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Abstract

In this thesis we will use harmonic analysis to get new results in probability on Lie
groups and symmetric spaces. We will establish necessary and sufficient conditions
for the existence of a square integrable K-bi-invariant density of a K-bi-invariant
measure. We will show that there is a topological isomorphism between K-bi-invariant
smooth functions and a subspace of the Sugiura space of rapidly decreasing functions.
Furthermore, we will extend Courrege’s classical results to Lie groups and symmetric
spaces, this consists of characterizing all linear operators on the space of smooth
functions with compact support, that satisfy the positive maximum principle, as Lévy-
type operators. We will specify some conditions under which such operators map
to the Banach space of continuous functions vanishing at infinity, this allows us to
study Feller semigroups and their generator in this context. We will show that on
compact Lie groups all linear operators satisfying the positive maximum principle
can be represented as pseudo-differential operators and on compact symmetric spaces
they have analogous representations called spherical pseudo-differential operators.
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Introduction

In this thesis we apply harmonic analysis to get new results in probability on Lie
groups and symmetric spaces. On Euclidean spaces Paul Lévy was among the first
to use Fourier analysis to study Markov processes. A special Markov process, named
after Paul Lévy, called a Lévy process will be of particular interest to us. This is a
stochastic process with stationary and independent increments and cadlag paths. It
is well-known that Lévy processes can be constructed from continuous convolution
semigroups of probability measures. On Euclidean spaces we have the famous Lévy-
Khintchine formula that characterizes convolution semigroups of measures via their
characteristic functions.

On more general spaces, Perrin [50] first studied Brownian and Poisson processes
on the rotation group SO(3). Then in the early 50’s, 1td [33] extended the notion of
Brownian processes to general Lie groups and Yosida [60] defined such processes on
Riemannian homogeneous spaces. In 1956, Hunt [32] gave an analogous result to the
Lévy-Khintchine formula on Lie groups, indeed he provided a closed formula for the
infinitesimal generator of a convolution semigroup of measures, therefore providing
a characterization for Lévy processes in Lie groups. Since then, stochastic processes
on Lie groups and more generally on locally compact groups have been extensively
studied. More recently, Applebaum and Kunita [7] showed that the solution of a
stochastic differential equation driven by a Brownian motion and a Poisson measure is
a Lévy process and provided a characterization of Lévy processes on Lie groups. Heyer
[26] offers a systematic and comprehensive introduction to convolution semigroups
on locally compact groups in his monograph; on Lie groups see also Liao [45] and
Applebaum [6].

On (non-compact) symmetric spaces, in 1964 Gangolli [22] gave a generalized Lévy-
Khintchine formula, that classified spherical infinitely divisible laws. This spherical
version of the Lévy-Khintchine formula was later obtained for convolution semigroups
using Hunt’s formula by Applebaum [1] and Liao and Wang [48].

We will also be interested in pseudo-differential operators and their relationship
to stochastic processes. Pseudo-differential operators are generalisations of linear
partial differential operators; they are an important tool to study elliptic operators,



for instance they arose in the proof of the Atiyah-Singer index theorem [9] and in the
study of boundary problems in the work of K.O. Friedrichs and P. Lax [43], [21]. The
development of the theory around pseudo-differential operators is largely due to J.
Kohn, L. Nirenberg [40] and Hérmander [29], who introduced symbol analysis.

On R?, the Feller semigroup and infinitesimal generator of a convolution semigroup
of measures can be represented as pseudo-differential operators; important work in
this area was carried out by Jacob, see his monographs [34] [35]. We will be inter-
ested more generally in the relationship between pseudo-differential operators and
Feller processes. On compact Lie groups a theory of pseudo-differential operators
was developed by Ruzhansky and Turunen [51] and on Heisenberg groups see Fis-
cher and Ruzhansky [18]. Applebaum [4] [5] approached the topic by studying Lie
group-valued Lévy processes and Markov processes with a slightly different notion of
pseudo-differential operators on Lie groups.

In this thesis, we will approach pseudo-differential operators via the positive max-
imum principle. We are motivated by the work of Courrége [13], who classified all
linear operators on Euclidean spaces that satisfy the positive maximum principle. He
showed that these operators can be expressed as a sum of a second order elliptic op-
erator and an integral term with a kernel. Furthermore, he also showed that such
operators can be represented as pseudo-differential operators. He then extended his
results to characterize Feller processes on manifolds, using local coordinates, see [14]
(and also Bony et al. [10]). More recently, others were also inspired by Courrege’s
work in their application of his results to Feller processes on Euclidean spaces, see
Jacob [34] [35], Schilling and Bottcher et al. [11].

Structure of the thesis

In chapter 1, we will introduce the most important notions and results on analysis in
Lie groups. We will mostly refer the reader to Applebaum [6], Faraut [17] and Folland
[20],]19].

In chapter 2, we will start our investigation on symmetric spaces and K-bi-
invariant functions. Our main reference is Wolf’s [59] work on positive definite func-
tions, spherical functions and Gelfand pairs; we will provide completed and detailed
development of his results, where he only outlines the proof, and where we could not
find a complete presentation elsewhere.

In chapter 3, we will introduce spherical transforms of probability measures and
functions. We will establish the relationship between spherical transforms and Fourier
transform using the spherical Peter-Weyl theorem.

Chapter 4 contains regularity results related to Fourier transforms on compact
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Lie groups from Applebaum [6], which we will then generalize to compact symmetric
spaces with the help of spherical transforms. Using these regularity results we will
establish necessary and sufficient conditions for the existence of a square integrable
density of a K-bi-invariant measure on a compact Gelfand pair (G, K). This was
published in Applebaum and Le Ngan [8] along with some further results on the
existence of continuous densities for a convolution semigroup of measures, and a trace
formula for a K-bi-invariant convolution semigroup. We will end the chapter, by using
the regularity results in the K-bi-invariant case to generalize Sugiura’s theorem [55],
that is we will show that there is a topological isomorphism between K-bi-invariant
smooth functions and a subspace of the Sugiura space of rapidly decreasing functions,
for which see Applebaum [6].

In chapter 5, we will introduce a global theory of distributions on Lie groups
based on the work of Ehrenpreis [15]. We will establish some useful properties of
distributions of order 0 and order 2 on Lie groups.

In chapter 6, we will extend Courrege’s results to Lie groups, but we will not adopt
his approach and will instead follow Hoh’s work [28], who simplifies the problem by
studying appropriate linear functionals that satisfy the positive maximum principle.
We will show that such functionals are distributions of order 2 and therefore have a
closed form representation. For the pseudo-differential operators part, we will con-
centrate on compact Lie groups and we will show that all linear operators satisfying
the positive maximum principle can be represented as pseudo-differential operators.

In the last chapter, we will first extend Courrege’s theorem to symmetric spaces.
Then we will introduce the notion of spherical pseudo-differential operators, and we
will show that operators satisfying the positive maximum principle on compact sym-
metric spaces can be represented as spherical pseudo-differential operators.

vil






Chapter 1

Preliminaries

1.1 Function spaces

Let X be a locally compact Hausdorff space and F' denote R or C, we are going to
define function spaces on X. By(X) = By(X, F) is the linear space of all bounded
Borel measurable functions from X to F', it is a Banach space under the supremum
norm || f|le := sup | f(x)| for all f € B,(X). C(X) is the space of F-valued continuous

rzeX
functions on X, Cp(X) is the space of bounded continuous functions on X. A function

f on X is said to vanish at infinity if given any € > 0 there exists a compact set H C X
such that |f(z)] < € when z € HY. We will denote the space of continuous functions
on X which vanish at infinity by Cy(X). The support of a function f on X is the
closure of the set {x € X : f(z) # 0} and it is denoted by supp(f), the linear space
of all continuous functions on X with compact support is denoted by C.(X). The
spaces Cp(X) and Cy(X) are all Banach spaces under the supremum norm || - ||co-
Furthermore, C.(X) is dense in Cy(X). In the first part of the thesis we will consider
F = C. From chapter 5 onwards, we will consider real valued functions.

1.2 Topological groups

This section provides an overview of some of the concepts of topological group theory
which we use in later sections, for reference see [6] and [38] Chapter 1.

1.2.1 Representation theory

Definition. G is called a topological group if:
- (G is a topological space,
- (G is a group,
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- the mapping (g, h) — gh™! from G x G to G is continuous.

From now on, all groups will be assumed to be topological groups, in particular we
will only be looking at topological groups that are Hausdorff spaces.
If G is a topological group, then for all ¢ € G we define left translation l,, right

translation r, and conjugation cg by
l,h = gh,ryh = hg and c,(h) = ghg™"
for all h € G. All three are automorphisms of G with inverses
l;l = lg—l,r; =rg—1 and c;l = c4-1, respectively.

Definition. A representation (m, V') of a group G is a topological vector space V' over
C and a strongly continuous group homomorphism 7 : G — GL(V'), where GL(V) is
the general linear group on V' defined by

GL(V):={A:V — V; Ais a topological isomorphism},

and by strongly continuous we mean that for all v € V| g — m(g)v is continuous from

GtoV.

Remark 1.2.1. Later, when we consider the particular case where V' is a Banach

space, the representation m will be called a Banach representation.

Definition. Given a representation (7, V') of G, a closed subspace W C V is a 7-
invariant subspace if w(g)W C W for all g € G. The restriction of m to W is itself
a representation and is called a subrepresentation. On the quotient space V/W, 7
induces another representation called the quotient representation p : G — GL(V/W)
given by p(g)(v+ W) =mn(g)v+ W for all g € G and v € V. A representation (m, V)
is called urreducible if it has no non-trivial sub-representations.

Definition. Let (7, V) and (79, V5) be two representations of G. Then m; and
are called equivalent representations if there exists a continuous linear isomorphism
T : Vi — Vasuch that for all g € G, T'mi(g) = m2(g)T. Then T is called an intertwining
operator.

A representation 7w of G on a complex separable Hilbert space V is said to be
unitary if w(g) is a unitary operator for every g € G. If V; and V; are Hilbert spaces,
with unitary representations (m, V1) and (72, V5) then these representations are said
to be unitary equivalent if there exists a unitary intertwining operator between them.



1.2. Topological groups

Definition. From now on, we denote by G the unitary dual of G which is the set of all
equivalence classes of irreducible unitary representations, with respect to the equiva-
lence relation of unitary isomorphism. If a representation 7 € G is finite dimensional

we denote its dimension by d.

Example 1.2.2. The irreducible unitary representations of G = U(1) are all one-
dimensional and are given by pr(A)(2) := Xz for all A € U(1), k € Z, z € C. The
unitary dual is therefore the dual group G="1.

1.2.2 Haar measure

Let B(X) denote the Borel o-algebra of X. Recall that a Borel measure p is called
outer regular if for all A € B(X),

p(A) = inf{u(0); A C O,0 open in X},
and p is called inner reqular if
p(A) = sup{u(C);C C A, C compact in X}.

The measure pu is called regular if it is both inner regular and outer regular, such
that all compact sets have finite measures, i.e. u(C) < oo for all compact C' C X.

Definition. Let G be a locally compact group. A measure my, on (G, B(G)) is called
a left Haar measure if

- my, is a regular Borel measure,
- my, is left-invariant: for all A € B(G) and g € G, m(A) = m(gA).

We can define similarly a right Haar measure, mg.

Definition. Given a left Haar measure my on the locally compact group G, for any

complex valued Borel-measurable function f on G, we define for all 1 < p < oo

1/p
1= ([ 17@Pmatan)) € 0.0),
e
and
I flloo ;= inf{K > 0;|f(x)] < K a.e. with respect to mp} € [0, 0.

Then for all 1 < p < oo we denote by LP(G, B(G), my) the space of all equivalence
classes of complex-valued Borel-measurable functions that are equal m-almost ev-
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erywhere, defined by
LP(G,B(G),my) = {f : G — C Borel measurable; || f||, < oo} .

For all 1 < p < oo, the space LP(G,B(G), my) is a Banach space with respect to
the norm || - ||,. In particular, L*(G,B(G), mp) is a Hilbert space with inner product

(f by = /G F(@)R(@) ma(do).

Theorem 1.2.3. Let G be a locally compact Hausdorff group, then left and right Haar

measures exist and are unique up to a positive multiplicative constant.

Proof. See Theorem 11.8-11.9, p.344 in [19]. O

1.2.3 The modular function

Let my, be a left Haar measure on GG, then for any fixed g € G we can obtain another
left Haar measure by right translation

m7(A) :==mp(Ag),

for all A € B(G). By the uniqueness of the Haar measure from Theorem 1.2.3, there
exists a constant A(g) > 0 such that

mi (A) = A(g)mr(A), for all A € B(G)

Definition. The function g — A(g) from G to (0, 00) is called the modular function.
The group G is called unimodular if A = 1.

Theorem 1.2.4. The modular function is a continuous homomorphism from G to
(0, 00).

Proof. See Theorem 1.2.2, p.7 in [6]. ]

Theorem 1.2.5. Suppose G is locally compact.

(i) The measure defined by mg(A / Az Ymy(dz) for all A € B(G) is a right

Haar measure on G.

(ii) For all f € C.(G), we have

/Gf(x_ my (dx) /f “Hymy(dx).

Proof. See Theorem 1.2.3, p.8 in [6]. ]
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Proposition 1.2.6. If G is compact, then G is unimodular. Thus, any left Haar
measure on G is a right Haar measure (and vice versa). In other words, any Haar

measure on G 1s bi-invariant.

Proof. Since the modular function is a continuous homomorphism and G is compact,
A(G) is a compact subgroup of (0,00); but {1} is the only compact subgroup of
(0,00). The bi-invariance follows from Theorem 1.2.5 (i), since mg = my on G. [

Remark 1.2.7. If G is a compact Hausdorff group, then every Haar measure m on
G is finite. Indeed, by definition the Haar measure m is regular, so for all compact
subsets C' C G, m(C) < oo. In particular, we have m(G) < oc.

Definition. If GG is compact, any Haar measure m (left or right) is unique up to mul-
tiplication with a non-negative constant, therefore we can define a unique normalized
Haar measure on G by

pa(A) = ——=, forall A € B(G).

In the following, instead of writing / f(9) pe(dg), we use the simpler notation

/ f(g) dg and we only specify g in case of ambiguity.

1.2.4 Schur orthogonality and Peter-Weyl theorem

Let us state some of the most relevant results of harmonic analysis on compact topo-
logical groups; proofs can be found in the literature such as Chapter 6 of Faraut [17],
Chapter 2 of Applebaum [6], Chapter 5 of Folland [20] and Chapter 4 of Knapp [38].
In this section we will assume that G is a compact Hausdorff group, and we use the
simplified notation L*(G) := L*(G, B(G), ug).

Theorem 1.2.8. An irreducible representation m of a compact group G on a complex

Hilbert space V. is finite dimensional.
Proof. See [41] or p.28 in [6]. O
From now on we will write d, = dim(V;).

Remark 1.2.9. Note that every representation of a compact group on a Hilbert space
is unitary under an appropriate inner product, see Proposition 2.2.1, p.27 in [6].
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Definition. Let G be a compact group and 7 an irreducible representation of G
acting on V,. We define a closed subspace M, of L*(G),

M. := Span{g — (u,7(g)v);u,v € V,}.

We will denote by £(G) the linear span of {¢) € M, 7 € G}. For any representation
m € Gon Vg, let eg,eq,..., e, be an orthogonal basis of V.

Theorem 1.2.10. If m; and mo are distinct elements of @, then My, and M, are
orthogonal.

Proof. See Theorem 2.2.2, p.31 in [6] or Corollary 4.16, p.243 [38]. O

Theorem 1.2.11 (Schur Orthogonality Relation). Let 7y, my € CAJ, then for all
¢’i7¢i € Vﬂ'iai = ]-727

. 0 Zf 1 7£ T2
’ ’ dg = RS)
/G<771(9)¢1 V1)(m2(g) P2, Pa)dg i<¢17¢2><¢1’¢2> if T = my

Proof. See [6] p.31. O

We will now state the Peter-Weyl theorems, which will serve as the main tools for
harmonic analysis on groups. The first theorem states that L?(G) is Hilbert direct
sum of M for m € G.

Theorem 1.2.12 (Peter-Weyl 1). The space E(G) is dense in L*(G).
Theorem 1.2.13 (Peter-Weyl 2). We define the functions m;; : G — C by
mii(g9) == (m(g)es, e;) forallge G andi,7=1,2,...,d,.
Then the set {d}/zﬂij; 1<, <dy,me€ @} is a complete orthonormal basis for L*(G).
Theorem 1.2.14 (Peter-Weyl 3). The space £(G) is dense in C(G).

Proof. For proof of these theorems see p.33, in [6] or p.245, in [38]. ]

1.3 Lie groups and Lie algebras

Definition. A Lie group G is a group that is also a smooth manifold, such that the
mapping (a,b) — ab™! is smooth.



1.3. Lie groups and Lie algebras

Definition. An action of a Lie group G on a manifold M is a mapping sending each
g € G to a diffeomorphism p(g) on M such that

i) p(e) =idyy, that is p(e)m = m for all m € M,
i) p(gh) = p(g)p(h), for all g,h € G.

We say that the action is smooth if the map (g, m) — p(g)m is smooth from G x M
to M, in the usual sense on manifolds, see [58] p.6. We will often denote the group

action of G at a point m € M by g.m for all g € G.

Example 1.3.1. Many examples of Lie groups are matrix groups:

1. General linear group GL(n,R)

2. Special linear group SL(n,R)

3. Orthogonal group and special orthogonal group O(n,R), SO(n,R)
4. Unitary group and special unitary group U(n,R), SU(n,R)

Since G is a smooth manifold, we can use all its properties from differential geom-
etry. Let us recall in particular, that we can equip the space of smooth vector fields
on GG with a Lie bracket. Given two smooth vector fields X and Y we can introduce
a third smooth vector field [ X, Y]], by

(XY = X(Y () = Y(X(f)),  forall feCF(G).

Definition. A Lie algebra L is a vector space over the field F(= R or C) equipped
with a bilinear mapping |[-,-] : L x L — L satisfying: for all X,Y,Z € L,

(i) [X,Y] = —[X,Y] (anti-commutative)
(i) [X,[Y,Z]]| +[Y,[Z, X]|+ [Z,]X,Y]] = 0 (Jacobi identity)

From (i) it follows that [X, X] = 0 for all X € L. The bilinear map [-, -] will be called
the Lie bracket of the the Lie algebra L.

Definition. Let L, L' be two Lie algebras, then a homomorphism of Lie algebras is
a linear map f : L — L’ that preserves the Lie bracket,

(XY = [f(X), f(V)]y, forall X,Y € L.

Definition. Let G be a Lie groups. A vector field ¢ : G — TG on a Lie group is
called left-invariant, if T,1,(&(e)) = &(g), for all g € G. The space of left-invariant
vector fields on a Lie group G equipped with the Lie bracket is a Lie algebra and is
called the Lie algebra of the Lie group G. We will denote it by g.
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Let us briefly recall some definitions on smooth manifolds, that we will regularly
apply to Lie groups.

Definition. Let M, N be two smooth manifolds and F': M — N a smooth mapping.
The differential of F' at p € M is a linear map T,F : Ty,M — Tp)N defined in the
following way, for all ¢ € C*°(N) and X € T,M,

T,F(X)(¢) = X(po F)(p).

It is easy to check that for all X € T,M, the map T,F(X) : C*(N) - R is a
derivation at F(p), i.e. for all f,g € C*(N)

L,EX)(fg) = [(F(p)) T,F(X)(9) + 9(F(p)) T,F(X)(f)-

Theorem 1.3.2 (Chain rule for manifolds). Let M, N, L be smooth manifolds and
F:M— N, H: N — L smooth maps. Then the map (H o F) : M — L is also
smooth and satisfies

To(HoF)=TpuyHoT,F, for alln € N,
where Tn(H o F) . TmM — T(HoF)(m)L-

Proof. See [56], Theorem 8.5, p.79. ]

Definition. Let X be a vector field on a manifold M and p € M. A smooth curve
V5 (—g,e) = M, where € > 0, is called an integral curve of X going through p if

- (V%) () = X (7% (t)), for all t € (—¢,¢).

Note that on a smooth manifold M for any smooth ¢ : R — M by ¢/(t) we mean
¢ (t) = Tyo(%), where T;¢ : TR ~ R — Ty M is the differential of ¢ as defined
previously.

Definition. Let GG be a Lie group, we call v : R — G a one-parameter subgroup of G
if it is a continuous homomorphism from R to G.

Remark 1.3.3. An integral curve of a left-invariant vector field is a one parameter
subgroup of GG. Equivalently, any one-parameter subgroup of G is the integral curve
of a left-invariant vector field, see Proposition 1.4, p.92 and Corollary 1.5, p.93 in [24].
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Definition. Let GG be a Lie group and g its Lie algebra. We define the exponential
map exp : g — G as exp(X) := yx(1) for all X € g.

Then by the chain rule, for all ¢t € R we get exp(tX) = vx(1) = yx(t) and given that

the integral curves vy for all X € g are homomorphisms from R to G, we obtain
exp((s +t)X) = exp(sX) exp(tX), for all s,t € R and X € g.

Hence,
exp(tX) ™ = exp(—tX), forallt € R and X € g.

For a detailed proof see Theorem 3.7, p.27 in [37].
The exponential map is a diffeomorphic map from a neighbourhood V of the
origin g to a neighbourhood U of e in G. For a basis {X;, Xs,..., X4} of g, there

exist corresponding mappings x; : U — R, 1 < ¢ < d called canonical coordinates

such that for all 1 <i < d,
d
x; (exp (Z anj>> = a;,
j=1

d
when Z a;X; € V. See [6] p.14 and [45], p.11 for reference.
j=1
Remark 1.3.4. The space of left-invariant vector fields is isomorphic to the tangent
space of G at e, T,G. We can therefore identify g with T.G, see Theorem 2.27, p.15
in [37].

Let X € g, we will denote the corresponding left-invariant vector field’s value at
g € Gby X(g) :=T.l,X. Then by the chain rule, for all g € G and f € C*(G),

%f(g exp(tX)) T T, [f(gexp(-X))] (%) = T,f o T.l, o T)exp(-X) (%)
= (T, f o Tuly)(X (7x(0))) = (T, f 0 T.ly) X (e)
=T,fX(g9) = Xf(g) (1.1)

If V' is a vector space, GL(V') equipped with the commutator [«, ] = a0 —foa
is a Lie algebra, which we will denote by gl(V'). If V is finite dimensional, GL(V) is
a Lie group and gl(V') is its Lie algebra, see Proposition 8.48, p.198 in [44].

Definition. Let £ be a finite dimensional Lie algebra. A Lie algebra representation
of £ is a Lie algebra homomorphism from £ to the Lie algebra gl(V'), where V is a
vector space.



Chapter 1. Preliminaries

We will only be interested in finite dimensional representations of Lie algebras.

Definition. Let 7 : G — GL(V) be a finite-dimensional representation of a Lie group
G on a vector space V. The differential of 7 at e, dm := T,m : g — gl(V), is called the

derived representation of g and it is a Lie algebra representation of g.

The following diagram commutes

G ——— GL(V)
Texp expT (1.2)
g " gl(v)

That is,
m(exp(X)) = exp(dn(X)), forall X € g,

see Proposition 20.8, p.519 in [44]. Thus, one can calculate that for all v € V|
d

dm(X)v = —m(exp(tX))v

dt 0

Let us look at a particular case. For any fixed g € G, the conjugate map
cg(x) := gxg™?, for x € G is an automorphism of G. Its differential at e is Ad(g) :=
Tecy g — g. For all g € G, Ad(g) is in GL(g), the mapping Ad : G — GL(g) is a
representation of G on g and it is called the adjoint representation of G on g. Indeed,
since cg, = ¢4 0 ¢p, for all g, h € G, it then follows that Ad(gh) = Ad(g) o Ad(h).

The derived representation of Ad is denoted by ad : g — gl(g) and it satisfies
ad(X)(Y) = [X, Y] for all X,Y € g. As previously, the following diagram commutes

¢ 24 GL(g)

Texp expT (1.3)
ad
g — ol(g)
That is for all X € g,

Ad(exp(X)) = exp(ad(X)).
One can also calculate that, for all g € G and X € g
gexp(X)g~' = exp(Ad(g)X), (14)

see p.127-128 in [25].

10
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For p € N, we will denote by C?(G), the linear space of p times continuously dif-
ferentiable functions on G, the subspace of functions with compact support is denoted
C?(@) and the subspace of functions that vanish at infinity is denoted C}(G). The

linear space of infinitely differentiable functions on G is C*°(G) = ﬂ C?(G) , the sub-

peN
space of smooth functions of compact support is denoted by C°(G) = C(G)NC.(G).

For all g € G, f € Cy(G) we define L,f = fol,, R,f = for,.

Theorem 1.3.5. Let G be a connected Lie group. For any p € N and [ a real valued
function on G, we have the following equivalence

- The mapping f is in CP(G,R).
- For all X1, Xs, ..., X, € g, the mapping g — X1 X5 --- X, f(g) is well-defined and
continuous from G to R.

Proof. See [6] Theorem 1.3.5 p.21, as well as [55] p.42. O
Lemma 1.3.6. For any X,Y € g, g,k € G and f € C*(G) we have

X(f oer)(g) = [Ad(k)X] [ (cr(9)),
XY (foc)(g) = [Ad(k)X] [Ad(k)Y ] (cx(9g))-

Proof. This follows directly from equations (1.1) and (1.4). For all f € C?*(G),
X, Yegand g, ke G

X(foe)(e) = G(foenlgep(tX))| = Lrlkgh kesp(tX)R)|
= %f(kgkl exp(Ad(k)tX)) = Ad(k)X f(kgk™)
= Ad(E)X f(cx(9))

For the second derivative, with a similar method we have

d d

XY (foa)g) = 5] 0 e (gexplty) exp(sX))

d d
= - Flkgh™ kexp(tY )k k exp(sX)k ™)

d d
asd’
— [Ad(k) X][Ad(K)Y]f (ck(g)-

t=0
s=0

(kgk™" exp(Ad(k)tY) exp(Ad(k)sX)

~—

11
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1.3.1 Universal enveloping algebra of a Lie algebra

Definition. Let £ be a Lie algebra. A unital associative algebra U(L) is called the
universal enveloping algebra of L if there is a Lie algebra homomorphism h : £ — U(L)
such that for any Lie algebra homomorphism f : £ — A into a unital associative
algebra A there is a unique associative algebra homomorphism F' : U(L) — A such
that f = F o h.
L UL
L
A

The universal enveloping algebra can be constructed as U(L) := T(L)/Z;, where
T (L) is the tensor algebra of L,

e}

T(L) =P L,
d=0
where £%? = L ® --- ® L is the tensor product of £ with itselt d times. The ideal Z,
is generated by the elements a @ b — b ® a — [a,b] € T(L) for all a,b € L.

In particular, when £ = g we can define the universal enveloping algebra of g by

U(g) = T(9)/Ly

Theorem 1.3.7 (Poincaré-Birkhoff-Witt). Let (x;);er a basis of L, with I being totally
ordered. Then the family of monomials h(xz; )h(zy,) ... h(z;,), where iy < -+ < iy,
n > 0, is a basis of the universal enveloping algebra U(L) and h = L — U(L) is the
Lie algebra homomorphism from the definition U(L).

Proof. See Corollary C, p.92 [31]. O

Remark 1.3.8. In particular, for /(g) this means for the basis { X1, ..., X4} of g, then
the family X7, X72 ... XJ", where 1 < iy <iy < -+ <4, < dand ji,jo,...,Jn €N,

is a basis of U(g).

Let us now introduce the element of U(g) that we will use the most. First define
the following.

Definition. A Riemannian metric on a manifold M is a family of inner products
Gm : TM X T, M — R such that m — ¢,(X(m),Y(m)) is smooth for any two
smooth vector fields X and Y.

We can always equip a Lie group G with a Riemannian metric p, see the construction
in [6] p.11. Then for a fixed basis {X;, Xo,..., X4} of g we define p;; = p(X;, X;)

12



1.3. Lie groups and Lie algebras

for all 1 <4,j < d. The matrix (p;;) is positive definite, so it is non-singular. Let us
denote its inverse by (p;l) The Laplace-Beltrami operator on G equipped with p is
A € U(g) given by

d
A= pi XX, (1.5)
ij=1
If G is compact and X1, Xy, ..., Xy is an orthonormal basis for g with respect to

the metric p, so that p;; = ¢;; for all 1 <14, 5 < d, then

d
A=) "X
=1

Proposition 1.3.9. The Laplace-Beltrami operator A is independent of the choice of

basis in g.

Proof. See [6] Proposition 1.3.1 p.18. O

1.3.2 Weights

In this section we will suppose that the Lie group G is compact. We will start by
providing a brief summary on weights, for references see [6] Chapter 2.5 and [31]. A
mazximal torus T in G is a maximal commutative subgroup of G. The dimension of T
is called the rank of G. Note that any two maximal tori are conjugate, see [38] Corol-
lary 4.35, p.255. Let t be the Lie algebra of T, then ¢ is a maximal abelian subalgebra
of g, see [38] Proposition 4.30, p.252. Let m be a unitary representation of GG, then
the matrices {dm(X); X € t} are mutually commuting and therefore simultaneously
diagonalizable, that is there exists a a non-singular matrix ) such that

Qdr(X)Q! = diag(iA(X). ..., i) (X)), for all X et,

where each A\i, k = 1,...,d,, is a linear functional, and we call these the weights
of w. In particular, let us consider the adjoint representation of G acting on the
complexification gc of g. It is possible to equip gc with an Ad-invariant inner product
(+,-), we will denote the corresponding norm on gc by |- |. Then the weights of the
adjoint representation of G acting on g¢ equipped with (-,-) are called the roots of
G. Let us denote by P the set of all roots of G. We can associate signs to each
root the following way: let us fix v € t such that P N {n(v) € t*;n(v) = 0} = 0,
where t* is the dual space of t. Then we can split P into the set of positive roots
P, = {a € P;a(v) > 0} and the set of negative roots P_ := {a € P;a(v) < 0}
such that P = P, UP_. There exist a subset of positive roots Q C P, that forms a

13
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basis for t* and every root o € P is a linear combination of the elements of Q. The
elements of Q are called simple or fundamental roots of G. It can be shown that for
any fixed irreducible representation 7 of GG, there exists a particular weight A\, called
the highest weight such that every weight of 7 is of the form

P = Ap — Znaa,

acQ

the terms n,, are non-negative integers, at least one of which is non-zero, see proof in
[6] p.48. There is a one-to-one correspondence between G and the space of highest
weights D of irreducible representations, [54] Chapter 7, Theorem 1. G is identified
with D by this bijection. The norm |-| on D will be the norm derived from the inner
product (-, -).

1.3.3 Casimir spectrum

Let us list some known results which we will use later and can be all found in [6],
Chapter 2.

Theorem 1.3.10. For each 7 € @, there exists a constant k. > 0 such that
ATy ;= —KaTij, foralli,j=1,...,d,

we call {k,m € @} the Casimir spectrum for G.

Theorem 1.3.11. For each A € D,
fa = A= pl* = Ipf’,

where p is the half-sum of positive roots.

Corollary 1.3.12. For all A € D,
AP < ka < COL+ AP,

where C' = max{2, |p|*}.

14



Chapter 2

Spherical functions and
K-bi-invariant functions

In this section we are interested in complex-valued functions that are constant on the
double coset of a locally compact group, G. The notation is based on [59].

2.1 The convolution product
Let us introduce in this section the convolution product and some of its widely known

properties. All the propositions which are discussed below can be found in [17];
however here we will provide more detailed proofs.

Definition. Let G be a locally compact group and f,h € L' (G,B(G),mr). We
define the convolution product of f and h by:

(f*xh)(g) = /Gf(x)h(x_lg)dx, for all g € G.

The following proposition proves that the convolution product is well-defined from
L' x L' to L.

Proposition 2.1.1. The convolution operation is well-defined and satisfies || f*h||p1(c) <
I fllzr Pl for all f,h € LYG,B(G),my). Furthermore, it is associative on
LYG,B(G),mp). Thus, L*(G,B(G),mpr) is a Banach algebra under convolution.

Proof. Let us apply Fubini’s theorem and a change of variable to see that for all

15
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f,he LNG,B(G),mp),

1 %Al = / (f *h)(g)|dg = / \ /G f(@)h(zg)de
< /G /G |F(@)h(zg)| dx dg
= [ ([ 1m0l dg) 15601
= [ ([ m1as) s as
= [ @nag [ 1@ = 17l

This implies that the convolution product is well defined from L'(G,B(G), mz) x
LY G,B(G),my) to L'(G,B(G), myz).

To prove associativity, let f,h,l € L*(G,B(G),mr) and g € G, then by Fubini’s
theorem and a change of variable we have

dg

(1 +0)+ D) = [ (F+W@)ilag)da

//f Jh(y™"2)l(z ™ g)dy du
:/f(y)/h(a:)l(:r‘ y~'g)dr dy

/f Y(hx1)(y tg)dy
* (hx1))(g).
UJ

Proposition 2.1.2. The space L*(G,B(G), mp) can be equipped with an involution
f = f* where

f(9) = flgHA(g"), forallg e G and f € L*(G,B(G), my).

Proof. For all f € LY(G,B(G), myz), the equality f** = f follows by using the fact
that A is a homomorphism, see Theorem 1.2.4. In fact, for all g € G

F*(9) = f(g)A(g™") = f(9)Alg)A(g™) = f(9)-

Also for all f,h € L'(G,B(G),my) and g € G, by applying a change of variable,
the left-invariance of the Haar measure and the fact that the modular function A is

16
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a homomorphism, we have

(7 #0y0) = Flg™)A ™) = [ T i g DA o

= Gf(g‘lrr) h(z=")A(g™")da

]

Remark 2.1.3. On L'(G, B(G), mz), the convolution product is commutative if and
only if G is abelian, see Proposition 3.6.3 p.49 in [59].

2.2 The space of K-bi-invariant functions

Definition. Let G be a locally compact group and K a closed subgroup. A function f
on G is said to be K-left-invariant if f(kg) = f(g), K-right-invariant if f(gk) = f(g)
for all g € G and k € K and K-bi-invariant if it is both K-left-invariant and K-right-

invariant.

Definition. For a locally compact group G and a compact closed K, we define the
two coset spaces K\G = {Kg;g9 € G}, G/K := {gK;g € G} and the double coset
space K\G/K = {KgK;g € G}. We denote by C(K\G), C(G/K) and C(K\G/K)
the closed subspaces of C'(G) which consists respectively of all K-left-invariant, K -

right-invariant and K -bi-invariant functions. That is for all k € K,

e C(K\GQ):={feC(@Q): f(kg) = f(g) for all k € K and g € G}
e C(G/K) ={fe€C(Q): f(gk) = f(g) for all k € K and g € G}
e C(K\G/K):=C(K\G)NC(G/K)

These spaces are equipped with the corresponding induced topology. In the same way,
we can define Cp(K\G/K), C*(K\G/K), C*P(K\G/K) and LP(K\G/K) for p > 1.

We proceed similarly for the K-left-invariant and the K-right-invariant case.

Remark 2.2.1. There is a one-to-one correspondence between the space of K-bi-

invariant continuous functions on G and the space of continuous functions on the
double coset space. We denote both by C(K\G/K). Similarly for K-left- and K-

right-invariant functions.

17
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From now on we will assume that K is compact. The following operator will be
extensively used throughout the thesis.

Proposition 2.2.2. The linear mapping QX : f — f# from Cy(G) to C,(K\G/K),
defined by

(9 = /K /K f(ki1gks)dkidky,  for all g € G.

18 surjective and idempotent.

Proof. For all f € Cy(G), let us prove that f# is in Cy(K\G/K); f# is continuous
on G by applying dominated convergence. To see that f# is also K bi-invariant we
use Proposition 1.2.5 and by applying a change of variable, we get for all g in G and
r, e € K,

f#(rlgr2)_/K/Kf(k1r1gr2k2) dkq dks
=[] gt dawri dis'n)
—/K/Kf(zlgzg) dlydly = f#(g).

It then follows that Q¥ is idempotent,

1 (g) = /K /K 1# (kaghs) dky diey = /K /K 1*(g) dky diy = £¥(g)

Finally, Q¥ is surjective, since for all f € C,(K\G/K) C Cy(G) we have QK f = f.
O

Corollary 2.2.3. The mapping Q¥ is an orthogonal projection from L*(G) to L>(K\G/K).

Proof. First we will prove that for all f € L?(G), f* is in L*(K\G/K). By the
Cauchy-Schwarz inequality, Fubini’s theorem, Proposition 1.2.6, we get

[ir@ras= [|[ [ sy as v
S/G/K/K|f(kgk/)|2d/€dk/dg
:/K/K/G|f(kgk/)|2dgdkdk’

B /K/K/G‘f@)FdQ dk dk = | fz= < oc.

18

2
dg




2.3.  Spherical measures and spherical functions

K-bi-invariance of f* and the idempotence of Q¥ : L?(G) — L*(K/G\K) can be
proved the same way as in the continuous case in Proposition 2.2.2. Let us now show
that QF is self-adjoint. For all f,h € L*(G), we have

(QKf.h) = / 0¥ f(9)h(g)dg

/ / / F (kg Vi(g)dk dK' dg
/ / / F(9)R(Kgk) dg dk' dk
_ /G £(9) /K /K h(k'gk) dk dk' dg

- | 10)9Fh(g) g = (1. 0.
Thus, QF is an orthogonal projection from L*(G) to L*(K\G/K). O

Example 2.2.4. We will identify the space of continuous K-bi-invariant functions
C(K\G/K) with the space of K-left-invariant functions on the homogeneous space
G/K. Let us consider the case where G = SO(3) and K = SO(2), then G/K ~ S2.
Then for any function f € C(SO(3)), its corresponding image by Q¥ is the function
f¥in C(S?), that is constant on the orbits.

2.3 Spherical measures and spherical functions

We are going to introduce spherical functions in this section; all proofs can be found
in [59].

Definition. Let G be locally compact group, and K a closed subgroup. We call a
measure ¥ on (G, B(G)) a spherical measure for (G, K) if

i) ¥ is a non-zero Radon measure, i.e. it is an inner regular and locally finite Borel
measure,
ii) ¢ is K-bi-invariant. i.e.: for all measurable £ C B(G) and ky, ks € K, 0 satisfies
U(k1Eks) = 9(E),
iii) the mapping f — J(f) from the algebra C.(K\G/K) with convolution opera-
tion to C is an algebra homomorphism, where

- /G f(g)di(g)
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Remark 2.3.1. Note that the term spherical measure is used here as per [59] and
has a more restrictive meaning than that used in [1]. For the latter notion we will

later introduce the term K-bi-invariant measure.

Theorem 2.3.2. A spherical measure 9 for (G, K) is absolutely continuous w.r.t the
normalized Haar measure on G. In fact, there is a function w € C(K\G/K) with
w(e) =1 such that for all f € C.(K\G/K)

| 1@ioe) = [ sy

That is, x — w(z™') is the Radon-Nikodym derivative of 9 with respect to the Haar

measure on G.

Proof. This is based on Theorem 8.2.4, p.157, in [59], here we will fill in some missing
steps. Fix a function h € C.(K\G/K), such that ¥(h) # 0. By using the definition
of a spherical measure and Fubini’s theorem, we have for all f € C.(K\G/K)

o(f) = @w “h) = ﬁ /G (f * h)(z)dd(x)

_ﬁ/(; (/Gf(y)h(y‘lx)dy> di)(x)
_ L/ () (/ h(ylx)dﬂ(:c)> dy
/f “Hdy,

where w(y) = h(yzx)dy(z). To prove that w is K-bi-invariant we use the

1
(h) Ja
K-bi-invariance of h and of the spherical measure 9. For all ki, ks € K and y € G,

we have
w(lkayhy) = ﬁ /G h(kyykz)d9 ()

= W/Gh<kllk1yk2xkl)dﬁ<x>

Also,
1 1

w(e) = %/G}z(x)dﬁ(x) = mﬁ(h) =1

To prove that w is continuous, we use dominated convergence and the fact that h is
continuous and has compact support. O]
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Definition. A continuous function w : G — C is a spherical function if
I(f) = / f(g)w(g Hdu(g) is a spherical measure.
G

Theorem 2.3.3. Let us consider a function w : G — C. The following statements
are equivalent

(1) w is a spherical function for (G, K)
(i1) w is a continuous K bi-invariant function with w(e) = 1, and every function
f € C.(K\G/K) is an eigenvector of the convolution operator T, with corre-
sponding eigenvalue Ay € C, i.e. T,,f = f*w = \jw.
(1i) w is a continuous nonzero function such that for all g1, gs € G, we have

w(gl)o‘)(g?) :/W(glk’gg)dk.

K

Proof. See p.157 in [59]. O

In the next proposition the map A : C.(K/G\K) — C maps each f € C.(K/G\K)
to the eigenvalue A; of the operator 7;, as given in Theorem 2.3.3.

Proposition 2.3.4. The map A : C.(K/G\K) — C is an associative algebra homo-

morphism.

Proof. Given the characterisation (ii) of Theorem 2.3.3, it follows that for any spher-
ical function w : G — C, the corresponding spherical measure ¥, satisfies for all

feC(K/G\K)

Vo (f) = (f xw)(e) = A(f)w(e).

By definition f +— 9,(f) is a homomorphism from C.(K/G\K) to C and w(e) = 1,
so we get for all fi, fo» € C.(K/G\K)

79W(f1 * f2) = 79W(f1)79w(f2)'

That is
Af1* f2) = A(f1)A(f2).

The remaining conditions for A to be an algebra homomorphism follow from the
linearity of the integral d,(f). O
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2.4 Positive definite functions

Let us recall the definition and properties of positive definite functions based on

Chapter 8.4 in [59]. In this section G will be a locally compact group.

Definition. A function ¢ : G — C is positive definite if for alln € N, g1, go, ..., g, € G
and ¢y, co, ...c, € C, we have the following inequality

n

> @iciolg g;) > 0.

ij=1
Proposition 2.4.1. Let ¢ : G — C be a positive definite function, then ¢ satisfies:
(1) ¢e) =0,

(it) ¢(g~") = ¢(g), for all g € G,
(iii) |6(g)| < o(e), for all g € G.

Proof. This is a detailed version of the proof outlined in [59], Proposition 8.4.2. p165.
(i) Choose n =1, g1 = e and ¢; = 1 and apply the definition of positive definite-

ness.

(ii) For n = 2, choose g; = g and go = e, then by positive definiteness we have for all

c1,c9 € C,

cieap(g™) + |el*o(e) + |eal*d(e) + caerg(g) > 0. (2.1)

From (i) we saw that ¢(e) and therefore (|c;| + |c2|)@(e) are real numbers.

Thus, cieap(g7 1) + cze19(g) has to be a real number as well. For simplicity, let us look
at the real number cg(g~!) + ¢¢(g), where ¢ = ¢iey € C. Since it has no imaginary
part, we have

cp(g=) +20(g) = colg™") +cd(g).

In particular, for ¢ = 1 we obtain

o(g~1) + dlg) = olg™") + 0(9). (2:2)

For c =7, we get

—ig(g~1) +ig(g) = ip(g™") —ig(g).
Therefore,

—o(g7 ) + ¢(9) = d(g7") — d(9). (2.3)

Adding (2.2) and (2.3), we get ¢(g) = ¢(g7!).
iii) The function ¢ is positive definite, therefore for all n € N and ¢, g2, ..., g» € G,
the matrix with (i, j)th entry ¢(g; 'g;) is positive definite. Hence, the determinant of
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this matrix is non-negative, in particular when n=2, we have for all ¢;, g € G,
(9179108957 92) — 391" 92)8(95 " 91) = 0.
Fix go = e, then for any g = ¢; € G using (ii) we get
¢(e)* — |o(g))* > 0
Thus, ¢(e) = |¢(g)]- B

Definition. If 7 is a representation of G' on a vector space V', then a vector u € V' is
called cyclic for 7 if V' = Span{n(g)u : g € G}. If K is a subgroup of G and 7(k)u = u
for all £ € K then w is said to be K-fized.

Proposition 2.4.2. Let 7 be a unitary representation of G on a Hilbert space H, and
u € H a cyclic unit vector. Then g — ¢(g) := (u, w(g)u) is positive definite.

Proof. Any representation 7 is a homomorphism, also 7(g) is a unitary operator for
all g € G. Therefore, for all g1, g, ..., 9, € G, ¢1,¢3,...,¢, € C and n € N, we have

Z ZC_ingb(gi_lgj) = Z ZE’%‘(% m(g:) " (g )u)

i=1 j=1 i=1 j—1

_ZZC%CJ m(gi)u, w(g;)u)

=1 j5=1

= <Z i (gi)u, Cﬂf(gj)u>
i=1 j=1
n 2

Z ¢im(gi)u

=1

> 0.

Hence, ¢ is positive definite. n

Example 2.4.3. Let G = S act on L?(G) via the regular representation, m(a)f(-) =
f(- + a) for ¢ € S'. The subspace V generated by sin(z) and cos(z), is G-
invariant. Then f(z) := % cos(x) is a cyclic unit vector of V. The map ¢ : ¥

[ flx)f(z+ ﬁ)dx is positive definite.

To prove the converse of the previous proposition, we will need the following
lemma.
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Lemma 2.4.4. Let w be a representation of G on a complex vector space V', equipped
with a G-invariant non-negative definite Hermitian form b:V xV — C that satisfies

[b(v, w)* < [b(v,v)] - [b(w,w)|,  for all v,w,€ V.

We denote n := {e € V : b(e,e) = 0}, which is a subspace of V.. Then b induces an
inner product (-,-) on V/n, by

(W], [w]) = b(v,w),  for all [v],[w] € V/n,
And 7 induces a unitary representation p of G on V/n by
p(g)lv] = [r(g)(v)],  forallg € G, [v] € V/n.

Proof. First, note that ([v], [w]) is well-defined for all [v], [w] € V/n, i.e. it is indepen-
dent of the choice of element in [v] and [w]. Indeed, first observe that for all v € V'

and € € n we have
[b(v, )[* < [b(v, v)[b(e, €)| = 0.

Thus, for all v,w € V and ¢,&’ € n we have
(v,w) + b(v,&") + b(e,w) + b(e, ")
(v, w) = ([v], [w])

Moreover, the bilinear form (-, -) is positive definite, if [v] € V/n such that ([v], [v]) = 0,
then b(v,v) = 0 and v € ), thus [v] = [0].
Let us now prove that the mapping p : G — Aut(V/n) is also well-defined. By

([v+e], [w+e)

+

b
b

assumption, b is G invariant, so we have the following: for all ¢ € n and g € G,
b(m(g)(e),m(g)(€)) = b(e,e) = 0. Thus, 7(g)(n) Cn for all g € G. We then get

p(g)[v+e]l = [m(g)(v) + 7(g)(e)] = [7(g)(v)] = p(g)[v]

for all v € V and € € 1. From the properties of 7, it is easy to see that p is a
representation of G on V/n. Furthermore, p is unitary on the complex Hilbert space
V/n by G-invariance of b, i.e. for all g € G, v,w € V,

{p(g)[v]; p(g)[w]) = ([m(g)(v)], [7(g9)(w)]) = b(m(g)(v), 7(g)(w))

(
b(vvw) = <[U]v [w]>

This shows p(g) is an isometry, then unitarity follows as p is a representation. O
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Theorem 2.4.5. Let ¢ : G — C be a continuous positive definite function, with
¢(e) = 1. Then there exist a unitary representation ™ of G in a complex Hilbert space
Hy and a cyclic unit vector uy € Hy such that

¢(9) = (ug, m(g)ug), for all g € G. (2.4)

Proof. Here we provide a very detailed proof based on the sketch in [59], Proposition
8.4.6., p.166.

We will construct Hy with the help of Lemma 2.4.4. For any g € G, we will use the
usual notation of d, : G — {0,1} for the Dirac function taking the value 1 at g and
0 elsewhere; then we denote the complex vector space V' := Spang {0, : g € G}. Let
b:V xV — C be the Hermitian form defined first on the basis vectors d, by

b(n,dy) == (g h), for all h,g,€ G.

Then extend b to V' x V' complex linearly in the first variable, and complex antilinearly
in the second. The Hermitian form b is non-negative definite, since for any f =

Z)‘iégi €V wheren €N, g, € Gand \; € C for i = 1,...n, the form b satisfies

=1

b(f f) =D Nidib(3g,506.) = Y Nihilg; 'g;) > 0,

ij=1 ij=1

because ¢ is positive definite.
Let L : G — Aut(V) be the left regular representation of G given by (L(g)f)(z) = f(g 'x),
for all g, € G. First note that L(g)d, = 6,15, for all g,h € G. Then b is invariant

under the action of L, since for all g€ Gand fi = Z Ajdg.,
j=1

fa= Zﬁiégi €V, we have

i=1

b(L(g)f1. L(9)f2) = D> Bidib(Jy-14,. 0-1,)

j=1 i=1

=) Birolg; 99 9)

=1 i=1

= Z ZE/\W(Qflgi)

=1 i=1

= b(fl,fz)

25



Chapter 2. Spherical functions and K -bi-invariant functions

We denote 14 := {f € V : b(f, f) = 0}, which is a subspace of V. By Lemma 2.4.4,
b induces an inner product (-,-) on V/ns and L induces a unitary representation
m: G — Aut(V/n,). Let Hy be the Hilbert space completion of V/n, with respect to
this inner product. Since V,/n,4 is dense in Hy, if 7 is continuous, then it extends
uniquely to a continuous representation denoted by the same letter 7 : G — Aut(H,)
which is also unitary.

Let us now prove that « is indeed continuous, i.e. that for all [f] € V/ns we have
7(g)[f] = [f] as ¢ — e. Since (-,-) is induced by b, it suffices to show that for all
f €V, we have b(Z(g)f—f,Z(g)f—f) —0asg—e.

Fixf:Zci(Sgi eV, forsomeneN, ¢ eC, g€ Gfori=1,...n. Since

b(L(9)f — f.L(g)f — f) = 2b(f, f) — 2Reb(L(9)f, f),

it suffices to show that b(L(g)f, f) — b(f, f) as g — e. We have
B(L(g)f, f) = _Gc;b(0y1y,.0,) = > Tc;d(gi g™ g))-
i=1 i=1

The map g ~ g; 'g~'g; is continuous from G to G and ¢ is continuous from G to
C, therefore g — ¢(g; 'g~'g,) is continuous from G to C. Hence, by linearity when
g — e the right hand side converges to

Zc_icjcb(gilgj) =b(f. f),

implying that 7 is continuous.
Finally, us := [0¢] is a cyclic unit vector. Indeed, since 7(g)[0s] = [04s] for all g, h € G,

Hy = Spanc{[d,] : g € G} = Spanc{m(g)us : g € G}.

And by construction, we also have for all g € G,

(ug, m(g)ug) = ([0c], [4]) = b(de, 05) = &(g)-
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2.5. Positive definite spherical functions

2.5 Positive definite spherical functions

Definition. Let G be a locally compact group and K a closed subgroup. A function
¢ : G — C is called a positive definite spherical function for (G, K), if it is a positive
definite function on G and a spherical function for (G, K).

2.5.1 Positive definite spherical functions and unitary repre-

sentations

We proved in Theorem 2.4.5 that any positive definite function uniquely defines a
cyclic vector and a unitary representation. In addition, for a positive definite spherical
function, the unitary representation will be irreducible and the cyclic vector will be

K-fixed, we will provide a detailed proof of this result following [59] p.167.

Definition. Let GG be locally compact and K a compact subgroup of G. A unitary
representation 7 of G on a Hilbert space V' is called spherical if there exists a nonzero
u € V that is fixed under all £ € K, i.e. such that w(k)u = u for all k£ € K. We shall
denote the set of equivalence classes of unitary spherical representations by G K

Gy = {m € G : 7 is spherical}.

Then G K is in one-to-one correspondence with a subset of the highest weights D of
the irreducible representations, that we will call restricted highest weights and we will
denote this subset by Dg.

Remark 2.5.1. In the following whenever we say spherical representation, we mean
spherical unitary representation.

Only for this section we will define bounded representations of a Lie group and of
a Banach algebra, as we will use these notions in the proof of Theorem 2.5.3.

Definition. If 7 is a representation of GG on a Banach space B, then 7 is called bounded
if there exists a constant M > 0 such that the operator norm ||7(g)|/zz) < M for all
g€ G.

In particular, any unitary and so spherical representation of GG is a bounded represen-
tation.

Definition. A representation of a Banach algebra A on a Banach space B is an alge-
bra homomorphism 7 : A — End(B), where End(B) is the space of all endomorphism
on B. It is called bounded if there is a constant M > 0 such that ||7(a)| z5) < M||al|.a
for all a € A.

27



Chapter 2. Spherical functions and K -bi-invariant functions

In particular, if 7 is a bounded representation of a locally compact topological
group G on a Banach space B, then we can define a map 7 : L'(G) — End(B) by

7(f): b /Gf(:c)ﬁ(a:)b dmg(z), forallbe B, f € L'(Q).

One can easily verify that 7 is a bounded representation of the Banach algebra L!(G)
with respect to convolution.

We can now recall the following useful theorem from [59], Chapter 4 .

Theorem 2.5.2. Let w be a bounded representation of G on B Banach space, and
B’ C B be a closed subset. B' is G-invariant (under w) if and only if B' is L'(G)-

invariant (under ).

Theorem 2.5.3. Let ¢ be a continuous positive definite spherical function for (G, K),
such that ¢(e) = 1. Let m be the corresponding unitary representation acting on the
Hilbert space Hy and w € Hy the cyclic unit vector such that ¢(g) = (u, 7(g)u). Then
the pair (m,u) satisfy the following

i) m is irreducible,
i) u is K-fized, i.e. w(k)u=u for all k € K,
iii) the space of K-fived vectors VX C V. is one-dimensional and VX is spanned by

u.

Proof. For a different approach, see Lemma 6.2.3 in [57]. Here, we will follow the
steps outlined in [59] Theorem 8.4.8., p.167, however, our proof will be more detailed
and we will fill out all missing arguments. Let us first deal with (ii) and (iii), then we
will end with the proof of (i).

(ii) The function ¢ is spherical, therefore K-bi-invariant. In particular ¢(g) = ¢(k~tg)
for all g € G and k € K, that is

(u, m(g)u) = (u, w(k™)m(g)u) = (w(k)u, 7(g)u).

Thus, by linearity of the inner product we get (7(k)u — u,7(g)u) = 0. By linearity
again, for all k € K, (w(k)u — u) is orthogonal to the space Span{7m(g)u;g9 € G},
which is dense in H, since u is a cyclic vector. This means 7(k)u = u, for all k € K.

For (iii), we will prove that the orthogonal complement of Span{u} in V¥ is {0}.
We first claim that v L 7(f)u for all f € C.(G), i.e. that

(7(flu,v) =0 for all f € C.(G). (2.5)

28



2.5. Positive definite spherical functions

For all g € G and f € C.(K\G/K), we have

(Fu </f x)u dz W(Q)U>
_ /G (@) {m(@)u, 7(g)u) da

— / f(@){u, m(z~ ") (g)u) da

/f

where Ay is the eigenvalue from Theorem 2.3.3. Since u is cyclic, this implies
7(f)u = Aspu.

*0)(9) = Arolg) = Ap{u, m(g)u),

Note that the map QF : C.(G) — C.(K\G/K) in surjective, see [20], p.61-2.
Any function f € C.(G) decomposes as f = QX f + (Id — QF) f, where from Proposi-
tion 2.2.2 we know that f; := QF f € C.(K\G/K) and f, := (Id — QX f) € Ker(QF).
Therefore, for all v € VX with v L w,

(T (P, v) = (F(f)u, v) + (T (f2)u, v)
= (Apw,v) + (7 (f2)u, v)
)(m

—O—l—/fgzc u,v) dz.

The Haar measure on K is normalized, u and v are both K-fixed and ff = 0 for all
f € C.(Q). Tt then follows by Fubini’s theorem that for all f € C.(G),

P, v) ///fz )u, v) dv dkydks
///f2 m(ka)u, m(ky ' )v) dkydky dx
= /Gf2 (z)(7(x)u,v) dv = 0.

By a density argument, this implies
(w(f)u,v) =0 for all f € L*(G). (2.6)

Let us define
S = Span{7(f)u; f € L'(G)},
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Chapter 2. Spherical functions and K -bi-invariant functions

which is a subspace of V. It is clear that S is L!'(G)-invariant (under 7). Thus,
by Theorem 2.5.2, the space S is G-invariant (under 7). Note that u € S, so by

G-invariance
Span{r(g)u: g € G} C S = Span{#w(f)u: f € L'(G)}.

Thus, from (2.6) it follows that (7(g)u,v) =0 for all g € G. But u is a cyclic vector,
so this implies (w,v) = 0 for all w € V,, i.e. v =0.

(i) Suppose to the contrary that there exists a subspace W C V. that is G-invariant
(under 7). Then W+ is also G-invariant. Indeed for all g € G, w; € W and wy € W,

we have
(wy, (g™ wa) = (w(g)wy, wy) = (wy,wy) =0

Let P : V. — W be the orthogonal projection on W. We claim that P intertwines
with 7. For all v € V,, there exist w; € W and wy € W+ such that v = w; + w,. So
for g € G and v € V,

Pr(g)v = P(r(g)w: + 7(g)ws) = P (7(g)w1) = 7(g)w = 7(g)P(v).

In particular, for all £ € K we have, 7(k)P(u) = P(w(k)u) = P(u).
Thus, P(VE) c VE and so P(u) = Au for some A € C. Now applying the projec-
tion twice, we get:

Mu = P(u) = P*(u) = \u.

This means A is either 0 or 1. In the case where A = 0, we have Pu = Au = 0, so
Pr(g)u = Mr(g)u = 0 for all ¢ € G. It then follows that w(g)u C W+, but u is
cyclic for 7, so V, = W+ and W = {0}. The case where A\ = 1, we have Pu = u, so
Pr(g)u =m(g)u € W for all g € G. Since u is cyclic, this implies V, = W.

Thus, we have proved that 7 is irreducible. O

Theorem 2.5.4. Let m be an irreducible unitary representation of G such that the
space of K-fixed vectors is spanned by a unit vector w. Then, the function
o(+) := (u, m(-)u) is positive definite and spherical for (G, K).

Proof. We have already dealt with the positive definiteness in Proposition 2.4.2, so
we only need to prove that ¢ is a spherical function, for which we will use the char-
acterisation (ii) in Theorem 2.3.3. The representation 7 is continuous, so ¢ is also

continuous. The vector u is K-fixed, so it then follows that ¢ is K-bi-invariant, i.e.
for all g € G and ky, ks € K

(kighs) = (u, m(kagha)u) = (m (ki yu, w(g)m(ko)u) = (u, w(g)u) = ¢(g)-
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Now, for any f € C.(K\G/K), the vector 7(f)u is K-fixed, since for all k € K,

u—/f k:xudx—/fk 2)m(z)u dr = 7 (f)u.

The space of K-fixed vectors VX is spanned by u, thus there exists A\; € C such that
7(f)u = Apu. Let us now compute the convolution f ¢, for all g € G

:/f(x) = gdx—/fx)(u,w Lguda
/f rlapyis = { [ n(auds,aton )

We have proved that ¢ is a spherical function. O

2.6 Gelfand pairs

Definition. Let GG be a locally compact group and K a compact subgroup. Then
(G, K) is called a Gelfand pair if the convolution algebra L'( K'\G/K) is commutative.

Lemma 2.6.1. If (G, K) is a Gelfand pair, then G is unimodular.
Proof. See p.75 in [57] or p.154 in [59]. O

Proposition 2.6.2. If f € C.(K\G/K) and h € C.(G), then (h* f)* = h# x f and
(f x h)# = f*h?.

Proof. By applying Fubini’s theorem and the fact that the Haar measure is unimod-
ular on G if (G, K) is a Gelfand pair, for all g € G,

(W* % 1)(g / / / (kayka)dkdksy (y~"g)dy
_ /K /K /G W) f (ki krg)d dirdy
_ /K /K /G B(§) f (kg ko ks ghea) dijdles ey
- [ [ [n0

f(@ilklgl{Q)dgdklde
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Also,

oo = [ 1) [ [ hlh gk)dbsds dy
- /K /K /G P )b hagha) 5 bk

- /K /K /G F@RG hrghs)d dkad
— (f «h)*(g)

[]

Proposition 2.6.3. The convolution algebra C.(K\G/K) is commutative if and only
if for every irreducible unitary representation m of G on a Hilbert space H the subspace

Hy of K-fized vectors is at most one-dimensional.

Proof. See [57] Prop. 6.3.1 on p.82. O

2.6.1 Compact Gelfand pairs

Let us suppose that G is compact and that K is a closed subgroup, such that (G, K)
is a Gelfand pair.

Theorem 2.6.4. Let G be a compact group and K a closed subgroup such that (G, K)
is a Gelfand pair, then every continuous (G, K)-spherical function ¢ is positive defi-

nite.

Proof. This proof is a modified version of the one in [59], p.204. First note that
¢ € L%(@G) as it is K-bi-invariant and continuous on the compact group G. According
to the Spherical Peter-Weyl Theorem 2.7.3, L% (G) = @ My x, where Myx is
spanned by the function ¢, = (u,,7(-)u,). By Theoremeg.%.él we know that ¢, is
positive definite and spherical. Hence, ¢ has an L? decomposition ¢ = Z Cr0r. For
reGx
all m € G k the functions ¢, and ¢ are spherical, thus we can use the characterisation
given in Theorem 2.3.3 (ii). So for all f € C.(K\G/K)

f*br=Ae(f)Or, forallme Gr
fxo=X[)o,

where A(f), A-(f) € C. In particular (f x¢r)(e) = Ao (f){tr, m(€)ur) = Az(f), and by
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linearity, (f*¢)(e) = Z cxAx(f) = A(f). Note that, by Proposition 2.3.4, the map-
ﬂ‘EéK

pings A\, : C(K\G/K) — C and A : C(K\G/K) — C are algebra homomorphisms.

Also, for all 7 € G we have

M) = (b % 62 () = /G bx(9) b (g~ ")dg
_ / 6r(9)(9)dg = / 16x(g)[dg > 0.
G G

For w, 7" € G such that 7 =% 7', by Schur’s orthogonality relation we have

6o 0w = | (ur,m(g)un) (7 (9, vy = 0

Thus A(¢r * ¢rr) = 0. On the other hand, if there are two distinct non zero ¢,, and

Cr,, then we have

/\<¢7r1 * gbrrg) = /\<¢7r1)/\(¢7r2) = C7r1/\7r1 (¢7r1)c7r2/\7r2 (¢7r2) 7é 0

This is a contradiction, so there can only be one nonzero c¢,. Thus ¢ = c,¢, and it is
positive definite. n

Definition. The character x, : G — C of a finite dimensional representation 7 of
the group G on V, is given by x.(g) := tr(n(g)), where tr denotes the trace of a

matrix.

We will now show that in the particular case of compact Gelfand pairs, a spherical
function can be expressed in terms of the character of the representation.

Proposition 2.6.5. Let G be a compact group and K a closed subgroup, such that
(G, K) is a Gelfand pair. Let ¢ be a spherical function for (G, K), m, the correspond-
ing irreducible representation and ug the K-fized unit vector such that

?(g) = (ug, mg(g)ug) for all g € G. If Xx, is the character of my, then for all g € G,

P(g) = /K X, (gh)dk.

Proof. This is a well-known result, see [59] Proposition 9.10.2. For completeness, we
will provide a proof that is self-contained in the context of this thesis. Since ¢ is a
spherical function, from Theorem 2.6.4 we saw that it is necessarily positive definite;
then by applying Theorem 2.5.3 we know that VX is spanned by wu.
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The projection Py : V; — VX given by (2.7) satisfies P;(e1) = e; and Py(e;) = 0
for all ¢ # 1, where e; = u,. Thus, we have

tr(P; 7(g) Pr) = ¢(g), for all g € G.

By idempotence, we also have tr(P,m(g)Py) = tr(m(g)(P;)?) = tr(w(g)Py). This gives
us, for all g € G,

#(g) = tr(m(g)Py) = tr ( /K (g)m (k) dk:) - /K tr(n(gk)) dk = /K X, (k) dk.

2.7 Spherical functions on compact groups

In this section G is a compact Lie group and K a closed subgroup, such that (G, K) is a
Gelfand pair. We will provide a spherical version of the original Peter-Weyl Theorem
for functions on K\G/K. We will denote by L% (G) = L*(K\G/K) C L*(G) the

subspace of K-bi-invariant square integrable functions on G.

Lemma 2.7.1. Let G be a compact group and (m,Vy) an irreducible representation.

If Vi decomposes into V, = VI @& V2, then the space of matriz elements decomposes

into M, = M;. & M2 where
M = Spantg > (u,w(g)o) s w0 € V), i=1,2.

Proof. Denote by P : V, — V! the orthogonal projection from V, to V!. We
will prove that the mapping Ep : (u,n(-)v) — (Pu,7n(-)Pv) is also an orthogonal
projection from M, to ML. By linearity of the inner product and of 7, p is also
linear. Moreover, Ep satisfies Ep = £3 as P is a projection, that is for all g € G and
u,v €V

Ep ((u,m(g)v)) = (PPu, m(g)P*v) = (Pu,m(g)Pv) = Ep((u, 7(g)v)).

To see that £p is an orthogonal projection, we will prove that Ep is self-adjoint. It
is sufficient to consider f,h € M, with f(g) = (u1,7(g)v1) and h(g) = (ug, m(g)v2)
where uq, ug, v1,v2 € V. Then by Schur’s orthogonality relation Theorem 1.2.11, and
the fact that P is self-adjoint, we have

<U2,PU1><U27PU1> =

(Ep fih)12@) = (Pvg, v1)(Pug,u1) = (f,Ep h)12(c)-

|
|

™ m
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Thus, M, can be decomposed into M, = ML & M2. O

From now on we will mostly be interested in the particular decomposition
V, =VE @ (VE)L where 7 € G. We have a corollary to the previous lemma,

Corollary 2.7.2. Let G be a compact group and K a compact subgroup. Fix a rep-
resentation m € G. We define a map P : Vy — VE by

Py = / m(k)v dk, forallv € V. (2.7)
K

Then P is an orthogonal projection and for all g € G and u,v € V,

Epfu, 7()v))(9) = Q" (u, 7(-)v))(9)

Proof. The mapping P is linear and idempotent. Indeed, for all v € V., by a change
of variable, k = k’~'k and by using the fact that the Haar measure is invariant and is
normalized on K we get

P2 = /K (k) /K w(k)v dk di/' = /K /K w(K'k) dk di/

:/K/Kw(k)vdkdk’:/l(w(k)vdk:Pv.

By Theorem 1.2.5 (ii) and unimodularity of the Haar measure we have for all u,v € V,

(Pu,v) = < /K (k)u dk,v> - /K (m(k)u, v) dk = /K (u, w(k~")v)

_ <u /K (kYo dk> _ <u /K (k) dk> — (u, Pv)

Hence, P is self-adjoint. This proves that P is an orthogonal projection from V. to
VE. From Lemma 2.7.1 we know that Ep is also an orthogonal projection from M,
to My x and we have for all g € G and u,v € Vi,

Ep (u, w(g)v) = < /K w(kyu dk, 7(g) /K (k) dk:>
:/K/K<u,7r(k:gk')v>dk:dk’
=(u, 7(-)v)*(g)
=Q" ((u, 7(-)v))(9)-
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From now on, for any representation w € G K, we denote by ¢, 1= (u, 7(-)u,) the
spherical function associated to the K-fixed unit vector u, € V.X.

Theorem 2.7.3 (Spherical Peter-Weyl 1). The family {\/d ¢, 7 € @K} is an or-
thonormal basis for L3.(G).

Proof. This result is well-known, see [59] Prop 9.10.4 p.205 and [25] Theorem 3.5
p-533. However, the proof given here is original as far as the author is aware.

Let us consider the decomposition V, = VE @ (VX)L then by Proposition 2.7.1 we
have M, = Myx & M(yxyr. The original Peter-Weyl Theorem 1.2.12 states that
L*(Q) = @ M, so by linearity and continuity of the projection QF : L*(G) — L% (G),

reG
we have
Li(G) = Q¥(L*(G)) = P @M.,
7@
To simplify the notation write ME = QX M,. We claim that ME = /\/lVK,
which will imply L3 (G @ My . Note that here, the direct sum is over G K

TrGGK

since for any 7 ¢ G, we have V; = {0} and therefore My = {0}.
N
First, take any f = Zozij<ui,7r(-)vj> € My x, for some u;,v; € VE a;; € R, and

=1
1,7 =1,... N. We will show that f is K-bi-invariant. For all k1, ky € K and g € G,
each u; and v; are K-fixed, we have

Thus, f € ME and so Myx € ME. On the other hand, any element of MX
N
can be written as QX f where f = Z a;; (i, m(-)pj) € M, for some 1, ¢; € Vi and
ij=1
a;; € Rwithé,7 =1,...,N. Thus, by Corollary 2.7.2, we get

QKf(g) - Z az]Q 1% Z aZJgPW d}z; ) >
ij=1 ij=1
= Z az] ﬂwh 7r§0]>
ij=1
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where Py is defined in (2.7). For any 7 € G Kk, since Py is a projection onto VX each
of Pr);, Prp; are elements of V. Thus, QF f € My and we have the inclusion
ME C My k. It then follows that ME = My for all T € GX and

ﬂEéK
Furthermore, if 7 € G K, by Proposition 2.6.3 there exists a K-fixed unit vector
u, which spans VX and MZ = Span{g — (u., 7(g)u,)}. We can now conclude that
{Vd (ur, m(g)us); ™ € G} is an orthonormal basis of L% (G). O

Let us denote by Ex(G) the span of all functions in ME 7 € CAJK, ie.
Ex(G) := Span{py; 7 € G}
Theorem 2.7.4 (Spherical Peter-Weyl 2). Ex(G) is dense in L3(G).
Proof. This follows directly from Theorem 2.7.3. m
Theorem 2.7.5 (Spherical Peter-Weyl 3). Ex(G) is dense in C(K\G/K).

Proof. Let f € C(K\G/K) C C(G). By Theorem 1.2.14, for all € > 0 there exists

h € E(G) such that [|f — hljlsc < €. Let us recall from Proposition 2.2.2 that the

mapping QF : C(G) — C(K\G/K) is surjective and idempotent. Thus, for all f €
1f = Q%hlloe = Q" (f = M)l = sup

C(K\G/K), we have QF f = f and
/ / f h k’lgk'g)dkldkz
geG

/ / Sup] f h klgk2)|dk1dk2
K

geG

- / / |RusLis (f — B)llow dhads
KJK

= [ [ 10 =Dl dtua

=[I(f =Ml <e. (2.8)

Consequently, we have

If = Q%] <.

We need to show that for h € £(G), QFh is in Ex(G). By definition of £(G), for all
h € £(G) there exists a finite subset S € G, oy € C and Ay () = (r, 7(-)pr) € My
for each m € S, such that h = Z ohy

TeS
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Chapter 2. Spherical functions and K -bi-invariant functions

By linearity of Q% and by Corollary 2.7.2, we have for all g € G,

QKh(g) = ZaﬂgKhﬁ = Zaﬂgpwhw € gK(G)7

TeSs TesS

Thus, we have proved that Qfh € Ex(G) and we can conclude that Ex(G) is
dense in C(K\G/K). O

2.8 Homogeneous spaces and symmetric spaces

Definitions and known results in this section are based on [12], [24] and [58].

Definition. A group action of a topological group G on a topological space M is
called transitive if for all p,q € M, there exist g € G such that g.p =¢q .

The isotropy subgroup (or stabilizer subgroup) of G at a point p € M is the subgroup
of G that fixes p, defined as

Stab, := {g € G;g.p = p}.
Remark 2.8.1. For all x € M, Stab, is indeed a subgroup of G, since ¥g, h € Stab,
(hg).x = h.(g.x) =hx==x

Definition. A homogeneous space M is a manifold with a transitive action of a locally
compact group G.

Further on, we will mostly be interested in the case where M is a smooth manifold

and G is a Lie group, so the following theorem will be useful for us.

Theorem 2.8.2. Let p: G x M — M, p(g,x) = g.x be a transitive action of a Lie
group G on a manifold M. Fix a point x € M and denote K := Stab,, then the map
a:G/K — M defined by a(gK) = p(g,x) is a diffeomorphism.

Proof. See [58], Theorem 3.62, p.123 ]

We will now provide a short summary on symmetric spaces, which are a special

case of homogeneous spaces.

Definition. Let M be a Riemannian manifold, p € M. A curve v : I — M, for
an interval I C R, is called a geodesic if the family of tangent vectors + is parallel
with respect to 7, in the sense defined in Helgason [24], p.28. A geodesic is called
maximal if it has largest possible domain. For each point p € M and tangent vector
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2.8. Homogeneous spaces and symmetric spaces

v € T,M, we denote by £ : R — M the maximal geodesic through p tangent to v
and &P(0) = p and (£2)'(0) = v. We define the ezponential map of the manifold M
at p, Exp, : T,M — M by Exp,(v) = &(1). There exists ¢ > 0 such that Exp,
is a diffeomorphism from {X € T,M : |X| < €} to its image. Furthermore, on a
sufficiently small open ball B,(p), r > 0, we define the map s, : B,(p) — B,(p) by
sp(Exp,(tv)) = Exp,(—tv) is called a local geodesic symmetry at p.

We call a (connected) Riemannian manifold M a locally symmetric space if at each
p € M, there exists an open ball B,(p), such that the corresponding symmetry s, is
an isometry. Furthermore, M is called a (globally) symmetric space if at each p € M,
sp extends to a global isometry s, : M — M. That is, s, is an involutive isometry,
ie. SZ =id, and p is an isolated fixed point of s, i.e. there is a neighbourhood V' of
p where p is the only fixed point of s,,.

If M is a symmetric space, we will denote by (M) the group of all Riemannian
isometries of M onto itself, it has a natural Lie group structure and (M) acts tran-
sitively on M, see [24], Lemma 3.2, p.170. Let K be the compact subgroup of I(M)
that leaves some point pg € M fixed, then M and I(M)/K are diffeomorphic, see [24]
Theorem 3.3, p.173. Thus, a symmetric space is a homogeneous space.

Proposition 2.8.3. If M = I[(M)/K is a symmetric space, then (I(M),K) is a
Gelfand pair.

Proof. See [59] Corollary 8.1.4, p.154. O

Definition. Let G be a connected Lie group and K a closed subgroup. If s is an
involutive automorphism s of G, we denote by G, the fixed point set of s and by (G,)°
the connected component of G containing the identity element. We say that (G, K)
is a symmetric pair if there exist an involutive analytic automorphism s of G such
that (G,)? C K C G,. Furthermore, if Adg(K) is a compact subgroup of GL(g), we

call (G, K) a Riemannian symmetric pair.

Proposition 2.8.4. If (G, K) is a Riemannian symmetric pair, then G/K is a sym-
metric space.

Proof. See [49] Theorem 1.3, p.73 or [24] Proposition 3.4, p.174. O

In this thesis we will be particularly interested in compact symmetric spaces.
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Chapter 3

Fourier and spherical transforms

3.1 The Fourier transform

Definition. The Hilbert-Schmidt inner product on the matrix algebra M, (C) is de-
fined by (A, B)ys = tr(AB*) for A,B € M,(C). The corresponding norm is
|A]|%¢ = (A, A)gs for all A € M,(C).

Remark 3.1.1. It is useful to note here that by the Cauchy-Schwarz inequality, for
all Ae M,(C)and k=1,...,n,

(A, en)” < [[Aell® < D 1Al = [|Alls. (3.1)
i=1

ie. [(Aek,er)| < ||Allgs, for all A € M, (C) and k=1,...,n.

Let G be a compact group, then we define the set M(G’\) = U M, (C).

WG@

A mapping F : G — M(CA;) is called compatible if F(m) € M, (C) for each m € G

~

We denote by L£(G) the linear space of compatible mappings where addition and

~ -~

scalar multiplication are defined pointwise, and by Hy(G) the subspace of £(G) which
satisfies |||F|||3 := Z d || F(m)||3g < 00, for all F' € Ha(G). The space Hy(G) is a

WE@K
complex Hilbert space with inner product

(F.G)) = 3 d{F(x), G(m)) us.

e

Let us now define the Fourier transform of a function on a group.

Definition. Let G be a compact group and f € L'(G). For each m € @, we introduce
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3.1.  The Fourier transform

the (non-commutative) Fourier transform F : f ]?Where

-~

Flr) = /G (g (9)dg.

This is a matrix valued integral, where each coefficient is
f(m)iy = / mii(g7 ") f(g)dg, for alll <i,j < d,.
G

When we restrict the domain of F to L?(G), we get two important results, these
being the Fourier expansion and the Plancherel formula. We will only state them
here, for the proof see [6] Theorem 2.3.1 p.36.

Theorem 3.1.2 (Fourier expansion). Let G be a compact group, then

=Y dotr(f(r)n(),  forall f € LX(G).

el

Theorem 3.1.3 (Parseval-Plancherel identity). The operator F is an isometry from
L*(@G) to Ho(G) and for all f,h € LX(G),

/f g—Zd <]? );hix >HS'

req

/!f )[Pdg =

We can also define the Fourier transform of a probability measure on (G, B(G)).

In particular,

el

Let P(G) denote the set of all Borel probability measures on a compact group G.

Definition. For all 7 € G and p € P(G) we define the Fourier transform of the
measure (1 at m as the matrix-valued integral

() = /G (g u(dg),

which is a bounded linear operator on V.. When G is compact, it is a matrix valued
integral.
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Chapter 3. Fourier and spherical transforms

3.2 The spherical transform

Let G be a locally compact group, and K a compact subgroup, such that (G, K) is a
Gelfand pair. S(G, K) denotes the set of all spherical functions for (G, K).

Definition. The spherical transform of a function for (G, K) is the map F° : f ]?5
from C,.(K\G/K) to a space of functions on S(G, K), where f° is defined by

/ £(9)6(9)dg,

and ¢ is a spherical function in S(G, K).

Definition. Let p be a K-bi-invariant probability measure in P(G). We denote the
set of all such measures by Pk (G). Then the spherical transform of the measure p is

= /G o(g)u(dg)

for any spherical function ¢ € S(G, K).

the complex valued mapping

From now on let G be compact, so all continuous spherical functions are positive
definite. For all 7 € G let us fix a basis e1,...,eq, of Vi. In the special case where
7 is a spherical representation, i.e. ™ € G Kk, by definition there exists a non-zero
unit K-fixed vector u, € V. Following Theorem 2.5.3, we know that VX is spanned
by the vector u, and we will set e; = u,. We have the following characterisation of
K-bi-invariant measures, with the help of their Fourier transform. We will denote by
P, the map defined in (2.7) for 7 € G.

Theorem 3.2.1. Let p be a probability measure on a compact group G. Then the
following statements are equivalent:

a) The measure p is K-bi-invariant.
b) P p(m) Py = ju(m), forallWGG
¢) ji(m)ij =0 for all m ¢ Gy, orm e Gy and (1,7) # (1,1).

Proof. This result has been published in [8]. First show that (a) implies (b). Let
m € G and ¥, ¢ € V.. Given that p is K-bi-invariant and the Haar measure is
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3.2.  The spherical transform

normalized, by a change of variable we have

T, ¢) = /// (m(kg™ 'K, ¢) du(g) dkdk’
= [{[ e nta) [ strar.o)

= (Prpi(m) Pxt), §)

We can then conclude the result. To show that (b) implies (c), it is sufficient to use
that for all 7 € (3 P, :V, — VEisan orthogonal projection (as seen in Corollary
2.7.2). When 7 is not spherical, i.e. 7 ¢ GK, the space of K-fixed vectors is VX = {0},
so Prv =0 for all v € V;. Thus, for 7 ¢ Gr and ,j=1,...,d,

pi(m)i = (u(m)es, ¢5) = (Prpi(m) Prei, ) = (0,¢5) = 0

When 7 € G, then VX is spanned by e; and e, ..., eq. € (VE)L, thus if i # 1 then
P.e; = 0. Thus, for all 7,5 # (1,1) we have

fi(m) = (Pofi(r) Pyesy ef) = 0,

Let us show that (c) implies (a). We have
/(W(g)ei, eu(dg) = 0, for all w ¢ G, or e G and (1,7) £ (1,1).  (3.2)
G

Take any f € M, for 7 € @, then f is of the form
dr
flg) = Z a;j(m(g)ei, e;), forall g e G
ij=1
We can split this sum into two parts,
f(g) = a11< 617 61 + Z Oé” 61, €j>7 for all g € G7
(4.9)#(1,1)

where the first term is an element of MX and the second term is an element of
(ME)L. So, given (3.2) and Corollary 2.7.2 we get for all g € G,

/G f(g)u(dg) = /G ari(m(g)er, ) du(g) = /G Q¥ f(g) du(g).

By Theorem 1.2.14, we can extend this result to all f € C.(G). Thus, for all f € C.(G)
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Chapter 3. Fourier and spherical transforms

we have
/f Ydu(g /f w(ky dg ko), forall g € G, k1, ks € K.

It then follows by uniqueness of the measure from the Riesz representation theorem
that p is a K-bi-invariant measure.
m

We deduce from Theorem 3.2.1 that if p is a K-bi-invariant probability measure
then for all 7 € @K,

1% () = Bi(m)11.
Whereas, if 7 ¢ @K, then 71°(¢,) = 0

Corollary 3.2.2. Let f € C(G), then the following statements are equivalent

a) The function f is K-bi-invariant
b) Puf(m)Pr = f(x) for all w € G
c) f( )i =0 for allw ¢ Gy, or 7 € Gy and (i,7) # (1,1).

Proof. For all f € C(K\G/K), let us decompose f = f* — f~ where we use the
usual notation f*(g) := max(f(g),0) and f~(g) = —min(f(g ) O) for all g € G.

We can then define the positive finite Borel measures p* = [, f"(g9)dg and

= [, f (9)dg for all A € B(G), after normalizing them over G we will get

tvvo probablhty measures. We observe that ,l;}(ﬂ') = j/’j\t(w) for all 7 € G. Thus, we

can conclude by applying Theorem 3.2.1 and by using f(w) = f*(w) —f (), for all

meqd. O

As a consequence of this last result, if f € C(K\G/K) then for all 7 € Gk, the
matrix f(7) has all non zero coefficients except for

Fm)n = F5(¢r) (3.3)

When 7 ¢ G, f(w) is the zero matrix, and fs(@r) =0. Let A = (a;j) € Myxn(C) we
define Ry, € My (C) by

1 0 ... 0
0O ... ... 0

R, =1 . . (3.4)
0O ... ... 0
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3.2.  The spherical transform

Consider the matrix

a1 0 .. 0

0 o ... 0
R,AR, =

0O ... ... 0

In Corollary 3.2.2, we have seen that if f € C(K\G/K) then

f(m) = Ry f(m)Ry.  forallme G. (3.5)
In particular, when 7 ¢ Gy, we just have f(r) = 0.

Note that Corollary 3.2.2 also holds for f € L*(G), by using similar arguments to
the proof given for Theorem 3.2.1. Thus, the equations (3.3) and (3.5) also hold for
all fe L2(K\G/K).

We can now obtain a spherical version of the Parseval-Plancherel formula.

Theorem 3.2.3 (Spherical Parseval-Plancherel). Let G be a compact group and K a
closed subgroup. Then for all f,h € L*(K\G/K),

/G F@h@dg = 3 def5 (60005 (60).

WGGK

So, in particular

/G ) Pdg = 3 dl P00

weé

Proof. This is a known result, see [59] Theorem 9.5.1, p.193, that we include for
completeness. Our proof here is different from that in [59] and is self-contained in the

context of this thesis. The proof follows directly from the original Parseval-Plancherel
formula and Corollary 3.2.2. For all f,h € L*(K\G/K),

F(@hlgldg = > dr (Fim),hix))

G pe




Chapter 3. Fourier and spherical transforms

and similarly,

/G () Pdg = 3 dal|F () s

WE@

=Y de|f(m)uf?

WE@K

= Z dW|fS(¢w>|2'

TI'EGK

Theorem 3.2.4. [Spherical Fourier expansion] For all f € L*(K\G/K),

f: Z dﬂfs(qbﬂ)QSw

WG@K

Proof. This is also a known result, see [59] Theorem 9.4.1, p.191, that we include for
completeness. Here we will provide our own short proof using the original Fourier
expansion and (3.5), so for all g € G and f € L*(K\G/K)

This is exactly what we wanted. O
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Chapter 4

Application of spherical
transforms: densities of

K-bi-ilnvariant measures

4.1 Regularity results and estimates

In this chapter G will be a compact Lie group.

Proposition 4.1.1. There exists a constant C' > 0 such that for any irreducible
representation m of G with corresponding highest weight \, we have

dy < CIA™

where m = #P, s the number of positive roots of G.
See Corollary 2.5.2 in [6].

Theorem 4.1.2. Let 7 be an irreducible representation of G and X the corresponding

highest weight, then
||d7T)\(X)||%{S < CIA™2|1X %, for all X € g.
Also, for all X,Y € g
ldma(X)dma(Y)ll3s < CINP™HIXPIY P,

for some constant C > 0.

Proof. For the proof of the first part see Theorem 3.4.1 in [6]. For the second inequal-
ity, we use the equivalence of the Hilbert-Schmidt norm ||- || s and the operator norm
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Chapter 4. Application of spherical transforms: densities of K-bi-invariant
measures

| - |lop- For all X,Y € g there exist some constants K3, K > 0 such that

[dmA(X)dmr(Y) || zs < Ki|ldm(X)dm(Y)]|op
< K [ldm (X)oplldm (Y) o
< K G |dm (X)) as | dr(Y) || s
< CIA™PIXIY|

for some constant C' > 0. O

Denote Dy = D\{0}. Let us introduce the Sugiura zeta function ( for all s € C,

()= Y # € CU {oo).

AEDg

Then we have the following results from [55], p.37-38, and [6] p.75.

1

Theorem 4.1.3. Suppose G has rank r. Then the series Z NE

AEDg

converges abso-

lutely if R(s) >

r
5

Theorem 4.1.4. Let G be a compact connected Lie group and f € C(G). Then the

Fourier series of f,
> datr(F(M)m)
converges absolutely and uniformly on G if one of the following conditions are satisfied
i) f€C?(G,C) where p e N and 4p > d.
i) Hf(A)HHS — O(AP) as || = oo with s > r + 2

Proof. See [6], Theorem 3.3.1, p.75. ]

It then follows that every smooth function of C*°(G) has a uniformly convergent

Fourier series.

4.2 Existence and square-integrability of K-bi-invariant

densities

If a probability measure 1 € P(G) is absolutely continuous with respect to the Haar
measure m on (&, then the Radon-Nikodym theorem ensures that there exists a func-

tion f € L'(GQ) such that u(A) = /f(g) m(dg) for all A € B(G). The Radon-
A
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4.2. FEmistence and square-integrability of K-bi-invariant densities

Nikodym derivative f is called the density of the measure p (w.r.t to the Haar measure
m).

Let us recall the main result of existence and square-integrability of densities on
compact Lie groups from Applebaum [6] and [2].

Theorem 4.2.1. If G is a compact Lie group, then a measure u € P(G) has an L?-
density f, if and only if Zdw||ﬂ(7r)||§{s < 0o. In this case we have the L*-Fourier

red
erpansion
o= datr(i(m)m(-))
€@
Proof. See Theorem 4.5.1 p.101 in [6] or [2]. O

For K-bi-invariant measures, we will obtain an analogous result using spherical
transforms. Let us start with a preliminary result.

Lemma 4.2.2. Let G be a compact Lie group and K a closed subgroup. Suppose that
u € P(K\G/K) has a probability density function f on G. Then f is K-bi-invariant
almost everywhere.

Proof. First note that GG is compact, therefore it is unimodular, by Proposition 1.2.6.
Thus, by a change of variable we have for all kq, ks € K, we have

/h(g)f(klgka) dg:/h(kllgkll)f(g)dgz/h(/ﬁlgkzl)u(dg)
G G G
- / h(g)n(dg) = / hg)f(9)dg
G G

By the Riesz representation theorem we can then conclude that f is K-bi-invariant.

[]

Theorem 4.2.3. Let G be a compact group and K a compact subgroup such that
(G, K) is a Gelfand pair. If p is a K-bi-invariant probability measure on G, then p
has a L*-density f, if and only if

> de| @ (m) < 0. (4.1)

And in this case, the density has the L*-Fourier expansion

fu = Z dﬂ'ﬁs(ﬂ> ¢7T<> (4'2)

WE@K

49



Chapter 4. Application of spherical transforms: densities of K-bi-invariant
measures

Proof. This result can be proved using Theorem 3.2.1 and Theorem 4.2.1, see [§]
Theorem 3.3. Here, will use another approach based on the general compact group
case in [6] Theorem 4.5.1 p.101, so this proof has the advantage of being self-contained.
For necessity, suppose that p is absolutely continuous w.r.t to the Haar measure and
that the density f, of the measure u is square-integrable. i.e. f, € L*(G). Then, by
Lemma 4.2.2, the density function f,, is K-bi-invariant almost everywhere w.r.t the
normalized Haar measure, i.e. f, € L*(K\G/K). The spherical transform of f,, is

ﬁs(cﬁﬂ) = / fu(9)ox(9)dg = i (), for all T € Gy
G

By the spherical Parseval-Plancherel identity,

Y @O = X e [F6a)] = X delth e = Il < oo

WG@K WG@K WG@K

For sufficiency, suppose the inequality (4.1) holds and let f, be the L?-limit of the

following series

fur= 32 de @5 (m)al). (4.3)

WEGK
Note that by K-bi-invariance of the spherical functions, f, is also K-bi-invariant. So
by applying the spherical Parseval-Plancherel identity we get

||fu”i§((a) - Z dw

TrEéK

:Zdﬂ

ﬂE@K

=Y & @) < .

WEG\K

2

7 ()

2

me@@

For any h € Ex(G) there is a finite subset S of Gy such that

h = Z d7r<h> ¢TI’>¢7T'

TeS

Thus, we have by dominated converges and orthogonality of the basis {¢, : T € G K}

20



4.2. FEmistence and square-integrability of K-bi-invariant densities

in Li (@),

/G h(g)Fu(g)dg = / S b b inlg) S TS () 62 (9)do

Tes ﬂ-GGK
— Y delhb) S defin(e) /% 16 (5)
Tes meGy
= Zd ¢7T Hs
TeS
- d ¢71- ¢7r
> /
/ S do(h, 6)b2(0)uldo)
TeS

- /G h(o)u(do).

By density of £ (G) in C(K\G/K), we can use dominated convergence to extend the
previous result to all functions h € C(K\G/K). Thus, we have

| 1@ Tidg = [ Mon(d). for all b€ C(\G/K).
G G

From the Riesz representation theorem, f, is real-valued and it is the density of the
measure . Furthermore, by uniqueness of the measure in the Riesz representation
theorem, the K-bi-invariance of the function f, implies that ;4 is K-bi-invariant. [

Corollary 4.2.4. Let G be a compact group and K a compact subgroup such that
(G,K) is a Gelfand pair and let p € P(K\G/K). If the series Z dy 1°(m) (")

7T€§K
converges uniformly on G, then p has a continuous density f,.

Proof. This follows the proof of the result on a general compact Lie group, given in
6], Proposition 4.5.1, p1()2

Define the function f,(g) == Y _ difi g) forall g € G. Then f, € C(K\G/K)

WEGK
as it is the uniform limit of continuous K-bi-invariant functions. Furthermore, G is

compact so we also have f“ € L% (K\G/K), that is

HquLz = Z d.|72°(m)|> < 0o. We can use Theorem 4.2.3 to conclude that f,, is the
TrEGK
density of . O
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Chapter 4. Application of spherical transforms: densities of K-bi-invariant
measures

4.3 Regularity of K-bi-invariant functions and spher-

ical Fourier series

In this section we suppose that G is a compact Lie group and K is a closed subgroup
such that (G, K) is a Gelfand pair. As we are parametrizing G Dby the highest weights
D, let us simplify the notation of the Fourier transform by writing f(/\) = f(ﬂ,\) for
all A\ € D and f € C(G). We will first state some known regularity results that can all
be found in [6], Chapter 3.3, we will then proceed to obtain their spherical versions.

Theorem 4.3.1. For f € C(G) the Fourier series Zd,\tr(f()\)ﬁ,\) converges abso-

AeD
lutely and uniformly to f if

17 N)lls = O(AI™),
as |\ = oo with s > r + 22
Let us denote by Dy the set of highest weights excluding {0}, i.e.: Dy = D — {0}.
Theorem 4.3.2. We have the following regularity results on the Fourier transform

i) If f € C*(G) where p €N, then ||f(N)|lns = o(|A|"2) as |A| = oo, A € D.
ii) If f € C(Q), then f € C®(Q) if and only if ||f(N)||zs = o(|A|7P) for allp € N
as |A| — oo.

In the case where the function f is K-bi-invariant we apply Theorem 3.2.2 and

Corollary 3.2.2 to obtain the spherical versions of the previous regularity results.

Theorem 4.3.3. For f € C(K\G/K) the spherical series Z d,\fg(k) ¢\ converges

AeDg
absolutely and uniformly to f if

IF7(N)] = O(IA]™),
as |\ = oo with A € Dg ands>7“+37m

Proof The proof follows directly from Corollary 3.2.2. Recall that for any A € Dg,

f ()\) is a matrix with only one non zero coefficient f ( )11 = 75 (A), thus
1Fllas = 1o, FO) Ray s = [FN)ul = 75 (4.4)
t(F V)m) = tr (Ra, fO) R, ) = Fu(mn = FS)on, (4.5)
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4.8.  Regularity of K-bi-invariant functions and spherical Fourier series

where Ry € Mg, (C) is defined in (3.4). So, by Corollary 3.2.2 and (4.5) we have

7T A I da =D datr(f(A)m). (4.6)

MeDg XeD

We can now apply the regularity result from Theorem 4.3.1 to conclude that the
series (4.6) converges absolutely and uniformly to f if | f¥(\)| = [[f(N)||zs = O(JA| %)
A = oo with A € Dg and s > r + 2. O

Theorem 4.3.4. If f € C?*’(K\G/K) where p € N, then
75N = o(IAI7)

as |A| = oo, A € Dg.

Proof. For all f € C?(K\G/K) we can apply Theorem 4.3.2, (i) and using the
same argument from (4.4), we have |f5()\)| = ||]/C\()\)||HS = o(|[M\7%) as |\ — oo,
A€ Dg. ]

Theorem 4.3.5. If f € C(K\G/K), then f € C*(K\G/K) if and only if
5N = o(|\|7P) for allp €N, as |A| = o0 and A € Ds.

Proof. This follows from Theorem 4.3.2, (ii) and Corollary 3.2.2 and equation 4.4. [J

We will now define a class of rapidly decreasing functions on D following the work
of [55].

Definition. The Sugiura space of rapidly decreasing function is the set S(D) of com-
patible matrix-valued functions F' on D such that for all p € N,

lim [AP|F(N)||zs = 0. (4.7)

[A| =00
For all A\, € D, F()) is an element of M, x4, (C).

Definition. The spherical Sugiura space of rapidly decreasing functions, denoted by
S(Dg) is the set of functions F': Dg — C such that for all p € N,

lim |A[P|F(A)] = 0. (4.8)

[A| =00

Let us denote by Sy(Dg) the subspace of S(D) such that

F(\), ifAeD
So(Ds) = { F € 8(D) : Ry, F(\) Ry, = (), i st
0, it A\ ¢ Dy
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where R, is defined in (3.4). So a function F' € Sy(Dg), if F' € S(D) such that
F(A\)1 € Cand F(A);; =0 for 4,5 # (1,1), A € Dg, and F(\) =0 for A ¢ Dg. Thus,
So(Dg) is a set of complex-valued matrices with only one non-zero coefficient at (1, 1).

Proposition 4.3.6. There is a one-to-one correspondence between S(Dg) and Sy(Ds).

Proof. Let us denote by h : S(Ds) — Sp(Dg) the mapping that sends each func-
tion a € §(Dg) to a matrix valued function A € Sy(Dg) such that for all A € Dy,
A(N) = a(N) Ry, .

First, check that A is indeed an element of Sy(D); for all A € Dg, we have by
definition ||A(N)||ms = [a(AN)|||Ra, ||rs = |a(A)| and @ satisfying (4.8) implies that A
satisfies (4.7). Furthermore, h is injective, since for all a,b € S(Dg), h(a) = h(b)
implies that a(\) = [h(a)(N)];; = [R(b)(N)];; = b(A). The map h is also surjective,
since for all A € Sy(Dg), we have Ay; € S(Dg) and h(A11)(A) = Aii(M) Ry, = A, O

Consequently, there is an injection j : S(Dg) — S(D) corresponding to the map
h. Let us also denote by i the injection i : f — f from C*°(K\G/K) to C*(G).

Theorem 4.3.7. The following diagram commutes.

c>(@)  —I5 S(D)

L- Tj (4.9)

C=(K\G/K) —22 S(Ds)

Proof. First note that F maps from C*(G) to S(D). Indeed, using Theorem 4.3.2,
(ii) we have for all p > 1

~

lim AP f(A)]zs =0,

[A| =00

which means by definition that f € S (D).
Similarly, 7° maps from C*°(K\G/K) to S(Dg). Using Theorem 4.3.4, we have

forallp > 1

lim (AP (V)] = 0.

[A| =00
thus, by definition f5 € S(Dg). We want to show that (F o) f = (j o FS)f, for all
f e C*(K\G/K). From Corollary 3.2.2 we know that for all A € Dg, the Fourier
transform Ff(\) is a dy x d, matrix that has one non-zero entry at (1,1) equal to
the spherical transform F° f()\). That is, for all f € C°(K\G/K) and X € Ds,

Ray (Ff(N) Ray = Ff(A) = (F°f)(N) Ray. (4.10)
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4.8.  Regularity of K-bi-invariant functions and spherical Fourier series

Also, j : S(Ds) — S(D) transforms F* f(\) to a dy x dy matrix, whose coefficients
are all zero with the exception of the (1,1)th entry which is equal to F°f()) itself.
That is, for all f € C*(K\G/K) and A € Dg, we have

7 (F2FN) = (F7F(N)Ra, (4.11)
Thus, from equations (4.10) and (4.11) we conclude that
(Foi)fIN) = (F f(A)Ray = [(j o F*)fI(N),  forall A € Ds.

Finally, when A ¢ Dg, both sides of the last identity are equal to 0. So, we can
conclude that the diagram (4.9) commutes. O

Theorem 4.3.8. The Fourier transform F : f ]/‘\ s a topological isomorphism of
C*(G) onto S(D).

Proof. See [55] Theorem 4, p.44. O

Theorem 4.3.9. The spherical transformation F° : f fAS 1S a linear isomorphism
between C*(K\G/K) and S(Dg).

Proof. We are following the proof of [6] Theorem 3.4.3 p.78 and of [55] Theorem 4

p.44. The mapping F* is linear by definition of the spherical transform. To see

that F° is an mJectlve map, let fi,fo € C®(K\G/K) such that F3f; = F3f,,

that is such that f5(\) = f2( ) for all A € Dg. From Theorem 4.3.5 we know

that f5(\), f5(\) € S(Ds), and in particular [f5(A)| = O(|A|™*) for i = 1,2 with

s>r+ 37’” Now by applying Corollary 4.3.3 the following two series Z dAflS (N
AeDg

and Z dy f2 )¢ converge absolutely and uniformly to f; and fo respectively.
AeDg

Hence, by uniqueness of the limit and the fact that Z d,\f?()\)@ = Z d,\fzs()\)gzﬁ,\
AeDg AeDg
we conclude that f; = fo. The mapping F° is therefore injective.

To prove that F° is surjective, let us consider a function F € S(Dg). We seek
to find a function frp in C*°(K\G/K) such that F(fr) = F. Moreover, by Theorem
4.3.5, for any ¢ > 0, there exists Ay € Dg such that for all |A\| > |X\o| and p € N,
|F(A\)| < e|A|7P. Thus, we have

Y. DIFMaI<e Y DA

AEDg,|A[>[Ao] AEDg,|A[>|Ao]

<Ce Y A

AEDg,|A[>] o]
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The last inequality follows from Proposition 4.1.1. The series on the right-hand
side Converges for any p € N that satisfies p > r +m. Therefore, the series

Z daF(N\) ¢ converges absolutely and uniformly and we can define the function
)\GDS
Z dyF (A ) for all ¢ € G. By uniqueness of the spherical series
AeDg

—~S
expansion, we have F = fr = F°(fr). It follows from Theorem 4.3.5 that fr is a

smooth function.
Also, f is a K-bi-invariant function, since the spherical functions ¢, A € Dg are
all K-bi-invariant: for all ki, ks € K,

flhighs) = > dxF(A) oalkighs) = > dyF(A = f(9)-

AeDg AEDg
This allows to conclude our proof that F° is a linear isomorphism between

C*(K\G/K) and S(Dg). O

Let us introduce the topologies of C*°(G) and S(D). The space of complex valued
smooth functions on G, C*°(G) is topologized by the family of seminorms defined by

{po(f) = Ufll - U € U(g)}, (4.12)

where U(g) is the universal enveloping algebra of g, see [55].

The topology of the vector space S(D) is generated by the family of seminorms
{ar(F) = max P I F )] s - 7 > 0}

We will now introduce the topologies of C*(K\G/K) and S(Dg). Similarly to
C*(@G), the topology of C*°(K\G/K) is the subspace topology induced by the same
family of seminorms (4.12). The topology of S(Dg) is generated by the family of
seminorms {g,(F) := max IAl"|F'(N)]}, with > 0.

Theorem 4.3.10. The spherical transformation F° : f j?S s a topological iso-
morphism between C*°(K\G/K) and S(Dsg).

Proof. For F* to be a topological isomorphism it is sufficient to prove that F° and
(F5)~1 are continuous since we have already proven that F° is a linear isomorphism.

We shall first prove that {E]VT(]/”\S(/\)), r >0} and {qr(f()\)), r > 0} are the same on
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4.8.  Regularity of K-bi-invariant functions and spherical Fourier series

C>*(K\G/K). Indeed for all f € C*°(K\G/K) by Theorem 3.2.2 we have

~ S _ r
G (F7f) = max [}

o]

= max |A["[|f(A)[[ s

We know from Theorem 4.3.8 that F is continuous from C*°(G) to S(D), it then
follows, that there exist N € N, Uy, U,,...,Uy € U(g) and a constant M, > 0 such
that

N
TF ) = alF) <M, S pu(f)
i=1
This proves that F° : f fs is a continuous mapping from C*(K\G/K) to S(Dg).

We shall now prove that the mapping (F°)~! : F9f + f is continuous from S(Dg)
to C*(K\G/K).

Let f € C*(K\G/K), by Theorem 4.3.8 we know that the mapping F ! : Ff > f
is continuous from S(D) to C(G), that is for all U € U(g) there exist a finite subset
Ay C N and a constant Cy such that

I fllee < Co 3 au(FF)

reAy

= Co S max 7 IF(F)N) s (113

reAy

By applying Theorem 4.3.7 and equation (4.13) we get

lpufllso < Cy D max | A |F(0)

TEAU

— r S
=Cu Y max A" |[F5()]

reAy

=0y 3 G@(FSy)

rcAy

We can now conclude that F* is a topological isomorphism from C(K\G/K) to
S(Dyg). O
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Chapter 5

Distributions on Lie groups

Let G be a Lie group and let {X;, X5, -+, X;} be a basis of g. Following the work
of Ehrenpreis [15] we will adopt a global theory of distributions on Lie groups. From

now on, we will only be interested in real-valued functions on G.

Definition. A linear functional 7' : C°(G) — R is called a distribution on G if for
any compact set H C G, there exist two constants C'y > 0, k € N such that for all

feCx(H),

d d
Tf| <Cru (Slép‘f’ +ngp|X¢f\ +o Z 81}11p|X¢1Xi2---X¢,9f\> . (5.1)
i=1

11,8250, 0=1

The linear space of all distributions in G will be denoted by D'(G). If the same
constant k£ can be used for all compact set H, then T is said to be of order k. Note that
the vector fields in general do not commute, therefore there are more distinct terms
on the right hand side (rhs) than in the corresponding definition of the distribution
on RY,

It will be helpful for us to use a similar notation to that on R?. First we introduce
the norm || f||eo,m := sup|f(g)| for all f € C(G) with support H. Then, we will

geEH

write Cy Z | X“f|loor for the rhs of (5.1), with the understanding that for any
lal <k
two elements X;,, X;, of the basis of g, the terms ||X;, Xi, flloo,m and || X, Xi, flloo s

are not equal in general, with an obvious extension to higher order terms. We will
regularly use the notation (7, f) = T'f. A distribution 7" is said to be identically
zero on a neighbourhood 2 of a point g € G if for any test function f € C®(G)
with supp(f) C €, we have T'f = 0. Then the support of a distribution 7', denoted
supp(T), is the complement of the set of points g € G such that T is identically zero

o8



in a neighbourhood of g¢.

Definition. Let T : C°(G) — R be a distribution and h € C*(G), then we obtain
another distribution A7 : C2°(G) — R given by

hT(¢) = T(he),  for all ¢ € CZ(G).

Remark 5.0.1. Let 1 be a Radon measure on G, then the linear functional defined
by (T, f) == [, f(g)u(dg) for f € C.(G), satisfies

|(T,f>!§CHSHE\f(9)!, for all f € C(H),

ge

with Cy = p(H). Thus, T is a a distribution of order 0, and we can identify 7" with
i. Moreover, T is a positive distribution, that is for all f >0, (T, f) >0

Proposition 5.0.2. A positive distribution is of order 0.

Proof. The proof is the same as in the R? case see [30], Theorem 2.17, p.38 or [27],
Proposition 2.3, p.270. Let H C G be a compact subset and ¢ € C2°(G) take values
in [0, 1] such that ¢ =1 on H. For all f € C>(H), we have

|f(9)] < 1f(g)e(g)] < sup |f(o)lé(g), for all g € G. (5.2)

Let T" be a positive distribution, then T'¢ > 0 and by linearity from the inequalities
(5.2) we have

—sup [f(o)| - To <Tf < sgg!f(a)l -T¢.

oceEH
That is,
Tf| < sup |f(o)] - T
ceH

So T'is of order 0 with Cy = T'¢. ]

Corollary 5.0.3. If T s a distribution of order 0, then it uniquely extends to a
linear functional on C.(G). Furthermore, if T is positive, then so is its extension and
it uniquely defines a Radon measure on (G, B(Q)).

Proof. We know that C2°(G) is dense in Cy(G) w.r.t. the supremum norm, therefore
every function in C,.(G) can be uniformly approximated by a sequence in C°(G). For
any f € C.(G), let (fn)nen € C°(G) be a sequence converging to f. We define an
extension of T to C.(G) by

I i T
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Chapter 5. Distributions on Lie groups

Note that T is uniquely defined, since if there are two sequences (fr)nen € C°(G) and
(f1)nen € C°(G) converging to the same function f € C.(G), then lim T'(f,, — f}) = 0.
Let T be a positive distribution, then for all positive function f & 8’:(2) > 0 there ex-
ists a sequence of positive functions (f,)neny € C°(G), fn > 0 such that nll_g)lo fa=1.
Then Tf = lim T'f, > 0.

We can aﬁ@ the Riesz representation theorem to obtain a unique Radon measure

pon G, that is
Tf = /G [(g)udg), for all f € C.(G).

]

Theorem 5.0.4. Let P be a distribution on G of order k with support {e}, then P
has the form
Pf= Z LaaXo‘f(e) for all f € CF(G)
o | -

| <k

where a, € R for all |a| < k.

Proof. The distribution P will not vanish on any open canonical coordinate neigh-
bourhood of e. Let us consider such a neighbourhood U C G of e. Then there exists
a diffeomorphism ¢ : U — U , where UcCR!is a neighbourhood of 0 and the map is
given by ¢(g) = (z1(g), ..., xa(g)) with ¢(e) = 0. Then there is a linear isomorphism

Jy: CX(U) — C2(U) given by
Jof = foo™ = f.
Also, for all X; e T.G,i=1,...,d, we have
X = Js X; J;' € Ty(RY).

So given the basis {0, ...,0;} of the tangent space Tp(R?), the vector field X, at
x € U can be decomposed as

Xi(x) = D> ai(#)

where for all 4, j = 1...,d, the functions a;; € C*°(U) satisty a;;(0) = d;;. This means
that at 0 we have X; = 0; (compare with [32] and [45] p.11).
We define the linear functional P : C°(U) — R by

Pf=Pf=P (fo ¢) . forall fe (D).
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Then we have,

Pl =1Pfl<C Y IX fllcs

o<k

=C ) 16X fllocp

la| <k

=C > oy X flloo g

lo| <k

=C > X" fllooze- (5.3)

| <k

For any two vector fields X“,Xm, where i1,y = ,d and for all f € COO(U) with
support H C U we have at x € U

d d
)~( (Z iy j( ) (Z aig,k(x)ak> f(x)

k=1

d d d
> i (2)ai, .k (2)000f () + DD i, j(2)(0501,4) ()01 f ().

M&

j=1 k=1 j=1 k=1
So,
I1X5, X, Flloo.ze < C (Z sup |0 O f ()] + Zsup 10, f (= |)
where Cy = e dsup |la;, j(x)ai, k()] + o dsup ]allj( )(Okaiy 1) (x)]. We iter-
ate these steps for any family of indices 4q,...,4 = 1,...,d, and the vector fields

X, Xi, -+ X;,. By construction, we have

Then as previously, we get

] W

d d d
<Cu (Z 105 Flloome + D 10505 Fllocme +---+ > 19,05, "'3jkf\|oo,Rd> :

Jj1=1 J1,J2=1 J1,J2seJk=1

(5.4)
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Chapter 5. Distributions on Lie groups

Cp in the last line is a constant that depends on the functions
{ail’jl S Coo(fj) = 1,...,]{} and il,jl = 1,,d}
Thus, from (5.3) and (5.4) we get

IPAI<CY 10 flloczs,  forall feC(U).

o<k

So P extends to a distribution on R? with support {0}. We can then use the original
result on R?, see [30] p.46 Theorem 2.3.4., to conclude that for all f € C=(U)

ﬁ}v: Z aaaaf((n

o<k

where a,, € R for all |o| < k. Thus, there exists a,, € R for all || < k, such that

Pf=Pf=Y" a0 f(0)= ¥ a,X"(0

la|<k |a|<k
=Y a(JeX T (Jsf)(0)
la|<Kk
=D anJs(Xf)(0)
la|<k
— Za;Xaf(e), for all f € CZ°(U).
la|<k

Note that the coefficient a,, are due to the non-commutativity of the vector fields,
as when we apply the definition (5.1) of a distribution on G we need to distinguish
all permutations of subsets of Xy,..., X,. O

Remark 5.0.5. In the particular case where P is a distribution of order 2 on G with

support at {e}, P is of the form

f=—cfe +Zbe +Z aUXXf() for all f € CX(G), (5.5)

z]l

where for all 7,5 = 1,...,d, we have ¢, b;,a;; € R. Furthermore, the commutativity
0,0;f = 0;0;f implies X; X f(e) = X,;X,f(e) so a;; = aj;, forall i, =1,...,d.
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Chapter 6

The positive maximum principle on
Lie groups and a generalized
Courrege’s Theorem

6.1 Linear operators satisfying the positive maxi-
mum principle

The main goal of this section is to prove a generalization of the Courrége theorem [13]
to Lie groups using the methodology of Hoh [28] on Euclidean spaces. For this we need
to extend the definitions and properties of the functionals and operators satisfying
the positive maximum principle on a Lie group G. Let us denote by Fun(G,R) the

space of real-valued functions on G.

Definition. Let F be a subspace of Fun(G,R). A linear operator A : F — Fun(G, R)
is said to satisfy the positive mazimum principle ("PMP”) if for all ¢ € E such that
©(g) = sup (o) > 0 for some g € G, then Ap(g) < 0.

oceG

In particular, we will be looking at the cases where F is C°(G), C*(G/K), C*(K\G)
or CX(K\G/K).

Definition. A linear functional 7' : C*(G) — R is called almost positive if for all
¢ € CX(G) such that ¢ > 0 and p(e) = 0, then T > 0.
We say that T satisfies the positive mazimum principle if for all ¢ € C°(G) such that
ple) = suggo(m) >0, then T'p < 0.

xe

Remark 6.1.1. Suppose that 7' : C°(G) — R is an almost positive linear functional.
Then for any two functions f, h € C2°(G) such that f(e) = h(e) = 0 with | f(g)| < h(g)
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for all ¢ € G, we have |T(f)| < T'(h). To see why this is so, observe that since
f—h<0with (f —h)(e) =0 and —h — f <0 with (=h — f)(e) = 0, we can use the
almost positivity of T' on both inequalities. Then by linearity of T" we get respectively
T(f) <T(h) and =T'(h) <T(f), so that |T(f)| < T(h).

Proposition 6.1.2. If T : C°(G) — R satisfies the positive mazimum principle then

it 1s almost positive.

Proof. Let ¢ € C(G) be such that ¢ > 0 and ¢(e) = 0. So the function —p €
C*(G) attains its non-negative supremum at e. By the PMP, T'(—¢) < 0 and the
linearity of T gives T'p > 0. [

Let us now explore the relationship between operators and functionals satisfying
the positive maximum principle. For any linear operator A : C>°(G) — Fun(G,R),
we define a family of linear functionals A, : C°(G) — R, g € G by

Agp = (LgALy1)p(e) = A(Lg-10)(9g). (6.1)

Lemma 6.1.3. A linear operator A : C°(G) — Fun(G,R) satisfies the positive
mazximum principle if and only if for all g € G the functional A, satisfies the positive
mazximum principle.

Proof. For necessity, let ¢ € C(G) be a test function with ¢(e) = sup (o) > 0.

oeqG
Then for any g € G, the translated function (L,-1¢) € C2°(G) satisfies

(Ly~1¢)(g) = sup(Ly-1¢)(0) > 0. Now, since A satisfies the PMP we get

ceG

Agp = A(Ly10)(g) <0.

For sufficiency, let ¢ € C°(G) be such that ¢(g) = sup (o) for some g € G. Then
oeG
the translated function Lyp € C°(G) satisfies (Lyp)(e) = sup Lyp(0). The functional
oeqG
A, satisfies the PMP, thus we have

Ap(g) = (LgALg-1Lg)p(e) = Ag(Lgp) < 0.

]

Let us recall that the exponential map is a diffeomorphism from a neighbourhood V
of the origin in g to a neighbourhood U of e in G. For the given basis (X1, Xs, ..., Xy)
of g, there exists a family of smooth functions x; : U — R, ¢ =1,...,d such that

d
= exp (Z xi(g)XZ) for all g € U (6.2)
i=1
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if Zizl ap Xy € V, see [47]. We call the functions x;, canonical coordinate functions,

and for alle=1,...,d,

they satisfy z;(e) = 0 and X;zg(e) = i, for all i,k = 1,...,d. From now on, for all
i =1,...,d the function z; will be extended to G so that z; € C°(G).

Theorem 6.1.4. [Taylor’s Theorem] Let f € C3(G),g € G, then for alll € U there
exists ' € U such that

d
£(g) = Flo) + 3w Xif () + 5 3wl XX (gl
Proof. See [6] Theorem 5.3.1, p.127. O

Remark 6.1.5. As a direct consequence of the theorem, we also have the following
inequality: for all f € C3(G),g € G,l € U we have

d

£9) = £(9) = S wDXi ()] < 5 D (D (D)] sup | XX, o)

i=1 ij=1
. d
2
< g o WXXifl Dt (63
by the Cauchy-Schwarz inequality.
Also, by a change of variable we can reformulate Taylor’s theorem:

Corollary 6.1.6. Let f € C3(G), g € G, then for all h € l,U there exists W' € 1,U
such that

F0) = £(9) + YLy a) (Xl (6) + 5 D (L) (0) Ly 1) (WX X, ().

Proof. This follows directly from Theorem 6.1.4, by putting h = gl for all g € G and
leU. Sox;(l) = (Ly—1x;)(h) forall i =1,...,d and b/ = gl'. O

Note that here we translated the local coordinate functions, so we get
Xi(Lg12;)(g) = 6j:(e) forallge Gandi,j=1...,d

Lemma 6.1.7. Any function ¢ € C°(G) with local maximum ¢(o) = sup p(g) for
gev

some o € G on a neighbourhood V' of o, satisfies X (o) =0 for all X € g.
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Proof. For any X € g, let us introduce the function ¢ — ¢(oexp(tX)) from R to R.
This function is smooth and attains a local maximum at ¢t = 0, therefore we have

%gp(a exp(tX))| = X¢(o)=0, for all X € g. (6.4)
t=0

]

We will now mostly follow the approach adopted in Hoh [28], that we will generalize
to GG. Let us first recall some properties of Hausdorff spaces, that we will use in the

following theorem.

Proposition 6.1.8. If X is a Hausdorff space then any finite number of points
xr1,...,x, € X can be separated by pairwise disjoint open sets.

Proof. Let us denote by 2 the topology on X and by S the set of finite points
S =A{x1,...,2,} C X. From the definition of a Hausdorff space, we know that for
any pair z;, x; € S, such that z; # x;, there exist two open sets U;;, Uj; € €2 such that
x; € Uij, T; € Uji and Uij N sz‘ = 0.
Let us now fix a point x; € S, then we can define another neighbourhood of z;
n

by U; := m Ui;, which is a finite intersection of elements in €2, therefore U; € ().

j=1
Furthermore, for all z;, z; € S such that x; # x;, we have

(U; N U) C (Ui N U) = 0.

Thus, we have proved that there exists a family of pairwise disjoint open sets
Uy, ..., U, € Q containing z, ..., x, respectively. O

Theorem 6.1.9. Let T : C°(G) — R be an almost positive functional, then T is
a distribution of order 2, that is for any compact subset H C G there is a constant
Cyx > 0 such that

\Tw!§0H<sup\s0 !+Zsup|Xso |+Zsup!Xng( )I)

Q=17

for all test functions p € C°(G) with support in H.

Proof. Let p € C°(G) with supp(¢) = H where H C G is a compact set. Define the
constant

M :=sup |p(g |+Zsup]X<p |+Zsup|X ©(g)|.

geH = 19'E 1,j= 196
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The set H is covered by U [,,U and since it is compact, there is a finite subcover

keH
{Uy,...Un}, where U; := I},,U for some k; € H, i = 1,..., N. Furthermore, since G
is a Hausdorff space, we can separate the points kq, ko, ..., ky by a family of pairwise

disjoint open sets Wy,..., Wy C G such that k;, € W; for all « = 1,..., N, see
Proposition 6.1.8.

In the following we will use Taylor’s theorem at each k;, [ = 1,..., N, with the

translated local coordinates. First, denote the constant

d
C, := max {sup’( k1) ( ’ Zsup Xi(Ly-120)(g )‘ Z sup | X; X (Lk_lxr)(g)‘}.
d geG ij— geG

.....

We will now define a function ¢ € C2°(G) which will serve as test function for the

argument below.

N N d

Blg) = 0(g) = Y _pk)alg) = >3 Liw,(g) ailg) Xop(kr),  forall g € G,
=1

=1 r=1
(6.5)
where for all [ = 1,..., N the function ¢; € C2°(G) takes values in [0, 1] with support
in W, and is equal to 1 in a neighbourhood of k;. Let us denote the constant

d
Cyi= max_ {sup\sl DI+ sup|Xe(o)| + > sup | X;Xjeilg ”}

9€C 1,j= 19

Then from (6.5) for all g € G and 7,5 = 1,...,d, we have

X X;3(9)] <IXiX0(9)| + ) lo(k)| |1 Xi X e(g)]

=1

+ ﬁ: zd: | X o(ky)] ‘Xin <5l(9)(Lk;1xT)(g)> ‘

=1 r=1
N d
<M+ M+ MY [ailg) XiX, (L 1) (9)]
=1 r=1
N d
MY (( )@ XeX2(0)] + 1X20) XLy (0)
=1 r=1

+ |Xi5l(g)||Xj(Lkl1xr)<g)|)
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where C' > 0 is a constant depending on ¢,/ = 1..., N and the local coordinate
functions. In particular, at k,, € U, for all m =1,..., N, we have
N N d
Plkm) = (k) = > lk)erkm) = > > (L) (kim)er(kn) Xrp (k)
=1 =1 r=1
= @(km) — @(km)em(km) — Z(Lk;zlmr)(km)XrSO(km) = 0. (6.6)

Next we will calculate X;p(k,,), for all @ = 1,...d. For this, first note that
gm equals 1 in a neighbourhood of k,,, so by using Lemma 6.1.7 for the function

d
t— em(kmexp(tX)) for all X € g, we have Xe,, (k) = —&m(kn exp(tX)) = 0, for

all X € g. Thus, dt
Xip(kn) = iw (k) Xizi(Fm) = iZX (L) em)erlhn) ) Xaco(ki)
= Xip(kn) = (k) Xicm(kn) = iXZ<Lk;gxr><km>Xw<km>
- ééikagp(km) = 0. (6.7)

For any g € H, there exists at least one m = 1,..., N such that g € U,,. Thus, by
d

equations (6.6) and (6.7), we have ¢(g) = ©(g9) — p(km) — Z(Lk:nlxr)(g) Xip(kp)-

i=1
Using this with the corollary of Taylor’s theorem 6.1.6 and the Cauchy-Schwarz in-
equality we have for all g € G

2(9)] = |2(9) )= D _ (L) (9) Xi ki)
< % > L)) (Ligoas)a)] sup XX, 3(0)

1 d
< SACM Y |(Liswi)(9)|

i=1

As a consequence, we have

N d
12(g) CMY > |(Lyiwi)(g)],  forallge H. (6.8)

m=1 i=1

1
2
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Since ¢(g) = 0 when g ¢ H, we can extend the inequality (6.8) to all ¢ € G. For
simplicity, let us introduce the function h € C2°(G) defined by

N d
h(g) = Z Z |(Lyzr2:)( ? forall g € G.

m=1 i=1

Observe that @(e) = h(e) = 0 and |@(g)| < 3dCMh(g) for all g € G. Thus, since T
is almost positive, by the argument of Remark 6.1.1 we have

T(@)] < GdOM T(h).

So, by linearity of 7" and the definition of ¢ in (6.5) we have

N d
T() < T(p |+Z|so (R)IT )]+ > [T La )| [ Xip(k)]

=1 k=1

< =dCM T(h )+MZ]T(51)] + MY Y | T(eal

=1 k=1

DO —

Since the cover (Uy,Us,...,Uy) depends on the compact set H, so do all the local
coordinates and the functions €. We can then conclude that there is a constant Cg > 0
that depends on H such that

T ()| < CuM.

]

Definition. We say that a Borel measure p on G* = G\{e} is a Lévy measure if for
every canonical coordinate neighbourhood U of e we have

/ (Zm > (dg) < oo, and u(UY) <

Note that this definition is a slight variation from those found in the literature: p.38
in [47] or p.128 in [6].

Theorem 6.1.10. Let T : C°(G) — R be a linear functional satisfying the positive
mazimum principle. Then there exists a unique family of constants a;j,b;,c € R,
i,7=1,...d and a unique Radon measure p on G* = G\{e} such that

i) (aij)i’jzl 77777 4 1S a symmetric non-negative definite matrix
it) ¢ >0

ii1) u is a Lévy measure
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and T is of the form

d d
1
=5 ZaininSO(e) + ZbiXi(P(e) —cp(e)
i=1

4,j=1

+ / * (so(g) —ple) = > mi(g)Xigo(e)> 1(dg), (6.9)

i=1

for all p € C(G).

Proof. Let V be a compact neighbourhood of e such that U C V, and let ¢y, ¢y € C(G)
be two functions taking values in [0, 1] with supports respectively in V and in U,
such that ¢;(g) = 1 for all g € U, and ¢y(g) = 1 for all g € VC.

d
We introduce the function £ := Zx?() - ¢1 + ¢o from G to R and note that

=1
€(e) = 0. Then & - T is a positive distribution. Indeed, for all ¢ € C°(G) such that
v >0, we also have £ - p > 0 with £(e)p(e) = 0. So by almost positivity of T" we get

Since & - T is a positive distribution, it is of order 0 by Proposition 5.0.2. Thus, by
Corollary 5.0.3 there exists a unique regular Borel measure v on GG such that v = ¢-T',
€T, f) = fG v(dg) for all f € C*(G). We define another Borel measure

W= % - V|ge on G*, so that we have

Tn=(Tn= | 1)

¢ v(dg) = 5 f(9)u(dg),  forall f e CZ(G").

(6.10)
The set V' is a compact neighbourhood of e and we define V* = V/{e}, so by regularity

1
£(9)
of measure v we have

/ (Zﬂf ) . Slg)uldg) < v(V) < oo (6.11)

Let a, f € C°(G) be two functions taking values in [0, 1], such that supp(a) C U
and supp(3) C U® with a(e) = 1, so

a(e) + fe) =1+ 0 = sup(a + F)(g).

geG

By the positive maximum principle, T'(a + ) < 0, so by linearity of T, we get
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Tp < —Ta, that is
@)= [ Blantds) < ~(T.0)

Taking the supremum over all possible 5 it then follows that

w(U) < —(T,a) < o0 (6.12)
So the measure p is indeed a Lévy measure.

We introduce a linear functional S : C2°(G) — R, by

S = /G [@(g) —p(e) — 2371‘(9))(@")0(6)] p(dg),  for all p € CF(G).

The integral is finite by a second order Taylor’s expansion and properties of the
measure p. By Lemma 6.1.7 for all ¢ € C°(G) such that ¢(e) = supp(g) > 0 we
geG

have X;p(e) = 0, therefore

So= [ {ele) = o(e)) uldg) <0.

That is, S satisfies the positive maximum principle. By Proposition 6.1.2 and Theorem
6.1.9 both T" and S are distributions of order 2, thus so is their difference P :=T — 5.
If ¢ € C°(G) with e ¢ supp(y), then

Sp = / o(g)u(dg) = Tep.

That is Py = 0 for all such ¢ € C*(G), therefore supp(P) C {e}. Thus, using
Theorem 5.0.4, P is of the form

d d
1
Py = 5 Z a;; XiXjp(e) + Z biXip(e) — cp(e).
ij=1 i=1

We will now prove that the constant ¢ is positive. Let (¢r)ren be a sequence of
non-negative, monotone increasing functions in C°(G) such that ¢, = 1 in a neigh-
bourhood of e which is pointwise convergent to 14, then by the monotone convergence
theorem

Soe = [ (o) =1) uldg) =0, ask o

So
Typr = Py, + S = —cpr(e) + S, — —c, as k — oo.
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Note that for all k € N, pr(e) = suppr(g) > 0, and since T satisfies the positive
geG

maximum principle we have T, < 0. Thus, ¢ > 0.

From Remark 5.0.5, we already know that (a;;) is symmetric. We will now prove
that (a;;) is also positive definite. Let (¢i)reny be a sequence of monotone decreasing
functions in C°(G), taking values in [0, 1] such that e, = 1 in a neighbourhood of e
with Vi C Vi when k > k' and ﬂ Vi, = {e}. Let us also denote by f; € C°(G) the

keN

d
1
function defined by f¢ := 3 Z &i&mi()z(+), where € = (&, ...,&) € R%. Note that
ij=1
for all 1 < k,l < d, we have

d
1
X Xife = 3 Z &6 X Xk (i)

ij=1

d
1
=3 > &&i(8ridyy + Gr0n)

i1
1
= 5(&51 + &&k) = &k

Furthermore,
T(ex - fe) = Pler - fe) + Slex - fe)

LY e+ / £4(9) fe(9) p(dg).

ij=1 G*

d

1
Thus, by dominated convergence T'(e - f) — 3 Z a;;&:€&; as k goes to infinity. Also,
ij=1
d
since T is almost positive, T'(ex- f) > 0, so Z a;;6:€; > 0 and (a;;) is positive definite.
ij=1
It is clear that (a;;) and ¢ are uniquely defined for all 7. Moreover, v was
uniquely defined and therefore p is also uniquely defined. This allows as to calcu-

d

late ZbiXigp(e) for any ¢ € C(G), so the vector b = (by,...,bs) € R? is also
i=1

uniquely defined. O

We will now establish the converse of Theorem 6.1.10.

Theorem 6.1.11. Every linear functional on C°(G) of the form (6.9) satisfies the

positive maximum principle.
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Proof. By Lemma 6.1.7, for any function ¢ € C°(G) such that ¢(e) = sup p(g) > 0,
geCG

we have X¢(e) =0 for all X € g. Thus, in (6.9) both the first order differential part
and the integral part satisfy the positive maximum principle. So now we only have

to deal with the second order differential part.
d
Fix h € U and let us consider the function H : t — ¢ [ exp (th&h)X,)) from

i=1
R to G. Let P, be the second order Taylor polynomial of H around 0,

Palt) = le) + £ 3 () Xigle) + % Z iRy (W) XX ().

Then H(t) — Py(t) = o(t?) as t — 0. That is

© (exp (t Zmi(h)xi> ) —p(e)—t Z xi(h)Xigp(e)—% Z i (h)z;(R) X X 0(e) = o(t?).

Thus, by Lemma 6.1.7 and the fact that ¢(e) = sup ¢(g) we have
geG

d
o(t?) % Z h)x;(h)X;X,p(e) (exp (thz Z)) —p(e) <0.

Hence, dividing by ¢? and taking the limit ¢ — 0 we get

Z z;(h)x;(h) X;X;p(e) < 0.

The map h +— (z1(h),...,z4(h)) is a diffeomorphism from U to an open neigh-
bourhood U of 0 € R%. Let us fix an open ball B,(0) C U of radius r > 0. Then given
any A € R? there exists ¢(\) > 0 such that ¢c(A)X € B,(0), i.e. foralli=1,...,d,
c(A)A\; = z;(h) for some h € U. Then we have

ZA)\XXf

2,7=1

Z hX:X;f(e) <

We conclude that any linear functional on C2°(G) of the form (6.9) satisfies the

positive maximum principle. 0

re now in ition neraliz urre rem rem 3.4 in
We are no a position to generalize Courrege’s theorem, see Theorem 3.4

[13], from Euclidean spaces to Lie groups. For a detailed proof on Euclidean spaces,
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see also Jacob and Schilling [36] and Jacob [34], p.360.

Definition. A Lévy kernel is a family of measures {u(g,-),g € G} on (G, B(G)) such
that for all g € G, u(g,-) is a Lévy measure.

Theorem 6.1.12. A linear operator A : C*(G) — B(G) satisfies the positive maxi-
mum principle if and only if for all g € G there exist

a unique real symmetric non negative definite matriz (a;;(g))
a unique vector b(g) € R?

a unique constant c(g) >0

a unique Lévy kernel

such that, for all ¢ € CX(G) and g € G,

Apls) =5 D7 ()X X0(0) = Do) Xipls) — lo)o()

[

Proof. From Lemma 6.1.3, we know that A satisfies the PMP if and only if for all
g € G the linear functional A, as defined in (6.1) satisfies the PMP. Thus, for each
g € G, the functional A, has the form (6.9),

(gr) — Z 7)Xie(g) | plg, dr). (6.13)

d d
Agp Z% Z aij(9)Xi Xjp(e) — Z bi(9)Xip(e) — c(g)e(e)
1,j= ) 1=
+ /G (so(f) —p(e) Z xi(T>Xi@(e)> (g, dr).

Then in particular for the function L, € C°(G), we get

Ap(g) = Ag(Lyp) —% > aii(9)XiX;0(g) - Z bi(9)Xip(g) — c(g)¢(g)

4,7=1

* (@(97) —p(g) — Z%(T)Xw(g)> p(g, dr).

+

S—

]

We will be particularly interested in the case where A is the generator of a Feller

semigroup on Cy(G). So in the following, we will establish sufficient conditions for
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A C*(G) — Co(G). For the most recent results on Euclidean spaces see Kithn and
Schilling [42].

First, let us introduce some simplifying notations. Define the map H : C*(G) —
C(G x G) by

Hf(g,7):= f(g7) — f(g9) — in(T)Xif(g), for all f € C°(G), 17,9 € G. (6.14)

Theorem 6.1.13. Let A be a linear operator on C°(G) satisfying the positive max-
imum principle such that

i) The functions a;;(+),b;(+),c(-), for alli,j =1,...,d are continuous on G.
i) If (gn)nen 18 a sequence such that g, — g as n — oo for some g € G, then

d
. 2 _ _
Jim [ 320 o) = g )] =0

and
lim |:U“<gv dT) - ,U(gn, dT)| = 07

n—o0 Uc

Then the operator A maps C°(G) to C(G).

Proof. A satisfies the positive maximum principle, therefore it is of the form (6.13).
When a;j, b;, ¢ are continuous functions on G, the differential part in (6.13) will be
clearly continuous. To deal with the integral part, we will split it into two.

/G* [f(gf)—f(g)—zwi(T)Xif(g)}Mg’dT)= Hf(g,m)ulg,dr)+ | Hf(g,7)ulg,7),

Uc U
(6.15)
for all f € C*°(G) and g € G.
First, let us prove the continuity of the integral over U, for this we will use
both the uniform continuity of the function f and assumption (ii). As g, — g when

n — oo, we have

/Hfg, (g, 7 /Hfgn, 1G> T)

/UC [f(gT) — [(gn7) = f(9) + f(9n) Zx Xf(gn))] 1(g, dr)

<

n (6.16)

. H f(gn, 7) [1(gn-dT) — p1(g, d7)]
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By smoothness of the function f, when g, — g we have f(g,) — f(9), f(g.T) —
f(g7) and X;f(g.)—X:f(g) = 0, forall 7 € U® and i = 1,...,d. Thus, by dominated
convergence, the first integral on the right hand side of (6.16) converges to 0, when
gn — g. As for the last term in (6.16), we have an upper bound

d
‘/Uc [f(gnT> - f(gn>_zxi(T)Xif(gn)] [14(gn-dT) — p(g, dr)]

< Ky /Uc |1(gn, d7) — p1(g, 7)| (6.17)

where Ky = 2SU.p|f )|+ Zsup]:cz )| Xif(g)]- Using (ii), the right hand side

i=1 9¢
converges to 0 as g, — ¢g. We will now deal with the continuity of the integral over

U*. For all g € G, we have

Hf(g,7) u(g,dr) — | Hf(gn,7) p1(gn,dr)
- -

[ (#5(.7) ~ H (g 7)) wg. )

<

/Hf s ™) 1 &) — g, d7)]
(6.18)

Again, by smoothness of f € C*°(G), when g, — g we have H f(g,,7) — Hf(g,7),
for all 7 € U. Also, by Taylor’s formula, for all 7 € U there exist 7/, 7" € U such that

|H f(g,7) = H[f(gn, T

d
%Z ) IXaX;f(g7") — XiX; f(gnT")]

Let us denote M" := max - sup | X;X;f(g)|. Then from the previous equation and
i,5=1,..., geG

by the Cauchy-Schwarz inequality, we get

d
|Hf(g77—) - Hf(ngN < M”dme(T)

The right hand side is integrable over U* with respect to the measure u(g, -), therefore
by dominated convergence / [Hf(g,7) — Hf(gn,T)] t(g,d7) goes to 0 as g, — g.

For the last integral in (6.18), similarly as before, we use Taylor’s formula and the
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Cauchy-Schwarz inequality which gives
d d
|H f (g, 7)| < §M”fo(7), for all g, € G,7 € U*. (6.19)
i=1

From the assumption (ii) it then follows that the sequence [, H f(gn, 7)[tt(gn, 7) — 11(g,7)]
converges to 0 as g, — ¢g. Hence the right hand side in (6.18) converges to zero. We

then conclude that Af is a continuous function on G. O]

Theorem 6.1.14. Let A be a linear operator on C°(G) satisfying the positive max-

mmum principle such that
ii1)
d
. 2 o
lim (2 7} (T)) u(o,dr) =0

U*

and
lim p(o,U%) =0,

g—00
Then Af wvanishes at infinity for all f € CX(G).

Proof. Note that the differential part of Af in (6.13) has compact support for all
f€Cx (@), so when 0 — oo the differential part of Af(o) will vanish for any
f € C(G). As for the integral part in (6.13), we will split it into two again

/ Hf(o,m)u(o,dr) = / Hf(o,m)p(o,dr) + Hf(o,m)u(o,dr), for all o € G.
G U+

Uc

Thus, using the inequality (6.19), for all 0 € G

Hf(o,7)u(o,dr)

U*

< [ 1sten) o)

< / * (Z x?(ﬂ) (o dr).

Therefore, using the condition iii), given any £ > 0, there is a compact set W, such
that for all o € W,

<e/2.

Hf(o,7)p(o, dr)
e

For the second integral,

<CM - N(Ua UC)7

Hf(o,7)u(o,dr)

Uc
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where C' and M are as defined in (6.17). Using condition iii), there is a compact set
W, such that for all o € W,

Hf(o,7)u(o,dr)
Uc

<e/2

Since Wy U Wy is compact, by summation we get

Hf(o,7)u(o,dr)
o

<e forallo e (W, UW,)°.

We have proved that the integral part of Af also vanishes at infinity:. n

Corollary 6.1.15. Let A be a linear operator on C°(G) satisfying the positive max-
imum principle such that conditions i), i) from Theorem 6.1.13 and condition iii)
from Theorem 6.1.14 are also satisfied. Then A maps C°(G) to Cy(G).

Proof. This follows directly from Theorem 6.1.13 and Theorem 6.1.14. [

6.2 The positive maximum principle and killed Hunt’s

formula

Let (2, F,P) be a probability space where the o-algebra F is equipped with a filtration
(Ft)e>0. We will consider a Markov process (Y;)i>0 with respect to the filtration
(Ft)e>0, taking values in G. We will denote the transition probabilities of (Y;);>o by
pi(o,A) .= P(Y, € AlYy =0) for all A € B(G) and 0 € G. We then have a one-
parameter contraction semigroup of operators on By(G) given for all f € By(G),
o€ G by

1) = [ 1) (6:20)
The family of operators (7}):>¢ is called a Feller semigroup if
i) T,(Co(G)) C Co(G) for all t > 0,
i) 1im |7,/ — flloe = 0 for all f € Co(G).

In this case we say that (Y;):> is a Feller process. We will denote by A the infinitesimal
generator of the Feller semigroup (7;);>0. The following lemma is well-known, see [34],

p.332. We will include the proof for completeness.

Lemma 6.2.1. Let (T})1>0 be a Feller semigroup with generator A such that
C*(G) € Dom(A), then A satisfies the positive mazimum principle.
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Proof. Let f € C(G) such that f(go) = sup f(o) > 0 for some g € G. We have

oeG

(Tef — f)(90) 1

Af (o) = i T i 7 [ 1£7) = flaoltan. ) < 0.
This proves that A satisfies the PMP. n

The generator A of a Feller process satisfies the PMP so by Theorem 6.1.12, A
can be characterized by a quadruple ((a;;),b,c, ) and we say that this quadruple is
associated to A. In particular, we will explore the relationship between the transition
probabilities of the Feller process and the Lévy kernel associated to its generator.
This generalizes a well-known result about convolution semigroups in R, see [53],
Corollary 8.9, p.45, which has recently been extended to the current context, in the
case where G = R, in [42] Theorem 3.2.

Proposition 6.2.2. Let (p:)i>0 be the transition probabilities associated to a Feller
process, with Feller semigroup (T})i>0 and generator A. Assume that C°(G) € Dom(A),
then for all g € G and f € CX(G) vanishing on a neighbourhood of g,

lim + / fOpelg.dr) = [ Flgr)ulg,dr),
G G*

t—0 t

where p is the Lévy kernel associated to A.

Proof. By definition, we have for all f € C>*(G), g€ G

Af(g) =l +(Tif(g) ~ F(a) =lim + [ (F(r) ~ F(a)mlg.dr)  (621)

t—0 t G

Given that the generator A satisfies the PMP, by Lemma 6.1.3 for all ¢ € G the
distribution A, also satisfies the PMP, where A, is defined in (6.1). From (6.10) we

have shown that for all g € G and f € C*(G), A, f = / f(r) (g, dr) where u(g, )

*

is a Lévy measure. Thus, for all g € G and f € C°(G) we have

AF) = ALof) = [ o) ng.dn) (622

In particular when f € C2°(G) vanishes on a neighbourhood of g € G, from (6.21)
and (6.22) we get

t—0 {

lim ~ / f(T)pilg,dr) = [ f(g7) (g, dr).
G G*
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Definition. A family of probability measures (1;):>0 on (G, B(G)) is called a convo-
lution semigroup of probability measures if

1) Hstt = Hs * Ht, for all s,t >0
11) Ho = 5ea
iii) PH& iy = po- (weak convergence)
%

Let (u¢)¢>0 be a convolution semigroup of probability measures on G. It then follows
that p, is infinitely divisible for all ¢ > 0, see [6] p.123.. These semigroup of measures
arise as the laws of Lévy processes on G, see p.10 in [45]. A Lévy process is a Feller
process and the associated Cy(G)-semigroup, (7;);>0 defined on Cy(G), is called a
Hunt semigroup and is defined by

Tif(g) = / fgT)pe(dr), forallt >0, f € Cy(G) and g € G. (6.23)
€
If we compare this to (6.20), we see that

pi(o, B) = (0 7' B)

for all o € G and B € B(G). The infinitesimal generator A of a Hunt semigroup is
called the Hunt generator . From the definition of the Hunt semigroup it follows that
L,T, = T,L, for all 0 € G and t > 0. Furthermore, we know that if f € Dom(A)
then L,f € Dom(A) for all ¢ € G. Therefore, L,Af = AL, f, for all f € Dom(A),
see Lemma 5.3.2 in [6] and [32]. It is well known that C°(G) € Dom(A), see [47].
Thus,

L Af = AL, f, for all f € C°(G).

The following proposition is the classical result that the Hunt semigroup is precisely

the left-invariant Feller semigroup.

Proposition 6.2.3. Let (T});>0 be a Feller semigroup in Co(G) such that L,T; = T, L,
forallt >0, g € G andpy(e,-) = dc(-). Then (Ty)i>o is the Hunt semigroup associated
with a convolution semigroup of measures.

Proof. We follow the same steps as in the Euclidean case, see [3], Theorem 3.3.1,
p.161-2. Let (7})i>0 be the Feller semigroup of a Feller process Y with transition
probabilities (p;);>0. By definition (6.20), we have for all f € Cy(G), g,0 € Gt > 0,

L(T.f)(0) = /G F(pelgor, dr)
T(L,f)(0) = /G £(g7) po(o, dr) = /G £(g7) pelo, g~ dn).
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The semigroup (7})¢>¢ is invariant w.r.t. to left translation so, by the Riesz represen-
tation theorem we get

pi(go, B) = pi(0, 9 ' B), for all g,0 € G, B € B(G),t > 0.

For all ¢ > 0, define p; := p(e, ), so we have pug = po(e,-) = d.(-). Furthermore, for
all Be€ B(G),t>0and g € G,

pe(g, B) = pele, g7 ' B) = (g~ ' B).

The using the Chapman-Kolmogorov equations for all £,s > 0, B € B(G)

M5+t(B) = ps+t(€a B) = /Gpt(T’ B)pS(evdT) = /GILL,:(T_lB),uS(dT),

so (ft)e>0 1s a convolution semigroup of measures. Vague continuity follows from
the fact that (7;);>0 is a Feller semigroup. From [26], p.25 Theorem 1.1.19 we know
that in the case of a family of probability measures on locally compact spaces, vague
continuity is equivalent to weak continuity. O]

We will now recall the well-known Hunt’s theorem [32], for this first we define the
space

CPN(@) == {f € Co(G): Xif € Co(G) and X;X,.f € Co(G) for all 1 > i, j, k > d}.

Then, we have C°(G) C C’éz)(G) and 052)(63’) is dense in Cy(G).

Theorem 6.2.4 (Hunt’s Theorem). If A is the generator of a semigroup of operators
associated to a convolution semigroup of measures (fit)i>0, then

1. (@) C Dom(A)

2. forall f € CP(G), g € G,

d d
1
Af(g) = ; ai; XiX;f(9) + ; b:Xif(9)
d
+/ <f(97) - fl9) — Zl'i(T)Xif(g)) p(dr) (6.24)
G i=1
where (a;;) is a non-negative definite, symmetric matriz, (bi,...,bs) € R and p is a
Lévy measure on (G, B(G)). Conversely, any linear operator represented as (6.24), is

the restriction to C2(G) of the Hunt generator corresponding to a unique convolution
semigroup of probability measures.
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Proof. See [32], [26] Theorem 4.2.4 p.262 or [6] Theorem 5.3.3, p.132. O

Definition. Let (u4)i>0 be a convolution semigroup of probability measures with
Hunt semigroup (7});>o. For a fix ¢ > 0, we will consider a family of measures (fi;)i>0
on (G, B(G)) given by

fy = ey, forallt>0.

Thus, we have 1,(G) = e~ < 1 for all ¢ > 0. Then (fi;);>0 is a convolution semigroup
of sub-probability measures, that is, it is a family of measures with total mass not
exceeding 1 and satisfying the conditions i)-iii), that we listed above for convolution
semigroups of measures. Furthermore, we will define a family of operators (S;):>0 on
Co(G) by

S, =e T, forallt>0,

then (S;)i>0 is a Cp-contraction semigroup and we have for all f € Cy(G), g € G,
t>0,

5.0(9) = Tif9) = [ flgmeuldr) = [ FlgrIilan)
a e
Let us denote the infinitesimal generator of (S;)i>0 by A, then for all f € CE(G)

d

= E(Q_CtTt)f

- d

t=0

t=0

(S¢)t>0 cannot be considered as a Feller semigroup in the classical sense, but is can
be associated to a so called killed Lévy process on G, see [3] p.405. We will call the
operator A, a killed Hunt generator.

Following the proof of Lemma 6.2.1 it is easy to see that A satisfies the positive

maximum principle. Conversely we have the following result.

Theorem 6.2.5. If A: C>*(G) — C(QG) satisfies the positive mazximum principle and
is such that LyAf = ALyf for all f € C(G),g € G then

d d
Af(g) :% Z a; XiX; f(g) + Z biXif(g) —cf(9)
ij=1 i=1
] d
+ / (f(gT) - flg) — Z xi(T>Xif(9>> p(dr), (6.25)
G i=1
where {a;;} is a non-negative definite, symmetric matriz, (by,...,bs) € R% ¢ >0 and

w is a Lévy measure on (G, B(G)). Furthermore A extends to the killed Hunt generator

associated to a unique convolution semigroup of sub—probability measures on G.
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Proof. The operator A satisfies the PMP so by Theorem 6.1.12 it is of the from (6.13).
Furthermore, A is invariant under left translation on C2°(G). Thus,

Af(g) = ALgf (e) = LyAf(e)
_ % Z a;j(€)XiX; f(g) + > bi(e)Xif(g) — cle) f(g)

i=1
.

We then define a;; = a;;(e), b; = b;(e),c = c(e) for all i, j = ,d, and pu(-) = ple, ).
Next write (6.25) as Af = —cf 4+ Bf. It is clear that A and B may be extended to
linear operators A; and B on 052)(6’), so that Ay f = —cf + By f for all f € CSQ)(G).
Then by Hunt’s theorem, B; extends to the Hunt generator associated to a unique

Flo7) = £(9) = 3o (1) Xef(9) | e o).

convolution semigroup (p):>0, and then the required convolution semigroup of sub—
probability measures is given, as above, by defining iy = e “u; for each ¢ > 0.
Moreover by Theorem 5.3.4 on p.137 of [3], C°(G) is a core for the Hunt generator,
and so for the killed Hunt generator, from which we see that the action of A on C°(G)
uniquely determines (pi;,t > 0). O

6.3 The positive maximum principle and pseudo-

differential operators

Pseudo-differential operators can be defined on manifolds using local coordinates. On
compact Lie groups, there is a global approach developed in [51], see also [52] and
[18]. Later [5] provided an extended definition. Here we give a ”working definition”
in the spirit of [51].

In this section we will assume that the conditions from Corollary 6.1.15 are satis-
fied, so that A maps C°(G) to Co(G). Any linear operator A on Cy(G) that satisfies
the PMP is dissipative, see [16] Lemma 2.1, p.165. Furthermore, any dissipative linear
operator on a Banach space is closeable, see [16] Lemma 2.2, p.16., therefore A has a
closed extension A with C2°(G) C Dom(A). We will also assume that G is a compact
Lie group and we will rely on the Peter-Weyl theorem in this section.

Let us denote R(G U L(V,) and for all 7 € G I, denotes the identity matrix

el
acting in V. If A € D we will equivalenty denote I = I ,.
Definition. A linear operator A : C*(G) — C(G) is called a pseudo-differential
operator if there exists a mapping o4 : G X G — R(G), such that oa(g,7) € L(V})
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for all g € G,WE@and

oalg,m) =7(g HAr(9), forall g € G, € G,
Af(g) = Zdwtr <JA(g,7r)fA(7r)7T(g)> : for all f € C™(G). (6.26)

WG@

In this case, o4 is called the symbol of the operator A.

In particular, let A : C*°(G) — Cy(G) be a linear operator satisfying the positive
maximum principle, then A is of the form (6.13). We want to prove that such oper-
ator A is a pseudo-differential operator and calculate its symbol. First note that by

definition of the derived representation we have

Xr(g) = Sr(gexp(tX) = 7(g) n(exp(tX) = n(ghdn(X), (627

foralle@,XGgandgEG.

Let us define the matrix Am := [Amy|k=1.. 4., then by applying the formula (6.13)
for each function m;;, 4,7 = 1,...,d, we get for all g € G,

Anlg) =3 3 ayg)n(g)dn(X)dn(X;) — clg)(g) + 3 bilg)(g)dn(X)

+ / m(g) {W(T) —Ir - in(f)dW(Xi>} 1(g, dr)

Let us simplify the notation by introducing a function J, : G X G- My wa, = L(V),
which takes the form

Ja(g, ) ::% Z a;;(g)dm(X;)dn(X;) + Z bi(g)dm(X;) — c(g) ],
+ / {w(r) — I, — in(T)dﬂ(Xi)} (g, dr), (6.28)

for all 7 € G and g € G. Then we have
An(g) = mw(g)Jalg, 7), forall g € G, € G. (6.29)

For simplicity for all A € D we will denote J4(g, ) := Ja(g,m)).
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Lemma 6.3.1. There is a constant C' > 0 such that for all A € D,

sup [|Ja(g: Mllus < C(1+ [N[™F2).
geG

Proof. Let us start by establishing some preliminary steps, that are necessary for the
proof. First, by definition of derived representations we have for all # € G and 7 € U,

w(r)=m (exp (Z xl(T)X,)> = exp (dﬂ' (Z ZL"Z-(T)Xi>)
= exp (Z CL’i(T)dﬂ'(Xi)) (6.30)

We will also use the fact that by Theorem 4.1.2, for all A € D,

[ I las = V/dy < CIA™2,

for some constant C' > 0. In the following, C' will denote a generic constant, which

may vary from line to line.

Let us return to the proof, we will start with the integral part. We first split the
integral in (6.28) into fG* = fU* —i—fUc. By Taylor’s series expansion, Theorem 4.1.2
and the Cauchy-Schwarz inequality, we get for all 7 € G,

/* <7r(7) — I, — in(T)dw(Xg) v(g, dr)
exp (Z l‘i(T)dﬂ'(Xi)> — I, — Zl’i(T)dﬂ'(X)
< [ 3 2 e o) I (K (X s (0.

< Cdmax{|X1 |Xd|} (/ sz gadT ) |>\|m+2

So taking the supremum over GG on both sides we get for all A € D

/U* (m(T) — I, — Zl’i(T)dﬂ)\(Xi)> v(g,dr)

for some constant C' > 0. For the second part of the integral, by Theorem 4.1.2 and

v(g,dr)
HS

< O™, (6.31)
HS

sup
geG
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Proposition 4.1.1 we have for all g € G,

/UC (77,\(7') — I, — Zl’i(T)dﬂ')\(Xi)> v(g,dr)

d

S/Uc (IIm( Wirs + 1l s + > laa(7)[ldma( Z.)||HS) v(g, dr)

i=1

= (2" + € _max {||dm(X:)|us}) v(g,U°)

) v(g,U°).

HS

m+2

< O(NE + [N

So taking the supremum over GG on both sides, we get

/UC <7TA(T) — I, - in(T)dﬂ)\(Xi)> v(g,dr)

for some constant C' > 0. Thus, going back to the definition of J4 in (6.28), by the
inequalities (6.31) and (6.32) we get

7rL+2

C(IAI% + A2

sup ), (6.32)

geG

HS

sup [|.J(g, M) s <C|Alm+28up2|aw )|+ CIA*2 supZIb
geG 9geG ij—1 geq

+CO % sup [e(g)] + CIAI™2 + C(A[Z + A"

m+2

)

m m+2

<C(AlZ + |A| + A"

This means that, when |A| < 1, we have sup ||J(g,\)||zs < C and when |A| > 1, we
geG

have sup ||J(g, \)|lzs < C|A|™"2. Thus,
geG

sup [|J(g, M| zs < C(1 + |A|™F2), for all A € D
geG

for some constant C' > 0. O

Lemma 6.3.2. For all f € C*(G), the series

> dutr (Talg. ) FNm(9) (6.33)

xeD

converges absolutely and uniformly for all g € G.
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Proof. First note that for all A € D and g € G

[F () s = tr (ma(9)' FN) TN ma(9))

= |F(N)llzs (6.34)

Then, we use the fact that tr(AB) < ||Allus||Bllgs, so by (6.34), Lemma 6.3.1 and
Proposition 4.1.1, we get for all g € G and A\ € D

~ ~

tr (alg. VA (9)) | < dullJalg, N rsl| F O (9) s
<CO+m NI Olus,  (639)

dx

for some constant C' > 0.
Now, recall from Theorem 4.3.8 that f € S(D) for all f € C(G), so

~

lim AP ||f(N)||gs =0, for all p € N.
[A| =00

Hence, for ¢ = 1, there exists \g € Dy such that for all |A\| > |A\g|, we have
Nf )]s < # So when we look at the tail behaviour of the series (6.33).

sup 3 dk‘tr <JA(97A)RA)M9)>’ <oy A"+ A2

eG AP
SAYPPYS IAI> Aol A

Choose p > 2m+ 2+, then the convergence of the Sugiura zeta function in Theorem
4.1.3 allows us to conclude that the right hand side is finite. Thus, the absolute and
uniform convergence of (6.33) follows. O

Theorem 6.3.3. Let A: C*(G) — C(G) be a linear operator satisfying the positive
maximum principle, then A is a pseudo differential operator with symbol J4.

Proof. From (6.29) it follows that when f € £(G), we have

Af(9) = D datx(Ja(g. N (Nma(g),  forallg € G (6.36)
xeD

Now, take any f € C*°(G), then by Theorem 4.1.4 the Fourier series Z d,\tr(f()\)ﬂ,\(g))

xeD
converges absolutely and uniformly to f(g) for all g € G. We will impose a norm or-

dering of the space of weights D, wherein if two weights have the same weight we
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choose an arbitrary ordering between them. Then the partial sums
N

fn = ZdAitr(f()\i)w)\i(-)) for all N € N, are in £(G) and the sequence (fn)nen
=1

converges uniformly to f.
Forall A€ D and 7,5 =1,...,dy, we have

Fu Ny = /G ()53 (g~ fx (9)dg

- /G(m)m(g l)idxptr (f(Ap)ﬂp(g)> dg

N dx

=> > FOu da, /G(WA)z’j(gl) (m,)ie(9) dg

o~

f(ﬂ-)\)ij /\E)\l,...,)\N
0 A& A, Ay

The last line follows from the fact that {v/dx(m\)i; : A € D,i,j = 1,...,d,} is an
orthonormal basis of L?*(G). Thus, we have

Afnlg) = Y datr (Jalg. m)Ix (Nma(9))

— i dy, tr <JA(g, 7T,\,Lv)f/\<)\i)ﬂ-)\i (g))

By Lemma 6.3.2, the sequence of partial sums A fy converges uniformly. Furthermore,
A is closed, therefore

-~

Af(g) = lim Afn(g) =) datr(Jalg, m)F(MN)ma(g)).

N—oo
xeD
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The positive maximum principle on

symmetric spaces

7.1 K-bi-invariant linear operators

7.1.1 Adjoint representation on G/K

Let G be a Lie group and K C G be a closed subgroup, we denote by M the homo-
geneous space M = G /K. We denote by f the natural map that maps G to G/K by
1(g) = gK for all g € G. Furthermore, for any h € G, we denote by o, the action of
left-translation on G/K, i.e. o,(9K) := hgK for all h € G and gK € X. Then, we
have for all h € G,

holh:O'hOﬁ.

If v =gK € G/K, we often write o,(gK) as h.x for all h € G.

Definition. Let 7 : G — GL(V) be a representation of a Lie group G on a vector
space V', and let W C V a G-invariant subspace of V. Then there is an induced
representation of the group G on the quotient space V/W, 7 : G — GL(V/W), called
the quotient representation, that is given by 7(g)(vW) = 7(g)(v)W for all g € G and
oW e V/W.

Given o, we can define an adjoint representation of the homogeneous space G/K
the following way

Definition. The homomorphism Ad°/* : K — GL(T,G/K) defined by
AdG/K(/ﬂ)(}?) :Toak()?), for all)?GTO(G/K),keK,

is called the isotropy representation of the homogeneous space G/ K.
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Remark 7.1.1. The isotropy representation is a representation of the Lie subgroup
K on T,(G/K). Indeed, we have AdG/K(e) = Too. = T,(Idg/k) = Idr,(¢/Kk) and for
all k1, ky € K, by the chain rule we have

A B (k) AAYE (ky) = Toop, 0 Toory = To(0w,0y) = To(Oriy) = AASE (ykey)

Suppose the subgroup K C G is compact, then there exists an Ad(K)-invariant
inner product on g, i.e. an inner product (-,-) for which Ad(k) acts isometrically
on g for each £ € K. To see this, take any inner product (-,-)’ on g and define
(X,Y) = [.(Ad(k)X,Ad(k)Y)'dk. We will denote by ¢ the Lie algebra of K, and
by p the orthogonal complement of ¢ in g with respect to the Ad(K)-invariant inner
product, i.e. g = €@p, and this is called the Cartan decomposition. Then p is Ad(K)-
invariant, that is Ad(k)p C p, for all £ € K. For the fixed basis { X1, Xs, ..., Xy} of
g, we will assume that {X7, Xo,..., X,,} is a basis for p and {X,, .1, Xi10,..., Xy} is
a basis for €.

Lemma 7.1.2. The isotropy representation can be identified with the quotient rep-
resentation of the adjoint representation of the Lie subgroup K on the Lie algebra

g.

Proof. This is a known result mentioned in [23], Lemma 3.1, p.132. Here we will
include our own proof. Since T,K C T.G is Ad(K)-invariant, we have the quotient
representation Ad : K — GL(T.G/T.K) of the adjoint representation of K on T,G
given by

Ad(k)(Y + T.K) = Ad(k)(Y) + T.K

foral Y + T.K € T.G/T.K and k € K. Also, we know that there is an isomorphism
T,(G/K) ~T.G/T.K, see Theorem 2.11 in [37]. Note that for all ¥ € K and g € G,

ok(9K) = kgK = (kgk™")K = ci(9)K

That is o, ol = o ¢, on G, so Te(og olf) = Te(hocx) on T.G. So by the chain rule we
have T,oy o To = Tof o Ad(k), that is

AdY K (k) o T = Toh o Ad(k)
So we have the following commuting diagram for any k € K

T.G % T,(G/K) + T.G/T.K

o] - sew]

T.G —5 T,(G/K)
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where i = T.f|, is the canonical isomorphism between T.G/T. K and T,(G/K). In-
deed, we have for all Y € T,(G/K), i(Y) = Y’ + & where Y’ € T.G.

Ad(k)i(Y) = Ad(k)Y’ +t

ho Ad(k)Y’
AdG/ “(k) o Tey(Y")
= AdY K (B) (Y +¢)
= A (R)i(Y)
O
Differentiating the natural map at the origin we get for all X € g
d d
Ta(X) = Sloesp(X)(0)]| = Slexp(tX)K) (7)

t=0 t=0

So in particular we get T.h(€) = 0, that is Ker(7.h) = €. But T.j is also surjective,
so we get a canonical isomorphism p = g/t ~ T,(G/K). So for all i > n, if f €
C>*(G/K) then we have X;f = 0.

From now on, for simplicity both the isotropy representation and the quotient

representation of the adjoint representaion of the Lie group K, will be denoted by
Ad.

7.1.2 Canonical local coordinate functions on G/K

For the basis Xy, Xs,..., X, of p, we are gomg to define a family of canonical local
coordinate functions y; : U — R, where Uis a neighbourhood of o in G/K. This
section is based on [45], p.40.

The map ¥ from R" to G/K defined by

Uy =y, Yn) = <62?:1y¢X¢)

is a diffeomorphism from a neighbourhood V' in 0 of R" to the neighbourhood ¥ (V)
of o =eK in G/K. For any x = U(y) € U(V) we can write a%zf(a:) = aiyl_ o V(y) for
all fe CY{G/K)and1<i<mn. So a%- can be considered as a vector field on U (V).
From now on, for all z € U(V) C G/K we denote by y(x) € R" the point for which
x = U(y(z)), so foreach i =1,2,...,n, y;(-) = ¥; ' : ¥(V) — R is a smooth function
that we can extend to G/K such that y; € C°(G/K) and we will call y1, 92, ..., Yn

canonical local coordinate functions on G/K.
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Proposition 7.1.3. We have for all x € G/K and for all k € K
kax=Fk¥(y(z)) =4 (eZ?:lyi(x)Ad(k)Xi> (7.2)
and the canonical local coordinate functions on G/K satisfy
> yilw)Ad(k) X = yi(ka) X (7.3)
i=1 i=1

Proof. See [47], p.40.

O
Let us from now on order the canonical local coordinate functions {z;;i = 1,...,d}
on G such that they match with the local coordinate functions on G/ K, i.e.
y; 0 = m;, foralli=1,...,n. (7.4)
So from (7.3) we get
ixi(g)Ad(k)Xi = ixi(lﬂg)Xi, for all g € G and k € K. (7.5)
i=1 i=1

7.1.3 Invariant differential operators

We will now introduce some notations for differential operators following [24] p.385.
Let f € C(G) and a be a endomorphism of G, then we denote f* := foa~'. For
any mapping A : C(G) — C(Q), we write A% : f — (Af* )* on C(G). A function
f is said to be invariant under « if f¢ = f and an operator A is said to be invariant

under « if A% = A. Given two homeomorphisms «, 8 from G to GG, we have

[l =folaof) Tt =(fop ) oat = ()"

Thus,

AP = [A(fl ] =

—1 671 ﬁ “ 1 [e%
(]| - ey o
(7.6)
In this section, we will be interested in the case where a = [, and § = r, where
k € K. A linear transformation D : C2°(G) — C°(G) is called a differential operator

on G, if for at any point p € G and each local chart (¢, U) around p there exists a
finite number of functions a, € C*°(U) such that for all f € C2°(G) with support in

92



7.1. K-bi-invariant linear operators

the neighbourhood U,
Df(q) =) aalq) (D*(foe )(p(e), ifqel,

Df(q) =0, if g ¢ U.

In particular, all vector fields are differential operators. Let us call a differential
operator left-invariant if it is invariant under [, for all ¢ € G. Then D(G) denotes the
set of all G left-invariant differential operators on G. D (G) will denote the subspace
of operators in D(G) that are also K-right invariant. For each g € G, Ad(g) : g — ¢
extends uniquely to an automorphism of D(G), we will denote this extension by Ad(g)
as well, see [24] p.392.

It is easy to verify that if X is a left-invariant vector field on G, then it is a

left-invariant differential operator on C'2°(G) in the above sense.

From Lemma 2.18 and equation (7.6) we also know that, for all X € g, f € C*(G),
gedG,
Ad(g)X f = X f = (X')"" f.

So by G left-invariance of the differential operator X : C°(G) — C2°(G) we have
[Ad(g)X]f = (X') f=X"a"f, forall feCX(G),g€G. (7.7)

(See also [24], p.391-392)
Furthermore, in the particular case where f € C*(G/K), g€ G, ke K, X; €p

Xof(gk) = L p(ghexptX))| = L fgkexp(tXk)

dt t=0 dt t=0
= £ Hlgesp(tAd(R)X)| = Ad(K)X.f(9). (7.9
t=0
And similarly, we have
XX fgk) = L L p gk exp(ex )k X))k
X f(gk) = E@f(g exp(tX;) exp(sX;) )t:0,5:0
= C%%f(g exp(tAd(k)X;) exp(sAd(k)X;))
t=0,s=0
= [Ad(k) Xi][Ad(F) X;]f (9) (7.9)

Note that from (7.7) and (7.8), it then follows that for X; € p, f € C*(G/K),
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geGand k€ K,

Xif(gh) = X{*" f(g) = Xi(f o i) (gh™") = Xi(f o 1) (9)- (7.10)

That is, on G/K, for all i = 1,. .., n, the differential operator X; is K-right-invariant.
For all k € K, let ([Ad(k)];;) be the matrix associated to Ad(k) : p — p in the
basis { X1, Xo, ..., X, } with respect to the Ad(K)-invariant inner product (-, -). That
iS, for all k£ € K, [Ad(k?)]z] = <Ad(k’)X1,XJ> and
Ad(k)X; =Y [Ad(k)];;X;  forall j=1,...,n. (7.11)
i=1
Furthermore, since for all £ € K the inner product (-, -) is Ad(k)-invariant, the matrix
([Ad(k)];;) is orthogonal. Similarly to [47] p.67, we will call a symmetric n x n real
valued matrix (a;;), Ad(K)-invariant if

a;j = Z apg[Ad(K)]pi[Ad(K)] 45, foralli,j=1,...,nand k € K.

pg=1
In this case by (7.11), we have Z a;;[Ad(k)XG][Ad(k)X;] = Z a; X;X; for all
i,j=1 ,j=1

ke K,i,j=1,...,n.
Note that Xi,..., X, may be regarded as vector fields on G/K and as G left-

invariant differential operators on G/K.

7.2 The positive maximum principle and K-bi-invariance

Lemma 7.2.1. Let A: CX(G) — Fun(G) be a linear operator, then we have

a) A:CX(G/K) — Fun(G/K) if and only if RyAf = Af, for all f € C*(G/K)
and k € K. In this case, we say that A is K-right invariant

Similarly,

b) A: CX(K\G) — Fun(K\G) if and only if LyAf = Af, for all f € CX(K\G)

and k € K In this case, we say that A is K-left invariant.

Finally, A : C*(K\G/K) — Fun(K\G/K) if and only if both a) and b) are satisfied.
In this case, A is called K -bi-invariant.
Proof. 1f a) is true then, clearly Af € Fun(K\G) for all f € C°(K\G). Conversely,
for all f € C°(K\G) having Af € Fun(K\G) precisely means that RyAf = Af for
all k € K. The rest can be proved similarly. O
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We will now establish the closed form for a K-left-invariant, K-right-invariant
and K-bi-invariant linear operator satisfying the positive maximum principle. We
will only prove the the first two cases, then the K-bi-invariant case follows.

Theorem 7.2.2. Let A : CX(K\G) — Fun(K\G) be a linear operator. Then A
satisfies the positive maximum principle if and only if for all g € G there exist

a unique real symmetric, non-negative definite matriz (a;;(g)) such that
a;;(kg) = a;j(g), forallk € K, i,j=1.....d,

a unique vector b(g) = (b1(9),...,ba(g)) € R such that b;(kg) = bi(g), for all
ke K,i=1,...,d,

a unique c(g) > 0 such that c(kg) = c(g), for all k € K,

a unique Lévy kernel p such that p(kg, A) = p(g, A), for all A € B(G) and
ke K,

such that A is of the form (6.13).

Proof. First, from Lemma 7.2.1, b), we have Af(g) = Ly Af(g9) = Af(kg) for all
feCX(K\G), k€ K and g € G. Furthermore, for all X € g, f € C*(K\G), g € G
and k € K we have X f(kg) = X f(g). Thus, for all f € C*(K\G), k € K and g € G,

Af(g) =Af(kg)
:%Z (ko)X X, f(kg) + Z (kg)Xif(kg) — c(kg)f(kg)
+/G* flkgr) — ; X f kg] pu(kg, dr)
1 d

2z:a,](k;g X:X;f(g Z (kg)Xif(g) — c(kg)f(g)

1,7=1

[

By uniqueness of the coefficient functions, we have a;;(kg) = a;;(9), bi(kg) = bi(g),
c(kg) = c(g), forall g € G, k € K, i,5 =1,...,d and uniqueness of the Lévy kernel
gives

flgr) — f(g) — Z zi(T)Xi f (g)] u(kg, dr) (7.12)

w(kg, B) = u(g, B), forall k € K,g € G, B € B(G).

Conversely, if A is linear operator on C°(K\G) of the form (6.13) such that the
coefficient functions and the Lévy kernel satisfy the above conditions, then from the
calculations in (7.12) it is clear that Af(kg) = Af(g) for all f € C*(K\G), g € G
and k € K. O
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Theorem 7.2.3. A : C*(G/K) — Fun(G/K) is a linear operator satisfying the
positive mazximum principle if and only if for all g € G there exist

a unique real symmetric, non-negative definite matriz (a;;(g)), such that for all
ke K,
(aij(9)) = [Ad(k)]" (ai;(gk))[Ad(k)]

a unique vector b(g) € R such that for all k € K,

b(g) = [Ad(k)]" b(gk)

a unique c(g) > 0 such that c(gk) = c(g), for all k € K,
a unique Lévy kernel p such that p(gk, A) = u(g, kAK'), for all A € B(G) and
kK € K.

such that A is of the form (6.13).

Proof. The operator A satisfies the PMP therefore it is of the form (6.13). First recall
that after equation (7.1) we established that for all ¢ > n and f € C>*(G/K), we have
X;f(g) = 0. Thus, by the calculations in (7.8) and (7.9) and a change of variable, we
have for all k € K, g € G and f € C*(G/K),

Af(g) =RpAf(g) = Af(gk)

:% > ai(gk) XX, f(gk) + Z bi(gk)Xif(gk) — c(gk)f(gk)

i,j=1 i=1

)
G*

—1 3 (o) AAGR) X AKX F(0) + 3 b(gh)AA(R)X]F0) — c(gh) (o)

i,j=1 i=1

+/G* Flgm) = Flg) = 3wk~ r)[Ad(k)Xi] £ (9)

First note that by (7.5), we have

f(gkT) — f(gk) — Z zi(T) X f (gk)] u(gk,dr)

w(gk, k~tdr) (7.13)

Z 2 (k7 ) [Ad(K)X;] = Z (1) X
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Then using the decomposition (7.11), we get for all f € C°(G/K),

Af() =5 D7 D as (R A [ Ad(R) )X, X, o)

p,q=114,5=1

+ 3 bighk)[Ad(K)]i X, f(9) — c(9) f(g)

p=1 i=1

+/G* flgr) = f(9) — Z%(T)Xif(g) gk, k~"dr).

By uniqueness of the Lévy kernel, for all g € G, k € K and B € B(G)

p(g, B) = p(ghk, k™' B). (7.14)

Furthermore, since we are considering K-right-invariant functions, for all k£ € K the
integral part is also equal to

/* [f(gf) — flg) — ixi(r)xif(g)]u(g,dﬂ

— /G flgrk) — f(g) — in(T>Xif(g>] p(g. dr)

- / Flgr) = flg) — in(Tk_l)Xif(g)] p(g, drk™")

n

= /G flgr) — f(9) — in<T>Xif(g>] p(g, k™)

=1

The last line follows from (7.4). Thus, from uniqueness of the Lévy kernel we have
forall k € K

1(g, Bk) = u(g, B). (7.15)
Combining (7.14) and (7.15) we get for all k, k' € K,

1(g, B) = p(gk, k™' BE')
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By uniquenes of the coefficient functions, for all g € G and k € K

c(g) = c(gk)
ape(9) = > ai;(gk)[Ad (k)] [Ad (k)]

,j=1

bp(g) = Z bi(gk)[Ad(k)]ip

That is, (ai5(9)) = [Ad(K)]" (a;;(gk)) [Ad(R)] and bg) = [Ad(R)]" b(gh)

Conversely if A is a linear operator on C°(G/K) of the form (6.13) such that
the coefficient functions and the Lévy kernel satisfy the above conditions, from the
calculations in (7.13) is is clear that Af(gk) = Af(g) for all f € C*(G/K), g € G
and k € K. O

Corollary 7.2.4. A linear operator A : C°(K\G/K) — Fun(K\G/K) satisfies the
positive mazximum principle if and only if for all g € G there exist

a unique real symmetric matric (a;;(g)) such that for all k, k' € K

(aij(9)) = [Ad(K)]" (ai; (kgk'))[Ad(K)] (7.16)

a unique vector b(g) € R™ such that for all k, k' € K
b(g) = [Ad(K')]" b(kgk') (7.17)

a unique c(g) > 0 such that for all k, k' € K, c(g) = c(kgk'),
a unique Lévy kernel p such that for all k, k', k" € K and B € B(G)

p(g, B) = p(kgk', (k') ' BK") (7.18)

such that A is of the form (6.13).

Proof. This follows from combining Theorem 7.2.2 and Theorem 7.2.3. ]

7.3 Feller semigroups and generators on symmet-

ric spaces

Definition. A spherical Feller Cy-semigroup on Co( K\G/K) is a Feller Cy-semigroup
that satisfies

(SF1) RiT.f = Tof, for all k € K.t > 0, f € Co(K\G/K)
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(SF2) LyT.f = Tof, for all k € K,t >0, f € Co(K\G/K).

The Feller process associated to a spherical Feller semigroup is called a spherical Feller

Process.

Proposition 7.3.1. A Feller process Z is a spherical Feller process if and only if Z
has transition probabilities (pt)i>o that satisfy

pt(ak’B) :pt(U, B)> (719)
pi(ko, B) = pi(o, B), (7.20)

forallt >0,B € B(G),0 € G,k € K.

Proof. Let us start with necessity. For all k € K,t > 0,0 € G, f € Co(K\G/K), we
have

RTuf(0) = Tof (ok) = /G F(wilok, dr),

Suppose we have (SF1), then by the Riesz representation theorem

pi(ok, B) = p(o, B), forallc € G,k € K,B € B(G),t > 0. (7.21)
Similarly, supposing (SF2) implies

pi(ko, B) = pi(o, B), forallo € G,k € K,B € B(G),t > 0. (7.22)

For sufficiency, we have for all k € K,0 € G,t >0

R f(0) = /G F(Fpilrk, dr) = /G F(rpilo, dr) = Tif (o), for f € Co(G/K)
L (o) = [ $@mlko.dn) = [ F@o.dn) = Tofho) for £ € GI\G)
Il
Lemma 7.3.2. Let L be the generator of a spherical Feller process, then it satisfies
RiLf = Lf, for allk € K,t >0 and f € Dy C Cy(K\G/K)
LiLf =Lf, forallk € K;t >0, and f € Dy C Co(K\G/K).

Proof. First note that for all k € K, Ry, is an isometry, so by the definition of spherical
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Feller semigroups, we have for all f € D,

lim th_f—/if“ :lim'Rk (th_f—ﬁf>H = lim TtR’“—f_f—chfH
t—0 t o 0 t o 10 t ~
T f
=l | = T RS Hoo
It follows that Ry Lf = Lf. The left K-invariance is proved similarly. O

Corollary 7.3.3. Let L be the generator of a spherical Feller process with
CX(K\G/K) C D¢, then it has the form (6.13) with conditions as in Theorem 7.2.4.

Proof. Following Lemma 7.3.2 the generator £ is K-bi-invariant so by Lemma 7.2.1,
we have £ : C°(K\G/K) — Fun(K\G/K). Furthermore, by Lemma 6.2.1, since £ is
the generator of a Feller process, it satisfies the PMP therefore it has the form (6.13).
Then we can directly apply Theorem 7.2.4 to get the conditions on the coefficients
and the Lévy kernel. O

Definition. A family of probability measures (p:)i>0 on (G, B(G)) is a generalized

convolution semigroup of measures on G if

= st = Mt ¥ Ms, for all t,s GR?
-y = po as t — 0.

Note that the convolution semigroup defined in 6.2 is a generalized convolution semi-
group with pg = d.. We will call a generalized convolution semigroup K-left-invariant,
K-right-invariant and K-bi-invariant if for all £ > 0, the measure p; is respectively

K-left-invariant, K-right-invariant and K-bi-invariant.

Note that it was proved in [46], Proposition 2, that a convolution semigroup is K-
left-invariant if and only if it is K-right-invariant if and only if it is K-bi-invariant.

Lemma 7.3.4. The Hunt semigroup (T})i>0 of a K-bi-invariant generalized convolu-

tion semigroup (pt)i>0 s a spherical Feller semigroup.

Proof. From (6.23), it follows that given any convolution semigroup of measures
()e>0, the associated semigroup (13)i>o is left-invariant, that is L,T;f = T,L,f for
all g€ G, t >0, f € Cy(G). So in particular this implies that (7;);>¢ satisfies (SF2).
To prove (SF1), for all t > 0, B € B(G), k € K and 0 € G we have

RTuf(g) = /G F(ghm)u(dr) = /G Flgr)um(kdr) = /G Flgm)m(dr) = Tif (g).
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Let us recall the following useful result from the literature.

Lemma 7.3.5. Let (ut)i>0 be a convolution semigroup on G, then po is a Haar
measure on a compact subgroup H of G. If ()0 s K-right invariant, then K C H.

Proof. For the first part of statement see [26], Theorem 1.2.10. The second part can
be found in [46], Proposition 1, p.711. ]

We assume from now on that K = H, for simplicity.
Theorem 7.3.6. The following are equivalent

i) (ft)e>0 18 a convolution semigroup of measures such that p is K-bi-invariant
for allt >0,
ii) The Hunt semigroup (T3)i>0 on Co(G/K) satisfies RiyTif = Tif for all t > 0,
ke K and f € Cy(G/K),
ii1) The generator A satisfies R Af = Af for allk € K and f € Dy4.

Proof. 1) implies ii), since for all g € G, k € K, f € Cy(G/K)

RTuf(g) = Tof (gh) = /G £ (ghkh)ie(dh)

= [ stabyutitan) = [ p(ahyptan
=T:f(g)- (7.23)

For ii) implies 1), suppose ii) is satisfied, that is [ f(gh)u(kdh) = [, f(gh)p(dh)
forallt >0, f € Co(G/K), k € K and g € G. In particular, for g = e, we have for
all f € Co(G/K) and k € K,

/G F(h)pn(dh) = /G F(R)un(dh)

So by the Riesz representation theorem we have p;(kB) = py(B) for all t > 0,
k € K and B € B(G).

The result follows, since the K-right invariance of the convolution semigroup is
equivalent with its K-bi-invariance.

ii) implies iii) is by the same argument as in Lemma 7.3.2 O

Remark 7.3.7. By Lemma 7.3.2, the generator A of a spherical Hunt semigroup
commutes with G-left and K-right translation on C2°(G). In particular A maps
C*(K\G/K) to Fun(K\G/K).
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The characterisation of the generator of a K-bi-invariant convolution semigroup
can be found in the work of [48] and [47] p.139. Here, we will proceed as previously
using Courrege’s theorem and a special case of Theorem 7.2.3.

Theorem 7.3.8. Let A : CX(G/K) — Co(G/K) be the Hunt generator of a K-bi-

invariant convolution semigroup of measures, then for all f € C°(G/K) we have

Af(g) Z% > a4 XiX;f(g) + ZbiXif(g>

1,j=1

-

where (a;;) is an Ad(K)-invariant, non-negative definite, symmetric matriz,

flgr) = flg) — Z vi(1)Xif(9) | pldr), (7.24)

b= (b1,...,bs) € R"™ is a vector such that Z b; X; is an Ad(K)-invariant vector field
i=1
inp and p is a K-bi-invariant Lévy measure on (G, B(G)).

Proof. By Hunt’s Theorem 6.2.4 we have the form of the operator A. For the ad-
ditional conditions on the coefficients, we use the result of Theorem 7.2.4. We have
a;; = a;j(e) and b; = b;(e) for all 4,5 =1,...,n from Theorem 7.2.4, so for all k € K

a;; = [Ad(K)]" (a:;)[Ad(k)],

and

SO = 30 S b AR X = 3 BAdR)X, (7.25)

=1 p=1
n
So the vector Z b;X; € p is Ad(K)-invariant. Furthermore, the Lévy measure is

u(-) = (e, ) on (G.B(G)).
]

Let us look separately at the the second order differential part of A. The following

results are due to Liao [47].

Proposition 7.3.9. Let (aij)nxn and Xo € p be Ad(K)-invariant, then
P .= Z a;; X;X; + Xo is a differential operator in D(G/K). Conversely, any second

ij=1
order linear differential operator T in D(G/K) with T1 = 0 may be written in the
form P for a unique pair of Ad(K)-invariant matriz (a;;) and Ad(K)-invariant vector
Xp €p.
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Proof. See [47], Proposition 3.3, p.77. O

Theorem 7.3.10. Suppose that the representation Ad: K — GL(p) acts irreducibly
on p and dim(G/K) > 1. Then any second order differential operator in D(G/K)

with T1 = 0 is of the form
T = CLE:Xi2 =:alAx
i=1

where Ax s the Laplace-Beltrami operator.

Proof. This result can be found in [47], Proposition 5.5 p.140. Here we will provide
a simpler proof using Schur’s Lemma. Following Proposition 7.3.9, any second order
differential operator T' € D(G/K) with T'1 = 0 is given by

1 n

4,j=1

where (a;;) is an Ad(K)-invariant symmetric matrix and X, € p is also Ad(K)-
invariant. By Ad(K)-invariance of Xy, the space spanned by Xj is invariant under
Ad(k) for all k € K, but since Ad(-) is irreducible and dim(G/K) > 1 this space has
to be {0}.

The matrix representation [Ad(k)] = ([Ad(k)];;) restricted to p is in O(n). Let
U : p — R™ be the unitary isomorphism that maps { X1, Xo, ..., X, } to {e1,es, -+ ,e,}
which is the natural orthonormal basis of R™, so it preserves the inner product:
(UX,UY) =(X,Y) for all X,Y € p.

Then for all k£ € K, the matrix representation [Ad(k)] of Ad(k) is equal to

[Ad(K)] = UAd(k)UT,
and we have by the Ad(k)-invariance of the inner product (-, -),, for all z,y € R"

([Ad(E))z, [Ad(k)]y)zn = (UAA(K)U ™ 2, UAA(K)U ™ y)gn
= (Ad(k)U 'z, Ad(k)U'y),

= (U2, Uy,

=

T, Y)rn

We next show that [Ad(K)] acts irreducibly on R"™. Let W be an [Ad(K)]-invariant
subspace of R”, then for all k € K and x € W, we have [Ad(k)].z € W. That is
UAd(k)U 'z € W, ie. Ad(k)U 'z € U'W where U~'W is a closed subspace of
p. But Ad(K) is irreducible on p and dim(G/K) > 1 so U7'W = {0} and by the
unitarity of U we get {W} = {0}. By the Ad(K)-invariance of {a;;}, we have for all
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ke K
[Ad(R)]" {ai; }Ad(K)] = {a;}
That is,
[Ad(k){ai;} = {ai; }Ad(K)]
So by the famous Schur’s lemma, see [39] Ch.V, Prop 5.1, there exists a € R, such

that {a;;} = al,x,. Thus, any second order differential operator 7' € D(G/K) can
be simplified from the general form (7.26) to

n n

1 1 1
T = 5 Z CL(;inl‘Xj = §ZGX1X1 = QCLA)(.

i,j=1 i=1

Remark 7.3.11. Note that in Proposition 7.3.9 and in Theorem 7.3.10, when the
matrix (a;;) is a non-negative definite matrix, then ¢ > 0. Furthermore, when (a;;)(-)
is continuous so is a(-) and when (a;;)(-) is K-bi-invariant so is a(-).

Corollary 7.3.12. Suppose that the representation Ad: K — GL(p) acts irreducibly
onp and dim(G/K) > 1. Let A: C*(K\G/K) — Co(K\G/K) be the Hunt generator
of a K-bi-invariant convolution semigroup of measures, then for all f € C*(K\G/K)
we have

Aflg) = gadx s+ |

flgr) = flg) — Z vi(1)Xif(9) | pldr), (7.27)

*

where a > 0 is a unique constant and p is a unique Lévy measure such that for all
k. k' € K and B € B(G),
u(kBK) = ju(B).

Proof. A is the Hunt generator of a K-bi-invariant convolution semigroup, so by
Theorem 7.3.8, A is of the form (7.24). By Theorem 7.3.10, we have seen that the
second order differential operator part simplifies to %aA x f(g) for a unique constant
a >0, s0 A is of the form (7.27). From Corollary 7.3.12, we also know that the Lévy
measure satisfies

wu(kB) = p(B), for all k € K and B € B(G).

Furthermore, from (7.4) we have z;(gk) = x;(¢g) for all k € K and i =1,...,n. So for
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all f € C*(G/K) by a change of variable, we have for all k € K

Afl) = 5abxs(o)+ |

G*

flgTk) — f(9) - Z wi(T)Xif(g)] p(dr),

- %anf(g) + / | flg7) = o) - in(Tkl>Xif(g>] p(drk™t)

n

= %anf(g) + / flgm) = flog) =Y xi(T)Xif(g)] p(drk™)

G i=1

By uniqueness of the Lévy measure p, this implies that for all £ € K and B € B(G)

1(Bk) = p(B).

7.4 The positive maximum principle and pseudo-

differential operators on symmetric spaces

From now on we will assume that, GG is compact and K is a closed subgroup such
that (G, K) is a Gelfand pair. We also assume that G/K is irreducible, that is the
representation Ad : K — GL(p) acts irreducibly on p and dim(G/K) > 1.

Definition. A linear operator A : C*°(K\G/K) — C(K\G/K) is called a spherical
pseudo-differential operator if there exits a map g : G X G k — R, called the spherical
symbol of A such that for all f € C*(K\G/K), g € G and 7 € Gk

A¢Tl'<g> = /0—:;1(97 7T)¢7r(g)
Af(9) = Y dn 5alg, 1) 5 (6r)0x(9)
TI'EGK
Let A: C*(K\G/K) — Co(K\G/K) be a linear operator satisfying the positive
maximum principle, then A is of the form (6.13) with conditions from Corollary 7.2.4.

We want to prove that such operator A is a spherical pseudo-differential operator and

calculate its spherical symbol. For this we need some additional conditions.

(A1) sup max |z ()| (g, dr) < oc.
geG i=1,..., d G*

(A2) for all i,j = 1,...,n and any B € B(G), the functions a;;(-), b;(-) and pu(-, B)
are K-bi-invariant.
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From (A1) it follows that for all f € C*(K\G/K),i=1,...,n and g € G, we
have

< 00.

/ ) zi(7) Xif(9) (g, T)

Condition (A2) and conditions (7.17), (7.16), (7.18) from Corollary 7.2.4 implies the
following set of properties (K-Bi):

- for all g € G, b(g) = [Ad(k)]Tb(g). Thus, by (7.25) the vector Zb )X; €pis
=1

Ad(K)-invariant;

- for all g € G the matrix (a;;(g)) is Ad(K)-invariant;

- for all g € G the Lévy measure u(g,-) is K-bi-invariant, because pu(g, kBEK') =
wu(gk™, BK') = u(g, B), for all B € B(G) and k, k' € K.

We will also use the fact that from (3.1)
| (T) = 1| < |7 (7) — Ir||ms, for all 7 € G and 7 € G. (7.28)

Let A : C*(K\G/K) — Cyo(K\G/K) be a linear operator satisfying the PMP.
By Corollary 7.2.4 and condition (A1), the operator A can be written for all f €
C*(K\G/K), g € G as

1 n
4506) =5 3 0@ XX,7(0)+ S0 516) - 3 ([ st in) X500

ij=1 i=1

) flg) + / (f(97) — £(9)) (g, dr) (7.29)

*

Remark 7.4.1. Condition (Al) can be dropped if we write the integral part as a
principal value.

Remark 7.4.2. When A is the generator of a convolution semigroup, we know that A
is left-invariant, therefore it is completely determined by its action at e. Furthermore,
in Gangolli’s Lévy-Khintchine formula, [22], there is no first order differential term in
the integral, see [47] Theorem 5.3, p.139.

Note that for all 7 € G Kk, by K-bi-invariance of ¢, and Lemma 1.3.6 we have for
all ke K and g € G

X6n(g) = X(¢r 0 cx)(9) = ([Ad(k) X]¢x) (kgk™).

Using this and the K-bi-invariance of the Lévy kernel with respect to the first
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variable, we have forallge G, ke Ki1=1,...,n andﬁE@K

/ (1) Xitn(9) o, ) = / 2(r) Xiba(g) plg, dr)

*

_ / ai(r)[Ad(K) X s (kgk™") (g, dr)

— [ (AU XJ61(9) nlkgk ", dr)
_ /G a(m)AA(R)Xil6x(9) (g, dr)

_ [ /K /G ai(r)Ad(k)u(g, dr) dk| Xio+(9)

All the above integrals are well-defined since we have the assumption (Al). The

vector field Xy = [/ / x;(T)Ad(k)u(g, dr) dk] X; € p is Ad(K)-invariant, because
K Ja

the normalized Haar measure on K is unimodular. The space spanned by X is

invariant under Ad(k) for all k € K, but since Ad(-) is irreducible and dim(G/K) > 1
this space has to be {0}. Therefore,

/ zi(7) X0 (g) (g, dr) =0 foralli=1...,n,m€Gr,g€CG (7.30)
G*

More generally, given the irreducibility of G/K, there is no non-zero Ad(K)-invariant
vector in .

To investigate an interesting class of pseudo-differential operators in this context,
we simply generalize the generator of a convolution semigroup of measures on a ir-
reducible symmetric space, as studied by Gangolli [22], Applebaum [1] and Liao and

Wang [48]. From now on we consider operators of the form

Af(g) = alg)Ax f(g) + / (Flg7) — F(g) ulg,dr), for all f € C¥(K\G/E).

G

We assume the first moment condition (Al); and that the matrix a and the Lévy
measure p satisfy the properties (K-Bi).

When applying A to the spherical function ¢,, © € GK, by (7.29) and (7.30) we
get for all g € G,

Agr(9) = alg)Axdx(g) — c(9)éx(g) + / (0x(g7) — bx(g)) 11(g, d7). (7.31)

*

We know that for all 7 € G K, Ox 18 an eigenvector of Ay, so there exists a constant
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Br such that Ax¢, = Br¢.. Indeed, from Corollary 1.3.10 we know that it is exactly
fr = —knx, where {k,,m € G} is the Casimir spectrum.

We will now show that for all 7 € G K, the spherical functions ¢, is an eigenvector
for the operator A.

Theorem 7.4.3. For all 7 € CAJK, ge G

Adr(g) = Jalg,m)¢x(9),

where

Tala.m) = ale)fe = o) + [ (60(r) = 1) g ).

Proof. First, let us prove that the integral / / (or(gkT) — 2(9)) w(g,dr)dk is
well-defined and that we can interchange the irftegGr;l signs. For this we will split the
integral into / / + / / . For the second integral we are going to use the fact
that u(g,-) is a Lév*y meaqurZ for all ¢ € G and by the inequality (7.28) we have

(@c(akr) — oxla)) wlo. k| < [ [ Ynlakr) = 700} o ar)i

< Cu(g,U°) < oo,

K JU¢

for some constant C' > 0. For the first integral we will use the characterization of
spherical functions from Theorem 2.3.3, Taylor’s expansion and the Cauchy-Schwarz
inequality to obtain

‘/*/K(%(g’”) — ¢x(9)) plg,dr)dk
< [ loxta)lontr) = 1] uto.dr)
/ (7 (7) = Lz )t ux)| (g, d7)

_ / *Zyxim\ <d7r(Xi)eXp <ezxi(r)dw(xi)) uﬂ,u,r>
< [, Sl (X, )

(g, dr)

.....
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where 6 € [0,1]. So by Fubini’s theorem we have

| Gntakn) = onta)) stgiryii = [ [ (ontokr) = onla)) dk plg. )

Using the facts that the Lévy kernel is K-bi-invariant with respect to the second
variable, the Haar measure on K is normalized and from the characterization of the
spherical functions in Theorem 2.3.3, we can write (7.31) the following way, for all
T€Gr, g€G

Abnlg) = al9)3:0n(e) = cl0)0xl) + [ [ (0nlam) = 6:(0)) nlg. k7 ar) i
= a0)A0(9) = c)inle) + [ [ (olahr) = 6.(0)) i tg.ar)
= ala)Brr() = el9)0-(9) + 2(9) [ (0:(7) = 1) nlg.dr)

Thus, we have for all 7 € G and ge G
100(a) = (al)be ~cto) + [ (0x(r) = Dulg.an))onte)  (732)

This means that for all 7 € G K, Or is an eigenvector for A and we have

Ade(g) = Jalg,m)oa(g)  forall g € G, (7.33)

where

Tala.m) = alg)fe = clo)+ [ (@xlr) = Dnlg. )
[

Note that the symbol j;l is K-bi-invariant with respect to its first variable. We
will equivalently write Ja(g, A) = Ja(g,my) for all g € G and X € Dg.

Remark 7.4.4. In the compact case, the class of operators as given by (7.32) is
more general than that obtained for K-bi-invariant convolution semigroups of mea-
sures characterized by Gangolli [22] and more recently by Liao and Wang [48], if the
condition (A1) is also imposed in that context. We conjecture that in our general
case, the first moment condition (A1) can be dropped, however at the moment we
don’t know how to do this.

Lemma 7.4.5. There is a constant C' > 0 such that for all X € Dg

sup | Ja(g, A)| < C(1+ [N]"27).

geG
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Proof. We are going to base the proof on that of Lemma 6.3.1 on Lie groups. Similarly
as before, C' will denote a generic constant which may vary from line to line. First,
let us note that from (3.1) for all A € Dg and g € G

- ‘</*<”A<T> — ma(e)) M(g,dT)u,u>‘

| @m0 = L) ntg.dn)

| (@)= Datg.an

< ‘ (7.34)

HS

Then we will use (6.30) and Taylor’s expansion, so for all A\ € Dg and g € G

| ®a0) = L)l

:/*

d
< [ S lldm(X)lns g,

HS

exp (Z in(T)dﬂ')\(Xi)) — I,

i=1

< [ Imn) = s g
d

w(g,dr)
HS

<Cmax{|X1|,...,| X4} <Z /U \xi(T)m(g,dT)> A"z (7.35)

Combining (7.35) and (7.34) and taking the supremum over G, we get

sup [ (6x(r) = (g, dr)| <sup | [ (m(r) = 1) ng.dr)
geG |JU* geG U~ HS
< CIN" (7.36)

For the rest of the integral we follow the steps from the proof of Lemma 6.3.1, we get

sup < C|\= (7.37)

geG

| @@= Dta.ar)

Combining the two estimates (7.36) and (7.37), then using Corollary 1.3.12 for S,
and given that a and c are bounded on G we get

sup [Ja(g, ¢x)| < Csupa(g)(1+ |A?) +supe(g) + C(IA*F + [N %)
geG geG geG

So the result follows. O
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Lemma 7.4.6. For all f € C*(K\G/K), the series

S daTalg, NI (Néalo) (7.39)

AeDg

converges absolutely and uniformly for all g € G.

Proof. Recall from Theorem 4.3.10 that f5 € S(Dg) for all f € C*(K\G/K) so

im AP |f5(\)] =0, forallpeN.

|>\|—>OO,)\€DS

We will now follow the proof of Lemma 6.3.2, there exists \g € Dg/{0} for all p € N

m m+2
NS A"+ [A =)
sup Z d)\ JA(gv)‘)f ( < ¢ Z ’/\|p
IEG I>1ol Aol
Choose p > 3m—2+2 +r, and the result follows from the convergence of the Sugiura Zeta
function in Theorem 4.1.3. O

Theorem 7.4.7. Let A : C*(K\G/K) — Co(K\G/K) be a linear operator satisfy-
ing the positive maximum principle, (A1) and (A2). Then A is a spherical pseudo
differential operator with symbol J 4.

Proof. From (7.33) it follows that when f € Ex(G), we have

= > daJalg. VP (Noalg),  forallge G (7.39)

AeDg

Now, take any f € C*°(K\G/K), then by Theorem 3.2.4 the spherical Fourier series

Z d,\fs (da)dr(g) converges absolutely and uniformly to f(g) for all g € G. Then
AeDg

N

the partial sums fy := Z dkib)/”\s(/\i)gb,\i for all N € N are in £x(G) and the sequence
i=1

(fn)nen converges uniformly to f. Following similar calculations as in Theorem 6.3.3,

we have for all N € N, g € G,

Afn(g Zd,\ Ta(g. \) PP (N (9).

By Lemma 7.4.6, the sequence of partial sums A fy converges uniformly. Furthermore,
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A is closed, therefore

Af(g) = lim Afn(g) = > daJalg. NF¥(Nea(g),

N—00
AeDg

and the result follows.
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