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“I think I can safely say that nobody understands quantum mechanics.”

Richard Feynman

“In fact, the mere act of opening the box will determine the state of the cat, although in this
case there were three determinate states the cat could be in: these being Alive, Dead, and
Bloody Furious.”

Terry Pratchett
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Distributing and sharing entanglement at a distance is a key ingredient in many fu-
ture quantum communication protocols, however entanglement is a fragile resource
and can break down upon interacting with the environment. Within this thesis we
present two possible entanglement swapping protocols, and show that these proto-
cols are resilient to small levels of photonic losses. We propose the use of these pro-
tocols in quantum communication schemes that require shared entangled qubits, in
the form of a Bell state.

The input states to our proposed protocols are hybrid entangled states, which are
discrete-variable and continuous-variable entangled states. We use the vacuum and
single photon Fock state as our discrete half, which is stationary in our entanglement
swapping protocol, whereas the continuous variable half is modelled as travelling
through lossy optical fibre before being measured. The first protocol uses coherent
states in a superposition as propagating modes in our entanglement swapping set-
up, whereas the second, more complicated, protocol uses superposed cat states.

We model photonic losses by applying a beam-splitter of transmission T to our
propagating continuous variable modes, along with an input vacuum state. We also
model the more realistic circumstance in which the losses in these two continuous
variable modes are not equal. We then detect these continuous variable modes using
a vacuum projective measurement and balanced homodyne detection. We also in-
vestigate homodyne measurement imperfections and non-ideal outcomes, as well as
success probabilities of these measurement schemes. We calculate the entanglement
negativity and linear entropy of our final two qubit state, as well as fidelity against
the |Φ+〉 Bell state in the coherent state protocol, and a phase-rotated |Φ+(α)〉 Bell
state in the cat state regime.

We demonstrate that a small amount of loss mismatch does not destroy the over-
all entanglement, thus demonstrating the physical practicality of this protocol.
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Chapter 1

Introduction

1.1 General Overview

Quantum information, one of the newest and arguably most exciting fields of quan-
tum physics, relies on the use of quantum entanglement and the superposition prin-
ciple for practical use in numerous technological applications, such as quantum
metrology, quantum communication and quantum cryptography. Communication
and cryptography (the art of encoding information) are undeniably the two most
developed and relevant to the world we currently live in and are aiming for in the
future.

Quantum information theory is becoming both more widely researched, and
more relevant to current technological demand. Certain aims are clear in this field,
and were discussed by M. Neilsen and I. Chuang; identifying new elementary classes
of resources (such as the classical bit or the qubit); investigating dynamical processes
in quantum mechanics (such as quantum memory); quantifying resource trade-offs
as a result of dynamical processes (i.e. the minimum resources to transfer informa-
tion between two parties) [2].

Most public (classical) communication schemes that are used currently rely on
the difficulty of computationally calculating certain mathematical problems, such as
finding the two prime factors p and q of a 1000-digit number N = pq - in fact this
scheme was devised by Rivest, Shamir and Adleman in 1977, in which they pro-
posed the first known public-key cryptography protocol (known as the RSA proto-
col) [3] [4]. The simple concept behind asymmetric public-key cryptosystems, such
as the RSA protocol, is that any user can access the public encryption key (consider a
random string of bits, i.e. 00101011...) which they use to encode their message, how-
ever only the receiver can access the decryption key - this is entirely secure, reliant
on the fact that this key is completely unavailable to anyone but the receiver [5].

In reality, this is of course not the case, and with the expansion of computer
networks, the cryptography research community were tasked with devising new
methods of sharing secret keys; in a public-key cryptosystem the encryption key is
publicly available (i.e. accessible to anyone in the network), whereas the decryption
key is available only to the two users that wish to communicate [6]. In performing
public-key cryptography practically, one therefore uses the RSA protocol, relying
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on hard-to-solve factorisation problems, to provide security in this key distribution
scheme.

Although this factorisation problem is currently impossible to solve with modern-
day technologies, cryptography protocols that rely on this security process are po-
tentially vulnerable in the future if quantum computers are manufactured [7]. In
fact, it was the derivation of a quantum algorithm by P. Shor in 1994, which intro-
duced a method in which one could theoretically break this factorisation problem,
exponentially faster than any classical computer could [8]. This fundamental lack of
security poses a huge flaw for security systems reliant on hard-to-solve factorisation
problems, and as such it falls to quantum (and indeed classical) cryptographers to
improve these schemes to ensure unconditional security.

With this fundamental flaw in the future security of cryptosystems, one of the
main challenges in quantum technologies is the prevention of information that is
sent between two parties (often named Alice and Bob) being extracted by an eaves-
dropper (named Eve). Quantum Key Distribution (QKD) is one of the most sig-
nificant elements in quantum communication, and is among the most developed
quantum technologies, which promises information-theoretic security, guaranteed by
the fundamental laws of quantum mechanics [9]. QKD can exploit quantum entan-
glement (discussed in Subsec. 1.2.10), although this is not a requirement, to ensure
that any information that is sent between Alice and Bob that is intercepted by Eve
will be detected by either Alice or Bob - if this is the case, the intercepted key that
Alice and Bob have shared can simply be thrown away and they can attempt an-
other exchange without Eve discovering any information on their shared system. In
simple terms, quantum entanglement is the most non-classical manifestation of the
quantum formalism, and occurs when two quantum states are combined in such a
way that the states cannot be described independently [10].

For the purposes of QKD, should Eve happen to intercept and measure one of
the quantum states sent between Alice and Bob, this will then alter the state of the
remaining entangled qubit (in possession by Alice or Bob), which they will be able
to detect [2]. Therefore, QKD offers the promise of unconditionally secure commu-
nications. QKD has possible implementations for enhanced information security for
military, financial and also diplomatic causes. It is for this reason quantum com-
munication and its counter-parts are so important for the world we live in, and em-
phasises the need for extensive research within this field, so as to improve security
proofs further.

The BB84 (so named after C. Bennett and G. Brassard in 1984 when the protocol
was developed) [11] and the E91 (developed by A. Ekert in 1991) [12] are funda-
mental QKD protocols, and were the first notable ones in this field to be produced.
The BB84 is the original QKD scheme and is recognised as the first quantum cryp-
tography protocol and was proven using photon polarisation states (polarisation is
discussed further in Subsec. 1.2.4) for the transmission of information; this protocol
also uses the one-time pad, a device which produces a completely random secret
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key that is used to encrypt and decrypt information that is transmitted between Al-
ice and Bob, and this technique is known to be secure against Eve on the condition
that the key is not reused and is truly random [13].

In the BB84 scheme the photons are polarised with respect to the bit values (0 or
1) that the one-time pad generates, and are also polarised according to a randomly
generated basis, rectilinear (+) and diagonal (×), hence Alice has the ability to send
four differently polarised photons to Bob, each of which she takes a record of. Bob
then chooses a basis to perform an orthonormal measurement in, either rectilinear
or diagonal, and according to quantum measurement theory all information on the
initial polarisation is lost and so the photon is subsequently polarised in the direction
of the basis that was used in the measurement. Finally, Bob communicates with Alice
via a public channel (at this stage the security of the protocol is not impacted if Eve
intercepts this channel) the basis used for his measurements. Alice responds with the
basis she sent the photons in, and the results are kept if both of the bases match, or
discarded, and the resultant bit string (which will probabilistically be 50% the length
of the bits sent) is the shared key that is required by the protocol [14]. Furthermore,
as a result of quantum measurements altering the state that is measured, Alice and
Bob are only required to publicly check then discard a portion of their bit string to
see how many of their results match, and if it is less than a pre-set threshold then
it is indicative of an eavesdropper being present attempting to gain knowledge via
measurement, which introduces detectable errors [15].

The E91 protocol manipulates quantum entanglement (note that the BB84 scheme
does not) between pairs of photons shared between Alice and Bob; unlike the BB84
scheme, in the E91 photons are not sent from Alice to Bob, they are instead dis-
tributed from an entanglement source, and are then sent to Alice and Bob [16]. This
is particularly useful from a practical perspective: in a real-life situation the two
parties would realistically be far separated, and so distribution of photons from a
central source (such as a satellite) would be required. In the E91 protocol, A. Ek-
ert proposed the use of entanglement to share the secret random key between Alice
and Bob as a result of the state correlations that arise from entangled systems [17].
The security proof of this protocol relies on violation of Bell’s Inequality [18], which
states, in the simplest terms, that some correlations that are actually predicted by the
rules of quantum mechanics cannot be reproduced by any local theorem [19].

These two protocols perfectly describe the implementation of QKD for secure
communication and since their development many schemes have been produced
that manipulate the rules of quantum mechanics and information theory in various
ways, such as; the SARG04 protocol, which is similar to the BB84 protocol, but in-
stead uses attenuated laser pulses as opposed to single-photon sources, thus devel-
oping a more robust protocol [20]; the B92 protocol, derived from the BB84 scheme,
the difference arising from the use of non-orthogonal states as opposed to a rectilin-
ear and diagonal basis for polarisation [21]; decoy state QKD, the most commonly
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implemented QKD protocol, in which weak coherent pulses are used for uncondi-
tionally secure information transfer [22]. H. Singh, A. Singh and D. Gupta provide
a more extensive overview of QKD protocols in their review “Quantum Key Distri-
bution: A Review” [23].

Continuous variables (CVs, as discussed in Subsec. 1.2.4) are of particular use
in QKD and communication protocols, and a number of cryptographic schemes that
manipulate coherent states have been produced [24, 25], and recently the most long-
distance QKD protocol so far, of 100 km, has been successfully performed experi-
mentally using CVs [26]. The practicality of using CVs is also worth noting; they
are compatible with current standard optical telecommunication technologies, and
so could be suitable for large-scale communication protocols [27, 28].

Overcoming detector side-channel attacks from an eavesdropper is yet another
notoriously difficult problem within QKD, and other quantum communication pro-
tocols, to avoid. One solution for this is to use Measurement Device Independent
QKD (MDI-QKD) schemes. In MDI-QKD, Alice and Bob prepare their states as per
usual, but instead send these states to an untrusted relay (Eve), who then performs
a measurement on these. This is the key point to why MDI-QKD is so attractive; in
MDI-QKD it is actually desired for Eve to intercept the signal and measure, as it is
this process that causes the wave-function collapse in the measured modes to then
complete the QKD protocol, and much work has been carried out concerning this,
using CVs, DVs, and hybrid schemes using both [29, 30].

Using an Entanglement Swapping (ES) protocol for QKD can resolve the issue
of a third-party eavesdropping and intercepting any useful information [31]. ES is
discussed further in Subsec. 1.2.11, however, simplistically ES is a scheme in which
Alice and Bob, who wish to share an entangled pair of qubits, begin with separately
entangled states, and by sending half of each of these pairs to a detection scheme
elsewhere this causes entanglement to be subsequently shared between Alice and
Bob. This is perhaps even more bizarre conceptually than entanglement itself, which
usually originates via a direct interaction between two quantum states [10]; entan-
glement swapping requires no such interaction (aside from the initial separate en-
tanglement generation by Alice and Bob), yet they can still share entanglement after
performing ES.

As already stated, ES protocols require a joint measurement to be performed on
the two halves of the quantum states sent by both Alice and Bob (see Fig. 1.8), and
so if these states are the ones that are sent to Eve, which she then subsequently mea-
sures (as she will be under the impression that she is gaining useful information)
then she has actually assisted Alice and Bob in achieving entanglement for their re-
maining qubits, as required in their communication protocol. This is an integral
point which should be emphasised, as it is one of the most intricate and sophis-
ticated uses of quantum entanglement, and as such ES protocols are the basis for
considerable research within quantum technology.
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ES is an especially advantageous approach to distributing entanglement at a dis-
tance so as to achieve long-distance quantum communication; this is as a result of
the joint measurement that is performed actually guaranteeing successful entangle-
ment [32]. This therefore highlights further the importance of this project. Estab-
lishing what may be achieved with an ES protocol, such as the one proposed in this
report, is of particular use as it means the protocol can be adapted and used in mul-
tiple ways.

ES was first demonstrated experimentally in 1993 by M. Zukowski et al. [32], and
has since been performed with discrete variables (DVs, discussed in Subsec. 1.2.4)
in various cases [33–35], and also for CVs [36, 37]. CV systems typically pose the
advantage of high success probability, whereas DVs are often robust against lossy
channels; hence, an advantage could be gained from using both CV and DV states in
what is referred to as a hybrid entanglement scheme [38], and will be investigated
in this work. Both, DVs and CVs, have been extensively researched when used in
entanglement swapping protocols together and have also been demonstrated exper-
imentally [39].

One of the most fundamental, adversely impacting factors of quantum technolo-
gies to research is decoherence, and how to overcome “noisy” communication chan-
nels - in the practical quantum world we must consider the system we are observing
to be open, that is to say that the environment interacts with the system, thus causing
decoherence, noise and losses [40].

Throughout this thesis we propose two entanglement swapping protocols (see
Chapter 2, Sec. 2.1) with the aim to produce a highly entangled pair of qubits, which
could potentially be sold to a customer (or customers) for further uses within quan-
tum communication protocols (such as QKD, as discussed). Unfortunately, it is well
recognised that entanglement is a fragile resource, and breaks down in the presence
of environmental noise [41], even when the quantum state is described as a photon
travelling through optical fibre. Within this work we investigate photonic losses in
our propagating modes (see Fig. 2.2) to demonstrate that we can still distribute a
shared entangled pair of qubits between Alice and Bob, whilst tolerating a small
amount of loss. Overcoming losses in optical fibres is a huge challenge within the
quantum technology community, and one particularly compelling method to over-
come these losses is in quantum repeater networks.

The general concept of a quantum repeater network is as follows: Alice and Bob
wish to share an entangled pair of qubits, to do so they first distribute entanglement
over each elementary link (node), in which quantum memories are required to en-
sure that these nodes store the entangled state, and then entanglement swapping
experiments (as described throughout this thesis) are performed between the mid-
dle nodes in the repeater network [42]. The result is that Alice and Bob then share
entanglement, despite never having directly interacted. The following schematic of
Fig. 1.1 shows the straightforward concept behind quantum repeaters:
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FIGURE 1.1: A schematic diagram of the general concept of a quantum re-
peater network. The first step is generating initial entanglement at each node
(and Alice and Bob), before performing entanglement swapping (and sub-
sequent entanglement distillation) methods between nodes, to distribute en-

tanglement between Alice and Bob.

Note that this method also requires an entanglement distillation step (as shown
in Fig. 1.1, and as discussed in detail in Chapter 6), which increases the level of en-
tanglement shared between two qubits, at the expense of requiring multiple lower-
entanglement pairs of qubits to do so [43]. This in turn ensures that the final entan-
glement shared between Alice and Bob does not break down, and of course should a
single entanglement swapping experiment fail at any of these nodes then the quan-
tum repeater process fails. Furthermore, quantum repeater networks also require
quantum memories (the storage, and subsequent retrival of, quantum states [44])
to store the quantum states at each node between entanglement swapping experi-
ments, which are currently difficult to devise at the time of writing [45]. Nonetheless,
this process of dividing a lossy channel between Alice and Bob into smaller, more
manageable lengths, means that quantum repeater networks are a real possibility in
the future for truly long-distance quantum communication schemes in distributing
entanglement [46], thus further proving the importance of entanglement swapping
protocols, such as these proposed in this work.
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Finally, we note here that despite the promising nature of many of these quantum
cryptographic concepts, in the hopes of being able to communicate with absolute se-
curity in the near future, before many of these concepts (such as QKD, or repeater
networks) can be widely adopted for commercial use, there are a number of impor-
tant challenges still to address. Inherently, the actual integration of these communi-
cation networks into our current infrastructure is a challenge in itself, although we
do recognise that there are indeed many protocols which work with currently built
infrastructure [27]. Moreover, many of these quantum technologies are cutting-edge
research, and so to keep the implementation of these at low-costs is also a huge chal-
lenge for this community [47]. Lastly, and of most importance to the work in this
thesis, is overcoming photon losses when sending quantum signals through opti-
cal fibres (and indeed free-space too, although this is not considered in this work)
[48]. There are many challenges left in integrating quantum technology-based archi-
tecture into our daily lives, but the possibilities of the security it brings, impacting
everyone across the world, makes it an undeniably appealing and vital field of study.

We now discuss a few key concepts and definitions, required for the intricate
mathematical and conceptual detail of this thesis, before presenting our proposed
entanglement swapping protocols in more detail in Chapter 2.

1.2 Basic Definitions

1.2.1 The Qubit

In classical physics, and conventional digital data approaches, the bit is used as the
basic unit of measure of information, and takes the values of 0 and 1. When we
move into the quantum world, the most simple system in information theory is the
quantum bit (qubit), and this is described by the two orthogonal states |0〉 and |1〉,
thus forming an orthonormal basis for two-dimensional state space. It is important
to note, however, that the qubit does not just exist in the states of |0〉 or |1〉, and this
is the key difference between classical and quantum information. Using qubits it is
possible to form a linear combination of states, known as a quantum superposition:

|ψ〉 = c0 |0〉+ c1 |1〉 , (1.1)

where c0 and c1 are complex numbers such that |c0|2 + |c1|2 = 1, since the proba-
bility of finding that qubit in either state must sum to unity. Following quantum
measurement theory, upon measuring the bit value of this qubit the result is 0, with
probability |c0|2, or 1, with probability |c1|2 [2], hence the state of the qubit can be
described geometrically as a unit vector in a two-dimensional complex vector space.
Typically, |0〉 is the vacuum state, and |1〉 is the single photon state. Alternatively, |0〉
and |1〉 could represent two orthogonal polarisation states. In this work, it will be as-
sumed that the state |0〉 indicates a vacuum state (the quantum state with the lowest
possible energy), as opposed to ’logical 0’ which is the state as described above.
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Qubits can also be expressed geometrically in terms of the Bloch sphere. The
surface of the Bloch sphere represents the pure state space of the two-level system
(the qubit), as follows:

FIGURE 1.2: Bloch sphere representation of the two-level qubit state space.

(Note the equivalence of the state described by |Ψ〉 in Fig. 1.2 and the state described
in Eq. 1.1). The antipodal points of the Bloch sphere correspond to the mutually
orthogonal states |0〉 and |1〉 (orthogonal here meaning that the inner product of
these two states is 0, such that 〈0|1〉 = 0), and so any point on the surface of the
Bloch sphere denotes a pure quantum state. The Bloch sphere also parametrises
mixed quantum state, hence it follows that any point that is inside the sphere (i.e.
not on the surface) is described as a mixed quantum state, and can only be expressed
as a density matrix, which is discussed in the following subsection.

1.2.2 A Note on Notation

In this short subsection we will briefly review our notation for Dirac brakets. No-
tation for such brakets can differ between authors and so it is important that we
define this early on this work, particularly when we have complicated mathematical
formulae, relying heavily on Dirac brakets, later in this thesis.

To indicate the mode in which a quantum state (or indeed density matrix) is
in, we will use a subscript mode label. For example, if we have a single qubit su-
perposition quantum state (i.e. as per Eq. 1.1) in mode A, then this is denoted as
|ψ〉A = c0 |0〉A + c1 |1〉A, and the complex conjugate of this state is then expressed as

A 〈ψ| = c∗0A 〈0|+ c∗1A 〈1|.
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Similarly, for a two qubit superposition state, each mode label refers to each re-
spective qubit in that state, such that, for example, |ψ〉AB = c0 |00〉AB + c1 |11〉AB ,
and again the complex conjugate is denoted as AB 〈ψ| = c∗0AB 〈00|+ c∗1AB 〈11|.

Finally, for density matrices we denote the modes in the same way as we do
for quantum states, such that ρAB denotes a density matrix describing modes A
and B. Notation of mode labels of a density matrix in terms of its quantum state
counterparts (see Subsec. 1.2.3) is then expressed as, for example, ρAB = |ψ〉AB 〈ψ|.
We note that we refer to this as the “outer product” of two quantum states. The inner
product of two quantum states in modes A and B is then expressed as AB 〈ψ|ψ〉AB
AB 〈ψ|ψ〉AB .

For clarification, in general we denote which mode we are referring to in the
Dirac bra or ket by using a subscript mode label on the angled side bracket of the
bra or ket.

1.2.3 Pure and Mixed Quantum States

In the most basic description, one can say that a quantum system whose state |Ψ〉 is
known exactly is a pure quantum state, hence the density matrix representation of
this pure state would simply be ρ = |Ψ〉 〈Ψ|, where ρ is the standard symbol for a
density matrix. A superposition of pure states is also a pure state. Mathematically,
we can calculate if a quantum state is pure by taking the trace of the density matrix
and checking that Tr

[
ρ2
]

= 1 (or equivalently ρ = ρ2).
It is important to note that any quantum state can be represented in terms of the

density matrix (up to an arbitrary global phase), such that

ρ =
∑
i

pi |ψi〉 〈ψi| , (1.2)

where pi is the probability of the system being in the state |ψi〉. Note that inherently
these probabilities are always non-negative, and that the normalisation condition is
fulfilled by this density matrix representation such that the sum of all the probabil-
ities is equal to unity, or

∑
i pi = 1. Consider the (pure) quantum state given in Eq.

1.1 - we may express this as a density matrix as:

ρ = |ψ〉 〈ψ| = (c0 |0〉+ c1 |1〉)(c∗0 〈0|+ c∗1 〈1|)

=

(
|c0|2 c0c

∗
1

c1c
∗
0 |c1|2

)
, (1.3)

where the superscript ∗ denotes complex conjugate, and the normalisation (trace)
condition still holds in the density matrix representation, such that |c0|2 + |c1|2 = 1.

For a quantum state to be described as a mixed state, one can then consider this
to be a probabilistic mixture (or ensemble) of the pure states of the density matrix
ρ. To clarify, for ρ to be described as mixed we cannot write this as a density matrix
describing a pure state. Again, it is relatively facile to determine if a density matrix
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is mixed: in this case, for a mixed state the trace of the squared density matrix would
never be unity, hence one would find that Tr

[
ρ2
]
< 1 and therefore ρ2 6= ρ.

Referring back to the Bloch sphere diagram, depicted in Fig. 1.2, the mixed
state at the centre of the Bloch sphere would be described Mathematically as ρ =
1
2(|0〉 〈0| + |1〉 〈1|). This in fact is a maximally mixed state, hence why we depict it
as being at the centre of the Bloch sphere; for a state to not be maximally mixed,
only partially mixed, it would therefore be shown as not being at the centre of
the Bloch sphere, nor being at the surface. Such a state could be, for example,
ρ = 1

4 |0〉 〈0| +
3
4 |1〉 〈1|, or any combination of probabilities that are not equal (i.e.

p0 6= p1).
The assessment of whether ρ describes a quantum state that is pure or mixed via

determining the trace of ρ2 gives rise to another (analogous) criterion for establishing
the level of purity of a state: entropy. This will be covered in more detail later on in
this thesis (Sec. 2.7), as we calculate the entropy of the quantum state produced via
our protocol to determine its purity.

1.2.4 Discrete vs Continuous Quantum Information

A discrete variable (DV) is one that can be characterised by a finite number of possi-
ble values.

Electromagnetic waves, viewed in terms of photons, are coupled oscillating elec-
tric and magnetic fields. The electric and magnetic fields always oscillate perpen-
dicularly, and the polarisation of such a wave indicates the direction of the electric
field [49]. The polarisation is characterised by a discrete basis of just two orthogonal
states. There is an infinite number of different choices of discrete basis that one could
make to describe the system (which are all related by rotations on the Bloch sphere,
given in Fig. 1.2). However, the polarisation of a photon is a DV because in any of
these bases you only have two states; the possible outcomes for a linear polarisation
measurement are either horizontal or vertical, and for circular polarisation are left
or right polarised, and cannot be anything else [50]. In fact, quite often in the field of
quantum communications and computation, horizontally and vertically polarised
photons (denoted |H〉 and |V 〉 respectively) are utilised as DV states.

Other physical examples of DVs are angular momentum, or a spin-1
2 qubit in a

magnetic field (such as an electron, with spin “up” or “down”), and these are intrin-
sic properties of these physical systems. In fact, spin-1

2 electrons are great applicants
in a host of quantum computational applications, as they have exceptionally long
coherence times (seconds) [51, 52]. In quantum information, an example of a DV
system is the two-level system qubit, which may only exist as |0〉, |1〉 or a superposi-
tion of both (as described in Subsec. 1.2.1).

By contrast, a continuous variable (CV) is one that has an infinite number of pos-
sible values - that is to say that CVs are degrees of freedom associated to observables
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with a continuous spectrum (but may also have observables with a discrete spec-
trum, but with an infinite number of levels), such as the strength of an electromag-
netic field. Further examples are the position x̂ and momentum p̂ of a free particle,
or the one-dimensional simple harmonic oscillator [53] - the one-dimensional sim-
ple harmonic oscillator requires an infinite number of basis states to fully describe
it, hence why this is continuous.

To reiterate, it is the number of basis states needed that determines whether a
variable is discrete (finite) or continuous (infinite). As a simple comparison of dis-
crete and continuous variables, in terms of quantum computing one could consider
a DV as digital data (binary) and a CV as analog data. In fact, there is a vast array of
research that has taken place over the last few years regarding discrete and continu-
ous hybrid systems, such as coupling a qubit (DV) to a harmonic oscillator (CV) [54],
exploiting the useful nature of both DV and CV quantum states, and these hybrid
systems are what we concern ourselves with in this thesis.

1.2.5 Fock States

Now that we have a clear description of discrete and continuous variables, we can
consider the quantum states that will be used in this work. Fock states represent a
well-defined number of particles (or “quanta”), or in the case of this work, photons,
in an eigenmode of a field (such as the quantum harmonic oscillator for bosons, see
Fig. 1.3) [55].

In this sense it is simple to see that Fock states are photon number eigenstates
[56]; the electromagnetic field comprises an infinite number of different modes, and
as such it comprises an infinite number of CV systems. Each of these modes is de-
scribed by an infinite basis of Fock states for that mode, see Fig. 1.3. These separate
modes can be accessed and manipulated independently, and it is possible to use
some of these as approximate DV systems, and others as CV systems. This is vi-
tal when it comes to the Fock states we wish to use in this thesis, namely the zero
photon and single photon states (as described later in this section).

FIGURE 1.3: Diagram to represent the discrete energy levels of a quantum
harmonic oscillator, of frequency ω, where Ei are the energy eigenstates of

energy level n = i, and ~ = h
2π

with h denoting Planck’s Constant [57]
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Fock states are a complete infinite basis of orthogonal states, and these states are
used to compose/decompose CV systems. However, it is commonly accepted that
(in certain cases) one can approximate that the only relevant Fock states are the vac-
uum and the one-photon state (corresponding to the n = 0 and n = 1 energy levels
in Fig. 1.3 respectively); it then follows that the vacuum and single-photon Fock
states may be considered as approximately well-defined DV states [58]. This approxi-
mation depends on conditions that the relevant system/setting needs to satisfy, and
so for a discussion of how one could obtain a vacuum and single-photon Fock state
see Subsec. 1.2.6.

Fock states are also known as number states for the simple reason that they can
be mathematically expressed in Dirac notation as a single number |n〉, describing
the number of quanta present in that state. For example, if we have a no photon
Fock state (i.e. the vacuum state) then this would be expressed as |0〉, and for a
single photon state |1〉 - in fact, these are the two specific Fock states that will be
used throughout this work, as an approximate DV qubit, indicating the presence
or absence of a photon. As previously stated, the number states form a complete
basis, meaning

∑∞
n=0 |n〉 〈n| = Î [59] (where Î is the identity matrix), and are also

orthonormal (such that 〈n|n′〉 δnn′ , where δnn′ is the Kronecker delta), and therefore
one can use this as a basis to expand any arbitrary quantum state |ψ〉 =

∑
nCn |n〉 of

a single mode.
One can effect the addition or subtraction of a photon from a Fock state using the

creation operator (â†) and annihilation operator (â) respectively [60]. The application
of these two operators simply acts by raising the number of particles in the Fock state
by 1 (for each single application of the creation operator), or vice versa, by lowering
the number of particles by 1 for the annihilation operator:

â† |n〉 =
√
n+ 1 |n+ 1〉 , â |n〉 =

√
n |n− 1〉 , (1.4)

where, the creation and annihilation operator do not commute, and obey the com-
mutation relation of

[
â, â†

]
= 1 [57]. Referring back to the discrete quantised energy

level diagram of a harmonic oscillator, of Fig. 1.3, it is evident that applying the
creation or annihilation operator simply causes us to move up or down an energy
level - it is for this exact reason that these operators are sometimes referred to as the
“ladder” operators.

1.2.6 Generating the Vacuum and Single Photon Fock State

Fock states are proving to be invaluable within the field of quantum computing and
communications - a superposition of the vacuum and single photon Fock state can
be used to implement a qubit, and as such we focus primarily on these Fock states
within this work. We therefore move our discussion of Fock states into the practi-
cal world, and consider experimental generation of these fundamentally important
quantum states.
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In an ideal world, some sort of photon gun would be the most desirable single-
photon source - a photon “gun” would work such that upon pressing a button, a
single photon is produced, with zero probability of multiple photons being emitted,
and with arbitrarily fast repition rates [61]. Of course, in reality the quantum world
is not so simple, and so much work has been carried out in recent years in building
a simple single photon source [62, 63].

In fact, experimental research into creating single photons has been carried out
long before the turn of the 21st century, and the first single photon source was devel-
oped as early as 1976, in which J. F. Clauser experimentally demonstrated excitation
of a calcium atom to cause emission of two photons, in which the observation of
one of these emitted photons heralds the other photon [64]. This notion of using an
atomic source undergoing an atomic cascade to produce single photons was investi-
gated rigorously following this work, and was also performed by P. Grangier et al. in
1986 [65]. The process of an atomic cascade can be described simplistically by con-
sidering an atom (calcium, in the case of [65]) which is irradiated by a laser, which
therefore excites the atom (via two-photon absorption). The atom then rapidly de-
cays (referred to as the atomic cascade) into a lower energy state, emitting a photon,
before decaying once more to the ground state, emitting another photon.

Weak coherent pulses (see Subsec. 1.2.7) are produced by attenuating a coher-
ent laser beam such that the coherent state has amplitude |α| << 1, and there-
fore contains, on average, significantly less than one photon per pulse [61]. These
were initially investigated in research as potential approximations for a single pho-
ton source for quantum cryptography purposes [66, 67]. However, the probability
that the weak coherent pulse contains two (or more) photons cannot be decreased
without also lowering the probability of having a single photon present, thus inhibit-
ing the security of any protocols relying on the presence and usage of single photons
[68]. Consider an eavesdropper (Eve), who may be able to intercept this weak co-
herent signal between Alice and Bob - upon interception, Eve may be able to split
the coherent signal into two (or more) photons, before sending the signal on to Bob.
Hence, Eve is then able to constantly learn a small amount of the bits shared between
Alice and Bob, which is evidently a significant flaw from a security perspective [66].

A more useful mechanism to produce single photons is spontaneous paramet-
ric down conversion (SPDC): SPDC is the process in which a non-linear crystal is
pumped by a strong laser source, such that high energy photons from the pump
beam are converted into two lower energy photons (known as the signal and the
idler outputs) [69]. SPDC can be illustrated as follows:
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FIGURE 1.4: Diagram to illustrate the general mechanism of generating two
photons (the signal and the idler) from an input photon (the pump), via use
of a non-linear crystal, where ω is the frequency and k is the momentum
of the photons. We also present simple diagrams to show how energy and

momentum are conserved throughout this SPDC process.

Of course, as can be seen in Fig. 1.4, we are not producing a single photon via
SPDC, however the detection of the idler photon heralds the presence of the signal
photon. SPDC can be described mathematically using the annihilation and creation
operators of Eq. 1.4 as:

|1〉p |0〉s |0〉i → âpâ
†
sâ
†
i |1〉p |0〉s |0〉i = |0〉p |1〉s |1〉i , (1.5)

where, the subscripts p, s and i denote the pump, signal and idler beams respectively.
The above equation also informs us why this process is referred to as spontaneous -
the initial signal and idler modes are in vacuum states and as such “spontaneously”
gain a single photon in each mode. As this process is also described as parametric the
total energy and momentum of the field is conserved [70].

SPDC was first presented theoretically in 1970 by D. N. Klyshko et al. [71] (and
later by C. Hong and L. Mandel [72, 73]), and as early as 1970, D. Burnham and
D. Weinberg experimentally verified that the optical fields produced via SPDC are
correlated both temporally and spatially [74]. By temporal correlations, we mean
that the two photons that are emitted do so at the same time (refer to Eq. 1.5), and
spatial correlations refer to the fact that the output photons are emitted from the
same point.

More recently, collecting single (or two) fluorescence photons from nanoemitters
(i.e. semi-conducting quantum dots and defect centres in solid state materials such
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as diamond) have been studied as sources of single photons, as this process is typi-
cally more efficient than SPDC in generating single photons [75–77]. The first work
demonstrating experimentally the two-photon emission from a semi-conductor quan-
tum dot was performed in 2008 by A. Hayat et al. [78], and since then has sparked
a huge amount of research output in this field, and as such semi-conductors are the
current likely candidates for a true single-photon generating device [79].

Ultimately, it should be evident by now that there are many challenges that have
been faced in generating single photons “on demand”, and the limitations strongly
depend on the target applications; however, the most general problem faced by this
community right now is in developing a highly efficient, compact and robust device,
able to produce either one or two photons at the press of a button.

1.2.7 Coherent States and Schrödinger Cat States

A coherent state of a harmonic oscillator, or a single bosonic field mode, such as a
mode of the electromagnetic field, is the unique eigenstate of the annihilation oper-
ator â, with eigenvalue α:

â |α〉 = α |α〉 , (1.6)

where |α〉 represents the coherent state of amplitude α (where α is a complex number
[50]). Coherent states are CV states, and as such α can in principle take any value.
It is vital here to note that the coherent state can be represented in the basis of Fock
states, and as such is a summation of discrete variable states as follows:

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉 , (1.7)

where |n〉 is the Fock number state [60] (this description of a coherent state is invalu-
able within this work and will be covered in detail throughout the calculations).

Coherent states are not orthogonal [80]: consider two coherent states of different
amplitude, described as |α〉 and |β〉, if one uses the Fock state basis representation
(as per Eq. 1.7) it then follows that:

〈β|α〉 = e−
|α|2

2
− |β|

2

2

∞∑
n=0

∞∑
m=0

(β∗)nαm√
n!m!

〈n|m〉

= e−
|α|2

2
− |β|

2

2

∞∑
n=0

(β∗α)n

n!

= e−
|α|2

2
− |β|

2

2
+β∗α = e

β∗α−βα∗
2 e

−|β−α|2
2 (1.8)

hence coherent states are not orthogonal. Of course, in the limit of large differences
between the amplitudes of α and β the coherent states become nearly orthogonal -
essentially, for two coherent states to be effectively orthogonal we require that the

last exponential, e
−|β−α|2

2 , in Eq. 1.8 be vanishingly small.
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As discussed in the previous section, the number states form an orthonormal and
complete basis, and as such may be used to expand any arbitrary quantum state.
Conversely, coherent states form an overcomplete basis, satisfying the completeness
relation 1

π

∫
d2α |α〉 〈α| = Î , where d2α = dRe(α)dIm(α) [81]. An overcomplete

basis is one that has more states than are required to express any other arbitrary
quantum state in terms of the coherent state basis [82]. Relating back to Eq. 1.8,
〈α|β〉 6= 0 for α 6= β, we can then say that the set {|α〉} is overcomplete. For a proof
of the completeness relation here, refer to Appendix A.

The coherent state is a Poissonian distribution (a discrete probability distribution)
of Fock states [83], and so if we have a single photon Fock state |1〉, this is not equiva-
lent to a coherent state of amplitude |α| = 1. Instead, the coherent state of amplitude
|α| = 1 is a quantum state with mean photon number of 1 (and thus would be ex-
pressed in terms of photon number probability as a distribution with the maximum
probability at n = 1). In fact, |α| denotes the amplitude of the coherent state, with
the mean photon number 〈n̂〉 given by:

〈n̂〉 = 〈â†â〉 = |α|2, (1.9)

hence, for a coherent state of amplitude |α| = 1.5 then the average photon number
is 〈n̂〉 = 1.52 = 2.25.

The coherent state can be created from a vacuum state via use of the displacement
operator D̂(α) [55]:

|α〉 = eαâ
†−α∗â |0〉 = D̂(α) |0〉 , (1.10)

where, â = x̂+ ip̂ and â† = x̂− ip̂. Here, x̂ and p̂ are the dimensionless field quadra-
tures (see Fig. 1.5 and Eq. 1.11). These quadrature operators represent continuous-
variable observables that are able to be measured via homodyne detection [84],
which will be discussed in the next chapter (Chapter 2, Sec. 2.6) as one of the mea-
surements we apply to our system. We remark here that some authors define these
quadrature operators as X̂ = 1√

2
(â+ â†) and P̂ = i√

2
(â† − â), however, we define

the quadrature operators in this work as:

x̂ =
1

2
(â+ â†), and p̂ =

i
2

(â† − â). (1.11)

It is also important to note that the canonical coherent state is a state of minimum
uncertainty, such that

∆x = ∆p =
1

2
, (1.12)

where ∆x and ∆p are the standard deviations of the position and momentum re-
spectively.

A coherent state can be represented in terms of position and momentum phase
space as:
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FIGURE 1.5: Diagram to represent the state space occupied by the coherent
state |α〉, where x̂ and p̂ are the field quadratures (dimensionless operators),
φ is the phase angle of the coherent state, |α| is the amplitude of the state, and

the value of 1
2

is the uncertainty (see Eq. 1.12).

Note that in Fig. 1.5 the expectation value of the variables, x̂ and p̂, given the state
|α〉, is equal to the amplitude (|α|) of the coherent state, multiplied by the cosine or
sine of the phase angle. To derive the field quadratures x̂ and p̂ let us first consider
an arbitrary quadrature as a function of a phase angle θ:

x̂θ =
1

2

(
âe−iθ + â†eiθ

)
, (1.13)

and so we can now adjust the phase angle θ to give us the specific quadratures we
desire. In this manner, we then set x̂θ→0 = x̂ and x̂θ→π

2
= p̂, which then returns the

expressions for position and momentum as defined in Eq. 1.11, where clearly p̂ is
equivalent to x̂ but rotated by π

2 in phase space. Following this, the coherent state
expectation values are then:

〈x̂〉 =
1

2
(α+ α∗) = Reα, 〈p̂〉 =

1

2i
(α− α∗) = Imα, (1.14)

where we have made use of α = αx + iαy and α∗ = αx − iαy.
Intrinsically, the uncertainty in x̂ and p̂ of any coherent state is equally distributed

in all directions (see Fig. 1.5, and also Eq. 1.12). This is unlike the squeezed state,
which is represented as an ellipse in phase space (thus the name “squeezed”) [85],
and therefore the uncertainty is not equally distributed in all directions - however
there is still no violation of the Heisenberg uncertainty principle limit of ∆x∆p ≥ 1

4 ,
where ∆x and ∆p are the standard deviations of the position and momentum, as
defined in Eq. 1.12 [86].

Coherent states possess the ability of existing in a superposition state, and are
known as Schrödinger Cat States, or Coherent Superposition States (CSSs) and will
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be used throughout this work. These non-classical states of light were first intro-
duced by V. V. Dodonov et al. in 1974 [87]. These states can be simplistically shown
in the following diagrams of the cat superposition phase space:

FIGURE 1.6: Diagram to represent the cat state
∣∣CSS±α 〉 = N±α (||α|〉± |−|α|〉)

and the phase-rotated cat state
∣∣CSS±iα〉 = N±α (|i|α|〉 ± |−i|α|〉) (given in Eq.

1.15, where x̂ and p̂ are the field quadratures (dimensionless operators), as
given in Eq. 1.11.

Two-component cat states are superpositions of coherent states with opposite
phase. For example, the ones that will be used in this work are:∣∣CSS±α 〉 = N±α (||α|〉 ± |−|α〉 |),∣∣CSS±iα〉 = N±α (|i|α|〉 ± |−i|α〉 |), (1.15)

where, N±α is the normalisation factor, and N±α = 1√
2(1±e−2|α|2 )

. It is clear, observ-

ing Fig. 1.6, where each of the coherent states have arisen from. Also note that the
“phase-rotated cat state” (

∣∣CSS±iα〉) is simply the “standard” cat state (|CSS±α 〉) that
has been rotated by a factor of φ = π

2 in the complex α plane (see the phase-space
representation of a coherent state in Fig. 1.5).

Importantly we should point out that cat states are referred to as either “even”
or “odd”, dependent on the choice of the relative phase that exists between the su-
perposed states. For example, consider the cat state to be written as:

|ψcat〉 = N (|α〉+ eiΦ |−α〉), (1.16)

where the normalisation factor is given as N . Clearly, the state shown above in Eq.
1.16 is still a superposition of two coherent states, and are still separated in phase
by a factor π

2 . However, if we now set the relative phase Φ in Eq. 1.16 to Φ = 0 we
obtain an even cat state given as |CSS+

α 〉 = N+
α (||α|〉 + |−|α|〉), and if we set Φ = π

we create the odd cat state, given as |CSS−α 〉 = N−α (||α|〉 − |−|α|〉) [80]. However,
as previously stated, within this work we are concerned only with using even cat
states.
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Also note that there is another widely accepted form of the cat state, which is
namely the Yurke-Stoler cat state (as introduced by B. Yurke and D. Stoler in 1986
[88]), which takes the form:

|ψY S〉 =
1√
2

(|α〉+ i |α〉). (1.17)

This form of the cat state clearly stems from the generalised form given in Eq. 1.16,
but for Φ = π

2 , and will be discussed further in the next section, Subsec. 1.2.8.
Lastly, we should discuss what happens to cat states if we take the large am-

plitude (|α|) limit: by taking |α| large enough two coherent states in superposition
become quasi-orthogonal [89]. The suffix “quasi” here referencing the fact that these
states are not truly orthogonal, however in the limit of |α| = 2.0 the overlap of two
coherent states, given as 〈α|−α〉 = e−2|α|2 < 10−3. Evidently, this overlap is minimal,
and so it is clear why these can be considered as effectively orthogonal, provided that
the amplitude |α| is large enough, such that the coherent states in superposition do
not overlap. In fact, this overlap (or lack thereof) dependent on the amplitude of the
coherent states in superpositions is vital when it comes to our proposed entangle-
ment swapping protocol throughout this work, and this will be discussed later once
results have been presented.

Conversely, even and odd cat states are orthogonal to each other, for all α. This
is easily calculated as the overlap between an even and an odd cat state as:

〈CSS+
α |CSS−α 〉 = N+

α N
−
α (〈α|+ 〈−α|)(|α〉 − |−α〉)

= N+
α N

−
α (1− e−|α|2 + e−|α|

2 − 1) = 0. (1.18)

Hence, even and odd cat states are orthogonal for all α, and as such can be dis-
tinguished by a photon number measurement, as even cat states contain only even
numbers of photons, and odd cat states contain only odd [56].

1.2.8 Generating Coherent State Superpositions

Within this thesis, we will discuss extensively the use of coherent state superposi-
tions (so-called Schrödinger cat states). It is therefore essential that we have some
appreciation of how these states are generated experimentally. Since the realisation
that coherent states were widely applicable for usage in continuous variable quan-
tum cryptography [90], there has been a vast number of theoretical and experimental
research papers on how to generate these non-classical states of light, and so in this
section we give only a brief overview of how one could feasibly prepare a cat state
with current technology.

Firstly we note here that, depending on the intended purpose of the cat state,
these states of light can be made in various ways - within the work in this thesis we
are only concerned with cat states which occupy freely propagating optical modes.
As such, we are not interested on the generation of cat states in stationary modes,
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such as optical states confined to an optical cavity via quantum electrodynamics
experiments as per the methods given in [91, 92].

Cat states occupying freely propagating optical modes have been able to be pro-
duced experimentally since the last few decades of research began on this topic. Via
use of the optical Kerr effect, in 1986 B. Yurke and D. Stoler successfully demon-
strated how one could create a cat state (of the form Eq. 1.17) from the unitary
evolution of a single coherent state [88]. The optical Kerr effect, in simple terms,
causes the refractive index of a material to change when one applies an external
electric field [93], and many experimental methods to produce coherent state super-
positions have exploited the Kerr effect and are still commonly used at the time of
writing [94, 95]. In fact, the reason cat states can be made via exploitation of the
Kerr Effect is due to another phenomenon which arises here, known as “self-phase
modulation” - when light passes through a Kerr-like medium (material or liquid)
exhibiting the optical Kerr effect, there is a change in the phase of the light pulse
(dependent on the intensity of the light) [96].

To mathematically model how the Yurke-Stoler cat state of Eq. 1.17 was made,
we first begin with a coherent state (as defined in Eq. 1.7), but apply an interaction
Hamiltonian of the form ĤI = ~K(â†â)2 = ~Kn̂2, in which ~ is Planck’s constant, n̂
is the photon number operator, andK is proportional to a third-order non-linear sus-
ceptibility χ(3). Note here that by “non-linear susceptibility” we refer to the property
of non-linear optical media in which the polarisation of the media does not respond
linearly to an applied electrical field [97] - the field of non-linear optics is not rele-
vant to the work carried out in this thesis and so we do not discuss this concept in
any further detail. Applying the interaction Hamiltonian ĤI to the coherent state of
Eq. 1.7, for time t, gives:

|ψY S(t)〉 = e−
iĤI t
~ |α〉 = e−

|α|2
2

∞∑
n=0

αn√
n!
e−iKn2t |n〉 . (1.19)

Finally, if we set t = π
2K , then e−iKn2t = e−

iπn2

2 , and so for e−
iπn2

2 = 1 then n must be

even, and for e−
iπn2

2 = i, then n must be odd. It therefore follows that we have:∣∣∣ψY S ( π

2K

)〉
=

1√
2
e−

iπ
4 (|α〉+ i |−α〉), (1.20)

which is in fact identical (ignoring the overall phase factor of e−
iπ
4 ) to the standard

Yurke-Stoler cat state as defined in Eq. 1.17 [98].
Unfortunately, it is widely known now that the optical Kerr effect is usually very

weak at the single-photon level [99], and light attenuation is not negligible at the
level required to generate a coherent state superposition [100]. As such, there has
been a lot of research governing various alternate methods of generating photonic
cat states, that do not rely on this non-linear optical phenomenon.
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One such method is via photon subtraction, due to its simplistic implementa-
tion [101]; by subtracting a single photon from a squeezed vacuum, transmitting
the vacuum through a weakly reflecting beam-splitter and finally, via heralded pho-
ton detection in the reflected beam, low-amplitude cat states can be generated [102].
Note here that a squeezed vacuum state is a coherent state of very low amplitude,
but with |α| > 0 (hence is no longer a true vacuum state), with unequal uncertainties
in the position and momentum phase-space [103].

The initial notion of photon subtraction to produce low-amplitude cat states was
proposed by M. Dakna et al. in 1996 [104], in which they recognised that squeezed
vacuum states are strong approximations to a cat state of low-amplitude [105]. In-
terestingly, the limit of low-amplitude cat states is particularly useful in this the-
sis, as will be shown later that we in fact prefer to have cat states of amplitude
1.0 ≤ |α| ≤ 2.5 for use in our proposed entanglement swapping protocols. We also
reference here that this method of producing cat states is also possible via subtrac-
tion of two or three photons, which results in a slightly higher amplitude cat state
[106, 107]. In fact, there are an enormous number of various experimental methods
used to produce cat states via photon subtraction and heralded photon detection.

Although we have only discussed brief possible techniques to produce optical
cat states here, we do recognise that there are many more potential methods, such as
optical back-action evasion schemes [108] (a similar, but more complicated, scheme
than photon subtraction that relies on the use of two-mode squeezed vacuum states
and photon counting detectors). For a highly comprehensive literature review on
the generation of freely propagating cat states, refer to [56].

1.2.9 Beam-Splitters

A beam-splitter (BS) is an optical device that mixes two incident beams (or chan-
nels/modes), with the possibility of making these entangled for certain inputs [109].
The BS device itself consists of a semi-reflective mirror, which is able to reflect or
transmit a beam of input light depending on the mirror’s reflectivity [110]. Beam-
splitters are invaluable within the field of quantum technology, and will be used in
this work to theoretically model the loss that may occur in a channel [111], and also
to entangle the lossy propagating modes prior to measuring them.

Schematically, a generalised BS (of transmission coefficient T ) can be represented
as follows:



48 Chapter 1. Introduction

FIGURE 1.7: A diagram to represent a generalised beam-splitter (BST ), of
transmission coefficient T , acting on two modes described by the annihilation

operators â and b̂.

Mathematically there are various conventions for applying a BS operation to a
quantum state, however, here we present a derivation which is adapted from P. Kok
et al. [112].

We define the reflection and transmission coefficients (the probability ampli-
tudes) of the BS, as R = sin2 ξ and T = 1 − R = cos2 ξ, respectively (for R = |r|2

and T = |t|2, where r is the reflection amplitude and t is the transmission ampli-
tude). Note that within the theoretical calculations using beam-splitters in this work,
it shall be assumed that the beam-splitter itself is entirely lossless - this means that
100% of the beam is transmitted and reflected [113–115]; that is to say thatR+T = 1.
We model photon loss using a beam-splitter implementation in this work by assum-
ing that we do not know the exact values for R and T , and so the mathematical
interpretation of the operator will be denoted BST (hence, if a beam-splitter equally
splits two incident beams then the operator would be BS1/2).

The action of the BS depicted in Fig. 1.7 on any initial quantum state is then given
by a unitary operator (ÛBS):

ÛBS = exp
[
−iξ

(
eiκâ†b̂+ e−iκb̂†â

)]
, (1.21)

where ξ and κ are phase angles, and the unitary relation Û †BSÛBS = Î applies to this
BS operator, for identity operator Î . Intrinsically, the action of this unitary operator
on a vacuum state acts as the identity, such that ÛBS |0〉 = |0〉.

Using the BS schematic of Fig. 1.7, we denote our photonic modes as a and b

(with annihilation operators â and b̂ respectively), where the probability amplitudes
for the output modes are then denoted cos ξ and sin ξ respectively, and so in operator
form this gives [116]:

ÛBS â
†Û †BS = cos(ξ)â† − ie−iκ sin(ξ)b̂†, (1.22)

ÛBS b̂
†Û †BS = −ieiκ sin(ξ)â† + cos(ξ)b̂†. (1.23)
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Within this work we set the phase angle as κ = −π/2, thus the output modes be-
come:

ÛBS â
†Û †BS = cos(ξ)â† + sin(ξ)b̂†, (1.24)

ÛBS b̂
†Û †BS = − sin(ξ)â† + cos(ξ)b̂†, (1.25)

using e
±iπ
2 = ±i. We note that phase shifts for the reflected and transmitted beam-

splitter outputs are dependent on the material (the coating) of the beam-slitter [117].
As an example to show how this model for a BS works, consider a single photon

input in mode a and a vacuum (no photon) state in mode b. The single photon in
mode a is mathematically given by the action of the creation operator on this mode:
â† |0〉a = |1〉a. We now wish to model a 50:50 BS effect on these input modes, and
so we apply the unitary operator given in Eq. 1.21 to the input states (as well as the
relations in Eq. 1.25), as follows:

ÛBS â
† |0〉a |0〉b = ÛBS â

†Û †BSÛBS |0〉a |0〉b
= (cos(ξ)â† + sin(ξ)b̂†) |0〉a |0〉b

=
1√
2

(â† + b̂†) |0〉a |0〉b =
1√
2

(|0〉a |1〉b + |1〉a |0〉b), (1.26)

where we have set cos ξ = sin ξ = 1√
2

(for ξ = π
4 ), as we are considering a 50:50

BS here, and used the unitary relation Û †BSÛBS = Î in the first step; this unitary
operator is what we define and use as the BS operator throughout the rest of this
thesis. It is simple to see that the output state given above is in fact the |Ψ+〉 =

1√
2

(|0〉 |1〉+ |1〉 |0〉) Bell state, which will be discussed in the next section.
In fact, the process described above is a purely quantum manifestation that arises

when one injects a single photon and a vacuum state as inputs into a 50:50 BS; we
have no way of knowing exactly which mode the single photon will be output to, as
the probabilities of that single photon being transmitted or reflected via the BS are
equal, hence the output state is entangled.

In the next chapter, we further this notion of beam-splitting to model photon
losses that occur in a coherent state as it propagates through lossy optical fibre, and
also apply the 50:50 BS method described above to two input coherent states.

1.2.10 Entanglement

Quantum entanglement is one of the most striking phenomena in quantum mechan-
ics, and is an invaluable resource in the world of quantum information, technology,
communication, computation and more. Entanglement occurs when two or more
particles (such as qubits, photons or even ions) are combined in such a way that
the quantum states of the particles cannot be described independently - that is to
say that the resultant state cannot be factorised (or written as a product state). A
product state describing two systems, |ψ〉A and |ψ〉B , can be factorised such that
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|ψ〉 = |ψ〉A ⊗ |ψ〉B and, as opposed to what occurs with states that are entangled,
system A can be measured without losing any of the information about system B.

The most notable two-qubit entangled states that are used in the field of quantum
information and technology are the Bell states, and can be represented as follows:

∣∣Φ±〉
AB

=
1√
2

(|00〉AB ± |11〉AB), (1.27)

∣∣Ψ±〉
AB

=
1√
2

(|01〉AB ± |10〉AB). (1.28)

It is clear that theA andB channels cannot be factorised mathematically in the above
Bell states, and so these are described as entangled states. Moreover, we can specif-
ically refer to the Bell states as maximally entangled states; “maximally” because the
entropy of the mixed state of B is at its maximum when A is traced out (and vice
versa). This notion of entropy will be addressed throughout this thesis, and the ex-
plicit formula is given in Sec. 2.7. As an example, if we trace out state B in the
|Φ+〉AB = 1√

2
(|00〉AB + |11〉AB) Bell state, then state A is described by:

TrB [ρAB] = TrB
[∣∣Φ+

〉
AB

〈
Φ+
∣∣] = TrB

[
1

2
(|00〉AB + |11〉AB)(〈00|AB + 〈11|AB)

]
= TrB

[
1

2
(|00〉AB 〈00|+ |00〉AB 〈11|+ |11〉AB 〈00|+ |11〉AB 〈11|)

]
=

1

2
(|0〉A 〈0|B 〈0|0〉B + |0〉A 〈1|B 〈0|1〉B + |1〉A 〈0|B 〈1|0〉B + |1〉A 〈1|B 〈1|1〉B)

=
1

2
(|0〉A 〈0|+ |1〉A 〈1|), (1.29)

which is a maximally mixed single qubit state.
When states are entangled, classically-counter-intuitive features arise, such that

the entangled states can be separated over arbitrarily large distances and upon quan-
tum measurement (such as position or momentum) of one of the states, the result of
the other state will be perfectly correlated. For example, consider the Bell state de-
tailed in Eq. 1.27: this two-particle entangled state possesses the characteristics that
each particle exists in a superposition of |0〉 and |1〉, and so if one of the particles is
measured and found to be in the state |0〉, then it follows that the remaining particle
must also be |0〉. Note that in Eq. 1.27 the |Φ±〉AB state measurement outcomes give
perfect correlations, and the |Ψ±〉AB state in Eq. 1.28 give perfect anti-correlations of
measurements on A and B in this basis.

Although this may give the superficial impression of superluminal (faster than
the speed of light) information transfer between very distant parties, it is not possible
to communicate or send information faster than the speed of light [118]. The reason
for this is because intrinsically one still needs to consider classical communications
for this to work. Let us assume that a party named Alice is in possession of mode A
and a party named Bob is in possession ofB: if Alice measures her particle and finds
that the state was |0〉A, then we know, following the laws of quantum entanglement,
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that Bob’s state therefore must be in state |0〉B . However, Bob cannot possibly know
that his state is in fact |0〉B without Alice communicating her result to him, which
inherently requires a classical communication link (such as a telephone call) between
Alice and Bob.

This phenomenon was described in 1935 in a renowned paper by Einstein, Podol-
sky and Rosen and became part of their so-called EPR Paradox, in which they stated
that the wave-function of a quantum state does not provide a complete description
of physical reality [119]. It was claimed that for entangled measurement correla-
tions to be possible then there must be a violation of local realism, the theory that
limits cause-and-effect to the speed of light (“locality”) and also states that any par-
ticle must have a real, pre-existing value for any measurement (“realism”). This is
counter-intuitive to how we now know entanglement works, and has since been
proven experimentally, proving that the local realist view of the world is not com-
patible in quantum theory as it is a classical theory.

1.2.11 Entanglement Swapping

Entanglement swapping is the process in which two halves of two entangled pairs of
particles become entangled and are then measured. As a result of this, the measured
entangled pair collapses and so entanglement is then passed on to the remaining two
particles [120]. Consider: two entangled pairs, AB and CD, where particles B and
D are then entangled, and subsequently measured. The result is that particles A and
C are then entangled, to produce a state AC, hence the terminology “entanglement
swapping”. The general scheme of entanglement swapping can be easily elucidated
in the following diagram:

FIGURE 1.8: Diagram to represent how the initial entanglement shared be-
tween particles (qubits) A−B and C−D can be swapped to particles A−C.
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This is yet another truly striking phenomenon of quantum physics, as particles
A and C are not required to have ever interacted, and in fact this entanglement
swapping scheme could be possible if A and C have never even existed at the same
time. In this work it was shown that if the measurement of particle A occurs before
creation of the second initially entangled pair CD then there are still correlations be-
tween measurements of particles A and C, which are actually considered entangled
despite never coexisting [121].

We also note here that entanglement swapping is effectively a form of quantum
teleportation, as the transfer of one half of an entangled state, either from mode B
to D or from C to A [39]. Quantum teleportation is the process in which Alice can
transport an unknown state of a spin-half particle to Bob by conveying only two bits
of classical information [122, 123]. Entanglement swapping produces entanglement
between two (distant) independent qubits (that are not required to have interacted),
which is in contrast to teleportation, in which a single quantum state is teleported
from one qubit to another [124].

1.3 Thesis Outline

In addition to this Introduction, this thesis is divided into five more chapters. In
Chapter 2 a brief introduction of our proposed entangled swapping protocol is dis-
cussed, with each stage of this protocol being addressed regarding the general Math-
ematical formalisms, as well as some experimental considerations. Chapter 3 in-
volves in depth Mathematical analysis of this proposed protocol, using coherent
states and also cat states, with results and discussion regarding entanglement nega-
tivity, fidelity and linear entropy of these two protocol examples, considering small
levels of photon losses. This notion of photon losses is extended in Chapter 4, to
the case where we investigate unequal photon losses in the two lossy modes and
establish the level of impact this has on the protocol outcomes. In Chapter 5 we
then discuss homodyne detection non-idealities and imperfections, with an outlook
to the practical and realistic experimental implementations of this protocol. Follow-
ing this, Chapter 6 then brings the previous chapters together for an analysis of this
scheme in terms of protocol optimisation, where we deliberate the most effective
combination of variables (such as coherent state amplitude, level of photon loss, res-
olution bandwidth of homodyne detection, success probabilities of measurements
and more), with further consideration of entanglement purification to further in-
crease the level of entanglement produced via our ES protocol. Finally, we give an
outlook to the future of this field in the conclusive Chapter 7, and review the rele-
vant applications of our proposed ES protocol to the real-world, as well as bringing
together all of the key results of our entanglement swapping protocol.
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Chapter 2

Methods

In this section we present and discuss our proposed entanglement swapping (ES)
protocol. Each element of the protocol will be discussed individually, and in chrono-
logical order.

2.1 The Entanglement Swapping Protocol

In this work, we present an ES protocol with which one can use to theoretically
distribute entanglement over distance, via use of projective measurements and the
principle of entanglement, when allowing for small levels of photon losses. We pro-
pose two circumstances, in which the proposed ES protocol is the same in each case,
but the initial hybrid entangled states differ; hybrid here meaning that the entangle-
ment is shared between a discrete variable state and a continuous variable one. In
the first protocol we consider an initial quantum state with a coherent state as the
continuous variable state, and in the second (more complex) protocol we begin with
a cat state as the continuous part.

The initial hybrid entangled states (denoted as |ψHE〉AB and |ψHE〉CD), for hy-
brid entanglement shared between modesA-B and C-D respectively), for the coher-
ent state and cat state protocols, are described mathematically as follows:

|ψCoh.HE 〉AB =
1√
2

( |0〉A ||α|〉B + |1〉A |−|α|〉B) (2.1)

|ψCatHE〉AB =
N+
α√
2

(
|0〉A ( ||α|〉B + |−|α|〉B) + |1〉A ( |i|α|〉B + |−i|α|〉B)

)
, (2.2)

where, the subscript HE denotes a hybrid entangled quantum state and
N±α = 1/

√
2± 2e−2|α|2 is the normalisation of a cat state. Note that the hybrid entan-

glement shared between modes A and B (described by Eqs. 2.1 and 2.2) is identical
to that of modes C and D ( |ψCoh.HE 〉CD and |ψCatHE〉CD).

Clearly, in our ES protocol modes A and C are the discrete variable states and B
and D are continuous variables. We construct our ES protocol such that the contin-
uous variable halves of the hybrid entangled states are the ones that propagate, as
these are considered to be somewhat resilient to photon losses - in Sec. 2.3 we show
how photon loss is modelled with the coherent state, and we show that photon losses
in fact only reduce the amplitude of the coherent states. Referring back to Fig. 1.5,
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if we allow for photon losses it merely causes the coherent state to move towards
the origin of the phase space diagram. The discrete variable halves of the hybrid
entangled states in our protocol (which we set to be Fock states) are stationary and
are what we wish to share entanglement between, should our protocol succeed.

We now present a schematic describing our proposed ES protocol, for the ideal
case where we have no photon losses in the propagating modes (B and D), to illus-
trate the principle of this protocol:

FIGURE 2.1: Diagram to represent the four channel system (where |ψHE〉AB
and |ψHE〉CD are entangled hybrid states) undergoing entanglement swap-
ping with no lossy channels. Modes B and D are mixed at a 50:50 beam-
splitter (BS1/2

B,D) and subsequently measured (DB and DD) to complete the
protocol.

Fig. 2.1 describes simplistically the entire process to our entanglement swapping
protocol. With space as the horizontal axis and time as the vertical axis, it is clear that
our two initial hybrid entangled states |ψHE〉AB and |ψHE〉CD are initially separated
by an arbitrary distance - this distance can vary, however, as will be explained later
for the practicality of this theoretical approach, we need only assume that they are
separated. Note that although modesA and C are “stationary” the arrows in Fig. 2.2
indicate a movement in space; this is to represent that modes A and C are then able
to be sent on for further uses in communications, perhaps to a potential customer
(or indeed separated customers) that require an entangled pair of qubits.

In the first step in the ideal no loss protocol, modes B and D propagate towards
each other and meet at a 50:50 beam-splitter BS1/2

B,D (which will be detailed in Sec.
2.4) and then subsequently measured (this will also be explained further in Secs. 2.5
and 2.6). This beam-splitter operation, followed by a measurement, is key to this
protocol, as it is this process which swaps the entanglement shared between modes
A-B and C-D to A-C. This is due to the collapse of the wavefunctions of modes B
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and D as a result of being measured (a direct consequence of one of the postulates
of quantum mechanics).

In this protocol we detect mode B with a vacuum measurement (see Sec. 2.5);
more specifically, this could be a vacuum-one-photon measurement, where if we do
not hear the detector “click”, then we know that a vacuum was successfully mea-
sured. We detect mode D with a homodyne measurement (see Sec. 2.6). Note that
there is no particular reason why we measure these modes in such a way, if we were
to perform a vacuum measurement in mode D and a homodyne measurement in
mode B then the results would be identical to Fig. 2.1’s output. What is integral,
however, is that we perform a vacuum measurement on one mode and a homodyne
measurement on the other, as will be explained later (Sec. 3.2.1).

Finally, once we have measured modes B and D, in the most ideal case (as will
be explained later) our final state will be a maximally entangled Bell state in modes
A and C, described mathematically as |Φ+〉AC = 1√

2
(|00〉AC + |11〉AC). In the case

where we use Schrödinger cat states in modes B and D our final state shared be-
tween modes A and C in the most ideal case will be a “phase-rotated” maximally
entangled Bell state, |Φ+(α)〉AC = 1√

2

(
|00〉AC e−i|α|2 + |11〉AC ei|α|2

)
.

So far we have considered only a very idealistic case, in which the propagating
modes are subject to no form of decoherence which would cause the quantum state
to lose photons. Realistically, and practically, this is impossible, even over very short
distances and when sent through optical fibres (as discussed in Sec. 2.3). We there-
fore introduce two extra beam-splitters of transmission T into our protocol, so as to
model the effects of photon losses in modes B and D; our lossy proposed entangle-
ment swapping protocol can now be described using the following schematic:
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FIGURE 2.2: Diagram to represent the four channel system (where |ψHE〉AB
and |ψHE〉CD are entangled hybrid states) undergoing entanglement swap-
ping with two lossy channels (B and D), modelled by mixing a vacuum
state (|0〉εB and |0〉εD respectively) using a beam-splitter of transmission T

(BSTB,εB and BSTD,εD ). The lossy modes B and D then meet at a 50:50 beam-
splitter (BS1/2

B,D) and are subsequently measured (DB and DD).

(Note the equivalence of the above figure with that of the no loss case, Fig. 2.1).
In Fig. 2.2, as time progresses modes B and D are individually subjected to beam-
splitters BSTB,εB and BSTD,εD , of transmission T , with a vacuum state |0〉εB and |0〉εD
to simulate loss (this will be derived in Sec. 2.3). After these beam-splitters the rest
of the protocol is identical to that of the no loss case (Fig. 2.1).

We will now discuss each element of the lossy protocol given in Fig. 2.2, begin-
ning with the generation of our initial hybrid entangled states.

2.2 Generating the hybrid entangled states |ψHE〉AB |ψHE〉CD
The first step of this protocol is generating the initial hybrid entangled states. The
term “hybrid” is used here to describe entanglement shared between a discrete vari-
able (DV) quantum state and a continuous variable (CV) one. In our protocol we use
the Fock state as our DV half, and a coherent state (or cat state) as the CV half. For
overviews of potential methods to produce single photon Fock states and cat states,
see Chapter 1, Subsecs. 1.2.6 and 1.2.8 respectively.

Hybrid entangled states are of great importance in the field of quantum com-
munication and computation, as they exploit the usefulness of the DV state and CV
state, whilst countering the intrinsic problems with using these states on their own.
For example, DV qubits often require heralded approaches, and as such have low
success probabilities in their preparation and implementation, however the fideli-
ties against the desired state to be produced (see Sec. 2.9 for a discussion of fidelity)
often approach unity [125]. Contrastingly, in the CV regime, the actual preparation
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and implementation of quantum states is deterministic and unconditional, however
these states can be sensitive to photonic losses and so produce desired quantum
states with lower fidelities. Thus, preparing an initial system that is a hybrid state of
both helps to overcome the intrinsic problems when using DV states or CV states on
their own.

The bipartite hybrid entangled states we want to generate, which have a DV
qubit in a spatial mode (that is to say, it is stationary) and a CV qubit in the propa-
gating mode, for our proposed coherent state entanglement swapping protocol, can
be described mathematically as follows:

|ψCoh.HE 〉AB =
1√
2

(|0〉A ||α|〉B + |1〉A |−|α|〉B),

|ψCoh.HE 〉CD =
1√
2

(|0〉C ||α|〉D + |1〉C |−|α|〉D), (2.3)

Mode B (or D) is assumed to be a photonic coherent state propagating through a
photon-lossy channel, whereas the stationary mode A (or C) can be represented by
a variety of physical systems. In this section we briefly discuss possible methods to
produce this hybrid entangled state.

A hybrid photonic state has been recently demonstrated experimentally using
polarisation photons in [126] - in this work O. Morin et al. produce the exact state
given in Eqs. 2.3, without relying on difficult-to-implement Kerr non-linearities (as
discussed in Chapter 1, Subsec. 1.2.8). Instead, this work utilises probabilistic her-
alded single photon measurements to prepare a hybrid entangled state given as
|Ψ〉AB = N ((|0〉A + |1〉A) ||α|〉B + e−iφ(|0〉A − |1〉A) |−|α|〉B), where φ is a relative
phase. Upon finally performing a Hadamard gate Ĥ (which transforms Ĥ(|0〉 +

|1〉)� |0〉 and Ĥ(|0〉 − |1〉)� |1〉), this then gives the states described in Eqs. 2.3.
Alternatively, hybrid states may be produced using a vacuum and a single-photon

state for mode A (or C), as per the method given by H. Jeong et al. in 2014 [38]. The
method for this applies a superposition of photon addition operators (râ†A + tâ†B),
implemented using a beam-splitter of reflection and transmission amplitudes r and
t respectively. This can be shown mathematically as follows:

|Ψ〉AB = |0〉A ||αi|〉B
râ†A+tâ†B=====⇒ ≈ 1√

2

(
|1〉A ||αi|〉B + |0〉A

â†B ||αi|〉B√
|αi|2 + 1

)
, (2.4)

in which the subscript i on the coherent states denotes that these are initial ampli-
tudes, and the transmission amplitude has been set to t = (|αi|2 + 2)−

1
2 , to balance

the probabilities of the superposition of photon addition operators occurring on ei-
ther mode. Application of a photon addition operator onto a coherent state simply
gives a coherent state of greater amplitude, given as â†B ||αi|〉B ≈ |g|αi|〉, where g
denotes the gain in the amplitude. Using this photon addition operator, along with
a displacement operator on mode B (to give us the state described in Eq. 2.3), is
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described by:

|Ψ〉AB ≈
1√
2

(|1〉A ||αi|〉B + |0〉A |g|αi|〉B)

Displacement operator
=============⇒ 1√

2
(|0〉A ||αf |〉B + |1〉A |−|αf |〉B), (2.5)

where the subscript f on the coherent states denotes that these are the final coherent
state amplitudes, given as |αf | = (g|αi| − |αi|)/2, due to application of the displace-
ment operator. Clearly, using this method, one can produce an equivalent state to
our desired initial hybrid entangled state (Eq. 2.3), but in a very different method
used by O. Morin et al. in [126].

One further experimentally-feasible method to produce the hybrid states given
in Eqs. 2.3 is by using entangled polarisation qubits (i.e. |H〉A and |V 〉A, where H
and V denote horizontal and vertical polarisation respectively) in an initial state of

1√
2

(|H〉A |V 〉B + |V 〉A |H〉B), along with a coherent superposition state in mode C
[127]. Upon applying a series of beam-splitter operations and auxiliary modes (to
erase path information), the resultant state is given by 1√

2
(|H〉A ||α|〉B+|V 〉A |−|α|〉B),

which is clearly the state given in Eqs. 2.3.
Another possible route to produce hybrid entanglement is by relying on Kerr

non-linearities [128–131] however these are hard to realise practically (as discussed
in Chapter 1, Subsec. 1.2.8). Finally, we note that there are many other possible
techniques that could be used to generate hybrid entangled states [132–135], as a
result of the usefulness of these states for a range of quantum communication and
computation purposes being realised over the last few years.

We also propose a second entanglement swapping protocol in this work, which
we refer to as the “cat state protocol”. In our second, more complicated, protocol we
instead begin with initial hybrid entangled states given as:

|ψCatHE〉AB =
N+
α√
2

(
|0〉A ( ||α|〉B + |−|α|〉B) + |1〉A ( |i|α|〉B + |−i|α|〉B)

)
, (2.6)

whereN±α = 1/
√

2± 2e−2|α|2 is the normalisation of a cat state, and the hybrid state
as described above is the same for modes C and D. For the position and momentum
phase-space representation of the cat states given in mode B in Eq. 2.6, see Fig. 1.6.

We note here that, although clearly much work has been carried out experimen-
tally in research with regards to preparing the hybrid states given in Eqs. 2.3, the
hybrid states given above in Eq. 2.6 are far more complicated to prepare experi-
mentally. In fact, this is cutting edge research, however one potential method could
be: begin with a qubit |0〉A which is prepared in a product state with a cat state
||α|〉B + |−|α|〉B , and apply a Hadamard gate to the qubit. This will then yield a
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state given as:

Ĥ |Ψ〉AB = N Ĥ |0〉A ( ||α|〉B + |−|α|〉B)

� N (|0〉A ( ||α|〉B + |−|α|〉B) + |1〉A ( ||α|〉B + |−|α|〉B)). (2.7)

If one then performs a conditional rotation of π
2 (conditional on the qubit state, i.e.

only when the qubit state in mode A is |1〉A) to the cat components, this will give the
hybrid state given in Eq. 2.6. We note here that although this may not be precisely
how this hybrid entangled state would be generated in practice, this is a perfectly
viable gate sequence, so there is no issue of principle in creating hybrid states with
cats.

2.3 Modelling Loss

One of the biggest obstacles in photonic quantum technologies and communications
is photon losses. This is an unavoidable and intrinsic consequence of how photons
act in optical fibre - when travelling through optical fibre a fraction of the propagat-
ing photons will be absorbed into the fibre, causing photon losses.

Loss of photons by absorption in the lossy optical fibre will be modelled by send-
ing the beam mode of interest through a beam-splitter, and then discarding the re-
flected output mode as being lost to the environment. This means mathematically
tracing over the reflected output mode (this will be covered in a later section, see
Chapter 3, Subsec. 3.2.4). To theoretically model loss we use the standard method
of mixing our lossy propagating modes (B and D) with a vacuum mode at a beam-
splitter, as follows:

FIGURE 2.3: Diagram to show how loss can be modelled theoretically - note
that this is equivalent to modelling loss in mode D using a beam-splitter

BSTD,εD with a vacuum state in mode εD .

Mathematically, to model the loss that occurs as shown schematically in Fig. 2.3,
we use a similar method used to model a 50:50 BS acting on a vacuum and single
photon state (as per Eq. 1.26). Using the BS diagram of Fig. 1.7, our input states
are a coherent state in mode a and a vacuum state in mode b (note the equivalence
here to Fig. 2.3). We then apply our unitary operator (defined in Eq. 1.21) to model
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the effect of the BS; this time however, we must perform a unitary transformation on
the displacement operator |α〉 = D̂(α) exp

[
αâ† − α∗â

]
|0〉. To do so, we first need to

expand the displacement operator, using the Taylor series expansion (ex = 1 + x1

1! +
x2

2! + (. . .)) as follows:

D̂(α) = Î + (αâ† − α∗â) +
(αâ† − α∗â)(αâ† − α∗â)

2!
+ (. . .)

= Î + (αâ† − α∗â) +
α2â†

2
+ (α∗)2â2 − |α|2(â†â+ ââ†)

2!
+ (. . .). (2.8)

Now, we apply the unitary operator for the BS to the above, giving:

ÛBSD̂(α)Û †BS = ÛBS ÎÛ
†
BS + (αÛBS â

†Û †BS − α
∗ÛBS âÛ

†
BS)

+
α2ÛBS â

†Û †BSÛBS â
†Û †BS + (α∗)2ÛBS âÛ

†
BSÛBS âÛ

†
BS

2!

−
|α|2(ÛBS â

†Û †BSÛBS âÛ
†
BS + ÛBS âÛ

†
BSÛBS â

†Û †BS)

2!
+ (. . .), (2.9)

and so now we have an expression for how the BS unitary operator acts on the dis-
placement operator:

∴ ÛBSD̂(α)Û †BSÛBS |0〉 = exp
[
αÛBS â

†Û †BS − α
∗ÛBS âÛ

†
BS

]
|0〉 . (2.10)

Using this form of the displacement operator we can now model the effect of a BS
on a coherent state in mode a and a vacuum in mode b, with a BS of transmission T ,
such that:

ÛBS |α〉a |0〉b = ÛBSD̂(α)Û †BSÛBS |0〉a |0〉b
= exp

[
αÛBS â

†Û †BS − α
∗ÛBS âÛ

†
BS

]
|0〉a |0〉b , (2.11)

where we then apply the relations given in Eq. 1.25, which then gives:

ÛBS |α〉a |0〉b = exp
[
α(cos(ξ)â† + sin(ξ)b̂†)− α∗(cos(ξ)â+ sin(ξ)b̂)

]
|0〉a |0〉b , (2.12)

We can then re-express the above equation as separate exponentials, which gives:

ÛBS |α〉a |0〉b = exp
[
α cos(ξ)â† − α∗ cos(ξ)â

]
exp

[
α sin(ξ)b̂† − α∗ sin(ξ)b̂

]
|0〉a |0〉b ,

(2.13)

where we are able to separate the exponential into two terms, as above, due to the
commutative nature of the annihilation and creation operators acting on different
modes (i.e. for two modes i and j,

[
â†i , â

†
j

]
= 0 and [âi, âj ] = 0) via use of a corollary

of the Baker-Campbell-Hausdorff Formula, given as: eX̂+Ŷ = eX̂eŶ e−
[X̂,Ŷ ]

2 [136].
We note here that this degenerate form of the Baker-Campbell-Hausdorff Formula
is only true when the operators X̂ and Ŷ commute with their commutator ([X̂, Ŷ ]).
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Finally, we define the reflection and transmission coefficients (the probability ampli-
tudes) asR = sin2 ξ and T = 1−R = cos2 ξ, respectively, hence the final output from
the unitary BS ÛBS is:

ÛBS |α〉a |0〉b = exp
[√
T αâ† −

√
T α∗â

]
exp

[√
1− T αb̂† −

√
1− T α∗b̂

]
|0〉a |0〉b

=
∣∣∣√T α

〉
a

∣∣∣√1− T α
〉
b
. (2.14)

where the level of loss in the system is parametrised by T , and so for no loss we set
T = 1, which would result in no change to the input state. That is to say there is
no mixing of our propagating coherent state in mode B with the vacuum state of
mode εB (as per Fig. 2.3) as 100% of the information in mode B passes through the
beam-splitter. However, realistically this is not the case, and so a variety of losses
will be accounted for in our proposed entanglement swapping protocol.

Importantly, it should be pointed out that the outcome from the BS process de-
scribed above is absolutely not an entangled state. Compare the final state given by
Eq. 2.14, but for T = 0.50 (denoting a 50:50 BS), with the state given by two input
states of a vacuum in one mode and a single photon in the other, incident upon a
50:50 BS, Eq. 1.26. The state given in Eq. 1.26 is clearly maximally entangled, and is
a direct consequence of the probabilities of the photon being either reflected or trans-
mitted by the BS being equal, thus creating an entangled output. This is not the case
when coherent states are considered, as in Eq. 2.14, where the coherent state input is
actually split into both output modes, thus giving a product state. In fact, this is due
to the more classical-like nature of coherent states, where the BS effectively splits a
coherent light beam into two modes of equal intensity. Inherently, even in the very
low |α| limit, we still would not return the entangled state described by Eq. 1.26, as
entanglement cannot arise as a limiting case of a product state [80].

2.4 50:50 Beam-Splitter

Following the first beam-splitters, which are used to model photon losses within op-
tical fibre, we then mix the two lossy propagating modes B and D at a 50:50 beam-

splitter (BS
1
2
B,D). This is an integral part of an entanglement swapping protocol, as

this is the operation that swaps the initial entanglement shared between modes A
and B, and C and D, to shared entanglement between modes A and C. For this op-
eration to be successful clearly both propagating coherent states in modes B and D

must meet at this 50:50 beam-splitter at the same time, and we make this assumption
in our work.

Consider the beam-splitter schematic of Fig. 1.7. We now wish to have the two
input states as coherent states, |α〉a and |β〉b, where α and β denote the amplitude of
each respective coherent state. We mathematically model this mixing via a 50:50 BS
using the same method outlined in Sec. 2.3 to model loss via a BS.
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As before, we then apply our unitary operator (defined in Eq. 1.21) to model the
effect of the BS, again using the same method for calculating the effect of ÛBS on the
displacement operator. This time we instead have two input coherent states, and so
we need to also use a displacement operator on, both, modes a and b. We therefore
define the displacement operator that acts on mode a as per Eq. 2.10, and for mode
b we then define ÛBSD̂(β)Û †BSÛBS |0〉 = exp

[
βÛBS b̂

†Û †BS − β∗ÛBS b̂Û
†
BS

]
|0〉. The

action of the BS operator ÛBS on these two input coherent states (recall that we
define and apply the unitary operator ÛBS as the BS operator in this work) is then
calculated as:

ÛBS |α〉a |β〉b
= ÛBSD̂(α)Û †BSÛBSD̂(β)Û †BSÛBS |0〉a |0〉b
= exp

[
αÛBS â

†Û †BS − α
∗ÛBS âÛ

†
BS

]
exp
[
βÛBS b̂

†Û †BS − β
∗ÛBS b̂Û

†
BS

]
|0〉a |0〉b

= exp
[
α(cos(ξ)â† + sin(ξ)b̂†)− α∗(cos(ξ)â+ sin(ξ)b̂)

]
. exp

[
β(− sin(ξ)â† + cos(ξ)b̂†)− β∗(− sin(ξ)â+ cos(ξ)b̂)

]
|0〉a |0〉b , (2.15)

where we have applied the creation and annihilation operators relations given in
Eq. 1.25. Next, we separate the exponentials as a result of the commutative nature
of the creation and annihilation operators (via use of the Baker-Campbell-Hausdorff
Formula [136]) as before, giving:

ÛBS |α〉a |β〉b = exp
[
α cos(ξ)â† − α∗ cos(ξ)â

]
exp

[
α sin(ξ)b̂† − α∗ sin(ξ)b̂

]
exp

[
−β sin(ξ)â† + β∗ sin(ξ)â

]
exp

[
β cos(ξ)b̂† − β∗ cos(ξ)b̂

]
|0〉a |0〉b .

(2.16)

Once again, we set the transmission and reflection amplitudes such that cos ξ =
√
T

and sin ξ =
√

1− T . This then gives the final output state from the BST operation
as:

ÛBS |α〉a |β〉b = exp
[√
T αâ† −

√
T α∗â

]
exp

[√
1− T αb̂† −

√
1− T α∗b̂

]
exp

[
−
√

1− T βâ† +
√

1− T β∗â
]

exp
[√
T βb̂† −

√
T β∗b̂

]
|0〉a |0〉b

=
∣∣∣√T α−

√
1− T β

〉
a

∣∣∣√1− T α+
√
T β

〉
b
. (2.17)

Finally, as the above is a model of a BS of transmission T , we now set T = 1
2 , which

then gives us our final output states from applying a 50:50 BS operator to two coher-
ent states:

ÛBS |α〉a |β〉b =

∣∣∣∣α− β√
2

〉
a

∣∣∣∣α+ β√
2

〉
b

. (2.18)

This again shows the classical nature of coherent states; the above output state is
clearly not entangled, it is another product state like in Eq. 2.14, as the 50:50 BS
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splits the intensities of both input beams equally into both output modes.

2.5 Vacuum Measurement, DB

Following the application of a 50:50 beam-splitter to mix modes B and D, we must
then subsequently measure modes B and D to project their respective wavefunc-
tions, thus creating entanglement between modes A and C. Our proposed entan-
glement swapping protocol requires a vacuum measurement in mode B, however,
physically the measurement of a vacuum state is not straightforward [137].

One such way to reveal the presence or absence of a photon is to use a perfect
photodetector, and upon not hearing the characteristic click of the detector, indicat-
ing the presence of one or more photons, it can be assumed that there is not a photon
present [138]. In practice this is not quite as simple; the quantum efficiency of such
photodetectors is not unity, and as such only a small fraction of photons that arrive
at the detector lead to an electric pulse [139]. Typically, as is also the case for photons
travelling through optical fibre, most photons will also be reflected upon arriving at
the detector.

A further limitation of photodetectors, demonstrated in so-called avalanche pho-
todetectors (which use a highly-sensitive photodiode which is able to convert light
to electricity via the photoelectric effect [140]), is that it is very difficult to discrim-
inate between individual photons or multiple photons being present [141]. This,
however, does not matter within our protocol, as we merely care about there being
no photons, a null detection, (indicated by no detector click) or one or more photons.
We should point out that, although we do not need to know the photon number in
a click, we do have an error if there is no click but there were one or more photons
present - this can be quantified in terms of quantum efficiency, which is the fraction
of photon flux which contributes to the photocurrent in a photodetector [142]. If the
quantum efficiency is less than 100% then evidently not all photons that arrive at a
photon detector are counted.

More recently, there have been advances in photodetection methods and one way
to detect the presence of a vacuum state, even without destroying the quantum state,
is to apply a cavity quantum electrodynamic technique [143]. In this work, an optical
field is confined to a cavity, in which the optical field may have zero photons (a
vacuum) or one or more photons. This cavity is then coupled to a three level atomic
field with two ground states, in which an atom is driven by a laser to the excited
state, and the presence or absence of photons in the optical cavity mode is indicated
by which of the two ground states the atomic field returns to.

On the other hand, to mathematically represent a vacuum state detection is more
simple. To measure the presence of a vacuum, or lack thereof, we apply a positive-
operator valued measure (POVM) described by the operator [144]:

P̂ 0
i = |0〉i 〈0| , (2.19)
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where, |0〉i represents a vacuum state in mode i. This POVM measurement can be
calculated relatively straightforwardly, by application of this vacuum projector P̂ 0

i

onto a coherent state (as is required in our proposed entanglement swapping proto-
col), as follows:

|0〉i 〈0|α〉i = |0〉i e
− |α|

2

2

∞∑
n=0

αn√
n!

i 〈0|n〉i = |0〉i e
− |α|

2

2

∞∑
n=0

αn√
n!
δn,0 = |0〉i e

− |α|
2

2 ,

(2.20)

in which we have applied the Fock basis representation of the coherent state (as per
Eq. 1.7), and we have made use of the Kronecker delta function, in which δn,0 = 0

for n 6= 0 and δn,0 = 1 for n = 0.

2.6 Homodyne Measurement, DD

For successful entanglement swapping, we measure mode D via balanced homo-
dyne detection, and mode B by a vacuum measurement. A generalised scheme of
balanced homodyne detection consists of one 50:50 beam-splitter, a strong coherent
field

∣∣|β|eiθ〉 of amplitude |β|, and two photodetectors; the probe mode (mode D)
is combined at a beam-spliter with the strong coherent field (“local oscillator”) of
equal frequency, and photodetection is then used to measure the outputs (see Fig.
2.4) [145–147].

If we perform homodyne detection on an input signal in mode B1 and the coher-

ent field is injected in mode B2, then the operator BS
1
2
B1,B2

mixes the input state and
the coherent field, as follows [55]:

FIGURE 2.4: Diagram to represent the two channel system undergoing bal-
anced homodyne detection, where B1 is the input signal (mode D in ES pro-
tocols) and B2 is the local oscillator. IB1−B2 is the intensity difference be-

tween the photodetectors DB1 and DB2 .

The intensity difference (photon number difference) between the two photode-
tectors (DB1 and DB2) can be calculated using the two mode operator ÎB̂1−B̂2

, which
we shall now derive. Following our beam-splitter method and notation (as derived
in Chapter 1, Subsec. 1.2.9), let the outputs of the 50:50 beam-splitter in each mode
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be:

B̂1 =
1√
2

(b̂1 + b̂2) and B̂2 =
1√
2

(b̂2 − b̂1) (2.21)

in which we have used the unitary beam-splitter transformations as per Eq. 1.25, but
set cos ξ = sin ξ = 1√

2
(for ξ = π

4 ), as we are considering a 50:50 BS here. This then
gives our photodetector intensity difference operator as:

ÎB̂1−B̂2
= 〈B̂†1B̂1 − B̂†2B̂2〉 = 〈b̂†1b̂2 + b̂†2b̂1〉 . (2.22)

Now, setting the local oscillator mode to B̂2 = |β|eiθ, it follows that:

ÎB̂1−B̂2
= 2|β| 〈x̂θ〉 , (2.23)

where, x̂θ = 1
2

(
b̂1e
−iθ + b̂†1e

iθ
)

[80] (see Eq. 1.13), |β| is the amplitude of the strong
coherent field injected in mode B2, and the phase of the quadrature x̂θ to be mea-
sured is given by the phase θ of this local oscillator [148]. Finally, we note here that
as the signal (mode B1) and the local oscillator (mode B2) beams are generated from
a common source in all experiments that use homodyne detectors, we can assume
that the phases of the signal and local oscillator are fixed in relation [84]. Hence, we
identify the phase of the local oscillator as the phase difference between modes B1

and B2.
The probability amplitude of a homodyne measurement on an arbitrary co-

herent state
∣∣|α|eiϕ〉 can be described by projecting with an x̂θ eigenstate, where

x̂θ |xθ〉 = xθ |xθ〉 [40]:〈
xθ

∣∣∣|α|eiϕ
〉

=
1

2−
1
4π

1
4

exp

[
−(xθ)

2 + 2ei(ϕ−θ)|α|xθ −
1

2
e2i(ϕ−θ)|α|2 − 1

2
|α|2

]
, (2.24)

where the subscript on xθ is indicative of the angle in which the homodyne measure-
ment is performed, and as previously stated, importantly this angle can be chosen
through the phase of the local oscillator. For a full derivation of this wave-function
please see Appendix B. The homodyne measurement projector is thus described
mathematically as:

Π̂HD(xθ) = |xθ〉 〈xθ| , (2.25)

where, the subscript HD indicates “homodyne detection”, and θ gives the phase
angle in which the measurement takes place. We note here that homodyne measure-
ment is a routine and very accurate measurement technique used widely in optics,
for many years, as a means of measuring phase-dependent quantum phenomena
[149–152].

As will be shown to be vital in our calculations later in this thesis, the outcome
of a homodyne measurement is a value xθ of the continuous quadrature variable
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x̂θ, and the resultant homodyne measurement value is given by a probability dis-
tribution that comes from the modulus squared of the wave-function (as given in
Eq. 2.24). We therefore define an ideal homodyne measurement as the case when
the resultant homodyne measurement value is at the maximum of the probability
distribution, as will be assessed in Chapter 3.

In Chapter 5, we also consider two circumstances in which this homodyne mea-
surement is not the ideal/perfect case; ’non-ideal’ homodyne measurement out-
comes, in which we assess the impact caused by the homodyne measurement out-
come not being precisely where we ideally expect it to be (i.e. the measurement
outcome is not at the maximum point of the probability distribution); ’imperfect’
homodyne detection, where we quantify the homodyne detection outcome to have
a given resolution bandwidth around the ideal (or non-ideal) measured value.

2.7 Linear Entropy

Establishing quantum entropies is absolutely vital in quantum statistical mechanics
and information theory. Within information theory, entropy is a measure of the lack
of information about a system [153]; intrinsically, the entropy of a pure quantum
state would be 0, as we have complete information about this system, and so the
more mixed a state becomes, the more the entropy then increases. Shannon first
derived classical information entropy as H(X) = −

∑
i pi ln pi [153], (where H(X) is

the Shannon information entropy of random variable X , and pi are the probabilities
of the different possible values X may take [2]).

The Shannon entropy can be considered as a measure of the uncertainty associ-
ated with a classical probability distribution. Shannon’s measure of entropy is easily
extended to the quantum world, by replacing the classical probability distribution
with quantum density matrices [154]; Von Neumann entropy was first introduced in
J. V. Neumann’s groundbreaking book Mathematical Foundations of Quantum Mechan-
ics in 1932 (English translation published in 1955 [155]). Von Neumann entropy is
calculated as SV N = −Tr[ρ ln ρ], where the subscript V N denotes Von Neumann en-
tropy, and ρ is a density matrix (note the equivalence of the Von Neumann entropy
measure with that of Shannon’s classical entropy measure).

Linear entropy is an approximation to the Von Neumann entropy, and is often
employed as a measure of entropy of a density matrix, as it is more straight-forward
to compute; Von Neumann entropy requires one to diagonalise a density matrix,
which becomes more complex for non-pure density matrices [156].

Although linear entropy is an approximation to Von Neumann entropy, it is
nonetheless still an accurate assessment for 2-qubit density matrices [157], and still
monotonically increases as a function of any variables which cause the mixture of
our final density matrix to increase. Monotonically increasing here means that the
linear entropy is entirely non-decreasing [158] (as will be shown in practice once we
plot linear entropy in Chapter 3). For example, if we have decoherence in our system
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in terms of photon losses, the linear entropy should reflect this by being monotonic
as a function of photon losses.

Linear entropy is calculated using the formula:

SL(ρ) = 1− Tr
[
ρ2
]
, (2.26)

where SL is the linear entropy of the density matrix ρ, and can take any value be-
tween 0 (corresponding to a pure state), to Smax.L = 1 − 1

d , where d is the dimension
of the system [159, 160]. In the case of a two qubit system (with dimension value 4,
as it is a 4x4 matrix) the maximum value the linear entropy can take will therefore
be 0.75. The normalisation can also be adjusted such that 0 ≥ SL ≥ 1, by instead
calculating linear entropy as SL = d

d−1(1− Tr
[
ρ2
]
) [161]. However, in this work we

will instead use the definition given in Eq. 2.26.
For an example of how the linear entropy of our final density matrix is calculated,

refer to Appendix E.

2.8 Entanglement Negativity

Entanglement negativity is one of many ways to compute and measure the entangle-
ment of quantum systems [162], and was first introduced by G. Vidal and R. Werner
in 2002 [163]. For entangled pure systems, determining the entropy of the subsys-
tems is enough to quantify bipartite entanglement, however in the case of mixed
states (which we are concerned with in this work) the entropy no longer suffices
as an accurate measure of entanglement. For a measure of entanglement (E(ρ)) to
be considered acceptable it should satisfy certain postulates [164–166]; separability,
such that E(ρ) = 0 if, and only if, ρ is separable; non-negativity, i.e. E(ρ) ≥ 0;
monotonicity, such that any LOCC (local operations and classical communication)
cannot increase the entanglement; convexity, such that the entanglement measure is
monotonic under discarding information.

Entanglement negativity satisfies the above postulates, and is related to the Peres-
Horodecki criterion for entanglement; the Peres-Horodecki criterion assess the sep-
arability of a quantum state, such that if the partial transpose of the density matrix
is also a valid quantum state (that is to say that it can be expressed as only Dirac
kets) then this quantum state is described as separable, and therefore not entan-
gled [167, 168]. It then follows that if the partial transpose of a density matrix is
non-separable (and therefore somewhat entangled) it may therefore have negative
eigenvalues [169]. To calculate entanglement negativity we use the equation

N (ρ) = −2
∑
i

λ−i , (2.27)

where N (ρ) denotes the entanglement negativity value of the density matrix ρ, and



68 Chapter 2. Methods

∑
i λ
−
i represents the negative eigenvalues of the partial transpose of ρ. Entangle-

ment negativity may take any value between 0 and 1, describing a state of no entan-
glement, and of maximal entanglement, respectively. Following on from our above
discussion of the Peres-Horodecki criterion, the entanglement negativity of a quan-
tum state therefore does not violate these criterion.

As an example of how this calculation is performed, consider the maximally en-
tangled |Φ+〉 = 1√

2
(|00〉 + |11〉) Bell state. Firstly, we need to calculate the partial

transpose of the density matrix of |φ+〉, by:

ρΦ+ =
∣∣Φ+

〉 〈
Φ+
∣∣ =

1

2
(|00〉 〈00|+ |00〉 〈11|+ |11〉 〈00|+ |11〉 〈11|)

∴ ρPTΦ+ =
1

2
(|00〉 〈00|+ |01〉 〈10|+ |10〉 〈01|+ |11〉 〈11|), (2.28)

where the superscript PT denotes the partial transpose of the density matrix ρ. Next,
we then need to calculate the determinant of ρPTΦ+ − λÎ (where λ are the eigenvalues,

and Î is the identity matrix, and det
(
ρPTΦ+ − λÎ

)
= 0), so as to then be able to find

the eigenvalues of ρΦ+ , as follows:

det
(
ρPTΦ+ − λÎ

)
=

∣∣∣∣∣∣∣∣∣∣

1
2 − λ 0 0 0

0 −λ 1
2 0

0 1
2 −λ 0

0 0 0 1
2 − λ

∣∣∣∣∣∣∣∣∣∣
=

(
1

2
− λ
) ∣∣∣∣∣∣∣
−λ 1

2 0
1
2 −λ 0

0 0 1
2 − λ

∣∣∣∣∣∣∣
=

(
1

2
− λ
)(

λ

∣∣∣∣∣−λ 0

0 1
2 − λ

∣∣∣∣∣− 1

2

∣∣∣∣∣12 0

0 1
2 − λ

∣∣∣∣∣+ 0

∣∣∣∣∣12 −λ
0 0

∣∣∣∣∣
)

=

(
1

2
− λ
)(

(−λ) (−λ)

(
1

2
− λ
)
−
(

1

2

)(
1

2

)(
1

2
− λ

))
=

(
1

2
− λ
)2(

λ2 − 1

4

)
= λ4 − λ3 +

λ

4
− 1

16
= 0, (2.29)

where the determinant has been computed using the Laplace expansion formula
[170]. Now, we must solve the last equation given above to determine the eigenval-
ues of the density matrix, which are then:

λ =



−1
2

1
2

1
2

1
2

(2.30)

As we now have the four eigenvalues of ρΦ+ we can calculate the entanglement
negativity of this density matrix using the formula given in Eq. 2.27, which is done
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by simply multiplying the sum of all of the negative eigenvalues by 2. In the case
of ρΦ+ we have only one eigenvalue that is negative, therefore the entanglement
negativity is calculated asN (ρ) = −2(−1

2) = 1. Indeed, we expect the entanglement
negativity of ρΦ+ to be unity as the Bell states are maximally entangled two qubit
states.

It is important to note here that in general entanglement negativity is calculated

using N (ρ) = −
∑

i
|λ−i |−λ

−
i

2 [171], where the maximum value for the entanglement
negativity is then 1

2 (this is straight-forward to check given the eigenvalues deter-
mined in the above method). Within this work we have merely normalised the en-
tanglement negativity so that the maximum is unity and the minimum is 0 [169].
Lastly, we point out that entanglement negativity is sometimes considered in litera-
ture as logarithmic negativity EN (ρ), which is defined as EN (ρ) = log2 ||ρPT ||, where
||.|| is the trace norm, and the superscript PT again denotes partial transpose [172].
The logarithmic negativity is related to negativity by EN (ρ) = log2(2N (ρ) + 1).

For an example of how the entanglement negativity of our final density matrix is
calculated, refer to Appendix E.

2.9 Fidelity

Fidelity is a measure of the distance of two quantum states, or density matrices [173].
In this respect, the distance here refers to the closeness or overlap of these quantum
states. The fidelity of a density matrix ρ can be calculated as:

F ( |ψ〉 , ρ) = 〈ψ| ρ |ψ〉 , (2.31)

where |ψ〉 is the ideal state, and ρ is the density matrix being analysed. This defi-
nition of fidelity was first introduced by B. Schumacher in 1995 [174]. Calculating
the closeness (fidelity) of ρ with respect to |ψ〉 will return a value of 1 if the matrix
is identical to that of this particular quantum state |ψ〉, and 0 if these two states are
orthogonal (that is to say that they are as physically distinct as possible). However,
this definition of fidelity applies only in the special case that |ψ〉 is a pure quantum
state.

As an example of how this definition of fidelity may be applied to a pure quan-
tum system, consider the Bell states. Let us calculate the fidelity of the |Φ+〉 =

1√
2

(|00〉 + |11〉) Bell state, with respect to |Φ−〉 = 1√
2

(|00〉 − |11〉). Fidelity is then
determined as:

F (
∣∣Φ−〉 , ρΦ+) =

1

4
(〈00| − 〈11|)(|00〉 〈00|+ |00〉 〈11|+ |11〉 〈00|+ |11〉 〈11|)(|00〉 − |11〉),

(2.32)

where, ρΦ+ = |Φ+〉 〈Φ+|. Using the inner products 〈0|0〉 = 〈1|1〉 = 1 and 〈0|1〉 =

〈1|0〉 = 0, the expression for fidelity then reduces to F (|Φ−〉 , ρΦ+) = 0. Of course,
this result is not at all surprising, as the Bell states are known for all being pure, and
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also orthogonal with respect to each other. Following the same method as above,
but instead calculating the fidelity of the |φ+〉 Bell state with respect to itself, yields a
fidelity of F (|Φ+〉 , ρΦ+) = 1. Again, this result is as expected, because two identical
quantum states would indeed have a maximal overlap of unity.

As we will be concerned primarily with mixed matrices within this work, it is
more insightful to instead consider a more generalised definition of fidelity in terms
of two density matrices ρ and σ, as introduced by R. Jozsa [175]:

F =

∣∣∣∣Tr

[√√
σ ρ
√
σ

]∣∣∣∣2 . (2.33)

The above formula again works such that 0 corresponds to two orthogonal density
matrices, and unity if, and only if, ρ and σ are identical.

We note here that there are in fact two accepted forms of Eq. 2.33, in that it
can also be defined as F = Tr

[√√
σ ρ
√
σ
]

[2], and is often referred to as square
root fidelity. The same applies to the less general definition of fidelity given in Eq.
2.31, which can also be computed as F ( |ψ〉 , ρ) =

√
〈ψ| ρ |ψ〉 . In either case this

calculation still holds such that F = 0 for two orthogonal states, and F = 1 for two
identical states. In this work we stick to the original definition of fidelity as per Eq.
2.33.

For an example of how the fidelity of our final density matrix is calculated, refer
to Appendix E.

2.10 Success Probabilities

Success probability determines the likelihood of a particular process successfully
taking place. In the case of our protocol we want to calculate the success probabil-
ities for the vacuum and homodyne measurements. Due to the nature of success
probability calculations these will be discussed later in this report (Sec. 6.1) once a
more formal discussion of the protocol has been carried out.
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Chapter 3

Coherent State and Cat State ES

Part of the work detailed in this section was published in [1]: R. C. Parker, J. Joo, M.
Razavi and T. P. Spiller, J. Opt, 19, 10 (2017).

3.1 Coherent State ES

Now that we are equipped with all of the necessary tools to investigate our proposed
entanglement swapping protocol, we will first demonstrate the case where we use a
coherent states as the propagating modes, before moving onto the more complicated
case where we consider cat states instead.

3.1.1 No Loss

Firstly, we will discuss the case for no losses to show the ideal principle of our pro-
posed protocol. We illustrate our protocol in terms of a schematic (as per Fig. 2.2)
but for no loss, as:
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FIGURE 3.1: Diagram to represent the four channel system (where |ψHE〉AB
and |ψHE〉CD are entangled hybrid states) undergoing entanglement swap-
ping with no lossy channels. Modes B and D are mixed at a 50:50 beam-
splitter (BS1/2

B,D) and subsequently measured (DB and DD) to complete the
protocol.

The initial hybrid entangled state of our coherent state entanglement swapping
protocol, for no loss, is given mathematically as:

|ΨCoh.〉ABCD = BS
1/2
B,D |ψ

Coh.
HE 〉AB |ψ

Coh.
HE 〉CD , (3.1)

where, the subscript HE denotes a hybrid entangled quantum state. These hybrid
entangled states are described as |ψCoh.HE 〉AB = 1√

2
( |0〉A ||α|〉B + |1〉A |−|α|〉B) (and

the same for the hybrid entangled state of modes C and D - see Eq. 2.3). Hence we
can express our total initial hybrid entangled state as:

|ΨCoh.
HE 〉ABCD =

1

2

[(
|0〉A ||α|〉B + |1〉A |−|α|〉B

)
⊗
(
|0〉C ||α|〉D + |1〉C |−|α|〉D

)]
(3.2)

=
1

2

[
|00〉AC ||α|〉B ||α|〉D + |01〉AC ||α|〉B |−|α|〉D

+ |10〉AC |−|α|〉B ||α|〉D + |11〉AC |−|α|〉B |−|α|〉D
]
. (3.3)

We then apply the 50:50 beam-splitter operator shown in Eq. 3.1 to mix modes B
and D, using the following beam-splitter transformation outputs:

BS
1/2
i,j |α〉i |β〉j =

∣∣∣∣α− β√
2

〉
i

∣∣∣∣α+ β√
2

〉
j

, (3.4)

where the above unitary transformation was derived in Chapter 2, Sec. 2.4, Eq. 2.18.
The derivation was for the general case of a 50:50 BS operation on two coherent states
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of different amplitudes, however, in this protocol our coherent states that meet at the
50:50 BS are of the same amplitude, therefore the BS outputs are given as:

BS
1/2
B,D ||α|〉B ||α|〉D = |0〉B |

√
2 |α|〉D

BS
1/2
B,D ||α|〉B |−|α|〉D = |

√
2 |α|〉B |0〉D

BS
1/2
B,D |−|α|〉B ||α|〉D = |−

√
2 |α|〉B |0〉D

BS
1/2
B,D |−|α|〉B |−|α|〉D = |0〉B |−

√
2 |α|〉D , (3.5)

such that,

|ΨCoh.〉ABCD =
1

2

[
|00〉AC |0〉B |

√
2 |α|〉D + |01〉AC |

√
2 |α|〉B |0〉D

+ |10〉AC |−
√

2 |α|〉B |0〉D + |11〉AC |0〉B |−
√

2 |α|〉D
]

=
1

2

[
|0〉B

(
|00〉AC |

√
2 |α|〉D + |11〉AC |−

√
2 |α|〉D

)
+ |0〉D

(
|01〉AC |

√
2 |α|〉B + |10〉AC |−

√
2 |α|〉B

)]
. (3.6)

If one measures a vacuum state in modeB, applying the vacuum projector P̂ 0
B = |0〉B 〈0|

(given in Eq. 2.19) to Eq. 3.4 gives:

P̂ 0
B |ΨCoh.〉ABCD = |0〉B 〈0|Ψ

Coh.〉ABCD =
√
PCoh.0 |0〉B |Ψ

Coh.〉ACD

=
√
PCoh.0 |0〉B

[
B 〈0|0〉B

(
|00〉AC |

√
2 |α|〉D + |11〉AC |−

√
2 |α|〉D

)
+ |0〉D

(
|01〉AC B 〈0|

√
2 |α|〉B + |10〉AC B 〈0|−

√
2 |α|〉B

)]
, (3.7)

where the output states from the vacuum measurement projector are calculated as
the overlap with a vacuum state, such that:

|0〉B 〈0|0〉B = |0〉B (3.8)

|0〉B 〈0|
√

2 |α|〉B = e−|α|
2 |0〉B (3.9)

|0〉B 〈0|−
√

2 |α|〉B = e−|α|
2 |0〉B , (3.10)

and the remaining |0〉B term in the above outputs will be used to calculate the con-
jugate outputs when we form the final density matrix, ρABCD of the total quantum
state |ΨCoh.〉ABCD. In Eq. 3.7 the normalisation is taken as PCoh.0 to account for the
fact that this projective measurement has a success probability associated with it; we
therefore will now briefly discuss the success probability of the projective vacuum
measurement for the no loss protocol.

3.1.2 Success Probability of Vacuum Measurement

We consider now the success probability of performing a projective vacuum mea-
surement to the state given by Eq. 3.6. To do so, we use the identity operator ÎB
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written in the Fock state basis for mode B:

ÎB = |0〉B 〈0|+
∞∑
n=1

|n〉B 〈n| , (3.11)

where, 〈n|0〉 = 0 for n ≥ 1. We choose this form of the identity operator as we wish
to model the success of projecting with a vacuum state, and so we also must consider
the cases where we do not project with a vacuum. We therefore allow for a summa-
tion of

∑∞
n=1 |n〉B 〈n| to account for any states we may potentially project with that

are not a vacuum state. If we then apply this identity (“do-nothing”) operator to our
input state |ΨCoh.〉ABCD we get:

ÎB |ΨCoh.〉ABCD = |0〉B 〈0|Ψ
Coh.〉ABCD +

∞∑
n=1

|n〉B 〈n|Ψ
Coh.〉ABCD ,

≡
√
PCoh.0 |0〉B |Ψ

Coh.
0 〉ACD +

∞∑
n=1

√
PCoh.n |n〉B |Ψ

Coh.
n 〉ACD ,

(3.12)

where, PCoh.0 is the success probability for successful vacuum projection, for

ACD 〈ΨCoh.
0 |ΨCoh.

0 〉ACD = 1 and ACD 〈ΨCoh.
0 |ΨCoh.

n 〉ACD = 0, where |ΨCoh.
0 〉ACD is the

state in which the vacuum has successfully projected with, and |ΨCoh.
n 〉ACD is the

state which has not. Clearly it must also hold that
∑∞

n=1 PCoh.n = 1− PCoh.0 . We can
then rewrite the above as:√
PCoh.0 |0〉B |Ψ

Coh.
0 〉ACD

= |0〉B
1

2

[
|00〉AC |

√
2 |α|〉D + |11〉AC |−

√
2 |α|〉D + e−|α|

2 |0〉D ( |01〉AC + |10〉AC)
]
,

(3.13)

where the factor of 1
2 is the normalisation of the state prior to the vacuum projection

( |ΨCoh.〉ABCD, see Eq. 3.6), and so it then follows that:

TrACD

[
PCoh.0 ρACD

]
= PCoh.0 , (3.14)

by definition, if, and only if, ρACD is normalised, where ρACD = |ΨCoh.
0 〉ACD 〈ΨCoh.

0 |.
Note that we have dropped the |0〉B term in the above, for convenience of notation.
If we then trace-out modes A, C and D from the density matrix ρACD we get:

TrACD

[
PCoh.0 ρACD

]
=

1

4
(2 + 2e−2|α|2) = PCoh.0

∴ PCoh.0 =
1 + e−2|α|2

2
. (3.15)

It then follows that for |α| = 0 the success probability is unity, and in the limit of
large |α| the success probability of this measurement tends to PCoh.0 → 1

2 , however
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this will be more formally discussed in Chapter 6, Sec. 6.1.

3.2 Coherent ES - No Loss (continued)

The next step in this protocol is to apply a homodyne measurement projector at an
angle of π2 to mode D; this is only undertaken conditional on the successful vacuum
projection of mode B (as discussed in the previous section). This homodyne projec-
tor is described mathematically as Π̂HD(xθ) = |xθ〉 〈xθ| (derived in Chapter 2, Sec.
2.6, Eq. 2.25, where the subscript HD indicates “homodyne detection”, and θ gives
the phase angle in which the measurement takes place (θ = π

2 for our coherent state
entanglement swapping protocol). Applying this homodyne measurement to mode
D in our quantum state projects Eq. 3.7 to:

Π̂HD(xπ
2
) |ΨCoh.〉ACD = |xπ

2
〉
D
〈xπ

2
|ΨCoh.〉ACD

=NCoh.
[
|00〉AC D

〈xπ
2
|
√

2 |α|〉D + |11〉AC D
〈xπ

2
|−
√

2 |α|〉D

+e−|α|
2

D
〈xπ

2
|0〉D

(
|01〉AC + |10〉AC

)]
, (3.16)

where, N is the normalisation and we have omitted the |0〉B term in Eq. 3.7 for
convenience. Note that N will be the generic symbol to denote the normalisation
after a homodyne measurement (which is being made conditional on the vacuum
projection being successful), with the superscript denoting the particular protocol.
The outputs for this homodyne detection (as derived in Appendix B for the general
case) are then calculated as:

|xπ
2
〉D 〈xπ2 |±

√
2 |α|〉D = |xπ

2
〉D 〈xπ2 |0〉D exp

[
∓2
√

2 i|α|xπ
2

]
, (3.17)

where
D
〈xπ

2
|0〉D = 1

2−
1
4 π

1
4

exp
[
−(xπ

2
)2
]

is part of the output of any homodyne mea-
surement, and so we can effectively ignore this as it will be accounted for in the
normalisation in any case. It then follows that our total quantum state after this
homodyne measurement is:

|ΨCoh.〉AC =

NCoh.
(
e
−2
√

2 i|α|xπ
2 |00〉AC + e

2
√

2 i|α|xπ
2 |11〉AC + e−|α|

2
(
|01〉AC + |10〉AC

))
, (3.18)

in which we have omitted the |xπ
2
〉 term for convenience as this is dealt with when

forming our final density matrix. In the limit of |α| >> 1 our final quantum state
becomes

|ΨCoh.〉AC =
1√
2

(
e
−2
√

2 i|α|xπ
2 |00〉AC + e

2
√

2 i|α|xπ
2 |11〉AC

)
, (3.19)
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and for the most ideal homodyne measurement outcome of xπ
2

= 0 this becomes:

|ΨCoh.〉AC =
1√
2

(
|00〉AC + |11〉AC

)
, (3.20)

which is the maximally entangled |Φ+〉 Bell state. It is important to note that the
homodyne measurement outcome, denoted by xπ

2
in this case, is absolutely not a

discrete variable; the homodyne outcome, if being represented realistically, should
be expressed as a distribution of outcomes as it is a continuous variable. Neverthe-
less, for now we consider the most optimum discrete outcomes, and a more formal
representation and analysis of homodyne detection will be covered later in this work
in Chapter 5, and in Chapter 6 where we consider the success probability of this ho-
modyne projection.

The following position and momentum phase space diagram simplistically illus-
trates how the average homodyne detection outcome for this protocol is xπ

2
= 0:

FIGURE 3.2: Diagram to represent the phase space in which the coherent
states in mode D occupy, combined with a probability distribution showing

the most likely homodyne measurement outcome, xπ
2

= 0.

Clearly in this phase space diagram, if one performs a quadrature measurement
along the π

2 axis then the most probable outcome is xπ
2

= 0. It is important to note
here that we choose to measure along the π

2 axis to ensure that an entangled state
is resultant from this measurement; by measuring along this axis the two coherent
states shown in Fig. 3.2 are indistinguishable, and as such produce an entangled
state upon their measurement. Conversely, were we to choose to measure along
the x̂ axis then we would have a phase space probability distribution showing two
peaks, and as such the measurement would indeed distinguish between the two
states shown in Fig. 3.2, thus causing the resultant state after this measurement to
not be entangled.
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Intrinsically, there will be errors in the phase angle of this measurement θ, such
that θ 6= π

2 . In this circumstance we no longer project to the ideal states (as assessed
already in this section) - by increasing the error in θ this causes two peaks in the
probability distribution to eventually appear, as we are no longer indistinguishably
erasing the quantum information between the coherent states given in Fig. 3.2. This
then means that the resultant quantum state after this measurement will no longer be
entangled. This error will not be accounted for in this thesis, as we investigate alter-
nate forms of imperfections in the homodyne measurement (see Chapter 5), however
this would make interesting further work.

3.2.1 Justifying our Measurement Processes

In this section we will shortly discuss and justify our choice of measurement opera-
tions. Within our proposed entanglement swapping protocols we apply a projective
vacuum measurement to mode B and a homodyne measurement to mode D, so as
to achieve a highly entangled resultant state.

Firstly, let us consider the circumstance in which we theoretically measure a vac-
uum state in both mode B and mode D, by beginning the mathematical proof with
the state immediately after the 50:50 beam-splitter operation that mixes modes B
andD (prior to any measurement operations), given in Eq. 3.6. If we apply a vacuum
measurement operation to modes B and D (using the outputs of this measurement
given in Eq. 3.10) then the outcome state is described as:

|ΨCoh.〉AC = N e−|α|2
(
|00〉AC + |01〉AC + |10〉AC + |11〉AC

)
, (3.21)

where it is evident that in this circumstance we introduce an exponential dampening
exponent into each state. This exponent would be removed by the normalisation of
the quantum state, however what we are then left with would be a linear combina-
tion of all possible two qubit states, which is not entangled at all and is therefore
useless for further quantum communication purposes.

Now, let us instead consider the case of performing a homodyne measurement
to modes B and D. Again, we begin with Eq. 3.6, but instead apply a homodyne
measurement to modes B and D (using the homodyne detection outcomes detailed
in Eq. 3.17), which gives:

|ΨCoh.〉AC = N
(
e
−2
√

2 i|α|xπ
2 |00〉AC + e

−2
√

2 i|α|xπ
2 |01〉AC

+e
2
√

2 i|α|xπ
2 |10〉AC + e

2
√

2 i|α|xπ
2 |11〉AC

)
. (3.22)

Again, we have a similar issue as we had in the protocol of applying a vacuum
measurement to modes B and D: in Eq. 3.22 we have now introduced a phase into
each state via this homodyne measurement, and recalling that the ideal outcome
for this homodyne measurement here is xπ

2
= 0 (see Fig. 3.2), then the outcome

state is also a linear combination of all possible two qubit states, and as such is not
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entangled. It is therefore easy to see why our measurement choice of applying a
vacuum measurement to mode B, and performing homodyne detection in mode D
gives us an entangled, and therefore useful, final quantum state. It should also be
noted here that the same issue arises when considering losses, and also in the cat
state entanglement swapping protocol.

3.2.2 Equal Loss in Modes B and D

We have seen that the ideal zero-loss outcome for our proposed entanglement swap-
ping protocol using coherent states is (in the limit of large coherent state amplitude
and the most ideal homodyne outcome) the maximally entangled |Φ+〉 Bell state.
We will now show that the most ideal state for this protocol when also allowing for
relatively low levels of photon loss tends to the same maximally entangled Bell state.

For the lossy protocol (see Fig. 2.2 for a schematic), our input states are the same
as for the no loss case, however this time we must also apply a beam-splitter of
transmission T combined with vacuum states (see Fig. 2.2). Therefore our starting
point is the following:

|ΨCoh.
loss 〉ABεBCDεD = BSTB,εBBS

T
D,εD

|ψCoh.HE 〉AB |0〉εB |ψ
Coh.
HE 〉CD |0〉εD (3.23)

= BSTB,εBBS
T
D,εD

1

2

[(
|0〉A ||α|〉B + |1〉A |−|α|〉B

)
|0〉εB

⊗
(
|0〉C ||α|〉D + |1〉C |−|α|〉D

)
|0〉εD

]
, (3.24)

where,

BSTi,εi ||α|〉i |0〉εi = |
√
T |α|〉i |

√
1− T |α|〉εi

BSTi,εi |−|α|〉i |0〉εi = |−
√
T |α|〉i |−

√
1− T |α|〉εi . (3.25)

The above beam-splitter transformations were derived in Chapter 2, Sec. 2.3, Eq.
2.14, and allow us to model modes B and D as (equally) lossy modes, giving the
following lossy total quantum state:

|ΨCoh.
loss 〉ABεBCDεD = (3.26)

1

2

[(
|0〉A |

√
T |α|〉B |

√
1− T |α|〉εB + |1〉A |−

√
T |α|〉B |−

√
1− T |α|〉εB

)
⊗
(
|0〉C |

√
T |α|〉D |

√
1− T |α|〉εD + |1〉C |−

√
T |α|〉D |−

√
1− T |α|〉εD

)]
(3.27)

=
1

2

[
|00〉AC |

√
T |α|〉B |

√
T |α|〉D |

√
1− T |α|〉εB |

√
1− T |α|〉εD

+ |01〉AC |
√
T |α|〉B |−

√
T |α|〉D |

√
1− T |α|〉εB |−

√
1− T |α|〉εD

+ |10〉AC |−
√
T |α|〉B |

√
T |α|〉D |−

√
1− T |α|〉εB |

√
1− T |α|〉εD

+ |11〉AC |−
√
T |α|〉B |−

√
T |α|〉D |−

√
1− T |α|〉εB |−

√
1− T |α|〉εD

]
. (3.28)
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We then apply a 50:50 beam-splitter to modes B and D as before, giving:

BS
1/2
B,D |Ψ

Coh.
loss 〉ABεBCDεD =

1

2

[
|00〉AC |0〉B |

√
2T |α|〉D |

√
1− T |α|〉εB |

√
1− T |α|〉εD

+ |01〉AC |
√

2T |α|〉B |0〉D |
√

1− T |α|〉εB |−
√

1− T |α|〉εD
+ |10〉AC |−

√
2T |α|〉B |0〉D |−

√
1− T |α|〉εB |

√
1− T |α|〉εD

+ |11〉AC |0〉B |−
√

2T |α|〉D |−
√

1− T |α|〉εB |−
√

1− T |α|〉εD
]

(3.29)

=
1

2

[
|0〉B

(
|00〉AC |

√
2T |α|〉D |

√
1− T |α|〉εB |

√
1− T |α|〉εD

+ |11〉AC |−
√

2T |α|〉D |−
√

1− T |α|〉εB |−
√

1− T |α|〉εD
)

+ |0〉D
(
|01〉AC |

√
2T |α|〉B |

√
1− T |α|〉εB |−

√
1− T |α|〉εD

+ |10〉AC |−
√

2T |α|〉B |−
√

1− T |α|〉εB |
√

1− T |α|〉εD
)]
. (3.30)

Measuring a vacuum in mode B, using the outcomes of B 〈0|±
√

2T |α|〉B = e−T |α|
2

gives us:

|ΨCoh.
loss 〉AεBCDεD =

√
PCoh.0

[
|00〉AC |

√
2T |α|〉D |

√
1− T |α|〉εB |

√
1− T |α|〉εD

+ |11〉AC |−
√

2T |α|〉D |−
√

1− T |α|〉εB |−
√

1− T |α|〉εD
+ |0〉D e

−T |α|2
(
|01〉AC |

√
1− T |α|〉εB |−

√
1− T |α|〉εD

+ |10〉AC |−
√

1− T |α|〉εB |
√

1− T |α|〉εD
)]
, (3.31)

where, PCoh.0 is again the success probability of performing this vacuum projection -
following the same method as given in the no loss case (see Subsec. 3.1.2), the success

probability for the lossy case at hand is then PCoh.0 = 1+e−2T |α|2

2 (note equivalence of
the lossy vacuum success probability, with that of the no loss coherent state case, Eq.
3.15). Next, we perform homodyne detection on mode D, using:

|xπ
2
〉D 〈xπ2 |±

√
2T |α|〉D = |xπ

2
〉D 〈xπ2 |0〉D exp

[
∓2
√

2 i
√
T |α|xπ

2

]
, (3.32)

which gives us:

|ΨCoh.
loss 〉AεBCεD = N

[
e
−2
√

2 i
√
T |α|xπ

2 |00〉AC |
√

1− T |α|〉εB |
√

1− T |α|〉εD

+e
2
√

2 i
√
T |α|xπ

2 |11〉AC |−
√

1− T |α|〉εB |−
√

1− T |α|〉εD
e−T |α|

2
(
|01〉AC |

√
1− T |α|〉εB |−

√
1− T |α|〉εD

+ |10〉AC |−
√

1− T |α|〉εB |
√

1− T |α|〉εD
)]
.

(3.33)

The final step in this theoretical protocol is to trace out the lossy modes εB and
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εD. There are several possible ways to do this, however we will demonstrate two
examples here; using the Fock (number) state to trace out the lossy modes, and using
the coherent state to trace.

3.2.3 Fock State Trace Method

As previously explained in Subsec. 1.2.7 (Eq. 1.7), a coherent state |β〉 can be repre-
sented in the Fock basis as a summation of all possible number states, such that:

|β〉 = e−
|β|2

2

∞∑
n=0

βn√
n!
|n〉 . (3.34)

It therefore follows that Eq. 3.33 can be re-written in the Fock basis as:

|ΨCoh.
loss 〉AεBCεD = N e(T−1)|α|2

∞∑
n,m=0

(
√

1− T |α|)n+m

√
n!
√
m!

|n〉εB |m〉εD

×
[
e
−2
√

2 i
√
T |α|xπ

2 |00〉AC + (−1)n+me
2
√

2 i
√
T |α|xπ

2 |11〉AC

+ e−T |α|
2
(

(−1)m |01〉AC + (−1)n |10〉AC
)]
. (3.35)

Tracing out the state in lossy modes εB and εD then gives us a mixed state in modes
A and C, given by:

ρCoh.AC = TrεB ,εD

[
|ΨCoh.

loss 〉AεBCεD 〈Ψ
Coh.
loss |

]
. (3.36)

This Fock state trace method works well for very large values of n and m, how-
ever, this was found to be computationally expensive, and so a different method
was used, namely using a coherent state to trace out these lossy modes. Of course
this summation in Eq. 3.36 is fully satisfied (that is to say that it is not in any way
approximated) for the case where n and m are summed to infinity, however, this is
not possible computationally and so to pick large values for n and m (i.e. n,m ≈ 40)
would seem sufficient. However, n and m represent the average photon number of
the coherent state, where the average photon number is also given by the modu-
lus squared of the amplitude of the coherent state. In other words, for a coherent
state |β〉, with amplitude β = 10 the Fock basis values would need to be at least
|10|2 = 100.

Therefore, it is easy to see that if we instead use the coherent state basis for this
trace calculation, then there is no need for an unwieldy summation as described
above.

3.2.4 Coherent State Trace Method

As opposed to using the above Fock state trace method we can instead use a coherent
state to remove the lossy modes from our system. This method uses a Gaussian
integral to trace out the loss modes. The following method is for the general case of
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tracing out two arbitrary coherent states |α〉 and |β〉:

Iαβ =
1

π

∫
d2β 〈β|α〉 〈α|β〉 , (3.37)

(for further details on this relation refer to Appendix A). We again make use of the
Fock basis representation of the coherent state, giving:

Iαβ =
1

π

∫
d2β

(
e−|α|

2−|β|2+β∗α+α∗β
)
. (3.38)

Next, we can then express the amplitudes in terms of of phase space, such that:

α = αx + iαy and α∗ = αx − iαy, (3.39)

∴ β∗α+ α∗β = 2αxβx + 2αyβy, (3.40)

∴ |α|2 = α2
x + α2

y. (3.41)

We can then rewrite Eq. 3.38 using the above expressions, separating the integral
into the x and y components and expressing the integral in Cartesian coordinates:

Iαβ =
e−(α2

x+α2
y)

π

∫ ∞
−∞

dβx
∫ ∞
−∞

dβye−(β2
x+β2

y+2αxβx+2αyβy)

=
e−(α2

x+α2
y)

π

∫ ∞
−∞

dβx
∫ ∞
−∞

dβye−(βx−αx)2

eα
2
xe−(βy−αy)2

eα
2
y

=
1

π

∫ ∞
−∞

dβxe−β
2
x

∫ ∞
−∞

dβye−β
2
y . (3.42)

Finally, we then convert the integral to cylindrical polar coordinates, as is standard
in a Gaussian integration, such that:

Iαβ =
1

π

∫ 2π

0
dθ
∫ ∞

0
dr.re−r

2

=
1

π
2π

[
−1

2
e−r

2

]∞
0

= 1. (3.43)

The above result is the same for
∫ d2β

π 〈β|−α〉 〈−α|β〉. Using this method we can also
determine that

∫ d2β
π 〈β|−α〉 〈α|β〉 =

∫ d2β
π 〈β|−α〉 〈α|β〉 = e−2|α|2 .

We then calculate the density matrix of the final state, having traced out the lossy
modes using the above method (where we simply replace α with the relevant lossy
mode, i.e. ±

√
1− T |α|):

ρCoh.AC = TrεB ,εD

[
|ΨCoh.

loss 〉AεBCεD 〈Ψ
Coh.
loss |

]
, (3.44)
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ρCoh.AC = N


1 e−T |α|

2
e−2η|α|2 e−T |α|

2
e−2η|α|2 e−4η|α|2

e−T |α|
2
e−2η|α|2 e−2T |α|2 e−T |α|

2
e−4η|α|2 e−T |α|

2
e−2η|α|2

e−T |α|
2
e−2η|α|2 e−T |α|

2
e−4η|α|2 e−2T |α|2 e−T |α|

2
e−2η|α|2

e−4η|α|2 e−T |α|
2
e−2η|α|2 e−T |α|

2
e−2η|α|2 1

 ,

(3.45)

where, η = 1−T andN is the normalisation for the matrix, and is calculated simply
by dividing by the trace of the matrix, therefore N = 1/(2 + 2e−2T |α|2).

3.3 Coherent State Entanglement Swapping Results

Now that we have successfully calculated the final density matrix describing the
final two qubit state produced as a result of following our proposed entanglement
swapping protocol, we are able to analyse this density matrix and determine the
usefulness of this state for further quantum communication purposes.

Firstly, to evaluate the level of entanglement shared between Alice and Bob after
performing this protocol, we apply an entanglement measure called “negativity”.
As explained in Sec. 2.8 we calculate entanglement negativity using the equation
N (ρ) = −2

∑
i λ
−
i .

We can also calculate the linear entropy of this system, using SL(ρ) = 1−Tr
[
ρ2
]

outlined in Sec. 2.7.
Finally, we will determine the fidelity of our final state using the method given

in Sec. 2.9. Calculating the closeness (fidelity) of our final density matrix ρCoh.AC to the
|Φ+〉 Bell state will return a value of 1 if the matrix is pure, and therefore identical
to that of this particular Bell state, and 0 if these two states are orthogonal (that is to
say that they are as physically distinct as possible).

3.3.1 Entanglement Negativity

The following plot shows the entanglement negativity of our remaining two-qubit
state (Eq. 3.45), as a function of the amplitude of the coherent state (|α|), after fol-
lowing the coherent state ES protocol, for various levels of loss:
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FIGURE 3.3: Entanglement negativity as a function of |α|, for the final state
generated via our coherent state entanglement swapping protocol (Eq. 3.45),

for varying levels of loss.

Observing first the T = 1 plot we can see that as the value of |α| increases the
entanglement value eventually reaches a limit (at |α| = 1.7) and plateaus at unity;
this is to be expected as this is the ideal case for this protocol, where we have lost
no photons, and as such this protocol will produce a maximally entangled state in
this case. However, this is clearly not a realistic scenario, as to achieve photonic
state transmissions of any distance with no losses is still practically impossible with
current technologies.

If we now consider the lossy cases (for T < 1) in Fig. 3.3 then there is a clear pat-
tern that results as a function of the coherent state amplitude - a peak entanglement
value is reached for a specific value of |α|, and the maximum point of this peak shifts
to lower values of |α| for decreasing T .

If we also consider the actual position of the peak as a function of |α| in Fig.
3.4 we can see that the peak (for the cases of T ≤ 0.99) shifts as a function of |α|
for decreasing T . We can note that this is as a result of the dampening exponent
which is dependent on both T and |α|2, as introduced through the projective vacuum
measurement on modeB. Decreasing the value of T (to consider increasing levels of
photon loss) means that |α| must then increase to compensate for this, to allow the
dampening exponent to successfully make the non-corner terms of the final density
matrix (Eq. 3.45) decrease. When these non-corner terms have entirely dampened
we have present a quantum state of higher fidelity against the |Φ+〉 Bell state.

Also interesting to analyse is a 3-dimensional plot of entanglement negativity as
a function of T and |α|:



84 Chapter 3. Coherent State and Cat State ES

FIGURE 3.4: Entanglement negativity as a function of |α| and T for the final
state generated via our coherent state entanglement swapping protocol (Eq.

3.45).

This 3D plot shows in more detail this peak |α| pattern we see emerge in Fig.
3.3, where it is clear that for T ≥ 0.80 that this peak |α| value is between the range
1.2 < |α| < 1.6. This 3D plot also shows that for losses greater than 10 % yields an
entanglement negativity value of less than N (ρ) = 0.50, even in this peak |α| range.
Finally, for |α| > 2 and very large losses (T ≤ 0.80) the entanglement negativity
of the final two-qubit state generated from this entanglement swapping protocol is
N (ρ) = 0, and thus exhibits no entanglement.

3.3.2 Linear Entropy

Here we show linear entropy as a function of |α|, for various T :

FIGURE 3.5: Linear entropy as a function of |α| for the final state generated
via our coherent state entanglement swapping protocol (Eq. 3.45), for varying

levels of loss.

As with the entanglement negativity plot (Fig. 3.3) there is a clear pattern: for no
loss (T = 1) the plot line remains at zero for all |α| as a result of the state being max-
imally pure, however, for non-unity T the plots for linear entropy then increase as a
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function of |α|. This is perfectly complimentary to Fig. 3.3 in which the entanglement
negativity value plateaus at N (ρ) = 0 for large |α| and T < 1, thus indicating that
non-zero loss and increasing coherent state amplitude cause the resultant two-qubit
quantum state to become mixed.

Furthermore it should be noted that even in the largest |α| and most lossy limits,
we are not producing a maximally mixed state (with the exception of T → 0, in which
case we would clearly have a maximally mixed state); as explained in Sec. 2.7 for a
two-qubit system the maximum linear entropy value (thus indicating a maximally
mixed state) is SL = 0.75. In this case, to make a maximally mixed state we would
have a mixture of all four of the maximally entangled Bell states, which is therefore
not entangled at all, and as such is then described as maximally mixed. We can plot
linear entropy as a function of both T and |α| to further prove this point:

FIGURE 3.6: Linear entropy as a function of |α| and T for the final state gen-
erated via our coherent state entanglement swapping protocol (Eq. 3.45).

Clearly, for large |α| and T < 0.90 the linear entropy plot has flattened at an
entropy value of SL = 0.50. This further justifies that we are not producing a maxi-
mally mixed state. If this entropy plot is extended to cover a range of values reach-
ing T ≈ 0 then the entropy would reach the maximum value for a two-qubit state of
SL = 0.75.

It will be shown in the next section that in the limit of large |α| and non-unity T
that we are producing a mixture of the two Bell states |Φ+〉 = 1√

2
( |00〉 + |11〉) and

|Φ−〉 = 1√
2

( |00〉 − |11〉).

3.3.3 Fidelity

So far we have seen that in the limit of small losses and optimum |α| that our entan-
glement swapping protocol outcome is a highly entangled state. This is inherently a
good result, however, practically this is somewhat useless; it is much more important
to know exactly what entangled state we have. Therefore we calculate the fidelity of
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our final quantum state, with respect to the maximally entangled Bell state that our
protocol tends to (in the limit of no loss). As previously discussed, the Bell state pro-
duced from our proposed coherent state protocol is given as |Φ+〉 = 1√

2
( |00〉+ |11〉),

and so we first plot the fidelity of our resultant state with respect to this Bell state:

FIGURE 3.7: Fidelity against the |Φ+〉 = 1√
2

( |00〉+ |11〉) Bell state as a func-
tion of |α| for the final state generated via our coherent state entanglement

swapping protocol (Eq. 3.45), for varying levels of loss.

We can see that for the case of no photon losses (T = 1) the fidelity quickly
increases to F = 1 as a function of |α| and plateaus here for all |α|, as expected.
Similar to the plot of entanglement negativity as a function of |α| (Fig. 3.3), the
above plot of fidelity shows a clear peak for the cases where T < 1, before being
exponentially dampened for higher |α|, where the fidelity plots then plateau at F =

0.50. At the point where F = 0.50, the fidelity value tells us that we have half of the
maximally entangled |Φ+〉 = 1√

2
( |00〉 + |11〉) Bell state present, and so let us now

plot the fidelity of our final quantum state with respect to the orthogonal Bell state,
|Φ−〉 = 1√

2
( |00〉 − |11〉):

FIGURE 3.8: Fidelity against the |Φ−〉 = 1√
2

( |00〉− |11〉) Bell state as a func-
tion of |α| for the final state generated via our coherent state entanglement

swapping protocol (Eq. 3.45), for varying levels of loss.
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Let us first look at the case for T = 1: in the above plot the fidelity against the or-
thogonal Bell state does not change from F = 0 for all |α|, which is as expected as we
can see from Fig. 3.7 that for |α| > 1.7 our quantum state is exactly 1√

2
( |00〉+ |11〉).

If we now look at the cases for T < 1 in Fig, 3.8, then we can see that the fidelity
against the orthogonal |Φ−〉 = 1√

2
( |00〉 − |11〉) Bell state increases as a function

of |α|, which is absolutely what we would expect to see here. For clarity, we now
overlay the plots of Figs. 3.7 and 3.8:

FIGURE 3.9: Fidelity against the |Φ+〉 = 1√
2

( |00〉 + |11〉) Bell state (solid
lines) and the |Φ−〉 = 1√

2
( |00〉 − |11〉) Bell state (dashed lines), as a func-

tion of |α| for the final state generated via our coherent state entanglement
swapping protocol (Eq. 3.45), for varying levels of loss.

The combination of the two fidelity plots actually complement our linear entropy
results given in Fig. 3.5, where it was found that for T < 1 and large |α|, the linear
entropy tended to SL = 0.5, thus indicating that our final quantum state could be a
mixture of two Bell states. This result has now been confirmed by Fig. 3.9.

3.3.4 Quantum State Tomography

Finally, we can plot the quantum state tomography (QST) of our final density matrix
to visualise this density matrix in terms of its exact values for a given |α| and T , for
example:
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FIGURE 3.10: Quantum state tomography for the final state generated via our
coherent state entanglement swapping protocol (Eq. 3.45), for |α| = 2.0 and

T = 1.

(Note that typically QST plots are usually separated into their real and imaginary
components, however for the case at hand here our final state has no phases present,
and such the final density matrix is purely real). Clearly in Fig. 3.10 it is simple to
see that the density matrix here is exactly that of the |Φ+〉 = 1√

2
( |00〉 + |11〉) Bell

state. If we now look at the peak value for the T = 0.99 fidelity plot (Fig. 3.7) then
the QST at this peak value of |α| is:

FIGURE 3.11: Quantum state tomography for the final state generated via our
coherent state entanglement swapping protocol (Eq. 3.45), for |α| = 1.53 and

T = 0.99.

As expected, when including a small amount of loss, even at the peak |α| value,
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which gives a fidelity of F = 0.95, then the QST shows that this state has become
slightly mixed. This is also shown in Fig. 3.5 where we can see that the entropy is
not 0 for these values of T and |α|. Finally, let us look at the QST for the “worst case
scenario” of T = 0.95 and the corresponding peak amplitude value, given in Fig.
3.7:

FIGURE 3.12: Quantum state tomography for the final state generated via our
coherent state entanglement swapping protocol (Eq. 3.45), for |α| = 1.27 and

T = 0.95.

Evidently, as we have shown in the entanglement negativity, fidelity and linear
entropy plots so far, we can conclude that as the loss increases, the state becomes
more mixed. The QST for higher loss levels (Fig. 3.12) shows a more mixed matrix
than that of lower loss levels (Fig. 3.11). Interestingly, the QST of Fig. 3.12 shows
that there are weaker contributions to the density matrix of Eq. 3.45 by the four
central terms in the QST, compared to the eight other non-corner terms - in fact this
is a direct consequence of the lossy modes, which have been traced out and as such
dampening exponents have been introduced. For the cases of the four middle terms
the exponents in the final density matrix (Eq. 3.45 are not as strongly dampening as
a function of loss and α, whereas the eight other non-corner terms are more strongly
influenced by this exponential dampening.

Finally, we can look at the QST for the point in which the fidelity plot plateaus at
F = 0.50, for example T = 0.95 and |α| ≥ 6.0:
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FIGURE 3.13: Quantum state tomography for the final state generated via our
coherent state entanglement swapping protocol (Eq. 3.45), for |α| ≥ 6.0 and

T = 0.95.

It is now clear why, when including losses, and for an amplitude value greater
than that of the peak value, the fidelity plots (for fidelity against the |Φ+〉 and the
orthogonal |Φ−〉 Bell states) both plateau at F = 0.50; a combination of the |Φ+〉 =

1√
2

( |00〉+ |11〉) and |Φ−〉 = 1√
2

( |00〉 − |11〉) Bell states in terms of their respective
density matrix representations gives a mixed state:

ρΦ+

AC = |Φ+〉AC 〈Φ
+| = 1

2


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 ,

ρΦ−

AC = |Φ−〉AC 〈Φ
−| = 1

2


1 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 1

 ,

∴
1

2

(
ρΦ+

AC + ρΦ−

AC

)
=

1

2


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 (3.46)

Looking at the entanglement plot (Fig. 3.3), it is easy to see that once our fidelity
plots show that we have an exact 50:50 mixture of both of these Bell states, then the
entanglement plots plateau at N (ρ) = 0, indicating that our quantum state is then
the mixed state (of linear entropy SL = 0.50) described in Eq. 3.46.
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3.4 Cat State ES

We now explore an entanglement swapping protocol that is more complex than the
case where we use coherent states, as discussed in the previous section of this chap-
ter. In the following protocol we instead use Schrödinger cat states, which are coher-
ent state superpositions (as introduced in Subsec. 1.2.7).

3.4.1 No Loss

The initial hybrid entangled state in our proposed cat state entanglement swapping
protocol, for no loss (see Fig. 3.1 for a schematic), is given by:

|ΨCat〉ABCD = BS
1/2
B,D |ψ

Cat
HE〉AB |ψ

Cat
HE〉CD . (3.47)

Here, the hybrid entangled states are described as

|ψCatHE〉AB =
N+
α√
2

(
|0〉A ( ||α|〉B + |−|α|〉B) + |1〉A ( |i|α|〉B + |−i|α|〉B)

)
, (3.48)

whereN±α = 1/
√

2± 2e−2|α|2 is the normalisation of a cat state, and the hybrid state
as described above is the same for modes C and D. Therefore we can expand Eq.
3.47 as:

|ΨCat
HE〉ABCD =

(N+
α )2

2

[
|00〉AC ( ||α|〉B + |−|α|〉B)( ||α|〉D + |−|α|〉D)

+ |01〉AC ( ||α|〉B + |−|α|〉B)( |i|α|〉D + |−i|α|〉D)

+ |10〉AC ( |i|α|〉B + |−i|α|〉B)( ||α|〉D + |−|α|〉D)

+ |11〉AC ( |i|α|〉B + |−i|α|〉B)( |i|α|〉D + |−i|α|〉D)
]
. (3.49)

For the case of no photon losses, the state immediately after application of a 50:50
beam-splitter on modes B and D is equal to:

|ΨCat〉ABCD =
(N+

α )2

2

[
|00〉AC

(
|0〉B |

√
2 |α|〉D + |

√
2 |α|〉B |0〉D

+ |−
√

2 |α|〉B |0〉D + |0〉B |−
√

2 |α|〉D
)

+ |01〉AC
(
||α|e−

iπ
4 〉B ||α|e

iπ
4 〉D + ||α|e

iπ
4 〉B ||α|e

− iπ
4 〉D

+ |−|α|e
iπ
4 〉B |−|α|e

− iπ
4 〉D + |−|α|e−

iπ
4 〉B |−|α|e

iπ
4 〉D

)
+ |10〉AC

(
|−|α|e−

iπ
4 〉B ||α|e

iπ
4 〉D + ||α|e

iπ
4 〉B |−|α|e

− iπ
4 〉D

+ |−|α|e
iπ
4 〉B ||α|e

− iπ
4 〉D + ||α|e−

iπ
4 〉B |−|α|e

iπ
4 〉D

)
+ |11〉AC

(
|0〉B |

√
2 i|α|〉D + |

√
2 i|α|〉B |0〉D

+ |−
√

2 i|α|〉B |0〉D + |0〉B |−
√

2 i|α|〉D
)]
, (3.50)
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where we have used the beam-splitter transformation results as per Eq. 2.18. The
successful measurement of a vacuum state in mode B (using the vacuum measure-

ment projector given in Eq. 2.19), where 〈0|±|α|e±
iπ
4 〉 = e−

|α|2
2 , then gives us:

|ΨCat〉ACD =
√
PCat0

× |0〉B
[
|00〉AC

(
|
√

2 |α|〉D + 2e−|α|
2 |0〉D + |−

√
2 |α|〉D

)
+e−

|α|2
2 |01〉AC

(
||α|e

iπ
4 〉D + ||α|e−

iπ
4 〉D + |−|α|e−

iπ
4 〉D + |−|α|e

iπ
4 〉D

)
+e−

|α|2
2 |10〉AC

(
||α|e

iπ
4 〉D + |−|α|e−

iπ
4 〉D + ||α|e−

iπ
4 〉D + |−|α|e

iπ
4 〉D

)
+ |11〉AC

(
|
√

2 i|α|〉D + 2e−|α|
2 |0〉D + |−

√
2 i|α|〉D

)]
, (3.51)

where, as per the coherent state protocol, PCat0 is the success probability of this vac-
uum projection: following the same method as outlined in 3.1.2 the success proba-
bility for the no loss cat state protocol is calculated as:

PCat0 =

(
(N+

α )2

2N ′

)2

(3.52)

where,

N ′ = 1/
√

4 + 8e−|α|2 + 24e−2|α|2 + 8e−3|α|2 + 4e−4|α|2 + 8e−(2+i)|α|2 + 8e−(2−i)|α|2 .

(3.53)

It follows that PCat0 = 1 for |α| → 0 and PCat0 = 0.25 for |α| → ∞, however, as before,
this will be more formally discussed in Chapter 6, Sec. 6.1.

Now we perform homodyne detection in mode D (using the homodyne mea-
surement projector given in Eq. 2.25). For the cat state protocol we wish to perform
a quadrature measurement along the π

4 axis, so as to give a resultant entangled state
(see Fig. 3.14); as with the coherent state homodyne measurement, we choose this
specific angle of measurement such that we quantum erase information between cer-
tain peaks. This yields our final state for the entanglement swapping protocol using
cat states for no loss:

|ΨCat〉AC = N
[
|00〉AC

(
exp
[
(1− i)2|α|xπ

4
+ (i− 1)|α|2

]
+ exp

[
−(1− i)2|α|xπ

4
+ (i− 1)|α|2

]
+ 2e−|α|

2
)

+e−
|α|2

2 ( |01〉AC + |10〉AC)
(

exp
[
2|α|xπ

4
− |α|2

]
+ exp

[
2i|α|xπ

4

]
+ exp

[
−2i|α|xπ

4

]
+ exp

[
−2|α|xπ

4
− |α|2

])
+ |11〉AC

(
exp
[
(1 + i)2|α|xπ

4
− (1 + i)|α|2

]
+ exp

[
−(1 + i)2|α|xπ

4
− (1 + i)|α|2

]
+ 2e−|α|

2
)]
. (3.54)
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The ideal homodyne outcomes for this protocol are xπ
4

= ±|α|, and can be shown
diagrammatically as:

FIGURE 3.14: Diagram to represent the phase space in which the cat states in
mode D occupy, combined with a probability distribution showing the two

possible homodyne measurement outcomes, xπ
4

= ±|α|.

(note that in the Fig. 3.14 the coherent states that are part of the |01〉AC and

|10〉AC terms are exponentially dampened by e−
|α|2

2 (see Eq. 3.54), and so they are
omitted for ease of simplification). By completing the square in Eq. 3.54 we know
that the ideal homodyne outcomes must be xπ

4
= ±|α|: for a detailed mathematical

derivation of this result, see Appendix C.
Therefore, replacing xπ

4
= +|α| in Eq. 3.54 gives:

|ΨCat〉AC = N
[
|00〉AC

(
exp
[
(1− i)2|α|2 + (i− 1)|α|2

]
+ exp

[
−(1− i)2|α|2 + (i− 1)|α|2

]
+ 2e−|α|

2
)

+e−
|α|2

2 ( |01〉AC + |10〉AC)
(

exp
[
|α|2

]
+ exp

[
2i|α|2

]
+ exp

[
−2i|α|2

]
+ exp

[
−3|α|2

])
+ |11〉AC

(
exp
[
(1 + i)2|α|2 − (1 + i)|α|2

]
+ exp

[
−(1 + i)2|α|2 − (1 + i)|α|2

]
+ 2e−|α|

2
)]

(3.55)
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= N
[
|00〉AC

(
exp
[
|α|2 − i|α|2

]
+ exp

[
−3|α|2 + 3i|α|2

]
+ 2e−|α|

2
)

+e−
|α|2

2 ( |01〉AC + |10〉AC)
(

exp
[
|α|2

]
+ exp

[
2i|α|2

]
+ exp

[
−2i|α|2

]
+ exp

[
−3|α|2

])
+ |11〉AC

(
exp
[
|α|2 + i|α|2

]
+ exp

[
−3|α|2 − 3i|α|2

]
+ 2e−|α|

2
)]
.

(3.56)

(Note that the quantum state produced from a homodyne measurement outcome of
xπ

4
= +|α| in Eq. 3.56 is the same for the outcome xπ

4
= −|α|). If we then take the

large |α| limit then the |01〉AC and |10〉AC terms are exponentially dampened, and
so our final quantum state for this protocol is:

|ΨCat〉AC =
1√
2

(
e−i|α|2 |00〉AC + ei|α|2 |11〉AC

)
. (3.57)

Therefore, for no losses, and ideal homodyne measurement outcomes of xπ
4

= ±|α|,
the final state to our proposed entanglement swapping protocol when using cat
states is a “phase-rotated” maximally entangled Bell state. This phase could be cor-
rected for via a suitable phase-space rotation, such that the outcome state would be
the maximally entangled |Φ+〉 = 1√

2
( |00〉 + |11〉) Bell state. However, in the cir-

cumstance that this protocol would be used to create highly entangled states for a
customer to use in further quantum communication protocols, then provided that
the customer knows exactly the phases present in the state this should not matter.
Again, we should note that, as with the coherent state entanglement swapping pro-
tocol, we have made the assumption that the homodyne measurement outcome is
a discrete value - however an averaged distribution of homodyne outcome values
will be accounted for later in this report in Chapter 5.

3.4.2 Equal Loss

Similarly to the lossy coherent state entanglement swapping protocol outlined in Sec-
tion 3.2.2, we now demonstrate that the lossy cat state entanglement swapping pro-
tocol, when considering low levels of photon loss, still produces the phase-rotated
Bell state |Φ+(α)〉 = 1√

2
(e−i|α|2 |00〉AC + ei|α|2 |11〉AC).

Our initial quantum state for the lossy cat state protocol is the same as in Eq. 3.47,
however, we apply a lossy beam-splitter along with vacuum states in modes εB and
εD (see Fig. 2.2 for a schematic) such that our new initial equation is described as:

|ΨCat
loss〉ABεBCDεD = BSTB,εBBS

T
D,εD

|ψCatHE〉AB |0〉εB |ψ
Cat
HE〉CD |0〉εD , (3.58)

where, |ψCatHE〉ij is equivalent to Eq. 3.48. Applying the lossy beam-splitter operators,
as per Eq. 2.14, our lossy quantum state becomes:

|ΨCat
loss〉ABεBCDεD =
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(N+
α )2

2

[
( |0〉A ( |

√
T |α|〉B |γ|α|〉εB + |−

√
T |α|〉B |−γ|α|〉εB )+

|1〉A ( |
√
T i|α|〉B |γi|α|〉εB + |−

√
T i|α|〉B |−γi|α|〉εB ))

]
⊗
[
( |0〉C ( |

√
T |α|〉D |γ|α|〉εD + |−

√
T |α|〉D |−γ|α|〉εD)+

|1〉C ( |
√
T i|α|〉D |γi|α|〉εD + |−

√
T i|α|〉D |−γi|α|〉εD))

]
(3.59)

=
(N+

α )2

2

[
|00〉AC

(
|
√
T |α|〉B |

√
T |α|〉D |γ|α|〉εB |γ|α|〉εD

+ |
√
T |α|〉B |−

√
T |α|〉D |γ|α|〉εB |−γ|α|〉εD

+ |−
√
T |α|〉B |

√
T |α|〉D |−γ|α|〉εB |γ|α|〉εD

+ |−
√
T |α|〉B |−

√
T |α|〉D |−γ|α|〉εB |−γ|α|〉εD

)
+ |01〉AC

(
|
√
T |α|〉B |

√
T i|α|〉D |γ|α|〉εB |γi|α|〉εD

+ |
√
T |α|〉B |−

√
T i|α|〉D |γ|α|〉εB |−γi|α|〉εD

+ |−
√
T |α|〉B |

√
T i|α|〉D |−γ|α|〉εB |γi|α|〉εD

+ |−
√
T |α|〉B |−

√
T i|α|〉D |−γ|α|〉εB |−γi|α|〉εD

)
+ |10〉AC

(
|
√
T i|α|〉B |

√
T |α|〉D |γi|α|〉εB |γ|α|〉εD

+ |
√
T i|α|〉B |−

√
T |α|〉D |γi|α|〉εB |−γ|α|〉εD

+ |−
√
T i|α|〉B |

√
T |α|〉D |−γi|α|〉εB |γ|α|〉εD

+ |−
√
T i|α|〉B |−

√
T |α|〉D |−γi|α|〉εB |−γ|α|〉εD

)
+ |11〉AC

(
|
√
T i|α|〉B |

√
T i|α|〉D |γi|α|〉εB |γi|α|〉εD

+ |
√
T i|α|〉B |−

√
T i|α|〉D |γi|α|〉εB |−γi|α|〉εD +

|−
√
T i|α|〉B |

√
T i|α|〉D |−γi|α|〉εB |γi|α|〉εD

+ |−
√
T i|α|〉B |−

√
T i|α|〉D |−γi|α|〉εB |−γi|α|〉εD

)]
. (3.60)

where, γ =
√

1− T .
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Next, we apply a 50:50 beam-splitter to mix modes B and D, using the gener-
alised transformation outlined in Eq. 2.18, which gives:

|ΨCat
loss〉ABεBCDεD =

(N+
α )2

2

×
[
|00〉AC[
|0〉B

(
|
√

2T |α|〉D |γ|α|〉εB |γ|α|〉εD + |−
√

2T |α|〉D |−γ|α|〉εB |−γ|α|〉εD
)

+ |0〉D
(
|
√

2T |α|〉B |γ|α|〉εB |−γ|α|〉εD + |−
√

2T |α|〉B |−γ|α|〉εB |γ|α|〉εD
)]

+ |01〉AC
[
|
√
T |α|e

−iπ
4 〉B |

√
T |α|e

iπ
4 〉D |γ|α|〉εB |γi|α|〉εD

+ |
√
T |α|e

iπ
4 〉B |

√
T |α|e

−iπ
4 〉D |γ|α|〉εB |−γi|α|〉εD

+ |−
√
T |α|e

iπ
4 〉B |−

√
T |α|e

−iπ
4 〉D |−γ|α|〉εB |γi|α|〉εD

+ |−
√
T |α|e

−iπ
4 〉B |−

√
T |α|e

iπ
4 〉D |−γ|α|〉εB |−γi|α|〉εD

]
+ |10〉AC

[
|−
√
T |α|e

−iπ
4 〉B |

√
T |α|e

iπ
4 〉D |γi|α|〉εB |γ|α|〉εD

+ |
√
T |α|e

iπ
4 〉B |−

√
T |α|e

−iπ
4 〉D |γi|α|〉εB |−γ|α|〉εD

+ |−
√
T |α|e

iπ
4 〉B |

√
T |α|e

−iπ
4 〉D |−γi|α|〉εB |γ|α|〉εD

+ |
√
T |α|e

−iπ
4 〉B |−

√
T |α|e

iπ
4 〉D |−γi|α|〉εB |−γ|α|〉εD

]
+ |11〉AC[
|0〉B

(
|
√

2T i|α|〉D |γi|α|〉εB |γi|α|〉εD + |−
√

2T i|α|〉D |−γi|α|〉εB |−γi|α|〉εD
)

+ |0〉D
(
|
√

2T i|α|〉B |γi|α|〉εB |−γi|α|〉εD + |−
√

2T i|α|〉B |−γi|α|〉εB |γi|α|〉εD
)]]

,

(3.61)

Measuring a vacuum state in mode B via use of the vacuum projector defined in Eq.
2.19 yields:

〈0|
√
T |α|e

±iπ
4 〉 = e

−T |α|2
2 ,

〈0|
√

2T |α|〉 = e−T |α|
2

(3.62)
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|ΨCat
loss〉AεBCDεD =

√
PCat0 |0〉B

×
[
|00〉AC[
|
√

2T |α|〉D |γ|α|〉εB |γ|α|〉εD + |−
√

2T |α|〉D |−γ|α|〉εB |−γ|α|〉εD

+e−T |α|
2 |0〉D

(
|γ|α|〉εB |−γ|α|〉εD + |−γ|α|〉εB |γ|α|〉εD

)]
+e

−T |α|2
2 |01〉AC[

|
√
T |α|e

iπ
4 〉D |γ|α|〉εB |γi|α|〉εD + |

√
T |α|e

−iπ
4 〉D |γ|α|〉εB |−γi|α|〉εD

+ |−
√
T |α|e

−iπ
4 〉D |−γ|α|〉εB |γi|α|〉εD + |−

√
T |α|e

iπ
4 〉D |−γ|α|〉εB |−γi|α|〉εD

]
+e

−T |α|2
2 |10〉AC[

|
√
T |α|e

iπ
4 〉D |γi|α|〉εB |γ|α|〉εD + |−

√
T |α|e

−iπ
4 〉D |γi|α|〉εB |−γ|α|〉εD

+ |
√
T |α|e

−iπ
4 〉D |−γi|α|〉εB |γ|α|〉εD + |−

√
T |α|e

iπ
4 〉D |−γi|α|〉εB |−γ|α|〉εD

]
+ |11〉AC

Big[ |
√

2T i|α|〉D |γi|α|〉εB |γi|α|〉εD + |−
√

2T i|α|〉D |−γi|α|〉εB |−γi|α|〉εD
+e−T |α|

2 |0〉D
(
|γi|α|〉εB |−γi|α|〉εD + |−γi|α|〉εB |γi|α|〉εD

)]]
, (3.63)

where PCat0 is once again the success probability of the vacuum measurement, and
is given as:

PCat0 =

(
(N+

α )2

2N ′

)2

(3.64)

where,

N ′ =

1/
√

4 + 8e−T |α|2 + 24e−2T |α|2 + 8e−3T |α|2 + 4e−4T |α|2 + 8e−(2+i)T |α|2 + 8e−(2−i)T |α|2 ,

(3.65)

(note equivalence of the lossy vacuum success probability, with that of the no loss
cat state case, Eq. 3.52).
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A homodyne measurement in mode D using the projector given in Eq. 2.25 then
gives:

|ΨCat
loss〉AεBCεD = N

×
[
|00〉AC

(
exp

[
(1− i)2

√
T |α|xπ

4
+ (i− 1)T |α|2

]
|γ|α|〉εB |γ|α|〉εD

+ exp
[
− (1− i)2

√
T |α|xπ

4
+ (i− 1)T |α|2

]
|−γ|α|〉εB |−γ|α|〉εD

+e−T |α|
2
(
|γ|α|〉εB |−γ|α|〉εD + |−γ|α|〉εB |γ|α|〉εD

))
+e

−T |α|2
2 |01〉AC

(
exp

[
2
√
T |α|xπ

4
− T |α|2

]
|γ|α|〉εB |γi|α|〉εD

+ exp
[
− 2
√
T i|α|xπ

4

]
|γ|α|〉εB |−γi|α|〉εD

+ exp
[
2
√
T i|α|xπ

4

]
|−γ|α|〉εB |γi|α|〉εD

+ exp
[
− 2
√
T |α|xπ

4
− T |α|2

]
|−γ|α|〉εB |−γi|α|〉εD

)
+e

−T |α|2
2 |10〉AC

(
exp

[
2
√
T |α|xπ

4
− T |α|2

]
|γi|α|〉εB |γ|α|〉εD

+ exp
[
2
√
T i|α|xπ

4

]
|γi|α|〉εB |−γ|α|〉εD

+ exp
[
− 2
√
T i|α|xπ

4

]
|−γi|α|〉εB |γ|α|〉εD

+ exp
[
− 2
√
T |α|xπ

4
− T |α|2

]
|−γi|α|〉εB |−γ|α|〉εD

)
+ |11〉AC

(
exp

[
(i + 1)2

√
T |α|xπ

4
− (i + 1)T |α|2

]
|γi|α|〉εB |γi|α|〉εD

+ exp
[
− (1 + i)2

√
T |α|xπ

4
− (i + 1)T |α|2

]
|−γi|α|〉εB |−γi|α|〉εD

+e−T |α|
2
(
|γi|α|〉εB |−γi|α|〉εD + |−γi|α|〉εB |γi|α|〉εD

))]
.

(3.66)
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We then take the homodyne measurement outcome to be xπ
4

= ±
√
T |α| (see Ap-

pendix C), thus our final state (prior to tracing out the lossy modes) is:

|ΨCat
loss〉AεBCεD = N

×
[
|00〉AC(
exp

[
(1− i)T |α|2

]
|γ|α|〉εB |γ|α|〉εD + exp

[
− (3− 3i)T |α|2

]
|−γ|α|〉εB |−γ|α|〉εD

+e−T |α|
2
(
|γ|α|〉εB |−γ|α|〉εD + |−γ|α|〉εB |γ|α|〉εD

))
+e

−T |α|2
2 |01〉AC(

exp
[
T |α|2

]
|γ|α|〉εB |γi|α|〉εD + exp

[
− 2T i|α|2

]
|γ|α|〉εB |−γi|α|〉εD

+ exp
[
2T i|α|2

]
|−γ|α|〉εB |γi|α|〉εD

)
+ exp

[
− 3T |α|2

]
|−γ|α|〉εB |−γi|α|〉εD

+e
−T |α|2

2 |10〉AC(
exp

[
T |α|2

]
|γi|α|〉εB |γ|α|〉εD + exp

[
2T i|α|2

]
|γi|α|〉εB |−γ|α|〉εD

+ exp
[
− 2T i|α|2

]
|−γi|α|〉εB |γ|α|〉εD

)
+ exp

[
− 3T |α|2

]
|−γi|α|〉εB |−γ|α|〉εD

+ |11〉AC(
exp
[
(i + 1)T |α|2

]
|γi|α|〉εB |γi|α|〉εD + exp

[
− (3 + 3i)T |α|2

]
|−γi|α|〉εB |−γi|α|〉εD

+e−T |α|
2
(
|γi|α|〉εB |−γi|α|〉εD + |−γi|α|〉εB |γi|α|〉εD

))]
, (3.67)

(note that the above equation is for xπ
4

= +
√
T |α|, however the same result is

achieved for xπ
4

= −
√
T |α|). Finally, we then trace out the lossy modes using the

coherent state to trace, as shown in Subsec. 3.2.4, therefore giving our final state for
the cat state entanglement swapping protocol as:

ρCatAC = TrεB ,εD

[
|ΨCat

loss〉AεBCεD 〈Ψ
Cat
loss|

]
. (3.68)

3.5 Cat State Entanglement Swapping Results

In this section we present our results for the entanglement swapping protocol using
cat states, including losses. As before, we calculate entanglement negativity, linear
entropy and fidelity to evaluate and establish how much loss this protocol can toler-
ate, whilst still producing a high-quality Bell state.

3.5.1 Entanglement Negativity

Let us first present the plot of entanglement negativity as a function of the cat state
amplitude |α|:
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FIGURE 3.15: Entanglement negativity as a function of |α| for the final state
generated via our cat state entanglement swapping protocol (Eq. 3.68), for

varying levels of loss.

For the case of T = 1 the plot plateaus at unity for large |α|, as we saw in the
coherent state results (see Fig. 3.3). However, what is more interesting here is that
we appear to see a small dip in the entanglement plots at around |α| = 1.5, and this is
evident in the cases where we also consider small photon losses too. Mathematically,
this is a direct consequence from the numerous exponential terms that are present
in our final equation describing the resultant two qubit state (see Eq. 3.56). These
exponential terms can be seen as somewhat competing with each other, and so instead
of seeing a simple peak followed by a decay (due to exponential dampening) as we
saw in the coherent state entanglement negativity results (Fig. 3.3), in this case the
cat state protocol introduces more exponential terms which causes this dip due to
exponential interferences.

If we also consider the position of the peaks as a function of |α| in Fig. 3.16 we can
note that the first peak is always at the same value of |α|, for all T , whereas the sec-
ond peak (for the cases of T ≤ 0.99) shifts as a function of |α| for decreasing T . We in
fact saw this in the coherent state regime (see Fig. 3.3), and concluded that this is as
a result of the dampening exponent which is dependent on both T and |α|2, and was
introduced through the projective vacuum measurement on mode B. As was dis-
cussed, if we decrease the value of T (to consider increasing levels of photon loss)
then |α| must then increase to compensate for this, to cause the dampening expo-
nent to successfully make the non-corner terms of the final density matrix decrease.
When these non-corner terms have entirely dampened we have present a quantum
state of higher fidelity against the |Φ+(α)〉 Bell state. Finally, if we consider the first
peak present in Fig. 3.16 then we can conclude that this is peak is caused by other
exponential terms present in the final density matrix.

If we now consider the cases for loss, we can see that this dip is still present,
and is the cause of a second peak we see in these plots (this second peak becomes
less pronounced for increasing levels of loss). For 0.97 < T ≤ 1 this second peak
corresponds to a higher entanglement negativity value than the first peak present,
and vice versa for T ≤ 0.97. Experimentally this is not a problem, due to the fact
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that one is likely to already know the level of loss that the propagating cat states
will undergo, and thus one would be able to engineer the amplitude of the initial cat
states to match this, so as to achieve the highest level of resultant entanglement.

Again, we can plot the entanglement negativity as a function of both |α| and T

to give:

FIGURE 3.16: Entanglement negativity as a function of |α| and T for the final
state generated via our cat state entanglement swapping protocol (Eq. 3.68).

where we can see that, as with the coherent state entanglement swapping results
(Fig. 3.4), at large |α| and high losses (T ≤ 0.80), the entanglement negativity plots
plateau at N (ρ) = 0, as expected.

3.5.2 Linear Entropy

Let us now investigate the linear entropy of the final quantum state produced via
this cat state entanglement swapping protocol:

FIGURE 3.17: Linear entropy as a function of |α| for the final state gener-
ated via our cat state entanglement swapping protocol (Eq. 3.68), for varying

levels of loss.
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Evidently, for no loss the linear entropy is zero for all |α|, as expected, and in
accordance with the coherent state protocol results for linear entropy (see Fig. 3.5).
If we now observe the linear entropy plots that include losses we can see that all
of these plots are tending to plateau at an entropy value of SL = 0.50, for large
|α|. This again is identical to the coherent state results, where we can therefore start
to conclude that we must be producing not a maximally mixed state, but a highly
mixed state nonetheless. Plotting the linear entropy of our final density matrix as a
function of |α| and T further reinforces this:

FIGURE 3.18: Linear entropy as a function of |α| and T for the final state
generated via our cat state entanglement swapping protocol (Eq. 3.68).

Interestingly, we can also see that where the entanglement plot shows a dip (Fig.
3.15), the value of |α| for which this dip reaches its minimum is the same value
of |α| where the linear entropy plots show a slight dip too. This will be further
explained in the next section, where we discuss fidelity and also represent quantum
state tomography describing the final density matrix.

3.5.3 Fidelity

As previously discussed, in the cat state ES protocol, for the ideal case (large |α|
limit and T = 1) the state we are producing is a phase-rotated Bell state, shown in
Eq. 3.57. So far we have seen from Figs. 3.15 and 3.17 that for large |α| and non-unity
T we are producing a mixed state; it is now, as with the coherent state results, much
more useful to look at the fidelity of our final quantum state, with the Bell state we
expect to have made and also with respect to the state orthogonal to this Bell state.

Firstly, we show the plot for fidelity against the phase-rotated Bell state |Φ+(α)〉 =
1√
2

( |00〉 e−i|α|2 + |11〉 e+i|α|2) as a function of |α|:
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FIGURE 3.19: Fidelity against the |Φ+(α)〉 = 1√
2

( |00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| for the final state generated via our cat state
entanglement swapping protocol (Eq. 3.68), for varying levels of loss.

As with the coherent state entanglement swapping results, the fidelity plot against
our ideal Bell state outcome has a similar shape to that of the entanglement plot (see
Fig. 3.15), with the no loss plot plateauing at unity, indicating that in our ideal case
we have the maximally entangled phase-rotated |Φ+(α)〉 Bell state present. As we
would expect, when including losses and looking at larger values of amplitude then
the fidelity plot against this Bell state drops and plateaus at F = 0.50. It is again
useful to investigate the fidelity with the state orthogonal to our ideal Bell state,
|Φ−(α)〉 = 1√

2
( |00〉 e−i|α|2 − |11〉 e+i|α|2):

FIGURE 3.20: Fidelity against the |Φ−(α)〉 = 1√
2

( |00〉 e−i|α|2 − |11〉 e+i|α|2)

Bell state as a function of |α| for the final state generated via our cat state
entanglement swapping protocol (Eq. 3.68), for varying levels of loss.

Again, the patterns are similar to our more simplistic coherent state entangle-
ment swapping regime, for no losses the fidelity against this orthogonal phase-
rotated Bell state exhibits a very small peak (at |α| = 0.70) before rapidly dipping
again to F = 0. This of course is entirely expected as we can see from Fig. 3.19 that
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for larger |α| values our final density matrix is purely the |Φ+(α)〉 Bell state. Once
again, this small bump we see in Fig. 3.20 is due to competing exponential terms.

We now overlay Figs. 3.19 and 3.20, for clarity:

FIGURE 3.21: Fidelity against the |Φ+(α)〉 = 1√
2

( |00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state (solid lines) and the |Φ−(α)〉 = 1√
2

( |00〉 e−i|α|2 − |11〉 e+i|α|2) Bell
state (dashed lines), as a function of |α| for the final state generated via our cat
state entanglement swapping protocol (Eq. 3.68), for varying levels of loss.

Observing Fig. 3.21, we can see that for non-unity T and very large |α| the plots
for the fidelity against the orthogonal Bell state tend to F = 0.50, indicating that at
these limits we have a 50:50 mixture of the |Φ+(α)〉 state and the orthogonal |Φ−(α)〉
state. If we now refer back to the linear entropy plot of Fig. 3.17 we already know
this to be the case; as the linear entropy at the limit of very large |α| and T < 1

tends to SL = 0.50, we can already conclude that we likely have a mixture of two
Bell states (recall that we reached a similar conclusion regarding the coherent state
protocol). This will be covered in further detail in the next section where we plot the
QST of our final density matrix.

Finally, it is useful to look at the fidelity (against the ideal |Φ+(α)〉 Bell state) as
a function of both T and |α|:
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FIGURE 3.22: Fidelity against the |Φ+(α)〉 = 1√
2

( |00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| and T for the final state generated via our cat
state entanglement swapping protocol (Eq. 3.68).

As we found before, in the limits of very large losses T ≤ 0.80 there are no values
of |α| which yield a useful level of fidelity. This of course corresponds well with the
3D plot for entanglement in Fig. 3.16, where at these same limits the entanglement
plot plateaus at N (ρ) = 0.

3.5.4 Quantum State Tomography

As a final verification as to which quantum state our final density matrix is describ-
ing, we can once more consider the quantum state tomography (QST) of this quan-
tum state as a visual aid.

The QSTs for the coherent state entanglement swapping protocol (Figs. 3.10, 3.11,
3.12 and 3.13) were simplistic, as we considered only the most idealistic homodyne
measurement outcome (xπ

2
= 0) which removed any phases from our final quantum

state, and so the QSTs for this case represented the real values only. However, as
should be apparent by now, our proposed cat state protocol is more complicated,
and as such we have many more phases present (most of which are not removed
by our most ideal homodyne measurement outcomes), and as such, as is typically
shown in QST diagrams, we will now need to plot the separate real and imaginary
components of our final density matrix (denoted as Re(ρ) and Im(ρ) respectively).

It is useful to investigate the QST for the peaks in our ideal outcome fidelity plots,
so that we can ascertain exactly what quantum state we have at these points. Firstly,
let us look at the QST describing the maximum point of the first peak (at |α| = 1.24)
in the fidelity plot of Fig. 3.19 for the no loss (T = 1) circumstance:
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FIGURE 3.23: Quantum state tomography for the final state generated via
our cat state entanglement swapping protocol (Eq. 3.68), for |α| = 1.24 (max-

imum point of the first peak in fidelity plot) and T = 1.

The above QST diagram shows that, for the value of |α| at the first peak for T = 1,
we do not yet have a state that is identical to the |Φ+(α)〉 Bell state; this is easy to
see when looking at the imaginary component of Fig. 3.23, where the imaginary
component values are fairly small, and as such we clearly do not yet have a state
with a phase similar to that present in the |Φ+(α)〉 Bell state. If we now look at the
QST describing the minimum point at the dip in the fidelity plot (at |α| = 1.48) then
we will see that the QST shows slightly more mixing:

FIGURE 3.24: Quantum state tomography for the final state generated via
our cat state entanglement swapping protocol (Eq. 3.68), for |α| = 1.48 (min-

imum point of the dip in fidelity plot) and T = 1.

This mixing is present due to the “non-corner terms” (i.e. the terms that are not
|00〉 〈00|, |00〉 〈11|, |11〉 〈00| or |11〉 〈11|) having slightly higher values (in both the
real and imaginary components) compared to Fig. 3.23. Of course, we would expect
this as the fidelity plot in Fig. 3.19 shows that the fidelity against our ideal Bell state
is lower for |α| = 1.48 than it is for |α| = 1.24. Interestingly, in the imaginary part
of Fig. 3.24 we can observe that the |00〉 〈11| and |11〉 〈00| terms are increasing in
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value, which is what we need for our final density matrix to have a high fidelity
against the |Φ+(α)〉 Bell state.

Next, we show the QST at the point in which the fidelity plot for T = 1 plateuas
at F = 1 (at |α| = 2.30):

FIGURE 3.25: Quantum state tomography for the final state generated via our
cat state entanglement swapping protocol (Eq. 3.68), for |α| ≥ 2.30 (point at

which fidelity plot plateaus) and T = 1.

Here, the imaginary component QST exhibits almost no mixing (all off-diagonal
terms, with the exception of |00〉 〈11| and |11〉 〈00|, are close to zero). The problem
in analysing these QST diagrams when we consider phases is that, if we consider
the |Φ+(α)〉 Bell state, then the phases present are dependent on |α|2, and as such
oscillate rapidly as a function of |α|. Thus, as a comparison, it is useful to also look
at the QST for the |Φ+(α)〉 Bell state at precisely |α| = 2.30:

FIGURE 3.26: Quantum state tomography for the |Φ+(α)〉 =
1√
2

( |00〉 e−i|α|2 + |11〉 e+i|α|2) phase-rotated Bell state, for |α| = 2.30

(point at which fidelity plot against this Bell state plateaus for T = 1).

Inherently, the QST diagram for the phase-rotated Bell state must show that all
off-diagonal terms, with the exception of |00〉 〈11| and |11〉 〈00|, are equal to zero,
thus indicating that the quantum state here is entirely pure. It therefore follows that
if we compare this QST plot with the equivalent QST for our final density matrix
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at |α| = 2.30 (Fig. 3.25) then it is evident that these two QST plots are effectively
identical. We can therefore, again, conclude that in the limit of of |α| ≥ 2.30 and
T = 1 that for the cat state protocol (for ideal homodyne measurement outcomes of
xπ

4
= ±
√
T |α|) we create precisely the |Φ+(α)〉 Bell state, and hence the fidelity plot

of Fig. 3.19 reaches unity at these limits.
Let us now consider the lossy case, for T = 0.95. To begin with, we show the

QST plot for the amplitude value corresponding to the maximum point of the first
peak in the fidelity plot for T = 0.95, which is |α| = 1.23:

FIGURE 3.27: Quantum state tomography for the final state generated via
our cat state entanglement swapping protocol (Eq. 3.68), for |α| = 1.23 (max-

imum point of the first peak in fidelity plot) and T = 0.95.

Directly comparing the above QST with the QST for the first peak in the T = 1

limit (Fig. 3.23) it is cler why the fidelity is worse in this case; observing the off-
diagonal corner terms ( |00〉 〈11| and |11〉 〈00|) for the T = 0.95 real component QST
plot shows that these terms are slightly dampened (and are therefore less than 0.50).
and are in fact more dampened than the same terms for the T = 1 QST plot. This
therefore means that for T = 0.95 the quantum state we have, for the |α| value
corresponding to the maximum point of the first peak in the fidelity plot, is more
mixed (and hence has a lower fidelity value with respect to the |Φ+(α)〉 Bell state
compared to the T = 1 case). As before, looking at the fidelity plot of Fig. 3.19 for
T = 0.95, it is clear that we have a dip in the plot at slightly larger |α| than the first
peak, so it is useful to observe this as a QST:
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FIGURE 3.28: Quantum state tomography for the final state generated via
our cat state entanglement swapping protocol (Eq. 3.68), for |α| = 1.56 (min-

imum point of the dip in fidelity plot) and T = 0.95.

The above QST shows a more mixed state than that shown in Fig. 3.27, due to the
off-diagonal terms being non-zero, and therefore contributing to the mixing of the
density matrix - of course, this is entirely unsurprising as we know that the fidelity
drops here, and therefore so must the level of purity of this quantum state.

Lastly, we show the QST for the |α| value at the maximum of the second peak
in the fidelity plot for T = 0.95, as well as the |Φ+(α)〉 Bell state QST plot for a
comparative:

FIGURE 3.29: Quantum state tomography for the final state generated via
our cat state entanglement swapping protocol (Eq. 3.68), for |α| = 1.89 (max-

imum point of the second peak in fidelity plot) and T = 0.95.
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FIGURE 3.30: Quantum state tomography for the |Φ+(α)〉 =
1√
2

( |00〉 e−i|α|2 + |11〉 e+i|α|2) phase-rotated Bell state, for |α| = 1.89

(point at which fidelity plot reaches the maximum of its second peak against
this Bell state for T = 0.95).

As can be seen from looking at the above QST diagrams, they show a similar
overall shape, however when looking at the actual values it is clear that for T =

0.95 the level of loss present causes the state to become more mixed (due to the
dampening exponent dependent on T and |α|2 being present in the |00〉 〈11| and
|11〉 〈00| terms); this is evident in the QST (Fig. 3.29), where if we compare this to the
ideal case for the same |α| value (Fig. 3.30) it becomes apparent why the fidelity for
T = 0.95 against this phase-rotated Bell state is not near unity.

Importantly, we come to the same conclusion here as we can in the coherent state
regime - introducing photonic losses into our protocol causes dampening exponents
to be present on the |00〉 〈11| and |11〉 〈00| terms in the final density matrices, and
as such as we increase the levels of loss present these terms are dampened more
strongly. By doing so, this causes the fidelity against the ideal Bell state to decrease,
as we saw in the QST plots in this section.

3.6 Summary

In this chapter we have applied our theoretical entanglement swapping protocol
(described by Fig. 2.2) to two different initial CV-DV hybrid entangled quantum
states. In the first instance, the CV half of this hybrid entangled state was the co-
herent state, and in the second half of this chapter we considered coherent state
superpositions (so-called cat states) as the CV half. Through successful (no loss) en-
tanglement swapping we are able to generate a final state in both protocols, of the
form of the |Φ+〉 = 1√

2
( |00〉 + |11〉) Bell state in the coherent state case, and the

|Φ+(α)〉 = 1√
2

( |00〉 e−i|α|2 + |11〉 e+i|α|2) phase-rotated Bell state in the cat state case.
Through assessing entanglement negativity, as a function of the amplitude |α|, of

these final states we show that in both circumstances there is a sharp peak |α| value
in which the entanglement negativity reaches an optimum when considering small
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levels of photon loss. When considering losses, the entanglement negativity rapidly
exponentially decays as a function of |α|.

We also plotted linear entropy to compliment the entanglement negativity plots,
and showed that as we increase the levels of loss then the entropy, again in both
protocol circumstances, also increases as a function of |α|. Thus showing that as the
entanglement negativity rapidly decays to N (ρ) = 0, the linear entropy plateaus at
SL = 1/2. This then identifies that we have a highly mixed state present, therefore
suggesting that we no longer have a Bell state.

Hence, we then moved on to discuss fidelity, which is arguably the most useful
calculation we perform in our analysis of our final state produced through the en-
tanglement swapping protocol. For the coherent state protocol, we plotted fidelity
with respect to the maximally entangled |Φ+〉 = 1√

2
( |00〉 + |11〉) Bell state, and

showed that there is once again a region of |α| in which the fidelity plots reach a
maximum, when allowing for small photon losses. This peak |α| value matches that
of the entanglement negativity plots, and the same is true for the cat state protocol.

The fidelity values at the maximum of these peak |α| regions have been tabulated
in Appendix D (Tab. D.1 and Tab. D.2), where the green cells correspond to high-
fidelity values (F ≥ 0.90) and the amber cells signify slightly lower level fidelities
(F ≥ 0.80), which may be increased via a suitable entanglement purification proto-
col. Entanglement purification will be addressed in Chapter 6, in which we discuss
optimisation of our proposed entanglement swapping protocol.

Finally, we then plotted quantum state tomography of the density matrices de-
scribing our final state at these peak |α| values, and compared this with the relevant
Bell states for each protocol. All of these calculations determine exactly what final
state our protocols have produced, when allowing for relatively low levels of pho-
ton losses, with the practical viewpoint to be able to distribute these entangled pairs
of qubits to a potential customer (or indeed customers), for further uses in quantum
communications or even computation.

Conclusively, we have found that introducing photonic losses into our entan-
glement swapping protocol causes our final two-qubit state to become less entan-
gled, and as exhibits lower fidelities when compared with the ideal-case Bell states.
However, importantly, we must note that introducing low levels of photon losses
(T ≥ 0.95) does not mean that the fidelity fall unacceptably low, and so this protocol
is resilient to this level of loss, and could therefore be used to distribute entangle-
ment over short distances (to avoid unacceptable levels of photon losses).

In the next chapter we further our notion of photon losses, and evaluate the po-
tential impact to our final state if we consider unequal photon losses in the propa-
gating continuous variable modes B and D.
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Chapter 4

Unequal Optical Fibre Losses
Investigation

Part of the work detailed in this section was published in [1]: R. C. Parker, J. Joo, M.
Razavi and T. P. Spiller, J. Opt, 19, 10 (2017).

4.1 Unequal Beam-Splitters

In reality, the first two beam-splitters in our proposed entanglement swapping pro-
tocols (BSTBB,εB and BSTDD,εD ) will not have equal transmission coefficients; this could
be down to something as simple as an engineer not being physically able to “fit”
the optical fibres evenly into the respective beam-splitters. As a result of this, we
must determine whether allowing for a small difference (which we shall denote as
υ) in these transmission coefficients has an impact on the overall final entanglement
shared by modes A and C, as well as fidelity and success probability. We demon-
strate here that the entanglement shared between Alice and Bob is not significantly
damaged if we consider unequal optical fibre losses.

4.1.1 Parametrising υ

Firstly we must parametrise this “unequal loss” υ value. Of course, we need to
avoid an unphysical regime of T exceeding unity, and as such we parametrise the
loss mismatch in a manner which ensures that this unphysical circumstance does
not arise.

Therefore we parametrise the uneven beam-splitters (BSTBB,εB and BSTDD,εD ) by
incorporating this υ value into just one of the lossy modes. Hence we set the loss in
mode B equal to 1− T and the loss in mode D equal to 1− T + υ, where 0 ≤ υ ≤ T ,
thus giving: √

TB =
√
T√

TD =
√
T − υ . (4.1)

In using this parametrisation method we shall avoid exceeding unity for the trans-
mission values. We should specify here that although υ can indeed physically take
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any value between 0 and T , we of course will not consider the cases in which υ

tends to T . This is simply due to the fact that in a realistic, experimental scenario
there would likely never be a circumstance in which the loss mismatch would be
that large (and if it was then the experiment would inherently need to be made far
more accurate such that υ is closer to 0 than T ).

The two terms of Eq. 4.1 can now be applied to the analytical solutions of the
density matrices for, both, the coherent state and cat state protocols. In doing so, we
will obtain new density matrices describing modes A and C which will contain this
υ value (we shall denote the new density matrices as ρ(υ)

AC).

4.1.2 Case for Coherent State ES with Unequal Losses

The coherent state entanglement swapping protocol will first be investigated. Fol-
lowing on from Eq. 3.24, we then set the lossy beam-splitters to act such that:

BSTB,εB ||α|〉B |0〉εB = |
√
TB |α|〉B |

√
1− TB |α|〉εB

= |
√
T |α|〉B |

√
1− T |α|〉εB

BSTD,εD ||α|〉D |0〉εD = |
√
TD |α|〉D |

√
1− TD |α|〉εD

= |
√
T − υ |α|〉D |

√
1− T + υ |α|〉εD , (4.2)

where we have used the parametrisation detailed in Eq. 4.1. This then gives an
“unequal loss” representation of Eq. 3.28 such that:

|ΨCoh.
υ 〉ABεBCDεD = (4.3)

1

2

[(
|0〉A |

√
T |α|〉B |

√
1− T |α|〉εB + |1〉A |−

√
T |α|〉B |−

√
1− T |α|〉εB

)
⊗
(
|0〉C |

√
T − υ |α|〉D |

√
1− T + υ |α|〉εD

+ |1〉C |−
√
T − υ |α|〉D |−

√
1− T + υ |α|〉εD

)]
,

(4.4)

=
1

2

[
|00〉AC |

√
T |α|〉B |

√
T − υ |α|〉D |

√
1− T |α|〉εB |

√
1− T + υ |α|〉εD

+ |01〉AC |
√
T |α|〉B |−

√
T − υ |α|〉D |

√
1− T |α|〉εB |−

√
1− T + υ |α|〉εD

+ |10〉AC |−
√
T |α|〉B |

√
T − υ |α|〉D |−

√
1− T |α|〉εB |

√
1− T + υ |α|〉εD

+ |11〉AC |−
√
T |α|〉B |−

√
T − υ |α|〉D |−

√
1− T |α|〉εB |−

√
1− T + υ |α|〉εD

]
,

(4.5)

where the subscript υ on the state |ΨCoh.
υ 〉ABεBCDεD denotes that this state is now

evaluated for unequal losses. Next, as before, we then apply a 50:50 beam-splitter as
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per Eq. 2.18, which yields:

|ΨCoh.
υ 〉ABεBCDεD =

1

2

[
|00〉AC

∣∣∣∣T −|α|√
2

〉
B

∣∣∣∣T +|α|√
2

〉
D

|
√

1− T |α|〉εB |
√

1− T + υ |α|〉εD

+ |01〉AC

∣∣∣∣T +|α|√
2

〉
B

∣∣∣∣T −|α|√
2

〉
D

|
√

1− T |α|〉εB |−
√

1− T + υ |α|〉εD

+ |10〉AC

∣∣∣∣−T +|α|√
2

〉
B

∣∣∣∣−T −|α|√
2

〉
D

|−
√

1− T |α|〉εB |
√

1− T + υ |α|〉εD

+ |11〉AC

∣∣∣∣−T −|α|√
2

〉
B

∣∣∣∣−T +|α|√
2

〉
D

|−
√

1− T |α|〉εB |−
√

1− T + υ |α|〉εD

]
, (4.6)

where we have used the substitutions
√
T ±

√
T − υ = T ± for simplification. Next,

we measure a vacuum in mode B, using the operator P̂ 0
B detailed in Eq. 2.19, such

that:

P̂ 0
B

∣∣∣∣T ±|α|√
2

〉
B

= e
−|T ±α|2

4 |0〉B . (4.7)

We note here that, as we saw in the equal loss case (Chapter 3, Subsec. 3.1.2), there
is an intrinsic success probability associated with the vacuum measurement. For the
case of the success probability for this measurement in the unequal loss protocol at
hand, we discuss this in more detail in Chapter 6, Sec. 6.1.

Next, via homodyne detection we measure mode D using the method detailed
in 2.6 such that:

D

〈
xπ

2

∣∣∣∣T ±|α|√
2

〉
D

= D 〈xπ
2
|0〉D e

−
√

2 T ±i|α|xπ
2 . (4.8)

We then apply the expressions given in Eq. 4.7 and Eq. 4.8, to give a final quantum
state (prior to tracing out the lossy modes) described as:

|ΨCoh.
υ 〉ACεBεD =

N
[
e
−|T −α|2

4 e
−
√

2 T +i|α|xπ
2 |00〉AC |

√
1− T |α|〉εB |

√
1− T + υ |α|〉εD

+e
−|T+α|2

4 e
−
√

2 T −i|α|xπ
2 |01〉AC |

√
1− T |α|〉εB |−

√
1− T + υ |α|〉εD

+e
−|T+α|2

4 e
√

2 T −i|α|xπ
2 |10〉AC |−

√
1− T |α|〉εB |

√
1− T + υ |α|〉εD

+e
−|T −α|2

4 e
√

2 T +i|α|xπ
2 |11〉AC |−

√
1− T |α|〉εB |−

√
1− T + υ |α|〉εD

]
, (4.9)

where, N is the normalisation, and, as we assumed in the equal loss circumstance,
the homodyne measurement outcomes will be taken to be discrete, hence we set
xπ

2
= 0 (as previously mentioned, an investigation into homodyne measurement

imperfections and non-idealities, will be covered in Chapter 5). Finally, the last step
is to mathematically trace out the lossy modes, which will give us a final density
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matrix that can assess unequal photon losses between our lossy modes, given by
ρCoh.
AC

(υ). Following the method outlined in Subsec. 3.2.4, our final density matrix is
calculated as:

ρCoh.AC (υ) = TrεB ,εD

[
|ΨCoh.

υ 〉AεBCεD 〈Ψ
Coh.
υ |

]
. (4.10)

(This density matrix is large, containing many terms, and so will not be written
explicitly here).

4.1.3 Case for Cat State ES with Unequal Losses

Following the same parametrisation for evaluating unequal optical fibre losses as
above, we may apply this to the cat state entanglement swapping protocol. As a
result of the complicated nature of the cat state ES protocol we propose, we do not
show the analytical method of our protocol here as it is very lengthy - for the deriva-
tion of this analytical calculation please refer to Appendix F. Nevertheless, the prin-
ciple of the calculation is exactly as per the coherent state case, detailed in Subsec.
4.1.2.

Our final density matrix for the unequal loss cat state scenario is calculated as:

ρCatAC (υ) = TrεB ,εD

[
|ΨCat

υ 〉AεBCεD 〈Ψ
Cat.
υ |

]
, (4.11)

in which the state |ΨCat
υ 〉AεBCεD is determined using the same method as outlined

in Chapter 3, Sec. 3.4.2, but for unequal losses in modes B and D. Also note that
in the cat state protocol the ideal homodyne measurement outcome differs between
the equal loss and unequal loss cases; for the equal loss case the ideal homodyne
outcome is given as xπ

4
= ±
√
T |α| (where both results give the same overall final

state), however for the case in which we have unequal losses the ideal homodyne
outcome is xπ

4
= ± (

√
T +
√
T−υ )|α|
2 (where, again, both results give the same outcome

state). We should also note here that the ideal homodyne outcome for the coherent
state state cases, for both equal and unequal losses, is identical and is still xπ

2
= 0. In

the next chapter we will move on to the circumstances in which we do not assume
that the homodyne measurement outcomes are “perfect” and “ideal”.

4.2 Averaging over υ

Experimentally, different lengths of optical fibres correspond to different levels of
loss - shorter fibres would result in lower photon losses. In fact, optical fibres of
equal length may even exhibit varying levels of photon losses. As previously stated,
there are also potential errors in coupling optical fibre to components, such as the
beam-splitters used to model loss, hence even if the lengths of fibre are identical,
slightly different optical coupling in the two modes (B and D) could give a small
mismatch in losses.
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Moreover, there is a potential thermal drift (temperature changes in the optical fi-
bre) effect which can happen over time, in which this “drift” could potentially cause
a difference between the properties of different fibres; one property that may be im-
pacted by thermal drift is the propagation time of photons through optical fibres,
such that the photon loss level can vary between the fibres - there are, however,
efforts in research to resolve this issue [176].

Rather than taking a specific value of mismatch υ, as it may not be known exactly
(for the reasons stated above), it is logical to explore an average over υ according
to a distribution. We can therefore instead look at our unequal loss variable υ as
a Gaussian function, and as such, we are then able to integrate over this function
(via standard Gaussian integration) to determine an “averaged” parametrisation of
unequal loss, which we shall label Υ, to form our averaged density matrix ρ̄AC (Υ).

The reason one may wish to do this is because so far we have considered the
case where a system is set up for matched loss (1−T ), but there is a small, unknown
mismatch. As such, by integrating over υ we obtain an average over a distribution of
υ, where the width (standard deviation) of this distribution we denote Υ. Taking an
average over the level of unequal loss is a rational step; if we consider this average as
an ensemble average, then it follows that an experimentalist performing our proposed
entanglement swapping protocol could have in mind a threshold of Υ of which they
would know to not allow the mismatch in the loss to fall below.

Investigation of this loss mismatch is beneficial, so as to check and ensure that
there are no unexpected results or trends that appear when allowing for an unknown
(averaged) loss mismatch.

4.2.1 Deriving the Averaged Unequal Loss Function

Let, I =

∫ ∞
−∞

e−
x2

2Υ2 dx,

Then, I2 =

∫ ∞
−∞

e−
x2+y2

2Υ2 dxdy,

=

∫ ∞
0

∫ 2π

0
re−

r2

2Υ2 drdφ

= 2π

[
−Υ2e−

r2

2Υ2

]∞
0

= 2πΥ2, (4.12)

hence, f(υ,Υ) = 1√
2π Υ

e−
υ2

2Υ2 is normalised for
∫∞
−∞ f(υ,Υ)dυ = 1, however, we

want to consider only positive values of υ, and so we instead consider the inte-

gral as one-sided. Therefore, the function f(υ,Υ) =
√

2
πΥ2 e

− υ2

2Υ2 is normalised for∫∞
0 f(υ,Υ)dυ = 1. For clarification, we remind readers that υ is limited from 0 to T ,

and so technically what is given in the above derivation is only an approximation,
which is accurate and valid provided that the width of the Gaussian distribution is
much less than T . However, as previously stated, this will always be the case within
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this work as it represents the realistic experimental scenario in which one would
perform this protocol.

As an example, the following is a plot of this Gaussian distribution f(υ,Υ) as a
function of υ for width Υ = 0.10:

FIGURE 4.1: The Gaussian distribution for the unequal loss function f(υ,Υ),
as a function of υ for width (standard deviation) Υ = 0.10.

To find the averaged density matrix for some width in the distribution of the
loss mismatch υ, which we label as Υ, we must integrate the non-averaged density
matrix ρAC (υ) over all positive values of υ. The distribution of the loss mismatch is
a one-sided (positive) Gaussian curve (see above Fig. 4.1), and so the integral is of
the form:

ρ̄AC (Υ) ≡
∫ ∞

0
f(υ,Υ)ρAC (υ)dυ, (4.13)

where, f(υ,Υ) =
√

2
πΥ2 e

−υ2

2Υ2 and
√

2
πΥ2 is the normalisation coefficient of the func-

tion. Of course, in the limit of lim
Υ→0

f(υ) = υ(0), thus as we make Υ → 0 we should
approach the equal loss results given in Sec. 3.2.2 and Sec. 3.4.2.

After following the general entanglement swapping protocol outlined in Chapter
3, for both the coherent state and cat state cases, and allowing for unequal losses,
which we average over using Eq. 4.13, the final states for both protocols are then
given as:

ρ̄Coh.
AC

(Υ) =

∫ ∞
0

f(υ,Υ)ρCoh.
AC

(υ)dυ, (4.14)

ρ̄Cat.
AC

(Υ) =

∫ ∞
0

f(υ,Υ)ρCat
AC

(υ)dυ, (4.15)

where, ρCoh.
AC

(υ) and ρCat
AC

(υ) correspond to Eqs. 4.10 and 4.11 respectively.
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4.3 Results for Coherent State ES with Averaged Unequal
Losses

First we will present and discuss the results for the coherent state unequal loss cir-
cumstance. To avoid too much duplication of results (as the unequal loss results dif-
fer little, in terms of trends, from the equal loss case), we show the extremal (largest
mismatch in loss) results for entanglement negativity and entropy.

The following are plots of entanglement negativity (Fig. 4.2) and linear entropy
(Fig. 4.3) as a function of both the coherent state amplitude |α| and the width of the
unequal loss distribution Υ, for T = 1 (so as to show the extremal case in which we
have no loss in mode B and losses in mode D):

FIGURE 4.2: Entanglement negativity as a function of |α| and Υ for the final
state generated via our coherent state entanglement swapping protocol for

unequal losses in modes B and D (Eq. 4.14), for T = 1.

FIGURE 4.3: Linear entropy as a function of |α| and Υ for the final state gen-
erated via our coherent state entanglement swapping protocol for unequal

losses in modes B and D (Eq. 4.14), for T = 1.
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As we saw in the coherent state ES equal loss 3D plots for entanglement negativ-
ity and linear entropy (Figs. 3.4 and 3.6 respectively), the plots above complement
each other perfectly; as the entanglement negativity plot approaches N (ρ) = 0 at
large |α| and large Υ, the linear entropy plot approaches SL = 0.50. Recall here that
the maximum value for linear entropy, corresponding to a maximally mixed quan-
tum state, is SL = 0.75 for a two qubit state: in this protocol, in the limit of large |α|
and high loss (T << 1) we are creating a mixture of two Bell states (as discussed at
the end of Chapter 3, Subsec. 3.3.4), and so the maximum linear entropy value we
expect, in these limits, is SL = 0.50.

The entanglement negativity plot of Fig. 4.2 does not quite reach unity, even at
the peak |α| value, it reaches N (ρ) ≈ 0.99. The reason for this is that the calculation
cannot be evaluated for Υ very close to 0, as the Gaussian function then becomes a
delta function (i.e. no longer a continuous spectrum as per Fig. 4.1, but instead is
zero everywhere except for υ = 0). Intrinsically, we expect that in the limit of Υ = 0

we return to the results shown in the equal loss scenario, and so we would indeed
then expect the plot of Fig. 4.2 to reach, and plateau at, unity.

We now move onto the plots for fidelity. As previously stated, fidelity is arguably
one of the most useful calculations we perform to analyse our final density matrices;
the entanglement negativity and linear entropy plots of Figs. 4.2 and 4.3 inform
us that, when allowing for small levels of unequal losses between modes B and D

(for Υ ≤ 0.10), we indeed still have an entangled state, however it is necessary for
practical purposes to know which entangled state we actually have created.

We first plot fidelity as a function of |α|, for no loss (T = 1) and larger losses in
both modes (T = 0.95), and also explore a range of Υ values, to see if we still produce
the |Φ+〉 = 1√

2
(|00〉 + |11〉) Bell state with an acceptable fidelity when allowing for

unequal losses in modes B and D:

FIGURE 4.4: Fidelity against the |Φ+〉 = 1√
2

( |00〉+ |11〉) Bell state as a func-
tion of |α| for the final state generated via our coherent state entanglement
swapping protocol (Eq. 4.14), for varying levels of equal loss, and averaged

unequal loss (Υ).
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FIGURE 4.5: Fidelity against the |Φ−〉 = 1√
2

( |00〉− |11〉) Bell state as a func-
tion of |α| for the final state generated via our coherent state entanglement
swapping protocol (Eq. 4.14), for varying levels of equal loss, and averaged

unequal loss (Υ).

Let us first discuss the plots for T = 1. In both fidelity graphs we plot the cases
for equal loss as a comparison, and so we can directly see the impact that allowing
loss in only one mode (mode D) has on our protocol outcome. Once again these
above fidelity plots are very similar to those of the equal loss case, and so it is evident
that the loss mismatch variable Υ scales in the same manner as the equal loss value
(1 − T ). Moreover, introducing unequal loss into our coherent state protocol does
not change the actual Bell state we are producing - even in the limit of high loss
mismatch (Υ = 0.10 and T = 1, see Fig. 4.4) there is still a peak |α| value for which
we are producing the |Φ+〉 = 1√

2
( |00〉 + |11〉) Bell state, with a relatively high

fidelity of F = 0.86.
To further explore fidelity of our final density matrix in this protocol we now plot

fidelity against the |Φ+〉 Bell state as a function of |α| and the ensemble averaged
unequal loss value Υ, for T = 1 (so as to once again explore the extremal case in
which we have no loss in mode B and some loss in mode D):
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FIGURE 4.6: Fidelity against the |Φ+〉 = 1√
2

( |00〉 + |11〉) Bell state as a
function of |α| and Υ for the final state generated via our coherent state en-
tanglement swapping protocol (Eq. 4.14) for averaged unequal loss value

T = 1

As we discerned from the 3D plots of entanglement and fidelity for the equal loss
coherent state protocol (Figs. 3.4 and 3.7 respectively), the actual shape of the above
fidelity plot (Fig. 4.6) is very similar to that of the unequal loss 3D entanglement
plot (Fig. 4.2). Of course, the exception is that the plots plateau at different values,
but this is absolutely expected, and the unequal loss fidelity plot above tends to
F = 0.50 at high |α| and Υ ≥ 0.10. It should be clear by now that we would not
desire a loss mismatch value of greater than Υ = 0.10, as, for all |α|, this level of
loss mismatch gives an undesirably low fidelity (see Appendix D, Tab. D.3); indeed
the 3D entanglement and entropy plots for the coherent state unequal loss protocol
(Figs. 4.2 and 4.3 respectively) agree with this notion.

4.4 Results for Cat State ES with Averaged Unequal Losses

We now present and discuss the results for the cat state unequal loss regime, where,
again, to avoid too much duplication of results we show only the extremal (largest
mismatch in loss) results for entanglement negativity and entropy.

The following are plots of entanglement negativity (Fig. 4.7) and linear entropy
(Fig. 4.8) as a function of both the cat state amplitude |α| and the width of the un-
equal loss distribution Υ, for T = 1 (so as to show the extremal case in which we
have no loss in mode B and losses in mode D):
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FIGURE 4.7: Entanglement negativity as a function of |α| and Υ for the final
state generated via our cat state entanglement swapping protocol for unequal

losses in modes B and D (Eq. 4.15), for T = 1.

FIGURE 4.8: Linear entropy as a function of |α| and Υ for the final state gen-
erated via our cat state entanglement swapping protocol for unequal losses

in modes B and D (Eq. 4.15), for T = 1.

We can once again directly compare the trends seen in the above entanglement
negativity and linear entropy 3D plots, with those of the equal loss case (Figs. 3.16
and 3.18 respectively): there is still the characteristic “double-peak” present in the
entanglement negativity plot (Fig. 4.7), and as we saw in the equal loss circumstance,
the entanglement negativity drops rapidly as the level of loss increases (parametrised
by an increase in Υ for the unequal loss protocol), and as such the linear entropy in-
creases as the level of loss does too. Again, we should note that the linear entropy
does not increase to above SL = 0.50 for the levels of loss mismatch we are con-
cerned with, and so we can still discern that we are creating a mixture of two Bell
states in the high loss and large |α| limit (see previous discussion of this in Eq. 3.46
and surrounding text).

Let us now move on to fidelity, as a function of the cat state amplitude |α|. We
first plot fidelity against the |Φ+(α)〉 = 1√

2
(|00〉 e−i|α|2 + |11〉 e+i|α|2) Bell state and
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then against the |Φ−(α)〉 = 1√
2

(|00〉 e−i|α|2 − |11〉 e+i|α|2) Bell state, for T = 1 and
T = 0.95, for various ensemble averaged loss mismatch Υ:

FIGURE 4.9: Fidelity against the |Φ+(α)〉 = 1√
2

(|00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| for the final state generated via our coherent
state entanglement swapping protocol (Eq. 4.15), for varying levels of equal

loss, and averaged unequal loss (Υ).

FIGURE 4.10: Fidelity against the |Φ−(α)〉 = 1√
2

(|00〉 e−i|α|2 − |11〉 e+i|α|2)

Bell state as a function of |α| for the final state generated via our coherent
state entanglement swapping protocol (Eq. 4.15), for varying levels of equal

loss, and averaged unequal loss (Υ).

We can again see the distinctive double-peak present in the cat state fidelity plots
(see Fig. 3.7 for the equal loss equivalent), which becomes less pronounced as the
overall level of loss increases. As we concluded from the coherent state unequal loss
fidelity results (Figs. 4.4 and 4.5), the actual target Bell state we are producing is
not changed by introducing some level of loss mismatch - however, of course, as Υ

increases the fidelity against the |Φ+(α)〉 Bell state decreases (and subsequently the
fidelity against the |Φ−(α)〉 Bell state then increases).
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To further investigate the fidelity for the unequal loss case, we once again plot
fidelity against the |Φ+(α)〉 Bell state in Fig. 4.11, as a function of |α| and Υ, for
T = 1:

FIGURE 4.11: Fidelity against the |Φ+(α)〉 = 1√
2

(|00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| and Υ for the final state generated via our cat
state entanglement swapping protocol for unequal losses in modes B and D

(Eq. 4.15), for T = 1.

As was seen in the coherent state unequal loss 3D fidelity plot (Fig. 4.6), the
above cat state unequal loss fidelity plot differs little from the equal loss circum-
stance of Fig. 3.22. As before we absolutely expect this to be the case, as we have
already shown when comparing the entanglement negativity and linear entropy cat
state unequal loss plots of Figs. 4.7 and 4.8 with the equal loss equivalents of Figs.
3.16 and 3.18 respectively, increasing Υ impacts the outcome state of our proposed
entanglement swapping protocol similarly to simply increasing the overall level of
loss (by decreasing T ). This exact trend was seen when comparing the coherent state
unequal loss and equal loss results, as discussed in the previous section. Once more,
we can easily conclude, looking at the above plot, that we do not desire an ensemble
averaged loss mismatch value of Υ > 0.10, as this gives an unacceptably low fidelity
(F ≤ 0.80) for all |α|.

It should be acknowledged here that this limit we have for unequal losses (Υ ≤
0.10) to give an acceptable protocol output is a positive result: as previously stated,
we refer to Υ as an ensemble average for unequal losses, as this variable is intended to
reflect the practical perspective of running this protocol as an experiment, in which
one would perhaps have a range of optical fibres, each of differing length, for ex-
ample. Recall here that the length of an optical fibre is directly linked to the photon
losses exhibited when using the fibre - longer fibre lengths intrinsically correspond
to greater levels of loss. It then follows that an ensemble averaged loss mismatch
value of Υ = 0.10 represents quite a large range of optical fibre lengths, and so it
would be unlikely for an experimentalist to evaluate unequal losses greater than
this limit proposed in any case.
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4.5 Summary

In this chapter we have introduced and parametrised a variable that allows us to
investigate the effect that allowing for a small level of “loss mismatch” between
modes B and D has on our protocol outcome, for both the coherent state and cat
state ES protocols.

We have then investigated the entanglement negativity, linear entropy and fi-
delity of the final density matrices (evaluated for unequal losses) and shown that
increasing the level of averaged loss mismatch Υ scales similarly to merely increas-
ing the overall loss. Although we must be careful to not assume that these two
parameters scale exactly the same, as Υ is an averaged value and T is not, however
we mean to conclude that introducing this loss mismatch variable Υ does not change
any of the patterns and trends already witnessed in the equal loss coherent state ES
and cat state ES results. We note that we still witness the peak |α| value in all fidelity
plots for the coherent state regime, and two peaks for the cat state case (these results
are tabulated in Appendix D, Table D.3 and Appendix D, Table D.4 for the coherent
state and cat state results respectively).

Moreover, in this chapter we have shown that even when evaluating relatively
large loss mismatches (i.e. T = 1 and Υ = 0.1) we are still tending to produce the
|Φ+〉 = 1√

2
(|00〉 + |11〉) and |Φ+(α)〉 = 1√

2
(|00〉 e−i|α|2 + |11〉 e+i|α|2) Bell states for

the coherent state and cat state protocols respectively. In fact, when allowing for
high levels of loss mismatch we are still producing these Bell states with acceptable
fidelity. If we now refer to the unequal loss coherent state tabulated fidelity data of
Appendix D, Table D.3, we can see that, to produce the |Φ+〉 = 1√

2
(|00〉+ |11〉) Bell

state with high fidelity of F ≥ 0.90, we can tolerate a fairly high loss mismatch of
Υ ≤ 0.05 for no loss in mode B (i.e. T = 1). However, when allowing for any level
of loss in mode B (i.e. T < 1) we can then only accept an ensemble averaged loss
mismatch of Υ = 0.01 for T ≥ 0.98. If we instead aim for a slightly lower, but still
modest, fidelity of F = 0.80 we can see from this table that we can accept a much
broader range of Υ and T values.

Let us now look to the tabulated unequal loss fidelity data for the cat state pro-
tocol, of Appendix D, Table D.4. We can again conclude, from looking at the fidelity
values at the two peak |α| regions, that to produce the |Φ+(α)〉 = 1√

2
(|00〉 e−i|α|2 +

|11〉 e+i|α|2) Bell state with high fidelity of F ≥ 0.90, we can only accept Υ values of
Υ ≤ 0.05 and T = 1, or Υ ≤ 0.01 and T ≥ 0.98. However, if we instead aim for
F ≥ 0.80, then we can instead accept almost all combinations of T and Υ, in the
regions of T ≥ 0.95 and Υ ≤ 0.10 (with a few exceptions). This, in fact, is the same
result we can conclude from the coherent state tabulated data of Appendix D, Table
D.3, and so we can summarise that both protocols are relatively resilient to unequal
photon losses in the propagating modes B and D.

We should note here that we have not plotted any quantum state tomography
(QST) plots for the final density matrices in this chapter, as we did in the equal loss
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results. This is due to the fact that, as concluded throughout all results presented in
this chapter, introducing this level of loss mismatch does not change our results in
any particularly interesting way, and so the QST plots will be very similar to the equal
loss cases. We return to plotting QSTs in the next chapter, in which we investigate
non-ideal and imperfect homodyne detection, as the QSTs are dramatically changed
in these circumstances.

Finally, it is worth once more highlighting the importance of the results presented
in this chapter. As previously discussed, introducing a loss mismatch between the
lossy modes B and D does not drastically impact our output entangled states any
more than simply increasing the overall loss. Although this is not especially in-
triguing, it is nonetheless just as important, as we are able to conclude that if one
were to experimentally perform our proposed protocols then one could allow for a
respectable level of “unknown” loss mismatch, as parametrised by Υ, by referring
to our tabulated data, as discussed above. This means that one would not have to
be overly cautious when selecting lengths of optical fibres, for example, when con-
structing this experiment, as the fibres would not have to exhibit exactly identical
photon loss levels.

In the next chapter we investigate more thoroughly the homodyne detection we
theoretically perform on mode D of our protocol, by considering non-ideal homo-
dyne outcomes, and imperfect homodyne measurements, and evaluate entanglement
negativity, linear entropy and fidelity for the resultant density matrices of the coher-
ent state and cat state entanglement swapping protocols.
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Chapter 5

Imperfect and Non-Ideal
Homodyne Measurements

Throughout this thesis so far, we have analysed homodyne detection of mode D as
being perfect; that is to say that we assume that the homodyne measurement outcome
xθ is the most ideal case, and that we know it with absolute certainty.

In reality, homodyne detection is a measurement of the continuous quadrature
variable (which we denote as xθ), specified by the phase angle θ. Hence, there is no
way of guaranteeing a particular quadrature outcome for a perfect-case homodyne
measurement. It therefore follows that to establish homodyne imperfections we need
to model the more realistic circumstance in which the quadrature measurement out-
come is instead a resolution bandwidth (which we label ∆x) around the expected
measurement outcome. As such, consider this as accounting for a given amount of
uncertainty within the detection outcome.

Furthermore, to investigate what we denote as non-ideal homodyne measure-
ment outcomes, we will assume that our outcome is no longer exactly where it is ex-
pected, and is instead shifted along the relevant quadrature by a given value (which
we denote as ε).

In this chapter, we will first explore non-ideal homodyne measurements, for the
equal loss (in modes B and D) coherent state and cat state protocols, to establish a
limit on how far we can tolerate the homodyne measurement outcome to be shifted
away from the ideal outcome. We will then move on to discuss homodyne imper-
fections as a bandwidth about the most ideal outcome for both protocols, before
combining non-ideal and imperfect homodyne detection to investigate a bandwidth
about a non-ideal measurement outcome.

5.1 Non-Ideal Homodyne Detection

Thus far, when looking into our entanglement swapping protocol, we have assumed
that we have the most ideal homodyne measurement outcome, which is the maxi-
mum point of the peaks of the probability distributions (see Figs. 5.1 and 5.2). Hence,
we fixed xπ

2
= 0 for coherent state entanglement swapping, and xπ

4
= ±
√
T |α| for

the cat state protocol, when including equal losses in modes B and D.
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Therefore, to account for non-ideal homodyne measurement outcomes we parametrise
this with ε as follows:

For the coherent state protocol: xπ
2

= 0± ε = ±ε

For the cat state protocol: xπ
4

= ±
√
T |α| ± ε or xπ

4
= ±
√
T |α| ∓ ε (5.1)

Note that we do not include phases in the parametrisation of ε (i.e. for the coherent
state case we only want to use xπ

2
= ±ε as opposed to xπ

2
= ±iε) as the phases have

been accounted for in the homodyne projection, hence xθ is purely a real number.
These non-idealities can be shown diagrammatically in terms of position (x̂) and

momentum (p̂) phase space, as follows:

FIGURE 5.1: Diagram to present the phase space in which the non-ideal ho-
modyne measurement outcomes are assessed as, for the coherent state entan-

glement swapping protocol.
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FIGURE 5.2: Diagram to present the phase space in which the non-ideal ho-
modyne measurement outcomes are assessed as, for the cat state entangle-

ment swapping protocol.

In Figs. 5.1 and 5.2 it is evident that a shift in the expected homodyne outcome is
easily parametrised by ε. Here, we consider ε to be a positive (real) number, where
ε = 0 should inherently return us to our ideal homodyne outcome case once again.

5.2 Non-Ideal Homodyne for Coherent State ES

To form our final density matrix, describing the outcome of the coherent state ES
protocol, when allowing for equal losses in modes B and D, and for non-ideal ho-
modyne outcomes xπ

2
= 0 ± ε, we follow the same method outlined in Chapter 3,

Sec. 3.2.2. Therefore, if we then set the homodyne measurement outcome to contain
non-idealities, we replace xπ

2
in Eq. 3.33 (the state immediately after performing the
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homodyne measurement) with the non-ideal outcome, thus giving:

|ΨCoh.
ε 〉AεBCεD = N

[
e±2
√

2 i
√
T |α|ε |00〉AC |

√
1− T |α|〉εB |

√
1− T |α|〉εD

+e±2
√

2 i
√
T |α|ε |11〉AC |−

√
1− T |α|〉εB |−

√
1− T |α|〉εD

e−T |α|
2
(
|01〉AC |

√
1− T |α|〉εB |−

√
1− T |α|〉εD

+ |10〉AC |−
√

1− T |α|〉εB |
√

1− T |α|〉εD
)]
, (5.2)

in which the subscript ε in the quantum state |ΨCoh.
ε 〉AεBCεD denotes that this state

is evaluated for homodyne non-idealities. We then trace out the lossy modes εB and
εD using the coherent state to trace (as per Subsec. 3.2.4), which gives us our final
two qubit density matrix of:

ρCoh.AC (ε) = TrεB ,εD

[
|ΨCoh.

ε 〉AεBCεD 〈Ψ
Coh.
ε |

]
. (5.3)

Using this density matrix we may now investigate entanglement negativity, linear
entropy and fidelity of the final state produced through the coherent state protocol,
when allowing for non-ideal homodyne measurement outcomes.

5.2.1 Entanglement Negativity and Linear Entropy

Before discussing the fidelity results for this density matrix, we should first briefly
discuss entanglement negativity and linear entropy. In fact, increasing ε has abso-
lutely no impact on entanglement negativity and linear entropy, for all α and T .
This may seem surprising at first, however, if we look at Eq. 5.2 and set T = 1 (for
simplicity) then the resultant quantum state is:

|ΨCoh.
ε 〉AεBCεD =

N
[
e±2
√

2 i|α|ε |00〉AC + e±2
√

2 i|α|ε |11〉AC + e−|α|
2
(
|01〉AC + |10〉AC

)]
. (5.4)

Hence, increasing the value of ε does nothing more than simply changing the value
of the phase of the |00〉AC and |11〉AC terms, and as such does not change the ampli-
tudes of the off-diagonal |00〉AC 〈11| and |11〉AC 〈00| terms. It then follows that if the
amplitudes of these off-diagonal terms remain unaffected, then the resultant quan-
tum state will still be maximally entangled for all ε, and so the linear entropy will be
zero for all ε in the no loss regime. However, as we have stated, increasing the value
of ε does affect the phases of these off-diagonal terms, and so we must critically in-
vestigate the fidelity against the |Φ+〉 = 1√

2
(|00〉+ |11〉) Bell state, to ensure that the

phases present in our final density matrix do not impact the fidelity to intolerable
levels.
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5.2.2 Fidelity

To begin with, we here show fidelity of the above density matrix (Eq. 5.3), against
the |Φ+〉 Bell state, but only show fidelity values for F ≥ 0.80, so as to establish a
window of accepted values for ε, in which we can guarantee to produce a Bell state
of acceptable fidelity. We plot fidelity as a function of |α| and non-ideal homodyne
outcome ε, for T = 1, T = 0.99 and T = 0.95 (Figs. 5.3, 5.4 and 5.5 respectively):

FIGURE 5.3: Fidelity against the |Φ+〉 = 1√
2

(|00〉+ |11〉) Bell state as a func-
tion of |α| for the final state generated via our coherent state entanglement
swapping protocol (Eq. 5.3), for no loss (T = 1), and varying non-ideal ho-

modyne measurement outcome xπ
2

= ±ε.

FIGURE 5.4: Fidelity against the |Φ+〉 = 1√
2

(|00〉+ |11〉) Bell state as a func-
tion of |α| for the final state generated via our coherent state entanglement
swapping protocol (Eq. 5.3), for equal losses of T = 0.99, and varying non-

ideal homodyne measurement outcome xπ
2

= ±ε.
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FIGURE 5.5: Fidelity against the |Φ+〉 = 1√
2

(|00〉+ |11〉) Bell state as a func-
tion of |α| for the final state generated via our coherent state entanglement
swapping protocol (Eq. 5.3), for equal losses of T = 0.95, and varying non-

ideal homodyne measurement outcome xπ
2

= ±ε.

Regarding these 3D fidelity plots, if we wish to produce the |Φ+〉 Bell state with a
fidelity of F ≥ 0.80, it is evident that for T ≥ 0.95 we can only tolerate a modest non-
ideal homodyne outcome shift of ±ε ≤ 0.05, however, if we allow smaller levels of
loss such that T ≥ 0.99, then we can allow±ε ≤ 0.12. We can see in the lossy plots of
Figs. 5.4 and 5.5 that there is still an optimum |α| value in which the fidelity reaches
a maximum, as we saw in the equal loss and unequal loss results in the previous
chapters.

To further investigate how allowing for non-ideal homodyne outcomes affects
the final state produced by the coherent state protocol, we plot the fidelity against
both the |Φ+〉 and the orthogonal |Φ−〉 Bell states, as a function of |α|, for no loss
and with varying ε:

FIGURE 5.6: Fidelity against the |Φ+〉 = 1√
2

(|00〉+ |11〉) Bell state as a func-
tion of |α| for the final state generated via our coherent state entanglement
swapping protocol (Eq. 5.3), for no loss (T = 1), and varying non-ideal ho-

modyne measurement outcome xπ
2

= ±ε.
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FIGURE 5.7: Fidelity against the |Φ−〉 = 1√
2

(|00〉 − |11〉) Bell state as a func-
tion of |α| for the final state generated via our coherent state entanglement
swapping protocol (Eq. 5.3), for no loss (T = 1), and varying non-ideal ho-

modyne measurement outcome xπ
2

= ±ε.

Evidently, as ε increases the above plots becomes more oscillatory: if we look at
the no loss state, given by Eq. 5.4, it is clear that for non-zero ε we are introducing
a phase into the |00〉AC and |11〉AC terms, hence plotting the fidelity of this state
against a Bell state that does not contain a phase (such as the |Φ+〉 Bell state) would
result in an oscillatory graph, as we indeed see in Figs. 5.6 and 5.7. However, we
remind the reader here that the purpose of this investigation is to establish how non-
ideal the homodyne measurement outcome can be, whilst still giving us the Bell state
we produce in the ideal regime, and so even though we are now producing a Bell
state that contains a phase, we nonetheless should still compare the fidelity with
respect to the |Φ+〉 = 1√

2
(|00〉+ |11〉) Bell state.

We now consider the circumstance in which we have higher levels of loss, for
T = 0.95 with homodyne non-idealities, and plot fidelity against the |Φ+〉 Bell state
(Fig. 5.8) and the orthogonal |Φ−〉 Bell state (Fig. 5.9), as a function of the coherent
state amplitude |α|:
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FIGURE 5.8: Fidelity against the |Φ+〉 = 1√
2

(|00〉+ |11〉) Bell state as a func-
tion of |α| for the final state generated via our coherent state entanglement
swapping protocol (Eq. 5.3), for equal losses of T = 0.95, and varying non-

ideal homodyne measurement outcome xπ
2

= ±ε.

FIGURE 5.9: Fidelity against the |Φ−〉 = 1√
2

(|00〉 − |11〉) Bell state as a func-
tion of |α| for the final state generated via our coherent state entanglement
swapping protocol (Eq. 5.3), for equal losses of T = 0.95, and varying non-

ideal homodyne measurement outcome xπ
2

= ±ε.

Clearly, we no longer see the oscillatory behaviour in the above plots, as we did
in the no loss ones (Figs. 5.6 and 5.7). Analytically, this is clear if we consider the final
state that is being investigated, Eq. 5.2: once the lossy modes εB and εD have been
numerically traced out, we introduce dampening exponents of exp

[
−4(1− T )|α|2

]
into the off-diagonal |00〉AC 〈11| and |11〉AC 〈00| terms (see Eq. 3.45), and so for non-
unity T these dampening exponents will cause the amplitudes of these off-diagonal
terms to decrease as a function of |α|. This dampening exponent affects the final
quantum state more strongly than the oscillatory phase term, which contains ε, and
so this explains why we no longer witness this oscillatory behaviour in the above
plots, for T = 0.95, and instead we now see a sharp peak in Fig. 5.6. Although we
see this sharp peak here, we should stipulate that at this level of loss we evidently
cannot tolerate a big shift in the homodyne measurement outcome, as the fidelity
drops below F = 0.80 for T = 0.95 and ε ≥ 0.05.
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5.3 Non-Ideal Homodyne for Cat State ES

We now move on the cat state protocol, and show in this section that we still tend to
the |Φ+(α)〉 = 1√

2
( |00〉 e−i|α|2 + |11〉 e+i|α|2) Bell state, even when allowing for small

levels of loss and homodyne non-idealities.
To form our final density matrix for the cat state protocol, when allowing

for equal losses in modes B and D, and for non-ideal homodyne outcomes
xπ

4
= ±
√
T |α| ± ε, we follow the same method outlined in Chapter 3, Sec. 3.4.2.

Therefore, if we then set the homodyne measurement outcome to contain non-
idealities, we replace xπ

4
in Eq. 3.66 (the state immediately after performing the

homodyne measurement) with the non-ideal outcome, giving:

|ΨCat
±ε 〉AC = N

×
[
|00〉AC

(
exp

[
(1− i)T |α|2 + (1− i)2

√
T |α|ε

]
|γ|α|〉εB |γ|α|〉εD

+ exp
[
− (3− 3i)T |α|2 − (1− i)2

√
T |α|ε

]
|−γ|α|〉εB |−γ|α|〉εD

+e−T |α|
2
(
|γ|α|〉εB |−γ|α|〉εD + |−γ|α|〉εB |γ|α|〉εD

))
+e

−T |α|2
2 |01〉AC

(
exp

[
2
√
T |α|ε+ T |α|2

]
|γ|α|〉εB |γi|α|〉εD

+ exp
[
− 2T i|α|2 − 2

√
T i|α|ε

]
|γ|α|〉εB |−γi|α|〉εD

+ exp
[
2
√
T i|α|ε+ 2T i|α|2

]
|−γ|α|〉εB |γi|α|〉εD

+ exp
[
− 2
√
T |α|ε− 3T |α|2

]
|−γ|α|〉εB |−γi|α|〉εD

)
+e

−T |α|2
2 |10〉AC

(
exp

[
2
√
T |α|ε+ T |α|2

]
|γi|α|〉εB |γ|α|〉εD

+ exp
[
2
√
T i|α|ε+ 2T i|α|2

]
|γi|α|〉εB |−γ|α|〉εD

+ exp
[
− 2T i|α|2 − 2

√
T i|α|ε

]
|−γi|α|〉εB |γ|α|〉εD

+ exp
[
− 2
√
T |α|ε− 3T |α|2

]
|−γi|α|〉εB |−γ|α|〉εD

)
+ |11〉AC

(
exp

[
(i + 1)T |α|2 + (i + 1)2

√
T |α|ε

]
|γi|α|〉εB |γi|α|〉εD

+ exp
[
− (3 + 3i)T |α|2 − (1 + i)2

√
T |α|ε

]
|−γi|α|〉εB |−γi|α|〉εD

+e−T |α|
2
(
|γi|α|〉εB |−γi|α|〉εD + |−γi|α|〉εB |γi|α|〉εD

))]
, (5.5)

in which the above quantum state is for the homodyne non-ideal outcome
xπ

4
= +
√
T |α|+ ε, however identical results for entanglement negativity, linear en-

tropy and fidelity are achieved when setting the outcome to xπ
4

= −
√
T |α| − ε, as

we saw in the ideal homodyne equal loss case in Eq. 3.67. Note that we use the
notation of a subscript±ε in the quantum state |ΨCat

±ε 〉AC to indicate that this state is
evaluated for the non-ideal homodyne outcome of xπ

4
= ±
√
T |α| ± ε.

Recall that, when considering homodyne measurement non-idealities, there
are now four possible outcomes for the cat state lossy protocol (see Fig. 5.2):



138 Chapter 5. Imperfect and Non-Ideal Homodyne Measurements

xπ
4

= ±
√
T |α| ± ε and xπ

4
= ±
√
T |α| ∓ ε, in which the outcomes xπ

4
= +
√
T |α|+ ε

and xπ
4

= −
√
T |α|−ε give the same resultant final state, as do the xπ

4
= +
√
T |α|−ε

and xπ
4

= −
√
T |α|+ ε outcomes.

Looking at the phase space diagram of Fig. 5.2 it is evident why this is the case;
this phase space diagram is symmetric about the x 3π

4
axis, and so the two “outer-

most” shifted outcomes, xπ
4

= +
√
T |α| + ε and xπ

4
= −
√
T |α| − ε, will give the

same entangled output, as will the two “innermost” outcomes, xπ
4

= +
√
T |α| − ε

and xπ
4

= −
√
T |α| + ε. It will be shown in this section that we in fact desire the

outcome to be xπ
4

= ±
√
T |α|± ε as opposed to xπ

4
= ±
√
T |α|∓ ε, however this will

be elucidated analytically (Subsec. 5.3.3) once the results have been presented.
The above state (Eq. 5.5) was evaluated for homodyne outcomes

xπ
4

= ±
√
T |α| ± ε, and so, using the same method to derive Eq. 5.5, we can eval-

uate this instead for the xπ
4

= ±
√
T |α| ∓ ε outcome, which gives:

|ΨCat
∓ε 〉AC = N

×
[
|00〉AC

(
exp

[
(1− i)T |α|2 − (1− i)2

√
T |α|ε

]
|γ|α|〉εB |γ|α|〉εD

+ exp
[
− (3− 3i)T |α|2 + (1− i)2

√
T |α|ε

]
|−γ|α|〉εB |−γ|α|〉εD

+e−T |α|
2
(
|γ|α|〉εB |−γ|α|〉εD + |−γ|α|〉εB |γ|α|〉εD

))
+e

−T |α|2
2 |01〉AC

(
exp

[
− 2
√
T |α|ε+ T |α|2

]
|γ|α|〉εB |γi|α|〉εD

+ exp
[
− 2T i|α|2 + 2

√
T i|α|ε

]
|γ|α|〉εB |−γi|α|〉εD

+ exp
[
− 2
√
T i|α|ε+ 2T i|α|2

]
|−γ|α|〉εB |γi|α|〉εD

+ exp
[

+ 2
√
T |α|ε− 3T |α|2

]
|−γ|α|〉εB |−γi|α|〉εD

)
+e

−T |α|2
2 |10〉AC

(
exp

[
− 2
√
T |α|ε+ T |α|2

]
|γi|α|〉εB |γ|α|〉εD

+ exp
[
− 2
√
T i|α|ε+ 2T i|α|2

]
|γi|α|〉εB |−γ|α|〉εD

+ exp
[
− 2T i|α|2 + 2

√
T i|α|ε

]
|−γi|α|〉εB |γ|α|〉εD

+ exp
[

+ 2
√
T |α|ε− 3T |α|2

]
|−γi|α|〉εB |−γ|α|〉εD

)
+ |11〉AC

(
exp

[
(i + 1)T |α|2 − (i + 1)2

√
T |α|ε

]
|γi|α|〉εB |γi|α|〉εD

+ exp
[
− (3 + 3i)T |α|2 + (1 + i)2

√
T |α|ε

]
|−γi|α|〉εB |−γi|α|〉εD

+e−T |α|
2
(
|γi|α|〉εB |−γi|α|〉εD + |−γi|α|〉εB |γi|α|〉εD

))]
, (5.6)

in which the above quantum state is for the homodyne non-ideal outcome
xπ

4
= +
√
T |α| − ε, however the same result is achieved when setting the outcome

to xπ
4

= −
√
T |α|+ ε. Note that we denote this quantum state as |ΨCat

∓ε 〉AC , in which
the subscript ∓ε is indicative of the xπ

4
= ±
√
T |α| ∓ ε non-ideal homodyne out-

come.
We note here that in the limits of no loss (T = 1), ε = 0 and large |α|we return to

the |Φ+(α)〉 = 1√
2

(|00〉 e−i|α|2 + |11〉 e+i|α|2) Bell state for both homodyne outcome
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states given in Eqs. 5.5 and 5.6, as expected.
Following on from Eqs. 5.5 and 5.6, we then trace out the lossy modes εB and εD

using the coherent state to trace (as per Subsec. 3.2.4), which gives us our final two
qubit density matrices of:

ρCatAC (±ε) = TrεB ,εD

[
|ΨCat
±ε 〉AεBCεD 〈Ψ

Cat
±ε |

]
, (5.7)

ρCatAC (∓ε) = TrεB ,εD

[
|ΨCat
∓ε 〉AεBCεD 〈Ψ

Cat
∓ε |

]
. (5.8)

Using these density matrices we may now investigate entanglement negativity, lin-
ear entropy and fidelity of the final state produced through the cat state protocol,
when allowing for non-ideal homodyne measurement outcomes.

5.3.1 Entanglement Negativity and Linear Entropy

As was the case with the coherent state protocol evaluated for non-ideal homodyne
outcomes in the previous section, we focus primarily on fidelity in the discussion
of results for the cat state circumstance. We saw that in the coherent state protocol,
increasing the value of ε does not affect entanglement negativity and linear entropy
at all, for all |α| and T , however the more complicated cat state regime is not as
straightforward. In this case, the entanglement negativity plots are affected by ε for
either non-ideal outcomes xπ

4
= ±

√
T |α| ± ε and xπ

4
= ±

√
T |α| ∓ ε. We show

entanglement negativity as a function of |α|, for no loss (Fig. 5.10) and for T = 0.95

(Fig. 5.11), for both non-ideal homodyne measurement outcomes with varying ε:

FIGURE 5.10: Entanglement negativity as a function of |α| for the final states
generated via our cat state entanglement swapping protocol (Eqs. 5.7 and
5.8), for T = 1, with non-ideal homodyne measurement outcomes of xπ

4
=

±
√
T |α| ± ε (solid lines in plot) and xπ

4
= ±
√
T |α| ∓ ε (dotted lines in plot).
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FIGURE 5.11: Entanglement negativity as a function of |α| for the final states
generated via our cat state entanglement swapping protocol (Eqs. 5.7 and
5.8), for T = 0.95, with non-ideal homodyne measurement outcomes of xπ

4
=

±
√
T |α| ± ε (solid lines in plot) and xπ

4
= ±
√
T |α| ∓ ε (dotted lines in plot).

Interestingly, these plots exhibit a somewhat peculiar feature: for either of the
above figures we can see that ε has an impact on the entanglement negativity value
only up to |α| ≈ 2.0, and beyond this |α| value all plots, regardless of the value of
ε, overlap one another and tend to the same value (unity for T = 1 in Fig. 5.10,
and zero for T = 0.95 in Fig. 5.11). Analytically, this is relatively simple to justify:
consider the quantum state for the xπ

4
= ±
√
T |α| ± ε outcome, given in Eq. 5.5,

in which clearly ε is no longer contained only within an exponential phase, as we
saw in the coherent state case (Eq. 5.2). Hence, for the cat state case, ε will indeed
impact the amplitudes of the terms in the final density matrix, and not just impact
the phases. It is for this reason that we see changes in the entanglement negativity
plots displayed above. This trend will be explained further in Subsec. 5.3.3, once we
have discussed the plots for fidelity.

Moreover, the reason both plots, Figs. 5.10 and 5.11, converge toward the same
value of entanglement negativity (although note that they converge to different val-
ues, for T = 1 and T = 0.95), regardless of the value of ε, is as a result of the
dampening exponents e−|α|

2
present in most terms in Eqs. 5.5 and 5.6 which have a

stronger effect on the final density matrix. These dampening exponents will cause
the impact of ε to be lessened the larger |α| becomes, as we indeed see in Figs. 5.10
and 5.11.

Lastly, we note here that the linear entropy for the no loss case does not change
with respect to ε. This again seems peculiar at first, however we must recall that
linear entropy is monotonic as a function of any variables which cause the level of
mixture in our system to increase, such as photon losses (as discussed in Chapter
2, Sec. 2.7), or the exponential dampening term dependent on α in the off-diagonal
terms in our final density matrix. Therefore, linear entropy will not reflect the slight
change in the entanglement negativity we see in Fig. 5.10 because, as already dis-
cussed, each plot tends to the same entanglement negativity value regardless of ε for
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large |α|. Contrastingly, for the case where we consider loss, for T = 0.95, the linear
entropy plot does change with respect to ε, as we show now:

FIGURE 5.12: Linear entropy as a function of |α| for the final states generated
via our cat state entanglement swapping protocol (Eqs. 5.7 and 5.8), for T =
0.95, with non-ideal homodyne measurement outcomes of xπ

4
= ±
√
T |α|±ε

(solid lines in plot) and xπ
4

= ±
√
T |α| ∓ ε (dotted lines in plot).

Evidently, we see a small variation in the linear entropy plot in the region of
|α| < 2.0, as we saw in the T = 0.95 entanglement negativity plot of Fig. 5.11. As
we have just mentioned, linear entropy is monotonic as a function of α, as a result of
exponential dampening in the off-diagonal density matrix terms, and as such does
not reflect small changes of ε when we have T = 1. This is due to the fact that, for no
loss, entanglement negativity still tends to unity for large |α|, for all ε, and as such
linear entropy will always remain at SL = 0.

Contrastingly, when we consider losses, as per Fig. 5.12, because the quantum
state is becoming more mixed (due to introducing losses) the entropy will reflect this
change, and as such the linear entropy plot here plateaus at SL = 0.50 for large |α|,
for all ε. Hence, as the linear entropy plot for T = 0.95 does not remain at 0 for all
|α|, we see small changes in the entropy value as we increase ε, corresponding to the
same changes in entanglement negativity we see in Fig.5.11.

5.3.2 Fidelity

Once again, we emphasise that the fidelity plots are more useful for investigating
and analysing the impact that homodyne non-idealities have on our final density
matrix. Additionally, and even more importantly, fidelity gives one an insight into
the state which we are actually producing, which is arguably far more useful in
terms of quantifying the usefulness of this protocol in generating specific entangled
states to then provide to a potential customer, or indeed customers.

We therefore move on to plot the fidelity against the |Φ+(α)〉 = 1√
2

(|00〉 e−i|α|2 +

|11〉 e+i|α|2) Bell state as a function of |α| and ε, but only show fidelity values for
F ≥ 0.80, so as to establish a window of accepted values for ε, in which we can
guarantee to produce a Bell state of acceptable fidelity.
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The following three plots (Figs. 5.13, 5.14 and 5.15) are for the homodyne mea-
surement outcome of xπ

4
= ±
√
T |α| ± ε:

FIGURE 5.13: Fidelity against the |Φ+(α)〉 = 1√
2

(|00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| and ε for the final state generated via our cat
state entanglement swapping protocol (Eq. 5.7), for T = 1, with non-ideal

homodyne measurement outcome of xπ
4

= ±
√
T |α| ± ε.

FIGURE 5.14: Fidelity against the |Φ+(α)〉 = 1√
2

(|00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| and ε for the final state generated via our cat
state entanglement swapping protocol (Eq. 5.7), for T = 0.99, with non-ideal

homodyne measurement outcome of xπ
4

= ±
√
T |α| ± ε.
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FIGURE 5.15: Fidelity against the |Φ+(α)〉 = 1√
2

(|00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| and ε for the final state generated via our cat
state entanglement swapping protocol (Eq. 5.7), for T = 0.95, with non-ideal

homodyne measurement outcome of xπ
4

= ±
√
T |α| ± ε.

From looking at the above 3D fidelity plots we can easily confirm that, for
T ≥ 0.95, we can tolerate a non-ideal homodyne measurement shift of ε ≤ 0.15 for
homodyne outcome xπ

4
= ±
√
T |α| ± ε, if we wish to produce the |Φ+(α)〉 Bell state

with a respectable fidelity of F ≥ 0.80. Furthermore, if we accept lower levels of
loss, such that T ≥ 0.99 then we can tolerate even greater ε values of ε ≥ 0.20.

For comparison, the following three plots (Figs. 5.16, 5.17 and 5.18) are for the
homodyne measurement outcome of xπ

4
= ±
√
T |α| ∓ ε, for T = 1, T = 0.99 and

T = 0.95, respectively:

FIGURE 5.16: Fidelity against the |Φ+(α)〉 = 1√
2

(|00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| and ε for the final state generated via our cat
state entanglement swapping protocol (Eq. 5.8), for T = 1, with non-ideal

homodyne measurement outcome of xπ
4

= ±
√
T |α| ∓ ε.
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FIGURE 5.17: Fidelity against the |Φ+(α)〉 = 1√
2

(|00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| and ε for the final state generated via our cat
state entanglement swapping protocol (Eq. 5.8), for T = 0.99, with non-ideal

homodyne measurement outcome of xπ
4

= ±
√
T |α| ∓ ε.

FIGURE 5.18: Fidelity against the |Φ+(α)〉 = 1√
2

(|00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| and ε for the final state generated via our cat
state entanglement swapping protocol (Eq. 5.8), for T = 0.95, with non-ideal

homodyne measurement outcome of xπ
4

= ±
√
T |α| ∓ ε.

What is instantly clear from these plots is that if the non-ideal homodyne mea-
surement outcome is xπ

4
= ±
√
T |α| ∓ ε then we cannot tolerate as high values of

ε as we can for the xπ
4

= ±
√
T |α| ± ε case (Figs. 5.13, 5.14 and 5.15). Interestingly,

this seems somewhat counter-intuitive to the entanglement negativity results given
in Figs. 5.10 and 5.11, in which we saw that the entanglement negativity value was
higher for non-zero ε for the xπ

4
= ±
√
T |α| ∓ ε non-ideal homodyne outcome, as

opposed to the xπ
4

= ±
√
T |α| ± ε outcome.
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The straightforward answer to this is simply that the entanglement negativity
of a quantum state is not affected by changes in only the phase; refer to the co-
herent state non-ideal homodyne measurement results, Subsec. 5.2.1 in which the
entanglement negativity and linear entropy plots remained completely unchanged
by introducing non-zero ε, yet the fidelity plots were affected. However, as already
discussed, in the cat state protocol our final state has terms dependent on ε that are
not just contained in phases, and as such we would indeed expect entanglement neg-
ativity, and also linear entropy, to be somewhat affected by non-zero ε. This trend
will be discussed in more detail in Subsec. 5.3.3.

For now, let us consider fidelity against the |Φ+(α)〉 and the orthogonal |Φ−(α)〉
Bell states as a function of |α|, for no loss (T = 1) and for non-ideal homodyne
measurement outcome xπ

4
= ±
√
T |α| ± ε:

FIGURE 5.19: Fidelity against the |Φ+(α)〉 = 1√
2

( |00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| for the final state generated via our cat state
entanglement swapping protocol (Eq. 5.7), for no loss (T = 1), and varying

non-ideal homodyne measurement outcome xπ
4

= ±
√
T |α| ± ε.

FIGURE 5.20: Fidelity against the |Φ−(α)〉 = 1√
2

( |00〉 e−i|α|2 − |11〉 e+i|α|2)

Bell state as a function of |α| for the final state generated via our cat state
entanglement swapping protocol (Eq. 5.7), for no loss (T = 1), and varying

non-ideal homodyne measurement outcome xπ
4

= ±
√
T |α| ± ε.
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We can see from the above graphs that plotting fidelity against either of the Bell
states, |Φ+(α)〉 and |Φ−(α)〉, results in an oscillatory plot as a function of |α|, which
becomes more oscillatory the higher ε is. Comparably, we witnessed this behaviour
in the coherent state plots of Figs. 5.6 and 5.7, in which the final density matrix (Eq.
5.3) contained phases in the off-diagonal |00〉AC 〈11| and |11〉AC 〈00| terms, and so
when calculating fidelity against a Bell state which did not contain phases (the |Φ+〉
Bell state) we of course see oscillations in the plot.

Conversely, in the cat state case for the non-ideal homodyne measurement out-
come xπ

4
= ±
√
T |α| ± ε, we can see from the final state (Eqs. 5.5) that there are

indeed phases present that are dependent on ε. It therefore follows that, for no loss,
calculating fidelity of this state against either of the |Φ+(α)〉 and |Φ−(α)〉 Bell states
will still give a plot exhibiting oscillatory behaviour; the phases in the final density
matrix change more rapidly as they are dependent on ε, as well as |α|2. This also jus-
tifies why the plots for ε = 0.10 and ε = 0.20 in Figs. 5.19 and 5.20 are less oscillatory
than that of ε = 0.30.

We now plot fidelity of the final density matrix, for non-ideal homodyne outcome
xπ

4
= ±
√
T |α| ± ε, against the |Φ+(α)〉 and |Φ−(α)〉 Bell states (Figs. 5.21 and 5.22

respectively), but for T = 0.95:

FIGURE 5.21: Fidelity against the |Φ+(α)〉 = 1√
2

( |00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| for the final state generated via our cat state
entanglement swapping protocol (Eq. 5.7), for equal losses of T = 0.95, and

varying non-ideal homodyne measurement outcome xπ
4

= ±
√
T |α| ± ε.
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FIGURE 5.22: Fidelity against the |Φ−(α)〉 = 1√
2

( |00〉 e−i|α|2 − |11〉 e+i|α|2)

Bell state as a function of |α| for the final state generated via our cat state
entanglement swapping protocol (Eq. 5.7), for equal losses of T = 0.95, and

varying non-ideal homodyne measurement outcome xπ
4

= ±
√
T |α| ± ε.

Here we can see that, when allowing for loss, the oscillatory behaviour displayed
in the no loss fidelity plots (Figs. 5.19 and 5.20) is no longer present in the graphs
above. In fact, we witnessed this pattern in the coherent state plots (compare the no
loss plots of Figs. 5.6 and 5.7 with the lossy plots of Figs. 5.8 and 5.9), and the reason
for this pattern is the same in the cat state circumstance at hand: the dampening
exponents present in all terms (due to tracing out the lossy modes) affects the final
density matrix more than the exponents containing phases dependent on |α| and ε.
It therefore follows that, for non-unity T , as |α| increases the plots plateau and do
not exhibit oscillations.

Let us now move on to the cat state protocol for the non-ideal homodyne mea-
surement outcome xπ

4
= ±

√
T |α| ∓ ε, in which we first plot fidelity against the

|Φ+(α)〉 and |Φ−(α)〉 Bell states (Figs. 5.23 and 5.24 respectively), for no loss:

FIGURE 5.23: Fidelity against the |Φ+(α)〉 = 1√
2

( |00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| for the final state generated via our cat state
entanglement swapping protocol (Eq. 5.8), for no loss (T = 1), and varying

non-ideal homodyne measurement outcome xπ
4

= ±
√
T |α| ∓ ε.
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FIGURE 5.24: Fidelity against the |Φ−(α)〉 = 1√
2

( |00〉 e−i|α|2 − |11〉 e+i|α|2)

Bell state as a function of |α| for the final state generated via our cat state
entanglement swapping protocol (Eq. 5.8), for no loss (T = 1), and varying

non-ideal homodyne measurement outcome xπ
4

= ±
√
T |α| ∓ ε.

Note that we have plotted the above up to higher values of |α| than typical so
far, to demonstrate that there is oscillatory behaviour. However, these oscillations
are not as rapid as the case for the non-ideal homodyne measurement outcome
xπ

4
= ±
√
T |α| ± ε, as seen in Figs. 5.19 and 5.20. The reason for this is simply that

we are calculating fidelity for lower values of ε in the cases where the outcome is
xπ

4
= ±
√
T |α| ∓ ε, as opposed to xπ

4
= ±

√
T |α| ± ε, as we ideally are only con-

cerned with values of εwhich still result in a fidelity of F ≥ 0.80. For clarity, we now
overlay fidelity plots for ε = 0.30 with both homodyne outcomes xπ

4
= ±
√
T |α| ± ε

and xπ
4

= ±
√
T |α| ∓ ε, against the |Φ+(α)〉 Bell state, to demonstrate the difference:

FIGURE 5.25: Fidelity against the |Φ+(α)〉 = 1√
2

( |00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| for the final states generated via our cat state
entanglement swapping protocol (Eqs. 5.7 and 5.8), for no loss (T = 1), and
varying non-ideal homodyne measurement outcomes xπ

4
= ±

√
T |α| ± ε

(solid line) and xπ
4

= ±
√
T |α| ∓ ε (dashed line).

Evidently, when ε is identical in value in both non-ideal outcomes
xπ

4
= ±
√
T |α| ± ε and xπ

4
= ±
√
T |α| ∓ ε, then at large values of |α| (|α| ≥ 1.50) the
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plots overlap - we note here that the same effect occurs for all values of T . Con-
trastingly, at lower values of |α|, namely the region in which we are mostly con-
cerned with in this work (1.0 ≤ |α| ≤ 1.50), realistically and experimentally, the
plots do indeed differ. In fact, Fig. 5.25 starkly demonstrates that the most desir-
able non-ideal homodyne measurement outcome is xπ

4
= ±
√
T |α| ± ε as opposed

to xπ
4

= ±
√
T |α| ∓ ε. We will discuss the reasons for this in the next subsection

(Subsec. 5.3.3), once we have discussed the T = 0.95 fidelity plots, as follows.
We now plot fidelity against the |Φ+(α)〉 and |Φ−(α)〉 Bell states (Figs. 5.26 and

5.27 respectively), for the extremal loss case of T = 0.95, for non-ideal homodyne
outcome xπ

4
= ±
√
T |α| ∓ ε:

FIGURE 5.26: Fidelity against the |Φ+(α)〉 = 1√
2

( |00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| for the final state generated via our cat state
entanglement swapping protocol (Eq. 5.8), for equal losses of T = 0.95, and

varying non-ideal homodyne measurement outcome xπ
4

= ±
√
T |α| ∓ ε.

FIGURE 5.27: Fidelity against the |Φ−(α)〉 = 1√
2

( |00〉 e−i|α|2 − |11〉 e+i|α|2)

Bell state as a function of |α| for the final state generated via our cat state
entanglement swapping protocol (Eq. 5.8), for equal losses of T = 0.95, and

varying non-ideal homodyne measurement outcome xπ
4

= ±
√
T |α| ∓ ε.

Once more, as we saw for the non-ideal homodyne outcome xπ
4

= ±
√
T |α| ± ε

fidelity results for T = 0.95 (Figs. 5.21 and 5.22) we no longer witness any oscillatory
behaviour in the above plots - this, as before, is due to the fact that we now have
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exponential dampening that is dependent on the level of loss being evaluated for,
which has a greater effect on the final density matrix being analysed compared to
the phase oscillations dependent on ε. Nonetheless, we still see the characteristic
“double peak” in Fig. 5.26 as we do in all cat state fidelity plots.

5.3.3 Comparison of Cat State Non-Ideal Homodyne Outcomes

Thus far, we have seen in our investigation for non-ideal homodyne measurement
outcomes, in the cat state regime, that we have a preferable non-ideal outcome; the
no loss fidelity plot of Fig. 5.25 demonstrates this trend perfectly, and we can see,
for low |α| (i.e. |α| < 1.5), that the best non-ideal outcome is for xπ

4
= ±
√
T |α| ± ε,

whereas the xπ
4

= ±
√
T |α| ∓ ε outcome gives us lower fidelity results.

On the other hand, we have also seen that plotting entanglement negativity
shows higher values (in the peak |α| region) for the xπ

4
= ±
√
T |α| ∓ ε non-ideal ho-

modyne measurement outcome (see Figs. 5.10 and 5.11). At first this seems counter-
intuitive, yet this trend can be explained quite simply: we see that the preferable
non-ideal outcome of xπ

4
= ±
√
T |α| ± ε gives better results for fidelity against the

|Φ+(α)〉 Bell state (see Fig. 5.25), and this is justified by the fact that off-diagonal
|00〉 〈11| and |11〉 〈00| terms, containing phases dependent on both ε and |α|, for no
loss, oscillate.

Although these plots do indeed differ in the peak |α| region we focus on as an
area of interest (namely 1.0 ≤ |α| ≤ 2.50), all entanglement negativity plots, regard-
less of which non-ideal outcome we have, tend to the same value, as shown in Figs.
5.10 and 5.11. This was discussed previously, but we remind the reader here that
this is as a result of the exponential dampening terms, dependent on |α|2, having a
far stronger influence on the density matrix coefficients at higher values of |α|, than
ε has on the phase of the coefficients.

To explain these trends described above in the entanglement negativity and fi-
delity plots, we now plot fidelity of our final density matrices (Eqs. 5.7 and 5.8),
against a Bell state that contains an arbitrary phase. We denote this Bell state as
|Φ+
θ 〉 = 1√

2
( |00〉 e−iθ + |11〉 e+iθ), and so by plotting fidelity against this Bell state,

as a function of θ, we should expect that the patterns we see in the entanglement
negativity plot of Fig. 5.10 are also shown here.

Firstly, we show fidelity against the arbitrary phase Bell state, as a function of θ,
for no loss and |α| = 1.25:
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FIGURE 5.28: Fidelity against the |Φ+
θ 〉 = 1√

2
( |00〉 e−iθ+ |11〉 e+iθ) Bell state,

as a function of θ, for the final states generated via our cat state entanglement
swapping protocol (Eqs. 5.7 and 5.8), for no loss (T = 1), and |α| = 1.25.

Note that the value of |α| = 1.25 was selected as this amplitude value shows
clear differences in the entanglement negativity plot of Fig. 5.10 for the non-ideal
homodyne outcomes, for non-zero ε. Evidently, observing Fig. 5.28, we can see that
the plot which gives the highest fidelity values is for the xπ

4
= ±
√
T |α|∓ε non-ideal

homodyne outcome. Contrastingly, the plot which shows the lowest peak fidelity
value is for the xπ

4
= ±
√
T |α| ± ε outcome. Both of these statements agree entirely

with what we witness in the entanglement negativity plot of Fig. 5.10.
To confirm what we have just stated, we now show fidelity against the arbitrary

phase Bell state, as a function of θ, for no loss and |α| = 3.0:

FIGURE 5.29: Fidelity against the |Φ+
θ 〉 = 1√

2
( |00〉 e−iθ+ |11〉 e+iθ) Bell state,

as a function of θ, for the final states generated via our cat state entanglement
swapping protocol (Eqs. 5.7 and 5.8), for no loss (T = 1), and |α| = 3.0.

Note that the value of |α| = 3.0 was selected as this amplitude value shows no
differences in the entanglement negativity plot of Fig. 5.10. Clearly, observing Fig.
5.29, we now see that all plots, irrespective of which non-ideal outcome we have,
all reach unity at some point. It should now be clear why this is: we know, for no
loss, that all plots, regardless of which non-ideal homodyne outcome we have, will
tend to unity at large values of |α|, due to the fact that the dampening exponents
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dependent on |α| have a far stronger impact on the density matrix amplitudes, and
so effectively cancel out the impact of any phases present, which are dependent on
ε.

We remind the reader here that of course one could theoretically determine pre-
cisely which Bell state we are producing for the xπ

4
= ±
√
T |α| ∓ ε non-ideal ho-

modyne outcome, for non-zero ε. However, the point of this thesis is to produce a
Bell state which could be supplied to a customer (or customers) for further commu-
nication/computational purposes. Indeed, were we to determine the exact phase
needed to produce this Bell state of higher entanglement (shown in the entangle-
ment negativity plot of Fig. 5.10) we could, in theory, supply said customer with
a more entangled pair of qubits. Unfortunately, this in turn causes the protocol’s
implementation to become far more tedious, as we would then need to notify the
customer precisely which phase the Bell state we are giving them has, which would
be dependent on the non-ideal outcome that has occurred, as well as |α| and T .

Not only this, but for commercial purposes a customer would most likely
prefer to know exactly what state they will receive at any time, and so for im-
plementing our protocol we would merely need to say: “you are receiving the
|Φ+(α)〉 = 1√

2
( |00〉 e−i|α|2 + |11〉 e+i|α|2) Bell state, for a given |α| value (determined

at the beginning of the experiment), with a given minimum fidelity”.

5.4 Imperfect Homodyne Detection

We now want to assess how tolerant our protocol is when considering “imperfect”
homodyne measurements (as opposed to perfect non-ideal homodyne outcomes, as
already discussed in this chapter) to investigate the uncertainty, in terms of a reso-
lution bandwidth, of the homodyne measurement. For this, we apply the analytical
method derived by A. Laghaout et al. in [177].

The reason we want to evaluate imperfections in the homodyne measurement is
because so far we have assumed that we know precisely the outcome (i.e. for coher-
ent states we assume the homodyne outcome is xπ

2
= 0) - this, however, is unreal-

istic because no practical homodyne detection device has high enough resolution to
project to a precise quadrature (|xθ〉 〈xθ|). Furthermore, even if we could measure a
quadrature exactly we would not necessarily want to as this would lower the suc-
cess probability of the protocol as the experiment would have to run many times to
achieve this exact result, as will be discussed in Chapter 6, Subsec. 6.1.2.

We therefore instead use our new imperfect homodyne operator given as:

Π̂HD(x0,∆x) =

∫ x0+ ∆x
2

x0−∆x
2

|xθ〉 〈xθ|dxθ, (5.9)

where, x0 is the expected measured value and ∆x is the resolution bandwidth around
this measured value (for the “perfect” homodyne projector equivalent to Eq. 5.9 see
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Eq. 2.25). Intuitively, in the limit of ∆x → 0 we should approach the perfect ho-
modyne measurement scenario as before. By increasing this value of ∆x we are
now able to assess how large we can allow this resolution bandwidth to be without
damaging the protocol outcome fidelity and entanglement to an unacceptable limit.

As an example of this, consider the probability distribution of a single coherent
state of amplitude |α| = 0 (the vacuum state) as a function of position in phase space.
This is given mathematically (using Eq. 2.24) as:

〈x||α|〉 =
1

2−
1
4π

1
4

exp
[
−x2 + 2|α|x− |α|2

]
〈x||α|〉 |α|→0−−−−→ 〈x|0〉 =

1

2−
1
4π

1
4

exp
[
−x2

]
, (5.10)

We may square this probability amplitude to give us a probability distribution:

| 〈x|0〉 |2 =

√
2√
π

exp
[
−2x2

]
. (5.11)

Plotting the above probability distribution as a function of position x gives us:

FIGURE 5.30: Probability distribution of a coherent state of amplitude |α| = 0
(the vacuum state) as a function of position x including the homodyne mea-

surement bandwidth ∆x, where ∆x = 0.1 and ∆x = 0.5.

in which we have also given two different homodyne resolution bandwidths of
∆x = 0.1 and ∆x = 0.5 to show the extremal cases. Note that if we apply the
imperfect homodyne projector of Eq. 5.9 to the probability distribution given in Eq.
5.11 then we would only see a distribution between the limits of whatever we set ∆x

to.
Clearly as we reduce this bandwidth we are then allowing for fewer homodyne

measurement outcomes. This, in fact, is how we determine success probability for
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the homodyne measurement (which we denote as PHD) - if we consider the “suc-
cess” of performing a homodyne measurement as the fraction of accepted outcomes,
then determining success probability for this measurement is done by simply calcu-
lating the ratio of how much of the probability distribution we allow for (given by
the bandwidth ∆x) by the whole probability distribution (i.e. every possible mea-
surement outcome). This will be covered in detail for specific values of the coherent
state amplitude |α| in Chapter 6, Subsec. 6.1.2.

5.5 Imperfect Homodyne for Coherent State ES

To build our final density matrix, containing a resolution bandwidth ∆x, to assess
homodyne measurement imperfections in the coherent state equal loss protocol we
begin with Eq. 3.31 (the state immediately after the vacuum projection, and before
the homodyne measurement). We then apply the imperfect homodyne operator as
per Eq. 5.9, for measurement angle θ = π

2 , such that:

|ΨCoh.
loss 〉AεBCDεD = N

[
|00〉AC |

√
2T |α|〉D |

√
1− T |α|〉εB |

√
1− T |α|〉εD

+ |11〉AC |−
√

2T |α|〉D |−
√

1− T |α|〉εB |−
√

1− T |α|〉εD
+ |0〉D e

−T |α|2
(
|01〉AC |

√
1− T |α|〉εB |−

√
1− T |α|〉εD

+ |10〉AC |−
√

1− T |α|〉εB |
√

1− T |α|〉εD
)]
, (5.12)∫ x0+ ∆x

2

x0−∆x
2

|xπ
2
〉D 〈xπ2 |Ψ

Coh.
loss 〉AεBCDεD dxπ

2
=

∫ + ∆x
2

−∆x
2

|ΨCoh.
loss 〉AεBCεD dxπ

2

= |ΨCoh.
∆x 〉AεBCεD

=

∫ + ∆x
2

−∆x
2

N
exp

[
−(xπ

2
)2
]

2−
1
4π

1
4[

e
−2
√

2 i
√
T |α|xπ

2 |00〉AC |
√

1− T |α|〉εB |
√

1− T |α|〉εD

+e
2
√

2 i
√
T |α|xπ

2 |11〉AC |−
√

1− T |α|〉εB |−
√

1− T |α|〉εD
e−T |α|

2
(
|01〉AC |

√
1− T |α|〉εB |−

√
1− T |α|〉εD

+ |10〉AC |−
√

1− T |α|〉εB |
√

1− T |α|〉εD
)]

dxπ
2
,

(5.13)

in which we have set x0 = 0 in the final step (as this is the ideal homodyne outcome),
and the subscript ∆x on the total quantum state |ΨCoh.

∆x 〉AεBCDεD denotes that this is
being evaluated for homodyne imperfections.

Note that thus far in this work we have omitted the
exp

[
−(xπ

2
)2
]

2−
1
4 π

1
4

term following
all homodyne measurements (as done so in the analytical derivation of our final
density matrices in Chapters 3 and 4); this term describes the probability amplitude
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at the vacuum - i.e. 〈xθ|0〉 =
exp[−(xθ)2]

2−
1
4 π

1
4

- and so this is present in all homodyne
outcomes (all other terms are merely a shift of this probability amplitude in the po-
sition/momentum phase space), and hence is removed by the normalisation. The
reason we do not wish to omit this term in this case is that it is inherently vital for
the subsequent integration calculation.

Lastly, to build our final density matrix from the above quantum state (Eq. 5.13)
we then trace out the lossy modes εB and εD as per the method outlined in Chapter
3, Subsec. 3.2.4, to then give us:

ρCoh.AC (∆x) = TrεB ,εD

[∫ + ∆x
2

−∆x
2

|ΨCoh.〉AεBCεD dxπ
2

∫ + ∆x
2

−∆x
2

AεBCεD 〈Ψ
Coh.|dxπ

2

]
.

(5.14)

We can now determine entanglement negativity, linear entropy and fidelity (against
the |Φ+〉 = 1√

2
(|00〉+ |11〉) Bell state) of the above density matrix, to investigate the

impact in which allowing for a resolution bandwidth ∆x of the homodyne measure-
ment may have on our entanglement swapping protocol outcome.

5.5.1 Entanglement Negativity and Linear Entropy

Firstly, we present plots for entanglement negativity and linear entropy as a function
of the coherent state amplitude |α|, with varying ∆x, before moving on to discuss
fidelity.

The following plots are entanglement negativity for T = 1 and T = 0.95 (Figs.
5.31 and 5.32 respectively):

FIGURE 5.31: Entanglement negativity as a function of |α| for the final state
generated via our coherent state entanglement swapping protocol (Eq. 5.14),

for T = 1 and varying homodyne measurement bandwidth ∆x.
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FIGURE 5.32: Entanglement negativity as a function of |α| for the final state
generated via our coherent state entanglement swapping protocol (Eq. 5.14),

for T = 0.95 and varying homodyne measurement bandwidth ∆x.

We can immediately notice from the above plots that introducing a homodyne
resolution bandwidth ∆x causes oscillations to appear - this oscillatory behaviour
becomes less pronounced when allowing for loss, as per Fig. 5.32, and this trend has
been noticed when introducing non-ideal homodyne measurement outcomes (com-
pare the fidelity plots of Figs. 5.6 and 5.8). This is, again, because the exponential
dampening terms, which are dependent on both T and |α|, that are introduced when
tracing out the lossy modes have a stronger influence on the amplitudes of each term
in the final density matrix (Eq. 5.14) than the phases do. This oscillatory behaviour
will be justified in the following subsection in terms of fidelity.

What is also noticeable in Figs. 5.31 and 5.32 is that there is only a very small dif-
ference between the peak entanglement negativity values when increasing the reso-
lution bandwidth from ∆x = 0.01 to ∆x = 0.10, and in fact the difference between
the peak values is lessened even more in the T = 0.95 plot. This is a positive result,
as the purpose of this investigation into homodyne measurement imperfections is
that we wish to assume that a homodyne detector has a relatively high resolution
bandwidth (i.e. 0.10 ≤ ∆x ≤ 0.25). We will see in the next section whether, more im-
portantly, the fidelity results follow this pattern that the value at the peak |α| region
does not vary a lot for 0 ≤ ∆x ≤ 0.10.

Let us now compare the entanglement negativity plots of Figs. 5.31 and 5.32 with
plots for linear entropy (Figs. 5.33 and 5.34):
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FIGURE 5.33: Linear entropy as a function of |α| for the final state generated
via our coherent state entanglement swapping protocol (Eq. 5.14), for T = 1

and varying homodyne measurement bandwidth ∆x.

FIGURE 5.34: Linear entropy as a function of |α| for the final state generated
via our coherent state entanglement swapping protocol (Eq. 5.14), for T =

0.95 and varying homodyne measurement bandwidth ∆x.

Patently, it is immediately clear when observing the above linear entropy plots,
particularly in the no loss regime, that the regions in which the entanglement neg-
ativity plots reach N (ρ) = 0 (see Figs. 5.31 and 5.32) correspond perfectly with the
points in which the above linear entropy plots reach their maximum of SL = 0.50.
As always, we absolutely expect linear entropy to compliment, and somewhat mir-
ror, the effects we see in the equivalent entanglement negativity plots, and so the
above linear entropy plots of Figs. 5.33 and 5.34 indeed follow this pattern well.

5.5.2 Fidelity

We now discuss fidelity against the |Φ+〉 = 1√
2

(|00〉+ |11〉) Bell state and the orthog-
onal |Φ−〉 = 1√

2
(|00〉 − |11〉) Bell state as a function of the coherent state amplitude

|α|, to investigate how high we can allow our homodyne measurement resolution
bandwidth ∆x to be whilst still giving an acceptable resultant fidelity.

Firstly, in Fig. 5.35 we plot the case for no loss (T = 1):
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FIGURE 5.35: Fidelity against the
∣∣Φ+

〉
= 1√

2
(|00〉 + |11〉) Bell state (solid

lines in plot) and the orthogonal
∣∣Φ−〉 = 1√

2
(|00〉 − |11〉) Bell state (dotted

lines in plot) as a function of |α| for the final state generated via our coherent
state entanglement swapping protocol (Eq. 5.14), for T = 1 and varying

homodyne measurement bandwidth ∆x.

Once more, we can see that there are oscillations present in this plot (Fig. 5.35),
which again we can conclude is due to the phases present in the final density matrix
Eq. 5.14. In fact, we can easily see that when the fidelity against the |Φ+〉 Bell state
drops to F = 0.50, the fidelity against the orthogonal |Φ−〉 Bell state increases to
F = 0.50 - furthermore, the exact |α| value in which this effect occurs at matches the
|α| value in which the entanglement negativity plot (Fig. 5.31) drops to N (ρ) = 0.
Of course, we intrinsically expect this to be the case, since a 50:50 mixture of two
orthogonal Bell states must also exhibit no entanglement. This is also confirmed
by the linear entropy plot of Fig. 5.33, in which the entropy reaches the plot maxi-
mum of SL = 0.50 at these corresponding |α| values, also demonstrating oscillatory
behaviour, as already discussed.

Encouragingly, Fig. 5.35 indicates that, as demonstrated in the entanglement
negativity plot of Fig. 5.31, there is only a very slight difference between the fidelity
results at the peak |α| value for 0 ≤ ∆x ≤ 0.10. As already stated, this is a positive
result as it means that we can tolerate a small resolution bandwidth of the homodyne
measurement, and even were we to allow the bandwidth to increase even higher to
∆x = 0.25 then the fidelity, for the no loss regime, is still F = 0.90.

We now investigate the circumstance in which we have high levels of loss
(T = 0.95) in Figs. 5.36 and 5.37, to see whether we can tolerate this level of ho-
modyne imperfections, whilst still giving a decent resultant fidelity:
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FIGURE 5.36: Fidelity against the
∣∣Φ+

〉
= 1√

2
(|00〉 + |11〉) Bell state as a

function of |α| for the final state generated via our coherent state entangle-
ment swapping protocol (Eq. 5.14), for T = 0.95 and varying homodyne

measurement bandwidth ∆x.

FIGURE 5.37: Fidelity against the
∣∣Φ−〉 = 1√

2
(|00〉 − |11〉) Bell state as a

function of |α| for the final state generated via our coherent state entangle-
ment swapping protocol (Eq. 5.14), for T = 0.95 and varying homodyne

measurement bandwidth ∆x.

Comparing the above plots (Figs. 5.36 and 5.37), we see that we no longer have
oscillations present, and this is again due to introducing a dampening exponent via
tracing out the lossy modes εB and εD, which has a stronger influence on the final
density matrix than the oscillatory behaviour dependent on ∆x does. Moreover, as
expected, we can see that when the fidelity against the |Φ+〉 Bell state decreases and
plateaus at F = 0.50 in Fig. 5.36, the fidelity against the |Φ−〉 Bell state increases and
plateaus at F = 0.50 in Fig. 5.37, as seen in the no loss plot of Fig. 5.35.

Finally, we can conclude that there is effectively no difference in the resultant
fidelity values, in the peak |α| regions, for 0 ≤ ∆x ≤ 0.10, as was seen in the no loss
plot. In fact, even when allowing for relatively high photon losses of T = 0.95, we
can still tolerate a resolution bandwidth of ∆x = 0.25 and still produce an entangled
pair of photons, via our coherent state entanglement swapping protocol, although
the fidelity in this case is slightly below our target of F = 0.80 against the |Φ+〉 Bell
state.
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5.6 Imperfect Homodyne for Cat State ES

We now move on to discuss imperfect homodyne detection for our proposed cat
state entanglement swapping protocol, to determine if we can tolerate a relatively
small resolution bandwidth ∆x, whilst still giving acceptable fidelity results against
the |Φ+(α)〉 = 1√

2
(|00〉 e−i|α|2 + |11〉 e+i|α|2) Bell state.

To build the density matrix containing the homodyne bandwidth variable ∆x for
the cat state lossy protocol, we begin with the equal loss state, immediately after the
vacuum measurement and before the homodyne measurement, given by Eq. 3.63.
We then apply the imperfect homodyne operator as per Eq. 5.9, for measurement
angle θ = π

4 , such that:

|ΨCat
loss〉AεBCDεD = N

×
[
|00〉AC

[
|
√

2T |α|〉D |γ|α|〉εB |γ|α|〉εD + |−
√

2T |α|〉D |−γ|α|〉εB |−γ|α|〉εD

+e−T |α|
2 |0〉D

(
|γ|α|〉εB |−γ|α|〉εD + |−γ|α|〉εB |γ|α|〉εD
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+e

−T |α|2
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√
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iπ
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√
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−iπ
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−iπ
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, (5.15)

∫ x0+ ∆x
2

x0−∆x
2

|xπ
4
〉D 〈xπ4 |Ψ

Cat
loss〉AεBCDεD dxπ

4
=

∫ ±√T |α|+ ∆x
2

±
√
T |α|−∆x

2

|ΨCat
loss〉AεBCεD dxπ

4

= |ΨCat
∆x 〉AεBCεD (5.16)
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=
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(5.17)

in which we have set x0 = ±
√
T |α| in the final step (as these are the ideal ho-

modyne outcomes). Note that, as we saw in the equal loss perfect homodyne case
(Chapter 3, Sec 3.4.2), either ideal homodyne measurement outcome, x0 = +

√
T |α|

or x0 = −
√
T |α|, gives the same protocol outcome.

Lastly, to build our final density matrix from the above quantum state (Eq. 5.17)
we then trace out the lossy modes εB and εD as per the method outlined in Chapter
3, Subsec. 3.2.4, to then give us:

ρCatAC (∆x) =

TrεB ,εD

[∫ ±√T |α|+ ∆x
2

±
√
T |α|−∆x

2

|ΨCat
loss〉AεBCεD dxπ

4

∫ ±√T |α|+ ∆x
2

±
√
T |α|−∆x

2

AεBCεD 〈Ψ
Cat
loss|dxπ4

]
.

(5.18)

We can now determine entanglement negativity, linear entropy and fidelity (against
the |Φ+(α)〉 = 1√

2
(|00〉 e−i|α|2 + |11〉 e+i|α|2) Bell state) of the above density matrix, to

investigate the impact in which allowing for a resolution bandwidth ∆x of the ho-
modyne measurement may have on our entanglement swapping protocol outcome.
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5.6.1 Entanglement Negativity and Linear Entropy

Firstly, we present plots for entanglement negativity and linear entropy as a function
of the coherent state amplitude |α|, with varying ∆x, before moving on to discuss
fidelity.

The following plots are entanglement negativity for T = 1 and T = 0.95 (Figs.
5.38 and 5.39 respectively):

FIGURE 5.38: Entanglement negativity as a function of |α| for the final state
generated via our cat state entanglement swapping protocol (Eq. 5.18), for

T = 1 and varying homodyne measurement bandwidth ∆x.

FIGURE 5.39: Entanglement negativity as a function of |α| for the final state
generated via our cat state entanglement swapping protocol (Eq. 5.18), for

T = 0.95 and varying homodyne measurement bandwidth ∆x.

Unsurprisingly, the no loss entanglement negativity plot of Fig. 5.38 shown
above also demonstrates the oscillatory behaviour we saw in the no loss coherent
state imperfect homodyne plot (Figs 5.31). We would absolutely expect to see os-
cillations as a function of ∆x and |α|, because we can see in Eq. 5.17 that there are
homodyne measurement outcome variables, xπ

4
, included in many phase terms -

once we integrate between the limits of
∫ ±√T |α|+ ∆x

2

±
√
T |α|−∆x

2

, then clearly we have phase
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terms that are dependent on ∆x. The same is true for the coherent state protocol
results of Figs. 5.31 and 5.32.

Furthermore, for T = 0.95, we see the typical feature, noticed throughout this
work, that the oscillatory behaviour is reduced as a result of exponential dampening
dependent on T and |α| (see equivalent coherent state result of Fig. 5.32). We also
see, in both the no loss and T = 0.95 plots (Figs. 5.38 and 5.39 respectively) the
distinctive, characteristic double-peak feature we saw in most cat state entanglement
negativity plots, which is due to competing exponential terms, as already discussed
in this work. Promisingly, in these plots we can also note that for 0 ≤ ∆x ≤ 0.10

there is only a negligible difference between the resultant entanglement negativity
values in the peak |α| regions, as was witnessed in the coherent state regime.

We now compare these entanglement negativity plots with the equivalent linear
entropy plots, for no loss (Fig. 5.40) and T = 0.95 (Fig. 5.41):

FIGURE 5.40: Linear entropy as a function of |α| for the final state generated
via our cat state entanglement swapping protocol (Eq. 5.18), for T = 1 and

varying homodyne measurement bandwidth ∆x.

FIGURE 5.41: Linear entropy as a function of |α| for the final state generated
via our cat state entanglement swapping protocol (Eq. 5.18), for T = 0.95 and

varying homodyne measurement bandwidth ∆x.
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Once more, as we saw in the coherent state linear entropy plots (Figs. 5.33 and
5.34, for no loss and T = 0.95 respectively), there is oscillatory behaviour present in
the no loss plots for very large ∆x, and these oscillations are dampened in the case
for T = 0.95. As before, the above linear entropy plots compliment the equivalent
entanglement negativity plots of Figs. 5.38 and 5.39 perfectly - as the entanglement
negativity drops to N (ρ) = 0, then the linear entropy plots reach their maximum of
SL = 0.50 at the same value of |α|. Evidently, increasing the resolution bandwidth
∆x, increases the mixedness of our final density matrix.

5.6.2 Fidelity

We now discuss fidelity against the |Φ+(α)〉 = 1√
2

(|00〉 e−i|α|2 +|11〉 e+i|α|2) Bell state

and the orthogonal |Φ−(α)〉 = 1√
2

(|00〉 e−i|α|2 − |11〉 e+i|α|2) Bell state as a function
of the coherent state amplitude |α|, to investigate how high we can allow our homo-
dyne measurement resolution bandwidth ∆x to be whilst still giving an acceptable
resultant fidelity.

Firstly, in Fig. 5.42 we plot the case for no loss (T = 1):

FIGURE 5.42: Fidelity against the |Φ+(α)〉 = 1√
2

(|00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state (solid lines in plot) and the orthogonal |Φ−(α)〉 = 1√
2

(|00〉 e−i|α|2−
|11〉 e+i|α|2) Bell state (dotted lines in plot) as a function of |α| for the final
state generated via our cat state entanglement swapping protocol (Eq. 5.18),

for T = 1 and varying homodyne measurement bandwidth ∆x.

Owing to the phases present in the final density matrix of Eq. 5.18, we again
witness oscillatory behaviour in the above fidelity plot. In fact, as we saw in the
equivalent coherent state circumstance, when the fidelity against the |Φ+(α)〉 Bell
state drops to F = 0.50, the fidelity against the orthogonal |Φ−(α)〉 Bell state in-
creases to F = 0.50, and as such the |α| values in which this occurs at in Fig. 5.42
correspond to the same values of |α| in which the entanglement negativity drops
to 0 (see Fig. 5.38) and also the points in which the linear entropy reaches the plot
maximum of SL = 0.50 (see Fig. 5.40). As before we absolutely expect this pattern
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to occur, because if one has a perfect 50:50 mixture of two orthogonal Bell states then
the entanglement negativity must also be N (ρ) = 0.

Moreover, what is favourable here is that there is a negligible difference between
the fidelity values at the peak |α| values in Fig. 5.42, when increasing the homodyne
measurement bandwidth from ∆x = 0 to ∆x = 0.10. In fact, even when increas-
ing the measurement bandwidth window to ∆x = 0.25 (which is likely to be the
maximum, most extremal case we realistically consider), there is still only a very
small difference in the peak fidelity values. Recall that we also saw this trend in the
coherent state regime.

We now look to the higher loss case (Figs. 5.43 and 5.44 for fidelity against the
|Φ+(α)〉 and |Φ−(α)〉 Bell states respectively), for T = 0.95

FIGURE 5.43: Fidelity against the |Φ+(α)〉 = 1√
2

(|00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| for the final state generated via our cat state
entanglement swapping protocol (Eq. 5.18), for T = 0.95 and varying homo-

dyne measurement bandwidth ∆x.

FIGURE 5.44: Fidelity against the |Φ−(α)〉 = 1√
2

(|00〉 e−i|α|2 − |11〉 e+i|α|2)

Bell state as a function of |α| for the final state generated via our cat state
entanglement swapping protocol (Eq. 5.18), for T = 0.95 and varying homo-

dyne measurement bandwidth ∆x.
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Evidently, we see the expected lack of oscillatory behaviour as a function of |α| -
once more, this is entirely anticipated as we know there will be exponential damp-
ening as a function of the level of loss exhibited in our system. Furthermore, we can
conclude here that there is, again, only a very small difference when increasing the
homodyne measurement bandwidth between the bounds of 0 ≤ ∆x ≤ 0.10.

Lastly, we note that the fact that the more complicated cat state entanglement
swapping protocol exhibits similar oscillatory effects in the fidelity, entanglement
negativity and linear entropy plots (for no loss), as we witness in the equivalent co-
herent state plots, is promising as it means that, despite the protocol being far more
complex to calculate mathematically, one is not introducing any bizarre, undesirable
effects into the protocol outcome. Indeed, one would expect the introduction of a
homodyne measurement bandwidth, given as ∆x, to effect the protocol outcome in
a similar way regardless if the input quantum state is a hybrid entangled coherent
state or a cat state.

What is also promising is that despite the cat state protocol perhaps being more
complicated to implement, both theoretically and experimentally, we do see an im-
provement in the fidelity results for low levels of loss; this improvement is not in
fact a better result in terms of the fidelity values obtained at the peak |α| point in the
plots, but actually with respect to the fact that, because we witness a characteristic
double-peak in the cat state plots, there is often a broader range of |α| values which
give an acceptable fidelity, compared to the single sharp peak we see in the coherent
state plots. This result is evident in most of the cat state results we present in this
work, and is particularly noticeable in the no loss or lower loss regimes.

5.7 Combining Non-Ideal and Imperfect Homodyne Detec-
tion

In this section, we look to combine non-ideal homodyne detection (parametrised
by ε), with imperfect homodyne detection given by the homodyne resolution band-
width ∆x. We will investigate the extremal cases, in which we push the non-ideal
outcome ε as high as we can whilst allowing for a relatively small homodyne band-
width of ∆x = 0.25. Realistically, this is likely to be the case, as the resolution of
a homodyne detector will be (and indeed should be) good enough such that ∆x is
relatively small.

Importantly, we must note here that despite perhaps allowing for a relatively
sharp resolution bandwidth of ∆x ≈ 0.25 we must bear in mind that this comes
at the cost of drastically lowering the success probability of this homodyne mea-
surement. We return to an in-depth discussion of this in the following chapter (see
Chapter 6, Subsec. 6.1.2).

To investigate both non-ideal and imperfect homodyne detection, we simply re-
place the integral limits in Eqs. 5.14 and 5.18 (for the coherent state and cat state
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protocols respectively) with limits that also include ε, to allow for a shift in the ideal
homodyne measurement outcome.

5.7.1 Coherent State ES for Non-Ideal and Imperfect Homodyne Detection

Firstly, we will investigate the more simple coherent state protocol. We therefore
take the density matrix equation, evaluated for imperfect homodyne detection, of
Eq. 5.14, but replace the integral limits to include ε, such that:

ρCoh.AC (∆x, ε) = TrεB ,εD

[∫ ε+ ∆x
2

ε−∆x
2

|ΨCoh.
loss 〉AεBCεD dxπ

2

∫ ε+ ∆x
2

ε−∆x
2

AεBCεD 〈Ψ
Coh.
loss |dxπ2

]
= TrεB ,εD

[
|ΨCoh.

∆x 〉AεBCεD 〈Ψ
Coh.
∆x |

]
, (5.19)

in which the quantum state |ΨCoh.
∆x 〉AεBCεD is given by Eq. 5.13. This state, as before,

is then computationally integrated numerically such that subsequent calculations
can be carried out.

We now plot fidelity, as a function of |α| and ε, for fixed ∆x. As stated previously,
we wish to investigate the extremal circumstance in which the non-ideal homodyne
measurement is pushed as far as can be tolerated, whilst allowing for a small homo-
dyne resolution bandwidth. If we remind ourselves of the fidelity results given in
Subsec. 5.2.2, we can see that, if we wish to produce an entangled pair of photons
via our coherent state ES protocol with a fidelity of F ≥ 0.80 against the |Φ+〉 Bell
state, we can only tolerate a non-ideal homodyne outcome of ε ≤ 0.12 for T ≥ 0.99,
or ε ≤ 0.05 for T = 0.95. Therefore, we take this into consideration when plotting
fidelity to involve both non-ideal and imperfect homodyne measurements, and as
such the following plots are of fidelity against the |Φ+〉 Bell state, as a function of |α|
and ε, for T = 1, T = 0.99 and T = 0.97 (Figs. 5.45, 5.46 and 5.47 respectively), and
for ∆x = 0.25:
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FIGURE 5.45: Fidelity against the |Φ+〉 = 1√
2

(|00〉 + |11〉) Bell state as a
function of |α| and ε for the final state generated via our coherent state entan-

glement swapping protocol (Eq. 5.19), for no loss (T = 1) and ∆x = 0.25.

FIGURE 5.46: Fidelity against the |Φ+〉 = 1√
2

(|00〉 + |11〉) Bell state as a
function of |α| and ε for the final state generated via our coherent state entan-

glement swapping protocol (Eq. 5.19), for T = 0.99 and ∆x = 0.25.
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FIGURE 5.47: Fidelity against the |Φ+〉 = 1√
2

(|00〉 + |11〉) Bell state as a
function of |α| and ε for the final state generated via our coherent state entan-

glement swapping protocol (Eq. 5.19), for T = 0.97 and ∆x = 0.25.

Firstly, we point out that we only investigate levels of photon loss up to T = 0.97

(Fig. 5.47) - any results for fidelity beyond this level of loss result in F < 0.80,
for ε > 0.05 and ∆x = 0.25. Clearly, any values of non-ideal homodyne measure-
ment outcome below ε = 0.10 are hardly worth considering. Hence, we may easily
conclude that if we allow a homodyne resolution bandwidth of ∆x = 0.25, then,
for our proposed coherent state ES protocol, we cannot tolerate levels of loss beyond
T = 0.99 if we wish to allow for a fair level of non-ideal homodyne outcome, namely
ε ≈ 0.10.

In truth, even when allowing for losses of T = 0.97, there is only a very small
region in which we see a peak |α| value for ε = 0.05 to give a fidelity of F = 0.80

- inherently, once we begin to also combine non-ideal and imperfect homodyning
with unequal losses in modes B and D (see the following chapter, Chapter 6, Sec.
6.3) this region will no longer exist once we allow for any level of unequal loss for
T = 0.97.

For now, however, we may discuss the no loss, and small loss (T = 0.99) plots of
Figs. 5.45 and 5.46 respectively. In the no loss case it is easy to see that there is a wide
range of |α| values that produce a high-fidelity (F > 0.90) |Φ+〉 Bell state, and if we
wish to produce this Bell state with fidelity of F ≥ 0.80, we can tolerate non-ideal
outcomes of ε ≤ 0.10. Of course, assuming zero photon loss is physically unrealistic,
and would never be the case in a real-life implementation of this protocol. Hence, if
we now observe the T = 0.99 loss circumstance, of Fig. 5.46, we see that the results
are slightly less tolerant with respect to ε: to produce the |Φ+〉 Bell state with fidelity
of F ≥ 0.80, we can only tolerate a non-ideal outcome of ε ≤ 0.09, and in fact there
are no regions for |α| in which we produce this Bell state a fidelity of F ≥ 0.90.
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5.7.2 Cat State ES for Non-Ideal and Imperfect Homodyne Detection

We now move on to discuss the circumstance of non-ideal and imperfect homodyne
measurements in our proposed cat state ES protocol. We again start with the den-
sity matrix equation, evaluated for imperfect homodyne detection, of Eq. 5.18, but
replace the integral limits to include ε, such that:

ρCatAC (∆x,±ε) =

TrεB ,εD

[∫ ±√T |α|±ε+ ∆x
2

±
√
T |α|±ε−∆x

2

|ΨCat
loss〉AεBCεD dxπ

4

∫ ±√T |α|±ε+ ∆x
2

±
√
T |α|±ε−∆x

2

AεBCεD 〈Ψ
Cat
loss|dxπ4

]
,

(5.20)

ρCatAC (∆x,∓ε) =

TrεB ,εD

[∫ ±√T |α|∓ε+ ∆x
2

±
√
T |α|∓ε−∆x

2

|ΨCat
loss〉AεBCεD dxπ

4

∫ ±√T |α|∓ε+ ∆x
2

±
√
T |α|∓ε−∆x

2

AεBCεD 〈Ψ
Cat
loss|dxπ4

]
,

(5.21)

in which we once again have two final density matrices describing the two possible
outcomes for our protocol - recall that, as discussed in Sec. 5.3, there are multiple
potential non-ideal homodyne measurement outcomes, given as xπ

4
= ±
√
T |α| ± ε

and xπ
4

= ±
√
T |α|∓ ε, in which we found that the xπ

4
= ±
√
T |α|± ε outcomes give

better results for entanglement negativity and fidelity. Hence, we denote the above
density matrices, given in Eqs. 5.20 and 5.21, as ρCatAC (∆x,±ε) and ρCatAC (∆x,∓ε) re-
spectively, to indicate the non-ideal homodyne measurement outcome.

Firstly, we will investigate fidelity against the |Φ+(α)〉 Bell state as a function of
|α| and ε for no loss, T = 0.99 and the extremal case of T = 0.96 (Figs. 5.48, 5.49 and
5.50 respectively), allowing for a homodyne measurement bandwidth of ∆x = 0.25,
for non-ideal homodyne measurement outcome xπ

4
= ±
√
T |α| ± ε:
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FIGURE 5.48: Fidelity against the |Φ+(α)〉 = 1√
2

(|00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| and ε for the final state generated via our coher-
ent state entanglement swapping protocol (Eq. 5.20), for no loss (T = 1)
and ∆x = 0.25, for non-ideal homodyne measurement outcome xπ

4
=

±
√
T |α| ± ε.

FIGURE 5.49: Fidelity against the |Φ+(α)〉 = 1√
2

(|00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| and ε for the final state generated via our coher-
ent state entanglement swapping protocol (Eq. 5.20), for T = 0.99 and ∆x =

0.25, for non-ideal homodyne measurement outcome xπ
4

= ±
√
T |α| ± ε.
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FIGURE 5.50: Fidelity against the |Φ+(α)〉 = 1√
2

(|00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| and ε for the final state generated via our coher-
ent state entanglement swapping protocol (Eq. 5.20), for T = 0.96 and ∆x =

0.25, for non-ideal homodyne measurement outcome xπ
4

= ±
√
T |α| ± ε.

Firstly, we note that the results in the extremal limit of higher losses (T = 0.96, as
per Fig. 5.50) are more promising than those of the coherent state case - in fact, the
most extremal loss case we can tolerate for the non-ideal and imperfect homodyne
scenario in the coherent state regime is losses up to T = 0.97 and even then we can
only allow a non-ideal outcome of ε ≤ 0.05 to give an acceptable fidelity of F ≥ 0.80

against the |Φ+〉 Bell state (see Fig. 5.47). For the cat state regime, in the limit of
T = 0.96 we are actually able to push the non-ideal homodyne outcome to ε ≈ 0.15

(for xπ
4

= ±
√
T |α| ± ε) whilst still producing the |Φ+(α)〉 Bell state with acceptable

fidelity of F = 0.80, when allowing for a wide homodyning resolution window of
∆x = 0.25.

Moreover, for lower levels of photon loss, namely T = 0.99 (see Fig. 5.49), we are
able to accept non-ideal measurement values of ε ≤ 0.20 whilst still producing the
|Φ+(α)〉 Bell state with fidelity of F ≥ 0.80. In addition to this, if we consider lower
non-ideal measurement values of ε ≤ 0.10 then we produce this Bell state with a
fidelity that almost reaches F = 0.90. We note that we do not quite approach fidelity
greater than this, however, in the next chapter we discuss potential entanglement
purification methods to increase this level of fidelity (see Chapter 6, Sec. 6.2).

All of this is very promising, as it means that the cat state protocol is more re-
silient to non-idealities and imperfections in the homodyne measurement, however,
we must recall that there are multiple potential non-ideal homodyne outcomes for
this protocol (xπ

4
= ±
√
T |α| ± ε and xπ

4
= ±
√
T |α| ∓ ε). Thus far, in Figs. 5.48,

5.49 and 5.50, we have seen that the protocol outcomes of xπ
4

= ±
√
T |α|± ε give en-

couraging results, in that we are able to tolerate relatively high levels of homodyne
non-ideality, whilst assuming a homodyne imperfection window of ∆x = 0.25.
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We therefore now investigate the circumstance in which we have the non-ideal
outcome of xπ

4
= ±
√
T |α| ∓ ε, for no loss, T = 0.99, and the most extremal loss case

we can tolerate in this circumstance of T = 0.97 (corresponding to Figs. 5.51, 5.52
and 5.53 respectively), for imperfect homodyne resolution bandwidth of ∆x = 0.25:

FIGURE 5.51: Fidelity against the |Φ+(α)〉 = 1√
2

(|00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| and ε for the final state generated via our coher-
ent state entanglement swapping protocol (Eq. 5.21), for no loss (T = 1)
and ∆x = 0.25, for non-ideal homodyne measurement outcome xπ

4
=

±
√
T |α| ∓ ε.

FIGURE 5.52: Fidelity against the |Φ+(α)〉 = 1√
2

(|00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| and ε for the final state generated via our coher-
ent state entanglement swapping protocol (Eq. 5.21), for T = 0.99 and ∆x =

0.25, for non-ideal homodyne measurement outcome xπ
4

= ±
√
T |α| ∓ ε.
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FIGURE 5.53: Fidelity against the |Φ+(α)〉 = 1√
2

(|00〉 e−i|α|2 + |11〉 e+i|α|2)

Bell state as a function of |α| and ε for the final state generated via our coher-
ent state entanglement swapping protocol (Eq. 5.21), for T = 0.97 and ∆x =

0.25, for non-ideal homodyne measurement outcome xπ
4

= ±
√
T |α| ∓ ε.

Expectedly, when considering the non-ideal homodyne measurement outcome
of xπ

4
= ±
√
T |α|∓ε, the results, as displayed above, are far less tolerant as a function

of ε as the circumstance in which the outcome is xπ
4

= ±
√
T |α|±ε. Already we knew

this to be the case, as shown in the previous results of this chapter (see the no loss
comparison example of Fig. 5.25); analytically, this pattern can be easily elucidated
and justified, and was discussed previously in Subsec. 5.3.3.

If we consider the no loss plot of Fig. 5.51, then evidently we are not able to
accept non-ideal values of ε ≥ 0.12 if we desire to produce the |Φ+(α)〉 Bell state
with fidelity of F ≥ 0.80. In addition to this, if we also remark on the extremal loss
case of T = 0.97 (Fig. 5.53) then we cannot even tolerate non-ideal values of ε > 0.08

if we wish to abide by this fidelity limit.

5.8 Summary

In this chapter we have introduced and parametrised two variables, ε and ∆x, to
assess non-ideal homodyne measurement outcomes and imperfect homodyne de-
tection, respectively. By allowing for non-ideal homodyne measurements, in which
the shift away from the ideal measurement (given as xπ

2
= 0 for the coherent state

ES protocol, and xπ
4

= ±
√
T |α| for the cat state ES protocol) is parametrised by ε,

we have investigated the impact on both protocols for the realistic circumstance in
which the homodyne measurement outcome is not what we ideally desire.

Furthermore, by allowing for a resolution bandwidth (∆x) about the ideal mea-
surement outcome, we have assessed the impact to the resultant state produce via
our proposed ES protocol, by incorporating uncertainties into the homodyne mea-
surement. Lastly, we combined both non-ideal and imperfect homodyne detection,
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to assess the practical circumstance in which we have a shift away from the ideal
measurement outcome, and consider a bandwidth about this shifted outcome.

Within this chapter we found, for the coherent state case, that the incorporation
of ε and ∆x causes our final quantum state to no longer be the |Φ+〉 = 1√

2
(|00〉+|11〉)

Bell state, but instead a Bell state which contains phases - as such, this caused all
fidelity plots to exhibit oscillatory behaviour as a function of |α|, as shown by Figs.
5.6 and 5.35, for no loss. We remind the reader here that when allowing for higher
levels of loss, such as T = 0.95, this oscillatory behaviour is no longer present (see
Figs. 5.8 and 5.36), due to the fact that there is now exponential dampening of the
final density matrix coefficients as a function of T and |α|.

Despite this, we still investigate and consider fidelity only against the |Φ+〉 Bell
state, for the reason that if this protocol was to be applied to a real-life application,
such that one would carry out this protocol to supply customers with an entangled
pair of qubits, we would like to provide them with the Bell state they think they
would be getting, namely the |Φ+〉 Bell state, but with a given fidelity, which we
would notify them of. Were it to be the case that we instead told the customer ex-
actly what the non-ideal homodyne outcome and resolution bandwidth values were
then, of course, we could tell the customers exactly what state they have, containing
the phases introduced by ε and ∆x. However, this would likely be a tedious, and
somewhat unnecessary, task in practice and so we consider only fidelity against the
ideal Bell state outcome.

For the cat state ES protocol, similar trends as discussed above were also dis-
covered. When introducing non-ideal homodyne measurement outcomes into the
cat state protocol, the measurement outcomes then became xπ

4
= ±
√
T |α| ± ε and

xπ
4

= ±
√
T |α| ∓ ε (in which the xπ

4
= +
√
T |α|+ ε and xπ

4
= −
√
T |α| − ε outcomes

gave the same protocol result, as did the xπ
4

= +
√
T |α| − ε and xπ

4
= −
√
T |α| + ε

outcomes).
Interestingly, when introducing non-ideal homodyne outcomes into the cat state

protocol, it was found that the entanglement negativity increased in the peak |α|
region for the xπ

4
= ±
√
T |α| ∓ ε outcomes (for non-zero ε), yet the fidelity values

in these regions decreased for the same non-ideal outcome - conversely, we also saw
that the xπ

4
= ±
√
T |α|±ε non-ideal outcome gave far better fidelity results for much

higher ε than could be tolerated with the xπ
4

= ±
√
T |α| ∓ ε outcome results.

The reasons behind this were discussed and justified in Subsec. 5.3.3, in which it
was concluded that introducing ε for the xπ

4
= ±
√
T |α|∓ ε outcome in fact caused a

different entangled state to be produced, than the |Φ+(α)〉 Bell state we have desired
to produce so far. Theoretically, one could then aim to make this alternate Bell state,
for the occurrences in which the non-ideal outcome is xπ

4
= ±
√
T |α|∓ε, however, as

discussed above in the coherent state regime, this would be tedious in practice with
the notion to provide a customer (or customers) with entangled pairs of photons -
a customer must know what state they are going to be supplied with, for a given
fidelity which can be determined through our protocol, to ensure that this entangled
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state is indeed fit for their intended purposes once it has been generated.
Finally, owing to the phases present in our final cat state density matrix, which

contained both ε and ∆x, we witnessed oscillatory behaviour as a function of |α|
in the no loss fidelity plots for imperfect homodyne detection (see Fig. 5.42). This
oscillatory behaviour was complimented perfectly in the equivalent no loss entan-
glement negativity and linear entropy plots of Figs. 5.38 and 5.40, respectively.

To conclude this chapter, we now tabulate fidelity values, with the lower im-
perfect homodyne limit of ∆x = 0.10 and the higher limit of ∆x = 0.25, for the
maximum values we can allow ε to be such that the fidelity value is either F = 0.80

and F = 0.90. Firstly, we present data for the coherent state regime, for the upper
limit of F = 0.90 and the lower limit of F = 0.80 for fidelity against the |Φ+〉 Bell
state, corresponding to Tabs. 5.1 and 5.2 respectively:

T 1.00 0.99 0.98 1.00

∆x 0.10 0.10 0.10 0.25

ε 0.07 0.05 0.01 0.02

Peak |α| 1.37 1.39 1.39 1.38

Fidelity 0.90 0.90 0.90 0.90

TABLE 5.1: Tabulated fidelity results (F = 0.90) for coherent state ES, non-
ideal and imperfect homodyne detection, at the peak |α| value, for various T

and ε with ∆x = 0.10 and ∆x = 0.25.

T 1.00 0.99 0.98 0.97 0.96 0.95

∆x 0.10 0.10 0.10 0.10 0.10 0.10

ε 0.11 0.11 0.10 0.08 0.07 0.05

Peak |α| 1.20 1.18 1.19 1.23 1.22 1.23

Fidelity 0.80 0.80 0.80 0.80 0.80 0.80

T 1.00 0.99 0.98 0.97 0.96 0.95

∆x 0.25 0.25 0.25 0.25 0.25 0.25

ε 0.10 0.09 0.07 0.06 0.03 N/A

Peak |α| 1.19 1.20 1.22 1.21 1.22 N/A

Fidelity 0.80 0.80 0.80 0.80 0.80 N/A

TABLE 5.2: Tabulated fidelity results (F = 0.80) for coherent state ES, non-
ideal and imperfect homodyne detection, at the peak |α| value, for various T

and ε with ∆x = 0.10 and ∆x = 0.25.

Evidently, what should immediately be clear is that, if we wish to produce the
|Φ+〉 Bell state with a very high fidelity of F = 0.90, then we cannot tolerate any
levels of loss beyond T = 0.98, if we want to have a small ∆x value of ∆x = 0.10,
and cannot tolerate any losses at all for ∆x = 0.25. Despite this, if we consider only
the equal loss (in modes B and D) results (see Appendix D, Tab. D.1), then we can



5.8. Summary 177

see that even in the limit of ideal and perfect homodyne detection we still cannot
tolerate loss levels of greater than T = 0.98 if we desire to produce the |Φ+〉 Bell
state with fidelity F = 0.90.

Encouragingly, if we instead allow for lower fidelity of F = 0.80 then we may
tolerate losses of T ≥ 0.96 even when allowing for relatively high homodyne res-
olution bandwidth of ∆x = 0.25. Furthermore, for T ≥ 0.97 we can see that the
fidelity results are slightly more tolerant to higher values of ε, such that ε ≥ 0.06

for ∆x = 0.25. We do note here, however, that the coherent state protocol is in fact
highly sensitive to non-ideal measurement outcomes, even in the no loss regime.

Now, let us consider the cat state protocol. Initially, we present data for the co-
herent state regime, for the upper limit of F = 0.90 and the lower limit of F = 0.80

for fidelity against the |Φ+(α)〉 Bell state, for non-ideal outcome xπ
4

= ±
√
T |α| ± ε,

corresponding to Tabs. 5.3 and 5.4 respectively:

T 1.00 0.99 0.98 1.00

∆x 0.10 0.10 0.10 0.25

ε 0.11 0.07 0.01 0.05

Peak |α| 1.09 1.14 2.00 1.16

Fidelity 0.90 0.90 0.90 0.90

TABLE 5.3: Tabulated fidelity results (F = 0.90) for cat state ES, non-ideal
and imperfect homodyne detection, at the peak |α| value, for various T and
ε with ∆x = 0.10 and ∆x = 0.25 and non-ideal homodyne outcome xπ

4
=

±
√
T |α| ± ε.

T 1.00 0.99 0.98 0.97 0.96 0.95

∆x 0.10 0.10 0.10 0.10 0.10 0.10

ε 0.23 0.22 0.21 0.19 0.17 0.15

Peak |α| 0.95 0.97 0.98 1.00 1.02 1.04

Fidelity 0.80 0.80 0.80 0.80 0.80 0.80

T 1.00 0.99 0.98 0.97 0.96 0.95

∆x 0.25 0.25 0.25 0.25 0.25 0.25

ε 0.22 0.21 0.19 0.17 0.15 0.12

Peak |α| 0.97 0.98 1.00 1.02 1.04 1.08

Fidelity 0.80 0.80 0.80 0.80 0.80 0.80

TABLE 5.4: Tabulated fidelity results (F = 0.80) for cat state ES, non-ideal
and imperfect homodyne detection, at the peak |α| value, for various T and
ε with ∆x = 0.10 and ∆x = 0.25 and non-ideal homodyne outcome xπ

4
=

±
√
T |α| ± ε.

Again, similarly to the coherent state F = 0.90 tabulated data of Tab. 5.1, we
can conclude that in the cat state regime we cannot tolerate losses of T < 0.98 for
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∆x = 0.10, and no losses at all for ∆x = 0.25. In fact, this is also reflected in the equal
loss (in modesB andD) results of Appendix D, Tab. D.2, for ideal and perfect homo-
dyne detection. What is promising here, however, is that if we set our fidelity limit
to F = 0.80, then the cat state ES protocol, for non-ideal outcome xπ

4
= ±
√
T |α| ± ε,

is far more resilient to larger ε. In fact, even in the bound of ∆x = 0.25, we can suffer
losses of T ≥ 0.95 and still allow for non-ideal values of ε ≤ 0.12.

Despite these positive results, one must remember that this is for the more desir-
able non-ideal outcome of xπ

4
= ±
√
T |α| ± ε. As such, we now tabulate the fidelity

results for the cat state protocol, but for non-ideal outcome xπ
4

= ±
√
T |α| ∓ ε, for

fidelity results of F = 0.90 and F = 0.80 (Tabs. 5.5 and 5.6 respectively):

T 1.00 0.99 0.98 1.00

∆x 0.10 0.10 0.10 0.25

ε 0.07 0.05 0.01 0.02

Peak |α| 1.99 2.01 2.01 2.00

Fidelity 0.90 0.90 0.90 0.90

TABLE 5.5: Tabulated fidelity results (F = 0.90) for cat state ES, non-ideal
and imperfect homodyne detection, at the peak |α| value, for various T and
ε with ∆x = 0.10 and ∆x = 0.25 and non-ideal homodyne outcome xπ

4
=

±
√
T |α| ∓ ε.

T 1.00 0.99 0.98 0.97 0.96 0.95

∆x 0.10 0.10 0.10 0.10 0.10 0.10

ε 0.12 0.11 0.10 0.09 0.07 0.05

Peak |α| 1.30 1.30 1.31 1.31 1.30 1.28

Fidelity 0.80 0.80 0.80 0.80 0.80 0.80

T 1.00 0.99 0.98 0.97 0.96 0.95

∆x 0.25 0.25 0.25 0.25 0.25 0.25

ε 0.11 0.10 0.08 0.07 0.05 0.02

Peak |α| 1.29 1.29 1.28 1.28 1.26 1.23

Fidelity 0.80 0.80 0.80 0.80 0.80 0.80

TABLE 5.6: Tabulated fidelity results (F = 0.80) for cat state ES, non-ideal
and imperfect homodyne detection, at the peak |α| value, for various T and
ε with ∆x = 0.10 and ∆x = 0.25 and non-ideal homodyne outcome xπ

4
=

±
√
T |α| ∓ ε.

Observing this data, we see from Tab. 5.5 that, once again, we cannot tolerate
losses of T < 0.98 for ∆x = 0.10, and no losses at all for ∆x = 0.25 if we wish to
produce the |Φ+(α)〉 Bell state with fidelity of F = 0.90. Moreover, if we set our
fidelity limit to the lower bound of F = 0.80, then we can indeed allow for losses of
T ≥ 0.95, however this comes at the cost of not being able to tolerate large shifts in
non-ideal homodyne outcome. As a matter of fact, if we directly compare Tabs. 5.4
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and 5.6 then we can note that, for non-ideal homodyne outcome of xπ
4

= ±
√
T |α|±ε,

we can suffer ε values at least twice as large as for the xπ
4

= ±
√
T |α| ∓ ε outcome,

for relatively large losses of T = 0.95.
Having discussed the impact that introducing non-ideal and imperfect homo-

dyne measurements into our coherent state and cat state entanglement swapping
protocols has on the fidelity of the ideal Bell state outcomes, we can see that both
protocols are quite sensitive to this measurement.

We must vitally note here that, intrinsically, there are success probabilities asso-
ciated with this homodyne measurement scheme, as previously mentioned in this
chapter. This will be discussed in the following chapter (Chapter 6, Subsec. 6.1.2),
in which we will show that even when allowing for a homodyne resolution band-
width of up to ∆x = 0.50, we still suffer a considerable drop in success probability
of this measurement, in the region of |α| in which we are primarily concerned with,
thus meaning that we have a trade-off of success probability of our protocol, against
producing a highly entangled state through our proposed protocols.
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Chapter 6

Protocol Optimisation

In this penultimate chapter to this work, we discuss optimisation of our proposed
entanglement swapping protocol, with regards to success probabilities (Sec. 6.1)
associated with the vacuum measurement and homodyne measurements (applied
to modes B and D of our protocol respectively). We will also consider potential
entanglement purification protocols (Sec. 6.2), with the aim to increase the fidelity
of our final two qubit state produced via our protocol. Lastly, we then bring all
investigations together (Sec. 6.3), regarding unequal losses in modes B and D (as
presented in Chapter 4, and non-ideal and imperfect homodyne measurements (as
discussed in Chapter 5, to give some realistic, practical limits in which one could
perform this protocol to produce a given Bell state with a pre-determined fidelity.

6.1 Success Probabilities

In this section, we will discuss in further detail the success probabilities associated
with performing the integral vacuum measurement and homodyne detection as-
pects of our proposed entanglement swapping protocol, when allowing for aver-
aged unequal losses between modes B and D (as introduced in Chapter 4, Subsec.
4.2.1).

6.1.1 Vacuum Measurement Success Probability

Firstly, we discuss the success probability of the vacuum measurement we theoret-
ically perform on mode B of our entanglement swapping protocol. This was first
discussed in the equal loss (between modes B and D) coherent state protocol, of
Chapter 3, Subsec. 3.1.2.

Coherent State Protocol

As the general method of determining the success probability of a vacuum measure-
ment in mode B was carried out in Chapter 3, Subsec. 3.1.2, we do not discuss this
in detail here. However, we remind the reader of our equation for vacuum measure-
ment success probability, for the coherent state entanglement swapping protocol,
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and for equal losses (in modes B and D):

PCoh.0 (%) =
1 + e−2T |α|2

2
× 100. (6.1)

In the more realistic circumstance, in which we have unequal (averaged) losses be-
tween modes B and D (averaged unequal losses was discussed in detail throughout
Chapter 4), we can determine the success probability of a vacuum measurement in
mode B using the same method outlined in Chapter 3, Subsec. 3.1.2. This then gives
us:

PCoh.0 (%) =

∫ ∞
0

f(υ,Υ)
1 + e−

|T+α|2
2

2
dυ × 100, (6.2)

where, T + =
√
T +

√
T − υ , and f(υ,Υ) =

√
2

πΥ2 e
−υ2

2Υ2 was defined in Chapter 4,
Subsec. 4.2.1. Of course, it holds that in the limit of Υ → 0 we return to the equal
loss vacuum measurement success probability equation of Eq. 6.1.

In Fig. 6.1, we plot the vacuum measurement success probability for the coherent
state regime, for various levels of equal loss:

FIGURE 6.1: Success probability (PCoh.0 (%)) of the vacuum measurement (Eq.
6.1), for the coherent state ES protocol, as a function of |α|, for T = 1, T = 0.95

and the extremal limit of T = 0.80.

Note that we do not show results for unequal loss as these scale the same way in
which the equal loss results do, however, the unequal loss equation (Eq. 6.2) is used
to calculate success probability spot values for specific values of α, T and Υ at the
end of this chapter, in Sec. 6.3.

Observing Fig. 6.1, clearly we can see, in the limit of |α| ≥ 1.75, that for
0.80 ≤ T ≤ 1 the success probability plateaus at PCoh.0 (%) = 50%. In fact, we note
here (although we do not see it for levels of loss calculated for in Fig. 6.1), that as
the levels of equal losses in modes B and D increase, the success probability of the
vacuum measurement also increases. Of course, this is entirely expected, as we al-
ready know that as we introduce loss into coherent states this causes the amplitude
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to decrease. Hence, for very high levels of loss (T → 0), the success probability of the
vacuum measurement is then PCoh.0 (%) = 100%, as all we have are vacuum states
(i.e coherent states of amplitude

√
T |α| = 0). We point out that this is a useless re-

gion of losses, as we know from our results discussed throughout this thesis so far
that we ideally would not consider losses greater than T = 0.95, as it causes the level
of entanglement in our final state to decrease below what we desire.

Unfortunately, the limit in which the success probability plateaus at
PCoh.0 (%) = 50% is around the region of |α| we desire for our protocol outcome to
yield the |Φ+〉 = 1√

2
( |00〉+ |11〉) Bell state with high fidelity. This trade-off be-

tween entanglement and success probability is a common occurrence in quantum
communication schemes, however, although success probability is undoubtedly sig-
nificant when considering the practical implementation of our proposed entangle-
ment swapping protocol, we argue that producing a Bell state of high fidelity is more
important.

Cat State Protocol

We now move on to discuss the vacuum measurement success probability in the
cat state entanglement swapping regime. As the general method for determining
the vacuum measurement success probability was given in Chapter 3, Subsec. 3.1.2
(for the coherent state protocol), we do not discuss this derivation in detail here.
However, the vacuum measurement success probability for the cat state protocol
was discussed in Chapter 3, Subsec. 3.4.1, and given in Eq. 3.52, and so following an
equivalent derivation we can give this success probability, for equal losses in mode
B and D as:

PCat0 (%) =

(
(N+

α )2

2N ′

)2

× 100 (6.3)

where,

N ′ = 1/
(

4 + 8e−T |α|
2

+ 24e−2T |α|2 + 8e−3T |α|2 + 4e−4T |α|2

+8e−(2+i)T |α|2 + 8e−(2−i)T |α|2
) 1

2
, (6.4)

and N+
α = 1/

√
2 + 2e−2T |α|2 is the normalisation of an even cat state.

As before, we ideally wish to consider unequal (averaged) losses between modes
B and D and so we can calculate the success probability of a vacuum measurement
in mode B using the same method applied to determine Eq. 6.3, but evaluate for
unequal losses in modes B and D (as discussed in detail in Chapter 4). This then
gives us:

PCat0 (%)(Υ) =

∫ ∞
0

f(υ,Υ)

(
(N+

α (υ))2

2N ′(υ)

)2

dυ × 100 (6.5)
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where, T + =
√
T +

√
T − υ , f(υ,Υ) =

√
2

πΥ2 e
−υ2

2Υ2 was defined in Chapter 4, Sub-

sec. 4.2.1, N+
α (υ) = 1/

√
2 + 2e−

|T+α|2
2 and

N ′(υ) = 1/
(

4 + 8e−
|T+α|2

4 + 24e−
|T+α|2

2 + 8e
− |T

+α|2
4/3 + 4e−|T

+α|2

+8e−(2+i)|T +α|2 + 8e−(2−i)|T +α|2
) 1

2
. (6.6)

Of course, it again stands that in the limit of Υ → 0 we return to the equal loss
vacuum measurement success probability equation of Eq. 6.3.

In Fig. 6.2, we plot the vacuum measurement success probability for the cat state
entanglement swapping protocol for various levels of equal losses (again, we do not
show the unequal loss results as these scale similarly to the equal loss ones):

FIGURE 6.2: Success probability (PCat0 (%)) of the vacuum measurement (Eq.
6.3), for the cat state ES protocol, as a function of |α|, for varying T = 1,

T = 0.95 and the extremal limit of T = 0.80.

As we saw in the coherent state vacuum measurement success probability plot
of Fig. 6.1, the cat state success probability plot of Fig. 6.2 shows a similar trend
that as the level of loss in our system increases, as does the success probability. We
again note that in the limit of very large losses the success probability will remain at
unity for all α. However, in the regions of loss we consider for our protocol (namely
0.95 ≤ T ≤ 1), we can see from Fig. 6.2 that as |α| ≥ 2.5 then the plots tend to
PCat0 (%) = 25%. In fact, this is precisely half of the success probability value we see
that the coherent state plot plateaus at, which is easily explained by recalling that
the cat state protocol we propose has twice as many coherent states present, and as
such this decreases the probability of a successful vacuum projection taking place.

Lastly, we note here that in the region of |α| which is useful in producing
the |Φ+(α)〉 = 1√

2
( |00〉 e−i|α|2 + |11〉 e+i|α|2) Bell state with high fidelity (around

1.0 ≤ |α| ≤ 2.0), the success probability of the vacuum measurement will not be
unity. However, as discussed previously in the coherent state vacuum measurement
success probability results, this trade-off between fidelity and success probability
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is something we must accept, and we argue that high fidelity is far more impor-
tant to aim for as opposed to higher success probabilities; producing fewer pairs of
higher fidelity quantum states is more useful for further quantum communication
purposes, as opposed to producing more pairs of lower fidelity states.

6.1.2 Homodyne Measurement Success Probability

We now move on to investigate the success probability associated with the homo-
dyne measurement we perform on mode D in our proposed entanglement swap-
ping protocol. The homodyne measurement success probability was first mentioned
when we considered imperfect homodyne detection, in Chapter 5, Sec. 5.4 - in this
section we showed that increasing the bandwidth of the homodyne measurement,
given by the projector defined in Eq. 5.9, the entanglement of the final state pro-
duced through our protocol is slightly lessened (for a relatively sharp bandwidth).
However, we also mentioned that the success probability must also increase in the
limit of this bandwidth increasing, as we are accepting more values for the homo-
dyne measurement outcome. We therefore expect this pattern to be shown in the
following results for the coherent state and cat state protocols.

Coherent State Protocol

Firstly, we consider the homodyne measurement success probability of the coherent
state protocol. We determine this success probability by taking the modulus square
of the normalised probability amplitudes (given by using the projector of Eq. 5.9
onto the coherent states present in mode D of the no loss equation of Eq. 3.16), to
give us the probability distribution we integrate over, such that:∣∣∣D 〈xπ

2
|ΨCoh.〉ACD

∣∣∣2 =

N 2
∣∣∣(AC 〈00|D 〈

√
2 |α||+ AC 〈11| 〈−

√
2 |α||

+e−|α|
2

AC 〈01|D 〈0|+ e−|α|
2

AC 〈10|D 〈0|
)
|xπ

2
〉D

×D 〈xπ
2
|
(
|00〉AC |

√
2 |α|〉D + |11〉 |−

√
2 |α|〉D

+e−|α|
2 |01〉AC |0〉D + e−|α|

2 |10〉AC |0〉D
)∣∣∣,

(6.7)

where N = 1√
2

is the normalisation.
This then gives the success probability of the homodyne measurement as:

PCoh.Hom.(%) = N 2

∫ + ∆x
2

−∆x
2

2
√

2 e
−2(xπ

2
)2

√
π

dxπ
2
× 100 =

∫ + ∆x
2

−∆x
2

√
2 e
−2(xπ

2
)2

√
π

dxπ
2
× 100

(6.8)
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For the unequal (averaged) loss equivalent of Eq. 6.8, we simply apply the method
used in Chapter 4, which in fact gives us the same expression as derived above in
Eq. 6.8.

Finally, we also note that to establish non-ideal homodyne outcomes as well, the
homodyne measurement success probability then simply becomes:

PCoh.Hom.(%) =

∫ ε+ ∆x
2

ε−∆x
2

√
2 e
−2(xπ

2
)2

√
π

dxπ
2
× 100 (6.9)

We now plot the homodyne measurement success probability, for no loss, as a func-
tion of ∆x with varying levels of non-ideal homodyne measurement outcome ε:

FIGURE 6.3: Success probability (PCoh.Hom.(%)) of the homodyne measurement
(Eq. 6.9), for the coherent state ES protocol, as a function of ∆x, for no loss,

with varying non-ideal homodyne outcome ε.

Firstly, we can see in Fig. 6.3 that in the limit of ∆x ≥ 3.0 (for the case of ε = 0)
the success probability tends toPCoh.Hom.(%) = 100% - this is entirely expected, as in the
limit of very large homodyne measurement bandwidth we of course anticipate that
we accept far more homodyne measurement outcomes. Hence, for very large ∆x,
the success probability intrinsically approaches PCoh.Hom.(%) = 100%. Contrastingly, in
the limit of ∆x = 0 (i.e. the “perfect”, discrete outcome, homodyne measurement
limit we assumed in the calculations in Chapters 3 and 4), we see from Fig. 6.3 that
the success probability is always PCoh.Hom.(%) = 0%. This again comes as no surprise,
and in fact we have already discussed in the previous chapter (Chapter 5) that as-
suming we have a single, “perfect” homodyne measurement outcome (for example,
xπ

2
= 0 in the coherent state protocol) will inherently impact the success probability

of that measurement.
Moreover, we also note here that increasing the value of ε also causes the homo-

dyne measurement success probability to decrease (see Fig. 6.3). This can be jus-
tified by recalling that increasing ε causes the measurement outcome to shift along
the measurement quadrature by a factor of ε (see the phase-space schematic of Fig.
5.1). It then follows that if we integrate between limits given by ∆x, central around
a shifted quadrature position (given by ε), then of course the integral has a lower
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value than if we were to integrate between the same limits of ∆x, but at the centre
of the probability distribution peak.

Cat State Protocol

To determine the homodyne measurement success probability in the cat state pro-
tocol, we carry out the same process used in the coherent state regime, as per the
previous section. However, we instead consider the states in mode D in which we
project onto with the homodyne operator given by the no loss state of Eq. 3.51, such
that: ∣∣∣D 〈xπ

4
|ΨCat〉ACD

∣∣∣2, (6.10)

in which the amplitudes of the homodyne projection onto the states in mode D are
calculated using Eq. 2.24. Note that we do not show the explicit expression for the
probability distribution given in Eq. 6.10, as this is very lengthy, however we fol-
low the exact same method used to derive the equivalent homodyne measurement
success probability (of Eq. 6.8).

This then gives the homodyne measurement success probability as:

PCatHom.(%) =

N 2

(∫ |α|+ ∆x
2

|α|−∆x
2

∣∣∣ 〈xπ
4
|ΨCat〉

∣∣∣2dxπ
4

+

∫ −|α|+ ∆x
2

−|α|−∆x
2

∣∣∣ 〈xπ
4
|ΨCat〉

∣∣∣2dxπ
4

)
× 100 (6.11)

where,

N = 1/
(

4 + 8e−|α|
2

+ 24e−2|α|2 + 8e−3|α|2 + 4e−4|α|2

+8e−(2+i)|α|2 + 8e−(2−i)|α|2
) 1

2
, (6.12)

is the normalisation.
For the unequal (averaged) loss equivalent of Eq. 6.11, we simply apply the

method used in Chapter 4, and also allow for homodyne non-idealities (evaluated
in the integral limits) to give us:

PCatHom.(%)(Υ) = (6.13)

∫ ∞
0

f(υ,Υ)Nυ

(∫ T+

2
|α|+ε+ ∆x

2

T+

2
|α|+ε−∆x

2

∣∣∣ 〈xπ
4
|ΨCat〉

∣∣∣2dxπ
4

+

∫ −T+

2
|α|+ε+ ∆x

2

−T+

2
|α|+ε−∆x

2

∣∣∣ 〈xπ
4
|ΨCat〉

∣∣∣2dxπ
4

)
dυ × 100, (6.14)
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where, T + =
√
T +

√
T + υ and,

Nυ = 1/
(

4 + 8e−
|T+α|2

4 + 24e−
|T+α|2

2 + 8e
− |T

+α|2
4/3 + 4e−|T

+α|2

+8e−(2+i)|T +α|2 + 8e−(2−i)|T +α|2
) 1

2
, (6.15)

is the normalisation. We again note that we do not discuss any plots of the homo-
dyne measurement success probability which includes losses and unequal losses, as
these scale entirely as expected - however, the above equation (evaluated for aver-
aged unequal losses and homodyne non-idealities) will be used in Sec. 6.3, in which
we calculate spot values for the homodyne success probability.

We now plot the homodyne measurement success probability as a function of
|α|, for no loss, with varying homodyne measurement bandwidth ∆x:

FIGURE 6.4: Success probability (PCatHom.(%)) of the homodyne measurement
(Eq. 6.11), for the cat state ES protocol, as a function of |α|, for varying homo-

dyne measurement bandwidth ∆x, T = 1 and ε = 0.

What is instantly noticeable is that, with the exception of the plot for ∆x = 5.0,
the success probability is lower at smaller values of |α|. We do note that inherently
the success probability in the case of ∆x = 5.0 will always be unity, for all |α|, as this
level of measurement bandwidth covers the entire range of the probability distribu-
tion. Although the success probability in this case is unity, we note that the fidelity
against the desired Bell state is F ≤ 0.80 in the limit of ∆x ≥ 0.50 (see Fig. 5.42) and
so we would not look at values of homodyne measurement bandwidth beyond this
limit.

To understand the homodyne measurement success probability plot of Fig. 6.4,
we also plot the probability distribution of the cat state equation (given by Eq. 6.10),
which we label f(xπ

4
), as a function of xπ

4
, for |α| = 0, |α| = 1.0 and |α| = 2.0 (for no

loss):
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FIGURE 6.5: Probability distribution f(xπ
4

) of the cat state equation (given
by Eq. 6.10), as a function of xπ

4
, for |α| = 0, |α| = 1.0 and |α| = 2.0 (for no

loss).

If we first consider the |α| = 0 probability distribution plot in Fig. 6.5, then
clearly the probability distribution peaks at xπ

4
= 0 - this is entirely expected, as all

coherent states which we are measuring via homodyne detection will be vacuum
states. Conversely, once we go to |α| = 2.0 in Fig. 6.5 then we can easily see that we
now have two peaks present (with a small residual contribution around xπ

4
= 0, due

to the exponentially decaying terms which have not vanished at this amplitude yet).
This is the ideal situation we would want for a successful homodyne measurement,
in which we have two peaks associated with the outcome - one for the xπ

4
= +|α|

outcome and one for xπ
4

= −|α| (see the phase-space diagram of Fig. 3.14).
However, the reason we see smaller success probabilities in Fig. 6.4 at lower

amplitudes is explained in the probability distribution plot of |α| = 1.0 in Fig. 6.5:
for |α| = 1.0 the two peaks present (for the two homodyne measurement outcomes)
are still overlapping, however the width of the distribution is wider. In fact, if we
consider the state which we are projecting onto with the homodyne measurement
operator, given in Eq. 3.51, we can see that there are vacuum states present in mode
D. Although these vacuum states are exponentially dampened by e−|α|

2
, it is not

until |α| ≈ 2.0 that we see the contribution of these vacuum states to the probability
distribution decrease. Again, this is shown clearly in Fig. 6.5.

Regarding the homodyne measurement success probability plot of Fig. 6.4, we
enforce homodyne outcomes around xπ

4
= ±|α|, and so for |α| = 1.0 we can see in

the corresponding probability distribution that in this circumstance the peaks of in-
terest to us (xπ

4
= ±|α|) are not at the peak of the distribution. It is not until |α| > 2.0

that these peaks are separated far enough (as the vacuum state is dampened) that
the success probability plots plateau.

Importantly we must also note that for |α| = 1.0 we tend to produce a pair of
qubits with an acceptable fidelity against our desired Bell state, and so we again
have a trade-off between fidelity and success probability - if we wish to aim for a
higher success probability, by using amplitudes of |α| > 2.0 then indeed we can see
that the success probability of the plots in Fig. 6.4 increases (although this is only
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really noticeable for ∆x = 0.50 and ∆x = 1.0 in this plot), however we know from
previous discussion of results in this thesis that for the cat state protocol the peak |α|
values we desire are around 1.0 ≤ |α| ≤ 1.30.

6.2 Entanglement Distillation

Entanglement distillation (also commonly referred to as entanglement purification
or concentration) is a method used in the field of quantum information to overcome
the degenerative effects of noisy quantum channels, such as the lossy channels we
implement within this work [178]. Using only local operations and classical commu-
nications one can increase the level of entanglement shared between two arbitrarily
separated qubits [179]. We stress here that, fundamentally, multiple pairs of qubits
are required to distill off higher entanglement in one (or a few) qubit pairs.

In essence, if Alice and Bob share M pairs of non-ideal (less than perfect) en-
tangled qubits, Alice and Bob could apply local (collective) operations to their re-
spective halves of the qubit pairs. Using classical communications, Alice and Bob
communicate the outcomes of their local operations back and forth, and as such can
produce N < M entangled states of higher quality [45] - although the fidelity of the
resultant entangled pair against a Bell state can never reach unity. We clarify here
that by “local operations” we refer to operations in which Alice and Bob may make
on their half of the entangled state only, and by “classical communication” we of
course mean any form of communication not reliant on quantum physics (such as a
telephone call) [180].

The motivation for applying an entanglement distillation protocol to pairs of less
entangled qubits should be clear by now, given the importance of the work carried
out in this thesis, but we remind the reader here that for successful quantum commu-
nications (that rely on entanglement), one inherently needs highly entangled pairs of
qubits. As all quantum channels (even optical fibres) are affected by noise, the qual-
ity of an entangled state degrades exponentially as a function of the channel length
[181]. Note here that the consideration of a noisy quantum channel in our proto-
col is assessed in terms of photonic losses in modes B and D, although intrinsically
there are still other potential forms of decoherence that would impact the successful
transmission of our entangled states.

6.2.1 The General Method of Entanglement Distillation

The first entanglement distillation protocol for mixed states was produced in 1996
by C. H. Bennett and G. Brassard et al. in [43]. To present the general scheme of how
entanglement distillation can be achieved, we now briefly discuss the method used
in [43]:

Suppose Alice and Bob each share multiple less-than-perfectly entangled pair
of qubits, given as M . The state M could be resultant from transmission of one
or both modes of the |Ψ−〉AB = 1√

2
(|01〉AB − |10〉AB) Bell state, through a noisy
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quantum channel, in which Alice is in control of mode A, and Bob has mode B.
The quality of the non-pure state M can be assessed through fidelity against the
maximally entangled Bell state |Ψ−〉AB , as:

F (M,
∣∣Ψ−〉

AB
) = AB

〈
Ψ−
∣∣M ∣∣Ψ−〉

AB
. (6.16)

To purify M , the following protocol is applied:

• Suppose Alice and Bob also share a second pair of qubits, in state M , across
the same noisy channel. Alice and Bob apply a local random bilateral rotation
to their halves of the states M , which then gives:

WF =F
∣∣Ψ−〉

AB

〈
Ψ−
∣∣+

1− F
3

∣∣Ψ+
〉
AB

〈
Ψ+
∣∣

+
1− F

3

∣∣Φ+
〉
AB

〈
Φ+
∣∣+

1− F
3

∣∣Φ−〉
AB

〈
Φ−
∣∣ , (6.17)

in which F is equivalent to the fidelity defined in Eq. 6.16, and the states
with coefficients 1−F

3 in the state WF are simply the three other Bell states, as
defined in Eqs. 1.27 and 1.28. Also note that once applying this rotation to the
states M we redefine it as the Werner State (WF ), as is commonly done [182].
In fact, we will refer to the state given in Eq. 6.17 as the Ψ− Werner State, as it
is comprised of the |Ψ−〉 Bell State.

• Next, Alice and Bob then apply a unilateral Pauli rotation σ̂y to their respective
halves of the states WF , in which σ̂y maps |Ψ±〉 � |Φ∓〉. In doing so, this
converts the mostly Ψ− WF states given in Eq. 6.17, to mostly Φ+ Werner
States (as the new state is comprised of mostly |Φ+〉).

• Alice and Bob then apply a bilateral XOR quantum logic gate [183] to their
halves of the two mostly Φ+ Werner States. A unilateral XOR gate is also re-
ferred to as a “controlled-NOT” (CNOT) gate, in which if Alice is in possession
of two entangled qubits in the state 1√

2
(|00〉12 + |11〉12) and performs an XOR

operation on her state, the output is then 1√
2

(|00〉12 + |10〉12) - clearly, this gate
then works such that if the first control qubit is in state |0〉 then the second target
qubit remains unchanged, however if the control qubit is in state |1〉 then the
target qubit is switched to state |0〉. Hence, a bilateral XOR gate simply refers
to the same process as just described, but instead having two parties present
(and therefore four qubits overall), and as such two control qubits and two
target qubits, as possessed by Alice and Bob in this protocol.

• After application of the bilateral XOR operation on the mostly Φ+ Werner
States, Alice and Bob then measure locally their respective target qubits. Classi-
cally communicating their results, they then keep their remaining shared (con-
trol) qubits if the measurement performed on their target qubit gave the same
output (i.e. both outputs are |0〉 or both are |1〉), and discard their remaining
qubits if the outputs differ.
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• Finally, the probability of the resultant (control) entangled state to be found as
|Φ+〉 is greater than 1

4 , with fidelity FED (in which the subscript ED refers to
entanglement distillation) given as:

FED =
F 2 + 1

9(1− F )2

F 2 + 2
3F (1− F ) + 5

9(1− F )
. (6.18)

Iteration of this protocol numerous times allows one to distill Φ+ Werner states
of arbitrarily high fidelity (but in the limit of FED < 1), using a supply of input
M states, provided that F > 1

2 in the initial states.

We note here that the original paper given in [43] was in fact written in terms of
spins, however, in the above interpretation we have replaced the |↑〉 and |↓〉 states
with |0〉 and |1〉 respectively, for consistency with the notation used throughout this
thesis.

Following on from the introduction of the above entanglement distillation proto-
col, in 1996 D. Deutsch et al. [184] introduced their own distillation protocol, and im-
proved the purification efficiency to that of [43]. Although these two protocols were
absolutely ground-breaking with regards to introducing the possibility of improving
the entanglement shared between two distant parties, these distillation protocols are
nonetheless still difficult to implement to this day. At the time of the introduction
of these entanglement distillation protocols, the CNOT gate was very challenging
to perform experimentally, and so in 2001 J.-W. Pan et al. proposed a protocol that
did not rely on these gates [185] - instead, they replaced the CNOT gate with po-
larisation beam-splitters, although this came at the sacrifice of lowering the success
probability of their protocol.

In the protocols of [43, 184, 185] two noisy entangled states were required to pro-
duce one entangled pair of greater quality, however in 1996 N. Gisin also introduced
an entanglement distillation protocol which required only one input noisy pair of
qubits in each distillation round [186], and was successfully performed experimen-
tally in 2001 by P. Kwiat et al. [187]. Also fundamental to the field of entanglement
distillation was given by the Horodecki family in 1998 [188], in which they discussed
the concepts of free entanglement (entangled states that can be distilled) and bound
entanglement (states which cannot be distilled).

Following on from these fundamental entanglement distillation protocols, a plethora
of further protocols were proposed, using a broad range of input states, such as the
three-qubit W state [189], graph states [190], three-qubit GHZ states [191] and bipar-
tite microwave photons [192]; we note here that evidently entanglement distillation
is also possible with multipartite entangled states (as opposed to bipartite entangled
states as discussed already in this section). Although we do not focus on this in the
discussion of protocols here, as this is not relevant to the states which we would
wish to increase the entanglement of within this thesis.
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6.2.2 Distillation Considerations for our Entanglement Swapping Protocols

In this section, we briefly consider practical entanglement distillation methods which
could be applied to the final (non-pure) entangled states produced throughout our
coherent state and cat state entanglement swapping protocols. We note here that
there are many entanglement distillation methods which would be suitable to act on
the Bell state produced in our ES protocols, however in this section we review only
a few.

Throughout this thesis we have focussed on levels of photon losses, and homo-
dyne detector non-idealities and imperfections, that provide us with an entangled
Bell state of fidelity F ≥ 0.80. Therefore, we now wish to consider potential dis-
tillation protocols which could be applied to these states to increase our resultant
distilled fidelity as high as possible - ideally, we would like a distilled fidelity of
F ≥ 0.95.

According to J.-W. Pan et al. [193], they found that they could produce typically
one photon pair of fidelity F = 0.92, from two pairs each of fidelity F = 0.75. In
fact, their proposed protocol does not rely on the CNOT gate which, as previously
discussed in Subsec. 6.2.1, is a difficult logical gate to implement practically, as it
requires non-linear optical elements. The protocol of [193] instead relies only on
linear optics, and as such is a feasible, practical method in which one could vastly
improve the fidelity of a pair of qubits (in any of the four Bell states) with a success
probability of 25%. Of course, as already stated, we would ideally like to provide
customers with a Bell state of fidelity F ≥ 0.95, however, the protocol of [193] was
tested on input states of fidelity F = 0.75, and so if the input states are of better
quality (such as the F = 0.80 states we produce through our ES protocol) then the
resultant distilled fidelity could indeed approach our target.

If we instead consider a protocol that does rely on non-linear optical elements,
namely the controlled-controlled-NOT (CCNOT) gate, as per the method given by
X.-L. Feng et al. [194]. The CCNOT gate acts similar to the two-qubit CNOT gate,
however the CCNOT gate instead requires two control qubits, and one target - if
the two control qubits are in state |0〉 then the target remains the same, however if
the control qubits are in state |1〉 then the target qubits switches from |0〉 ↔ |1〉. In
this protocol, they found that by implementing this gate they could in fact distill a
high fidelity Bell state of better quality than the original protocol proposed by C. H.
Bennett et al. [43], with an improved success probability. By allowing for multiple
iterations of their protocol. Feng et al. demonstrate the one could achieve a distilled
fidelity of F = 0.99, from an input fidelity of F = 0.90, by iterating their protocol
three times, with a success probability of 6%. If we consider an input fidelity of
F = 0.80, then applying the entanglement distillation protocol of [194] could give
us a resultant fidelity of F ≥ 0.95 after just a few iterations. We do note, however,
that the CCNOT gate is difficult to implement in reality, and as such explains why
the success probability for this protocol is much lower.
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More recently, in 2015 C. Chun et al. proposed a practical distillation protocol
which does not rely on the CNOT or CCNOT gates [195]. In their work they rely only
on polarisation beam-splitters (beam-splitters which split the input beam dependent
on polarisation properties), which can easily be performed experimentally, as well
as multiple input Bell states (i.e. more than two). In this work they show that one
could produce a Bell state of fidelity F ≥ 0.95 using their simple protocol with just
three input Bell states of fidelity F = 0.73. This of course is suitable as a potential
distillation scheme for our final Bell state of fidelity F = 0.80 produced via our ES
protocol. Although the distilled fidelity is higher in this work, they also conclude
that the success probability of performing their protocol is not as high as the original
(similar) distillation scheme given by J.-W. Pan et al. in 2001 [185], which required
only two input Bell states.

Soon after the protocol of [195] was published, an improved multi-copy entan-
glement distillation protocol was proposed by S.-S. Zhang et al. [196]. In this proto-
col they showed that they do not require an ideal entanglement source (as needed
to successfully perform the protocols of [185] and [195]) - instead, they prove that
by using a non-ideal entanglement source (in the form of spontaneous parametric
down-conversion source, as discussed in Chapter 1, Subsec. 1.2.6) they can produce
an even higher fidelity Bell state. In fact, they demonstrated that one could distill
a Bell state of fidelity F = 0.95, from just two input Bell states of fidelity F = 0.65,
which is a vast improvement over the other similar schemes of [185] and [195]. More-
over, if the two input states are of fidelity F = 0.80, then after just a single iteration of
their protocol the resultant distilled fidelity is F = 0.98. However, the success prob-
ability of performing their protocol with just two input states of fidelity F = 0.80 is
around 2%, and this success probability decreases as the number of required input
copies increases. Hence, there is a clearly a trade-off between the desired distilled fi-
delity, which requires more copies of the input Bell states for higher resultant fidelity,
and success probability.

Finally, we note here that although success probability has some significance, as
it will relate to the delivered distilled entangled qubit rate, the fidelity is consid-
ered to be more important. This is because the fidelity will determine what can be
done with the entangled qubits that are created, for further applications in quan-
tum key distribution, quantum teleportation, or any other quantum communica-
tion/computation purposes.

By now, it should be clear that research into practical entanglement distillation
schemes has improved such that the fidelity of a Bell state can be increased vastly
through application of any of the aforementioned schemes in this section. As already
stated there are of course many more potential distillation schemes we could apply
to our protocol. However, we can easily conclude here that if we produce a Bell state
of fidelity F = 0.80 then there will certainly be a suitable entanglement distillation
protocol we could carry out on our final state to improve the fidelity to 0.95 ≥ F < 1.
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6.3 Combining Unequal Losses with Non-Ideal and Imper-
fect Homodyning

In the final section of this chapter on protocol optimisation, we should importantly
discuss the most realistic cases of our ES protocol, in which we have unequal losses
(in modes B and D), as assessed in Chapter 4, as well as non-ideal and imperfect
homodyne detection, as investigated in Chapter 5. In this section, we present pos-
sible fidelity results obtained through our protocol, for various values of loss and
averaged unequal loss (given by T and Υ respectively), for an imperfect homodyne
detection bandwidth of ∆x = 0.10 and ∆x = 0.25. We then increase the non-ideal
homodyne measurement outcome, parametrised by ε, as high as possible whilst still
giving a resultant fidelity of F = 0.80, at the peak |α| value. We also present as-
sociated vacuum measurement and homodyne measurement success probabilities
(discussed in Subsecs. 6.1.1 and 6.1.2 respectively), calculated for the specific values
of ∆x, ε, T , Υ and |α|.

Firstly, we will discuss the more simple coherent state protocol. The final den-
sity matrix, evaluated for unequal losses, and non-ideal and imperfect homodyne
detection, is calculated as:

ρ̄Coh.AC (Υ,∆x, ε) = TrεB ,εD

[∫ ε+ ∆x
2

ε−∆x
2

|ΨCoh.
υ 〉AεBCεD dxπ

2

∫ ε+ ∆x
2

ε−∆x
2

AεBCεD 〈Ψ
Coh.
υ |dxπ

2

]
,

(6.19)

where the state |ΨCoh.
υ 〉AεBCεD was defined in Eq. 4.9, and we have used the inte-

gration method (using the limits
∫ ε+ ∆x

2

ε−∆x
2

) as discussed in Chapter 5, Subsec. 5.7.1. We

also note here that the notation of the bar over the final density matrix ρ̄Coh.AC (υ,∆x, ε)

is used to denote that this matrix has been averaged over υ, as per the method given
in Chapter 4, Subsec. 4.2.1.

Using the density matrix defined in Eq. 6.19, we now present tabulated fidelity
data, against the |Φ+〉 = 1√

2
( |00〉 + |11〉) Bell state. We fix the imperfect homo-

dyne measurement bandwidth to ∆x = 0.10 and ∆x = 0.25, as these are the band-
widths evaluated for in Chapter 5, Subsec. 5.7.1, and investigate realistic values for
loss (combined with averaged unequal loss), to see which level of homodyne non-
ideality (parametrised by ε), we can tolerate for these combinations of variables. Fi-
nally, we present the peak |α| value which gives us the |Φ+〉 = 1√

2
( |00〉+ |11〉) Bell

state with fidelity of F = 0.80, along with associated vacuum and homodyne mea-
surement success probabilities (denoted P0 (%) and PHom. (%), as defined in Eqs. 6.2
and 6.9 respectively):
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T 0.98 0.98 0.97 0.99 0.98

Υ 0.05 0.10 0.05 0.05 0.05

∆x 0.10 0.10 0.10 0.25 0.25

ε 0.07 0.02 0.05 0.06 0.03

Peak |α| 1.23 1.25 1.23 1.22 1.22

Fidelity 0.80 0.80 0.80 0.80 0.80

PCoh.0 (%) 52.7 52.7 52.8 52.8 52.7

PCoh.Hom.(%) 7.9 8.0 7.9 19.6 19.7

TABLE 6.1: Tabulated fidelity results (F = 0.80) against the |Φ+〉 =
1√
2

( |00〉 + |11〉) Bell state, for the final state generated through our coher-
ent state entanglement swapping protocol (Eq. 6.19). The protocol has been
evaluated for unequal (averaged) loss (Υ) and T , for imperfect homodyne
as a measurement bandwidth (∆x), and homodyne non-idealities (ε), at the
peak |α| value, along with associated vacuum and homodyne measurement

success probabilities (PCoh.0 (%) and PCoh.Hom. (%) respectively).

Of course, there are many other combinations of variables which could give an
acceptable fidelity of F = 0.80, however we merely show a few. What is clearly no-
ticeable in Tab. 6.1 is that as the success probability of the homodyne measurement
increases (as we go from ∆x = 0.10 to ∆x = 0.25) the levels of loss we can tolerate,
and the value of the non-ideal homodyne measurement, decreases. Of course we ex-
pect this, and this has been found in many results presented in this thesis. Evidently
the vacuum measurement success probability barely changes, and in fact this is also
anticipated - the peak |α|which gives us the |Φ+〉 = 1√

2
( |00〉+ |11〉) Bell state with

fidelity F = 0.80 remains effectively the same in all combinations of variables given
in Tab. 6.1, and we already know, from the plot of Fig. 6.1, that the level of loss needs
to increase far beyond the level we consider for this thesis to increase the vacuum
measurement success probability.

This trade-off between the levels of imperfections and non-idealities in the ho-
modyne measurement, as well as averaged unequal losses between modesB andD,
versus the success probability of the measurements we perform on modes B and D
is an important result in this work. Of course, one could theoretically improve these
success probabilities by lowering |α| and increasing ∆x however we know that this
would cause the fidelity to decrease. Arguably, it is vital that we consider a protocol
which would produce an entangled state with high enough fidelity such that it can
be used for further purposes - the success probability is merely something one has
to accept, and in fact, entanglement swapping experiments can be performed very
quickly (provided the initial entangled state generation is relatively fast), and so we
would simply need to perform this experiment more times to account for the lower
success probability.
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Let us now review the cat state regime. We first consider the circumstance in
which we have the homodyne measurement outcome xπ

4
= ±T +|α|

2 ± ε:

ρ̄CatAC (Υ,∆x,±ε) =

TrεB ,εD

[∫ ±T+|α|
2
±ε+ ∆x

2

±T+|α|
2
±ε−∆x

2

|ΨCat
υ 〉AεBCεD dxπ

4
×
∫ ±T+|α|

2
±ε+ ∆x

2

±T+|α|
2
±ε−∆x

2

AεBCεD 〈Ψ
Cat
υ |dxπ4

]
,

(6.20)

where the state |ΨCat
υ 〉AεBCεD was defined in Chapter 4, Subsec. 4.1.3, and we have

used the integration method (using the limits
∫ ±T+|α|

2
±ε+ ∆x

2
±T+|α|

2
±ε−∆x

2

) as discussed in Chap-

ter 5, Subsec. 5.7.2, and also in Appendix C for the unequal loss ideal homodyne
outcome. We also note here that, again, the notation of the bar over the final density
matrix ρ̄Coh.AC (υ,∆x, ε) is used to denote that this matrix has been averaged over υ, as
per the method given in Chapter 4, Subsec. 4.2.1.

Using the density matrix defined in Eq. 6.20, we now present the tabulated fi-
delity data for the cat state protocol against the |Φ+(α)〉 = 1√

2
( |00〉 e−i|α|2+ |11〉 e+i|α|2)

Bell state. Again, we fix the homodyne measurement bandwidth to ∆x = 0.10 and
∆x = 0.25, and consider various levels of loss, averaged unequal loss and non-ideal
homodyne measurement non-idealities:

T 0.98 0.98 0.97 0.97 0.96 0.98 0.98 0.97 0.96

Υ 0.05 0.10 0.05 0.10 0.05 0.05 0.10 0.05 0.05

∆x 0.10 0.10 0.10 0.10 0.10 0.25 0.25 0.25 0.25

ε 0.17 0.12 0.15 0.09 0.13 0.15 0.08 0.12 0.07

Peak |α| 1.03 1.08 1.05 1.12 1.07 1.05 1.12 1.08 1.13

Fidelity 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

PCat0 (%) 56.5 53.2 55.3 50.5 54.0 54.8 50.0 52.7 49.2

PCatHom.(%) 4.1 4.2 4.1 4.2 4.1 10.4 10.6 10.4 10.8

TABLE 6.2: Tabulated fidelity results (F = 0.80) against the |Φ+(α)〉 =
1√
2

( |00〉 e−i|α|2 + |11〉 e+i|α|2) Bell state, for the final state generated through
our cat state entanglement swapping protocol (Eq. 6.20), for non-ideal mea-
surement outcome xπ

4
= ±T +|α|

2
± ε. The protocol has been evaluated for

unequal (averaged) loss (Υ) and T , for imperfect homodyne as a measure-
ment bandwidth (∆x), and homodyne non-idealities (ε), at the peak |α| value,
along with associated vacuum and homodyne measurement success proba-

bilities (PCat0 (%) and PCatHom. (%) respectively).

What we can instantly see here is that, compared to the coherent state values
presented in Tab. 6.1, we can tolerate higher levels of losses in the cat state regime,
provided our homodyne measurement outcome is xπ

4
= ±T +|α|

2 ± ε. In fact, looking
at Tab. 6.2, even when allowing for a homodyne measurement bandwidth of ∆x =

0.25, we still see a peak |α| value which gives us a fidelity of F = 0.80, for higher
levels of loss given as T = 0.96 with an averaged unequal loss value of Υ = 0.05.
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We note that there are no values of |α| in the coherent state regime in which we
can tolerate homodyne measurement bandwidths of ∆x ≥ 0.10 whilst allowing for
losses of T < 0.97 with any level of unequal loss, whilst still giving an acceptable
fidelity of F = 0.80. This is a key point to this thesis: although the cat state protocol
may be harder to implement than the simpler coherent state regime, and indeed the
initial hybrid entangled states we require in the cat state protocol are more compli-
cated to prepare (see Chap. 2, Sec. 2.2), the resultant fidelity is nonetheless better
for higher levels of loss, and higher levels of homodyne measurement imperfections
and non-idealities.

We also importantly point out that in Tab. 6.2 we again see the trade-off between
success probability of the vacuum and homodyne measurement, against producing
a Bell state of decent fidelity.

Evidently, the cat state protocol is more tolerant to photon losses, and homodyne
measurement imperfections and non-idealities, compared to the coherent state pro-
tocol. However, we must also assess the cat state protocol for the other non-ideal
homodyne measurement outcome xπ

4
= ±T +|α|

2 ∓ ε - we know, from Chapter 5,
that this homodyne measurement outcome is not preferred over the other potential
homodyne outcome, as we are not producing the |Φ+(α)〉 Bell state with as high a fi-
delity for the same values of losses and homodyne non-idealities and imperfections.
In fact, for the homodyne outcome xπ

4
= ±T +|α|

2 ∓ ε we have already seen that we
are producing a Bell state of different phase - we discussed this in detail in Chapter
5, Subsec. 5.3.3, where we argued that although one could theoretically determine
the phase of this “unknown” Bell state, this would become tedious when supplying
a customer (or customers) with these entangled qubits, as we would have to deter-
mine the phase precisely each time, dependent on which homodyne measurement
outcome we have.

Nevertheless, we can still assess the fidelity of our final state, against our desired
|Φ+(α)〉 Bell state, for the homodyne measurement outcome xπ

4
= ±T +|α|

2 ∓ ε, as we
can still produce this Bell state with fidelity of F = 0.80 for small levels of loss and
homodyne measurement non-idealities and imperfections. Firstly, we again deter-
mine the density matrix of our final state for this homodyne measurement outcome,
calculated as:

ρ̄CatAC (Υ,∆x,∓ε) = TrεB ,εD

[∫ ±T+|α|
2
∓ε+ ∆x

2

±T+|α|
2
∓ε−∆x

2

|ΨCat
υ 〉AεBCεD dxπ

4

×
∫ ±T+|α|

2
∓ε+ ∆x

2

±T+|α|
2
∓ε−∆x

2

AεBCεD 〈Ψ
Cat
υ |dxπ4

]
, (6.21)

where the state |ΨCat
υ 〉AεBCεD was defined in Chapter 4, Subsec. 4.1.3, and we have

used the integration method (using the limits
∫ ±T+|α|

2
∓ε+ ∆x

2
±T+|α|

2
∓ε−∆x

2

) as discussed in Chap-

ter 5, Subsec. 5.7.2, and also in Appendix C for the unequal loss ideal homodyne
outcome. Using the density matrix defined in Eq. 6.21, we now present tabulated
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fidelity data, against the |Φ+(α)〉 Bell state:

T 0.98 0.98 0.97 0.96 0.98 0.97

Υ 0.05 0.10 0.05 0.05 0.05 0.05

∆x 0.10 0.10 0.10 0.10 0.25 0.25

ε 0.07 0.03 0.06 0.03 0.05 0.02

Peak |α| 1.28 1.27 1.29 1.29 1.28 1.26

Fidelity 0.80 0.80 0.80 0.80 0.80 0.80

PCat0 (%) 38.9 40.2 38.7 39.1 38.9 40.3

PCatHom.(%) 5.1 5.0 5.1 5.1 12.7 12.3

TABLE 6.3: Tabulated fidelity results (F = 0.80) against the |Φ+(α)〉 =
1√
2

( |00〉 e−i|α|2 + |11〉 e+i|α|2) Bell state, for the final state generated through
our cat state entanglement swapping protocol (Eq. 6.20), for non-ideal mea-
surement outcome xπ

4
= ±T +|α|

2
∓ ε. The protocol has been evaluated for

unequal (averaged) loss (Υ) and T , for imperfect homodyne as a measure-
ment bandwidth (∆x), and homodyne non-idealities (ε), at the peak |α| value,
along with associated vacuum and homodyne measurement success proba-

bilities (PCat0 (%) and PCatHom. (%) respectively).

Firstly, if we look at the non-ideal homodyne measurement outcome variable ε,
we can see in Tab. 6.3 that ε has to be much lower to give a fidelity of F = 0.80,
compared to the corresponding values in the other cat state homodyne outcome re-
sults (Tab. 6.2 - again, this has already been noticed and discussed in Chapter 5).
Moreover, we can observe that we require higher values of |α| in the circumstance
in which we have the xπ

4
= ±T +|α|

2 ∓ ε homodyne measurement outcome - in fact,
this is not entirely detrimental, as it means that the homodyne measurement success
probabilities are slightly higher compared to the xπ

4
= ±T +|α|

2 ∓ε outcome case (com-
pare Tabs. 6.2 and 6.3, and also the plot of Fig. 6.4). However, this does come at the
expense of lower vacuum measurement success probabilities, because we already
know that this particular success probability drops to PCat0 = 25% for |α| > 2.0.
Actually, there is a roughly 10% drop in success probability going from |α| ≈ 1.0

(the peaks in the xπ
4

= ±T +|α|
2 ± ε results in Tab. 6.2) to |α| ≈ 1.18 (the peaks in the

xπ
4

= ±T +|α|
2 ∓ ε results in Tab. 6.3).

Conclusively, although the cat state protocol is seemingly more tolerant to pho-
ton losses and homodyne measurement imperfections and non-idealities compared
to the coherent state protocol, we must remember that this is only in the circum-
stance in which we have our preferred homodyne measurement outcome xπ

4
=

±T +|α|
2 ± ε. It is also of importance that the coherent state protocol gives consid-

erably higher homodyne measurement success probabilities compared to either cat
state protocol homodyne measurement outcome results, however the vacuum mea-
surement success probability is best in the cat state regime when xπ

4
= ±T +|α|

2 ± ε.
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6.4 Sensitivity Analysis of Protocol Variables

Within this section we present a brief so-called “sensitivity analysis” to analyse the
trade-space of the protocol variables we have investigated throughout this thesis.
Sensitivity analysis is vital, from an experimental perspective, as it can indicate the
most optimal variable values one would use to perform this protocol [197, 198], in
our case to produce a pair of qubits with the highest possible fidelity against a given
Bell state. Although this sort of trade-space analysis has somewhat already been
carried out throughout this thesis, particularly in the previous section (Chapter 6,
Sec. 6.3), it is nonetheless useful to carry out sensitivity analysis in terms of a visual
aid.

In this case, we investigate our protocol trade-space via a three-dimensional scat-
ter plot; for simplicity, in this trade-space analysis we investigate only equal losses,
homodyne measurement imperfections, and the peak |α| value which gives us the
maximal possible fidelity value at these combinations of variable values. Arguably,
these are the most important variables to consider in our protocol, as we showed
in Chapter 4 that unequal losses scale almost identically to equal losses, and in
terms of the homodyne measurement imperfections and non-idealities (as discussed
throughout all of Chapter 5), the homodyne measurement imperfections are some-
thing which an experimentalist would somewhat be able to control, by using a more
sensitive homodyne detection set-up. Nonetheless, future work within this research
could be to carry out a full trade-space analysis.

Firstly, in Fig. 6.6 we present the sensitivity analysis plot for the coherent state
ES protocol:

FIGURE 6.6: Sensitivity analysis plot for the coherent state ES protocol,
analysing the trade-space of equal losses (T ), homodyne measurement im-
perfections (∆x) and peak |α| values, with colour representing the fidelity

value at these combinations of variable values.

What is instantly prominent in Fig. 6.6, is that there is a clear, precise trend to
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give us the most optimal fidelity value. In the limits of large homodyne measure-
ment imperfections (∆x > 0.40) all data points are dark red, thus indicating that the
fidelity value is F < 0.80. Likewise, in the limits of T = 0.95, even for “perfect” ho-
modyne detection (i.e. ∆x = 0), we can see that the fidelity value is still represented
as red (although we do note that this red is not as dark for the case in which T = 0.95

and ∆x ≥ 0.25).
Contrastingly, when considering the limit of very low losses (T ≥ 0.99) and sharp

homodyne measurement bandwidth (∆x ≤ 0.10) we see that the fidelity values in-
deed approach unity (as represented by the data points turning yellow in Fig. 6.6).
We also note the pattern which has been pointed out throughout this thesis: the peak
|α| value shifts to larger |α| for lower losses.

We now present the sensitivity analysis plot for the cat state ES protocol in Fig.
6.7:

FIGURE 6.7: Sensitivity analysis plot for the cat state ES protocol, analysing
the trade-space of equal losses (T ), homodyne measurement imperfections
(∆x) and peak |α| values, with colour representing the fidelity value at these

combinations of variable values.

The trade-space plot of Fig. 6.7 shows a similar trend to that of the coherent
state regime (Fig. 6.6). Firstly, we again note that in the limit of large homodyne
measurement bandwidth (∆x ≥ 0.50), all data points are represented as dark red,
thus indicating that the fidelity is F < 0.80. However, we do also point out here that
for ∆x = 0.40, in the limit of low losses (T ≥ 0.98) the data points are orange which
indicates that this fidelity is acceptable (i.e. F ≥ 0.80), which was not the case in Fig.
6.6 - this therefore supports our conclusion in Chapter 5 that the cat state regime is
slightly more tolerant to homodyne measurement imperfections.

Furthermore, we note that in the case of low losses (T ≥ 0.97) and relatively
sharp homodyne measurement bandwidth (∆x ≤ 0.25), there are no data points
in Fig. 6.7 that are red. In fact, in this region we can see that the peak |α| value
dramatically varies, and shifts to much higher values of |α| than in the limit of large
homodyne measurement imperfections. This has in fact been noticed throughout
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Chapter 5, in which we saw that the maximal fidelity value at characteristic “double-
peak” we witness in most cat state plots, as a function of |α|, varies; that is to say that
for low homodyne measurement bandwidths (∆x ≤ 0.25) and low losses (T ≥ 0.97)
the second peak in the cat state plot gives the highest fidelity value, and in the limit
of larger homodyne bandwidths and greater losses, the first peak in the cat state plot
gives the maximal fidelity. This behaviour is captured perfectly in the trade-space
plot of Fig. 6.7.

To conclude, the variable sensitivity analysis conducted in this section is a graph-
ical tool that would enable an experimentalist to explore different protocol parame-
ters to produce a pair of qubits with a predicted fidelity, without necessarily needing
to understand any of the specific underlying physics. We could extend the trade-
space carried out in this section to cover all variables investigated in this thesis,
however this would have to be done numerically (as opposed to graphically) due
to the higher dimensions required to analyse all variables (i.e. including unequal
averaged photons losses between modes B and D, and also non-ideal homodyne
measurement outcomes). This however is out of the scope of the research carried
out in this thesis, and so would make interesting future work.
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Chapter 7

Conclusions

Throughout this thesis, we have proposed two entanglement swapping protocols,
with the aim to produce a highly entangled pair of qubits. Both protocols require
initial hybrid entanglement (between a discrete and continuous variable state), in
which in one protocol our continuous variable half is a coherent state superposition,
and in the second protocol this continuous variable is a cat state superposition. In the
coherent state protocol we ideally produce the |Φ+〉 = 1√

2
( |00〉+ |11〉) Bell state, and

in the cat state case we aim to make the phase-rotated |Φ+(α)〉 = 1√
2

( |00〉 e−i|α|2 +

|11〉 e+i|α|2) Bell state.
We first allowed for small levels of photon losses subjected to two propagating

modes (in which the continuous variable states travel through) in Chapter 3, before
moving on to model the more realistic regime by investigating unequal (averaged)
losses between these two propagating modes in Chapter 4. Next, in Chapter 5 we
assessed imperfections and non-idealities in the homodyne measurement used to
detect one mode of the propagating continuous variable states, before discussing
success probabilities of the homodyne and vacuum measurement schemes, along
with potential entanglement distillation methods in Chapter 6. Detailed discussions
on all of this was given in the relevant chapters, and so we summarise here the key
points discovered in this work:

• In the coherent state protocol, for perfect and ideal homodyne measurements,
we can tolerate small levels of photon losses as well as small levels of unequal
photon losses (T ≥ 0.96 for Υ ≥ 0.05, see Appendix D, Tab. D.3), whilst still
producing the |Φ+〉 Bell state with fidelity F ≥ 0.80 with a peak amplitude |α|
value of the coherent state.

• Also in the coherent state regime, we can tolerate smaller levels of photon
losses, as well as smaller levels of unequal photon losses, provided that the ho-
modyne measurement is performed with high resolution (0.10 ≤ ∆x ≤ 0.25),
and the non-ideal measurement outcome is xπ

2
± ε for ε ≈ ±0.05 (see Chapter

6, Tab. 6.1), whilst still producing the |Φ+〉 Bell state with fidelity F ≥ 0.80.

• In plots of fidelity as a function of |α|, we witness a double-peak in most cat
state plots (see the equal loss plot of Fig. 3.19 as an example). This is an advan-
tage over the sharper single peak in coherent state regime, as we have a wider
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range of accepted α values that give acceptable fidelity. This range of |α| is also
practically feasible - see Chapter 2, Subsec. 1.2.8, in which we discussed that it
is easier to experimentally generate lower amplitude (|α| ≈ 1.0) cat states.

• In the cat state protocol, for perfect and ideal homodyne measurement, we
can tolerate higher levels of equal and unequal photon losses (T ≥ 0.95 for
Υ ≥ 0.05, see Appendix D, Tab. D.4), compared to the coherent state protocol,
whilst still producing the |Φ+(α)〉 Bell state with fidelity F ≥ 0.80.

• Also in the cat state regime, if we allow for slightly smaller levels of photon
losses, as well as smaller levels of unequal photon losses, provided that the ho-
modyne measurement is performed with high resolution (0.10 ≤ ∆x ≤ 0.25),
and the non-ideal measurement outcome is xπ

4
= ±T +|α|

2 ± ε for ε ≈ 0.10

(see Chapter 6, Tab. 6.2), we still produce the |Φ+(α)〉 Bell state with fidelity
F ≥ 0.80.

• In the cat state protocol, if the non-ideal measurement outcome is xπ
4

= ±T +|α|
2 ∓

ε, then we cannot tolerate as large levels of photonic losses or homodyne mea-
surement non-idealities compared to the xπ

4
= ±T +|α|

2 ∓ ε outcome case (see
Chapter 6, Tab. 6.3).

• In either the coherent state or cat state protocol there is a trade-off between the
success probability of the vacuum and homodyne measurement schemes, at
the expense of higher fidelity (see Tabs. 6.1, 6.2 and 6.3).

Given the summary above, we can conclude that it is indeed possible to pro-
duce a highly entangled pair of qubits, with high fidelity against a given Bell state.
This is a significant result, as it is the basis for the research conducted as part of
this thesis - there is a strong potential in the near future that quantum (as opposed
to classical) communication schemes will be required, with the hope to avoid un-
detectable eavesdropping (see introductory discussion in Chapter 1) of information
being transmitted between two (or more) parties. As such, there is a need for a se-
cure communication channel that is likely to rely on entangled pairs of qubits to
distribute keys of information (as per quantum key distribution, as discussed in the
introductory section of Chapter 1).

Although we have, at the heart of quantum information, an elegant concept of
quantum entanglement which allows us to detect the presence of an adversary in
a quantum communication scheme, as well as performing measurements with cor-
relations that are impossible in classical physics, it is nonetheless well known that
entanglement is a very fragile resource and breaks down in the presence of environ-
mental noise [41]. Therefore, investigations such as these carried out in this thesis
are of vital importance - we recognise that our proposed entanglement swapping
protocols are not particularly resilient to loss, and we do indeed require homodyne
detection to be performed with great accuracy, however it is absolutely crucial that
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the quantum information research community are aware of what can and cannot be
done with regards to communication protocols.

Despite our protocol only being able to suffer relatively low levels of photon loss,
we importantly remind the reader that there are a plethora of potential entanglement
distillation protocols which could be applied to our final qubit state, as discussed in
Chapter 6, Sec. 6.2. In fact, although the results for this are not explicitly discussed
in this work, were we to allow for much greater photonic losses (in the region of
T ≤ 0.90), although the fidelity of our final qubit state against a given Bell state
would drop dramatically, there are many entanglement distillation protocols which
allow one to increase fidelity from F ≈ 0.50 to F ≥ 0.90. Although this does come
at the expense of requiring many more pairs of lower fidelity qubits to perform this
task (compared to applying an entanglement distillation protocol to a pair of qubits
of fidelity F ≈ 0.80), we do imperatively note that we could potentially consider far
higher levels of photon loss.

Moreover, we also point out that quantum repeater networks (see introductory
section of Chapter 1), that rely on relatively short-distance entanglement swapping
experiments between “nodes” are a way in which quantum communications are
able to compensate for continuous variable quantum states fragility to photon losses.
Quantum repeater networks are a real possibility in the future for truly long-distance
quantum communication schemes in distributing entanglement, and entanglement
swapping protocols such as these proposed in this work are potential applicants for
these schemes. We do also acknowledge there is indeed potential for entanglement
swapping protocols to be used for quantum teleportation purposes for communica-
tion between adjacent (i.e. not far separated) quantum computing processors [199].

Nevertheless, the aim of this work is to provide a customer (or indeed customers)
with a highly entangled pair of qubits, with a respectable fidelity against a given Bell
state in which the customer are aware they are receiving. As already discussed, in
the coherent state protocol we are producing a standard |Φ+〉 = 1√

2
( |00〉 + |11〉)

Bell state. Contrastingly, in the cat state regime we tend to produce a phase-rotated
|Φ+(α)〉 = 1√

2
( |00〉 e−i|α|2 + |11〉 e+i|α|2) Bell state. This phase is not of detriment

to the usefulness of our cat state protocol, however in the practical implementation
of this it would require one to inform a customer specifically the phase present each
times (which is given by the amplitude of the coherent states used |α|).

This does, however, become more complicated when we consider the realistic
circumstance in which we allow for homodyne measurement non-idealities. In the
cat state protocol, for the less desirable non-ideal outcome of xπ

4
= ±|α| ∓ ε we in

fact are no longer tending towards the |Φ+(α)〉 Bell state. We concluded in Chapter
5, Subsec. 5.3.3 that we nonetheless still provide this state to a customer but sim-
ply state the fidelity against the desired |Φ+(α)〉 Bell state, however, we speculate
here that we could potentially provide a better service to a customer: if an automatic
phase compensation system could be implemented, which would take the actual
non-ideal outcome (ε) of the homodyne measurement each time and automatically
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apply a phase-correction shift to the outgoing Bell state, one could theoretically cor-
rect the phase to that for the ideal measurement result, such that we then would be
sending a customer the |Φ+(α)〉 Bell state with higher fidelity. Although this is in
practice technologically demanding it is nevertheless possible, and could be investi-
gated in detail as part of further work on this project.

Other possible further work on this project could be in actually theoretically
performing an entanglement distillation protocol to our resultant state, to deter-
mine precisely the distilled fidelity that could be obtained, given our specific “pre-
distillation” fidelities. We could also investigate other non-classical states of light
as the propagating mode in our entanglement swapping protocol, such as squeezed
coherent states (discussed briefly in Chapter 1, Subsec. 1.2.7), which are also ex-
tensively researched for potential candidates in quantum communication schemes
[200–202]. Furthermore we could also apply other homodyne imperfections (as op-
posed to just the measurement resolution bandwidth as per this work), such as im-
perfections in the photon number detectors as part of the homodyne set-up (see the
discussion of our homodyne set-up in Chapter 2, Sec. 2.6) to account for dark counts
(the cases in which “clicks” were recorded despite there being no photon present),
or even looking into noise that the homodyne local oscillator could be subjected to
[152].

The field of quantum communications is no longer simply a theoretical possibil-
ity in its infancy, we are now at the stage of research in which we are approaching re-
alisable communication systems which could be implemented in the relatively near
future. Funding for this industry has flourished over the past few years: in 2014
the UK government invested £270 million towards quantum technology research
funding, with the aim of commercialising these technologies [203], as well as the
launch of the world’s first quantum satellite (utilising entangled quantum states) by
China in 2016 in the longest commercial quantum communications link established
at the time of writing [204]. All of this substantial funding and effort is a global goal
to realise one thing: provably secure, practical communication schemes to prevent
eavesdropping and hacking of information. Entanglement distribution protocols,
such as the ones investigated in this thesis, are therefore of paramount importance
in realising the future of secure communications, for the safety and security of our
own personal information and data.
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Appendix A

The Completeness Relation of the
Coherent State

We here present the completeness relation for coherent states, and in doing so show
that they form an overcomplete basis. This derivation has been adapted from C. C.
Gerry and P. L. Knight’s Introductory Quantum Optics[80].

Firstly, we begin with an integral over the complex α plane:

Îα =

∫
|α〉 〈α|d2α =

∫
e−|α|

2
∞∑
n=0

∞∑
m=0

αn(α∗)m√
n!m!

|n〉 〈m|d2α, (A.1)

where we have made use of the number state representation of the coherent states
(see Eq. 1.7), and d2α = dRe(α)dIm(α). Transforming to polar coordinates this
becomes:

Îα =
∞∑
n=0

∞∑
m=0

|n〉 〈m|√
n!m!

∫ ∞
0

e−r
2
rn+m+1dr

∫ 2π

0
ei(n−m)θdθ, (A.2)

having set α = reiθ and d2α = rdrdθ. It follows that:∫ 2π

0
ei(n−m)θdθ = 2πδnm, (A.3)

where δnm is the Kronecker delta function, satisfying δnm = 0 for n 6= m and δnm = 1

for n = m. Therefore:

Îα = 2π

∞∑
n=0

|n〉 〈n|
n!

∫ ∞
0

e−r
2
rn+m+1dr

= π
∞∑
n=0

|n〉 〈n|
n!

∫ ∞
0

e−yyndy, (A.4)

where we have set r2 = y and 2rdr = dy. Finally,
∫∞

0 e−yyndy = n!, and so the proof
finishes with:

Îα = π

∞∑
n=0

|n〉 〈n| = π, since
∞∑
n=0

|n〉 〈n| = Î . (A.5)
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Appendix B

Deriving the Homodyne
Measurement Operator

We want to obtain the wavefunction ψα(xθ) =
〈
xθ
∣∣|α|eiφ〉, as introduced in Eq. 1.13.

We can rewrite
∣∣|α|eiφ〉 in terms of the displacement operator as

ψα(xθ) = 〈xθ| D̂(α) |0〉 , (B.1)

where D̂(α) = eαâ
†−α∗â acts on the vacuum state |0〉 to give a coherent state (see Eq.

1.10). We then express the displacement operator in terms of x̂ and p̂ (given in Eq.
1.11), where:

x̂ =
1

2
(â† + â), p̂ =

i
2

(â† − â), (B.2)

for â = x̂+ ip̂ and â† = x̂− ip̂. The displacement operator is therefore:

αâ† − α∗â = x̂ (α− α∗)− ip̂ (α+ α∗) , (B.3)

∴ D̂(α) = eαâ
†−α∗â = exp [x̂ (α− α∗)] exp [−ip̂ (α+ α∗)] exp

[
(α∗)2 − α2

2

]
(B.4)

using the Baker-Campbell-Hausdorff Formula: eA+B = eAeBe−
1
2

[A,B] [136]. Substi-
tuting Eq. B.4 into B.1 we have:

ψα(xθ) = e
(α∗)2−α2

2 〈xθ| ex̂(α−α∗)e−ip̂(α+α∗) |0〉 , (B.5)

using, x̂ |xθ〉 = xθ |xθ〉,

ψα(xθ) = e
(α∗)2−α2

2 exθ(α−α∗) 〈xθ| e−ip̂(α+α∗) |0〉 . (B.6)
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We apply the translation operator Ŝ(λ) = e−iλp̂ to 〈xθ|, using 〈xθ|S(λ) = 〈xθ − λ|.
We now want to determine 〈xθ| e−ip̂(α+α∗), therefore λ = α+ α∗,

ψα(xθ) = e
(α∗)2−α2

2 exθ(α−α∗) 〈xθ − (α+ α∗)|0〉

= π−
1
4 e−

(
√

2 xθ−(α+α∗))2

2 e
(α∗)2−α2

2 e(α−α∗)xθ , (B.7)

where the factor 2
1
4π−

1
4 e−

(
√

2 xθ−(α+α∗))2

2 comes from the wavefunction of the vacuum
〈xθ − (α+ α∗)|0〉.

The next step is to write α and α∗ in terms of the expectation values of the po-
sition and momentum operators, 〈x̂〉 and 〈p̂〉 respectively. To derive the “rotated”
operators 〈x̂θ〉 and 〈p̂θ〉 from 〈x̂〉 and 〈p̂〉, we can use the rotation matrix as follows:

〈x̂〉
〈p̂〉

(
cos θ sin θ

− sin θ cos θ

)
→

〈x̂θ〉 = α
[
Re
(
eiφ)Re

(
eiθ)+ Im

(
eiφ) Im

(
eiθ)]

〈p̂θ〉 = α
[
−Re

(
eiφ) Im

(
eiθ)+ Im

(
eiφ)Re

(
eiθ)] , (B.8)

where, cos θ = Re
(
eiθ) and sin θ = Im

(
eiθ), and also 〈x̂〉 = αRe

(
eiφ) and 〈p̂〉 =

α Im
(
eiφ). Therefore,

〈x̂θ〉 = α [cosφ cos θ + sinφ sin θ] = α cos(φ− θ) = αRe
(
ei(φ−θ)

)
, (B.9)

〈p̂θ〉 = α [− cosφ sin θ + sinφ cos θ] = α sin(φ− θ) = α Im
(
ei(φ−θ)

)
. (B.10)

It follows that 〈x̂〉 = αx and 〈p̂〉 = αy (using α = αx + iαy and α∗ = αx − iαy), and
the terms containing α and α∗ in Eq. B.7 may be expressed as:

(α+ α∗)

2
=

2αx
2

= αx = 〈x̂〉 , (B.11)

(α− α∗)
2

=
2iαy

2
= iαy = i 〈p̂〉 . (B.12)

Bringing this altogether, the final equation for the derivation of the wavefunction
ψα(xθ) is therefore given by:

ψα(xθ) =
2

1
4 eiγ

π
1
4

exp

[
−1

2

(√
2 xθ − 2 〈x̂〉

)2
+ 2
√

2 i 〈p̂〉xθ
]
, (B.13)

where eiγ = e
(α∗)2−α2

2 is a global phase factor (and can therefore be omitted if need
be). We can express B.13 in terms of the amplitude α of the coherent state |α〉, and
the homodyne measurement outcome xθ, which gives:

〈
xθ

∣∣∣αeiϕ
〉

=
1

2−
1
4π

1
4

exp

[
−(xθ)

2 + 2ei(ϕ−θ)αxθ −
1

2
e2i(ϕ−θ)α2 − 1

2
α2

]
, (B.14)

which is the exact form used in the calculations in this thesis (see Eq. 2.24).
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Appendix C

Deriving the Homodyne
Measurement Outcomes for Cat
State ES

In this appendix we will briefly show why the measurement outcomes for the (no
loss) cat state entanglement swapping protocol are xπ

4
= ±|α|. Firstly, we begin this

derivation with the state immediately after the vacuum projection has been applied
(see Eq. 3.51), however this time we take the large |α| limit, so as to exponentially
dampen the modes that decay as |α| increases, such that:

∣∣ψCat〉
ACD

=
1

2

[
|00〉AC

(
|
√

2 |α|〉D + |−
√

2 |α|〉D
)

+ |11〉AC
(
|
√

2 i|α|〉D + |−
√

2 i|α|〉D
)]
.

(C.1)

(Note that this state is normalised for large |α|). We now perform homodyne detec-
tion in mode D (see Sec. 2.24 for general case), which gives:

|ΨCat〉AC =
1

2

1

2−
1
4π

1
4

[
|00〉AC

(
exp
[
−(xπ

4
)2 + 2

√
2 |α|xπ

4
e−

iπ
4 − |α|2e−

iπ
2 − |α|2

]
+ exp

[
−(xπ

4
)2 + 2

√
2 |α|xπ

4
e

3iπ
4 − |α|2e

3iπ
2 − |α|2

])

+ |11〉AC

(
exp
[
−(xπ

4
)2 + 2

√
2 |α|xπ

4
e

iπ
4 − |α|2e

iπ
2 − |α|2

]
+ exp

[
−(xπ

4
)2 + 2

√
2 |α|xπ

4
e−

3iπ
4 − |α|2e−

3iπ
2 − |α|2

])]
(C.2)
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=
1

2
3
4π

1
4

[
|00〉AC

(
exp
[
−(xπ

4
)2 + (1− i)2|α|xπ

4
+ i|α|2 − |α|2

]
+ exp

[
−(xπ

4
)2 − (1− i)2|α|xπ

4
+ i|α|2 − |α|2

])

+ |11〉AC

(
exp
[
−(xπ

4
)2 + (1 + i)2|α|xπ

4
− i|α|2 − |α|2

]
+ exp

[
−(xπ

4
)2 − (1 + i)2|α|xπ

4
− i|α|2 − |α|2

])]
. (C.3)

Next, we then complete the square so that we can see analytically where the peaks
in the distribution of the coherent states are:

|ΨCat〉AC =
1

2
3
4π

1
4

[
|00〉AC

(
exp
[
−(xπ

4
− |α|)2 − i2|α|xπ

4
+ i|α|2

]
+ exp

[
−(xπ

4
+ |α|)2 + i2|α|xπ

4
+ i|α|2

])

+ |11〉AC

(
exp
[
−(xπ

4
− |α|)2 + i2|α|xπ

4
− i|α|2

]
+ exp

[
−(xπ

4
+ |α|)2 − i2|α|xπ

4
− i|α|2

])]
(C.4)

=
1

2−
1
4π

1
4

[
1√
2

(
1√
2

(
|00〉AC exp

[
−i2|α|xπ

4
+ i|α|2

]
+ |11〉AC exp

[
i2|α|xπ

4
− i|α|2

])
× exp

[
−(xπ

4
− |α|)2

]
+

1√
2

(
|00〉AC exp

[
i2|α|xπ

4
+ i|α|2

]
+ |11〉AC exp

[
−i2|α|xπ

4
− i|α|2

])

× exp
[
−(xπ

4
+ |α|)2

])]
.

(C.5)

This wavefunction describing the state immediately after the homodyne measure-
ment (in the large α limit) clearly shows two possibilities of the homodyne measure-
ment outcome for the cat state protocol: xπ

4
= ±α. It then follows that the state we

are producing is a maximally entangled Bell state that includes a phase:

∣∣ψCatF inal

〉
AC

=
1√
2

(
|00〉AC e

−i|α|2 + |11〉AC e
+i|α|2

)
. (C.6)

for both homodyne measurement outcomes.
Finally, note that when following the same derivation as detailed in this ap-

pendix, but instead considering losses, the homodyne measurement outcomes are
then xπ

4
= ±
√
T |α|, and for unequal losses (as detailed in Sec. 4) xπ

4
= ± (

√
T +
√
T−υ )|α|
2 .
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Appendix D

Tabulated Fidelity Data

In this appendix we present tabulated data for the fidelity results at each peak |α|
value present in the plots, for both equal and unequal photonic losses in modes
B and D of our proposed protocols. The results displayed in green are the most
acceptable values of fidelity for F ≥ 0.90 and those highlighted in amber are for
F ≥ 0.80 and could be acceptable when combined with a suitable entanglement
purification protocol.

T 1 0.99 0.98 0.97 0.96 0.95

Peak |α| ≥1.63 1.53 1.42 1.36 1.31 1.27

Fidelity 1.00 0.95 0.91 0.88 0.85 0.82

TABLE D.1: Tabulated fidelity results for coherent state ES, for equal loss, at
the peak |α| value, for various T .

T 1 0.99 0.98 0.97 0.96 0.95

1st Peak |α| 1.24 1.23 1.23 1.23 1.23 1.23

Fidelity 0.93 0.91 0.89 0.87 0.85 0.83

2nd Peak |α| ≥2.30 2.15 2.03 1.97 1.93 1.89

Fidelity 1.00 0.95 0.91 0.88 0.85 0.82

TABLE D.2: Tabulated fidelity results for cat state ES, for equal loss, at the
two peak |α| values, for various T .
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T 1 1 1 1 0.99 0.99 0.99 0.99

Υ 0 0.01 0.05 0.1 0 0.01 0.05 0.1

Peak |α| ≥1.63 1.67 1.44 1.34 1.53 1.48 1.37 1.30

Fidelity 1.00 0.97 0.91 0.86 0.95 0.93 0.88 0.83

T 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.97

Υ 0 0.01 0.05 0.1 0 0.01 0.05 0.1

Peak |α| 1.42 1.39 1.32 1.26 1.36 1.34 1.28 1.23

Fidelity 0.91 0.90 0.85 0.81 0.88 0.86 0.83 0.79

T 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.95

Υ 0 0.01 0.05 0.1 0 0.01 0.05 0.1

Peak |α| 1.31 1.30 1.25 1.21 1.27 1.26 1.22 1.19

Fidelity 0.85 0.84 0.80 0.77 0.82 0.81 0.78 0.75

TABLE D.3: Tabulated fidelity results for coherent state ES, unequal loss, at
the peak |α| value, for various T and Υ.

T 1 1 1 1 0.99 0.99 0.99 0.99

Υ 0 0.01 0.05 0.1 0 0.01 0.05 0.1

1st Peak |α| 1.24 1.23 1.23 1.23 1.23 1.23 1.23 1.23

Fidelity 0.93 0.92 0.89 0.85 0.91 0.90 0.87 0.83

2nd Peak |α| ≥2.30 2.36 2.05 1.96 2.15 2.09 1.98 1.92

Fidelity 1.00 0.97 0.91 0.86 0.95 0.93 0.88 0.83

T 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.97

Υ 0 0.01 0.05 0.1 0 0.01 0.05 0.1

1st Peak |α| 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23

Fidelity 0.89 0.88 0.85 0.82 0.87 0.86 0.83 0.80

2nd Peak |α| 2.03 2.01 1.93 1.88 1.97 1.95 1.90 1.85

Fidelity 0.91 0.89 0.85 0.80 0.88 0.86 0.82 0.78

T 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.95

Υ 0 0.01 0.05 0.1 0 0.01 0.05 0.1

1st Peak |α| 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23

Fidelity 0.85 0.84 0.82 0.78 0.83 0.83 0.80 0.77

2nd Peak |α| 1.93 1.91 1.86 1.81 1.89 1.87 1.83 1.77

Fidelity 0.85 0.84 0.80 0.76 0.82 0.81 0.78 0.74

TABLE D.4: Tabulated fidelity results for cat state ES, for unequal loss, at the
two peak |α| values, for various T .
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Appendix E

Examples of Code

In this appendix we present examples of the code used to generate the plots for
entanglement negativity, fidelity and linear entropy throughout this thesis. We used
Mathematica 11.3 [205] to perform calculations, having written the code manually
ourselves. We reference the use of the “QDENSITY” Package, given in the reference
[206], to perform the partial transpose operation (“PartialTranspose1” in code below)
on our final density matrix, as part of the entanglement negativity calculation.

Firstly, we present the code used to perform the entanglement negativity calcula-
tion on our final density matrices (“DensityMatrix” in our codes below), calculated
using a loop (k = k + 1):

In a similar fashion, we also calculate fidelity and linear entropy using a loop
code:
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In the fidelity code note that “BellState” is the density matrix representation of
whichever Bell state we calculate fidelity against.

Note that in the above codes we are looping the value of |α| (“Alpha” in the above
codes), as most of the graphs throughout this thesis are plotted as a function of |α|.
Also, the variables contained within our density matrix (“xtheta”, corresponding
to the homodyne measurement outcome xθ, and “T” in the above codes) can be
simply adjusted by changing their value. We also assess homodyne measurement
non-idealities (ε) and averaged unequal losses in the same manner.
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Appendix F

Cat State ES with Unequal Losses

For the case where we do not have equal losses in modes B and D (i.e. TB 6= TD

→ TB = T and TD = T − δ). Starting from Eq. 1, we apply our (unequal) lossy
beam-splitters to obtain (in which we set η = 1− T ):

|ΨCat
υ 〉ABεBCDεD = N

[
|00〉AC

(
( |
√
T |α|〉B |

√
η |α|〉εB + |−

√
T |α|〉B |−

√
η |α|〉εB )×

( |
√
T − υ |α|〉D |

√
η + υ |α|〉εD + |−

√
T − υ |α|〉D |−

√
η + υ |α|〉εD)

)
+ |01〉AC

(
( |
√
T |α|〉B |

√
η |α|〉εB + |−

√
T |α|〉B |−

√
η |α|〉εB )×

( |
√
T − υ i|α|〉D |

√
η + υ i|α|〉εD + |−

√
T − υ i|α|〉D |−

√
η + υ i|α|〉εD)

)
+ |10〉AC

(
( |
√
T i|α|〉B |

√
η i|α|〉εB + |−

√
T i|α|〉B |−

√
η i|α|〉εB )×

( |
√
T − υ |α|〉D |

√
η + υ |α|〉εD + |−

√
T − υ |α|〉D |−

√
η + υ |α|〉εD)

)
+ |11〉AC

(
( |
√
T i|α|〉B |

√
η i|α|〉εB + |−

√
T i|α|〉B |−

√
η i|α|〉εB )×

( |
√
T − υ i|α|〉D |

√
η + υ i|α|〉εD + |−

√
T − υ i|α|〉D |−

√
η + υ i|α|〉εD)

)]
.

(F.1)
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After applying the 50:50 beam-splitter (BS1/2
B,D), using the method given in Chapter

2, Sec. 2.4, we get:

∣∣ΨCat
υ

〉
ABεBCDεD

= N

(
|00〉AC

(∣∣∣∣T −|α|√
2

〉
B

∣∣∣∣T +|α|√
2

〉
D

|√η |α|〉εB
∣∣√η + υ |α|

〉
εD

+∣∣∣∣T +|α|√
2

〉
B

∣∣∣∣T −|α|√
2

〉
D

|√η |α|〉εB
∣∣−√η + υ |α|

〉
εD

+∣∣∣∣−T +|α|√
2

〉
B

∣∣∣∣−T −|α|√
2

〉
D

|−√η |α|〉εB
∣∣√η + υ |α|

〉
εD

+∣∣∣∣−T −|α|√
2

〉
B

∣∣∣∣−T +|α|√
2

〉
D

|−√η |α|〉εB
∣∣−√η + υ |α|
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Next, we apply the vacuum projection operator to mode B (see Chapter 2, Sec.
2.5), where
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Next, we apply the homodyne measurement projector (see Chapter 1, Sec. 2.6),
which gives the outputs
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Note that we do not show the explicit form of the quantum state
∣∣ΨCat

υ

〉
AεBCεD

here
due to this containing many terms. Following the homodyne measurement of mode
D, we then trace out the lossy modes, using the method outlined in Chapter 3, Sub-
sec. 3.2.4, thus giving our final density matrix for the unequal loss cat state scenario
as:

ρCatAC (υ) = TrεB ,εD

[
|ΨCat

υ 〉AεBCεD 〈Ψ
Cat.
υ |

]
. (F.8)

The density matrix ρCatAC (υ) is then averaged over υ using the method detailed in
Chapter 4, Subsec. 4.2.1, to give an averaged density matrix given as ρ̄Cat.

AC
(Υ), which

is then used to calculate fidelity from in Chapter 4, Sec. 4.4.
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List of Abbreviations

BS Beam-Splitter
CSS Coherent Superposition State
CV Continuous Variable
DV Discrete Variable
ES Entanglement Swapping
HE Hybrid Entangled
MDI Measurement Device Independent
QKD Quantum Key Distribution
QST Quantum State Tomography
SPDC Spontaneous Parametric Down Conversion

Eq. Equation
Fig. Figure
Tab. Table
Sec. Section
Subsec. Subsection
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List of Symbols

α amplitude (of coherent state |α〉)
T transmission coefficient
R reflection coefficient
ρ density matrix
Î identity matrix
â annihilation operator
â† creation operator
x̂ position operator
p̂ momentum operator
θ phase angle of homodyne measurement
D̂(α) displacement operator (of coherent state |α〉)
υ loss mismatch value
Υ ensemble average loss mismatch value
xθ homodyne measurement outcome (of phase angle θ)
ε non-ideal homodyne measurement outcome value
∆x bandwidth of homodyne measurement
P0 vacuum measurement success probability
PHom. homodyne measurement success probability
N (ρ) entanglement negativity (of density matrix ρ)
F fidelity
SL linear entropy
Tr trace operation
N normalisation (in general)

∗ complex conjugate

Throughout this work hats (ˆ) are used to denote mathematical operators.
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