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Abstract

In this thesis we will use harmonic analysis to get new results in probability on Lie

groups and symmetric spaces. We will establish necessary and sufficient conditions

for the existence of a square integrable K-bi-invariant density of a K-bi-invariant

measure. We will show that there is a topological isomorphism between K-bi-invariant

smooth functions and a subspace of the Sugiura space of rapidly decreasing functions.

Furthermore, we will extend Courrège’s classical results to Lie groups and symmetric

spaces, this consists of characterizing all linear operators on the space of smooth

functions with compact support, that satisfy the positive maximum principle, as Lévy-

type operators. We will specify some conditions under which such operators map

to the Banach space of continuous functions vanishing at infinity, this allows us to

study Feller semigroups and their generator in this context. We will show that on

compact Lie groups all linear operators satisfying the positive maximum principle

can be represented as pseudo-differential operators and on compact symmetric spaces

they have analogous representations called spherical pseudo-differential operators.

ii



Contents

Acknowledgements i

Abstract ii

Introduction v

1 Preliminaries 1

1.1 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Topological groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Representation theory . . . . . . . . . . . . . . . . . . . . . . 1

1.2.2 Haar measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 The modular function . . . . . . . . . . . . . . . . . . . . . . 4

1.2.4 Schur orthogonality and Peter-Weyl theorem . . . . . . . . . . 5

1.3 Lie groups and Lie algebras . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Universal enveloping algebra of a Lie algebra . . . . . . . . . . 12

1.3.2 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.3 Casimir spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Spherical functions and K-bi-invariant functions 15

2.1 The convolution product . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The space of K-bi-invariant functions . . . . . . . . . . . . . . . . . . 17

2.3 Spherical measures and spherical functions . . . . . . . . . . . . . . . 19

2.4 Positive definite functions . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Positive definite spherical functions . . . . . . . . . . . . . . . . . . . 27

2.5.1 Positive definite spherical functions and unitary representations 27

2.6 Gelfand pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.1 Compact Gelfand pairs . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Spherical functions on compact groups . . . . . . . . . . . . . . . . . 34

2.8 Homogeneous spaces and symmetric spaces . . . . . . . . . . . . . . . 38

iii



3 Fourier and spherical transforms 40

3.1 The Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 The spherical transform . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Application of spherical transforms: densities of K-bi-invariant mea-

sures 47

4.1 Regularity results and estimates . . . . . . . . . . . . . . . . . . . . . 47

4.2 Existence and square-integrability of K-bi-invariant densities . . . . . 48

4.3 Regularity of K-bi-invariant functions and spherical Fourier series . . 52

5 Distributions on Lie groups 58

6 The positive maximum principle on Lie groups and a generalized
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Introduction

In this thesis we apply harmonic analysis to get new results in probability on Lie

groups and symmetric spaces. On Euclidean spaces Paul Lévy was among the first

to use Fourier analysis to study Markov processes. A special Markov process, named

after Paul Lévy, called a Lévy process will be of particular interest to us. This is a

stochastic process with stationary and independent increments and càdlàg paths. It

is well-known that Lévy processes can be constructed from continuous convolution

semigroups of probability measures. On Euclidean spaces we have the famous Lévy-

Khintchine formula that characterizes convolution semigroups of measures via their

characteristic functions.

On more general spaces, Perrin [50] first studied Brownian and Poisson processes

on the rotation group SO(3). Then in the early 50’s, Itô [33] extended the notion of

Brownian processes to general Lie groups and Yosida [60] defined such processes on

Riemannian homogeneous spaces. In 1956, Hunt [32] gave an analogous result to the

Lévy-Khintchine formula on Lie groups, indeed he provided a closed formula for the

infinitesimal generator of a convolution semigroup of measures, therefore providing

a characterization for Lévy processes in Lie groups. Since then, stochastic processes

on Lie groups and more generally on locally compact groups have been extensively

studied. More recently, Applebaum and Kunita [7] showed that the solution of a

stochastic differential equation driven by a Brownian motion and a Poisson measure is

a Lévy process and provided a characterization of Lévy processes on Lie groups. Heyer

[26] offers a systematic and comprehensive introduction to convolution semigroups

on locally compact groups in his monograph; on Lie groups see also Liao [45] and

Applebaum [6].

On (non-compact) symmetric spaces, in 1964 Gangolli [22] gave a generalized Lévy-

Khintchine formula, that classified spherical infinitely divisible laws. This spherical

version of the Lévy-Khintchine formula was later obtained for convolution semigroups

using Hunt’s formula by Applebaum [1] and Liao and Wang [48].

We will also be interested in pseudo-differential operators and their relationship

to stochastic processes. Pseudo-differential operators are generalisations of linear

partial differential operators; they are an important tool to study elliptic operators,
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for instance they arose in the proof of the Atiyah-Singer index theorem [9] and in the

study of boundary problems in the work of K.O. Friedrichs and P. Lax [43], [21]. The

development of the theory around pseudo-differential operators is largely due to J.

Kohn, L. Nirenberg [40] and Hörmander [29], who introduced symbol analysis.

On Rd, the Feller semigroup and infinitesimal generator of a convolution semigroup

of measures can be represented as pseudo-differential operators; important work in

this area was carried out by Jacob, see his monographs [34] [35]. We will be inter-

ested more generally in the relationship between pseudo-differential operators and

Feller processes. On compact Lie groups a theory of pseudo-differential operators

was developed by Ruzhansky and Turunen [51] and on Heisenberg groups see Fis-

cher and Ruzhansky [18]. Applebaum [4] [5] approached the topic by studying Lie

group-valued Lévy processes and Markov processes with a slightly different notion of

pseudo-differential operators on Lie groups.

In this thesis, we will approach pseudo-differential operators via the positive max-

imum principle. We are motivated by the work of Courrège [13], who classified all

linear operators on Euclidean spaces that satisfy the positive maximum principle. He

showed that these operators can be expressed as a sum of a second order elliptic op-

erator and an integral term with a kernel. Furthermore, he also showed that such

operators can be represented as pseudo-differential operators. He then extended his

results to characterize Feller processes on manifolds, using local coordinates, see [14]

(and also Bony et al. [10]). More recently, others were also inspired by Courrège’s

work in their application of his results to Feller processes on Euclidean spaces, see

Jacob [34] [35], Schilling and Böttcher et al. [11].

Structure of the thesis

In chapter 1, we will introduce the most important notions and results on analysis in

Lie groups. We will mostly refer the reader to Applebaum [6], Faraut [17] and Folland

[20],[19].

In chapter 2, we will start our investigation on symmetric spaces and K-bi-

invariant functions. Our main reference is Wolf’s [59] work on positive definite func-

tions, spherical functions and Gelfand pairs; we will provide completed and detailed

development of his results, where he only outlines the proof, and where we could not

find a complete presentation elsewhere.

In chapter 3, we will introduce spherical transforms of probability measures and

functions. We will establish the relationship between spherical transforms and Fourier

transform using the spherical Peter-Weyl theorem.

Chapter 4 contains regularity results related to Fourier transforms on compact
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Lie groups from Applebaum [6], which we will then generalize to compact symmetric

spaces with the help of spherical transforms. Using these regularity results we will

establish necessary and sufficient conditions for the existence of a square integrable

density of a K-bi-invariant measure on a compact Gelfand pair (G,K). This was

published in Applebaum and Le Ngan [8] along with some further results on the

existence of continuous densities for a convolution semigroup of measures, and a trace

formula for a K-bi-invariant convolution semigroup. We will end the chapter, by using

the regularity results in the K-bi-invariant case to generalize Sugiura’s theorem [55],

that is we will show that there is a topological isomorphism between K-bi-invariant

smooth functions and a subspace of the Sugiura space of rapidly decreasing functions,

for which see Applebaum [6].

In chapter 5, we will introduce a global theory of distributions on Lie groups

based on the work of Ehrenpreis [15]. We will establish some useful properties of

distributions of order 0 and order 2 on Lie groups.

In chapter 6, we will extend Courrège’s results to Lie groups, but we will not adopt

his approach and will instead follow Hoh’s work [28], who simplifies the problem by

studying appropriate linear functionals that satisfy the positive maximum principle.

We will show that such functionals are distributions of order 2 and therefore have a

closed form representation. For the pseudo-differential operators part, we will con-

centrate on compact Lie groups and we will show that all linear operators satisfying

the positive maximum principle can be represented as pseudo-differential operators.

In the last chapter, we will first extend Courrège’s theorem to symmetric spaces.

Then we will introduce the notion of spherical pseudo-differential operators, and we

will show that operators satisfying the positive maximum principle on compact sym-

metric spaces can be represented as spherical pseudo-differential operators.
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Chapter 1

Preliminaries

1.1 Function spaces

Let X be a locally compact Hausdorff space and F denote R or C, we are going to

define function spaces on X. Bb(X) = Bb(X,F ) is the linear space of all bounded

Borel measurable functions from X to F , it is a Banach space under the supremum

norm ‖f‖∞ := sup
x∈X
|f(x)| for all f ∈ Bb(X). C(X) is the space of F -valued continuous

functions on X, Cb(X) is the space of bounded continuous functions on X. A function

f on X is said to vanish at infinity if given any ε > 0 there exists a compact set H ⊆ X

such that |f(x)| < ε when x ∈ HC . We will denote the space of continuous functions

on X which vanish at infinity by C0(X). The support of a function f on X is the

closure of the set {x ∈ X : f(x) 6= 0} and it is denoted by supp(f), the linear space

of all continuous functions on X with compact support is denoted by Cc(X). The

spaces Cb(X) and C0(X) are all Banach spaces under the supremum norm ‖ · ‖∞.

Furthermore, Cc(X) is dense in C0(X). In the first part of the thesis we will consider

F = C. From chapter 5 onwards, we will consider real valued functions.

1.2 Topological groups

This section provides an overview of some of the concepts of topological group theory

which we use in later sections, for reference see [6] and [38] Chapter 1.

1.2.1 Representation theory

Definition. G is called a topological group if:

- G is a topological space,

- G is a group,
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Chapter 1. Preliminaries

- the mapping (g, h) 7→ gh−1 from G×G to G is continuous.

From now on, all groups will be assumed to be topological groups, in particular we

will only be looking at topological groups that are Hausdorff spaces.

If G is a topological group, then for all g ∈ G we define left translation lg, right

translation rg and conjugation cg by

lgh = gh, rgh = hg and cg(h) = ghg−1

for all h ∈ G. All three are automorphisms of G with inverses

l−1g = lg−1 , r−1g = rg−1 and c−1g = cg−1 , respectively.

Definition. A representation (π, V ) of a group G is a topological vector space V over

C and a strongly continuous group homomorphism π : G→ GL(V ), where GL(V ) is

the general linear group on V defined by

GL(V ) := {A : V → V ;A is a topological isomorphism},

and by strongly continuous we mean that for all v ∈ V , g 7→ π(g)v is continuous from

G to V .

Remark 1.2.1. Later, when we consider the particular case where V is a Banach

space, the representation π will be called a Banach representation.

Definition. Given a representation (π, V ) of G, a closed subspace W ⊆ V is a π-

invariant subspace if π(g)W ⊆ W for all g ∈ G. The restriction of π to W is itself

a representation and is called a subrepresentation. On the quotient space V/W , π

induces another representation called the quotient representation ρ : G→ GL(V/W )

given by ρ(g)(v +W ) = π(g)v +W for all g ∈ G and v ∈ V . A representation (π, V )

is called irreducible if it has no non-trivial sub-representations.

Definition. Let (π1, V1) and (π2, V2) be two representations of G. Then π1 and π2
are called equivalent representations if there exists a continuous linear isomorphism

T : V1 → V2 such that for all g ∈ G, Tπ1(g) = π2(g)T . Then T is called an intertwining

operator.

A representation π of G on a complex separable Hilbert space V is said to be

unitary if π(g) is a unitary operator for every g ∈ G. If V1 and V2 are Hilbert spaces,

with unitary representations (π1, V1) and (π2, V2) then these representations are said

to be unitary equivalent if there exists a unitary intertwining operator between them.

2



1.2. Topological groups

Definition. From now on, we denote by Ĝ the unitary dual of G which is the set of all

equivalence classes of irreducible unitary representations, with respect to the equiva-

lence relation of unitary isomorphism. If a representation π ∈ Ĝ is finite dimensional

we denote its dimension by dπ.

Example 1.2.2. The irreducible unitary representations of G = U(1) are all one-

dimensional and are given by ρk(λ)(z) := λkz for all λ ∈ U(1), k ∈ Z, z ∈ C. The

unitary dual is therefore the dual group Ĝ = Z.

1.2.2 Haar measure

Let B(X) denote the Borel σ-algebra of X. Recall that a Borel measure µ is called

outer regular if for all A ∈ B(X),

µ(A) = inf{µ(O);A ⊆ O,O open in X},

and µ is called inner regular if

µ(A) = sup{µ(C);C ⊆ A,C compact in X}.

The measure µ is called regular if it is both inner regular and outer regular, such

that all compact sets have finite measures, i.e. µ(C) <∞ for all compact C ⊆ X.

Definition. Let G be a locally compact group. A measure mL on (G,B(G)) is called

a left Haar measure if

- mL is a regular Borel measure,

- mL is left-invariant : for all A ∈ B(G) and g ∈ G, mL(A) = mL(gA).

We can define similarly a right Haar measure, mR.

Definition. Given a left Haar measure mL on the locally compact group G, for any

complex valued Borel-measurable function f on G, we define for all 1 ≤ p <∞

‖f‖p :=

(∫
G

|f(x)|pmL(dx)

)1/p

∈ [0,∞],

and

‖f‖∞ := inf{K > 0; |f(x)| < K a.e. with respect to mL} ∈ [0,∞].

Then for all 1 ≤ p ≤ ∞ we denote by Lp(G,B(G),mL) the space of all equivalence

classes of complex-valued Borel-measurable functions that are equal mL-almost ev-

3



Chapter 1. Preliminaries

erywhere, defined by

Lp(G,B(G),mL) := {f : G→ C Borel measurable; ‖f‖p <∞} .

For all 1 ≤ p ≤ ∞, the space Lp(G,B(G),mL) is a Banach space with respect to

the norm ‖ · ‖p. In particular, L2(G,B(G),mL) is a Hilbert space with inner product

〈f, h〉 =

∫
G

f(x)h(x) mL(dx).

Theorem 1.2.3. Let G be a locally compact Hausdorff group, then left and right Haar

measures exist and are unique up to a positive multiplicative constant.

Proof. See Theorem 11.8-11.9, p.344 in [19].

1.2.3 The modular function

Let mL be a left Haar measure on G, then for any fixed g ∈ G we can obtain another

left Haar measure by right translation

mg
L(A) := mL(Ag),

for all A ∈ B(G). By the uniqueness of the Haar measure from Theorem 1.2.3, there

exists a constant ∆(g) > 0 such that

mg
L(A) = ∆(g)mL(A), for all A ∈ B(G)

Definition. The function g 7→ ∆(g) from G to (0,∞) is called the modular function.

The group G is called unimodular if ∆ ≡ 1.

Theorem 1.2.4. The modular function is a continuous homomorphism from G to

(0,∞).

Proof. See Theorem 1.2.2, p.7 in [6].

Theorem 1.2.5. Suppose G is locally compact.

(i) The measure defined by m̃R(A) =

∫
A

∆(x−1)mL(dx) for all A ∈ B(G) is a right

Haar measure on G.

(ii) For all f ∈ Cc(G), we have∫
G

f(x−1)mL(dx) =

∫
G

f(x)∆(x−1)mL(dx).

Proof. See Theorem 1.2.3, p.8 in [6].
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1.2. Topological groups

Proposition 1.2.6. If G is compact, then G is unimodular. Thus, any left Haar

measure on G is a right Haar measure (and vice versa). In other words, any Haar

measure on G is bi-invariant.

Proof. Since the modular function is a continuous homomorphism and G is compact,

∆(G) is a compact subgroup of (0,∞); but {1} is the only compact subgroup of

(0,∞). The bi-invariance follows from Theorem 1.2.5 (i), since m̃R = mL on G.

Remark 1.2.7. If G is a compact Hausdorff group, then every Haar measure m on

G is finite. Indeed, by definition the Haar measure m is regular, so for all compact

subsets C ⊆ G, m(C) <∞. In particular, we have m(G) <∞.

Definition. If G is compact, any Haar measure m (left or right) is unique up to mul-

tiplication with a non-negative constant, therefore we can define a unique normalized

Haar measure on G by

µG(A) =
m(A)

m(G)
, for all A ∈ B(G).

In the following, instead of writing

∫
f(g) µG(dg), we use the simpler notation∫

f(g) dg and we only specify µG in case of ambiguity.

1.2.4 Schur orthogonality and Peter-Weyl theorem

Let us state some of the most relevant results of harmonic analysis on compact topo-

logical groups; proofs can be found in the literature such as Chapter 6 of Faraut [17],

Chapter 2 of Applebaum [6], Chapter 5 of Folland [20] and Chapter 4 of Knapp [38].

In this section we will assume that G is a compact Hausdorff group, and we use the

simplified notation L2(G) := L2(G,B(G), µG).

Theorem 1.2.8. An irreducible representation π of a compact group G on a complex

Hilbert space Vπ is finite dimensional.

Proof. See [41] or p.28 in [6].

From now on we will write dπ = dim(Vπ).

Remark 1.2.9. Note that every representation of a compact group on a Hilbert space

is unitary under an appropriate inner product, see Proposition 2.2.1, p.27 in [6].
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Chapter 1. Preliminaries

Definition. Let G be a compact group and π an irreducible representation of G

acting on Vπ. We define a closed subspace Mπ of L2(G),

Mπ := Span{g 7→ 〈u, π(g)v〉;u, v ∈ Vπ}.

We will denote by E(G) the linear span of {ψ ∈Mπ, π ∈ Ĝ}. For any representation

π ∈ Ĝ on Vπ, let e1, e2, . . . , edπ be an orthogonal basis of Vπ.

Theorem 1.2.10. If π1 and π2 are distinct elements of Ĝ, then Mπ1 and Mπ2 are

orthogonal.

Proof. See Theorem 2.2.2, p.31 in [6] or Corollary 4.16, p.243 [38].

Theorem 1.2.11 (Schur Orthogonality Relation). Let π1, π2 ∈ Ĝ, then for all

φi, ψi ∈ Vπi , i = 1, 2,

∫
G

〈π1(g)φ1, ψ1〉〈π2(g)φ2, ψ2〉dg =

0 if π1 6= π2
1
dπ
〈φ1, φ2〉〈ψ1, ψ2〉 if π1 = π2

Proof. See [6] p.31.

We will now state the Peter-Weyl theorems, which will serve as the main tools for

harmonic analysis on groups. The first theorem states that L2(G) is Hilbert direct

sum of Mπ for π ∈ Ĝ.

Theorem 1.2.12 (Peter-Weyl 1). The space E(G) is dense in L2(G).

Theorem 1.2.13 (Peter-Weyl 2). We define the functions πij : G→ C by

πij(g) := 〈π(g)ei, ej〉 for all g ∈ G and i, j = 1, 2, . . . , dπ.

Then the set
{
d1/2π πij; 1 ≤ i, j,≤ dπ, π ∈ Ĝ

}
is a complete orthonormal basis for L2(G).

Theorem 1.2.14 (Peter-Weyl 3). The space E(G) is dense in C(G).

Proof. For proof of these theorems see p.33, in [6] or p.245, in [38].

1.3 Lie groups and Lie algebras

Definition. A Lie group G is a group that is also a smooth manifold, such that the

mapping (a, b) 7→ ab−1 is smooth.
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1.3. Lie groups and Lie algebras

Definition. An action of a Lie group G on a manifold M is a mapping sending each

g ∈ G to a diffeomorphism ρ(g) on M such that

i) ρ(e) = idM , that is ρ(e)m = m for all m ∈M ,

ii) ρ(gh) = ρ(g)ρ(h), for all g, h ∈ G.

We say that the action is smooth if the map (g,m) 7→ ρ(g)m is smooth from G×M
to M , in the usual sense on manifolds, see [58] p.6. We will often denote the group

action of G at a point m ∈M by g.m for all g ∈ G.

Example 1.3.1. Many examples of Lie groups are matrix groups:

1. General linear group GL(n,R)

2. Special linear group SL(n,R)

3. Orthogonal group and special orthogonal group O(n,R), SO(n,R)

4. Unitary group and special unitary group U(n,R), SU(n,R)

Since G is a smooth manifold, we can use all its properties from differential geom-

etry. Let us recall in particular, that we can equip the space of smooth vector fields

on G with a Lie bracket . Given two smooth vector fields X and Y we can introduce

a third smooth vector field [[X, Y ]], by

[[X, Y ]](f) = X(Y (f))− Y (X(f)), for all f ∈ C∞(G).

Definition. A Lie algebra L is a vector space over the field F(= R or C) equipped

with a bilinear mapping [·, ·] : L× L→ L satisfying: for all X, Y, Z ∈ L,

(i) [X, Y ] = −[X, Y ] (anti-commutative)

(ii) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 (Jacobi identity)

From (i) it follows that [X,X] = 0 for all X ∈ L. The bilinear map [·, ·] will be called

the Lie bracket of the the Lie algebra L.

Definition. Let L,L′ be two Lie algebras, then a homomorphism of Lie algebras is

a linear map f : L→ L′ that preserves the Lie bracket,

f([X, Y ]L) = [f(X), f(Y )]L′ , for all X, Y ∈ L.

Definition. Let G be a Lie groups. A vector field ξ : G → TG on a Lie group is

called left-invariant, if Telg(ξ(e)) = ξ(g), for all g ∈ G. The space of left-invariant

vector fields on a Lie group G equipped with the Lie bracket is a Lie algebra and is

called the Lie algebra of the Lie group G. We will denote it by g.

7



Chapter 1. Preliminaries

Let us briefly recall some definitions on smooth manifolds, that we will regularly

apply to Lie groups.

Definition. Let M,N be two smooth manifolds and F : M → N a smooth mapping.

The differential of F at p ∈ M is a linear map TpF : TpM → TF (p)N defined in the

following way, for all ϕ ∈ C∞(N) and X ∈ TpM ,

TpF (X)(ϕ) = X(ϕ ◦ F )(p).

It is easy to check that for all X ∈ TpM , the map TpF (X) : C∞(N) → R is a

derivation at F (p), i.e. for all f, g ∈ C∞(N)

TpF (X)(fg) = f(F (p)) TpF (X)(g) + g(F (p)) TpF (X)(f).

Theorem 1.3.2 (Chain rule for manifolds). Let M,N,L be smooth manifolds and

F : M → N , H : N → L smooth maps. Then the map (H ◦ F ) : M → L is also

smooth and satisfies

Tn(H ◦ F ) = TF (n)H ◦ TnF, for all n ∈ N,

where Tn(H ◦ F ) : TmM → T(H◦F )(m)L.

Proof. See [56], Theorem 8.5, p.79.

Definition. Let X be a vector field on a manifold M and p ∈ M . A smooth curve

γpX : (−ε, ε)→M , where ε > 0, is called an integral curve of X going through p if

- γpX(0) = p,

- (γpX)′(t) = X(γpX(t)), for all t ∈ (−ε, ε).

Note that on a smooth manifold M for any smooth φ : R → M by φ′(t) we mean

φ′(t) = Ttφ( d
dt

), where Ttφ : TtR ' R → Tφ(t)M is the differential of φ as defined

previously.

Definition. Let G be a Lie group, we call γ : R→ G a one-parameter subgroup of G

if it is a continuous homomorphism from R to G.

Remark 1.3.3. An integral curve of a left-invariant vector field is a one parameter

subgroup of G. Equivalently, any one-parameter subgroup of G is the integral curve

of a left-invariant vector field, see Proposition 1.4, p.92 and Corollary 1.5, p.93 in [24].
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1.3. Lie groups and Lie algebras

Definition. Let G be a Lie group and g its Lie algebra. We define the exponential

map exp : g→ G as exp(X) := γX(1) for all X ∈ g.

Then by the chain rule, for all t ∈ R we get exp(tX) = γtX(1) = γX(t) and given that

the integral curves γX for all X ∈ g are homomorphisms from R to G, we obtain

exp((s+ t)X) = exp(sX) exp(tX), for all s, t ∈ R and X ∈ g.

Hence,

exp(tX)−1 = exp(−tX), for all t ∈ R and X ∈ g.

For a detailed proof see Theorem 3.7, p.27 in [37].

The exponential map is a diffeomorphic map from a neighbourhood V of the

origin g to a neighbourhood U of e in G. For a basis {X1, X2, . . . , Xd} of g, there

exist corresponding mappings xi : U → R, 1 ≤ i ≤ d called canonical coordinates

such that for all 1 ≤ i ≤ d,

xi

(
exp

(
d∑
j=1

ajXj

))
= ai,

when
d∑
j=1

ajXj ∈ V . See [6] p.14 and [45], p.11 for reference.

Remark 1.3.4. The space of left-invariant vector fields is isomorphic to the tangent

space of G at e, TeG. We can therefore identify g with TeG, see Theorem 2.27, p.15

in [37].

Let X ∈ g, we will denote the corresponding left-invariant vector field’s value at

g ∈ G by X(g) := TelgX. Then by the chain rule, for all g ∈ G and f ∈ C∞(G),

d

dt
f(g exp(tX))

∣∣∣∣
t=0

= To [f(g exp(·X))]

(
d

dt

)
= Tgf ◦ Telg ◦ To exp(·X)

(
d

dt

)
= (Tgf ◦ Telg)(X(γX(0))) = (Tgf ◦ Telg)X(e)

= TgfX(g) = Xf(g) (1.1)

If V is a vector space, GL(V ) equipped with the commutator [α, β] = α◦β−β ◦α
is a Lie algebra, which we will denote by gl(V ). If V is finite dimensional, GL(V ) is

a Lie group and gl(V ) is its Lie algebra, see Proposition 8.48, p.198 in [44].

Definition. Let L be a finite dimensional Lie algebra. A Lie algebra representation

of L is a Lie algebra homomorphism from L to the Lie algebra gl(V ), where V is a

vector space.

9



Chapter 1. Preliminaries

We will only be interested in finite dimensional representations of Lie algebras.

Definition. Let π : G→ GL(V ) be a finite-dimensional representation of a Lie group

G on a vector space V . The differential of π at e, dπ := Teπ : g→ gl(V ), is called the

derived representation of g and it is a Lie algebra representation of g.

The following diagram commutes

G
π−−−→ GL(V )xexp exp

x
g

dπ−−−→ gl(v)

(1.2)

That is,

π(exp(X)) = exp(dπ(X)), for all X ∈ g,

see Proposition 20.8, p.519 in [44]. Thus, one can calculate that for all v ∈ V ,

dπ(X)v =
d

dt
π(exp(tX))v

∣∣∣∣
t=0

.

Let us look at a particular case. For any fixed g ∈ G, the conjugate map

cg(x) := gxg−1, for x ∈ G is an automorphism of G. Its differential at e is Ad(g) :=

Tecg : g → g. For all g ∈ G, Ad(g) is in GL(g), the mapping Ad : G → GL(g) is a

representation of G on g and it is called the adjoint representation of G on g. Indeed,

since cgh = cg ◦ ch for all g, h ∈ G, it then follows that Ad(gh) = Ad(g) ◦ Ad(h).

The derived representation of Ad is denoted by ad : g → gl(g) and it satisfies

ad(X)(Y ) = [X, Y] for all X, Y ∈ g. As previously, the following diagram commutes

G
Ad−−−→ GL(g)xexp exp

x
g

ad−−−→ gl(g)

(1.3)

That is for all X ∈ g,

Ad(exp(X)) = exp(ad(X)).

One can also calculate that, for all g ∈ G and X ∈ g

g exp(X)g−1 = exp(Ad(g)X), (1.4)

see p.127-128 in [25].
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1.3. Lie groups and Lie algebras

For p ∈ N, we will denote by Cp(G), the linear space of p times continuously dif-

ferentiable functions on G, the subspace of functions with compact support is denoted

Cp
c (G) and the subspace of functions that vanish at infinity is denoted Cp

0 (G). The

linear space of infinitely differentiable functions on G is C∞(G) =
⋂
p∈N

Cp(G) , the sub-

space of smooth functions of compact support is denoted by C∞c (G) = C∞(G)∩Cc(G).

For all g ∈ G, f ∈ C0(G) we define Lgf = f ◦ lg, Rgf = f ◦ rg.

Theorem 1.3.5. Let G be a connected Lie group. For any p ∈ N and f a real valued

function on G, we have the following equivalence

- The mapping f is in Cp(G,R).

- For all X1, X2, ..., Xp ∈ g, the mapping g 7→ X1X2 · · ·Xpf(g) is well-defined and

continuous from G to R.

Proof. See [6] Theorem 1.3.5 p.21, as well as [55] p.42.

Lemma 1.3.6. For any X, Y ∈ g, g, k ∈ G and f ∈ C2(G) we have

X(f ◦ ck)(g) = [Ad(k)X]f(ck(g)),

XY (f ◦ ck)(g) = [Ad(k)X] [Ad(k)Y ]f(ck(g)).

Proof. This follows directly from equations (1.1) and (1.4). For all f ∈ C2(G),

X, Y ∈ g and g, k ∈ G

X(f ◦ ck)(g) =
d

dt
(f ◦ ck)(g exp(tX))

∣∣∣∣
t=0

=
d

dt
f(kgk−1k exp(tX)k−1)

∣∣∣∣
t=0

=
d

dt
f(kgk−1 exp(Ad(k)tX)) = Ad(k)Xf(kgk−1)

= Ad(k)Xf(ck(g)).

For the second derivative, with a similar method we have

XY (f ◦ ck)(g) =
d

ds

d

dt
(f ◦ ck)(g exp(tY ) exp(sX))

∣∣∣∣
t=0
s=0

=
d

ds

d

dt
f(kgk−1k exp(tY )k−1k exp(sX)k−1)

∣∣∣∣
t=0
s=0

=
d

ds

d

dt
f(kgk−1 exp(Ad(k)tY ) exp(Ad(k)sX))

∣∣∣∣
t=0
s=0

= [Ad(k)X][Ad(k)Y ]f(ck(g)).

11



Chapter 1. Preliminaries

1.3.1 Universal enveloping algebra of a Lie algebra

Definition. Let L be a Lie algebra. A unital associative algebra U(L) is called the

universal enveloping algebra of L if there is a Lie algebra homomorphism h : L → U(L)

such that for any Lie algebra homomorphism f : L → A into a unital associative

algebra A there is a unique associative algebra homomorphism F : U(L) → A such

that f = F ◦ h.

L U(L)

A

h

f
F

The universal enveloping algebra can be constructed as U(L) := T (L)/IL, where

T (L) is the tensor algebra of L,

T (L) =
∞⊕
d=0

L⊗d,

where L⊗d = L⊗ · · · ⊗ L is the tensor product of L with itselt d times. The ideal IL
is generated by the elements a⊗ b− b⊗ a− [a, b] ∈ T (L) for all a, b ∈ L.

In particular, when L = g we can define the universal enveloping algebra of g by

U(g) = T (g)/Ig.

Theorem 1.3.7 (Poincaré-Birkhoff-Witt). Let (xi)i∈I a basis of L, with I being totally

ordered. Then the family of monomials h(xi1)h(xi2) . . . h(xin), where i1 ≤ · · · ≤ in,

n ≥ 0, is a basis of the universal enveloping algebra U(L) and h : L → U(L) is the

Lie algebra homomorphism from the definition U(L).

Proof. See Corollary C, p.92 [31].

Remark 1.3.8. In particular, for U(g) this means for the basis {X1, . . . , Xd} of g, then

the family Xj1
i1
, Xj2

i2
, . . . , Xjn

in
, where 1 ≤ i1 < i2 < · · · < in ≤ d and j1, j2, . . . , jn ∈ N,

is a basis of U(g).

Let us now introduce the element of U(g) that we will use the most. First define

the following.

Definition. A Riemannian metric on a manifold M is a family of inner products

gm : TmM × TmM → R such that m 7→ gm(X(m), Y (m)) is smooth for any two

smooth vector fields X and Y .

We can always equip a Lie group G with a Riemannian metric ρ, see the construction

in [6] p.11. Then for a fixed basis {X1, X2, . . . , Xd} of g we define ρij := ρ(Xi, Xj)

12



1.3. Lie groups and Lie algebras

for all 1 ≤ i, j ≤ d. The matrix (ρij) is positive definite, so it is non-singular. Let us

denote its inverse by (ρ−1ij ). The Laplace-Beltrami operator on G equipped with ρ is

∆ ∈ U(g) given by

∆ =
d∑

i,j=1

ρ−1ij XiXj. (1.5)

If G is compact and X1, X2, . . . , Xd is an orthonormal basis for g with respect to

the metric ρ, so that ρij = δij for all 1 ≤ i, j ≤ d, then

∆ =
d∑
i=1

X2
i .

Proposition 1.3.9. The Laplace-Beltrami operator ∆ is independent of the choice of

basis in g.

Proof. See [6] Proposition 1.3.1 p.18.

1.3.2 Weights

In this section we will suppose that the Lie group G is compact. We will start by

providing a brief summary on weights, for references see [6] Chapter 2.5 and [31]. A

maximal torus T in G is a maximal commutative subgroup of G. The dimension of T
is called the rank of G. Note that any two maximal tori are conjugate, see [38] Corol-

lary 4.35, p.255. Let t be the Lie algebra of T , then t is a maximal abelian subalgebra

of g, see [38] Proposition 4.30, p.252. Let π be a unitary representation of G, then

the matrices {dπ(X);X ∈ t} are mutually commuting and therefore simultaneously

diagonalizable, that is there exists a a non-singular matrix Q such that

Qdπ(X)Q−1 = diag(iλ1(X). . . . , iλdπ(X)), for all X ∈ t,

where each λk, k = 1, . . . , dπ, is a linear functional, and we call these the weights

of π. In particular, let us consider the adjoint representation of G acting on the

complexification gC of g. It is possible to equip gC with an Ad-invariant inner product

(·, ·), we will denote the corresponding norm on gC by | · |. Then the weights of the

adjoint representation of G acting on gC equipped with (·, ·) are called the roots of

G. Let us denote by P the set of all roots of G. We can associate signs to each

root the following way: let us fix v ∈ t such that P ∩ {η(v) ∈ t∗; η(v) = 0} = ∅,
where t∗ is the dual space of t. Then we can split P into the set of positive roots

P+ := {α ∈ P ;α(v) > 0} and the set of negative roots P− := {α ∈ P ;α(v) < 0}
such that P = P+ ∪ P−. There exist a subset of positive roots Q ⊂ P+ that forms a

13
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basis for t∗ and every root α ∈ P is a linear combination of the elements of Q. The

elements of Q are called simple or fundamental roots of G. It can be shown that for

any fixed irreducible representation π of G, there exists a particular weight λπ called

the highest weight such that every weight of π is of the form

µπ = λπ −
∑
α∈Q

nαα,

the terms nα are non-negative integers, at least one of which is non-zero, see proof in

[6] p.48. There is a one-to-one correspondence between Ĝ and the space of highest

weights D of irreducible representations, [54] Chapter 7, Theorem 1. Ĝ is identified

with D by this bijection. The norm | · | on D will be the norm derived from the inner

product (·, ·).

1.3.3 Casimir spectrum

Let us list some known results which we will use later and can be all found in [6],

Chapter 2.

Theorem 1.3.10. For each π ∈ Ĝ, there exists a constant κπ ≥ 0 such that

∆πi,j = −κππi,j, for all i, j = 1, . . . , dπ

we call {κπ, π ∈ Ĝ} the Casimir spectrum for G.

Theorem 1.3.11. For each λ ∈ D,

κλ = |λ− ρ|2 − |ρ|2,

where ρ is the half-sum of positive roots.

Corollary 1.3.12. For all λ ∈ D,

|λ|2 ≤ κλ ≤ C(1 + |λ|2),

where C = max{2, |ρ|2}.

14



Chapter 2

Spherical functions and

K-bi-invariant functions

In this section we are interested in complex-valued functions that are constant on the

double coset of a locally compact group, G. The notation is based on [59].

2.1 The convolution product

Let us introduce in this section the convolution product and some of its widely known

properties. All the propositions which are discussed below can be found in [17];

however here we will provide more detailed proofs.

Definition. Let G be a locally compact group and f, h ∈ L1(G,B(G),mL). We

define the convolution product of f and h by:

(f ∗ h)(g) =

∫
G

f(x)h(x−1g)dx, for all g ∈ G.

The following proposition proves that the convolution product is well-defined from

L1 × L1 to L1.

Proposition 2.1.1. The convolution operation is well-defined and satisfies ‖f∗h‖L1(G) ≤
‖f‖L1(G)‖h‖L1(G), for all f, h ∈ L1(G,B(G),mL). Furthermore, it is associative on

L1(G,B(G),mL). Thus, L1(G,B(G),mL) is a Banach algebra under convolution.

Proof. Let us apply Fubini’s theorem and a change of variable to see that for all

15



Chapter 2. Spherical functions and K-bi-invariant functions

f, h ∈ L1(G,B(G),mL),

‖f ∗ h‖L1 =

∫
G

|(f ∗ h)(g)| dg =

∫
G

∣∣∣∣∫
G

f(x)h(x−1g)dx

∣∣∣∣ dg
≤
∫
G

∫
G

∣∣f(x)h(x−1g)
∣∣ dx dg

=

∫
G

(∫
G

∣∣h(x−1g)
∣∣ dg) |f(x)| dx

=

∫
G

(∫
G

|h(g′)| dg′
)
|f(x)| dx

=

∫
G

|h(g′)| dg′
∫
G

|f(x)| dx = ‖f‖L1‖h‖L1 .

This implies that the convolution product is well defined from L1(G,B(G),mL) ×
L1(G,B(G),mL) to L1(G,B(G),mL).

To prove associativity, let f, h, l ∈ L1(G,B(G),mL) and g ∈ G, then by Fubini’s

theorem and a change of variable we have

((f ∗ h) ∗ l)(g) =

∫
G

(f ∗ h)(x)l(x−1g)dx

=

∫
G

∫
G

f(y)h(y−1x)l(x−1g)dy dx

=

∫
G

f(y)

∫
G

h(x)l(x−1y−1g)dx dy

=

∫
G

f(y)(h ∗ l)(y−1g)dy

= (f ∗ (h ∗ l))(g).

Proposition 2.1.2. The space L1(G,B(G),mL) can be equipped with an involution

f 7→ f ∗ where

f ∗(g) = f(g−1)∆(g−1), for all g ∈ G and f ∈ L1(G,B(G),mL).

Proof. For all f ∈ L1(G,B(G),mL), the equality f ∗∗ = f follows by using the fact

that ∆ is a homomorphism, see Theorem 1.2.4. In fact, for all g ∈ G

f ∗∗(g) = f ∗(g−1)∆(g−1) = f(g)∆(g)∆(g−1) = f(g).

Also for all f, h ∈ L1(G,B(G),mL) and g ∈ G, by applying a change of variable,

the left-invariance of the Haar measure and the fact that the modular function ∆ is

16



2.2. The space of K-bi-invariant functions

a homomorphism, we have

(f ∗ h)∗(g) = (f ∗ h)(g−1)∆(g−1) =

∫
G

f(x) h(x−1g−1)∆(g−1)dx

=

∫
G

f(g−1x) h(x−1)∆(g−1)dx

=

∫
G

f(g−1x)∆(g−1x) h(x−1)∆(x−1)dx

= (h∗ ∗ f ∗)(g).

Remark 2.1.3. On L1(G,B(G),mL), the convolution product is commutative if and

only if G is abelian, see Proposition 3.6.3 p.49 in [59].

2.2 The space of K-bi-invariant functions

Definition. Let G be a locally compact group and K a closed subgroup. A function f

on G is said to be K-left-invariant if f(kg) = f(g), K-right-invariant if f(gk) = f(g)

for all g ∈ G and k ∈ K and K-bi-invariant if it is both K-left-invariant and K-right-

invariant.

Definition. For a locally compact group G and a compact closed K, we define the

two coset spaces K\G := {Kg; g ∈ G}, G/K := {gK; g ∈ G} and the double coset

space K\G/K := {KgK; g ∈ G}. We denote by C(K\G), C(G/K) and C(K\G/K)

the closed subspaces of C(G) which consists respectively of all K-left-invariant, K-

right-invariant and K-bi-invariant functions. That is for all k ∈ K,

• C(K\G) := {f ∈ C(G) : f(kg) = f(g) for all k ∈ K and g ∈ G}
• C(G/K) := {f ∈ C(G) : f(gk) = f(g) for all k ∈ K and g ∈ G}
• C(K\G/K) := C(K\G) ∩ C(G/K)

These spaces are equipped with the corresponding induced topology. In the same way,

we can define Cb(K\G/K), C∞c (K\G/K), Cp(K\G/K) and Lp(K\G/K) for p ≥ 1.

We proceed similarly for the K-left-invariant and the K-right-invariant case.

Remark 2.2.1. There is a one-to-one correspondence between the space of K-bi-

invariant continuous functions on G and the space of continuous functions on the

double coset space. We denote both by C(K\G/K). Similarly for K-left- and K-

right-invariant functions.
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Chapter 2. Spherical functions and K-bi-invariant functions

From now on we will assume that K is compact. The following operator will be

extensively used throughout the thesis.

Proposition 2.2.2. The linear mapping QK : f 7→ f# from Cb(G) to Cb(K\G/K),

defined by

f#(g) =

∫
K

∫
K

f(k1gk2)dk1dk2, for all g ∈ G.

is surjective and idempotent.

Proof. For all f ∈ Cb(G), let us prove that f# is in Cb(K\G/K); f# is continuous

on G by applying dominated convergence. To see that f# is also K bi-invariant we

use Proposition 1.2.5 and by applying a change of variable, we get for all g in G and

r1, r2 ∈ K,

f#(r1gr2) =

∫
K

∫
K

f(k1r1gr2k2) dk1 dk2

=

∫
K

∫
K

f(l1gl2) d(l1r
−1
1 ) d(r−12 l2)

=

∫
K

∫
K

f(l1gl2) dl1dl2 = f#(g).

It then follows that QK is idempotent,

f ]](g) =

∫
K

∫
K

f#(k1gk2) dk1 dk2 =

∫
K

∫
K

f#(g) dk1 dk2 = f ](g)

Finally, QK is surjective, since for all f ∈ Cb(K\G/K) ⊂ Cb(G) we haveQKf = f .

Corollary 2.2.3. The mapping QK is an orthogonal projection from L2(G) to L2(K\G/K).

Proof. First we will prove that for all f ∈ L2(G), f ] is in L2(K\G/K). By the

Cauchy-Schwarz inequality, Fubini’s theorem, Proposition 1.2.6, we get∫
G

|f ](g)|2dg =

∫
G

∣∣∣∣∫
K

∫
K

f(kgk′) dk dk′
∣∣∣∣2 dg

≤
∫
G

∫
K

∫
K

|f(kgk′)|2 dk dk′ dg

=

∫
K

∫
K

∫
G

|f(kgk′)|2 dg dk dk′

=

∫
K

∫
K

∫
G

|f(g)|2 dg dk dk′ = ‖f‖L2 <∞.
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K-bi-invariance of f ] and the idempotence of QK : L2(G)→ L2(K/G\K) can be

proved the same way as in the continuous case in Proposition 2.2.2. Let us now show

that QK is self-adjoint. For all f, h ∈ L2(G), we have

〈QKf, h〉 =

∫
G

QKf(g)h(g)dg

=

∫
G

∫
K

∫
K

f(kgk′)h(g)dk dk′ dg

=

∫
K

∫
K

∫
G

f(g)h(k′gk) dg dk′ dk

=

∫
G

f(g)

∫
K

∫
K

h(k′gk) dk dk′ dg

=

∫
G

f(g)QKh(g) dg = 〈f,QKh〉.

Thus, QK is an orthogonal projection from L2(G) to L2(K\G/K).

Example 2.2.4. We will identify the space of continuous K-bi-invariant functions

C(K\G/K) with the space of K-left-invariant functions on the homogeneous space

G/K. Let us consider the case where G = SO(3) and K = SO(2), then G/K ' S2.

Then for any function f ∈ C(SO(3)), its corresponding image by QK is the function

f ] in C(S2), that is constant on the orbits.

2.3 Spherical measures and spherical functions

We are going to introduce spherical functions in this section; all proofs can be found

in [59].

Definition. Let G be locally compact group, and K a closed subgroup. We call a

measure ϑ on (G,B(G)) a spherical measure for (G,K) if

i) ϑ is a non-zero Radon measure, i.e. it is an inner regular and locally finite Borel

measure,

ii) ϑ is K-bi-invariant. i.e.: for all measurable E ⊆ B(G) and k1, k2 ∈ K, ϑ satisfies

ϑ(k1Ek2) = ϑ(E),

iii) the mapping f 7→ ϑ(f) from the algebra Cc(K\G/K) with convolution opera-

tion to C is an algebra homomorphism, where

ϑ(f) :=

∫
G

f(g)dϑ(g).
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Remark 2.3.1. Note that the term spherical measure is used here as per [59] and

has a more restrictive meaning than that used in [1]. For the latter notion we will

later introduce the term K-bi-invariant measure.

Theorem 2.3.2. A spherical measure ϑ for (G,K) is absolutely continuous w.r.t the

normalized Haar measure on G. In fact, there is a function ω ∈ C(K\G/K) with

ω(e) = 1 such that for all f ∈ Cc(K\G/K)∫
G

f(x)dϑ(x) =

∫
G

f(x)ω(x−1) dx.

That is, x 7→ ω(x−1) is the Radon-Nikodym derivative of ϑ with respect to the Haar

measure on G.

Proof. This is based on Theorem 8.2.4, p.157, in [59], here we will fill in some missing

steps. Fix a function h ∈ Cc(K\G/K), such that ϑ(h) 6= 0. By using the definition

of a spherical measure and Fubini’s theorem, we have for all f ∈ Cc(K\G/K)

ϑ(f) =
1

ϑ(h)
ϑ(f ∗ h) =

1

ϑ(h)

∫
G

(f ∗ h)(x)dϑ(x)

=
1

ϑ(h)

∫
G

(∫
G

f(y)h(y−1x)dy

)
dϑ(x)

=
1

ϑ(h)

∫
G

f(y)

(∫
G

h(y−1x)dϑ(x)

)
dy

=

∫
G

f(y)ω(y−1)dy,

where ω(y) :=
1

ϑ(h)

∫
G

h(yx)dϑ(x). To prove that ω is K-bi-invariant we use the

K-bi-invariance of h and of the spherical measure ϑ. For all k1, k2 ∈ K and y ∈ G,

we have

ω(k1yk2) =
1

ϑ(h)

∫
G

h(k1yk2x)dϑ(x)

=
1

ϑ(h)

∫
G

h(k−11 k1yk2xk1)dϑ(x)

=
1

ϑ(h)

∫
G

h(yx)dϑ(x) = ω(y)

Also,

ω(e) =
1

ϑ(h)

∫
G

h(x)dϑ(x) =
1

ϑ(h)
ϑ(h) = 1.

To prove that ω is continuous, we use dominated convergence and the fact that h is

continuous and has compact support.
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2.3. Spherical measures and spherical functions

Definition. A continuous function ω : G→ C is a spherical function if

ϑ(f) :=

∫
G

f(g)ω(g−1)dµ(g) is a spherical measure.

Theorem 2.3.3. Let us consider a function ω : G → C. The following statements

are equivalent

(i) ω is a spherical function for (G,K)

(ii) ω is a continuous K bi-invariant function with ω(e) = 1, and every function

f ∈ Cc(K\G/K) is an eigenvector of the convolution operator Tω with corre-

sponding eigenvalue λf ∈ C, i.e. Tωf := f ∗ ω = λfω.

(iii) ω is a continuous nonzero function such that for all g1, g2 ∈ G, we have

ω(g1)ω(g2) =

∫
K

ω(g1kg2)dk.

Proof. See p.157 in [59].

In the next proposition the map λ : Cc(K/G\K)→ C maps each f ∈ Cc(K/G\K)

to the eigenvalue λf of the operator Tω as given in Theorem 2.3.3.

Proposition 2.3.4. The map λ : Cc(K/G\K) → C is an associative algebra homo-

morphism.

Proof. Given the characterisation (ii) of Theorem 2.3.3, it follows that for any spher-

ical function ω : G → C, the corresponding spherical measure ϑω satisfies for all

f ∈ Cc(K/G\K)

ϑω(f) = (f ∗ ω)(e) = λ(f)ω(e).

By definition f 7→ ϑω(f) is a homomorphism from Cc(K/G\K) to C and ω(e) = 1,

so we get for all f1, f2 ∈ Cc(K/G\K)

ϑω(f1 ∗ f2) = ϑω(f1)ϑω(f2).

That is

λ(f1 ∗ f2) = λ(f1)λ(f2).

The remaining conditions for λ to be an algebra homomorphism follow from the

linearity of the integral ϑω(f).
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Chapter 2. Spherical functions and K-bi-invariant functions

2.4 Positive definite functions

Let us recall the definition and properties of positive definite functions based on

Chapter 8.4 in [59]. In this section G will be a locally compact group.

Definition. A function φ : G→ C is positive definite if for all n ∈ N, g1, g2, ..., gn ∈ G
and c1, c2, ...cn ∈ C, we have the following inequality

n∑
i,j=1

cicjφ(g−1i gj) ≥ 0.

Proposition 2.4.1. Let φ : G→ C be a positive definite function, then φ satisfies:

(i) φ(e) ≥ 0,

(ii) φ(g−1) = φ(g), for all g ∈ G,

(iii) |φ(g)| ≤ φ(e), for all g ∈ G.

Proof. This is a detailed version of the proof outlined in [59], Proposition 8.4.2. p165.

(i) Choose n = 1, g1 = e and c1 = 1 and apply the definition of positive definite-

ness.

(ii) For n = 2, choose g1 = g and g2 = e, then by positive definiteness we have for all

c1, c2 ∈ C,

c1c2φ(g−1) + |c1|2φ(e) + |c2|2φ(e) + c2c1φ(g) ≥ 0. (2.1)

From (i) we saw that φ(e) and therefore (|c1|+ |c2|)φ(e) are real numbers.

Thus, c1c2φ(g−1) + c2c1φ(g) has to be a real number as well. For simplicity, let us look

at the real number cφ(g−1) + cφ(g), where c = c1c2 ∈ C. Since it has no imaginary

part, we have

cφ(g−1) + cφ(g) = cφ(g−1) + cφ(g).

In particular, for c = 1 we obtain

φ(g−1) + φ(g) = φ(g−1) + φ(g). (2.2)

For c = i, we get

−iφ(g−1) + iφ(g) = iφ(g−1)− iφ(g).

Therefore,

−φ(g−1) + φ(g) = φ(g−1)− φ(g). (2.3)

Adding (2.2) and (2.3), we get φ(g) = φ(g−1).

iii) The function φ is positive definite, therefore for all n ∈ N and g1, g2, ..., gn ∈ G,

the matrix with (i, j)th entry φ(g−1i gj) is positive definite. Hence, the determinant of
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2.4. Positive definite functions

this matrix is non-negative, in particular when n=2, we have for all g1, g2 ∈ G,

φ(g−11 g1)φ(g−12 g2)− φ(g−11 g2)φ(g−12 g1) ≥ 0.

Fix g2 = e, then for any g = g1 ∈ G using (ii) we get

φ(e)2 − |φ(g)|2 ≥ 0.

Thus, φ(e) ≥ |φ(g)|.

Definition. If π is a representation of G on a vector space V , then a vector u ∈ V is

called cyclic for π if V = Span{π(g)u : g ∈ G}. If K is a subgroup of G and π(k)u = u

for all k ∈ K then u is said to be K-fixed.

Proposition 2.4.2. Let π be a unitary representation of G on a Hilbert space H, and

u ∈ H a cyclic unit vector. Then g 7→ φ(g) := 〈u, π(g)u〉 is positive definite.

Proof. Any representation π is a homomorphism, also π(g) is a unitary operator for

all g ∈ G. Therefore, for all g1, g2, ..., gn ∈ G, c1, c2, ..., cn ∈ C and n ∈ N, we have

n∑
i=1

n∑
j=1

cicjφ(g−1i gj) =
n∑
i=1

n∑
j=1

cicj〈u, π(gi)
−1π(gj)u〉

=
n∑
i=1

n∑
j=1

cicj〈π(gi)u, π(gj)u〉

=

〈
n∑
i=1

ciπ(gi)u,
n∑
j=1

cjπ(gj)u

〉

=

∥∥∥∥∥
n∑
i=1

ciπ(gi)u

∥∥∥∥∥
2

≥ 0.

Hence, φ is positive definite.

Example 2.4.3. Let G = S1 act on L2(G) via the regular representation, π(α)f(·) =

f(· + α) for eiα ∈ S1. The subspace V generated by sin(x) and cos(x), is G-

invariant. Then f(x) := 1√
π

cos(x) is a cyclic unit vector of V . The map φ : ϑ 7→∫
f(x)f(x+ ϑ)dx is positive definite.

To prove the converse of the previous proposition, we will need the following

lemma.
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Chapter 2. Spherical functions and K-bi-invariant functions

Lemma 2.4.4. Let π be a representation of G on a complex vector space V , equipped

with a G-invariant non-negative definite Hermitian form b : V ×V → C that satisfies

|b(v, w)|2 ≤ |b(v, v)| · |b(w,w)|, for all v, w,∈ V.

We denote η := {ε ∈ V : b(ε, ε) = 0}, which is a subspace of V . Then b induces an

inner product 〈·, ·〉 on V/η, by

〈[v], [w]〉 := b(v, w), for all [v], [w] ∈ V/η,

And π induces a unitary representation ρ of G on V/η by

ρ(g)[v] := [π(g)(v)], for all g ∈ G, [v] ∈ V/η.

Proof. First, note that 〈[v], [w]〉 is well-defined for all [v], [w] ∈ V/η, i.e. it is indepen-

dent of the choice of element in [v] and [w]. Indeed, first observe that for all v ∈ V
and ε ∈ η we have

|b(v, ε)|2 ≤ |b(v, v)||b(ε, ε)| = 0.

Thus, for all v, w ∈ V and ε, ε′ ∈ η we have

〈[v + ε], [w + ε′]〉 = b(v, w) + b(v, ε′) + b(ε, w) + b(ε, ε′)

= b(v, w) = 〈[v], [w]〉

Moreover, the bilinear form 〈·, ·〉 is positive definite, if [v] ∈ V/η such that 〈[v], [v]〉 = 0,

then b(v, v) = 0 and v ∈ η, thus [v] = [0].

Let us now prove that the mapping ρ : G → Aut(V/η) is also well-defined. By

assumption, b is G invariant, so we have the following: for all ε ∈ η and g ∈ G,

b(π(g)(ε), π(g)(ε)) = b(ε, ε) = 0. Thus, π(g)(η) ⊆ η for all g ∈ G. We then get

ρ(g)[v + ε] = [π(g)(v) + π(g)(ε)] = [π(g)(v)] = ρ(g)[v]

for all v ∈ V and ε ∈ η. From the properties of π, it is easy to see that ρ is a

representation of G on V/η. Furthermore, ρ is unitary on the complex Hilbert space

V/η by G-invariance of b, i.e. for all g ∈ G, v, w ∈ V ,

〈ρ(g)[v], ρ(g)[w]〉 = 〈[π(g)(v)], [π(g)(w)]〉 = b(π(g)(v), π(g)(w))

= b(v, w) = 〈[v], [w]〉.

This shows ρ(g) is an isometry, then unitarity follows as ρ is a representation.
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2.4. Positive definite functions

Theorem 2.4.5. Let φ : G → C be a continuous positive definite function, with

φ(e) = 1. Then there exist a unitary representation π of G in a complex Hilbert space

Hφ and a cyclic unit vector uφ ∈ Hφ such that

φ(g) = 〈uφ, π(g)uφ〉, for all g ∈ G. (2.4)

Proof. Here we provide a very detailed proof based on the sketch in [59], Proposition

8.4.6., p.166.

We will construct Hφ with the help of Lemma 2.4.4. For any g ∈ G, we will use the

usual notation of δg : G → {0, 1} for the Dirac function taking the value 1 at g and

0 elsewhere; then we denote the complex vector space V := SpanC {δg : g ∈ G}. Let

b : V × V → C be the Hermitian form defined first on the basis vectors δg by

b(δh, δg) := φ(g−1h), for all h, g,∈ G.

Then extend b to V ×V complex linearly in the first variable, and complex antilinearly

in the second. The Hermitian form b is non-negative definite, since for any f =
n∑
i=1

λiδgi ∈ V where n ∈ N, gi ∈ G and λi ∈ C for i = 1, . . . n, the form b satisfies

b(f, f) =
n∑

i,j=1

λiλjb(δgj , δgi) =
n∑

i,j=1

λiλjφ(g−1i gj) ≥ 0,

because φ is positive definite.

Let L̃ : G→ Aut(V ) be the left regular representation ofG given by (L̃(g)f)(x) = f(g−1x),

for all g, x ∈ G. First note that L̃(g)δh = δg−1h for all g, h ∈ G. Then b is invariant

under the action of L̃, since for all g ∈ G and f1 =
n∑
j=1

λjδgj ,

f2 =
m∑
i=1

βiδgi ∈ V , we have

b(L̃(g)f1, L̃(g)f2) =
n∑
j=1

m∑
i=1

βiλjb(δg−1gj , δg−1gi)

=
n∑
j=1

m∑
i=1

βiλjφ(g−1j gg−1gi)

=
n∑
j=1

m∑
i=1

βiλjφ(g−1j gi)

= b(f1, f2)
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Chapter 2. Spherical functions and K-bi-invariant functions

We denote ηφ := {f ∈ V : b(f, f) = 0}, which is a subspace of V . By Lemma 2.4.4,

b induces an inner product 〈·, ·〉 on V/ηφ and L̃ induces a unitary representation

π : G→ Aut(V/ηφ). Let Hφ be the Hilbert space completion of V/ηφ with respect to

this inner product. Since Vφ/ηφ is dense in Hφ, if π is continuous, then it extends

uniquely to a continuous representation denoted by the same letter π : G→ Aut(Hφ)

which is also unitary.

Let us now prove that π is indeed continuous, i.e. that for all [f ] ∈ V/ηφ we have

π(g)[f ]→ [f ] as g → e. Since 〈·, ·〉 is induced by b, it suffices to show that for all

f ∈ V , we have b(L̃(g)f − f, L̃(g)f − f)→ 0 as g → e.

Fix f =
n∑
i=1

ciδgi ∈ V , for some n ∈ N, ci ∈ C, gi ∈ G for i = 1, . . . n. Since

b(L̃(g)f − f, L̃(g)f − f) = 2b(f, f)− 2 Re b(L̃(g)f, f),

it suffices to show that b(L̃(g)f, f)→ b(f, f) as g → e. We have

b(L̃(g)f, f) =
n∑
i=1

cicjb(δg−1gj , δgi) =
n∑
i=1

cicjφ(g−1i g−1gj).

The map g 7→ g−1i g−1gj is continuous from G to G and φ is continuous from G to

C, therefore g 7→ φ(g−1i g−1gj) is continuous from G to C. Hence, by linearity when

g → e the right hand side converges to

n∑
i=1

cicjφ(g−1i gj) = b(f, f),

implying that π is continuous.

Finally, uφ := [δe] is a cyclic unit vector. Indeed, since π(g)[δh] = [δgh] for all g, h ∈ G,

Hφ = SpanC{[δg] : g ∈ G} = SpanC{π(g)uφ : g ∈ G}.

And by construction, we also have for all g ∈ G,

〈uφ, π(g)uφ〉 = 〈[δe], [δg]〉 = b(δe, δg) = φ(g).
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2.5. Positive definite spherical functions

2.5 Positive definite spherical functions

Definition. Let G be a locally compact group and K a closed subgroup. A function

φ : G→ C is called a positive definite spherical function for (G,K), if it is a positive

definite function on G and a spherical function for (G,K).

2.5.1 Positive definite spherical functions and unitary repre-

sentations

We proved in Theorem 2.4.5 that any positive definite function uniquely defines a

cyclic vector and a unitary representation. In addition, for a positive definite spherical

function, the unitary representation will be irreducible and the cyclic vector will be

K-fixed, we will provide a detailed proof of this result following [59] p.167.

Definition. Let G be locally compact and K a compact subgroup of G. A unitary

representation π of G on a Hilbert space V is called spherical if there exists a nonzero

u ∈ V that is fixed under all k ∈ K, i.e. such that π(k)u = u for all k ∈ K. We shall

denote the set of equivalence classes of unitary spherical representations by ĜK ,

ĜK := {π ∈ Ĝ : π is spherical}.

Then ĜK is in one-to-one correspondence with a subset of the highest weights D of

the irreducible representations, that we will call restricted highest weights and we will

denote this subset by DS.

Remark 2.5.1. In the following whenever we say spherical representation, we mean

spherical unitary representation.

Only for this section we will define bounded representations of a Lie group and of

a Banach algebra, as we will use these notions in the proof of Theorem 2.5.3.

Definition. If π is a representation ofG on a Banach spaceB, then π is called bounded

if there exists a constant M > 0 such that the operator norm ‖π(g)‖L(B) ≤M for all

g ∈ G.

In particular, any unitary and so spherical representation of G is a bounded represen-

tation.

Definition. A representation of a Banach algebra A on a Banach space B is an alge-

bra homomorphism π : A → End(B), where End(B) is the space of all endomorphism

on B. It is called bounded if there is a constant M > 0 such that ‖π(a)‖L(B) ≤M‖a‖A
for all a ∈ A.
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Chapter 2. Spherical functions and K-bi-invariant functions

In particular, if π is a bounded representation of a locally compact topological

group G on a Banach space B, then we can define a map π̇ : L1(G)→ End(B) by

π̇(f) : b 7→
∫
G

f(x)π(x)b dmL(x), for all b ∈ B, f ∈ L1(G).

One can easily verify that π̇ is a bounded representation of the Banach algebra L1(G)

with respect to convolution.

We can now recall the following useful theorem from [59], Chapter 4 .

Theorem 2.5.2. Let π be a bounded representation of G on B Banach space, and

B′ ⊂ B be a closed subset. B′ is G-invariant (under π) if and only if B′ is L1(G)-

invariant (under π̇).

Theorem 2.5.3. Let φ be a continuous positive definite spherical function for (G,K),

such that φ(e) = 1. Let π be the corresponding unitary representation acting on the

Hilbert space Hφ and u ∈ Hφ the cyclic unit vector such that φ(g) = 〈u, π(g)u〉. Then

the pair (π, u) satisfy the following

i) π is irreducible,

ii) u is K-fixed, i.e. π(k)u = u for all k ∈ K,

iii) the space of K-fixed vectors V K
π ⊆ Vπ is one-dimensional and V K

π is spanned by

u.

Proof. For a different approach, see Lemma 6.2.3 in [57]. Here, we will follow the

steps outlined in [59] Theorem 8.4.8., p.167, however, our proof will be more detailed

and we will fill out all missing arguments. Let us first deal with (ii) and (iii), then we

will end with the proof of (i).

(ii) The function φ is spherical, thereforeK-bi-invariant. In particular φ(g) = φ(k−1g)

for all g ∈ G and k ∈ K, that is

〈u, π(g)u〉 = 〈u, π(k−1)π(g)u〉 = 〈π(k)u, π(g)u〉.

Thus, by linearity of the inner product we get 〈π(k)u − u, π(g)u〉 = 0. By linearity

again, for all k ∈ K, (π(k)u − u) is orthogonal to the space Span{π(g)u; g ∈ G},
which is dense in Hφ since u is a cyclic vector. This means π(k)u = u, for all k ∈ K.

For (iii), we will prove that the orthogonal complement of Span{u} in V K
π is {0}.

We first claim that v ⊥ π̇(f)u for all f ∈ Cc(G), i.e. that

〈π̇(f)u, v〉 = 0 for all f ∈ Cc(G). (2.5)
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For all g ∈ G and f ∈ Cc(K\G/K), we have

〈π̇(f)u, π(g)u〉 =

〈∫
G

f(x)π(x)u dx, π(g)u

〉
=

∫
G

f(x)〈π(x)u, π(g)u〉 dx

=

∫
G

f(x)〈u, π(x−1)π(g)u〉 dx

=

∫
G

f(x)φ(x−1g) dx

= (f ∗ φ)(g) = λfφ(g) = λf〈u, π(g)u〉,

where λf is the eigenvalue from Theorem 2.3.3. Since u is cyclic, this implies

π̇(f)u = λfu.

Note that the map QK : Cc(G) → Cc(K\G/K) in surjective, see [20], p.61-2.

Any function f ∈ Cc(G) decomposes as f = QKf + (Id−QK)f , where from Proposi-

tion 2.2.2 we know that f1 := QKf ∈ Cc(K\G/K) and f2 := (Id−QKf) ∈ Ker(QK).

Therefore, for all v ∈ V K
π with v ⊥ u,

〈π̇(f)u, v〉 = 〈π̇(f1)u, v〉+ 〈π̇(f2)u, v〉
= 〈λf1u, v〉+ 〈π̇(f2)u, v〉

= 0 +

∫
G

f2(x)〈π(x)u, v〉 dx.

The Haar measure on K is normalized, u and v are both K-fixed and f ]2 = 0 for all

f ∈ Cc(G). It then follows by Fubini’s theorem that for all f ∈ Cc(G),

〈π̇(f)u, v〉 =

∫
K

∫
K

∫
G

f2(x)〈π(x)u, v〉 dx dk1dk2

=

∫
G

∫
K

∫
K

f2(x)〈π(x)π(k2)u, π(k−11 )v〉 dk1dk2 dx

=

∫
G

f#
2 (x)〈π(x)u, v〉 dx = 0.

By a density argument, this implies

〈π̇(f)u, v〉 = 0 for all f ∈ L1(G). (2.6)

Let us define

S := Span{π̇(f)u; f ∈ L1(G)},
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which is a subspace of Vπ. It is clear that S is L1(G)-invariant (under π̇). Thus,

by Theorem 2.5.2, the space S is G-invariant (under π). Note that u ∈ S, so by

G-invariance

Span{π(g)u : g ∈ G} ⊆ S = Span{π̇(f)u : f ∈ L1(G)}.

Thus, from (2.6) it follows that 〈π(g)u, v〉 = 0 for all g ∈ G. But u is a cyclic vector,

so this implies 〈w, v〉 = 0 for all w ∈ Vπ, i.e. v = 0.

(i) Suppose to the contrary that there exists a subspace W ⊂ Vπ that is G-invariant

(under π). Then W⊥ is also G-invariant. Indeed for all g ∈ G, w1 ∈ W and w2 ∈ W⊥,

we have

〈w1, π(g−1)w2〉 = 〈π(g)w1, w2〉 = 〈w1, w2〉 = 0

Let P : Vπ → W be the orthogonal projection on W . We claim that P intertwines

with π. For all v ∈ Vπ, there exist w1 ∈ W and w2 ∈ W⊥ such that v = w1 + w2. So

for g ∈ G and v ∈ Vπ,

Pπ(g)v = P (π(g)w1 + π(g)w2) = P (π(g)w1) = π(g)w1 = π(g)P (v).

In particular, for all k ∈ K we have, π(k)P (u) = P (π(k)u) = P (u).

Thus, P (V K
π ) ⊂ V K

π and so P (u) = λu for some λ ∈ C. Now applying the projec-

tion twice, we get:

λu = P (u) = P 2(u) = λ2u.

This means λ is either 0 or 1. In the case where λ = 0, we have Pu = λu = 0, so

Pπ(g)u = λπ(g)u = 0 for all g ∈ G. It then follows that π(g)u ⊂ W⊥, but u is

cyclic for π, so Vπ = W⊥ and W = {0}. The case where λ = 1, we have Pu = u, so

Pπ(g)u = π(g)u ∈ W for all g ∈ G. Since u is cyclic, this implies Vπ = W .

Thus, we have proved that π is irreducible.

Theorem 2.5.4. Let π be an irreducible unitary representation of G such that the

space of K-fixed vectors is spanned by a unit vector u. Then, the function

φ(·) := 〈u, π(·)u〉 is positive definite and spherical for (G,K).

Proof. We have already dealt with the positive definiteness in Proposition 2.4.2, so

we only need to prove that φ is a spherical function, for which we will use the char-

acterisation (ii) in Theorem 2.3.3. The representation π is continuous, so φ is also

continuous. The vector u is K-fixed, so it then follows that φ is K-bi-invariant, i.e.

for all g ∈ G and k1, k2 ∈ K

φ(k1gk2) = 〈u, π(k1gk2)u〉 = 〈π(k−11 )u, π(g)π(k2)u〉 = 〈u, π(g)u〉 = φ(g).
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Now, for any f ∈ Cc(K\G/K), the vector π̇(f)u is K-fixed, since for all k ∈ K,

π(k)π̇(f)u =

∫
G

f(x)π(kx)u dx =

∫
G

f(k−1x)π(x)u dx = π̇(f)u.

The space of K-fixed vectors V K
π is spanned by u, thus there exists λf ∈ C such that

π̇(f)u = λfu. Let us now compute the convolution f ∗ φ, for all g ∈ G

(f ∗ φ)(g) =

∫
G

f(x)φ(x−1g)dx =

∫
G

f(x)〈u, π(x−1g)u〉dx

=

∫
G

f(x)〈π(x)u, π(g)u〉dx =

〈∫
G

f(x)π(x)udx, π(g)u

〉
= 〈π̇(f)u, π(g)u〉 = λf 〈u, π(g)u〉 = λfφ(g).

We have proved that φ is a spherical function.

2.6 Gelfand pairs

Definition. Let G be a locally compact group and K a compact subgroup. Then

(G,K) is called a Gelfand pair if the convolution algebra L1(K\G/K) is commutative.

Lemma 2.6.1. If (G,K) is a Gelfand pair, then G is unimodular.

Proof. See p.75 in [57] or p.154 in [59].

Proposition 2.6.2. If f ∈ Cc(K\G/K) and h ∈ Cc(G), then (h ∗ f)# = h# ∗ f and

(f ∗ h)# = f ∗ h#.

Proof. By applying Fubini’s theorem and the fact that the Haar measure is unimod-

ular on G if (G,K) is a Gelfand pair, for all g ∈ G,

(h# ∗ f)(g) =

∫
G

∫
K

∫
K

h(k1yk2)dk1dk2 f(y−1g)dy

=

∫
K

∫
K

∫
G

h(ỹ)f(k2ỹ
−1k1g)dỹ dk1dk2

=

∫
K

∫
K

∫
G

h(ỹ)f(k−12 k2ỹ
−1k1gk2)dỹdk1dk2

=

∫
K

∫
K

∫
G

h(ỹ)f(ỹ−1k1gk2)dỹdk1dk2

= (h ∗ f)#(g).
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Also,

(f ∗ h#)(g) =

∫
G

f(y)

∫
K

∫
K

h(k1y
−1gk2)dk1dk2 dy

=

∫
K

∫
K

∫
G

f(k−11 ỹk2)h(ỹ−1k1gk2)dỹ dk1dk2

=

∫
K

∫
K

∫
G

f(ỹ)h(ỹ−1k1gk2)dỹ dk1dk2

= (f ∗ h)#(g).

Proposition 2.6.3. The convolution algebra Cc(K\G/K) is commutative if and only

if for every irreducible unitary representation π of G on a Hilbert space H the subspace

HK of K-fixed vectors is at most one-dimensional.

Proof. See [57] Prop. 6.3.1 on p.82.

2.6.1 Compact Gelfand pairs

Let us suppose that G is compact and that K is a closed subgroup, such that (G,K)

is a Gelfand pair.

Theorem 2.6.4. Let G be a compact group and K a closed subgroup such that (G,K)

is a Gelfand pair, then every continuous (G,K)-spherical function φ is positive defi-

nite.

Proof. This proof is a modified version of the one in [59], p.204. First note that

φ ∈ L2
K(G) as it is K-bi-invariant and continuous on the compact group G. According

to the Spherical Peter-Weyl Theorem 2.7.3, L2
K(G) =

⊕
π∈ĜK

MV Kπ
, where MV Kπ

is

spanned by the function φπ = 〈uπ, π(·)uπ〉. By Theorem 2.5.4 we know that φπ is

positive definite and spherical. Hence, φ has an L2 decomposition φ =
∑
π∈ĜK

cπφπ. For

all π ∈ ĜK the functions φπ and φ are spherical, thus we can use the characterisation

given in Theorem 2.3.3 (ii). So for all f ∈ Cc(K\G/K)

f ∗ φπ = λπ(f)φπ, for all π ∈ ĜK

f ∗ φ = λ(f)φ,

where λ(f), λπ(f) ∈ C. In particular (f ∗φπ)(e) = λπ(f)〈uπ, π(e)uπ〉 = λπ(f), and by
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linearity, (f ∗φ)(e) =
∑
π∈ĜK

cπλπ(f) = λ(f). Note that, by Proposition 2.3.4, the map-

pings λπ : C(K\G/K)→ C and λ : C(K\G/K)→ C are algebra homomorphisms.

Also, for all π ∈ ĜK we have

λπ(φπ) = (φπ ∗ φπ)(e) =

∫
G

φπ(g)φπ(g−1)dg

=

∫
G

φπ(g)φπ(g)dg =

∫
G

|φπ(g)|2dg > 0.

For π, π′ ∈ ĜK such that π 6= π′, by Schur’s orthogonality relation we have

φπ ∗ φπ′ =

∫
G

〈uπ, π(g)uπ〉〈π′(g)uπ′ , uπ′〉dg = 0.

Thus λ(φπ ∗ φπ′) = 0. On the other hand, if there are two distinct non zero cπ1 and

cπ2 , then we have

λ(φπ1 ∗ φπ2) = λ(φπ1)λ(φπ2) = cπ1λπ1(φπ1)cπ2λπ2(φπ2) 6= 0

This is a contradiction, so there can only be one nonzero cπ. Thus φ = cπφπ and it is

positive definite.

Definition. The character χπ : G → C of a finite dimensional representation π of

the group G on V , is given by χπ(g) := tr(π(g)), where tr denotes the trace of a

matrix.

We will now show that in the particular case of compact Gelfand pairs, a spherical

function can be expressed in terms of the character of the representation.

Proposition 2.6.5. Let G be a compact group and K a closed subgroup, such that

(G,K) is a Gelfand pair. Let φ be a spherical function for (G,K), πφ the correspond-

ing irreducible representation and uφ the K-fixed unit vector such that

φ(g) = 〈uφ, πφ(g)uφ〉 for all g ∈ G. If χπφ is the character of πφ, then for all g ∈ G,

φ(g) =

∫
K

χπφ(gk)dk.

Proof. This is a well-known result, see [59] Proposition 9.10.2. For completeness, we

will provide a proof that is self-contained in the context of this thesis. Since φ is a

spherical function, from Theorem 2.6.4 we saw that it is necessarily positive definite;

then by applying Theorem 2.5.3 we know that V K
π is spanned by uφ.
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The projection Pπ : Vπ → V K
π given by (2.7) satisfies Pπ(e1) = e1 and Pπ(ei) = 0

for all i 6= 1, where e1 = uφ. Thus, we have

tr(Pπ π(g) Pπ) = φ(g), for all g ∈ G.

By idempotence, we also have tr(Pππ(g)Pπ) = tr(π(g)(Pπ)2) = tr(π(g)Pπ). This gives

us, for all g ∈ G,

φ(g) = tr(π(g)Pπ) = tr

(∫
K

π(g)π(k) dk

)
=

∫
K

tr(π(gk)) dk =

∫
K

χπφ(gk)dk.

2.7 Spherical functions on compact groups

In this section G is a compact Lie group and K a closed subgroup, such that (G,K) is a

Gelfand pair. We will provide a spherical version of the original Peter-Weyl Theorem

for functions on K\G/K. We will denote by L2
K(G) = L2(K\G/K) ⊂ L2(G) the

subspace of K-bi-invariant square integrable functions on G.

Lemma 2.7.1. Let G be a compact group and (π, Vπ) an irreducible representation.

If Vπ decomposes into Vπ = V 1
π ⊕ V 2

π , then the space of matrix elements decomposes

into Mπ =M1
π ⊕M2

π where

Mi
π = Span{g 7→ 〈u, π(g)v〉 : u, v ∈ V i

π}, i = 1, 2.

Proof. Denote by P : Vπ → V 1
π , the orthogonal projection from Vπ to V 1

π . We

will prove that the mapping EP : 〈u, π(·)v〉 7→ 〈Pu, π(·)Pv〉 is also an orthogonal

projection from Mπ to M1
π. By linearity of the inner product and of π, EP is also

linear. Moreover, EP satisfies EP = E2P as P is a projection, that is for all g ∈ G and

u, v ∈ Vπ

E2P (〈u, π(g)v〉) =
〈
P 2u, π(g)P 2v

〉
= 〈Pu, π(g)Pv〉 = EP (〈u, π(g)v〉).

To see that EP is an orthogonal projection, we will prove that EP is self-adjoint. It

is sufficient to consider f, h ∈ Mπ with f(g) = 〈u1, π(g)v1〉 and h(g) = 〈u2, π(g)v2〉
where u1, u2, v1, v2 ∈ Vπ. Then by Schur’s orthogonality relation Theorem 1.2.11, and

the fact that P is self-adjoint, we have

〈EP f, h〉L2(G) =
1

dπ
〈v2, Pv1〉〈u2, Pu1〉 =

1

dπ
〈Pv2, v1〉〈Pu2, u1〉 = 〈f, EP h〉L2(G).
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Thus, Mπ can be decomposed into Mπ =M1
π ⊕M2

π.

From now on we will mostly be interested in the particular decomposition

Vπ = V K
π ⊕ (V K

π )⊥, where π ∈ Ĝ. We have a corollary to the previous lemma,

Corollary 2.7.2. Let G be a compact group and K a compact subgroup. Fix a rep-

resentation π ∈ Ĝ. We define a map P : Vπ → V K
π by

Pv :=

∫
K

π(k)v dk, for all v ∈ Vπ. (2.7)

Then P is an orthogonal projection and for all g ∈ G and u, v ∈ Vπ,

EP 〈u, π(·)v〉)(g) = QK〈u, π(·)v〉)(g)

Proof. The mapping P is linear and idempotent. Indeed, for all v ∈ Vπ, by a change

of variable, k = k′−1k and by using the fact that the Haar measure is invariant and is

normalized on K we get

P 2v =

∫
K

π(k′)

∫
K

π(k)v dk dk′ =

∫
K

∫
K

π(k′k)v dk dk′

=

∫
K

∫
K

π(k)vdkdk′ =

∫
K

π(k)vdk = Pv.

By Theorem 1.2.5 (ii) and unimodularity of the Haar measure we have for all u, v ∈ V ,

〈Pu, v〉 =

〈∫
K

π(k)u dk, v

〉
=

∫
K

〈π(k)u, v〉 dk =

∫
K

〈u, π(k−1)v〉

=

〈
u,

∫
K

π(k−1)v dk

〉
=

〈
u,

∫
K

π(k)v dk

〉
= 〈u, Pv〉

Hence, P is self-adjoint. This proves that P is an orthogonal projection from Vπ to

V K
π . From Lemma 2.7.1 we know that EP is also an orthogonal projection from Mπ

to MV Kπ
and we have for all g ∈ G and u, v ∈ Vπ,

EP 〈u, π(g)v〉 :=

〈∫
K

π(k)u dk, π(g)

∫
K

π(k)v dk

〉
=

∫
K

∫
K

〈u, π(kgk′)v〉dkdk′

=〈u, π(·)v〉](g)

=QK(〈u, π(·)v〉)(g).
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From now on, for any representation π ∈ ĜK , we denote by φπ := 〈uπ, π(·)uπ〉 the

spherical function associated to the K-fixed unit vector uπ ∈ V K
π .

Theorem 2.7.3 (Spherical Peter-Weyl 1). The family {
√
dπφπ, π ∈ ĜK} is an or-

thonormal basis for L2
K(G).

Proof. This result is well-known, see [59] Prop 9.10.4 p.205 and [25] Theorem 3.5

p.533. However, the proof given here is original as far as the author is aware.

Let us consider the decomposition Vπ = V K
π ⊕ (V K

π )⊥, then by Proposition 2.7.1 we

have Mπ = MV Kπ
⊕M(V Kπ )⊥ . The original Peter-Weyl Theorem 1.2.12 states that

L2(G) =
⊕
π∈Ĝ

Mπ, so by linearity and continuity of the projectionQK : L2(G)→ L2
K(G),

we have

L2
K(G) = QK(L2(G)) =

⊕
π∈Ĝ

QKMπ.

To simplify the notation write MK
π := QKMπ. We claim that MK

π = MV Kπ
,

which will imply L2
K(G) =

⊕
π∈ĜK

MV Kπ
. Note that here, the direct sum is over ĜK

since for any π /∈ ĜK , we have Vπ = {0} and therefore MV Kπ
= {0}.

First, take any f =
N∑
i=1

αij〈ui, π(·)vj〉 ∈ MV Kπ
, for some ui, vj ∈ V K

π , αij ∈ R, and

i, j = 1, . . . N . We will show that f is K-bi-invariant. For all k1, k2 ∈ K and g ∈ G,

each ui and vj are K-fixed, we have

f(k1gk2) =
N∑
i=1

αij
〈
π(k−11 )ui, π(g)π(k2)vj

〉
=

N∑
i=1

αij 〈ui, π(g)vj〉 = f(g).

Thus, f ∈ MK
π and so MV Kπ

⊆ MK
π . On the other hand, any element of MK

π

can be written as QKf where f =
N∑
ij=1

αij 〈ψi, π(·)ϕj〉 ∈ Mπ for some ψi, ϕj ∈ Vπ and

αij ∈ R with i, j = 1, . . . , N . Thus, by Corollary 2.7.2, we get

QKf(g) =
N∑
ij=1

αijQK 〈ψi, π(g)ϕj〉 =
N∑
ij=1

αijEPπ 〈ψi, π(g)ϕj〉

=
N∑
ij=1

αij 〈Pπψi, π(g)Pπϕj〉 ,
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where Pπ is defined in (2.7). For any π ∈ ĜK , since Pπ is a projection onto V K
π each

of Pπψi, Pπϕj are elements of V K
π . Thus, QKf ∈ MV Kπ

and we have the inclusion

MK
π ⊆MV Kπ

. It then follows that MK
π =MV Kπ

for all π ∈ ĜK and

L2
K(G) =

⊕
π∈ĜK

MV Kπ
.

Furthermore, if π ∈ ĜK , by Proposition 2.6.3 there exists a K-fixed unit vector

uπ which spans V K
π , andMK

π = Span{g 7→ 〈uπ, π(g)uπ〉}. We can now conclude that

{
√
dπ〈uπ, π(g)uπ〉; π ∈ ĜK} is an orthonormal basis of L2

K(G).

Let us denote by EK(G) the span of all functions in MK
π , π ∈ ĜK , i.e.

EK(G) := Span{φπ; π ∈ ĜK}.

Theorem 2.7.4 (Spherical Peter-Weyl 2). EK(G) is dense in L2
K(G).

Proof. This follows directly from Theorem 2.7.3.

Theorem 2.7.5 (Spherical Peter-Weyl 3). EK(G) is dense in C(K\G/K).

Proof. Let f ∈ C(K\G/K) ⊂ C(G). By Theorem 1.2.14, for all ε > 0 there exists

h ∈ E(G) such that ‖f − h‖∞ ≤ ε. Let us recall from Proposition 2.2.2 that the

mapping QK : C(G)→ C(K\G/K) is surjective and idempotent. Thus, for all f ∈
C(K\G/K), we have QKf = f and

‖f −QKh‖∞ = ‖QK(f − h)‖∞ = sup
g∈G

∣∣∣∣∫
K

∫
K

(f − h)(k1gk2)dk1dk2

∣∣∣∣
≤
∫
K

∫
K

sup
g∈G
|(f − h)(k1gk2)| dk1dk2

=

∫
K

∫
K

‖Rk2Lk1(f − h)‖∞ dk1dk2

=

∫
K

∫
K

‖(f − h)‖∞ dk1dk2

= ‖(f − h)‖∞ ≤ ε. (2.8)

Consequently, we have

‖f −QKh‖∞ ≤ ε.

We need to show that for h ∈ E(G), QKh is in EK(G). By definition of E(G), for all

h ∈ E(G) there exists a finite subset S ∈ Ĝ, απ ∈ C and hπ(·) = 〈ψπ, π(·)ϕπ〉 ∈ Mπ

for each π ∈ S, such that h =
∑
π∈S

απhπ.
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By linearity of QK and by Corollary 2.7.2, we have for all g ∈ G,

QKh(g) =
∑
π∈S

απQKhπ =
∑
π∈S

απEPπhπ ∈ EK(G),

Thus, we have proved that QKh ∈ EK(G) and we can conclude that EK(G) is

dense in C(K\G/K).

2.8 Homogeneous spaces and symmetric spaces

Definitions and known results in this section are based on [12], [24] and [58].

Definition. A group action of a topological group G on a topological space M is

called transitive if for all p, q ∈M , there exist g ∈ G such that g.p = q .

The isotropy subgroup (or stabilizer subgroup) of G at a point p ∈M is the subgroup

of G that fixes p, defined as

Stabp := {g ∈ G; g.p = p}.

Remark 2.8.1. For all x ∈M , Stabx is indeed a subgroup of G, since ∀g, h ∈ Stabx

(hg).x = h.(g.x) = h.x = x

Definition. A homogeneous space M is a manifold with a transitive action of a locally

compact group G.

Further on, we will mostly be interested in the case where M is a smooth manifold

and G is a Lie group, so the following theorem will be useful for us.

Theorem 2.8.2. Let ρ : G ×M → M , ρ(g, x) = g.x be a transitive action of a Lie

group G on a manifold M . Fix a point x ∈M and denote K := Stabx, then the map

α : G/K →M defined by α(gK) = ρ(g, x) is a diffeomorphism.

Proof. See [58], Theorem 3.62, p.123

We will now provide a short summary on symmetric spaces, which are a special

case of homogeneous spaces.

Definition. Let M be a Riemannian manifold, p ∈ M . A curve γ : I → M , for

an interval I ⊂ R, is called a geodesic if the family of tangent vectors γ′ is parallel

with respect to γ, in the sense defined in Helgason [24], p.28. A geodesic is called

maximal if it has largest possible domain. For each point p ∈ M and tangent vector
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v ∈ TpM , we denote by ξpv : R → M the maximal geodesic through p tangent to v

and ξpv(0) = p and (ξpv)
′(0) = v. We define the exponential map of the manifold M

at p, Expp : TpM → M by Expp(v) = ξpv(1). There exists ε > 0 such that Expp
is a diffeomorphism from {X ∈ TpM : |X| < ε} to its image. Furthermore, on a

sufficiently small open ball Br(p), r > 0, we define the map sp : Br(p) → Br(p) by

sp(Expp(tv)) = Expp(−tv) is called a local geodesic symmetry at p.

We call a (connected) Riemannian manifold M a locally symmetric space if at each

p ∈ M , there exists an open ball Br(p), such that the corresponding symmetry sp is

an isometry. Furthermore, M is called a (globally) symmetric space if at each p ∈M ,

sp extends to a global isometry sp : M → M . That is, sp is an involutive isometry,

i.e. s2p = id, and p is an isolated fixed point of sp, i.e. there is a neighbourhood V of

p where p is the only fixed point of sp.

If M is a symmetric space, we will denote by I(M) the group of all Riemannian

isometries of M onto itself, it has a natural Lie group structure and I(M) acts tran-

sitively on M , see [24], Lemma 3.2, p.170. Let K be the compact subgroup of I(M)

that leaves some point p0 ∈M fixed, then M and I(M)/K are diffeomorphic, see [24]

Theorem 3.3, p.173. Thus, a symmetric space is a homogeneous space.

Proposition 2.8.3. If M = I(M)/K is a symmetric space, then (I(M), K) is a

Gelfand pair.

Proof. See [59] Corollary 8.1.4, p.154.

Definition. Let G be a connected Lie group and K a closed subgroup. If s is an

involutive automorphism s of G, we denote by Gs the fixed point set of s and by (Gs)
0

the connected component of Gs containing the identity element. We say that (G,K)

is a symmetric pair if there exist an involutive analytic automorphism s of G such

that (Gs)
0 ⊂ K ⊂ Gs. Furthermore, if AdG(K) is a compact subgroup of GL(g), we

call (G,K) a Riemannian symmetric pair.

Proposition 2.8.4. If (G,K) is a Riemannian symmetric pair, then G/K is a sym-

metric space.

Proof. See [49] Theorem 1.3, p.73 or [24] Proposition 3.4, p.174.

In this thesis we will be particularly interested in compact symmetric spaces.
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Fourier and spherical transforms

3.1 The Fourier transform

Definition. The Hilbert-Schmidt inner product on the matrix algebra Mn(C) is de-

fined by 〈A,B〉HS := tr (AB∗) for A,B ∈ Mn(C). The corresponding norm is

‖A‖2HS = 〈A,A〉HS for all A ∈Mn(C).

Remark 3.1.1. It is useful to note here that by the Cauchy-Schwarz inequality, for

all A ∈Mn(C) and k = 1, . . . , n,

|〈Aek, ek〉|2 ≤ ‖Aek‖2 ≤
n∑
i=1

‖Aei‖2 = ‖A‖2HS. (3.1)

i.e. |〈Aek, ek〉| ≤ ‖A‖HS, for all A ∈Mn(C) and k = 1, . . . , n.

Let G be a compact group, then we define the set M(Ĝ) :=
⋃
π∈Ĝ

Mdπ(C).

A mapping F : Ĝ 7→ M(Ĝ) is called compatible if F (π) ∈ Mdπ(C) for each π ∈ Ĝ.

We denote by L(Ĝ) the linear space of compatible mappings where addition and

scalar multiplication are defined pointwise, and by H2(Ĝ) the subspace of L(Ĝ) which

satisfies |||F |||22 :=
∑
π∈ĜK

dπ‖F (π)‖2HS < ∞, for all F ∈ H2(Ĝ). The space H2(Ĝ) is a

complex Hilbert space with inner product

〈〈F,G〉〉 =
∑
π∈Ĝ

dπ〈F (π), G(π)〉HS.

Let us now define the Fourier transform of a function on a group.

Definition. Let G be a compact group and f ∈ L1(G). For each π ∈ Ĝ, we introduce
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the (non-commutative) Fourier transform F : f 7→ f̂ where

f̂(π) :=

∫
G

π(g−1)f(g)dg.

This is a matrix valued integral, where each coefficient is

f̂(π)i,j :=

∫
G

πi,j(g
−1)f(g)dg, for all1 ≤ i, j ≤ dπ.

When we restrict the domain of F to L2(G), we get two important results, these

being the Fourier expansion and the Plancherel formula. We will only state them

here, for the proof see [6] Theorem 2.3.1 p.36.

Theorem 3.1.2 (Fourier expansion). Let G be a compact group, then

f =
∑
π∈Ĝ

dπtr(f̂(π)π(·)), for all f ∈ L2(G).

Theorem 3.1.3 (Parseval-Plancherel identity). The operator F is an isometry from

L2(G) to H2(Ĝ) and for all f, h ∈ L2(G),∫
G

f(g)h(g)dg =
∑
π∈Ĝ

dπ

〈
f̂(π), ĥ(π)

〉
HS

.

In particular, ∫
G

|f(g)|2dg =
∑
π∈Ĝ

dπ

∥∥∥f̂(π)
∥∥∥2
HS

.

We can also define the Fourier transform of a probability measure on (G,B(G)).

Let P(G) denote the set of all Borel probability measures on a compact group G.

Definition. For all π ∈ Ĝ and µ ∈ P(G) we define the Fourier transform of the

measure µ at π as the matrix-valued integral

µ̂(π) :=

∫
G

π(g−1)µ(dg),

which is a bounded linear operator on Vπ. When G is compact, it is a matrix valued

integral.
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3.2 The spherical transform

Let G be a locally compact group, and K a compact subgroup, such that (G,K) is a

Gelfand pair. S(G,K) denotes the set of all spherical functions for (G,K).

Definition. The spherical transform of a function for (G,K) is the map FS : f 7→ f̂S

from Cc(K\G/K) to a space of functions on S(G,K), where f̂S is defined by

f̂S(φ) =

∫
G

f(g)φ(g)dg,

and φ is a spherical function in S(G,K).

Definition. Let µ be a K-bi-invariant probability measure in P(G). We denote the

set of all such measures by PK(G). Then the spherical transform of the measure µ is

the complex valued mapping

µ̂S(φ) =

∫
G

φ(g)µ(dg),

for any spherical function φ ∈ S(G,K).

From now on let G be compact, so all continuous spherical functions are positive

definite. For all π ∈ Ĝ let us fix a basis e1, . . . , edπ of Vπ. In the special case where

π is a spherical representation, i.e. π ∈ ĜK , by definition there exists a non-zero

unit K-fixed vector uπ ∈ Vπ. Following Theorem 2.5.3, we know that V K
π is spanned

by the vector uπ and we will set e1 = uπ. We have the following characterisation of

K-bi-invariant measures, with the help of their Fourier transform. We will denote by

Pπ the map defined in (2.7) for π ∈ Ĝ.

Theorem 3.2.1. Let µ be a probability measure on a compact group G. Then the

following statements are equivalent:

a) The measure µ is K-bi-invariant.

b) Pπ µ̂(π) Pπ = µ̂(π), for all π ∈ Ĝ.

c) µ̂(π)ij = 0 for all π /∈ ĜK, or π ∈ ĜK and (i, j) 6= (1, 1).

Proof. This result has been published in [8]. First show that (a) implies (b). Let

π ∈ Ĝ and ψ, φ ∈ Vπ. Given that µ is K-bi-invariant and the Haar measure is
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normalized, by a change of variable we have

〈µ̂(π)ψ, φ〉 =

∫
K

∫
K

∫
G

〈π(kg−1k′)ψ, φ〉 dµ(g) dkdk′

=

∫
G

〈∫
K

π(k)dk π(g−1)

∫
K

π(k′)dk′ψ, φ

〉
= 〈Pπµ̂(π)Pπψ, φ〉

We can then conclude the result. To show that (b) implies (c), it is sufficient to use

that for all π ∈ Ĝ, Pπ : Vπ → V K
π is an orthogonal projection (as seen in Corollary

2.7.2). When π is not spherical, i.e. π /∈ ĜK , the space of K-fixed vectors is V K
π = {0},

so Pπv = 0 for all v ∈ Vπ. Thus, for π /∈ ĜK and i, j = 1, . . . , dπ,

µ̂(π)ij = 〈µ̂(π)ei, ej〉 = 〈Pπµ̂(π)Pπei, ej〉 = 〈0, ej〉 = 0

When π ∈ ĜK , then V K
π is spanned by e1 and e2, . . . , edπ ∈ (V K

π )⊥, thus if i 6= 1 then

Pπei = 0. Thus, for all i, j 6= (1, 1) we have

µ̂(π) = 〈Pπµ̂(π)Pπei, ej〉 = 0.

Let us show that (c) implies (a). We have∫
G

〈π(g)ei, ej〉µ(dg) = 0, for all π /∈ ĜK , or π ∈ Ĝ and (i, j) 6= (1, 1). (3.2)

Take any f ∈Mπ for π ∈ Ĝ, then f is of the form

f(g) =
dπ∑
i,j=1

αij〈π(g)ei, ej〉, for all g ∈ G

We can split this sum into two parts,

f(g) = α11〈π(g)e1, e1〉+
dπ∑

(i,j)6=(1,1)

αij〈π(g)ei, ej〉, for all g ∈ G,

where the first term is an element of MK
π and the second term is an element of

(MK
π )⊥. So, given (3.2) and Corollary 2.7.2 we get for all g ∈ G,∫

G

f(g)µ(dg) =

∫
G

α11〈π(g)e1, e1〉 dµ(g) =

∫
G

QKf(g) dµ(g).

By Theorem 1.2.14, we can extend this result to all f ∈ Cc(G). Thus, for all f ∈ Cc(G)
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we have ∫
G

f(g)dµ(g) =

∫
G

f(g) µ(k1 dg k2), for all g ∈ G, k1, k2 ∈ K.

It then follows by uniqueness of the measure from the Riesz representation theorem

that µ is a K-bi-invariant measure.

We deduce from Theorem 3.2.1 that if µ is a K-bi-invariant probability measure

then for all π ∈ ĜK ,

µ̂S(φπ) = µ̂(π)11.

Whereas, if π /∈ ĜK , then µ̂S(φπ) = 0.

Corollary 3.2.2. Let f ∈ C(G), then the following statements are equivalent

a) The function f is K-bi-invariant

b) Pπf̂(π)Pπ = f̂(π) for all π ∈ Ĝ
c) f̂(π)ij = 0 for all π /∈ ĜK, or π ∈ ĜK and (i, j) 6= (1, 1).

Proof. For all f ∈ C(K\G/K), let us decompose f = f+ − f−, where we use the

usual notation f+(g) := max(f(g), 0) and f−(g) = −min(f(g), 0) for all g ∈ G.

We can then define the positive finite Borel measures µ+(A) =
∫
A
f+(g)dg and

µ−(A) =
∫
A
f−(g)dg for all A ∈ B(G), after normalizing them over G we will get

two probability measures. We observe that µ̂±(π) = f̂±(π) for all π ∈ Ĝ. Thus, we

can conclude by applying Theorem 3.2.1 and by using f̂(π) = f̂+(π)− f̂−(π), for all

π ∈ Ĝ.

As a consequence of this last result, if f ∈ C(K\G/K) then for all π ∈ ĜK , the

matrix f̂(π) has all non zero coefficients except for

f̂(π)11 = f̂S(φπ) (3.3)

When π /∈ Ĝ, f̂(π) is the zero matrix, and f̂S(φπ) = 0. Let A = (aij) ∈ Mn×n(C) we

define Rn ∈Mn×n(C) by

Rn :=


1 0 . . . 0

0 . . . . . . 0
...

...

0 . . . . . . 0

 (3.4)
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3.2. The spherical transform

Consider the matrix

RnARn =


a11 0 . . . 0

0 . . . . . . 0
...

...

0 . . . . . . 0


In Corollary 3.2.2, we have seen that if f ∈ C(K\G/K) then

f̂(π) = Rdπ f̂(π)Rdπ for all π ∈ Ĝ. (3.5)

In particular, when π /∈ ĜK , we just have f̂(π) = 0.

Note that Corollary 3.2.2 also holds for f ∈ L2(G), by using similar arguments to

the proof given for Theorem 3.2.1. Thus, the equations (3.3) and (3.5) also hold for

all f ∈ L2(K\G/K).

We can now obtain a spherical version of the Parseval-Plancherel formula.

Theorem 3.2.3 (Spherical Parseval-Plancherel). Let G be a compact group and K a

closed subgroup. Then for all f, h ∈ L2(K\G/K),∫
G

f(g)h(g)dg =
∑
π∈ĜK

dπf̂
S(φπ)ĥS(φπ).

So, in particular ∫
G

|f(g)|2dg =
∑
π∈Ĝ

dπ|f̂S(φπ)|2.

Proof. This is a known result, see [59] Theorem 9.5.1, p.193, that we include for

completeness. Our proof here is different from that in [59] and is self-contained in the

context of this thesis. The proof follows directly from the original Parseval-Plancherel

formula and Corollary 3.2.2. For all f, h ∈ L2(K\G/K),∫
G

f(g)h(g)dg =
∑
π∈Ĝ

dπ

〈
f̂(π), ĥ(π)

〉
HS

=
∑
π∈ĜK

dπf̂(π)11ĥ(π)11

=
∑
π∈ĜK

dπf̂
S(φπ)ĥS(φπ),
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and similarly, ∫
G

|f(g)|2dg =
∑
π∈Ĝ

dπ‖f̂(π)‖2HS

=
∑
π∈ĜK

dπ|f̂(π)11|2

=
∑
π∈ĜK

dπ|f̂S(φπ)|2.

Theorem 3.2.4. [Spherical Fourier expansion] For all f ∈ L2(K\G/K),

f =
∑
π∈ĜK

dπf̂
S(φπ)φπ

Proof. This is also a known result, see [59] Theorem 9.4.1, p.191, that we include for

completeness. Here we will provide our own short proof using the original Fourier

expansion and (3.5), so for all g ∈ G and f ∈ L2(K\G/K)

f(g) =
∑
π∈Ĝ

dπtr
(
f̂(π)π(g)

)
=
∑
π∈Ĝ

dπtr
(
Rπf̂(π)Rππ(g)

)
=
∑
π∈Ĝ

dπtr
(
f̂(π)Rππ(g)Rπ

)
=
∑
π∈Ĝ

dπtr
(

(Rπf̂(π)Rπ)(Rππ(g)Rπ)
)

=
∑
π∈ĜK

dπf̂
S(φπ)φπ(g).

This is exactly what we wanted.
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Chapter 4

Application of spherical

transforms: densities of

K-bi-invariant measures

4.1 Regularity results and estimates

In this chapter G will be a compact Lie group.

Proposition 4.1.1. There exists a constant C ≥ 0 such that for any irreducible

representation π of G with corresponding highest weight λ, we have

dλ ≤ C|λ|m

where m = #P+ is the number of positive roots of G.

See Corollary 2.5.2 in [6].

Theorem 4.1.2. Let π be an irreducible representation of G and λ the corresponding

highest weight, then

‖dπλ(X)‖2HS ≤ C|λ|m+2|X|2, for all X ∈ g.

Also, for all X, Y ∈ g

‖dπλ(X)dπλ(Y )‖2HS ≤ C|λ|2m+4|X|2|Y |2,

for some constant C ≥ 0.

Proof. For the proof of the first part see Theorem 3.4.1 in [6]. For the second inequal-

ity, we use the equivalence of the Hilbert-Schmidt norm ‖·‖HS and the operator norm
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‖ · ‖op. For all X, Y ∈ g there exist some constants K1, K2 ≥ 0 such that

‖dπλ(X)dπλ(Y )‖HS ≤ K1‖dπ(X)dπ(Y )‖op
≤ K1‖dπ(X)‖op‖dπ(Y )‖op
≤ K1K2‖dπ(X)‖HS‖dπ(Y )‖HS
≤ C|λ|m+2|X||Y |

for some constant C ≥ 0.

Denote D0 = D\{0}. Let us introduce the Sugiura zeta function ζ for all s ∈ C,

ζ(s) :=
∑
λ∈D0

1

|λ|2s
∈ C ∪ {∞}.

Then we have the following results from [55], p.37-38, and [6] p.75.

Theorem 4.1.3. Suppose G has rank r. Then the series
∑
λ∈D0

1

|λ|2s
converges abso-

lutely if R(s) > r
2
.

Theorem 4.1.4. Let G be a compact connected Lie group and f ∈ C(G). Then the

Fourier series of f , ∑
λ∈D

dλtr(f̂(λ)πλ)

converges absolutely and uniformly on G if one of the following conditions are satisfied

i) f ∈ C2p(G,C) where p ∈ N and 4p > d.

ii)
∥∥∥f̂(λ)

∥∥∥
HS

= O(|λ|s) as |λ| → ∞ with s > r + 3m
2

Proof. See [6], Theorem 3.3.1, p.75.

It then follows that every smooth function of C∞(G) has a uniformly convergent

Fourier series.

4.2 Existence and square-integrability of K-bi-invariant

densities

If a probability measure µ ∈ P(G) is absolutely continuous with respect to the Haar

measure m on G, then the Radon-Nikodym theorem ensures that there exists a func-

tion f ∈ L1(G) such that µ(A) =

∫
A

f(g) m(dg) for all A ∈ B(G). The Radon-
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4.2. Existence and square-integrability of K-bi-invariant densities

Nikodym derivative f is called the density of the measure µ (w.r.t to the Haar measure

m).

Let us recall the main result of existence and square-integrability of densities on

compact Lie groups from Applebaum [6] and [2].

Theorem 4.2.1. If G is a compact Lie group, then a measure µ ∈ P(G) has an L2-

density fµ if and only if
∑
π∈Ĝ

dπ‖µ̂(π)‖2HS < ∞. In this case we have the L2-Fourier

expansion

fµ =
∑
π∈Ĝ

dπtr(µ̂(π)π(·))

Proof. See Theorem 4.5.1 p.101 in [6] or [2].

For K-bi-invariant measures, we will obtain an analogous result using spherical

transforms. Let us start with a preliminary result.

Lemma 4.2.2. Let G be a compact Lie group and K a closed subgroup. Suppose that

µ ∈ P(K\G/K) has a probability density function f on G. Then f is K-bi-invariant

almost everywhere.

Proof. First note that G is compact, therefore it is unimodular, by Proposition 1.2.6.

Thus, by a change of variable we have for all k1, k2 ∈ K, we have∫
G

h(g)f(k1gk2) dg =

∫
G

h(k−11 gk−11 )f(g)dg =

∫
G

h(k−11 gk−12 )µ(dg)

=

∫
G

h(g)µ(dg) =

∫
G

h(g)f(g)dg

By the Riesz representation theorem we can then conclude that f is K-bi-invariant.

Theorem 4.2.3. Let G be a compact group and K a compact subgroup such that

(G,K) is a Gelfand pair. If µ is a K-bi-invariant probability measure on G, then µ

has a L2-density fµ if and only if∑
π∈ĜK

dπ|µ̂S(π)|2 <∞. (4.1)

And in this case, the density has the L2-Fourier expansion

fµ =
∑
π∈ĜK

dπµ̂
S(π) φπ(·). (4.2)
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Proof. This result can be proved using Theorem 3.2.1 and Theorem 4.2.1, see [8]

Theorem 3.3. Here, will use another approach based on the general compact group

case in [6] Theorem 4.5.1 p.101, so this proof has the advantage of being self-contained.

For necessity, suppose that µ is absolutely continuous w.r.t to the Haar measure and

that the density fµ of the measure µ is square-integrable. i.e. fµ ∈ L2(G). Then, by

Lemma 4.2.2, the density function fµ is K-bi-invariant almost everywhere w.r.t the

normalized Haar measure, i.e. fµ ∈ L2(K\G/K). The spherical transform of fµ is

f̂µ
S
(φπ) =

∫
G

fµ(g)φπ(g)dg = µ̂S(π), for all π ∈ ĜK

By the spherical Parseval-Plancherel identity,∑
π∈ĜK

dπ
∣∣µ̂S(π)

∣∣2 =
∑
π∈ĜK

dπ

∣∣∣f̂S(φπ)
∣∣∣2 =

∑
π∈ĜK

dπ |〈fµ, φπ〉|2 = ‖f‖2L2
K
<∞

For sufficiency, suppose the inequality (4.1) holds and let fµ be the L2-limit of the

following series

fµ :=
∑
π∈ĜK

dπ µ̂
S(π)φπ(·). (4.3)

Note that by K-bi-invariance of the spherical functions, fµ is also K-bi-invariant. So

by applying the spherical Parseval-Plancherel identity we get

‖fµ‖2L2
K(G) =

∑
π∈ĜK

dπ

∣∣∣f̂µS(φπ)
∣∣∣2

=
∑
π∈ĜK

dπ

∣∣∣∣∫
G

fµ(g)φπ(g) dg

∣∣∣∣2
=
∑
π∈ĜK

dπ
∣∣µ̂S(π)

∣∣2 <∞.
For any h ∈ EK(G) there is a finite subset S of ĜK such that

h =
∑
π∈S

dπ〈h, φπ〉φπ.

Thus, we have by dominated converges and orthogonality of the basis {φπ : π ∈ ĜK}
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in L2
K(G), ∫

G

h(g)fµ(g)dg =

∫
G

∑
π∈S

dπ〈h, φπ〉φπ(g)
∑
π′∈ĜK

dπ′µ̂S(π′) φπ′(g)dg

=
∑
π∈S

dπ〈h, φπ〉
∑
π′∈ĜK

dπ′µ̂s(π′)

∫
G

φπ(g)φπ′(g)dg

=
∑
π∈S

dπ〈h, φπ〉µ̂s(π)

=
∑
π∈S

dπ〈h, φπ〉
∫
G

φπ(σ)µ(dσ)

=

∫
G

∑
π∈S

dπ〈h, φπ〉φπ(σ)µ(dσ)

=

∫
G

h(σ)µ(dσ).

By density of EK(G) in C(K\G/K), we can use dominated convergence to extend the

previous result to all functions h ∈ C(K\G/K). Thus, we have∫
G

h(g)fµ(g)dg =

∫
G

h(g)µ(dg), for all h ∈ C(K\G/K).

From the Riesz representation theorem, fµ is real-valued and it is the density of the

measure µ. Furthermore, by uniqueness of the measure in the Riesz representation

theorem, the K-bi-invariance of the function fµ implies that µ is K-bi-invariant.

Corollary 4.2.4. Let G be a compact group and K a compact subgroup such that

(G,K) is a Gelfand pair and let µ ∈ P(K\G/K). If the series
∑
π∈ĜK

dπ µ̂
S(π)φπ(·)

converges uniformly on G, then µ has a continuous density fµ.

Proof. This follows the proof of the result on a general compact Lie group, given in

[6], Proposition 4.5.1, p102.

Define the function fµ(g) :=
∑
π∈ĜK

dπµ̂
S(π)φπ(g) for all g ∈ G. Then fµ ∈ C(K\G/K)

as it is the uniform limit of continuous K-bi-invariant functions. Furthermore, G is

compact so we also have fµ ∈ L2
K(K\G/K), that is

‖fµ‖2L2
K

=
∑
π∈ĜK

dπ|µ̂S(π)|2 <∞. We can use Theorem 4.2.3 to conclude that fµ is the

density of µ.
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4.3 Regularity of K-bi-invariant functions and spher-

ical Fourier series

In this section we suppose that G is a compact Lie group and K is a closed subgroup

such that (G,K) is a Gelfand pair. As we are parametrizing Ĝ by the highest weights

D, let us simplify the notation of the Fourier transform by writing f̂(λ) := f̂(πλ) for

all λ ∈ D and f ∈ C(G). We will first state some known regularity results that can all

be found in [6], Chapter 3.3, we will then proceed to obtain their spherical versions.

Theorem 4.3.1. For f ∈ C(G) the Fourier series
∑
λ∈D

dλtr(f̂(λ)πλ) converges abso-

lutely and uniformly to f if

‖f̂(λ)‖HS = O(|λ|−s),

as |λ| → ∞ with s > r + 3m
2

.

Let us denote by D0 the set of highest weights excluding {0}, i.e.: D0 = D−{0}.

Theorem 4.3.2. We have the following regularity results on the Fourier transform

i) If f ∈ C2p(G) where p ∈ N, then ‖f̂(λ)‖HS = o(|λ|−2p) as |λ| → ∞, λ ∈ D.

ii) If f ∈ C(G), then f ∈ C∞(G) if and only if ‖f̂(λ)‖HS = o(|λ|−p) for all p ∈ N
as |λ| → ∞.

In the case where the function f is K-bi-invariant we apply Theorem 3.2.2 and

Corollary 3.2.2 to obtain the spherical versions of the previous regularity results.

Theorem 4.3.3. For f ∈ C(K\G/K) the spherical series
∑
λ∈DS

dλf̂
S(λ) φλ converges

absolutely and uniformly to f if

|f̂S(λ)| = O(|λ|−s),

as |λ| → ∞ with λ ∈ DS and s > r + 3m
2

.

Proof. The proof follows directly from Corollary 3.2.2. Recall that for any λ ∈ DS,

f̂(λ) is a matrix with only one non zero coefficient f̂(λ)11 = f̂S(λ), thus

‖f̂(λ)‖HS = ‖Rdλ f̂(λ)Rdλ‖HS = |f̂(λ)11| = |f̂S(λ)|, (4.4)

tr(f̂ (λ)πλ) = tr
(
Rdλ f̂(λ)Rdλ

)
= f̂(λ)11(πλ)11 = f̂S(λ)φλ, (4.5)
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where Rλ ∈Mdλ(C) is defined in (3.4). So, by Corollary 3.2.2 and (4.5) we have∑
λ∈DS

dλf̂
S(λ) φλ =

∑
λ∈D

dλtr(f̂(λ)πλ). (4.6)

We can now apply the regularity result from Theorem 4.3.1 to conclude that the

series (4.6) converges absolutely and uniformly to f if |f̂S(λ)| = ‖f̂(λ)‖HS = O(|λ|−s)
|λ| → ∞ with λ ∈ DS and s > r + 3m

2
.

Theorem 4.3.4. If f ∈ C2p(K\G/K) where p ∈ N, then

|f̂S(λ)| = o(|λ|−2p)

as |λ| → ∞, λ ∈ DS.

Proof. For all f ∈ C2p(K\G/K) we can apply Theorem 4.3.2, (i) and using the

same argument from (4.4), we have |f̂S(λ)| = ‖f̂(λ)‖HS = o(|λ|−2p) as |λ| → ∞,

λ ∈ DS.

Theorem 4.3.5. If f ∈ C(K\G/K), then f ∈ C∞(K\G/K) if and only if

|f̂S(λ)| = o(|λ|−p) for all p ∈ N, as |λ| → ∞ and λ ∈ DS.

Proof. This follows from Theorem 4.3.2, (ii) and Corollary 3.2.2 and equation 4.4.

We will now define a class of rapidly decreasing functions on D following the work

of [55].

Definition. The Sugiura space of rapidly decreasing function is the set S(D) of com-

patible matrix-valued functions F on D such that for all p ∈ N,

lim
|λ|→∞

|λ|p‖F (λ)‖HS = 0. (4.7)

For all λ,∈ D, F (λ) is an element of Mdλ×dλ(C).

Definition. The spherical Sugiura space of rapidly decreasing functions , denoted by

S(DS) is the set of functions F : DS → C such that for all p ∈ N,

lim
|λ|→∞

|λ|p|F (λ)| = 0. (4.8)

Let us denote by S0(DS) the subspace of S(D) such that

S0(DS) =

F ∈ S(D) : RdλF (λ)Rdλ =

F (λ), if λ ∈ DS

0, if λ /∈ DS

 ,
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where Rdλ is defined in (3.4). So a function F ∈ S0(DS), if F ∈ S(D) such that

F (λ)11 ∈ C and F (λ)ij = 0 for i, j 6= (1, 1), λ ∈ DS, and F (λ) = 0 for λ 6∈ DS. Thus,

S0(DS) is a set of complex-valued matrices with only one non-zero coefficient at (1, 1).

Proposition 4.3.6. There is a one-to-one correspondence between S(DS) and S0(DS).

Proof. Let us denote by h : S(DS) → S0(DS) the mapping that sends each func-

tion a ∈ S(DS) to a matrix valued function A ∈ S0(DS) such that for all λ ∈ Ds,

A(λ) = a(λ)Rdλ .

First, check that A is indeed an element of S0(D); for all λ ∈ DS, we have by

definition ‖A(λ)‖HS = |a(λ)|‖Rdλ‖HS = |a(λ)| and a satisfying (4.8) implies that A

satisfies (4.7). Furthermore, h is injective, since for all a, b ∈ S(DS), h(a) = h(b)

implies that a(λ) = [h(a)(λ)]11 = [h(b)(λ)]11 = b(λ). The map h is also surjective,

since for all A ∈ S0(DS), we have A11 ∈ S(DS) and h(A11)(λ) = A11(λ)Rdπ = A.

Consequently, there is an injection j : S(DS) → S(D) corresponding to the map

h. Let us also denote by i the injection i : f 7→ f from C∞(K\G/K) to C∞(G).

Theorem 4.3.7. The following diagram commutes.

C∞(G)
F−−−→ S(D)xi xj

C∞(K\G/K)
FS−−−→ S(DS)

(4.9)

Proof. First note that F maps from C∞(G) to S(D). Indeed, using Theorem 4.3.2,

(ii) we have for all p ≥ 1

lim
|λ|→∞

|λ|p‖f̂(λ)‖HS = 0,

which means by definition that f̂ ∈ S(D).

Similarly, FS maps from C∞(K\G/K) to S(DS). Using Theorem 4.3.4, we have

for all p ≥ 1

lim
|λ|→∞

|λ|p|f̂S(λ)| = 0,

thus, by definition f̂S ∈ S(DS). We want to show that (F ◦ i)f = (j ◦ FS)f , for all

f ∈ C∞(K\G/K). From Corollary 3.2.2 we know that for all λ ∈ DS, the Fourier

transform Ff(λ) is a dλ × dλ matrix that has one non-zero entry at (1, 1) equal to

the spherical transform FSf(λ). That is, for all f ∈ C∞(K\G/K) and λ ∈ DS,

Rdλ (Ff(λ))Rdλ = Ff(λ) =
(
(FSf)(λ)

)
Rdλ . (4.10)
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Also, j : S(DS)→ S(D) transforms FSf(λ) to a dλ×dλ matrix, whose coefficients

are all zero with the exception of the (1, 1)th entry which is equal to FSf(λ) itself.

That is, for all f ∈ C∞(K\G/K) and λ ∈ DS, we have

j
(
FSf(λ)

)
= (FSf(λ))Rdλ (4.11)

Thus, from equations (4.10) and (4.11) we conclude that

[(F ◦ i)f ](λ) = (FSf(λ))Rdλ = [(j ◦ FS)f ](λ), for all λ ∈ DS.

Finally, when λ /∈ DS, both sides of the last identity are equal to 0. So, we can

conclude that the diagram (4.9) commutes.

Theorem 4.3.8. The Fourier transform F : f 7→ f̂ is a topological isomorphism of

C∞(G) onto S(D).

Proof. See [55] Theorem 4, p.44.

Theorem 4.3.9. The spherical transformation FS : f 7→ f̂S is a linear isomorphism

between C∞(K\G/K) and S(DS).

Proof. We are following the proof of [6] Theorem 3.4.3 p.78 and of [55] Theorem 4

p.44. The mapping FS is linear by definition of the spherical transform. To see

that FS is an injective map, let f1, f2 ∈ C∞(K\G/K) such that FSf1 = FSf2,
that is such that f̂S1 (λ) = f̂S2 (λ) for all λ ∈ DS. From Theorem 4.3.5 we know

that f̂S1 (λ), f̂S2 (λ) ∈ S(DS), and in particular |f̂Si (λ)| = O(|λ|−s) for i = 1, 2 with

s > r + 3m
2

. Now by applying Corollary 4.3.3 the following two series
∑
λ∈DS

dλf̂
S
1 (λ)φλ

and
∑
λ∈DS

dλf̂
S
2 (λ)φλ converge absolutely and uniformly to f1 and f2 respectively.

Hence, by uniqueness of the limit and the fact that
∑
λ∈DS

dλf̂
S
1 (λ)φλ =

∑
λ∈DS

dλf̂
S
2 (λ)φλ

we conclude that f1 = f2. The mapping FS is therefore injective.

To prove that FS is surjective, let us consider a function F ∈ S(DS). We seek

to find a function fF in C∞(K\G/K) such that F(fF ) = F . Moreover, by Theorem

4.3.5, for any ε > 0, there exists λ0 ∈ DS such that for all |λ| ≥ |λ0| and p ∈ N,

|F (λ)| ≤ ε|λ|−p. Thus, we have∑
λ∈DS ,|λ|≥|λ0|

dλ|F (λ)φλ| ≤ ε
∑

λ∈DS ,|λ|≥|λ0|

dλ|λ|−p

≤ Cε
∑

λ∈DS ,|λ|≥|λ0|

|λ|−p+m
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The last inequality follows from Proposition 4.1.1. The series on the right-hand

side converges for any p ∈ N that satisfies p > r +m. Therefore, the series∑
λ∈DS

dλF (λ) φλ converges absolutely and uniformly and we can define the function

fF (g) =
∑
λ∈DS

dλF (λ) φλ(g) for all g ∈ G. By uniqueness of the spherical series

expansion, we have F = f̂F
S

= FS(fF ). It follows from Theorem 4.3.5 that fF is a

smooth function.

Also, f is a K-bi-invariant function, since the spherical functions φλ, λ ∈ DS are

all K-bi-invariant: for all k1, k2 ∈ K,

f(k1gk2) =
∑
λ∈DS

dλF (λ) φλ(k1gk2) =
∑
λ∈DS

dλF (λ) φλ(g) = f(g).

This allows to conclude our proof that FS is a linear isomorphism between

C∞(K\G/K) and S(DS).

Let us introduce the topologies of C∞(G) and S(D). The space of complex valued

smooth functions on G, C∞(G) is topologized by the family of seminorms defined by

{pU(f) = ‖Uf‖∞ : U ∈ U(g)}, (4.12)

where U(g) is the universal enveloping algebra of g, see [55].

The topology of the vector space S(D) is generated by the family of seminorms

{qr(F ) = max
λ∈D
|λ|r‖F (λ)‖HS : r > 0}.

We will now introduce the topologies of C∞(K\G/K) and S(DS). Similarly to

C∞(G), the topology of C∞(K\G/K) is the subspace topology induced by the same

family of seminorms (4.12). The topology of S(DS) is generated by the family of

seminorms {q̃r(F ) := max
λ∈DS

|λ|r|F (λ)|}, with r > 0.

Theorem 4.3.10. The spherical transformation FS : f 7→ f̂S is a topological iso-

morphism between C∞(K\G/K) and S(DS).

Proof. For FS to be a topological isomorphism it is sufficient to prove that FS and

(FS)−1 are continuous since we have already proven that FS is a linear isomorphism.

We shall first prove that {q̃r(f̂S(λ)), r > 0} and {qr(f̂(λ)), r > 0} are the same on
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C∞(K\G/K). Indeed for all f ∈ C∞(K\G/K) by Theorem 3.2.2 we have

q̃r(FSf) = max
λ∈DS

|λ|r
∣∣∣f̂S(λ)

∣∣∣
= max

λ∈D
|λ|r‖f̂(λ)‖HS

= qr(Ff)

We know from Theorem 4.3.8 that F is continuous from C∞(G) to S(D), it then

follows, that there exist N ∈ N, U1, U2, ..., UN ∈ U(g) and a constant Mr > 0 such

that

q̃r(FSf) = qr(Ff) ≤Mr

N∑
i=1

pUi(f)

This proves that FS : f 7→ f̂S is a continuous mapping from C∞(K\G/K) to S(DS).

We shall now prove that the mapping (FS)−1 : FSf 7→ f is continuous from S(DS)

to C∞(K\G/K).

Let f ∈ C∞(K\G/K), by Theorem 4.3.8 we know that the mapping F−1 : Ff 7→ f

is continuous from S(D) to C(G), that is for all U ∈ U(g) there exist a finite subset

AU ⊂ N and a constant CU such that

‖pUf‖∞ ≤ CU
∑
r∈AU

qr(Ff)

= CU
∑
r∈AU

max
λ∈D
|λ|r ‖F(f)(λ)‖HS. (4.13)

By applying Theorem 4.3.7 and equation (4.13) we get

‖pUf‖∞ ≤ CU
∑
r∈AU

max
λ∈DS

|λ|r |f̂S(λ)|

= CU
∑
r∈AU

max
λ∈DS

|λ|r |FSf(λ)|

= CU
∑
r∈AU

q̃r(FSf)

We can now conclude that FS is a topological isomorphism from C(K\G/K) to

S(DS).
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Chapter 5

Distributions on Lie groups

Let G be a Lie group and let {X1, X2, · · · , Xd} be a basis of g. Following the work

of Ehrenpreis [15] we will adopt a global theory of distributions on Lie groups. From

now on, we will only be interested in real-valued functions on G.

Definition. A linear functional T : C∞c (G) → R is called a distribution on G if for

any compact set H ⊆ G, there exist two constants CH > 0, k ∈ N such that for all

f ∈ C∞c (H),

|Tf | ≤ CH

(
sup
H
|f |+

d∑
i=1

sup
H
|Xif |+ · · ·+

d∑
i1,i2,...,ik=1

sup
H
|Xi1Xi2 · · ·Xikf |

)
. (5.1)

The linear space of all distributions in G will be denoted by D′(G). If the same

constant k can be used for all compact set H, then T is said to be of order k. Note that

the vector fields in general do not commute, therefore there are more distinct terms

on the right hand side (rhs) than in the corresponding definition of the distribution

on Rd.

It will be helpful for us to use a similar notation to that on Rd. First we introduce

the norm ‖f‖∞,H := sup
g∈H
|f(g)| for all f ∈ C∞c (G) with support H. Then, we will

write CH
∑
|α|≤k

‖Xαf‖∞,H for the rhs of (5.1), with the understanding that for any

two elements Xi1 , Xi2 of the basis of g, the terms ‖Xi1Xi2f‖∞,H and ‖Xi2Xi1f‖∞,H
are not equal in general, with an obvious extension to higher order terms. We will

regularly use the notation 〈T, f〉 = Tf . A distribution T is said to be identically

zero on a neighbourhood Ω of a point g ∈ G if for any test function f ∈ C∞c (G)

with supp(f) ⊆ Ω, we have Tf = 0. Then the support of a distribution T , denoted

supp(T ), is the complement of the set of points g ∈ G such that T is identically zero
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in a neighbourhood of g.

Definition. Let T : C∞c (G) → R be a distribution and h ∈ C∞(G), then we obtain

another distribution hT : C∞c (G)→ R given by

hT (φ) = T (hφ), for all φ ∈ C∞c (G).

Remark 5.0.1. Let µ be a Radon measure on G, then the linear functional defined

by 〈T, f〉 :=
∫
G
f(g)µ(dg) for f ∈ Cc(G), satisfies

|〈T, f〉| ≤ CH sup
g∈H
|f(g)|, for all f ∈ C∞c (H),

with CH = µ(H). Thus, T is a a distribution of order 0, and we can identify T with

µ. Moreover, T is a positive distribution, that is for all f ≥ 0, 〈T, f〉 ≥ 0

Proposition 5.0.2. A positive distribution is of order 0.

Proof. The proof is the same as in the Rd case see [30], Theorem 2.17, p.38 or [27],

Proposition 2.3, p.270. Let H ⊆ G be a compact subset and φ ∈ C∞c (G) take values

in [0, 1] such that φ = 1 on H. For all f ∈ C∞c (H), we have

|f(g)| ≤ |f(g)φ(g)| ≤ sup
σ∈H
|f(σ)|φ(g), for all g ∈ G. (5.2)

Let T be a positive distribution, then Tφ ≥ 0 and by linearity from the inequalities

(5.2) we have

− sup
σ∈H
|f(σ)| · Tφ ≤ Tf ≤ sup

σ∈H
|f(σ)| · Tφ.

That is,

|Tf | ≤ sup
σ∈H
|f(σ)| · Tφ.

So T is of order 0 with CH = Tφ.

Corollary 5.0.3. If T is a distribution of order 0, then it uniquely extends to a

linear functional on Cc(G). Furthermore, if T is positive, then so is its extension and

it uniquely defines a Radon measure on (G,B(G)).

Proof. We know that C∞c (G) is dense in C0(G) w.r.t. the supremum norm, therefore

every function in Cc(G) can be uniformly approximated by a sequence in C∞c (G). For

any f ∈ Cc(G), let (fn)n∈N ∈ C∞c (G) be a sequence converging to f . We define an

extension of T to Cc(G) by

T̃ f = lim
n→∞

Tfn.
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Note that T̃ is uniquely defined, since if there are two sequences (fn)n∈N ∈ C∞c (G) and

(f ′n)n∈N ∈ C∞c (G) converging to the same function f ∈ Cc(G), then lim
n→∞

T (fn − f ′n) = 0.

Let T be a positive distribution, then for all positive function f ∈ Cc(G) ≥ 0 there ex-

ists a sequence of positive functions (fn)n∈N ∈ C∞c (G), fn ≥ 0 such that lim
n→∞

fn = f .

Then T̃ f = lim
n→∞

Tfn ≥ 0.

We can apply the Riesz representation theorem to obtain a unique Radon measure

µ on G, that is

T̃ f =

∫
G

f(g)µ(dg), for all f ∈ Cc(G).

Theorem 5.0.4. Let P be a distribution on G of order k with support {e}, then P

has the form

Pf =
∑
|α|≤k

1

|α|!
aαX

αf(e), for all f ∈ C∞c (G),

where aα ∈ R for all |α| ≤ k.

Proof. The distribution P will not vanish on any open canonical coordinate neigh-

bourhood of e. Let us consider such a neighbourhood U ⊂ G of e. Then there exists

a diffeomorphism φ : U → Ũ , where Ũ ⊂ Rd is a neighbourhood of 0 and the map is

given by φ(g) = (x1(g), . . . , xd(g)) with φ(e) = 0. Then there is a linear isomorphism

Jφ : C∞c (U)→ C∞c (Ũ) given by

Jφf = f ◦ φ−1 =: f̃ .

Also, for all Xi ∈ TeG, i = 1, . . . , d, we have

X̃i := Jφ Xi J
−1
φ ∈ T0(R

d).

So given the basis {∂1, . . . , ∂d} of the tangent space T0(Rd), the vector field X̃i at

x ∈ Ũ can be decomposed as

X̃i(x) =
d∑
i=1

aij(x)∂i,

where for all i, j = 1 . . . , d, the functions aij ∈ C∞(Ũ) satisfy aij(0) = δij. This means

that at 0 we have X̃i = ∂i (compare with [32] and [45] p.11).

We define the linear functional P̃ : C∞c (Ũ)→ R by

P̃ f̃ := Pf = P
(
f̃ ◦ φ

)
, for all f̃ ∈ C∞c (Ũ).
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Then we have,

|P̃ f̃ | = |Pf | ≤ C
∑
|α|≤k

‖Xαf‖∞,G

= C
∑
|α|≤k

‖JφXαf‖∞,Rd

= C
∑
|α|≤k

‖JφJ−1φ X̃αJφf‖∞,Rd

= C
∑
|α|≤k

‖X̃αf̃‖∞,Rd . (5.3)

For any two vector fields X̃i1 , X̃i2 , where i1, i2 = 1, . . . , d and for all f̃ ∈ C∞c (Ũ) with

support H ⊂ Ũ , we have at x ∈ Ũ

X̃i1X̃i2 f̃(x) =

(
d∑
j=1

ai1,j(x)∂j

)(
d∑

k=1

ai2,k(x)∂k

)
f̃(x)

=
d∑
j=1

d∑
k=1

ai1,j(x)ai2,k(x)∂j∂kf̃(x) +
d∑
j=1

d∑
k=1

ai1,j(x)(∂jai2,k)(x)∂kf̃(x).

So,

‖X̃i1X̃i2 f̃‖∞,Rd ≤ CH

(
d∑

j,k=1

sup
x∈H
|∂j∂kf̃(x)|+

d∑
j=1

sup
x∈H
|∂j f̃(x)|

)
,

where CH = max
j,k=1,...,d

sup
x∈H
|ai1,j(x)ai2,k(x)| + max

j,k=1,...,d
sup
x∈H
|ai1,j(x)(∂kai2,k)(x)|. We iter-

ate these steps for any family of indices i1, . . . , ik = 1, . . . , d, and the vector fields

X̃i1X̃i2 · · · X̃ik . By construction, we have

X̃i1X̃i2 · · · X̃ik f̃(x) =
k∏
l=1

(
d∑

jl=1

ail,jl(x)∂jl

)
f̃(x).

Then as previously, we get∥∥∥X̃i1X̃i2 · · · X̃ik f̃
∥∥∥
∞,Rd

≤ CH

(
d∑

j1=1

‖∂j1 f̃‖∞,Rd +
d∑

j1,j2=1

‖∂j1∂j2 f̃‖∞,Rd + · · ·+
d∑

j1,j2,...,jk=1

‖∂j1∂j2 · · · ∂jk f̃‖∞,Rd

)
.

(5.4)
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CH in the last line is a constant that depends on the functions

{ail,jl ∈ C∞(Ũ) : l = 1, . . . , k and il, jl = 1, . . . , d}.

Thus, from (5.3) and (5.4) we get

|P̃ f̃ | ≤ C
∑
|α|≤k

‖∂αf̃‖∞,Rd , for all f ∈ C∞c (Ũ).

So P̃ extends to a distribution on Rd with support {0}. We can then use the original

result on Rd, see [30] p.46 Theorem 2.3.4., to conclude that for all f̃ ∈ C∞c (Ũ)

P̃ f̃ =
∑
|α|≤k

aα∂
αf̃(0),

where aα ∈ R for all |α| ≤ k. Thus, there exists a′α ∈ R for all |α| ≤ k, such that

Pf = P̃ f̃ =
∑
|α|≤k

aα∂
αf̃(0) =

∑
|α|≤k

a′αX̃
αf̃(0)

=
∑
|α|≤k

a′α(JφX
αJ−1φ )(Jφf)(0)

=
∑
|α|≤k

a′αJφ(Xαf)(0)

=
∑
|α|≤k

a′αX
αf(e), for all f ∈ C∞c (U).

Note that the coefficient a′α are due to the non-commutativity of the vector fields,

as when we apply the definition (5.1) of a distribution on G we need to distinguish

all permutations of subsets of X1, . . . , Xd.

Remark 5.0.5. In the particular case where P is a distribution of order 2 on G with

support at {e}, P is of the form

Pf = −cf(e) +
d∑
i=1

biXif(e) +
d∑

i,j=1

1

2
aijXiXjf(e), for all f ∈ C∞c (G), (5.5)

where for all i, j = 1, . . . , d, we have c, bi, aij ∈ R. Furthermore, the commutativity

∂i∂jf = ∂j∂if implies XiXjf(e) = XjXif(e) so aij = aji, for all i, j = 1, . . . , d.
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Chapter 6

The positive maximum principle on

Lie groups and a generalized

Courrège’s Theorem

6.1 Linear operators satisfying the positive maxi-

mum principle

The main goal of this section is to prove a generalization of the Courrège theorem [13]

to Lie groups using the methodology of Hoh [28] on Euclidean spaces. For this we need

to extend the definitions and properties of the functionals and operators satisfying

the positive maximum principle on a Lie group G. Let us denote by Fun(G,R) the

space of real-valued functions on G.

Definition. Let E be a subspace of Fun(G,R). A linear operator A : E → Fun(G,R)

is said to satisfy the positive maximum principle (”PMP”) if for all ϕ ∈ E such that

ϕ(g) = sup
σ∈G

ϕ(σ) ≥ 0 for some g ∈ G, then Aϕ(g) ≤ 0.

In particular, we will be looking at the cases where E is C∞c (G), C∞c (G/K), C∞c (K\G)

or C∞c (K\G/K).

Definition. A linear functional T : C∞c (G) → R is called almost positive if for all

ϕ ∈ C∞c (G) such that ϕ ≥ 0 and ϕ(e) = 0, then Tϕ ≥ 0.

We say that T satisfies the positive maximum principle if for all ϕ ∈ C∞c (G) such that

ϕ(e) = sup
x∈G

ϕ(x) ≥ 0, then Tϕ ≤ 0.

Remark 6.1.1. Suppose that T : C∞c (G)→ R is an almost positive linear functional.

Then for any two functions f, h ∈ C∞c (G) such that f(e) = h(e) = 0 with |f(g)| ≤ h(g)
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for all g ∈ G, we have |T (f)| ≤ T (h). To see why this is so, observe that since

f − h ≤ 0 with (f − h)(e) = 0 and −h− f ≤ 0 with (−h− f)(e) = 0, we can use the

almost positivity of T on both inequalities. Then by linearity of T we get respectively

T (f) ≤ T (h) and −T (h) ≤ T (f), so that |T (f)| ≤ T (h).

Proposition 6.1.2. If T : C∞c (G)→ R satisfies the positive maximum principle then

it is almost positive.

Proof. Let ϕ ∈ C∞c (G) be such that ϕ ≥ 0 and ϕ(e) = 0. So the function −ϕ ∈
C∞c (G) attains its non-negative supremum at e. By the PMP, T (−ϕ) ≤ 0 and the

linearity of T gives Tϕ ≥ 0.

Let us now explore the relationship between operators and functionals satisfying

the positive maximum principle. For any linear operator A : C∞c (G) → Fun(G,R),

we define a family of linear functionals Ag : C∞c (G)→ R, g ∈ G by

Agϕ := (LgALg−1)ϕ(e) = A(Lg−1ϕ)(g). (6.1)

Lemma 6.1.3. A linear operator A : C∞c (G) → Fun(G,R) satisfies the positive

maximum principle if and only if for all g ∈ G the functional Ag satisfies the positive

maximum principle.

Proof. For necessity, let ϕ ∈ C∞c (G) be a test function with ϕ(e) = sup
σ∈G

ϕ(σ) ≥ 0.

Then for any g ∈ G, the translated function (Lg−1ϕ) ∈ C∞c (G) satisfies

(Lg−1ϕ)(g) = sup
σ∈G

(Lg−1ϕ)(σ) ≥ 0. Now, since A satisfies the PMP we get

Agϕ = A(Lg−1ϕ)(g) ≤ 0.

For sufficiency, let ϕ ∈ C∞c (G) be such that ϕ(g) = sup
σ∈G

ϕ(σ) for some g ∈ G. Then

the translated function Lgϕ ∈ C∞c (G) satisfies (Lgϕ)(e) = sup
σ∈G

Lgϕ(σ). The functional

Ag satisfies the PMP, thus we have

Aϕ(g) = (LgALg−1Lg)ϕ(e) = Ag(Lgϕ) ≤ 0.

Let us recall that the exponential map is a diffeomorphism from a neighbourhood V

of the origin in g to a neighbourhood U of e in G. For the given basis (X1, X2, . . . , Xd)

of g, there exists a family of smooth functions xi : U → R, i = 1, . . . , d such that

g = exp

(
d∑
i=1

xi(g)Xi

)
for all g ∈ U (6.2)
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and for all i = 1, . . . , d,

xi

(
exp

(
d∑

k=1

akXk

))
= ai

if
∑d

k=1 akXk ∈ V , see [47]. We call the functions xi, canonical coordinate functions ,

they satisfy xi(e) = 0 and Xixk(e) = δik for all i, k = 1, . . . , d. From now on, for all

i = 1, . . . , d the function xi will be extended to G so that xi ∈ C∞c (G).

Theorem 6.1.4. [Taylor’s Theorem] Let f ∈ C2
0(G), g ∈ G, then for all l ∈ U there

exists l′ ∈ U such that

f(gl) = f(g) +
d∑
i=1

xi(l)Xif(g) +
1

2

∑
i,j=1

xi(l)xj(l)XiXjf(gl′)

Proof. See [6] Theorem 5.3.1, p.127.

Remark 6.1.5. As a direct consequence of the theorem, we also have the following

inequality: for all f ∈ C2
0(G), g ∈ G,l ∈ U we have∣∣∣∣∣f(gl)− f(g)−
d∑
i=1

xi(l)Xif(g)

∣∣∣∣∣ ≤ 1

2

d∑
i,j=1

|xi(l)xj(l)| sup
v∈G
|XiXjf(v)|

≤ 1

2
d max
i,j=1,...,d

‖XiXjf‖∞
d∑
i=1

x2i (l) (6.3)

by the Cauchy-Schwarz inequality.

Also, by a change of variable we can reformulate Taylor’s theorem:

Corollary 6.1.6. Let f ∈ C2
0(G), g ∈ G, then for all h ∈ lgU there exists h′ ∈ lgU

such that

f(h) = f(g) +
d∑
i=1

(Lg−1xi)(h)Xif(g) +
1

2

d∑
i,j=1

(Lg−1xi)(h)(Lg−1xj)(h)XiXjf(h′).

Proof. This follows directly from Theorem 6.1.4, by putting h = gl for all g ∈ G and

l ∈ U . So xi(l) = (Lg−1xi)(h) for all i = 1, . . . , d and h′ = gl′.

Note that here we translated the local coordinate functions, so we get

Xj(Lg−1xi)(g) = δji(e) for all g ∈ G and i, j = 1 . . . , d

Lemma 6.1.7. Any function ϕ ∈ C∞c (G) with local maximum ϕ(σ) = sup
g∈V

ϕ(g) for

some σ ∈ G on a neighbourhood V of σ, satisfies Xϕ(σ) = 0 for all X ∈ g.
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Proof. For any X ∈ g, let us introduce the function t 7→ ϕ(σ exp(tX)) from R to R.

This function is smooth and attains a local maximum at t = 0, therefore we have

d

dt
ϕ(σ exp(tX))

∣∣∣∣
t=0

= Xϕ(σ) = 0, for all X ∈ g. (6.4)

We will now mostly follow the approach adopted in Hoh [28], that we will generalize

to G. Let us first recall some properties of Hausdorff spaces, that we will use in the

following theorem.

Proposition 6.1.8. If X is a Hausdorff space then any finite number of points

x1, . . . , xn ∈ X can be separated by pairwise disjoint open sets.

Proof. Let us denote by Ω the topology on X and by S the set of finite points

S = {x1, . . . , xn} ⊂ X. From the definition of a Hausdorff space, we know that for

any pair xi, xj ∈ S, such that xi 6= xj, there exist two open sets Uij, Uji ∈ Ω such that

xi ∈ Uij, xj ∈ Uji and Uij ∩ Uji = ∅.
Let us now fix a point xi ∈ S, then we can define another neighbourhood of xi

by Ui :=
n⋂
j=1

Uij, which is a finite intersection of elements in Ω, therefore Ui ∈ Ω.

Furthermore, for all xi, xk ∈ S such that xi 6= xk, we have

(Ui ∩ Uk) ⊆ (Uik ∩ Uki) = ∅.

Thus, we have proved that there exists a family of pairwise disjoint open sets

U1, . . . , Un ∈ Ω containing x1, . . . , xn respectively.

Theorem 6.1.9. Let T : C∞c (G) → R be an almost positive functional, then T is

a distribution of order 2, that is for any compact subset H ⊂ G there is a constant

CH ≥ 0 such that

|Tϕ| ≤ CH

(
sup
x∈H
|ϕ(x)|+

d∑
i=1

sup
x∈H
|Xiϕ(x)|+

d∑
i,j=1

sup
x∈H
|XiXjϕ(x)|

)
for all test functions ϕ ∈ C∞c (G) with support in H.

Proof. Let ϕ ∈ C∞c (G) with supp(ϕ) = H where H ⊂ G is a compact set. Define the

constant

M := sup
g∈H
|ϕ(g)|+

d∑
i=1

sup
g∈H
|Xiϕ(g)|+

d∑
i,j=1

sup
g∈H
|XiXjϕ(g)|.
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The set H is covered by
⋃
k∈H

lkU and since it is compact, there is a finite subcover

{U1, . . . UN}, where Ui := lkiU for some ki ∈ H, i = 1, . . . , N . Furthermore, since G

is a Hausdorff space, we can separate the points k1, k2, . . . , kN by a family of pairwise

disjoint open sets W1, . . . ,WN ⊂ G such that ki ∈ Wi for all i = 1, . . . , N , see

Proposition 6.1.8.

In the following we will use Taylor’s theorem at each kl, l = 1, . . . , N , with the

translated local coordinates. First, denote the constant

C1 := max
r=1,...,d
l=1,...,N

{
sup
g∈G

∣∣∣(Lk−1
l
xr)(g)

∣∣∣+
d∑
i=1

sup
g∈G

∣∣∣Xi(Lk−1
l
xr)(g)

∣∣∣+
d∑

i,j=1

sup
g∈G

∣∣∣XiXj(Lk−1
l
xr)(g)

∣∣∣} .
We will now define a function ϕ̃ ∈ C∞c (G) which will serve as test function for the

argument below.

ϕ̃(g) := ϕ(g)−
N∑
l=1

ϕ(kl)εl(g)−
N∑
l=1

d∑
r=1

Lk−1
l
xr(g) εl(g) Xrϕ(kl), for all g ∈ G,

(6.5)

where for all l = 1, . . . , N the function εl ∈ C∞c (G) takes values in [0, 1] with support

in Wl and is equal to 1 in a neighbourhood of kl. Let us denote the constant

C2 := max
l=1,...,N

{
sup
g∈G
|εl(g)|+

d∑
i=1

sup
g∈G
|Xiεl(g)|+

d∑
i,j=1

sup
g∈G
|XiXjεl(g)|

}
.

Then from (6.5) for all g ∈ G and i, j = 1, . . . , d, we have

|XiXjϕ̃(g)| ≤|XiXjϕ(g)|+
N∑
l=1

|ϕ(kl)||XiXjεl(g)|

+
N∑
l=1

d∑
r=1

|Xrϕ(kl)|
∣∣∣XiXj

(
εl(g)(Lk−1

l
xr)(g)

)∣∣∣
≤M + C2M +M

N∑
l=1

d∑
r=1

∣∣∣εl(g)XiXj(Lk−1
l
xr)(g)

∣∣∣
+M

N∑
l=1

d∑
r=1

(∣∣∣(Lk−1
l
xr)(g)XiXjεl(g)

∣∣∣+ |Xjεl(g)||Xi(Lk−1
l
xr)(g)|

+ |Xiεl(g)||Xj(Lk−1
l
xr)(g)|

)
≤M + C2M + 4MC1C2 = CM
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where C ≥ 0 is a constant depending on εl, l = 1 . . . , N and the local coordinate

functions. In particular, at km ∈ Um for all m = 1, . . . , N , we have

ϕ̃(km) = ϕ(km)−
N∑
l=1

ϕ(kl)εl(km)−
N∑
l=1

d∑
r=1

(Lk−1
l
xr)(km)εl(km)Xrϕ(kl)

= ϕ(km)− ϕ(km)εm(km)−
d∑
r=1

(Lk−1
m
xr)(km)Xrϕ(km) = 0. (6.6)

Next we will calculate Xiϕ̃(km), for all i = 1, . . . d. For this, first note that

εm equals 1 in a neighbourhood of km, so by using Lemma 6.1.7 for the function

t 7→ εm(km exp(tX)) for all X ∈ g, we have Xεm(km) =
d

dt
εm(km exp(tX)) = 0, for

all X ∈ g. Thus,

Xiϕ̃(km) = Xiϕ(km)−
N∑
l=1

ϕ(kl) Xiεl(km)−
N∑
l=1

d∑
k=1

Xi

(
(Lk−1

l
xr)(km)εl(km)

)
Xkϕ(kl)

= Xiϕ(km)− ϕ(km) Xiεm(km)−
d∑

k=1

Xi(Lk−1
m
xr)(km)Xkϕ(km)

= Xiϕ(km)−
d∑

k=1

δikXkϕ(km) = 0. (6.7)

For any g ∈ H, there exists at least one m = 1, . . . , N such that g ∈ Um. Thus, by

equations (6.6) and (6.7), we have ϕ̃(g) = ϕ̃(g) − ϕ̃(km) −
d∑
i=1

(Lk−1
m
xr)(g) Xiϕ̃(km).

Using this with the corollary of Taylor’s theorem 6.1.6 and the Cauchy-Schwarz in-

equality we have for all g ∈ G

|ϕ̃(g)| =

∣∣∣∣∣ϕ̃(g)− ϕ̃(km)−
d∑
i=1

(Lk−1
m
xr)(g) Xiϕ̃(km)

∣∣∣∣∣
≤ 1

2

∑
i,j=1

∣∣(Lk−1
m
xi)(g)(Lk−1

m
xj)(g)

∣∣ sup
v∈G
|XiXjϕ̃(v)|

≤ 1

2
dCM

d∑
i=1

∣∣(Lk−1
m
xi)(g)

∣∣2
As a consequence, we have

|ϕ̃(g)| ≤ 1

2
dCM

N∑
m=1

d∑
i=1

∣∣(Lk−1
m
xi)(g)

∣∣2 , for all g ∈ H. (6.8)
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Since ϕ̃(g) = 0 when g /∈ H, we can extend the inequality (6.8) to all g ∈ G. For

simplicity, let us introduce the function h ∈ C∞c (G) defined by

h(g) =
N∑
m=1

d∑
i=1

∣∣(Lk−1
m
xi)(g)

∣∣2 for all g ∈ G.

Observe that ϕ̃(e) = h(e) = 0 and |ϕ̃(g)| ≤ 1
2
dCMh(g) for all g ∈ G. Thus, since T

is almost positive, by the argument of Remark 6.1.1 we have

|T (ϕ̃)| ≤ 1

2
dCM T (h).

So, by linearity of T and the definition of ϕ̃ in (6.5) we have

|T (ϕ)| ≤ |T (ϕ̃)|+
N∑
l=1

|ϕ(kl)||T (εl)|+
N∑
l=1

d∑
k=1

∣∣T (εl(Lkl−1xr))
∣∣ |Xkϕ(kl)|

≤ 1

2
dCM T (h) +M

N∑
l=1

|T (εl)|+M
N∑
l=1

d∑
k=1

∣∣T (εlx
Ul
r )
∣∣ .

Since the cover (U1, U2, . . . , UN) depends on the compact set H, so do all the local

coordinates and the functions ε. We can then conclude that there is a constant CH > 0

that depends on H such that

|T (ϕ)| ≤ CHM.

Definition. We say that a Borel measure µ on G∗ = G\{e} is a Lévy measure if for

every canonical coordinate neighbourhood U of e we have

∫
U∗

(
d∑
i=1

x2i (g)

)
µ(dg) <∞, and µ(UC) <∞.

Note that this definition is a slight variation from those found in the literature: p.38

in [47] or p.128 in [6].

Theorem 6.1.10. Let T : C∞c (G) → R be a linear functional satisfying the positive

maximum principle. Then there exists a unique family of constants aij, bi, c ∈ R,

i, j = 1, . . . d and a unique Radon measure µ on G∗ = G\{e} such that

i) (aij)i,j=1,...,d is a symmetric non-negative definite matrix

ii) c ≥ 0

iii) µ is a Lévy measure
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and T is of the form

Tϕ =
1

2

d∑
i,j=1

aijXiXjϕ(e) +
d∑
i=1

biXiϕ(e)− cϕ(e)

+

∫
G∗

(
ϕ(g)− ϕ(e)−

d∑
i=1

xi(g)Xiϕ(e)

)
µ(dg), (6.9)

for all ϕ ∈ C∞c (G).

Proof. Let V be a compact neighbourhood of e such that U ⊆ V , and let φ1, φ2 ∈ C∞c (G)

be two functions taking values in [0, 1] with supports respectively in V and in UC ,

such that φ1(g) = 1 for all g ∈ U , and φ2(g) = 1 for all g ∈ V C .

We introduce the function ξ :=
d∑
i=1

x2i (·) · φ1 + φ2 from G to R and note that

ξ(e) = 0. Then ξ · T is a positive distribution. Indeed, for all ϕ ∈ C∞c (G) such that

ϕ ≥ 0, we also have ξ · ϕ ≥ 0 with ξ(e)ϕ(e) = 0. So by almost positivity of T we get

〈ξ · T, ϕ〉 = 〈T, ξ · ϕ〉 ≥ 0.

Since ξ · T is a positive distribution, it is of order 0 by Proposition 5.0.2. Thus, by

Corollary 5.0.3 there exists a unique regular Borel measure ν on G such that ν = ξ ·T ,

i.e. 〈ξ · T, f〉 =
∫
G
f(g)ν(dg) for all f ∈ C∞c (G). We define another Borel measure

µ = 1
ξ
· ν|G∗ on G∗, so that we have

〈T, f〉 = 〈ξ · T, 1

ξ
f〉 =

∫
G∗
f(g)

1

ξ(g)
ν(dg) =

∫
G∗
f(g)µ(dg), for all f ∈ C∞c (G∗).

(6.10)

The set V is a compact neighbourhood of e and we define V ∗ = V/{e}, so by regularity

of measure ν we have

∫
U∗

(
d∑
i=1

x2i (g)

)
µ(dg) =

∫
V ∗
ξ(g)µ(dg) ≤ ν(V ) <∞ (6.11)

Let α, β ∈ C∞c (G) be two functions taking values in [0, 1], such that supp(α) ⊂ U

and supp(β) ⊂ UC with α(e) = 1, so

α(e) + β(e) = 1 + 0 = sup
g∈G

(α + β)(g).

By the positive maximum principle, T (α + β) ≤ 0, so by linearity of T , we get
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Tβ ≤ −Tα, that is

〈T, β〉 =

∫
G∗
β(g)µ(dg) ≤ −〈T, α〉

Taking the supremum over all possible β it then follows that

µ(UC) ≤ −〈T, α〉 <∞ (6.12)

So the measure µ is indeed a Lévy measure.

We introduce a linear functional S : C∞c (G)→ R, by

Sϕ :=

∫
G∗

[
ϕ(g)− ϕ(e)−

d∑
i=1

xi(g)Xiϕ(e)

]
µ(dg), for all ϕ ∈ C∞c (G).

The integral is finite by a second order Taylor’s expansion and properties of the

measure µ. By Lemma 6.1.7 for all ϕ ∈ C∞c (G) such that ϕ(e) = sup
g∈G

ϕ(g) ≥ 0 we

have Xiϕ(e) = 0, therefore

Sϕ =

∫
G∗

(ϕ(g)− ϕ(e)) µ(dg) ≤ 0.

That is, S satisfies the positive maximum principle. By Proposition 6.1.2 and Theorem

6.1.9 both T and S are distributions of order 2, thus so is their difference P := T −S.

If ϕ ∈ C∞c (G) with e /∈ supp(ϕ), then

Sϕ =

∫
G∗
ϕ(g)µ(dg) = Tϕ.

That is Pϕ = 0 for all such ϕ ∈ C∞c (G), therefore supp(P ) ⊆ {e}. Thus, using

Theorem 5.0.4, P is of the form

Pϕ =
1

2

d∑
i,j=1

aijXiXjϕ(e) +
d∑
i=1

biXiϕ(e)− cϕ(e).

We will now prove that the constant c is positive. Let (ϕk)k∈N be a sequence of

non-negative, monotone increasing functions in C∞c (G) such that ϕk = 1 in a neigh-

bourhood of e which is pointwise convergent to 1G, then by the monotone convergence

theorem

Sϕk =

∫
G∗

(ϕk(g)− 1) µ(dg)→ 0, as k →∞.

So

Tϕk = Pϕk + Sϕk = −cϕk(e) + Sϕk → −c, as k →∞.
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Note that for all k ∈ N, ϕk(e) = sup
g∈G

ϕk(g) ≥ 0, and since T satisfies the positive

maximum principle we have Tϕk ≤ 0. Thus, c ≥ 0.

From Remark 5.0.5, we already know that (aij) is symmetric. We will now prove

that (aij) is also positive definite. Let (εk)k∈N be a sequence of monotone decreasing

functions in C∞c (G), taking values in [0, 1] such that εk = 1 in a neighbourhood of e

with Vk ⊂ Vk′ when k > k′ and
⋂
k∈N

Vk = {e}. Let us also denote by fξ ∈ C∞c (G) the

function defined by fξ :=
1

2

d∑
i,j=1

ξiξjxi(·)xj(·), where ξ = (ξ1, . . . , ξd) ∈ Rd. Note that

for all 1 ≤ k, l ≤ d, we have

XlXkfξ =
1

2

d∑
i,j=1

ξiξjXlXk(xixj)

=
1

2

d∑
i,j=1

ξiξj(δkiδlj + δkjδli)

=
1

2
(ξkξl + ξlξk) = ξlξk.

Furthermore,

T (εk · fξ) = P (εk · fξ) + S(εk · fξ)

=
1

2

d∑
i,j=1

aijξiξj +

∫
G∗
εk(g)fξ(g) µ(dg).

Thus, by dominated convergence T (εk · f)→ 1

2

d∑
i,j=1

aijξiξj as k goes to infinity. Also,

since T is almost positive, T (εk ·f) ≥ 0, so
d∑

i,j=1

aijξiξj ≥ 0 and (aij) is positive definite.

It is clear that (aij) and c are uniquely defined for all T . Moreover, ν was

uniquely defined and therefore µ is also uniquely defined. This allows as to calcu-

late
d∑
i=1

biXiϕ(e) for any ϕ ∈ C∞c (G), so the vector b = (b1, . . . , bd) ∈ Rd is also

uniquely defined.

We will now establish the converse of Theorem 6.1.10.

Theorem 6.1.11. Every linear functional on C∞c (G) of the form (6.9) satisfies the

positive maximum principle.
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Proof. By Lemma 6.1.7, for any function ϕ ∈ C∞c (G) such that ϕ(e) = sup
g∈G

ϕ(g) ≥ 0,

we have Xϕ(e) = 0 for all X ∈ g. Thus, in (6.9) both the first order differential part

and the integral part satisfy the positive maximum principle. So now we only have

to deal with the second order differential part.

Fix h ∈ U and let us consider the function H : t 7→ ϕ

(
exp

(
t

d∑
i=1

xi(h)Xi

))
from

R to G. Let P2 be the second order Taylor polynomial of H around 0,

P2(t) = ϕ(e) + t
d∑
i=1

xi(h)Xiϕ(e) +
t2

2

d∑
i,j=1

xi(h)xj(h)XiXjϕ(e).

Then H(t)− P2(t) = o(t2) as t→ 0. That is

ϕ

(
exp

(
t

d∑
i=1

xi(h)Xi

))
−ϕ(e)−t

d∑
i=1

xi(h)Xiϕ(e)−t
2

2

d∑
i,j=1

xi(h)xj(h)XiXjϕ(e) = o(t2).

Thus, by Lemma 6.1.7 and the fact that ϕ(e) = sup
g∈G

ϕ(g) we have

o(t2) +
t2

2

d∑
i,j=1

xi(h)xj(h)XiXjϕ(e) = ϕ

(
exp

(
t

d∑
i=1

xi(h)Xi

))
− ϕ(e) ≤ 0.

Hence, dividing by t2 and taking the limit t→ 0 we get

d∑
i,j=1

xi(h)xj(h)XiXjϕ(e) ≤ 0.

The map h 7→ (x1(h), . . . , xd(h)) is a diffeomorphism from U to an open neigh-

bourhood Ũ of 0 ∈ Rd. Let us fix an open ball Br(0) ⊂ Ũ of radius r > 0. Then given

any λ ∈ Rd, there exists c(λ) > 0 such that c(λ)λ ∈ Br(0), i.e. for all i = 1, . . . , d,

c(λ)λi = xi(h) for some h ∈ U . Then we have

d∑
i,j=1

λiλjXiXjf(e) =
1

c(λ)2

d∑
i,j=1

xi(h)xj(h)XiXjf(e) ≤ 0

We conclude that any linear functional on C∞c (G) of the form (6.9) satisfies the

positive maximum principle.

We are now in a position to generalize Courrège’s theorem, see Theorem 3.4 in

[13], from Euclidean spaces to Lie groups. For a detailed proof on Euclidean spaces,
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see also Jacob and Schilling [36] and Jacob [34], p.360.

Definition. A Lévy kernel is a family of measures {µ(g, ·), g ∈ G} on (G,B(G)) such

that for all g ∈ G, µ(g, ·) is a Lévy measure.

Theorem 6.1.12. A linear operator A : C∞c (G)→ B(G) satisfies the positive maxi-

mum principle if and only if for all g ∈ G there exist

- a unique real symmetric non negative definite matrix (aij(g))

- a unique vector b(g) ∈ Rd

- a unique constant c(g) ≥ 0

- a unique Lévy kernel

such that, for all ϕ ∈ C∞c (G) and g ∈ G,

Aϕ(g) =
1

2

d∑
i,j=1

aij(g)XiXjϕ(g)−
d∑
i=1

bi(g)Xiϕ(g)− c(g)ϕ(g)

+

∫
G∗

[
ϕ(gτ)− ϕ(g)−

d∑
i=1

xi(τ)Xiϕ(g)

]
µ(g, dτ). (6.13)

Proof. From Lemma 6.1.3, we know that A satisfies the PMP if and only if for all

g ∈ G the linear functional Ag as defined in (6.1) satisfies the PMP. Thus, for each

g ∈ G, the functional Ag has the form (6.9),

Agϕ =
1

2

d∑
i,j=1

aij(g)XiXjϕ(e)−
d∑
i=1

bi(g)Xiϕ(e)− c(g)ϕ(e)

+

∫
G∗

(
ϕ(τ)− ϕ(e)

d∑
i,j=1

xi(τ)Xiϕ(e)

)
µ(g, dτ).

Then in particular for the function Lgϕ ∈ C∞c (G), we get

Aϕ(g) = Ag(Lgϕ) =
1

2

d∑
i,j=1

aij(g)XiXjϕ(g)−
d∑
i=1

bi(g)Xiϕ(g)− c(g)ϕ(g)

+

∫
G∗

(
ϕ(gτ)− ϕ(g)−

d∑
i=1

xi(τ)Xiϕ(g)

)
µ(g, dτ).

We will be particularly interested in the case where A is the generator of a Feller

semigroup on C0(G). So in the following, we will establish sufficient conditions for
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A : C∞c (G)→ C0(G). For the most recent results on Euclidean spaces see Kühn and

Schilling [42].

First, let us introduce some simplifying notations. Define the map H : C∞c (G)→
C(G×G) by

Hf(g, τ) := f(gτ)− f(g)−
d∑
i=1

xi(τ)Xif(g), for all f ∈ C∞c (G), τ, g ∈ G. (6.14)

Theorem 6.1.13. Let A be a linear operator on C∞c (G) satisfying the positive max-

imum principle such that

i) The functions aij(·), bi(·), c(·), for all i, j = 1, . . . , d are continuous on G.

ii) If (gn)n∈N is a sequence such that gn → g as n→∞ for some g ∈ G, then

lim
n→∞

∫
U∗

d∑
i=1

x2i (τ) |µ(g, dτ)− µ(gn, dτ)| = 0

and

lim
n→∞

∫
UC
|µ(g, dτ)− µ(gn, dτ)| = 0,

Then the operator A maps C∞c (G) to C(G).

Proof. A satisfies the positive maximum principle, therefore it is of the form (6.13).

When aij, bi, c are continuous functions on G, the differential part in (6.13) will be

clearly continuous. To deal with the integral part, we will split it into two.

∫
G∗

[
f(gτ)−f(g)−

d∑
i=1

xi(τ)Xif(g)

]
µ(g, dτ) =

∫
UC

Hf(g, τ)µ(g, dτ)+

∫
U∗
Hf(g, τ)µ(g, τ),

(6.15)

for all f ∈ C∞c (G) and g ∈ G.

First, let us prove the continuity of the integral over UC , for this we will use

both the uniform continuity of the function f and assumption (ii). As gn → g when

n→∞, we have∣∣∣∣∫
UC

Hf(g, τ)µ(g, τ)−
∫
UC

Hf(gn, τ) µ(gn, τ)

∣∣∣∣ ≤∣∣∣∣∣
∫
UC

[
f(gτ)− f(gnτ)− f(g) + f(gn)−

d∑
i=1

xi(τ) (Xif(g)−Xif(gn))

]
µ(g, dτ)

∣∣∣∣∣
+

∣∣∣∣∫
UC

Hf(gn, τ) [µ(gn.dτ)− µ(g, dτ)]

∣∣∣∣ (6.16)
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By smoothness of the function f , when gn → g we have f(gn)→ f(g), f(gnτ)→
f(gτ) and Xif(gn)−Xif(g)→ 0, for all τ ∈ UC and i = 1, . . . , d. Thus, by dominated

convergence, the first integral on the right hand side of (6.16) converges to 0, when

gn → g. As for the last term in (6.16), we have an upper bound∣∣∣∣∣
∫
UC

[
f(gnτ)− f(gn)−

d∑
i=1

xi(τ)Xif(gn)

]
[µ(gn.dτ)− µ(g, dτ)]

∣∣∣∣∣
≤ Kf

∫
UC
|µ(gn, dτ)− µ(g, τ)| (6.17)

where Kf = 2 sup
g∈G
|f(g)| +

d∑
i=1

sup
g∈G
|xi(g)||Xif(g)|. Using (ii), the right hand side

converges to 0 as gn → g. We will now deal with the continuity of the integral over

U∗. For all g ∈ G, we have∣∣∣∣∫
U∗
Hf(g, τ) µ(g, dτ)−

∫
U∗
Hf(gn, τ) µ(gn, dτ)

∣∣∣∣
≤
∣∣∣∣∫
U∗

[Hf(g, τ)−Hf(gn, τ)] µ(g, dτ)

∣∣∣∣+

∣∣∣∣∫
U∗
Hf(gn, τ) [µ(gn, dτ)− µ(g, dτ)]

∣∣∣∣
(6.18)

Again, by smoothness of f ∈ C∞c (G), when gn → g we have Hf(gn, τ) → Hf(g, τ),

for all τ ∈ U . Also, by Taylor’s formula, for all τ ∈ U there exist τ ′, τ ′′ ∈ U such that

|Hf(g, τ)−Hf(gn, τ)| =

∣∣∣∣∣12
d∑

i,j=1

xi(τ)xj(τ) [XiXjf(gτ ′)−XiXjf(gnτ
′′)]

∣∣∣∣∣
Let us denote M ′′ := max

i,j=1,...,d
sup
g∈G
|XiXjf(g)|. Then from the previous equation and

by the Cauchy-Schwarz inequality, we get

|Hf(g, τ)−Hf(gn, τ)| ≤M ′′d
d∑
i=1

x2i (τ)

The right hand side is integrable over U∗ with respect to the measure µ(g, ·), therefore

by dominated convergence

∫
U∗

[Hf(g, τ)−Hf(gn, τ)]µ(g, dτ) goes to 0 as gn → g.

For the last integral in (6.18), similarly as before, we use Taylor’s formula and the
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Cauchy-Schwarz inequality which gives

|Hf(gn, τ)| ≤ d

2
M ′′

d∑
i=1

x2i (τ), for all gn ∈ G, τ ∈ U∗. (6.19)

From the assumption (ii) it then follows that the sequence
∫
U∗
Hf(gn, τ)[µ(gn, τ)− µ(g, τ)]

converges to 0 as gn → g. Hence the right hand side in (6.18) converges to zero. We

then conclude that Af is a continuous function on G.

Theorem 6.1.14. Let A be a linear operator on C∞c (G) satisfying the positive max-

imum principle such that

iii)

lim
σ→∞

∫
U∗

(
d∑
i=1

x2i (τ)

)
µ(σ, dτ) = 0

and

lim
σ→∞

µ(σ, UC) = 0,

Then Af vanishes at infinity for all f ∈ C∞c (G).

Proof. Note that the differential part of Af in (6.13) has compact support for all

f ∈ C∞c (G), so when σ → ∞ the differential part of Af(σ) will vanish for any

f ∈ C∞c (G). As for the integral part in (6.13), we will split it into two again∫
G∗
Hf(σ, τ)µ(σ, dτ) =

∫
U∗
Hf(σ, τ)µ(σ, dτ) +

∫
UC

Hf(σ, τ)µ(σ, dτ), for all σ ∈ G.

Thus, using the inequality (6.19), for all σ ∈ G∣∣∣∣∫
U∗
Hf(σ, τ)µ(σ, dτ)

∣∣∣∣ ≤ ∫
U∗
|Hf(σ, τ)|µ(σ, dτ)

≤ d

2
M ′′

∫
U∗

(
d∑
i=1

x2i (τ)

)
µ(σ, dτ).

Therefore, using the condition iii), given any ε > 0, there is a compact set W1 such

that for all σ ∈ WC
1 , ∣∣∣∣∫

U∗
Hf(σ, τ)µ(σ, dτ)

∣∣∣∣ < ε/2.

For the second integral,∣∣∣∣∫
UC

Hf(σ, τ)µ(σ, dτ)

∣∣∣∣ ≤ CM · µ(σ, UC),
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where C and M are as defined in (6.17). Using condition iii), there is a compact set

W2 such that for all σ ∈ WC
2 ,∣∣∣∣∫

UC
Hf(σ, τ)µ(σ, dτ)

∣∣∣∣ < ε/2

Since W1 ∪W2 is compact, by summation we get∣∣∣∣∫
G∗
Hf(σ, τ)µ(σ, dτ)

∣∣∣∣ < ε for all σ ∈ (W1 ∪W2)
C .

We have proved that the integral part of Af also vanishes at infinity.

Corollary 6.1.15. Let A be a linear operator on C∞c (G) satisfying the positive max-

imum principle such that conditions i), ii) from Theorem 6.1.13 and condition iii)

from Theorem 6.1.14 are also satisfied. Then A maps C∞c (G) to C0(G).

Proof. This follows directly from Theorem 6.1.13 and Theorem 6.1.14.

6.2 The positive maximum principle and killed Hunt’s

formula

Let (Ω,F ,P) be a probability space where the σ-algebra F is equipped with a filtration

(Ft)t≥0. We will consider a Markov process (Yt)t≥0 with respect to the filtration

(Ft)t≥0, taking values in G. We will denote the transition probabilities of (Yt)t≥0 by

pt(σ,A) := P (Yt ∈ A|Y0 = σ) for all A ∈ B(G) and σ ∈ G. We then have a one-

parameter contraction semigroup of operators on Bb(G) given for all f ∈ Bb(G),

σ ∈ G by

Ttf(σ) =

∫
G

f(τ)pt(σ, dτ). (6.20)

The family of operators (Tt)t≥0 is called a Feller semigroup if

i) Tt(C0(G)) ⊆ C0(G) for all t ≥ 0,

ii) lim
t→0
‖Ttf − f‖∞ = 0 for all f ∈ C0(G).

In this case we say that (Yt)t≥0 is a Feller process. We will denote by A the infinitesimal

generator of the Feller semigroup (Tt)t≥0. The following lemma is well-known, see [34],

p.332. We will include the proof for completeness.

Lemma 6.2.1. Let (Tt)t≥0 be a Feller semigroup with generator A such that

C∞c (G) ⊆ Dom(A), then A satisfies the positive maximum principle.
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Proof. Let f ∈ C∞c (G) such that f(g0) = sup
σ∈G

f(σ) ≥ 0 for some g0 ∈ G. We have

Af(g0) = lim
t→0

(Ttf − f)(g0)

t
= lim

t→0

1

t

∫
G

[f(τ)− f(g0)] pt(g0, dτ) ≤ 0.

This proves that A satisfies the PMP.

The generator A of a Feller process satisfies the PMP so by Theorem 6.1.12, A

can be characterized by a quadruple ((aij), b, c, µ) and we say that this quadruple is

associated to A. In particular, we will explore the relationship between the transition

probabilities of the Feller process and the Lévy kernel associated to its generator.

This generalizes a well-known result about convolution semigroups in Rd, see [53],

Corollary 8.9, p.45, which has recently been extended to the current context, in the

case where G = Rd, in [42] Theorem 3.2.

Proposition 6.2.2. Let (pt)t≥0 be the transition probabilities associated to a Feller

process, with Feller semigroup (Tt)t≥0 and generator A. Assume that C∞c (G) ⊆ Dom(A),

then for all g ∈ G and f ∈ C∞c (G) vanishing on a neighbourhood of g,

lim
t→0

1

t

∫
G

f(τ)pt(g, dτ) =

∫
G∗
f(gτ)µ(g, dτ),

where µ is the Lévy kernel associated to A.

Proof. By definition, we have for all f ∈ C∞c (G), g ∈ G

Af(g) = lim
t→0

1

t
(Ttf(g)− f(g)) = lim

t→0

1

t

∫
G

(f(τ)− f(g))pt(g, dτ) (6.21)

Given that the generator A satisfies the PMP, by Lemma 6.1.3 for all g ∈ G the

distribution Ag also satisfies the PMP, where Ag is defined in (6.1). From (6.10) we

have shown that for all g ∈ G and f ∈ C∞c (G), Agf =

∫
G∗
f(τ) µ(g, dτ) where µ(g, ·)

is a Lévy measure. Thus, for all g ∈ G and f ∈ C∞c (G) we have

Af(g) = Ag(Lgf) =

∫
G∗
f(gτ) µ(g, dτ). (6.22)

In particular when f ∈ C∞c (G) vanishes on a neighbourhood of g ∈ G, from (6.21)

and (6.22) we get

lim
t→0

1

t

∫
G

f(τ)pt(g, dτ) =

∫
G∗
f(gτ) µ(g, dτ).
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Definition. A family of probability measures (µt)t≥0 on (G,B(G)) is called a convo-

lution semigroup of probability measures if

i) µs+t = µs ∗ µt, for all s, t ≥ 0

ii) µ0 = δe,

iii) lim
t→0

µt = µ0. (weak convergence)

Let (µt)t≥0 be a convolution semigroup of probability measures on G. It then follows

that µt is infinitely divisible for all t ≥ 0, see [6] p.123.. These semigroup of measures

arise as the laws of Lévy processes on G, see p.10 in [45]. A Lévy process is a Feller

process and the associated C0(G)-semigroup, (Tt)t≥0 defined on C0(G), is called a

Hunt semigroup and is defined by

Ttf(g) =

∫
G

f(gτ)µt(dτ), for all t ≥ 0, f ∈ C0(G) and g ∈ G. (6.23)

If we compare this to (6.20), we see that

pt(σ,B) = µt(σ
−1B)

for all σ ∈ G and B ∈ B(G). The infinitesimal generator A of a Hunt semigroup is

called the Hunt generator . From the definition of the Hunt semigroup it follows that

LσTt = TtLσ for all σ ∈ G and t ≥ 0. Furthermore, we know that if f ∈ Dom(A)

then Lgf ∈ Dom(A) for all g ∈ G. Therefore, LσAf = ALσf , for all f ∈ Dom(A),

see Lemma 5.3.2 in [6] and [32]. It is well known that C∞c (G) ⊆ Dom(A), see [47].

Thus,

LσAf = ALσf, for all f ∈ C∞c (G).

The following proposition is the classical result that the Hunt semigroup is precisely

the left-invariant Feller semigroup.

Proposition 6.2.3. Let (Tt)t≥0 be a Feller semigroup in C0(G) such that LgTt = TtLg
for all t ≥ 0, g ∈ G and p0(e, ·) = δe(·). Then (Tt)t≥0 is the Hunt semigroup associated

with a convolution semigroup of measures.

Proof. We follow the same steps as in the Euclidean case, see [3], Theorem 3.3.1,

p.161-2. Let (Tt)t≥0 be the Feller semigroup of a Feller process Y with transition

probabilities (pt)t≥0. By definition (6.20), we have for all f ∈ C0(G), g, σ ∈ G,t ≥ 0,

Lg(Ttf)(σ) =

∫
G

f(τ)pt(gσ, dτ)

Tt(Lgf)(σ) =

∫
G

f(gτ) pt(σ, dτ) =

∫
G

f(gτ) pt(σ, g
−1dτ).
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The semigroup (Tt)t≥0 is invariant w.r.t. to left translation so, by the Riesz represen-

tation theorem we get

pt(gσ,B) = pt(σ, g
−1B), for all g, σ ∈ G,B ∈ B(G), t ≥ 0.

For all t ≥ 0, define µt := pt(e, ·), so we have µ0 = p0(e, ·) = δe(·). Furthermore, for

all B ∈ B(G), t ≥ 0 and g ∈ G,

pt(g,B) = pt(e, g
−1B) = µt(g

−1B).

The using the Chapman-Kolmogorov equations for all t, s ≥ 0, B ∈ B(G)

µs+t(B) = ps+t(e, B) =

∫
G

pt(τ, B)ps(e, dτ) =

∫
G

µt(τ
−1B)µs(dτ),

so (µt)t≥0 is a convolution semigroup of measures. Vague continuity follows from

the fact that (Tt)t≥0 is a Feller semigroup. From [26], p.25 Theorem 1.1.19 we know

that in the case of a family of probability measures on locally compact spaces, vague

continuity is equivalent to weak continuity.

We will now recall the well-known Hunt’s theorem [32], for this first we define the

space

C
(2)
0 (G) := {f ∈ C0(G);Xif ∈ C0(G) and XjXkf ∈ C0(G) for all 1 ≥ i, j, k ≥ d}.

Then, we have C∞c (G) ⊆ C
(2)
0 (G) and C

(2)
0 (G) is dense in C0(G).

Theorem 6.2.4 (Hunt’s Theorem). If A is the generator of a semigroup of operators

associated to a convolution semigroup of measures (µt)t≥0, then

1. C
(2)
0 (G) ⊆ Dom(A)

2. for all f ∈ C(2)
0 (G), g ∈ G,

Af(g) =
1

2

d∑
i,j=1

aijXiXjf(g) +
d∑
i=1

biXif(g)

+

∫
G

(
f(gτ)− f(g)−

d∑
i=1

xi(τ)Xif(g)

)
µ(dτ) (6.24)

where (aij) is a non-negative definite, symmetric matrix, (b1, . . . , bd) ∈ Rd and µ is a

Lévy measure on (G,B(G)). Conversely, any linear operator represented as (6.24), is

the restriction to C2
0(G) of the Hunt generator corresponding to a unique convolution

semigroup of probability measures.
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Proof. See [32], [26] Theorem 4.2.4 p.262 or [6] Theorem 5.3.3, p.132.

Definition. Let (µt)t≥0 be a convolution semigroup of probability measures with

Hunt semigroup (Tt)t≥0. For a fix c > 0, we will consider a family of measures (µ̃t)t≥0
on (G,B(G)) given by

µ̃t = e−ctµt, for all t ≥ 0.

Thus, we have µ̃t(G) = e−ct < 1 for all t ≥ 0. Then (µ̃t)t≥0 is a convolution semigroup

of sub-probability measures, that is, it is a family of measures with total mass not

exceeding 1 and satisfying the conditions i)-iii), that we listed above for convolution

semigroups of measures. Furthermore, we will define a family of operators (St)t≥0 on

C0(G) by

St = e−ctTt for all t ≥ 0,

then (St)t≥0 is a C0-contraction semigroup and we have for all f ∈ C0(G), g ∈ G,

t ≥ 0,

Stf(g) = e−ctTtf(g) =

∫
G

f(gτ)e−ctµt(dτ) =

∫
G

f(gτ)µ̃t(dτ).

Let us denote the infinitesimal generator of (St)t≥0 by Ã, then for all f ∈ C2
0(G)

Ãf =
d

dt
Stf

∣∣∣∣
t=0

=
d

dt
(e−ctTt)f

∣∣∣∣
t=0

= −cf + Af

(St)t≥0 cannot be considered as a Feller semigroup in the classical sense, but is can

be associated to a so called killed Lévy process on G, see [3] p.405. We will call the

operator Ã, a killed Hunt generator .

Following the proof of Lemma 6.2.1 it is easy to see that Ã satisfies the positive

maximum principle. Conversely we have the following result.

Theorem 6.2.5. If A : C∞c (G)→ C(G) satisfies the positive maximum principle and

is such that LgAf = ALgf for all f ∈ C∞c (G), g ∈ G then

Af(g) =
1

2

d∑
i,j=1

aijXiXjf(g) +
d∑
i=1

biXif(g)− cf(g)

+

∫
G

(
f(gτ)− f(g)−

d∑
i=1

xi(τ)Xif(g)

)
µ(dτ), (6.25)

where {aij} is a non-negative definite, symmetric matrix, (b1, . . . , bd) ∈ Rd, c ≥ 0 and

µ is a Lévy measure on (G,B(G)). Furthermore A extends to the killed Hunt generator

associated to a unique convolution semigroup of sub–probability measures on G.
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Proof. The operator A satisfies the PMP so by Theorem 6.1.12 it is of the from (6.13).

Furthermore, A is invariant under left translation on C∞c (G). Thus,

Af(g) = ALgf(e) = LgAf(e)

=
1

2

d∑
i,j=1

aij(e)XiXjf(g) +
d∑
i=1

bi(e)Xif(g)− c(e)f(g)

+

∫
G∗

[
f(gτ)− f(g)−

d∑
i=1

xi(τ)Xif(g)

]
µ(e, dτ).

We then define aij = aij(e), bi = bi(e), c = c(e) for all i, j = 1, . . . , d, and µ(·) = µ(e, ·).
Next write (6.25) as Af = −cf + Bf . It is clear that A and B may be extended to

linear operators A1 and B1 on C
(2)
0 (G), so that A1f = −cf +B1f for all f ∈ C(2)

0 (G).

Then by Hunt’s theorem, B1 extends to the Hunt generator associated to a unique

convolution semigroup (µt)t≥0, and then the required convolution semigroup of sub–

probability measures is given, as above, by defining µ̃t = e−ctµt for each t ≥ 0.

Moreover by Theorem 5.3.4 on p.137 of [3], C∞c (G) is a core for the Hunt generator,

and so for the killed Hunt generator, from which we see that the action of A on C∞c (G)

uniquely determines (µ̃t, t ≥ 0).

6.3 The positive maximum principle and pseudo-

differential operators

Pseudo-differential operators can be defined on manifolds using local coordinates. On

compact Lie groups, there is a global approach developed in [51], see also [52] and

[18]. Later [5] provided an extended definition. Here we give a ”working definition”

in the spirit of [51].

In this section we will assume that the conditions from Corollary 6.1.15 are satis-

fied, so that A maps C∞c (G) to C0(G). Any linear operator A on C0(G) that satisfies

the PMP is dissipative, see [16] Lemma 2.1, p.165. Furthermore, any dissipative linear

operator on a Banach space is closeable, see [16] Lemma 2.2, p.16., therefore A has a

closed extension A with C∞c (G) ⊆ Dom(A). We will also assume that G is a compact

Lie group and we will rely on the Peter-Weyl theorem in this section.

Let us denote R(Ĝ) =
⋃
π∈Ĝ

L(Vπ) and for all π ∈ Ĝ, Iπ denotes the identity matrix

acting in V . If λ ∈ D we will equivalenty denote Iλ = Iπλ .

Definition. A linear operator A : C∞(G) → C(G) is called a pseudo-differential

operator if there exists a mapping σA : G × Ĝ → R(Ĝ), such that σA(g, π) ∈ L(Vπ)
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for all g ∈ G, π ∈ Ĝ and

σA(g, π) = π(g−1)Aπ(g), for all g ∈ G, π ∈ Ĝ,

Af(g) =
∑
π∈Ĝ

dπtr
(
σA(g, π)f̂(π)π(g)

)
, for all f ∈ C∞(G). (6.26)

In this case, σA is called the symbol of the operator A.

In particular, let A : C∞(G)→ C0(G) be a linear operator satisfying the positive

maximum principle, then A is of the form (6.13). We want to prove that such oper-

ator A is a pseudo-differential operator and calculate its symbol. First note that by

definition of the derived representation we have

Xπ(g) =
d

dt
π(g exp(tX)) = π(g)

d

dt
π(exp(tX)) = π(g)dπ(X), (6.27)

for all π ∈ Ĝ,X ∈ g and g ∈ G.

Let us define the matrix Aπ := [Aπkl]k,l=1...,dπ , then by applying the formula (6.13)

for each function πij, i, j = 1, . . . , dπ we get for all g ∈ G,

Aπ(g) =
1

2

d∑
i,j=1

aij(g)π(g)dπ(Xi)dπ(Xj)− c(g)π(g) +
d∑
i=1

bi(g)π(g)dπ(Xi)

+

∫
G∗
π(g)

{
π(τ)− Iπ −

d∑
i=1

xi(τ)dπ(Xi)

}
µ(g, dτ)

Let us simplify the notation by introducing a function JA : G×Ĝ→Mdπ×dπ = L(Vπ),

which takes the form

JA(g, π) :=
1

2

d∑
i,j=1

aij(g)dπ(Xi)dπ(Xj) +
d∑
i=1

bi(g)dπ(Xi)− c(g)Iπ

+

∫
G∗

{
π(τ)− Iπ −

d∑
i=1

xi(τ)dπ(Xi)

}
µ(g, dτ), (6.28)

for all π ∈ Ĝ and g ∈ G. Then we have

Aπ(g) = π(g)JA(g, π), for all g ∈ G, π ∈ Ĝ. (6.29)

For simplicity for all λ ∈ D we will denote JA(g, λ) := JA(g, πλ).
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Lemma 6.3.1. There is a constant C ≥ 0 such that for all λ ∈ D,

sup
g∈G
‖JA(g, λ)‖HS ≤ C(1 + |λ|m+2).

Proof. Let us start by establishing some preliminary steps, that are necessary for the

proof. First, by definition of derived representations we have for all π ∈ Ĝ and τ ∈ U ,

π(τ) = π

(
exp

(
d∑
i=1

xi(τ)Xi

))
= exp

(
dπ

(
d∑
i=1

xi(τ)Xi

))

= exp

(
d∑
i=1

xi(τ)dπ(Xi)

)
(6.30)

We will also use the fact that by Theorem 4.1.2, for all λ ∈ D,

‖Iλ‖HS =
√
dλ ≤ C|λ|m/2,

for some constant C ≥ 0. In the following, C will denote a generic constant, which

may vary from line to line.

Let us return to the proof, we will start with the integral part. We first split the

integral in (6.28) into
∫
G∗

=
∫
U∗

+
∫
UC

. By Taylor’s series expansion, Theorem 4.1.2

and the Cauchy-Schwarz inequality, we get for all π ∈ Ĝ,∥∥∥∥∥
∫
U∗

(
π(τ)− Iπ −

d∑
i=1

xi(τ)dπ(Xi)

)
ν(g, dτ)

∥∥∥∥∥
HS

≤
∫
U∗

∥∥∥∥∥exp

(
d∑
i=1

xi(τ)dπ(Xi)

)
− Iπ −

d∑
i=1

xi(τ)dπ(Xi)

∥∥∥∥∥
HS

ν(g, dτ)

≤
∫
U∗

1

2

d∑
i=1

|xi(τ)xj(τ)| ‖dπ(Xi)dπ(Xj)‖HS ν(g, dτ)

≤ Cdmax{|X1|, . . . , |Xd|}

(∫
U∗

d∑
i=1

xi(τ)2ν(g, dτ)

)
|λ|m+2

So taking the supremum over G on both sides we get for all λ ∈ D

sup
g∈G

∥∥∥∥∥
∫
U∗

(
πλ(τ)− Iλ −

d∑
i=1

xi(τ)dπλ(Xi)

)
ν(g, dτ)

∥∥∥∥∥
HS

≤ C|λ|m+2, (6.31)

for some constant C ≥ 0. For the second part of the integral, by Theorem 4.1.2 and
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Proposition 4.1.1 we have for all g ∈ G,∥∥∥∥∥
∫
UC

(
πλ(τ)− Iλ −

d∑
i=1

xi(τ)dπλ(Xi)

)
ν(g, dτ)

∥∥∥∥∥
HS

≤
∫
UC

(
‖πλ(τ)‖HS + ‖Iλ‖HS +

d∑
i=1

|xi(τ)|‖dπλ(Xi)‖HS

)
ν(g, dτ)

= (2d
1/2
λ + C max

i=1,...,N
{‖dπλ(Xi)‖HS}) ν(g, UC)

≤ C(|λ|
m
2 + |λ|

m+2
2 ) ν(g, UC).

So taking the supremum over G on both sides, we get

sup
g∈G

∥∥∥∥∥
∫
UC

(
πλ(τ)− Iλ −

d∑
i=1

xi(τ)dπλ(Xi)

)
ν(g, dτ)

∥∥∥∥∥
HS

≤ C(|λ|
m
2 + |λ|

m+2
2 ), (6.32)

for some constant C ≥ 0. Thus, going back to the definition of JA in (6.28), by the

inequalities (6.31) and (6.32) we get

sup
g∈G
‖J(g, λ)‖HS ≤C|λ|m+2 sup

g∈G

d∑
i,j=1

|aij(g)|+ C|λ|
m+2

2 sup
g∈G

d∑
i=1

|bi(g)|

+ C|λ|
m
2 sup
g∈G
|c(g)|+ C|λ|m+2 + C(|λ|

m
2 + |λ|

m+2
2 )

≤C(|λ|
m
2 + |λ|

m+2
2 + |λ|m+2)

This means that, when |λ| < 1, we have sup
g∈G
‖J(g, λ)‖HS ≤ C and when |λ| ≥ 1, we

have sup
g∈G
‖J(g, λ)‖HS ≤ C|λ|m+2. Thus,

sup
g∈G
‖J(g, λ)‖HS ≤ C(1 + |λ|m+2), for all λ ∈ D

for some constant C ≥ 0.

Lemma 6.3.2. For all f ∈ C∞(G), the series∑
λ∈D

dλtr
(
JA(g, πλ)f̂(λ)πλ(g)

)
(6.33)

converges absolutely and uniformly for all g ∈ G.

86



6.3. The positive maximum principle and pseudo-differential operators

Proof. First note that for all λ ∈ D and g ∈ G

‖f̂(λ)πλ(g)‖HS = tr
(
πλ(g)∗f̂(λ)∗f̂(λ)πλ(g)

)
= tr

(
f̂(λ)∗f̂(λ)πλ(g)πλ(g)∗

)
= tr

(
f̂(λ)∗f̂(λ)

)
= ‖f̂(λ)‖HS (6.34)

Then, we use the fact that tr(AB) ≤ ‖A‖HS‖B‖HS, so by (6.34), Lemma 6.3.1 and

Proposition 4.1.1, we get for all g ∈ G and λ ∈ D

dλ

∣∣∣tr(JA(g, λ)f̂(λ)πλ(g)
)∣∣∣ ≤ dλ‖JA(g, λ)‖HS‖f̂(λ)πλ(g)‖HS

≤ C(1 + |λ|m+2)|λ|m‖f̂(λ)‖HS, (6.35)

for some constant C ≥ 0.

Now, recall from Theorem 4.3.8 that f̂ ∈ S(D) for all f ∈ C∞c (G), so

lim
|λ|→∞

|λ|p ‖f̂(λ)‖HS = 0, for all p ∈ N.

Hence, for ε = 1, there exists λ0 ∈ D0 such that for all |λ| > |λ0|, we have

‖f̂(λ)‖HS ≤ 1
|λ|p . So when we look at the tail behaviour of the series (6.33).

sup
g∈G

∑
|λ|>|λ0|

dλ

∣∣∣tr(JA(g, λ)f̂(λ)πλ(g)
)∣∣∣ ≤ C

∑
|λ|>|λ0|

|λ|m(1 + |λ|m+2)

|λ|p
<∞

Choose p > 2m+2+r, then the convergence of the Sugiura zeta function in Theorem

4.1.3 allows us to conclude that the right hand side is finite. Thus, the absolute and

uniform convergence of (6.33) follows.

Theorem 6.3.3. Let A : C∞(G)→ C(G) be a linear operator satisfying the positive

maximum principle, then A is a pseudo differential operator with symbol JA.

Proof. From (6.29) it follows that when f ∈ E(G), we have

Af(g) =
∑
λ∈D

dλtr(JA(g, λ)f̂(λ)πλ(g)), for all g ∈ G (6.36)

Now, take any f ∈ C∞(G), then by Theorem 4.1.4 the Fourier series
∑
λ∈D

dλtr(f̂(λ)πλ(g))

converges absolutely and uniformly to f(g) for all g ∈ G. We will impose a norm or-

dering of the space of weights D, wherein if two weights have the same weight we
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choose an arbitrary ordering between them. Then the partial sums

fN :=
N∑
i=1

dλitr(f̂(λi)πλi(·)) for all N ∈ N, are in E(G) and the sequence (fN)N∈N

converges uniformly to f .

For all λ ∈ D and i, j = 1, . . . , dλ, we have

f̂N(λ)ij =

∫
G

(πλ)ij(g
−1)fN(g)dg

=

∫
G

(πλ)ij(g
−1)

N∑
p=1

dλptr
(
f̂(λp)πλp(g)

)
dg

=

∫
G

(πλ)ij(g
−1)

N∑
p=1

dλp

dλp∑
k,l=1

f̂(λp)kl (πλ)lk(g) dg

=
N∑
p=1

dλp∑
k,l=1

f̂(λp)kl dλp

∫
G

(πλ)ij(g
−1) (πλp)lk(g) dg

=

f̂(πλ)ij λ ∈ λ1, . . . , λN
0 λ /∈ λ1, . . . , λN

The last line follows from the fact that {
√
dλ(πλ)ij : λ ∈ D, i, j = 1, . . . , dλ} is an

orthonormal basis of L2(G). Thus, we have

AfN(g) =
∑
λ∈D

dλtr
(
JA(g, πλ)f̂N(λ)πλ(g)

)
=

N∑
i=1

dλitr
(
JA(g, πλi)f̂(λi)πλi(g)

)
By Lemma 6.3.2, the sequence of partial sums AfN converges uniformly. Furthermore,

A is closed, therefore

Af(g) = lim
N→∞

AfN(g) =
∑
λ∈D

dλtr(JA(g, πλ)f̂(λ)πλ(g)).
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The positive maximum principle on

symmetric spaces

7.1 K-bi-invariant linear operators

7.1.1 Adjoint representation on G/K

Let G be a Lie group and K ⊂ G be a closed subgroup, we denote by M the homo-

geneous space M = G/K. We denote by \ the natural map that maps G to G/K by

\(g) = gK for all g ∈ G. Furthermore, for any h ∈ G, we denote by σh the action of

left-translation on G/K, i.e. σh(gK) := hgK for all h ∈ G and gK ∈ X. Then, we

have for all h ∈ G,

\ ◦ lh = σh ◦ \.

If x = gK ∈ G/K, we often write σh(gK) as h.x for all h ∈ G.

Definition. Let π : G → GL(V ) be a representation of a Lie group G on a vector

space V , and let W ⊂ V a G-invariant subspace of V . Then there is an induced

representation of the group G on the quotient space V/W , π̃ : G→ GL(V/W ), called

the quotient representation, that is given by π̃(g)(vW ) = π(g)(v)W for all g ∈ G and

vW ∈ V/W .

Given σk we can define an adjoint representation of the homogeneous space G/K

the following way

Definition. The homomorphism AdG/K : K → GL(ToG/K) defined by

AdG/K(k)(X̃) = Toσk(X̃), for all X̃ ∈ To(G/K), k ∈ K.

is called the isotropy representation of the homogeneous space G/K.
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Remark 7.1.1. The isotropy representation is a representation of the Lie subgroup

K on To(G/K). Indeed, we have AdG/K(e) = Toσe = To(IdG/K) = IdTo(G/K) and for

all k1, k2 ∈ K, by the chain rule we have

AdG/K(k1)AdG/K(k2) = Toσk1 ◦ Toσk2 = To(σk1σk2) = To(σk1k2) = AdG/K(k1k2)

Suppose the subgroup K ⊂ G is compact, then there exists an Ad(K)-invariant

inner product on g, i.e. an inner product 〈·, ·〉 for which Ad(k) acts isometrically

on g for each k ∈ K. To see this, take any inner product 〈·, ·〉′ on g and define

〈X, Y 〉 :=
∫
K
〈Ad(k)X,Ad(k)Y 〉′dk. We will denote by k the Lie algebra of K, and

by p the orthogonal complement of k in g with respect to the Ad(K)-invariant inner

product, i.e. g = k⊕p, and this is called the Cartan decomposition. Then p is Ad(K)-

invariant, that is Ad(k)p ⊆ p, for all k ∈ K. For the fixed basis {X1, X2, . . . , Xd} of

g, we will assume that {X1, X2, . . . , Xn} is a basis for p and {Xn+1, Xn+2, . . . , Xd} is

a basis for k.

Lemma 7.1.2. The isotropy representation can be identified with the quotient rep-

resentation of the adjoint representation of the Lie subgroup K on the Lie algebra

g.

Proof. This is a known result mentioned in [23], Lemma 3.1, p.132. Here we will

include our own proof. Since TeK ⊂ TeG is Ad(K)-invariant, we have the quotient

representation Ãd : K → GL(TeG/TeK) of the adjoint representation of K on TeG

given by

Ãd(k)(Y + TeK) = Ad(k)(Y ) + TeK

for all Y + TeK ∈ TeG/TeK and k ∈ K. Also, we know that there is an isomorphism

To(G/K) ' TeG/TeK, see Theorem 2.11 in [37]. Note that for all k ∈ K and g ∈ G,

σk(gK) = kgK = (kgk−1)K = ck(g)K

That is σk ◦ \ = \ ◦ ck on G, so Te(σk ◦ \) = Te(\ ◦ ck) on TeG. So by the chain rule we

have Toσk ◦ Te\ = Te\ ◦ Ad(k), that is

AdG/K(k) ◦ Te\ = Te\ ◦ Ad(k)

So we have the following commuting diagram for any k ∈ K

TeG To(G/K) TeG/TeK

TeG To(G/K)

Te\

Ad(k) AdG/K(k)

i

Ãd(k)
Te\
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where i = Te\|p is the canonical isomorphism between TeG/TeK and To(G/K). In-

deed, we have for all Y ∈ To(G/K), i(Y ) = Y ′ + k, where Y ′ ∈ TeG.

Ãd(k)i(Y ) = Ad(k)Y ′ + k

= Te\ ◦ Ad(k)Y ′

= AdG/K(k) ◦ Te\(Y ′)
= AdG/K(k)(Y ′ + k)

= AdG/K(k)i(Y )

Differentiating the natural map at the origin we get for all X ∈ g

Te\(X) =
d

dt
[\ ◦ exp(·X)(t)]

∣∣∣∣
t=0

=
d

dt
(exp(tX)K)

∣∣∣∣
t=0

(7.1)

So in particular we get Te\(k) = 0, that is Ker(Te\) = k. But Te\ is also surjective,

so we get a canonical isomorphism p = g/k ' To(G/K). So for all i > n, if f ∈
C∞c (G/K) then we have Xif = 0.

From now on, for simplicity both the isotropy representation and the quotient

representation of the adjoint representaion of the Lie group K, will be denoted by

Ad.

7.1.2 Canonical local coordinate functions on G/K

For the basis X1, X2, . . . , Xn of p, we are going to define a family of canonical local

coordinate functions yi : Ũ → R, where Ũ is a neighbourhood of o in G/K. This

section is based on [45], p.40.

The map Ψ from Rn to G/K defined by

Ψ : y = (y1, y2, . . . , yn) 7→ \
(
e
∑n
i=1 yiXi

)
is a diffeomorphism from a neighbourhood V in 0 of Rn to the neighbourhood Ψ(V )

of o = eK in G/K. For any x = Ψ(y) ∈ Ψ(V ) we can write ∂
∂yi
f(x) = ∂

∂yi
f ◦Ψ(y) for

all f ∈ C1(G/K) and 1 ≤ i ≤ n. So ∂
∂yi

can be considered as a vector field on Ψ(V ).

From now on, for all x ∈ Ψ(V ) ⊂ G/K we denote by y(x) ∈ Rn the point for which

x = Ψ(y(x)), so for each i = 1, 2, . . . , n, yi(·) = Ψ−1i : Ψ(V )→ R is a smooth function

that we can extend to G/K such that yi ∈ C∞c (G/K) and we will call y1, y2, . . . , yn
canonical local coordinate functions on G/K.
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Proposition 7.1.3. We have for all x ∈ G/K and for all k ∈ K

k.x = k.Ψ(y(x)) = \
(
e
∑n
i=1 yi(x)Ad(k)Xi

)
(7.2)

and the canonical local coordinate functions on G/K satisfy

n∑
i=1

yi(x)Ad(k)Xi =
n∑
i=1

yi(k.x)Xi. (7.3)

Proof. See [47], p.40.

Let us from now on order the canonical local coordinate functions {xi; i = 1, . . . , d}
on G such that they match with the local coordinate functions on G/K, i.e.

yi ◦ \ = xi, for all i = 1, . . . , n. (7.4)

So from (7.3) we get

n∑
i=1

xi(g)Ad(k)Xi =
n∑
i=1

xi(kg)Xi, for all g ∈ G and k ∈ K. (7.5)

7.1.3 Invariant differential operators

We will now introduce some notations for differential operators following [24] p.385.

Let f ∈ C(G) and α be a endomorphism of G, then we denote fα := f ◦ α−1. For

any mapping A : C(G) → C(G), we write Aα : f 7→ (Afα
−1

)α on C(G). A function

f is said to be invariant under α if fα = f and an operator A is said to be invariant

under α if Aα = A. Given two homeomorphisms α, β from G to G, we have

fα◦β = f ◦ (α ◦ β)−1 = (f ◦ β−1) ◦ α−1 = (fβ)α.

Thus,

Aα◦βf = [A(f (α◦β)−1

)]α◦β =

[[
A

((
fα
−1
)β−1

)]β]α
=
(
Aβ(fα

−1

)
)α

= (Aβ)αf.

(7.6)

In this section, we will be interested in the case where α = lk and β = rk where

k ∈ K. A linear transformation D : C∞c (G)→ C∞c (G) is called a differential operator

on G, if for at any point p ∈ G and each local chart (ϕ,U) around p there exists a

finite number of functions aα ∈ C∞(U) such that for all f ∈ C∞c (G) with support in
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the neighbourhood U ,

Df(q) =
∑
α

aα(q) (Dα(f ◦ ϕ−1))(ϕ(q)), if q ∈ U,

Df(q) = 0, if q /∈ U.

In particular, all vector fields are differential operators. Let us call a differential

operator left-invariant if it is invariant under lg for all g ∈ G. Then D(G) denotes the

set of all G left-invariant differential operators on G. DK(G) will denote the subspace

of operators in D(G) that are also K-right invariant. For each g ∈ G, Ad(g) : g→ g

extends uniquely to an automorphism of D(G), we will denote this extension by Ad(g)

as well, see [24] p.392.

It is easy to verify that if X is a left-invariant vector field on G, then it is a

left-invariant differential operator on C∞c (G) in the above sense.

From Lemma 2.18 and equation (7.6) we also know that, for all X ∈ g, f ∈ C∞c (G),

g ∈ G,

Ad(g)Xf = Xcgf =
(
X lg
)rg−1

f.

So by G left-invariance of the differential operator X : C∞c (G)→ C∞c (G) we have

[Ad(g)X]f =
(
X lg
)rg−1

f = Xrg−1f, for all f ∈ C∞c (G), g ∈ G. (7.7)

(See also [24], p.391-392)

Furthermore, in the particular case where f ∈ C∞c (G/K), g ∈ G, k ∈ K, Xi ∈ p

Xif(gk) =
d

dt
f(gk exp(tXi))

∣∣∣∣
t=0

=
d

dt
f(gk exp(tXi)k

−1)

∣∣∣∣
t=0

=
d

dt
f(g exp(tAd(k)Xi))

∣∣∣∣
t=0

= Ad(k)Xif(g). (7.8)

And similarly, we have

XiXjf(gk) =
d

ds

d

dt
f(gk exp(tXi)k

−1k exp(sXj)k)

∣∣∣∣
t=0,s=0

=
d

ds

d

dt
f(g exp(tAd(k)Xi) exp(sAd(k)Xj))

∣∣∣∣
t=0,s=0

= [Ad(k)Xi][Ad(k)Xj]f(g) (7.9)

Note that from (7.7) and (7.8), it then follows that for Xi ∈ p, f ∈ C∞c (G/K),
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g ∈ G and k ∈ K,

Xif(gk) = X
rk−1

i f(g) = Xi(f ◦ rk)(gk−1) = Xi(f ◦ rk)(g). (7.10)

That is, on G/K, for all i = 1, . . . , n, the differential operator Xi is K-right-invariant.

For all k ∈ K, let ([Ad(k)]ij) be the matrix associated to Ad(k) : p → p in the

basis {X1, X2, . . . , Xn} with respect to the Ad(K)-invariant inner product 〈·, ·〉. That

is, for all k ∈ K, [Ad(k)]ij = 〈Ad(k)Xi, Xj〉 and

Ad(k)Xj =
n∑
i=1

[Ad(k)]jiXi for all j = 1, . . . , n. (7.11)

Furthermore, since for all k ∈ K the inner product 〈·, ·〉 is Ad(k)-invariant, the matrix

([Ad(k)]ij) is orthogonal. Similarly to [47] p.67, we will call a symmetric n × n real

valued matrix (aij), Ad(K)-invariant if

aij =
n∑

p,q=1

apq[Ad(k)]pi[Ad(k)]qj, for all i, j = 1, . . . , n and k ∈ K.

In this case by (7.11), we have
n∑

i,j=1

aij[Ad(k)Xi][Ad(k)Xj] =
n∑

i,j=1

aijXiXj for all

k ∈ K, i, j = 1, . . . , n.

Note that X1, . . . , Xn may be regarded as vector fields on G/K and as G left-

invariant differential operators on G/K.

7.2 The positive maximum principle and K-bi-invariance

Lemma 7.2.1. Let A : C∞c (G)→ Fun(G) be a linear operator, then we have

a) A : C∞c (G/K)→ Fun(G/K) if and only if RkAf = Af , for all f ∈ C∞c (G/K)

and k ∈ K. In this case, we say that A is K-right invariant

Similarly,

b) A : C∞c (K\G) → Fun(K\G) if and only if LkAf = Af , for all f ∈ C∞c (K\G)

and k ∈ K In this case, we say that A is K-left invariant.

Finally, A : C∞c (K\G/K)→ Fun(K\G/K) if and only if both a) and b) are satisfied.

In this case, A is called K-bi-invariant.

Proof. If a) is true then, clearly Af ∈ Fun(K\G) for all f ∈ C∞c (K\G). Conversely,

for all f ∈ C∞c (K\G) having Af ∈ Fun(K\G) precisely means that RkAf = Af for

all k ∈ K. The rest can be proved similarly.

94



7.2. The positive maximum principle and K-bi-invariance

We will now establish the closed form for a K-left-invariant, K-right-invariant

and K-bi-invariant linear operator satisfying the positive maximum principle. We

will only prove the the first two cases, then the K-bi-invariant case follows.

Theorem 7.2.2. Let A : C∞c (K\G) → Fun(K\G) be a linear operator. Then A

satisfies the positive maximum principle if and only if for all g ∈ G there exist

- a unique real symmetric, non-negative definite matrix (aij(g)) such that

aij(kg) = aij(g), for all k ∈ K, i, j = 1. . . . , d,

- a unique vector b(g) = (b1(g), . . . , bd(g)) ∈ Rd such that bi(kg) = bi(g), for all

k ∈ K, i = 1, . . . , d,

- a unique c(g) ≥ 0 such that c(kg) = c(g), for all k ∈ K,

- a unique Lévy kernel µ such that µ(kg,A) = µ(g, A), for all A ∈ B(G) and

k ∈ K,

such that A is of the form (6.13).

Proof. First, from Lemma 7.2.1, b), we have Af(g) = LkAf(g) = Af(kg) for all

f ∈ C∞c (K\G), k ∈ K and g ∈ G. Furthermore, for all X ∈ g, f ∈ C∞c (K\G), g ∈ G
and k ∈ K we have Xf(kg) = Xf(g). Thus, for all f ∈ C∞c (K\G), k ∈ K and g ∈ G,

Af(g) =Af(kg)

=
1

2

d∑
i,j=1

aij(kg)XiXjf(kg) +
d∑
i=1

bi(kg)Xif(kg)− c(kg)f(kg)

+

∫
G∗

[
f(kgτ)− f(kg)−

d∑
i=1

xi(τ)Xif(kg)

]
µ(kg, dτ)

=
1

2

d∑
i,j=1

aij(kg)XiXjf(g) +
d∑
i=1

bi(kg)Xif(g)− c(kg)f(g)

+

∫
G∗

[
f(gτ)− f(g)−

d∑
i=1

xi(τ)Xif(g)

]
µ(kg, dτ) (7.12)

By uniqueness of the coefficient functions, we have aij(kg) = aij(g), bi(kg) = bi(g),

c(kg) = c(g), for all g ∈ G, k ∈ K, i, j = 1, . . . , d and uniqueness of the Lévy kernel

gives

µ(kg,B) = µ(g,B), for all k ∈ K, g ∈ G,B ∈ B(G).

Conversely, if A is linear operator on C∞c (K\G) of the form (6.13) such that the

coefficient functions and the Lévy kernel satisfy the above conditions, then from the

calculations in (7.12) it is clear that Af(kg) = Af(g) for all f ∈ C∞c (K\G), g ∈ G
and k ∈ K.
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Theorem 7.2.3. A : C∞c (G/K) → Fun(G/K) is a linear operator satisfying the

positive maximum principle if and only if for all g ∈ G there exist

- a unique real symmetric, non-negative definite matrix (aij(g)), such that for all

k ∈ K,

(aij(g)) = [Ad(k)]T (aij(gk))[Ad(k)]

- a unique vector b(g) ∈ Rd such that for all k ∈ K,

b(g) = [Ad(k)]T b(gk)

- a unique c(g) ≥ 0 such that c(gk) = c(g), for all k ∈ K,

- a unique Lévy kernel µ such that µ(gk,A) = µ(g, kAk′), for all A ∈ B(G) and

k, k′ ∈ K.

such that A is of the form (6.13).

Proof. The operator A satisfies the PMP therefore it is of the form (6.13). First recall

that after equation (7.1) we established that for all i > n and f ∈ C∞c (G/K), we have

Xif(g) = 0. Thus, by the calculations in (7.8) and (7.9) and a change of variable, we

have for all k ∈ K, g ∈ G and f ∈ C∞c (G/K),

Af(g) =RkAf(g) = Af(gk)

=
1

2

d∑
i,j=1

aij(gk)XiXjf(gk) +
d∑
i=1

bi(gk)Xif(gk)− c(gk)f(gk)

+

∫
G∗

[
f(gkτ)− f(gk)−

d∑
i=1

xi(τ)Xif(gk)

]
µ(gk, dτ)

=
1

2

n∑
i,j=1

aij(gk)[Ad(k)Xi][Ad(k)Xj]f(g) +
n∑
i=1

bi(gk)[Ad(k)Xi]f(g)− c(gk)f(g)

+

∫
G∗

[
f(gτ)− f(g)−

n∑
i=1

xi(k
−1τ)[Ad(k)Xi]f(g)

]
µ(gk, k−1dτ) (7.13)

First note that by (7.5), we have

n∑
i=1

xi(k
−1τ)[Ad(k)Xi] =

n∑
i=1

xi(τ)Xi
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Then using the decomposition (7.11), we get for all f ∈ C∞c (G/K),

Af(g) =
1

2

n∑
p,q=1

n∑
i,j=1

aij(gk)[Ad(k)]pi[Ad(k)]qjXpXqf(g)

+
n∑
p=1

n∑
i=1

bi(gk)[Ad(k)]piXpf(g)− c(g)f(g)

+

∫
G∗

[
f(gτ)− f(g)−

n∑
i=1

xi(τ)Xif(g)

]
µ(gk, k−1dτ).

By uniqueness of the Lévy kernel, for all g ∈ G, k ∈ K and B ∈ B(G)

µ(g,B) = µ(gk, k−1B). (7.14)

Furthermore, since we are considering K-right-invariant functions, for all k ∈ K the

integral part is also equal to∫
G∗

[
f(gτ)− f(g)−

n∑
i=1

xi(τ)Xif(g)
]
µ(g, dτ)

=

∫
G∗

[
f(gτk)− f(g)−

n∑
i=1

xi(τ)Xif(g)

]
µ(g, dτ)

=

∫
G∗

[
f(gτ)− f(g)−

n∑
i=1

xi(τk
−1)Xif(g)

]
µ(g, dτk−1)

=

∫
G∗

[
f(gτ)− f(g)−

n∑
i=1

xi(τ)Xif(g)

]
µ(g, dτk−1)

The last line follows from (7.4). Thus, from uniqueness of the Lévy kernel we have

for all k ∈ K
µ(g,Bk) = µ(g,B). (7.15)

Combining (7.14) and (7.15) we get for all k, k′ ∈ K,

µ(g,B) = µ(gk, k−1Bk′)
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By uniquenes of the coefficient functions, for all g ∈ G and k ∈ K

c(g) = c(gk)

apq(g) =
∑
i,j=1

aij(gk)[Ad(k)]ip[Ad(k)]jq

bp(g) =
n∑
i=1

bi(gk)[Ad(k)]ip

That is, (aij(g)) = [Ad(k)]T (aij(gk))[Ad(k)] and b(g) = [Ad(k)]T b(gk).

Conversely if A is a linear operator on C∞c (G/K) of the form (6.13) such that

the coefficient functions and the Lévy kernel satisfy the above conditions, from the

calculations in (7.13) is is clear that Af(gk) = Af(g) for all f ∈ C∞c (G/K), g ∈ G
and k ∈ K.

Corollary 7.2.4. A linear operator A : C∞c (K\G/K) → Fun(K\G/K) satisfies the

positive maximum principle if and only if for all g ∈ G there exist

- a unique real symmetric matrix (aij(g)) such that for all k, k′ ∈ K

(aij(g)) = [Ad(k′)]T (aij(kgk
′))[Ad(k′)] (7.16)

- a unique vector b(g) ∈ Rn such that for all k, k′ ∈ K

b(g) = [Ad(k′)]T b(kgk′) (7.17)

- a unique c(g) ≥ 0 such that for all k, k′ ∈ K, c(g) = c(kgk′),

- a unique Lévy kernel µ such that for all k, k′, k′′ ∈ K and B ∈ B(G)

µ(g,B) = µ(kgk′, (k′)−1Bk′′) (7.18)

such that A is of the form (6.13).

Proof. This follows from combining Theorem 7.2.2 and Theorem 7.2.3.

7.3 Feller semigroups and generators on symmet-

ric spaces

Definition. A spherical Feller C0-semigroup on C0(K\G/K) is a Feller C0-semigroup

that satisfies

(SF1) RkTtf = Ttf , for all k ∈ K, t ≥ 0, f ∈ C0(K\G/K)
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(SF2) LkTtf = Ttf , for all k ∈ K, t ≥ 0, f ∈ C0(K\G/K).

The Feller process associated to a spherical Feller semigroup is called a spherical Feller

process.

Proposition 7.3.1. A Feller process Z is a spherical Feller process if and only if Z

has transition probabilities (pt)t≥0 that satisfy

pt(σk,B) = pt(σ,B), (7.19)

pt(kσ,B) = pt(σ,B), (7.20)

for all t ≥ 0, B ∈ B(G), σ ∈ G, k ∈ K.

Proof. Let us start with necessity. For all k ∈ K, t ≥ 0, σ ∈ G, f ∈ C0(K\G/K), we

have

RkTtf(σ) = Ttf(σk) =

∫
G

f(τ)pt(σk, dτ),

Suppose we have (SF1), then by the Riesz representation theorem

pt(σk,B) = pt(σ,B), for all σ ∈ G, k ∈ K,B ∈ B(G), t ≥ 0. (7.21)

Similarly, supposing (SF2) implies

pt(kσ,B) = pt(σ,B), for all σ ∈ G, k ∈ K,B ∈ B(G), t ≥ 0. (7.22)

For sufficiency, we have for all k ∈ K, σ ∈ G, t ≥ 0

RkTtf(σ) =

∫
G

f(τ)pt(σk, dτ) =

∫
G

f(τ)pt(σ, dτ) = Ttf(σ), for f ∈ C0(G/K)

LkTtf(σ) =

∫
G

f(τ)pt(kσ, dτ) =

∫
G

f(τ)pt(σ, dτ) = Ttf(kσ) for f ∈ C0(K\G)

Lemma 7.3.2. Let L be the generator of a spherical Feller process, then it satisfies

RkLf = Lf , for all k ∈ K, t ≥ 0 and f ∈ DL ⊂ C0(K\G/K)

LkLf = Lf , for all k ∈ K, t ≥ 0, and f ∈ DL ⊂ C0(K\G/K).

Proof. First note that for all k ∈ K, Rk is an isometry, so by the definition of spherical
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Feller semigroups, we have for all f ∈ DL

lim
t→0

∥∥∥∥Ttf − ft
− Lf

∥∥∥∥
∞

= lim
t→0

∥∥∥∥Rk

(
Ttf − f

t
− Lf

)∥∥∥∥
∞

= lim
t→0

∥∥∥∥TtRkf − f
t

−RkLf
∥∥∥∥
∞

= lim
t→0

∥∥∥∥Ttf − ft
−RkLf

∥∥∥∥
∞

It follows that RkLf = Lf . The left K-invariance is proved similarly.

Corollary 7.3.3. Let L be the generator of a spherical Feller process with

C∞c (K\G/K) ⊆ DL, then it has the form (6.13) with conditions as in Theorem 7.2.4.

Proof. Following Lemma 7.3.2 the generator L is K-bi-invariant so by Lemma 7.2.1,

we have L : C∞c (K\G/K)→ Fun(K\G/K). Furthermore, by Lemma 6.2.1, since L is

the generator of a Feller process, it satisfies the PMP therefore it has the form (6.13).

Then we can directly apply Theorem 7.2.4 to get the conditions on the coefficients

and the Lévy kernel.

Definition. A family of probability measures (µt)t≥0 on (G,B(G)) is a generalized

convolution semigroup of measures on G if

- µs+t = µt ∗ µs, for all t, s ∈ R,

- µt → µ0 as t→ 0.

Note that the convolution semigroup defined in 6.2 is a generalized convolution semi-

group with µ0 = δe. We will call a generalized convolution semigroup K-left-invariant,

K-right-invariant and K-bi-invariant if for all t ≥ 0, the measure µt is respectively

K-left-invariant, K-right-invariant and K-bi-invariant.

Note that it was proved in [46], Proposition 2, that a convolution semigroup is K-

left-invariant if and only if it is K-right-invariant if and only if it is K-bi-invariant.

Lemma 7.3.4. The Hunt semigroup (Tt)t≥0 of a K-bi-invariant generalized convolu-

tion semigroup (µt)t≥0 is a spherical Feller semigroup.

Proof. From (6.23), it follows that given any convolution semigroup of measures

(µt)t≥0, the associated semigroup (Tt)t≥0 is left-invariant, that is LgTtf = TtLgf for

all g ∈ G, t ≥ 0, f ∈ C0(G). So in particular this implies that (Tt)t≥0 satisfies (SF2).

To prove (SF1), for all t ≥ 0, B ∈ B(G), k ∈ K and σ ∈ G we have

RkTtf(g) =

∫
G

f(gkτ)µt(dτ) =

∫
G

f(gτ)µt(k
−1dτ) =

∫
G

f(gτ)µt(dτ) = Ttf(g).
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Let us recall the following useful result from the literature.

Lemma 7.3.5. Let (µt)t≥0 be a convolution semigroup on G, then µ0 is a Haar

measure on a compact subgroup H of G. If (µt)t≥0 is K-right invariant, then K ⊂ H.

Proof. For the first part of statement see [26], Theorem 1.2.10. The second part can

be found in [46], Proposition 1, p.711.

We assume from now on that K = H, for simplicity.

Theorem 7.3.6. The following are equivalent

i) (µt)t≥0 is a convolution semigroup of measures such that µt is K-bi-invariant

for all t ≥ 0,

ii) The Hunt semigroup (Tt)t≥0 on C0(G/K) satisfies RkTtf = Ttf for all t ≥ 0,

k ∈ K and f ∈ C0(G/K),

iii) The generator A satisfies RkAf = Af for all k ∈ K and f ∈ DA.

Proof. i) implies ii), since for all g ∈ G, k ∈ K, f ∈ C0(G/K)

RkTtf(g) = Ttf(gk) =

∫
G

f(gkh)µt(dh)

=

∫
G

f(gh)µt(k
−1dh) =

∫
G

f(gh)µt(dh)

= Ttf(g). (7.23)

For ii) implies i), suppose ii) is satisfied, that is
∫
G
f(gh)µt(kdh) =

∫
G
f(gh)µt(dh)

for all t ≥ 0, f ∈ C0(G/K), k ∈ K and g ∈ G. In particular, for g = e, we have for

all f ∈ C0(G/K) and k ∈ K,∫
G

f(h)µt(kdh) =

∫
G

f(h)µt(dh)

So by the Riesz representation theorem we have µt(kB) = µt(B) for all t ≥ 0,

k ∈ K and B ∈ B(G).

The result follows, since the K-right invariance of the convolution semigroup is

equivalent with its K-bi-invariance.

ii) implies iii) is by the same argument as in Lemma 7.3.2

Remark 7.3.7. By Lemma 7.3.2, the generator A of a spherical Hunt semigroup

commutes with G-left and K-right translation on C∞c (G). In particular A maps

C∞c (K\G/K) to Fun(K\G/K).
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The characterisation of the generator of a K-bi-invariant convolution semigroup

can be found in the work of [48] and [47] p.139. Here, we will proceed as previously

using Courrège’s theorem and a special case of Theorem 7.2.3.

Theorem 7.3.8. Let A : C∞c (G/K) → C0(G/K) be the Hunt generator of a K-bi-

invariant convolution semigroup of measures, then for all f ∈ C∞c (G/K) we have

Af(g) =
1

2

n∑
i,j=1

aijXiXjf(g) +
n∑
i=1

biXif(g)

+

∫
G∗

[
f(gτ)− f(g)−

n∑
i=1

xi(τ)Xif(g)

]
µ(dτ), (7.24)

where (aij) is an Ad(K)-invariant, non-negative definite, symmetric matrix,

b = (b1, . . . , bn) ∈ Rn is a vector such that
n∑
i=1

biXi is an Ad(K)-invariant vector field

in p and µ is a K-bi-invariant Lévy measure on (G,B(G)).

Proof. By Hunt’s Theorem 6.2.4 we have the form of the operator A. For the ad-

ditional conditions on the coefficients, we use the result of Theorem 7.2.4. We have

aij = aij(e) and bi = bi(e) for all i, j = 1, . . . , n from Theorem 7.2.4, so for all k ∈ K

aij = [Ad(k)]T (aij)[Ad(k)],

and
n∑
i=1

biXi =
n∑
i=1

n∑
p=1

bp[Ad(k)]ipXi =
n∑
p=1

bpAd(k)Xp (7.25)

So the vector
n∑
i=1

biXi ∈ p is Ad(K)-invariant. Furthermore, the Lévy measure is

µ(·) = µ(e, ·) on (G,B(G)).

Let us look separately at the the second order differential part of A. The following

results are due to Liao [47].

Proposition 7.3.9. Let (aij)n×n and X0 ∈ p be Ad(K)-invariant, then

P :=
n∑

i,j=1

aijXiXj +X0 is a differential operator in D(G/K). Conversely, any second

order linear differential operator T in D(G/K) with T1 = 0 may be written in the

form P for a unique pair of Ad(K)-invariant matrix (aij) and Ad(K)-invariant vector

X0 ∈ p.
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Proof. See [47], Proposition 3.3, p.77.

Theorem 7.3.10. Suppose that the representation Ad : K → GL(p) acts irreducibly

on p and dim(G/K) > 1. Then any second order differential operator in D(G/K)

with T1 = 0 is of the form

T = a
n∑
i=1

X2
i =: a∆X

where ∆X is the Laplace-Beltrami operator.

Proof. This result can be found in [47], Proposition 5.5 p.140. Here we will provide

a simpler proof using Schur’s Lemma. Following Proposition 7.3.9, any second order

differential operator T ∈ D(G/K) with T1 = 0 is given by

T =
1

2

n∑
i,j=1

aijXiXj +X0, (7.26)

where (aij) is an Ad(K)-invariant symmetric matrix and X0 ∈ p is also Ad(K)-

invariant. By Ad(K)-invariance of X0, the space spanned by X0 is invariant under

Ad(k) for all k ∈ K, but since Ad(·) is irreducible and dim(G/K) > 1 this space has

to be {0}.
The matrix representation [Ad(k)] = ([Ad(k)]ij) restricted to p is in O(n). Let

U : p→ Rn be the unitary isomorphism that maps {X1, X2, . . . , Xn} to {e1, e2, · · · , en}
which is the natural orthonormal basis of Rn, so it preserves the inner product:

〈UX,UY 〉 = 〈X, Y 〉 for all X, Y ∈ p.

Then for all k ∈ K, the matrix representation [Ad(k)] of Ad(k) is equal to

[Ad(k)] = UAd(k)UT ,

and we have by the Ad(k)-invariance of the inner product 〈·, ·〉p, for all x, y ∈ Rn

〈[Ad(k)]x, [Ad(k)]y〉Rn = 〈UAd(k)U−1x, UAd(k)U−1y〉Rn
= 〈Ad(k)U−1x,Ad(k)U−1y〉p
= 〈U−1x, U−1y〉p
= 〈x, y〉Rn

We next show that [Ad(K)] acts irreducibly on Rn. Let W be an [Ad(K)]-invariant

subspace of Rn, then for all k ∈ K and x ∈ W , we have [Ad(k)].x ∈ W . That is

UAd(k)U−1x ∈ W , i.e. Ad(k)U−1x ∈ U−1W where U−1W is a closed subspace of

p. But Ad(K) is irreducible on p and dim(G/K) > 1 so U−1W = {0} and by the

unitarity of U we get {W} = {0}. By the Ad(K)-invariance of {aij}, we have for all
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k ∈ K
[Ad(k)]T{aij}[Ad(k)] = {aij}

That is,

[Ad(k)]{aij} = {aij}[Ad(k)]

So by the famous Schur’s lemma, see [39] Ch.V, Prop 5.1, there exists a ∈ R, such

that {aij} = aIn×n. Thus, any second order differential operator T ∈ D(G/K) can

be simplified from the general form (7.26) to

T =
1

2

n∑
i,j=1

aδijXiXj =
1

2

n∑
i=1

aXiXi =
1

2
a∆X .

Remark 7.3.11. Note that in Proposition 7.3.9 and in Theorem 7.3.10, when the

matrix (aij) is a non-negative definite matrix, then a ≥ 0. Furthermore, when (aij)(·)
is continuous so is a(·) and when (aij)(·) is K-bi-invariant so is a(·).

Corollary 7.3.12. Suppose that the representation Ad : K → GL(p) acts irreducibly

on p and dim(G/K) > 1. Let A : C∞c (K\G/K)→ C0(K\G/K) be the Hunt generator

of a K-bi-invariant convolution semigroup of measures, then for all f ∈ C∞c (K\G/K)

we have

Af(g) =
1

2
a∆Xf(g) +

∫
G∗

[
f(gτ)− f(g)−

n∑
i=1

xi(τ)Xif(g)

]
µ(dτ), (7.27)

where a ≥ 0 is a unique constant and µ is a unique Lévy measure such that for all

k, k′ ∈ K and B ∈ B(G),

µ(kBk′) = µ(B).

Proof. A is the Hunt generator of a K-bi-invariant convolution semigroup, so by

Theorem 7.3.8, A is of the form (7.24). By Theorem 7.3.10, we have seen that the

second order differential operator part simplifies to 1
2
a∆Xf(g) for a unique constant

a ≥ 0, so A is of the form (7.27). From Corollary 7.3.12, we also know that the Lévy

measure satisfies

µ(kB) = µ(B), for all k ∈ K and B ∈ B(G).

Furthermore, from (7.4) we have xi(gk) = xi(g) for all k ∈ K and i = 1, . . . , n. So for
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all f ∈ C∞c (G/K) by a change of variable, we have for all k ∈ K

Af(g) =
1

2
a∆Xf(g) +

∫
G∗

[
f(gτk)− f(g)−

n∑
i=1

xi(τ)Xif(g)

]
µ(dτ),

=
1

2
a∆Xf(g) +

∫
G∗

[
f(gτ)− f(g)−

n∑
i=1

xi(τk
−1)Xif(g)

]
µ(dτk−1)

=
1

2
a∆Xf(g) +

∫
G∗

[
f(gτ)− f(g)−

n∑
i=1

xi(τ)Xif(g)

]
µ(dτk−1)

By uniqueness of the Lévy measure µ, this implies that for all k ∈ K and B ∈ B(G)

µ(Bk) = µ(B).

7.4 The positive maximum principle and pseudo-

differential operators on symmetric spaces

From now on we will assume that, G is compact and K is a closed subgroup such

that (G,K) is a Gelfand pair. We also assume that G/K is irreducible, that is the

representation Ad : K → GL(p) acts irreducibly on p and dim(G/K) > 1.

Definition. A linear operator A : C∞(K\G/K)→ C(K\G/K) is called a spherical

pseudo-differential operator if there exits a map σ̃A : G×ĜK → R, called the spherical

symbol of A such that for all f ∈ C∞(K\G/K), g ∈ G and π ∈ ĜK

Aφπ(g) = σ̃A(g, π)φπ(g)

Af(g) =
∑
π∈ĜK

dπ σ̃A(g, π)f̂S(φπ)φπ(g)

Let A : C∞(K\G/K)→ C0(K\G/K) be a linear operator satisfying the positive

maximum principle, then A is of the form (6.13) with conditions from Corollary 7.2.4.

We want to prove that such operator A is a spherical pseudo-differential operator and

calculate its spherical symbol. For this we need some additional conditions.

(A1) sup
g∈G

max
i=1,...,d

∫
G∗
|xi(τ)|µ(g, dτ) <∞.

(A2) for all i, j = 1, . . . , n and any B ∈ B(G), the functions aij(·), bi(·) and µ(·, B)

are K-bi-invariant.
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From (A1) it follows that for all f ∈ C∞c (K\G/K), i = 1, . . . , n and g ∈ G, we

have ∣∣∣∣∫
G∗
xi(τ)Xif(g)µ(g, τ)

∣∣∣∣ <∞.
Condition (A2) and conditions (7.17), (7.16), (7.18) from Corollary 7.2.4 implies the

following set of properties (K-Bi):

- for all g ∈ G, b(g) = [Ad(k)]T b(g). Thus, by (7.25) the vector
n∑
i=1

bi(g)Xi ∈ p is

Ad(K)-invariant;

- for all g ∈ G the matrix (aij(g)) is Ad(K)-invariant;

- for all g ∈ G the Lévy measure µ(g, ·) is K-bi-invariant, because µ(g, kBk′) =

µ(gk−1, Bk′) = µ(g,B), for all B ∈ B(G) and k, k′ ∈ K.

We will also use the fact that from (3.1)

|φπ(τ)− 1| ≤ ‖π(τ)− Iπ‖HS, for all π ∈ ĜK and τ ∈ G. (7.28)

Let A : C∞(K\G/K) → C0(K\G/K) be a linear operator satisfying the PMP.

By Corollary 7.2.4 and condition (A1), the operator A can be written for all f ∈
C∞(K\G/K), g ∈ G as

Af(g) =
1

2

n∑
i,j=1

aij(g)XiXjf(g) +
n∑
i=1

bi(g)Xif(g)−
n∑
i=1

(∫
G∗
xi(τ)µ(g, dτ)

)
Xif(g)

− c(g)f(g) +

∫
G∗

(f(gτ)− f(g))µ(g, dτ) (7.29)

Remark 7.4.1. Condition (A1) can be dropped if we write the integral part as a

principal value.

Remark 7.4.2. When A is the generator of a convolution semigroup, we know that A

is left-invariant, therefore it is completely determined by its action at e. Furthermore,

in Gangolli’s Lévy-Khintchine formula, [22], there is no first order differential term in

the integral, see [47] Theorem 5.3, p.139.

Note that for all π ∈ ĜK , by K-bi-invariance of φπ and Lemma 1.3.6 we have for

all k ∈ K and g ∈ G

Xφπ(g) = X(φπ ◦ ck)(g) = ([Ad(k)X]φπ) (kgk−1).

Using this and the K-bi-invariance of the Lévy kernel with respect to the first
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variable, we have for all g ∈ G, k ∈ K i = 1, . . . , n and π ∈ ĜK∫
G∗
xi(τ)Xiφπ(g) µ(g, dτ) =

∫
G∗
xi(τ)Xiφπ(g) µ(g, dτ)

=

∫
G∗
xi(τ)[Ad(k)Xi]φπ(kgk−1) µ(g, dτ)

=

∫
G∗
xi(τ)[Ad(k)Xi]φπ(g) µ(kgk−1, dτ)

=

∫
G∗
xi(τ)[Ad(k)Xi]φπ(g) µ(g, dτ)

=

[∫
K

∫
G∗
xi(τ)Ad(k)µ(g, dτ) dk

]
Xiφπ(g)

All the above integrals are well-defined since we have the assumption (A1). The

vector field X0 =

[∫
K

∫
G∗
xi(τ)Ad(k)µ(g, dτ) dk

]
Xi ∈ p is Ad(K)-invariant, because

the normalized Haar measure on K is unimodular. The space spanned by X0 is

invariant under Ad(k) for all k ∈ K, but since Ad(·) is irreducible and dim(G/K) > 1

this space has to be {0}. Therefore,∫
G∗
xi(τ)Xiφπ(g) µ(g, dτ) = 0 for all i = 1 . . . , n, π ∈ ĜK , g ∈ G (7.30)

More generally, given the irreducibility of G/K, there is no non-zero Ad(K)-invariant

vector in p.

To investigate an interesting class of pseudo-differential operators in this context,

we simply generalize the generator of a convolution semigroup of measures on a ir-

reducible symmetric space, as studied by Gangolli [22], Applebaum [1] and Liao and

Wang [48]. From now on we consider operators of the form

Af(g) = a(g)∆Xf(g) +

∫
G

(f(gτ)− f(g))µ(g, dτ), for all f ∈ C∞(K\G/K).

We assume the first moment condition (A1); and that the matrix a and the Lévy

measure µ satisfy the properties (K-Bi).

When applying A to the spherical function φπ, π ∈ ĜK , by (7.29) and (7.30) we

get for all g ∈ G,

Aφπ(g) = a(g)∆Xφπ(g)− c(g)φπ(g) +

∫
G∗

(φπ(gτ)− φπ(g))µ(g, dτ). (7.31)

We know that for all π ∈ ĜK , φπ is an eigenvector of ∆X , so there exists a constant
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βπ such that ∆Xφπ = βπφπ. Indeed, from Corollary 1.3.10 we know that it is exactly

βπ = −κπ, where {κπ, π ∈ Ĝ} is the Casimir spectrum.

We will now show that for all π ∈ ĜK , the spherical functions φπ is an eigenvector

for the operator A.

Theorem 7.4.3. For all π ∈ ĜK, g ∈ G

Aφπ(g) = J̃A(g, π)φπ(g),

where

J̃A(g, π) = a(g)βπ − c(g) +

∫
G∗

(φπ(τ)− 1)µ(g, dτ).

Proof. First, let us prove that the integral

∫
K

∫
G∗

(φπ(gkτ)− φπ(g)) µ(g, dτ)dk is

well-defined and that we can interchange the integral signs. For this we will split the

integral into

∫
K

∫
U∗

+

∫
K

∫
UC

. For the second integral we are going to use the fact

that µ(g, ·) is a Lévy measure for all g ∈ G and by the inequality (7.28) we have∣∣∣∣∫
K

∫
UC

(φπ(gkτ)− φπ(g)) µ(g, dτ)dk

∣∣∣∣ ≤ ∫
K

∫
U∗
‖π(gkτ)− π(g)‖HS µ(g, dτ)dk

≤ Cµ(g, UC) <∞,

for some constant C ≥ 0. For the first integral we will use the characterization of

spherical functions from Theorem 2.3.3, Taylor’s expansion and the Cauchy-Schwarz

inequality to obtain∣∣∣ ∫
U∗

∫
K

(φπ(gkτ)− φπ(g)) µ(g, dτ)dk
∣∣∣

≤
∫
U∗
|φπ(g)||φπ(τ)− 1| µ(g, dτ)

≤
∫
U∗
|〈(π(τ)− Iπ)uπ, uπ〉| µ(g, dτ)

=

∫
U∗

d∑
i=1

|xi(τ)|

∣∣∣∣∣
〈
dπ(Xi) exp

(
θ

d∑
i=1

xi(τ)dπ(Xi)

)
uπ, uπ

〉∣∣∣∣∣µ(g, dτ)

≤
∫
U∗

d∑
i=1

|xi(τ)|‖dπ(Xi)uπ‖Vπµ(g, dτ)

≤ max
i=1,...,d

‖dπ(Xi)uπ‖Vπ
∫
U∗

d∑
i=1

|xi(τ)|µ(g, dτ) <∞,
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where θ ∈ [0, 1]. So by Fubini’s theorem we have∫
K

∫
G∗

(φπ(gkτ)− φπ(g)) µ(g, dτ)dk =

∫
G∗

∫
K

(φπ(gkτ)− φπ(g)) dk µ(g, dτ)

Using the facts that the Lévy kernel is K-bi-invariant with respect to the second

variable, the Haar measure on K is normalized and from the characterization of the

spherical functions in Theorem 2.3.3, we can write (7.31) the following way, for all

π ∈ ĜK , g ∈ G

Aφπ(g) = a(g)βπφπ(g)− c(g)φπ(g) +

∫
K

∫
G∗

(φπ(gτ)− φπ(g)) µ(g, k−1dτ) dk

= a(g)βπφπ(g)− c(g)φπ(g) +

∫
G∗

∫
K

(φπ(gkτ)− φπ(g)) dk µ(g, dτ)

= a(g)βπφπ(g)− c(g)φπ(g) + φπ(g)

∫
G∗

(φπ(τ)− 1) µ(g, dτ).

Thus, we have for all π ∈ ĜK and g ∈ G

Aφπ(g) =

(
a(g)βπ − c(g) +

∫
G∗

(φπ(τ)− 1)µ(g, dτ)

)
φπ(g) (7.32)

This means that for all π ∈ ĜK , φπ is an eigenvector for A and we have

Aφπ(g) = J̃A(g, π)φπ(g) for all g ∈ G, (7.33)

where

J̃A(g, π) = a(g)βπ − c(g) +

∫
G∗

(φπ(τ)− 1)µ(g, dτ).

Note that the symbol J̃A is K-bi-invariant with respect to its first variable. We

will equivalently write J̃A(g, λ) = J̃A(g, πλ) for all g ∈ G and λ ∈ DS.

Remark 7.4.4. In the compact case, the class of operators as given by (7.32) is

more general than that obtained for K-bi-invariant convolution semigroups of mea-

sures characterized by Gangolli [22] and more recently by Liao and Wang [48], if the

condition (A1) is also imposed in that context. We conjecture that in our general

case, the first moment condition (A1) can be dropped, however at the moment we

don’t know how to do this.

Lemma 7.4.5. There is a constant C ≥ 0 such that for all λ ∈ DS

sup
g∈G
|J̃A(g, λ)| ≤ C(1 + |λ|

m+2
2 ).
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Proof. We are going to base the proof on that of Lemma 6.3.1 on Lie groups. Similarly

as before, C will denote a generic constant which may vary from line to line. First,

let us note that from (3.1) for all λ ∈ DS and g ∈ G∣∣∣∣∫
U∗

(φλ(τ)− 1)µ(g, dτ)

∣∣∣∣ =

∣∣∣∣〈∫
U∗

(πλ(τ)− πλ(e)) µ(g, dτ)u, u

〉∣∣∣∣
≤
∥∥∥∥∫

U∗
(πλ(τ)− Iπλ)µ(g, dτ)

∥∥∥∥
HS

(7.34)

Then we will use (6.30) and Taylor’s expansion, so for all λ ∈ DS and g ∈ G∥∥∥∥∥
∫
U∗

(πλ(τ)− Iπλ) µ(g, dτ)

∥∥∥∥∥
HS

≤
∫
U∗
‖πλ(τ)− Iπλ‖HS µ(g, dτ)

=

∫
U∗

∥∥∥∥∥exp

(
d∑
i=1

xi(τ)dπλ(Xi)

)
− Iπλ

∥∥∥∥∥
HS

µ(g, dτ)

≤
∫
U∗

d∑
i=1

|xi(τ)|‖dπλ(Xj)‖HS µ(g, dτ)

≤C max{|X1|, . . . , |Xd|}

(
d∑
i=1

∫
U∗
|xi(τ)|µ(g, dτ)

)
|λ|

m+2
2 (7.35)

Combining (7.35) and (7.34) and taking the supremum over G, we get

sup
g∈G

∣∣∣∣∫
U∗

(φλ(τ)− 1)µ(g, dτ)

∣∣∣∣ ≤ sup
g∈G

∥∥∥∥∫
U∗

(πλ(τ)− Iπλ) µ(g, dτ)

∥∥∥∥
HS

≤ C|λ|
m+2

2 (7.36)

For the rest of the integral we follow the steps from the proof of Lemma 6.3.1, we get

sup
g∈G

∣∣∣∣∫
UC

(φλ(τ)− 1)µ(g, dτ)

∣∣∣∣ ≤ C|λ|
m
2 (7.37)

Combining the two estimates (7.36) and (7.37), then using Corollary 1.3.12 for βπ
and given that a and c are bounded on G we get

sup
g∈G
|J̃A(g, φπ)| ≤ C sup

g∈G
a(g)(1 + |λ|2) + sup

g∈G
c(g) + C(|λ|

m+2
2 + |λ|

m
2 )

So the result follows.
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Lemma 7.4.6. For all f ∈ C∞(K\G/K), the series∑
λ∈DS

dλJ̃A(g, λ)f̂S(λ)φλ(g) (7.38)

converges absolutely and uniformly for all g ∈ G.

Proof. Recall from Theorem 4.3.10 that f̂S ∈ S(DS) for all f ∈ C∞(K\G/K) so

lim
|λ|→∞,λ∈DS

|λ|p |f̂S(λ)| = 0, for all p ∈ N.

We will now follow the proof of Lemma 6.3.2, there exists λ0 ∈ DS/{0} for all p ∈ N

sup
g∈G

∑
|λ|>|λ0|

dλ

∣∣∣J̃A(g, λ)f̂S(λ)φλ(g)
∣∣∣ ≤ C

∑
|λ|>|λ0|

|λ|m(1 + |λ|m+2
2 )

|λ|p
<∞

Choose p > 3m+2
2

+ r, and the result follows from the convergence of the Sugiura Zeta

function in Theorem 4.1.3.

Theorem 7.4.7. Let A : C∞(K\G/K) → C0(K\G/K) be a linear operator satisfy-

ing the positive maximum principle, (A1) and (A2). Then A is a spherical pseudo

differential operator with symbol J̃A.

Proof. From (7.33) it follows that when f ∈ EK(G), we have

Af(g) =
∑
λ∈DS

dλJ̃A(g, λ)f̂S(λ)φλ(g), for all g ∈ G (7.39)

Now, take any f ∈ C∞(K\G/K), then by Theorem 3.2.4 the spherical Fourier series∑
λ∈DS

dλf̂
S(φλ)φλ(g) converges absolutely and uniformly to f(g) for all g ∈ G. Then

the partial sums fN :=
N∑
i=1

dλi f̂
S(λi)φλi for all N ∈ N, are in EK(G) and the sequence

(fN)N∈N converges uniformly to f . Following similar calculations as in Theorem 6.3.3,

we have for all N ∈ N, g ∈ G,

AfN(g) =
N∑
i=1

dλi J̃A(g, λi)f̂
S(λi)φλi(g).

By Lemma 7.4.6, the sequence of partial sums AfN converges uniformly. Furthermore,
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A is closed, therefore

Af(g) = lim
N→∞

AfN(g) =
∑
λ∈DS

dλJ̃A(g, λ)f̂S(λ)φλ(g),

and the result follows.
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[15] L. Ehrenpreis. Some properties of distributions on Lie groups. Pacific Journal

of Mathematics, 6(4):591–605, 1956.

[16] S. N. Ethier and T. G. Kurtz. Markov Processes, Characterisation and Conver-

gence. Wiley, 1986.

[17] J. Faraut. Analysis on Lie Groups: An Introduction. Cambridge studies in

Advanced Mathematics, first edition, 2008.

[18] V. Fischer and M. Ruzhansky. Quantization on Nilpotent Lie groups. Birkhäuser,
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