106 molecules/cm3. Spivakovsky et al.(2000) de-

rived a global mean airmass-weighted OH of 1.16 x 106 molecules/cm3 using a photochemical

box model which used observed concentrations of O3, H2O, NOy, CO, hydrocarbons, temperature

and cloud optical depth. The global mean [OH]M from CTRL and NEWC of 0.93 x 106 and 0.92

x 106 molecules/cm3, respectively (see Table4.2), are both within the range of these studies. The

significant decrease of OH in HETC, due to the loss of NOx (see Section4.3), reduces the global

mean [OH]M to 0.85 x 106 molecules/cm3 (see Table4.2), which is lower than any of these esti-

mates. The global mean [OH]CH4 for the CTRL and the NEWC simulation are similar with 1.16

x 106 molecules/cm3 suggesting the distribution of OH does not vary greatly between these two

simulations which is in agreement with what was found in Section4.3.1. Again, the global mean

[OH]CH4 of 1.08× 106 molecules/cm3, calculated from HETC, is smaller than the values from

CTRL and NEWC. The corresponding lifetime of methane is 8.55, 8.55 and 9.18years from the

CTRL, NEWC and HETC simulations, respectively (see Table4.2). FromKrol et al. (1998) and

Prinn et al.(2001) the lifetime of CH4 is estimated to be within the range of 8.6–10.12 years. The

τCH4 calculated from the HETC simulation gives a better estimation of the methane lifetime even

though the [OH]M is out of the estimated range. This is becauseτCH4 is dependent on the distri-

bution of OH due to the temperature dependence of the reaction of CH4 with OH, meaning HETC

may have a more reasonable distribution of OH in regions dominating CH4 oxidation compared to

CTRL and NEWC, even though the global mean OH is lower.

To evaluate the global OH distribution, the tropospheric OH has been divided up into 12 separate

domains, extending from the surface up to 250 hPa, as recommended byLawrence et al.(2001).

Figure 4.7 shows annual zonal means of OH separated into these domains calculated from the

TOMCAT CTRL, NEWC and HETC simulations. In general, the NEWC and CTRLsimulations

show very similar distributions of OH with NEWC having slightly smaller concentrations in the

upper troposphere and slightly higher concentrations in the lower troposphere. HETC showed the

largest difference in the global mean OH concentration compared to CTRL (see Table4.2) and

therefore, as expected, the distribution of OH does vary from NEWC andCTRL, with concentra-

tions in all domains becoming lower.

Table 4.2TOMCAT global annual mean OH concentrations (×106 molec/cm3) weighted by mass,
weighted by reaction with CH4 and the lifetime of CH4 (yrs) from CTRL, NEWC and HETC.

TOMCAT Trop. Climatological Trop.
Model Simulation [OH] M [OH] CH4 τCH4 [OH] M [OH] CH4 τCH4

CTRL 0.9310 1.1647 8.55 0.9064 1.1551 8.96
NEWC 0.9276 1.1640 8.55 0.9035 1.1545 8.96
HETC 0.8579 1.0841 9.18 0.8352 1.0751 9.62



Chapter 4.TOMCAT model development and evaluation 59

Figure 4.7 Annual zonal mean of OH (in molecules/cm3) separated into 12 sub domains as sug-
gested byLawrence et al.(2001) from the TOMCAT simulations (CTRL, NEWC and HETC)
compared to the climatology fromLawrence et al.(2001), based on the estimates ofSpivakovsky
et al.(2000) (referred to as Lawrence 2001), and from another CTM, MOZART v4 fromEmmons
et al.(2010) (referred to as Emmons 2010). The climatological tropopause (calculatedby equation
4.4) has been used to remove any stratospheric OH denoted by the smooth blackline at the top of
the domains.

Lawrence 2001

For comparison, a climatology published inLawrence et al.(2001) and Emmons et al.(2010)

(referred to as Lawrence 2001 and Emmons 2010) are also shown Figure4.7. The Lawrence 2001

climatology is based on model calculations ofSpivakovsky et al.(2000) as already described and

are therefore constrained by observations. The Emmons 2010 climatology was calculated by the

latest version (version 4) of the MOZART CTM (Emmons et al., 2010). By comparison to the

Lawrence 2001 climatology, all three TOMCAT simulations generally underestimate OH in the

two highest altitude domains at all latitudes and overestimates OH in the lowest altitude domains.

HETC shows the best agreement with Lawrence 2001 in the domains betweenthe surface and 750

hPa and CTRL shows the best agreement in the two higher domains of 750-500 hPa and 500-250

hPa. The simulated OH fields from TOMCAT show the best agreement in the twodomains situated

between the surface and 750 hPa and 30°S and 30°N.

For more detail the percent difference between the Lawrence 2001 climatology and TOMCAT

have been calculated. For the two surface domains in the tropics the percentage difference is 3 and
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25% for CTRL, 4 and 27% for NEWC, and 0 and 20% for HETC. The larger bias occurs in the in

the NH extra-tropics region. As mentioned previously, the tropical lower troposphere is where a

large fraction of CH4 is oxidised by OH. The lower concentrations of OH in this region in HETC

explains why it produces a longer, more reasonable methane lifetime compared to NEWC and

CTRL. In the lowest domain in the region of 30°- 90°N, the model simulations show differences of

59%, 56% and 42% for CTRL, NEWC and HETC compared to Lawrence 2001, showing that the

updates improve OH in this region. However, HETC still exhibits a large overestimate which will

likely have important implications on the lifetime of gases in the NH at the surface. In the region

of 30°S - 90°S, HETC differs from Lawrence 2001 by 6%-15%. This shows that the simulated

OH has a much lower bias in the SH than in the NH compared to Lawrence 2001 .Inthe upper

troposphere, all three simulations show very large percentage differences between 90°S - 30°N.

CTRL generally shows the lowest differences, however, there are clearly systematic differences in

the TOMCAT model which are not resolved by the updates included in NEWC and HETC. In the

mid to high latitudes in the SH, the model shows biases of -46% and -34% in CTRL and NEWC

and -42% and -50% in HETC, in the domains between 750-500 hPa and 500-250 hPa, respectively,

with the biggest difference being in the lower domain. The model shows the largest disagreement

compared to Lawrence 2001 in the tropics with differences of -32 – -49%,-32 – -51% and -36 –

-54%, in CTRL, NEWC and HETC.

Overall, the biggest differences are found in the highest altitude domain and the model generally

captures the OH in the lowest altitude domains. This suggests that there is a large missing source

of OH in the upper troposphere. Photolysis of acetone (CH3COCH3) has been found to be a

major source of OH is the upper troposphere (Jaegĺe et al., 1997; Müller and Brasseur, 1999)

and therefore it would be useful to compare the model to aircraft observations of acetone in the

future. Another possibility is that the model overestimates OH at the surface inthe NH due to

underestimated convection. Convection has been shown to be underestimated in TOMCAT in the

tropics (Feng et al., 2011; Hoyle et al., 2011) which would act to rapidly transport short-lived

species into the upper troposphere. Convection has been shown to be animportant process and has

been observed to be an important process in controlling upper tropospheric HOx concentrations

(Jaegĺe et al., 1997).

4.5 Evaluation of simulated carbon monoxide

CO has been estimated to have an average annual global burden of 360-370 Tg(CO) (Ehhalt et al.,

2001). This is similar to the mean annual global burden of 375.25 Tg of CO calculated from

the CTRL simulation. With the extended organic chemistry in NEWC this is increasedto 391.61

Tg. The uptake of N2O5 on aerosol further increases this to 412.58 Tg in HETC. These are both

higher than previous estimates. Here, a more detailed assessment of the distribution of simulated



Chapter 4.TOMCAT model development and evaluation 61

CO in comparison to observations is given to assess the performance of themodel with a regional

perspective.

4.5.1 Comparisons with MOPITT

Simulated CO from all three simulations has been compared on a global scale to CO, retrieved from

the satellite instrument, MOPITT (Measurements Of Pollution In The Troposphere). MOPITT is

on board the NASA Terra satellite and infers global concentrations of CO from thermal infrared

radiances in the CO absorption band. Version 4 of MOPITT has been processed in such a way

that the data is available as both night-time and daytime retrievals. This data has been validated

against other observations and shown to measure CO to within a few ppbv ofin-situ estimates,

with the largest bias occurring at 400 hPaDeeter et al.(2010). For comparison with TOMCAT, the

daytime retrievals have been used due to increased sensitivity over land (Louisa Emmons, personal

communication, 2011). Level 3, monthly mean data was used2 and is available on a 1°x 1° grid as

a profile or as a total column. MOPITT CO is retrieved on 10 levels extending from the surface up

to 100 hPa. The monthly mean simulated CO from TOMCAT was interpolated vertically to the 10

retrieval levels and horizontally to the 1°x 1° MOPITT grid. Any missing data from the satellite

were also removed from the TOMCAT output.

MOPITT is a nadir-viewing instrument and is therefore more sensitive to certain altitudes. For this

reason, averaging kernels, a matrix holding information about the instrument’s varying sensitivities

at different altitudes, are supplied with the retrieval data. These are used along with the a priori to

transform simulated CO profiles from a model, applying a similar sensitivity to the same altitudes

as the satellite. This allows a more accurate comparison between the two. The total column of a

gas,X, is calculated by integrating the concentration of the gas (in molecules/cm3) over the total

height, h, of the atmosphere as follows:

column=
∫ h

z=0
Xdz. (4.5)

The column a prioriXapcis not supplied but it can be calculated from the a priori profile (Xap)

following Deeter(2009):

Xapc= K ∑
i

(△pi ·Xapi), (4.6)

where△pi is the pressure level thickness of theith MOPITT retrieval level in hPa (instead of

height) and K=2.12×1013 (mol/cm3)(hPa ppb), which converts ppbv to molecules/cm2 (Deeter,

2Available from http://www.acd.ucar.edu/mopitt/
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Figure 4.8TOMCAT and MOPITT total column CO for January 2008. Top row: TOMCAT total
column CO from CTRL, NEWC and HETC (left-right) interpolated to MOPITT levels and grid
with averaging kernels applied, second row: retrieved MOPITT CO total column, bottom row:
Absolute difference between TOMCAT and MOPITT total column.

2009). The averaging kernels for the total column (akc) also need to be calculated from the profile

averaging kernels (ak) as described byDeeter(2009):

akc= (K/log10(e))∑
i

△pi ·Xrtvi ·aki , (4.7)

whereXrtvi is the retrieved MOPITT profile at each level, i. The calculated column a priori and

averaging kernels were then applied to the TOMCAT simulated profile (XT) and a priori profile

(Xap) to calculate the TOMCAT total column (XTc) according toDeeter(2009):

XTc = Xapc+akc(XT −Xap). (4.8)

Figure4.8 and4.9 show the January and July 2008 monthly mean CO total column from CTRL,

NEWC and HETC (calculated using equation4.8) along with the MOPITT retrieved total col-

umn and the absolute difference between the modelled and retrieved CO. In January, MOPITT

shows that TOMCAT captures the large-scale features and distribution ofCO, with a clear inter-

hemispheric gradient and higher concentrations of CO in the NH compared tothe SH. A region of

high CO is located over north and central Africa from biomass burning. The easterly transport of

these emissions towards South America is also visible. Other regions of high COcan also be seen
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over India and South East Asia and above-background concentrations of CO are located over the

anthropogenic emissions regions of eastern North America and western and central Europe. West-

erly outflow regions from the anthropogenic emission regions over the North Atlantic and North

Pacific are also visible. Even so, the model simulates higher concentrations than observed by MO-

PITT in the SH. The biomass burning emission region in South Africa extends further south in

TOMCAT, than observed by MOPITT, with emissions occurring over a wider region. This results

in a larger outflow of CO in TOMCAT to the west. This could suggest errors in the GFED v2 fire

emissions which could be contributing to an overestimate in background CO. The latest version

of GFED emissions (GFED v3) has lower estimates of area burned in SE Asia,equatorial Asia,

Africa, South America and Central America (Giglio et al., 2010) and would therefore reduce this

bias. In addition to this, both GFED v2 and v3 have higher burned area estimates in Africa than

other databases (Giglio et al., 2010).

In the NH, the model shows a much better agreement with the observed CO column but some

regions show a low bias. The CTRL model underestimates CO in comparison to MOPITT most

notably over the Pacific Ocean. As this is the main outflow region of Asian emission, this suggests

a possible underestimate in emissions in Asia. For this simulation, AR5 emissions estimates for

the year 2000 were used. Due to the rapid expansion of Asia, emissions have increased markedly

since 1980 (Ohara et al., 2007), therefore, the AR5 emissions may not capture the magnitude of

emissions in 2008. Simulated CO over regions of North Africa, Europe and North America are

also less than observed by MOPITT. As shown in Section4.3, the concentration of CO is increased

in NEWC and in HETC. With this increase in CO, TOMCAT shows much better agreement with

MOPITT in regions of North Africa, Europe, North America and the Pacificand Atlantic Oceans.

The HETC simulation shows the best agreement with MOPITT in the NH, but dueto the increase

in CO in the SH, the positive bias in the model in this region is also increased. Thisoverestimate

in CO in the SH is the reason why the total mean mass burden of 412.58 Tg(CO) calculated from

HETC is greater than previous estimates of 360-370 Tg(CO).

The clear CO inter-hemispheric gradient in January, seen by MOPITT and captured by TOMCAT,

is now less visible in July (see Figure4.9). This is because of the shorter lifetime of CO in the NH

summer compared to winter, and longer lifetime in the SH winter compared to summer, resulting

in more similar concentrations in both hemispheres. In TOMCAT, the gradient ishardly visible

due to higher than observed concentrations in the SH. However, as seenin January, TOMCAT

and MOPITT show comparable dominant features in the distribution of CO. Itis clear that CO

is underestimated throughout the whole NH in the all three simulations, most notably over land

near sources suggesting emissions of CO may be too low. Model inversionshave found emissions

of CO in Asia to be underestimated by up to 40% (Kopacz et al., 2010) due to anthropogenic

emissions (Hooghiemstra et al., 2011). This would lead to an underestimate of CO near Asia, but

also give a lower background CO in other regions. In the NH summer, MOPITT shows retrieved
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Figure 4.9As Figure4.8but for July 2008.

CO in the Arctic with the use of day profiles. Here it can be seen that the modelshows better

agreement with the satellite than near the source regions in the NH. The HETC simulation also

offers a much improved comparison to the satellite than CTRL or NEWC in this region.

In the SH, CO is overestimated in July, as seen in January, but the bias is smaller. Over Africa,

regions of high CO are observed by both, however, in the MOPITT retrievals, it covers a smaller

region than simulated by TOMCAT. This is similar to what was seen in January. At this time

of year fires also occur in South America, where TOMCAT and MOPITT show an even larger

discrepancy. Due to the shorter lifetime of CO in the NH summer compared to winter, the gas

is less well-mixed giving more distinct concentration gradients close to sourceregions. MOPITT

observes high CO around the anthropogenic regions of North America, Europe and Asia. July

is also the peak biomass burning season in the mid/high northern latitudes, therefore regions of

Alaska, Canada and Siberia also have higher concentrations of CO compared to the background.

The CTRL TOMCAT simulation has high CO concentrations near North America and Asia, but

regions of Europe, Canada, Siberia and Asia are underestimated. The increased background con-

centration in NEWC improves the model in regions of Europe and Canada butthere are still regions

where the model underestimates CO. HETC shows the best agreement with MOPITT in the NH

due to the longer lifetime of CO giving even higher concentrations of CO, reducing the bias quite

substantially.

To understand the differences between TOMCAT and MOPITT in more detail, the retrieved pro-

files have been used for comparisons at different altitudes over specific regions. Eight different
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Figure 4.10 Monthly mean anthropogenic, natural and biomass burning emissions (Tg/month)
for 2008 used by TOMCAT for the CTRL, NEWC and HETC simulations from anthropogenic,
natural and biomass burning sources in the regions defined in Table4.3.

Table 4.3Regions used for the MOPITT CO comparisons shown in Figure4.11.

Region Longitude and Latitude ranges
>70N 70-90N, 0-360E
EUROPE 30-70N, 350-60E
N.ASIA 45-70N, 60-150E
SE.ASIA 10-45N, 60-125E
US 25-50N, 235-300E
ALASK&CAN 50-70N, 235-300E
N.ATLANTIC 20-60N, 300-348E
N.PACIFIC 20-50N, 150-230E

regions have been chosen to represent the major sources and outflow regions in the NH. The lon-

gitudes and latitudes of these regions are listed in Table4.3. The monthly mean anthropogenic,

biomass burning (BB) and natural/biogenic emissions are shown in Figure4.10. Europe, US and

S.E Asia have been chosen as they have the highest anthropogenic emissions, with S.E. Asia hav-

ing the highest overall. The N. Asia and Alaska and Canada regions havebeen chosen as they have

much lower anthropogenic sources but experience large emissions fromBB. Alaska and Canada

also experience high natural emissions which are of a similar magnitude to the BBemissions. The
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Figure 4.11 Correlation plots between TOMCAT HETC CO (in ppbv) profiles (interpolatedto
MOPITT levels with averaging kernals applied) and MOPITT CO (in ppbv) profiles for DJF,
MAM, JJA and SON (left to right) for the regions defined in Table4.3. Each symbol in the scatter
plots represents a concentration of CO in one box of the 1°x 1°grid, at one the 10 levels and has
been coloured by the pressure of that level. E is Root Mean Square Error (RMSE) in ppbv and r is
the correlation.
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Atlantic and Pacific regions mostly experience natural emissions from the oceans. The boxes that

were chosen contain a small area of land and therefore small anthropogenic emissions can be seen

in Figure4.10.

Figure4.11shows scatter plots of MOPITT against TOMCAT (HETC) CO. This analysisis only

shown for HETC as it was shown to perform the best in comparison to MOPITT total column in

the NH. The Pearson correlation (r) and the root mean square error (RMSE) between MOPITT

and TOMCAT have been calculated for each region. The mean-square error is defined as:

RMSE=

√

1
n

n

∑
1

(Xmod−Xobs)2, (4.9)

wheren is the number of observations in each region defined by the longitudes and latitudes listed

in Table4.3, andXmod andXobs are the simulated and retrieved CO volume mixing ratio. The

correlation represents how similar the variations in the model and observations are in time and the

RMSE represents the mean absolute difference between the model and observations.

In general, the model has high correlations of 0.85-0.99 with MOPITT suggesting that model is

able to resolve variations in CO observed by MOPITT due to transport. Also, in all regions at

altitudes greater than 200 hPa, the model and satellite show very similar concentrations. This is

because MOPITT has very little sensitivity at this altitude and therefore the satellite and model

concentrations are primarily influenced by the a priori.

Europe, US and S.E. Asia, which are dominated by anthropogenic emissions,show high concen-

trations of CO, with the highest concentrations being observed and simulatedover S.E. Asia and

the lowest over Europe, in line with the emission totals (see Figure4.10). Over Europe the lowest

RMSE is in JJA and the largest in MAM and SON. The simulated concentrations show a nega-

tive bias from the surface up to∼400 hPa for all seasons apart from SON, which has a positive

bias throughout the whole troposphere. Over the US, the model exhibits thehighest error in SON

(RMSE=16.61 ppbv). the model show the same seasonal biases as seen over Europe. Over South-

East Asia, the model underestimates CO near the surface, below 700 hPa,in DJF. In winter most

emissions come from anthropogenic sources and therefore support thebelieved underestimate in

Asian emissions. In MAM, the model does, however, overestimate CO near the surface in some

grid boxes. As seen in Figure4.10, this is the peak BB season. Emissions in GFED v2 are thought

to be too high in this region which would offset the underestimate in the anthropogenic emissions

(Giglio et al., 2010). The largest errors occur in JJA and SON as with the other regions. Higher

emission occur during the summer in Europe and US and in spring in S.E. Asia increasing the at-

mospheric burden of CO. In Section4.4 it has been shown that TOMCAT has very low OH in the

mid-upper troposphere, where the biggest biases are seen to increasein SON. This could suggest

that this overestimation of CO in autumn is due to inefficient loss by OH in the NH.
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N. Asia and Alaska and Canada are dominated by natural emissions (both biogenic and BB). Both

these regions have the lowest error in JJA and the highest error in DJF.The model underestimates

CO in DJF and MAM and overestimates CO in SON, as seen in the anthropogenicregions. The

highest error in DJF is due to a region near the surface where the model does not capture high

concentrations of CO that are observed by MOPITT. As part of this thesis, TOMCAT simulations

were performed for a study bySodemann et al.(2011), which compared the output to CO simu-

lated by a Lagrangian model, FLEXPART, and CO from the satellite instrument, IASI. The study

showed that TOMCAT was more diffusive (as expected for a Eulerian model) than FLEXPART,

therefore, unable to retain filaments of very high CO observed by IASI being transported over the

North Pole for two biomass burning cases. In the winter, these two regions donot have any large

local emissions (see Figure4.10) and therefore any high CO observed by MOPITT would have

been transported from the lower latitudes. The diffusion of this CO in TOMCAT would lead to

lower than observed CO as seen in Figure4.11. The region of>70°N in DJF also shows a similar

occurrence, where concentrations of MOPITT CO reach up to 300 ppbv and TOMCAT only shows

a maximum of∼150 ppbv at altitudes below 700 hPa. Again, the model overestimates CO in SON

throughout the troposphere. As elsewhere, the model underestimates COin MAM. JJA has the

lowest RMSE as seen elsewhere .

The N. Atlantic and N. Pacific are both subjected to outflow from North Americaand Asia, re-

spectively. The model overestimates CO in DJF, JJA and SON and underestimates CO in MAM.

As CO from North America is generally exported over the Atlantic with passing frontal systems,

the CO is lifted to higher altitudes where OH is thought to be too low which would result in more

CO than observed. Over the Pacific, the model underestimates CO in DJF andMAM as in Asia

and overestimates CO in SON. As with over the Atlantic, the underestimate in CO occurs at higher

altitudes due to frontal lifting.

4.5.2 Comparisons with surface site measurements

Observed CO from the stations listed in Table4.4 and shown in Figure4.12has been compared

to simulated monthly mean CO from the TOMCAT simulations, CTRL, NEWC and HETC.All

of the data has been downloaded from the World Data Centre for Greenhouse Gases (WDCGG)3.

Figure4.13shows observed CO at these stations for 2008 with simulated CO interpolated both

horizontally and vertically to the station location. The first five stations, ALT, ZEP, BRW, STM

and ICE, are all located above 60°N. All of these stations are located in remote regions far from

the mid-latitude sources. Therefore, concentrations of CO mostly reflect background CO resulting

in similar concentrations at all stations. The observations show a winter/spring maximum of 150-

180 ppbv in February-April and a summer minimum of 90-100 ppbv in July-August. Overall,

3http://gaw.kishou.go.jp/wdcgg/
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Figure 4.12Surface site locations used for CO comparisons with TOMCAT (top, left), O3 (top,
right) and NMHC/NOy species (bottom). The locations are also listed in Figure4.4

the model captures the seasonal cycle, however the amplitude of the cycle isunderestimated in

TOMCAT (a modelled range of∼30-50 ppbv compared to the observed range of∼70-80 ppbv).

This is due to underestimated CO in winter and overestimated CO in summer in the model.

Including the additional hydrocarbon chemistry (NEWC) and the N2O5 uptake by aerosols (HETC)

increases CO at the surface throughout the year at all of these stations. HETC shows the best

agreement with the observations with improved correlations of between 0.82 and 0.94 and re-

duced RMSE of between 16.5 and 22.2 ppbv. This is at the lower end of the 17-40 ppbv range of

RMSEs found in a model intercomparison study byShindell et al.(2008) focusing on the Arctic at

the surface (at ALT and BRW). Table4.5shows the mean bias (MB), correlations and RMSE sum-

marised for the Arctic stations. In agreement with the results shown in Section4.5.1, the model

underestimates CO in winter and spring in the Arctic. The negative bias in the model is reduced

in HETC both in winter and spring in comparison to the other simulations in the Arctic.Due to

lower CO concentrations in CTRL and NEWC, they have smaller biases duringthis season. As

seen in Figure4.11, the model performs best during the summer.

There are eight mid-latitude stations located between 30°N - 60°N shown in Figure 4.13. MHD

is located in the marine boundary layer sampling mostly air from the Atlantic, RYO, EGB and
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Figure 4.13Surface comparisons of observed and simulated CO from TOMCAT (CTRL, NEWC
and HETC) in 2008. The grey shading shows the standard deviation of themonthly mean obser-
vations where available. The stations are shown in order of latitude from north to south and the
correlations (r) and RMSE are also shown.
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Table 4.4List of surface station locations and species measured used for comparisons with TOM-
CAT. The locations are also shown in Figure4.12.

ID Station Name Lon Lat Alt (m) Species measured

ALT Alert, Canada 297.48 82.45 210 CO
ARH Arrival Heights, Antarctica 166.67 -77.80 184 O3
ASK Assekrem, Algeria 5.63 23.27 2710 CO, O3
BRW Barrow, Alaska 203.40 71.32 11 CO, O3, NMHC
CGO Cape Grim, Australia 144.68 -40.68 94 CO
CPT Cape Point, South Africa 18.48 -34.35 230 O3
CVO Cape Verde, Central Atlantic 335.13 16.85 10 O3 , NMHC
CYA Casey Station, Antarctica 110.53 -66.28 60 CO
EGB Egbert, Canada 280.22 44.23 253 CO
EIC Easter Island, 250.55 -27.13 50 CO
HPB Hohenpeissenberg, Germany 11.02 47.80 985 NMHC
ICE Heimaey, Iceland 339.72 63.40 100 CO
JFJ Jungfraujoch, Switzerland 7.99 46.55 3580 CO, O3, NOy

KEY Key Biscayne, US 279.80 25.67 3 CO
LEF Park Falls, US 269.73 45.92 868 CO
MHD Mace Head, Ireland 350.10 53.33 8 CO
MID Sand Island, Hawaii 182.63 28.20 7.70 CO
MLO Mauna Loa, Hawaii 204.42 19.54 3397.00 CO
MNM Minamitorishima, NW Pacific 153.98 24.28 8 CO, O3
PAY Payerne, Switzerland 6.95 46.82 490 NO, NO2
RYO Ryori, Japan 141.82 39.03 260 CO, O3
SEY Mahe Island, Seychelles 55.17 -4.67 7 CO
SNB Sonnblick, Austria 12.95 47.05 3106 NOy
SPO South Pole, Antarctica 335.20 -89.98 2810 O3
SSL Schauinsland, Germany 7.92 47.92 1205 CO, O3, NO, NO2, PAN
STM Ocean Station ‘M’, N. Atlantic 2.00 66 5.00 CO
SUM Summit, Greenland 321.52 72.58 3238 O3
TAP Tae-ahn Peninsula, Korea 126.12 36.72 20 CO
UUM Ulaan Uul, Mongolia 111.08 44.45 914 CO
ZEP Zeppelinfjellet, Spitsbergen 11.88 78.90 475 CO

TAP are low altitude sites near polluted local sources, and JFJ, SSL, LEF and UUM are high

altitude sites that are remote from local surface sources. As expected, RYO, EGB and TAP expe-

rience higher concentrations of CO compared with the remote stations, MHD, SSL, JFJ, LEF and

UUM. This is due to the location of RYO, EGB and TAP being closer to the surface and therefore

emissions. In general, HETC shows the best agreement in this latitudinal range, with the highest

correlations and lowest RMSE error at all of the stations apart from LEFand EGB. The higher

RMSE at LEF and EGB is due to the summer/autumn CO concentrations being already overesti-

mated by the model and therefore the higher background of CO in HETC increases this bias. The

model reproduces the observed seasonal cycle at 7 out of the 8 stations (MHD, SSL, JFJ, RYO,

UUM, EGB and TAP) with correlations of between 0.76 and 0.92 for the HETCsimulation. At
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LEF, the model simulates a seasonal maximum in September and not spring, giving this station

very low correlations for all three simulations. As with the high latitude stations, the model gener-

ally underestimates CO in the spring at all stations and overestimates CO in the autumn at MHD,

EGB, RYO, UUM and TAP. RYO and TAP, which are located near the source region of Asia,

both show particularly large underestimates of CO in the winter, again, supporting the case that

emissions in Asia are underestimated.

In the region between 30°N and 30°S, there are seven stations in Figure4.13shown for comparison

against the model simulations. MID, MNM and MLO are located in remote marine regions in the

NH far from sources. However, MNM and MID are located in regions which are likely to be

influenced by outflow from Asia over the Pacific. For this reason, MNM and MID underestimate

CO in the winter due to low background CO with underestimated Asian emissions. KEY is located

at the surface, near North American sources. Unlike other stations, the model captures the winter

concentrations, however, the autumn concentrations are overestimated similar to other NH stations.

ASK is a mountain site which is remote from local sources and is mostly influencedby air from

the Atlantic. Here, the model has the lowest RMSE of 7.6 out of all the stations at any latitude,

shown in Figure4.13. In the SH, the model is compared to SEY and EIC, which are both located

in remote marine environments. EIC shows the largest RMSE out of these two stations due to CO

being overestimated throughout the year. In general, HETC shows the highest correlations with all

stations in the extra-tropics and the lowest RMSE at MID, MNM, ASK. CTRL shows the lowest

RMSE at KEY, MLO, SEY and EIC due to the lower CO in the SH.

Figure4.13also shows two stations which are located at 40°S and 66°S (CGO, CYA). As expected

from the results seen so far, CO is overestimated throughout the whole of the year due to their

location in the SH. All simulations captured the seasonal cycle, the highest correlations of 0.92

and 0.91 are gained from the HETC simulation.
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Table 4.5Seasonal mean bias (MB), total root mean square error (RMSE) (in ppbv) and correla-
tions (r) between observed and simulated CO for 2008 at Arctic stations.

Station Lon Lat Simulation Seasonal MB RMSE r
DJF MAM JJA SON

CTRL -15.21 -30.30 6.02 9.25 19.11 0.91
ALT 297.48 82.45 NEWC -9.46 -24.58 11.93 17.31 18.43 0.88

HETC -1.85 -12.93 19.40 23.15 17.73 0.94
CTRL -11.54 -33.47 3.07 11.57 20.35 0.84

ZEP 11.88 78.90 NEWC -5.89 -27.70 8.94 19.90 19.83 0.81
HETC 1.75 -15.93 16.36 25.76 18.87 0.88
CTRL -28.22 -33.36 8.79 9.24 25.17 0.90

BRW 203.40 71.32 NEWC -22.52 -27.82 14.84 17.49 24.09 0.86
HETC -14.83 -16.00 22.22 23.38 22.19 0.92
CTRL -6.58 -29.28 -2.99 12.75 18.27 0.77

STM 2.00 66.00 NEWC -0.99 -23.77 2.91 20.57 17.88 0.74
HETC 6.72 -12.26 10.16 26.60 17.55 0.82
CTRL -10.52 -31.68 -1.55 8.44 19.09 0.79

ICE 339.72 63.40 NEWC -4.93 -26.41 4.00 16.20 18.04 0.75
HETC 2.73 -14.75 11.20 22.22 16.49 0.84
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4.6 Evaluation of simulated ozone

Simulated concentrations of ozone have also been compared to surface observations from the

WDCGG at locations shown in Figure4.12for the year 2008 and are shown in Figure4.14. SUM

and BRW are both located in the Arctic. At SUM, the model reproduces the observed O3 seasonal

cycle, with a maximum in spring, therefore yielding correlations of 0.93 to 0.94 for all three

simulations. The RMSE is 5.6 ppbv for HETC, 3.3 ppbv for NEWC and 4.6 ppbvin CTRL. In

HETC, lower O3 concentrations (due to loss of NOx) increases the model’s RMSE compared to the

NEWC simulation. As seen in the results shown in Section4.3, HETC shows the biggest reduction

in O3 in spring. At BRW, TOMCAT does not capture the seasonal cycle, yielding correlations of

only 0.23-0.25 for the different simulations. The model predicts a similar seasonal cycle at BRW

and SUM with a spring maximum. However, the observations show very low concentrations of

O3 in spring. BRW is located near the Beaufort Sea and regularly witnesses rapid O3 depletion

events (ODEs) during spring due to catalytic destruction of O3 by halogens (Barrie et al., 1988;

Simpson et al., 2007; Helmig et al., 2007). The chemistry scheme used in TOMCAT does not

include halogen chemistry, therefore the model is unable to simulate ODEs. As mentioned in

Figure 4.14Surface comparisons of observed and simulated O3 (in ppbv) from CTRL, NEWC
and HETC simulations for 2008. Shading represents standard deviation ofmonthly mean observed
concentrations where available. The correlations (r) and RMSE are alsoshown.
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Section2.7.6ODES can cover large areas and will not be confined to area immediately around

the BRW station, TOMCAT has recently been developed to include bromine chemistry (Breider,

2010) and future simulations to investigate the impact of halogens on the Arctic as a whole could

be done using this version of the model. During the other seasons, the model does reproduce the

observed concentrations of O3. Table4.6 shows the seasonal MB at these two Arctic stations for

the CTRL, NEWC and HETC simulations. At SUM, all three simulations show the largest biases

in the winter months. The lowest biases are found in autumn (similar to CO) in NEWCand HETC.

Conversely, CTRL shows the lowest bias in spring. At BRW, all three simulations show the largest

bias in spring due to the lack halogen chemistry as already discussed. Apart from spring, the biases

at BRW are smaller than they are at SUM.

In the mid latitudes the model has been compared to observations at SSL, JFJ and RYO. The model

overestimates O3 to some extent throughout the year at all three sites but the summer months show

the largest bias with simulated concentrations being up to 100% higher than observed. Overall, the

model shows RMSE values that are higher than in the Arctic and HETC showsthe best agreement

with the lowest RMSE values of 7.5 to 21.7 ppbv. JFJ shows good agreementwith the model

in the winter and spring when JFJ is thought to be mostly influenced by high altitude sources

(Kaiser et al., 2007). In the summer, JFJ has been shown to be mostly subjected to O3 transported

from the Mediterranean (Kaiser et al., 2007). During the summer months, RYO is subjected to

easterly winds bringing air masses from over the ocean which are low in O3 (JMA, 2009), these

low concentrations are not captured by the model, possibly indicating inefficient destruction of O3

in remote marine regions.

MNM, ASK, CVO and CPT are all located close to the tropics in remote marine environments

(see Figure4.12). As with RYO, the model overestimates O3 at all of these stations. HETC

which shows the best agreement compared to the other simulations with a RMSE of between 6.9

to 11.3. Destruction of O3 by halogens is believed not only to be important in the Arctic. It

has also been found to be important in tropical oceanic sites such as CVO (von Glasow, 2008;

Read et al., 2008). This could be contributing to the model’s overestimate of O3 at all remote

marine sites.Breider(2010) found an increase in O3 destruction at CVO when bromine chemistry

was included in the TOMCAT model which would reduce the concentrations ofO3, however,

the model was still biased high. Remote oceans are also typically characterised by destruction

of O3 due to low concentrations of NOx (Lee et al., 2009) and therefore the results also suggest

that the model is not capturing the destruction of O3 in these regions. This bias in the model is

relatively consistent throughout the year meaning the model does manage tocapture the seasonal

cycle giving correlations of between 0.63 to 0.98 for CTRL, 0.7 to 0.98 for NEWC and 0.59 to

0.97 for HETC.
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Table 4.6Seasonal mean bias (MB), total root mean square error (RMSE) (in ppbv) and correla-
tions (r) between observed and simulated O3 for 2008 at Arctic stations.

Station Lon Lat Simulation Seasonal MB RMSE r
DJF MAM JJA SON

CTRL -6.75 -0.62 -4.84 -1.64 4.58 0.93
SUM 321.52 72.58 NEWC -4.11 1.78 -3.19 -0.32 3.33 0.94

HETC -7.57 -4.14 -4.88 -3.37 5.56 0.93
CTRL -0.54 14.56 2.52 -0.42 7.87 0.24

BRW 203.40 71.32 NEWC 1.72 16.54 3.64 0.25 8.97 0.25
HETC -1.66 11.22 2.56 -2.24 6.36 0.23

ARH and SPO are both located in Antarctica. The observations at both stations show a seasonal

maximum in the austral winter and minimum in summer. The maximum in the winter is due to the

lack of photochemical destruction of O3 with constant darkness. The model captures the seasonal

cycle at ARH with correlations of 0.89 for all simulations but does not capture it as well at SPO

with correlations of 0.38. At SPO there is an increase in O3 later in the calender year, this has

been shown to be due to photochemical production of O3 from NOx released from the snow in

the summer (Helmig et al., 2007) which is not captured by the model. The model shows a similar

RMSE at both stations of∼6 ppbv for all simulations, however the model shows a large negative

bias during the austral winter.

4.7 Evaluation of simulated NOy

Figure4.15shows the model compared to observations of some species of NOy at surface sites in

Europe (see Figure4.12). NO and NO2 are compared to the model at the stations SSL and PAY

(second and third panel down). The concentrations of observed NO and NO2 are much lower at

SSL compared with PAY suggesting that observations at PAY are more influenced by local emis-

sions of NOx. All three of the simulations reproduce NO at SSL within 1 standard deviation of

the mean (shown by the grey shaded area). However none of the simulations capture all of the

observed seasonal variability, yielding correlations of between -0.08 and 0.15. It is particularly

difficult for models to capture such short lived species in continental regions due to relatively large

grid size. Due to the longer lifetime of NO2, the model is more capable of capturing the seasonal

variability at SSL with correlations of 0.77 to 0.9 for the different simulations, however, the model

underestimates NO2 during the summer. At PAY, the model captures the variability of NO and

NO2 better than at SSL (as indicated by the correlations), however, the model clearly does not

capture the high concentrations of NOx at this site. SSL also has observations of PAN (top panel).
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Figure 4.15 Surface comparisons of observed NOy species to TOMCAT simulations CTRL,
NEWC and HETC in 2008.

Including the additional hydrocarbon chemistry in NEWC and HETC produces much higher con-

centrations of PAN, as seen in Section4.3. NEWC and HETC now simulate concentrations of

PAN to within 1 standard deviation of the observed mean all year round apart from November and

December where PAN is now overestimated slightly. Total reactive nitrogen (NOy) is shown in the

bottom panel of Figure4.15at SNB and JFJ which are both remote high altitude sites. At SNB,

the model reproduces the seasonal variations very well in all three simulations apart from in the

summer where NOy is overestimated. The seasonal cycle of NOy in the model is dominated by

HNO3 (see Figure4.1) and may suggest inefficient loss of HNO3. At JFJ, the model follows a

similar pattern, with NOy being overestimated in the summer.

4.7.1 Comparisons of simulated NOx and O3 with TOPSE aircraft.

As this work focuses on the Arctic, it is important to evaluate the model with regards to the ad-

dition of the uptake of N2O5 by aerosol in HETC due the importance of this reaction in dark and

cold conditions. The TOPSE (Tropospheric Ozone Production about theSpring Equinox) aircraft
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Table 4.7Monthly mean NOx and O3 concentrations for March from the TOMCAT model (for
simulations CTRL, NEWC, HETC) averaged over 60°- 85°N, 60°-105°W. Observations from an
average of all flights during March 2000 as part of the TOPSE aircraftcampaign.

Surface-600 hPa 600-350 hPa
NOx O3 NOx O3

CTRL 24.0 44.2 35.9 91.4
NEWC 14.8 46.8 26.8 94.5
HETC 6.5 41.1 7.4 87.3
Obs. 8.5 50.3 25.0 63.1

MOZART 5.8 47.9 9.9 60.4

campaign took place in the year 2000, sampling concentrations of trace gases between February

and May, from North America to the high latitudes (Atlas et al., 2003). TOMCAT monthly mean

concentrations of O3 and NOx from CTRL, NEWC and HETC have been averaged over the region

60°- 85°N, 60°-105°W which covers the area of high latitude flights, giving an estimation of the

average background concentrations of NOx and O3 in TOMCAT. Average concentrations observed

from TOPSE flights in March within this region are shown in Table4.7along with MOZART sim-

ulated concentrations interpolated to the flights from the studyTie et al. (2003). Between the

surface and 600 hPa, the CTRL and NEWC simulations estimate concentrationsof NOx which

are almost a factor of 3 and 2 higher than observations. N2O5 hydrolysis reduces NOx by 56%

in this region (comparing NEWC to HETC) bringing the simulated concentrations of 6.5 ppbv

into much better agreement with the observed average of 8.5 ppbv. TOMCATand MOZART also

show better agreement when the uptake of N2O5 onto aerosol is considered. The response in O3

is much smaller between the model simulations with O3 concentrations increasing by 5% from

CTRL and NEWC and decreasing by 12% from NEWC to HETC in line with the results shown

in Section4.3. The HETC O3 concentrations are 18% lower than observed and 14% lower than

simulated by MOZART. At higher altitudes, HETC does not do as well, with NOx being 70%

lower than observed (7.4 ppbv compared to 25 ppbv) and O3 being 38% higher than observed

(87.3 ppbv compared to 63.1 ppbv). The NOx from HETC is similar to MOZART suggesting that

both models underestimate sources of NOx in the upper troposphere at high latitudes. MOZART

does capture the observed concentrations of O3 however suggesting that TOMCAT overestimates

O3 in the upper troposphere. This is most likely due to an overestimation of stratospheric O3 being

mixed into the troposphere due to a relatively low vertical resolution around the tropopause.

4.8 Evaluation of simulated hydrocarbons

Figure4.16 shows simulated and observed concentrations of acetone (Me2CO), ethene (C2H4),

ethane (C2H4), propene (C3H6), propane (C3H8), butane (C4H10) and toluene (C7H8). CTRL only
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Figure 4.16Surface comparisons of observed and simulated hydrocarbons from CTRL, NEWC
and HETC. From top to bottom: acetone (Me2CO), ethene (C2H4), propene (C3H6), propane
(C3H8), butane (C4H10) and toluene (C7H8).

has output for the trace gases acetone, ethane and propane becausethe other species are not in-

cluded in the standard chemistry scheme. Primary loss for these NMHC are byreaction with OH

and since anthropogenic emissions are not monthly-varying, the seasonal cycle follows a pattern

that reflects the minimum and maximum OH concentrations, similar to CO. HPB and EGBare

located near industrialised regions in Europe and North America (see Figure 4.12) therefore high

concentrations of NMHC are observed. EGB shows higher concentrations of ethane and propane
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and HPB shows higher concentrations of ethene and propene. Ethane and propane have similar

sources as do ethene and propene, explaining this pattern. At HPB the model captures the seasonal

cycle of each NMHC with correlations of between 0.86 and 0.94 for all threesimulations. How-

ever, in the cases of ethene and propene, the model does not capture the amplitude of seasonal cycle

in these gases due to a winter underestimate. Ethane and propane are underestimated throughout

the year suggesting the emissions of these gases are too low in the model. The model has the

largest RMSE for ethane out of all the trace gases shown in Figure4.16. HETC shows the lowest

RMSE out of the three simulations due to the lower OH concentrations (see Table 4.2). Conversely,

the model reproduces observed butane and toluene to within 1 standard deviation throughout the

year suggesting that the sources of these two gases have been well estimated in the AR5 emissions

estimates. AT EGB, the model also underestimates ethane and propane, however, due to the higher

concentrations at EGB compared to HPB, the RMSE is higher (1342.6 pptv compared to 1104.1

pptv for ethane and 725.9 pptv compared to 461.0 pptv for propane for HETC). Due to the lower

concentrations of ethene and propene, the model does not underestimatethe concentrations in the

winter. This suggests that the regional difference in ratios of NMHC emissions are not represented

in the AR5 emissions estimates and therefore by extension, the model is unlikely tocapture the

observed concentrations. Again, toluene and butane show good agreement between the model and

observed values.

4.9 Summary

Two new developments have been implemented into the TOMCAT model. The first being the

extension of the organic chemistry scheme by the addition of NMHC emissions and chemistry.

The second being the heterogeneous uptake of N2O5 by aerosol. The impacts of these two new

updates have been discussed and then the model has been evaluated against surface observations

and satellite retrievals. The oxidation of the additional NMHC leads to a 4-5% increase in total

atmospheric CO, with the biggest impact occurring during spring due to the onset of photochem-

istry. O3 was also increased by 2-4% and there was an overall increase in the burden of HOx due

to a 3-4% increase in HO2. One of the biggest impacts was seen in the burden of PAN which was

increased by 40-75%, with the largest impact during the NH winter. As more NOx formed PAN

rather than HNO3, less NOy was lost through wet deposition. Due to the fact that the majority of

the additional hydrocarbon emissions occurred in the NH, these impacts were seen most clearly in

the NH.

In agreement with previous studies, the addition of N2O5 uptake led to a substantial decrease of

between 20-47% in the NOx burden. The biggest impact was seen during the winter in the NH

due to the long hours of darkness and low temperatures making this an efficient loss route. Lower

concentrations of NOx led to a reduction in the O3 burden of 4-6%. The biggest impact was seen
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during spring when photochemistry becomes more active in the NH. Due to the loss of O3, OH

was also reduced by 7-8%. Aerosols are present in both hemispheres and therefore these impacts

were seen globally, however, as more NOx is emitted in the NH, the impacts in this region were

greater than in the SH.

An evaluation of the simulated annual global mean concentrations of OH showed that the model

concentrations were within estimates inferred from observations, however, there was a missing

source of OH in the upper troposphere. The model with both new updates was shown to improve

OH concentrations at the surface in the NH due to reduction of OH from the loss of NOx by N2O5

uptake.

Simulated CO was compared to retrievals from the MOPITT for the year 2008.Total column CO

revealed the standard version of the model (CTRL) to underestimate CO in theNH and overesti-

mate CO in the SH. When both of the updates were put into TOMCAT, the model showed a much

better agreement with MOPITT CO in the NH due to the increase in CO throughout the NH. CO

was also increased, to a lesser extent, in the SH which further increased the already existing posi-

tive bias. A regional analysis of the model with MOPITT in the NH and at surface stations revealed

that even with the improved version of the model (HETC), TOMCAT still underestimated CO in

winter and spring and overestimated CO in the autumn. In general, the model showed the best

agreement in the summer. The model showed the largest winter/spring biasesat stations close to

Asia, suggesting Asian emissions are underestimated in the IPCC AR5 anthropogenic emissions.

Comparisons of simulated O3 with measurements made at surface stations within the Arctic showed

very good agreement. The main failing of the model was due to the lack of halogen chemistry

which meant the model was unable to capture the very low concentrations of O3 observed at BRW

during spring. O3 was found to be overestimated in remote marine regions at surface stations

thought to be due to inefficient destruction of O3. Using aircraft observations from the TOPSE

campaign from 2000 which took measurements in the Arctic showed that the addition of N2O5

uptake in the model greatly improved simulated NOx and O3 during the spring at high latitudes.

However, the model was found to overestimate O3 in the upper troposphere, which is believed to

be due to an overestimation of stratospheric O3 due to low vertical resolution.

Surface observations of NHMC showed that ethane and propane are consistently underestimated

throughout the year and ethene and propene are underestimated in the winter due to the emissions.

Acetone and the newly included butane and propane were found to agreeto within 1 standard

deviation of the mean of the observations. The additional production of PANfrom the oxidation

of the new hydrocarbons led to much better agreement with the observations. Total NOy was found

to be overestimated during the summer and needs to be investigated further.





Chapter 5

Source contributions to Arctic CO and

O3

5.1 Introduction

It was first realised that the Arctic is a major receptor of atmospheric tracesgases and aerosols

in the 1950s, however, little was known about the sources (Shaw, 1995). By the mid-1980s it

was discovered that the high concentrations of pollutants observed in the Arctic in winter and

spring were due to long-range transport of emissions from Eurasia andNorth America (Rahn,

1985). Since then, there have been a number of source attribution studies aiming toquantify the

burden of different species transported to the Arctic from lower latitudes(e.g.,Koch and Hansen

(2005); Stohl(2006); Bourgeois and Bey(2011)). The results from these studies show conflicting

evidence for which region is the dominant source of Arctic trace pollutants.Some of these studies

consider different species and therefore results are expected to vary, as the lifetime of a gas is

related to the quantity that reaches the Arctic (Eckhardt et al., 2003). However, those considering

the same species also draw different conclusions. For example,Shindell et al.(2008) andFisher

et al. (2010) both considered the anthropogenic sources of CO.Shindell et al.(2008) found that

when CO is averaged annually, European emissions dominate in the lower troposphere and East

Asian emissions dominate in the upper troposphere. Conversely,Fisher et al.(2010), who only

considered April 2008, found North American emissions to dominate throughout the troposphere.

For these studies, differences between definitions of the source regionboundaries, emission totals

and the season being considered are all likely to contribute to differencesin the interpretation of

results. It is therefore important to differentiate between which regions have the highest transport

efficiency and which regions contribute the highest absolute burdens due to a combination of

efficient transport and high emissions. This will help us to understand which regions contribute

83
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the biggest absolute burdens and which regions will offer the biggest reductions in Arctic burdens

if emissions are reduced by a certain fraction.

In this chapter a fixed lifetime tracer, which has been implemented into the TOMCATmodel, is

used to compare the transport efficiency from different anthropogenic source regions to the Arctic

throughout the year. This removes any impact of OH variability on the Arctic burden, which

would affect trace gases such as CO, and reveals the seasonality in transport only. It has been

observed that anthropogenic emissions are not the only source of pollutants in the Arctic, with fires

contributing large fractions to the budgets of species such as CO during thespring and summer

(Stohl, 2006; Stohl et al., 2007; Warneke et al., 2010). For this reason, CO is used to consider

the impact of anthropogenic, natural and fire emissions on the burden of CO. Realistic CO tracers

decayed by monthly varying OH are used to capture both the transport efficiency and seasonality

in OH. Due to the lifetime of CO being 1-6 months it can undergo long-range transport making

it a useful tracer of such emissions. This work is the first to calculate the different contributions

to Arctic CO from different types of fires (e.g., agricultural and forestfires) and compare them to

anthropogenic sources throughout the year.

There is a need to understand the sources of O3 because of its potential contribution to warming

in the Arctic. Shindell et al.(2008) investigated the sensitivity of Arctic O3 to a 20% reduction

in NOx emissions from the different anthropogenic regions of North America, Europe and Asia.

They found North America to be the dominant source of O3 in the Arctic which differed from

those of CO in their study. This shows that the complex chemistry which governs O3 production

results in different regional sensitivities compared to other gases. Therefore, the newly developed

full-chemistry version of the model is also used in this chapter to compare the source contributions

to Arctic O3 from fires and anthropogenic emissions.

The model set-up for the fixed lifetime tracers, the realistic CO tracers decayed by OH and the

full chemistry simulations are described in Section5.2. Transport efficiency from different an-

thropogenic regions in the model is discussed and compared to previous studies in Section5.3.

The CO tracer and CO from the full chemistry simulation is compared to observations in Section

5.4. Then the major source contributions to the CO budget are shown in Section5.5. Finally,

the results from the full chemistry simulations comparing the contributions to O3 from fires and

anthropogenic sources are discussed in Section5.6.
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Figure 5.1Regions used for the anthropogenic regional tracers.

5.2 Model set-up and methodology

5.2.1 Fixed lifetime tracer simulation

Five anthropogenic tracers with fixed lifetimes of 30 days were implemented intothe TOMCAT

model. These have been summarised in Table5.1. CO emissions from the IPCC AR5 dataset for

the year 2000 (described in Section3.4.1.1) were used to define the major anthropogenic source

regions. These emissions contain no seasonal variability and therefore the only source of variation

in the Arctic burdens will be that of transport. The first tracer (CO30AN) includes all global

sources of CO anthropogenic emissions. The other four tracers includeCO emissions from one

of the regions shown in Figure5.1. These regions were chosen as they represent the locations of

major anthropogenic CO emissions in Europe, North America, East Asia and South Asia. The

simulation was spun-up for 1 year from January to the end of December 1989. It was then run

for 20 years from January 1990 to December 2009 using ECMWF ERA-Interim meteorological

fields. This meteorological data is available for the whole period from 1989-1990 and was chosen

to avoid any inconsistencies which may be caused by switching between reanalysis versions.

5.2.2 Realistic CO tracer simulation

The realistic CO tracer simulation was set-up to include 16 CO tracers which aresummarised in

Table5.2. Each tracer was decayed by reaction with OH only, using the CO + OH reaction rate

from the full chemistry version of TOMCAT (see AppendixA). The model was provided with

monthly mean OH concentration fields which vary monthly, but contain no interannual variabil-

ity. These fields were created for the model inter-comparison project, TRANSCOM (Patra et al.,

2011), and are based on the estimates bySpivakovsky et al.(2000).

Each tracer included CO emissions from one or all of the anthropogenic, natural or fire sources.

These were created from the IPCC AR5 anthropogenic emission estimates for the year 2000, POET

natural emissions and GFED v3.1 biomass burning emissions (for more details see Section3.4).
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Table 5.1List of fixed 30-day lifetime CO tracers used to evaluate the efficiency of transport to
the Arctic.

Simulation ID Description
CO30AN 30-day lifetime tracer of all anthropogenic CO emis-

sions.
CO30NA 30-day lifetime tracer of North American anthro-

pogenic CO emissions in the region 230-310 E and
24-66 N only (see Figure5.1).

CO30EU 30-day lifetime tracer of European anthropogenic
CO emissions in the region 342.5-60 E and 33-66
N only (see Figure5.1).

CO30EA 30-day lifetime tracer of East Asian anthropogenic
CO emissions in the region 98-140 E and 18-50 N
only (see Figure5.1).

CO30SA 30-day lifetime tracer of South Asian anthropogenic
CO emissions in the region 67-96 E and 5-38 N only
(see Figure5.1).

Figure 5.2Annual total CO emissions for all main sources tracers, all anthropogenictracers and all
fire tracers (averaged over 1997-2009). Left) Emissions for COTOT, CO AN, CO TF, CO NAT,
and COISOP. Middle) Emissions for total anthropogenic and regional tracers tracers: COAN,
CO NA, CO EA and COSA (note that regional tracers do not add up to total anthropogenic
emissions). Right) Emissions for total climatological biomass burning emissions and for each fire
type: COTF, CO AGR, CO DEF, COFOR, COPEA, COSAV and COWOO. These emissions
are used for the realistic lifetime tracers and the anthropogenic 30-day fixed lifetime tracer. Note
different y-axis.

The use of the newly available GFED v3.1 emission dataset allowed contributions from different

types of fires to be separated into agricultural, deforestation, forest, woodland, peat and savannah

fires. These and total fire emissions are available for 1997 to 2009, allowing a long simulation to

be done which accounts for the inter-annual variability in fire emissions. Secondary production

of CO from hydrocarbons was accounted for by increasing all of the direct anthropogenic and

biomass burning emissions by 18.5% and 11%, respectively following the estimates ofDuncan

et al.(2007). As with the fixed lifetime tracer (see Section5.2.1), four different tracers were used

to represent the major anthropogenic emission regions of North America, Europe, East Asia and

South Asia (see Figure5.1). As well as direct natural emissions, CO production from the biogenic
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Table 5.2 Description and emissions of all realistic lifetime CO tracers used for analysingthe
burden of CO in the Arctic.

Tracer ID Tracer name Sources and emissions
CO TOT Total CO tracer Direct emissions from anthropogenic, natural and

biomass burning sources. Secondary production of CO
from the oxidation of methane, isoprene and NMHC.

CO AN Total anthropogenic
CO tracer

Direct anthropogenic emissions and secondary produc-
tion of CO from the oxidation of anthropogenic NMHC.

CO TF Total biomass burning
CO tracer

Direct biomass burning emissions and secondary pro-
duction of CO from the oxidation of NMHC.

CO NAT Natural CO tracer Direct biogenic and oceanic CO emissions.

CO ISOP Isoprene oxidation
tracer

Secondary production of CO from the oxidation of iso-
prene.

CO CH4 Methane oxidation
tracer

Secondary production of CO from the oxidation of
methane.

CO AGR Agricultural fire CO
tracer

Direct emissions from agricultural fires and secondary
production of CO from the oxidation of NMHC.

CO DEF Deforestation fire CO
tracer

Direct emissions from deforestation fires and secondary
production of CO from the oxidation of NMHC.

CO FOR Forest fire CO tracer Direct emissions from forest fires and secondary pro-
duction of CO from the oxidation of NMHC..

CO PEA Peat fire CO tracer Direct emissions from peat burning and secondary pro-
duction of CO from the oxidation of NMHC.

CO SAV Savannah fire CO
tracer

Direct emissions from savannah fires and secondary
production of CO from the oxidation of NMHC.

CO WOO Woodland fire CO
tracer

Direct emissions from woodland fires and secondary
production of CO from the oxidation of NMHC.

CO NA North American an-
thropogenic CO tracer

Anthropogenic emissions from the region 230-310 E
and 24-66 N only (see Figure5.1).

CO EU Europe anthropogenic
CO tracer

Anthropogenic emissions from the region 342.5-60 E
and 33-66 N only (see Figure5.1).

CO EA East Asian anthro-
pogenic CO tracer

Anthropogenic emissions from the region 98-140 E and
18-50 N only (see Figure5.1).

CO SA North American an-
thropogenic CO tracer

Anthropogenic emissions from the region 67-96 E and
5-38 N only (see Figure5.1).
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emission of isoprene was also accounted for. Isoprene emissions were assumed to be oxidised

immediately to CO, similar to the treatment ofDuncan et al.(2007), and therefore were calculated

by scaling the TOMCAT isoprene emissions from 568 Tg(C5H8)/year to yield 127 Tg(CO)/year.

The total emission for each tracer is shown in Figure5.2 showing that on average anthropogenic

emissions are the dominant emission of CO in the atmosphere (when compared to an average of

all fire emissions between 1997-2009).

One tracer also represented the production of CO from the oxidation of CH4 by OH. Instead of

a direct emission, the production of CO from CH4 needed to be estimated. This was done using

monthly mean CH4 fields from a previous standard full-chemistry TOMCAT simulation for 2008

and the TRANSCOM monthly mean OH field. Using the TOMCAT reaction rate for CH4 with

OH, the rate of production of CO was estimated by assuming that for each molecule of CH4

oxidised, one molecule of CO is formed. The simulation was spun-up for 1 year and then run for

a period of 12 years from 1998 - 2009 using off-line ECMWF ERA-Interim winds.

5.2.3 Full-chemistry model set-up

The general set-up for the full-chemistry version of the model is described in detail in Chapter

3. Six different simulations were performed using the updated version of themodel (evaluated

in Chapter4). One control simulation was performed with all emissions included and then a fur-

ther five were performed with emissions removed from different regions.These simulations are

summarised in Table5.3. The difference between fctot and the other simulations were used to cal-

culate the contributions from each of the sources considered. These contributions will be referred

to as TF (for fctot - fc tf), BF (for fc tot - fc bf), NA (for fc tot - fc na), EU (for fc tot - fc eu)

and AS (for fctot - fc as), representing total fires, boreal fires (all fires>50°N), North Ameri-

can anthropogenic, European anthropogenic, Asian anthropogenic sources. The non-linearity of

O3 production with different concentrations of NOx means that the contributions are unlikely to

add up linearly to O3 simulated in fctot, however, this method has been used by other studies

previously (e.g.,Shindell et al.(2008)).

All emissions were created from the IPCC AR5 anthropogenic emission estimates for the year

2000, POET natural emissions and GFED biomass burning emissions. CO andNOx fire emissions

were taken from GFED v3.1 dataset and other species which were not available were created from

the GFED v2 dataset. As the interest was in the average impact of the sources instead of the

impact during one individual year, an average of the GFED fire emissionsfrom 1997-2008 were

used instead of any individual year. Each simulation was spun-up for 1-year and then run for the

year 2000 using ECMWF ERA-Interim winds.



Chapter 5Source contributions 89

Table 5.3List of full chemistry simulations performed for Arctic O3 source contribution analysis.

Simulation ID Description Emissions
Tg(CO)/year Tg(NO2)/year

fc tot Control simulation with emissions of all
species from all sources.

1151.08 146.51

fc tf As control simulation but with all fire emis-
sions removed.

789.17 131.16

fc bf As control simulation but with all fire emis-
sions removed above 50°N.

1110.76 144.54

fc na As control simulation but with all anthro-
pogenic emissions removed in the North
America region shown in Figure5.1.

1045.84 122.37

fc eu As control simulation but with all anthro-
pogenic emissions removed in the Europe re-
gion shown in Figure5.1.

1080.07 123.47

fc as As control simulation but with all anthro-
pogenic emissions removed in both East and
South Asia regions shown in Figure5.1.

907.60 122.36
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5.3 Transport efficiency from the major anthropogenic emission re-

gions

Figure5.3shows the seasonal cycle of the total and regional 30-day fixed lifetime anthropogenic

tracers, at five different surface stations north of 60°N. The monthly mean absolute concentra-

tions, which have been interpolated to the station location, have been dividedby the monthly total

emissions. This removes any regional difference in emissions and gives the contribution of each

region in ppbv of tracer at each station per Tg emitted per month due to transport alone (this will

be referred to as the transport efficiency). Firstly, by considering thetotal anthropogenic emissions

tracer (CO30AN), it can be seen that the stations located at lower latitudes (STM and ICE)expe-

rience higher transport efficiencies. These stations are both located in Atlantic and are therefore

more likely to experience more frequent transport from the mid-latitude emission regions due to

being closer to the Atlantic storm track. Even so, all stations show similar seasonality in the trans-

port, with a peak in transport efficiency in winter and spring and a minimum in summer/autumn.

This is as expected due to faster and more efficient poleward transport during the cold winter

months compared to the summer months (Raatz and Shaw, 1984).

By considering the regional tracers in Figure5.3, the efficiency of the different transport pathways,

which emissions from Europe, North America, East Asia and South Asia undergo, can be com-

pared. It is clear that European emissions experience much more efficient transport to all of the

surface stations during winter and spring, apart from at ICE which is equally sensitive to North

American emissions. ICE is located in the Atlantic which is particularly sensitive to the easterly

flow of North American air (Barrie, 1986). During summer and autumn, the transport efficiency

from Europe is reduced due to weaker winds resulting in Europe’s transport efficiency becoming

comparable to North America’s. Again, due to the location of ICE, it is more sensitive to emissions

from North America rather than Europe during the summer. BRW is unique in thefact that it has

comparable transport efficiencies from Europe, North America and East Asia in the summer, even

though transport from low latitude regions of Asia is thought to be less efficient than the other

regions (Klonecki et al., 2003; Stohl, 2006). This is due to BRW being located in Alaska which is

particularly sensitive to the typical NE Asian outflow (Barrie, 1986). In general, East Asia shows

the third largest transport efficiency and South Asia shows the smallest. in contrast to Europe,

East Asia shows a peak in transport efficiency in the summer and a minimum in thewinter. In

the Arctic, the winter is characterised by surface cooling and no daylight which results in very

cold temperatures. As poleward transport tends to follows lines of constant potential temperature

(Klonecki et al., 2003), the cold Arctic air acts as a barrier to air which has originated from warmer

regions, such as Asia and North America. This is termed the polar dome and can extend down to

regions of 40°N in the winter covering parts of Europe and Siberia (Bottenheim et al., 2004). This

explains why Europe has a much higher transport efficiency in the winter compared to the other
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Figure 5.3 Monthly mean 30-day lifetime anthropogenic total tracer CO30AN (left) and North
American, European, East Asian and South Asian anthropogenic regional tracers (CO30NA,
CO30EU, CO30EA, CO30SA) (right) averaged over the period 1990 - 2009 at Arctic sta-
tions. The model concentrations have been interpolated to the station location and divided by
total monthly CO emissions used in the model (units of ppbv/Tg (emitted)/month).

regions. During the summer, temperatures increase, reducing the effectof the polar dome allowing

air from East Asia to be mixed down to the surface more effectively which is seen by the increase

in the transport efficiency at these surface stations.

So far, the impact of the efficiency of transport has only be consideredat surface stations. Fig-

ure 5.4 shows the seasonal zonal mean transport efficiency throughout the troposphere (in ppb-

v/Tg(emitted)/season) calculated from the 30-day lifetime tracers averagedover 1990-2009. There

are clear differences between the regional tracers showing that emissions undergo different trans-

port pathways depending on the source regions. In general, North American, East Asian and South
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Figure 5.4Seasonal zonal mean concentrations for the 30-day regional anthropogenic tracers (in
ppbv/Tg(emitted)/season).

Asian emission transport pathways are characterised by lofting of emissionsfrom the surface to

higher altitudes, then poleward transport. European emissions however are mostly transported at

much lower levels. This is because emissions from Asia and North America aretypically lifted

by warm conveyor belts to the mid to upper troposphere (Stohl and Eckhardt, 2004). Similar

pathways have been identified in CTMs and Lagrangian models previously (Klonecki et al., 2003;

Stohl, 2006). Due to these pathways the largest contributions to the Arctic from North America,

East Asia and South Asia occur at higher altitudes where North American emissions dominate in

the winter followed by East Asia. South Asian air is subject to much stronger uplifting due to deep

moist convection near the tropics. This is particularly strong in the summer (JJA) during the mon-

soon season. Therefore, emissions from South Asia are transported at higher altitudes compared

to East Asia and North America. Due to this, and South Asia being located the furthest south, it

has smallest overall contribution in the Arctic troposphere throughout the year. Europe dominates

in the lower troposphere during winter, spring and autumn due to the polar dome, however, there is

still evidence of mixing down to the lower troposphere from North American and Asian air. Dur-

ing the summer, Europe shows comparable contribution to North America and East Asia during

summer as seen at the surface in Figure5.3. The relative contributions found here agree with the



Chapter 5Source contributions 93

study ofKlonecki et al.(2003) who also used a fixed lifetime tracer to look at transport during the

months of January and July. This gives us confidence in the ability of TOMCAT to capture the

main transport pathways to the Arctic. The results here also contribute to previous studies (Klo-

necki et al., 2003; Stohl, 2006) by offering a monthly climatology of the transport efficiency from

the major anthropogenic regions at Arctic surface stations and throughout the troposphere for the

years 1990-2009.

5.4 Comparisons of simulated CO to surface observations

Section5.3 showed that the model captures the altitudinal differences in the transportpathways

to the Arctic from the major industrialised regions in the NH. This gives confidence in using the

TOMCAT model to quantify the major sources of pollution in the Arctic using both the realistic

lifetime CO tracers (described in Section5.2.2) and the full chemistry simulations (described in

Section5.2.3). Firstly, as the simplified CO tracers have not been used previously, it is useful

to compare the total tracer (COTOT), which includes all sources of CO, to CO calculated from

the full chemistry version of the model (fctot) to evaluate the tracer model. These are both also

compared to surface observations in Figure5.5. The stations are the same as those used to evaluate

the model in Section4.5.2and the station locations are shown in Figure4.12and listed in Table

4.4. The monthly mean CO tracer, COTOT, has been averaged over the years 1998-2009, whereas

the full chemistry CO, fctot, is shown for the year 2000 only. For comparison, the observations

are also shown as an average of the same 12-year period and for the year 2000 only. As found

in Section4.5.2, both the tracer and the full chemistry model generally capture the seasonal cycle

throughout the globe with high correlations at most sites. Also, both model versions show similar

biases, as seen previously, with NH CO being underestimated in the winter andspring and overesti-

mated in the late summer and autumn. CO in the SH is also found to be consistently overestimated

as previously seen in Section4.5.2. There are some differences between the full chemistry model

and the tracer model, however most are relatively small and could be caused by differences in

meteorology during the year 2000 compared to an average over 1998-2009. However, one striking

difference is seen at EIC and CYA in the SH. Here the simplified CO tracer has much lower CO

compared to fctot CO, showing much better agreement with the observed magnitude of CO and

a lower RMSE. This is attributed to the TRANSCOM OH, which is based on theSpivakovsky

et al.(2000) estimates, having much higher concentrations compared to TOMCAT in the SH (see

Figure4.7). At the Arctic stations (ALT, ZEP, BRW, STM and ICE), both simulations shown here

have RMSE values that are towards the lower end of the range 17-40 ppbv calculated from models

from the inter-model comparison ofShindell et al.(2008), as found in Section4.5.2.
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Figure 5.5Monthly mean CO calculated by the realistic lifetime CO tracer (COTOT) and the full
chemistry model (from fctot) compared to observed CO at surface sites globally. CO from the full
chemistry simulation is shown for the year 2000 and COTOT is shown averaged over 1998-2009.
Grey shading and error bars show the observed and modelled standarddeviation, respectively,
when averaging over the period 1998-2009. (Note the different y-axis)
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5.5 Seasonal source contributions to Arctic CO

In this section the realistic lifetime tracers described in Section5.2.2are used to diagnose the mean

contributions to Arctic CO.

5.5.1 Contributions to Arctic total column CO.

Figure5.6 shows the seasonal contribution from all the main source tracers as a fraction of the

CO total tropospheric column averaged over 1998-2009 from the realisticCO lifetime tracer sim-

ulation. Anthropogenic emissions are the largest source of Arctic CO throughout the year, with a

maximum contribution in spring (MAM) of∼55-60% and a minimum in autumn (SON) and win-

ter (DJF) of< 40%. The second largest contribution comes from methane which shows a seasonal

maximum in summer (JJA) of 30% and seasonal minimum in winter and spring of 20%. There is

much more CO from methane oxidation in the tropics due to the high rate of methane destruction

(Bloss et al., 2005) compared to the high latitudes. The third largest source of CO in the Arctic

comes from fires with a seasonal maximum in summer of 15-25% and a minimum in winter of

∼8%. The summer maximum coincides with the biomass burning season in Alaska, Canada and

Siberia where large fractions of CO is seen from boreal fires. Transport of these emissions into the

Arctic is facilitated by their high latitude. Direct natural CO emissions and CO produced from the

oxidation of isoprene both have a maximum contribution in autumn of 13-15% and6% and mini-

mum in spring of∼7% and∼2.5%, respectively. If we consider these two sources together, natural

emissions can contribute up to 22% of CO in the autumn which is greater than the contribution

from fires and almost as much as methane during this time of year.

Figure5.7 shows the fractional seasonal contribution of the different forest fire types to the total

forest fire tropospheric CO column. Due to fires exhibiting strong seasonal differences in emis-

sions the majority of the seasonality seen in the contributions is due to emissions changes, not

transport or OH monthly variations. Overall, the largest contribution to the Arctic CO fire burden

comes from forest fires, with up to 80% of summer and autumn fire CO being from this source. A

large fraction of forest fire emissions from the GFED v3.1 dataset occurin the boreal regions of

Canada, North America and Siberia during the NH summer and autumn, making theArctic par-

ticularly sensitive to forest fires in these regions at this time of year. Other fire tracers contribute

<10% each to make up the rest of the budget during these season. The second largest overall

contribution comes from Savannah fires which have a seasonal maximum in spring of 26-30%,

where the other fire tracers contribute<15% each to the Arctic CO burden apart from forest fires

which contribute∼30%. A large fraction of agricultural fire CO can be seen originating fromover

Eurasia at quite high latitudes during Spring when agricultural fires exhibita seasonal maximum

contribution. Even though the average contribution over 1998-2009 is small compared to other
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Figure 5.6 Mean seasonal fractional contribution of different sources to the totaltropospheric
CO column between 1998-2009 calculated from the realistic lifetime tracer simulations. Total
tropospheric column from the tracers COAN, CO TF, CO NAT, CO ISOP and COCH4 (top to
bottom) are shown as a fraction of the COTOT total column for DJF, MAM, JJA and SON (left
to right). (Note different colourbars).
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Figure 5.7 Mean seasonal fractional contribution of different fire sources to thetotal fire tropo-
spheric CO column between 1998-2009 calculated from the realistic lifetime tracer simulations.
Total tropospheric column from the tracers COAGR, CO DEF, COFOR, COPEA, COSAV and
CO WOO (top to bottom) are shown as a fraction of the COTF total column for DJF, MAM, JJA
and SON (left to right). (Note different colourbars).



Chapter 5Source contributions 98

Figure 5.8 Mean seasonal fractional contribution of different anthropogenic sources to the to-
tal anthropogenic tropospheric CO column between 1998-2009 calculatedfrom the realistic life-
time tracer simulations. Total tropospheric column from the tracers CONA, CO EU, CO EA and
CO SA (top to bottom) are shown as a fraction of the COAN total column for DJF, MAM, JJA
and SON (left to right).

fire types, the location of these sources makes the Arctic sensitive to any increase in emissions that

may occur in the future. This was seen in 2007 when unusually large agricultural fires occurred in

Europe during the spring when transport is particularly efficient (see Section5.3) and the burdens

of trace gases in the Arctic were increased (Stohl et al., 2007).

Figure5.8shows the total column seasonal contribution of each regional anthropogenic tracer as a

fraction of the total anthropogenic tracer, allowing the relative importance of emissions from each

of the major Northern Hemispheric anthropogenic source regions of NorthAmerica, Europe, East

Asia and South Asia to be considered. Overall, South Asia contributes the smallest fraction of CO

to the Arctic (< 10%) throughout the year due a combination of smaller annual emissions com-

pared to North America and East Asia (see Figure5.2) and having the lowest transport efficiency

(see Section5.3). Europe has the second smallest contribution throughout the total troposphere
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(<30%) even though it has been shown to have the highest transport efficiency in the lower and

mid troposphere. This is because Europe has the smallest annual emissions(see Figure5.2). East

Asia shows the second largest contribution and North America shows the largest. In winter, the

impact of East Asia is limited due to the presence of the polar dome whereas North America is still

able to contribute large fractions of CO around Greenland and Svalbard.Elsewhere, North Amer-

ica, Europe and East Asia contribute almost equal fractions. In summer, CO is less well-mixed due

to a shorter lifetime resulting in larger regional gradients. North American emissions contribute

up to 40% to Arctic column CO around Greenland, and East Asian emissions contribute a similar

amount close to Alaska and north-eastern Siberia.

Fisher et al.(2010) also considered anthropogenic and fire contributions to CO during April2008.

Their results show similar regional sensitivities as seen in Figure5.8, with North American CO

showing the largest impact in the area around Greenland and Asian CO having the largest impact

around Alaska. However, they found anthropogenic Asian emissions to be the dominant source of

Arctic CO in April 2008, with European emissions being the second largest source. They found

North American emissions to be the least important anthropogenic source region of these three

regions. This does not agree with the results presented here which havefound North American

emissions to have the largest contribution followed by East Asian, then Europe, then South Asia.

However, two factors are likely to have contributed to the different results. Firstly, the interpreta-

tion of model results is likely to be sensitive to the emission totals used in each study. Fisher et al.

(2010) performed a simple linear inversion based on aircraft data from April 2008 and reduced/in-

creased the standard emissions used in their model accordingly. Comparedto the emissions used

for the work presented here, in April they emitted 56% less CO in their North American region (4.2

compared to 9.6 Tg(April)) and 29% more in their European region (9.1 compared 6.5 Tg(April)).

As we have seen here, transport and emissions both play a role in which region dominates the

Arctic CO burden and therefore this difference in emissions would explain why the results shown

here disagree with those inFisher et al.(2010). The second difference is that they also used a

single Asian emission region, whereas here Asia has been separated into two regions, South and

East. If these regions had been combined in this work, then the emissions would be very similar

(23 compared to 21 Tg(April)) and the fractional contribution of anthropogenic Asian CO to the

total burden would increase. They found the fires in April 2008 to have avery small contribution

to the overall burden which agrees with results shown in Figure5.6.

5.5.2 Contributions to Arctic surface CO.

As already discussed, the Arctic’s CO burden exhibits different sensitivities to source regions at

different altitudes, therefore it is useful to consider which sources are most important at surface

stations which are regularly used by the scientific community. Figures5.9 and 5.10 show the
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absolute and fractional contribution to surface CO at stations which are north of 60°N. Anthro-

pogenic emissions are the largest source of Arctic surface CO, contributing between 25 and 75%

throughout the year, with the exception of BRW and ALT where fire emissions become equally

important in summer. This is due to the location of these stations in Alaska and Canada which

make them sensitive to fires in the summer (see Figure5.6). Overall, methane oxidation is still

the second largest source accounting for 20-25%, fires are the third largest source, contributing

10-30%, natural sources contribute around 10-15% and the smallest contribution is from isoprene

oxidation accounting for<5%. The observed CO is also plotted in Figure5.9 and highlights

where the model under-predicts CO in the spring and over-predicts observed CO in the winter.

The model was evaluated in Chapter4 and it was suggested that an underestimation of convection

in the summer/autumn near sources may contribute to an overestimation in CO at the surface. This

may result in a slight bias in the absolute contributions at the surface. In the spring, the underesti-

mation in CO is thought to be mostly caused by underestimated Asian emissions. With corrected

CO emissions from Asia anthropogenic CO would contribute even larger fractions to the total CO.

Generally the North American anthropogenic tracer contributes the largestfraction 25-40% to the

anthropogenic surface CO. However, at BRW, eastern Asian emissionsdominate with over 25-

35% coming from this region in summer. Again this is due to the location of this station.Europe

shows the third highest contribution of 15-30% as seen seen in the total columns (see Figure5.8)

but accounts for larger fractions. All other anthropogenic CO (otheranth) has the fourth smallest

contribution and South Asian emissions account for the smallest overall fraction.

As already noted, forest fires are the dominant source of summer fire CO. At the surface, they

contribute over 80% of the summer/autumn fire CO burden which is similar to the totalcolumn

fire CO (see Figure5.7). The different seasonality in the different fire tracers can also be seen at the

surface with savannah fires contributing∼25% in March and April and deforestation contributing

∼ 20% in May. Peat, agricultural and woodland fires contribute the smallest amounts to the CO

fire burden.

5.5.3 Contributions to the Arctic burden of CO at different altitudes.

As emissions from different regions undergo different transport pathways to the Arctic (see Section

5.3) it is likely that source contributions vary with altitude. Figure5.11shows the total tropospheric

CO burden from all of the realistic CO tracers at latitudes> 66 °N summed over three altitude

bins, 0-2 km, 2-5 km and 5 km up to the tropopause. As seen in Figure5.6, the anthropogenic

pollution is the dominant source of Arctic CO at all altitudes, contributing between1 and 5 Tg

of CO (25-60%), depending on altitude and month. The maximum burden occurs in spring and a

minimum in autumn. During autumn, fires and methane contribute a similar magnitude of CO (1-2

Tg (25-30%)) in all altitude bands apart from the highest, where fires contribute a smaller fraction
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Figure 5.9Mean monthly contribution of different tracers to total CO (COTOT) (left) , total an-
thropogenic CO (COAN) (middle) and total fire CO (COTF) (right) at 5 surface stations located
> 60°N.

(∼18%). CO from direct natural emissions and the oxidation of isoprene exhibit very little altitude

dependency.

Similar to the results shown in Figure5.8, it can be seen that North American pollution is the

dominant anthropogenic source of CO in all altitudes bands. The region contributes between 0.4

and 1.5 Tg of CO, depending on altitude and season, which is 30-35% of thetotal anthropogenic

burden. In the highest altitude bin, East Asian emissions dominate over NorthAmerican in July

and August and have the second largest source in summer in the other altitudes bands. As seen in

Section5.3, this is when East Asian emissions undergo the most efficient transport to the Arctic.
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Figure 5.10Mean monthly contribution of different tracers as a fraction of total CO (COTOT)
(left), total anthropogenic CO (COAN) (middle) and total fire CO (COTF) (right) at 5 surface
stations located> 60°N.

Europe has the second largest contribution in winter and spring, when airfrom this region is

efficiently transported to the Arctic, and the third largest in summer between 0-2 km and 2-5

km. At >5 km European sources become even less important due to inefficient uplift near the

emission region. This shows that even though transport of North Americanemissions is not the

most efficient it dominates the burden due to the magnitude of emissions.

As already seen forest fires are the dominant source of fire CO contributing between 0.1 and 1.4

Tg CO to the Arctic burden, which is between 30 and 80 % of fire sourced CO. During March,

Savannah fires contribute a larger fraction compared to forest fires in the highest altitude band. As
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Figure 5.11Absolute burdens and fractional contributions for realistic lifetime CO tracers calcu-
lated over latitudes> 66°N. The burdens have been calculated for three different altitude bins: 0-2
km (left), 2-5 km (middle) and 5 km up to the tropopause (right). The fractional contributions were
calculated by dividing the burdens by the COTOT burden for the total CO burdens (2nd row), by
CO AN burden for the total anthropogenic CO burdens (4th row) and by COTF burden for the
total fire CO burdens (6th row).
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Figure 5.12Monthly mean contributions of regional anthropogenic tracers to the Arctic CO burden
between 0-2 km (left), 2-5 km (middle) and 5 km up to the tropopause (right)weighted by emission
region totals from the anthropogenic tracers CONA, CO EU, CO EA and COSA.

already mentioned, the seasonal minimum and maximum contribution is controlled byseasonally

varying emissions. The annual mean burdens of absolute Arctic CO in all three altitude bands and

the total troposphere for all of the different tracers have been summarised in Table5.4.

As mentioned previously, model results are dependent on the emissions which are input into the

model, therefore any emissions errors will result in a bias in the model resultsleading to different

interpretations. For example, the underestimate of Asian emissions in the AR5 dataset is likely to

contribute to an underestimate in the burden from the Asian sources. To overcome this, the Arctic

CO burdens have been weighted by the tracer emission totals. This is done bydividing the total

burden by the total emissions, giving a contribution in Tg of CO per Tg CO emittedper month.

This allows the most efficient transport pathways to the Arctic in the model to be considered, as

done in Section5.3, but also accounts for the seasonal difference in OH. Even though thelifetime

of CO is greater than 1-month, this is assumed to be reasonable as emissions donot vary on

a monthly basis. These can be then used to estimate future burdens of Arctic CO due to any

emission changes.

Figure5.12 shows the absolute and fractional anthropogenic burden of Arctic CO weighted by

emissions in the same three altitude bands. It can now be seen that the Arctic is most sensitive to

European emission as seen in Section5.3 in the two lower altitude bands. This makes the Arctic

most sensitive to emissions changes in this region. European emissions become less important

in the >5 km altitude bin, where North American emissions now dominate and the East Asian

emission contribution increases. Overall, South Asian emissions show the smallest emission sen-

sitivity out of these four regions and all other anthropogenic emissions (other anth) are the least

important overall.Shindell et al.(2008) also considered anthropogenic CO in a similar way to

remove inter-model emission differences in an inter-comparison project. The results presented
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Figure 5.13 Mean percent contributions to the total mass burden of anthropogenic CO inthe
Arctic (>60°N) from North America, Europe, East Asia and South Asia for the period 1998-
2009 separated into altitudes bins of 0-2 km, 2-5 km, 5 km up to the tropopause. Shown
as absolute burdens of CONA, CO EU and COAS as a percentage of COAN (left) and ab-
solute burdens of CO weighted by regional emissions from CONA, CO EU and COAS (in
Tg(CO)/Tg(CO)(emitted)/year), and as a percentage of COAN in brackets (right).
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here agree withShindell et al.(2008) who found that European emissions are the largest source of

anthropogenic pollution at the surface. At 500 hPa (∼5 km) they found Europe to still dominate

and North America to be the second most important contributor.

The same analysis could not be performed for the fire tracers due to largemonthly gradients

in emissions. However, the annual mean burdens weighted by the annual mean emissions can

be calculated and have been summarised in Table5.5 for both the anthropogenic and the fire

tracers. One interesting thing to note is that when the fire type contributions are weighted by total

emissions, the contribution from agricultural fires increases from 6% to 27% annually over the

whole troposphere, showing that the Arctic is particularly sensitive to the agricultural practices

(most likely in Eurasia due to close proximity to the Arctic (see Figure3.4)).

The results discussed here are summarised in Figure5.13. The numbers are taken from Tables

5.4 and5.5. This highlights how the sensitivity of the Arctic varies with altitude, most notably

for Europe where it contributes 26% to total anthropogenic CO in the lower troposphere which is

greatly reduced to 19% in the upper troposphere. The overall largest contributions are clearly seen

from North America with 30-31% coming from this region. When weighted by emissions, the

Arctic is clearly most sensitive to Europe, making emission reductions in this region particularly

effective in reducing Arctic CO.
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Table 5.4The annual total tropospheric CO burdens in the Arctic (>60°N) calculated between 0-2
km, 2-5 km, 5 km up to the tropopause and the total tropospheric column using realistic lifetime
CO tracers as absolute burdens (in Tg(CO)/year). In brackets the ‘AllSources’ tracers are shown
as a percentage of COTOT, the ‘Anthropogenic Sources’ tracers are shown as a percentage of
CO AN and the ‘Fires sources’ tracers are shown as a percentage of COTF.

CO Tracer 0-2 km 2-5 km >5 km Tropospheric total

All Sources
CO AN 2.22 (47%) 3.46 (48%) 2.64 (48%) 8.32 (48%)
CO TF 0.66 (14%) 0.99 (14%) 0.66 (12%) 2.31 (13%)

CO CH4 1.14 (24%) 1.79 (25%) 1.47 (27%) 4.40 (25%)
CO NAT 0.50 (11%) 0.75 (10%) 0.52 (9%) 1.76 (10%)
CO ISOP 0.20 (4%) 0.30 (4%) 0.23 (4%) 0.73 (4%)
CO TOT 4.71 7.28 5.51 17.50

Anthropogenic Sources
CO NA 0.66 (30%) 1.05 (30%) 0.82 (31%) 2.52 (30%)
CO EU 0.57 (26%) 0.85 (25%) 0.51 (19%) 1.93 (23%)
CO EA 0.54 (24%) 0.87 (25%) 0.73 (28%) 2.13 (26%)
CO SA 0.18 (8%) 0.28 (8%) 0.26(10%) 0.72 (9%)

other anth. 0.28 (12%) 0.42 (12%) 0.32 (12%) 1.02 (12%)

Fire Sources
CO AGR 0.03 (5%) 0.05 (6%) 0.04 (6%) 0.13 (6%)
CO DEF 0.05 (7%) 0.07 (7%) 0.07 (11%) 0.19 (8%)
CO FOR 0.42 (64%) 0.61 (62%) 0.35 (54%) 1.39 (60%)
CO PEA 0.03 (5%) 0.05 (5%) 0.04 (7%) 0.12 (5%)
CO SAV 0.09 (13%) 0.14 (14%) 0.11 (16%) 0.33 (14%)
CO WOO 0.01 (1%) 0.01 (1%) 0.01 (1%) 0.03 (1%)
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Table 5.5The annual total tropospheric CO burdens in the Arctic (>60°N) calculated between 0-2
km, 2-5 km, 5 km up to the tropopause and the total tropospheric column weighted by annual mean
emissions (in Tg(O3)/Tg(NOx) emitted/year). In brackets the ‘Anthropogenic Sources’ tracers are
shown as a percentage of COAN and the ‘Fires sources’ tracers are shown as a percentage of
CO TF.

CO Tracer 0-2 km 2-5 km >5 km Tropospheric total

Anthropogenic Sources
CO NA 0.07 (29%) 0.11 (30%) 0.08 (32%) 0.26 (30%)
CO EU 0.09 (38%) 0.13 (36%) 0.08 (30%) 0.29 (35%)
CO EA 0.04 (18%) 0.07 (19%) 0.06 (21%) 0.16 (19%)
CO SA 0.02 (8%) 0.03 (8%) 0.03 (10%) 0.08 (9%)

other anth. 0.02 (7%) 0.02 (7%) 0.02 (7%) 0.06 (7%)

Fire Sources
CO AGR 0.03 (25%) 0.05 (26%) 0.03 (28%) 0.11 (27%)
CO DEF 0.01 (5%) 0.01 (6%) 0.01 (8%) 0.03 (6%)
CO FOR 0.07 (55%) 0.10 (53%) 0.06 (45%) 0.22 (51%)
CO PEA 0.01 (7%) 0.01 (7%) 0.01 (9%) 0.03 (7%)
CO SAV 0.01 (7%) 0.01 (7%) 0.01 (8%) 0.03 (7%)
CO WOO 0.001 (1%) 0.002 (1%) 0.002 (1%) 0.01 (1%)
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5.6 Seasonal source contributions to Arctic O3

It has been shown that anthropogenic and fire emissions can contribute large amounts to the Arctic

CO burden (see Section5.5) and are therefore likely to be large sources of other trace pollutants.

Here the contribution of forest fires and anthropogenic emissions to the burden of O3, a greenhouse

gas, will be considered. O3 is not emitted and the main sources in the troposphere are photochemi-

cal production from NMHC, CO, CH4 in the presence of NOx and transport from the stratosphere.

Precursor gases (such as NOx and NMHC) are emitted at the surface with large amounts from

anthropogenic and biomass burning sources. Using the simulations described in Section5.2.3and

Table5.3, the contributions to Arctic O3 from these two sources are considered.

Figure 5.14Seasonal mean anthropogenic and biomass burning contributions to total tropospheric
O3 column from fires<50°N (TF-BF), fires>50°N (BF), North American anthropogenic O3 (NA),
European anthropogenic emissions (EU) and Asian anthropogenic emissions (AS).
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5.6.1 Contributions to total tropospheric Arctic O3.

Figure 5.14 shows the total column of O3 integrated over the troposphere. It can be seen that

fires at latitudes lower that 50°N contribute very little to O3 in the Arctic. Most of the O3 formed

from fire emissions originates from the boreal regions north of 50°N during the summer peak

fire season. It is clear that North America contributes the largest amount of O3 to the Arctic total

column followed by Europe and then Asia. Asia exhibits a seasonal maximum in winter and spring

whereas North America and Europe has a maximum contribution in spring. BothAsia and North

America still contribute a large fraction of O3 in winter which must be transported to the Arctic

due to the lack of sunlight for ozone production. There are regional gradients in the emission

sensitivities, with O3 from North America being most important near the Canadian Arctic and

Greenland and Europe being most important near Scandinavia and Siberia.

5.6.2 Contributions to Arctic surface O3.

Figure5.15 shows the contributions to surface O3 at Arctic surface stations from fires south of

50°N (TF-BF), fires north of 50°N (BF), North American anthropogenic emissions (NA), Euro-

pean anthropogenic emissions (EU) and Asian anthropogenic emissions (AS). The O3 calculated

from the fc tot simulation which is not accounted for by these sources is shown by the lined re-

gion. It is clear that a large fraction of modelled surface O3 in the Arctic is not from fires and

anthropogenic emissions from North America, Europe and Asia. Other sources of O3 which are

not considered here are transport from the stratosphere and production from NOx emitted by light-

ning, biogenic and soil sources, ships, and anthropogenic emissions outside of the three main

anthropogenic emission regions used in this work. Out of the sources considered, differences in

contributions from North America, Europe and boreal fires (BF) are visible between the stations.

However, fires at latitudes<50°N consistently contribute the smallest amount to O3 with only a

few ppbv being produced. O3 produced from fires north of 50°N contribute very little to O3 during

winter and spring (due to low fire emissions at this time of year) but at some stations in summer

they have the largest contribution compared to the other sources considered. Due to the location of

ALT, ZEP and BRW near the boreal fire regions they are more sensitive toO3 formed from boreal

fire emissions. This is also visible in the total column O3 (See Figure5.14). As with CO, this

seasonal maximum in O3 coincides with the burn season. Out of anthropogenic regions, Asian O3

contributes the smallest overall amount at the surface at all stations. Europe has the largest con-

tribution at STM and ZEP and North America has the second largest. However, at ICE and ALT,

North American O3 is greater than European. At BRW, they both contribute a similar magnitude

to the O3 burden. This regional difference is again due to the location of the stationsbeing situated

near different dominant transport pathways from these regions (seeFigure5.14).
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Figure 5.15 Monthly mean contributions to O3 at surface stations in the Arctic from all fires
<50°N (TF-BF), all fires>50°N (BF), North American anthropogenic O3 (NA), European an-
thropogenic emissions (EU) and Asian anthropogenic emissions (AS). ‘Other sources’ represents
the residual O3 in the fc tot simulation which is not accounted for by TF-BF, BF, NA, EU and AS.
Shown in both ppbv (left) and as a fraction of fctot O3 (right).
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5.6.3 Contributions to the Arctic burden of O3 and NOy at different altitudes

The monthly mean absolute burdens of O3, CO, NOx and its reservoir species (NOy, PAN and

HNO3) in three altitude bins (0-2 km, 2-5 km and>5 km) are shown in Figure5.16. In the

lowest altitude bin the burden of O3 is dominated by North American and Asian O3 in the winter,

by European O3 in spring, by boreal fire O3 in summer and North American O3 in the autumn

demonstrating that the Arctic sensitivity to O3 sourced from different regions has a strong seasonal

dependency. Overall, O3 from total fires is largely dominated by boreal fires.

The seasonal cycle of O3 from the three anthropogenic regions vary, with O3 from North Amer-

ica and Europe exhibiting double peaks, one in late spring/early summer and another in autumn.

Conversely, Asia shows a similar seasonal cycle as CO, with a peak in spring. This demonstrates

that the processes controlling O3 in the Arctic from these three regions are different. The seasonal

peak in O3 due to fires is due to the timing of emissions, as seen in CO in Section5.5.

Boreal and total fire emissions become less important with increasing altitude whereas the burdens

of North America and Asia become more important. Europe has the smallest overall impact in

the highest altitude bands. This altitude dependency exhibits similar patterns asthe transport

efficiencies seen in Section5.3. For the boreal fires, more NOy is located in the highest altitude

band, which is where the lowest O3 contribution is. A large amount of this NOy is in the form

of PAN, where it will be stable due to cold temperatures. Near the surface there is more NOx

compared to the upper troposphere in the summer, which can lead to the formation of O3 due to

the presence of sunlight.

European NOx peaks in May in the two lowest altitude bands and is higher than NOx from the

other regions. This coincides with the peak in O3 suggesting that this NOx is driving O3 formation

from European sources at this time of year. North American NOy is higher in the upper tropo-

sphere compared to the other sources considered. This is also where North American O3 is the

highest. European NOy in the Arctic is much higher compared to the other anthropogenic regions

between 0-2 km and 2-5 km, due to large PAN, HNO3 and NOx concentrations. The most no-

table difference occurs in the burden of HNO3. Asian and North American export of pollution is

generally characterised by higher rates of precipitation due to rapid upliftin warm conveyor belts

(Stohl, 2006). HNO3 is therefore efficiently scavenged from the atmosphere through wet depo-

sition before reaching the Arctic. Conversely, European air is generallytransported poleward at

much lower levels (see Section5.3) with lower levels of precipitation (Stohl, 2006).

Differences in NOy:CO ratios between the burdens from the different anthropogenic regions can be

used as a proxy for different wet deposition rates that occur along thedifferent transport pathways.

NOy has been calculated in the model and accounts for all reservoir nitrogen species and therefore
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Figure 5.16 Monthly mean absolute burdens of CO, O3, NOy, PAN, HNO3 and NOx, (top to
bottom) in three altitude bins (0-2 km, 2-5 km and>5 km) (left to right) due to emissions from
the three anthropogenic regions,North America (NA), Europe (EU) and Asia (AS) and total fires
(TF) and boreal fires (BF). Units are in Tg(N)/month or for CO, Tg(CO)/yr.
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Figure 5.17Monthly mean NOy:CO ratios in three altitude bins (0-2 km, 2-5 km and>5 km) (left
to right) calculated from burdens sourced from the three anthropogenicregions,North America
(NA), Europe (EU) and Asia (AS). The burden has been normalised to 1by dividing the NOy:CO
ratio by the NOy:CO emission ratio from the different emission regions to remove any regional
differences in initial ratios.

chemistry will not affect NOy concentrations. Mixing with background air will reduce the con-

centrations of both gases equally, therefore this will not affect the ratio either. Therefore the major

process which will affect the ratio of NOy:CO is assumed to be loss of HNO3 by wet deposition,

which will reduce the NOy concentration. Initial differences in the NOx:CO emission ratio needed

to be accounted for, therefore, the ratio has been normalised by the following equation:

dpe=
BNOy

BCO
×

ECO

ENOx

, (5.1)

where, BNOy and BCO are the burdens of NOy and CO in the Arctic, ECO and ENOx are the emissions

totalled over the emission regions and dpe is the ‘deposition efficiency’, which represents the

different rates of deposition that the regional pathways experience. If no chemical loss and no

deposition occurs, then the ratio would be 1.

Figure5.17shows the NOy:CO ratio for Europe, North America and Asia normalised by emis-

sions. As expected, Asia has much lower ratios throughout the year compared to Europe and

North America, indicating high rates of wet deposition. Europe has the highest ratios in the two

lowest altitude bins due to low level transport and the rates of precipitation. North America has

reasonably high NOy:CO ratios in the the upper troposphere. This could indicate more efficient

PAN formation compared to Asia.

The annual mean O3 burdens in the altitude bins and for the total tropospheric column have been

calculated and are shown in Table5.6 showing that when averaged over the year North America

contributes the largest amount (9%) to the total tropospheric O3 burden in the Arctic, followed by

Europe (7%) and then Asia (6%). Boreal fires contribute 3% and other fires (BF-TF) contriubte

just a further 1%. There is 73% of the O3 burden which is not accounted for by these sources.

As discussed in Section5.5, the different magnitude of emissions from the different source regions

will result in different Arctic sensitivities. According to the AR5 emissions, NOx emissions do not
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Figure 5.18Annual mean contributions to the total mass burden of anthropogenic O3 in the Arctic
(>60°N) from North America, Europe and Asia for the period 1998-2009 separated into altitudes
bins of 0-2 km, 2-5 km, 5 km up to the tropopause. Percentages calculated using absolute burdens
from NA, EU and AS (left) and absolute burdens weighted by regional emissions from NA, EU
and AS (in Tg(O3)/Tg(N) emitted)/year (right).
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vary largely between North America, Europe and Asia and therefore weighting the emissions does

not result in different interpretations of results. However, to show howmuch O3 is formed from

every Tg of NOx emitted, the annual mean O3 burdens have been weighted by NOx emissions

and are shown in Table5.7. This shows that for every Tg of NOx emitted in North America,

Europe and Asia, there is 1.68 Tg, 1.33 Tg, and 1.11 Tg of O3 formed in or transported to the

Arctic troposphere, respectively. For every Tg emitted from boreal fires 7.18 Tg of O3 is formed

in or transported to the Arctic. Other fires have the lowest Arctic O3 impact with only 0.43 Tg of

O3 resulting from 1 Tg of NOx emissions. This shows that the Arctic is much more sensitive to

emissions from boreal fires than from the other anthropogenic emissions regions. These results for

the anthropogenic emissions are summarised in Figure5.18.
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Table 5.6The annual total tropospheric O3 burdens in the Arctic (>60°N) calculated between 0-2
km, 2-5 km, 5 km up to the tropopause and the total tropospheric column (in Tg(O3)/year). In
brackets show these burdens as a percentage of O3 from fc tot.

Full chem Sim. 0-2 km 2-5 km >5 km Tropospheric total

Anthropogenic Sources
NA 0.25 (10%) 0.41 (10%) 0.37 (9%) 1.03 (9%)
EU 0.24 (9%) 0.34 (8%) 0.20 (5%) 0.78 (7%)
AS 0.15 (6%) 0.25 (6%) 0.28 (7%) 0.68 (6%)

Fire Sources
BF 0.13 (5%) 0.15 (4%) 0.08 (2%) 0.36 (3%)

TF-BF 0.03 (1%) 0.05 (1%) 0.06 (1%) 0.14 (1%)

Other Sources
1.84 (70%) 2.86 (71%) 3.32 (77%) 8.01 (73%)

Table 5.7 The annual total tropospheric O3 burdens in the Arctic (>60°N) calculated between
0-2 km, 2-5 km, 5 km up to the tropopause and the total tropospheric column (inTg(O3)/Tg(N)
emitted/year) weighted by emissions.

Full chem Sim. 0-2 km 2-5 km >5 km Tropospheric total

Anthropogenic Sources
NA 0.41 0.67 0.61 1.68
EU 0.40 0.57 0.35 1.33
AS 0.25 0.40 0.46 1.11

Fire Sources
BF 2.54 3.09 1.55 7.18

TF-BF 0.09 0.15 0.18 0.43
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5.7 Summary

Using a combination of 30-day fixed lifetime CO tracers, realistic lifetime CO tracers and simula-

tions with full interactive chemistry, the transport efficiency and contributions to CO and O3 in the

Arctic troposphere from major sources have been investigated.

The fixed lifetime tracers were used to examine the efficiency of transport from the regions of

North America, Europe, East Asia and South Asia. North America, East Asia and South Asia

emissions undergo strong lifting and poleward transport, whereas Europe was characterised by

low-level transport in the lower to mid troposphere in agreement with previous studies. European

emissions experienced the most efficient transport to the surface and clearly dominated over other

anthropogenic regions in the winter and spring due to the presence of the polar dome. In the

summer, North American and East Asian emissions showed similar transport efficiencies in the

lower troposphere as found for Europe, and dominated the upper troposphere.

Anthropogenic CO was found to be the largest source of Arctic CO, followed by oxidation of

methane, then fires. Direct natural emissions and CO from the oxidation of isoprene had the

smallest overall contribution. Out of the anthropogenic emission regions, North American emis-

sions dominated the anthropogenic CO burden, accounting for 30-35% ofthe anthropogenic CO

burden. This was due to efficient transport in the upper troposphere plus relatively high total emis-

sions. East Asian emissions showed the second highest anthropogenic contribution with 24-28%

of the burden being from emissions in this region. Europe showed the third largest contribution

(19-26%) even though it had the highest transport efficiency due to small total emissions. South

Asia had the smallest contribution (8-10%) due to inefficient transport andsmall emissions.

Model interpretation of source contributions to receptor regions is largelydependent on absolute

emissions used in the model. Therefore, source contributions were also weighted by emissions to

remove this affect giving contributions in units of Tg(CO) in the Arctic per Tg(CO) emitted per

year. This showed that the Arctic is most sensitive to emissions changes in Europe, then North

America and then Asia. This demonstrates that emissions reductions in some regions will be

more effective in reducing pollution in the Arctic. The Arctic was shown to be highly sensitive to

emissions from naturally occurring boreal forest fires, however, when weighted by emissions, the

annual mean burden of fire CO is also sensitive to agricultural burning practices in the spring.

Using the newly developed full chemistry version of the TOMCAT model, the anthropogenic and

fire contributions to O3 have been quantified. The Arctic sensitivity to O3 from emissions at

lower latitudes shows a seasonal and altitude dependency. Overall NorthAmerica has the largest

contribution to the O3 burden (9%) out of the anthropogenic regions considered, followed by

Europe (7%) and then Asia (6%) (both South Asia and East Asia combined). This is different to

the results of Arctic CO suggesting that different transport pathways experience different rates of
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O3 production. Fires contribute a total of 4% to O3 throughout the year (3% of that from fires

north of 50°N). According to the model a further 73% of O3 found in the Arctic is from other

sources, such as production from lightning and transport from the stratosphere. The different

pathways that emissions undergo result in very different NOy burdens. Asia has the smallest

overall burden of NOy and Europe has the highest. This is due to higher rates of wet deposition

that are experienced by Asian emissions during transport to the Arctic. Europe also has higher

PAN and NOx burdens in the lowest two altitude bins. North America has the highest amount of

NOy in the upper troposphere due to higher concentrations of NOx and PAN.

This study is the first time that the impact of emissions from different types of fires on the Arctic

have been quantified and compared to the anthropogenic contribution. Thisstudy has also high-

lighted that it is important to consider both the transport efficiency and the absolute emission totals

in order to understand how the Arctic will respond to emissions reduction policies. This study

is also the first to consider both the anthropogenic and fire emissions contribution to the Arctic

O3 burden throughout the year and has demonstrated that the sensitivity of Arctic O3 to different

regions is not simple due to the complex chemistry involved. Therefore, future studies of different

production efficiencies of O3 during the different transport pathways would be useful.





Chapter 6

Interannual variability of carbon

monoxide in the Arctic

6.1 Introduction

In the previous chapter it was shown that Arctic burdens of CO and O3 throughout the year are

sensitive to both transport patterns and absolute emissions at lower latitudes. This chapter inves-

tigates the extent of their influence on the interannual variability (IAV) of observed Arctic pollu-

tion with the aim of provide a context for understanding how future changes in both could affect

Arctic composition. This is done using CO as a tracer of mid-latitude emissions, which under-

goes long-range transport, making its distribution sensitive to changes in atmospheric circulation,

whilst still capturing changes in emissions. One previous modelling study, bySzopa et al.(2007),

considered the IAV of surface CO between 1997 and 2001 in the Arctic aspart of a larger global

study. They found surface CO at some Arctic stations to be almost equally affected by changes

in biomass burning emissions and meteorology. However, that study only considered a five-year

period, which contained an anomalously high El Niño1 event and did not remove OH variability

as a source of CO IAV. This chapter builds on their work by studying a longer period of time (13

years) and removing the effect of OH variability.

Natural climate variability can result in circulation changes and therefore affect long-range trans-

port of trace gases. In particular, circulation changes caused by the North Atlantic Oscillation

(NAO) in the NH have been found to affect Arctic composition.Eckhardt et al.(2003) showed

evidence of enhanced poleward transport of anthropogenic CO and NO2 during positive phases of

the NAO. A deepening of the Icelandic low, which is associated with a positiveNAO, has been

1El Niño - Southern Oscillation (ENSO) is a coupled mode of natural atmosphericand oceanic climate variability
in the tropical Pacific causing global temperature and precipitation anomalies.
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shown to be correlated with a weakening of the Aleutian low in the Pacific (Honda et al., 2001).

The Pacific-North American (PNA) index describes the gradient betweenthe Aleutian low and a

persistent high pressure system over North America. The PNA has also been found to be linked

to poleward transport by correlating with growth rates of observed CO2 at Barrow and Alert (Mu-

rayama et al., 2004). Another modelling study byFisher et al.(2010) suggested that a weakening

of the Aleutian low in April 2008 hindered poleward transport causing anomalously low CO over

Alaska, was associated with a La Niña event. They therefore suggested that El Niño events may

result in increased poleward transport. However, their study was not conclusive and it is still un-

known whether circulation changes, due to El Niño conditions, have any impact on the burdens of

trace species in the Arctic. It is important to understand how these processaffect Arctic composi-

tion so any future shifts in climate modes and what this means for the Arctic can beunderstood.

CO is emitted directly from anthropogenic, natural and biomass burning sources, produced from

the oxidation of methane and NMHC, and lost from the atmosphere through reaction with OH and

deposition. These different sources and sinks cause the atmospheric burden of CO to be sensitive

to changes in a variety of sources and to the oxidising capacity of the atmosphere (Khalil and

Rasmussen, 1984a, 1994; Novelli et al., 1998; Duncan and Logan, 2008). Biomass burning is a

large source of CO to the troposphere (Wotawa et al., 2001; Duncan et al., 2007) and exhibits a

high interannual variability (IAV) (van de Werf et al., 2006). For this reason, both models and

observations have shown global atmospheric CO IAV to be sensitive to changes in biomass burn-

ing emissions (Duncan and Logan, 2008; Yurganov et al., 2010). The frequency and intensity of

biomass burning have been found to be influenced by the coupled El Niño - Southern Oscillation

(ENSO). Increased fire activity and emissions during El Niño events have been shown to affect

tropospheric composition in some regions (van de Werf et al., 2004; Logan et al., 2008; Chandra

et al., 2009; Nassar et al., 2009). El Niño can also affect tropospheric composition through dy-

namical changes in convection and circulation. For example, regional photochemistry has been

shown to be influenced by the eastward shift of tropical convection during El Niño conditions,

which displaces lightning and its associated NOx emissions (Chandra et al., 1998; Staudt et al.,

2001; Doherty et al., 2006; Chandra et al., 2009). Tropospheric concentrations of OH and O3 have

also been shown to be affected by increased stratospheric-tropospheric exchange (STE) during El

Niño events (Zeng and Pyle, 2005; Voulgarakis et al., 2011).

This chapter focuses on answering the open question of what are the roles of atmospheric circula-

tion and emissions in controlling the IAV of Arctic pollution. This also leads onto thequestion of

what controls the variability in transport and emissions. For this, the influence of the NAO, PNA

and El Nĩno are considered. These climate modes are described in more detail in Section 6.2. The

simplified TOMCAT model with realistic lifetime CO tracers, used in Chapter5, is used here as

it allows other possible sources of CO IAV to be removed from the model (i.e.,OH). The model

simulations used in this chapter are described in Section6.3. The contributions of transport and
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emissions to the IAV of CO are discussed in Section6.4 both at the surface and throughout the

depth of the troposphere. TOMCAT is then used to investigate the influencesof the PNA, NAO

and ENSO on the transport of CO to the Arctic in Section6.5. Then links between Arctic CO IAV

and fire variability, with particular focus on El Niño, are discussed in Section6.6with analysis of

regional fire climate drivers which are affected by El Niño. The results are then summarised in

Section6.7

6.2 Low frequency variability climate modes

El Niño - Southern Oscillation, the North Atlantic Oscillation and the Pacific-North American

pattern are three modes of climate variability which are known to have an impact on the atmosphere

by affecting the atmospheric circulation. These climate modes and global consequences are now

described in more detail.

6.2.1 El Niño - Southern Oscillation

In normal conditions, high pressure off the coast of South America and low pressure in the Equa-

torial Pacific result in strong south-easterly trade winds across the SouthPacific. These winds lead

to the movement of warm surface waters from the western coast of South America towards the

eastern coast of Australia. This results in cold water up-welling off the coast of Peru and Ecuador

and a deepening of the thermocline (a region of warmer surface waters where temperature reduces

rapidly with depth) off the coast of Australia. The warm waters in the western equatorial Pacific

result in unstable atmospheric conditions leading to substantial atmospheric convection and large

Figure 6.1Schematic showing normal (left) and El Niño (right) conditions over the Pacific. (Taken
from http://www.pmel.noaa.gov/tao/elnino/nino-home.html).
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Figure 6.2Precipitation and temperature anomalies during ENSO warm phases in DJF (top) and
JJA (bottom). Taken from http://www.cpc.ncep.noaa.gov/products/analysismonitoring/impacts.

amounts of rainfall in this region. The uplifted air then moves eastward and there is a region of

subsidence over South America (see Figure6.1). This atmospheric circulation cell is known as the

Walker circulation and results in tropical regions of Australia and Indonesia being characterised

by large amounts of rainfall and Peru and Ecuador being more arid due to more stable atmospheric

conditions.

Towards the end of the calender year, pressure over the eastern Pacific decreases and the pressure

over the equatorial Pacific increases. The reduction in the pressure gradient between these two

regions weakens the trade winds and therefore weakens the oceanic circulation. This leads to an

increase in the depth of the thermocline in the eastern Pacific and reduction in the thermocline

in the western equatorial Pacific, causing the cold waters off the coast ofPeru to warm. In some

years, this warming and change in pressure is more dramatic than average.It is this phenomenon

which is known as the coupled El Niño-Southern Oscillation (ENSO), where El Niño refers to the

ocean component and Southern Oscillation (SO) to the atmospheric component. During El Niño

conditions, warm waters migrate eastward, relocating the area of convective uplift (see Figure
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6.1). This shift in the atmospheric circulation leads to more rainfall in Peru and Ecuador and often

droughts in Australia and Indonesia.

The changes in the atmospheric and oceanic circulation during ENSO eventsaffect not only tem-

perature and precipitation patterns in the equatorial Pacific but can also have global influences

(Ropelewski and Halpert, 1986; Halpert and Ropelewski, 1992). Figure6.2 shows the climato-

logical anomalies in precipitation and temperature during ENSO warm phases (when there is an

El Niño) which are linked to changes in the global circulation. Changes in the Walker circulation

leads to changes in upper tropospheric circulation which can influence thesubtropical jet streams

and thus the location and intensity of cyclonic activity (Julian and Chervin, 1978; Arkin, 1982;

Landsea, 2000).

In this work, the El Nĩno 3.4 index from the NOAA Climate Prediction Centre2 (CPC) is used

to define phases of ENSO. The index is the anomaly from the average sea-surface temperature

from 1950-2000 calculated in the region 5°N - 5°S, 120°-170°W. This index has been chosen as

it is believed to be the best representative index for the coupled impacts of both El Niño and the

Southern Oscillation (Trenberth, 1997).

6.2.2 North Atlantic Oscillation

The mean state of the atmosphere in the Northern Hemisphere in winter is characterised by strong

high pressure centred over Siberia and low pressure over the North Atlantic and Pacific oceans

(Reynolds, 2004). In summer, the most dominant low pressure system becomes centred over

south-east Asia and high pressure systems cover large parts of the Pacific and Atlantic oceans.

These pressure systems lead to prevailing westerly winds across the mid-latitudes which extend

up through the troposphere, reaching wind speeds of about 40 ms−1 in the jet-steam at around 200

hPa (Hurrell et al., 2003) (see Figure6.3). The intensity of the westerly flow is controlled by the

gradient between the pressure systems. As shown in Figure6.3, the winds in summer are much

weaker than in winter resulting in much slower zonal transport.

The North Atlantic Oscillation (NAO) is a major mode of atmospheric variability over the North-

ern Atlantic and affects the mean state of the atmospheric flow in the Northern Hemisphere. It

describes the correlated variance in the strength of the Icelandic Low andAzores High pressure

systems. During positive phases of the NAO a lower-than-normal wintertime Icelandic Low and

a higher-than-normal Azores High occur. The intense low pressure system over Iceland leads to

enhanced north-easterly flow to Greenland and the Labrador Ocean from the high latitudes and

therefore cooler temperatures in this region and enhanced south-westerly flow of mild air over

north-western Europe (Van Loon and Rogers, 1978; Wallace and Gutzler, 1981). Plots of the

2http://www.cpc.ncep.noaa.gov/data/indices/nino34.mth.ascii.txt
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Figure 6.3 Mean wind vectors over 1958-2001 for NH winter (DJF) (top) and summer(JJA)
(bottom) at 1000 hPa (left) and 200 hPa (right). (Taken fromHurrell et al.(2003)).

mean seasonal location of the pressure anomalies are shown in Figure6.4. The NAO is the lead-

ing cause of atmospheric variability in the NH in winter accounting for 37% of sea-level pressure

(SLP) variability and even in summer, when at its weakest, it still accounts for22% of SLP vari-

ability (see Figure6.4). This means teleconnections are evident throughout the year (Barnston and

Livezey, 1987; Folland et al., 2009; Zveryaev and Allan, 2010). The pressure changes associated

with positive NAO phases strengthen the tropospheric subtropical and polar jet streams (Ambaum

et al., 2001), where the stronger-than-normal westerlies lead to stronger north-easterly trade winds

(Rogers and Van Loon, 1979). These enhanced transport patterns lead to more efficient long-range

transport in the upper troposphere.McCabe et al.(2001) showed that there was a poleward shift of

cyclonic activity in the Northern Hemisphere during the the late 1980s until the early 1990s, when

the NAO remained mostly in the positive phase. Negative phases of the NAO are representative of

a weakening in the gradient in these two pressure systems and therefore ithas the opposite effects.

There is no universally accepted index to describe the NAO, therefore two different indices which

are generated from different techniques have been used in this work.The first (referred to as NAO
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Figure 6.4 Seasonal pressure anomalies caused by the NAO (dotted lines - negativeanomalies,
solid lines - positive anomalies). Numbers represent % of total variability caused by the NAO.
Taken fromHurrell et al.(2003).

(CPC)) has been calculated by the NOAA CPC3. This index has been derived from rotated princi-

pal component analysis of the 500 hPa height anomalies from the NCEP/NCAR reanalysis model.

This method extracts teleconnections which describe large-scale changesin the atmospheric cir-

culation patterns due to recurring climate variability such as the NAO. These teleconnections can

influence temperature, precipitation and jet stream location and intensity overvast areas. The

second NAO index4 (referred to as NAO (HUR)) is the mean winter (December through March)

index of the NAO and has been calculated based on the difference of normalized sea level pressure

(SLP) between Lisbon in Portugal and Reykjavik in Iceland since 1864. The SLP anomalies at

each station are normalized by division of each seasonal mean pressureby the long-term mean

(1864-1983) standard deviation to avoid the series being dominated by the greater variability of

the northern station (Hurrell and Deser, 2010). A disadvantage of station-based indices is that they

are fixed in space therefore only adequately capture NAO variability for parts of the year due to its

seasonal evolution (see Figure6.4) and are also affected by small-scale, short-term meteorological

events which are not related to the NAO (Hurrell and Deser, 2010).

3ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices
4downloaded from: http://www.cgd.ucar.edu/cas/jhurrell/indices.html
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6.2.3 Pacific North American Oscillation

The Pacific-North American (PNA) oscillation is another prominent mode of variability in the

Northern Hemisphere. The positive phase of the PNA is associated with above average pressure

over North America and below average pressure south of the Aleutian Islands and over south-

eastern United States (Barnston and Livezey, 1987). The PNA affects the atmospheric circulation

in the Northern Hemisphere and influences the strength and location of the Pacific storm track

(Honda et al., 2001). The positive phase is linked with an enhancement of the East Asian jet stream

and eastward shift in the jet exit region toward the western United States. The negative phase is

associated with a westward retraction of that jet stream toward eastern Asiaand blocking activity

over the high latitudes of the North Pacific reducing transport to the Arctic. As with the NAO, these

changes in atmospheric circulation lead to changes in temperature and precipitation. The positive

phase of the PNA pattern is associated with above-average temperatures over western Canada and

US and below average temperatures across the south-central and south-eastern US (Leathers et al.,

1991). Precipitation anomalies are found in the Gulf of Alaska and north-westernUS with above

average precipitation, and over the upper Midwestern United States with below-average rainfall

(Leathers et al., 1991). The PNA signal is strongest in winter (Barnston and Livezey, 1987) but

has been found to exhibit precipitation and temperature teleconnections in spring and autumn

(Leathers et al., 1991). The index used in this chapter has been downloaded from the NOAA CPC

and is derived by the same method as the NAO (see Section6.2.2).

6.3 Model Set-up and methodology

The basic model set-up, used for the simulations in this chapter, has been described previously in

Section5.2.2of Chapter5. All runs contain the same 16 idealised tracers shown in Table5.2and

use the same monthly varying OH fields which remain fixed for the whole 1997-2009 period. To

investigate the impact of meteorology and biomass burning on the IAV of CO, four separate sim-

ulations were performed. One simulation used climatological biomass burning emissions which

remain the same year-to-year and the other three used yearly varying biomass burning emissions.

Each simulation was run with either interannually varying meteorology or with meteorology for

one year repeated each of the 13 years. The four simulations were:

• Varying biomass burning emissions and varying meteorology (runvgfed vmet).

• Climatological biomass burning emissions and varying meteorology (runcgfed vmet).

• Varying biomass burning emissions and fixed meteorology for Jan 2001 - Dec 2001 (run

vgfed met01).
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Figure 6.5 Yearly-varying CO emissions (Tg(CO)/year) from GFED v3.1 for different fire types
over 1997-2009 used for the yearly-varying biomass burning emissionstracers.

• Varying biomass burning emissions and fixed meteorology for May 1997 - April 1998 (run

vgfed met97).

For the fixed meteorology simulations two years were chosen, one as a ‘neutral year’ and one

with a strong El Nĩno signal. The ‘neutral year’ was chosen by considering the mean, maximum,

minimum and standard deviations for the NAO and El Niño indices. Both the NAO and El Niño

indices were neither strongly positive or negative and exhibited relativelysmall variability in 2001,

making this year the best choice for the period of study. However, it must be noted that it is

impossible to choose one year alone which is representative of the mean stateof atmospheric

circulation due to its chaotic nature. May 1997 - April 1998 was chosen as a‘positive El Niño

year’ as the index remained positive for the whole period. It must also be noted that this year was

a particularly strong El Nĩno year (Wolter and Timlin, 1998).

6.3.1 Emissions

The emissions used were described in Section5.2.2, however, cgfedvmet required non-yearly

varying biomass burning emissions. For cgfedvmet, monthly means were calculated from the

1997-2009 GFED v3.1 fire emissions. The fire emissions for the period 1997-2009 are shown in

Figure6.5, showing the extent of the IAV of fire emissions.
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6.4 IAV of CO and the importance of meteorology and biomass burn-

ing emissions

The 2-year running mean of observed and simulated monthly mean CO at the surface are shown

in Figure6.6. This allows variations in CO to be seen with the seasonal cycle removed. In the

high-mid northern latitudes (ALT, ZEP, BRW, STM, ICE and MHD (see Figure 4.12and Table

4.4 for locations) there are two large peaks in the observed CO time series in 1998 and 2003.

These peaks are captured by the three model experiments which include yearly varying biomass

burning emissions (vgfedvmet, vgfedmet97, vgfedmet01) but not the experiment with climato-

logical emissions (cgfedvmet). This suggests that these peaks are driven by a change in biomass

burning emissions. The winters of 1997-1998 and 2002-2003 experienced El Nĩno events, sug-

gesting a connection between El Niño, forest fires and global CO. The impact of El Niño on forest

fires and any link with the Arctic is discussed in more detail in Section6.6. At these stations,

the simulations vgfedvmet, vgfedmet97 and vgfedmet01 show only small differences in CO

concentrations, even though they are driven with different meteorology. This suggests that even

though atmospheric transport is vital for advecting emissions poleward, variability in atmospheric

circulation is much less important than variability in fire emissions in terms of the ArcticCO IAV.

This is important as the impact of fires on Arctic has received very little attention, however these

results suggest that they have a large impact on the IAV of Arctic atmospheric composition.

One or both of the 1998 and 2003 peaks can be seen globally to some extentdemonstrating the

importance of biomass burning emissions as a global source of CO. Interestingly, it can be seen that

meteorology becomes increasingly important at lower latitudes. For example, cgfed vmet captures

more of the observed variability at MID and KEY compared to other stations, suggesting both

meteorology and fire emissions are important processes for IAV at this location. By considering the

difference between the model experiments using El Niño meteorology repeatedly (vgfedfmet97)

and the simulation which uses 2001 meteorology repeatedly (vgfedfmet01),the dynamical impact

that El Niño has on CO concentrations at different locations can be deduced. AtMLO, El Niño’s

dynamical impacts lead to an increase in CO concentrations of around 5-8 ppbv over the whole

13-year period. This indicates there circulation changes result in increased transport to the NH

extra-tropics. The Arctic stations show much smaller CO enhancements of around 2 ppbv. This

does suggest that there is an increase in Arctic CO during El Niño events, as hypothesised by

Fisher et al.(2010). At CGO, in Australia there is less CO during El Niño, due to the weakening

of the Walker circulation as shown in Figure6.1.

CO anomalies have been calculated for each of the four simulations and observations relative to

their 1997-2009 means. This allows the impact of meteorology and biomass burning emissions on

the IAV of CO in the Arctic to be investigated. Figure6.7 shows the modelled and observed CO

anomaly at surface stations located north of 60°N. Values of r2 have been calculated between the
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Figure 6.6 Two year running mean of monthly mean observed CO at surface stations (for loca-
tions see Table4.4and Figure4.12) compared to simulated CO from the simulations vgfedvmet,
cgfedvmet, vgfedmet97 and vgfedmet01 calculated between 1997 and 2009. Note the different
y-axis ranges.



Chapter 6.Interannual variability of Arctic CO 130

observed and simulated anomalies and are also shown in Figure6.7. r2 is a measure of how much

each model simulation captures the observed interannual variability. The vgfed vmet simulation,

which is most realistic due to the use of correct meteorology and fire emissionseach year, captures

the observed anomaly very well (r2 > 0.86). This gives confidence in the model’s ability to capture

the IAV of CO in the Arctic. Simulation cgfedvmet, which uses climatological fire emissions

and yearly varying meteorology, captures between 0 and 25% of the IAV of CO depending on

the station location. The only source of variability in this simulation is the meteorologywhich

changes according to the analyses. ICE, STM and ALT exhibit the highest values of r2, suggesting

the IAV of CO at these stations is more sensitive to changing circulation patterns compared to

BRW and ZEP. When varying meteorology and biomass burning emissions areused (vgfedvmet),

TOMCAT captures 86-91% of the variability showing that biomass burning IAV is responsible for

the majority of CO IAV in the Arctic. The other 9-14% of the variability which is notcaptured

by this simulation must be due to processes which are not represented in these simplified tracer

simulations or model errors. There is very little difference between the threemodel experiments,

vgfed vmet, vgfedmet01 and vgfedmet97, which are being forced by meteorology for different

years, also showing that meteorology has only a small impact on Arctic CO IAV.

Szopa et al.(2007) concluded that meteorology and emissions played almost equal roles in reg-

ulating the IAV of CO at high northern and southern latitude stations. Specifically, they found

that their model captured the range of IAV of CO more accurately at ALT and BRW when they in-

cluded yearly varying biomass burning emissions. However, at STM and ICE, they found that their

control simulation with only climatological biomass burning emissions already captured most of

the IAV. The results shown here do suggest that ICE and STM are affected by changing circulation

more than the other high latitude stations, however, biomass burning emissions still control the

observed IAV. These different results could be due to differences inthe model set-up and analy-

sis of results.Szopa et al.(2007) studied a period of five-years whereas this works considers a

longer period of thirteen-years. Both studies included the 1997-1998 ElNiño, which is the second

strongest El Nĩno event recorded in the 20th century (Wolter and Timlin, 1998). This was also fol-

lowed by a very strong La Niña in 1999-2000. As already mentioned, these can have large impacts

on tropospheric composition through biomass burning emissions, circulation changes and tropo-

spheric chemistry (see Section6.1). Whether regional effects of El Niño/La Niña can propagate

to the Arctic is unknown. However, this time period was unusual and dominatesthe 1997-2001

period thatSzopa et al.(2007) studied and could therefore account for some of the differences in

results. One other difference which may be important is thatSzopa et al.(2007) used a general

circulation model (LMDZ-INCA) which was relaxed towards ECMWF ERA-40 winds whereas

the work shown here used ERA-Interim winds in an offline CTM. Differences in the meteorolog-

ical analyses (ERA-40 and ERA-Interim) and model differences (e.g. assimilation of data into

LMDZ-INCA and forcing of TOMCAT with offline calculated winds) may also account for some
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Figure 6.7Annual mean anomalies of the El Niño, PNA and NAO indices relative to 1997-2009
(top left) and annual mean anomalies of observed and simulated CO relative to1997-2009 at
surface stations north of 60°N.

differences. Finally,Szopa et al.(2007) also used on-line calculated OH concentrations which

could contribute to some of the year-to-year variability which was attributed to meteorology com-

pared to TOMCAT which used non yearly varying OH. However the total OHvariability is thought

to be small (Montzka et al., 2011) and therefore is unlikely to contribute a large fraction to the IAV

of CO in reality. LMDZ-INCA also yielded lower correlations with the observations (0.58-0.83)

indicating that TOMCAT captures the IAV of CO at the surface in Arctic betterwhen the model

has been constrained to only account for biomass burning and meteorological variability.

To show the model-observation relationship in a global context, Figure6.8shows the correlations

between the observed and simulated CO anomaly calculated for all four of themodel simulations

plotted on a map at each station location and as a function of the station’s latitude.It can be seen

that at high northern and southern latitudes, the use of varying biomass burning emissions results

in the much higher correlations compared to cgfedvmet, which uses climatological emissions.

Towards the tropics, the difference between the correlations calculated from the observations with

vgfed vmet and with cgfedvmet become smaller, suggesting meteorology becomes more impor-

tant at lower latitudes. This is in agreement withSzopa et al.(2007) who also found meteorology

to be more important in the tropics. Moreover, the correlations between vgfed vmet and the obser-

vations decrease from the high latitudes towards the tropics suggesting thatthere are other sources
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Figure 6.8 Global maps and zonal plots of the Pearson’s correlation coefficient calculated be-
tween observed and modelled annual anomalies at the surface relative to the 1997-2009 means.
CO TOT has been used from each of the simulations vgfedvmet (top left), cgfedvmet (top right),
vgfed met97 (bottom left) and vgfedmet01 (bottom right). The model has been interpolated to
the surface station location.

of IAV that are important in this region apart from meteorology and biomass burning emissions.

One reason for this could be the tropics being more sensitive to OH concentrations due to this

region being more photochemically active compared to the high latitudes. This region is therefore

likely to be more sensitive to changes in the oxidising capacity of the atmospherewhich will not

be captured by the model experiments discussed here due to the use of fixed monthly mean OH.

Table6.1 shows the percent contributions from different sources to the interannual variability of

CO calculated from vgfedvmet (best guess simulation). This was calculated from the standard

deviation of each tracer as a fraction of the sum of all standard deviationsas follows:

xi j =
σi j

∑σi j
×100, (6.1)

wherexi j is the percent contribution to IAV of traceri, at stationj, andσi j is the standard devia-

tion. The total IAV, fire IAV and anthropogenic IAV were calculated usinga sum of the standard

deviations of the applicable tracers. For example, for the fire IAV only the fire type tracers were
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used. Also, it must be noted that the anthropogenic variability does not include variability from

other anthropogenic emission regions which are outside of the regions in Figure 5.1. The per-

centages for the ‘Total IAV’ show on average fires are responsible for 85% of the total IAV at the

surface in the Arctic which supports the results in Figure6.7. This accounts for variations in both

meteorology and fire emissions. Anthropogenic sources contribute a much smaller amount of 10%

and direct natural, isoprene and methane sources contribute a total of 5%. As the anthropogenic

and natural emissions are fixed every year, all the variations in these tracers are due to transport.

In terms of ‘Fire IAV’, forest fires are the largest contributor to IAV, causing 60% of IAV in the

CO TF tracer. As already shown (see Figure5.10), forest fires are also the largest source of Arctic

CO sourced from all fire types. Peat fires contribute the second largest amount to IAV of fires of

12%, followed by agricultural and savannah fires which contribute 9% each. Even though peat fires

only contribute a small fraction to Arctic CO (see Figure5.10) they exhibit a high IAV in emissions

(see Figure6.5) therefore contributing more to the IAV of Arctic CO. Conversely, savannah fires

contribute a larger fraction to CO (see Figure5.10) but do not exhibit a high IAV in emissions (see

Figure6.5). Both savannah and peat fires have fairly consistent IAV contributions at all stations

whereas agricultural fires show more spatial variance with the lower latitudestations (STM and

ICE) being more affected by variability in agricultural fires. This is as a result of the sources of peat

and agricultural fires in GFED v3.1 being largely located in the extra-tropical regions (see Figure

3.4) and therefore emissions will be more well-mixed with background CO as they are transported

polewards, however, a large fraction of agricultural fires occur in themid-high latitudes in the

NH and therefore resulting in higher concentration gradients in the CO field.Deforestation and

woodland fires contribute the smallest amount to IAV of COTF with values of 6% and 2%.

Overall, European CO contributes the largest percentage (35%) to IAV of CO AN, followed by

North American CO (31%), then East Asian CO (19%), and the smallest contribution is from

South Asian CO (15%). The contribution of different anthropogenic sources to the IAV of COAN

show a dependence on the location of the station. European CO contributesthe largest percentage

(47%) to IAV at STM and ICE followed by North American CO (27-29%). East Asian and South

Asian CO contribute a smaller percent of 10-15%. ALT has the largest contribution from North

American CO (37%), BRW has the largest contribution from both North American and East Asian

CO (27%) and ZEP has the largest contribution from North American and European CO (32-34%).

BRW, ALT and ZEP have much higher contributions from Asian sources compared to STM and

ICE. Again these results are similar in pattern to the transport sensitivity results shown in Section

5.3.

Until now, the IAV has only been considered at the surface. The vgfedvmet simulation can be

used as a representation of the real atmosphere to investigate how CO IAV inthe free troposphere

is affected by variability in biomass burning and meteorology. Figure6.9 shows the correlations
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Table 6.1Percent contributions to the IAV of COTOT (Total IAV), CO TF (Fire IAV) and COAN
(Anthropogenic IAV) from individual tracers from the simulation vgfedvmet at Arctic surface
stations. The values have been calculated using equation6.1.

CO Tracer ICE STM ZEP BRW ALT Mean

Total IAV
CO TF 82.5 79.5 85.1 88.9 88.3 84.7
CO AN 12.8 14.9 9.9 5.6 7.1 10.1
CO NAT 2.2 2.9 2.7 2.3 1.9 2.4
CO ISO 0.9 0.7 0.8 1.7 1.1 1.0
CO CH4 1.6 2.0 1.4 1.5 1.7 1.6

Fire IAV
CO AGR 12.2 14.1 9.4 5.4 6.7 9.6
CO DEF 6.7 6.6 5.9 5.2 5.7 6.0
CO FOR 56.5 54.9 60.4 64.8 63.7 60.1
CO PEA 13.1 13.6 12.7 10.5 11.9 12.4
CO SAV 8.9 8.3 8.9 11.2 9.3 9.3
CO WOO 2.6 2.6 2.7 3.0 2.8 2.7

Anthropogenic IAV
CO NA 29.2 27.3 32.4 27.4 36.7 30.6
CO EU 47.3 47.3 33.8 25.2 20.9 34.9
CO EA 12.6 14.3 19.5 27.1 24.8 19.7
CO SA 10.9 11.2 14.2 20.3 17.7 14.9

between the annual zonal mean COTOT concentrations from vgfedvmet with COTOT from the

other three simulations, which used either fixed meteorology or fixed fire emissions. If there is

a high correlation between two model simulations, it indicates that any difference between them

(either biomass burning emissions or meteorology) asserts little control on the IAV of CO at that

location. Conversely, a low correlation indicates that the difference in fireemissions or meteorol-

ogy results in large differences in CO and therefore the IAV. It is clear that yearly varying biomass

burning emissions exert a much stronger influence on the IAV of CO than varying meteorology.

The lowest correlations between cgfedvmet and vgfedvmet (r<0.40) are seen in the Arctic and

extend from the surface up to around 600 hPa. This shows that model differences in biomass

burning emissions are causing a large portion of the variability in the Arctic burden of CO. In the

mid-upper troposphere, the correlations become larger, indicating biomassburning variability is

most important in the lower troposphere. The pattern of correlations between both vgfedmet01

and vgfedvmet, and vgfedvmet97 and vgfedvmet are very similar to each other. These both

indicate that meteorology is not as important in the troposphere, in terms of the IAV of CO, com-

pared with biomass burning emissions as r>0.9. This agrees withDuncan et al.(2007), who found

the global IAV of CO to be mostly controlled by biomass burning emissions. Lowercorrelations
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Figure 6.9 Annual zonal mean correlations between COTOT from vgfedvmet and top)
cgfedvmet, middle) vgfedmet97, bottom) vgfedmet01 for the period 1997-2009.

between 100-400 hPa indicates meteorology becomes more important at higher altitudes which is

also where biomass burning has been shown to become less important.
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6.5 Variability in transport to the Arctic

Even though Section6.4has shown that variability in transport plays a much smaller role compared

to biomass burning emissions in determining the IAV of Arctic pollution, it is still important in

terms of the sensitivity of the Arctic to emissions from mid-latitudes (see Chapter5). Therefore,

it is necessary to understand any processes that can influence poleward transport both now and

in the future. There is existing evidence of a link between the North Atlantic Oscillation and

winter-time observed concentrations of trace gases at the surface in the Arctic (Eckhardt et al.,

2003; Sharma et al., 2006). This is of particular interest as some model predictions have suggested

that increasing greenhouse gas concentrations result in a trend towards winter-time positive NAO

phases (Stephenson et al., 2006; Meehl et al., 2007). If this is true, concentrations of trace gases

in the Arctic may increase in the future due to increased transport. It has also been suggested

that El Niño events could result in increased poleward transport (Fisher et al., 2010). Figure6.6

showed that higher concentrations at Arctic surface stations were simulated when meteorological

analyses over the 1997-1998 El Niño period were used to force TOMCAT. Any link between

El Niño and transport to the Arctic has not previously been studied in detail. ENSO variability

is currently thought to continue under GHG warming scenarios, however,there is evidence that

teleconnnections over North America may weaken (Meehl et al., 2007). How this would affect

the transport to the Arctic is not known. For these reasons, this section now investigates possible

links between the NAO, PNA and El Niño with observed and simulated CO concentrations in the

Arctic.

To isolate the effect of transport variability on Arctic composition, any variability due to biomass

burning emissions was removed by using the cgfedvmet simulation, which uses climatological

biomass burning emissions. This also allowed the simulation to be extended back to1990 as the

length of the run was no longer constrained by the availability of yearly-varying fire emission

estimates. This simulation contained the same tracers as listed in Table5.2. For each of these

tracers, two additional tracers were included which are decayed with fixed lifetimes of 30-days

and 5-days rather than by reaction with OH (30-day tracers are described in Section5.2.1). This is

so the impact of transport on trace gases which have different lifetimes can seen.

Figure6.10shows correlations calculated for the El Niño index with observed and simulated CO

at 5 surface stations north of 60°N, identifying any possible relationship between the two. Any

correlation found between the index and model tracers that is not seen withthe observed CO

shows that El Nĩno does affect CO through transport but there are other processeswhich are more

dominant (e.g. fires). Any correlation which is found between the index and observed CO which

is not captured by the model suggests that this is not caused by meteorologybut by El Niño

affecting CO variability through other processes. The results suggest that there is a statistically

significant link between variability in observed CO and El Niño in spring at ALT and BRW, and in
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Figure 6.10Pearson’s correlation coefficients calculated for the El Niño index with observed and
simulated CO anomalies relative to the 1990-2009 mean at surface stations located> 60°N. Sym-
bols represent values which are significant at P<0.05 (diamonds) and P<0.01 (diamonds and
crosses) levels. The monthly mean El Niño index and monthly mean CO have been separated into
seasonal bins, DJF, MAM, JJA and SON (left to right). The correlationsare shown for simulated
tracers: COTOT, CO AN, CO NA, CO EU, CO EA, CO SA (top to bottom), which are decayed
by OH (prefix CO) and with fixed 30 and 5 day lifetimes (prefixes CO30 and CO5).

summer at ALT. Interestingly, the correlations are positive in the spring butnegative in the summer.

The model also shows a significant positive correlation for the CO30TOT and CO5TOT tracer

at BRW in spring, indicating that this station is particularly sensitive to atmospheric circulation

changes induced by El Niño/La Niña events, expecting increased concentrations after or during an

El Niño. BRW is located in Alaska which is whereFisher et al.(2010) observed anomalously low

CO during April 2008 attributing it to a La Niña, which agrees with the results shown here. Alaska

is particularly sensitive to ENSO teleconnections due its Pacific coastal location, experiencing

temperature and precipitation anomalies (see Figure6.2). The regional tracers indicate that the

positive correlations in the observed CO are due to increased transportfrom South and East Asia.

The results also suggest that the transport patterns from Asia during anEl Niño are especially

significant for shorter lived species, enabling them to reach the Arctic. The significant correlation

for observed CO at ALT in spring is not reproduced by any of the COTOT tracers. According to
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Figure 6.11 Pearson’s correlation coefficients calculated for the NAO index with observed and
simulated CO anomalies relative to the 1990-2009 mean at surface stations located> 60°N. Sym-
bols represent values which are significant at P<0.05 (diamonds) and P<0.01 (diamonds and
crosses) levels. The monthly mean NAO index and monthly mean CO have been separated into
seasonal bins, DJF, MAM, JJA and SON (left to right). The correlationsare shown for simulated
tracers: COTOT, CO AN, CO NA, CO EU, CO EA, CO SA (top to bottom), which are decayed
by OH (prefix CO) and with fixed 30 and 5 day lifetimes (prefixes CO30 and CO5).

the model, the link between El Niño and CO in spring at ALT is not due to meteorology. In the

summer, the regional tracers suggest that transport of emissions from East Asia is reduced during

an El Niño, which could be causing the negative correlation with the observations.The tracers

also show that transport to all stations from South Asia is increased and transport to STM and ICE

from Europe is increased, however, this is not reflected in the observations. In winter and autumn,

the only tracer which shows significant correlations is COSA which suggests there is a strong link

between the export of South Asian emissions with El Niño. It is known that the export of South

Asian emissions is mostly controlled by the monsoon (Stohl and Eckhardt, 2004) and that stronger

trade winds during an El Niño have been associated with stronger monsoon seasons (Webster and

Yang, 1992). However, more recently there is evidence of a weakening of this relationship possibly

due to increasing atmospheric temperatures (Kumar et al., 1999; Meehl et al., 2007). This suggests
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Figure 6.12Pearson’s correlation coefficients calculated for the PNA index with observed and sim-
ulated CO anomalies relative to the 1990-2009 mean at surface stations located > 60°N. Symbols
represent values which are significant at P<0.05 (diamonds) and P<0.01 (diamonds and crosses)
levels. The monthly mean PNA index and monthly mean CO have been separated into seasonal
bins, DJF, MAM, JJA and SON (left to right). The correlations are shownfor simulated tracers:
CO TOT, CO AN, CO NA, CO EU, CO EA, CO SA (top to bottom), which are decayed by OH
(prefix CO) and with fixed 30 and 5 day lifetimes (prefixes CO30 and CO5).

that in the future, the impact of South Asian emissions on the Arctic burden of trace gases may

become even less.

Figure6.11 is the same as Figure6.10, but the correlations have been calculated with the NAO

index. In agreement withEckhardt et al.(2003), the winter correlations show there is a link

between observed CO and the NAO index at BRW and ALT, however, the results shown here

indicate that there is also a link at these stations in spring and at STM in autumn. There is a similar

relationship between the NAO and COTOT tracers in winter and spring suggesting that variability

at the surface is connected to NAO circulation changes. In winter and spring the regional tracers

show that the model correlations at BRW are due to enhanced transport from North America and

Europe and at ALT are due to increased transport from Europe during positive NAO years. In the
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Figure 6.13Global maps of Pearson’s correlation coefficient between the El Niño 3.4 index and
simulated total column CO over the 1990-2009 period averaged seasonally (left to right). Tracers
CO TOT, CO AN, CO NA, CO EU, CO SA, CO EA (top to bottom) are from the simulation
cgfedvmet. Values which are not significant at the P<0.05 level have been removed.

autumn, the model tracers do not reproduce the significant correlation atSTM suggesting that this

is caused by processes other than meteorology.

Figure6.12is also the same as Figure6.10but calculated for the PNA index. The correlations with

the observations suggest that the PNA is only important in winter when at its strongest (Barnston

and Livezey, 1987), with STM revealing a significant positive correlation. This suggests thatin

the winter a positive PNA can result in more CO being transported to the Arctic surface. This

is because high latitude blocking during negative PNA phases (see Section6.2.3) limits transport

to the Arctic. The regional tracers show that this winter correlation is mostly due to increased

transport from South Asia and to some extent from Europe. Even thoughthe observations show

that the PNA is only important at STM and ZEP in the winter, the model tracers show that East

Asian, European and North American emissions are influenced to some extent throughout the year

depending on station location.

Figures6.13–6.15show maps of significant correlations between the seasonally averaged climate
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Figure 6.14Global maps of Pearson’s correlation coefficient between the NAO index(CPC) and
simulated total column CO over the 1990-2009 period averaged seasonally (left to right). Tracers
CO TOT, CO AN, CO NA, CO EU, CO SA, CO EA (top to bottom) are from the simulation
cgfedvmet. Values which are not significant at the P<0.05 level have been removed.

indices, El Nĩno, NAO and PNA, with the total tropospheric CO column calculated from five

realistic lifetime tracers. As suggested by Figure6.10, El Niño reveals limited correlations with

the total Arctic CO when considering changes in circulation alone. The maps reveal the largest

correlations between El Niño and the South Asian emission tracer with winter and spring showing

significant positive correlations over most of the NH and the Arctic. This corresponds to what

was seen in the South Asian tracer at the surface in Figure6.10. In winter and spring, the total

tracer shows statistically significant evidence of increased concentrations over parts of Alaska and

Canada during El Niño events, again in agreement with the satellite observations shown inFisher

et al. (2010). In summer and autumn, there is evidence of negative correlations in the total CO

tracer over parts of the Arctic ocean and Canada and Siberia. The regional tracers show that this

is because of reduced concentrations of European CO in summer and East Asian CO in autumn.

This suggests that the interaction of the Arctic CO burden with El Niño is complex with seasons

responding in different ways.

According to the model, Figure6.14shows that circulation changes associated with the NAO may
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Figure 6.15 Global maps of Pearson’s correlation coefficient between the PNA indexand sim-
ulated total column CO over the 1990-2009 period averaged seasonally (left to right). Tracers
CO TOT, CO AN, CO NA, CO EU, CO SA, CO EA (top to bottom) are from the simulation
cgfedvmet. Values which are not significant at the P<0.05 level have been removed.

have a global impact on concentrations of CO throughout the year. For the COTOT tracer, the

largest correlations in the Arctic occur in the winter, with clear positive correlations over the whole

Arctic region, indicating total CO is increased during wintertime positive phases of the NAO. The

regional tracers show that this is likely due to increased transport from Europe and North America

with some indication that East Asian transport is also increased. Conversely, South Asian CO

shows statistically significant negative correlations in the Arctic. North America and Europe are

located either side of NAO wintertime centre, making transport pathways particularly susceptible

to any strengthening/weakening of circulation over the Atlantic. The intense low pressure anomaly

during positive phases also extends over parts of Asia (see Figure6.4), drawing air polewards

from East Asia. Stronger trade winds during positive NAO phases (Ambaum et al., 2001) leads

to correlations that are generally positive in the SH and negative in the NH for the South Asian

CO tracer. One previous study analysed the impact of the NAO on the winter-time anthropogenic

export of pollution and also found increased poleward transport fromNorth America, Europe and

Asia during positive NAO phases (Eckhardt et al., 2003). As the season progresses, the influence
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of the NAO on the Arctic evolves. In spring, the COTOT tracer shows regional differences in

the correlations with the NAO in the Arctic, with negative correlations over North America and

the North Atlantic spreading poleward into parts of the Canadian Arctic and over Greenland. The

regional tracers show that this is because even though North American and European CO show

predominately positive correlations, negative correlations are now observed in the Canadian Arctic

for North American CO and in the region of Greenland for the North American, East Asian and

South Asian CO. This is due to an eastward shift in the NAO centre (see Figure6.4), which reduces

the direct transport into the Arctic and draws air more over the Pacific towards North America

instead of poleward. In the summer, COTOT shows that the overall impact on CO would be a

reduction in CO during positive NAO years. East Asian CO shows significant negative correlations

throughout the Arctic and North American, European, and South Asian COshow some regional

negative correlations. In the summer, the Arctic becomes more sensitive to Asian emissions (see

Chapter5) and therefore the NAO influence on this region contributes more to the overall Arctic

response. In summer, the centre of the NAO shifts north-eastwards (seeFigure6.4) with large parts

of Europe and Scandinavia being covered in anomalously high pressureduring positive phases.

This draws air southwards towards North Africa where positive correlations between the NAO and

CO EU are visible with negative correlations over Scandinavia. The high pressure extends towards

North America (Folland et al., 2009), drawing North American emissions towards Scandinavia

where positive correlations are visible in the CONA tracer resulting in negative correlations over

North America and Canada. Positive correlations also occur over the North America emission

region suggesting air becomes more stagnant due to the associated high pressure system (Folland

et al., 2009).

Figure6.15shows that the PNA has a limited impact on the total Arctic burden of CO. The largest

correlations are seen with the South Asian tracer in winter where positive correlations occur over

much of Canada and the North Atlantic and to a lesser extent during autumn. Inthe summer, the

North American tracer shows negative correlations in the Siberian region of the Arctic suggesting

that less CO from North America is found here during positive phases of the PNA.

To estimate the importance of these correlations for the absolute concentrations of CO in the Arc-

tic, the differences between concentrations of simulated CO during seasons with strongly positive

and strongly negative index values have been calculated. For each month, six years were selected,

of which three were the most negative and three were the most positive over the 1990-2009 period

for the El Niño, NAO and PNA indices. These months were then averaged seasonally tocreate

CO fields to represent positive and negative index seasons (these composites will be referred to as

NINO+, NINO- , NAO+, NAO-, PNA+ and PNA-). The seasonally averaged differences between

the positive and negative indices varying with altitude are shown in Figure6.16. One clear pattern,

is that the indices generally have the largest impact on total Arctic CO in the mid-upper tropo-

sphere and not at the surface. Another general point is that all tracers show a significant amount of
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Figure 6.16Seasonally averaged (left to right) absolute differences in simulated CO concentra-
tions >66°N between NINO+ and NINO- (top), NAO+ and NAO- (middle), PNA+ and PNA-
(bottom) composites at different altitudes. Note the different x-axis

seasonal variability. Out of the indices considered, the NAO has the largest impact on total Arctic

CO in the winter and spring, and the El Niño has the largest impact in autumn. In summer all three

indices show similar absolute variations between the different phases.

Considering the El Nĩno influence alone, in winter between the surface and 300 hPa, the COTOT

tracer shows a very small difference between NINO+ and NINO-. The regional tracers show this is

because under NINO+ conditions, Arctic CO is increased by 1 ppbv fromSouth Asia and by∼0.4

ppbv from East Asia, however, this is countered by equivalent decreases in North American and

European CO. European CO shows less difference at higher altitudes and therefore COTOT shows

a slight increase (1 ppbv) in overall CO at around 550 hPa. The largest impact from El Nĩno occurs

in spring where COTOT shows an increase of 6 ppbv at 300 hPa which supports the speculations

of Fisher et al.(2010). The tracers show that 4.5 ppbv of this CO is from anthropogenic (COAN).

All regional tracers show an increase to some extent at this altitude, however, East Asian CO

shows the largest contribution of almost 2 ppbv. In the summer, the total CO responds differently

and decreases by up to 2 ppbv, both at the surface and at 250 hPa. Atthe surface, about half
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of this is due to a reduction in East Asian and European CO and the other halfis due to non-

anthropogenic sources, such as fires and natural emissions. In the upper troposphere, the lower

CO in NINO+ is due to a reduction in East Asian, South Asian and North American sources

plus other non-anthropogenic sources. In autumn, total CO is reduced by between 1 and 3 ppbv

throughout the troposphere in NINO+. In the mid-upper troposphere about half of this is due to

anthropogenic sources and the half is due to other sources. In the lowertroposphere, anthropogenic

CO shows an increase in CO due to European and to a lesser extent North American and South

Asian CO, indicating that the reduction in total CO in the lower troposphere is due to less transport

of emissions from fires and natural sources.

NAO+ relative to NAO- shows an increase in COTOT throughout the troposphere in winter and

spring with up to 12 ppbv and 7 pbbv differences at 300 hPa, mostly due to increased transport of

anthropogenic emissions. North American CO dominates the differences in theupper troposphere

and European CO dominates the difference in the lower troposphere. East Asian and South Asian

CO show slight increases in the upper troposphere at 300 hPa.Eckhardt et al.(2003) also exam-

ined the wintertime concentration response of anthropogenic fixed lifetime tracers at the surface

between NAO positive and negative phases and also found a positive response in European, North

American and Asian emissions. As with El Niño, the response of CO to NAO circulation changes

is reversed in the summer, with COTOT now lower throughout the troposphere in NAO+ years

relative to NAO- years. The largest impact is at 250 hPa where COTOT shows 1.8 ppbv differ-

ence, which is mostly due to anthropogenic emissions. At the surface COTOT also shows up to

1.3 ppbv less CO in NAO+ years, however, the anthropogenic tracer shows a small increase of 0.5

ppbv indicating that the NAO also influences transport from other sources such as fires and natural

sources, which are more important in summer. In autumn, the COTOT tracer reverts back to the

winter and spring response, with an increase of up to 1 ppbv from NAO- toNAO+.

The PNA generally shows smaller differences between the PNA+ and PNA-compared to the other

indices. In winter, COTOT is up to 3 ppbv lower in PNA+ relative to PNA- at 400 hPa, this is due

to anthropogenic emissions, most notably from North America and East Asia.In spring, COTOT

shows a difference of around 1.5 ppbv from the surface up to 300 hPa, where the positive PNA

increases CO by up to 5 ppbv. In summer and autumn, the PNA+ shows lower concentrations

compared to PNA- as seen in winter, however, they occur lower in the troposphere, around 550

hPa. The regional tracers show that in summer, the anthropogenic CO is not solely responsible for

the response in COTOT, even though North American CO is reduced by up to 1 ppbv, therefore

transport from other sources are also reduced during PNA+. In autumn, however, a combination

of less CO from East Asia and Europe are responsible for the reducedCO.
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6.6 Variability in fire emissions: El Niño, biomass burning and Arctic

CO.

Section6.5 showed that CO in the Arctic can be enhanced by as much as 6 ppbv in springand

decreased by 5 ppbv in winter in the upper troposphere due to changes inmeteorology during an El

Niño relative to a La Nĩna. However, variability in biomass burning emissions has been shown to

be the dominant process controlling CO IAV at latitudes greater than 60°N (see Section6.4). Fires

are intrinsically linked to temperature and the availability of water and thereforelinks between

fire activity and natural climate oscillations have been found (Bowman et al., 2009). In particular,

many studies have found regional correlations between El Niño and fire activity (Williams and

Karoly, 1999; Kitzberger et al., 2001; Page et al., 2002; van de Werf et al., 2004; Westerling

et al., 2006). Here, possible links between Arctic CO IAV and El Niño are investigated, through

El Niño’s impact on biomass burning emissions. Figure6.7 shows the annual mean NAO, PNA

and Nĩno 3.4 indices with the observed and simulated annual CO anomalies at the surface in the

Arctic. There is a resemblance between the Niño 3.4 index and the CO anomaly time series at

each Arctic station, but offset by 1 year. To investigate this relationship further, lag correlations

have been calculated between the monthly mean El Niño index and the monthly mean observed

and simulated CO at the same surface stations. The correlations with a lag of 1 to12 months,

calculated for the 1997-2009 time series are shown in Figure6.17. A full observational dataset is

not available at ALT and STM for this time period, therefore lag correlationsare only shown for the

model simulations. Significant positive correlations are found between El Niño and observed CO

anomalies at ZEP, BRW and ICE, with lags of 5 to 12 months. The highest correlations (r≈0.6)

occur with lags of 10 to 11 months. This shows that Arctic CO during the 1997-2009 period

has increased 5-12 months after an El Niño. Significant correlations between El Niño and CO

from the vgfedmet01 and vgfedmet97 simulations reveal similar correlations. The cgfedvmet

simulations, which uses climatological fire emissions, does not show any significant correlations.

The model results therefore suggest that the correlation between the observations and the El Niño

index is due to a link between fire emissions and El Niño, not transport.

To determine whether this link with El Niño is unique to the Arctic, lag correlations at selected

surface stations south of 60°N have also been calculated and are shownin Figure6.18. At MHD,

the lag correlations show the same relationship as seen in the Arctic due to its location being rela-

tively far North at 53°N. Interestingly, at MLO, the cgfedvmet simulation shows some significant

positive correlations suggesting that El Niño increases transport of CO to this station. The location

of this station in North Pacific (see Figure4.12) makes it particularly sensitive the atmospheric

circulation changes associated with ENSO. At most stations, the observations and simulated trac-

ers show different correlations with El Niño. This suggests that there are other processes at these

latitudes that influence CO, which are not accounted for in the simplified tracer simulations used
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in this chapter. As already discussed in Section6.1, El Niño has previously been shown to shift

convection in the tropics and therefore lighting emissions of NOx, modifying budgets of O3 and

HOx (Doherty et al., 2006). Another El Nĩno dynamical impact is that on STE, where increased

stratospheric ozone has been found in the troposphere after an El Niño event (Zeng and Pyle,

2005). Any composition changes are likely to feed into the OH budget which will notbe captured

by these simulations due to the use of offline OH fields. Also, the TOMCAT modelhas previously

been shown to underestimate convection in the tropics (Hoyle et al., 2011; Feng et al., 2011) and

therefore may not accurately capture redistribution of trace gases due toconvection or subsidence.

The gradual increase in correlation with increasing lag, seen in Figure6.17, could be due to dif-

ferent timings and lengths of El Niño/La Niña events, timings of fires of different types being

different in different regions or different transport times from different regions. The fire type trac-

ers can be used to examine possible links between El Niño and different types of fires. The lag

correlations between the El Niño index and CO anomalies from each of the simulated fire type

tracers from vgfedvmet interpolated to ZEP are shown in Figure6.19. The model tracers show

that total fire tracer (COTF) exhibits the same lag correlations as the total CO tracer (COTOT),

supporting the hypothesis that the Arctic CO correlations with the El Niño index are due to interac-

tions between El Nĩno and fires at lower latitudes. Most of the tracers show similar lag correlation

patterns as COTOT and COTF, increasing with increasing lag until around 10 months, but with

smaller correlations. The peat fire tracer (COPEA) and the deforestation fire tracer (CODEF)

show lag correlations that peak earlier in the year. This is due to the burn season occurring earlier

in the calender year compared to the other fire types. The agricultural firetracer (COAGR) shows

very little correlation with El Nĩno, suggesting this type of fire is not affected by the climatic tele-

connections of El Nĩno. This is because agricultural fires are mostly controlled by humans and not

the climate. The lag correlations between the index and the emissions for each of the fire tracers

are also shown in Figure6.19which removes the impacts of El Niño on the transport of emissions

in the model. The fire tracer emissions still exhibit similar relationships as seen in the model fire

tracers apart from the maximum correlations occur at shorter lags. For example, the peat fire emis-

sions have a maximum correlation with a lag of 0 months, whereas the peat fire model tracer has a

maximum correlation with lag of 3 months. As the majority of peat fire emissions in GFED v3.1

occur in tropical Asia, this 3 month lag will partly be due to transport time-scalesto the Arctic

from the SH. As the fire emissions have been shown to exhibit similar correlations between the El

Niño index and fires, these will be used in the following section to investigate the different regional

fire responses to El Niño climate effects.
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Figure 6.17Monthly lag correlations at surface stations> 60°N calculated between the monthly
mean El Nĩno 3.4 index and both monthly mean observed and simulated (from vgfedvmet,
cgfedvmet, vgfedvmet97 and vgfedmet01) CO anomalies for the period 1997-2009. Corre-
lations which are significant at the level P<0.01 are denoted by symbols.

Figure 6.18Same as Figure6.17, but for surface stations< 60°N.

Figure 6.19Monthly lag correlations calculated between the El Niño 3.4 index and monthly mean
simulated fire type tracer CO anomalies relative to 1997-2009 mean at ZEP (left) and between
the El Niño index and the monthly global fire type tracer emission anomaly relative to 1997-2009
mean (right).
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6.6.1 Climate drivers of fires and links with El Niño.

As already mentioned, there is existing evidence that fire activity can be influenced by El Nĩno.

Arid regions of Central and South America and parts of Australia are verysensitive to increases

of precipitation which lead to an increase in plant productivity providing additional fuel for fires

during the dry season (Holmgren et al., 2006a). This implies that the effect of El Niño on different

regions will also depend on the timing of regional burn seasons, i.e., increased precipitation before

or during burn seasons could either increase fuel for fires or suppress fires by reducing the flamma-

bility of fuel. Moreover, fire activity response to El Niño also depends on the regional climatic

response. For example, Peru experiences an increase in rainfall during El Niño events whereas

Australia experiences a decrease (Holmgren et al., 2006b). For this reason, different regional cli-

mate drivers of fires are investigated in terms of the regional response oftemperature, precipitation

and relative humidity to El Nĩno. All previous studies have limited their focus to specific regions,

here an analysis has been conducted globally.

As shown in Figure6.2, El Niño affects both temperature and precipitation in regions other than the

equatorial Pacific. These teleconnections represent the most significant, recurrent patterns which

are associated with El Niño events, however, teleconnections can vary in time (McPhaden et al.,

2006) and therefore certain years may not exhibit all these features. For thisreason, the seasonal

mean anomalies of ECMWF ERA-Interim reanalyses of temperature and precipitation were used

to calculate correlations with the seasonal mean El Niño index over the 1997-2009 period and are

shown as global maps in Figure6.20. Overall, the patterns identified by these correlations during

the 1997-2009 period are mostly similar to the predominant teleconnections which are shown in

Figure6.2. There is clear evidence of positive correlations in both temperature and precipitation in

Figure 6.20 Correlation coefficients between the El Niño 3.4 index and ECMWF ERA-Interim
precipitation (top) and ECMWF ERA-Interim temperature (bottom) averaged over seasons (left to
right) for 1997-2009. Values which are not significant at the P<0.05 level have been removed.
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Figure 6.21Regions used for analysing El Niño influences on fires.

the equatorial Pacific as expected. During an El Niño, positive correlations suggest that Central and

South America experience higher temperatures, and in some parts, negative correlations suggest

less precipitation. Positive correlations with temperature are also seen overmuch of the North

Pacific, up the east coast of North America and in Alaska. Conversely, southern North America

shows negative correlations with temperature and positive correlations withprecipitation. Negative

correlations suggest Central Africa experiences wetter weather and positive correlations suggest

Southern Africa experiences drier and warmer weather during El Niño events. Equatorial Asia

exhibits positive correlations suggesting that it experiences drier and warmer weather during El

Niños as expected. One pattern which occurred during the 1997-2009 period that is not shown in

Figure6.2, is negative correlations over the Middle East suggesting cooler and wetter weather and

a region of positive correlations over Scandinavia during the summer, suggesting warmer weather

under El Nĩno conditions. The teleconnections at mid to high latitudes are less consistent as they

are affected by regional climatic noise (McPhaden et al., 2006) and may explain why these two

patterns are not seen in Figure6.2.

6.6.1.1 Climate drivers of fires

As the GFED fire emissions and the ERA-Interim reanalyses used by the TOMCAT model have

been shown to capture the correlation between El Niño and Arctic surface CO and the climate

teleconnections, these are now used to investigate possible driving processes of fires in differ-

ent regions and links with El Niño. El Niño is generally at its strongest between November and

February, therefore the index was averaged over this period to calculate correlations with the fire
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emissions and the climate parameters (temperature, relative humidity and precipitation). Consid-

ering the regionally-varying climate responses to El Niño, 15 regions were defined and are shown

in Figure6.21. The monthly total emissions over the period 1997-2009 for each of these regions

are shown in Figure6.22showing that maximum fire emissions occur during different months in

different regions. For example, in the boreal regions of Alaska and Canada (ALCA), north-eastern

Siberia (NESI) and central and western Siberia (NCSI), the maximum fire emissions occur during

June to September, during the boreal summer. In the tropics and extra-tropics (i.e., Central Amer-

ica (CEAM) and south-east Asia (SEAS)), the maximum fire season occurs earlier in the year,

during February to June. For this reason, a ‘burn season’ (BS) wasdefined for each region as the

period with the maximum total fire emissions (also shown in Figure6.22). There were two excep-

tions to this, equatorial Asia (EQAS) and western North America (WNAM). Firstly, for EQAS a

smaller BS between January and March was used as it is this BS which is most easily influenced

by an El Nĩno in the November to February period (as denoted by the significant correlations in

Figure6.22). However, it should be noted that the relationship between the later BS (August to

December) and the coincident index is the same as what will be discussed here. For WNAM, the

same BS as eastern North America (ENAM) was chosen because this is the peak forest fire season,

which is of most interest as it was shown to be the dominant contributor to Arcticfire sourced CO

(see Chapter5). Precipitation was integrated over each region, between November (start of the

El Niño period) and the start of each region’s BS (referred to as pb4) andthen again between the

start and end of the BS (referred to as pdu). Similarly, averages of bothtemperature and relative

humidity before (tb4 and hb4, respectively) and during (tdu and hdu, respectively) the BS were

calculated over each region. The monthly mean emissions from the GFED v3.1 total fire emissions

were also summed over the area of each region during the BS and will be referred to as BSem.

BSem and all of the climate parameters (pb4, tb4, hb4, pdu, tdu, hdu) werecorrelated with the

November to February El Niño index to identify any possible regional links between El Niño

and fire emissions, and El Niño and climatic fire drivers. The climate parameters were then also

correlated with BSem to identify possible regional drivers of fires. These can then be used together

with the El Niño correlations to understand what may be driving the fires in each regionand how

fires may respond under El Niño/La Niña conditions. This furthers our understanding of how

global fires may respond in the future to changes in precipitation and temperature. The monthly

total precipitation and monthly mean temperature for each region are shown in Figures6.23and

6.24with the monthly fire emissions overlain. It can be seen that the climatic conditions which

yield the maximum fire emissions differ depending on the region, suggesting that the regional

response to increasing temperatures and changes in precipitation will depend on the regional fire

drivers, and therefore it is important to understand what they are. Forexample, the boreal fire

season occurs during the summer when temperatures are at their highest and total precipitation is

increasing, whereas in the tropics the fire season coincides with the dry season when precipitation
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Figure 6.22 Monthly mean emissions summed over the 15 selected regions. The start and end
of the ‘burn season’ used for analysis is denoted by the blue and red dotted lines, respectively.
Correlation with the monthly emissions with the El Niño 3.4 Index are also shown in by the green
circles, filled circles represent values which are significant at the P>0.05 level.

is at a minimum.

Table6.2 shows the correlation coefficients which have been calculated between BSem with the

meteorological parameters, identifying regions where these parameters appear to control or influ-

ence the intensity or frequency of fires. The climate drivers discussion has been separated into

three sections below.

Boreal fires

The total precipitation prior to the BS (pb4) in Alaska and Canada (ALCA) is the only climate

parameter that has a significant correlation (r=-0.61), indicating this is likelyto be the dominant

process which drives fires in this region out of the parameters considered. A negative correla-

tion indicates that when there is a decrease in precipitation in this region between November to

April (pb4), fire emissions tend to be greater during the BS. This is in agreement withCrevoisier

et al.(2007) who found precipitation to be the most important variable in modelling burned area

in Canada. Eastern Siberia (NESI), also exhibits a significant negative correlation (r=-0.74) with
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Figure 6.23 Monthly total precipitation (m) over the 15 regions used for analysis (grey bars).
Monthly mean GFED emissions are shown by the solid black line.

precipitation prior to the BS (pb4), showing the same climate fire driver as ALCA. The region

of north central Siberia (NCSI), even though in the boreal region, does not have any significant

correlations with any of the meteorological parameters. This region is dominated by agricultural

fires which are driven by human activity as opposed to meteorological factors (see Figure3.4).

Model predictions suggest that the boreal regions are expected to experience an increase in pre-

cipitation (Meehl et al., 2007), which according to Table6.2 may result in a reduction in fires.

Previous fire modelling studies predict higher fire severity over parts of Canada with some regions

also showing decreases (Flannigan et al., 2001). Even though overall precipitation is expected to

increase, there is an expected increase in extreme events such as droughts (Meehl et al., 2007).

The correlations shown here suggest that this would be expected to increase fire emissions. Model

climate predictions also suggest that the boreal regions are expected to warm extensively in the

future (Christensen et al., 2007). A warmer climate in Canada has been predicted to result in an

increase in fires (Flannigan and Van Wagner, 1991). The correlations calculated here do show a

positive relationship over Alaska and Canada, however, they are not significant for the period of

study. Stocks et al.(1998) showed that Russian fires are also expected to increase with a warmer

climate. In addition to temperature and precipitation, there has also been a predicted increase in

lightning flashes with a doubling of CO2 which would increase fires in the boreal regions (Price
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Figure 6.24 Monthly mean temperature (K) over the 15 regions used for analysis (greybars).
Monthly mean GFED emissions are shown by the solid black line. The purple line shows the start
of the period prior to BS.

and Rind, 1994). More recently, it has also been shown that the regional fire response in Canada

can be different depending on the season (Le Goff et al., 2009). Overall, the response of the

boreal regions to changing climate is complex and still not fully understood and requires further

investigation.

North Mid-latitudes fires

Eastern and western North America (ENAM and WNAM) exhibit different relationships with the

climate variables, which could be due to the different vegetation types (see Figure 3.4). For ex-

ample, fire emissions in the region WNAM have a positive correlation with pb4 (r=0.47) and

ENAM has a negative correlation (r=-0.37). For WNAM, BSem correlations with tb4 (November

to April) and tdu (April to September) are r=0.35 and r=0.51, suggesting fire emissions will be

greater in the future warmer climate predicted by theMeehl et al.(2007). A study byHeyerdahl

et al. (2008) found fires located in the Inland Northwest (located in WNAM in the work shown

here) between 1652-1900 to be sensitive to spring and summer temperatures. Increased spring

temperatures increased snow melt which led to dryer summer conditions, and increased summer
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temperatures reduced soil moisture and increased flammability of vegetation. There is already

evidence that fires in western North America have increased during a warmer climate (McKenzie

et al., 2004; Gavin et al., 2007; Westerling et al., 2006) supporting the results shown here. ENAM

shows a significant negative correlation with relative humidity before the BS(hb4) of r=-.57. Rel-

ative humidity modulates fires by affecting the moisture content of fuel. The negative correlation

suggests that when relative humidity is low, moisture is transferred from vegetation to the atmo-

sphere increasing its flammability. Increased future temperatures in this region will reduce relative

humidity and possibly increase fire risk in the future. In Europe (EURO), asignificant positive

correlation was found for tb4, suggesting that increased winter or springtime temperatures would

increase fires in this region. According to the IPCC model predictions of temperature (Meehl et al.,

2007), the relationships shown here suggest European fire emissions will increase in the future. A

study byZumbrunnen et al.(2009) found fires in the European Alps, north of Italy, to be driven by

temperature during the first half of the 20th century, in agreement with the work shown here, and

then controlled by human activities for the second half. The results presented here show that tem-

perature may still be an important fire driver for the whole of Europe.Zumbrunnen et al.(2009)

also found wind to be important at high altitudes, where fires are exposed.This effect has not been

considered here and may be important.

Extra-tropical, tropical and Southern Hemisphere fires

In Central America (CEAM), relative humidity, precipitation and temperature during the fire sea-

son (hdu, pdu and tdu) all reveal significant correlations with BSem of r=-0.62, r=0.59, r=-0.82,

respectively. This suggests that if precipitation is increased, temperaturereduced or relative hu-

midity reduced, during February and June, then fire emissions may increase in this region. This

makes fires in CEAM particularly sensitive to any future climate changes.Meehl et al.(2007)

predicts future increases in temperature and decreases in precipitation in the area of CEAM, sug-

gesting that fires will increase due to precipitation (pdu) having a negativecorrelation with BSem

and temperature (tdu) having a positive correlation. Climate prior to the burn season (BS) is im-

portant in northern South America (NSAM) with tb4 and hb4 having significant correlations with

BSem of r=0.64 and r=-0.57, respectively, again suggesting an increase in fires in this region in

the future due to increased temperatures. However relative humidity duringthe burn season (hdu)

yields the highest correlation (r=-0.74) suggesting it is the dominant climate driver for this region.

Precipitation is the dominant driver of fire in the southern part of South America (SSAM), where

less rainfall results in increased fires. There is a regional differencein the response of precipita-

tion to increased concentration of greenhouse gases (Meehl et al., 2007), therefore the response

of fires in this region cannot be determined from this work. Temperatures between November and

December (tb4) in central and eastern South Asia (CSAS, SEAS) and between January and May
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(tdu) for SEAS alone, yield positive correlations suggesting that predicted future increases in tem-

perature in these regions (Meehl et al., 2007) will lead to increased fire emissions. Most fires in

these regions are for agricultural purposes (see Figure3.4) and therefore will mostly be controlled

by human activities, however human set fires have previously grown uncontrollable due to climatic

extremes (Page et al., 2002; Cochrane, 2003). Equatorial Asia (EQAS) shows pb4 and pdu yield

significant correlations and may have influenced the intensity of fires during the 1997-2009 period,

however temperature during the BS (tdu) shows the highest correlation. NHAF fires show a signif-

icant positive correlation with relative humidity before the BS (hb4), whereas SHAF fires show a

significant positive correlation with temperature during the BS (tdu).Archibald et al.(2009) found

precipitation to be important in determining area burnt in their model in Africa, which captured

68% of observed area burnt variability. They reported soil moisture to beparticularly important in

driving fires. They did not consider relative humidity or temperature in theirmodel which would

effect soil moisture. The correlations here suggest they are important and therefore accounting for

them in future models could improve burned area estimates in the future. In Australia, precipita-

tion during the fire season shows the highest correlation (r=-0.5) followed by temperature before

the BS (r=-0.42). With the predicted reduction in rainfall over much of Australia and increase

in temperature, these correlations suggest fire may be expected to increase in parts of Australia.

There is already existing evidence that drought in Australia is increasing fire activity (Nicholls,

2004). Some studies have found, for some tropical and extra-tropical regions, precipitation dur-

ing the burn season explains some of the variability in fires (van de Werf et al., 2003; van der

Werf et al., 2008). In agreement, precipitation yields the highest correlations in equatorial Asia

(EQAS) and Central America (CEAM) out of the other climate parameters, however, temperature

and relative humidity also show high correlations and may need to be considered, especially in

the extra-tropical regions where precipitation yields smaller correlations suggesting it to be less

important.

6.6.1.2 Interactions between El Nĩno and climate drivers of fires

The same meteorological and emissions data has also been used to calculate correlations with the

El Niño index to infer the interactions between El Niño and the climate drivers of fires in different

regions. The highest correlations between BSem and the El Niño index (referred to as NINO3.4)

are found for Alaska and Canada (ALCA), Central America (CEAM), northern parts of South

America (NSAM), southern parts of Africa (SHAF), south-east Asia (SEAS) and equatorial Asia,

where the correlations suggest El Niño conditions lead to increased emissions. However, there are

some regions where the correlations of the BSem with El Niño do not yield significant correlations,

but El Niño with temperature, precipitation and relative humidity do and are therefore also worth

highlighting. The correlations are shown in Table6.3 and will now be discussed in more detail.

All the results from Tables6.2and6.3have been summarised in Figure6.25.
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Table 6.2 Pearson’s correlation values for GFED v3.1 total emission (BSem) during the burn
season (BS) with the different meteorological parameters, total precipitation, mean temperature
and mean relative humidity between November leading up to the BS and during theBS. (Values
significant with a P-value> 0.05 are shown in bold).

Prior to BS During BS
Region Precip. Temp. Rel. Hum. Precip. Temp. Rel. Hum.
ALCA -0.61 0.12 -0.23 -0.06 0.22 -0.03
NCSI -0.20 -0.06 0.21 0.24 0.14 0.12
NESI -0.74 -0.20 -0.35 -0.09 -0.13 -0.43
ENAM -0.39 -0.08 -0.57 -0.13 -0.23 -0.43
WNAM 0.47 0.35 0.21 -0.37 0.51 -0.40
EURO 0.37 0.57 0.02 -0.30 0.25 -0.08
CEAM -0.11 0.48 -0.33 -0.62 0.59 -0.82
NSAM -0.27 0.64 -0.57 -0.21 0.26 -0.74
SSAM -0.14 -0.44 -0.07 -0.55 -0.15 -0.27
NHAF -0.01 -0.25 0.60 0.10 -0.10 0.15
SHAF 0.20 0.44 0.13 -0.34 0.57 -0.40
CSAS -0.17 0.54 -0.32 -0.01 0.08 -0.25
SEAS -0.39 0.46 0.13 -0.12 0.64 -0.13
EQAS -0.69 -0.10 -0.35 -0.62 0.73 -0.32
AUST 0.15 -0.42 0.29 -0.50 -0.04 -0.38

Table 6.3 Pearson’s correlation values for El Niño (November - February mean) with total fire
emissions (BSem) during the burn season (BS) , total precipitation, mean temperature and mean
relative humidity between November leading up to the BS and with total precipitation, mean tem-
perature and mean relative humidity during the BS. (Values significant with a P-value> 0.05 are
shown in bold).

During BS Prior to BS During BS
Region GFED emis. Precip. Temp. Rel. Hum. Precip. Temp. Rel. Hum.
ALCA 0.62 -0.62 0.23 0.09 0.18 0.60 -0.07
NCSI 0.18 -0.00 -0.22 0.21 0.12 -0.02 0.28
NESI 0.38 -0.33 0.02 -0.13 0.34 0.04 -0.04
ENAM -0.28 0.69 -0.07 0.58 0.15 0.17 0.16
WNAM 0.44 0.73 -0.18 0.63 0.12 0.32 0.23
EURO -0.21 0.15 -0.09 0.25 0.21 -0.09 0.01
CEAM 0.64 0.25 0.77 -0.12 -0.37 0.89 -0.49
NSAM 0.63 -0.59 0.91 -0.69 -0.39 0.47 -0.45
SSAM -0.02 0.57 -0.06 0.51 -0.28 0.49 0.02
NHAF -0.04 0.19 -0.16 0.13 0.49 0.23 0.77
SHAF 0.66 0.26 0.51 0.23 -0.39 0.36 -0.14
CSAS -0.36 0.85 -0.61 0.86 0.36 0.00 0.79
SEAS 0.55 -0.58 -0.09 0.51 -0.66 0.31 0.27
EQAS 0.68 -0.83 0.24 -0.44 -0.74 0.74 -0.48
AUST -0.36 -0.59 0.64 -0.29 0.07 0.25 0.06



Chapter 6.Interannual variability of Arctic CO 158

Boreal fires

In Alaska and Canada (ALCA), NINO3.4 correlates negatively with pb4 and positively with tdu.

This suggests that under El Niño conditions precipitation is reduced between November and April

and temperature is increased between April and September. As seen in Table 6.2, reduced rainfall

prior to the BS is associated with increased emissions of CO. This is of particular importance to

the Arctic, as forest fires, which are extensive in this region, are the most important source of fire

sourced CO (see Chapter5). In eastern Siberia the correlations show a similar pattern of response

as ALCA with correlations between NINO3.4 and BSem equal to 0.38 and NINO3.4 with pb4

equal to -0.32. However, they are not significant for the number of samples used in this study

(equal to the number of years (13) for the time series used). As this regionis at higher latitudes it

is likely to be influenced by other climate oscillations.Balzter et al.(2005) found some evidence

of a link between burned area during 1992-2003 due to El Niño alone, however, they found the

variability was best captured when they considered both El Niño and temperature or both the Arctic

Oscillation and temperature in a multiple linear regression. This shows that due tothe location of

the boreal regions, especially Siberia, which is remote from the centre of El Ni ño in the tropical

Pacific, several indices and local temperature and precipitation fluctuations need to be considered

to best predict future forest fires and their impact on the Arctic.

North Mid-latitudes fires

In WNAM, NINO3.4 is positively correlated with pb4 and hb4. From Table6.2, it is known

that pb4 and BSem are positively correlated (r=0.47). This suggests that El Niño conditions will

increase precipitation during winter/spring which will increase fires in the summer. This is in

agreementKitzberger et al.(2001) who found increased plant growth due to precipitation visible

in tree rings associated with El Niño conditions, providing more fuel for the summer burn season.

Interestingly, ENAM shows a response similar to WNAM in terms of climate, however, BSem

show the opposite. NINO3.4 shows positive correlations with both hb4 and pb4, as in WNAM,

however, Table6.2 shows ENAM has the highest correlation with hb4 (r=-0.57). This suggests

that increased relative humidity before the BS due to an El Niño will actually reduce fires due to

increased fuel moisture. European fires and climate do not show any significant correlations with

El Niño.

Extra-tropical, tropical and Southern Hemisphere fires

In both CEAM and SHAF, positive correlations are found between NINO3.4 and tb4, suggesting

that El Niño conditions will increase temperatures prior to the burn season, which is shown in
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Table6.2 to be related to increased fire emissions. However, in CEAM temperature is found to

have the highest correlation eith El Niño during the fire season (r=0.89), which is also associated

with increased fires. Like CEAM, temperature in NSAM, both prior to and during the BS, is

found to be highly correlated with El Niño (r=0.91 and r=0.47 respectively), although El Niño

conditions is also found to correlate with both precipitation (r=-0.59) and relative humidity (r=-

0.69) prior to the BS. The results in Table6.2 suggest that increased temperature before the BS

and reduced relative humidity before and during the BS may result in increased fire emissions

in northern South America. This is in agreement with the positive correlation of0.63 between

NINO3.4 and BSem. Previous studies have found Peru to experience increased fires due to El

Niño increasing precipitation (Holmgren et al., 2006a). The whole of NSAM in this study shows

reduction in precipitation, however emissions are still increased. This is because even though

parts of Peru experience increased precipitation during an El Niño, NSAM mostly experiences

a decrease (see Figure6.2) therefore differences will arise due to this work considering a much

larger area and therefore regionally varying fuel type and response. EQAS and SEAS both exhibit

a similar relationship with El Nĩno, whereby precipitation is negatively correlated both during and

prior to the fire season which may increase fires (according to correlations in Table6.2). In EQAS

positive correlations suggest increased temperature during the BS due toan El Niño may also

contribute to increased fire activity. Even though EQAS is dominated by deforestation fires which

are set by humans,Page et al.(2002) showed that during the extreme El Niño event of 1997-

1998, fires in this region burned uncontrollably, causing large perturbations to the atmospheric

carbon budget. In Australia (AUST), significant correlations of NINO3.4 with pb4 and tb4 are

found (r=-0.59 and r=0.64, respectively). A correlation between BSem and NINO of -0.36 is

found but it is not significant at the p<0.05 level used for this study. Other studies found El Niño

reduced precipitation prior to the burn season (in agreement with correlations found here), which

reduced plant growth and therefore, fuel for fires (Holmgren et al., 2006b; Harris et al., 2008).

A study byWilliams and Karoly(1999) found parts of Australia to exhibit different responses to

El Niño, with parts experiencing an increase in fires and parts experiencing adecrease. As the

whole area of Australia has been included in the analysis done here, this mayexplain why there

is not a high correlation for this analysis. Also, drought in Australia has already been shown have

resulted in increased fires (Nicholls, 2004), which could partially offset the increase in fires from

increased precipitation during an El Niño. CSAS is similar to AUST in the case that during El

Niño events, less fires are expected due to a correlation of -0.36 between NINO3.4 and BSem,

however, the climate drivers correlations differ. In CSAS, El Niño is negatively correlated with

temperature before the BS instead of positively correlated, as found in AUST, which in turn reduces

fire emissions according to the positive correlation (r=0.54) that was found between BSem and tb4

(see Table6.2).
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Figure 6.25Correlations showing the regional response in precipitation, temperature and relative
humidity and how these responses can feed back into fire emissions. For details of the correlations
see Tables6.2and6.3.
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6.6.2 Arctic surface response to El Nĩno/La Niña events

To understand what these El Niño-fire relationships mean in terms of Arctic CO, the observed

and simulated surface CO concentrations at each of the Arctic stations (STM, ICE, ALT, ZEP and

BRW) have been averaged over selected years during the 1997-2009period. Years were chosen

to represent either a strong El Niño or La Nĩna years or years which were ‘neutral’. The observed

concentrations are on average 21 ppbv (16%) higher in El Niño years and 7 ppbv (5%) lower in

La Niña years relative to neutral years. One possible reason for El Niño years showing a larger

percent difference relative to neutral years, could be that a La Niña event generally follows an

El Niño event. This has been shown in some regions to result in particularly intense fires during

the La Nĩna (Kitzberger et al., 2001). This was due to increased plant growth from enhanced

precipitation during El Nĩno years, followed by drying of vegetation in La Niña years, providing

favourable conditions for fires (Kitzberger et al., 2001). The model estimates that there is a 18

ppbv (13%) enhancement in CO in El Niño years, which is similar to the observations, however,

the model only simulates a 1.6 ppbv (0.01%) reduction in La Niña years. The reason why the

model fails to capture the extent of the La Niña CO reduction is not known and would need to

be investigated further, but could be related to the model overestimating background CO in the

autumn in the Arctic or the fire inventory used in the model overestimating emissionsin some

regions.
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Table 6.4 November - February El Niño 3.4 Index and CO concentrations for El Niño years
(NINO3.4 > 1), La Niña years (NINO3.4<-1) and years without a strong El Niño or La Nĩna
(<0.5NINO3.4<0.5). The observed and modelled CO (from vgfedvmet) concentrations are an
average of annual means at the surface stations ALT, ZEP, BRW, STM and ICE.

Year Nino Index Observed CO Modelled CO

El Nino years:
1998.00 2.35 158.16 159.43
2003.00 1.27 146.13 152.11
Average 152.15 155.77

No strong Nĩno/Nĩna:
1997.00 -0.34 128.85 131.80
2002.00 -0.09 135.34 142.38
2004.00 0.42 129.65 139.29
Average 131.41 137.82

La Nina years:
2000.00 -1.55 124.79 135.20
2008.00 -1.34 123.57 137.16
Average 124.18 136.18
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6.6.3 Fires and other indices.

As fire emissions are inherently linked to temperature and precipitation (see Table 6.2) which are

influenced by the NAO and PNA in the NH, correlations of these indices with BSem for each

region shown in Figure6.21 have been calculated and are shown in Figure6.26. The indices

were averaged over December to March, whereas the El Niño index was averaged from November

to January, representing the strongest seasons of the climate modes. ThePNA exhibits similar

correlations as the El Niño in each region except that they are slightly smaller in value. The PNA

is thought to be modulated by ENSO and may explain this pattern (Straus and Shukla, 2002). The

NAO(CPC) and NAO(HUR) indices show similar relationships at each station, but the NAO (HUR)

yields higher correlations. This may be because the NAO(HUR) index is influenced by local

climate noise (Hurrell and Deser, 2010) and therefore may be capturing some regional climate

fluctuations which is affecting fires but is not actually due the NAO. The NAOyields significant

positive correlations in western US (WNAM), northern Africa (NHAF) and central-south Asia

(CSAS), which are higher than found with El Niño or the PNA, suggesting the NAO was the

dominant climate mode, out of the ones considered, which affected fires in these regions between

1997-2009.Li et al. (2008) found areas of increased SST in western Northern America and parts

of India, and decreased SST in Northern Africa during positive NAO phases relative to negative

phases. Increased temperature in both SEAS and WNAM have both been shown to be related to

increased fire emissions (see Table6.2). In northern Africa, with decreasing temperature, relative

humidity would increase (assuming all other factors remained the same) and asseen in Table6.2,

increased relative humidity was related to increased fire emissions in this region. Therefore, the

teleconnections found byLi et al. (2008) could explain the positive correlations found between the

NAO (both HUR and CPC) and BSem.
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Figure 6.26 Correlations between the climate indices (NAO (CPC), NAO (HUR), PNA and
NINO3.4) and CO emissions from GFED v3.1 during the burn season for the15 different re-
gions shown in Figure6.21. The dotted lines represent the correlation value need to be significant
at the P<0.05 level (r=0.55) and P<0.1 level (r=0.48).



Chapter 6.Interannual variability of Arctic CO 165

6.7 Summary

In this chapter the question of what is driving Arctic IAV has been investigated. Using CO as

a tracer of lower latitude emissions, the contributions to CO IAV from varying meteorology and

biomass burning emissions have been quantified. Simplified model simulations, which include

yearly varying meteorology and yearly varying biomass burning emissions,captured between 86%

and 91% of the total observed CO IAV at the surface in the Arctic. A simulation which accounted

for variability in meteorology alone captured 0-25% of the observed IAV and simulations which

accounted for variability in biomass burning emissions alone captured 84-93% of the variability.

This showed that the dominant driver of observed Arctic surface CO IAV is variability in fire

emissions. At the lower latitudes and higher altitudes, variability in meteorology became more

important in driving CO IAV. At the surface, the model total fire tracer caused an average of 85%

of the total model CO IAV, which included both meteorology and fire variability.Forest fires

caused 60% of this variability, peat fires caused 12%, agricultural savannah fires both caused 9%,

deforestation caused 6% and woodland fires caused 3%. Anthropogenic CO caused 10% of the

total modelled CO IAV at the surface.

Correlations between the NAO, PNA and El Niño indices with total column CO anomalies taken

from the model with only meteorology varying were used to investigate possiblelinks between

variability in transport and the Arctic. The results showed the NAO to yield the most significant

correlations throughout the year, suggesting it to be the dominant driverof variability in transport

to the Arctic out of the modes considered. In the winter, significant positivecorrelations are seen

throughout the Arctic, due to circulation impacts on European, North American and East Asian

emissions transport, and in the summer, significant negative correlations are seen throughout the

Arctic, due to impacts on the transport from East and South Asia. The reversal of the correlation

from positive to negative for the East Asian tracer in summer was due to the shift in the centre of

the NAO, showing that the seasonal evolution of the NAO is important. Also, East Asian CO con-

tributes more to the total Arctic CO burden in the summer, making the total Arctic response more

sensitive to the regional response of East Asia. El Niño in the winter and spring showed significant

positive correlations in the Arctic for the South Asian tracer causing significant correlations in the

total Arctic CO in winter and spring over parts of the Canadian Arctic, Alaskaand Siberia. This

suggests that increased CO in these regions would occur during El Niño events due to circulation

changes causing enhanced transport from South Asia. The PNA was not found to be significantly

correlated with the Arctic through transport. This is the first time that the El Niño and the PNA

have been considered in terms of their influence on transport of CO to the Arctic and is the first

time the NAO has been considered throughout the year in the Arctic and not just in winter.

Significant positive correlations were found between the El Niño index and observed Arctic CO

at the surface, which peaked at a lag of 10-11 months. The model was used to show that this



Chapter 6.Interannual variability of Arctic CO 166

correlation was related to variability in fire emissions. GFED v3.1 CO emissions and ECMWF

ERA-Interim analyses of temperature, relative humidity and precipitation were used to investigate

possible regional climate drivers of fires and how these may be affected by ENSO. El Nĩno was

found to be significantly negatively correlated with precipitation in the borealregions suggest-

ing reduced precipitation would increase fire emissions in Alaska and Canadaand eastern Siberia

during El Niño events. This is particularly important for the Arctic as forest fires in the boreal

regions are a large source of CO and O3 in the Arctic in the summer (seen in Chapter5). In the

NH middle latitudes, El Nĩno events were also found to be positively correlated with emissions

in western North America which according to the correlations calculated heremay be related to

increased relative humidity and precipitation during El Niño events. Negative correlations in east-

ern North America suggest reduced fire emissions possibly due to increased precipitation during

El Niño events. In Europe and western North America, increased temperaturewere found also

found to be highly correlated with emissions suggesting them to be important drivers of fires. This

also indicates that increased fire emissions may occur in these regions in the future due to the pre-

dicted rise in temperatures over the next century. In the tropics, extra-tropics and SH, El Nĩno was

found to be positively correlated with emissions in Central America, northernSouth America and

south-east and equatorial Asia suggesting emissions would be increasedin these regions during

El Niño events. The climate driver analysis however suggested the regional cause of the increase

in emissions differs and would need to be considered in models. In contrast,El Niño events were

found to be negatively correlated with fire emissions in southern Asia and Australia.



Chapter 7

Arctic tropospheric chemistry during

POLARCAT Summer 2008

7.1 Introduction

Recent radiative forcing calculations in the Arctic have shown O3 to be an important greenhouse

gas, contributing to warming in this region (Shindell, 2007; Quinn et al., 2008; Shindell and Falu-

vegi, 2009). O3 is formed in the troposphere from NOx, CO and non-methane hydrocarbons

(Crutzen, 1973; Fishman et al., 1979; Liu et al., 1987). In the Arctic, O3 production has been

shown to be sensitive to the concentrations of NOx and HOx (Emmons et al., 2003), however, little

is known about the sources of these trace gases (Jacob et al., 2010). There are very few local emis-

sions and NOx, which has a very short lifetime (∼1 day (Jacob, 1999c)) and is therefore unlikely

to be transported from mid-latitude sources to the Arctic. Peroxyacetyl nitrate (PAN), a reservoir

species of NOx, has been shown to be important in redistributing NOx throughout the troposphere

acting as a source of NOx in remote regions (Moxim et al., 1996). Therefore, PAN presents a

method of transporting NOx into the Arctic, which can lead to the production of tropospheric O3.

PAN has been observed to be the dominant NOy species in the Arctic during spring (Bottenheim

et al., 1986, 1993) and may lead to the formation of O3 (Beine et al., 1997). There is a need to

better understand the sources of Arctic tropospheric O3, and therefore NOx and PAN, in order to

better understand current changes in O3 concentrations and how they may vary in the future.

POLARCAT (POLar study using Aircraft, Remote Sensing, surface measurements and models of

Climate, chemistry, Aerosols, and Transport) was a project proposed aspart of the International

Polar Year 2007-2008. It brought together scientists from around theworld to investigate the

impact of poleward transport of pollution on Arctic atmospheric composition andclimate. A

major objective of the campaign was to investigate the impact of mid-latitude emissionson the

167
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Arctic troposphere during the summer, sampling plumes in the sub-Arctic and Arctic. This is the

first major campaign to intensively sample the Arctic throughout the atmosphere during summer

and therefore provides a valuable dataset to evaluate models in the Arctic during this season.

This chapter focuses on using measurements of several trace gases from participating aircraft dur-

ing the summer POLARCAT campaign, to evaluate the TOMCAT model throughoutthe tropo-

sphere in different regions of the Arctic and sub-Arctic. The importanceof PAN as a source of

NOx in the Arctic and the production of tropospheric O3 is then considered through some sensitiv-

ity experiments. Section7.2describes the POLARCAT campaign and measurements used in this

chapter. Section7.3 describes the basic model set-up and methodology for the aircraft compar-

isons. Section7.4 presents comparisons between the TOMCAT model and aircraft observations

during June and July 2008. Then sensitivity simulations are shown, wherethe TOMCAT model

has been used to study the importance of PAN in the Arctic as a source of O3 (Section7.5) and

the importance of ethane transported to the Arctic as a source of PAN (Section 7.6). A summary

of results is given in Section7.7.

7.2 POLARCAT aircraft data

7.2.1 ARCTAS-B

As part of ARCTAS-B (Arctic Research of the Composition of the Troposphere from Aircraft and

Satellites ) the NASA DC8 aircraft was based in Cold Lake, Canada from 29th June - 10th July

2008 with a focus on sampling Canadian biomass burning and North American anthropogenic

plumes before they were transported to the Arctic (Jacob et al., 2010). The flight tracks for the

DC8 aircraft are shown in Figure7.1and covered a range of latitudes from 50°N to 87°N. Due to

the large payload of the DC8, this dataset provides a valuable suite of measurements for evaluating

tropospheric O3 photochemistry, including CO, O3, HOx, NOx, HNO3, PAN and total NOy.

7.2.2 POLARCAT-France and POLARCAT-GRACE

The POLARCAT-GRACE and POLARCAT-France projects were jointly based in Kangerlussuaq,

Greenland with two aircraft, the German DLR Falcon and the French ATR-42. These projects

aimed to sample plumes which had been transported to the Arctic during the summer.The

POLARCAT-France project took place from 30th June - 14th July 2008,covering 50°N to 71°N

(see Figure7.1). The aircraft measured CO using an infrared absorption analyser which has an

accuracy of 5 ppbv with a 30 s integration time (Nedelec et al., 2003). O3 was measured using

an ultraviolet (UV) absorption instrument with an accuracy of 2 ppbv for an integration time of 4
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Figure 7.1 Flight tracks from the YAK-AEROSIB (top, left), ARCTAS-B DC8 (top, right),
POLARCAT-France ATR (bottom, left) and POLARCAT-GRACE Falcon (bottom, right) during
the summer June-July 2008 POLARCAT campaign.

s (Ancellet et al., 2009). The Falcon aircraft had a larger range than the ATR, covering 57-79°N

between the 2nd-14th July 2008 measuring CO, O3, NO, NOy and PAN. CO was measured us-

ing a vacuum UV fluorescence instrument (Gerbig et al., 1999) which has an accuracy of 5 ppbv

and O3 was measured using a UV absorption analyser with an accuracy of 3 ppbv(Roiger et al.,

2011b). NO and NOy (defined as NO + NO2 + NO3 + PAN + 2×N2O5 + HNO3 + HNO2 +HNO3)

were measured using a chemiluminescence detector with an accuracy of 10 and 15 pptv, respec-

tively (Ziereis et al., 2000). The NOy was converted to NO for measurement (Roiger et al., 2011b;

Ziereis et al., 2000). PAN was measured using a fast response chemical ionisation - ion trap mass

spectrometer with a 25 pptv accuracy (Roiger et al., 2011a).

7.2.3 YAK-AEROSIB

The Russian YAK-AEROSIB (Airborne Extensive Regional Observations in Siberia) project was

performed in collaboration with the POLARCAT-France project. Scientific flights covered large

areas of Siberia (see Figure7.1), sampling Siberian biomass burning plumes and Asian and Euro-

pean anthropogenic plumes (Paris et al., 2009). Flights were conducted between 7th - 28th July
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2008 between 52°N and 72°N. CO was measured using the same instrument asaboard the ATR-42

(an infrared absorption analyser) and O3 was measured using an ultraviolet absorption gas analyser

with a precision of 2 ppbv for an integration time of 4 s (Paris et al., 2008).

7.3 TOMCAT model simulations

A 1-year simulation for 2008 was performed using the TOMCAT model (referred to as CTRL),

preceded by a 6-month spin-up. The emissions used were different from those used in previ-

ous chapters to offer a better representation of 2008. The AR5 2000 emissions were replaced by

the Streets v1.2 emission dataset described in Section3.4. These emissions were created for the

INTEX-B (Intercontinental Chemical Transport Experiment- Phase B) campaign in 2006 to pro-

vide a better representation of Asian emissions, as other datasets underestimated the magnitude of

emissions from this region (Zhang et al., 2009). This dataset provides an amalgamation of the lat-

est regional and global emissions datasets. The monthly mean GFED biomass burning emissions

were replaced by the daily mean biomass burning emission dataset, FINNv1, which was specif-

ically created for the POLARCAT campaign (Wiedinmyer et al., 2011) (see Section3.4). Due

to large fire variability, models which use fire emissions with a temporal resolutiongreater than

monthly have been shown to compare better with aircraft observations whichsampled biomass

burning plumes (Turquety et al., 2007). Therefore, as some of the aircraft used for the compar-

isons encountered biomass burning plumes (Jacob et al., 2010; Paris et al., 2009) it was deemed

necessary to account for daily variability in fires in TOMCAT. The non-fire natural emissions were

provided by Louisa Emmons1 and were created by the more recent version (v2) of the MEGAN

(Model of Emissions of Gases and Aerosols from Nature) model (Guenther et al., 2006) as part of

the Monitoring Atmospheric Composition and Climate (MACC) project.

To evaluate the TOMCAT model against the POLARCAT data, the model outputwas saved every

hour and then interpolated offline horizontally and vertically to the flight tracks. 60 s averaged data

was used from all flights allowing the vertical interpolation to be done every minute. In general,

the aircraft flight path is likely to cross over several model grid boxes in the vertical direction in

one hour, therefore requiring a high frequency of vertical interpolation. The flight longitude and

latitudes were averaged over hourly sections for the horizontal interpolation.

1National Center for Atmospheric Research, USA
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7.4 POLARCAT aircraft comparisons with TOMCAT

7.4.1 Carbon monoxide

Figures7.2 - 7.5 show CO measured over Siberia (YAK), Greenland (Falcon and ATR), Canada

and the Arctic Ocean (DC8). The model reproduces the observed concentrations, with median

simulated concentrations lying within the 25th and 75th percentiles of the observations. Table

7.1 shows the mean observed and simulated concentrations calculated over the vertical profiles

shown in Figures7.2- 7.5, along with the correlation between the observed and simulated vertical

distributions. The root mean square error (RMSE) has also been calculated according to equation

4.9. The RMSE error for the YAK and ATR aircraft are both 5.2 ppbv, whichare similar to

the instruments 5 ppbv uncertainty, showing very good overall agreement.The DC8 and Falcon

however show higher RMSEs of 49 and 17 ppbv, respectively. By considering Figure7.4and7.5it

Table 7.1Mean modelled (̄M) and observed (̄O) concentrations of vertical profiles of trace gases
in the Arctic in June-July 2008. Correlations (r) and root mean square error (RMSE) between the
modelled and observed profiles have also been calculated.

Aircraft Trace Gas M̄ Ō r RMSE
ATR:

CO (ppbv) 103.4 105.1 0.89 5.2
O3 (ppbv) 51.8 52.4 0.98 3.4

DC8:
CO (ppbv) 109.6 149.0 0.85 49.1
O3 (ppbv) 77.6 71.5 0.98 14.5
PAN (pptv) 339.3 353.6 0.64 77.9
HNO3 (pptv) 343.7 122.6 0.87 244.0
NO (pptv) 47.0 64.3 0.87 42.2
NO2 (pptv) 80.0 115.7 0.85 71.5
NOy (pptv) 890.0 729.5 0.83 255.6
OH (pptv) 0.12 0.12 -0.33 0.05
C2H6 (pptv) 625.4 1071.76 0.91 478.5
C3H8 (pptv) 34.6 245.9 0.85 234.2
CH3CHO (pptv) 57.4 352.4 0.92 399.2

Falcon:
CO (ppbv) 96.1 97.7 0.72 17.3
O3 (ppbv) 90.6 92.6 0.98 29.9
PAN (pptv) 277.1 180.6 0.87 125.3
NO (pptv) 29.5 38.3 0.97 16.7
NOy (pptv) 698.5 667.2 0.92 403.2

YAK:
CO (ppbv) 106.4 105.1 0.62 5.2
O3 (ppbv) 52.6 52.3 0.97 4.9
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Figure 7.2Vertical profiles of median concentrations of CO (left) and O3 (right) observed during
the YAK-AEROSIB project over Siberia compared to simulated concentrations from the TOMCAT
model interpolated to the flight tracks. The data has been binned into 50 hPa pressure bins for
averaging. The error bars represent the 25th and 75th percentiles ofthe observed concentrations
in each bin. The dates correspond to the first and the last flight of the campaign.

is clear that these higher RMSE values are due to an underestimate in CO in the upper troposphere

(UT). At these altitudes it is likely that the model may overestimate the influence ofstratospheric

air due to a lower vertical resolution at these pressures, which would explain the lower simulated

CO concentrations. These two aircraft flew at higher altitudes compared tothe ATR and Falcon

(see Table7.3), therefore increasing the influence stratospheric air as diagnosed bythe model.

7.4.2 Ozone

Figures7.2- 7.5show O3 measured over Siberia (YAK), Greenland (Falcon and ATR) and Canada

and the Arctic Ocean (DC8). As with CO, the model generally does a good jobat reproducing the

observed concentrations of O3. The ATR and YAK regions yield similar RMSE of 3.4 ppbv and

4.9 ppbv, respectively. The Falcon and DC8 comparison show that the model has a RMSE of 29.9

ppbv and 14.5 ppbv, respectively. As seen with CO, these aircraft flewat higher altitudes sampling

more stratospheric air, which is reflected in the higher mean concentrations of O3 in Table7.1. For

O3 from the DC8 and Falcon flights, the model overestimates the amount of stratospheric O3 in

the UT between 500 and 300 hPa.

7.4.3 Reactive nitrogen species

The Falcon measured NO, NOy and PAN in the region of Greenland (see Figure7.4). The results

show that TOMCAT captures the NO well, mostly lying within the 25th and 75th percentiles, but
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Figure 7.3Vertical profiles of median concentrations of CO (left) and O3 (right) observed during
the POLARCAT-France project aboard the ATR over Greenland compared to simulated concen-
trations from the TOMCAT model interpolated to the flight tracks. The data hasbeen binned
into 50 hPa pressure bins for averaging. The error bars representthe 25th and 75th percentiles of
the observed concentrations in each bin. The dates correspond the first and the last flight of the
campaign.

may underestimate NO in the boundary layer. PAN is overestimated by TOMCAT,simulating a

mean vertical concentration of 277 pptv compared to the observed 180 pptv, giving a RMSE of

125 pptv. As discussed in Section4.3, the addition of the more hydrocarbons in the new chemistry

scheme led to increased formation of CH3CO3 from the oxidation of the hydrocarbons which then

goes on to form PAN. This overestimate in PAN leads to the total NOy also being overestimated.

The DC8 also measured NO, PAN and NOy along with NO2 and HNO3 (see Figure7.5). The

model does a good job of reproducing NO and NO2. In contrast to the Falcon, the model shows

good agreement with PAN measured aboard the DC8. The model still overestimates total NOy,

however, this is now due to an overestimate of HNO3. On several flights, the DC8 sampled biomass

burning plumes near the source where large emissions of NOx were converted rapidly to PAN (Al-

varado et al., 2010) giving higher concentrations (̄O=353.6 pptv) compared to the Falcon (Ō=180

pptv) (see Table7.1). The model shows enhanced PAN for the DC8 flights (M̄=339 pptv) compared

to the Falcon flights (̄M=277 pptv), suggesting the model captures some of the NOx conversion to

PAN from fires, however, the model difference between the two aircraft is not as large as seen in

the observations.

7.4.4 Hydroxyl radical

The DC8 was the only aircraft to measure OH. Due to its short lifetime (∼1 s) and low con-

centrations, the hydroxyl radical proves to be a difficult gas to measureaccurately, however recent
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developments in instrumentation have vastly improved measurement capability (Heard and Pilling,

2003). The observed OH is compared to TOMCAT simulated OH in Figure7.5. In general the

model lies within the 25th and 75th percentiles, however there are some interesting features to

note. Firstly, between 925 and 825 hPa, the measurements indicate that TOMCAT overestimates

OH in the DC8 flight region. In Section4.4, the model was compared against a published global

OH climatology constrained by observation of precursor gases. This comparison also suggested

that TOMCAT may overestimate NH OH in the lower troposphere. Secondly, between 725 and

575 hPa, the model predicts OH to be around the 25th percentile of the observations, which may

suggest a small overall underestimate in OH at this altitude. Due to model peak inOH at 900 hPa

and the subsequent decrease, the vertical distribution of the model doesnot capture the overall ob-

served decrease in OH with altitude, resulting in a low correlation (r=-0.33),however the overall

mean vertical OH concentration does agree (see Table7.1).

7.4.5 Non-methane hydrocarbons

The DC8 was the only aircraft to measure hydrocarbons. Simulated and observed ethane, propane

and acetaldehyde are compared in Figure7.5. The model underestimates ethane, propane and

acetaldehyde throughout the atmosphere by factors of 2, 7 and 6, respectively. Biomass burning

can act as a significant source of acetaldehyde, contributing up to 15% tothe total global source

(Holzinger et al., 1999). As the DC8 sampled a large amount of biomass burning plumes (Al-

varado et al., 2010), the measurements may be biased with high amounts of fire emissions. If this

is the case, the results shown here suggest that the boreal biomass burning emission factors used

to create the FINN v1 inventory may be too low for the Canadian and Californian fires sampled

in 2008. Previous estimates of emissions factors of acetaldehyde have been highly variable (An-

dreae and Merlet, 2001; de Gouw et al., 2006) and may account for some of the bias in TOMCAT.

It is also possible that the model resolution is unable to capture the high concentrations within

fire plumes, however, good agreement between modelled-observed CO suggests that this is not

the case. Propane and ethane emissions are dominated by anthropogenic sources, therefore the

results shown here suggest that the Streets v1.2 anthropogenic emissionsare underestimated. Re-

cent studies have estimated anthropogenic emissions of ethane to be about 13 Tg/yr (Xiao et al.,

2008) which is a factor of two greater than the 6 Tg/yr emitted in the Streets v1.2 anthropogenic

emissions in TOMCAT. As mentioned in Section3.4, the Streets inventory is only available as total

NMHC and the partitioning was done by Louisa Emmons for the ARCTAS campaigns (Wespes

et al., 2011). Therefore, this suggests that either the Streets total VOCs are underestimated for

the year 2008 or the speciation of NMHC was inaccurate. This could also becausing underesti-

mated propane due to its anthropogenic origin and contributing to the low bias in acetaldehyde in

TOMCAT as this also has anthropogenic sources.
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Figure 7.4Vertical profiles of median concentrations of CO (top, left), O3 (top, middle), NO(top,
right), NOy (bottom, left) and PAN (bottom,middle) observed during the POLARCAT-GRACE
project aboard the Falcon over Greenland compared to simulated concentrations from the TOM-
CAT model interpolated to the flight tracks. The data has been binned into 50 hPa pressure bins for
averaging. The error bars represent the 25th and 75th percentiles ofthe observed concentrations
in each bin. The dates correspond the first and the last flight of the campaign.
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Figure 7.5 Vertical profiles of median concentrations of CO, O3, NO, NO2, NOy, PAN, HNO3,
OH, C2H6, C3H8 and CH3CHO observed during the ARCTAS-B project aboard the DC8 over
Canada and the central Arctic compared to simulated concentrations from theTOMCAT model
interpolated to the flight tracks. The data has been binned into 50 hPa pressure bins for averaging.
The error bars represent the 25th and 75th percentiles of the observed concentrations in each bin.
The dates correspond the first and the last flight of the campaign.
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7.5 Sensitivity of O3 to Arctic PAN

To investigate the importance of PAN, which is either transported to the Arctic orformed within

the Arctic, a sensitivity simulation has been performed with all PAN above 66°Nremoved from the

model atmosphere. The removed PAN was converted to HNO3 and CH3CHO, which effectively

provides a sink of reactive nitrogen and roughly maintains the carbon balance. The sensitivity

simulation (which will be referred to as EPAN) had the same set-up as the previously described

CTRL simulation and was also run for a 1 year period over 2008 outputting every 3.75 days, after

a 6-month spin-up, from which monthly means were calculated.

Figure7.6 shows the seasonal zonal mean NOx concentrations from the CTRL simulation in the

Northern Hemisphere (NH) along with the absolute and percentage differences between the CTRL

and EPAN simulations. Overall, Arctic PAN acts as a source of up to 80 to 100%of NOx in the

Arctic throughout the year with the biggest contributions seen at the surface. This demonstrates the

importance of this reservoir species as a source of NOx in this remote region. The biggest absolute

contribution of PAN to NOx is seen in the summer (June-August), with a difference of up to 8 pptv

of NOx seen between CTRL and EPAN. The smallest contribution is seen in winter (December to

February), with less than 2 pptv of NOx difference. In winter, due to the cold dark conditions, PAN

is more thermally stable and therefore has a longer lifetime (Beine and Krognes, 2000), reducing

its importance as a source of NOx. Moving from winter to spring, thermal decomposition of PAN

increases, releasing NOx. PAN exhibits a spring maximum in the Arctic at the surface which

is believed to be due to an increase in the photochemical source of PAN at mid-latitudes and

efficient poleward transport. PAN exhibits a summer minimum, which is believed to be due to its

shorter lifetime (∼ 4 days at the surface in summer compared to∼40 days in winter) and slower

poleward transport (Penkett and Brice, 1986; Beine and Krognes, 2000). Even though slower

poleward transport does occur in the summer (shown by the simulated CO tracers in Section5.3),

the summer maximum in NOx shown here, suggests that the summer PAN minimum is most likely

controlled by increased decomposition and not transport processes. However, the occurrence of the

spring maximum in PAN combination with increasing rates of decomposition in summer,could

mean that the summer maximum in NOx could be due to the accumulation of PAN in spring,

masking any transport effects on the PAN concentrations in summer.

The O3 concentrations from the CTRL simulation (see Figure7.7) show that TOMCAT has a

spring maximum in O3 which is well known to characterise the O3 seasonal cycle in the Arctic

and has received much interest over the past decade (Atlas et al., 2003; Jacob et al., 2010). It

has been noted that PAN could be an important driver in the maximum of O3 (Penkett and Brice,

1986), however, it has also been suggested that the springtime maximum in Arctic PAN occurs

later than the O3 maximum, suggesting it may not be the driving process (Beine and Krognes,

2000). The O3 differences between CTRL and EPAN show that overall, Arctic PAN leadsto a net



Chapter 7.Arctic tropospheric chemistry during POLARCAT-summer 2008 178

Figure 7.6Zonal mean NOx concentrations (ppbv) from CTRL (top), absolute differences between
CTRL and EPAN (middle) and percentage differences between CTRL andEPAN (bottom) for DJF
, MAM, JJA and SON (left to right) for 2008.

Figure 7.7Zonal mean O3 concentrations (ppbv) from CTRL (top), absolute differences between
CTRL and EPAN (middle) and percentage differences between CTRL andEPAN (bottom) for DJF
, MAM, JJA and SON (left to right) for 2008.
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Table 7.2 TOMCAT Northern Hemisphere (NH) annual mean OH concentrations (molec/cm3)
weighted by airmass, calculated by Equation4.4.1, for CTRL and EPAN.

Model Simulation NH [ŌH]M

CTRL 0.9307×106

EPAN 0.9046×106

Percent Diff -2.8%

O3 production in the Arctic. The biggest impact is seen in the summer in the lower troposphere

with >24% of O3 in the Arctic being formed from PAN. This is in agreement with the response

seen in NOx in Figure7.6, which also showed the biggest impact in summer. This indicates that

PAN is actually more important in summer than in the spring as a source of O3, suggesting that it

is not PAN which is driving the O3 springtime maximum. The smallest impact is seen in winter

when photochemistry is slower due to the lack of daylight. Interestingly, the PAN which has been

removed from the Arctic also has an impact on O3 at lower latitudes which has also been suggested

by other studies (Honrath et al., 1996).

Figure7.8 shows total monthly burdens of O3, OH, NOy, PAN and NOx, calculated at latitudes

north of 66°N for three different altitude ranges. O3 in the highest altitude bin shows very little

impact difference between CTRL and EPAN due to a larger influence fromstratospheric O3. As

seen in Figure7.7, the biggest impact on O3 is seen lower in the troposphere, between 0-2 km.

In response to this, OH also shows the biggest impact between 0-2 km with upto 50% of OH

in summer coming from O3 which has been produced from NOx released from PAN. Overall,

NOy is decreased throughout the year. This is because even though PAN has been converted to

HNO3 in the model, HNO3 is efficiently lost from the atmosphere by wet deposition, reducing

the total burden of reactive nitrogen (NOy). Between 0-2 km, most of the NOx comes from PAN

decomposition in the Arctic. Between 2-5 km about 50 % of NOx comes from PAN decomposi-

tion. Above 5 km, there is a much smaller difference in the NOx from the different simulations

suggesting other sources of NOx are more important at higher altitudes. Large concentrations of

NOx and HNO3 are found in the stratosphere and can therefore be transported to the UTduring

stratospheric-tropospheric exchange (STE) and are a major source at these altitudes (Wespes et al.,

2011). A large amount of NOx in the upper troposphere is also formed from lightning especially

in summer (Levy et al., 1996; Tie et al., 2002).

Table7.2 shows the airmass-weighted mean tropospheric OH concentration for the NH. The NH

OH concentrations are approximately 2.8% lower in the EPAN simulation due to lower O3 con-

centrations. As PAN is converted to HNO3, more NOy is lost by wet deposition. This suggests that

PAN is more important than HNO3 in contributing to the oxidising capacity of the atmosphere,

through the formation of O3. Any future changes between the partitioning of NOy may lower
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Table 7.3 Minimum and maximum longitudes and latitudes and maximum altitudes (in hPa)
reached by the POLARCAT-France ATR, ARCTAS-B DC8, POLARCAT-GRACE Falcon and
YAK-AEROSIB aircraft during the POLARCAT summer June-July 2008 campaign.

Aircraft Min. Lon. Max. Lon. Min. Lat. Max Lat. Min. Pres (hpa)
ATR: 300.0 320.2 59.4 71.6 379.6
DC8: 224.0 322.1 50.0 87.1 187.3
Falcon: 294.7 322.0 57.5 79.1 213.8
YAK: 66.2 170.7 52.0 72.1 391.2

concentrations of OH. Due to the temperature dependence of PAN, increasing temperatures may

shorten its tropospheric lifetime, making more NOx available to form HNO3. Lower concentra-

tions of OH, due to increased HNO3 formation and therefore loss, will increase the lifetimes of

greenhouse gases, such as CH4, which will have important consequences for the radiative bud-

get of the atmosphere, increasing temperatures further. Further investigation into this possible

chemical feedback would be needed to understand whether this could be important.

To understand the importance of PAN for O3 formation during the POLARCAT campaign, simu-

lated O3 and NO for July 2008 from CTRL and EPAN have been averaged over regions defined by

the maximum and minimum longitudes and latitudes and between the surface and the maximum

altitudes for each of the campaigns (see Table7.3). The model is not expected to capture the vari-

ability of the observations, as it has not been interpolated to the flight tracks. Figure7.9shows that

between 0-10 ppbv (0-33%) of O3 is produced from NOx released from PAN. Therefore there is

still a significant source of O3 which is not from PAN decomposition.Wespes et al.(2011) showed

that during ARCTAS-B a large fraction of O3 came from lightning production of NOx and direct

transport of O3 from the stratospheric in the UT. In Figure7.10, one interesting feature is that over

the DC8 region, approximately 50% of TOMCAT NO in the lower troposphere comes from PAN

decomposition, whereas for the Falcon region, the majority of the TOMCAT NOcomes from PAN.

The DC8 was mostly located in the sub-Arctic, closer to fresh emissions of NOx. In contrast, the

Falcon, covering regions close to Greenland which is more remote from emission sources, PAN is

more important as a source of NOx.
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Figure 7.8 Monthly mean burdens of O3 (Tg(O3)/month), OH (Tg(OH)/month), NOy
(Tg(N)/month), PAN (Tg(N)/month), NOx (Tg(N)/month) calculated at latitudes>66°N in three
altitude bins: 0-2 km (left), 2-5 km (middle) and 5 km-tropopause (right).
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Figure 7.9 Campaign-averaged vertical profiles of O3 observed by aircraft during the YAK-
Aerosib (top, left), POLARCAT-France (ATR) (top, right), POLARCAT-Grace (Falcon) (bottom,
left) and ARCTAS-B (DC8) (bottom, right) projects compared to the July 2008monthly mean sim-
ulated O3 profiles from the CTRL and EPAN simulations averaged over the flight regions given in
Table7.3.

Figure 7.10 Campaign-averaged vertical profiles of NO observed by aircraft during the YAK-
Aerosib (top, left), POLARCAT-France (ATR) (top, right), POLARCAT-Grace (Falcon) (bottom,
left) and ARCTAS-B (DC8) (bottom, right) projects compared to the July 2008monthly mean
simulated NO profiles from the CTRL and EPAN simulations averaged over the flight regions
given in Table7.3.
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7.6 Sensitivity of O3 to Arctic C 2H6

A recent study byLiang et al.(2011) has suggested that in-situ production may be an impor-

tant source of PAN in the Arctic in the UT. The study analysed observationsof PAN during

the ARCTAS-B campaign and showed that approximately 120 pptv (∼37%) of observed PAN

in mixed stratospheric and tropospheric air could not be explained by mixing of the two airmasses

alone. They hypothesised that this PAN could have come from insitu production. In the atmo-

sphere PAN can be formed from species such as acetaldehyde as described in Section2.4.4. Ac-

etaldehyde (CH3CHO) is oxidised to form the acetyl radical (CH3CO) which reacts very quickly

to form the peroxyacetyl radical (CH3CO3), which can then react with NO2 to form PAN.Liang

et al. (2011) argued that stratospheric air, high in NO2, mixed with tropospheric air containing

acetyl radicals, leading to the formation of PAN. They hypothesised that theacetaldehyde required

to form the acetyl radical could only have come from ethane (C2H6), due to it being the only

hydrocarbon to have a long enough lifetime to reach the Arctic in sufficient quantities.

To test the sensitivity of total PAN concentrations to production from C2H6 in the Arctic, a simu-

lation has been performed using the TOMCAT model, where all C2H6 was removed above 66°N.

This simulation was set-up in the same way as the CTRL simulation and will be referred to as

EC2H6. Figure7.11shows zonal mean concentrations of PAN from CTRL and the absolute and

percentage difference between CTRL and EC2H6. The biggest absolute difference is seen in

spring in the lower and mid troposphere but the biggest percentage difference is seen in summer

(due to the much smaller concentrations of PAN), also in the lower and mid troposphere. Overall,

C2H6 contributes between 0-30 pptv (0-8%) to PAN in the Arctic which is much lower then esti-

mated byLiang et al.(2011) from the aircraft data. However,Liang et al.(2011) was considering

background airmasses only and in TOMCAT different types of airmasseswere not differentiated

between and they are likely to be more mixed in the model due to the size of the grid-boxes. The

production of PAN from C2H6 in the Arctic also contributes up to 10 pptv (4%) of PAN at lower

latitudes. In order to understand the impact of this PAN on the formation of O3, Figure7.12shows

the zonal mean O3 concentrations. Overall, C2H6 has very little impact on O3, causing a differ-

ence of less than 0.04 ppbv. However, if the acetyl radicals were not present to form PAN, then the

stratospheric NO2 could be photolysed to form O3 without forming PAN first, therefore reducing

any impact on O3.

Figure7.13shows the monthly mean burdens of O3, PAN, CH3CHO, C2H6 and NOx, at latitudes

north of 66°N. Considering the differences between CTRL and EC2H6,approximately 10-35% of

CH3CHO is produced from C2H6 in the Arctic in spring and summer, with the biggest percentage

contribution in summer. In winter and autumn, when CH3CHO concentrations are much higher,

C2H6 contributes a smaller percent to the total CH3CHO concentrations. Most of this acetaldehyde

is likely to be transported to the Arctic in these seasons from lower latitudes when transport is more



Chapter 7.Arctic tropospheric chemistry during POLARCAT-summer 2008 184

efficient (see Section5.3) and photochemistry in the Arctic is slower due to less incoming solar

radiation. Some of the acetaldehyde produced from C2H6 then goes onto to produce PAN, however

it has a much smaller impact on the total PAN (<10%). Again the biggest response is seen in June.

June-July is whenLiang et al.(2011) hypothesised approximately 37% of PAN in the UT in STE

airmasses came from in-situ production. The TOMCAT burden of O3 shows hardly any response

to the change in C2H6.

Figure7.14 shows the PAN and O3 concentrations averaged over the flight regions of the DC8

during ARCTAS-B to limit the area of study to the region where the PAN measurements were

made that were analysed byLiang et al.(2011). The PAN and O3 concentrations are also shown for

the Falcon during POLARCAT-GRACE campaign for comparison. As seen inthe burdens, C2H6

in the Arctic does result in PAN formation. For the DC8 region, the impact is larger towards to the

UT, which is whereLiang et al.(2011) believed the production to be occurring. The TOMCAT

model does not simulate the 120 pptv difference which was estimated to be fromthis source. For

the Falcon region the impact on PAN is similar throughout the troposphere. The TOMCAT O3

profiles show hardly any change between CTRL and EPAN.

According to the TOMCAT model, the majority of PAN found in the Arctic, which results in the

formation of O3 (seen in Section7.5), is not formed insitu from C2H6. This suggests that the

source of PAN discussed inLiang et al.(2011) does not play a large role in the budget of O3 or

PAN. It must be noted however, that C2H6 in the TOMCAT model is underestimated by 50% (see

Section7.4) and therefore the contribution to PAN is likely to be higher than shown here,but it is

still unlikely to make a significant contribution to O3. It is also important to note that the source

of PAN hypothesised byLiang et al.(2011) did not account for 37% of total PAN in the UT, but

37% in STE airmasses therefore accounting for background PAN concentrations only. Polluted

airmasses are likely to contain larger concentrations of PAN and thereforethe overall contribution

to the total Arctic PAN budget is likely to be smaller thanLiang et al.(2011) estimated.
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Figure 7.11 Zonal mean PAN concentrations (pptv) from CTRL (top), absolute differences be-
tween CTRL and EC2H6 (middle) and percentage differences between CTRL and EC2H6 (bot-
tom) for DJF , MAM, JJA and SON (left-right) for 2008.

Figure 7.12Zonal mean O3 concentrations (ppbv) from CTRL (top), absolute differences between
CTRL and EC2H6 (middle) and percentage differences between CTRL and EC2H6 (bottom) for
DJF , MAM, JJA and SON (left-right) for 2008.
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Figure 7.13 Monthly mean burdens of O3 (Tg(O3)/month), PAN (Tg(N)/month), CH3CHO
(Tg(C)/month), C2H6 (Tg(C)/month), NOx (Tg(N)/month) calculated at latitudes>66°N in three
altitude bins: 0-2 km (left), 2-5 km(middle) and 5 km-tropopause (right).
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Figure 7.14Campaign-averaged vertical profiles of O3 (top) and PAN (bottom) observed by air-
craft during the POLARCAT-GRACE (Falcon) (left) and ARCTAS-B (DC8) (right) projects com-
pared to the July 2008 monthly mean simulated O3 and PAN profiles from the CTRL and EC2H6
simulations averaged over the flights regions given in Table7.3.
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7.7 Summary

In this chapter the TOMCAT model has been further evaluated against newly available aircraft

measurements from the POLARCAT campaign. Data collected as part of ARCTAS-B, POLARCAT-

France, POLARCAT-GRACE and YAK-AEROSIB, sub-projects of the POLARCAT-summer cam-

paign, offered an important opportunity to evaluate the ability of numerical models to simulate

Arctic composition during summer. A combination of measurements from these projects provided

measurements of several trace gases between June and July 2008 in regions of Siberia, Canada,

Greenland and the Arctic Ocean.

Comparisons with the measured vertical profiles of CO and O3 showed that TOMCAT was able

to capture the vertical distribution and mean concentrations well. In the uppertroposphere, there

was some evidence that the model overestimated the influence of stratospheric air, seen by an

overestimate of observed O3 and an underestimate of CO. This is most likely due to the reduced

vertical resolution of the model near the tropopause. NOx was also reproduced well by the model

both in the Arctic and over Canada. Total NOy however was found to be overestimated in the Arctic

against the POLARCAT-GRACE data which also showed PAN to be overestimated in the model.

In contrast, modelled PAN matched the ARCTAS-B observed PAN well. The DC8 measurements

were made in more polluted air with fresh emissions from fires where NOx has been shown in other

studies to be rapidly converted to PAN. In this region, the modelled NOy was also overestimated

along with HNO3. Ethane, propane and acetaldehyde were all underestimated by TOMCATwhich

is likely to be due to an underestimate of emissions.

A simulation was performed to estimate the importance of Arctic PAN for the tropospheric O3

burden. PAN was shown to be the dominant source of NOx in the lower troposphere where it

resulted in the formation of up to 30% of O3 in the summer. This showed Arctic PAN to be an

important source of O3. Another simulation was performed to estimate the importance of Arctic

C2H6 for the formation of PAN. C2H6 oxidation was shown to contribute a large fraction (30%) to

the acetaldehyde burden, however concentrations of PAN only increased by up to 8%. According

to the TOMCAT model, the production of PAN from from C2H6 and stratospheric NOx proposed

by Liang et al.(2011) does not contribute a large fraction to the PAN burden in the Arctic.
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Conclusions

In this thesis, the TOMCAT chemical transport model has been used to investigate the processes

which control the concentrations of CO, O3 and its precursors in the Arctic troposphere. The main

results are discussed with reference to the research aims that were presented in Chapter1 and

possible future work is also discussed.

8.1 Synthesis of main results

Aim 1: Evaluate the ability of a chemical transport model to simulate Arctic tropospheric

composition

Chapter4 presented the first results from a new version of the TOMCAT chemical transport model,

which included an extension of the standard hydrocarbon chemistry scheme and a treatment of

heterogeneous uptake of N2O5. Chapter7 also compared the new version of the model to newly

available data from the POLARCAT-summer 2008 aircraft campaign which took place in the Arc-

tic and sub-Arctic.

The oxidation of the additional NMHC led to a 4-5% increase in the global tropospheric burden of

CO, a 2-4% increase in the burden of O3 and a 3-4% increase in the burden of HO2. Total reactive

nitrogen was also increased due to a 40-75% increase in the PAN burden.This demonstrates the

importance of the oxidation of NMHC as a source of CO in the troposphere, but also its effect

on O3, HOx and NOy. Model intercomparisons have previously shown large variability between

simulated budgets of tropospheric CO, both in the Arctic and throughout the globe (Shindell et al.,

2006b, 2008). It is believed that this may have been caused by different levels of complexity in

their chemical schemes (i.e., hydrocarbons) leading to different NMHC emissions and treatment

(Shindell et al., 2006b). The results presented in this thesis also show that different levels of

189
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complexity in chemical schemes may also contribute to previously observed model differences

in simulated tropospheric O3 in the troposphere (Wild, 2007). The large sensitivity of PAN to

additional NMHC may have a significant impact on modelled regional O3 budgets due to it acting

as a source of NOx in remote regions (Moxim et al., 1996). This may be particularly important in

the Arctic, as PAN was shown to be the dominant source of NOx in the Arctic lower troposphere in

Chapter7, where it resulted in the formation of up to 30% of O3 in the summer. This demonstrates

that PAN is an important source of Arctic O3. In addition to this, comparisons to the POLARCAT

aircraft data also showed the TOMCAT model to overestimate total NOy. Measurements from two

different aircraft showed that this was due to an overestimate of HNO3 and possibly also due to

PAN. This has also been observed in other studies along with model-observation differences in

other species such HOx (Stroud et al., 2003; Law and Stohl, 2007; Mao et al., 2010). Mao et al.

(2010) argued that high biases of modelled HO2 could be explained by including the heterogeneous

uptake of H2O2, a reservoir species of HO2, providing an additional loss route for HOx. This

suggests that there is still considerable uncertainty in model predictions of NOy and HOx budgets in

the Arctic and warrants further investigation. In addition to this, the low bias ofethane and propane

found in TOMCAT suggest the need for better global emission inventories for these species.

In agreement with previous studies (Dentener and Crutzen, 1993; Tie et al., 2003), the addition

of N2O5 uptake led to substantial decreases of 20-47% in the global troposphericNOx burden,

4-6% in the O3 burden and 7-8% in the OH burden. An evaluation of simulated OH against

the Lawrence et al.(2001) climatology showed that the new version of the model (with both

heterogeneous and extended hydrocarbon chemistry) offered improved OH concentrations in the

Northern Hemisphere (NH) lower troposphere (due to lower OH concentrations), however it also

suggested that the model was missing a source of OH in the upper troposphere in the tropics.

Comparisons with TOPSE aircraft data in the Arctic showed that lower concentrations of NOx

simulated by TOMCAT were in much better agreement in winter and spring due to this additional

NOx loss route. One criticism of this work would be the use of offline aerosol fields. The lack

of co-located plumes of trace gases and aerosols is likely to result in errors in simulated fields in

polluted plumes, however, the model is assumed to capture the overall monthly mean loss of NOx.

In the future, it would be advisable to switch to using the coupled TOMCAT-GLOMAP model

developed byBreider(2010) for a more complex treatment of interactions between aerosol and

gases.

Overall, simulated CO from the new version of the model was in much better agreement with

observed CO in the NH due to increased CO production from the additional NHMC and more

accurate lower OH concentrations at the surface in the NH. This improved simulated CO in winter

and spring and accounting for additional NMHC may reduce the low biases found in simulated

CO in the NH byShindell et al.(2006b)
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Aim 2: Quantify the main sources of trace gases within the Arctic

As discussed in Chapters1 and2 it has been suggested that reducing emissions of gases which

lead to the formation of O3 may reduce warming in the Arctic (Quinn et al., 2008). It is therefore

important to understand the sources of Arctic O3 to ascertain whether regional emission reduc-

tion policies will be effective. Chapter5 investigated the transport efficiency and contributions

to CO (a tracer of natural and anthropogenic combustion processes) and O3 in the Arctic tropo-

sphere from major sources. This chapter contained the first ever source contribution analysis to

consider the impacts of fire emissions and different fire types throughoutthe year in comparison

to anthropogenic sources.

The Arctic sensitivity to emissions at lower latitudes showed a strong seasonal and altitude depen-

dency in agreement with previous studies (Klonecki et al., 2003; Stohl, 2006). Overall, anthro-

pogenic emissions were found to be the largest source of Arctic CO (48%), followed by oxidation

of methane (25%), then fires (13%). Natural emissions (10% direct emissions and 4% from iso-

prene oxidation) had the smallest contributions. In summer, fire and anthropogenic sourced CO

had equal contributions in the Arctic between the surface and the mid-troposphere, demonstrating

the importance of this as a source of pollution during this season. The majority ofthe fire-sourced

CO came from naturally occurring forest fires (60%), however the annual mean burden of fire CO

was also shown to be sensitive to agricultural burning practices in the spring if weighted by total

emissions (27%). Boreal fires were also shown to be the dominant sources of O3 and NOy species

in the lower and mid troposphere during the summer compared to anthropogenicemissions from

North America, Europe and Asia. This has important implications for the Arctic as fires in the

boreal regions are expected to increase due to increased temperaturesreleasing more emissions

of CO and O3 precursors (Soja et al., 2007). Also, if human agricultural fires are increased then

they can impact the Arctic quite substantially during spring. Spring is of particular concern as it is

when snow-albedo feedbacks are most important due to warming affectingthe timing of the spring

melt (Hall and Qu, 2006) and has been shown to be the season where the Arctic exhibits the largest

temperature response to O3 (Quinn et al., 2008).

Out of the anthropogenic emission regions North America contributed the largest amount (30%)

to the total anthropogenic CO burden. This was due to efficient transportin the upper troposphere

plus relatively high total emissions. East Asian emissions showed the secondhighest anthro-

pogenic contribution (26%) due to high total emissions. Europe showed the third largest contribu-

tion (23%) even though this region had the highest transport efficiency.This was due to small total

emissions compared to the other regions. South Asia had the smallest overall contribution (9%)

due to inefficient transport and small emissions. This is in disagreement withFisher et al.(2010),

who found Asia to be the dominate source of CO in the Arctic in April 2008. However, model
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interpretation of source contributions was shown to be largely dependenton the absolute emis-

sions used in different studies, making results sensitive to errors in inventories. For this reason,

the emission region contributions were weighted by total emissions to give the Arctic sensitivity

to CO emissions (in units of Tg(CO) per Tg(CO) emitted per year). This showed that the Arctic

is most sensitive to emissions changes in Europe, then North America and thenAsia in agreement

with Shindell et al.(2008). This demonstrates that emissions reductions in some regions will be

more effective in reducing pollution in the Arctic due to their location and the transport pathways

that emissions undergo to the Arctic.

For the total Arctic O3 burden, North America had the largest contribution (9%) out of the anthro-

pogenic regions considered, followed by Europe (7%) and then Asia (6%) (both South and East

Asia combined). In contrast to CO, O3 in the Arctic is most sensitive to emissions from North

America and not Europe, demonstrating that the different transport pathways to the Arctic must

experience different O3 production efficiencies. The different pathways that emissions undergo

result in very different NOy burdens. Europe has the largest burden of NOy in the Arctic, then

North America and then Asia. This was mostly due to different concentrationsof HNO3. The

smaller concentrations were believed to be related to the different rates of precipitation along the

pathways to the Arctic from the different regions (Barrie, 1986; Stohl, 2006). Europe emissions

had the largest contribution to PAN and NOx below 5 km, whereas North America dominated the

NOx and PAN burdens above 5 km. The amount of NOx required for net O3 production in the

springtime Arctic has been shown to vary with altitude, with lower concentrationsof NOx being

required in the upper troposphere (UT) compared to the lower troposphere (Stroud et al., 2004).

This, along with the larger abundance of NOx and PAN in the UT, could partially explain why

North America contributes a larger fraction to O3 compared to Europe even though transport is

less efficient. Also, more O3 could be produced en route to the Arctic from North America as it is

at a lower latitude band compared to Europe (see Figure5.1), and therefore has warmer tempera-

tures and more incoming radiation resulting in more O3 and less PAN. The PAN from Europe may

remain as PAN whilst in the Arctic and could then be transported back to mid-latitudes, where it

could form O3. PAN export from the Arctic has previously been hypothesised byHonrath et al.

(1996).

Aim 3: Investigate the processes which control observed inter-annual variability in the Arc-

tic.

An important part of understanding future changes in the burdens of atmospheric trace gases in

the Arctic is knowledge of the current processes which lead to recent observed variability. In

Chapter6 the drivers of Arctic CO interannual variability (IAV) were investigated considering the

contributions from meteorology and biomass burning.
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Model simulations showed that 0-25% and 84-93% of observed CO variability at different Arctic

surface stations was caused by variability in meteorology and variability in fires, respectively.

This showed that fires are the dominant driver of CO IAV in the Arctic. Most of the variability in

fires was caused by variability in forest fires (60%). This is particularly interesting as it has been

suggested that future changes in Arctic concentrations may result from ashift in the North Atlantic

Oscillation (NAO) towards the positive phase associated with greenhouse gases (Law and Stohl,

2007), however, the results shown here suggest that changes in fire emissions dominate short-term

variability over transport changes, however, for long-term trends, changes in transport may still be

important.

Links between Arctic CO IAV and meteorological variability with phase changes in the NAO, PNA

and ENSO were also investigated. The model showed that the NAO has the most significant effect

on the Arctic throughout the year. During positive phases of the NAO in thewinter, concentrations

of trace gases and aerosols would be expected to be increased due to enhanced transport from

Europe, North America and East Asia. This is in agreement with a previous study by Eckhardt

et al. (2003). In contrast to this, summer concentrations would be expected to be lower due to

reduced transport from East and South Asia in summer. The reversal of the Arctic response is

due to a shift in the centre of the NAO, changing its influence on transport patterns along with

the increasing importance of Asian sources in summer. The spring and autumnseasons showed a

more complicated response due to them being transitional seasons between the winter and summer

NAO patterns (Hurrell et al., 2003). This is the first time that the NAO’s influence on transport

to the Arctic has been considered throughout the year, demonstrating thatthe seasonal evolution

of the NAO is important. It has been suggested that increased greenhouse gases may result in a

shift in the NAO towards a more positive phase (Hurrell et al., 2003) and the results shown here

suggest that the response of Arctic trace gas burdens will not be simple.ENSO was shown to only

influence emissions from South Asia during winter and spring. Enhanced transport during El Nĩno

events would result in enhanced concentrations over parts of the Canadian Arctic in winter and

over parts of Alaska and Siberia in spring. The suggests that the anomalously low concentrations

of CO observed by AIRS over Alaska during 2008 was due to the La Niña, causing reduced

transport from South Asia, as speculated byFisher et al.(2010). The export from Asia is strongly

reliant on the occurrence of the seasonal monsoon (Lawrence, 2004) which has been shown to be

influenced by El Nĩno (Webster and Yang, 1992). The results described here are the first to show a

relationship with El Nĩno and export of South Asian emission to high northern latitudes. The PNA

did not significantly affect transport to the Arctic.

Lag correlations between observed CO at surface stations in the Arctic and the El Nĩno 3.4 Index

revealed significant positive correlations which peaked at a lag of 10-11 months. Model simula-

tions were used to show that this relationship was caused by a link between ElNiño and forest fires

and not transport. It is well known that El Niño events have resulted in large forest fires perturbing
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regional trace gases (Chandra et al., 1998; van de Werf et al., 2004), however, this is the first time

this relationship has been identified in the Arctic. Further investigation showedthat the regional

fire response to an El Niño event was different depending on what drove the fires (temperature,

precipitation and relative humidity) in each region and how the region responded to El Nĩno. El

Niño was shown to be strongly associated with increased fire emissions from Alaska, Canada,

western North America, Central America, northern South America, southernAfrica, south-east

and equatorial Asia and to a lesser extent in eastern Siberia. In the boreal regions, precipitation is

reduced which results in increased fire emissions. This is particularly important for the Arctic, as

the work presented here also showed that forest fires in the boreal regions are a dominant source

of CO and O3 in the Arctic during summer (therefore providing a strong link between El Niño and

observed Arctic CO). In contrast, El Niño events are associated with reduced fires in eastern North

America, Europe, southern Asia and Australia. Due to the predicted warmingof the global cli-

mate (Meehl et al., 2007), the regions which showed strong relationships between temperature and

fire emissions are of particular interest. Results shown in this thesis suggestthat Europe, western

North America, Central America, northern South America, southern Africa, south-east Asia and

equatorial Asia will all show an increase in fire activity in the future due to a warmer climate. Fires

were also shown to be sensitive to precipitation in several regions, however, the predicted future

changes in precipitation show much more small-scale variability, therefore making any comments

on regional fire response difficult.

Overall, this thesis has shown that fires are currently important as a source of pollutants in the

Arctic, but may also drive futures changes in concentrations of trace gases and aerosols in the

Arctic through expected increases in their frequency and intensity (Soja et al., 2007). Estimates of

fire emissions are still poorly constrained even after much improvement with theincorporation of

global burned area estimates from satellite data now being available. In particular, development of

current models to include a treatment to accurately predict fire emissions would greatly improve

out ability to model future global changes (Bowman et al., 2009). A better understanding of

meteorological global fire drivers which could be included in models would be particularly helpful.

The global study of fire drivers presented in this thesis would be usefulfor this purpose. Other

major uncertainties still lie in estimates of emissions factors and combustion efficiencies, which

need to be improved if we are to further improve our ability to accurately emissions from fires

(French et al., 2004). The results presented in this thesis demonstrate this will greatly improve our

ability to understand changes in the Arctic due to the importance of fires in this region.

8.2 Future work

Work performed for this thesis has highlighted areas which would benefit from further investiga-

tion, such as:
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• Further research into O3 production along the transport pathways from North America, Eu-

rope and Asia. This would help us to further understand the sensitivity of the Arctic O3

burden to the different regions. In addition to this it would also be useful tostudy the re-

gional contributions to radiative forcing in the Arctic from O3. Europe, North America and

Asia all showed different seasonal and altitudinal maxima and minima. It has previously

been shown that O3 has the biggest impact on radiative forcing at higher altitudes and dur-

ing spring in the Arctic. Therefore, it is likely that the Arctic radiative budget will show

different sensitivities to the different anthropogenic emission regions dueto their different

transport pathways, which cause European O3 to dominate in the lower troposphere and

North American and Asian O3 to dominate in the UT. It would also be useful to consider the

importance of biomass burning in terms of radiative forcing in the Arctic in comparison to

anthropogenic emissions.

• During the late summer and autumn, CO was shown to be overestimated at the surface.

Convection in TOMCAT has been previously shown to be underestimated (Hoyle et al.,

2011) and therefore due to its importance in summer, it would be useful to performsome

simulations using an improved convection scheme (using archived mass fluxes) (Feng et al.,

2011) to see how this would influence CO at the surface and if it would improve future

simulations.

• In Section6.4it was shown that fires dominate the IAV of CO in the Arctic. A previous study

by Szopa et al.(2007) found that meteorology and fires both played almost equal roles in

the Arctic IAV of CO. One important difference was the use of different ECMWF winds.

It would be useful to perform a simulation testing the difference between ERA40 (used by

Szopa et al.(2007)) and ERA-Interim (used by TOMCAT) to see how sensitive the results

are to the different input files.

• In Section6.6.1 an investigation into fire drivers was performed. The robustness of this

analysis could be checked by using satellite-observed precipitation and temperature instead

of ECMWF ERA-Interim reanalyses. However, it is assumed that as the ECMWF reanaly-

ses assimilate satellite observations into their model, that the results found here would not

change. A more useful re-evaluation method would be to use a range of satellite observed

area burnt statistics instead of the CO emissions used from the GFED v3.1 inventory. This

would allow the uncertainty in area burnt datasets to be accounted for and also the work

could then be extrapolated to other gases and not just CO. Also, as correlations only show

a possible link between El Niño and regional fires and their climate drivers the correlations

calculated in this chapter could be further tested by incorporating precipitation, relative hu-

midity and temperature in fire/area burned models and testing the importance of each of the

parameters in different regions against observed area burned data.Climate models could
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then be used to further investigate climate patterns associated with El Niño and how these

would influence area burnt and fire emissions.

• Due to the importance of halogen chemistry and heterogeneous chemistry (shown in Chap-

ter 4) in the Arctic it is suggested that future Arctic simulations be done using the coupled

TOMCAT/GLOMAP model which will allow the impact of halogens on O3 in the tropo-

sphere to be considered and the use of online aerosol fields which interact with the oxidants

in the model. It would be particularly interesting to calculate the Arctic O3 budget including

ozone depletion by bromine to better understand the extent of these events on total tropo-

spheric O3 and OH.



Appendix A

List of Chemical Reactions in the

TOMCAT Model

TABLE A.1: Chemical species in the TOMCAT CTM

Species Category Family Dry Deposited? Wet Deposited? Emitted?
1 O(3P) FM Ox N N N
2 O(1D) FM Ox N N N
3 O3 FM Ox Y N N
4 NO FM NOx Y N N
5 NO3 FM NOx Y Y N
6 NO2 FM NOx Y N Y
7 N2O5 TR Y Y N
8 HO2NO2 TR Y Y N
9 HONO2 TR Y Y N
10 OH SS N N N
11 HO2 SS N Y N
12 H2O2 TR Y Y N
13 CH4 TR N N Y
14 CO TR Y N Y
15 HCHO TR Y Y Y
16 MeOO SS N Y N
17 H2O CF N N N
18 MeOOH TR Y Y N
19 HONO TR Y Y N
20 C2H6 TR N N Y
21 EtOO SS N N N
22 EtOOH TR Y Y N
23 MeCHO TR Y N Y
24 MeCO3 SS N N N
25 PAN TR Y N N
26 C3H8 TR N N Y

Continued on next page
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Table A.1 – continued from previous page
Species Category Family Dry Deposited? Wet Deposited? Emitted?

27 n-PrOO SS N N N
28 i-PrOO SS N N N
29 n-PrOOH TR Y Y N
30 i-PrOOH TR Y Y N
31 EtCHO TR Y N N
32 EtCO3 SS N N N
33 Me2CO TR Y N Y
34 MeCOCH2OO SS N N N
35 MeCOCH2OOH TR Y Y N
36 PPAN TR Y N N
37 MeONO2 TR N N N
38 O(3P)S FM Sx N N N
39 O(1D)S FM Sx N N N
40 O3S FM Sx Y N N
41 NOXS SS Y N N
42 HNO3S SS Y Y N
43 NOYS TR Y Y N
44 C5H8 TR N N Y
45 C10H16 TR N N Y
46 TERPOOH TR Y Y N
47 ISO2 SS N N N
48 ISOOH TR Y Y N
49 ISON TR Y Y N
50 MACR TR Y N N
51 MACRO2 SS N N N
52 MACROOH TR Y Y N
53 MPAN TR Y N N
54 HACET TR Y Y N
55 MGLY TR Y Y N
56 NALD TR Y N N
57 HCOOH TR Y Y N
58 MeCO3H TR Y Y N
59 MeCO2H TR Y Y N
60 MeOH TR Y Y Y
61 TERPO2 SS N N N
62 C2H4 TR N N Y
63 C2H2 TR N N Y
64 C4H10 TR N N Y
65 C3H6 TR N N Y
66 AROM TR N N Y
67 MEK TR N N N
68 MeCOCOMe TR Y Y N
69 BtOO SS N N N
70 PrpeOO SS N N N
71 AROMO2 SS N N N
72 MEKOO SS N N N

Continued on next page
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Table A.1 – continued from previous page
Species Category Family Dry Deposited? Wet Deposited? Emitted?

73 BtOOH TR Y Y N
74 PrpeOOH TR Y Y N
75 AROMOOH TR Y Y N
76 MEKOOH TR Y Y N
77 ONIT TR N N N
78 EtCO3H SS N N N
79 EtCO2H SS N N N
80 H2 CT N N N
81 CO2 CT N N N
82 O2 CT N N N
83 N2 CT N N N

FM = Family, TR = Independent Tracer, SS = Steady State, CT = constant inspace and time, CF
= constant in time, spatially variant

S denotes stratospheric species

Me=CH3, Et=C2H5, Pr= C3H7, Prpe = C3H7O, Bt= C4H9

TERP = Generic terpine compound, e.g. C6H10 (monoterpine)

MACR = Lumped species consisting of methacrolein, methyl vinyl ketone and other C4 carbonyls
from isoprene chemistry

HACET = Hydroxyacetone, CH2OHC(O)CH3

MGLY = Methylglyoxal, CH3C(O)CHO

NALD = Nitrooxy acetaldehyde, O2NOCH2CHO

AROM = Generic aromatic compound, e.g. C6H5CH3 (toluene)

MEK = Methyl ethyl ketone, CH3C(O)CH2CH3

ONIT = Organic nitrate (from propene and butane chemistry), e.g. CH3CH2CH(ONO2)CH3

TABLE A.2: TOMCAT heterogeneous reactions

Reaction Reactants Products
1 N2O5 + H2O → HNO3 + HNO3
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TABLE A.3: TOMCAT gas-phase bimolecular reactions

Reactants Products k0 α β Reference
1 HO2 + NO → OH + NO2 3.60×10−12 0.00 -270.0 IUPAC [2005]
2 HO2 + NO3 → OH + NO2 4.00×10−12 0.00 0.0 IUPAC [2005]
3 HO2 + O3 → OH + O2 2.03×10−16 4.57 -693.0 IUPAC [2005]
4 HO2 + HO2 → H2O2 2.20×10−13 0.00 -600.0 IUPAC [2005]
5 HO2 + MeOO → MeOOH 3.80×10−13 0.00 -780.0 IUPAC [2005]
6 HO2 + MeOO → HCHO 3.80×10−13 0.00 -780.0 IUPAC [2005]
7 HO2 + EtOO → EtOOH 3.80×10−13 0.00 -900.0 IUPAC [2005]
8 HO2 + MeCO3 → MeCO3H 2.08×10−13 0.00 -980.0 IUPAC [2005]
9 HO2 + MeCO3 → MeCO2H + O3 1.04×10−13 0.00 -980.0 IUPAC [2005]
10 HO2 + MeCO3 → OH + MeOO 2.08×10−13 0.00 -980.0 IUPAC [2005]
11 HO2 + n-PrOO → n-PrOOH 1.51×10−13 0.00 -1300.0 MCM
12 HO2 + i-PrOO → i-PrOOH 1.51×10−13 0.00 -1300.0 MCM
13 HO2 + EtCO3 → O2 + EtCO3H 3.05×10−13 0.00 -1040.0 MCM
14 HO2 + EtCO3 → O3 + EtCO2H 1.25×10−13 0.00 -1040.0 MCM
15 HO2 + MeCOCH2OO → MeCOCH2OOH 1.36×10−13 0.00 -1250.0 MCM
16 MeOO + NO → HO2 + HCHO + NO2 2.95×10−12 0.00 -285.0 IUPAC [2005]
17 MeOO + NO → MeONO2 2.95×10−15 0.00 -285.0 IUPAC [2005]
18 MeOO + NO3 → HO2 + HCHO + NO2 1.30×10−12 0.00 0.0 IUPAC [2005]
19 MeOO + MeOO → MeOH + HCHO 1.03×10−13 0.00 -365.0 IUPAC [2005]
20 MeOO + MeOO → HO2 + HO2 + HCHO + HCHO 1.03×10−13 0.00 -365.0 IUPAC [2005]
21 MeOO + MeCO3 → HO2 + HCHO + MeOO 1.80×10−12 0.00 -500.0 IUPAC [2005]
22 MeOO + MeCO3 → MeCO2H + HCHO 2.00×10−13 0.00 -500.0 IUPAC [2005]
23 EtOO + NO → MeCHO + HO2 + NO2 2.60×10−12 0.00 -380.0 IUPAC [2005]
24 EtOO + NO3 → MeCHO + HO2 + NO2 2.30×10−12 0.00 0.0 IUPAC [2005]
25 EtOO + MeCO3 → MeCHO + HO2 + MeOO 4.40×10−13 0.00 -1070.0 IUPAC [2005]
26 MeCO3 + NO → MeOO + CO2 + NO2 7.50×10−12 0.00 -290.0 IUPAC [2005]
27 MeCO3 + NO3 → MeOO + CO2 + NO2 4.00×10−12 0.00 0.0 MCM

Continued on next page
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Table A.3 – continued from previous page
Reactants Products k0 α β Reference

28 n-PrOO + NO → EtCHO + HO2 + NO2 2.90×10−12 0.00 -350.0 IUPAC [2005]
29 n-PrOO + NO3 → EtCHO + HO2 + NO2 2.50×10−12 0.00 0.0 MCM
30 i-PrOO + NO → Me2CO + HO2 + NO2 2.70×10−12 0.00 -360.0 IUPAC [2005]
31 i-PrOO + NO3 → Me2CO + HO2 + NO2 2.50×10−12 0.00 0.0 MCM
32 EtCO3 + NO → EtOO + CO2 + NO2 6.70×10−12 0.00 -340.0 IUPAC [2005]
33 EtCO3 + NO3 → EtOO + CO2 + NO2 4.00×10−12 0.00 0.0 MCM
34 MeCOCH2OO + NO → MeCO3 + HCHO + NO2 2.80×10−12 0.00 -300.0 Tyndall et al. [2001]
35 MeCOCH2OO + NO3 → MeCO3 + HCHO + NO2 2.50×10−12 0.00 0.0 MCM
36 NO + NO3 → NO2 + NO2 1.80×10−11 0.00 -110.0 IUPAC [2005]
37 NO + O3 → NO2 1.40×10−12 0.00 1310.0 IUPAC [2005]
38 NO2 + O3 → NO3 1.40×10−13 0.00 2470.0 IUPAC [2005]
39 NO3 + HCHO → HONO2 + HO2 + CO 2.00×10−12 0.00 2440.0 IUPAC [2005]
40 NO3 + MeCHO → HONO2 + MeCO3 1.40×10−12 0.00 1860.0 IUPAC [2005]
41 NO3 + EtCHO → HONO2 + EtCO3 3.46×10−12 0.00 1862.0 MCM
42 NO3 + Me2CO → HONO2 + MeCOCH2OO 3.00×10−17 0.00 0.0 IUPAC [2005]
43 N2O5 + H2O → HONO2 + HONO2 0.00×10+00 0.00 0.0 Set to 0.0, using het.chem
44 O(3P) + O3 → O2 + O2 8.00×10−12 0.00 2060.0 IUPAC [2005]
45 O(1D) + CH4 → OH + MeOO 1.05×10−10 0.00 0.0 IUPAC [2005]
46 O(1D) + CH4 → HCHO + H2 7.50×10−12 0.00 0.0 IUPAC [2005]
47 O(1D) + CH4 → HCHO + HO2 + HO2 3.45×10−11 0.00 0.0 IUPAC [2005]
48 O(1D) + H2O → OH + OH 2.20×10−10 0.00 0.0 IUPAC [2005]
49 O(1D) + N2 → O(3P) + N2 2.10×10−11 0.00 -115.0 Ravishankara et al. [2002]
50 O(1D) + O2 → O(3P) + O2 3.20×10−11 0.00 -67.0 IUPAC [2005]
51 OH + CH4 → H2O + MeOO 1.85×10−12 0.00 1690.0 IUPAC [2005]
52 OH + C2H6 → H2O + EtOO 6.90×10−12 0.00 1000.0 IUPAC [2005]
53 OH + C3H8 → n-PrOO + H2O 7.60×10−12 0.00 585.0 IUPAC [2005]
54 OH + C3H8 → i-PrOO + H2O 7.60×10−12 0.00 585.0 IUPAC [2005]
55 OH + CO → HO2 1.44×10−13 0.00 0.0 IUPAC [2005]

Continued on next page
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Table A.3 – continued from previous page
Reactants Products k0 α β Reference

56 OH + EtCHO → H2O + EtCO3 5.10×10−12 0.00 -405.0 IUPAC [2005]
57 OH + EtOOH → H2O + MeCHO + OH 8.01×10−12 0.00 0.0 MCM
58 OH + EtOOH → H2O + EtOO 1.90×10−12 0.00 -190.0 MCM
59 OH + H2 → H2O + HO2 7.70×10−12 0.00 2100.0 IUPAC [2005]
60 OH + H2O2 → H2O + HO2 2.90×10−12 0.00 160.0 IUPAC [2005]
61 OH + HCHO → H2O + HO2 + CO 5.40×10−12 0.00 -135.0 IUPAC [2004]
62 OH + HO2 → H2O 4.80×10−11 0.00 -250.0 IUPAC [2005]
63 OH + HO2NO2 → H2O + NO2 1.90×10−12 0.00 -270.0 IUPAC [2005]
64 OH + HO2NO2 → H2O + NO3 1.50×10−13 0.00 0.0 IUPAC [2005]
65 OH + HONO → H2O + NO2 2.50×10−12 0.00 -260.0 IUPAC [2005]
66 OH + MeOOH → H2O + HCHO + OH 1.02×10−12 0.00 -190.0 IUPAC [2005]
67 OH + MeOOH → H2O + MeOO 1.89×10−12 0.00 -190.0 IUPAC [2005]
68 OH + MeONO2 → HCHO + NO2 + H2O 4.00×10−13 0.00 845.0 IUPAC [2005]
69 OH + Me2CO → H2O + MeCOCH2OO 8.80×10−12 0.00 1320.0 IUPAC [2005]
70 OH + Me2CO → H2O + MeCOCH2OO 1.70×10−14 0.00 -420.0 IUPAC [2005]
71 OH + MeCOCH2OOH → H2O + MeCOCH2OO 1.90×10−12 0.00 -190.0 MCM
72 OH + MeCOCH2OOH → OH + MGLY 8.39×10−12 0.00 0.0 MCM
73 OH + MeCHO → H2O + MeCO3 4.40×10−12 0.00 -365.0 IUPAC [2005]
74 OH + NO3 → HO2 + NO2 2.00×10−11 0.00 0.0 IUPAC [2005]
75 OH + O3 → HO2 + O2 1.70×10−12 0.00 940.0 IUPAC [2005]
76 OH + OH → H2O + O(3P) 6.31×10−14 2.60 -945.0 IUPAC [2005]
77 OH + PAN → HCHO + NO2 + H2O 3.00×10−14 0.00 0.0 IUPAC [2005]
78 OH + PPAN → MeCHO + NO2 + H2O 1.27×10−12 0.00 0.0 MCM
79 OH + n-PrOOH → n-PrOO + H2O 1.90×10−12 0.00 -190.0 MCM
80 OH + n-PrOOH → EtCHO + H2O + OH 1.10×10−11 0.00 0.0 MCM
81 OH + i-PrOOH → i-PrOO + H2O 1.90×10−12 0.00 -190.0 MCM
82 OH + i-PrOOH → Me2CO + OH 1.66×10−11 0.00 0.0 MCM
83 O(3P) + NO2 → NO + O2 5.50×10−12 0.00 -188.0 IUPAC [2005]

Continued on next page
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Table A.3 – continued from previous page
Reactants Products k0 α β Reference

84 OH + C5H8 → ISO2 2.70×10−11 0.00 -390.0 IUPAC [2005]
85 OH + C5H8 → MACR + HCHO + MACRO2 + MeCO3 3.33×10−15 0.00 1995.0 IUPAC [2005]1

86 OH + C5H8 → MeOO + HCOOH + CO + H2O2 3.33×10−15 0.00 1995.0 IUPAC [2005]1

87 OH + C5H8 → HO2 + OH 3.33×10−15 0.00 1995.0 IUPAC [2005]1

88 NO3 + C5H8 → ISON 3.15×10−12 0.00 450.0 IUPAC [2005]
89 NO + ISO2 → NO2 + MACR + HCHO + HO2 2.43×10−12 0.00 -360.0 MCM v3.1/P̈oschl et al. [200]
90 NO + ISO2 → ISON 1.12×10−13 0.00 -360.0 MCM v3.1/P̈oschl et al. [200]
91 HO2 + ISO2 → ISOOH 2.05×10−13 0.00 -1300.0 MCM v3.1/P̈oschl et al. [200]
92 ISO2 + ISO2 → MACR + MACR + HCHO + HO2 2.00×10−12 0.00 0.0 P̈oschl et al. [200]
93 OH + ISOOH → MACR + OH 1.00×10−10 0.00 0.0 P̈oschl et al. [200]
94 OH + ISON → HACET + NALD 1.30×10−11 0.00 0.0 P̈oschl et al. [200]
95 OH + MACR → MACRO2 1.30×10−12 0.00 -610.0 IUPAC [2005]
96 OH + MACR → MACRO2 4.00×10−12 0.00 -380.0 IUPAC [2005]
97 O3 + MACR → MGLY + HCOOH + HO2 + CO 2.13×10−16 0.00 1520.0 IUPAC [2005]1

98 O3 + MACR → OH + MeCO3 2.13×10−16 0.00 1520.0 IUPAC [2005]1

99 O3 + MACR → MGLY + HCOOH + HO2 + CO 3.50×10−16 0.00 2100.0 IUPAC [2005]1

100 O3 + MACR → OH + MeCO3 3.50×10−16 0.00 2100.0 IUPAC [2005]1

101 NO + MACRO2 → NO2 + MeCO3 + HACET + CO 1.27×10−12 0.00 -360.0 MCM v3.1/P̈oschl et al. [200]1

102 NO + MACRO2 → MGLY + HCHO + HO2 1.27×10−12 0.00 -360.0 MCM v3.1/P̈oschl et al. [200]1

103 HO2 + MACRO2 → MACROOH 1.83×10−13 0.00 -1300.0 MCM v3.1/P̈oschl et al. [200]
104 MACRO2 + MACRO2 → HACET + MGLY + HCHO + CO 1.00×10−12 0.00 0.0 MCM v3.1/P̈oschl et al. [200]1

105 MACRO2 + MACRO2 → HO2 1.00×10−12 0.00 0.0 MCM v3.1/P̈oschl et al. [200]1

106 OH + MPAN → HACET + NO2 2.90×10−11 0.00 0.0 IUPAC [2005]
107 OH + MACROOH → MACRO2 3.00×10−11 0.00 0.0 P̈oschl et al. [200]
108 OH + HACET → MGLY + HO2 3.00×10−12 0.00 0.0 IUPAC [2005]/P̈oschl et al. [200]
109 OH + MGLY → MeCO3 + CO 1.50×10−11 0.00 0.0 IUPAC [2005]/P̈oschl et al. [200]
110 NO3 + MGLY → MeCO3 + CO + HONO2 3.46×10−12 0.00 1860.0 MCM v3.1
111 OH + NALD → HCHO + CO + NO2 4.40×10−12 0.00 -365.0 IUPAC [2005]/P̈oschl et al. [200]

Continued on next page
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Table A.3 – continued from previous page
Reactants Products k0 α β Reference

112 OH + MeCO3H → MeCO3 3.70×10−12 0.00 0.0 MCM v3.1/P̈oschl et al. [200]
113 OH + MeCO2H → MeOO 4.00×10−13 0.00 -200.0 JPL [2003]
114 OH + HCOOH → HO2 4.50×10−13 0.00 0.0 IUPAC [2005]
115 MeOH + OH → HCHO + HO2 2.85×10−12 0.00 345.0 IUPAC [2007]
116 OH + C10H16 → TERPO2 1.20×10−11 0.00 -444.0 MOZART3
117 O3 + C10H16 → OH + MEK + HO2 1.00×10−15 0.00 732.0 MOZART3
118 NO3 + C10H16 → ISON + MACR 1.20×10−12 0.00 -490.0 NOTE6

119 NO + TERPO2 → Me2CO + HO2 + NO2 2.10×10−12 0.00 -180.0 MOZART31

120 NO + TERPO2 → MACR + MACR 2.10×10−12 0.00 -180.0 MOZART31

121 HO2 + TERPO2 → TERPOOH 7.50×10−13 0.00 -700.0 MOZART31

122 OH + TERPOOH → TERPO2 3.80×10−12 0.00 -200.0 MOZART31

123 C4H10 + OH → BtOO + H2O 9.10×10−12 0.00 405.0 IUPAC [2006]
124 BtOO + NO → NO2 + MEK + HO2 + EtOO 1.27×10−12 0.00 -360.0 MCM v3.11

125 BtOO + NO → ONIT + MeCHO 1.27×10−12 0.00 -360.0 MCM v3.11

126 BtOO + HO2 → BtOOH 1.82×10−13 0.00 -1300.0 MCM v3.1
127 BtOO + MeOO → MEK + HCHO + HO2 + MeCHO 1.25×10−13 0.00 0.0 MCM v3.11

128 BtOO + MeOO → MeOH + EtOO 1.25×10−13 0.00 0.0 MCM v3.11

129 BtOOH + OH → BtOO + MEK + OH + H2O 1.90×10−12 0.00 -190.0 MCM v3.11

130 MEK + OH → MEKOO 1.30×10−12 0.00 25.0 IUPAC [2006]
131 MEKOO + NO → MeCHO + MeCO3 + NO2 + ONIT 2.54×10−12 0.00 -360.0 MCM v3.1
132 MEKOO + HO2 → MEKOOH 1.82×10−13 0.00 -1300.0 MCM v3.1
133 MEKOOH + OH → MeCOCOMe + OH + OH 1.90×10−12 0.00 -190.0 MCM v3.1
134 ONIT + OH → MEK + NO2 + H2O 1.60×10−12 0.00 0.0 IUPAC [2006]/RvK01
135 C2H4 + O3 → HCHO + HO2 + OH + CO 4.55×10−15 0.00 2580.0 IUPAC [2006]1

136 C2H4 + O3 → H2 + CO2 + HCOOH 4.55×10−15 0.00 2580.0 IUPAC [2006]1

137 C3H6 + O3 → HCHO + MeCHO + OH + HO2 1.83×10−15 0.00 1880.0 IUPAC [2006]1

138 C3H6 + O3 → EtOO + MGLY + CH4 + CO 1.83×10−15 0.00 1880.0 IUPAC [2006]1

139 C3H6 + O3 → MeOH + MeOO + HCOOH 1.83×10−15 0.00 1880.0 IUPAC [2006]1

Continued on next page
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Table A.3 – continued from previous page
Reactants Products k0 α β Reference

140 C3H6 + NO3 → ONIT 4.60×10−13 0.00 1155.0 IUPAC [2006]1

141 PrpeOO + NO → MeCHO + HCHO + HO2 + NO2 1.27×10−12 0.00 -360.0 MCM v3.11

142 PrpeOO + NO → ONIT 1.27×10−12 0.00 -360.0 MCM v3.11

143 PrpeOO + HO2 → PrpeOOH 1.50×10−13 0.00 -1300.0 MCM v3.1
144 PrpeOOH + OH → PrpeOO + H2O 1.90×10−12 0.00 -190.0 MCM v3.1
145 PrpeOOH + OH → HACET + OH 2.44×10−11 0.00 0.0 MCM v3.1
146 AROM + OH → AROMO2 + HO2 1.81×10−12 0.00 -338.0 Folberth et al. (2006)1

147 AROMO2 + NO → MGLY + NO2 + MeCO3 + CO 1.35×10−12 0.00 -360.0 Folberth et al. (2006)1

148 AROMO2 + NO → HO2 1.35×10−12 0.00 -360.0 Folberth et al. (2006)1

149 AROMO2 + NO3 → MGLY + NO2 + MeCO3 + CO 1.20×10−12 0.00 0.0 Folberth et al. (2006)1

150 AROMO2 + NO3 → HO2 1.20×10−12 0.00 0.0 Folberth et al. (2006)1

151 AROMO2 + HO2 → AROMOOH 1.90×10−13 0.00 1300.0 Folberth et al. (2006)1

152 AROMO2 + MeOO → MGLY + CO + MeCO3 + MeOH 1.15×10−13 0.00 0.0 Folberth et al. (2006)1

153 AROMO2 + MeOO → HO2 + HCHO 1.15×10−13 0.00 0.0 Folberth (2006)1

154 AROMOOH + OH → AROMO2 1.90×10−12 0.00 -190.0 Folberth et al. (2006)1

155 AROMOOH + OH → OH + H2O 4.61×10−18 0.00 -253.0 Folberth et al. (2006)1

156 AROMOOH + OH → MeCO3 + CO + HO2 + OH 4.19×10−17 0.00 -696.0 Folberth et al. (2006)1

157 HO2 + O3S → HO2 + O2 2.03×10−16 4.57 -693.0 IUPAC [2005]
158 OH + O3S → OH + O2 1.70×10−12 0.00 940.0 IUPAC [2005]
159 O(1D)S + H2O → H2O 2.20×10−10 0.00 0.0 IUPAC [2005]
160 O(1D)S + N2 → O(3P)S + N2 2.10×10−11 0.00 -115.0 Ravishankara et al. [2002]
161 O(1D)S + O2 → O(3P)S + O2 3.20×10−11 0.00 -67.0 IUPAC [2005]

Rate constant k = k0 ( T
300)

α exp(−β
T ) whereT is temperature (K)

1 Reactions split between multiple channels in order to accommodate large number of products
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TABLE A.4: TOMCAT gas-phase termolecular and thermal decomposition reactions

Reactants Products f k1 α1 β1 k2 α2 β2 Reference
1 HO2 + HO2 + M → H2O2 + O2 + M 0.00 1.90×10−33 0.00 -980.0 0.00×10+00 0.00 0.01 IUPAC [2005]
2 HO2 + NO2 + M → HO2NO2 + M 0.60 1.80×10−31 -3.20 0.0 4.70×10−12 0.00 0.0 IUPAC [2005]
3 HO2NO2 + M → HO2 + NO2 + M 0.60 4.10×10−05 0.00 10650.0 4.80×10+15 0.00 11170.0 IUPAC [2005]
4 MeCO3 + NO2 + M → PAN + M 0.30 2.70×10−28 -7.10 0.0 1.20×10−11 -0.90 0.0 IUPAC [2005]
5 PAN + M → MeCO3 + NO2 + M 0.30 4.90×10−03 0.00 12100.0 5.40×10+16 0.00 13830.0 IUPAC [2005]
6 N2O5 + M → NO2 + NO3 + M 0.35 1.30×10−03 -3.50 11000.0 9.70×10+14 0.10 11080.0 IUPAC [2005]
7 NO2 + NO3 + M → N2O5 + M 0.35 3.60×10−30 -4.10 0.0 1.90×10−12 0.20 0.0 IUPAC [2005]
8 O(3P) + O2 + M → O3 + M 0.00 5.70×10−34 -2.60 0.0 0.00×10+00 0.00 0.0 IUPAC [2005]
9 OH + NO + M → HONO + M 1420.00 7.40×10−31 -2.40 0.0 3.30×10−11 -0.30 0.0 IUPAC [2005]
10 OH + NO2 + M → HONO2 + M 0.40 3.30×10−30 -3.00 0.0 4.10×10−11 0.00 0.0 IUPAC [2005]
11 OH + OH + M → H2O2 + M 0.50 6.90×10−31 -0.80 0.0 2.60×10−11 0.00 0.0 IUPAC [2005]
12 EtCO3 + NO2 + M → PPAN + M 0.30 2.70×10−28 -7.10 0.0 1.20×10−11 -0.90 0.0 MCM
13 PPAN + M → EtCO3 + NO2 + M 0.36 1.70×10−03 0.00 11280.0 8.30×10+16 0.00 13940.0 IUPAC [2005]
14 MACRO2 + NO2 + M → MPAN + M 0.30 2.70×10−28 0.00 11280.0 8.30×10+16 0.00 13940.0 P̈oschl et al. [200]
15 MPAN + M → MACRO2 + NO2 + M 0.30 4.90×10−03 0.00 12100.0 5.40×10+16 0.00 13830.0 P̈oschl et al. [200]
16 O(3P) + O2 + M → O3 + M 0.00 5.70×10−34 -2.60 0.0 0.00×10+00 0.00 0.0 IUPAC [2005]
17 C2H4 + OH + M → PrpeOO + M 0.48 2.87×10−29 -3.10 0.0 3.00×10−12 -0.85 0.0 IUPAC [2006]
18 C2H4 + OH + M → PrpeOO + M 0.48 2.87×10−29 -3.10 0.0 3.00×10−12 -0.85 0.0 IUPAC [2006]
19 C2H4 + OH + M → 0.48 2.87×10−29 -3.10 0.0 3.00×10−12 -0.85 0.0 IUPAC [2006]
20 C3H6 + OH + M → PrpeOO + M 0.50 8.00×10−27 -3.50 0.0 3.00×10−11 -1.00 0.0 IUPAC [2006]

Rate constant k =( k0[M]
1+k0[M]/k∞

)F
(1+[log10

k0[M]
k∞ ]2)−1

c

k0=k1 ( T
300)

α1exp(−β1
T )

k∞=k2 ( T
300)

α2exp(−β2
T )

If f is lees than 1, thenFc = f . Otherwise,Fc =exp(−T/ f )
1 Reaction (1), Rate k = (2.2x10−13exp(600/T)+1.9x10−33[N2]exp(980/T))×(1+1.4x10−21)[H2O]exp(2200/T))
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TABLE A.5: TOMCAT photolysis reactions

Reaction Reactants Products Reference
1 EtOOH + hν → MeCHO + HO2 + OH JPL [1990]
2 H2O2 + hν → OH + OH JPL [1992]
3a HCHO + hν → HO2 + HO2 + CO IUPAC
3b HCHO + hν → H2 + CO IUPAC
5 HO2NO2 + hν → HO2 + NO2 IUPAC
6 HONO2 + hν → OH + NO2 IUPAC
7a MeCHO + hν → MeOO + HO2 + CO Blitz et al., [2004]
7b MeCHO + hν → CH4 + CO Blitz et al., [2004]
9 MeOOH + hν → HO2 + HCHO + OH JPL [1990]
10 N2O5 + hν → NO3 + NO2 IUPAC
11 NO2 + hν → NO + O(3P) JPL [1992]
12a NO3 + hν → NO + O2 IUPAC
12b NO3 + hν → NO2 + O(3P) IUPAC
14 O2 + hν → O(3P) + O(3P) IUPAC
15a O3 + hν → O2 + O(1D) IUPAC
15b O3 + hν → O2 + O(3P) IUPAC
17 PAN + hν → MeCO3 + NO2 IUPAC [1999]
18 HONO + hν → OH + NO JPL [1992]
19 EtCHO + hν → EtOO + HO2 + CO IUPAC [2002]
20 Me2CO + hν → MeCO3 + MeOO IUPAC [1999]
21 n-PrOOH + hν → EtCHO + HO2 + OH JPL [1990]
22 i-PrOOH + hν → Me2CO + HO2 + OH JPL [1990]
23 MeCOCH2OOH + hν → MeCO3 + HCHO + OH JPL [1990]
24 PPAN + hν → EtCO3 + NO2 IUPAC
25 MeONO2 + hν → HO2 + HCHO + NO2 IUPAC
26a TERPOOH + hν → OH + HO2 + MACR + MACR JPL [1990]
26b TERPOOH + hν → TERPOOH + Me2CO JPL [1990]

Continued on next page
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Table A.5 – continued from previous page
Reaction Reactants Products Reference

28 ISOOH + hν → OH + MACR + HCHO + HO2 JPL [1990]
29 ISON + hν → NO2 + MACR + HCHO + HO2 IUPAC [2002]
30 MACR + hν → MeCO3 + HCHO + CO + HO2 IUPAC [2002]
31 MPAN + hν → MACRO2 + NO2

32a MACROOH + hν → OH + HO2 + OH + HO2 JPL [1990]
32b MACROOH + hν → HACET + CO + MGLY + HCHO JPL [1990]
34 HACET + hν → MeCO3 + HCHO + HO2 Orlando et. al., (1999)
35 MGLY + hν → MeCO3 + CO + HO2 + IUPAC [2002]
36 NALD + hν → HCHO + CO + NO2 + HO2 Blitz et al., [2004]
37 MeCO3H + hν → MeOO + OH Orlando and Tyndall [2003]
38a O3S + hν → O2 + O(1D)S IUPAC
38b O3S + hν → O2 + O(3P)S IUPAC
40a BtOOH + hν → MEK + MEK + EtOO + MeCHO JPL [1990]
40b BtOOH + hν → HO2 + HO2 JPL [1990]
40c BtOOH + hν → OH + OH + OH JPL [1990]
43 MEK + hν → MeCO3 + EtOO IUPAC
44 MeCOCOMe + hν → MeCO3 + MeCO3 IUPAC
45 MEKOOH + hν → MeCO3 + MeCHO + OH JPL [1990]
46a ONIT + hν → NO2 + MEK + HO2 + EtOO IUPAC
46b ONIT + hν → MeCHO + ONIT IUPAC
48a AROMOOH + hν → OH + Me2CO + HO2 + CO JPL [1990]
48b AROMOOH + hν → MeCO3 + AROMOOH JPL [1990]
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following an el nĩno event: examining stratospheric ozone variability as a potential driver.At-
mospheric Science Letters, 12, 228–232.

Wallace, J. and D. Gutzler, 1981: Teleconnections in the geopotential height field during the North-
ern Hemisphere winter.Monthly Weather Review, 109, 784–812.

Wang, K., J. Pyle, M. Sanderson, and C. Bridgeman, 1999: Implementationof a convective at-
mospheric boundary layer scheme in a tropospheric chemistry transport model.Journal of Geo-
physical Research, 104.

Wang, Y. and D. J. Jacob, 1998: Anthropogenic forcing on tropospheric ozone and OH since
preindustrial times.Journal of Geophysical Research, 103, 31123–31135.

Wang, Y., B. Ridley, A. Fried, C. Cantrell, D. Davis, G. Chen, J. Snow, B. Heikes, R. Talbot,
J. Dibb, F. Flocke, A. Weinheimer, N. Blake, D. Blake, R. Shetter, B. Lefer, E. Atlas, M. Coffey,
J. Walega, and B. Wert, 2003: Springtime photochemistry at northern mid andhigh latitudes.
Journal of Geophysical Research, 108, doi:10.1029/2003JD003592.

Warneke, C., K. D. Froyd, J. Brioude, R. Bahreini, C. A. Brock, J. Cozic, J. A. de Gouw, D. W.
Fahey, R. Ferrare, J. S. Holloway, A. M. Middlebrook, L. Miller, S. Montzka, J. P. Schwarz,
H. Sodemann, J. R. Spackman, and A. Stohl, 2010: An important contribution to springtime
Arctic aerosol from biomass burning in Russia.Geophys. Res. Lett., 37, L01801.

Webster, P. J. and S. Yang, 1992: Monsoon and ENSO: Selectively Interactive Systems.Quarterly
Journal of the Royal Meteorological Society, 118, 877–926.

Wespes, C., L. Emmons, D. P. Edwards, J. Hannigan, D. Hurtmans, M. Saunois, P.-F. Coheur,
C. Clerbaux, M. T. Coffey, R. Batchelor, R. Lindenmaier, K. Strong, A. J. Weinheimer, J. B.
Nowak, T. B. Ryerson, J. D. Crounse, and P. O. Wennberg, 2011:Analysis of ozone and ni-
tric acid in spring and summer Arctic pollution using aircraft, ground–based,satellite observa-
tions and MOZART–4 model: source attribution and partitioning.Atmospheric Chemistry and
Physics Discussions, 11, 23707–23760.

Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, 2006: Warming and Earlier
Spring Increase Western U.S. Forest Wildfire Activity.Science, 313, 940–943.

White, W., J. Anderson, D. Blumenthal, R. Husar, N. Gillani, J. Husar, andW. Wilson, 1976:
Formation and transport of secondary air pollutants: ozone and aerosols in the St. Louis urban
plume.Science, 194, 187–189.

Whitlow, S., P. Mayewski, J. Dibb, G. Holdsworth, and M. Twickler, 1994:An ice-core-based
record of biomass burning in the Arctic and Subarctic, 17501980.Tellus B, 46, 234–242.



Bibliography 232

Wiedinmyer, C., S. K. Akagi, R. J. Yokelson, L. K. Emmons, J. A. Al-Saadi,J. J. Orlando, and
A. J. Soja, 2011: The Fire INventory from NCAR (FINN): a high resolution global model to
estimate the emissions from open burning.Geoscientific Model Development, 4, 625–641.

Wiedinmyer, C., B. Quayle, C. Geron, A. Belote, D. McKenzie, X. Zhang,S. O’Neill, and
K. Wynne, 2006: Estimating emissions from fires in North America for Air QualityModel-
ing. Atmospheric Environment, 40, 3419–3432.

Wild, O., 2007: Modelling the global tropospheric ozone budget: exploring the variability in
current models.Atmospheric Chemistry and Physics, 7, 2643–2660.

Wild, O. and H. Akimoto, 2001: Intercontinental transport of ozone and itsprecursors in a three–
dimensional global CTM.Journal of Geophysical Research, 106, 27,729–27,744.

Williams, A. and D. Karoly, 1999: Extreme fire weather in Australia and the impact of the El
Niño–Southern Oscillation.Australian Meteorological Magazine, 48, 15–22.

Wofsy, S. C., G. W. Sachse, G. L. Gregory, D. R. Blake, J. D. Bradshaw, S. T. Sandholm, H. B.
Singh, J. A. Barrick, R. C. Harriss, R. W. Talbot, M. A. Shipham, E. V. Browell, D. J. Jacob, and
J. A. Logan, 1992: Atmospheric Chemistry in the Arctic and Subarctic: Influence of Natural
Fires, Industrial Emissions, and Stratospheric Inputs.Journal of Geophysical Research, 97,
16731–16746.

Wolter, K. and M. S. Timlin, 1998: Measuring the strength of ENSO events: How does 1997/98
rank?Weather, 53, 315–324.

Wotawa, G., P. Novelli, M. Trainer, and C. Granier, 2001: Inter-annual variability of summer-
time CO concentrations in the Northern Hemisphere explained by boreal forest fires in North
America and Russia.Geophys. Res. Let., 28, 4575–4578.

Xiao, Y., J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D.R. Blake, 2008: Global
budget of ethane and regional constraints on U.S. sources.Journal of Geophysical Research,
113, D21306.

Young, P., 2007:The influence of biogenic isoprene emissions on atmospheric chemistry:A model
study for present and future atmospheres. Ph.D. thesis, University of Cambridge.

Yurganov, L., W. McMillan, E. Grechko, and A. Dzhola, 2010: Analysisof global and regional
CO burdens measured from space between 2000 and 2009 and validatedby ground-based solar
tracking spectrometers.Atmospheric Chemistry and Physics, 10, 3479–3494.

Zeng, G. and J. Pyle, 2005: Influence of El Niño Southern Oscillation on stratosphere/tro-
posphere exchange and the global tropospheric ozone budget.Geophys. Res. Let., 32,
doi:10.1029/2004GL021353.

Zhang, Q., D. Streets, G. Carmichae, K. He, H.Huo, A. Kannari, Z. Klimont,I. Park, S. Reddy,
J. Fu, D. Chen, L. Duan, Y. Lei, L. Wang, and Z. Yao, 2009: Asian emissions in 2006 for the
NASA INTEX-B mission.Atmospheric Chemistry and Physics, 9, 5131–5153.

Ziereis, H., H. Schlager, P. Schulte, P. F. J. van Velthoven, and F. Slemr, 2000: Distributions of NO,
NOx , and NOy in the upper troposphere and lower stratosphere between 28°and 61°Nduring
POLINAT 2. Journal of Geophysical Research, 105, 3653–3664.

Zumbrunnen, T., H. Bugmann, M. Conedera, and M. Brgi, 2009: LinkingForest Fire Regimes and
ClimateA Historical Analysis in a Dry Inner Alpine Valley.Ecosystems, 12, 73–86.



Bibliography 233

Zveryaev, I. I. and R. P. Allan, 2010: Summertime precipitation variability over Europe and its
links to atmospheric dynamics and evaporation.Journal of Geophysical Research, 115, D12102.


	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Motivation and aims
	1.1 Motivation
	1.2 Aims
	1.3 Layout of this thesis

	2 Background
	2.1 The atmosphere
	2.2 General atmospheric circulation
	Hadley cell
	Ferrel cell
	Polar cell



	2.3 Atmospheric transport of anthropogenic trace gases
	2.3.1 Advection
	2.3.2 Convection
	2.3.3 Warm conveyor belts

	2.4 Background chemistry
	2.4.1 Ozone
	2.4.2 Carbon monoxide
	2.4.3 Methane oxidation
	2.4.4 Reactive nitrogen

	2.5 The Arctic climate
	2.5.1 Temperature and precipitation

	2.6 Atmospheric transport to the Arctic
	2.6.1 Atmospheric blocking
	2.6.2 Polar dome
	2.6.3 North Atlantic Oscillation and transport to the Arctic

	2.7 Arctic air pollution
	2.7.1 Discovery of the Arctic haze
	2.7.2 Early source contribution studies
	2.7.3 Recent source contribution studies
	2.7.4 Biomass burning as a source of Arctic pollution
	2.7.5 Radiative importance of ozone in the Arctic
	2.7.6 Tropospheric ozone within the Arctic

	2.8 Atmospheric modelling of the sources and chemistry of the troposphere
	2.8.1 Modelling studies of carbon monoxide
	2.8.2 Modelling studies of ozone
	2.8.3 Modelling the Arctic troposphere

	2.9 Summary

	3 The TOMCAT chemical transport model
	3.1 Introduction
	3.2 TOMCAT: A global chemical transport model
	3.2.1 Sub-grid scale parameterisations
	3.2.2 Wet and dry deposition

	3.3 Updates to the TOMCAT chemistry scheme
	3.3.1 Standard chemistry scheme
	3.3.2 Addition of monoterpene and C2-C7 hydrocarbon chemistry
	3.3.3 Addition of heterogeneous uptake of n2o5 by aerosols

	3.4 Emissions
	3.4.1 Anthropogenic and ship emissions
	3.4.1.1 IPCC Fifth Assessment Report emissions (AR5)
	3.4.1.2 Streets v1.2 anthropogenic emissions

	3.4.2 Natural emissions
	3.4.3 Biomass burning emission inventories
	3.4.3.1 Global Fire Emission Database version 2 (GFED v2)
	3.4.3.2 Global Fire Emissions Database version 3 (GFED v3.1)
	3.4.3.3 FINN v1 inventory

	3.4.4 Summary


	4 TOMCAT model development and evaluation
	4.1 Introduction
	4.2 Model setup
	4.3 Impact of extended hydrocarbon chemistry and uptake of N2O5 by aerosol
	4.3.1 Changes in global mean burdens
	4.3.2 Changes in the distributions of species

	4.4 Evaluation of simulated hydroxyl radical
	4.4.1 Calculation of global mean OH
	4.4.2 Comparisons of global mean OH with previous studies

	4.5 Evaluation of simulated carbon monoxide
	4.5.1 Comparisons with MOPITT
	4.5.2 Comparisons with surface site measurements

	4.6 Evaluation of simulated ozone
	4.7 Evaluation of simulated NOy
	4.7.1 Comparisons of simulated NOx and O3 with TOPSE aircraft.

	4.8 Evaluation of simulated hydrocarbons
	4.9 Summary

	5 Source contributions to Arctic CO and O3
	5.1 Introduction
	5.2 Model set-up and methodology
	5.2.1 Fixed lifetime tracer simulation
	5.2.2 Realistic CO tracer simulation
	5.2.3 Full-chemistry model set-up

	5.3 Transport efficiency from the major anthropogenic emission regions
	5.4 Comparisons of simulated CO to surface observations
	5.5 Seasonal source contributions to Arctic CO
	5.5.1 Contributions to Arctic total column CO.
	5.5.2 Contributions to Arctic surface CO.
	5.5.3 Contributions to the Arctic burden of CO at different altitudes.

	5.6 Seasonal source contributions to Arctic O3
	5.6.1 Contributions to total tropospheric Arctic O3.
	5.6.2 Contributions to Arctic surface O3.
	5.6.3 Contributions to the Arctic burden of O3 and NOy at different altitudes

	5.7 Summary

	6 Interannual variability of carbon monoxide in the Arctic
	6.1 Introduction
	6.2 Low frequency variability climate modes
	6.2.1 El Niño - Southern Oscillation
	6.2.2 North Atlantic Oscillation
	6.2.3 Pacific North American Oscillation

	6.3 Model Set-up and methodology
	6.3.1 Emissions

	6.4 IAV of CO and the importance of meteorology and biomass burning emissions
	6.5 Variability in transport to the Arctic
	6.6 Variability in fire emissions: El Niño, biomass burning and Arctic CO.
	6.6.1 Climate drivers of fires and links with El Niño.
	6.6.1.1 Climate drivers of fires
	Boreal fires
	North Mid-latitudes fires
	Extra-tropical, tropical and Southern Hemisphere fires

	6.6.1.2 Interactions between El Niño and climate drivers of fires
	Boreal fires
	North Mid-latitudes fires
	Extra-tropical, tropical and Southern Hemisphere fires


	6.6.2 Arctic surface response to El Niño/La Niña events
	6.6.3 Fires and other indices.

	6.7 Summary

	7 Arctic tropospheric chemistry during POLARCAT Summer 2008
	7.1 Introduction
	7.2 POLARCAT aircraft data
	7.2.1 ARCTAS-B
	7.2.2 POLARCAT-France and POLARCAT-GRACE
	7.2.3 YAK-AEROSIB

	7.3 TOMCAT model simulations
	7.4 POLARCAT aircraft comparisons with TOMCAT
	7.4.1 Carbon monoxide
	7.4.2 Ozone
	7.4.3 Reactive nitrogen species
	7.4.4 Hydroxyl radical
	7.4.5 Non-methane hydrocarbons

	7.5 Sensitivity of O3 to Arctic PAN
	7.6 Sensitivity of O3 to Arctic C2H6
	7.7 Summary

	8 Conclusions
	8.1 Synthesis of main results
	Aim 1: Evaluate the ability of a chemical transport model to simulate Arctic tropospheric composition
	Aim 2: Quantify the main sources of trace gases within the Arctic
	Aim 3: Investigate the processes which control observed inter-annual variability in the Arctic.



	8.2 Future work

	A List of Chemical Reactions in the TOMCAT Model
	Bibliography

