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Abstract

We study the groups Exti‘(G) (Zp,Zy) where A(G) is the Burnside ring of
a finite group G and for a subgroup H C G, the A(G)-module Zy is defined
by the mark homomorphism corresponding to H. If |G| is square-free we give
a complete description of these groups. If |G| is not square-free we show that
for certain H,J C G the groups Ext%(G)(ZH, Zj) have unbounded rank.

We also extend some of these results to the rational and complex rep-
resentation rings of a finite group, and describe a new generalisation of the

Burnside ring for infinite groups.
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Introduction

Let G be a finite group. The isomorphism classes of finite G-sets form a commutative
semi-ring E(G), where addition is given by disjoint union and multiplication is given
by cartesian product. For a finite G-set X, write [X] for the isomorphism class
of X in E(G) For a subgroup H C G, we have a homomorphism of semi-rings
#1 : A(G) — Z given by putting 7y ([X]) = |X#|. The Burnside ring A(G) is the
Grothendieck ring associated to this semi-ring. The homomorphisms 75 extend to
homomorphisms of rings 7y : A(G) — Z known as the mark homomorphisms of G,
and we write Zy for the corresponding module structure on Z.

For distinct subgroups H,J C G, and p a prime, let ~, be the equivalence
relation on the set of subgroups of G generated by putting H ~,, J whenever 7y (a) =
ms(a) mod p for each a € A(G). By studying the equivalence classes of ~, for each
prime p, Dress [10] gave a criterion for the solvability of a finite group in terms of the
indecomposability of its Burnside ring. In this thesis we study further the question
of when 7y = m; mod p, and relate the equivalence classes of ~, with the structure
of the cohomology groups Exth(G) (Zy,Zy).

For I a finite set, define Gh(I) = [[,.;Z. For a subring R C Gh([), define

homomorphisms 7; : R — Z for each ¢« € I by projection onto the corresponding

el

factor, and write Z; for the corresponding R-module. Say that R C Gh([/) is a
B-ring if for each distinct 7,5 € I, there exists r € R such that m;(r) # 0 and
mj(r) = 0, i.e. if R separates the elements of I. In Chapter 1 we show that the
Burnside ring is a natural example of a B-ring, and study the groups Exth(Zi, Zj)
for R C Gh([/) an arbitrary B-ring and 7, j € I. For each prime p, we establish a link
between the groups Ext%(Zi, Z;) and the cohomology of the [F,-algebra R=R®y F,.
Following the case of the Burnside ring, we define an equivalence relation ~, on /
by putting i ~, j if m(r) = 7;(r) mod p for each » € R. We show that the
equivalence classes of of ~, are in 1-1 correspondence with the indecomposable
summands of the F,-algebra R. By examining the corresponding summands, we
show that if the equivalence classes of ~, on I have cardinality < 2 for each prime
p, then Exthy(Z;, Z;) ~ Ext'?(Z;,Z;) for all i, j € I and [ > 0. It follows that if the
order of GG is square-free, then ExtlA(G)(ZH, Zy) ~ Extf;r(é)(ZH, Zyj) for all I > 0 and
H JCd.

In Chapter 2 we consider the converse of this result. Gustafson [13] has shown
that if k is a field of characteristic p and p* divides the order of G, then the k-algebra
A(G) ®z k is not symmetric. We use this to show that if p? | |G| then A(G) ®z k
has an indecomposable summand S such that the k-vector spaces Extls(k, k) have

unbounded dimension. By making use of our link with the integral cohomology, we
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show that if |G| is not square-free then there exist subgroups H, J C G such that the
groups ExtlA(G)(ZH, Zj) have unbounded rank. In the remainder of the chapter we
consider more generally the question of computing the cohomology of commutative
local k-algebras S with maximal ideal M and S/M ~ k. We give a formula for the
dimension of Extly(k, k) when S belongs to the family of commutative noetherian
local k-algebras satisfying dim M? = 1 and M3 = 0. We also give a simple proof of
a weak version of Theorem 2.7.

In Chapter 3 we consider a new generalisation of the Burnside ring to infinite
groups, using the idea of a Mackey system of subgroups. We establish which prop-
erties of the finite group version carry over to this more general setting, such as
the mark homomorphisms and Mackey functor structure. Let S be the group of
permutations of N fixing all but finitely many elements. We construct a Mackey
system Mg for S and study in detail the resulting Burnside ring A(S, Mg). We give
a combinatorial description of the multiplication operation in A(S,Mg) in terms of
partial injections between finite sets.

Further examples of B-rings are given by the ring of rational characters RQ(G) of
a finite group G. For a cyclic group H C G, we have a homomorphism RQ(G) — 7Z
defined by sending a rational representation to its trace at a generator of H, and
we write Zy for the corresponding RQ(G)-module. In Chapter 4 we apply the
results of Chapter 1 to RQ(G), and show that if the order of G is square-free then
ExthQ(G)(ZH,ZJ) ~ Extlgé(c)(ZH,ZJ) for all cyclic groups H,J C G and [ > 0.
This leads to the question of the appropriate setting for studying more general
rings, such as the ring of complex characters. We introduce the notion of a B’-ring
to deal with more general families, and construct a B’-ring embedding for the ring

of complex characters of a finite group.
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Chapter 1
B-rings

For I a finite set, define Gh(/) = [[,.;Z. Let R be a subring of Gh(/) and let
be the projection R — Z corresponding to i € I. For r € R, write r(i) for m;(r).

el

Definition 1.1. We say that R C Gh([) as above is a B-ring if R satisfies the
following ‘separability condition’: for each i,j € I with i # j we can find an r € R
with r(i) # 0 and r(j) = 0.

Lemma 1.2. Let I be a finite set and R be a subring of Gh(/). Then there’s a
J C I and a B-ring S C Gh(J) with R isomorphic to S.

Proof. If R C Gh([) is a B-ring then there’s nothing to show. Otherwise, suppose
R C Gh([) is not a B-ring, i.e. there exists i,j € I such that the separability
condition fails. We claim that r(i) = r(j) for all » € R. To see this, suppose instead
that we have some r € R with 7(i) # r(j). Then the element " = r — r(j) idg has
(i) =7r(i) —7r(j) # 0 and r'(j) = 0, which contradicts the choice of i and j. It then
follows that R is isomorphic to the ring S C Gh(/ — {j}) obtained by omitting the

jth factor. Continuing in this manner gives the result, since [ is finite. O

Our rings of interest are then arbitrary subrings of some product of finitely many
copies of Z, though we wish to consider them as embedded in some minimal such

ring. We give an intrinsic description of these rings as follows.

Proposition 1.3. A ring S is isomorphic to a B-ring R C Gh([/) for some finite set
I if and only if S is a commutative ring which is of finite rank and torsion-free as a

Z-module, with Q ®z R a product of |I| 1-dimensional Q-algebras.

Proof. If R C Gh([I) is a B-ring then it is certainly commutative and torsion-free,
since Gh(I) is. As a Z-module Gh(I) is finitely generated, so R is of finite rank. For
each pair 7, j of distinct elements of I, let r; ; be an element of R satisfying r(¢) # 0
and 7(j) = 0. Then putting s; = H#i r;; for each ¢ € I, we have s;(j) # 0 if and
only if i = j. Let N = []..;s:(i) and N; = N/s;(i). For i € I write e; for the
corresponding primitive idempotent of Gh(I). Then

el

N-ei:Nisi GR,
and so N - Gh(I) C R C Gh([). Hence

Q®z R~Qa,Gh(l) ~ ] Q

el
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i.e. Q ® R is isomorphic to a product of || 1-dimensional Q-algebras.
Suppose S is a commutative ring which is of finite rank and torsion-free as a
Z-module, with Q ®7 S a product of 1-dimensional (Q-algebras. Then we have an

isomorphism

9:@@5%1‘[@

ier
for some finite indexing set I’.

Since S is torsion-free, Q ® S contains a copy of S as the subring 1S C Q® S.
Denote the image 6(1 ® S) by S" C [[,c; Q, and for each i € I let #; denote the
projection map [],.;, @ — Q onto the ith factor. Write 7; for the restriction of 7;
to S’. Since S’ is of finite rank as a Z-module we must have that m;(S") C Z C Q
for each i € I'. We can then regard S as sitting inside Gh(!") = [[,.;, Z C [[,c, Q.
We claim that this embedding defines a B-ring. For s € S, write s’ for the element
0(1® s) of S’. It remains to show that for each distinct pair ¢, j € I’ we can find an
element s € S such that 7;(s") # 0 and 7;(s") = 0.

Let {f;}ierr be the primitive idempotents of Gh(I’), and note that 7;(f;) = 1 if
j =i and 7;(f;) = 0 otherwise. For each i € I’, we have f; = 6(¢; ® t;) for some
¢ € Qand t; € S. Then t, = 0(1®t;) = (1/q;) - 0(¢; ® t;) = (1/¢;) fi, and so
mi(t;) = 1/q; # 0 and 7,(t;) = 0 for each j # i. Thus t] satisfies the separability
condition for any j # i, and the embedding S’ C Gh(I’) defines a B-ring. O

For the remainder of this chapter, let I be some fixed finite set. For a B-ring
R C Gh(I) and i € I, define a left! R-module Z; by letting R act on the set Z via
7, 1.e. for r € Ryn € Z, put

r-n=r(in.

We will later show that all R-modules which are of rank 1 as a Z-module are of the
form Z; for some ¢ € I. One advantage of working with an explicit embedding is
that these modules are immediately obvious. We will occasionally make use of the
intrinsic definition however, as in the following corollary.

We first recall that for a commutative ring R and an R-module N, the functor
Hompg(—,N) : R-Mod — R-Mod is left exact. For each non-negative integer [,
let Exth(—, N) denote the Ith right derived functor of Homg(—, N). For another
R-module M, write Exty(M, N) for Extly(—, N)(M). For further details see [25]
(Chapter 2).

Corollary 1.4. Let R C Gh(I) be a B-ring. Then the R-modules Ext},(Z;, Z;) are
finite for any [ > 1 and 7,5 € I.

Proof. Since Rgp = Q ®z R is a product of some finite number of copies of Q, it is

TAll further modules will be left modules unless otherwise specified.
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semisimple. Then Q ® Z; is a projective Rg-module for any ¢ € I, and so
Exty, (Q ®z Zi,Q ©z,Z;) = 0
for any [ > 1 and 4,5 € I. By [25] (Proposition 3.3.10) this is isomorphic to
Q ®z Exty(Z;, Z;),

and so Exth(Zi, Zj;) is torsion. But it is also finitely generated, so it is finite. ]

For a finite R-module M, define the rank of M be its rank considered as a finite
group, i.e. the cardinality of a minimal generating set for M.

By the Krull-Schmidt theorem for modules ([16], Section 3.4), for each finite
R-module M we have a well-defined integer recording the number of summands

appearing in a decomposition of M as a direct sum of indecomposable R-modules.
Call this the summand rank of M.

Lemma 1.5. Let R C Gh(/) be a B-ring, and let ¢,5 € I. Then

0 ifi#j
7, ifi=j.

HOHlR(Zi, ZJ) ~

Proof. Since Z; is generated as an R-module by 1 € Z;, any ¢ € Hompg(Z;,Z;) is
determined by ¢(1).

If i # j, we can by the definition of a B-ring choose an r € R such that r(i) =0
and 7(j) # 0. Then r(5)é(1) = ¢(r - 1) = ¢(0) = 0, and so ¢ = 0.

Suppose i = j. Each m € Z determines a unique map ¢,, € Homg(Z;, Z;) given

by ¢m(1l) = m, and (7 - ¢p)(1) = Gp(r - 1) = 7(i)Pm(1) = ¢r@ym(1). Since any
¢ : ZLi — Z; is determined by ¢(1), all maps Z; — Z; are obtained in this way, and
SO HOHIR(ZZ',ZZ') >~ Z,L ]

Definition 1.6. Let R C Gh(/) be a B-ring. For distinct i, j € I define
dg(i,j) = min{r(i) | r € R,r(j) = 0,r(i) > 0}.

When the ring R is clear, we will simply write d(i, 7).

If s € R is such that s(i) = d(i,j) and s(j) = 0, then s’ = d(i, j) idg —s satisfies
§'(i) = 0 and §'(j) = d(i, 7). It follows that d(7, j) = d(j,) for all 4, j € I. Moreover,
if r € Ris such that r(i)—r(j) = t for some t € Z, then v’ = r—r(j)idg hasr'(j) =0
and /(i) = t, hence d(i, j) | t. Tt follows then that for any m | d(i, j), we have

r(i) =r(j) mod m
for each r € R, and so the R-modules Z;/mZ; and Z;/mZ; are isomorphic.
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Proposition 1.7. Let R C Gh(I) be a B-ring, ,j € I. Then

Zj/d(i,j)Z; ifi#j
0 if i = j.

Extp(Zi, Z;) ~

Proof. Writing K; for the kernel of m; : R — Z; for each [ € I, we have a short exact
sequence of R-modules
0— K, %> R™7Z; —0,

where ¢ denotes the inclusion K; — R. Applying Hompg(—,Z;) for j # i, we obtain
a long exact sequence beginning with
0 —— Homg(Z;, Z;) — Hompg(R,Z;) —— Hompg(K;,Z;)

Extp(Z;, Z;)

EXt}%(Ra Z])

Now Extp(R,Z;) = 0 since R is projective, and Homg(Z;,Z;) = 0 by Lemma

1.5. So we obtain a short exact sequence
0 — Homp(R, Z;) % Homp(K;, Z;) & Exth(Z:, Z;) — 0,

where 7 = Hompg(¢,Z;) and O denotes the first connecting homomorphism in the
above long exact sequence.

We will first describe the R-module Hompg(K;, Z;). Consider 7 € Hompg(Kj;, Z;),
and suppose r1,7y € K; are such that m;(r1) = m;(re). Then r — 7, belongs to
K; N K;. We claim that there exists NV € Z such that N(r; —ry) € K;K;. If this is

the case, then we can write
p .
_ i
N(ry—ry) = g 2 2,
1=1

where 2] € K, 2§ € K;, for 1 <1< p. Then

bS]

N(r(r) = 7(r2)) = 7(N(ri —12)) = > _ 2 -7(2)) = 0

=1

since each zl] acts by zero in Z;. Hence
N7(r1) = N7(rg)

and so 7(r1) = 7(rs).

To show that such an N exists, recall that we can choose foreachl € [ ans; € R

17



with s;(I') # 0 if and only if [ =I'. For [ # i, j, then s} € K;K;. Putting

we note that

and so N(ry — ) € K;K;.
Since 7(r) depends only on 7,(r) for each r € R, the homomorphism 7 factors
through 7|k, : K; — Z;. Now m;(K;) is the submodule D = (d(i, j)) of Z;, and for

each m € Z we have a homomorphism o, : D — Z; given by

for d € D, and all homomorphisms D — Z; are of this form. It follows that every
7 of Homp(K;,Z;) must then be of the form 7, := o, o w; for some m € Z. For

z € K; we have

Tm(2) = om(m;(2)) = —===m,

and so for r € R we have

(- )(2) = () (2) = DD — 1,2,

from which we conclude that Hompg(K;, Z;) ~ Z;.

It remains to determine the image of Hompg(R,Z;) in Hompg(K;,Z;). Now
Hompg(R,Z;) is canonically isomorphic to Z;, and can be regarded as the set of
maps ¢,,, m € Z, where ¢,,(r) = mr(j). Moreover, for z € K; we have

z(j)

(@(dm))(2) = om(1(2)) = dm(2) = mz(j) = i j)d(i,j)m = Ta(i,jym(2),

and so 7 maps Homp(R, Z;) onto the submodule generated by 74 ;). Then
Extp(Zi, Z;) ~ Z;/d(i, j)Z;

as claimed.
Next suppose i = j. The long exact sequence arising from applying Hompg(—, Z;)
to
0—-K, - R—%Z;—0

begins as

18



O —— HOH]R(ZZ‘, Zz) —— HOIl’lR(}%7 Zz) — HomR(Ki,Zi)

Exty(Zi, Zs) -0 -

and so Hompg(K;,Z;) surjects onto Exth(Z;,Z;). But by the same argument as

before, this time putting

we have that for any 7 € Hompg(K;,Z;), the homomorphism 7 factors through ;.
But 7;(2) = 0 for all z € K;, so Homg(K;, Z;) = 0, and hence Exty(Z;, Z;) = 0. O

Our argument that for any 7 € Hompg(K;,Z;), the homomorphism 7 factors
through 7; applies more generally. We will state it now in a form that will be useful

later.

Lemma 1.8. Let M be a submodule of R, and N a torsion-free R-module where
r acts by r - n = r(j)n for each n € N. Then any homomorphism of R-modules

g : M — N factors through |y : M — Z;.

1.1 The spectrum of a B-ring

Let I be a finite set. The spectrum of Gh(I) is given by

Spec Gh(I) = |_| SpecZ,

il

and for i € I and P € SpecZ we write Q(i, P) for the corresponding prime. For 7; :
Gh(I) — Z the projection onto the ith factor, and sp the natural map Z — Z/PZ,

we have

Q(i, P) = ker(sp o m;).

Let S be an arbitrary subring of Gh([/). Since Gh([) is generated by a finite set of
idempotents, Gh(I) is integral over S, and it follows that the embedding S C Gh(I)

induces a surjection

Spec Gh(/) — Spec S

given by Q(i, P) — Q(i, P)NS =: qs(i, P) (see [2] Theorem 5.10). When the subring

in question is clear we will simply write (i, P).

Proposition 1.9. Let R C Gh([/) be a B-ring, let 7, j be distinct elements of 7, and
let P, P’ be prime ideals in Z. Then

i. q(i, P) = q(i, P') if and only if P = P,

ii. q(i, P) = q(j, P') if and only if P = P’ = (p) for some rational prime p with
p | d(z, ).

19



Proof. 1t is immediate that for p a rational prime, pidg € ¢(i, P) if and only if
P = (p), and this establishes (i).

By the same reasoning, if ¢(i, P) = q(j, P’), then we must have P = P’. By the
separability condition for 7, j, we moreover must have P # (0) and so P = (p) for
some rational prime p. It remains to show that ¢(z, (p)) = q(j, (p)) if and only if
p|d(,j).

Now if ¢(i, (p)) = q(J, (p)) then p | r(i) whenever p | r(j) for each r € R. In
particular, p | 7(i) whenever r(j) = 0, and so p | d(i, 7). Conversely, if p | d(i, j) and
r € q(j,(p)), i.e. r(j) = Ip for some [ € Z, then 1’ = r — Ipidg satisfies /() = 0,
and so p | 7'(i). Hence p | r(i) and r € ¢(i, (p)). Since p | d(i,7) implies p | d(j, 1),
we also have r € ¢(j, (p)) whenever r € ¢(i, (p)), and so q(i, (p)) = q(J, (p))- O

Since any surjective homomorphism of rings 6 : R — Z determines a prime ideal

ker C R, we obtain the following.

Corollary 1.10. For a B-ring R C Gh([/), the modules Z;,i € I, give a complete
irredundant collection of R-modules (up to isomorphism) which are of rank 1 as a

Z-module.

1.2 The Burnside ring

1.2.1 The Grothendieck group associated to a commutative monoid

As we will make use of it repeatedly, we briefly outline the construction of the
Grothendieck group associated to a commutative monoid, see [1] (Chapter 2) for
more details.

Given a commutative monoid M , we wish to associate to M an abelian group M
and a homomorphism of monoids « : M— M , such that for any group H and any
homomorphism of monoids 7 : M — H , there exists a unique homomorphism of
groups 3 : M — H such that v = § o a. By the usual universal property argument,
if M exists then it must be unique up to isomorphism.

In order to construct M and «, first form the free abelian group F' (]\/4\ ). Write +
for addition in the monoid M and +' and —' for addition and subtraction in F° (H ).
Let I be the subgroup generated by all m +' n —' (m + n), m,n € M. Putting
M = F(]\/J)/], and letting o : M — M send m € M to the equivalence class of m
in M, it is clear that M satisfies the universal property above.

Furthermore, if Misa semi-ring with unit, then it is immediate that the construc-
tion above produces a ring M. We say that M is the Grothendieck ring associated

to the semi-ring M.
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1.2.2 The Burnside ring as a B-ring

Let G be a finite group. The isomorphism classes of finite G-sets form a commutative
semi-ring with unit, with addition given by disjoint union and multiplication given
by cartesian product. The Burnside ring A(G) is the Grothendieck ring associated
to this semi-ring. For a finite G-set X, we write [X]| for the isomorphism class of X
in A(G). We will first recall some basic facts about Burnside rings; for proofs and
further details see [24] (Chapter 1).

Let ccs(G) denote the set of conjugacy classes of subgroups of G, and for a
subgroup H C G write (H) for the corresponding conjugacy class. Each finite
transitive G-set is isomorphic to one of the form G/H for some unique (H) € ccs(G),
and the set

{[G/H] | (H) € ces(G)}

is a basis for A(G) as an abelian group.

For subgroups H, K C G, the orbits of G on G/H x G/K can be put into 1-1
correspondence with the set of double cosets H\G/K as follows. For any orbit O
we can choose a representative of the form (H,gK) in O, for some g € G. Two
representatives (H, g K) and (H, g, K) belong to the same orbit if and only if there
exists a h € H with hg; K = go K, i.e. if and only if Hg; K = Hg, K. Moreover, for an
orbit O containing an element of the form (H, gK) for g € G, note that H N gKg™*
is the stabilizer of (H, gK), and so O is isomorphic as a G-set to G/(H NgKg™').

The multiplication operation of A(G) is then given on the transitive G-sets by

G/H]-[G/K] = Y [G/(HNgKg ™).

HgKeH\G/K

Rather than working with double cosets, we will instead embed A(G) in a ring where
the multiplication operation is easier to compute.

For a G-set X and subgroup H C G, write X for the set of x € X fixed by
each h € H. For subgroups H,J C G, say that H is subconjugate to J if H is
conjugate to a subgroup of J by some element of G. For each (H) € ccs(G) we have

a well-defined homomorphism of rings
T AG) = Z
known as the mark homomorphism associated to (H), given by putting
ma([G/J]) = (G/ )|

for J C G and extending linearly. Note that [(G/J)¥| # 0 if and only if H is
subconjugate J, and that |(G/H)?| = [NgH : H], where NgH is the normalizer of
Hin G.
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Combining the maps () gives an injective homomorphism

m: A(G) — H Z,

(H)€ces(Q)

which allows us to regard A(G) as a subring of

Gh(ces(@)) = H Z,
(H)eces(G)
the ‘ghost ring’ of G.
For H C G, write 7y for m(gy); for a € A(G), write a(H) for my(a).

Lemma 1.11. The embedding A(G) C Gh(ccs(G)) defines a B-ring.

Proof. We need to show that for non-conjugate subgroups H,J C G we can find
an a € A(G) with a(H) # 0 and a(J) = 0. Now if J is not subconjugate to
H, then a = [G/H] suffices. Otherwise, if J is subconjugate to H then H is not
subconjugate to J, and putting a = [NgJ : J]|G/G]| — [G/J] we have a(J) = 0 and
a(H) = [NeJ : J] #0. O

It follows that we have A(G)-modules Zg) for each (H) € ccs(G), and all rank
one modules of the Burnside ring are of this form. Similarly we have prime ideals
qac)((H), P) for P € SpecZ, and all prime ideals are of this form. For H C ¢
write Zy for Zyy and q(H, P) for qae)((H), P). For J C G not conjugate to H,
write d(H, J) for dae)((H), (J)).

For p a rational prime and H C G, write OP(H ) for the smallest normal subgroup
N of H such that H/N is a p-group. We recall the following result due to Dress.

Lemma 1.12 (Proposition 1 of [10]). Let H,J be subgroups of G' and p a rational
prime. Then ¢(H, (p)) = q(J, (p)) if and only if OP(H) is conjugate to OP(J).

Lemma 1.12 together with Proposition 1.9 and Proposition 1.7 then gives the

following description of the degree 1 cohomology of the Burnside ring.

Theorem 1.13. Let H,J be subgroups of G. Then Exti‘(G)(ZH,ZJ) is non-zero
if and only if (H) # (J) and (OP(H)) = (OP(J)) for some p, in which case

Exti‘(G) (Zy,Zy) has a unique p-power summand.

Example 1.14. Let p be a rational prime and let G = C,,, the cyclic group of order

p. Write e for the trivial subgroup. As an abelian group, we have

A(G) = Z[G/G] + Z[G/e).
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Now 76([G/G]) = 7(|G/G]) = 1, and 7¢([G/e]) = 0,7.(|[G/e]) = p. The embed-
ding 7 : A(G) — Z x Z is then given by

m(lG/G]) = (1,1),
m([G/el) = (0,p),

and for the remainder of this example we will regard A(G) as the subring of Z x Z
spanned by these elements. It is clear that for (a,b) € Z x Z we have (a,b) € A(G)
if and only if @ = b mod p. Then d(G,e) = p, and so Exth(g) (Zg,Z.) = 7 pZe.
Let K¢ be the kernel of the surjective A(G)-module map A(G) — Zg defined
by putting 14y = (1,1) — 1. Kg is cyclic, generated by (0, p), and so we have a
surjection « : A(G) — K¢ defined by putting (1,1) — (0,p). The kernel of « is
then generated by (p,0), and we let 8 be the surjection A(G) — ((p,0)) defined by
putting (1,1) — (p,0). Then ker 5 = K¢, and so continuing on in this manner we

obtain a free A(G)-module resolution of Z¢ given by
LB AG) S AG) S AG) S AG) — Ze — 0.

Applying Homy(g)(—,Z.) to the above resolution, and writing @ and B for
Hom ) (@, Ze) : Homyu(g)(A(G), Ze) — Homu)(A(G), Ze) and Homyq) (8, Ze)
Hom () (A(G), Ze) — Hom () (A(G), Z.), we obtain a chain complex

0 — Homue)(A(G), Ze) S Homu)(A(G), Ze) 2> Homue) (A(G), Ze) S ...

Now Homyu()(A(G),Z.) is the set of maps ¢n, : A(G) = Z., m € Z, where
¢m(lae)) = m. Then

(@(¢m))(Lae)) = &m(0,p) = pm,

and so Im @ = (Ppm)mez. Moreover,

(B(¢m)(La)) = dm(p,0) =0,

and so ker 8 = Hom g (A(G), Z.). Since Hom gy (A(G), Ze) is isomorphic to Ze,
it then follows that

. Z./pZ. if 1 odd
EXtA(G) (ZG’, Ze) ~ ]
0 if [ even.
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Similarly, applying Hom (q)(—, Z¢) to the above resolution we obtain

l 0 if [ odd
Ze/pZle if 1 >0 even.

We also obtain a resolution of Z. by swapping the positions of the maps a and
f in the resolution for Z¢g. Then applying Hom ) (—, Z.) and Hom ) (—, Zg) we
obtain

. 0 if [ odd
EXtA(G’) (Ze, Ze) ~ )
Ze/pZ. if 1> 0 even,

and
Zg/pZG if [ odd

Exty ) (Ze, Za) ~ '
0 if [ even.

1.3 Higher Ext groups and Tor

Recall that for a commutative ring R and R-module N, the functor — ®z N
R-Mod — R-Mod is right exact. For each non-negative integer [, let Torﬁ(—,N )
denote the [th left derived functor of @zrN. For another R-module M, write
Torf*(M, N) for Torf'(—, N)(M). For further details see [25] (Chapter 2).

Lemma 1.15. Let R C Gh(I) be a B-ring, i € I. Then Z; r Z; ~Z;. If j € I is

Proof. Suppose ¢ = j, and let K; be the kernel of the map m; : R — Z;. Note that
R/K; ®r R/K; ~ R/K; ([5] Section 4.1, Corollary 2). Then

If i # j, then for m, m' € Z, we have m@m’ = mm’®1 in Z; ®Z;, and so we have
a surjective homomorphism of R-modules 0 : Z; — Z; ® Z; given by m — m & 1.
Put d = d(i,j) and let r € R be such that r(i) = d and r(j) = 0. Then

fd)=de@l=r-1®1l=1®r-1=0.

Moreover if m is a positive integer with m < d and 6(m) = 0, then there exists r € R
with (i) | m and r(j) = 0. But then d | m, a contradiction, and so ker 6§ = (d(i, 7))

Recalling Proposition 1.7, we note that for ¢ # j we have an isomorphism

Tord(Zi, Zj) ~ Exty(Zi, Z;).
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We will show that this also holds in the next degree up. In order to do this we
first need to identify a family of injective R-modules. For ¢ € I, write QQ; for the
R-module structure on the field Q given by r - g = r(i)q.

Lemma 1.16. The R-modules QQ; are injective.

Proof. By Baer’s criterion ([7] Theorem 57.14), it is sufficient to show that for any
ideal M C R and homomorphism of R-modules g : M — @Q;, we can extend ¢ to a
homomorphism R — Q.
Let
d = min{m(i) | m € M, m(i) > 0},

and let m’ € M be an element with m/(i) = d. Note that d | m(i) for each m € M.
Define g : R — Q; by

Certainly ¢ is a homomorphism of R-modules, and so it remains to show that §|, =
g. By Lemma 1.8, g factors through m;|p : M — Z;. It follows that if m € M is
such that m(i) = tm/(i) for some t € Z, then g(m) = tg(m’). Then for such an

m e M,

gom) = TIC) B0 ) = g om),

and so ¢ is an extension of g. O
We also introduce the notion of an i-special R-module as follows.

Definition 1.17. Let M be an R-module and 7 € [ such that for each » € R and
m € M we have

r-m =r(i)m.
Then M is said to be i-special.

Example 1.18. Let M be an R-module and (F,,d,) a free R-module resolution
of M, where F; = R®™. Applying Homg(—,Z;) to F, then gives a chain complex
where each term is of the form Homp(R®™,Z;) ~ Z7™. Since Exth(M,Z;) is a
subquotient of such a module, it follows that each Ext,(M,7Z;) is i-special.

Similarly, each Extly(Z;, M) is i-special. It follows that the modules Extk(Z;, Z;)
are both i-special and j-special. Since we can choose an r € R with r(i) = d(3, j)
and 7(j) = 0, it follows that d(i, j) annihilates the modules Exth(Z;, Z;).

Lemma 1.19. Let M, N be i-special R-modules for some ¢ € I. Then
i. Homgz(M, N) = Homy(M, N);

ii. M®r N =M ®z N;

iii. M ®gZ; >~ M;

25



where the R-module structure on Homg (M, N) and M ®z N is given by r € R acting
by 7(3).
Proof. If ¢ : M — N is a homomorphism of R-modules, then it is certainly a

homomorphism of Z-modules. And if ¢’ : M — N is a homomorphism of Z-modules,
then for any r € R and m € M,

and so ¢ is a homomorphism of R-modules. This proves (i), and the proof for (ii) is

similar. For (iii), since Z; is i-special, we have

Proposition 1.20. Let R C Gh(I) be a B-ring, and let 4, j € I. Then
Ext%(Z;, Z;) ~ Tort(Z;, Z;).

Proof. For each | € I write K; for the kernel of m; : R — 7Z;. Dimension shifting

(see [4], Proposition 2.5.5) with the short exact sequence
0—->K,—-R—>%Z;—0 (1)

gives isomorphisms
Extly(Zi, Z;) ~ Extly (K, Z;)

for [ > 2 and any i, j. Let

be the short exact sequence associated with the inclusion Z; — Q;. Since Q; is
injective, Extp(K;, Q;) = 0, and so the long exact sequence arising from applying

Hompg(K;, —) to the above short exact sequence begins as
0——r HOHlR(Ki7 Zz) E——— HOHIR(KZ', Qz) e HOII]R<KZ,QZ/ZZ)

Exty (K, Z;) 0.

By Lemma 1.8, Hompg(K;, Q;) = 0, and we obtain
Ext%(Zi, Zsi) ~ Extyp(K;, Z;) ~ Hompg(K;, Qi /Z;).

Moreover, it is clear that any ¢ € Homp(K;, Q;/Z;) must vanish on K?, so we can
instead consider the R-module Homp(K;/K?, Q;/Z;).
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For z € K, write [2] for the element 2z + K? in K;/K?. Note that for r € R, we
have r — r(i) € K;, and so
[r—r(i)idg][z] =0

in K;/K? for any z € K;. Hence
rlz] = [r(0)idg 2] = r(d)[2],
and K;/K? is i-special. Since the R-module Q;/Z; is also i-special, we then have
Homp(K;/K?,Q;/Z;) = Homy(K; /K2, Q;/Z;).

Now for a prime p and @ € N we have Homgy(Z/p*Z,Q/Z) ~ Z/p*Z. Since
K;/K? is finite, and since the Hom functor respects direct sums, it follows that
Homgz(K;/K? Q;/Z;) ~ K;/K?.

On the other hand, applying — ®z Z; to (f) and noting that Torf(R,Z;) = 0

since R is projective, we obtain an exact sequence

0 TOI'{}: (Zz y ZZ)

It is immediate that the map R ® Z; — Z; ® Z; is an isomorphism, and so

0.

Note that if 2125 € K2, then
2129 & 1= 21 ® Zg(i) =0

in K; ® Z;, and so K; ® Z; ~ KZ-/Ki2 ® Z;. Moreover Ki/Kf is ¢-special, so by the
previous lemma we have K;/K? ® Z; ~ K;/K?. Then

Ext?(Z;, Z;) ~ K; ) K? ~ Torf(Z;, Z;)

as claimed.

Next consider Exth(Z;, Z;) with i # j. Returning again to our sequence
0—-2Z;, —-Q; —Q;/Z; — 0,
and now applying Homp(Kj;, —), we identify Ext®(Z;, Z;) as the cokernel of the map
o : Hompg(K;,Q;) - Hompg(K;, Q;/Z;)
induced by the quotient map o : Q; — Q;/Z;. Again we note that any R-module
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homomorphism K; — Q; must vanish on K, K;, and similarly for any homomorphism

K; — Q;/Z;, so we can instead consider the cokernel of the map

Since the modules K;/K;K;,Q;, and Q;/Z; are all j-special, this is the same as

considering the cokernel of the map
o HomZ(Ki/Kin, QJ) — HomZ(Ki/Kin, Q]/Z])

Let K;/K,;K; have a free part of rank s as an abelian group and write 7" for the
torsion submodule. Now any Z-module homomorphism K;/K;K; — Q; must map
the torsion submodule of K,/ K; K to zero, and so Homy (K, /K, K, Q;) is isomorphic
to Q5. Similarly, Homg(K;/K;K;,Q;/Z;) is isomorphic to (Q;/Z;)®* @ T. By

inspection, @ maps Qj‘-as onto (Q;/Z;)®*, and so
Ext?(Z;,Z;) ~ T.

Moving on to Tor{% (Z,Z;), from the long exact sequence obtained from applying

— ®pr Z; to (1) we have an exact sequence
0 — Tor{(Zi, Z;) = K;®@Z; <> R®Z; — Z; @ Zj — 0,
and so
Torf(Zs, Z;) ~ ker(a).

Suppose z ® n a non-zero element of kera. Then z(j) = 0 and so z € K; N Kj.
By the proof of Proposition 1.7, there exists some N € N with Nz € K;K;. Then
N(z®n) = 0in K; ® Z;, and so z ® n is torsion. Conversely, if some non-zero
2®@n € K;®7Z; is torsion then so is its image in R®Z;. But RQ®Z; ~ Z; is torsion-
free, so z ® n € ker(a). So kera is the torsion submodule of K; ® Z;. Identifying
K; ® Zj with K;/K;K; ® Z; ~ K;/K;K; then gives

Torf! (2, 2;) o T o Bxt (2, 2;),

for all ¢, j € I.

1.4 Reducing to the modular case

Fix some rational prime p and put k = F,. For a B-ring R C Gh(/), we have an
associated commutative k-algebra R = R ®z k ~ R/pR. For i € I, we have an
R-module k; where r acts on the field k by 7(i). For an R-module N, write N for
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the associated R-module N/pN. If N is annihilated by p, we will also denote the
associated R-module by N.

Lemma 1.21. Let X be a torsion-free R-module and M an R-module annihilated
by pR. Then
Exth (X, M) ~ ExtL(X, M)

and
Tor[* (X, M) ~ Tor]*(X, M)

for each | > 0.

Proof. First note that for any R-module N, any homomorphism of R-modules ¢ :
N — M must vanish on pN, and so we have an induced homomorphism ¢ : N — M.
Similarly, any homomorphism of R-modules ¢ : N — M lifts to a homomorphism
of R-modules N — M. It follows that

Hompz(N, M) ~ Homz(N, M).

Let (F,,0,) be a free R-module resolution of X. In particular F, is a free Z-
module resolution of the Z-module X, and so applying — ®z k gives a chain complex
over X with homology groups TorlZ (X, k). But X is torsion-free so the homology
groups vanish and the chain complex is exact. Since F, is a free R-module resolution,
F. ®y k is a free R-module resolution.

Applying Homp(—, M) to Fe ®z k and computing cohomology then computes
the groups Ext%(Y, M). But Homgp(R, M) ~ Hompg(R, M), so this is the same
as applying Homg(—, M) to F, and taking cohomology, i.e. computing the groups
Exth (X, M). The proof for Tor is analogous. O

For each i € I, we have a short exact sequence of R-modules
0757 —k —0. (1)
Applying Homg(Z;, —) we obtain
0 —— Hompg(Z;, Z;) —2— Hompg(Zs, Z;) — Homp(k;, k;)

Ext%(Z;, Z;) —— Ext%(Z;, Z;)

where we make use of the additivity of Exty(Z;, —) for each I > 1 to identify each
map Exth(Z;, Z;) — Exty(Z;, Z;) as multiplication by p, and make use of Lemma
1.21 above to replace each Exty(Z;, k;) with Extl(k;, k;).
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Recall that by Example 1.18, each Exth(Z;,Z;) is i-special. Then any decom-
position of Exth(ZZ-, Z;) as an abelian group is also a decomposition of R-modules.
For each [ > 1 and each rational prime ¢, let M;, be the submodule of Ext,(Z;, Z;)
annihilated by some power of q. Since Ext’(Z;, Z;) is finite, it follows that we have

a decomposition of R-modules

Ext(Zs, Z;) @Mlq

where the sum is over all rational primes q.

For [ > 1, let a; be the summand rank of M;, as defined in the remark following
Corollary 1.4, and let b; be the k-dimension of Extlﬁ(k’i, k;). Note that for [ > 1 the
kernel of the map (Exth(Zi, 7)) L Extl(Z;, Zz)> is a k-vector space with dimension
a;. Moreover, the cokernel of this map is also a k-vector space of dimension a;, and
so the image of the connecting homomorphism Ext%(ki, ki) — Extlgl(Zi,Zi) has

dimension b; — ;. Hence

ars; = dimy ker <Ext’R+1(Z,~, 7)) & Exti(z,, Z,))
= dimy im (Extb(k;, ki) — Extid(Z;, Z;))

=b -

for [ > 1. In order to determine the sequence a;, it is then sufficient to compute the
sequence b;. Note that by Proposition 1.7, a; = 0.

Similarly, applying Hompg(Z;, —) to the corresponding short exact sequence for
j € I with j # i, writing ¢; for the summand rank of the p-part of Ext’(Z;, Z;), and

writing d; for the dimension of Exth(k;, k;), we obtain
ay1=d — ¢

for [ > 1. By Proposition 1.7, ¢; = 1 if p | d(i, j) and ¢; = 0 otherwise.
If we instead apply the (covariant) functor —®gZ; to (I), we obtain a long exact

sequence

TOI'?(ZZ', Zz) e TOI"QE(]{JZ‘, k?l)

TOI'?(ZZ', Zl) — P, TOI'{%(ZZ‘, Zl> — Torlﬁ(kl-, kz)

7,7, P Z; R 7 k; ® Z;

Putting

0.

Torf(Z;, Z;) @ Nig,
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and writing z; for the summand rank of N; ,,, and y; for the dimension of Torlﬁ(ki, k;),

this time we obtain

2l = Yi+1 — 241

for { > 1.
Repeating with —®7Z; for j € I with j # 7, and writing z; for the summand rank
of the p-part of Tor;(Z;, Z;), and w; for the dimension of Tor;*(k;, k;), we obtain

Ty = Wiyl — Ti+1

for I > 1.

Example 1.22. Let G = C)p, the cyclic group of order p?. Let e denote the trivial
subgroup and H the subgroup of index p. The Burnside ring A(G) can be regarded
as the subring of Z x Z x Z generated by t; = (1,1,1), to = (0,p,p), t3 = (0,0,p?).

As a k-vector space, A(G) = A(G) ® k then has a basis consisting of ¢y, to, f3, where
we write #; for the image of t; in A(G).

Now 3 = (0, p?, p?) = pta, tats = pt3, and t3 = p*t3; hence T =Tty = 13- = 0.
It follows that A(G) is isomorphic to the k-algebra A = k[z,y]/(x,y)%. Moreover
since p | d(G,H) and p | d(H,e) we have kg ~ kg ~ k., and we can denote the
module simply by k. In order to determine the summand rank of the p-part of
the groups ExtlA(G)(ZU,ZV) for U,V € {e, H,G} and | > 1, it is then sufficient to
compute Ext’ (k, k) for [ > 1.

Let K be the kernel of the quotient map A — A/(x,y) ~ k. Then K ~
(x,y) =~ k%2 as an A-module, and we have a surjection A%? — K with kernel K%2.

Continuing in this manner we obtain a resolution
!
o AP AP A k0.

Applying Hom(—, k) gives a chain complex where all maps are identically zero,
and so Ext!(k, k) = k®2 for each [ > 0.

Now suppose U € {e, H,G}, let a; be the summand rank of the p-part of
ExtlA(G) (Zy,Zy), and let b = dim Exti‘(—e)(ky,ky). Computing a; corresponds to
solving the recurrence a;y 1 = b, — a; with a; = 0. Since we already know that
by = 2!, we can immediately solve the recurrence to obtain

2L +2(—1)!

240

3
for I > 1. Similarly, for distinct U,V € {e, H,G}, let ¢; be the summand rank
of the p-part of Exti‘(G) (Zy,Zy), and let d; = dim Extil(—c)(k(], ky). Computing ¢

corresponds to solving the recurrence ¢ = d; —¢; where now ¢; = 1. Again d; = 2/,
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and solving the recurrence gives

20— (=1)!
L2

for I > 0.

1.5 B-rings modulo a prime

Let k be any field. For a commutative, finite-dimensional k-algebra A we have a

decomposition of A as a left A-module

into a finite direct sum of n indecomposable projective A-modules A;, for some
n € N. Since A is commutative, this is a decomposition of A into indecomposable
local k-algebras. By the usual block theory considerations (see [3] I1.5), studying the
cohomology of A is reduced to studying the cohomology of the individual algebras
A;.

Let I be a finite set and let R C Gh(/) be a B-ring. Define a relation ~, on I
by putting i ~, j if and only if p | d(i, j) for i # j. Note that by the definition of
d(i, j) this relation is symmetric and transitive, and we write ~,, for the equivalence
relation defined by taking its reflexive closure. Let £ denote the set of equivalence
classes of I with respect to ~,. Let k = F, and recall that we write R for the
k-algebra R ®z k. For an equivalence class E € &, write kg for the (well-defined)
R-module which is & as an abelian group and where r-m = r(i)m for i any element
of E. Since pR annihilates kg for each £ € £, we can also regard kg as a module

for R.

Lemma 1.23. For each E € & there exists an r € R such that r(i) =1 mod p for
each i € F and r(j) =0 mod p for each j ¢ E.

Proof. For each equivalence class E’ distinct from E, we have an rp € R with
re (i) Zrgp/(j) mod p for i € E and j € E’. Subtracting rg (j) if required, we can
assume 7 (7) = 0, and hence p { rg/(i). Replacing rg by 7“%71 if required, we can

assume rg/(i) = 1 mod p. Then putting r = [[ gree e it is clear that r has the
E'£E
claimed properties. O

Proposition 1.24. We have a surjective homomorphism of R-modules

with kernel the radical of R.
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Proof. We have a homomorphism of R-modules

Ee&

given by
r (r(i) mod p)pee

where ¢+ € E. By Lemma 1.23 this homomorphism is surjective. The kernel of
this homomorphism contains pR, and we write 6 for the induced surjective homo-
morphism of R-modules. Since [] pee ke = @pee ke is a semisimple R-module,
the kernel of 6 certainly contains the radical of R. It remains to show the reverse
inclusion.

As in the proof of Proposition 1.3, choose for each i € I an element s; € R such
that s;(j) # 0 if and only if j = i. Let s;(i) = p'in; where n; is coprime to p; put
t = max;t; and put N = [],.;n;. Let r € R be such that r(i) =0 mod p for each
i € I. Putting ¢ = Nr'*! we have that ps;(7) | ¢(7) for each i € I, and so we can
define integers m; € Z by requiring ¢(i) = pm;s;(¢). It follows that

q:P'ZmiSi

il

and so ¢ € pR. Then the image of ¢ in R is zero, and hence the image of 7't in R
is zero, since N is coprime with p.

It follows that the kernel of 6 is nilpotent, and hence equal to the radical of
R. O

Corollary 1.25. Let R, I and & be as above.
i. R is the direct sum of |£| indecomposable k-algebras;

ii. Each indecomposable k-algebra summand of R is a local k-algebra with maximal

ideal of codimension 1.
iii. the set {kr}pece is a complete irredundant set of simple modules for R;

iv. for 4,7 € I, the modules k; and k; belong to the same block of R if and only if

i ~p 7 and hence k; ~ k;;

v. the dimension of the block of R corresponding to k; is |E|, the size of the ~,-

equivalence class of 7 € I.

Proof. The only part that does not follow immediately is v. For an equivalence
class E, let R’ be the B-ring R' C [],.5Z induced by R, and g : R — R’ the
corresponding homomorphism. Then 75 descends to a map R — R and this is

clearly a surjection of k-algebras. Since R has a single block of dimension |E|, the
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block of R corresponding to E has dimension > |E|. Since we can do this for each

equivalence class in &, the block must have dimension |E]. O

Corollary 1.26. Let R C Gh(I) be a B-ring with p { d(4, j) for all distinct 4, j € I.

Then R is semisimple.

Proof. Since p 1 d(i, j) for all distinct 4,j € I, we have |€| = |I| and the homomor-

phism 6 of Proposition 1.24 is an isomorphism. n

Corollary 1.27. Let R C Gh(J) be a B-ring and let i,j € I be distinct with
d(i,j) = 1. Then
Exth(Z;,Z;) =0

for all I > 0.

Proof. We already have the result for [ = 0 by Lemma 1.5.

Since p 1 d(i, j), the modules k; and k; belong to different blocks of R. Then
Ext%(ki, k;) = 0 for each | > 0, and so the p-part of Ext’(Z;,Z;) is zero for each
[ > 1. Since this is true of any prime p, it follows that Exth(Zi,Zj) = 0 for all
[>1. O

Corollary 1.28. Let R C Gh(I) be a B-ring and suppose that distinct elements
i,j of I are such that {7, j} is an equivalence class for the relation ~, on I. Write
a; and ¢; for the summand ranks of the p-parts of Ext%(Zi,Zi) and Exth(Zi,Zj)
respectively. Then

0 if7odd
a; =

1 if 7 even

1 if 7 odd
C =

0 if 7 even

forall I > 1.

Proof. The algebra R has an indecomposable 2-dimensional k-algebra summand
corresponding to the pair {i,j}, and this summand has a maximal ideal of codi-
mension 1. Any such k-algebra is isomorphic to k[z]/(x?). Note that for n > 1 and

A = k[z]/(x™), we have a free A-module resolution of k given by
R L R

where a(14) = z and 8(14) = 2" L. Tt follows immediately that Extk[w]/(mz)(k, k) =k
for all [ > 0, i.e. in the notation of Section 1.4 we have b = d; = 1 for all [ > 1.
The corollary follows by the recurrence relations a;11 = b, — a; and ¢; 11 = d; — ¢,

together with the conditions a; =0, ¢; = 1. O]
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We rephrase the above corollaries in terms of the Burnside ring of a finite group.

The first was first shown by Solomon in [22].

Corollary 1.29. Suppose pt|G|. Then A(G) is semisimple.

Proof. If p 1 |G| then certainly p { [NgH : H] = ng(|G/H]) for each H C G. Now
for any distinct pair (H), (J), we must have that H is not subconjugate to J or J is
not subconjugate to H. Suppose H is not subconjugate to J. Then wg([G/J]) = 0.

But p{ 7;([G/J]), and so p1d(J, H). By Corollary 1.26, A(G) is semisimple. ]

Recall that for a prime p and H C G, we write OP(H) for the smallest normal
subgroup N < H such that H/N is a p-group.

Corollary 1.30. Let H,J C G be subgroups such that OP(H) is not conjugate to
OP(J) for any rational prime p. Then

Extly o) (Zu,Zs) =0

for all I > 0.

Proof. By Lemma 1.12 and Proposition 1.9, we have p t d(H, J) for each p, and the
result then follows by Corollary 1.27. [

Corollary 1.31. Suppose p | |G| and p* 1 |G|. Let &€ be the set of equivalence
classes of the relation ~, on ccs(G), and let Ey, ..., E, be the equivalence classes of
cardinality 2. For H C G and [ > 1, write My for the p-part of ExtQ(G) (Zy,Zy); for
J C G not conjugate to H and [ > 1, write Ny j; for the p-part of ExtlA(G)(ZH, Zy).
Then

i. each E € £ has cardinality < 2,

ii. My, is non-zero for some [ > 1 if and only if H € E; for some 1 <1¢ < g,
ili. Npg j; is non-zero for some [ > 1 if and only if {H, J} = E; for some 1 <i <,
iv. if H € E; for some 1 <17 < ¢ then

0 if 7 odd
MH,l ~
Z/pZ  if i even,
v. it {H,J} = E; for some 1 < i < ¢, then

Z/pZ if i odd
NH,J,l =
if 7 even.
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Proof. Suppose E is an equivalence class of cardinality > 3, and consider distinct
conjugacy classes of subgroups (H), (J), (J') in E. Without loss of generality we can
assume OP(J) = OP(J') = H. Then J/H and J'/H are p-groups in NoH/H. Since
p? 1 |G|, we certainly have p* { [NoH/H]|, so J/H and J'/H are Sylow p-groups
in NoH/H. Then J/H and J'/H are conjugate in NgH/H, and so J and J' are
conjugate in GG, a contradiction. So each class E' € £ has cardinality at most 2.
For parts ii and iii, we know by Corollary 1.28 that if H € E; for some ¢ then My
is non-zero whenever [ is even, and if {H, J} = E; for some ¢ then Ny ;; is non-zero
whenever [ is odd. If H ¢ E; for each ¢, then by part i the block corresponding to
kg is 1-dimensional, and My, = 0 for all [ > 1. Similarly, if {H, J} # E; for each
i, then H and J belong to distinct equivalence classes and Ny j; = 0 for all [ > 0.
It remains to show parts iv and v. Again by Corollary 1.28 we know that My,
has a p-power summand only when [ is even, and Ng ;; has a p-power summand
only when [ is odd. We still need to show that the p-power summand is in fact
Z/pZ. For Ny ;; this follows from Example 1.18, since d(H,.J) annihilates Ny
and p? 1 d(H,J) since p* 1 |G|. For My, note that by dimension shifting this is
the p-part of Extil_(é)(KH,ZH) where Ky = kermy. Since p? t d(H,J') for any
J' C G, and since p | d(H, J') if and only if (J') = (J), we can construct sy € A(G)
such that sy (J') # 0 if and only if (H) = (J'), and such that p* { sg(H). Now
sy annihilates Kp, so it follows that sz annihilates Exti\(G)(ZH,ZH), and so a
fortiori sy annihilates Mp;. So any p-power summand of My ; must be of the form
Z/pZ. O

The following is then immediate.

Theorem 1.32. Suppose |G| is square-free. Then for all H,J C G and [ > 0, we

have an isomorphism of A(G)-modules ExtlA(G)(ZH, Zy) ~ Extfjfc)(ZH, Zy).

In order to consider the case where G does not have square-free order, we need
to consider Ext%(k, k) for more general k-algebras R. In the following chapter we
consider the problem of computing dim Ext%(k, k) for R a commutative local k-

algebra.
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Chapter 2

Cohomology of commutative local k-

algebras

Let k be a field and S a commutative local k-algebra with maximal ideal M and
residue field S/M ~ k. For | > 0, put ¢; = dim Extl(k, k). In this chapter we
consider the problem of studying the sequence (a;)en.

In the first section we observe that we can just as well consider dim Tor? (k, k).
Next we consider the case of the Burnside ring A(G) of a finite group G, and show
that if p* | |G| then A(G) = A(G) ®z F, has an indecomposable summand with
corresponding sequence (q;) unbounded, and hence there exist subgroups H,J C G
such that the groups Exth(Zy, Z ;) have unbounded rank.

Turning then to the problem of actually computing the sequence (q;) for a given
k-algebra, we consider the family of k-algebras of the form dim M? = 1 and M? = 0,
and obtain an explicit description of the numbers a; for this family.

In obtaining our results on the Burnside ring, we rely on work of Tate [23] and
Gulliksen [12] on differential graded algebras. In the final part of this chapter, we

give shorter arguments using spectral sequences for some of these results.

2.1 Relating Exty(k, k) and Tor} (k, k)

Lemma 2.1. Let (F,,d,) be a minimal projective S-module resolution of an S-
module N. Then the maps Homg(9;, k) : Homg(F;, k) — Homg(Fy41, k) and O, ®gk :
Fir®sk — Fi_1 g k are all zero.

Proof. Let X be an S-module with a minimal generating set of cardinality n. Then
dim X/MX = n, and we have a surjective homomorphism of S-modules S®" —
X/MX. Since S is free, this map lifts to a surjection S¥* — X with kernel
contained in M - S,

It follows that we can choose a minimal resolution (F,, ds) of N so that im 9, C
M - F_; for each [. Since any map S — k vanishes on M, it follows that
Homg(0;, k) = 0 for each [. Similarly each 0, ® k has image contained in M -
(Fioi® k) =0. O

Corollary 2.2. With S as above, dim Extk(k, k) = dim Tor} (k, k) for each [ > 0.

Corollary 2.3. Let I be a finite set and R C Gh([) a B-ring. Then for all 4,5 €
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and [ > 1, the summand rank of the p-part of TorlR (Z;,Z;) is equal to the summand
rank of the p-part of Extt!(Z;, Z;).

Proof. Suppose ¢ = j. Recall that in Section 1.4 we derived recurrence relations
a1 =b—a

and

2l = Yi+1 — 241

for [ > 1, where q; is the summand rank of the p-part of Exth(Zi,Zi), z; 1s the
summand rank of the p-part of Tor[*(Z;, Z;), and b; and y; are the dimensions of the
k-vector spaces Extk(k;, k;) and Tor)*(k;, k;) respectively. By Corollary 2.2 we have
b; = ;. Since our recurrence relations begin with z; = b; and a; = 0, we then have
21 =ayyq forall [ > 1.

Similarly, for ¢ # j, the relations were
av1=d — ¢

and

Ty = W41 — T4

for [ > 1, where ¢; is the summand rank of the p-part of Extiq(Zi,Zj), x; is the
summand rank of the p-part of Torﬁ(Zi, Zj), and d; and w; are the dimensions of
the k-vector spaces Extb(k;, k;) and Tor[(k;, k;) respectively. If k; and k; belong
to different blocks of R then the result is trivially true. Otherwise we have k; ~ k;
and can again apply Corollary 2.2 to get d; = w;. Now the relations begin with

x1 =d; — 1 and ¢; = 1, and once more we get z; = ¢;41 for all [ > 1. O
Let GG be a finite group. Corollary 1.30 is then equivalent to the following:

Corollary 2.4. Let H,J C G be subgroups such that OP(H) is not conjugate to
OP(J) for any rational prime p. Then

TorN(Zy, Z,) = 0

for all I > 0.

Corollary 2.5. For H,J C G, the groups Ext%(G) (Zy,Zy) are of unbounded rank
if and only if the groups Torf(G)(Z u,Zy) are of unbounded rank.

Proof. Suppose H,J C G are such that the groups EXt%A(G)(ZH,ZJ) are of un-
bounded rank. We know by Corollary 1.29 that if p is a rational prime with p t |G|
then Exti‘(G) (Zy,Zy) has no p-power summand for any [. Since there are only

finitely many primes dividing |G|, there must be some rational prime ¢ such that
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the ¢-parts of the groups ExtlA(G) (Zp,Zy) are also of unbounded rank. Since the
rank of the g-part is the same as the summand rank of the ¢-part, it follows that
the g-parts of the groups TorlR(ZH, Z.y) have unbounded rank, and so a fortiori the

groups TorlR(ZH, Z ) have unbounded rank. The reverse argument is identical. [J

2.2 Indecomposable summands of the modular Burnside ring

We have seen already in Section 1.5 that if p is a rational prime with p? { |G| then
A(G) ®z F, is a sum of indecomposable uniserial [F,-algebras. Moreover if |G| is
square-free then for arbitrary subgroups H,J C G, the groups Extil(G)(ZH, Zj) are
periodic. In this section we show that if p? | |G| for some rational prime p, then
A(G) has Ext groups of unbounded rank. This is an easy consequence of a result
of Gustafson [13] on the modular Burnside ring together with a result of Gulliksen
[12] on the homology of commutative local noetherian rings.

Let k be a field and recall that a k-algebra S is said to be symmetric if there
exists a k-linear map A : S — k such that A(st) = A(ts) for each s,t € S, and ker A
contains no non-zero ideals of S. Recall that a chain P, € P, C ... C P, of prime
ideals of S is said to have length ¢. Recall that for a commutative ring S the Krull
dimension d(S) is the supremum of the lengths of all chains of prime ideals of S.

The two theorems we need are then as follows.

Theorem 2.6 (Gustafson). If p? | |G| and k is a field of characteristic p then the
k-algebra A(G) ®z k is not symmetric.

Theorem 2.7 (Gulliksen). Let S be a commutative noetherian local k-algebra with
maximal ideal M and with & = S/M. Then the sequence (dim Tor} (k, k))en is
bounded if and only if

d(S) > dim M/ M? — 1.

Lemma 2.8. Let S be a finite-dimensional commutative local k-algebra. Then
d(S) = 0.

Proof. Since S is finite dimensional the maximal ideal M is nilpotent. So it is the
only prime of S, and so d(S) = 0. O

Lemma 2.9. Let S be a finite-dimensional commutative local k-algebra with max-
imal ideal M and dim M/M? = 1. Then S is symmetric.

Proof. Let t € S generate M and note that {1g,¢,...,t?} is a vector space basis for
S for some ¢ > 0. Define A : S — k by putting

A (Zq: aiti> = ay.
i=0

40



Now if J C S is a non-zero ideal then we can choose some non-zero element s =
7 ,bit"in J, and choose m to be minimal such that b,, # 0. Then t7"s = b, t? € .J

is not in ker A\, so ker A contains no non-zero ideals and S is symmetric. O]
We can then provide our converse to Theorem 1.32 as follows.

Theorem 2.10. If |G| is not square-free then there exist subgroups H,J C G such
that the groups Exti‘(G) (Zy,Zy) have unbounded rank.

Proof. Let p be arational prime with p? | |G|. The algebra A(G) = A(G)®zF, is not
symmetric by Theorem 2.6, and so it has an indecomposable k-algebra summand
S which is not symmetric. By Lemma 2.9, the maximal ideal M of S satisfies
dim M/M? > 1. By Lemma 2.8 and Theorem 2.7 the sequence (dim Tor? (k, k))ex
is unbounded, and so by Lemma 2.2 the sequence (dim Extk(k, k));en is unbounded.

Let € be the set of equivalence classes on ccs(G) with respect to the equivalence
relation ~,, as defined in Section 1.5. By Corollary 1.25, the summand .S corresponds
to some equivalence class E € £, and we have

dim Ext’(k, k) = dim EXtix(T)(kE’ kg).

Let H,J be subgroups of G with (H),(J) € E, let a; be the summand rank of
the p-part of Extféx((;) (Zy,Zy), and let §; be the dimension of Extil(—G)(kE, kg). By

Section 1.4, we have a recurrence

A1 = ﬁl — o

for [ > 0. Since ; is unbounded, it follows immediately that «; is unbounded, and

hence the groups ExtlA(G) (Zy,Zy) have unbounded rank. O

2.3 The case dim M? =1

Recall that for k a field and S a commutative local k-algebra with maximal ideal
M and with S/M =~ k, we are interested in determining the sequence (a;) =
(dim Extly(k, k)). In this section we consider the family of finite-dimensional com-
mutative local k-algebras satisfying dim M? = 1 and M3 = 0, and give an explicit
description of the sequence (a;). We assume that k is algebraically closed and that
char k # 2.

Put n = dim M /M?, let vy, ..., v, generate M, and let w span W = M?. Let
V' be the vector space spanned by vy, ..., v,. The multiplication operation of S then
defines a symmetric k-bilinear form B on V by viv; = B(v;, v;)w. Let m be the rank
of B and note that m > 0 since vy, ...,0, generate the ideal M. Write B for the

corresponding linear map V @ V — k.
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2.3.1 Degenerate cases

Before proceeding with a general analysis we deal with two exceptional cases.

First, if n = 1, then clearly S is isomorphic to the algebra k[x]/(z3). We have
already computed the cohomology groups for this algebra in the proof of Corollary
1.28, and we recall that a; = 1 for all [ > 0.

Next, if n > 1 and m = 1, then since k is algebraically closed we can suppose

A

B(v;,v;) # 0 if and only if ¢ = j = 1. Writing U for the submodule generated by v,

note that we have an S-module decomposition
M~U@E

Moreover, w, vy, ..., v, span a a sub-module 7" C S isomorphic to k®", and it is

clear that S/T ~ U. Then dimension shifting using the short exact sequences
0—-M—=5—=k—=0

and
0—-T—S5—>U-—Q0,

and using the fact that Extls(—, k) respects direct summands, we obtain

a1 = dim Exty (M, k)
= dim Exty ("7 k) 4 dim Ext (U, k)
= (n — 1) dim Extk(k, k) + dim Ext’ (%", k)

= (n—1)a; + na;_1,
for I > 1. Now ayp = 1 and a; = n, so an easy induction yields a; = n! for [ > 0.

2.3.2 Constructing a resolution

For the remainder we will assume that n > 1 and m > 1. By diagonalising our
quadratic form and making use of the fact that k is algebraically closed with char-
acteristic not equal to 2, we can assume that our basis of V' is chosen so that
B(vi,v;) =1 for 1 <i <m and B(v;,v;) = 0 for all other i,j (see e.g. [17] Chapter
1.2). We proceed to describe a minimal resolution of the S-module &.

Let K7 be the kernel of the natural module map S — k. Since B is non-zero,
the map S @, V — S given by > . s; ® v; = Y. s;0; is a surjection onto the kernel
K;. We denote the kernel of this map by K5, and begin the resolution by

0—-Ky,—S®V —>S5—=k—0.

Regarding ker B C V ® V as a subspace of S® V', note that Ko = ker B& (W @ V).
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We then have a map S ® ker B — K, given by putting

CRY (Z Q; jV; & vj> — Z Q; jSU; Q V;
1,5 ]

and extending linearly. We claim that this is a surjection. Certainly ker B is in the

image, so it remains to check that w ® v; is in the image for each 1 < i < n. But

since m > 2, for any v; we can choose j # i with B(v;,v;) = 1, and then v; ® (v; @ v;)
is an element of S ® ker B mapping onto w &® v;.

We’d like to continue this process, identifying subspaces A; of the k-vector space

D,2, V" such that we have a resolution given by
o= SRA - SRA L~ ... S®RA S —k

where the maps are given by multiplication of the first two terms as above.
We claim that putting A; =V, and

-2
A=) (V¥ @ker Bg V>7)

j=0
for [ > 2 gives such a resolution.
Proof. It is clear that we have an S-module map 6; : S ®@ A; — S ® V=1 given by
multiplication in the first two positions. In order to show that §; maps into S® A;_1,

it is then sufficient to check elements of the form 1 ® ¢ for g € A;.
Now 6;(1 ® ¢) = ¢. Since

-2
qe ﬂ V® @ ker B V& 277

j=0
we certainly have that
-2 (1-1)—2
ge(V¥ekaBa V2T Ve (| V¥@keBe Vel
Jj=1 §=0

So q €S ® A;_1 as required.

Since S® A; C S®@ker B V® =2 for each [, it is clear that 6,_, 08, = 0, so we do
indeed have a chain complex. It remains to show that the complex is exact, i.e. that
each d;,1 is a surjection onto ker §;. Note that kero; C M- (S®@A4;) = (VW) A,.

Now if t € ker §; N (V ® A;) then

te(kerBV ) N(VeA)
and hence t € A;, 1. So the element 1 ® t of S ® A; ;1 maps onto t.
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Suppose t € kerd; N (W ® A;), and write t as

t=w® ( Z Qi Vi Q... & Un) .
11

----- i

For each 1 < i < n, choose some 1 < j@ < m with j® # i. Then v ®v; € ker B

for each 1 <7 <n, and so

E Qiy, i Vi) @ Uy ® ... Qv € Ay

U150e501

and
§ ai1,...,ilvj(i1) ® Uj(ﬁ) ® Uil ® e ® vil

i1 yeensi
is an element of S ® A;,; mapping onto ¢.
Finally, since kerd; C M - (S ® A;_1) for each [, the map

Homg(;, k) : Homg(S ® Aj, k) — Homg (S ® Aj4q, k)

is the zero map for each [, and so our resolution is minimal. Then dim Ext’(k, k) =
dim A; for each [ > 1. O

2.3.3 Determining A,

Define a non-singular bilinear form @ on V' by putting Q(v;,v;) = 6;;. For each

| > 2 we have a non-singular bilinear form Q® on V® by putting
QV(v, ®...® Vi U, @ . @) = Qug,vp) - Qv v))

and extending linearly.

l
-

1—
— N (V¥ @ker B Ve 29)

Now

2

1
V® @ ker B® V®l‘2‘j>
0

N

.
Il
o

Note that ker B is spanned by vectors of the form v; @v; for i # j, vi ®v1 —v; ®@v;
for 1 <i <m and v; ® v; for j > m + 1. Putting u = Y _." | v; ® v;, we have

QP (v; ® vj,u) =0,

for all + # j, and
Q(Q)(M ®@v —v; @ v,u) =0,
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for 1 <i<m, and
QP (v; @ vj,u) =0

for 5 > m +1, so k-u C (ker B)*. Since ker B has dimension n? — 1 and Q®
is non-singular, it follows that (ker B)* = k - u, and that @,., Aj is spanned by
tensors of the form v ® u ® w for v,w € P, V. )

Let F be the free non-commutative k—aléebra on vy, ...,v, and write f for the
element Y ", v of F. The vector space spanned by elements of the form bfc for
b,c € F is then the two-sided ideal I generated by f. Note that F' comes with a
natural grading by degree F' = €, F;, and that since the ideal I is homogeneous,
this grading descends to the quot;ent F/I = @,., F/(INF;). Since dim 4} =
dim I N Fj, and dim V® = dim F}, the problem of_ computing the dimension a; =
dim A, is then equivalent to the problem of computing dim F;/(I N F;). In order to
do this we will construct a Grobner basis for 1.

We first recall some results from the theory of non-commutative Grébner bases

(see [8] Chapter 6 for proofs and further details).

2.3.4 Grobner bases

Let X denote the set of monomials of F. Introduce a total order on X by first
ordering by degree, and breaking ties with the lexicographic ordering v,, > v,_1 >

... > v. Explicitly, if x = v;, ... v, and y = v;, ... v;, are monomials of the same

degree, we have x > y if and only if there is some 1 < r < s such that i, > j,
and i, = j, for all 1 < ¢ < r. For an element w = ) _y A,z of F, say that z is
occurring in w if A, # 0. To each element w of F', we have a unique element of X
occurring in w which is maximal with respect to the total order, called the leading
monomial of w and denoted LM(w).

For J an ideal of F, let N(J) be the set of monomials which are not leading
monomials of elements of J, and C(J) the subspace of F' spanned by the elements

of N(J).

Lemma 2.11 (Proposition 6.1.1 of [8]). We have a vector space decomposition
F=JaC(J).

For monomials v, w € X, say that w is a subword of v if there exist monomials
wi,wy € X such that wywwy = v. Let G be a set of generators for an ideal J. We

say that G is a Grobner basis for J if for each j € J there is an element g of G such
that LM(g) is a subword of LM(j).

Lemma 2.12 (Theorem 6.1.4 of [8]). If G is a Grébner basis for J then N(J) is the

set of monomials which do not contain LM(g) as a subword for any g € G.

Call a (not necessarily distinct) pair (g, f) of elements of F' an overlap if we have
LM(g)v = wLM(h) for some monomials v,w in X. We then have the following

recognition condition for Grobner bases.
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Lemma 2.13 (Theorem 6.1.6 of [8]). If G is a generating set for J, then G is a
Grobner basis for J if and only if for each overlap g, h € G with LM(g)v = w LM(h),
we have that gv — wh is a linear combination of elements of the form v’'¢'w’, where
viw' € X, g € G, and v LM(¢')w’ < LM(g)v with respect to our total ordering of

monomials.

2.3.5 A Grobner basis for [

Recall that f = v? + ...+ v2 and I = (f). Certainly fo = v, f — fo, € I, so the
set G = {f, f2} is a generating set for I. We claim that it is also a Grobner basis.

The set of leading monomials of G is {v?,v,,v% _,}. The pair (f, f) is an over-

2

2, and the pair (f, f2) is an overlap since vZ (vZ_,) =

lap since (v2)v, = v,(v 1

(vm)(vmv?,_1), and these give all possible overlaps. Now fuv,, — v, f = f2, and

m—2 m—1
fhy = vmfa = f <Z vf) + fatm — (Z v?) f,
=1 =1

2

where all leading monomials appearing are < v,,v7,_1,

so both overlaps satisfy the

conditions of Lemma 2.13. Thus G is a Grobner basis for /.

Call a word in vy, . . ., v, special if it does not contain v2, or v,,v2,_; as a subword.
By Lemma 2.12 the special words then span the vector space C(I), and by Lemma

2.11 we have that a; is the number of special words of length .

2.3.6 Counting special words

Let b; be the number of special words of length [ which do not begin with v,,, and
let ¢; be the number of special words of length [ that begin with v,,.
Given any special word of length [ — 1, we have n — 1 special words of length [

not beginning with v,, obtained by appending one of v, ...,V 1, Umit,--.,Up. SO
b = (TL — 1)(bl_1 + Cl—1)~

Then ﬁbl_l is the number of special words of length [ beginning with v,,_;, and

also the number of special words of length [ beginning with v? So

m—1-

1
n—1

o =b_1— bi—o.
We then have a system of recurrences for [ > 3 with by =n —1,¢; = 1,by = n? —n,
and co =n — 1.
Adding the two together and rewriting in terms of the quantity of interest a;, we
get
a=(n—1)a_1+b_1—

b
n—1 -2
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which we can rewrite as
a =na;_1 — a—2 — (G-1 — na_2 + a;_3).
Noting that as = na; — ag, it then follows by induction that
ap =naj—1 — a2

for all [ > 2. If n = 2, it is clear by a further induction argument that we then have
a; =1+ 1 for all [ > 0. Suppose n > 2.

We can express the recurrence as the matrix equation

eI

and repeatedly making use of the recurrence we can rewrite this as

=13 E]

Putting the above matrix into Jordan normal form allows us to rewrite this further

an| 11 ][0 o nit 1] [a
a | Ot L0 () [ 1 )
where 6 = v/n? — 4. We then get

1
a; = W ((n + 0>l+1 . (n o 0>l+1)

for I > 0.

2.4 Studying (a;) with spectral sequences

Let S be a commutative noetherian local ring with maximal ideal M and with
S/M ~ k. In [23] Tate gives a method for constructing a resolution of the S-module
k which has the structure of a differential graded S-algebra. In [12] Gulliksen uses

this construction to prove Theorem 2.7 together with the following:

Theorem 2.14. With S, M, k as above, let x1,...,x, be a minimal generating set
for M and let N be the ideal of S generated by xi,...,z, 1. If N is prime then

dim Tor? (k, k) = dim Tory (S/N, k) + dim Tor} ,(S/N, k)

for each [ > 1.
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In this section we use spectral sequences to provide significantly shorter argu-

ments for Theorem 2.14 and a weaker version of Theorem 2.7.

2.4.1 The Grothendieck spectral sequence and Theorem 2.14

We first recall some facts about the Grothendieck spectral sequence, see [25] (Chap-
ter 5.8) for further details. Let B, C, and D be abelian categories with B and C having
enough projectives. Let G : B — C and F : C — D be right exact functors. Then
F o @G is right exact, and we write L.G, L,F and L,(F o G) for the corresponding
left derived functors. Suppose that G sends projective objects of B to acyclic objects
for F. Then for each object B in B, we have a first quadrant homological spectral

sequence F with E? page given by
Eﬁq - (LP”F) © (ng>(B)7

and with E converging to L.(F o G)(B).

Proof of Theorem 2.14. Consider the right-exact functors

— ®g k : S-Mod — k-Mod,
— ®g S/N : S-Mod — S/N-Mod,
— ®g/n k : S/N-Mod — k-Mod,

and note that we have a factorisation
—®sk=(—®gnk)o(—®sS/N).

Note moreover that —®gS/N sends projective (i.e. free) S-modules to free S/N-
modules, which are acyclic for — ®g/y k. We are then in a situation to apply the
Grothendieck spectral sequence.

Letting k play the role of the object B above, the E? page of our spectral sequence
is then given by

E = Torg/N(Tor;f(k:, S/N), k),

and the sequence converges to Tor? (k, k).

Given a projective S-module resolution of any S-module X, it is clear that
tensoring by k produces a chain complex where each term is some number of copies
of the S-module k. It follows that as an S-module, TorqS (k,S/N) is isomorphic to
some number of copies of k for any ¢ > 0, and hence as an S/N-module Tor;j (k,S/N)
is isomorphic to some number of copies of the S/N-module k.

Since the ideal N is prime, we have that 2!, ¢ N for each [ € N, and hence

S/N ~ k[t], the polynomial ring over k in one variable. We have a projective

48



resolution of the k[t]-module k given by
0— k[t] = k[t] = k — 0,

where the map k[t] — k[t] is given by multiplication by ¢. It follows immediately
that
Tor™ (k, k) ~ Torf (k, k) ~ k

and that Torf[t](k, k) vanishes for all [ > 2.

The E? page of our spectral sequence is then given by

2 Torl(k,S/N) if p € {0,1},
pq .
0 otherwise.

Since the maps on the E? page are of the form 83q : Ez%q — Ez%—2,q+1’ all such maps
are zero, and similarly all maps on subsequent pages are zero. So the sequence
converges immediately. Recall that in general the terms on the [th diagonal of E*°
are a set of successive quotients in a filtration of L;(F o ). Since in this case our
object is in k-Mod, it follows that summing up the terms on the /th diagonal gives
Tor*(k, k). Then

Tor'(k, k) ~ Tor{ (k, k) @ Tor{ | (k, k)

as required. O

2.4.2 A weak form of Theorem 2.7

We state our weaker form of Theorem 2.7 as follows.

Theorem 2.15. Let S be a commutative local finite-dimensional k-algebra with
maximal ideal M satisfying S/M =~ k and dim M/M? = 2. For | > 0 put a; =
dim Tor? (k, k). Then the sequence (a;);ey is unbounded.

Proof. Let A = k[z,y], and note that without loss of generality we can suppose S
is a quotient A/ for some ideal I C (z,y).

Consider the right-exact functors

— @4k : AMod — k-Mod,
— ®4 A/ : A-Mod — S-Mod,
— ®g k1 S-Mod — k-Mod,

and note that we have a factorisation

—Quk=(—®sk)o(—®4A/).
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As before, —®4 A/I sends projective A-modules to S-modules which are acyclic for
— ®gs k.
Moving to the Grothendieck spectral sequence associated to the above factorisa-

tion and the A-module k, we have that the E? page is given by
2 s A
E,, = Tor, (Tor, (k,S), k),

and this sequence converges to Tor? (k, k).
Computing the derived functors of —®4 k is straightforward: there’s a canonical

minimal projective resolution of the A-module k£ given by the Koszul resolution
05AL A5 45k 0 (t1)
where a(a,b) = ax + by and f(a) = a - (y, —z). This gives

Tori (k, k) ~ k%2,
Tors' (k, k) ~ k,

and Tor (k, k) = 0 for [ > 3.
It remains to compute Torj (k,S). For a € A, write [a] for its image in S.

Applying — ®4 S to (1) we obtain a chain complex
0-55592% g 4,

where @([a], [b]) = [az + by] and B([a]) = [a] - ([y],[~=z]). Let Z be the socle of
S and note that Z = ker 8. Let z = dimZ. Then dimim$ = dimS — z. But
dimker@ = 2dim S — (dim S — 1) = dim S + 1, and hence dim Tor{'(k, S) = z + 1.

It is clear that Tors (k,S) ~ Z ~ k®* as an S-module. By the same reasoning
as before, each A-module TorlA(k, S) is isomorphic to some number of copies of k.
Since the S-module structure of Tor{(k, S) is induced by the A-module structure,
it follows that Tor{(k,S) ~ k®**! as an S-module.

Making use of the fact that Torls (—, k) respects direct sums, the E? page of our

spectral sequence is then

0

0 k% Tor{(k,k)®  Tory(k,k)®  Torj(k,k)®*

0 k%1 Tor{(k,k)®*t1 Tory (k,k)®*t1 Tors (k, k)=
0 k& Tor{ (k, k) Tor3 (k, k) Tor5 (k, k)

0 0 0 0 0
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: 2 .2 2
with maps 05« B — EJ 5 1.

In order to determine E®, note that all maps out of E. are zero for ¢ = 2 and p
arbitrary, and for ¢ arbitrary and p = 0, 1. Similarly all maps into Ezq are zero for

g = 0. The E? page is then given by

0 0 0 0

0

0  cokerds, cokerds, cokerdj, coker 03 |

0  cokerds, cokerdi, kerd;,/imdj, kerds,/imo;,
0 k Tor? (k, k) ker 03, ker 03,

0 0 0 0 0

: 3 . 3 3
with maps 0, : B, — E5 3 0.
On the E3 page the only potentially non-zero maps are agq for ¢ =0 and p > 3,
so it follows that the £ is given by

0 0 0 0

0

0  cokerds, cokerdi, cokerd, coker 0§

0  cokerds, cokerd;, kerds,/imd;, kerds,/imdZ,
0 k Tor} (k, k) ker 03, ker 03

0 0 0 0 0

and since all maps 9* are ‘out of bounds’ and hence zero, the sequence converges
and the above is the page E*°. As before, summing up the terms on the [th diagonal
then gives Tor;(k, k).

Considering the [ = 1 diagonal, note Tor{ (k, k) ~ M/M? ~ k%2 ~ Tor (k, k),
and so coker 03, = 0 and Tory (k, k) surjects onto k®**1. This implies ay > (2 + 1).

Considering the [ = 2 diagonal, the sum of the three modules appearing is 1-
dimensional, and so in particular dim cokerd3, < 1. Then the map Tors (k, k) —
Tor{ (k, k)®**! has image of dimension at least (z + 1)(dim Tor? (k, k)) — 1 = 2z + 1,
and hence az > 2z + 1.

For [ > 3, the lth diagonal is zero, and so in particular
ker &7, ,/im (3l2+170 = 0.
Then for any [ > 2, we have

a;19 > dimim 8l2+270 = dim ker 021 > (z+ )a; — za;_s.
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Now as > z+ 1 > zag, and az > 2z + 1 > zaq, so it follows that a; > a;_» for each

[, and hence a; — 0o as [ — oc. O

A small advantage of this proof is that we can say more about the growth of
Torls(k, k) when S is not symmetric, as in the case of certain summands appearing

in the modular Burnside ring.

Corollary 2.16. Suppose S as above is in addition not symmetric. Then the
sequence (dim Tork(k, k));en is bounded below by a sequence which grows exponen-

tially.

Proof. The k-algebra S is symmetric if and only if it has a 1-dimensional socle ([9]
Lemma 9). Put z = dimsocS and a; = dim Tory(k, k) for > 0. By the proof of

Theorem 2.15 we have an inequality
ary2 > (2 +1)ag — aj—o

for each [ > 2.

Consider the recurrence
bl+2 = (Z + 1)bl - Zbl_Q
defined for all even [ > 2, with by = ag and by = a5. We then have
!
le+2 . z4+1 —z bQ
by 1 0 bo

for I > 0. We can rewrite this as

E R | K

(ZlJrl - Z)(bg - bo) .
z—1

and obtain

b2l+2 =

Similarly we can consider the recurrence
biyo = (2 + 1)b — 2b1—5

defined for all odd [ > 3, with b; = a; and b3 = a3, and we obtain

(ZH—l — Z)(b3 — bl) '
z—1

b2l+3 =

Since z > 1, by > by, and by > by, it follows that the subsequences (a;);con and

(a7)1ean41 of even and odd terms are both bounded below by sequences which grow
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exponentially. We conclude that the sequence (a;);en is bounded below by a sequence

which grows exponentially. O]
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Chapter 3

Mackey systems for Burnside rings

A survey of generalisations of the Burnside ring to larger classes of groups is given
in [18]. In this chapter we introduce the notion of a Mackey system in order to
present a new generalisation of the Burnside ring, and establish which properties of
the Burnside ring of a finite group carry forward to this setting.

Let S be the group of permutations of N which fix all but finitely many elements.
In the latter half of the chapter we construct a Burnside ring for S and study this

ring in detail.

Definition 3.1. Let G be a group. A collection of subgroups 9 of G is a Mackey
system for G if:

1. G eM;

2. for H, K € 9t we have H N K € 9N,

3. for H € M and g € G we have gHg™' € IM;

4. for each H, K € 9 there are only finitely many (H, K) double cosets.

Definition 3.2. A G-set X is said to be 9M-admissible if it is finitely generated (i.e.
has finitely many orbits), and if for any x € X we have Stabg(z) € 9.

Let X be a transitive 2-admissible G-set. Then X is isomorphic to the G-set
G /A for some subgroup A € M. Similarly, any 9t-admissible G-set is isomorphic
to a finite disjoint union of G-sets of the form G/A;, A; € M.

Proposition 3.3. Let X, X5 be 9-admissible G-sets. Then X; LI X5 and X7 x X5

are 9M-admissible G-sets.

Proof. If x € X; U X, then either x € X; or x € X5, and in each case we have

Stabg(x) € M. If x4, ..., z,, generates X; as a G-set and ...,z , generates Xy,

then xq,..., 2,2, ..., 2., generates X; U Xo. So X7 U X; is M-admissible.
Without loss of generality, suppose X; and X, are transitive. Then there exist
Ay, Ay € M with Xy ~ G/A; and Xy ~ G/A,. For (g141, g242) € G/A; x G/A,,
we then have Stabg((g1 41, g242)) = 914197 N g2 Aagy ' € M.
In order to show that G/A; x G/A; is M-admissible, it remains to show that
it is finitely generated. Let O be an orbit of G/A; x G/A;. We can choose a

representative (A1, gAs) € O for some g € G. Any other (A1, g’'As) € G/A; X G/A,y
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belongs to the same orbit if and only if there is an a € Ay with agAy = ¢’ As, i.e. if
and only if g and ¢’ generate the same (A;, Ay)-double coset of G. Since there are
finitely many such double cosets, we have that G/A; x G/A, is finitely generated,

and so G/A; x G/Ay is M-admissible. O

It follows that the isomorphism classes of -admissible G-sets form a semi-ring
E(G ,9M), with addition given by disjoint union, multiplication by cartesian product,
and the identity provided by the isomorphism class of the trivial G-set G/G.

Definition 3.4. The Burnside ring A(G, M) of a group G together with a Mackey
system 901 is the Grothendieck ring of A\(G ).

3.1 Examples and basic properties

Example 3.5. Let GG be a finite group. Then any collection 9t of subgroups con-
taining G and closed under conjugacy and intersection is automatically a Mackey
system for G, and the ring A(G,9) naturally embeds in the usual Burnside ring

A(G). When 9 is the collection of all subgroups of G then A(G,9M) is the usual
Burnside ring of G.

Example 3.6. For n a positive integer, let S,, be the symmetric group on n letters.
For a partition A = (A1,...,\,,) of n, let S\ denote the subgroup Sy, x ... x Sy,
of S, called the Young subgroup associated to A. Let 93T be the collection of all Sy
together with their conjugates, as A ranges over the partitions of n. It is clear that
M is a Mackey system for S,,. For a partition A\, write s, for the element [S,,/S,]
of A(S,,9M). As an abelian group, A(S,, M) is free on the elements sy = [S, /5],
where A\ ranges over the partitions of n.

For v, j1 partitions of n and ¢ € S,,, the subgroup S, NtS,t~! of S, is conjugate to
a unique Young subgroup of S,, and we denote the corresponding partition v N p’.

By our description of multiplication in the Burnside ring in Section 1.2.2, we have

8,8, = E Sunput-

S8, €5,\Sn /S,

To each s, we can associate a rational character ry, where for t € S,,, the integer
ra(t) is the number of elements of S/S) fixed by t. Let R(S,,) denote the character
ring of S,,. Our formula above then mirrors the Mackey formula for the product of
induced characters, and so we have a homomorphism of rings A(S,, M) — R(S,)
given by mapping s, — ry. Since the characters r, span the character ring R(S,,)
as A ranges over the partitions of n ([15] Lecture 4), this homomorphism is an
isomorphism of rings A(S,, M) ~ R(S,).

Example 3.7. Let G be a group and let 9t be the collection of subgroups of finite

index. This is the ‘finite-G-set-version’ given in [18].
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Example 3.8. For a set A C N write Sym(A) for the group of permutations of A
fixing all but finitely many elements, and write A’ for the complement of A. For
n € N, write n for the subset {1,...,n} C N. Let S = Sym(N), the restricted
infinite symmetric group. The representation theory of S is studied in [20], and
the stability properties of such are important in the theory of FI-modules (see for
instance [6]).

Let Mg be the collection of subgroups of the form H x Sym(A) where A C N is
cofinite and H C Sym(A’). We claim that g is a Mackey system for S.

Proof. Certainly S € g and Mg is closed under conjugation.
For cofinite subsets A, B and subgroups H x Sym(A), K x Sym(B) € I, let

I =(H x Sym(A)) N (K x Sym(B)).

Recall Dedekind’s modular law, which states that for subgroups Ji, Js, J3, with
J1 C Jy, we have
JoNJids = Ji(Jo N J3).

Putting J; = Sym(A N B),J; = I, and J3 = Sym(A’ U B’), and noting that I C
Sym(A’U B’) x Sym(A N B), we then have

I=1IN(Sym(A"UB’) x Sym(AN B))
= (I NSym(A’UB")) x Sym(AN B),

which identifies I as being of the form L x Sym(A N B) with AN B cofinite and
L C Sym((An B)").

In order to establish that for any X, Y € 9tg there are only finitely many X\S/Y
double cosets, it is sufficient to show this for X = Y = Sym(A), where A is an
arbitrary cofinite subset of N. Without loss of generality, put A = N — m for
some m € N. Let  be the set of distinct m-tuples in N, and note that we have
a bijective correspondence between  and the set of cosets S/ Sym(A) by assigning
to a coset o Sym(A) the tuple (o(1),...,0(m)). Now Sym(A) acts on €2, and we
have a bijective correspondence between Sym(A)\S/Sym(A) and Sym(A)\Q2. Since
we can assign to each orbit in Sym(A)\Q a tuple (ji, ..., jm) with all j, < 2m, it
follows that the number of orbits is finite, and hence there are finitely many double

cosets. O

Example 3.9. For a set of positive integers A C Z write A+ for the set AU —A,
and write Sym+(A) for the group of permutations ¢ on A+ such that o fixes all
but finitely many elements and such that o(i) = —o(—i) for each i € A. When A is
finite, Sym+(A) is the Weyl group of type BC on |A] letters, and the subgroup of
elements which reverse the sign of an even number of elements is the Weyl group of

type D on |A| letters.
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Let Wge = Sym+(N), and let 9 pc be the collection of subgroups of the form
H x Sym+(A) where A C N is cofinite and H C Sym+(A’). Similarly, let Wp be the
subgroup of Wpe of elements which reverse the sign of an even number of elements,
and let M p be the subset of Mpe of subgroups of Wp.

By a proof analogous to the one above, 9Mpe is a Mackey system for Wgeo and

Mp is a Mackey system for Wp.

Example 3.10. For a rational prime p, let V' be the F,-vector space with basis
E = {e1,eq,...}, and for I C E, write GL(I,p) for the group of invertible linear
transformations on the F,-span of I which fix some cofinite subset of /. Write I’
for the complement of I in E. Put G = GL(E,p) and let M be the collection of
subgroups of the form H x GL(I,p), where I C E is cofinite and H C GL(I’, p).
Let 93t be the smallest set containing M which is closed under conjugation and
intersection.
We claim that 9 is a Mackey system for G.

Proof. If A € 9, then there a cofinite I C F with GL(I,p) C A. In order to
establish the double coset property for pairs (A, B), it is then sufficient to show it
for A= B = GL(I,p) and I an arbitrary cofinite subset. Without loss of generality
put I ={e; | i > m} for some m € N,

Given any h,h’ € G, there exists an n € N such that h,h' fix all e; satisfying
i > n. Let W be the Fy-span of all e¢; with ¢ > n and let W’ be the span of all
e; with i < n, and note that V = W & W’'. We can then represent h and h’ by
n x n-dimensional matrices X, X’ with entries in F,, where h-w = w if w € W and
h-w = Xuw' if w' € W/, and similarly for A’. Note that h and A’ belong to the
same (A, A)-double coset if X can be arrived at from X’ using row operations on
the rows beyond row m, and column operations on the columns beyond column m.
But using row and column reduction we can replace X, X’ with matrices Y, Y’ such
that for ,j > 2m, we have Y;; = YZ’] = 0ij.

It follows that the number of double cosets is bounded above by the number of
2m x 2m matrices with entries in F),, and hence there are only finitely many double

cosets. O

For a group G and Mackey system 90, write ccs(G,9N) for the collection of
conjugacy classes of subgroups in 9. We record basic properties of the Burnside
ring of a finite group which carry over to the Burnside ring of a group with Mackey

system.

Proposition 3.11. As an abelian group we have

AGom = & zG/H).

(H)€eces(G,n)
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Proposition 3.12. For each (H) € ccs(G,9M), we have a homomorphism of rings
Ty« A(G,9M) — Z given by mapping [G/K] for K € 9 to |(G/K)"|.

Proof. The only thing we need to check is that |(G/K)*| is finite. But to each coset
gK fixed by H we can assign a unique double coset HgK = gK. So |[(G/K)"]| <
|H\G/K]| is finite. O

Proposition 3.13. Combining the maps 7y for each (H) € ccs(G,9M) forms an

injective homomorphism of rings

T A(G,M) — H Z.

(H)eces(G,0m)

Proof. In order to establish injectivity, we first show that we can define a partial
order on ccs(G, M) by putting (H) < (K) whenever H is subconjugate to K. For
a proper inclusion of subgroups H C K, we can choose a set of double coset rep-
resentatives for H\G/H such that some k € K — H is a representative. Then this
defines a degenerate set of representatives for K'\G/K. Since the number of double
cosets is stable under conjugation, it follows that K is not subconjugate to H, and
so < defines a partial order.

Now suppose we have an x € A(G;9M) with 7(z) = 0. Write x = > ag|G/H],
and let J be maximal with respect to the partial order such that a; # 0. Now
7 ([G/H]) = 0 whenever J is not subconjugate to H. Then

71'(])(1’) = W(])(GJ[G/J]) = aJ[Ngj . J] 7é 0,

a contradiction, and so 7 is injective. O]

3.2 Mackey functors

Induction and restriction homomorphisms between Burnside rings are well under-
stood, and typically described in the context of Mackey functors. In this section
we quickly recall the theory of Mackey functors, and give an analogous description
of induction and restriction for the Burnside ring of a group with Mackey system.
There are several ways of defining Mackey functors, here we follow [18].

Let FGI be the category of finite groups, with morphisms injective homomor-
phisms of groups. For a finite group G and g € G, write ¢(g) for the distinguished
morphism G — G given by conjugation by g.

For R a commutative ring and A a category, a bifunctor A — R-Mod is a
pair M = (M,, M*), where M, is a covariant functor A — R-Mod and M* is a
contravariant functor A — R-Mod, with M, and M* agreeing on objects. For an
object A, we write M(A) for M.(A) = M*(A). For a bifunctor FGI — R-Mod
and an injective homomorphism of groups f : H — G, denote by ind; the map
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M.(f) : M(H) — M(G) and by resy the map M*(f): M(G) — M(H). When f is

an inclusion of groups, write ind§ = ind s and res§ = res;.

Definition 3.14. A bifunctor (M,, M*) : FGI — R-Mod is said to be a Mackey

functor if:
1. for each distinguished morphism ¢(g), M.(c(g)) is the identity map;

2. for f an isomorphism of groups, the composites resy oind; and indy oresy are

the identity map;
3. for inclusions of subgroups H, K C G,

G . 1G _ : H
resy oindz = E mdc(g)lmgqm OTeSfyng-1fg

KgHEK\G/H
where ¢(g)|gng-15, 1S regarded as amap H Ng'Kg — K.

Recall that for a homomorphism of groups f : H — G and a H-set X, we can
define an equivalence relation ~ on the set G x X by putting (g f(h),x) ~ (g, h-x) for
g€ G,he€ Hxe X. Write [g, z] for the equivalence class of (g,2) € Gx X. The set
of equivalence classes G X s X then has a natural G-action given by g-[¢, z] = [g9¢', x].

Put R = Z and define a bifunctor M = (M*, M,) on objects by sending a finite
group G to the Burnside ring A(G). For f : H — G an injective homomorphism
and X a finite H-set, let ind¢(X) be the G-set G x; X, and for Y a finite G-set, let
resf Y be the set Y with H-action given by h -y = f(h)y. It is easy to check that
this then defines a Mackey functor. We will now give the appropriate generalisation
for the Burnside ring of an infinite group with Mackey system.

Let GMI be the category whose objects are pairs (H,9t) where H is a group and
9M is a Mackey system for H. A morphism ¢ : (H,9) — (G,MN) in GMI is given by
an injective homomorphism of groups H — G (also denoted ¢) such that ¢(H) is of
finite index in G, ¢(M) € N for each M € M, and ¢~ (N) € M for each N € N.

We can identify FGI as a full subcategory of GMI by associating to each finite
group G the pair (G,sub(G)), where sub(G) is the set of subgroups of G.

Proposition 3.15. Define a bifunctor M = (M,, M*) : GMI — Z-Mod on objects
by putting M ((H,M)) = A(H,9). For a morphism ¢ : (H,M) — (G,N), define
M,(¢) = ind, on an IM-admissible H-set X by putting ind, X = G x4 X, and
extend to a homomorphism A(H,9) — A(G,M). Define M*(¢) = res, on an -
admissible G-set Y by putting resy Y =Y with H-action h -y = ¢(h)y, and extend
to a homomorphism A(G,0N) — A(H,9). Then M satisfies properties 1 — 3 of
Definition 3.14.

Proof. The only thing to be checked is that the maps indy and resy are well-defined,

and the category GMI has been chosen to make sure that they are.
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Indeed, let ¢ : (H,9M) — (G,MN) be a morphism and X an IM-admissible H-set.
Then for (g,z) € G x4 X, we have Stabg(g,x) = g¢(Staby x)g~!, which is in 9
since Stabgy x € 9. Moreover, since ¢(H) is of finite index in G, we can choose
a finite set of (right) coset representatives gi,...,q for ¢(H)\G, and since X is
M-admissible we have a finite generating set zy,...,x,, for X as a H-set. Then
G x4 X is finitely generated as a G-set by the elements (g;,z;) for 1 < ¢ < and
I<j<m.

Similarly, for an Jl-admissible G-set Y and y € Y, note that we have Staby y =
¢~1(Stabg(y)) and Stabgy € N, so ¢~ (Stabg y) € M. Moreover, let vy, ...,y be a
finite set of generators for Y as a G-set. Then any y € Y is of the form gy;, for some
1 < k <s, and hence of the form hg;y, for some 1 < i <[, and so the elements gy
generate Y as a H-set. O

3.3 The restricted infinite symmetric group

In Example 3.8 we introduced the restricted infinite symmetric group S and Mackey
system Mg. In order to describe the Burnside ring A(S, M), we first give a de-
scription of the set of conjugacy classes of subgroups in M.

Consider the class T of pairs (G, X) where G is a finite group and X is a finite
set with faithful G-action. Write G for the natural embedding of G in Sym(X). For
pairs (G, X) and (H,Y) in T and a bijection s : X — Y, note that s induces a
homomorphism of groups § : G — Sym(Y') by requiring

3(9)(y) = s(g(s™(y)))

for each y € Y and g € G. Call two pairs (G, X), (H,Y) isomorphic if there exists a
bijection X — Y which induces an isomorphism of groups G ~ H. Let T be the set
of isomorphism classes of pairs (G, X) and write [G, X] for the isomorphism class of
(G, X).

Given a subgroup G xSym(A) € Mg, the group G acts faithfully on A’, and so we
have a pair (G, A’) in T. Suppose G x Sym(A) and H x Sym(B) are elements of Mg
belonging to the same conjugacy class in ccs(S, M), with say o (G x Sym(A)) o~ =
H x Sym(B) for some o € S. Since o conjugates Sym(A) to Sym(B), we must have
that o induces a bijection s : A” — B’. The homomorphism G — H induced by this
bijection is the one induced by the conjugation action of o, and so the pairs (G, A’)
and (H, B’) are isomorphic. We then have a well-defined map ¢ : ccs(S,Mg) — T.

Given a pair (G,X) in T and an embedding 7 : X < N, we have an injective
homomorphism 7 : G < S by requiring 7(g)(7(z)) = 7(g - x) for each x € X, and
7(9)(y) = y for each y € 7(X)'. In this way we can assign to the pair (G, X), and
the embedding 7, a subgroup 7(G) x Sym(7(X)’) in Mgs. For 7’ : X — N another
embedding, any o € S mapping m(z) to n'(z) for each x € X then conjugates
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7(G) x Sym(7w(X)") to 7'(G) x Sym(n’ (X)), and so to a pair (G, X) we can assign
a well-defined conjugacy class of subgroups in M.

Suppose pairs (G, X) and (H,Y) in T are isomorphic, with s : X — Y the
bijection between X and Y inducing the isomorphism, and suppose we have some
fixed embeddings m; : X — N, w5 : Y — N. Our recipe above allows us to construct
subgroups 71 (G) x Sym(m (X)) and 7o(H) x Sym(m(Y)') in Mg. Then for any
o € S satisfying o(ma(s(x))) = m(x) for each € X, we have that o conjugates
7o(H) x Sym(m2(Y)") to 71(G) x Sym(m;(X)"). Our construction then gives a well-
defined map ¢ : T — ces(S, My).

The following is then immediate:

Lemma 3.16. The maps t and ¢ as above are mutually inverse, and define a 1-1

correspondence between 7 and ccs(S, ).

By Proposition 3.11, A(S, M) can be regarded as free on the set ccs(S, M),
and hence on the set 7. For a finite group G and finite set X with faithful G-action,
write (g x] for the corresponding Z-basis element of A(S,Ms).

Recall that a filtration of a ring R is a collection {R;};,cny where each R; is a
subgroup of R viewed as an abelian group, where R; C R;; for each ¢ € N, and
where R; - R; C R;y; for each 4,5 € N. We say that the filtration is exhaustive if
R = U;en Ri- The graded ring gr R associated to an exhaustive filtration {R;};en of

grR=EPQ

€N

where Qg = Ry and Q); = R;/R;_1 for i > 0. Multiplication is defined by putting

a ring R is given by

(r+Qi1) (s+Qj1) =7rs+ Qirj
for r € R; and s € R;, and extending by distributivity.

Lemma 3.17. Let
A, = Z Z’Y[G,X]-
[

G, X|eT
|X|<n

Then {A, }ren is an exhaustive filtration of A(S,Mg).

Proof. We have already seen in Proposition 3.11 that A(S,Ms) = J,, A,. Moreover,

we have seen in Example 3.8 that computing some product
[S/(G x Sym(A))] - [S/(H x Sym(B))]
gives terms of the form [S/(L x Sym(C))] where |C'| < |A'| 4 |B'|. It follows then

that A, - Ay C Apim. O
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Given [G, X], [H,Y] € T we have a faithful action of G x H on X LY and hence
a well-defined element of 7 given by [G x H,X UY]. Let A be the free abelian
group on the set of (¢ x], [G, X] € T. Define a multiplication on A by

Ca,x) - ay] = CaxHxuy]-

One can check that this makes A into a unital ring, with unity given by the pair

[e, 0], where e is the trivial group and () is the empty set.

Theorem 3.18. Let gr A(S,Mg) be the graded ring associated to the filtration
{A; }nen of A(S,Ms). Then gr A(S,Mg) ~ A.

We will defer the proof to the next section.

3.3.1 Constructing the multiplication operation

While we have described a basis of A(S,9Mg) as an abelian group in terms of the
set 7, in order to compute the multiplication operation we are still required to
choose embeddings into N and work with double cosets. In what follows we give a
description of y(g x1 - Ym,y] only in terms of the pairs [G, X] and [H,Y].

Let X = {z1,...,2,}, Y = {v1,...,ym}. A partial injection f : X — Y is a
(possibly empty) set of pairs (z;,y,), with each x;, y, appearing at most once. If
(w;,y;) is a pair contained in f we write f(z;) = y;; otherwise we say that f(z;) is
undefined. Let im f C Y be the set of all y; € Y such that there exists some z; € X
with f(x;) = y;. Note that the set of partial injections ¥ — X is just the set of
partial injections X — Y with each pair reversed. Write Ax y for the set of partial
injections X — Y.

For finite groups G and H, with G acting on a finite set X and H acting on a

finite set Y, we have an action of G x H on Axy, where if

[ = {(xilayjl)v R (xikayjk)}a

then we put
(g7h) ’ f - {(g ’ xiwh ’ yjl)v‘"v(g ’ xiwh ’ y]k)}

This partitions Axy into a set of orbits O for the action of G x H. Consider an
orbit O, and f € O with stabiliser Ko C G x H. Let Zp = (X UY) —im(f). Since
Ko stabilises f, we have a well-defined action of Ko on Zy. If G has a faithful
action on X and H has a faithful action on Y, then Ky acts faithfully on Z,. So
to pairs (G, X), (H,Y) in T, and O the set of orbits of G x H on Axy, we have a
well-defined collection {(Ko, Zo)}oeo in T. Moreover, it is immediate that this is
well-defined up to isomorphism class in T, i.e. to pairs [G, X],[H,Y] in T we have
a well-defined collection {[Ko, Zo|}oco in T.
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Theorem 3.19. With notation as above, the multiplication operation in A(S;9Mg)
is given by

Na.x]NHY] = Z VKo,Zo0)-
0e0

Thus we claim that the number of orbits is equal to the number of double cosets
obtained from embeddings of [G, X] and [H,Y] into S, and moreover that the pairs
[Ko, Zo| arising from the above construction are precisely the pairs arising from our
original definition of the multiplication.

Before establishing the correspondence we introduce some notation and make
some preliminary observations. Fix embeddings m : X — N, m5 : Y — N such that
z; — i, for 1 <i <n, and y; — j for 1 < j < m. The pairs [G, X] and [H,Y] in T
then give rise to subgroups U = 71(G) x Sym(n’) and V = T3(H) x Sym(m’) of §
belonging to M.

Note that for o,7 € S, we have oV = 7V if 0(j) = 7(j) for 1 < j < m. We then
have UcV = U7V if 0(j) = 7(j) whenever j € m and one of o(j),7(j) is in n.

If o € S is such that 0 € Sym(A) x Sym(B) for disjoint sets A, B C N, then
we can define elements 04 € Sym(A) and op € Sym(B) by putting o4(i) = o(i)
for each ¢ € A, and op(i) = o(i) for each i € B. Then 0 = 040p. Similarly, for
a subgroup K C Sym(A) x Sym(B), write K4 for the subgroup {o4 | 0 € K} of
Sym(A).

Lemma 3.20. We have a bijection between the set U\S/V of (U, V)-double cosets
of S, and the set O of orbits of the action of G x H on the set Ayxy of partial
injections X — Y.

Proof. For a partial injection f : X — Y, write Oy for the unique orbit to which
f belongs. Given a double coset UoV, define a partial injection f, : X — Y by
putting f(z;) = y; whenever o(j) = ¢ with j € m and i € n. We define a map
s : U\S/V — O by putting s(UcV) = Oy, .

In order to make sure that this map is well-defined, we need to check that if ¢’ € S
is such that UoV = Ud'V, then f, and f, are in the same orbit of Axy. Now if
UoV = Uc'V then we have uo’ = ov for some u € U and v € V. We can write
u = m1(g)T, and v = 7o(h)7,, where g € G, h € H, and 71 € Sym(n’), 75 € Sym(m’).
Suppose (z;,y;) € fo, i.e. we have j € n and ¢ € m with o(j) = ¢. Then
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and so o' - (e(h™Y) - j) = u™t i = 7y(g7t) - i. It follows then that for x; € X
and y; € Y we have (¢ 'z;,h ty;) € f, if and only if (z;,y;) € f,, and hence
(9,h) - for = [o

We define a map ¢t : O — U\S/V as follows. Given O € O and f € O, choose
any o € S satisfying o(j) = ¢ whenever (z;,y;) € f, and o(j) € n whenever j € m
is such that j ¢ im f. If 7 € S is another element with this property, we have
0(7) = 7(j) whenever j € m and one of o(j),7(j) is in n, and hence UsV = UTV.
It then makes sense to define t(0O) = UoV.

Running the above argument backwards shows that this does not depend on our
choice of f € O, and so the map is indeed well-defined. Moreover it is immediate

that the maps s and ¢ are mutually inverse, so we have a bijection between O and
U\S/V. ]

Lemma 3.21. Let UoV be a (U, V)-double coset of S, let O = s(UoV'), and let
Ko = Stabgxn fs. Consider the element (U, oV') of the S-set S/U x S/V and put

L = Stabg((U,0V)) = 71(G) x Sym(n) N o(7F2(H) x Sym(m))o ™"

and K = Lyys(m). Then the groups K and Ko are isomorphic.

Proof. Given (g,h) € Ko and (z;,y;) € fo, we have (g-x;, h-y;) = (T#,(9)(5)» Yr2(h)(j)) €
fo, and so the set

ny ={i € n| (z;,y;) € f, for some y; € Y'}
is invariant under the natural action of 71(g). It follows then that
T1(g9) € Sym(nx) x Sym(n — ny)

and hence we have a well-defined element 71 (g)n—n,. Similarly we define

my = {j €em| (z;,y;) € f, for some z; € X}
and note that

o2 (h)o ™" € Sym(o(my)) x Sym(o(m — my))
We then define a map ¢ : Ko — K by

¢(g,h) = T1(gIn-nxoT2(h)o ™"
Certainly ¢(g,h) € Sym(n U o(m)), so in order to show that ¢(g,h) € K it is

sufficient to show that it stabilises (U,oV'). This will follow from showing that we
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have
¢(g,h) € Sym(n) x Sym(c(m) — n)

with ¢(g,h)n = T1(g), and

¢(g,h) € Sym(o(m)) x Sym(n — o(m))

! This latter equation is clear from the definition of

with ¢(g, h)om) = 07a2(g)o™
®(g, h), so it only remains to show the former.

Now if i € n — nx, then certainly ¢(g,h)(i) = 71(g)(i). If ¢ € nx, with say
(xi,y;) € fr, then we have that o(j) = ¢. Suppose ¢ - x; = zx. Then we have

(xk,y) € fr with h-y; = y,. It follows then that o(l) = j. Now

oia(h)o™ (i) = o7a(h)(5)

as required, and so ¢(g, h)n = T1(9g).

Conversely, given some element 7 € K, it is clear that 7 must then be invariant
on n and o(m). Reversing our argument above, we can then pull back 7, along 74
to an element of G and 7,(m) along 7, to an element of H, and this defines a map
K — Ko which is the inverse of ¢.

Finally, since

d(g,h) - (¢, ') = T1(9)n-ny0T2(h)0 71 (g Jany o2 (W )0 ™"
= T1(9)n-nxT1(9 )n-nx Uﬁ?(h)ﬂ?(h/)ail
= 71(99 )n-ny072(hh )0~
= ¢(gg', hh'),
the map ¢ is indeed a homomorphism of groups, and so we have K ~ Ko. O

Lemma 3.22. Let Ko act on Zp = (X UY) —im(f), and K on Z = nU o(m).
Then (Ko, Zo) and (K, Z) are isomorphic.

Proof. Let ¢ : Zp — Z be defined by putting z; — i for 1 <14 <n, and y; — o(j)
for all j € m where y; is not in the image of f. Let ¢ : Ko — K be as defined in
the proof of Lemma 3.21. Suppose x; € X. Then

Y((g,h)-x;) = 7»U(?Ufrl(g)(i))
71(9)(7)
= ¢((g, h))¥(x:).
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Similarly, let y; € Y —im(f). Then

(g, h) - vi) = Y (Yran)i))
= o7a(h)(i)
= o7y(h)o o (i)
= o((g, 1)) ¥ (y:)-

The homomorphism Ko — Sym(Z) induced by 1 is then the isomorphism ¢ as
defined in Lemma 3.21, and so the pairs (Ko, Zp) and (K, Z) are isomorphic. [

This completes the proof of Theorem 3.19. Theorem 3.18 now follows as an easy

corollary:

Proof of Theorem 3.18. With notation as in Lemma 3.17, consider g x] € A, and
Ymy] € Ay There is a unique partial injection f : X — Y satisfying [(X LY —
im(f)| = |X| + |Y] given by the empty set. We have a corresponding orbit O with
(Ko, Zo) = (G x H/ X UY). Then in gr A(S,9s) we have

(Me.x) + Anz1) - (MaY) + Am—1) = Vexa xuy] + Angm—1,

and so the isomorphism of abelian groups gr A(S,9s) — A defined by putting

Ye,x] + An—1 = (jg,x) is then an isomorphism of rings. O

3.3.2 Mackey system of Young subgroups

Recall that for a composition A of n, we have a corresponding Young subgroup S, of
Sy. Let Q) be the collection of all subgroups of the form M, = S, x Sym(n’) together
with their conjugates (and for A the empty composition put My = S). It is clear
that ) is a Mackey system for S, and that the set of conjugacy classes ccs(S,9)) is
in 1-1 bijection with the set of partitions. We have a Burnside ring A(S,%)) and a
natural inclusion of rings A(S,9)) C A(S,Ms). Write vy for the element 7g, n of
A(S,9). Then for another partition y, we have coefficients c§ , defined by

M= DK

In order to describe the coefficients cf ,, we examine how the multiplication rule
described above behaves in the subring A(S,9)).

Let A = (\1,..., ) be a partition of n and o = (1, ..., y,) a partition m. A
numbering of 1 by A is a tuple (¢;;), 0 < <p, 0 < j < ¢, such that o, = 0,

Z ti,j = )\z

0<j<q
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for each 1 <7 < p, and
Z tij = |
0<i<p
foreach 1 < j <gq.

We can also describe numberings in terms of young tableau. Consider the young
tableau associated to u, and partially number the boxes using the numbers 1,...,p
such that each ¢ appears no more than ); times. Call this a tableau numbering of
by A\. For 1 <i<pand1l<j<g,lets,;; denote the number of boxes numbered i
in row j of the tableau. For 1 < j < g, let 59 ; be the number of boxes in row j left

unnumbered; for 1 <17 < p, define s, by

Ai — E Sig

1<j<q

and put soo = 0. It is clear that the tuple S = (s; ;) then describes a numbering of
i by A, and that any other tableau numbering of by A which can be obtained by
swapping boxes within the same row gives rise to the same tuple.

Define the join J(A, u, T) of A and p with respect to the numbering T to be the

partition v associated to T" viewed as a composition.

Proposition 3.23. The coefficient cf , is equal to the number of numberings 7" of
p by A such that J(A\, u, T) =

Proof. Let f:n — m be a partial injection. We can associate a tableau numbering
of u by A to f by putting the number i in the jth box of the tableau if f(I) = j and
Z A << E Ak. The orbit of f under the action of Sy x S, then corresponds to

k=1 k=
all all tableau formed by swapping boxes within the same row; so to an orbit O we

can associate a numbering T of u by A, and to each numbering we can associate a
unique orbit. Let 7 = J(A, u, Tp). An element of Sy x S, then stabilises f precisely
when it belongs to the subgroup S . O]
3.3.3 Refining the ghost ring
For sets A, B, write B4 for the set of functions A — B. Then

A~ H B,

acA

where a function f : A — B corresponds to a tuple (f(a))aca € [[,c4 B

Recall that for a finite group GG, we have an embedding

A(G) — Gh(ces(GQ)) = H 7 ~ 75(6)

(H)€eces(G)
and we can regard each a € A as a function ccs(G) — Z where a((H)) = mm(a).
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Both Z(%) and A(G) have Z-module rank equal to |ccs(G)|, and A(G) has finite
index in Z(&) . Similarly, for G a group and 9 a Mackey system for G, we have
an embedding

A(G, M) — zesE@M),

In the case of the restricted infinite symmetric group S, we have seen that
A(S,9Ms) has countable Z-module rank. However, Z<(5™s) does not, and so it
seems reasonable to ask if there is a more suitable choice of ghost ring.

For (H),(K) in ccs(S,Mg), write (H) < (K) if H is subconjugate to K, and
recall that by the proof of Proposition 3.13 that this defines a partial order on
ces(S, Mg). For (K) € ces(S,Mg), define

W((K)) = {(H) € ces(5,Ms) | (H) < (K)}

and let J be the topology on ccs(S,Mg) generated by requiring that W ((K)) is

both open and closed, for each (K) € ccs(S,Mg)?. Let C(S) C Z<(5™s) be the set
of continuous functions ccs(S, Mg) — Z with respect to the discrete topology on Z.

Proposition 3.24. The embedding 7 : A(S, Mg) — Z3™Ms) has image contained
in C(9).

We first give some preliminary definitions and observations. Let K = G xSym(A)
for some cofinite set A and some G C Sym(A’). The action of K partitions the set A’
into a set of orbits O . We define the signature of K to be the tuple b = (by,...,by)
recording the size of these orbits in non-increasing order. We define the signature

of a conjugacy class of subgroups (K) to be the signature of any K’ € (K) and note
that this is well-defined. For a tuple b = (b, ..., b,), let > b; be the length of b.
i=1

Lemma 3.25. For each m € N there are only finitely many (K) € ccs(S,Mg) such
that the length of the signature of (K) is < m.

Proof. Suppose (K) € ccs(S5,Mg) has signature of length m. Then there is some K
conjugate to K with K C Sym(m) x Sym(m’). It follows then that the number of
elements of ccs(S, Mg) with signature of length m is bounded above by the number
of subgroups of Sym(m), and hence the number of elements with signature of length
< m is finite. O

With K as above and o € S, note that each element of 0 K must map each orbit
O € Ok into 0(0) = {o(a) | a € O}. It follows that for J € Mg, a necessary

2For G a compact Lie group, € the set of conjugacy classes of closed subgroups of G with finite
Weyl group, and (K) € €, let 20((K)) = {(H) € € | (H) < (K)}. Then the topology on €
generated by requiring that 20((K)) be both open and closed for each (K) € € is precisely the
topology on € induced by the Lie group structure of G. A Burnside ring A(G) can be defined for
G, and an embedding A(G) < Z%. With respect to the induced topology on € and the discrete
topology on Z, this is an embedding into the set of continuous functions € — Z. See [11] for details.
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condition for J to fix the coset o K is for J to be invariant on the set o(O) for each
O € Ok, i.e. each ¢(O) must be a union of orbits in @;. For an orbit @ € O, we
say that @ is involved in o K if @ C o(O) for some O € Ok.

Suppose J = H x Sym(B) for some cofinite set B and some H C Sym(B’). For
Q € Oy and h € H, we have h € Sym(B’' N Q') x Sym(Q) x Sym(B) and so can
consider the element hpng . We define the expansion of J by () to be the subgroup
J'=H' x Sym(B U Q) in Mg where

H = {hB’ﬂQ’ | h € H}

Note that (J) < (J'), and that if @ is not involved in ¢ K, then J fixes o K if and
only if J' does.

Proof of Proposition 3.24. We wish to show that for each a € A(S,MMs) the map
ces(S,Mg) — Z given by (H) +— my(a) is continuous. Since each a can be written
as a SU @ = D x)cee(sms) A(K) S/ K] where a(x) € Z for each (K) € ces(S, Ms)
and where only finitely many of the terms a(x) are non-zero, it is sufficient to show
that for each K the map

o) (H) = |G/KT|

is continuous. In order to show this, it is sufficient to show that the pre-image
X, of any {n} € Z is open. We will do this for n > 0 by showing that each
Y, = (¢¥)71([n,00]) is both closed and open, and then observing that X, =
Y, N (C(S) = Y,41). For n = 0 we note that X, = C(S) — Y1, and for n < 0 we note
that X, is the empty set.

Suppose n > 0. We claim that there are finitely many maximal elements in Y,
with respect to the subconjugacy partial order. We will show this by establishing
a bound on the length of the signature of a maximal element, and then applying
Lemma 3.25. Let (K) have signature (by,...,0b,).

Suppose (/) is maximal, and some orbit @) of J is not involved in any oK in
(G/K)?. Then for J' the expansion of J by @, we have (J') € Y,,, and (J) < (J'),
contradicting maximality of (J). So each orbit of J must be involved in some oK
in (G/K)’.

Let (J) have signature (cy,...,¢.). Any orbit of J of cardinality greater than
by clearly can’t be involved in any oK, so we have ¢; < b; for each 1 < i < r. It
remains to establish a bound on 7.

Each orbit of K can be a union of at most b; orbits of J, and so each o K fixed
by J can have at most b;q orbits of J involved in it. Since each orbit of J must be
involved in some o K fixed by .J, we have ¢! ((.J)) > L If r > bign, J can not be
maximal, as expanding .J by any orbit would give a J’ with ¢)((J')) > n. So we
must have r < bygn.

Thus the length of the signature of a maximal element is bounded by b3gn, and
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so there are finitely many maximal elements.
Since (H,) < (Hs) implies ¢'%)(H;) > ¢'5)(H,), we have that

Y, = W(L)U...UW(J,)

for Ji,...,J, a complete set of maximal elements in Y,,, and hence Y,, is both open
and closed. n
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Chapter 4

Further B-rings and B’-rings

4.1 Rational representation rings

Let G be a finite group. The isomorphism classes of finite-dimensional rational rep-
resentations (i.e. linear representations over Q) of G form a commutative semi-ring
with unit, with addition given by direct sum and multiplication given by tensoring
over Q. The rational representation ring RQ(G) is the Grothendieck ring associated
to this semi-ring. For ¢ a finite-dimensional rational representation of G, write [¢]
for the isomorphism class of ¢ in RQ(G). We will first recall some basic facts about
rational representation rings; for proofs and further details see [7] (Chapter V).

Let cces(G) denote the set of conjugacy classes of cyclic subgroups of G, and let
¢1,...,¢, be a complete irredundant set of irreducible finite-dimensional rational
representations. Then r = | cces(G)], and as an abelian group RQ(G) is free on the
elements [¢1], ..., [¢,]. For a vector space V and a linear operator A : V' — V' write
tr A for the trace of A.

For each g € GG, we have a well-defined homomorphism of rings
my - RQ(CG) = Q.
where for a rational representation ¢ we put

mo([0]) = tré(g)

and extend linearly. For a complex linear representation ¢ and g € G, tr ¢(g) is an
algebraic integer, so 7, has image in Z. For ¢,¢' € G, ny = 7, if and only if (g) is
conjugate to (¢') in G, where (g) denotes the cyclic subgroup of G generated by g.
For a cyclic subgroup H = (g), write 7y for the map 7, and for r € RQ(G) write
r(H) for my(r).

Lemma 4.1. The maps 7wy combine to give an embedding

7: RQ(G) — H Z,

(H)€cees(G)
and this embedding defines a B-ring.

Proof. The only thing we need to check is that for H, J non-conjugate cyclic sub-
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groups, we can find r € RQ(G) with r(H) # 0 and r(J) = 0. Given a G-set X,
we have a rational representation ¢y defined on the vector space QX with basis
{es,# € X}, where px(g)(ex) = €42 Then my([px]) is just [XH|. So our result

follows from Lemma 1.11. OJ

As in the case of the Burnside ring, for H,J C G non-conjugate cyclic sub-
groups we write d(H, J) for drge)((H),(J)). For P € SpecZ we write q(H, P) for
arq) ((H), P).

For a rational prime p, each g € G can be written uniquely as g = ¢, 9, with g,
having order divisible by p and g, having order coprime to p. Similarly, for H C G
a cyclic subgroup, we have a decomposition H = H, x H,, where H, is a cyclic
subgroup of elements having p-power order and H, a cyclic subgroup of elements

having order prime to p. Then OP(H) = H,.

Proposition 4.2. Let H, J C GG be non-conjugate cyclic subgroups and p a rational
prime. Then p | d(H, J) if and only if OP(H) is conjugate to OP(.J).

Proof. 1f OP(H) is not conjugate to OP(.J), then by Lemma 1.12 and Proposition
1.9 there is a G-set X with p t |X#| — |X7|. Letting px be the corresponding
permutation representation, we then have p t 7y ([¢x]|)—7s([¢x]), and sop 1 d(H, J).

The converse follows immediately from a more general result of Serre:

Lemma 4.3 ([21] Section 10.3, Lemma 7). Let A be the subring of C generated by
the |G|th roots of unity, let R(G) be the ring of complex characters, and let x be

an element of A ®7 R(G) which takes rational integer values. Then

x(9) = x(g,) mod p.

]

Corollary 4.4. Let H,J C G be non-conjugate cyclic subgroups and p a rational
prime. Then p | droc)(H, J) if and only if p | da)(H, J).

Proof. By Proposition 4.2, p divides drg(ey(H, J) if and only if OP(H) is conjugate
to OP(J), and by Proposition 1.12 this is the case if and only if p | da)(H,J). O

Since RQ(G) is a B-ring, we have that each prime ideal is of the form ¢(H, (p)),
for H a cyclic subgroup and p a rational prime or zero. Proposition 4.2 together

with Proposition 1.9 then gives the following description of Spec RQ(G).

Corollary 4.5. For H, J cyclic subgroups of G and p a rational prime, q(H, (p)) =
q(J, (p)) if and only if p is a rational prime and OP(H) is conjugate to OP(.J).

Write Zg for the RQ(G)-module Zgy. Proposition 4.2 together with Proposition
1.7 then gives the following description of the degree 1 cohomology.

74



Corollary 4.6. Let H, J be cyclic subgroups of G. Then Ext}%Q(G) (Zy,Zy) is non-
zero if and only if (H) # (J) and (OP(H)) = (OP(J)) for some p, in which case
Ext}%Q(G) (Zy,Zy) has a unique p-power summand.

Write RQ(G) for RQ(G) ® F,. We then have the following corollaries from the
results of Chapter 1.5 together with Proposition 4.2.

Corollary 4.7. Suppose pt|G|. Then RQ(G) is semisimple.

Proof. By the proof of Corollary 1.29 we have p { dac)(H, J) for each pair H,.J of
non-conjugate subgroups. Then by Corollary 4.4, p { drg)(H, J) for each pair H, J

of non-conjugate cyclic subgroups, and by Corollary 1.26 RQ(G) is semisimple. [

Corollary 4.8. Let H,J C G be cyclic subgroups such that OP(H) is not conjugate
to OP(J) for any rational prime p. Then

Extho (Zu, Zy) =0

for all { > 0.

Proof. By Proposition 4.2, p 1 d(H, J) for any rational prime p, and the result follows
by Corollary 1.27. O

Corollary 4.9. Suppose p | |G| and p? 1 |G|. Let H be a non-trivial p-subgroup of G.
For J C G a cyclic subgroup and | > 1, write M ; for the p-part of ExthQ(G)(ZJ, Zy);
for K C G a cyclic subgroup not conjugate to J and [ > 1, write N, for the p-part
of Extlyg g (Zy, Zi). Then

1. My, is non-zero for some [ > 1 if and only if (J) € {(H), (e)},
2. Ny, is non-zero for some [ > 1 if and only if {(J), (K)} = {(H), (e)},
3. if (J) € {(H), (e)} then

0 if [ odd
Z/pZ ifl even,

Z/pZ if l odd

0 if [ even.

Proof. Write e for the trivial subgroup of G. Since p? { |G|, the subgroup H is a
Sylow p-subgroup of G, and all non-trivial p-subgroups of G are conjugate to H.
Then for non-conjugate cyclic subgroups J,J' in G, we have p | d(J, J') if and only
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it {(J),(J)} ={(H), (e)}. Let £ be the set of equivalence classes of the relation ~,
on cces(G). Then {(e), (H)} is the only class of cardinality 2, and all other classes
have cardinality 1. The remainder of the proof follows that of Corollary 1.31. [

Corollary 4.10. Suppose |G| is square-free. Then for all cyclic subgroups H, J C G,
ExtﬁQQ(G) (Zy,Zy) is either zero for all [ > 1, or periodic with period 2.

4.2 B’-rings

Another natural candidate for consideration within the framework of B-rings is the
ordinary representation ring R(G) of a finite group G, i.e. the Grothendieck ring as-
sociated to the semi-ring of isomorphism classes of finite-dimensional complex linear
representations. However R(G) ®z Q is not necessarily a product of 1-dimensional
Q-algebras, and so by Proposition 1.3, R(G) is not isomorphic to a B-ring. The

obvious thing to do is relax this condition.

Definition 4.11. A B’-ring is a commutative torsion-free reduced ring which is of

finite rank as a Z-module.

This raises the question of the appropriate embedding for such a ring. For [
a finite set and A; = {4;};c; a multiset of subrings of rings of algebraic integers,
define Gh'(I) = [],.; A;. For a subring R C Gh'(I) let m; be the projection R — A,

corresponding to ¢ € I. For r € R write r(i) for m;(r).

Proposition 4.12. A ring S is a B’-ring if and only if there exists a finite set I and
a multiset A4; of subrings of rings of algebraic integers, together with an isomorphism
S ~ R C Gh'(I) such that for each distinct pair 7,5 € I, there exists an r € R with
r(i) # 0 and r(j) = 0, and such that for each i € I, the associated projection map

m; « R — A; is surjective.

Proof. Since Q ®7 S is a finite-dimensional commutative reduced Q-algebra, by the

Artin-Wedderburn theorem ([4] Theorem 1.3.5) we have an isomorphism

0:Qws — []E

iel
for some finite set I and some multiset & = {E; };c; of finite field extensions of Q.
For each i € I, let A} be the ring of algebraic integers of E;. As in the proof of
Proposition 1.3, we identify R = (1 ® S) as a subring of ||

For each i € I we have a projection map

;1 Aj isomorphic to S.

mi:R— A

onto the factor corresponding to ¢ € I. Let A; be the subring m;(R) C A,. We
can then regard R as sitting inside Gh'(1) = [[,c; A;. The remainder of the proof
follows that of Proposition 1.3. O
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For I a finite set, A; = {4, }ic;r a multiset of subrings of rings algebraic integers,
and R C Gh'(I) a B'-ring, define an R-module structure on A; by

r-n=r(i)n.

For the remainder of this chapter let I be some fixed finite set and A; some multiset
of subrings of rings of algebraic integers.
We restate results on B-rings which follow in this more general setting without

any adjustment.

Lemma 4.13. Let R C Gh'(I) be a B'-ring. Then the modules Extl(4;, A;) are
finite for any [ > 1 and 7,5 € [.

Lemma 4.14. Let R C Gh/(I) be a B'-ring. Then

0 ifi#j

Homp(A;, A;) ~
A, ifi=j.

Recall that for R C Gh(I) a B-ring, we defined positive integers d(i,j) for
distinct 4,7 € I such that

i. Extp(Zi,Z)) =~ Z;/d(j,4)Zy;
ii. q(i, (p)) = q(4. (p)) if and only if p | d(i, j).

We can’t define d(i, j) as before, as we do not necessarily have an ordering on a

given subring of a ring of algebraic integers.

Definition 4.15. Let R C Gh'(I) be a B'-ring, and for j € I let K; be the kernel
of the map m; : R — A;. For ¢ € I with i # j, define dg(7, j) to be the ideal m;(Kj)
of A;. When the ring R is clear, we will simply write d(3, j).

While it no longer makes sense to ask if d(i, j) = d(j,7), we do however have the

following.
Lemma 4.16. A;/d(i,j)A; >~ A;/d(j,1)A;.

Proof. Note that
Since R/K; ~ A;, we have

Ai/d(i, ) ~(R/KG) /(K + K;)/K;)
~ R/(K; + K;)
~ (R/K;)/(K; + K;)/K;)
~ A;/d(j,1). O
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For A a subring of a ring of algebraic integers, F its field of fractions, and J C A

an ideal, we can define an A-submodule of F
Jl={ecE|eJC Al

If A is a principal ideal domain, then J = (j) for some j € A, and J~! = (j7'). Then
we have an isomorphism of A-modules J~'/A ~ A/.J. We can state the equivalent
of property i above.
Proposition 4.17. Let R C Gh'(I) be a B'-ring, 7,5 € I. Then
d(j, i) JA; ifi#j

0 ifi=j.

Proof. We first recall the proof of Proposition 1.7, most of which goes through in
this more general setting. Putting K; = kerm;, and letting ¢+ denote the inclusion

K; — R, we have
EXt}%(A“ AJ> ~ HomR(Ki, Aj)/Z(HOI’IlR(R, Aj)),

where 7 = Hompg(¢, A;).

Suppose ¢ # j, and recall that any homomorphism of R-modules K; — A, factors

through 7|k, : K; — d(7, 7). We can then rewrite the above as

Extp(4;, Aj) ~ Homy, (d(i, j), A;) /o(Homy, (A;, A;)),

where o denotes the inclusion d(i, j) — A; and & = Homy, (0, 4;).

Since Homy, (d(i, j), A;) /o (Hom, (A;, A;)) is finite, it is torsion. Then for any
homomorphism of A;-modules 7 : d(7,j) — A;, there exists some n € Z such that
nt is given by multiplication by some element a in A;. Let E be the field of fractions
of A;. Then 7 is given by multiplication by a/n € E. It follows that each e € £
with e - d(i, j) C A; gives rise to a homomorphism of A;-modules d(i,j) — A;, and

all homomorphisms are of this form. So we get
Homy, (d(i, j), A;) ~ d(i,j) "

with d(i,7)! as defined above. Moreover this isomorphism sends the submodule
o(Homy, (A}, A;)) of Homy, (d(j,7), A;) to the submodule A; of d(j,7)~", so we have

Exth(A;, Aj) = d(j,1) " /A,

as claimed.

If i = j, again any homomorphism K; — A; factors through m;(K;) = 0, and so
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Eth(Ai, Al) = 0. L]

Let I be a finite set and A; a multiset of subrings of rings of algebraic integers.

The spectrum of Gh'([) is given by

Spec Gh'(I) = | |Spec 4;,
icl
and as before, for i € I and P € Spec A; we write Q(i, P) for the corresponding
prime. For each i € I, let e; be the corresponding idempotent of Gh'(I). Let
R C Gh'(I) be a B'-ring. Since the projection maps 7; : R — A; are all surjective,
for any 2 € Gh'(I) we can find elements x; € R such that

xr = E €;T;.

icl

Now since each e; is trivially integral over R, it follows that Gh'([) is integral over

R, and so we have a surjection
Spec Gh'(I) — Spec R

given by Q(i, P) — Q(i, P) N R =: qg(i, P). For P € Spec A; and J an ideal of A;,
write P | J for J C P.

We can now state our equivalent of Proposition 1.9.

Lemma 4.18. Let R C Gh/(I) be a B'-ring and suppose P € Spec A; is such that
P | d(i, 7). Then there exists Q) € Spec A; with ¢(i, P) = ¢(j,Q) and Q | d(j, 7).

This follows from the slightly more general result:

Lemma 4.19. Suppose P is a proper ideal of A; with P | d(i, 7). Then the set
Q={r(j) € Aj | re R,r(i) € P}

is a proper ideal of A;, with @ | d(7,1).

Proof. 1t is clear that @ is an abelian group and that d(j,7) C Q. For ¢ € @ and
a € A;, we can choose r,s € R with r(j) = ¢, r(i) € P, and s(j) = a. Thenrs € R
satisfies (rs)(i) € P and (rs)(j) = qa. So ag €  and @ is an ideal of A;.

Put P = {r(i) € A; | r € R,r(j) € Q}. Certainly P C P. We claim that
P c P and hence P = P. Consider p € P, and let r € R be such that r(i) = p and
r(j) = ¢ € Q. By the definition of @, there then exists v’ € R with r(j) = ¢ and
r'(i) = p for some p € P. Put t = r—7r’. Then ¢(j) = 0 and hence t(i) € d(i,j) C P.
But t(i) = p—p € P and hence p € P. So P = P. Now if Q = A; then it is
clear from the definition that P = A;. But P = P is proper so () is proper, as
required. O
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4.2.1 Character rings

Let G be a finite group. The isomorphism classes of finite-dimensional complex rep-
resentations (i.e. linear representations over C) of G form a commutative semi-ring
with unit, with addition given by direct sum and multiplication given by tensoring
over C. The representation ring R(G) is the Grothendieck ring associated to this
semi-ring. For ¢ a finite-dimensional representation of G, write [¢] for the isomor-
phism class of ¢ in R(G). We will first recall some basic facts about representation
rings; for proofs and further details see Chapter V of [7].

Let cc(G) denote the set of conjugacy classes of G, and let ¢y, ..., ¢, be a com-
plete irredundant set of irreducible finite-dimensional complex representations. Then
r = | cc(G)], and as an abelian group R(G) is free on the elements [¢1], ..., [¢,]. For
g € G, write (g) for the conjugacy class of g.

For each g € GG, we have a well-defined homomorphism of rings
7yt R(G) —» C
where for a complex representation ¢ we put

mo([]) = tré(g)

and extend linearly. Let A be the ring of algebraic integers and recall that for a
complex representation ¢ and g € G, tr¢(g) is an algebraic integer. For g € G, we
have a subring A, of A given by all 7 (r),r € R(G). For g,¢ € G, we have 1, = 7y
if and only if (¢) = (¢').

It follows that the homomorphisms 7, allow us to embed R(G) as a subring
of [T y)cce(@) Ag- 1t is clear in the sense of Definition 4.11 that R(G) is a B'-ring.
However the embedding just defined is not in general a B’-ring embedding in the

sense of Proposition 4.12.

Example 4.20. Let G = (3, the cyclic group of order 3. Let w be the algebraic in-
teger €>™/% and A the subring of C generated by w. We can identify R(G) as the sub-
ring of Z x A x A which as a Z-module is spanned by the elements (1,1, 1), (1,w,w?),
and (1,w? w). Let ¢ denote the element (1,w,w?) and note that ¢* = (1,w? w).
Now the regular representation of C'3 corresponds to the element (3,0, 0) of R(G),
so we certainly have the separability condition verified for the first slot. However,
we claim that there is no x = (x1, 29, 23) € R(G) with 23 = 0 and z3 # 0. Since
R(G) is spanned by the elements 1), t,t*, for any element y € R(G) we can find
some polynomial f, with integer coefficients such that f,(¢) = y. Suppose we have
fz(t) = x with = as above. Then xs = 0 implies that f,(w) = 0, in which case
r3 = fr(w?) = 0, since w and w? are both roots of the minimal polynomial for w

over Z.

80



For each (H) € cces(G), fix some choice of g € G satisfying ({g)) = (H), and

write 7wy for m, and Ay for A,.

Proposition 4.21. The maps 7y combine to give an embedding

and this embedding defines a B’-ring.

Proof. Any rational representation of GG is automatically a complex representation,
so our verification of the separability condition for the rational representation ring
in the proof of Lemma 4.1 is also a verification of the separability condition for the
claimed embedding above.

It remains to show that this is indeed an embedding. We know we have an

embedding

and we can regard our map 7 as the map ¢ followed by the map

a: Ay — H Ag
(

g)€cc(G) (H)€Ecces(GQ)

given by dropping the additional slots.

Suppose then that = € R(G) is such that w(z) = 0. If x # 0, then «(x) # 0, and
so z is only non-zero in the slots dropped by the map «. Since 7 () is an algebraic
integer, for each (g) € cc(G) we can find some f, € Z[y] such that f,(7m,(z)) €
Z — {0}, and hence we can find some polynomial f and some g € G such that
f(z) € ker 7 is integer-valued and 7,(f(x)) is non-zero.

So we can assume that x € ker 7 is integer-valued. But for any integer-valued
virtual character y we have that y(g) = y(h) whenever g and h generate conjugate
cyclic subgroups ([14] Lemma 5.22). It follows then that 7wy (x) # 0 for (H) = ({g)),

a contradiction. So ker m = 0 and 7 is an embedding. [

81



References

[1] M. Atiyah, K-Theory, Advanced Books Classics, 1989.

[2] M. Atiyah, I MacDonald, Introduction to Commutative Algebra, Addison-
Wesley Publishing Company, 1969.

[3] M. Auslander, I. Reiten, S. O. Smalo, Representation Theory of Artin Algebras,
Cambridge University Press, 1997.

[4] D. Benson, Representations and Cohomology I, Cambridge Advanced Studies
in Mathematics, 1991.

[5] N. Bourbaki, Algebra I, Springer, 1989.

(6] T. Church, J. Ellenberg, B. Farb, FI-modules and stability for representations
of symmetric groups, Duke Math. J. 164 (2015), no. 9, 1833 — 1910.

[7] C. W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associa-
tive Algebras, American Mathematical Soc., 1966.

[8] W. A. de Graaf, Lie algebras: theory and algorithms, North Holland, 2000.

9] M. Deiml, The symmetry of the modular Burnside ring, Journal of Algebra,
228 (2000) 397-405.

[10] A. W. M. Dress, A characterisation of solvable groups, Math. Z., 110:213-217,
1969.

[11] H. Fausk, Survey on the Burnside ring of compact Lie groups, Journal of Lie
Theory 18 (2), 2008.

[12] T. H. Gulliksen, A note on the homology of local rings, Math. Scand. 21 (1967)
296-300.

[13] W. H. Gustafson, Burnside rings which are Gorenstein, Comm. Algebra 5 (1977)
1-15.

[14] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, 1976.

[15] G. D. James, The Representation Theory of the Symmetric Group, Springer,
1978.

[16] N. Jacobson, Basic Algebra (Second Edition), Dover, 2009.

82



[17] T.Y. Lam, Introduction to Quadratic Forms over Fields, American Mathemat-
ical Soc., 2005.

[18] W. Liick, The Burnside Ring and Equivariant Stable Cohomotopy for Infinite
Groups, Pure Appl. Math. Q., 1(3):479 — 541, 2005.

[19] H. Matsumura, Commutative algebra, W. A. Benjamin, 1970.

[20] S. Sam, S. Snowden, Stability patterns in representation theory, Forum Math.
Sigma 3 (2015), ell.

[21] J.P. Serre, Linear Representations of Finite Groups, Springer, 1977.

[22] L. Solomon, The Burnside algebra of a finite group, J. Comb. Theory 2 (4)
(1967) 603-615.

[23] J. Tate, Homology of noetherian rings and local rings, Illinois J. Math. 1 (1957),
14-27.

[24] T. tom Dieck, Transformation Groups and Representation Theory, Lecture
Notes in Math., vol. 766, Springer, Berlin, 1979.

[25] C. Weibel, An Introduction to Homological Algebra, Cambridge University
Press, 1994.

83



