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Abstract

This thesis examines the problem of adaptive error detection in swarm robotics.
As part of the challenges for the transition of current swarm robotics research
into the real world implementation, the ability to differentiate between changes
to the behaviour due to faulty components and environmental is important. This
is a requirement to ensure that robot swarms deployed are fault-tolerant to in-
ternal faults as well as external perturbations. Previous work has investigated
this issue from a perspective of a single robot but has largely ignored the aspect
of adaptivity to environmental changes. By contrast, this work approaches the
problem from a perspective of a collective and explicitly addresses the issue of
adaptive detection. A collective self-detection scheme called the CoDe scheme is
proposed and developed. This scheme is demonstrated to work in detecting er-
rors in dynamic environments with the use of various classifiers. This approach
has potential to be applied for other domains that share similar characteristics to
swarm robotics in which adaptivity to dynamic environments is crucial. Moti-
vated by the potential resource limitations in swarm robotic systems, this thesis
also investigates other aspects related to minimising resource usage such as re-

ducing the number of false positives and communication overhead.
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CHAPTER
ONE

Introduction

This chapter provides an overview of the research reported in this thesis. Sec-
tion 1.1 presents the background of the related topics which motivated this work.
Then in Section 1.2 the research question is formally stated. To investigate the
research question, the research objectives are presented in Section 1.3. This is

followed by an overview of the contents of this thesis in Section 1.4.

1.1 Background and Motivation

The need to adapt to changing environments has always been associated with
the need for fault tolerance. In many systems, e.g. the web, mobile ad-hoc net-
work, swarm robotics, the operational environment is often dynamic and unpre-
dictable. Thus, the operation of these systems is often also affected by the envi-
ronment in which they are deployed. In operation, these systems may experience
undesirable behaviours, or more precisely anomalies, for a variety of reasons.
These can be caused by faults in the system or be due to interactions with the
environment [1, 2]. Therefore, the ability to tolerate failures as well as the inter-
ference from the environment is a sought-after feature in most systems. In swarm
robotics, a robot swarm has always been characterised as having built-in fault tol-
erance capabilities due to the redundancy of robots in the system [1, 3, 4]. How-
ever, work in Winfield and Nembrini [1] has demonstrated that there are cases
when redundancy alone is insufficient, in particular with partially failed robots
in the system. Therefore, there is a need to provide an additional level of fault
tolerance on top of those provided through redundancy. In addition, tolerance to
interference from the environment should also be considered.



1.1 Background and Motivation

1.1.1 Swarm Robotics and Fault Tolerance

Swarm robotics is a research field that has become increasingly popular for its
potential use in many real-world applications [5, 4, 6], and has benefited from
advances in engineering on miniature devices [4]. In general, a swarm robotic
system (SRS) consists of a collection of homogeneous robots which interact with
each other as well as with the environment to perform various tasks [3, 4]. A
robot swarm has the potential to be deployed for a variety of tasks such as en-
vironmental monitoring, space and deep-sea explorations, removing land-mines,
and search-and-rescue missions [3]. However, to date, most of the existing SRSs
have only been built and tested in ideal and fault-free settings [1, 4].

To translate these SRSs for real world applications is challenging and not as
straightforward as might be expect [1]. First, any system (even with a given and
reasonably well-understood operational environment) is likely to experience un-
desirable behaviour. These undesirable behaviours can be caused by a variety of
factor such as random errors, systematic errors or deliberate sabotage [1]. There-
fore, one of the immediate challenges is how to ensure that the SRSs can continue
to operate in the event of failures to some individuals within the swarm. Second,
the operational condition for SRSs is often dynamic and thus cannot be predicted.
Therefore, the SRSs not only have to be able to deal with the failure of individuals,

they also need to be able to cope with changing environmental conditions.

1.1.2 An Explicit Approach to Fault Tolerance

Typically, an SRS is implicitly fault-tolerant because of the redundancy of robots
in the swarm. However, there are exceptions. First, redundancy is irrelevant (as
it is not necessarily required) if a minimum amount of healthy agents for a partic-
ular task are still operational [2]. Second, it is assumed that the affected robots do
not interfere with or influence the behaviour of healthy robots. However, recent
research (e.g. [1, 7]) has demonstrated that failed robots can and will significantly
affect the completion of a task. In particular, a fault to the wheels while other
components are still operational causes physical anchoring of the robot swarm
in a swarm taxis scenario. Although this observation is specific for swarm taxis
(swarm motion toward a beacon), the likelihood for faulty robots interfering with
other robots in other tasks can also be high. In situations where faulty robots in-
terfering with the task, having redundant robots alone is insufficient and it is
beneficial to equip the SRS with other fault-tolerance measures. Explicit error
detection and recovery (EDR) is one such measure, and it is commonly used in

engineering fields [8].



1.1 Background and Motivation

There are generally three stages in an EDR: error detection, fault diagnosis
and recovery [8]. Error detection detects erroneous behaviour in the system. This
is essentially a two-class anomaly detection problem to determine whether the
system is currently in a normal state. Fault diagnosis identifies the cause of an
error including the nature and the exact location of the faults. When a fault has
been identified, recovery measures can then be carried out to prevent the fault
from reoccurring. The recovery measure can be as simple as shutting down the
failed agents. Error detection is a crucial first step in an EDR as the activation of
the other stages (fault diagnosis and recovery) is only initiated when an error is
detected.

In swarm robotics, error detection is a challenging task particularly when the
behaviour of the robots is also affected by changes in their environment. There
are various ways of detecting errors in a swarm robot. A model of how a robot
should behave can be built and the actual behaviour is then compared to the
predicted behaviour by the model (model-driven). Alternatively, data can be col-
lected during normal operation. On the basis of this data the presence of a fault
can be inferred (data-driven). The problems with model-driven error detection
is that the development of accurate models is often difficult, if not impossible,
because the environment is not static and generally unpredictable [9]. Due to the
interactions between robots and the environment, as well as other natural factors,
the state of the environment can change and this in turn can affect the behaviour
of the robots. For example, an SRS is involved in a foraging task: the state of a
robot may be determined by some task-related measures such as the quantity of
objects collected. If there is a fault to the wheels, the number of objects collected
over a fixed period by that robot will be fewer and likely to deviate significantly
from a fault-free condition. However, in this example, the quantity of objects that
can be collected is also dependent on the state of the arena such as the number of
objects in the arena, and the physical distribution of those objects, which are likely
to change as time progresses (time-varying). Therefore, data-driven approaches
are preferable.

Existing work on data-driven error detection in swarm robotics includes [10,
11,12, 13]. These studies approached the problem from the perspective of a single
robot [2]. In other words, the classifiers used to detect errors in these studies only
operated on data from a single robot. In addition, the aspect of adaptivity to a
dynamic environment has been largely ignored. This is rather restrictive as the

ability to adapt to the environment has become more relevant for the transition
of SRS to the real world.

Alternatively, a potentially more suitable approach would be to address the

3
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error detection problem from the perspective of a collective. A collective in this
context would be a collection of interacting robots over some interaction time or
space, for example, over a period of time or within a wireless communication
range. In a robot swarm, in which the robots are mobile, the size of this collective
is dynamic. Therefore, the classifier for this approach would be required to be
able to work on data of varying sizes. For this reason, statistical classifiers can
be a good candidate. On the other hand, bio-inspired algorithms could also be
potentially applicable.

Bio-inspired algorithms have been commonly applied to complex problems
including those that deal with adaptivity to dynamic environments [14]. Within
the domain of bio-inspired algorithms, Artificial Immune Systems (AIS) have
been actively explored for error detection in swarm robotics. AIS algorithms are
algorithms inspired by the processes and mechanisms of the vertebrate immune
system which exhibit the properties of fault tolerance, learning, memory, self-
organisation and robustness [15]. For example, the work in Canham et al. [10]
and Mokhtar et al. [13] used AIS algorithms to detect errors of the controller and
the sensors. In 2009, a new AIS algorithm called the Receptor Density Algorithm
(RDA) was presented. This algorithm was analytically demonstrated to be capa-
ble of dynamic anomaly detection and shown to be connected to kernel density
estimation, which is a powerful non-parametric statistical technique [16].

1.2 Research Question

This aim of this thesis is to investigate the problem of error detection in swarm
robotics with a focus on adaptivity to the dynamic environment. Rather than
addressing this problem from the perspective of a single robot, this research will
approach it from the perspective of a collective. Therefore, the research problem
is defined as follows:

Can data-driven error detection from the perspective of a collective be used to pro-
vide adaptive detection for robot swarms deployed in time-varying environments?

1.3 Research Objectives

As stated in Section 1.1.2, this research will investigate the research question in
the context of statistical classifiers and an immune-inspired classifier, in particular
the RDA classifier.

Therefore, the research objectives of the experimental work in this thesis are:
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e RO1: To establish an experimental testbed to investigate the nature of errors
and the aspect of adaptive error detection in swarm robotics.

e RO2: To investigate the feasibility of addressing error detection in swarm
robotics from the perspective of a collective, and to propose a correspond-
ing detection scheme to incorporate the aspect of adaptivity to dynamic
environments.

e RO3: To examine the application of statistical classifiers in the context of the
proposed scheme for adaptive error detection.

e RO4: To examine the application of an immune-inspired algorithm in the

context of the proposed scheme for adaptive error detection.

1.4 Thesis Structure

The remainder of the thesis is organised as follows:

Chapter 2 provides a brief historical account of swarm robotics within the
swarm intelligence paradigm, from the biological foundations of the natural swarm
systems to the inspirations that have led to the development of artificial swarm
systems. To provide a better overview of swarm robotics, the common research
topics and challenges are also included in this chapter.

One of the challenges in swarm robotics is to provide fault tolerance in robot
swarms. Therefore, Chapter 3 reviews related work on fault tolerance in swarm
robotics. It covers the general approaches to fault tolerance in systems and whether
these approaches are relevant in swarm robotics. Recent work on error detection
in swarm robotics is reviewed from the perspective of the detection target, that
is, whether an observer is able to detect an error on itself (endogenous), or errors
on other robots (exogenous).

Chapter 4 presents the work for RO1. It covers the experimental framework
including the identification of robot foraging as the testbed, the design of the
controller for the robots, the fault models of the wheels, the models of the time-
varying environment, and the simulation platform.

As part of the work for RO1, Chapter 5 presents experimental analyses of the
robot foraging to provide evidence to support assumptions made regarding the
state of the robot swarm as well as the plausibility of inferring the existence of a
fault from the operational data.

In Chapter 6, work on RO2 and RO3 is presented. For the first part of this
chapter, illustrative examples are given of the difficulty in achieving adaptive
error detection from the perspective of a single robot. Therefore, a new detection
scheme is proposed to address the same problem but from the perspective of a
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collective. Then, the proposed scheme is tested with the use of four conventional
statistical classifiers in the second part of the chapter.

Chapter 7 presents experimental work for RO4 with the use of an immune-
inspired algorithm called the Receptor Density Algorithm (RDA) [16]. In this
chapter, the RDA classifier is introduced and an example is given on applying this
classifier in the context of the CoDe scheme. The RDA classifier was tested with
the same data as the conventional statistical techniques described in Chapter 6,
and the performance compared. With the RDA classifier, this chapter also further
examines the potential of reducing the number of false positives by increasing the
detection window as introduced in Christensen et al. [12].

In Chapter 8, two communication strategies are proposed in the context of
the scheme proposed in Chapter 6. The aim of these strategies is to reduce the
overhead of communication involved without a significant impact on the perfor-
mance of detection.

Chapter 9 concludes the thesis. A summary of work presented in this thesis
and its limitations, as well as suggestions for future work, are presented.



Part 1

Background and Related Work



CHAPTER
TWO

From Swarm Intelligence to Swarm
Robotics

This chapter introduces the concept of swarm intelligence with a focus on swarm
robotics. In Section 2.1, an historical account of the swarm intelligence paradigm
is given together with examples of natural swarm systems and the relevant char-
acteristics that have been inspiring work on artificial swarm systems. Then, Sec-
tion 2.2 presents a more focused discussion on an instance of artificial swarm
systems namely swarm robotics. It covers the characteristics of a swarm robotic
system, common research topics in swarm robotics, and related challenges for the

realisation of swarm robotic systems in the real world.

2.1 SI: Swarm Intelligence

The expression ‘swarm intelligence” was initially used by Beni and Wang [17] to
describe their work on cellular robotic systems, in which a collection of simple
and autonomous robots operated in a n-dimensional space to produce ordered
patterns through nearest neighbour (local) interactions. The term ‘swarm’” was
chosen to reflect the fact that the group of cellular robots that they were dealing
with was not just a typical ‘group’. Instead it was a group with special char-
acteristics such as those found in swarms of insects, for example, decentralised
control, lack of synchronicity, simpleness, and identical members [18]. Beni and
Wang [17]’s work laid the foundations for what later became a scientific discipline

with scientists from various disciplines (e.g. biologists, roboticists, and computer
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scientists) working together on swarm intelligence systems. With continuously
growing work in both natural and artificial swarm intelligence systems, swarm
intelligence (SI) has developed into an established discipline.

Recently, Dorigo and Birattari [19] defined SI as:

... the discipline that deals with natural and artificial systems composed of many
individuals that coordinate using decentralised control and self-organisation. In
particular, the discipline focuses on the collective behaviours that result from the
local interactions of the individuals with each other and with their environment.

This definition of SI encapsulates both natural and artificial swarm systems. In
natural swarm systems, SI research aims to further develop the understanding
of the underlying mechanisms in natural swarm systems that result in complex
and interesting collective behaviours. Research into artificial SI then exploits the
knowledge gained from the natural SI research and applies that knowledge to
solving analogous engineering problems. The work in artificial SI research en-
compasses the modelling of the collective behaviour of natural swarms to iden-
tify, abstract and exploit the underlying computational principles, and the appli-
cation of those mechanisms to artificial swarm systems ranging from optimisa-
tion to multi-robot systems [20].

Dorigo and Birattari [19] further pointed out that a typical SI system has the
following properties:

o many individuals: there are many individuals in the swarm. In Sahin [3], a
group size of 10 - 20 is considered acceptable. However, as pointed out in
Bayindir and Sahin [5], the exact number is not important because scalabil-
ity in size is one of the desired characteristics of these systems;

o relative homogeneity: the individuals in a swarm are physically the same
(identical) or there are only a few types of individuals;

e local interactions: individuals in a swarm only interact with others in a
close proximity utilising only information available locally. The interactions
can be direct or indirect (stigmergy); and

o self-organisation: the overall behaviour emerges in response to the local

environment and to local interactions.

2.1.1 Natural SI Systems

Initially, social insects such as ant and bee colonies have been the predominant SI

systems in nature which have inspired work in artificial SI systems. For instance,
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in Beni and Wang [17], as later explained by Beni [18], their cellular robotic sys-
tems were designed to encapsulate the characteristics found in swarms of insects.
Social insect colonies, ranging from a few to millions of individuals, display the
ability to continue to carry out tasks efficiently even when faced with lost indi-
viduals and environmental challenges. These tasks include the building of struc-
tures such as nests, the finding and retrieving of food (foraging), and navigating
around obstacles.

For example, the army ant Eciton burchelli can carry out large scale foraging
(up to 200 000 foragers) in a short period of time (from dawn to dusk) by forming
and following traffic lanes between the food sources and the nest [21]. The ants
lay pheromone on the ground when they are on their way back to nest with prey.
Other ants, sensing the pheromone, will follow the pheromone trails and at the
same time also lay their own pheromone. Over time, traffic lanes are formed.
Whilst following the trails, the ants have directional preference to turn to the left
when in a course of collision with other ants. This preference, in time, results in
the emergence of three-lane trails with returning ants occupying the central lane
and outbound ants occupy the periphery lanes [21].

In the construction of a nest, the termites Macrotermes bellicosus can build
mounds up to 6m in height and 30m in diameter [22]. It has been shown that
the building of nest is achieved by responding to the cues from the local environ-
ment such as shape of the local configuration and current progress. For example,
in building columns and arches, pheromones are laid on the balls of mud used for
construction. New mud balls are placed near other mud balls with pheromones.
As the construction proceeds, the columns gets taller and the pheromones near
the bottom evaporate. If two columns are built near to each other, as the columns
getting taller and closer to each other the concentration of pheromones at the top
of the columns will cause the two columns to be joined together to form an arch
[22].

Figure 2.1(a) shows an example of Weaver ants pulling leaves together to
build their nests by forming bridges of workers. The ants form a chain (bridge)
with their own bodies to allow other ants to move between the leaves. Then the
leaves are pulled together. The leaves are glued together using the silk produced
by the ants. The resulting collective behaviours of these social insects are interest-
ing because they do not appear to be coordinated by a specific group of leaders
or queens but rather are self-organised in response to interactions between the
individuals and the environment [23].

Other natural SI systems includes flocks of birds [24, 25] (see Figure 2.1(b)),
schools of fish [26, 27], herds of sheep [28] and bacterial colonies [29, 30]. Birds
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(b)

Figure 2.1: (a) Weaver ants collectively form a bridge?; (b) Flock of birds®.
“www.physorg.com/news11060.html, last accessed: 14/03/2012. Image reprinted with
permission from PhysOrg.com.

*http:/ /en.wikipedia.org/wiki/File:Auklet_flock_Shumagins_1986.jpg, last accessed:
14/03/2012. Image from Wikimedia Commons free for reuse.

in a group (up to thousands) often fly together and are able to move freely as a
collective and execute abrupt manoeuvre with precise coordination [25]. It is suggested
that the manoeuvres can be initiated by any birds but the resulting coordination
in movement is achieved through visual communication [25]. The parameters
of flight in the birds” coordination that may contribute to the flocking behaviour
includes the turning angle, spacing between birds, velocity of flight, direction of
flight, time to takeoff and landing [24]. In addition, birds of different types also
produce different flight formations. For example, column formation (one after
another along a flight path) can be seen in the Brown Pelicans following a shore
line whereas V formations (approximately the same number of birds in the left
and right in V shape, following a leader) are often seen in waterfowl [24]. The
benefits offered by flocking in birds include protection against predators, mating,
locating food sources, warmth [25].

Fish schools, for example hundreds of silversides, that initially move along a
straight course suddenly disperse as predators (such as barracuda) approach and
regroup moments later [26]. There is no leader in the group and each fish ad-
justs its speed and heading relative to its neighbours, with the nearest neighbours
having a greater influence [26]. The eyes and lateral lines on fish are sensitive to
displacement of water. By utilising these two organs, each fish can match the
speed and direction of the neighbours. How does each fish respond to its sen-
sory inputs, positions of neighbours and switching of behaviour with different
sizes of a group to achieve the observed collective motion are of great interest to
researchers [27].

11



2.1 SI: Swarm Intelligence

In bacterial colonies, patterns emerge as a respond of the colonies to the envi-
ronmental conditions. For example, the bacteria Paenibacillus dendritiformis pro-
duces different patterns under different conditions of nutrients, surface, or both
[29, 30]. The geometrical patterns are observed to be inheritable and can be pro-
duced by different bacteria strains.

It has been observed that these natural SI systems share many common char-
acteristics. In relation to the collective behaviours that they exhibit, these nat-
ural SI systems typically consist of a population of ‘simple” agents which in-
teract locally with each other and the environment. Here, the word ‘simple’ is
used loosely to mean that these agents carry out their tasks by following a rela-
tively simple set of rules. From these local interactions, which are observed to be
decentralised, collective behaviours can emerge. Underlying this ‘organisation
without an organiser’, researchers have identified several core mechanisms that
contribute to the observed collective behaviours [31].

2.1.2 Principal Concepts in SI

Garnier et al. [31] pointed out that there are several hidden mechanisms that al-
low insect societies to cope with uncertain environments and to find solutions
to complex problems. These mechanisms are major concepts in SI to explain the
interactions in insect societies that lead to these complex collective behaviours.
They are decentralisation, stigmergy, self-organisation, emergence, positive and nega-
tive feedback, fluctuations, and bifurcations.

Early research into understanding the underlying mechanisms for collective
behaviours in social insects hypothesised that individual insects possess a rep-
resentation of the global structure for appropriate decision making or that the
queen supervises the work done by the workers, that is, centralised decision mak-
ing. However, later research has shown it to be otherwise. Individual insects do
not need any representation or knowledge of the global structure which they pro-
duce and there is no supervisor in the colonies [32]. Rather, a social insect colony
is decentralised with autonomous units distributed in the environment which re-
spond directly to stimuli from the local environment [33]. Because of this decen-
tralisation and direct response to stimuli from the local environment, the insects
are able to respond to external challenges such as environmental changes, lost
individual and the addition of individuals [31].

The notion of stigmergy was introduced by Grassé [22] to explain the building
activities carried out by termites of the Macrotermes bellicosus. He showed that co-

ordination over the nest reconstruction amongst the termites is achieved through
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indirect interactions (stigmergy) and mainly attributable to the condition of the
local environment, such as the shape of the nest and the progress of the work. In
other words, the activity of individuals is guided by the information perceived
from the local environment and not through direct interactions between the in-
dividuals. Every time a worker performs a building action, the shape of the nest
changes and this in turn influences the actions of other workers. This process
leads to the coordination of the collective work which can make it seems that the
colony is following a well-defined plan [31].

Self-organisation has been identified as a major component of a wide range of
collective behaviours in social insects from the thermo-regulation of bee swarms
to the construction of nests by ants [34]. It is a set of mechanisms that can result in
the appearance of structures at the global level. This observation emerges due to
interactions among its lower-level components instead of being explicitly coded
at the individual level. Self-organisation emerges from the interplay of positive
feedback, negative feedback, random behaviour (fluctuations), and multiple di-
rect or stigmergic interactions [23, 31].

Positive feedback promotes the creation of structures and amplifies the fluc-
tuations in the system. For example, the recruitment of ants to a food source by
means of pheromone trails is a kind of positive feedback because the reinforced
pheromone trail creates conditions which lead to the emergence of a trail network
at the global level.

Conversely, negative feedback counterbalances positive feedback and this in-
teraction leads to a stable collective state. In trail recruitment in ants, negative
feedback on the formation of a trail can come from the limited number of for-
agers, exhaustion of a food source, evaporation of the pheromones creating the
trail, or competition between trails to attract foragers [31].

Social insects are observed to perform actions that can be described as stochas-
tic (random fluctuations) [31]. However, such randomness plays an important
role in exploration and enables the colony to discover new paths and food sources.

Finally, self-organisation allows systems to reach different stable states (bi-
furcation) when some of a system’s parameters change depending on the initial
conditions and the random fluctuations [31].

2.1.3 From Natural to Artificial SI Systems

From a better understanding of the underlying mechanisms and collective be-
haviours in natural swarm systems, scientists have been inspired to develop and

apply swarm-inspired solutions to solve analogous engineering problems. For
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example, understanding the foraging behaviour of ant colonies in finding short-
est paths from their nests to food sources inspired the development of Ant Colony
Optimisation algorithms [35, 36]. Dorigo et al. [35] introduced the first ACO al-
gorithm - the Ant System. A population of artificial ants was created and the
ants traverse along a construction graph with a set of vertices and a set of edges.
The ants move from vertex to vertex along the edges (with different lengths) of
the graph and lays artificial pheromone trails on the edges. The probability of
choosing a particular edge is influenced by the concentration of the pheromone
trails which evaporate as time progresses. Edges with a higher pheromone con-
centration represent shorter paths. In Dorigo et al. [35], the Ant System was suc-
cessfully applied to a Travelling Salesman Problem (TSP) with the vertices of the
graph representing the cities and the edges representing the distances between
the cities. The task in TSP is to find the shortest journey that allows a salesman to

visit each city only once.

Since then, many similar ant-inspired algorithms have been introduced and
with the increasing volume of research, the body of ant algorithms for optimi-
sation problems has subsequently been referred to as Ant Colony Optimisation
(ACO) algorithms [36]. ACO has been successfully applied to a variety of prob-
lems including scheduling, vehicle routing, assignment problems, set problems,
data mining and information retrieval. A website with information related to

ACO is at http:/ /www.aco-metaheuristic.org/.

Particle Swarm Optimisation (PSO) is another notable algorithm inspired by
bird flocking and fish schooling [37]. PSO was developed by Kennedy and Eber-
hart [37] through their work on simulating a large number of birds flocking syn-
chronously in search of a food source. In bird flocking, the movement of the
tlock appears to be synchronous and the synchrony is influenced by the distance
between each bird and its neighbours. When searching for food, individual mem-
bers can benefit from the discoveries and previous experience of all other mem-
bers. This same behaviour was also observed in fish schooling. This social shar-
ing of information is fundamental to the development of PSO [37]. In PSO, a
population (a swarm) of candidate solutions (particles) is modelled in a search
space and each particle has a position and a velocity. The movements of the par-
ticles are based on their own best position as well as the swarm’s best-known
position. Since its introduction, PSO has been applied to a variety of tasks in-
cluding antenna design [38], transmission network planning, and the network
reconfiguration and expansion problem [39].

Reynolds [40] created a well-known simulation called Boids which was in-
spired by the flocking behaviour in birds (see Figure 2.1(b)). In bird flocking,
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each bird seems to be flying independently without any knowledge of the global
shape of the flocks as a whole. However, to the observer the entire shape of the
flock, it seems to appear otherwise. This interesting flocking behaviour in birds
is also seen in fish [27] and sheep [28]. In Boids [40], the flocking behaviour has
been simulated using three simple rules of separation (steer to avoid crowding lo-
cal flockmates), alignment (steer towards the average heading of local flockmates),
and cohesion (steer to move toward the average position of local flockmates). The
same flocking behaviour has also inspired the work of coordinated movement in
multi-robot systems.

Another form of artificial SI system is the multi-robot systems which can be
considered as an artificial instantiation of natural SI systems, albeit much sim-
pler and for a different purpose. For instance, in Beni and Wang [17], the cellular
robotic systems were designed to encapsulate the characteristics found in swarms
of insects such as decentralised control, simplicity and identical members. In
multi-robot systems, physical or logical robots in simulation were developed to
carry out tasks and simulate behaviours that are analogous with natural SI sys-
tems such as foraging, cooperative transportation and aggregation. The motiva-
tion for multi-robot systems lies in the potential for real-world applications such
as search-and-rescue missions, environmental monitoring and space exploration
[3].

Under the umbrella term of multi-robot systems, swarm robotics is a relatively
recent research topic with growing research interests, and it is the platform on
which the work in this thesis is based. Thus, the next section will provide an
overview of swarm robotics and the motivations for the work.

2.2 Swarm Robotics - An Instance of Artificial SI Sys-

tems

2.2.1 An Overview

Over the recent years, various expressions have been used to describe a group of
simple physical robots such as cellular robotics [17], collective robotics [41], and
distributed robotics. Due to the strong biological background, the term ‘swarm
robotics” has also recently been used. As pointed out by Sahin [3], these terms are
often vague and have overlapping meanings. Therefore, to ground the discussion
on swarm robotics to a single definition, this work adopts the definition of Sahin
[3] who defined swarm robotics as:
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the study of how large number of relatively simple physically embodied agents can
be designed such that a desired collective behaviour emerges from the local interac-
tions among agents and between the agents and the environment.

This definition encapsulates the key properties of a typical SI system as pointed
out by Dorigo and Birattari [19], and also applies to other multi-robot systems.
However, Sahin [3] further emphasised a set of criteria which can be used to
evaluate the degree to which swarm robotics might apply and how it might be

different from other multi-robot systems (as there is some overlap):

e autonomous robots: to be called autonomous robots, the robots should have
a physical embodiment, be it in a physical world or in a simulated world,
in order for physical interactions with the environment to occur;

o large numbers of robots: although it is hard to justify a lower bound for
a group to be called a swarm, it is common to accept group sizes of 10-20
robots [3]. However, studies which are carried out with smaller group sizes
must be able to be scaled up to a larger group when required;

e homogeneity: robots should be identical, at least at the level of interac-
tions. Heterogeneous multi-robot systems fall outside the swarm robotics
approach and these systems are often referred to as collective robotics;

e simplicity: robots should be simple in capabilities relative to the task, not
necessary hardware or software complexity; and

e local interaction: individuals should have local sensing and communica-
tion capabilities, either direct or indirect.

These criteria influence on the work discussed in later chapters and justify the
reasoning behind the approaches taken, and will be reflected as the need arises.
Note that these criteria should be treated as a reference and not as a checklist [6].

One of the main motivations for the work in artificial SI systems, in this case
swarm robotics, is the potential for it to be applied to solve complex and difficult
engineering problems that are analogous to their biological counterparts. Based
on the properties of the engineering tasks, swarm robotics would be most appli-
cable for a number of task domains such as tasks with a large coverage area, tasks
that are too dangerous for human operators, tasks with dynamic scales, and tasks
that require redundancy [3].

Although SRS can be potentially applied for the application domains pre-
sented in Sahin [3], at present, most of the SRS are still laboratory-based [1]. As
pointed out by Winfield and Nembrini [1], one of the reasons for this is that there
is still a lot of work to be done to ensure that the physical realisation of the SRS
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are safe and dependable. This is one of the challenges in swarm robotics and will
be discussed in greater detail in Section 2.2.3.

From the definition of swarm robotics and its potential applications, it might
be apparent which research topics swarm robotics researchers are generally in-
volved in. From a more recent survey by Bayindir and Sahin [5], swarm robotics
research covers many aspects from hardware design, software design, the mod-
elling of collective behaviour (macroscopic modelling), individual behaviour (mi-
croscopic modelling) and communication to swarm tasks. The next section will

review some of the main research topics in Bayindir and Sahin [5].

2.2.2 Swarm Robotics Research

To give a general overview on the research topics in swarm robotics, the following
subsections briefly review three of the research topics identified in Bayindir and

Sahin [5]: modelling, behaviour design, and swarm task.

Modelling

Modelling is important in swarm robotics research. Modelling allows experimen-
tation in simulation which reduces the risks of physical damage to the robots as
well as is not constrained by the limited power of the robots. For experiments
which involve a large number of robots, modelling can be carried out easily and
cheaply in simulations. At present, the number of physical robots used is gener-
ally around tens of robots due to the cost of individual robots. Experiments us-
ing simulations (e.g. computational modelling) allow the testing of concepts and
hypotheses, large numbers of repeated runs, explorations, and optimisation of
parameters which can be carried out cheaply and in a shorter time frame [42, 43].
Also, simulations allow the study of systems prior to construction.

Despite the advantages of modelling, there will always be differences between
results from simulations and those from actual physical experiments. However,
insights gained from the simulations allow a more principled design and hence
reduce the risk associated with premature deployment in real robots [5].

Depending on the approach and the components to be modelled, the mod-
elling approaches for swarm robotics can be divided into sensor-based, micro-
scopic and macroscopic modelling. Sensor-based modelling places models of
sensors, actuators and objects as the main components. Then, interactions be-
tween the robots and the environment are added. There are two main approaches
for sensor-based modelling: non-physical simulations and physical simulations

[5]. In non-physical simulations, the physical properties of the robots and the ob-
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jects in the environment such as mass and motor force are ignored. However, the
interactions are preserved by adding logic to cater for collisions between objects.
In physical simulations, off-the-shelf physics engines are integrated into the sim-
ulation. For example, in Trianni et al. [44], the robots (called s-bots) are modelled
in simulation using off-the-shelf physics engine Vortex™from CMLabs! to repro-
duce the dynamics, friction and collisions between physical bodies. This adds
much more complexity but is more realistic in relation to real-world scenarios.

On the other hand, microscopic and macroscopic modelling uses mathemat-
ical models to represent the interactions in the system without explicit mod-
elling of robotic components. Therefore, they are much easier to implement and
faster to simulate. The behaviour of robots is defined as states and the transi-
tion between states is determined probabilistically. For example, Martinoli et al.
[45, 46, 47] used microscopic probabilistic models to study collective clustering.
The activities of robots were represented as a sequence of probabilistic events that
are triggered according to geometrical considerations (e.g. size of arena, robots,
objects; robot-robot and robot-environment interactions) and sensory capacity of
the robots. The work was later applied to study collaborative stick-pulling in
Ijspeert et al. [48]. In Liu [42] macroscopic probabilistic models in the form of
differential equations were used to study the effect of various parameters for a
more efficient adaptation algorithm in foraging.

The difference between macroscopic and microscopic modelling is the gran-
ularity of the models developed. Whilst macroscopic approaches model the be-
haviour of the system as a whole, microscopic approaches model the behaviour
of each robot [5, 42]. Therefore, the use of macroscopic or microscopic models is
dependent on the objective and focus of the experiment, whether on the overall
behaviour of the system or the behaviour of individuals in the system.

Behavioural Design for Swarm Robots

The second category of swarm robotics research is the behavioural design of the
robot controllers. The design of robot controllers can be traced back to earlier
work on robotics in general. However, the design of robot controllers in swarm
robotics is more geared towards the accomplishment of tasks collectively by a
group of individual robots. Two of the common approaches to designing robot
controllers in swarm robotics are the subsumption architecture [49] and artificial
neural networks (ANN).

The subsumption architecture [49] is one of the best-known controller design

lwww.vxsim.com/en/software/index.php
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architectures in behaviour-based robotics. This architecture involves the incre-
mental development of behaviours by considering each behaviour as a sepa-
rate module. The coordination of behaviours is achieved through a suppression
mechanism between the behaviours. Subsumption-based controllers are manu-
ally programmed.

Robot controllers designed with ANN are often referred to as neural con-
trollers. A neural controller is often a simple multi-layer perceptron in which
the input from the sensors is connected to the input layer and the output layer
is connected to the actuators of a robot. One of the challenges in the design of
a neural controller lies in the setting of the connection weights between neurons
of different layers. There are many approaches in which the weights can be set:
hard-coded, trained with back-propagation, or evolved using genetic algorithms
(GA). The problem with manual hard-coded connection is that the weights are
brittle and may not be exploring aspects of the environment that a learning sys-
tem might exploit. That is, they may not deal with a dynamic time-varying en-
vironment or an environment for which there is no prior knowledge. Another
way to obtain the connection weights is to use GA to evolve them. For exam-
ple, in [50], an ANN with connection weights evolved using a specific version
of GA was used to achieve cooperative transport by two robots. The ANN in
[50] consisted of an input layer of five neurons connected to various sensors, a
hidden layer, and a output layer with three neurons connected to the wheels and
grippers.

The choice of which approach to use in designing the robot controller is strictly
a matter of preference. For a simple task such as non-cooperative foraging in
which the underlying mechanisms are known and well-understood, the con-
troller can be easily designed and implemented using the subsumption archi-
tecture. However, for more complex tasks involving cooperation between many
individuals and in which the underlying mechanisms are not properly under-
stood, evolving the neural controller allows the exploration of novel strategies.

Swarm Task

Finally, the general problems or tasks addressed in swarm robotics are partic-
ularly important because they help to establish the practical value of swarm
robotics and help to divide the real problems into manageable sub-problems [5].
Examples of tasks generally studied in swarm robotics include pattern forma-
tion, aggregation, coordinated movement or flocking, cooperative transport, and

foraging.
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Pattern formation can be defined as the emergence of global patterns, which
are usually predefined, from local interactions between the agents [5]. It is useful
for many applications such as the formation of structures to navigate through
obstacles as well as obstructing other objects from passing through. The main
challenge in this problem is the coordination of a group of robots to form the
desired global patterns with only local interactions.

Fredslund and Matari¢ [51] developed an algorithm for the formation of var-
ious geometric shapes including diamond, column and line. Each robot in the
system has a unique ID which is broadcast regularly as a heart-beat message and
other robots can detect this ID. To form the predefined shapes, each robot posi-
tions itself relative to one designated neighbour and maintains its place in the
formation by keeping that neighbour in the centre of the sensor’s field of view.
One robot is designated as the conductor which decides the type of shape to form.
For example, for a centred formation, the conductor broadcasts the information
regarding the type of centrered formation together with its ID. Other robots move
into positions by locating their designated neighbour and maintaining that posi-
tion.

Aggregation is a crucial task in many biological systems to help organisms to
avoid predators, resist hostile environmental condition and find mates [52, 44].
The self-organised aggregation that occurs in natural swarm systems is achieved
through the interplay of positive and negative feedback [44]. In swarm robotics,
the aggregation problem is generally defined as the task of aggregating randomly
placed robots in an environment. This is an important task as it enables the cre-
ation of functional groups of individuals which is the basis of the emergence of
various forms of cooperation [44].

Trianni et al. [44] evolved a neural controller for aggregation behaviour using
a GA. They observed two types of controllers for aggregation behaviours (see Fig-
ure 2.2): static and dynamic clustering. In static clustering, the resulting cluster
is very compact and stable and the robots within it do not change their relative
positions. On the other hand, the dynamic clustering behaviour creates a group
which is loose but allows the group to move together and is observed to be more
scalable when more robots are added to the system.

In swarm robotics, the coordinated movement problem requires the robots to
move as a group whilst maintaining a global pattern [5]. Strategies to achieve
coordinated movements in swarm robotics have been inspired by the analogous
behaviour in bird flocking and fish schooling. Coordinated movement is impor-
tant in swarm robotics as it supports behaviours such as collective navigation
through obstacles [53] and swarm taxis [54, 55].

20



2.2 Swarm Robotics - An Instance of Artificial SI Systems

Figure 2.2: Two evolved controllers for swarm aggregation in [44]. The left-hand
figure shows static clustering in which the robots form a compact cluster and
do not change their relative positions. In the right-hand figure, the cluster is
looser but the robots can still move together as a group. Reprinted with kind
permission from Springer Copyright Clearance Center: Lecture Notes in Artificial
Intelligence [44], copyright (2003).

Nembrini et al. [54] present a distributed algorithm that successfully coordi-
nate the movement of a group of robots towards a beacon (swarm taxis) using
only range-limited communication capabilities (Figure 2.3). In their work, each
robot maintains a list of radio-connected neighbours. If a robot lost a connection
to another robot Ry, it will query its neighbours to determine how many neigh-
bours are still connected to R;. If the number of neighbours still connected to R,
is less than or equal to a predefined threshold, the robot makes a turn in the op-
posite direction to its current heading (a 180° turn). If the number of neighbours
is greater than the threshold, the robot chooses a new heading at random. This
work was later extended in Bjerknes et al. [55] in which the robots do not need to
have a representation of the connectivity of their neighbours but are still able to
achieve swarm taxis. Note that this is a communication-free approach to achieve

coordination of movements.

Cooperative transport involves the coordination of a group of robots to move
a heavy object that cannot be accomplished by a single robot alone. It forms the
basis for collective foraging that is commonly observed in ants. A box pushing
task is a benchmark problem commonly used to study collective transport. In
general, a fixed group of tightly coupled robots is involved and the coordination
to accomplish the task is achieved either by explicit communication or follows a
predefined formation. For example, Matari¢ et al. [56] used two robots, one on
the left and the other on the right, to push a box towards a goal position. The
coordination of the pushing behaviour was carried out using a message token
between the robots. Kube and Zhang [41, 57] and Kube and Bonabeau [58] have
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Figure 2.3: Swarm taxis in [54]. The black circle in the centre is the beacon. Num-
bered circles are robots and the lines are the connections between the robots. Grey
robots are illuminated by the beacon whilst white robots are not. In the left-hand
figure, the swarm is in the process of encapsulating the beacon. In the right-hand
tigure, the beacon is completely surrounded. Reprinted with kind permission
from ACM: ICSAB [54], copyright (2002).

shown that without explicit communication between robots, cooperative trans-
port can also be achieved. In Kube and Zhang [41], five robots were used for
a box-pushing task with no communication involved. Instead, the robots move
by following two rules: avoid interfering other robots, and work towards a common
task whilst observing the first rule. This work is later extended in Kube and Zhang
[57], Kube and Bonabeau [58] to utilising cues such as whether a box is detected by
the sensors or whether a robot is in contact with a box (generated by concatenating
input from the sensors) to achieve cooperative transport.

Recent work on cooperative transport by Grofs ([50, 59, 60]) within the swarm-
bots project [61] has demonstrated a group of robots that can not only act coop-
eratively to transport heavy objects of various shapes and sizes but also are able
to self-assemble into a structure to carry out the task. The work in [50] involved
cooperation between two robots (called s-bots) to self-assemble and then move
an object as far away as possible from an initial position. It was then extended to
involve up to sixteen robots to pull objects of varying shapes and sizes towards
a target location. The neural controller was synthesised using GA and the re-
sults demonstrate that although the controller was evolved for a relatively small
group, it can also be applied to larger groups.

Foraging is another of the most widely-studied tasks in swarm robotics be-
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cause of its strong biological basis, reasonably well-understood underlying mech-
anisms, and potential for real-world applications such as cleaning, harvesting,
search-and-rescue, land-mine clearance or planetary exploration [62, 63, 64]. In
general, robot foraging involves the task of locating target objects, collecting the
objects and transporting them back to a predefined location called the base. To
achieve foraging, the robots must be equipped with the ability to recognise the
target objects, avoid obstacles and navigate back to the base. The object can be
handled by a single robot, given enough time. However, having more robots
allows the task to be accomplished much more quickly [65, 62, 63, 64]. Also, for
some task, introducing communication either explicit or implicit can significantly
improve the performance of foraging [62, 64]. For objects that cannot be handled
by a single robot, cooperation is required and this is generally addressed as a

cooperative transport problem.

Work in robot foraging is related to many of the topics mentioned in previ-
ous paragraphs from modelling, behavioural design, up to cooperative transport.
Wintfield [63] presented a robot foraging taxonomy on various topics addressed

in swarm robotics research dealing with foraging behaviour.

On top of the work in modelling, behavioural design and swarm tasks, there
is another important aspect of swarm robotics research: the development of the
physical robots for swarm robotics research. These robots vary in terms of size,
number and type. The type of physical robots includes both homogenous robots
[61, 66, 67] and heterogeneous robots [68, 69]. Similarly, the size of the robots
varies from tens of centimetres [61, 69] to a few millimetres [68, 67]. In addition,
the target number of robots involved to form robotic systems ranges from a few
to tens of robots [61, 69] to hundreds of robots [68, 66].

Although the physical characteristics of these robots are different, the research
topics which they address are similar. Generally, the aims are to equip the robots
with functionalities to self-assemble into a structure to perform tasks beyond
the capability of a single robot, and to adapt to dynamic environments. These
robot swarms were developed with real-world applications in mind. The poten-
tial applications for swarm-bots include semi-automatic space exploration, and
search-and-rescue. I-Swarm [68] is a development more targeted for future med-
ical applications and micro-scale assembly whilst the self-assembly organism in
the Symbrion project [69] can be deployed for monitoring in hard-to-reach loca-
tions, rough terrains and potentially hazardous environments.
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2.2.3 Immediate Challenges

There are a number of challenges in swarm robotics related to the physical reali-
sation of swarm robotic systems in the real world in addition to those in Section
2.2.2. These challenges include the issue of battery life for long-term deployment,
restricted mobility for real world terrain, and the transition from laboratory work

to real-world implementation.

Energy Autonomy

One of the most common constraints for physical robots is battery power. For
battery-powered robots, there is always a concern about how long the battery
can last. This is important because it influences the tasks that can be carried out
by the robots and the need to ensure that SRS are only assigned tasks that can be
completed before the batteries are exhausted.

With current technologies, most of the batteries used (generally Lithium-ION
batteries) for robots in swarm robotics research last for around a few hours. For
example, for continuous operation, a battery can last for around two hours for
s-bots [70], and three hours? for e-puck robots [71, 72]

To address this problem, there have been suggestions for alternative power
sources such as solar power in the I-Swarm project [68], wireless transfer, elec-
tromagnetic wave transfer heat-powering and kinetic energy conversion. How-
ever, for these technologies there are also associated problems such as interfer-
ence from the environment. For example, for wireless transfer there are issues
with the range of transmission, how much power can be transferred and also
interference from the robot’s own electronics.

Alternatively, batteries with a larger capacity can be used. However, having
batteries with a larger capacity also means that more space is required to house
the batteries and this results in a heavier and bigger robot. This in turn will re-
quire more power to move the robot. Clearly, a compromise is needed between
the expected battery life and the size or weight of the robot.

The limitation in battery power also constraint the types of tasks that can be
carried out by the robots. Therefore, much of the research on these tasks is con-
ducted in simulations.

Alternatively, there is on-going work on power sharing as the robots self-
assemble to form a structure. For example, in the joined Symbrion and Replicator

project [69] power management for energy sharing is one of the topics addressed.

2from personal communication with Jenny Owen who works with e-puck robots in York’s
Robotics Lab
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There are three types of robots (Scout, Backbone, and Active wheels) as shown in
Figure 2.4(b) which can be joined together to form a robot organism with a cen-
tral nervous system, common energy resources and homoeostasis to adapt to dy-
namic and open environments. Figure 2.4(a) is an exemplar organism. The target
robot organisms are expected to be able to self-configure, self-heal, self-optimise,
and self-protect.

(b)
Figure 2.4: (a) An exemplary organism in a simulation. (b) Three types of robot in
the Symbrion project. Those in the top left corner are the Scout robots, the white
cube shaped robots across the middle are the Backbone robots, and the two at the
bottom right corner are called Active wheels
“Image from http://symbrion.org/tiki-index.php?page=Simulator. Reused with per-
mission under the copyright of Symbrion project [69].
®Image courtesy of Lachlan Murray from Electronics Department, University of York.

The Scout robots are equipped with long-range sensors and specialise in fast
and flexible locomotion for inspecting the environment and for gathering robots
for assembly. The Backbone robots serve as the backbone of the organism and en-
able the lifting of docked robots to perform 3D motion. Finally, the Active wheels
serve as a tool module for extra support for lifting and for omni-directional move-

ment, and as an additional energy source [73].

Mobility and Sensory Activity

The mobility of robots is another issue which can affect the implementation of
SRS in the real world. At present, most of the robots in swarm robotics research
are equipped with tracks, wheels or some variation of legs to enable them to move
around. For example, for s-bots, mobility is achieved by treels (a combination of
tracks and wheels) on both sides [70]. For e-puck robots, there are two wheels,
one on each side. Although these mobility devices allow the robots to navigate
in many terrains and in particular those in the laboratory environment, they are
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tar from sufficient for the landscapes in the real world. This in turn constrains the
particular terrain types in which the robots can navigate freely and the tasks that
a robot swarm can execute.

In nature, there is a wide range of mobility devices evolved specifically to
suit the particular environment in which the organisms live. The range of move-
ments that are possible in nature include slithering, crawling, walking, running,
jumping and climbing. However, some of these movements and mobility devices
cannot be adapted to robots at this point in time because of technological con-
straints. However, there is an interesting new locomotion technique for robots
which is worth mentioning. It is called jumpgliding [74], which is a hybrid of
jumping and gliding with rigid or folding wings. This new locomotion technique
was developed by researchers from EPFL.

To address some of the mobility issues as part of the project objectives, projects
such as the Swarm-bots [70, 61], Swarmanoid [75] and Symbrion [69] involve
robots that can be assembled together for greater flexibility in mobility. For ex-
ample, Figure 2.5(a) shows an example of two s-bots in the Swarm-bots [70, 61]
project which are joined together to move past a large gap which is too large for
a single s-bot to negotiate. Figure 2.5(b) shows foot-bots which can be joined
together with hand-bots for additional mobility in the Swarmanoid project [75].
The foot-bots are capable of moving on rough terrains and transporting other
robots. Hand-bots on the other hand are capable of vertical climbing but not hor-
izontal motion on terrains. When a hand-bot is joined to foot-bots, the whole unit
can move on terrains as well as reach higher grounds. Similarly, in the Symbrion
project [69] the assembled artificial organisms can perform 3D motions.

In nature, the individuals in SI systems often have a wide range of sensory
systems, allowing for an effective perception of the physical world. However,
analogous sensory systems in the robots in swarm robotics research are still be-
low the levels of those in nature. To provide robots with the same range of sen-
sory systems as natural SI systems would mean weighing the robot down with
heavy equipment. Until sensory systems become more accurate, lightweight and

portable robots are restricted to limited sensory capabilities.

Transition from Laboratory Research to Real-World Applications

With the state of current swarm robotics research and the advances achieved
so far, as evident from the work carried out in large-scale swarm projects, it is
only a matter of time before swarm robotic systems are implemented for real-

world applications. However, to translate the existing work from the laboratory
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a b
Figure 2.5: (a) Two( s)—bots joined together to form a swzgrin—bot configuration to
pass a large gap; (b) A hand-bot in the middle is joined to three foot-bots.
“Image from www.swarm-bots.org/index.php?main=3&sub=31&conpage=sbot. Reused
with permission under the copyright of the Swarm-bots project [61]
’Image from www.swarmanoid.org/swarmanoid_hardware.php. Reused with permis-
sion under the copyright of the Swarmanoid project [75]

to the physical world is not as straightforward as it seems. In laboratory settings,
many of the environmental conditions can be controlled. However, in the phys-
ical world, the environment is dynamic, often time-varying, and vulnerable to
an abundance of interferences which are not present in laboratory settings. This
difference between experiments in simulation and in the real world is typically
referred to as The Reality Gap [76] and it has always been a target for roboticists to
narrow this gap.

As a step forward towards the transition of swarm robotics research to real-
world implementation, Winfield et al. [77] introduced the concept of the ‘depend-
able swarm’ and ‘swarm engineering’. Swarm engineering is a fusion of depend-
able systems engineering and swarm intelligence to explore the development of
engineering systems based on the swarm intelligence paradigm through a rig-
orous process of design, analysis, and be testing for dependability. Therefore, a
dependable swarm is a robotic swarm engineered to high standards of design, analysis
and test, and is able to exhibit high levels of safety and reliability [1]. Although some
might argue that the swarm intelligence paradigm is intrinsically unsuitable for
use in engineered systems that require a high level of integrity, Winfield et al.
[77] believe that the validations for these systems, in principle, are not greatly

different from conventional complex systems.

As part of the road maps of the work that needs to be done towards creating
dependable swarms, Winfield and Nembrini [1] looked at the aspect of fault tol-
erance in robot swarms through Failure Mode and Effect Analysis (FMEA) and

27



2.3 Summary

reliability analysis. They analysed the possible internal and external faults of a
robot swarm involved in a swarm containment task using the FMEA methodol-
ogy. The results from the analyses showed that the robot swarm exhibited a high
level of robustness due to redundancy of robots and lack of single point of failure
because the robots are distributed.

Another important result from the analyses in Winfield and Nembrini [1] is
that whilst redundancy of robots does promote robustness to failure, there are
exceptions. In particular, when a robot faces a partial failure in which only some
components are faulty whilst others are still working perfectly. For example, in
their swarm containment task, a fault to the wheels while the communications
devices are still working causes physical anchoring of the swarm and thus the
incompletion of the task. This observation is significant because it demonstrates
that instead of a graceful degradation of performance in the event of failure to
individuals in the robot swarm, in some cases, the failed individuals may and can
themselves cause interference that leads to catastrophic failure. This observation
is also demonstrated previously in GroS8 et al. [7] for a group transport task in
which a partial failure to one robot in a group of six robots makes the transport
of a 3kg object impossible. Hence, it is important to ensure that the SRS are also
tolerant to this kind of failure.

In summary, to transition swarm robotics research from laboratory to real
world implementation, important issues such as the dependability of the robot
swarm - not exhibiting undesirable behaviour, adaptivity to uncertain time-varying
real world environment, and fault tolerance to partial failure needs to be ad-

dressed.

2.3 Summary

This chapter has presented a historical account of swarm robotics from the early
work in swarm intelligence to relevant inspirations from natural systems which
laid the foundations of swarm robotics. In Section 2.1, a brief background of the
swarm intelligence was presented from the first use of the term ‘swarm intelli-
gence’ in the late 1980s to describe a group of cellular robots to the current dis-
cipline encapsulating work in both natural and artificial swarm intelligent sys-
tems. Since artificial swarm intelligent systems were inspired by their natural
counterparts, the relevant natural swarm systems and their biological principals
were also presented and discussed. To provide a clearer picture of the mapping
from natural swarm systems to artificial swarm systems, two examples (ACO

and PSO) were provided from the biological inspirations to the development of
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artificial swarm algorithms.

Swarm robotics is an instance of artificial swarm systems inspired by natural
swarm systems, in particular by ant colonies. Section 2.2 presented the charac-
teristics of swarm robotic systems according to Sahin [3] that distinguish it from
other multi-robot systems. As the natural counterpart, swarm robotic systems are
complex and research work on them has covered a wide range of topics from the
modelling of a single robot, to various swarm tasks that may or may not require
cooperative effort.

Because most of the current research in swarm robotics has been implemented
in the laboratory, one of the challenges is to make sure that swarm robotic systems
behave the same in the real-world environment. Thus, Section 2.2.3 reviewed
some of the challenges related to the transfer of swarm robotic systems from the
laboratory to real-world implementation. Traditionally, it has been assumed that
in swarm robotics, fault tolerance is implicit as provided by the large number of
robots in the system. The redundancy of robots allows for a graceful degradation
of the performance in completing a given task. However, the work by Winfield
and Nembrini [1] and Gro8 et al. [7] have revealed that there are exceptions. It
was demonstrated that robots with partial failure to some components can and
will interfere with the completion of a given task and thus have a detrimental
effect on the swarm. Therefore, additional mechanisms need to be put in place to
handle this type of situation. In recognition of this, the next chapter will review
common fault tolerance approaches and in particular those which are applicable
to swarm robotics.
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CHAPTER
THREE

Fault Tolerance in Swarm Robotics

Fault tolerance is essential in swarm robotic systems. Generally, fault tolerance
is implicitly present in swarm robotic systems due to the redundancy of robots
in the swarm. However, there are exceptions [1]. In many tasks, faults must
be handled explicitly for the system to be fault tolerant [12]. In Section 3.1, the
logical differences between a fault, an error and a failure, which is relevant to ex-
plain the context of the error detection as part of a three-stage error detection and
recovery approach is presented. Then, Section 3.2 reviews the common fault tol-
erance approaches which can be classified into redundancy-based, and explicit
error detection and recovery. This is followed by a general overview of some
of the challenges in addressing fault tolerance in swarm robotics in Section 3.3.
Then, related work on error detection in swarm robotics is presented in Section
3.4. Lastly, Section 3.5 introduces the potential of artificial immune systems for
error detection by reviewing related immunological background and the Recep-
tor Density Algorithm (RDA) which is a particularly appealing AIS algorithm for

error detection.

3.1 Logical Difference Between a Fault, an Error, and

a Failure

Any system, even with a reasonably well-defined operational environment, may
still experience undesirable behaviour due to a variety of reasons. The undesir-
able behaviour may be caused by flaws in the development stage or outage due
to the operational environment, which is particularly relevant for SRS deployed
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in real-world. These undesirable behaviours can be viewed at three logical levels:
faults, errors, and failures [78].

A fault is a defect that occurs in some parts of a system [78]. A fault that
occurs during one development stage may not be manifested immediately but
rather become apparent at some later stage. For example, a programmer’s mis-
take is a fault; a short-circuit in an integrated circuit is a fault; an electromagnetic
perturbation is a fault; and an inappropriate man-machine interaction during sys-
tem operation is also a fault [79, 78]. In robot swarms, faults that can occur to a
robot can be component faults such as faulty wheels, sensors, or the circuitry.

In general, faults to systems can be further classified into various categories
such as development faults, physical faults, and interaction faults. Avizienis et al.
[78] present a taxonomy of faults and a comprehensive description of each cate-
gory. To be aware of the many possible causes and nature of faults is important.
It reflects the amount of work involved and aspects to be taken into consideration
for the realisation of real-world SRS.

A fault may not be directly observable, but its effects, referred to as errors, can
be observed [80]. In other words, an error is the manifestation of a fault in the
system. For example, faulty wheels on a robot might not be directly observable
(unless they have physically fallen apart), but its effect on the behaviour of the
robot (i.e. the operational data) can be observed. By analysing the changes in
data, it is possible to be aware that something has occurred. The approach to
infer the presence of a fault based on the operational data is referred to as data-
driven error detection [9].

If an error is activated during the operation of a system and not rectified, it
can lead to a failure of the system [79, 81]. In swarm robotics, the failure can be in
the form of uncompleted tasks. In Winfield and Nembrini [1], faulty wheels of a
few robots eventually leads to the anchoring of the whole swarm and the swarm
is unable to move to the target location.

In short, an error is the manifestation of a fault in the system, and a failure
is the manifestation of an error on the service. Thus, a failed system is the one
which cannot deliver its intended service. A failure, if not handled properly,
can lead to further faults and errors. This chain of events is depicted in Figure
3.1. In the figure, the arrows express the causality relationship between the three
impairments. A fault, once activated, leads to errors. These errors propagate and
eventually leads to a failure. A failure that is not rectified may cause other faults
and thus initiate a chain of events.

Therefore, the ability to detect errors and rectify faults is crucial to prevent

failures to systems. This is to ensure that the system is fault tolerant, to be able of
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causation

activation propagation
fault ———» error ——— - failure

Figure 3.1: Chain of fault-error-failure.

continued operation in the event of faults in some its parts. In general, there are
a number of approaches to address fault tolerance in systems. The next section

present related work on error detection in swarm robotics.

3.2 Fault Tolerance Approaches

Fault tolerance is the ability of a system to operate continuously even in the pres-
ence of faults [79]. From the literature, fault tolerance approaches can be gener-
ally grouped into two categories: tolerance through redundancy, and tolerance
through explicit error detection and recovery (EDR). Redundancy is the most
common fault tolerance approach and it can be achieved either with hardware re-
dundancy, software redundancy, or a combination of both. However, for swarm
robotics, software redundancy is often not considered for the detection of com-
ponent faults. Software redundancy involves the usage of additional codes, or
routines to check the correctness or the consistency of the results produced by a
given software. Although the controller can be faulty as well, it is generally as-
sumed to be working to focus on the component faults. EDR on the other hand

involves a three-stage process of error detection, fault diagnosis, and fault recov-

ery.

3.2.1 Hardware Redundancy

Hardware redundancy involves the inclusion of additional hardware that carry
out concurrent computations and the final output is based upon the result of
some voting mechanism. Alternatively, duplicated hardware can be used as a
backup and will be turned on automatically to replace failed components [81].

The most common hardware redundancy technique is the N-Modular Redun-
dancy (NMR) [81]. With NMR, a system is equipped with N redundant hardware
processing the same input. In case of any discrepancies, the output is determined
with the use of a majority voter.

The most basic form of NMR is the Triple Modular Redundancy (TMR) [81].
Figure 3.2 shows a simple arrangement for a TMR. In this case, there are three
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identical units performing the same computation concurrently and their outputs
are fed to a majority voter. As long as at most only one unit produces incor-
rect output, the system will produce a correct output. If more than one unit is
expected to be faulty, then more units need to be included. An example is in
Sklaroff [82] in which five redundant computers are used in an expanded TMR
voting scheme on the space shuttle. A general rule on the number of redundant
hardware to include is 2k+1 to tolerate k faulty units.

Unit

—» 1 —»

input output
» 2 —ivoter >

Figure 3.2: Triple Modular Redundancy. The same input is fed to three identical
units and the output of the system is determined by majority voting carried out
by a voter.

Hardware redundancy is simple but expensive to implement due to the extra
units and interconnections between components.

In swarm robotics, hardware redundancy is implicitly present at the system
level due to the number of robots in the SRSs. At the individual-level, hardware
redundancy can be achieved with additional components or sensors on the robot.
However, hardware redundancy at the individual robot level is typically not a vi-
able option as the additional hardware increases the cost of implementing the SRS
and the power consumption for a robot, which is relatively limited. In addition,

any additional hardware added is also subject to faults itself.

3.2.2 EDR: Explicit Error Detection and Recovery

Fault tolerance through EDR (explicit error detection and recovery) is another
common approach and particularly common in engineering disciplines. EDR in-
volves a three-stage process: error detection, fault diagnosis, and fault recovery
[8] (see Figure 3.3). Error detection identifies erroneous states while fault diag-
nosis determines the causes of an error including the nature of the fault and the

exact location of the fault. When the causes and location of a fault have been

33
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identified, recovery measures can then be carried out to prevent the fault from re-
occurring. This can be done by either disabling the faulty components from being
invoked again or repair the faulty unit. If a failure still persists after a recovery
measure has been carried out, that information may be used as a form of feedback
to the error detection and fault diagnosis mechanism for tuning and maintenance

purposes.

feedback

(’a:tivation m
error detection — fault diagnosis — recovery

Figure 3.3: Three stages in EDR: error detection, fault diagnosis, and recovery.
The activation of recovery is dependent on the output from the fault diagnosis,
which in turn depends on the error detection.

The function of the error detection stage is to determine whether a system is
behaving within its boundaries, i.e. whether it is behaving normally. Generally,
there are only two states in which a system can be in, normal or abnormal. In
other words, error detection in the EDR approach can be treated as an equivalent
to a two class anomaly detection problem.

In robotics, there are two approaches in which error detection are generally
carried out: model-based and data-driven approaches. In model-based approach,
a model of how the system should behave is constructed and actual observations
during operation are then compared against this model. A deviation from the
model is interpreted as being a symptom of a fault. The problems with this ap-
proach is that constructing the models are difficult and often infeasible for sys-
tems deployed in the real-world [9]. To address this problem, an alternative ap-
proach referred to as a data-driven approach infers the presence of a fault solely
based on the data during the operation [9]. The error detection is still based on
the deviations but no models are constructed prior to deployment. Rather, the
deviations are calculated based on observations during the system’s operation.

In fault diagnosis, the output from error detection is used to locate the cause of
the fault. This often involves the use of a priori knowledge in mapping between
the observations and the failures [83]. The mapping may be explicitly specified
in the form of lookup table or inferred from domain knowledge. The challenge
in an effective fault diagnosis is acquiring the domain knowledge and mapping
it to obtain an accurate diagnosis of the specific fault. There are a number of
approaches proposed over the years on obtaining the domain knowledge. A 3-
part companion paper [83, 84, 85] provide details on these approaches.
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After a fault is identified, recovery mechanisms can be carried out accordingly.
A simple recovery measure can be to shut down a faulty system or faulty units
permanently, or restarts after a period of time. Other more advanced recovery
measures include containment of faulty units, self-healing [86], reverting to pre-
viously error-free state (backward recovery), finding a new stable state (forward
recovery), or compensation with redundancy [79].

Amongst the three stages in EDR, error detection is probably the most impor-
tant stage because it is the first stage in the process and the activation of subse-
quent stages depends on the error detection mechanism to function properly.

In swarm robotics, applying EDR for fault tolerance on top of the redundancy
of robots is the most promising approach compared to hardware redundancy. Al-
though it is still relatively new, some existing work on error detection [9, 10, 13],
fault diagnosis [87], and recovery [86] can be found. However, for the existing
work on error detection, the aspect on the effects of uncertain time-varying en-
vironment on the error-detection ability has been largely ignored. Because the
environmental condition in the real-world is often dynamic and judging from the
potential applications of swarm robotics [3], the issue of adaptivity to the environ-
ment is important. The next section will review existing work on error detection

in swarm robotics.

3.3 Fault Tolerance Challenges in Swarm Robotics

The results from Winfield and Nembrini [1] demonstrate that explicitly deter-
mining faulty robots for fault tolerance is an important topic towards realisation
of swarm robotics research for real-world application. The reason is that some
faults on individual robots may cause the whole system to fail even though there
are still many fault-free robots in the system. Therefore, future research need to
consider the consequence of partial robot failures and design measures to counter
the effect of such partial failure [1]. Although the observations in [1] were specific
for swarm taxis, it is used as a general motivation for current work.

In current swarm robotics research, there is little work on the explicit fault
tolerance to deal with partial component failure. One notable work is by Chris-
tensen [9] within the Swarm-bot project [61] in which the author looked at the
detection of internal hardware faults (endogenous detection), and faults that oc-
cur on other robots (exogenenous detection) with s-bot robots. Another work is
by Mokhtar et al. [13] within the Symbrion project [69] for the detection of faulty
Sensors.

There are many challenges towards fault tolerance in swarm robotics with
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explicit detection. First of all, since there is no centralised control and global in-
formation, how to identify which robot or which component is faulty? Secondly,
for SRS in real-world, there are abundance of interferences and the environment
is uncertain and often changes as time progresses (time-varying). Thirdly, as dis-
cussed in Section 2.2.3, individual robots are often limited in battery and com-
puting power. Therefore, it would be an added advantage if the detection mech-
anism is lightweight in resource usage.

To address some of these challenges, inspiration from other disciplines may
provide some valuable insights. For example, studies of self-isolation in social
insects [88] may provide a good source of inspiration on the detection of faulty
robots. Also, concepts from Social Comparison Theory [89] can provide impor-
tant ideas for decision making in uncertain time-varying environments. Chapter
4 will explore these ideas and propose the idea of self-detection for the identifica-
tion of faulty robots and coping with time-varying environments.

Before a more detailed discussion on error detection in swarm robotics, it is
worth clarifying the terminologies and conventional approaches to address fault

tolerance in engineering disciplines.

3.4 Related Work on Error Detection in Multi-Robot

Systems

The error detection in the EDR is responsible for inferring the presence of faulty
components. As the construction of accurate models on how the robots should
behave (i.e. model-driven) in dynamic environment is difficult and not feasible,
data-driven approaches to error detection are preferable. Based on the detection
target, Christensen et al. [11] classify data-driven error detection approaches in
multi-robot systems into endogenous and exogenous detection. Note that they
refer their work as fault detection instead of error detection. However, based on

the definition in Section 3.1 it will be referred to as error detection in this thesis.

3.4.1 Endogenous Error Detection

An endogenous error detection refers to the detection of errors that occur inter-
nally by an observer robot [9]. Therefore, each individual is responsible to de-
termine whether itself is fault-free. If an observer robot is responsible for the
detection of errors on other physically separated robots, the detection is referred

to as an exogenous detection.
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Artificial Neural Networks (ANN) is a popular approach to error detection
in robotics. In Terra and Tinés [90], an ANN was used in conjunction with ra-
dial basis function (RBF) for the detection and isolation of faults on the joints
in robotic manipulators. A multilayer perception (MLP) with back-propagation
algorithm was used to produce the dynamics of fault-free system before it was
tested. The outputs of the ANN are then compared with actual position and ve-
locity measurements. The difference, the residual vector, is then analysed with a
RBF network to detect and isolate the faults.

In Skoundrianos and Tzafestas [91], local model networks (LMNNSs) were
used to detect faults in the wheels of a mobile robot. The LMNNs were used
to capture the input-output relationship between the voltages applied to the mo-
tor driving the wheels and the speeds of the wheels. In operation, the predicted
speeds by the LMNNSs are compared to the actual speeds. The difference, the
residual, are computed using change-detection algorithm. The source of faults

can then be found by analysing the values of the residuals.

Christensen et al. [11] employed a variant of ANN called Time-Delay Neural
Network (TDNN) to detect hardware faults on s-bot robots through the exami-
nation of sensory inputs. TDNNs [92] are modified ANN with the addition of
delays as shown in Figure 3.4. In the figure, delays D, through Dy are added to
the basic unit of an ANN. Each input is multiplied by several weights, one for
each delay and one for the undelayed input. For instance, a TDNN with N = 2
(two delays) and J = 16 (16 inputs) has 48 weights (3 x 16 = 48). The learning
of a TDNN is through a backpropagation process [93]. Backpropagation involves
two passes through the ANN: forward pass and backward pass. In forward pass,
an input is applied to the network with its current connection weights (initially
set either randomly or predefined). Calculated output is then compared with de-
sired output and its error is calculated. During the backward pass, the derivative
of this error is propagated backwards through the network, adjusting weights
to minimise the error. This process is repeated until the network converges to
produce the desired output.

Whilst the error detection with TDNNSs produces positive results for the ex-
periments in Christensen et al. [11], the authors pointed out that TDNNSs con-
sume huge resources and can be problematic for resource limited SRS. Due to the
number of inputs, the number of connection weights for the TDNNs was very
large, up to thousands. If more inputs were used, the number of weights would
increase at a rate equals to the number of inputs times the number of neurons
in the hidden layer [9]. This affects the scalability of this method. As with other
ANN, they reiterate that the amount of training data required is important. Thus,
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Output

Figure 3.4: A Time-Delay Neural Network unit [92]. For each unitu € U, N delay
units are added. Reprinted with kind permission from IEEE: ASSP [92], copyright

(1989).

a sufficient amount of training data needs to be collected. As noted in Christensen
[9], any changes in the control program or faults also require retraining of the

networks.

Endogenous error detection utilising multiple fault models on how the sys-
tem should behave is another interesting approach. In this approach, faults are
estimated based on how close the current state of the system is to the fault mod-
els. In Roumeliotis et al. [94], four Kalman filters (the models) are used to detect
sensor faults. Each filter produces a residual by comparing the actual sensor val-
ues and the predicted values. Then, the residuals are fed into the detection and
identification modules. The faults are then identified based on hypothesis testing
on the residuals. This work was later extended in Goel et al. [95] to employ an
ANN in the fault identification module. A potential problem with Kalman filters,
in its basic form, is that it is assumed that the modelled system can be approxi-
mated. However, robotics systems are nonlinear, in particular when deployed in
real-world environment [9].

Recently, artificial immune systems (AIS) has also been applied to error detec-
tion in multi-robot systems. In Canham et al. [10], an error detection based on the
negative selection process in the vertebrate immune system was implemented on
a Khepera robot, and a BAE System Rascal™ robot. In the immune system, the
negative selection process is observed in the thymus. In the thymus, a group of
immune cells called the T-cells undergo a maturity process called negative se-
lection before being released into the body. In this process, the T-cells that bind
to the body’s local molecules (self protein) are removed. T-cells that survived
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this process are released from the thymus and distributed throughout the body
to monitor non-self protein. From this observation, Forrest et al. [96] devised
the Negative Selection Algorithm (NSA) involving the definition of self, genera-
tion of detectors in the complementary space of self and applying the detectors
to classify new data as either self or non-self. This is similar to the model-based
approach in which the models of expected behaviour are predefined. It was re-
ported that the implemented NSA-based detectors managed to detect all errors
that are greater than a predefined threshold and correctly identified unseen data

as erroneous.

Based on the NSA, if the behaviour of a system can be expressed as a function
that maps a single input to a single output in a deterministic manner, then data
that described a system state during all normal behaviour is treated as self [10].

Deviation from this data is considered to be non-self and said to be erroneous.

Error detection in Canham et al. [10] is a two-phase process: the learning
phase and the monitoring phase. The learning phase generates self detectors that
represent normal or the steady state of the system. The data is the set of infrared
sensor values and corresponding motor speeds. Detectors are initially created
blank and then training data applied to the detectors. If data falls within a detec-
tor, a window is generated spanning the limits of the data within that detector.
When more data falls within a detector’s windows, the height of the detector in-
creases to cover the data. If a detector’s height is greater than a specific range (or
threshold), it is split into two new blank detectors and previous data is re-applied
to them. This process is repeated until the specific threshold is maintained. Using
this approach, the robot learns a priori the states that are considered as self (fault-
free) and non-self (faulty). In the monitoring phase, data that does not match
the self detectors are treated as errors. No further learning of self is done in the
monitoring phase.

A drawback of the error detection in Canham et al. [10] for SRS in the real-
world environment is that the errors are predefined and no adaptations made to
dynamic changes. If the operational environment of the SRS is dynamic, a high
level of false positives might occur because the new fault-free states have not been
encountered before. Similarly, if new errors were introduced to the system, this
method has no capability to detect such new errors. This can results in a high
level of false negatives.

Mokhtar et al. [13] implemented an error detection system employing a mod-
ified version of the Dendritic Cell Algorithm (DCA) in a resource limited micro-
controller as part of an integrated homeostatic system in the Symbrion project
[69]. The DCA [97] was developed based on the abstraction of the functionalities
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of the dendritic cells in the immune system. Dendritic cells are responsible for
some of the initial pathogenic recognition process, sampling the local environ-
ment for antigens, and differentiating between the semi-mature or mature state
depending on the concentration of signals, or perceived misbehaviour, in the host
tissue cells [97].

Mokhtar et al. [13] adapted the initial DCA for an online implementation with
an emphasis on the resource limitation on the chosen micro controller. Their im-
plementation is referred to as the mDCA. The antigens to the mDCA are the sen-
sor values and signals are derived based on deviations among sensor values dur-
ing system operation. The mDCA was able to detect two faults: stuck-at-value,
and random sensor values. Results obtained showed that the mDCA is capable of
immediate online detection of errors.

The work in Mokhtar et al. [13] as well as Christensen et al. [11] and Canham
et al. [10] was demonstrated for an endogenous error detection utilising only data
from a single individual. This could be an under utilisation of the advantage pro-
vided by the many interacting robots in SRS that can be harnessed for a possibly
more efficient detection. Whilst the endogenous error detection with data from
a single individual is suitable for SRS in non-dynamic environment or in situa-
tions in which the data are not influenced by the changes in the environment,
it might not be in uncertain time-varying environments. Utilising data from all
robots within a local neighbourhood can be potentially useful when dealing with
dynamic environment as an observer robot can use these data to cross-reference

it’s own behaviour with other robots.

3.4.2 Exogenous Error Detection

Exogenous error detection refers to the detection of errors on other physically
separated robots by an observing robot.

Exogenous error detection often requires relatively complex robots to track
progress of the tasks, and thus (in one way or another) some form of global
knowledge. This form of error detection is often incorporated as part of the con-
trol mechanisms. In Parker [98], an architecture for cooperation among teams of
heterogeneous mobile robots called ALLIANCE was introduced. Based on the
ALLIANCE architecture, each robot in a team has a number of task-achieving
behaviours. These behaviours are grouped into behaviour set so that competing
actions cannot be pursued in parallel. The activation of the behaviour set is con-
trolled by a mathematically modelled variable called motivation. When a robot
fails to achieve satisfactory progress on its current task (maybe due to faults or
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failures), its motivation for performing the current task decreases and eventually
it abandons the task. This robot can then try to perform other available tasks
that it may still be able to perform. Alternatively, if another robot discovers that
there is no progress in the task undertaken by the failed robot, the motivation of
the robot to perform the same task increases and eventually takes over. When a
robot is performing a task, it will broadcast a message to other robots informing
them about its current activities (hence, decreasing the motivation of other robots
for the same task). The ALLIANCE has been demonstrated to be able to produce
high degree of fault tolerance.

Gerkey and Matari¢ [99] used MURDOCH, a general-purpose task allocation
system to implement a distributed pusher-watcher system for box-pushing task.
The robots used are heterogeneous robots with different capabilities. The pusher
can see the box to be pushed (cannot see the goal) while the watcher can see the
destination where the box should be pushed. The watcher (coordinator) needs
to guide the pushers to push to box to the goal. In MURDOCH, when a task is
to be assigned, the task is put up for auction by broadcasting the task announce-
ment and capable robots bid for the task. The bid is time-limited contract with
the best-suited robot wins the auction and consequently executes the task. In the
experiment, the watcher monitors the progress of task completion by pushers. If
a pusher robot fails to complete the task within a given time duration, it is con-
sidered ineligible for further tasks and the task will be re-assignment to another
robot.

In Dias et al. [100], a TraderBots approach to coordinate multi-robot system
was presented. Similar to MURDOCH, TraderBots is also inspired by the con-
tract net protocol by Smith [101] for explicit communication and control. In their
approach, strategies such as frequent auctioning and bidding to reallocate tasks
among robots, monitoring communication connectivity to robots with subcon-
tracted tasks, and continuous scheduling of assigned tasks for execution as tasks
are completed are employed. Partial robot malfunctions are detected by mon-
itoring the resources available to the robot. In this case, unforeseen depletion
of resources is assumed to be a partial robot failure. Once an error is detected,
the robot will reallocate all the tasks it cannot complete to other robots. Robot
death is detected by monitoring periodic signals from robots. Once a dead robot
is discovered, all tasks assigned to that robot will be reassigned to other robots.
This approach assumes global communication capacity and every robot is able to

sense other robots in the environment.

The approaches mentioned above are for multi-robot systems consists of rel-
atively complex robots with high-level coordination and sophisticated reasoning
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[9]. The robots often allocate task and track the progress of the mission by com-

municating over a network.

In swarm robotic systems, simpler robots are employed and the behaviour
of a robot is based on the local sensing and communications. In Christensen
et al. [12], an exogenous error detection on a follow the leader task in which a pre-
assigned leader robot tries to detect errors on a pre-assigned follower robot. The
leader moves around in the environment and the follower tails the leader and tries
to stay at a distance of 35 cm. If the follower falls behind, the leader waits. During
a training phase, the sensory data from the leader robot is collected whilst faults
were injected to the follower robot. The data was correlated with the fault-state
of the follower robot and a TDNN was trained to detect the errors. Results show
that an exogenous error detection is possible. However, only two robots were
involved in the experiment and they were pre-assigned. As noted by the authors,
they are other issues to be considered such as the scalability to more robots and
how to correlate the fault-state with more than one robot that may or may not be

within a sensory range.

In Christensen et al. [102], an exogenous error detection inspired by the syn-
chronisation phenomenon of fireflies that flash in harmony was presented. The
tireflies” synchronisation is an example of coupled oscillating systems referred to
as pulse-coupled oscillators, where one oscillator only influences other oscillators
during short, periodic pulses [102]. Each robot acts as an pulse-coupled oscillator
and when the activation of the oscillator reaches a certain threshold, the robot
lights up its red LEDs and resets its oscillator. When neighbouring robots (within
50 cm) visually detect the flash, they increment their own activation and flash
in synchrony after a period of time. A robot is assumed to be faulty if it does
not flash its LEDs in synchrony with a neighbouring robot. An observer robot P
flashes its LEDs and monitors whether an observed robot () flashes as well after
a period of time. If () does not flashes, () is treated as suspicious of faults. Then P
flashes the second time and observes whether () flashes. If after the second flash
and (@ still does not flashes its LEDs, () is detected as faulty.

This approach works on faults that directly affecting the flashing of LEDs such
as hardware input-output (I/O) fault but not on faults such as broken wheels or
a toppled robot [102]. For those type of faults, it has to resort to the endoge-
nous detection. At some level, this approach demonstrates that cross-referencing
a robot’s behaviour against others is plausible and in some cases sufficient for
the detection of errors. The work in this thesis is related to this approach but
implemented in the context of an endogenous error detection.
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3.5 The Potential of Artificial Inmune Systems for

Error Detection

Related work in Section 3.4.1 on error detection in swarm robotics reveals that
many inspirations from biology have been applied to problems in swarm robotics.
In particular, algorithms inspired by the vertebrate immune system, i.e., the AIS,
have been successfully implemented in Canham et al. [10] and Mokhtar et al.
[13]. Due to very close analogy between components in the immune system and
swarm robotics, swarm robotics has been identified as the domain in which AIS
can potentially be very effective [103]. In addition, the similarities between AIS
and SI provides a good indication that both paradigms can be used together as

complementary tools to solve complex engineering problems [20].

3.5.1 AIS: Artificial Immune Systems

Like many new computing paradigms, there is a number of definitions for AIS
over the years. However, the central theme is the same in that the source of
inspiration is from the vertebrate immune system. To ground the discussion on
AIS to a single definition, this work adopts the definition in de Castro and Timmis
[15] that defines AIS as:

. adaptive systems, inspired by theoretical immunology and observed immune
functions, principles, and models, which are applied to problem solving.

From an engineering perspective, the definition of AIS in de Castro and Tim-
mis [15] covers two important aspects. First, AIS is inspired by but not constrained
by the biological processes of the immune system. This has the implication that
the developed AIS do not have to be an exact equivalent of the immunological
processes from which they are based on. Rather, it is an abstraction of relevant
immunological properties that can be utilised for problem solving. To abstract the
relevant properties require collaborations amongst researchers from various dis-
ciplines, as proposed in the conceptual framework [104]. Secondly, the primary
motivation of developing an AIS is to solve engineering problems.

The early work on AIS can be traced back to the early 1990s by Ishida [105],
Bersini and Varela [106] and Forrest et al. [96]. These early work are impor-
tant because they provide a platform that attracts many researchers to the field.
Many of these AIS algorithms are examples of interdisciplinary work. However,
in more recent years, there are instances of AIS that have drifted away from the
more biologically-appealing models and attention to biological detail, with a focus on

43



3.5 The Potential of Artificial Immune Systems for Error Detection

more engineering-oriented approach [104]. These AIS work are criticised to suffer
from what is described as reasoning by metaphor [104] in which the AIS algorithms
were developed directly from a naive biological model without much analyti-
cal framing of the representation’s properties. Consequently, an initiative called
immuno-engineering [107] which is inline with the conceptual framework [104]
was proposed for the development of biologically grounded and theoretically under-
stood AIS.

The AIS algorithms are inspired by immune models such as self-nonself dis-
crimination, clonal selection [108], immune network theory [109], danger theory [110],
and tuneable activation threshold [111]. Table 3.1 list of some of the examples of AIS

algorithms and the corresponding inspirations of the immune system.

Table 3.1: Example of AIS algorithms and their corresponding immune inspira-
tions.

] Immune inspiration \ AIS algorithm ‘
Negative Selection NSA [96]
Immune Network Theory | aiNET [112], RAIN [113]
Clonal selection CLONAG [114]
Danger Theory DCA [97]
T cell receptor signalling RDA [115]

Over the years, AIS has been successfully applied to a number of problem
domains such as classification, optimisation, control, learning, and computer se-
curity [103].

3.5.2 Immune System Overview

The immune system is typically viewed as a defence system in which its pri-
mary function is to protect the body and fight against harmful microorganisms.
This defence mechanism involves many biological components such as immune-
related cells (e.g. lymphocytes, phagocytes) and molecules (e.g. cytokines, major
histocompatibility complex molecule) that are spread across many organs. The
lymphoid organs, which can be functionally divided into primary and secondary
organs, play a major role in the immune system. The primary lymphoid organs
(e.g. bone marrow, thymus) are responsible for the production and maturation
of immune cells such as lymphocytes. The secondary lymphoid organs (e.g. ton-
sils, adenoids, lymph nodes) are the hosts where interactions between immune
components and pathogens occur [116].

With reference to the ability to recognise and respond to invading pathogens,
the immune system can be broadly split into the innate and the adaptive compo-
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nents. The innate immune system is passed on from parents to children through
heredity (germline encoded) [116]. It can be considered unchanged during the life-
time of an individual. The adaptive immune system is also referred to as acquired
immunity as the immune system also has the ability to initiate responses against
a variety of novel pathogenic materials by producing proteins not encoded in an
individual’s genome at birth. Although the adaptive component is also passed
on genetically, it can change (regions of an individual’s genome) through genetic

rearrangements [117].

The innate immune system can be considered as a first line of defence for
the body. It is made up of immune cells such as phagocytes that can ingest
and destroy foreign materials and plasma proteins that coat surfaces of foreign
cells (broadly referred to as foreign antigens). Phagocytes have surface recep-
tors (evolved over millions of years) that bind to common molecular patterns of
pathogenic materials. These receptors are germline encoded. The binding of anti-
gens to these receptors stimulate the phagocytes to engulf and ingest the antigens.
In comparison to the adaptive immunity, the response time for the innate immu-
nity is faster. In the processes of an innate immune response, active molecules
such as cytokines that initiate and regulate adaptive immune response are se-
creted. In addition, the interactions between the two immune components are
also initiated through the presentation of antigens by the antigen presenting cells
(APCs) in the innate immune system to cells of the adaptive immune system.
The APCs take (engulf) antigenic materials in the environment and process it into
small segments of amino acids called peptides. The peptides are then loaded onto
the molecules on the surface of the APCs called the major histocompatibility com-
plex (MHC) [117]. The lymphocytes, e.g. the T-cell, can bind to the peptide:MHC
complex (pMHC) through its receptors and initiate an immune response.

In the adaptive immune system, the molecular pattern on a cell’s receptors can
change during the lifetime of the individual. This allows the adaptive immune
system to protect the body against pathogens not recognisable by the innate im-
mune system. A class of cells called the lymphocytes is the most important cell
in adaptive immunity. It is the lymphocytes to which the APCs present the anti-
gens [117]. Lymphocytes consist of the T-cells and the B-cells. A receptor on
a T-cell that reacts to the antigens presented by APCs is called a T-cell receptor
(TCR). During an adaptive immune response, a lymphocyte that binds to antigen
and being activated will proliferate and produce clones. These clones will react
the same towards the same foreign antigen as the parent. Different from the T-
cells, the progeny of a B-cell may mutate and this can cause the cell’s receptors
to react differently than the parent. The mutation allows the cells to recognise
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variations of the same type of antigen. In addition to produce clones, the B-cells
can also differentiate into long-lived memory cells that react faster upon second

encounter with the same antigen [116].

3.5.3 Immunological Theories

Over the years, there are many general theories to describe immunology such as
self-nonself discrimination, danger theory [110], and the more recent tuneable activa-
tion threshold [111]. However, there are exceptions to each theory which leads to
the proposal of new theories to cover the observed exceptions. However, instead
of viewing those theories as competing, they shall be treated as contributing to-
wards the understanding of the immune system.

The most prominent theory of immunology is that of self-nonself discrimi-
nation which states that the immune system (via the T-cells) protects the body
against foreign microorganisms through the discrimination of molecules pro-
duced in the body (self-peptides) and those of external microorganisms (foreign
peptides) [117]. The production of T-cells that are capable of detecting nonself-
peptides occur in the thymus through a process called negative selection. This
theory requires that there are no T-cells outside the thymus that can interact with
self-peptides [117]. However, there is evidence found in contrary to this basis
such as the lack of immune reaction to foreign bacteria in the gut or food and
autoimmune deceases [110, 118].

From observations on many immune responses that are exceptions to the self-
nonself discrimination, Matzinger [110] proposed an alternative perspective on
immunology coined the danger theory. The danger theory proposes that to initi-
ate an immune response, more complex interactions beyond self-nonself discrim-
ination must have been involved. It suggests that the immune system responds
to damages (cellular stress or cell death) to host cells by detecting the danger sig-
nals [110, 118]. Danger signals are chemical signals released by cells under injury,
stress or uncontrolled cell death. These danger signals are recognised by profes-
sional APCs called the dendritic cells. The dendritic cells can communicate the
information to lymphocytes via immune messenger molecules called cytokines.
The cytokines affects the probability of T-cell activation and thus provide a con-
text to the antigen presented by the APCs [117]. Therefore, an immune response
is only initiated based on the context of the current environment, and thus pro-
vide an explanation to the lack of immune reaction in the gut to foreign bacteria
or food.

The tuneable activation threshold (TAT) hypothesis [111] is a recent theory
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that postulate that the activation of T-cells is dependent on their interactions to
recurrent signals (their recent history). For a T-cell to be activated, the excitation
or stimulation of the cell when interact with an APC must exceed the activation
threshold. However, the activation threshold changes according to recent history
of interactions. For a T-cell that receives continuous interactions with the same
peptides, the activation threshold will become higher. In other words, interac-
tions of a higher magnitude are required to active the T-cell. This means that
the T-cells that interact regularly with self-peptides will have a higher activation
threshold [117]. Similarly, because the frequency of interacting with foreign pep-
tides is low, T-cells will have a low activation threshold for the foreign peptides.
These immunology theories have provided inspirations to the development of
AIS algorithms, some of which have been successfully implemented for error de-
tection in swarm robotics. Amongst these AIS algorithms, the Receptor Density
Algorithm (RDA) is the most recent one and it was inspired by the T-cell sig-
nalling mechanism in the TAT [111]. The RDA, being developed specifically for
anomaly detection problems, is an appealing algorithm for the error detection in
this thesis. Therefore, the next section will provide an overview on the biological

inspiration and the development of the algorithm.

3.5.4 The RDA: Receptor Density Algorithm

The RDA was developed through the extraction of features of the generalised T-
cell receptor, and mapped onto the kernel density estimation [115]. This section
presents the biological background on the activation of the T-cell receptor and the

mapping of the generalised receptor onto kernel density estimation.

Biological Inspiration

Of all pMHC:s presented on the APCs, the TCRs on the T-cells must discriminate
between pMHCs from the body (self pMHCs) and those of foreign pMHCs. The
discrimination is fine grain as the self pMHCs comprises from 99.9 -99.99% of all
pMHCs on a APC [119]. The binding of TCR to pMHC to initiate an immune
response can be seen as regulated by at least four processes: kinetic proofreading,
negative feedback, negative feedback destruction, and tuning [115, 117].

e Kinetic Proofreading: Before a TCR can generate an activation signal, the
binding of a TCR-pMHC must be sufficiently strong and long enough. This
involves energy consumption steps that are reversed when the binding dis-

sociate;
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o Negative Feedback and Base State: As the kinetic proofreading steps pro-
gresses, a signal that progresses in the opposite direction (i.e. reverses the
steps) builds up over time. A negative feedback signal is only generated
when the kinetic proofreading process is equal to or greater than the base
negative feedback;

e Negative Feedback Destruction: If the kinetic proofreading of a TCR is com-
plete, an activation signal is generated. This signal undergoes amplification
(which can be viewed as a positive feedback) and is able to negate the effects
of negative feedback;

e Tuning: On the surface of the T-cells, there are co-receptors. The density of
these co-receptors influence the probability of activation of the T-cells. A
small increase in the density of the co-receptors has the effect of increas-
ing the probability of activation. However, if the increase is large, it has a

negative effect and decreases the probability of activation.

The signals generated during a TCR-pMHC binding can spread to surround-
ing area and affecting the binding of other TCRs with pMHC on the T-cell. First,
when a TCR-pMHC binding dissociates, the pMHC may rebind to a nearly TCR
on the T-cell. Second, the negative feedback generated on a TCR spreads and
dampens nearby TCRs. Third, the negative feedback destruction signal spreads
and protects nearby TCRs from the negative feedback [120]. This signal spread-
ing is a key concept for the development of the RDA.

The Generalised Receptor

The modelling work on the tunability of early T-cell signalling events by Owens

et al. [120] inspired the author to abstract features of the T-cell’s receptors for

computation. The definition of a receptor r, taken from [117], is as follows:
Definition. A receptor r is a tuple (p, n, 3, ¢, ¢), withp,n, 8, { € R:

e p € [0, (], the receptor position;

o n > 0, the generated negative feedback;

e [3 > 0, the base negative feedback barrier;

o (€ (0,00),0 > f3, the length of the receptor;
e ¢ ={0,1}, the receptor output. c =1 if p > /.

This definition of a receptor is an abstraction of the internal component of the TCR
in which p represents the kinetic proofreading state, n represents the generation
of negative feedback, 3 is the base negative feedback, ¢ is the final kinetic proof-
reading state for T-cell activation, and c is whether the T-cell is activated [117].
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A receptor behaves as follows [117]:

e areceptor receives a sequence of input {u,} at discrete time ¢;

e the receptor position p; and negative feedback n, are updated accordingly.
If p, is greater or equals to base negative barrier /3, then a negative feedback
is generated. The update of p;,; and n;, is according to Eq. 3.1 and Eq. 3.2.

Pr+1 = bpe + uy — any, 3.1)

dny, if p, <
Ny = 4 ' (3.2)

dnt + 9, if Dt Z ﬁ
with b > 0 is the receptor position decay rate, d < 1is the negative feedback
decay rate, b < d,a > 0 controls the influence of negative feedback, g > 0 is
the negative feedback growth rate.
e If p, is greater than or equals to /, then a receptor activation occurs and c is

set to 1.

Mapping The Generalised Receptor Onto Kernel Density Estimation

The target AIS algorithm from the modelling work on the tunability of the TCR is
anomaly classification [117]. Formally, given a sequence of values (e.g. training
data) x3, X2, ..., X, € X, the task is to classify a subsequent value v as normal (class
C1) or anomalous (class Cs).

Assuming all training data belong to class C;, the new data v may belong to
class C; with probability P(C;) and class C; with probability P(C;). The new data
v is assigned to C; if P(C;|v) > P(Cy|v). Based on Bayes theorem, given the data
on the training data C;, then v is assigned to C; when

p(v[C1)P(C1) > p(v|C2) P(Ca). (3.3)

Kernel density estimation (KDE) can be used on the training data to model the
distribution of C;. KDE is a non-parametric method for estimating the probability
density function of a given set of data x. The probability estimation p(x) is given
by Eq 3.4:

B0 = =Y KETE: Keozo [ Ked-1 G4

K(.) is the kernel function with width %, n is the number of training data. For the
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. —(e—z1)? |
kernel, the Gaussian kernel K (z) = \/%76 2n2 is commonly used.

Since only training data is given, the distribution of anomalous data is un-
known. Therefore, it is assumed that the distribution of the anomalous data is
uniform with a probability « [120]. This assumption recasts Eq. 3.3 as equivalent
to applying a threshold on the estimated probability p(x) in Eq. 3.4. Then, the

classification of v is

Cryifa < Jp 300, K(5)

Classification(v) = (3.5

C,, otherwise.

The abstracted features of the TCR in the computational context allow exact re-
construction of the KDE-based Bayesian anomaly classification [120]. In the case
of univariate data, the receptor position and negative feedback are defined at ev-
ery point x in R. Let the receptor position at x € R as r,(x) and the corresponding
negative feedback as r,(x). Based on the concept of signal spreading in previous
section, the spreading of stimulation from input data x; can be modelled via a
kernel. Thus, the stimulation S(.) from an input data x; given by a stimulation

kernel K,:
1 X — X;

Es(h)

To apply the mapping for anomaly classification, it is split into a training and

S(x,x;) = (3.6)

a testing phase [120]. In the training phase, the receptor position 7,(x) and the
corresponding negative feedback r,(x) are established with the training data. In
the testing phase, the new data v are tested to see whether ,(x) > (.

The RDA works as follow. The spectrum of input value is divided into s dis-
cretised location and a receptor x is placed at each of these locations. A receptor
has a length ¢ = m, a position r,(x) € [0, /], a negative feedback r,,(x) > 0, a
negative feedback barrier 5 € (0, ¢).

During training, the stimulation and negative feedback of each input data x;
on each receptor r,(x) is calculated (Eq. 3.7). If the resulting r,(x) > ( then
a negative feedback r,(x) is generated which acts to reverse the progression of
rp(x). If r,(x) < /3, no negative feedback will be generated, r,,(x) = 0.

Z 1 X —X; rp(x) = B, ifrp(x) > 8
) i—1 nh ( h S ) 0, otherwise el

The receptor position and negative feedback decay over time. During testing,
for a new data instance v recalculate the receptor position r} (x) (Eq. 3.8). If v/ (x) >
¢, then the receptor generates an anomaly classification ¢; = 1 (Eq. 3.9).
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X—V

rh(x) = b x b (x) + gb x K(

) —axri(x) (3.8)

where b € RT is receptor position’s decay rate,
gb € RT is current input stimulation rate,
a € R" is negative feedback’s decay rate.

1, ifrl(x) >4

c(v) = (3.9)

0, otherwise

3.5.5 The Application of AIS to Robotics

AIS has been applied for a variety of areas in robotics from robot control, learn-
ing, to anomaly detection. In Ishiguro et al. [121], an immune network-based
AIS has been applied as a behaviour arbitration mechanism for the selection of
actions given current state of a robot in a garbage collection problem. Given the
distance, energy level, and direction from the base, a robot has to decide whether
it has enough energy to carry out the garbage collection or to return to base for
a recharge. In Singh and Thayer [122], inspirations from innate and adaptive im-
munity were incorporated for multi-robot control for a minefield clearing task. In
Krautmacher and Dilger [123], immune network-based AIS has been proposed
and demonstrated to be feasible for robot navigation in unstructured and un-
known environments in a rescue scenario. Subsequent work in Whitbrook et al.
[124] improves on Krautmacher and Dilger [123] with reinforcement learning for
maze navigation in detecting and tracking door markers.

Neal et al. [125] commented on the lack of appreciation for AIS utilising innate
immune principles in robotics. To demonstrate the potential of innate immune
principles in AIS, they implemented a mechanism of self-monitoring low-level
responses and subsequently feedback to the high-level behaviour control through
artificial inflammation. The states during the lifetime of a robot are represented
with Kohenen’s Self-Organising Map (SOM)[126]. Responses from various in-
ternal sensors serve as input to the SOM and sum of these responses are used
to update the inflammation level. The system then passes the responses, which
correspond to the winning node within the SOM, to the higher level controller.
Results from experiments support the described principles. However, as pointed
out by the authors, manual assignment of fault conditions and associated actions
and the overhead of maintaining a system-wide SOM of robot’s state might be
problematic.
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In Jakimovski and Maehle [127], the authors developed a robot anomaly de-
tection engine called RADE targeted for the realisation of self-healing autonomous
robots. RADE is based on the clonal selection principles and information was rep-
resented with triangular fuzzy logic membership sets. The work has been tested
successfully with a normal robot walking, obstacles collisions, a robot with dis-

connected servo joint motor and a robot with a falling screw on servo joint.

3.6 Summary

This chapter reviewed common approaches to achieve fault tolerance in systems,
in particular those that are relevant to swarm robotics. From the literature on
error detection in robotics, a related terminology that is often used is ‘fault de-
tection’. Often, both terminologies referred to the same problem. To clarify the
differences between a fault, an error, and a failure, Section 3.1 reviewed the work
in AviZienis et al. [78] and Lyons et al. [80] which provide an explanation on the
logical differences between the terms. Based on the definitions, work in this thesis
is referred to as error detection instead of fault detection. An important distinction
between the three terms is that an error is a manisfestation of a fault, and an error
generally comes before a failure. Therefore error detection may enable prevention
of a failure.

In Section 3.2, it was identified that fault tolerance approaches can be gener-
ally classified into redundancy-based, and those involving explicit error detection
and recovery (EDR). Although fault tolerance through redundancy is implicit in
swarm robotics, there are exceptions. For these exceptions, an explicit EDR ap-
proach is more applicable when compared to hardware redundancy (i.e. redun-
dancy of robotic components). However, there are a number of challenges to
implementing EDR in swarm robotics and they are described in Section 3.3.

Error detection is an integral component in an EDR, together with fault diag-
nosis and fault recovery. As part of the ongoing work on EDR in swarm robotics,
this thesis focuses on the error detection component. Therefore, Section 3.4 re-
viewed the current state-of-the-art on error detection in robotics. From the re-
view, it was identified that the aspect of deploying the SRS in dynamic oper-
ational environments has been largely ignored. In addition, most of the error
detection techniques only utilise the data from a single robot’s perspective. This
is potentially an under utilisation of existing data that are provided by the many
interacting robots. Therefore, it is believed these data can be harnessed for an
adaptive error detection in dynamic environments.

Bio-inspired algorithms have been commonly applied for complex problems
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including those that deal with adaptivity to dynamic environments. Within the
domain of bio-inspired algorithms, AIS have been actively explored for error de-
tection in swarm robotics. To provide some background on AIS, Section 3.5 pre-
sented some general information regarding AIS and previous work that uses AIS
in the domain of robotics. One AIS algorithm called the Receptor Density Al-
gorithm (RDA), being specifically developed for anomaly detection problem, is
particularly appealing. Therefore, relevant biological inspiration and algorithm
development are also presented in Section 3.5.

To continue the investigation of whether an adaptive error detection can be
achieved by utilising the data from the interacting robots within a local neigh-
bourhood (i.e. communication range), the next chapter will present the platform

and context in which the experiments will be carried out.

53



Part 11

Error Detection in Swarm Robotics:
Developing an Experimental

Framework
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CHAPTER
FOUR

Experimental Testbed: A Foraging

Robot Swarm

This chapter presents the experimental testbed for the work in this thesis. In Sec-
tion 4.1, the taxonomy of robot foraging as compiled by Winfield [63] is presented
to provide an overview on the various aspects of robot foraging. Then, a descrip-
tion on the simulator, Player/Stage, in which the experiments will be carry out is
in Section 4.2. Section 4.3 presents the robot’s specification, behaviour modules
for the robot controller, and arena layout. The last two sections of this chapter
present the specific fault models of the wheels (Section 4.4) for which the error
detection mechanism has to detect, and the time-varying environmental condi-

tions (Section 4.5) in which the robot swarm operates.

4.1 Taxonomy of Robot Foraging

Foraging is a canonical task in robotics, and particularly in multi-robot systems.
It is a complex behaviour that requires careful consideration of various aspects
of foraging such as behavioural modelling, cooperative transport, software con-
trol, and communication (refer Section 2.2.2). To roboticists, foraging is a useful

benchmark for a number of reasons [63]:

e foraging in social insects, which recently becoming well understood, provides
system-level models and inspirations for various artificial swarm systems.
In other words, the understanding of the underlying mechanisms in forag-

ing allows an easier, faster, and a more realistic implementation in swarm
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robotics;

e foraging involves the coordination of multiple subtasks that are equally
complex and challenging such as exploration, collection, transportation,
homing and deposition of objects in the nest. By investigating different
strategies for each subtask, more efficient solutions may be devised for tar-
geted real-world applications; and

o effective foraging requires cooperation between individuals to communi-
cate the location of food sources, to cooperate with the transportation of
objects that are too large for a single individual, or both. Again, foraging
provides inspiration for many real-world problems such as resource allo-
cation, finding the shortest path and other analogous cooperative transport

problems.

The basic foraging behaviour, as observed in ant colonies, involves the act
of some agents searching for attractors be it food sources or a particular type of
object, collecting or grabbing, and transporting the attractor back (homing) and
depositing it at the nest. These basic actions (behaviour) expressed with a finite
state machine are shown in Figure 4.1. In the model, an agent is always in one of
the four states as depicted with rectangular boxes. This model presents a foraging
process that is continuous, implying the presence of more than one object in the
environment. Also, there is a central collection point (the base).

: found -
Searching —— | Grabbing

resume T lgrabbed
home

Depositing <¢&—— Homing

Figure 4.1: Finite state machine for basic foraging [63].

From this top-level abstract model, variations can be produced depending on
specific research interests and desired level of details. It may be simplified or
complexities added. For instance, foraging for a finite number of objects does not
need to continue indefinitely. Thus, the process ends with the deposit of the last
object. Similarly, more complex foraging tasks may require cooperation between
a certain number of robots to carry an object that is too large or too heavy for
an individual. The variation in robot foraging experiments can be seen from the
taxonomy of robot foraging by Winfield [63] (reproduced as Table 4.1).
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Table 4.1: A taxonomy of robot foraging. Adapted from [63].

Main Category | Sub-category Value
search space unbounded, constrained
source areas single limited, single unlimited, multiple
Environment sinks/bases/homes single, multiple
object types single static, multiple static, single active
. fixed known locations, clustered,
object placement . L
uniform distributions
object placement ratef | constant, time-varying
number single, multiple
type homogeneous, heterogeneous
Robot(s) objec"c sepsing limited, un}imited
localisation none, relative, absolute
communications none, near, infinite
power limited, unlimited, consume object
Performance time fixed, minimum, unlimited
energy fixed, minimum, unlimited
search random wander, geometrical pattern,
follow trail, follow other robots, in teams
Strategy grabbing s%ngle, cooperat%ve
transport single, cooperative
homi self-navigation, home on beacon,
oming follow trail, follow other robotst
recruitment none, direct, indirect
coordination none, self-organised, master slave,
central control
T Added to the taxonomy.

Referring to the robot foraging taxonomy in Table 4.1, Winfield [63] classifies
robot foraging research into four main categories according to the operational en-
vironment of the SRS (Environment), the characteristics of the robots (Robot(s)),
the measurement on the performance of foraging (Performance), and the be-
havioural strategies to carry out the foraging (Strategy). Each category in turn
has several minor sub-categories with several options of value that it can take.
The meaning of each sub-category is self-explanatory but some will be further

described as appropriate.

The Environment category concerns about the characteristics of the arena (space)
in which a robot swarm operates and the objects of interest. Perhaps what is miss-
ing in this category, that is related to option of unlimited objects in the arena, is
the rate in which new objects are added into the arena. This is referred to as the
object placement rate in this thesis. In a controlled environment, the rate is often
constant. However, in natural world, the rate is often dynamic (time-varying)

and can be affected by various factors. Thus, this sub-category is added to the
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existing taxonomy to reflect this fact.

In terms of the characteristics of the forager robots (i.e. the Robot(s) category),
robot foraging experiments differ from one to another in terms of the number of
robots involved, the topology of robots involved, the availability of positional in-
formation such as Global Positioning System’s data, communication and sensing
capability.

The success of the robot foraging task (i.e. the Performance), can be measured
with respect to time and energy. In other words, the aim can be either to minimise
time to forage or to minimise the energy used.

The last main category is the various strategies to carry out the foraging task
itself. From the taxonomy, it is apparent that there are a number of strategies
to carry out the basic foraging activities in Figure 4.1. In terms of the homing
strategies, it is commonly known that in ants, the navigation to food sources and
the nest is based on pheromone trails. However, what is less known is that there
also exists species of ants that do not lay pheromone trails. An example is the
desert ant Cataglyphis fortis. The reason is that in deserts, the pheromones will be
quickly evaporated due to the extreme temperature [128]. For these ants, they rely
on visual landmarks as cues to locate their nest. In the context of robot foraging,
the landmark can be the home beacon, another robot that is also on the same way
back to the base, or a trail [129]. Since the robot following behaviour is a strategy
in searching for objects, it also can be a strategy for homing. Thus, this strategy is
also added to the existing taxonomy.

From the taxonomy of robot foraging in Table 4.1, it is apparent that robot
foraging is a complex task and the selection of a particular value for each of the
variables is difficult and often hard to justify. Therefore, to focus on the specific
problem, this work builds on top of an existing and established work by Liu [42],
and extends it in the context of current research.

To investigate the research question of this thesis from the perspective of data-
driven error detection, the following conditions need to be established:

e E1: A fault to a robot has an observable effect on the behaviour the robot
as indicated by changes in the operational data. For a robot foraging task,
an example of the operational data can be the number of objects collected
within a time interval. Thus, from the perspective of data-driven error de-
tection the presence of a fault can be inferred from the data;

e E2: The environment in which the robot swarm operates has a direct influ-
ence on the behaviour of the robots in the swarm. That is, when the envi-
ronment changes the behaviour of the robots changes accordingly to reflect
such changes; and
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e E3: The robots are functionally homogeneous and act relatively indepen-
dently from each other and no cooperation is involved to carry out the task.
This is assuming that each robot should experience the same effects as the

environment changes.

The robot foraging in Liu [42] is extended for the work in this thesis for a

number of reasons:

e the model has been implemented and tested in simulation and validated
with the macroscopic model. Therefore, there is greater confidence that
when a fault is injected to a robot the observed changes to the behaviour
of the robot is a direct consequence of the fault. Similarly, it also supports
the same premise when time-varying changes that affect the behaviour of
the robot swarm are introduced into the environment. This establishes the
conditions of E1 and E2 to facilitate the investigation of the research prob-
lem from the perspective of data-driven error detection;

e it is a non-cooperative foraging in which the objects can be handled by a
single robot. However, with a swarm of robots more objects can be collected
in a shorter time. This establishes E3; and

e it involves a group of homogeneous robots in which all robots employ the
same controller, and are equipped with the same number and type of sen-
sors. This also establishes E3.

The conditions of E1, E2 are investigated in Chapter 5 and the results from the
experiments provide evidence to support them. The condition E3 is inherently
part of the robot foraging in [42].

4.2 The Simulation Platform: Player/Stage

Given the amount of published work in the robotics literature, the Player/Stage
[130] is probably the most widely used robotic simulation tool. Naturally, it
would be beneficial to implement the foraging SRS in Player/Stage so that the
work can be replicated and shared more effectively.

The Player/Stage' comprises a network server called Player which commu-
nicates with hardware through the source code over a TCP socket and a plug-in
called Stage which receives instructions from Player and moves robots in a simu-
lated world and passes data to the Player.

Latest version of Player/Stage can be found on http://playerstage.sourceforge.net/.
For this thesis, Player 21 and customised Stage 2.1.0 from
www.brl.uwe.ac.uk/projects/swarm/index.html are used.
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Released under the GNU Public License, Player/Stage is a free open source
software and runs on Linux, Solaris, some versions of BSD and Mac OSX (Dar-

win). All code from the Player Project is free to use, distribute and modify.

Player is designed to be language and platform independent. The client pro-
gram can run on any machine that has a network connection to the robot, and
it can be written in any language that supports TCP sockets. Client libraries in
C, C++, Python, and Ruby are officially supported, while Java, Ada, Octave, and
others are supported by third parties. Player supports a wide variety of robots
and hardware, with new hardware easily supported by Player’s modular archi-
tecture and its open interfaces.

A simulation with Player/Stage is composed of three parts: the main pro-
gram, Player, and Stage. The Player takes codes from the main program to con-
trol the robots and redirect data from sensors to the main program. The Stage
interfaces with the Player to receive instructions to move robots in the simulated
world and redirects sensor data to the Player.

There are three basic files in Player/Stage: a .world file, a .cfg file, and a .inc file
[131]. The .world file lists information regarding the arena including the robot,
any other items and layout of the arena. These items can be defined using the
built-in models. For example, a robot can be modelled with a collection of models
including a Position for the robot’s odometry, a gripper model for the grippers, a
blobfinder model to simulate camera, and ranger models to simulate infrared sen-
sors. In each model, there is a list of associated properties that can be set accord-
ingly. For full list of supported models in Player/Stage, readers are directed to
the official documentation on Player/Stage website [132]. The .inc file follows the
same syntax as the .world file. It stores information regarding the configuration
(dimension) of the robot, and any other items to be placed in the arena. For con-
venience of changing a robot’s description when necessary, instead of putting the
description in a .world file, it can be put in a .inc and be referenced to in a .world
tile. Finally, the .cfg file is used by the Player to include all necessary drivers to
interact with the robot. If a real robot is used, the (common) drivers are built-in to
the Player. Alternatively, for simulation, the driver is always Stage [131]. A help-
ful tutorial on installing and creating simulations with Player/Stage is provided
by [131].

All experiments in this thesis have been conducted in simulation (in 2D) using
the Stage plug-in. The reason being that through simulation, it allows data to
be collected easily in a controlled manner. The support for programs written
in C/C++ in Player/Stage has the benefit that the robot foraging in [42] can be
easily adapted to inject the necessary faults and to introduce the time-varying
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changes to the environment in order to establish E1 and E2. The ease to generate
required logs for data analysis means that the same data can be shared with other
researchers for comparison purposes.

Another reason why this work is simulation-based is that during the course of
the work, the physical robots suitable for the experiments were not available. Of
course, ultimately any system developed should be deployed in an actual robotic
system, but experience gained from this simulation process provides insights into
the design, constraints, and limitations in the work when dealing with real robots

in the future.

4.3 Simulation Setting

This section provide the details on the physical specification of the robot and the

robot control designed using the behaviour-based subsumption architecture [49].

4.3.1 Robot’s Specification

The robot’s specification in Liu [42] is based on the Linuxbot developed at Bristol
Robotics Laboratory?. The robot is octagonal-shaped with a dimension of 0.23m
x 0.26m, and a mass of approximately 3.0kg (see Figure 4.2(a)). The robot is
equipped with two wheels, a pair of front-mounted grippers, and an array of
sensors. The robot has two degree of freedom (DOF) for the differential wheels
allowing it to move forward, backward, to the left and to the right.

a b
Figure 4.2: (a) Linuxbot (w)ithout grippers and camer; thtached; image courtesy
of A. Wintfield, Bristol Robotics Laboratory, University of West England. (b) Lin-
uxbot in simulation with front-mounted grippers and camera located at the top
of the robot.

Zhttp:/ /www.ias.uwe.ac.uk/People Pages/a-winfie/linuxbot/linuxbot.htm
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The robot is equipped with the following sensors:

e 3 front-mounted infrared (IR) sensors: on the left, middle, and right. The
range of the IR sensors is 0.2m;

¢ 3 front-mounted light intensity sensors: on the left, middle, and right. The
left and right sensors are 60° away from the middle sensor;

e a colour sensor located a the bottom of the robot;

e one camera located on the top of the robot. The camera has a viewing angle
of 60° and a view distance of 2m;

e 2 beam sensors located on the grippers, one on each side.

Figure 4.2(b) shows the LinuxBot in simulation with attached grippers whilst
Figure 4.3 shows the locations of the various sensors. In the simulation, the
IR sensor is simulated with the ranger model, camera with the blobfinder
model, light sensor with the 1ight model, grippers with beams sensors with the

gripper model, and the LinuxBot’s odometry with the position model.

camera view angle

» A

Infrared sensors

(left, middle, right) Grippers
(beam sensors)

\ Tiﬂ\r T 0

(a) (b)

Figure 4.3: Sensors on a robot. (a) A camera mounted on the top of the robot
and three IR sensors in front of the robot. (b) Beam sensors at each sides of the

grippers.

Table 4.2 is the specification of the LinuxBot in Stage. The size parameter in
the position model specifies the dimension of the LinuxBot. The mass is the
weight of the LinuxBot, and the drive specifies how the robot is driven. This
value “diff” means that the robot can be controlled by changing the speeds of the
left and right wheels independently. The sview parameter in the ranger model
specifies the minimum, and maximum distances that can be sensed, and also the
tield of view (fov) in degrees (i.e.[min max fov)). In the blobfinder model, the
channel_count parameter specifies the number of colours that can be detected
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by the blobfinder, the channels parameter specifies the colours to be de-
tected, and the range parameter specifies the maximum range the blobfinder
model can sense in metres. For the gripper model, the size parameter specifies

the width and length of the grippers.

Table 4.2: The specification of LinuxBot in Stage.

Robot Component Model Configuration
LinuxBot position size [0.26 0.23], mass 3.0, drive “dift”
IR sensor ranger sview [0 0.3 35]
Light sensor light
, channel _count 4, range 2.0
Camera blobfinder | i innels [“blue” “green” “red” “yellow”]
Grippers gripper size [0.07 0.10]

4.3.2 Behaviour Modules

The robot controller for the foraging in Liu [42] was designed using the behaviour-
based subsumption architecture [49]. Subsumption architecture presents a com-
plex behaviour as consists of separate layers of simpler behavioural modules.
Each layer works on individual goal independently. A higher layer has a higher
priority and take precedence (subsumes) over lower layers.

The subsumption-based controller for the robot foraging is shown in Figure
4.4. Upon activation, each behaviour of the upper layers suppresses the lower
layers to take control of the actuators. For instance, the Depositing behaviour has
a higher precedence than the Homing behaviour and thus a robot is in the base
with an object, it will proceed to deposit that object instead of still locating the
base.

sensors

Figure 4.4: Subsumption control architecture for robot foraging. Note that there
is another module Avoidance - not shown in the figure - that is triggered whenever
obstacles are detected.

The behaviour modules are explained as follows:
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e Searching: robot moves forward at a fixed speed, turning left and right at
random intervals. It uses the camera to search for objects of interest in the
arena;

e MovingToObject: when an object of interest is detected by the camera, the
robot moves to the direction of the object. The robot estimates the angle
between its heading and the direction of the object based on the information
from the camera. If there are more than one objects, the robot chooses the
closest one by comparing the pixels of the objects sensed by the camera: a
closer object has more pixels;

e Grabbing: when a robot reaches the object, as indicated by the beam sensors
on the grippers, it closes the grippers to grab the object;

e Homing: if an object is successfully grabbed, the robot moves to the base
according to the information from the light sensors;

e Depositing: when the robot arrived in the base, it deposits the object in the
base;

e Avoidance: at any time except during Grabbing, the robot avoids other robots

and obstacles by examining the information from the IR sensors.

4.3.3 Arena Layout

The arena in which the robot swarm operates in the simulation is an octagonal
shaped area of 10m x 10m with a circular base of 2m in diameter located at the
centre (see Figure 4.5). The base is coloured green as a visual indicator of the area.
A light post is located at the centre of the base. Objects can be placed anywhere in
the arena but must be 1.5m from the centre of the base and 0.5m from the edges
of the arena. Each object is an red-coloured square box of 0.05m in length.

4.3.4 Foraging Operation

To show the transition from one behaviour to another for foraging in simulation,
Figure 4.6 is a graphical representation, using a state diagram, of a robot foraging.
Each of the decomposed low-level behaviours in foraging is represented as a state
in the diagram. Transitions between states are triggered by events perceived by a
robot’s sensors as well as initiated by the main program.

When the simulation starts, all robots depart from the base and the heading
for each robot is calculated accordingly. With n robots, the direction for robot

2X

Ri = i x 27 All fault-free robots move with a default speed of 0.15m.s~"'. The

movement of a robot is controlled by two variables: the turnrate and the speed. A
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< 10m >

Figure 4.5: The dimension of the arena in which a foraging SRS operates is 10m x
10m octagonal shaped with a base of 2m in diameter located at the centre of the
arena.

positive value for the turnrate causes the robot to turn to the left whilst a negative
value causes the robot to turn to the right. Similarly, a positive value for the
speed causes the robot to move forward whilst a negative value causes the robot

to reverse.

A robot starts in the Searching state and randomly turns to left or right (up to
10°) to search for objects of interest. For this, a random number is generated at
each time step between -10 and 10. If objects are perceived by the blobfinder,
the robot transitions to MovingToObject state and moves toward the closest object.
This is achieved by comparing the size of the objects detected by the blobfinder
model. The closer is an object, the bigger is the size. The robot then moves to-
wards the position of the object, as sensed by the blobfinder. The speed of
the robot is slowed down according to the relative distance of the robot and the
object.

The robot then transitions from the MovingToObject to the Grabbing state when
it reaches the object. This is determined by whether an object is detected by both
beam sensors. To grab the object, the robot’s speed is slowed down to 0.01lm.s™!
and the robot then closes its grippers. If the object is successfully grabbed, a tran-
sition to the Homing occurs and the robot navigates back to the base by following
the intensity of a light source located at the base. If no light is detected by the
light sensors, the robot makes a random turn to the left or right by 20°. If the

highest light intensity is detected on the left, the robot moves to the left by 20°. If
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in position

Grabbing

gearr = - — = = = —=f— =
path I

I obstacle

Av0|d ance Avmdance

|clear path

deposited

Figure 4.6: State diagram for robot foraging adapted from [42]. Note that before
transitioning into the Avoidance state, the information regarding the current state
is stored and will revert to it after obstacles have been avoided.

the highest light intensity is detected on the right, the robot moves to the right by
20°. In these three cases, the robot moves with a random speed between 0.00m.s ™
to 0.15m.s~*. Otherwise, the robot moves forward with normal speed.

When a robot is in the base, by checking whether the position (the z and y
coordinates returned by the position model) of the robot is within the base, a tran-
sition to the state Depositing is triggered. The robot opens its grippers and drops
the object in the base. It then transitions to Searching state and resumes the forag-
ing.

At any time outside the base, if a robot encounters obstacles (including other
robots), a transition to the Avoidance state occurs. Before transition to the Avoid-
ance state, the current state is saved so that the robot can resume its operation
after avoiding the obstacles. The Avoidance state is triggered by the three ranger
sensors. If an obstacle is detected on the right, the robot turns to the left by 35°. If
an obstacle is detected on the left, the robot turns to the right by 35°. For these two

L If an obstacle is detected

cases, the speed of the robot is reduced to 0.005m.s™~
in the middle, the robot reverses by setting the speed to -0.01lm.s~! and randomly
turns either left or right by 50°. For the cases where obstacles are detected in the

Land

middle and left or right, the robot reverses by setting the speed to -0.01m.s~
turns to left or right by 45°. If obstacles are detected in all directions, the robot

stops (i.e. speed of 0.0 m.s™!) and makes a random left or right 90° turn. Once the
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obstacles have been avoided, the robot reverts back to the previous state.

It will be noted that the foraging SRS described here is a stripped down ver-
sion of the one in Liu [42]. In Liu [42], the work is concern with the design and op-
timisation of interaction rules for energy efficiency. For the purpose of this work,
significant alterations have been made to the original implementation by remov-
ing all interaction rules and irrelevant components to end up with a stripped
down version with only basic foraging behaviours. The full source code and data
can be found online [133].

Another alteration is the assignment of colours to robots for different states:
light blue when searching for objects, light green when there is an object in grip-
pers, white when in the base, and red when faulty. These colours are assigned as a
visual indication of a robot’s current state. In Figure 4.7, there are three fault-free
robots with an object in their grippers, four robots are at the base, two fault-free

robots are still searching for objects, and a faulty robot.

Figure 4.7: A snapshot of a running simulation with 10 robots. Based on the
colour assignment: a robot with an object in the grippers is in light green, a robot
at base is in white, a robot searching for an object is in light blue, and a faulty
robot is in red.

The execution of each behaviour in each robot consumes a certain amount of
energy. The energy consumption for each behaviour per second is based on those
in Liu [42] and presented in Table 4.3. These values were estimated based on the
relative energy usage of sensors and actuators used for each behaviour [42].

The distance travelled by each robot is calculated by simply multiplying the
moving speed by time, which is every second. For example, if a robot moves with
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Table 4.3: Energy usage for each behaviour.

Behaviour Energy usage (per second)
Avoidance 0.9 unit
MovingToObject 0.8 unit
Grabbing 1.2 unit
Searching 0.8 unit
Homing 1.2 unit
Depositing 1.2 unit

normal speed of 0.15m.s™! for 3s, then the distance travelled is 0.45m.

The robots will continuously carry out foraging until the end of the simula-
tion. For all experiments in this thesis, each simulation lasts 20,000s. Periodically
at every 250s, relevant data from each robot are extracted and output as csv files.
The period of 250 is referred to as a control cycle, a term used by Christensen [9].
The extracted data (files) are tested on classifiers to detect errors and the perfor-
mance of each classifier is evaluated.

For the experiments with fault injection, only one robot is injected with a fault
to the wheels, as in the previous work by Canham et al. [10], Christensen et al.
[11], Mokhtar et al. [13]. Faults to a single robot in dynamic environments, al-
though a simple one, is important because if the problems is sufficiently complex
that current state of the art approaches are shown to not work well, then they
are unlikely to deal with more complex ones. In addition, by only considering a
single robot failure, it is possible to provide a set of results more easily compre-

hensible to allow a more accurate understanding of the problem.

4.4 Fault Models of The Robot Wheels

Components on a robot may fail for a variety of reasons including wear-and-tear,
power loss, and damaged circuitry connections. The failure of these components
affect the ability of a robot to continue its task and thus may affect the overall
swarm. Some failures have greater implications on the completion of task than
others. In Winfield and Nembrini [1], a fault to the motors (wheels) on robots has
the most significant effect on the ability of the robot swarm to complete a beacon
taxis. Since a robot foraging relies on the ability of the robots to move to locate,
collect, and transport objects to the base, fault to the wheels is suitable to establish
the condition E1 in which the effect a fault can be observed from the ability of the
robot to forage.

Depending on whether a fault on the wheels of a robot occurs instantaneously
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or gradually, and the extend (severity) of failure to the wheels, the fault can be
of three types: P resulting in complete failure, Py; resulting in partial failure,
and Pgz resulting in gradual failure. Faults of the type Pc: and Py occur instan-
taneously such as those due to power loss and damaged circuitry. On the other
hand, faults of the type P¢r are faults that accumulate over time such as the grad-

ual wear-and-tear of components.

The wheels on each robot might malfunction at any time. Faults of the type
Pcp are simulated in this work by setting the turnrate of the robot to 10° per time
step whilst maintaining the normal speed causing the robot to turn left and move
in circle. This fault results in complete failure as a robot with this fault is not
able to continue collecting any more objects from the arena. This fault is the most
damaging to the ability to forage compared to the other types of faults. Having
said that, depending on the environment in which the SRS is deployed, inferring
the presence of this fault might not be as easy. This can happen in a scenario in
which the availability of objects in the arena is limited and approaching zero. In
this scenario, a faulty robot cannot collect any objects because it is unable to do
so. However, fault-free robots also might not collect any objects because there
are limited objects in the arena. The P, in this thesis is analogous to the motor
failure in Winfield and Nembrini [1]. In their work, the authors refer to it as
a partial failure of the wheels from a system-level perspective. Here, the fault
is addressed from a component-level perspective. In other words, with Pc; the
component fails completely and permanently.

With Py, the fault of the wheels also occurs instantly as with P.;. However,
the fault does not result in a permanent failure but rather a partial failure which
is less severe. In this work, this is presented as a case in which the wheels operate
less efficiently. In simulation, this is achieved by an instantaneous reduction in
the moving speed of wheels to a constant value 0.045m.s™" from a normal speed
of 0.15 m.s~'. This fault is analogous to the stuck-at-value fault investigated in
Mokhtar et al. [13].

Faults to the wheels can also occur gradually such as the case with gradual
wear-and-tear of physical components. Gradual fault to the wheels Pg; is sim-
ulated in this work by gradually reducing the moving speed of the wheels by

100 x 107° m.s~2 from a normal speed of 0.15 m.s™!

, and it will eventually stop
moving.

For the experiments in this thesis, these faults are injected independently to a
single robot at control cycle 20 and persist until the end of a simulation. Thus, the
motor speed of a robot S(¢) at a time instance ¢ is influence by the fault F'(f) (refer

Eq. 4.1 and Eq. 4.2). Note that the reason why only the permanent faults (i.e.
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faults that persist till the end of simulation after initial injection) are considered is
that transient faults (i.e. faults that are on and off for a comparatively short inter-
vals) do not appear to significantly affect the completion of a given task and can
generally be tolerated by the redundancy of robots as demonstrated in Winfield
and Nembrini [1]. Another reason for experimenting with permanent fault is to
test the proposed detection scheme over many control cycles to ensure consistent
positive detection is achieved. Note that in practise, after an error is detected the
subsequent fault diagnosis and recovery should rectify the fault and thus the fault
will not be permanent.

F(f), if t > ts, f € {Pcp, Ppr, P, fault-free
S(t) = (f) 1 s, f € {Pcp, Por, Pogr, fault-free} @.1)
0.15m.s™!, ift <ts
0.15 m.s™! if f = {Pcp, fault-free},
F(f)=140.045m.s™ 1, if f = Py, (4.2)

S(t—1)—100 x 107 m.s™!, if f = P

A summary of the fault models to the wheels to establish E1 is tabulated in
Table 4.4.

Table 4.4: Summary of the fault models of the wheels.

Fault | Fault occurrence Effect on the wheels
Pcp instantaneous turnrate equals to 10°, robot moves in circle
Ppr instantaneous speed is slowed instantly to 0.045 m.s~*

speed is slowed gradually by 100 x 107> m.s~2

Per gradual until it stops completely (i.e. speed = 0.00 m.s~1)

4.5 Models of Uncertain Time-Varying Environments

In the arena, objects are placed at random locations but outside of the base at a
rate referred to as the object replenishing rate (OPR). The random number gen-
erator used is gs1_rng.mt19937 in GSL-GNU Scientific Library [134] initialised
with a random seed. The default value for OPR is 0.10. An OPR of 0.10 means that
the probability of adding an object at every second is 0.10.

The performance of individual robots in the foraging task can be evaluated
based on the number of objects collected at each control cycle as well as during
their lifetime (duration of a simulation). Therefore, under a normal operating
condition with a constant OPR, it is assumed that a fault-free robot should collect
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roughly the same amounts of objects as other fault-free robots. If the number of
objects by one robot is significantly different from other robots, it may be caused
by the presence of fault. There are other conditions that may also influence this
performance metric.

In this work, two of such conditions are considered. They are the concentra-
tion (or the availability) and the physical placement of objects. These two condi-
tions are selected because both are concerned with the locations of target objects
and thus influence the movement and navigation of robots (wheels) to those lo-
cations. By altering these two factors over different periods of time creates time-
varying conditions that causes the performance of foraging for the robots change
accordingly and thus enable the condition E2 to be established.

From these two factors, it is possible to simulate three different scenarios in
which the robot swarm operates: constant OPR (CST), varying OPR (Vqpz), and
varying object distribution (Vops). In the Vopr and Veps scenarios, the environ-
ments are time-varying (dynamic) whilst in the CST scenario it is non-dynamic
(with reference to the OPR and unbiased object distribution).

As well as the availability and placement of target objects, there are other con-
ditions that can also affect the swarm foraging such as the smoothness of terrains,
the consistency of air that can affect a robot’s vision, the size of target objects that
may be too big for a robot’s grippers, and so on. However, these conditions are
not considered in this thesis because it is nearly impossible to consider every
environmental factor that affects the swarm foraging and a choice was made to
focus on availability and placements of objects. In addition, some of these condi-
tions (such as the air quality) are very difficult, if not impossible, to simulate. In
theory, if the proposed approach works on the selected conditions, it should also
work for other environmental conditions that satisfy E2.

In the CST scenario, the OPR is fixed at 0.10 with one hundred initial objects.
Then, objects are inserted randomly at every time step as shown in Figure 4.8(a).
In the figure, objects are inserted randomly at 0.5m outside the perimeter of the
base and 0.5m away from the walls. This CST scenario can be used as a baseline
for comparison of the error-detection ability of various classifiers with the other
two scenarios.

In the Vqpr scenario, the number of objects in the environment changes accord-
ing to the OPR. By changing the OPR, it affects the number of objects put back into
the arena and thus the number of objects than can be collected by each robot in
a control cycle. The Vo scenario is simulated by changing the OPR alternately
between 0.10 and 0.025. Figure 4.8(b) is a snapshot of the distribution of object
with a OPR of 0.025. Comparing this with the CST scenario in Figure 4.8(a), the
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(@) csT, 0PR=0.10. At control (b) Vopr, OPR=0.025. At con- (c) Vops, new objects biased to
cycle t=3. trol cycle t = 30. top left and bottom right
Figure 4.8: Three types of operational environment for the SRS.

amount of objects in the arena is significantly less.

Recall in Section 4.4 that with P;, a faulty robot cannot continue with foraging
and thus no objects can be collected within each control cycle. In the CST scenario,
this detection of the error is straightforward as the fault-free robots would have
collected significantly more than zero object. However, in the Vo scenario, if the
amount of objects in the arena is very small and approaching zero, the fault-free
robots would have also collected a number of objects that is close to zero. In this
situation, it is nearly impossible to infer the presence of the P, based on the num-
ber of objects collected. For this reason, other data (such as distance travelled and
energy used) are also used in conjunction with the number of objects collected to
infer the presence of a fault.

Finally, in the Vqps scenario, the physical placement of a new object in the
arena is biased to particular regions in the arena. The effect of this scenario is that
the concentration of objects at particular region forces a robot to a longer time to
reach the region if it was at another region and eventually results in less objects
being collected. However, the influence on the object collection should be less
when compared to the one in the Vop; scenario. In simulation, the Vqps scenario
is simulated by biasing the distribution of new objects in the arena between top
left and bottom right regions as shown in Figure 4.8(c). Note that the OPR in this
scenario is the default one with a value of 0.10.

For the Vopr and Vops scenarios in this thesis, the changes in the environment
are activated at different time intervals. For example, if there are two cycles of
environmental changes in the Vopz scenario, then simulation can be logically di-
vided into four time slots and the changes are activated alternately between each
slot as depicted in Figure 4.9.

A summary of the time-varying environments to establish E2 is tabulated in
Table 4.5.
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Figure 4.9: Time slots to simulate time-varying changes in the environment. At
the time slots in grey, the Vopz and Vops scenarios are simulated.

Table 4.5: Summary of scenarios with time-varying availability and physical dis-
tribution of new objects in the arena.

Scenario OPR Distribution of objects
CST constant at 0.10 randomly distributed
Vopr alternatively between 0.10, 0.025 randomly distributed
Vops constant at 0.10 between top left, bottom right
4.6 Summary

This chapter presented the specific context and experimental testbed in which
the research question in this thesis will be investigated. In Section 4.1, a taxon-
omy of robot foraging as compiled in Winfield [63] is presented to give a general
overview on the various research topics involved. Also included in this section
is the motivation to extend the robot foraging in Liu [42] as the experimental
testbed.

In Section 4.2 the simulator used for the experiments namely the Player/Stage
[130] is presented. Then, Section 4.3 describes the physical specifications of the
forager robot, the behaviour modules for the robot controller, and the arena lay-
out.

In Section 4.4, three fault models were introduced to established the first con-
dition required to investigate the research question namely E1 in which a fault
has an observable effect on the foraging behaviour. This is followed by Section
4.5 that introduces the models of time-varying environment that also affect the
foraging behaviour of robots to establish condition E2.

The experimental setup in this chapter specified the conditions necessary so
that the research question can be investigated in an unbiased and fair manner.

To be able to support this claim, the next chapter will investigate through experi-
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mental analysis to determine whether E1 and E2 hold.
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CHAPTER
FIVE

Experimental Analysis of Robot
Foraging

In the context of the experimental testbed, this chapter presents experimental
analysis to support the conditions (E1 and E2) specified in the previous chap-
ter. In Section 5.1, an analysis is presented on the effects of swarm size on the
foraging performance as measured with the number of objects collected by the
whole swarm. This is to ensure that the right number of robots are placed in the
10m x 10m arena without overcrowding. Section 5.2 then proceeds to investigate
the consistency of data amongst the robots within the swarm, according to the
percentage relative standard deviation, for four different control cycles. Section
5.3 then examines E1 by analysing the manisfestation of the faults on the forag-
ing performance. Finally, Section 5.4 is the analysis of the effects of the different

environmental conditions on the foraging performance to examine E2.

5.1 The Effects of Swarm Size on the Foraging Perfor-

mance

Generally, it is assumed that in swarm robotics an increase in the size of a robot
swarm will also lead to a proportional increase in the performance [42]. Thus,
more robots engaged in foraging will lead to more objects being collected. Whilst
this may be true in an unbounded space with unlimited energy and unlimited
object of interest, it is often not the case in swarm robotics research due to var-

ious physical constraints [42]. Examples of these constraints include the size of
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the arena, availability of objects in the arena, physical distribution of objects in
the arena, the amount of energy available, and the interference between robots as
each robot avoids bumping into each other. Thus, in many cases, simply increas-
ing the number of robots in the system may not even result in the completion of
a given task or when it is completed it may take longer than expected. Therefore,
determining a suitable swarm size in a fixed arena is important.

5.1.1 Experimental Setup

Experimental Objective: To investigate the number of robots that can be placed
in the arena without (negatively) affecting the overall foraging performance of
the robot swarm, to choose a suitable swarm size for subsequent experiments.

The aim of this experiment is to find out the number of robots that can be
placed in the arena without causing the robots to spent most of the time avoid-
ing each other as the arena became overcrowded. The effect of overcrowding can
be inferred by analysing the foraging performance (total number of objects col-
lected) of the robot swarm as the swarm size is increased. In principle, if a swarm
size is increased from 5 to 10 robots - an increase of 100%, the performance should
also increase by 100%. This is assuming that the amount of objects in the arena
is significantly more than the size of the swarm and there are not other interfer-
ing factors. Therefore, if an increase in the swarm size is not in proportion to the
increase on the performance, this can signify the occurence of an overcrowding
situation.

Results from this experiment can be used to determine an appropriate swarm
size for the rest of the work and also to demonstrate that having many redundant
robots does not necessary leads to improved performance for the robot swarm in
this thesis. Also, it helps to support E1 and E2 in that it eliminates overcrowding
as a factor that affects the foraging performance.

In this experiment, a series of simulations were carried out for a robot swarm
with 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, and 100 robots. All robots are fault-
free in the CST scenario (refer Section 4.5 for details of this scenario), and data
(foraging performance) are analysed at every 250s.

The rate of adding a new object per second, the OPR, is dependent on the
number of robots in the swarm (OPR = %%fmbots). For example, for 10 robots,
the OPR is set to 0.10. For 20 robots, the OPR is set to 0.20. With 100 initial objects
in the arena and respective OPR, the amount of objects in the arena is always more
than the number of robots at any time. Therefore, this can eliminate the amount

of objects in the arena as a factor that affects the foraging performance of the robot
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swarm. Instead, if a change occurs in the foraging performance it is a result of the
increase in the swarm size.
To compare the effect of swarm size NV on the foraging performance of the

robot swarm, results are plotted in graphs.

5.1.2 Results

For each swarm size, twenty repeated runs were performed and the median of
the foraging performance at each control cycle calculated.

Figure 5.1 plots the medians of the foraging performance (total number of
objects collected by the robot swarm during the control cycle) during the simu-
lations. In the figure, a swarm of 5 robots collected approximately 20 objects at
each control cycle. When the swarm is increased to 10 robots, the objects collected
also increases to nearly 40 units. This is nearly a 100% increase, which is a direct
correlation with the increase of swarm size. From this result, it is safe to assume

that the problem of overcrowding has not been observed.
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Figure 5.1: Graph showing the total number of objects collected by a robot swarm
of different sizes. A steady increase on the number of objects collected is observed
as the swarm size is increased from 5 to 10, 15, robots. However, an adverse effect
is observed with a swarm of 35, 75 and 100 robots.

Under the same assumption, when the robot swarm is increased to 15 robots,
approximately 60 units is expected to be collected. However, such a result has not
been observed in the figure. Instead, the number is just slightly above 50 units.
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When the swarm is further increased to 20 robots, the number of objects collected
is only increased by 10 units. When the swarm size is 25 and 30 robots, the num-
ber of objects collected are roughly the same. This is an interesting observation
because it shows that a point is reached where further increasing the swarm size
does not result in an increased performance. Therefore, it is reasonable to assume
that the arena has become overcrowded. When the swarm size is increased to 35
robots, an adverse effect of decreasing number of object collected is observed.

To further stress-test the system to investigate the correlation (or lack of pos-
itive correlation) between the size of the swarm and the number of objects col-
lected, the swarm is drastically increased to 75 and 100 robots. As expected, sig-
nificantly less number of objects is collected. With a swarm size of 75 robots, the
number of objects collected is decreased to approximately 10 units, and further
reduced to about 5 units with a swarm of 100 robots. This result conforms to
the one reported in Liu [42], albeit the performance measured there is the energy
efficiency of the robot swarm.

The results in Figure 5.1 show that having more robots does not always guar-
antee an improvement in the foraging performance. Therefore, a qualitative de-
cision was made to use a swarm size of 10 robots for subsequent experiments.
A swarm of 10 robots is appropriate for the work in this thesis for the following
reasons. Firstly, it results in a stable system in which the object collection does not
fluctuate much from one control cycle to another. Secondly, because the swarm
is not overcrowded it eliminates the size of the swarm as a factor that influences
the foraging performance. This indirectly helps to provide evidence to support
E1 and E2. Thirdly, it provides flexibility in that more robots can be added, if
required, for potential future work to investigate other aspects of error detection
not investigated in this thesis such as the scalability of detection algorithms, and

tailures of multiple robots.

5.2 The Effects of the Control Cycle on the Consis-
tency of Data

The granularity (i.e. the length) of a control cycle determines the absolute values
of the data used for detection. In order for the data to be meaningful for the sub-
sequent error detection process, it is relevant to choose a suitable control cycle.
For example, in a foraging task, a robot may collect up to two objects in 50s, three
in 100s, five in 200s, and six in 250s. In this case, the probability of collecting a
particular number of objects differs with respect to the granularity of a control
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cycle. If a fault causes a robot to stop functioning and unable to collect any object
within a control cycle, the presence of a fault can be inferred with a greater con-
fidence at 250s rather than after 50s. However, it also means 250s have elapsed
before the presence of a fault can be inferred. Hence, the granularity of a control
cycle can influence the ability to positively identify an error as well as the time
taken to report an error.

A short control cycle may result in a faster response but it is likely to result
in false positives. This is because with a short control cycle (short relative to the
time to carry out a given task), a small change in the data due to the stochasticity
of the system and not due to faults can trigger a false detection. Inversely, a
long control cycle may result in less false positives but the response is slower.
Thus, a trade-off between the number of false positives and the response time is
generally involved. However, unless the desired performance (e.g. false positive
rate, response time) was explicitly specified, this is a non-trivial task.

5.2.1 Experimental Setup

Experimental Objective: To investigate the consistency of data amongst the robots
with control cycles of different granularity, to choose a control cycle that produce

the most consistent data to facilitate the detection of errors.

To help in determining an appropriate control cycle’s length, the patterns of
foraging performance (the data) for each control cycle are presented as graphs of
the percentage relative standard deviation (pRSD) over time. RSD (relative stan-
dard deviation), also known as coefficient of variance, is a useful measure to com-
pare the variations between different measurements of varying absolute magni-
tude. When comparing two measurements with pRSD, the measurement with
a lower pRSD is considered more precise, i.e. less variations, and thus greater
consistency. Therefore, the granularity of a control cycle that provides a more
consistent data can be determined by examining the pattern of data expressed
with pRSD. RSD expressed as percentage, i.e. pRSD, is a measurement of stan-
dard deviation (o) over the mean (z) and multiplying by 100 (Eq. 5.1).

g

pRSD = 2 x 100 (5.1)

T
From the findings in Section 5.1, a robot swarm of 10 robots is placed in the
arena in this experiment. All robots are fault-free in a CST scenario with a OPR of
0.10, and 100 initial objects.

In this experiment, the data to be analysed is the number of objects collected
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by each robot for control cycles of 50s, 100s, 200s, and 250s. Notice that the simu-
lation duration (20,000s) is an integer multiple of the length of each control cycle
and it is also a multiple of 50s which is approximately (50s £ 10s) the average
time taken for a robot to to collect an object (see Figure 5.1).

To compare the consistency of data amongst the robots with different gran-
ularities of control cycles, the results are plotted as graphs for the pRSD against
different control cycles.

5.2.2 Results

Figure 5.2 plots the pRSD between all robots at each control cycle for a single
simulation run. In the figure, it becomes apparent that as the length of a control
cycle increases, the value of the pRSD decreases. For example, with a control cycle
of 50s the pRSD fluctuates between 50% and 80%. With a control cycle of 100s, the
pRSD reduces to between 30% and 50%. This trend continues for control cycles of
200s and 250s with pRSDs around 20%. In other words, the differences between
the number of objects collected amongst the robots are bigger with a control cycle
of 50s compared to 250s. Therefore, it appears that the longer a control cycle, the
more consistent (less deviation) is the data from all robots. In this experiment, a
control cycle of 250s produces the smallest pRSDs, and thus the data is the least
deviated between the robots. From this result, a control cycle of 250s is chosen
for subsequent experiments.

Results from Figure 5.2 indirectly also revealed something about the nature
of data. By cross checking the values for the number of objects collected by each
robot and the resulting pRSD, a difference of one object at different control cycle’s
granularity produces different pRSD. For example, for a control cycle of 50s, a dif-
ference of one object results in a pRSD of about 100%. For a control cycle of 250s,
the same difference of 1 unit is now only 20% in pRSD. Therefore, a control cycle
of 250s provides a greater confidence that the foraging performance amongst the
robots in a local neighbourhood is similar to those measured by the pRSD.

One might argue that for a more consistent data, a control cycle of longer
than 250s can be used. However, as mentioned in the previous paragraph, a
longer control cycle means a longer time to detect the presence of a fault. This
has a cascading effect on the proceeding stages in an EDR to recover from a fault.
Therefore, there is a tradeoff between the confidence in a positive detection and
the time to detect and error. In practise, if the response time is relatively less
important the a positive detection, then a control cycle of a longer period can be
used.
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Figure 5.2: Graphs for the percentage relative standard deviation on the number
of objects collected by each robot with a control cycle of 50s, 100s, 200s, and 250s.
The graphs are fitted with Smoothing Spline in Matlab.

Another possible implementation with respect to the control cycle is that in-
stead of having a fixed control cycle, the system can utilise multiple control cy-
cles of different granularity. This is often referred to as a multi-resolution ap-
proach and could potentially avoid the problem of slower response times. For
example, instead of having a fixed control cycle of 250s, data can be extracted
at multiple control cycles such as at 50s, 100s, 200s, and 250s. However, having
multi-resolution requires the computation and storage of data for every resolu-
tion which in turn imposes a heavier resource usage. Nevertheless, this is an
interesting approach that could be further pursued in future research but will not
be explored further in this thesis.

5.3 The Occurrence of Faults Through Observation

Different fault models of the wheels may have different effects on the robots.
By analysing the foraging performance of the robots as indicated by the number
of objects collected in a control cycle, the presence of a fault may be inferred.
Although the results from the analysis may not be sufficient to identify which
fault model is present, it should be sufficient to determine whether E1 is satisfied.
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5.3.1 Experimental Setup

Experimental Objective: To analyse the occurrence of faults of the wheels on a
robot by observing the changes to the ability of the robot to forage.

To establish the effects of the faults described in Section 4.4 on the ability to
forage, this experiment analyses the differences between the number of objects
collected by robot in a fault-free and faulty conditions. Ten robots are placed in
the 10m x 10m octagonal-shaped arena with a default OPR of 0.10. Every 250s
(control cycle), the number of objects collected within that period by each robot
is extracted. For this experiment, the robot swarm operates in a CST scenario in

which the OPR is constant and new objects are randomly placed within the arena.

Each model of faults of the wheels in Section 4.4 is injected independently into
a single robot at 5000s (control cycle 20) and the fault persists until the end of the
simulation. In this experiment, the P; is set to 45 x 1073 m.s~! and the Py is set

to 100 x 10~° m.s~2. For each fault model, twenty repeated runs were conducted.

To compare the resulting occurrence of faults, the results are plotted in graphs.

5.3.2 Results

Figure 5.3 shows the results (the median) for the number of objects collected by a
robot when it is fault-free and when a fault was injected to its wheels. A vertical
dotted line is drawn at control cycle 20 (5000s) to mark the fault injection time.

In general, a fault-free robot collects about 4 objects in the CST scenario. This
can be seen from the graph labelled fault-free as well from the first to the
twentieth control cycles. Once a fault has been injected to the wheels, a decrease
in the ability of the robot to collect objects is observed.

Comparing the number of objects collected by the robot after the faults were
injected in Figure 5.3, it is apparent that different fault models affect the ability of
a robot to forage differently. With P, the fault causes the robot to be unable to
collect any more objects. Referring to the graph labelled Pc;, after control cycle
20 no more objects were collected. The effects of P, on the ability of a robot to

forage is straightforward and expected.

With Ppr of 45 x 107® m.s™!, the number of objects collected reduces to be-
tween 1 and 2 units. Again, this is expected as a slower movement means that
less objects can be collected within the same amount of time. In a CST scenario,

the number of objects (obj) that can be collected by a robot with Py can be roughly
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Figure 5.3: Graph for the number of objects collected by a robot in a fault-free
state and when Pc;, Ppr, and Pgz were injected to the wheels.

approximated according to Eq. 5.2.

2
bj ~ P, 250 5.2
o L( (arena width + arena height) e X —‘ (5:2)
For example, for a robot with Py 0f 45 x 107% m.s™*, obj ~ L(ﬁ x 45 x 1073 x

250)] ~ 1.

Referring to Figure 5.3, a P¢z of 100 x 10~° m.s™2 produces a similar effect on
the ability of a robot to forage as a Pcp. A Pgr also causes a robot to eventually
stop collecting any more objects. However, the difference is that with a Pg, a
slightly longer time was taken for the robot to be unable to move to continue
with foraging. In the figure, a Pgz of 100 x 10~° m.s™* causes the robot to stop
completely after one control cycle (250s). In fact, the robot stops after 150s.

From the results so far, it appears that it is easy to infer the presence of the
faults to the wheels based on the number of objects collected in a CST scenario. A
basic thresholding technique should be sufficient. For example, a linear classifier
that specifies an error as any observation with the number of collected objects
below 2.5 units. With this classifier, all errors due to the faults can be detected.
However, as mentioned previously, such a straightforward observation is uncom-

mon for robot swarms in dynamic environments.
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From this experiment, results have shown that different faults are manifested
differently on the data and thus establishes E1. The effects of P and P are more
apparent when compared to Pp;. Also, the difference in the data before and after
the faults are injected is apparent in a CST scenario. Thus, these changes can be
detected relatively easily. However, if the data is also influenced by the changes
in the environment, then it might not be that straightforward. Therefore, the ex-
periment in the next section will look at how different environmental conditions

affects the behaviour of robots.

5.4 The Effects of the Operational Environment on
the Data

As described in Section 4.5, a robot swarm deployed in real-world often has to
face a variety of challenges in particular those due to interference from a variety
of sources. On top of that, the environment in which the robot swarm operates
can also affect the performance of the robot swarm. For the foraging robot swarm
in this thesis, the performance is measured on the number of objects collected
within a control cycle. Therefore, this experiment simulates two environments in
which the concentration of objects and physical placement of objects are biased.
This examines how these changes will affect the performance of the robots and

thus provides evidence to determine whether E2 is satisfied.

5.4.1 Experimental Setup

Experimental Objective: To examine how different environment in which a robot
swarm operates can affect the number of objects that can be collected by the
robots.

In this experiment, a robot swarm of 10 fault-free robots is placed in the arena.
Every 250s (control cycle), the number of objects collected by each robot are ex-
tracted. The robot swarm is independently placed in the environments as speci-
tied in Section 4.5.

The details for each scenario is as follows. In the CST scenario, the environ-
ment is non-dynamic with a default OPR of 0.10 and new objects are uniformly
and randomly placed within the arena. In the Vyzr scenario, the OPR changes al-
ternatively between the default value of 0.10 and 0.025 at two intervals: at control
cycles [20, 40), and control cycles [60, 80). This means that the OPR is 0.10 at [1, 20)
and [40, 60), and 0.025 at [20, 40) and [60, 80). This setting creates a situation in
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which the concentration of objects in the arena is time-varying. This same setting
is also applied to the V,ps scenario in which at control cycles [1, 20) and [40, 60)
new objects are randomly placed in the arena. At control cycles [20, 40) and [60,
80), new objects are not randomly distributed but instead placed at the top left
and bottom right regions in the arena (see Figure 4.8(c)).

For each scenario, twenty repeated runs were performed. The results are plot-
ted as graphs of the median number of objects collected by each robot throughout
the simulation.

5.4.2 Results

Figure 5.4 shows the results (the median) on the number of objects collected by
each robot at each control cycle under different environmental conditions. Ver-
tical lines were drawn at various control cycles to indicate the time when the
changes are activated and when they terminate.

The figure shows that for the CST scenario each robot collects about 4 ob-
jects at each control cycle throughout the simulation. However, when there are
changes to the concentration and physical distribution of the objects in the arena,
the number of objects collected also changes and thus providing evidence to sup-
port E2.
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Figure 5.4: Graphs on the number of objects collected by fault-free robots in the
CST, Vopr, and Vgps.

In a Vopr scenario, the number of objects collected by the robots starts to drop
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immediately after the OPR was changed to 0.025. This is evident from the drop in
the object collected of 4 units before the changes (control cycle 1 to 20) to 3 units
at control cycle 22. This trend of a reduced performance (object collection) con-
tinues until control cycle 31. From control cycle 31 onwards, the value remained
constant at 1 unit until the OPR switches back to 0.10 at control cycle 40. Then
at control cycle 41, the objects collected increases back to 3 units and eventually
back to 4 units one control cycle later. The same trend is observed when the OPR
switches to 0.025 again at control cycle 60.

The effect of varying the concentration of objects in the arena, as simulated
by varying the OPR, to the performance of foraging is direct and apparent. With
less objects in the arena, less objects can be collected by each robot. However, if
a robot is faulty when operated in the V.pz environment, it is a challenging task
to infer the presence of the fault based on the data. To illustrate this point, Figure
5.5 shows the overlapping in observations for the number of objects collected by
fault-free robots in the Vg scenario and faulty robots in a CST scenario. From
the graphs, it is apparent that the number of objects collected by fault-free robots
in the Vepr scenario is almost exactly the same with faulty-robots in particular
at control cycles [31, 40] and [67, 80]. This observation shows that to infer the
presence of a fault in the Vopr scenario is difficult and thus worthy of further

investigations.
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Figure 5.5: Overlapping of observations on the number of objects collected by
fault-free robots in the Vqpx scenario and faulty robots in a CST scenario.

Referring to Figure 5.4, it is also observed that the changes to the distribution

of objects in the arena as simulated by the V5 scenario have a lesser effect on the
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number of objects that can be collected by the fault-free robots when compared
to the Vopg scenario. When the changes in the V55 scenario were activated for the
two time intervals, the differences in the object collection by robots is only around
one to two units. Therefore, to infer the presence of a fault in the Vo5 scenario

may be easier when compared to the Vqpr scenario as illustrated in Figure 5.6.
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Figure 5.6: No overlapping of observations on the number of objects collected by
fault-free robots in the Vops scenario and faulty robots in a CST scenario.

5.5 Summary

This chapter presented analyses on the robot foraging simulations as part of es-
tablishing the experimental testbed. In Section 5.1, an analysis of the effect of
swarm size on the foraging performance (the number of objects that can be col-
lected by the whole swarm) is presented. The results from the experiment is con-
sistent with those in Liu [42] that an increase in the number of robots in a swarm
does not guarantee an increase in the performance. The results show that for an
octagonal-shaped arena of 10m x 10m, a swarm size of 10 robots is suitable. With
this size, the robot swarm is not overcrowded and thus eliminates it as a factor
that influences the foraging performance. As such, it helps to establish E1 and E2
in Sections 5.3 and 4.4. For this reason, subsequent experiments and results are
based on a robot swarm of 10 robots.

The experiment in Section 5.2 was carried out to investigate the effects of the

length of a control cycle on the absolute values on the data and eventually the
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ability to infer the presence of a fault. In this section, the consistency of data
of four different control cycles. The consistency of data is important to support
the assumption that data from homogenous robots in a local neighbourhood are
similar and thus it is possible to use this information to infer the presence of a
fault. Results from this experiment show that the longer the control cycle, the
more consistent the data as indicated by a lower percentage relative standard de-
viation. However, having a longer control cycle also means a longer time would
have elapsed before a fault can be detected. Out of the four control cycles inves-
tigated, a control cycle of 250s provides the greatest consistency of data between
robots and thus subsequent experiments are based on a control cycle of 250s.

With the size of the robot swarm and the length of a control cycle for the sim-
ulation determined in Section 5.1 and Section 5.2, Section 5.3 analysed the occur-
rence of the faults specified in Section 4.4 by examining the foraging performance
as the faults were injected to a robot in the swarm. Results shows that in a CST
scenario, the performance of the robots before and after the faults have been in-
jected is distinctively different and thus provide evidence to support E1. From
this experiment, it appears that the presence of the faults may be easily inferred.

However, it is expected to be different when the robot swarm was deployed
in dynamic environments. Therefore, Section 5.4 investigated the performance of
the robots in time-varying environments as specified in Section 4.5. Results from
this experiment show that under different operating conditions, the foraging per-
formance is also different and thus provide evidence to support E2. Results also
show that in the Vopr scenario, the performance of a faulty robot is very simi-
lar to fault-free robots and thus can be very difficult to infer the presence of the
faults. The Vqpr scenario is a representation of many analogous operational envi-
ronments for which a robot swarm might operates in real-world. Therefore, to be
able to infer the presence of a fault in this condition is important.

To investigate ways to infer the presence of faults in time-varying environ-
ments from the perspective of a collective, the next part of the thesis will examine
this aspect. In the next chapter, a collective detection scheme will be proposed

and its application will be demonstrated with the use of statistical classifiers.
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Error Detection in Swarm Robotics:
Approach and Algorithms
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CHAPTER
SIX

Collective Self-Detection Approach
and Statistical Classifiers

This chapter proposes an error detection scheme from the perspective of a collec-
tive to deal with the issue of adaptivity to dynamic environments. The scheme
is tested with the use of statistical classifiers. In Section 6.1, illustrative examples
are given on the inefficiency in detecting errors in the simulated time-varying
environments from the perspective of a single robot. Therefore, error detection
from a perspective of a collective referred to as the CoDe scheme is proposed in
Section 6.2. To evaluate the performance of error detection, Section 6.3 describes
the input data and the performance metrics. Section 6.4 proceeds with the imple-
mentation of two conventional parametric classifiers in the context of the CoDe
scheme. This is followed by Section 6.5 with non-parametric classifiers. Also in
this section, the performance between the implemented classifiers are compared.
Finally in Section 6.6, an analysis is presented on the performance of the imple-
mented statistical classifiers as the detection threshold is varied.

6.1 Error Detection - Perspective of a Single Robot

From a perspective of data-driven error detection, if the input data comes only
from a single robot, the simplest model-based classifier for current problem may
be a linear classifier. For example, assuming it is known that a robot swarm might
be deployed in either a Vopr Or Vops scenario, and each robot in the swarm may ex-

perience faults of the wheels as presented in Section 4.4. Lets further assume that
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the graphs in Figure 6.1 represent the obtained data on the foraging performance
of a fault-free robot in Vopr and Vops scenarios, and with faults in a CST scenario.
If the exact time intervals of when the faults and the changes in the environment
to occur are known, then a perfect classifier may be derived. However, outside
controlled environments having such information is often not possible.

In Figure 6.1, two linear classifiers (classifierl with a threshold at 2.6 and
classifier2withathreshold at 1.7) are shown. In this example, classifierl
can detect all Py, Ppr and Py errors in CST. However, in Vopr and Vopg Scenarios
there are instances, as indicated by thick purple lines in Figure 6.1, in which the
errors are wrongly identified (referred to as false positives). For the vz scenario,
the false positive rate for classifierl is 0.38 (%, from control cycles [28, 40]
and [64, 80]). For the Vo5 scenario, the false positive rate is 0.03 (%, at control
cycles 75 and 80).
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Figure 6.1: An example of the data that is available for the design of model-based
classifiers.

For classifier2, it can detect all P.; and Pgy errors in the CST scenario.
However, it failed to detect many instances of Py errors. Failure to detect an
error is a false negative. In this case, the false negative rate for Py errors in
CST scenario is 0.22 (%). Also this classifier produces no false positive in a Vqpg
scenario when the robot is fault-free. However, in the Vopr scenario the false
positive rate is 0.30 (%5).

From the two examples, it is apparent that from a perspective of a single robot
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using a linear classifier to detect faults of the wheels is insufficient when dealing
with dynamic environments.

Besides linear classifiers, another possible approach to detect errors in the
robot is to use a sliding time window on the data to calculate some descriptive
values (depending on the technique used) of the sample. Figure 6.2 illustrates the
usage of a sliding time window of size 4 being applied on the data x(;_3) to x; to
produce a descriptive value y*. For example, control cycle ¢ = 6, the sliding win-
dow uses data from control cycle t = 3 (x3) to control cycle ¢ = 6 (xs) to calculate
y®. Then, y° can be compared to some predefined threshold to see whether an

error has occurred.

y6
X1 X2X3X4X5X6X7 Xm

Figure 6.2: An example of a classifier based on a sliding time window.

To illustrate the usage of a sliding time window, Figure 6.3 is a sample of
the data for a fault-free robot in the Vopr scenario from control cycle 18 to 38
originally from Figure 6.1. Lets assume a Q-test [135] classifier is used with the
time window. A Q-test classifier calculates a Q-value of the sample by finding
the difference between a current value x and the closest value to it (z*) and then
divides the difference over the range (largest value - lowest value) in the sample
( lo—a’] ). This Q-value is then compared to a threshold value from the Q-table

max—min

(Table A.1). Assuming the calculated Q-value is to be evaluated at 95% confidence
level. From the Q-table, for a sliding window of size 4 the corresponding Q-
value is 0.846. If the calculated Q-value is greater than the value from the Q-table,

current observation z is classified as an error.

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 ..t
4 4 4 4 3 3 3 3 3 3 2 2 2 1 1 1 1 1 1 1 1 ..obj

Figure 6.3: A sample data on a fault-free robot in the Vypr scenario from Figure
6.1

Applying the Q-test classifier over the sample data, the calculated Q-value
is presented in Figure 6.4. Comparing the calculated Q-value to 0.829, there are
three instances of error detected, at control cycle 22, 28, and 31. Notice that these
instances are at the beginning of a transition in the data. After each transition,
subsequent values were not classified as errors. Comparing this method with

the linear classifiers presented earlier for the sample, this method produces less
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false positives. There were only 3 false positives for a Q-test classifier with a time
window of 4 whilst it was 11 for classifierl,and 8 for classifier?.

21 22 23 24 25 26 27 28 29 t
0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 Q-value
30 31 32 33 34 35 36 37 38 t
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O-value

Figure 6.4: Calculated Q-value.

From the perspective of a single robot, using a sliding time window technique
is capable of producing a lower number of false positive in a dynamic environ-
ment (i.e. in a Vepr scenario). However, it is still susceptible to false positives,
which will become more apparent if the frequency of changes in the environment
increases. For this reason, the following section will investigate the problem of
adapting to dynamic environment from the perspective of a collective, a collec-
tion of robots logically grouped according to a wireless communication range.

6.2 CoDe: A Collective Self-Detection Approach

The central idea of a collective self-detection is that each robot periodically com-
municate its data to other robots that fall within a logically defined space. In
this thesis, the space is defined by the wireless communication range of a robot.
Assuming a perfect communication medium, all robots within a communication
range can broadcast and receive data from each other. With acquired data from
other robots, a robot determines whether itself is behaving normally with relative
to other robots. Here, this approach is referred to as a Collective Self-Detection
(CoDe) Scheme. This approach is applicable for current problem because of the
homogeneity of robots in a swarm (condition E3) first described in Section 4.1.
There are two parts to CoDe: detection from the perspective of a collective P1
(a collection of robots within a logical communication range), and the detection
of errors within an individual (self-detection, P2) instead of other robots in the
collective. For P1, it is assumed that if all robots are physically and logically ho-
mogeneous, then they will behave and perform equally well in the same environ-
ment in which they are deployed. Therefore, homogeneity of robots is important
and it is dictated by E3 in this work. Under this assumption of homogeneity, it
is possible to infer the presence of a fault by cross-referencing a robot’s data with

others within certain communication range (i.e. 2m radius in this work).
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This concept of a collective decision through cross-referencing of data be-
tween agents is not new. In social science, it is referred to as social comparison
[89] which is an important basis of opinion formation in social groups. In social
groups, it is often impossible to immediately determined whether an opinion is
correct or not, even with reference to the physical world. The same applies for an
accurate assessment of one’s ability by reference to the physical world. For such
situations, subjective judgements of correct or incorrect opinion and assessments
of one’s ability depends upon how one compares with others [89]. This forms the
second hypothesis for social comparison in [89] that states:

Hypothesis II: To the extent that objective, non-social means are not available, peo-
ple evaluate their opinions and abilities by comparison respectively with the opin-
ions and abilities of others.

The unavailability of objective means in Festinger [89] is analogous to the prob-
lems of dynamic environments in this work. Since the foraging performance of
the robots in the robot swarm is also influenced by the environment in which they
operate, there is no definite value of how many objects a robot should collect.
However, since the robots are homogeneous, it possible to (subjectively) deter-
mine whether a robot is faulty by comparing a robot’s data with others within a
collective.

The second part of the CoDe scheme, P2, relates to the identification of a faulty
robot from the collective data. On each robot, the data from the collective can be
used to determine whether the robot itself is faulty (self-detection) or to identify
other faulty robots (exogenous-detection). However, this work advocates the self-
detection approach for a number of reasons:

e a robot does not need to acquire and store information regarding the iden-
tity of other robots in the collective. Therefore, less data is needed to broad-
cast and receive information, and the energy usage and storage is min-
imised;

e when an error is detected, the robot can react immediately. For exogenous-
detection, the observer robot has to convey the finding to the target robot
which requires an additional communication. Besides, the target robot might
not be reachable as it might have moved outside the communication range
of the observer robot; and

e no central point of detection. Every robot is responsible to detect the errors
within itself. Therefore, in principle, it is scalable to a robot swarm of any

size.
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Self-detection is a phenomenon that has been observed in nature. In the con-
text of social insects, it exists in the form of self-isolation. For some social insects,
when an insect is infected by parasites, (most of the time) the infected insect will
leave the nest to die in isolation (self-isolation) [88]. Instead of being actively lo-
cated and isolated by healthy members, the act of withdrawal to die in isolation
appears to be self-motivated. This self-motivated isolation is interesting and has
been argued to be part of the defence mechanism in social insects to prevent the
spread of infections [88]. Therefore, together with the reasons specified previ-
ously, the self-detection approach could be potentially very important for current
problem.

To demonstrate the potential of the CoDe scheme, Figure 6.5 is a sample of
collective data as received by an observer robot R1 (assuming all robots can com-
municate with each other). Notice that the sample data from R1 is the same as
those in Figure 6.3. Applying the same Q-test classifier as in the previous exam-
ple, but from the perspective of a collective, the results for a confidence level of
95% (corresponding Q-value is 0.493) are shown in Figure 6.6. From the perspec-
tive of R1, the Q-test result is 0 (:=3) for control cycle 18, 0 (:=3) for control cycle
19, and so on. At control cycle 22 (=3=0), 28(2=%=0), and 31(|1 21=0.333), there
are no false positives detected. Note that for robots R2 and R3 false positives are

detected at control cycle 18.

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 .
R1 4 4 4 4 3 3 3 3 3 3 2 2 2 1 1 1 1 1 1 1 1.
R2 5 3 4 4 4 4 1 3 4 4 3 3 4 4 4 2 1 4 3 3 1.
R3 3.5 55 3 4 4 3 3 3 4 3 4 3 3 4 3 3 1 3 2.
R4 4 3 4 4 3 4 3 2 4 1 2 1 2 3 4 2 1 3 2 3 3.
RS 4 4 4 3 4 3 3 3 4 4 3 3 4 2 4 4 3 3 3 2 3.
R6 4 3 4 3 4 4 4 4 3 3 4 2 3 3 3 3 3 2 4 2 4.
R7 4 4 4 4 3 4 3 3 3 3 2 4 4 3 2 3 2 3 2 2 2.
rR8 4 5 4 4 2 5 4 3 3 3 3 3 4 3 3 3 3 3 4 4 3.
RO 4 3 4 4 4 3 4 3 4 2 4 3 2 4 3 3 2 4 2 3 3.
rR104 5 3 4 5 4 2 5 3 3 3 3 0 3 3 4 2 3 3 2 3.

Figure 6.5: Sample data from a collective of 10 robots from control cycle 18 to 38.

Notice that the example presented in Figure 6.5 assumes all robots can com-
municate with each other, which is often not the case. For example, with a wire-
less communication range of 2m, each robot in the robot swarm in this thesis only
interact with a few other robots as illustrated in Figure 6.7. Therefore, at control
cycle ¢ in the CoDe scheme, the collection of neighbours of an observer robot is
dynamic; it ranges from zero to the maximum number of robots minus one in

the arena (9 in this thesis) or the number that can be spatially fit in the commu-
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.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Q-value

29 30 31 32 33 34 35 36 37 38 t
0.0 0.0 0.333 0.333 0.0 0.333 0.0 0.333 0.0 0.0 QO-value

Figure 6.6: Calculated Q-value from the perspective of a collective with the CoDe
scheme for sample in Figure 6.5.

nication radius. This fits nicely for the Q-test classifier that requires independent
samples from the original population.

@) t=3 (b) t=7 (©t=9
Figure 6.7: Time-lapsed screenshots showing the different number of robots
within some communication range of a robot in red.

With the CoDe scheme, there is a special case when an observer robot interacts
with less than two other robots. For such a case, cross-referencing a robot’s data
with others is unreliable because (1) if an observer robot interacts with zero robot,
there exists no data to cross-reference, (2) if an observer robot interacts with only
one other robot, then it might be the case that either robot can be faulty and thus
it can lead to either a false positive, or a false negative. In this thesis, this special
case is handled by reverting to use the collective data from a previous control
cycle ignoring the data from the other robot at current control cycle.

Having given the necessary details regarding the CoDe scheme, it is formally
presented in Algorithm 1. At control cycle ¢, an observer robot in which the algo-
rithm runs will have a set of data of the current collective DA together including
data instance from the observer robot v from the observer robot. As mentioned
in previous paragraph, if an observer robot interacts with less than two other
robots, data from a previous control cycle will be used. To determine whether v
is errorneous with respect to DN, the data is presented to classifier .A. Taking this
approach, the detection is a task of determining whether an error has occurred
on the observer robot and thus a self-detection.

96



6.3 Data and Performance Metrics

Algorithm 1: Collective Self-Detection Scheme (CoDe)

Input: current data instance v, neighbourhood data DN, classifier A
Output: Result of detection

initialisation;

foreach control cycle t do

if CalculateNeighbour(DN) < 2 then
‘ err = A, DN emp);
else
err = A(v, DN);
DNtemp:DN}
end
if err then
| Report err;
end
end

Note that the classifier .4 has to be able to cope with data of various sizes
given by the number of robots an observer robot interacts with. Therefore, statis-
tical classifiers which can be easily adapted to work with data of dynamic sizes
are chosen. Section 6.4 and Section 6.5 will investigate the usage of statistical
classifiers to detect errors in dynamic environments in the context of the CoDe

scheme.

6.3 Data and Performance Metrics

6.3.1 Data

From the analysis in Section 5.2 as well as the illustrative examples in Section 6.1
and Section 6.2, it is apparent that to infer the presence of a fault based on only
the number of objects collected (obj € Z¢) is insufficient. The results in Section
5.2 show that a difference of one object between the robots amounts to a pRSD
of 20%. Also, the results in Sections 6.1 and 6.2 demonstrate that a difference in
one object is significant between a positive detection and a false detection. For
this reason, for subsequent experiments, the other data that are also influenced
by both the faulty wheels and the environments are included: energy used (eng
€ Ry), and distance travelled (dist € R;). Each data variable will be inde-
pendently presented to the classifier and an error is considered detected if it is
flagged in more than one variable.
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6.3.2 Performance Metrics

The performance of error detection by a classifier is derived based on the follow-

ing metrics, which are commonly used in the literature:

True Positive (TP) - an error is correctly classified;

False Positive (FP) - a normal instance is incorrectly classified as an error;

True Negative (TN) - a normal instance is correctly classified as normal; and

e False Negative (FN) - an error is incorrectly classified as a normal instance.

Given the above metrics, the accuracy of the error detection or the true posi-
tive rate (TPR) is defined as the proportion of the number of correctly classified

errors over the total number of errorneous instances (Eq. 6.1).

TP
~ TP +FN
Similarly, the false alarm or the false positive rate (FPR) is defined as the pro-

TPR (6.1)

portion of the number of incorrectly classified errors over the total number of

normal instances (Eq. 6.2).
FP

FPR= (6.2)

On top of the TPR and FPR, another performance metric called the respon-
siveness of detection (Latency) is also evaluated. This metric evaluate how long
the time has elapsed before an error is positively identified. Given that t 4 is the

fault detection time, and t ¢, is the fault injection time, then
Latency = tpq — tee (6.3)

As mentioned in Section 4.3.4, this thesis only considers the case of a single
robot failure in the robot swarm. Thus, the TPR and the Latency is only appli-
cable to the faulty robot. However, the FPR is calculated over all the robots in the
swarm. It will be noted that if the FPR for the faulty robot is separately calculated,
the FPR will likely be higher compared to those of all robots because the relative
contribution per unit of false positive toward the FPR is higher. In other words,
one instance of false positive per robot is equal to a FPR of 0.05 (=5) for the faulty
10

robot alone whilst it is ~ 0.01 (55 (

357 (9xs0y) for the whole system.

6.4 Conventional Parametric Classifiers

In statistics, the task of determining whether a data instance is errorneous is an

example of the outlier detection problem. An outlier is an observation that devi-
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ates so much from other observations as to arouse suspicion that it was generated
by a different mechanism (Hawkins, 1980). There are three aspects to this defini-
tion: the observation, the deviation, and the mechanism. The observation is the
statistical properties of the variables of interest (the data). How much deviation is
considered as an outlier is governed by the statistical thresholds. The mechanism
relates to the underlying assumptions on the distribution of the variables.

Depending on whether an assumption is made on the underlying data distri-
bution, statistical outlier detection techniques can be parametric or non-parametric.
With parametric techniques, it is assumed that the observed variables are gener-
ated by some named probability distribution such as a Gaussian or Normal distri-
bution. The opposite of parametric statistics is non-parametric statistics in which
the data are not assumed to belong to any particular distribution.

If the distribution of data is known, parametric techniques can be more ac-
curate and are generally advised. However, for many real world applications,
it is often impossible to infer the underlying distribution of data and thus non-
parametric techniques are more applicable. However, non-parametric techniques
are more powerful when a sufficiently large data set is available [136].

To illustrate the frequency distribution for the data in this thesis, histograms
on the obj, eng, and dist in a CST scenario are presented in Figure 6.8. From a
manual inspection on the histograms, it appears that the frequency distributions
follow a Normal distribution albeit discretised. Therefore, the first experiment in-
vestigates the implementation of parametric classifiers in the context of the CoDe
scheme for the current error detection problem.

6.4.1 Experimental Setup

Experimental Objective: To evaluate the performance of two conventional para-
metric classifiers in the context of the CoDe scheme for error detection in both

non-dynamic and dynamic environments.

It will be recalled that with Py (complete failure), the left wheel on a faulty
robot was set to left turn by 10°. This causes the robot to move in a circle and
unable to continue foraging. With P, (partial failure), the robot wheels moves
less efficiently by reducing the speed of the wheels to 45 x10~® m.s~! causing the
robot to move more slowly but otherwise still able to search and collect objects.
With Pgr (gradual failure), the wheels on a faulty robot move with a gradually
reducing speed of 100 x107° m.s™2.

These faults were independently injected to a robot in the swarm that operate
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Figure 6.8: The distribution of obj, eng, and dist in the system for a control
cycle of 250s in CST.

in CST (constant OPR), Vqpg (Varying OPR), and Vqps (Varying object distribution)
scenarios. For each combination of a fault model and a scenario, twenty repeated
runs were performed. The faults were injected at control cycle 20 and persisted
until the end of the simulation. The changes to the environmental condition in
Vorr and Vepgs scenarios occur at control cycles [20, 40), and control cycles [60, 80).
Assuming the classifiers can detect all errors in non-dynamic environment. In
principle, if the classifiers were not able to adapt to the environmental changes,
then the FPR will be greater than 53 = 0.50 (i.e. environmental changes last for
40 control cycles of a simulation of 80 control cycles). Similarly, the TPR will be
lower than 0.50. Note that a classifier with a TPR and a FPR that equals to 0.50 is

equivalent to a random classifier.

In this experiment, two parametric classifiers were tested: Extreme Studen-
tized Deviate (ESD) and T-test classifiers. The ESD classifier or the Grubbs” method
[137], calculates a Z value as the difference between the arithmetic mean p of a
sample and a data instance x over the standard deviation o. The Z value for «
is compared with a threshold k. If the calculated Z value is greater than k, x is

classified as an outlier (Eq. 6.4).

gl (6.4)
g
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The value of £ in Eq. 6.4 is usually taken as 2 or 3 because if the data are normally
distributed, they are expected to be within two (three, respectively) standard de-
viations from the mean [138].

To implement the ESD classifier in the context of the CoDe scheme, the ¢ and
p are calculated using the data from neighbours. Then, the data instance v from
current robot is substituted into Eq. 6.4 to calculate Z. For this experiment, the
default or commonly used threshold value of 2 for k is used.

A T-test is a statistical hypothesis test to assess whether the arithmetic means
o of two groups (A and B) are statistically different from each other. The T-test
classifier is computationally more complex than the ESD classifier. It calculates
the ratio (Eq. 6.5) of the difference between the two means over a measure of the
variability or dispersion of the scores (also referred to as the standard error of the
difference) [139]. After the t-value is calculated, it is compared with the standard
ts-value of p confidence interval in the T-table (Table A.2). If the ¢-value is greater

than the t,, group A is statistically different from group B.

|MA - MB|
SE(pa — pp)

The parameter p is the statistical significant threshold (usually 0.05 for a 95% con-

t-value = < T(p,df) (6.5)

fidence level), df is the degrees of freedom, and T'(p, df) is the standard ¢,-value
that corresponds to given values of p and df in the T-table.

To implement the T-test classifier, instead of communicating a current data
instance at each control cycle, each robot communicates its mean value of respec-
tive data variable calculated over five control cycles. The p value for the T-test
classifier is set to the default value of 0.05.

The effectiveness of detecting injected faults is evaluated based on the perfor-
mance metrics presented in Section 6.3.2. For each classifier, the TPR, FPR, and
the Latency were calculated for each run. The results were then compiled and
presented in boxplots. For each boxplot, the centre line of the box is the median
whilst the upper edge of the box is the third quartile and the lower edge of the
box is the first quartile. The whiskers extend to the extreme data points not con-

sidered outliers, and outliers are plotted individually.

6.4.2 Experimental Results

The results on the performance in the detection of Py errors with the ESD and
the T-test classifiers are presented in Figure 6.9. In the figure, the boxplots are
arranged so that the first two boxplots are the results for the CST scenarios, fol-
lowed by the next two boxplots for the Vorz, and ends with the last two boxplots
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for Vops scenarios. The label A1 stands for the ESD classifier, A2 for the T-test clas-
sifier, S1 for CST scenario, S2 for Vopx scenario, and S3 is for Vops scenario. With

this arrangement, it is easier to compare the results between the two classifiers.
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Figure 6.9: Boxlots for the TPR, FPR, and the Latency for the ESD and T-test
classifiers in detecting P errors.

The top figure in Figure 6.9 for the results of the TPR shows that the median
TPR for both classifiers is above 0.60 with the ESD classifier being the one with
a higher TPR in all scenarios. This results indicate that the ESD classifier may
be more effective in inferring the presence of P, from the data compared to the
T-test classifier. Having said that, the comparison has to consider the results for
the FPR as well. A classifier may achieve a perfect detection (TPR = 1.00) by
setting a low detection threshold, but this may inadvertently results in a high
FPR. Nevertheless, the results on the FPR in the bottom left figure show that the
FPR for the ESD classifier is lower compared to the T-test classifier in two of the
three scenarios (i.e. in CST and Vops scenarios). Therefore, in this case, it seems
that the ESD classifier with the current threshold value achieved a better result
compared to the T-test classifier in detecting P, errors. For the Latency, both
classifiers has a medium Latency of 1.0.

Examining the results over different scenarios, it is noticeable that the TPR is
lower in a Vopr scenario compared to the CST and Vs scenarios. This is evident
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from the results for both classifiers. For the ESD classifier, the TPR is around
0.95 in the CST and Vgps scenarios. However, it is slightly lower than 0.90 in a
Vopr scenario. Similarly, for the T-test classifier the TPR is around 0.65 in a Vopx
scenario whilst it is above 0.75 in other scenarios. These results suggest that the
changes in the environment in a Vopr scenario is more challenging compared to
other scenarios in the detection of P, errors.

The challenge in detecting P, errors in a Vopr scenario comes from the fact
that as the quantity of objects in the arena gradually diminishes and approaches
zero (as simulated by reducing the OPR from 0.10 to 0.025), many fault-free robots
will not be able to collect any objects. At the same time, a faulty robot may not
be able to collect any object and thus it is very hard to determine (based on oper-
ational data alone) whether a data instance is normal or anomalous. As a result,
false detection (i.e. false positives and false negatives) is likely to happen. How-
ever, the results of detection may be improved if the detection is based on ob-
servations over multiple control cycles instead of every control cycle as currently
implemented. This is further investigated in Section 7.4 and the results show that
the FPR can be significantly reduced.

Compared to the effects of the environmental changes in a Vopr scenario, the
changes in a Vps scenario appear to have a lesser impact on the performance of all
classifiers. Although the TPR is lower and the FPR is higher, the difference in the
TPR is low. For example, for the ESD classifier the difference in the TPR between
a CST scenario and a Vpr scenario is about 0.07 (7%) whilst it is zero with a Vops
scenario. This is likely because no matter where the objects are distributed, the
robots still wander randomly in locating the objects. However, if the robots are
wandering in areas with a small number of objects, less objects will be collected.

Based on the results on the TPR and the FPR for both classifiers, which are sig-
nificantly better than 0.50, it suggests that the presence of P; can be inferred. The
results also give evidence that the application of parametric classifiers in CoDe
can be adaptive to the environmental changes in Vopz and Vops scenarios.

Figure 6.10 is the result on the detection of Py errors with the ESD and the
T-test classifiers. Similar to the results for P, errors, the TPR for both classifiers is
greater than 0.50 in all scenarios. Again, the ESD classifier has a higher TPR and
a lower FPR compared to the T-test classifier in all scenarios.

The similar results of a lower TPR and a higher FPR with Py errors in a Vops
scenario further demonstrates the difficulty in detecting errors in systems de-
ployed in dynamic environments similar to those in a Vops scenario. However,
albeit with a lower performance, the P, errors can still be detected as indicated
with a TPR greater than 0.50 and a FPR lower than 0.50.
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Figure 6.10: Boxlots for the TPR, FPR, and the Latency for ESD and T-test classi-
tiers in detecting P» errors.

Finally, the results on the detection of P errors with the two parametric clas-
sifiers are shown in Figure 6.11. The results on the TPR, FPR, and the Latency for
both classifiers show similar trends to those with Py and Py errors. The TPR for
both classifier is greater than 0.70, the FPR is lower than 0.30, and the Latency
is 1.0 in all scenarios. As expected, a drop in the TPR and an increase in the FPR
in a Vopr Scenario are observed.

The results on the detection of Pcp, Ppr, and Pgr errors with the paramet-
ric classifiers in CoDe provide evidence that an adaptive error detection can be
achieved and the performance is significantly better than a random classifier.
However, the findings from this experiment also raise many other questions.
Questions such as what would be the results if non-parametric classifiers were
used instead? Although the FPR is lower than 0.35 in all cases, is it possible to
achieve an even lower FPR? How about TPR? The detection threshold used is the
default recommended value, what if different values are used?

To address these questions, Section 6.5 investigates the performance of two
non-parametric statistical classifiers with the same faults. This is followed by an
investigation on varying the detection threshold in Section 6.6.
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Figure 6.11: Boxlots for the TPR, FPR, and the Latency for the ESD and T-test
classifiers in detecting Pgx.

6.5 Conventional Non-Parametric Classifiers

As discussed in Section 6.4, non-parametric techniques do not assume that the
sample data belongs to any particular distribution. In this section, two non-
parametric classifiers were implemented in the context of the CoDe scheme for
the same faults in Section 6.4. They are the Quartile-based classifier and Q-test

classifiers.

6.5.1 Experimental Setup

Experimental Objective: To evaluate the performance of two conventional non-
parametric classifiers for error detection in both non-dynamic and dynamic envi-

ronments and compare it with those of parametric classifiers.

Detection of outliers using the quartiles is a well known technique in statistics.
With this classifier, a data instance z is classified as an outlier if it falls outside the
1.5 interquartile range (IQR) of either the first quartile which is the 25" percentile
(7 25), or the third quartile which is the 75" percentile (z 75) of the data [140]. To
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calculate the first and third quartiles, the data need to be arranged in an ascending
order. The IQR is the range between the third quartile and the first quartile, i.e.
IOR = Z 75 - T.25. The IOR multiplier £ of 1.5 is the de-factor value in statistics to
define a mild outlier whilst a multiplier of 3 is for an extreme outlier [141].

o5 — 1.5 x IQR > x> T+ 1.5 x IQR (66)

For this experiment, the quartiles are calculated using the data from neigh-
bours. The detection threshold & for the Quartile-based classifier is 1.5.

Dixon’s Q test [135], or simply the Q test, is another non-parametric technique
used for the identification and the rejection of outliers. To use a Q-test to deter-
mine whether a particular data instance z is an outlier, arrange the data in an
ascending order and calculate the Q-value for = (Eq. 6.7). The gap is the absolute
difference between x and the closest number to it, and range is the difference be-
tween the maximum and minimum value in the sample. The calculated Q-value
(Qcaic) is then compared with the critical value of o confidence level in the Q-table

(Table A.1). If Q.. is greater than the critical value, x is considered as an outlier.

gap
range

Qcalc = (67)

For this experiment, results for the Q-test classifier is based on an « value of
90%. Using the data from Section 6.4.2, the Quartile-based classifier and the Q-
test classifier were implemented in the context of the CoDe scheme to detect the
Pcp, the Ppr and the Py errors.

6.5.2 Experimental Results

For ease of comparison, the results (the median) for the two non-parametric clas-
sifiers are presented together with those of parametric classifiers. Table 6.1 is the
result for Py errors, Table 6.2 for Py errors, and Table 6.3 for Pqy errors. In the
tables, the first multirow is the performance of the four classifiers in detecting er-
rors in a CST scenario; the second multirow for the results in a Vpr scenario; and
the last multirow for the results in a Vop5 scenario. Also, the first two columns
are the results for the parametric classifiers whilst the last two columns are the
results for the non-parametric classifiers.

Examining the results on the TPR in Table 6.1, it shows that the parametric
classifiers has a higher TPR compared to the non-parametric classifiers in almost
all scenarios. However, it is the opposite for the results on the FPR. The FPR
of the non-parametric classifiers is significantly lower than the parametric clas-
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Table 6.1: The median TPR, FPR, and Latency for the ESD, T-test, Quartile-
based, and Q-test classifiers in detecting P errors.

| Env. | Metric | ESD | T-test | Quartile | Q-test |
TPR 095 | 0.77 0.70 0.86
CST FPR 0.28 | 0.33 0.12 0.12
Latency | 1.0 1.0 1.0 1.0

TPR 0.88 | 0.66 0.46 0.64
Vopr FPR 0.31 | 0.29 0.10 0.13
Latency | 1.0 1.0 1.0 1.0

TPR 095 | 0.73 0.59 0.75
Vobs FPR 0.31 | 0.35 0.13 0.13
Latency | 1.0 1.0 1.0 1.0

sifiers. This is also evident in the results for Py (Table 6.2), and P (Table 6.3).
This is an interesting result because it indicates that the non-parametric classifiers
do not outperformed the parametric classifiers in every aspect. However, as the
results are based on a default detection threshold and thus not conclusive. There-
fore it may be worth to conduct a follow up experiment with different detection
thresholds. Nevertheless, this result does give evidence that non-parametric clas-
sifiers can also provide an adaptive error detection with a performance that is

significantly better than a random classifier.

Table 6.2: The median TPR, FPR, and Latency for the ESD, T-test, Quartile-
based, and Q-test classifiers in detecting P errors.

| Env. | Metric | ESD | T-test | Quartile | Q-test |
TPR 096 | 0.72 0.78 0.92
CST FPR 0.28 | 0.31 0.12 0.20
Latency | 1.0 1.0 1.0 1.0

TPR 092 | 0.65 0.70 0.89
Vopr FPR 0.30 | 0.29 0.10 0.22
Latency | 1.0 2.0 1.0 1.0

TPR 097 | 0.78 0.74 0.89
Vops FPR 0.30 | 0.34 0.11 0.20
Latency | 1.0 1.0 1.0 1.0

Revisiting the observation on the difficulty in detecting errors in a Vopg sce-
nario with parametric classifiers, the results for the non-parametric classifiers fur-
ther strengthen the conjecture on the effects of the limited objects on the detection.
For example, the results on the TPR for the Q-test classifier in Table 6.1 drop from
0.85 in a CST scenario to 0.64 in a Vopr scenario, a drop of 0.21. Similar, for the
Quartile-based classifier, a drop of 0.24 is observed.
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The same observation that the environmental changes in a Vs scenario has a
lesser effects on the performance of detection compared to those in a Vo scenario
is also evident from the results for the non-parametric classifiers. By comparing
the results in Vopr and Viops scenarios for the non-parametric classifiers in Table
6.1, Table 6.2, and Table 6.3, it is evident the TPR is higher in most cases (4 out of
6) in a Vopg scenario.

Results on the performance for non-parametric classifiers (in the context of
the CoDe scheme) in Vo and Vips scenarios show the TPR is significantly greater
than 0.50 and the FPR that is significantly less than 0.50 further strengthen the
evidence that an adaptive error detection can be achieved with CoDe.

Table 6.3: The median TPR, FPR, and Latency for the ESD, T-test, Quartile-
based, and Q-test classifiers in detecting P errors.

| Env. | Metric | ESD | T-test | Quartile | Q-test |
TPR 1.00 | 0.87 0.81 1.00
CST FPR 025 | 0.27 0.10 0.12
Latency | 1.0 1.0 1.0 1.0

TPR 099 | 0.80 0.77 0.97
Vopr FPR 0.28 | 0.25 0.10 0.13
Latency | 1.0 1.0 1.0 1.0

TPR 098 | 0.82 0.76 0.98
Vobs FPR 0.28 | 0.30 0.11 0.13
Latency | 1.0 1.0 1.0 1.0

6.6 Varying the Detection Threshold

The results for the experiments in Section 6.4.2 and Section 6.5.2 for the statistical
classifiers are based on a fixed (default/recommended) detection threshold. A
potential problem with using the default value is that the results may be not be
optimal and better results may be obtained if a different value is used. The chosen
detection threshold should be problem-based and varies from one application to
another. Thus, this section investigate the effects on the performance for the four

classifiers as the detection threshold is varied.

Experimental Objective: To evaluate the performance of the statistical classifiers
as the detection threshold is varied in detecting errors in both non-dynamic and

dynamic environments.
The simulation setting is the same as specified in Section 6.4 and Section 6.5.
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For each variant of the classifiers, twenty repeated runs were conducted and the

medians are used for the results.

6.6.1 The ESD Classifier

For the ESD classifiers, the value of k is varied from 0.0 to 3.0 with an increment
of 0.5. The results on the performance with each fault as k is varied are shown in
Figure 6.12, Figure 6.13, and Figure 6.14. In the figures, each point in a graph is

the median and the lines connecting two points are drawn for clarity.
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Figure 6.12: Graph for thé median TPR, FPR, and the Laktency for the ESD clas-
sifier in detecting P, errors as the detection threshold £ is varied.

The results in Figure 6.12 with P errors show that as the value of % increases,
the TPR as well as the FPR decreases. This is observed in all scenarios. With dif-
ferent faults, the same observation is also seen as shown in the results with Py
errors (Figure 6.13) and P errors (Figure 6.14). From these results, it appears
that a larger k is more appropriate for the ESD classifier with current data. Par-
ticularly, with a value of k that is greater than 1.5. This is because for a value of
k equal to or less than 1.5, the FPR is greater than 0.50. However, as seen from
the trend of decreasing TPR, if k is too large then more errors might be missed.
Therefore, a tradeoff between the TPR and the FPR is needed depending on their

relative importance.
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Figure 6.13: Graph for the median TPR, FPR, and the Latency for the ESD clas-
sifier in detecting Py errors as the detection threshold & is varied.
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Figure 6.14: Graph for the median TPR, FPR, and the Latency for the ESD clas-
sifier in detecting P errors as the detection threshold & is varied.

6.6.2 The T-test Classifier

For the T-test classifier, all values of p in the T-test table (A.2) were tested. The p
values are 0.0005, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, and 0.40 were tested. Figure
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6.15 contains the results with P, errors, Figure 6.16 for Py errors, and Figure 6.17
for P errors as p is varied.

From these figures, it can be seen that as the value of p increases, the TPR as
well as the FPR also increases. However, it is not a hundred percent detection
(TPR=1.00). Also, the results indicate that there appears to be a peak value for
the TPR. With P, errors, a peak TPR is reached with p equals to 0.01 whilst the
same state is reached with p equals to 0.005 with P errors. With P errors, a
different pattern is observed. The TPR remained constant as p is varied. Notice
that the same patterns are seen for the SRS in the three different environments
(albeit with a different absolute value for the TPR).

As with the TPR, the FPR increases as p increases. However, the FPR does
not appear to stop at a peak value but rather continue increasing as p gets larger.
Therefore, depending on whether the objective is either to maximise the TPR or

to minimise the FPR, the value of p equal to 0.01 or less can be used.
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Figure 6.15: Graph for the median TPR, FPR, and the Latency for the T-test
classifier in detecting Pc; errors as the detection threshold p is varied.
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Figure 6.17: Graph for the median TPR, FPR, and the Latency for the T-test
classifier in detecting Py errors as the detection threshold p is varied.

6.6.3 The Quartile-based Classifier

For the Quartile-based classifier, the value of k is varied from 0.0 to 3.0 with an

increment of 0.5. The effects on the performance for the Quartile-based classifier

as the value of k is varied with faults are shown in Figure 6.18, Figure 6.19, and

Figure 6.20.

Results in the figures show that as £ increases, the TPR as well as the FPR de-

creases. This trend of decreasing TPR and FPR is consistent with all faults and
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across all scenarios. With both the TPR and the FPR exhibiting a same trend of
decreasing in value, it is apparent that some form of tradeoff is required. Never-
theless, in the P, errors (Figure 6.18), a k less than 1.5 should be used to achieve
a TPR that is greater than 0.50 in all scenarios. Also, a k that is greater than zero
is required to achieve a FPR that is less than 0.50.
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Figure 6.18: Graph for the median TPR, FPR, and the Latency for the Quartile-
based classifier in detecting P errors as the detection threshold £ is varied.
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Figure 6.20: Graph for the median TPR, FPR, and the Latency for the Quartile-
based classifier in detecting P.x errors as the detection threshold k is varied.

6.6.4 The Q-test Classifier

For the Q-test classifier, all values for the confidence level « in the Q-test table
(Table A.1) were tested. The values of « are 80%, 90%, 95%, 96%, and 99% were

114



6.6 Varying the Detection Threshold

tested. These are the values in the Q-test table (Table A.1). The effects on the
performance with the faults for the Q-test classifier as « is varied are shown in
Figures 6.21, 6.22, and 6.23.

From the figures, an apparent trend of decreasing TPR and FPR as « increases
is observed. This trend is consistent with different faults and for all scenarios.
With Pc; errors, a TPR that is greater than 0.50 in all scenarios is obtained when
« is equal and less than 96%. With other faults, all o produced a TPR that is
significantly greater than 0.50.
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Figure 6.21: Graph for the median TPR, FPR, and the Latency for the Q-test
classifier in detecting P, errors as the detection threshold « is varied.
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classifier in detecting Py errors as the detection threshold « is varied.

6.6.5 Discussion

From the results on the performance for all classifiers, it can be seen that it is dif-

ficult to determine which threshold value provides the best overall performance
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when both the TPR and FPR increases or decreases as the detection threshold is
varied. Similarly, if given the TPRs and the FPRs of two classifiers, it is often
difficult to judge which one is superior if one classifier has a higher TPR whilst
the other has a lower FPR. For these cases, the Matthews correlation coefficient
(MCC) [142] can be a good indicator. It has been highlighted that there is no a
single best metric to compare the performance of the classifiers but the MCC is
often regarded as the most appropriate. The calculation of a MCC score is given
in Eq. 6.8.

MCC — TPxTN —FP x FN 6.8)
/(TP + FP)TP+ FN)(TN + FP)(TN + FN)

The results in Table 6.4 are the best result of each classifier based on the MCC
score. The detection threshold with the highest MCC score in detecting P, errors
across all scenarios is k = 3 for the ESD classifier, p = 0.0005 for the T-test classifier,
k = 0.5 for the Quartile-based classifier, and o = 80% for the Q-test classifier. The
full results for each classifier are presented in Table B.1 in Appendix B. Based on
the MCC score, it is evident that the default or recommended threshold value is
not necessarily the one that give the highest MCC score. Therefore, it would be
interesting if the detection threshold can be dynamically adjusted (if possible).
This is a potential work that can be investigated further.

In Table 6.4, the first multirow is the performance of the four classifiers in
detecting P, errors in a CST scenario; the second multirow for the results in a
Vopr Scenario; and the last multirow for the results in a Vs scenario. The clas-
sifier with the highest MCC score for both the parametric classifiers namely the

T-test classifier, and for non-parametric classifiers namely the Q-test classifier, is
highlighted in bold.

The results for P.; errors in the CST scenario in Table 6.4 show that all classi-
fiers achieved a reasonably good result with a TPR above 0.74 and a FPR below
0.24. Among the classifiers, the Quartile-based classifier has the highest TPR with
a perfect detection rate (TPR = 1.00). The other classifiers scored a TPR between
0.74 to 0.93, with the T-test classifier being the classifier with the lowest TPR.
However, the Quartile-based classifier also has the highest FPR with a value of
0.23 whilst the T-test classifier has the lowest FPR with a value of 0.06.

These results demonstrated that although a classifier may be able to detect
all errors, it does not guarantee a zero false detection. This can be seen in the

results for the Quartile-based classifier. This may be an artefact of the random

117



6.6 Varying the Detection Threshold

Table 6.4: The median TPR, FPR, Latency, and MCC in detecting P, errors.

| Env. | Metric | ESD | T-test | Quartile | Q-test |
TPR 0.88 | 0.74 1.00 0.93
CST FPR 0.18 | 0.06 0.24 0.17
Latency | 1.0 1.0 1.0 1.0
MCC 0.44 0.56 0.44 0.47
TPR 0.80 | 0.60 0.85 0.81
Vorr FPR 0.19 | 0.06 0.24 0.18
Latency | 1.0 1.0 1.0 1.0
MCC 0.38 | 0.50 0.35 0.38
TPR 0.85 | 0.66 0.98 0.89
Vobs FPR 0.20 | 0.07 0.26 0.19
Latency | 1.0 1.0 1.0 1.0
MCC 041 | 0.51 0.41 0.44

behaviours (stochasticity) in the SRS due to the interactions between the robots
as well as between the robots and the environment. If this is an artefact of the
detection threshold, then it should be evident from the results with different de-
tection thresholds. However, the full results in Table B.1 in Appendix B showed
otherwise. The results showed that as the TPR increases, the FPR also increases.
Therefore, a perfect detection with zero false positives is unlikely and a tradeoff

between the TPR and the FPR is generally involved.

The tradeoff between the TPR and the FPR poses a difficulty when a com-
parison is made on which classifier is superior. Thus, this work refers to the
MCC score. Based on the MCC score in Table 6.4, the T-test classifier is supe-
rior to Quartile-based classifier in detecting P> errors in a CST scenario. Also,
between the parametric classifiers, the T-test classifier is better than the ESD clas-
sifier; and between non-parametric classifiers, the Q-test classifier is better than
the Quartile-based classifier. This also applies to the detection of Py errors in
Vopr (second multirow) and V5 (third multirow) scenarios.

Based on the MCC score, the results from the Vargha-Delaney A-test [143] in
Table 6.5 revealed that the T-test classifier is a significantly superior parametric
classifier when compared to ESD classifier in detecting Py errors. This may be
attributed to the fact that the T-test classifier involves the use of the moving av-
erage of data instances for the detection whilst the ESD classifier only uses the
current data instance. Therefore, any spike in the data due to the stochasticity of
the SRS is treated as an error by the ESD classifier resulting in a false positive but
may not by the T-test classifier as the magnitudes of the spikes are reduced by the

averaging operation.
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Table 6.5: The results of Vargha-Delaney A-test for scientific significance on the
MCC score between the four classifiers. A score of 0.5 = no effect, 0.56 = a small
effect, 0.64 = a medium effect, and 0.71 = a big effect.

| Classifier || ESD/T-test | Quartile/Q-test | T-test/Q-test |

CST 0.80 0.80 0.74
Vorr 0.74 0.64 0.72
Vobs 0.66 0.68 0.57

For non-parametric classifiers, although the Q-test classifier has a higher MCC
score across all scenarios compared to the Quartile-based classifier the difference
is only significant in the CST scenario as indicated by the Vargha-Delaney A-test
results in Table 6.5. Finally, between the T-test classifier and the Q-test classi-
fier, the results in Table 6.5 show that the T-test classifier is significantly better at
detecting P errors in CST and Ve scenarios.

The best performance for the classifiers with P errors is shown in Table 6.6.
Based on the highest MCC score for each classifier across all scenarios, the thresh-
old value for the ESD classifier is & = 3, p = 0.0005 for the T-test classifier, k = 3.0
for the Quartile-based classifier, and o = 90% for the Q-test classifier. With the
exception of the non-parametric classifiers, the detection threshold that give the
highest MCC score for the Pc; errors for other classifiers also give the highest
MCC score for the Py errors.

Table 6.6: The median TPR, FPR, Latency, and MCC in detecting P, errors.

| Env. | Metric | ESD | T-test | Quartile | Q-test |
TPR 0.88 | 0.71 0.78 0.92
CST FPR 0.17 | 0.06 0.08 0.20
Latency | 1.0 1.0 1.0 1.0
MCC 0.45 | 0.56 0.53 0.43
TPR 0.83 | 0.64 0.68 0.89
Vorr FPR 0.20 | 0.06 0.06 0.22
Latency | 1.0 1.0 1.0 1.0
MCC 0.39 | 0.51 0.51 0.39
TPR 090 | 0.73 0.73 0.89
Vobs FPR 0.19 | 0.06 0.08 0.20
Latency | 1.0 1.0 1.0 1.0
MCC 0.43 | 0.57 0.52 0.42

Consistent with the results with P, errors, the results for the parametric clas-
sifiers with Py errors in Table 6.6 show that the T-test classifier has a higher MCC
score compared to the ESD classifier. In a similar fashion, for the non-parametric
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classifier, the Q-test classifier has a higher MCC score compared to the Quartile-
based classifier. Results from the Vargha-Delaney A-test in Table 6.7 show that the
difference is significant with the T-test classifier being superior to other classifiers

in detecting Py errors.

Table 6.7: The Vargha-Delaney A-test results on the MCC score between classifiers
in detecting Py errors.

| Classifier || ESD/T-test | Quartile/Q-test | T-test/Q-test |

CST 0.99 0.90 0.99
Vopr 0.97 0.91 0.97
Vobs 0.98 0.81 1.00

The best performance for the classifiers with P errors is shown in Table 6.8.
Based on the highest MCC score for each classifier across all scenarios, the thresh-
old value for the ESD classifier is k£ = 3, p = 0.0005 for the T-test classifier, k£ = 3.0
for the Quartile-based classifier, and o = 96% for the Q-test classifier. Interest-
ingly, the a value that gives the highest MCC score with P¢y errors is 96% whilst
the detection threshold for other classifiers remained the same.

Table 6.8: The median TPR, FPR, Latency, and MCC in detecting P errors.

| Env. | Metric | ESD | T-test | Quartile | Q-test |
TPR 098 | 0.87 0.80 0.97
CST FPR 0.16 | 0.06 0.08 0.10
Latency | 1.0 1.0 1.0 1.0
MCC 0.52 | 0.68 0.57 0.63
TPR 095 | 0.80 0.77 0.94
Vopr FPR 0.18 | 0.05 0.06 0.11
Latency | 1.0 1.0 1.0 1.0
MCC 048 | 0.65 0.56 0.56
TPR 095 | 0.82 0.75 0.93
Vobs FPR 0.17 | 0.06 0.08 0.10
Latency | 1.0 1.0 1.0 1.0
MCC 0.51 | 0.63 0.55 0.60

Consistent with previous results for the P, and P;; errors, the T-test classi-
fier is significantly better than the ESD classifier in detecting P¢x errors. This is
evident from the Vargha-Delaney A-test results in Table 6.9. However, the Q-test
classifier is only significantly better than the Quartile-based classifier in detecting
P errors in the Vo5 scenario. Between the T-test classifier and the Q-test classi-
tier, the difference in the performance is only significant in the Vqpr scenario and

not the other scenarios.
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Table 6.9: The Vargha-Delaney A-test results on the MCC score between classifiers
in detecting P errors.

| Classifier || ESD/T-test | Quartile/Q-test | T-test/Q-test |

CST 0.77 0.74 0.63
Vopr 0.90 0.58 0.80
Vops 0.78 0.75 0.59

Considering the Vargha-Delaney A-test results between the T-test classifier
and the Q-test classifier with all faults, it shows that the T-test classifier is supe-
rior in most scenarios. However, as mentioned earlier, this is not definitive as it
also depends on whether the relative importance between minimising the FPR or
maximising the TPR.

Comparing the TPR and the FPR between the T-test classifier and the Q-test
classifier, there is not a single classifier that outperformed others in both the FPR
and the TPR tests. Although the T-test classifier has a consistently lower FPR

compared to the Q-test classifier, the TPR is also consistently lower.

6.7 Summary

In this chapter, a scheme called the collective self-detection (CoDe) scheme was
proposed for a data-driven error detection for systems with multiple homoge-
neous agents such as a robot swarm. In Section 6.1, it was demonstrated that
detecting errors from the perspective of a single robot is insufficient when deal-
ing with dynamic environments. Therefore, in Section 6.2, a detection scheme
called the CoDe scheme was proposed that utilises the information available in
the collective. This scheme is proposed based on the assumptions that the perfor-
mance of identical agents will be similar even in dynamic environments, and that
by cross-referencing one’s data with others the presence of a fault can be inferred.

The CoDe scheme was implemented with two parametric statistical classifiers
in Section 6.4 and results demonstrated that an adaptive error detection is possi-
ble with a TPR greater than 0.50 and a FPR lower than 0.50. Given the positive re-
sults with the parametric statistical classifiers, it raises the question as to whether
a better performance may be obtained with non-parametric classifiers? There-
fore, Section 6.5 evaluates and compares the performance of non-parametric and
parametric classifiers. Results showed that indeed the non-parametric classifiers
produced a even lower FPR than parametric classifiers. Results from these two

sections show that the application of statistical classifiers in the context of the
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proposed scheme can produce an adaptive error detection. This is evident from
results that the statistical classifiers produced a significantly better performance
in detecting errors in dynamic environments compared to a random classifier.

For a more detailed comparative study, a further investigation was conducted
in Section 6.6 by varying the detection threshold of the statistical classifiers and
evaluate whether there is a change in the performance of the classifiers. Re-
sults show that as the detection threshold is varied, a better performance can be
achieved. However, there was a difficulty in determining which threshold value
provides the best overall performance when both the TPR and FPR increases or
decreases as the detection threshold is varied. Similar difficulty was encountered
when one classifier has a higher TPR whilst the other has a lower FPR. For these
reasons, the Matthews correlation coefficient (MCC) was used as a determinant.
Based on the MCC score, the T-test classifier is superior compared to other classi-
tiers.

However, as the results for individual performance metrics show, none of the
classifiers is superior than the others in both the TPR and FPR cases. Given that
the results so far is positive, it raises the question of whether it is good enough?
Ideally, if improvements can still be achieved then it should be continued. The
next chapter will investigate the application of an immune inspired classifier to
see whether a recently developed bio-inspired classifier called the RDA classi-
tier [115] can produce a similar results or even better performance than currently

implemented statistical classifiers.
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CHAPTER
SEVEN

An Immune-Inspired Classifier

This chapter presents work to examine the application of an immune-inspired
algorithm within the proposed scheme for adaptive error detection. In Section
7.1, the implementation of the RDA classifier for error detection is presented and
the result is compared with previously implemented statistical classifiers. Since
the magnitude of the three faults tested were only for a fixed value, a more com-
prehensive comparisons were subsequently conducted. In Section 7.2, a number
of variants of the P, was evaluated. Then, a number of variants of the P.z was
evaluated in Section 7.3. The performance in detecting these variants between
the RDA classifier and the previously implemented statistical classifiers was then
compared. As part of a general goal to develop an efficient and lightweight er-
ror detection system, Section 7.4 investigates the potential of reducing the FPR
of the RDA classifier by increasing the size of detection window as proposed in
Christensen [9]. Then, Section 7.5 analyses the relationship between the RDA'’s
parameters and the performance of detection. Results from this experiment pro-
vide insights on how the value of these parameters can be changed to optimise

particular performance metrics.

7.1 The RDA for Error Detection

The biological inspiration and the development of the RDA algorithm were pre-
sented in Section 3.5.4. To illustrate how the RDA can be applied for error de-
tection, Figure 7.1 is an illustrative example. Figure 7.1(a) corresponds to the left
equation in Eq. 3.7 whilst Figure 7.1(b) corresponds to the right equation. In Fig-
ure 7.1(a), the r,(x) is calculated with data from other robots. If calculated r,(x)
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7.1 The RDA for Error Detection

is greater than the constant /3, a negative feedback r,(x) is generated. To test a
data instance v from current robot, Figure 7.1(c) shows updated receptor posi-
tions 7/ (x) corresponds to Eq. 3.8. If 7/ (x) is greater than /, an error is considered

as detected as given in Eq. 3.9.

h h
—— —
g c
g — Vi B :
E 3 B
Va < /| )
/ \ neg(8)
Sy M~ P
x=1 x=2 x=3 x=4 x=5 x=6 x=7 x=8 x=9 x=10 x=1 x=2 x=3 x=4 x=5 x=6 x=7 x=8 x=9 x=10
receptor receptor
Input,)q
(a) calculate stimulation from input (b) calculate negative feedback
h
r*y(B) ( f

stimulation

=1 x=2 x=3 x=4 x5 x=6 x=7 =8 x=9 x=10
receptor

Input, v

(c) calculate updated receptor position

Figure 7.1: An illustration on using the RDA for error detection in a foraging SRS.
(a) Calculate the stimulation level of each receptor from input data of neighbour-
ing robots of a communication range. (b) If the stimulation level of a receptor is
higher than the base negative barrier j, negative feedback is generated. (c) The
stimulation level (receptor position) is updated when input from current robot is
added. If any resulting receptor position is higher than ¢, an error is detected, as
seen at receptor r=2.

To demonstrate the implementation of the RDA classifier in CoDe, an example
is given below. Assuming an observer robot R1 receives the data stream on obj

from its neighbours as shown in Table 7.1.

Table 7.1: Data stream received by robot R1.

Robot| R1 | Rz; | Rxy | Res | Ray | R
Data | 1 6 5 4 6 5

Let’s set the number of equally spaced receptors to 21 with a minimum value
of 0 to a maximum value of 8. Total stimulation for each receptor in Eq. 3.7 is
calculated using Gaussian kernel with kernel width h[obj] = 1.0, 5=0.01, v=0.1,
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7.1 The RDA for Error Detection

gb=1.1, and a=1. During the initialisation stage (Eq. 3.7), only neighbourhood
data is used to calculate the receptor stimulation and negative feedback for each
receptor. In this example, the data from neighbours are 6, 5, 4, 6, 5. Then at the
testing stage (Eq. 3.8 and Eq. 3.9), data from the current robot is tested.

To determine whether robot R1 is faulty, the RDA classifier works as follows:

Step 1 Initialisation

e Calculate r,(z) (Left Eq. 3.7):

r,(0)=0.0000, ,(0.4)=0.0001, r,(0.8)=0.0004, r,,(1.2)=0.0014,

r,(1.6)=0.0042, r,(2.0)=0.0105, r,(2.4)=0.0232, r,(2.8)=0.0450
r,(3.2)=0.0772, r,(3.6)=0.1188, r,,(4.0)=0.1651, r,(4.4)=0.2094,
r,(4.8)=0.2434, r,(5.2)=0.2593, r,,(5.6)=0.2523, r,,(6.0)=0.2226,
r,(6.4)=0.1764, 7,(6.8)=0.1242, r,(7.2)=0.0770, r,,(7.6)=0.0416,

r,(8.0)=0.0195
e Calculate r,(z) (Right Eq. 3.7):
7,(0)=0.0000, 7,(0.4)=0.0000, r,,(0.8)=0.0000, r,,(1.2)=0.0000,

7,(1.6)=0.0000, r,,(2.0)=0.0005, ,,(2.4)=0.0132, r,,(2.8)=0.0350,
7,,(3.2)=0.0672, r,,(3.6)=0.1088, ,,(4.0)=0.1551, r,,(4.4)=0.1994,
r,(4.8)=0.2334, r,,(5.2)=0.2493, r,,(5.6)=0.2423, r,,(6.0)=0.2126,
7,(6.4)=0.1664, r,,(6.8)=0.1142, ,,(7.2)=0.0670, r,,(7.6)=0.0316,
7,,(8.0)=0.0095
Step 2 Testing

e Calculate /: 0.0665
e Calculate new receptor position (Eq. 3.8):
r,(0)=0.0444, r,,(0.4)=0.0611, r,(0.8)=0.0717, r,,(1.2)=0.718.

r,(1.6)=0.0615, 7,(2.0)=0.0449, r,(2.4)=0.0166, r,(2.8)=0.0000,
r,(3.2)=0.0000, 7,,(3.6)=0.0000, ,,(4.0)=0.0000, r,,(4.4)=0.0000,
r,(4.8)=0.0000, r,,(5.2)=0.0000, r,(5.6)=0.0000, ,,(6.0)=0.0000,
r,(6.4)=0.0000, r,,(6.8)=0.0000, r,,(7.2)=0.0000, r,,(7.6)=0.0000,

,(8.0)=0.0000
e Classify R1’s data (Eq. 3.9): Since r,(0.8) > [ and r,(1.2) > [, therefore
R1’s data is errorneous.

7.1.1 Experimental Setup

Experimental Objective: To evaluate the performance of the RDA classifier in
CoDe for error detection in both non-dynamic and dynamic environments, and

compare it with those of the statistical classifiers.
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7.1 The RDA for Error Detection

The objective of this experiment is to examine the performance of the RDA
classifier in CoDe for adaptive error detection and to determine whether there
is significant difference between the performance of the RDA classifier and the
implemented statistical classifiers.

The parameter value for the various RDA parameters is influenced by the
nature of the input data as well as the relative importance of each performance
metric. In this section, the results are based on the following: the number of
receptors = 21, 5=0.01, b=0.1, gb=1.1, a=1.0, and the kernel is Gaussian kernel
defined as

X —X; 1 _ex?
= e 2n2 |
These values are obtained from manual inspections on the performance of the

RDA classifier for some preliminary runs.

Using the data from Section 6.6.5, the RDA classifier was applied to detect the
same P (complete), Por (partial), and P (gradual) errors. The performance for
the RDA classifier in detecting each error is presented in tabular form. In each
table, the best results for the parametric and non-parametric classifiers namely
the T-test and the Q-test classifiers are also included for the convenience of com-

parison.

7.1.2 Experimental Results

Table 7.2 shows the results for the P, errors. The results in the table show that the
RDA classifier has a high TPR and a low FPR when compared with the other two
classifiers. The TPR for the RDA classifier is the highest in the CST (constant OPR)
and Vqps (varying object distribution) scenarios when compared to the T-test and
Q-test classifiers. For the FPR, it is significantly lower than the Q-test classifier
and only slightly higher than the T-test classifier. Particularly, the difference to
the T-test classifier is less than 0.01 for the CST scenario, 0.04 for the Vopr (Varying
OPR) scenario, and 0.02 for the Vs scenario. This is an interesting result as it
hints that the RDA classifier may be a particularly suitable classifier for current
problem.

Referring to the MCC score, the RDA classifier has the highest value in all
scenarios and significantly better than the T-test and the Q-test classifiers except
in a Vopr scenario. However, as revealed by the Vargha-Delaney A-test results in
Table 7.3, the difference is not significant (A < 0.71).

The results in Table 7.4 for the P.; errors are consistent with the results for
the Pcp errors in which the RDA classifier has a very high TPR and a very low
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7.1 The RDA for Error Detection

Table 7.2: The median TPR, FPR, Latency, and MCC in detecting P, errors.

| Env. | Metric | RDA | T-test | Q-test |
TPR 1.00 | 0.74 0.93
CST FPR 0.07 | 0.06 0.17
Latency | 1.0 1.0 1.0
MCC 0.72 | 0.56 0.47
TPR 0.78 | 0.60 0.81
Vopr FPR 0.09 0.06 0.18
Latency | 1.0 1.0 1.0
MCC 0.49 | 0.50 0.38
TPR 098 | 0.66 0.89
Vops FPR 0.08 | 0.07 0.19
Latency | 1.0 1.0 1.0
MCC 0.67 | 0.51 0.44

Table 7.3: The Vargha-Delaney A-test results on the MCC score between the RDA,
T-test, and Q-test classifiers.

| | Classifier | CST | Voer | Vops |
RDA/T-test | 0.97 | 0.52 | 0.94
RDA/Q-test | 1.00 | 0.85 | 0.99
RDA/T-test | 0.99 | 0.95 | 0.99
RDA/Q-test | 1.00 | 1.00 | 1.00
b RDA/T-test | 0.79 | 0.58 | 0.88

% || RDA/Q-test | 0.92 | 0.99 | 0.98

FPR. The MCC score for the RDA classifier is higher than the T-test and the Q-
test classifiers in all scenarios. From the Vargha-Delaney A-test results in Table
7.3, the RDA classifier significantly outperformed the other two classifiers in the
detection of Py errors.

The results for the P.; and P» errors give a clear indication that the RDA clas-
sifier can be a more effective classifier for the error detection task in this thesis.
Therefore, it is expected that a similar result may be obtained for the RDA classi-
fier in detecting P errors. The results in Table 7.5 confirm this. The results show
that the RDA is superior (A > 0.71) to the T-test and Q-test classifier.

The positive results on the performance of the RDA classifier is promising.
However, it will be noted that the simulated Py and Ps: errors were only at a
particular magnitude. Therefore, it would be worth varying the magnitude of
the Ppr and Pgr to see whether the same results are obtained. Also, ideally, it
would be beneficial to be able to detect the errors as soon as possible before it
propagates further in the system. In addition, altering the magnitude of the P»;
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7.2 Variations in Partial Failure to the Wheels, Py

Table 7.4: The median TPR, FPR, Latency, and MCC in detecting Py errors.

| Env. | Metric | RDA | T-test | Q-test |
TPR 1.00 | 0.71 0.92
CST FPR 0.06 0.06 0.20
Latency | 1.0 1.0 1.0
MCC 0.75 | 0.56 0.43
TPR 1.00 | 0.64 0.89
Vopr FPR 0.09 | 0.06 0.22
Latency | 1.0 1.0 1.0
MCC 0.64 | 0.51 0.39
TPR 1.00 | 0.73 0.89
Vops FPR 0.07 | 0.06 0.20
Latency | 1.0 1.0 1.0
MCC 0.72 | 0.57 0.42

Table 7.5: The median TPR, FPR, Latency, and MCC in detecting Py errors.

| Env. | Metric | RDA | T-test | Q-test |
TPR 1.00 | 0.87 0.95
CST FPR 0.06 | 0.06 0.09
Latency | 1.0 1.0 1.0
MCC 0.74 | 0.68 0.63
TPR 1.00 | 0.80 0.92
Vorr FPR 0.09 | 0.05 0.10
Latency | 1.0 1.0 1.0
MCC 0.66 | 0.65 0.56
TPR 1.00 | 0.82 0.93
Vobs FPR 0.07 | 0.06 0.10
Latency | 1.0 1.0 1.0
MCC 0.70 | 0.63 0.60

and P¢x can reveal how flexible the classifiers are in detecting the variants.

7.2 Variations in Partial Failure to the Wheels, Py

For completeness, the variants of the P, were tested with all classifiers including
the ESD and the Quartile-based classifiers to investigate how variations in the Py
affect the performance of the classifiers.
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7.2.1 Experimental Setup

Experimental Objective: To evaluate the performance of implemented classifiers
in detecting a number of variants of the Py in both non-dynamic and dynamic

environments.

Eight variants of the Py were tested: Ppr = {45, 60, 75, 80, 85, 90, 95, 105}
x1073 m.s™'. A Py of 0 x1073 m.s™! is equivalent to the P;. Recall that the Py is
simulated by instantly reducing the speed of a faulty robot from a normal speed
of 150 X107 m.s~* to the specified speed. The magnitude of the P»; can influence
how the faults may be manifested as errors in the data; the more severe is the Py,
i.e. slower movement of the wheels, its effects should be more apparent in the
data.

Each P;; variant was injected independently to a single robot in the SRS in
CST, Vorr, and Vops scenarios. For each scenario, twenty repeated runs were con-
ducted. From the twenty runs, the median value of each performance metric was
calculated. For each statistical classifier, the same detection thresholds as in Sec-
tion 6.6 has been tested and the best results based on the MCC score are presented
in this section. The full results are presented in Appendix C and will be referred
to as appropriate.

7.2.2 Experimental Results

The results for the Py variants in a CST scenario are shown in Figure 7.2. The
points on the graphs in each figure are the medians and lines connecting the
points are drawn for clarity. The labels on the z-axes are the Py: variants, in
which a higher value for motor speed means that the Py is more subtle.

The results show that as the magnitude of P;: decreases (higher value for the
Py ), the errors became more difficult to detect. Take the results for the Quartile-
based classifier as an example, the TPR for Py = 45 x107!¥ m.s™! is 0.80 and the
TPR continues to drop to end up with a TPR of only 0.60 at Pr; = 105 x10™® m.s™ .
This general trend of decreasing TPR was observed with all classifiers. This is
an unsurprising result and rather an expected outcome because if the P» is too
subtle to be manifested on the data, it is unlikely to be detected. This is evident
for the results for the T-test and the RDA classifiers when the P;; is greater than
95 x1072 m.s~!, the TPR is less than 0.50.

A turther investigation on the data for Prr = 105 x 1072 m.s~! in the CST sce-
nario as shown in Figure 7.3 revealed that there are overlapping in the data (the
obj and the eng) between the faulty robot R1 and fault-free robots in the system.
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Figure 7.2: The median TPR, FPR, Latency and MCC for all classifiers as the Py
is varied in a CST scenario.

This is likely the reason for the poor performance for the RDA and the T-test clas-
sifier at this magnitude. As for other classifiers, a clear trend of increasing FPR

indicates that more false positives have been produced.
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Figure 7.3: Scatterplots showing the minimum and maximum value for the ob
and eng in the system, and for faulty robot R1 at each control cycle in a CST
scenario.

For the FPR, as the Pr; becomes more subtle the FPR also increases. However
this is only a slight increase. However, for the Q-test classifier, a steep increase in
the FPR can be seen with Py =90 x1072 m.s~! and it remains reasonably constant
for the more subtle Py; (i.e. Ppr > 90 x107? m.s™!). This steep increase indicates
that the Q-test classifier has become significantly less capable of differentiating
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7.2 Variations in Partial Failure to the Wheels, Py

between normal and erroneous instances as P becomes more subtle.

In a Vqpr scenario, the same pattern of an increasing FPR and a decreasing
TPR is also observed as shown in Figure 7.4. This result further demonstrates
the difficulty in detecting errors in systems deployed in dynamic environments.
However, albeit with a lower performance, the results suggest that the errors can
still be detected by all classifiers with a TPR that is significantly greater than 0.50
and a FPR that is significantly lower than 0.50.
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Figure 7.4: The median TPR, FPR, Latency and MCC for the classifiers as the P
is varied in Vopg.

The results for the Pp; variants in a Vops scenario in Figure 7.5 are similar
to previous experiments. The MCC score is higher for all classifiers in a Vqpg
scenario when compared to a Vo scenario.

Similar to the results in CST and Vo scenarios, as the Pr; became more subtle
in a Vops scenario, the performance of the classifiers decreases (see Figure 7.5).
Again, this is unsurprising but it does raise the question of how subtle can the
P»r scenario be in real robots. This is a limitation of this experiment as the vari-
ations of Py were synthetic as to the best of our knowledge no published data
is available on how much reduction in the motor speed when real robots experi-
ence partial faults to the wheels. Addressing this issue is future work. However,
results from this experiment allow us to look at the range of P» errors that can be
detected and the associated performance (TPR, FPR, MCC) by all classifiers. For
example, if a target TPR of 0.80 is desired in all scenarios, then the results show
that only the ESD, the Q-test, and the RDA classifiers can meet the performance
target. On top of that, it is only achievable with Py less than 80 x1073 m.s™* for
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Figure 7.5: The median TPR, FPR, Latency and MCC for the classifiers as the Py
is varied in Vqps.

the Q-test classifier, Py; less than 60 x1072 m.s~! for the ESD classifier, and P;.
equals to and less than 85 x 10 m.s™! for the RDA classifier.

The results for the TPR are in Figure 7.2, Figure 7.4, and Figure 7.5 show that
the RDA classifier has the highest TPR compared to other classifiers with Py
less than 90 x10~ m.s™'. Recall that it is suspected that with P, greater than
95 x107® m.s™!, the faults might be too subtle to be manifested on the data and
thus may not be differentiable from a fault-free condition by the RDA classifier.
However, the FPR for the RDA classifier remained the same around 0.05 for the
P;r variants. Overall, the MCC score showed that the RDA classifier significantly

outperformed other classifiers for Py; less than 95 x107% m.s™%.

These results
demonstrates that the RDA classifier can be a more effective classifier to achieve
an adaptive error detection for Py in certain dynamic environments with perfor-

mance significantly better than the implemented statistical classifiers.

7.3 Variations in Gradual Failure to the Wheels, P

This experiment investigates the ability of the classifiers to detect a number of
variants of the Pgz. The variation in the Ps; has an effect on the time taken for a
fault to be manifested as an error on the data. The more subtle a P, the longer it
takes for the errors to be manifested on the data. Thus, a change in the Latency

is expected as the P is varied.
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7.3.1 Experimental Setup

Experimental Objective: To evaluate the performance of implemented classifiers
in detecting a number of variants of the Pg; in both non-dynamic and dynamic

environments.

Eleven variants of the P were tested: Pcz= {5, 10, 20, 30, 40, 50, 60, 70, 80, 90,
100} x107° m.s~2. The bigger the significant digits of the Pz, the more severe is
the failure. This means that a Pz of 100 x10~® m.s~? is more severe than a Pz of
80 x107° m.s~2, and should not be detected later.

Each variant of the P¢z was independently injected to a robot in a SRS in CST,
Vopr, and Vps scenarios. Twenty repeated runs per scenario were conducted. The
classifiers are then applied and a median is calculated for each performance met-
ric. For each classifier, the same detection thresholds as in previous experiments
were tested and the best results are presented in this section. The full results are
presented in Appendix C.

7.3.2 Experimental Results

For the variants of Pg; in a CST scenario, the results in Figure 7.6 show that as
the magnitude of the P increases, detecting the errors becomes easier and the
time to identify the first occurrence of the error is shorter. This can be seen from
the increase in the TPR and a decrease in the Latency. In the top left figure,
an increase in the TPR can be seen for most classifiers as the magnitude of P

increases from 5 x10™® m.s™2 to 100 x107° m.s™2

. In the bottom left figure, as
the magnitude of the Py increases, the Latency decreases. This is an expected
result as the magnitude of P increases, the errors became more apparent on the
data and thus can be significantly different from those for fault-free conditions.

The increase in the TPR for all classifiers between two consecutive Pg vari-
ants is only about 1%. This is an artefact of the variants of the P4; tested because
the effect of Pgr is accumulative. This means that as the time progresses, the
faulty robot will move with gradually reducing speed until it stops completely.
Therefore, the difference in the performance between the two variants of Py is
influenced by the difference in the time taken to reach a complete stop by a faulty
robot. The number of control cycles (7;) that have passed when the faults be-
comes permanent is given by the equation:

mitial speed

T, = ( )/control cycle's length (7.1)

Per
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Figure 7.6: The median TPR, FPR, Latency, and MCC for the classifiers as the
Pgr is varied in a CST scenario.

For example, with Pgz 0of 5 X107 m.s2, T, = (5g50=)/250 = 12 control cycles.

Similarly, with Peg 0of 10 x107° m.s™2, T, = (5e525)/250 = 6 control cycles. There-
fore, if a classifier is working properly and the operational condition is the same
for two P¢r variants, (in principle) the maximum difference in the TPR is about
(12-6)/60 = 0.10 (10%). In practise, this difference in the TPR is likely to be lower
as the Pz might be detected before the faulty robot comes to a complete stop.

For the FPR, as the magnitude of the Py increases, the FPR also increases but
only slightly. For most classifiers, the FPR remained roughly the same as the P
is varied. Overall, the FPR is less than 0.10 except for the ESD classifier.

The effect of the Pz variants on the Latency is more apparent when com-
pared to the Py:. The results on the Latency in the bottom left figure in Figure
7.6 show that the Latency is high when the P is subtle as evident with P of 5
x107° m.s~% Then, as the magnitude of P increases, the Latency decreases un-
til it reaches a value of 1.0 with Pz of 90 x107° m.s~2. Again, this is an expected
outcome with the P.z due to its accumulative nature.

Overall, almost all classifiers managed to achieved a TPR greater than 0.80 and
a FPR less than 0.10 for the P variants. Among these classifiers, the classifier
with the highest MCC score is the RDA classifier for all P variants.

The results for the variants of the Pqr in Vopg (Figure 7.7) and Vops (Figure 7.8)
scenarios are consistent with those in a CST scenario. A slight increase in the TPR

can be seen as the magnitude of the P increases. Again, this is as expected as
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Figure 7.7: The median TPR, FPR, Latency, and MCC for the classifiers as the
Pgr 1s varied in a Vopg Scenario.

a more severe failure should be easier to detect. Similarly a slight increase in the
FPR can also be seen. Finally, the decrease in the Latency as the magnitude of
Pz increases is also observed. However, all classifier reached a Latency of 1.0

with P greater and equals to 80 x107° m.s™%.

The results for the variants of P in Vopr and Vqps scenarios for all classifiers
show that all classifiers managed to achieve a TPR that is significantly greater
than 0.50 and a FPR that is significantly less than 0.50. These results provide a
good indicator of the ability of the classifiers implemented for an adaptive error
detection in certain dynamic environments particularly in Vopr and Vops scenar-

i0s.

The performance of the RDA classifier for the variants of the Pz in CST, Voer,
and Vops scenarios that consistently superior to other classifiers. This gives a
clear indicator that the RDA classifier can be as at least as effective as the other

implemented classifier for current problem.

Due to the potential of the RDA classifier, the work in the next sections will
look at the aspects of minimising the FPR and sensitivity analysis on the RDA'’s

parameters.
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Figure 7.8: The median TPR, FPR, Latency, and MCC for the classifiers as the
Pgr is varied in a Vpg scenario.

7.4 Reducing the False Positive Rate, FPR

For many robotic task, a latency of a few control cycles is unlikely to cause signifi-
cant negative impacts on the performance as long as a fault is eventually detected
[9]. However, a high false positives is often undesirable as recovery actions are
often expensive and time consuming. Therefore, minimising the false positives is
often desirable.

One way of reducing the number of false positives is to increase the detection
threshold of the chosen classifier and it has been explored in Chapter 6. Full re-
sults as presented in Appendix B show that by increasing the detection threshold,
the number of errors not being detected also increases. Therefore, a tradeoff is re-
quired and for this work a detection threshold that give the highest MCC score
considering both the TPR and FPR was selected.

Another way to reduce the number of false positives is by increasing the size
of the detection window (DW) which was investigated in Christensen et al. [12].
Their work showed that the number of false positives can be significantly reduced
as the detection window is increased. In Christensen et al. [12], it was referred to
as smoothing with a moving average in which a moving average over 25 control
cycles of the classifier’s output was used to determine whether an error has oc-
curred. In other words, the size of the DW is 25. For the current implementation,
the performance of the classifier is based on the output at current control cycle,
ie, DW=1.
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7.4 Reducing the False Positive Rate, FPR

In principle, an increase in the size of the DW will result in a decrease of the
number of false positives. However, it also likely to result in more errors not
being detected, i.e. a decrease in the TPR. Thus, the choice of the size of the DW
is crucial. Aggregating the results for the number of false positives for the RDA
classifier in detecting Pc; errors, Figure 7.9 shows the distribution for the length
of false positive ({rp), i.e. how long the series of false positives last. On the y-axis
is the frequency of the /rp over the total number of false positives, and on the
x-axis is the {pp. A value of 2 on the x-axis means a spike in the false positive
lasts for two consecutive control cycles. From the figure, it can be seen that more
than 80 percent of the false positives last for only one control cycle. Therefore, if
the size of the DW is increased to 2, more than 80 percent of the false positives

can be eliminated.

CcSsT OPR obs
0.9 0.9

frequency
frequency
frequency

2 3 4
consecutive control cycle

2 3 4 1 2 3 4
consecutive control cycle consecutive control cycle

Figure 7.9: Histogram showing the distribution on the length of false positives.

7.4.1 Experimental Setup

Experimental Objective: To evaluate the potential of reducing the FPR by in-
creasing the size of the detection window from 1 to 2.

To further investigate the effect of increasing the size of the DW on the perfor-
mance metrics, the same data in Section 7.1.2 was analysed with the RDA clas-
sifier with a DW of size 2 (RDA-DW2) and the results are compared with the

original RDA classifier.

7.4.2 Experimental Results

Table 7.6 shows the differences in performance for detecting P, errors, Figure
7.10 for detecting P»; errors, and Figure 7.11 for detecting P.x errors. A positive
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value in the table or graph means an increase in the value, a zero means no dif-
ference, and a negative value means a decrease in the value for each metric. For
example, the value -0.02 for TPR in the CST scenario in Table 7.6 means that with
the RDA-DW?2 classifier, the TPR for detecting P, errors in the CST scenario is
0.02 (2.0 percent) less than the original RDA classifier.

Table 7.6: The difference in TPR, FPR, Latency, and MCC between the RDA-
DW?2 classifier and the original RDA classifier in detecting Pc; errors.

| Metric | TPR | FPR | Latency | MCC |

RDA (A1) 1.00 | 0.07 1.0 0.72

csT | RDA-DW2 (A2) 098 | 0.01 2.0 0.93
Difference (A2-Al) | -0.02 | -0.06 1.0 0.21

RDA (A1) 0.78 | 0.09 1.0 0.49

Vorr | RDA-DW2 (A2) 0.67 | 0.01 2.0 0.66
Difference (A2-A1) | -0.11 | -0.08 1.0 0.17

RDA (A1) 0.98 | 0.08 1.0 0.69

Voos | RDA-DW2 (A2) 0.95 | 0.01 2.0 0.91
Difference (A2-A1) | -0.03 | -0.07 1.0 0.22

It can be seen from the results in Table 7.6, Figure 7.10 and Figure 7.11 that by
increasing the size of DW from 1 to 2, a lower TPR and FPR is obtained. However,
even with a decrease in TPR, a better overall performance as measure with MCC
score is achieved as evident with positive values for the MCC scores. As for the
Latency, an increase from one control cycle to greater than or equal to two con-
trol cycles was observed. This was expected. Note that the minimum Latency
(Latencymi,) correlates to the size of DW, i.e. Latency,,;, = DW - 1.

Results from this investigation show that by increasing the size of DW from
1 to 2, a significant reduction in FPR can be obtained. However, choosing the
appropriate size of the DW is crucial as it also likely to have a negative effect on
the TPR and Latency.

No further investigation with other DWs were conducted because the aim of
this investigation is to see whether the FPR is also reduced by varying the size of
DW and results have demonstrated to be the case. In addition, as results in Figure
7.9 have shown, a further increase in DW size might not provide further signif-
icant benefits. Having said that, it is also dependent on whether how expensive
is the recovery measure. A larger DW would tend to introduce greater latency in
detection and the number of false positives that last for three consecutive control
cycles or more is very small. In practise, the recovery measure might be expen-
sive and thus it should only be carried out when necessary. Thus, using a larger

DW would be preferable. It is noted these results are specific to our experiments
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Figure 7.10: The difference in performance between the original RDA with the
RDA-DW?2 in detecting P»; errors. A positive value denotes an increment, a neg-
ative value denotes a reduction, and zero means no difference.
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Figure 7.11: The difference in performance between the original RDA with the
RDA-DW?2 in detecting Pgr errors. A positive value denotes an increment, a neg-
ative value denotes a reduction, and zero means no difference.

and for other systems the findings may need to be re-visited.
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7.5 Analysis of the RDA’s Parameters

This section presents an analysis on the RDA’s parameters by investigating the
effect on the TPR, FPR and the Latency of detection as three parameters of the
RDA classifier are varied. The objective of this experiment is to examine the ef-
fect of changing the value of the parameters and see the corresponding change of
the performance metrics. Results from this experiment show on how the value of
the parameters can be changed to achieve the desired performance. Referring to
Eq. 3.8, there are three main parameters that affect the error-detection ability of
the RDA classifier. These parameters are: receptor position decay rate b, negative
feedback decay rate a, and current input stimulation rate gb. Note that the analy-
sis of the RDA’s parameters is presented here and not earlier because the results
can reveal how sensitive are the parameters. If a small change to the parameters
causes a big change in the performance, then a greater consideration is needed
when choosing a value for each parameter.

For each parameter, the parameter value is varied and the results are com-
pared qualitative and quantitatively. Only one parameter is varied at a time, and
when an optimal value is selected, it is then used for subsequent analyses of other
parameters. The complete list of the value ranges of the RDA parameters is pre-
sented in Table 7.7. For each parameter being varied, there is an initial value, an
upper value, an increment value, and a default value. The default value is used
for parameters that are not varied. For example, when analysing the parameter
b, a default value of 1.1 for gb and 1.0 for a is used. Each value of the parameters
was tested for Pcp, Ppr = 45 x107° m.s™!, and Ppr = 100 x107° m.s™2 using the
RDA-DW?2 classifier.

Table 7.7: The value ranges for the main RDA parameters: receptor position decay
rate b, negative feedback decay rate a, and current input stimulation rate gb.

| Parameter | Initial | Increment | End | Default |

b 0.02 0.02 0.22 0.1
gb 0.5 0.1 1.5 1.1
a 0.5 0.1 2.0 1.0

7.5.1 The b Parameter

The parameter b is the decay rate for the position of the receptors as seen in Eq.
3.8. This parameter controls the progression of the receptor’s position towards ¢
to signal the detection of an error. This progression is based on the stimulation
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generated from the input from other robots during initialisation phase.

The results on the effect of b parameter to the TPR, FPR, and the Latency as
the value of b is varied are presented in graphs. The graphs are aligned in a single
column, one after another for a better visual comparison and interpretation of
results.

Results for the Py errors in Figure 7.12 show that as the value of the b pa-
rameter increases, the FPR also increases. This effect is also evident in the results
for the Py errors in Figure 7.13, and the Pqx errors in Figure 7.14. However, the
results show the increase in the FPR is very small and barely noticeable in the
figures. This is mainly because the increment in value for the b parameter is only
0.02. Nevertheless, it is apparent from the results that a small value for the b
parameter should used.

With respect to the TPR, as the value of the b parameter is increased, only in
the case of the P, that there is an increase in the TPR. This occurs at b = 0.12.
However, as with the FPR, the increase in the TPR is very small. For other models
of fault of the wheels, the TPR remained constant throughout for all values of b.

On the Latency, the results for all modes of failure show that for all values
of b tested, the Latency remained constant at 2.0. Thus, it appears that the vari-
ations in the b parameter have little effect on the latency of detection.

Based on the results in Figure 7.12, Figure 7.13, and Figure 7.14, it suggests
that a small value of b should be used. Thus, b = 0.02 is chosen as the default

value for the subsequent analyses on the gb and a parameters.

7.5.2 The gb Parameter

The gb parameter controls the stimulation rate for the current input namely the
input from a current robot running the error detection mechanism.

The results of the effect of varying the parameter gb on the TPR, FPR, and the
Latency for P is presented in Figure 7.15. The top figure shows that the TPR
is zero with gb less than 0.9 and dramatically increased to greater than 0.80 when
the gb is greater than 0.9. For the CST and the V5 scenarios, a peak is reach when
gb equals to 1.1 and it remained constant as gb is further increased. For the Ve
scenario, the TPR maintains a steady increase as the gb increases from 0.9. On the
FPR (middle figure in Figure 7.15), with gb less than 1.0 the FPR is zero. It then
steadily increased as the gb increases. Finally, for the Latency, there is a distinct
binary pattern where the Latency is 60 for gb less than 1.0, and the Latency is
2 for gb equal and greater than 1.0.

With the P:: scenario, the results in Figure 7.16 show a similar effects on the
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Figure 7.12: The TPR, FPR, and the Latency for the RDA-DW?2 classifier with
different b in detecting the P, errors.

performance of detection as with the Pc;. A peak TPR is reached at gb equals to
1.1, and zero when gb equals to and less than 0.9. The FPR starts to increase with
gb equals to 1.0 and continued steadily as the value of gb is increased. As for the
Latency, a constant value of 2.0 is reached when gb is greater than or equal to
1.1.

A similar result with the Pg; in Figure 7.17 indicates that the gb equals to 1.1 is

most appropriate value for current problem.
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Figure 7.13: The TPR, FPR, and the Latency for the RDA-DW?2 classifier with
different b in detecting the Py errors.
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Figure 7.14: The TPR, FPR, and the Latency for the RDA-DW?2 classifier with
different b in detecting the P errors.
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Figure 7.15: The TPR, FPR, and the Latency for the RDA-DW?2 classifier with
different gb in detecting the P errors
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Figure 7.16: The TPR, FPR, and the Latency for the RDA-DW?2 classifier with
different gb in detecting the Py errors.

7.5.3 The a Parameter

The a parameter controls the decay rate for the negative feedback generated from
the input during the training phase in Eq. 3.9. From the previous two experi-
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Figure 7.17: The TPR, FPR, and the Latency for the RDA-DW?2 classifier with
different gb in detecting the Py errors.

ments, the chosen b = 0.02, and ¢gb = 1.1 is used for the analyses of this parameter.

Figure 7.18 shows the results on the TPR, FPR, and the Latency for the RDA-
DW2 classifier as a is varied with the P-p. It can be seen that the TPR and the
Latency remained constant as the parameter a is varied. Also, the same trend
is seen in different scenarios. From these results, it appears that with the chosen
values of b and gb, the TPR and the Latency is uncorrelated with a. This is also
evident in the results with the P»: errors in Figure 7.19 and with the P errors in
Figure 7.20. Therefore, the selection of a is solely based on the FPR.

Examining the results for the FPR with the Py, Ppr, and Py errors, it can be
seen that as the value of a increases from 0.5 to 2.0 the FPR decreases. Interest-
ingly, a minimum value of the FPR is reached with a equal to 1.7. The exact value
of a when this occurs is the same with all faults. Therefore, it is suggested that
the value of 1.7 is the most suitable for the parameter a for current problem.
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different o in detecting the P, errors.
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Figure 7.19: The TPR, FPR, and the Latency for the RDA-DW?2 classifier with
different o in detecting the P:: errors.

7.54 Summary

From the tuning exercise, a set of optimal parameter values for the current prob-

lem is 6=0.02, gb=1.1 and a=1.7. It is noted that the order in which the parameters
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Figure 7.20: The TPR, FPR, and the Latency for the RDA-DW?2 classifier with
different o in detecting the P errors.

are tested is relevant. If the parameter a is analysed first, it is likely that the
suggested value for b and gb will be different. Also, each parameter affects the
performance of detection differently as summarised in Table 7.8.

Table 7.8: Summary on the influence of the RDA’s parameters on the performance
of detection with current settings.

Parameter | TPR | FPR | Latency
b yes | yes little
gb yes | yes yes
o little | yes little

Recently, an independent analysis on optimising the RDA parameters us-
ing GA has been published in Hilder et al. [144] and thus will be referred. In
Hilder et al. [144], the tuning was carried out for an anomaly detection on mass-

spectrometry data.

7.6 Summary

In this chapter, an immune-inspired anomaly detection algorithm called the RDA

was tested in the context of the CoDe scheme to detect the errors associated with
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the wheels in the three operational environments. In Section 7.1, the RDA was
implemented and the results showed that the RDA classifier is capable of adap-
tive error detection. When compared with the T-test and the Q-test classifiers, the
RDA classifier produces a superior result with higher MCC scores. In general,
the TPR of the RDA classifier is as high as the Q-test classifier whilst the FPR is as
low as the T-test classifier.

However, the superior results of the RDA classifier are for the default variant
of the P»: and P.z. For a more extensive investigation of the error-detection abil-
ity of all classifiers, a number of variants of the P;; and Psz were simulated. In
Section 7.2, eight variants of the P, were tested and the results showed that the
RDA classifier produced the highest MCC score in almost all scenarios. In Section
7.3, eleven variants of the Pz were tested and the RDA classifier again produced
the highest MCC score in nearly all scenarios. These results give evidence that
the RDA classifier can not only be successfully implemented to provide an adap-
tive error detection for the simulated dynamic environments, it also produced a
superior performance compared to other implemented statistical classifiers.

Having demonstrated the performance of the RDA classifier, Section 7.4 then
proceeds to investigate the aspect of minimising the FPR as proposed in Chris-
tensen et al. [12]. The results from this section demonstrates that by simply in-
creasing the size of the detection window from the default value of 1 to 2, the
number of false positives can be significantly reduced.

Finally, Section 7.5 presents an analysis on the sensitivity of various param-
eters of the RDA classifiers. The results give insights on how these parameters
can be optimised to provide a better performance for each of the performance
metrics.

The CoDe scheme proposed in Chapter 6 requires that, for each control cy-
cle, each robot communicates its data with other robots within its communica-
tion range. However, this constant wireless communication is energy expensive.
Therefore, the next chapter analyses two strategies for the CoDe scheme that aims
to reduce the communication overhead without significantly degrading the per-

formance of detection.
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CHAPTER
EIGHT

Strategies to Reduce Communication
Overheads

The proposed CoDe scheme for adaptive error detection in Chapter 6 requires
constant wireless communications among robots for data exchange. Since wire-
less communications is expensive in terms of energy, two strategies are investi-
gated aimed at reducing the communication overheads. In section 8.1, the moti-
vation for proposing the strategies is presented. Then the two proposed commu-
nication strategies are given in Section 8.2 and Section 8.3. The two strategies are
analysed in Section 8.4 in terms of the number of communication overheads and

the performance of detection.

8.1 Motivation

The proposed CoDe scheme for an adaptive error detection assumes that robots
communicate data through a wireless medium either through broadcasting or
direct one-to-one communications. Potential problems with the wireless commu-
nication medium such as contentions, localisations, interferences, or transceiver
faults are out of the scope of this thesis. Thus, it is assumed that data exchanges
are carried out without any problems, e.g, messages being lost or uncompleted.
However, wireless communications consume a lot of resources [145]. Thus, it
would be beneficial if the number of communications can be minimised. Here,
two communication strategies are proposed in the context of CoDe. This does
not apply if the exchange of data is through other mediums such as physical or
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8.2 Strategy 1 - Optimistic Communication

stigmergic (indirect) interactions.

At control cycle ¢ in the original implementation, each robot exchanges its
data with other robots within its communication range. Here, the data exchanges
between robots is considered as 1 unit of communication. Thus, the number of
communications is equal to the number of control cycles in a stimulation, i.e.,
number of communications = 80 per pair of robots. However, not all of these
constant communications are necessary as the probability of a fault occurring
continuously throughout the lifetime of a robot should be low. Based on this as-
sumption, two strategies are proposed to minimise the communication overhead
by emphasising the internal detection and only communicating with other robots
for cross-validation when an error is detected internally.

Section 8.2 introduces the first strategy called the Optimistic Communication
Strategy in which a robot only communicate with other robots if an error is de-
tected internally using the data from only the individual robot. The second strat-
egy called the Pessimistic Communication Strategy that actively carries out cross-
validation based on both internal and external detection is presented in Section
8.3.

8.2 Strategy 1 - Optimistic Communication

The first strategy is called the Optimistic Communication Strategy in which data
exchanges are only carried out if an error is detected internally. For simplicity,
it is referred to as OpCom. A distinction is made between internal and external
errors and refers to the former as err;,. and err.,. for the later. For an internal
detection, the classifier determines whether an error has occurred based on only
the robot’s own data; whereas for external detection the classifier uses data from
all the robots within a robot’s communication range.

This strategy is presented in Algorithm 2. It begins with the initialisation of an
internal buffer ¥V with a robot’s own data from the first m control cycles (this is
effectively using a time window as described in Section 6.2). The size of the buffer,
W, can vary; it is set to five in this research. After initialisation, at control cycle
t, the classifier evaluates the current data instance v with those in W (internal
detection). If the classifier classifies v as an error, err;,. is considered detected.
Then, the classifier will perform a further evaluation using the data from other
robots DN (external detection). If the classifier also classifies v as an error with
respect to DN, then err.,. is considered detected. An error is only confirmed if
it was detected from both the internal and external detection. If not, v replaces
the oldest entry in W.
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8.2 Strategy 1 - Optimistic Communication

Algorithm 2: Pseudocode for OpCom

Input: current data instance v, neighbourhood data DN, classifier A
Output: result of detection
initialise internal buffer W;
foreach control cycle t do
errine = A(v, W);
if err;,; then
if CalculateNeighbour(DN') < 2 then
‘ €rrext = A(U/ DNtemp);

else
errexe = A(v, DN);
DNtemPZDN,'

end

if err.,: then

‘ report erreyt;
else

‘ update(W);
end
else

‘ update(W);
end
end

To illustrate how this strategy works, an example of error detection in robot R1
is shown in Figure 8.1. In Figure 8.1(a), initialisation of WV is carried out with data
instances from the first five control cycles. For clarity, data in WV is shaded grey;
dotted circle is the current data instance; dotted rectangle is the neighbourhood
data; ’x” is normal; and ‘y’ is anomalous. After initialisation, at control cycle ¢ = 6,
internal detection is carried out. As no err;,. is detected, W is updated as seen
in Figure 8.1(c) with shaded grey att =6. Att =7, an err;,. is detected and robot
R1 communicates with other robots to get the neighbourhood data DN. As an
err.y: is detected, YW was not updated. At ¢ = 8, internal and external detection
was carried out as shown in Figure 8.1(d), and a similar result is obtained as the
one at t =7. As shown in Figure 8.1(e), W is only updated with data not flagged
as an error by both internal and external detection. In this example, the number

of communications is only 5 whilst it is 15 with the original implementation.

151



8.2 Strategy 1 - Optimistic Communication

Robot Robot Robot
t 1 2 3 4 5 6 7 8 9 10 t 1.2 3 45 6 7 8 9 10 t 1 2 3 4 5 6 7 8 9 10
1 B« X X X 1 X x X x X 1 X X x X x
2 I X X x 2 b3 X X X 2 x x x X
3 Iyl X x 3 X x X 3 x X x
4 belx x X X X 4 XX X x X X 4 X x x X X x
5 Vxl X x 5 LK, x X 5 |z x x
6 ¥ XX x 6 :’_KS X X x 6 X XX x
7y ox x x 7V x x x 7 EVIXTTTTTTTITTTC%
8 ¥y X X X X 8 ¥ X X X X 8 ‘-'_\n--?-x -------- x X
9 v x XX 9 ¥ x x X 9 vy x XX
10 vy x x X x X 100 v x x XX X 100 v x x X X x
11y x 11 x 11y x
12 x XX X x 1z x x X x X 12 x X x x x
13 x x x X XX 13 x x x X X X 13 x x  x X XX
14 x X X 14 x X X 14 x X X
15 x x x X x x 15 x x X X X X 15 x x X x x X
(a) t=5 (b) t=6 (c) t=7
Robot Robot
t 1 2 3 4 5 6 7 8 9 10 t 1 2 3 4 5 6 7 8 9 10
1 X X x x X 1 XX x X x
2 X X X X 2 x x X x
3 x X X 3 X x x
4 X X X X x X 4 o ox x X x x
5 X X X 5 x X X
6 X X X X 6 x X x X
7 PO . S I S 7 y X x x
8 Lo X % oo X 8 ¥ X x X x
9 y X X X 9 ¥ X X X
10 vy x x X X X 10 v x x XX X
11y x 1y x
1z x x X x x 12 | % XX X X
13 x x X xox X 13 | % x x X x x
14 x xox 14ixt X x
15 % x X XX * 15 % x x XX X
(d) t=8 (e) t=14

Figure 8.1: Strategy S1: Optimistic Communication Strategy (OpCom). A fault is
introduced to robot R1 from control cycle t =7 to ¢t = 11. In the figures, a ‘y’ is
anomalous and a ‘x” is normal. (a) Initialisation. Fill internal buffer W of size 5
with data instances from the first five control cycles. Data in WV is shaded grey.
(b) At t = 6, evaluate whether a current data instance in circle is anomalous w.r.t
data in W. If no err;,. detected, update W with current data instance. (c) At
t = 7, current data instance is classified as an error w.r.t data in W, i.e., err;
is detected, get data from other robots DN'. From the external detection, current
data instance is also classified as an error w.r.t DN/, i.e., err.,; is detected, current
data instance will not be added to W. (d) Att =8, both err;,. and err.,. are
detected. Same as (c). (e) Att =14, no err;,. detected; current data instance is
added to W.

152



8.3 Strategy 2 - Pessimistic Communication

8.3 Strategy 2 - Pessimistic Communication

The second strategy is called the Pessimistic Communication Strategy in which
the external detection is activated based on the results from both internal and
external detection. This strategy is similar to OpCom but with the addition of a
parameter c to control the frequency of communication. This strategy is referred
to as PeCom.

Algorithm 3 is the pseudocode for PeCom. Similar to OpConm, it starts with the
initialisation of internal buffer WW. In addition, an external detection counter ¢
is added and initially set to 1. This counter dictates the next external detection,
which is after cth control cycle. For example, ¢ = 1 means that the next external
detection is one control cycle after the current cycle (which is the next control cy-
cle), whereas c = 4 means that the next external detection is 4 control cycles after
the current cycle. The maximum value for c is controlled by the parameter K. In
principle, the parameter K can be ignored and thus if no err;,; is found, no ex-
ternal detection (communication) is activated. However, for practical reasons due
to the uncertainty in physical world and imperfect components, it is included.

An internal detection is still carried out at every control cycle. If err;,. is de-
tected, subsequent external detection with communicated data DN is conducted.
If both err;,. and err.,. are detected, an error is reported and c is reset to 1.
Even if there is no err;,., external detection is still carried out subject to c. At
this stage, if there is no err.,. the value of c is incremented by 1. The incre-
ment stops when c reaches K. Thus, the frequency of external detection changes
according to results from both the internal and external detection.

An example of using PeCom to detect errors in robot R1 is shown in Figure 8.2.
In the figure, data in WV is shaded grey; dotted circle is the current data instance;
dotted rectangle is the neighbourhood data; ‘x” is normal from R1’s perspective;

‘y’ is anomalous, and ‘z” is new normal.
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Algorithm 3: Pseudocode for PeCom

Input: current data instance v, neighbourhood data DN, classifier A,

parameter K

Output: result of detection

initialise sliding window W;
counter ¢ < 1, tc + (size of W + 1);
foreach control cycle t do

end

errin. = A(v, W);
if err;,. then

if CalculateNeighbour(DN') < 2 then

‘ ErYext = A(U/ DNtemp);

else

DNtemp:DN,'
end
if err.,; then
report errq,;
c+1;
else

| update(W);
end
tc=1t+c;

Ise

if t == tc then
erre = A(v, DN);
if err.,; then
report erre,,
c+1;
tc=t+c;
else
if ¢ < K then
| et
end
end
tc=t+c
else
| update(W);
end

end

Er TXext = A(U/ DN)/
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Robot Robot Robot

t 1 2 3 45 6 7 8 9 10 t 1 2 3 45 6 7 8 9 10 3 1 2 3 4 5 6 7 8 9 10
1 Q x X X X 1 X X x X x 1 X X x X x
2 'x‘ X X X 2 X X X X 2 X X X X
3 I x' X X 3 X x X 3 X x X
4 Uxlx x X X X 4 X X X X X X 4 X | x X x X X
s Vxl x X 5 £ X X 5 X X X
6 X XX x 6 E‘f ____Ji__T______‘i________________] 6 WM _ *_*_ _X__ ______
7 ¥y X x X 7 v X X X 7 '_\ 33 X X
8 ¥ x X x x 8 y X X x X 8 h’\"‘ Tt T T T T T T TS XX
9 y X X X 9 y X X X 9 ¥ X X X
10 y X X X X X 10 y X X X X X 10 ¥ X X X X X
11y X 11y x 11y X
12 x X X x X 12 x X X X x 12 x X X X x
13 x x x X X X 13 x x x X X x 13 x x x X X X
14 x 14 x z 14 x
15 x 15 x z 15 x

(a) t=5 (b) t=6 () t=7

Robot Robot Robot
t 1 2 3 4 5 6 7 B8 9 10 t 1 2 3 45 6 7 8 9 10 t 1 2 3 4 5 6 7 8 9 10
1 X X x X x 1 XX X x X 1 XX x X x
2 x X X X 2 X X X X 2 X x X X
3 X X X 3 X x X 3 X x x
4 X x x X X X 4 X | x X X X X 4 X x x x x X
5 x X x 5 x x X 5 x X x
6 X X X X [ X XX x 6 X X x X
7 ¥ X X X 7 y X X X 7 y X X X
8 ¥ X X X X 8 y XX X x 8 y XX x X
9 ¥ X X X 9 y X X X 9 y X X X
10 S XX __X_x ____X_ 10 vy x X X X X 10 v x x X X X
11 &,\di ______________ x_) W X 11y x
12 x X X X X 12 £XT XX 3 X 12 [x X X X x
S I !

13 x x x X X X 13 x x x X X X 13 | X X X X
14 x 14 x 14'x:-r—___--__—____--l
15 x z 2 z 15 x 2 : oz 2 1§ ST TS T o

) t=11 () t=12 (f) t=14

Figure 8.2: Strategy S2: Pessimistic Communication Strategy (PeCom). A fault is
introduced to robot R1 from control cyclet =7tot=11and ¢t =14 to t = 15. In the
figures, a 'y’ is anomalous, a ‘x” is normal from R1’s perspective, and 'z’ is new
normal. (a) Initialisation. Fill W with data instances from the first five control
cycles. Assign c =1 and tc = 6. Data in W is shaded grey. (b) At ¢ = 6, evaluate
whether a current data instance in circle is anomalous w.r.t datain W. No err; .«
detected. Since t = tc, activate external detection, found no err.,.. The current
data instance is added to W replacing the oldest entry in W. (c) Att =7, err;,.
is detected. A further evaluation with DN classified the current data instance as
an err.,.. Thus, the W is not updated, reset c=1 and tc = 8. (d) Att¢ =11, both
err;,. and err.,. were detected; )V not updated; reset c = 1 and tc = 12. (e) At ¢
=12, no err;i,, c=c+1=2. Update W with current data instance and tc = 14.
(f) Att =14, no err;,. but due to tc, external detection is conducted. An err_,.
was detected, reset ¢ = 1 and tc = 15.

In Figure 8.2(a), WV is initialised with data instances from the first five control
cycles. At this stage, c is set to 1 and tc is set to 6. At ¢ = 6 in Figure 8.2(b), an
internal detection was carried out and no err;,. was found. Att =7 in Figure
8.2(c), err;i,. was detected and thus an external detection is subsequently carried
out. Here, err;,. and err.,. were both detected. Thus, error is reported and ¢
is reset to 1 and t¢c was set to 8. From ¢ = 8 to ¢t = 11, both internal and external
detection were carried out. Because both err;,. and err.,. were detected, c
= 1 throughout. At ¢ = 12 in Figure 8.2(e), faults no longer persist and thus no
err;,. was detected. External detection did not detect any err.,. and thus cis
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incremented by 1 and thus the next external detection is at ¢ = 14.

If, for some reason, (e.g. either due to circuitry faults, interference or delib-
erate sabotage) the data on R1 remains unchanged. For example in Figure 8.2(f)
data for R1 is still ‘x” whilst the new normal value is now ‘z’. The OpCom strategy
will fail to detect this error. The failed detection can also happen for gradual er-
rors that result in drift in normality, or if an error occurs at the same time as the
food density goes up (if the two effects cancel each other out). However, PeCom
should be able to detect this error. However, how fast can this type of error be de-
tected is dependent on the value of c. If c is large, then the error will be detected
very late. This is the reason why the parameter K was introduced to avoid the
value of ¢ become too large. In this example, the number of communications is 9,
att=6,7,8,9,10,11,12, 14, and 15.

8.4 Experimental Results

By examining the two strategies proposed, it can be seen that the number of com-
munications is now proportional to the duration of a fault (how many control
cycles a fault lasts) and not the length of a simulation. This may significantly
reduce the communication overhead and thus the power usage.

To examine the potential of the strategies OpCom and PeCom, the strategies
were tested in the context of the RDA classifier in detecting Ppr =45 x107° m.s™*
and Pz = 100 x107° m.s~2 with data from Section 6.4.2. The size of YW and K was
set to 5.

The results for the number of communications with the two strategies are
shown in Table 8.1 and Table 8.2. In the tables, Robot R1 is faulty whilst the
rest are fault-free. In the original implementation of the RDA classifier in CoDe,
the number of communications for R1 was 80 which is greater than the number of
instances with a fault of the wheels (i.e. 60). However, for the current implemen-
tations with OpCom and PeCom, the number of communications is significantly
reduced to 60 units for OpCom and about 65 units for PeCom. For fault-free robots,
the number of communications is even lower, with less than 5 units with OpCom
and less than 25 units with PeComn.

An obvious question is which strategy is better? The simple answer is it de-
pends. OpCom has the advantage of having the least communication overheads,
subjects to err;,;. However, a mis-classification is likely to be accumulated and
affects the overall TPR as demonstrated in Figure 8.3. In the figure, the TPRs over
the 20 runs were plotted. It can be seen that at simulation number 9, 19, and 20,
the TPRs are significantly different from other runs. This is resulted from the
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Table 8.1: The number of communications by each robot using different commu-
nication strategies in detecting Ppr = 45 x 1073 m.s~! with the RDA classifier.

Env. Strategy R1 R2 R3 R4 R5 R6 R7 R8 R9 RI0
Original 80 80 80 80 8 80 80 80 80 80
csT OpCom 60 05 0 0 0 0 1 0 0 1
PeCom 65 19 185 19 20 185 19 195 195 19
- OpCom 60 3 3 3 25 3 25 3 2 2
" peCom 635 25 215 245 23 235 24 235 235 235
v OpCom 60 2 25 2 3 3 25 2 3 2
% peCom 655 22 225 21 19 215 18 22 20 20

Table 8.2: The number of communications by each robot using different commu-
nication strategies in detecting Pcz = 100 x 107> m.s~? with the RDA classifier.

Env. Strategy R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Original 80 80 80 80 80 8 8 80 80 80
cgp OpCom 60 05 0 05 1 0 1 0 1 0

PeCom 63 20 185 19 20 195 195 195 20 19
. OpCom 60 2 3 3 3 25 3 25 2 2
PR peCom 63 215 24 25 225 24 22 24 22 235
. OpCom 60 25 2 2 2 2 1 2 25 2
S peCom 63 21 20 19 20 21 21 21 205 185

false negatives in the detection. For these runs, a false negative when the fault

was first injected causes the first errorneous instance to be included in the buffer

W. This has a cascading effect that subsequent errorneous instances are classified

as normal instances.

On the other hand with PeCom, such false negatives were not accumulated

as further cross-referencing was carried out, subject to the parameter c and K

(refer Algorithm 3). Therefore, in some cases, there is a tradeoff between the

communication overhead and the TPR. However, overall, both strategies do not

result in reductions of the error-detection ability as shown in Table 8.3 and Table

8.4. Instead, the performance may even be improved as shown in the tables with

increased MCC scores.
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Figure 8.3: The TPR in detecting Ppr =45 x107® m.s™! in a CST scenario for the 20
runs for the RDA classifier with with OpCom and PeCom communication strategy.
At simulation 9, 15, 19, and 20, Opcom missed some errorneous instances but
PeCom was still able to detect them due to additional external detections subject
tocand K.

Table 8.3: Comparison on the median TPR, FPR, Latency, and MCC in detect-
ing Ppr =45 x107 m.s™! for the RDA classifier without and with the proposed
communication strategies.

Env. | Strategy | TPR | FPR | Latency | MCC
Original | 1.00 | 0.061 1.0 0.75
CST | OpCom | 1.00 | 0.00 1.0 0.97
PeCom | 1.00 | 0.04 1.0 0.82
Original | 1.00 | 0.09 1.0 0.64
Voer | OpCom | 1.00 | 0.02 1.0 0.89
PeCom | 1.00 | 0.07 1.0 0.72
Original | 1.00 | 0.07 1.0 0.72
Vops | OpCom | 1.00 | 0.01 1.0 0.92
PeCom | 1.00 | 0.03 1.0 0.85

8.5 Summary

In this chapter, two communication strategies were proposed in the context of
CoDe that were aimed at reducing the communication overhead involved in an
adaptive error detection in dynamic environments. In Section 8.1, the motivation
looks into ways for reducing the communication overhead is presented. The mo-
tivation was that robots in a SRS are potentially resource limited and the proposed
CoDe scheme for an adaptive error detection requires data to be communicated
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Table 8.4: Comparison on the median TPR, FPR, Latency, and MCC in detect-
ing Pez = 100 x107° m.s~2 for the RDA classifier without and with the proposed
communication strategies.

Env. | Strategy | TPR | FPR | Latency | MCC
Original | 1.00 | 0.06 1.0 0.74
CST | OpCom | 1.00 | 0.00 1.0 0.97
PeCom | 1.00 | 0.04 1.0 0.81
Original | 1.00 | 0.09 1.0 0.66
Vopr | OpCom | 1.00 | 0.02 1.0 0.90
PeCom | 1.00 | 0.07 1.0 0.73
Original | 1.00 | 0.07 1.0 0.70
Vops | OpCom | 1.00 | 0.01 1.0 0.92
PeCom | 1.00 | 0.04 1.0 0.81

through a wireless medium at each control cycle ¢. However, the probability of a
fault occurring continuously to a robot is low. Therefore, there is no need for the
robots to constantly communicate data for error detection.

Therefore, two communication strategies were proposed in which a robot only
communicates with other robots if an error has been detected internally. The first
strategy is called OpCom and it is presented in Section 8.2 whilst the second strat-
egy called PeCom s presented in Section 8.3. The main difference between OpCom
and PeCom is that on top of the communications with other robots whenever an
error is detected internally, PeCom also periodically carry out extra communica-
tions subject to a control variable c.

In Section 8.4, the two strategies were tested for the RDA classifier is detecting
Ppr 0f 45 x107? m.s™! and P¢r of 100 x107° m.s™2. Results from the experiments
show that the proposed strategies can significantly reduce the number of com-
munications involved without a significant degradation on the performance of

detection.
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CHAPTER
NINE

Conclusion

This final chapter concludes the thesis, summarises its contribution, and makes
suggestions for potential future work. In Section 9.1, the contributions are pre-
sented. In Section 9.2, a reflection on the limitations of the current work is offered
and the direction of future work is recommended. Finally, concluding remarks
on the work presented in this thesis are given in Section 9.3.

9.1 Contributions

This section summarises the contributions in this thesis.

Proposal of the Collective Self-Detection (CoDe) scheme

This work proposed a collective self-detection scheme called the CoDe scheme
to address the problem of adaptive error detection in swarm robotics. From the
literature review, it was identified that most studies on error detection in swarm
robotics approach the problem from the perspective of a single robot. The prob-
lem with a single-robot’s perspective to error detection is that the detection mech-
anism might not be able to tolerate changes in the dynamic environment, that is
changes that also affect the detection metrics. To address this problem, the CoDe
scheme was proposed. This scheme detects errors through cross-referencing a
robot’s behaviour with other robots within a logical neighbourhood. This is as-
suming that changes in the environment affect every robots within that logical
neighbourhood. Through this cross-referencing mechanism, the noise from the
environment can be filtered and errors can be effectively detected.
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The CoDe scheme was investigated with the use of four statistical classifiers.
Each classifier was tested on three fault models of the wheels in three different
operational environments. In addition, each classifier was tested with a variety
of detection thresholds. The results from the experiments show that the proposed
CoDe scheme is effective at detecting all simulated faults. These results give ev-
idence to support that data-driven error detection from the perspective of a col-
lective can provide adaptive detection in dynamic environments.

Implementation of the Receptor Density Algorithm (RDA) Classifier

Error Detection

In addition to the use of four statistical classifiers, this work also implemented
an RDA classifier in the context of the CoDe scheme. Results from all the ex-
periments (three fault models to the wheels in three operational environments)
showed that the RDA classifier can also achieve adaptive error detection. In fact,
the RDA classifier also significantly outperformed the other four statistical classi-
fiers. These results further support the finding that adaptive error detection can
be achieved with a collective-based approach.

With the RDA classifier, a further investigation was carried out on the possibil-
ity of reducing the number of false positives by increasing the detection window.
Results showed that by increasing the detection window from 1 to 2, the number
of false positives can be significantly reduced whilst at the same time maintaining
the true positive rate.

To provide a better understanding on the effect of three RDA parameters (b
and a, gb) on the performance of detection, a set of experiments was conducted
by varying the values of those parameters. Results showed that the b and a pa-
rameters have more observable effects on the true positive rate (TPR) and false
positive rate (FPR) compared with the Latency of detection. The gb parameter
had a significant effect on the TPR, the FPR as well as the Latency of detection.

Strategies to Reduce Communication Overheads

There are potential limitations to the proposed CoDe scheme, in particular on the
communication overhead involved. To address the limitations, two communi-
cation strategies: OpCom and PeCom, were proposed. Both strategies were im-
plemented in the context of the RDA classifier and analysed with respect to the
reduction of the number of communications involved as well as the effect on the
performance of error detection. Results from the experiments showed that the
two strategies produced a significantly lower communication overhead whilst

still maintaining the level of performance in error detection. The OpCom strat-
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egy produced a low communication overhead. However, any false positives will
have an accumulative effect on the overall performance. On the other hand, the
PeCom strategy produced a higher communication overhead than OpCom but it

was unaffected by the false positives in previous control cycles.

9.2 Limitations and Future Work

Implementation on Physical Robots

One of the main limitations of the work in this thesis is that the proposed scheme
and strategies have not been implemented and tested on physical robots. Some-
times a solution which works in simulation might not work as effectively when
tested on physical robots, e.g. The Reality Gap [76]. However, the proposed so-
lution in this thesis should work in physical robot swarms (assuming they can
communicate if in proximity) because the detection is from the perspective of a
collective. Therefore, any interference from the environment should affects all
robots instead of only a few individuals. Having said that, the immediate re-
quirement for future work will be to implement the proposed solution in physical

swarm robotic systems.

Faults on Multiple Robots
The work in this thesis has been demonstrated on faults of the wheels of a single

robot. However, this is a limited scenario because faults can occur in multiple
robots simultaneously. It would therefore be an interesting research study to in-
vestigate whether the proposed CoDe scheme with the RDA classifier will still be
able to provide an adaptive error detection when there are multiple faulty robots
in the swarm. In principle, the proposed scheme should still work because the
probability of a robot encountering more faulty robots than fault-free robots in
a collective should be lower when compared with the opposite scenario. An in-
teresting question is that if the proposed scheme does work, at what stage will
it fail. Intuitively, the size of the swarm is very important because the scheme
should work if there are significantly more healthy robots compared with faulty
robots in the swarm. However, at what proportion is the tipping point? Answers
to these questions could give insights into how many robots to deploy to ensure
that the swarm can still operate reliably.

Another important variable that might affect the detection of errors on mul-
tiple robots is the size of the logical neighbourhood. As demonstrated by the
results from a preliminary study in Figure 9.1, with a fixed logical neighbour-

hood the increase of swarm size does not necessary result in an increase in the
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Figure 9.1: The TPR and FPR in detecting errors on multiple robots for different
swarm sizes.

TPR (Figure 9.1(a)). Therefore, it would be interesting to find out what is the cor-
relations between the number of faulty robots, the swarm size, and the size of the
logical neighbourhood.

Multi-Resolution Detection

As pointed out in Section 5.2, the detection of errors in this work was carried
out at a fixed control cycle. A potential drawback with a fixed control cycle is
that the minimum time which elapses before an error can be detected is fixed.
For time-critical applications, the goal is to be able to detect the errors as soon
as possible. Therefore, having a multi-resolution detection is an attractive option.
Multi-resolution detection may be implemented by having control cycles of vary-
ing lengths. In principle, a shorter control cycle can pick up errors with a large
magnitude whilst a longer control cycle can pick up the more subtle errors. Hav-
ing said that, having a multi-resolution detection requires additional storage and
computation. Therefore, a viable solution is to have a control mechanism that can
tune the resolutions on-line.

Heterogeneous Swarms

This proposed CoDe scheme assumes that the swarm is (functionally) homoge-
neous as indicated by E3 (that the robots are functionally homogeneous and act
relatively independently from each other and no cooperation is involved to carry
out the task). For other multi-robot systems, the swarm may consist of heteroge-
neous robots. It would be an interesting work to investigate how the proposed
scheme can be extended for heterogeneous robots.
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Dynamic Environments

This study only investigated two scenarios of dynamic environment. For the sce-

nario with biased distribution, the V5, only four regions were considered. More

distributions can be considered, e.g. where objects are only placed in 3,

segment of the arena. Therefore, for future work, other dynamic environments

1
OI'2

(those that also affect the variables used in the evaluation metrics) can be investi-
gated.

Fault Models

The fault models in this study only consider some magnitudes of the faults. For

the partial failure (Pp+), the variants tested in Section 7.2 only range from 45 x 1073
m.s~! to 105 x 1073 m.s~!. Other variants could also be included such as 0 x10~3

m.s~!, 15 x1072 m.s~!

,and 30 x107* m.s~!. The reason why these variants were
not included previously is because it was assumed that a P is analogous to com-
plete failure (Pc;) in which no objects will be collected by the faulty robot as it is
not moving. For Pp; of 15 X107 m.s™! and 30 x 1072 m.s™!, it was assumed that if
the proposed scheme can detect errors at 45 x107® m.s™?, it should also detect Py,
=15 x10"? m.s' and Pp; = 30 x10~* m.s~!, which are more severe. For the grad-
ual failure (P¢z), the variants tested in Section 7.3 only ranges from 5 x107° m.s 2
to 100 x 10~ m.s~2. These variants of the P last from one control cycle to twelve
control cycles. For a more severe P, other variants could be tested. For example,

for a Py that lasts until the end of simulation, a Pcz =1 x107° m.s~2 can be tested.

Requirement of Fault-free Robots

The self-detection approach in the CoDe scheme requires that there are some
fault-free robots in the swarm. If this is not the case, the errors cannot be de-
tected. However, situations might occur in which all robots can be faulty at the
same time. An example of such a situation would be the occurence of faults to
robots in particular regions in a large environment. For such situations, it might
be difficult for any detection and recovery to be initiated. One potential approach
might be to have a periodic self-detection or diagnostic routine. The challenge
then would be how to derive the appropriate time interval to activate the routine

without much draining of resources.

Application to Other Domains

The proposed CoDe scheme with the RDA classifier has been demonstrated to

work on a simulated homogenous swarm robotic system. The proposed solu-
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tion can be easily adapted to other areas which show similar characteristics and
problems such as wireless sensor networks (WSN). With WSN being particularly
resource-constrained, the proposed strategies to reduce the communication over-

head could be particularly useful.

9.3 Research Question Revisited
Chapter 1 defined the main research question of this thesis which was:

Can data-driven error detection from the perspective of a collective be used to pro-
vide adaptive detection for robot swarms deployed in time-varying environments?

To investigate this research questions, a list of research objectives was identi-
fied. Having summarised all the chapters of this thesis, this section revisits the
initial objectives of this research and draws some concluding remarks. Here are

the objectives of this thesis:

e RO1: To establish an experimental testbed to investigate the nature of errors and
the aspect of adaptive error detection in swarm robotics.

Chapter 4 presented the experimental testbed to investigate the aspect of
adaptive error detection in swarm robotics. The chosen platform was a for-
aging robot swarm consisting of ten robots which are subject to faults on the
wheels and also to external influences from the operational environment.
To establish the assumption that faults of the wheels and from external in-
fluence from the environment would be observable in the data, Chapter 5
presented the corresponding experiments and the results gave evidence to
support the assumption.

e RO2: To investigate the feasibility of addressing error detection in swarm robotics
from the perspective of a collective, and to propose a corresponding detection scheme
to incorporate the aspect of adaptivity to dynamic environments.

Chapter 6 presented the inability of achieving an adaptive error detection
from the perspective of a single robot through illustrative examples. Then,
a collective self-detection scheme called the CoDe scheme was proposed.
The assumptions and potential limitations associated with the proposed
CoDe scheme were explicitly specified. Illustrative examples were given
on the application of the CoDe scheme and it was demonstrated to be able
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to achieve adaptive error detection.

e RO3: To examine the application of statistical classifiers within the proposed scheme
for adaptive error detection.

The second part of Chapter 6 presented the application of four statistical
classifiers in the context of the CoDe scheme to detect various errors in dy-
namic environments. Results from the experiments showed that the classi-

fiers were able to provide an adaptive error detection.

e RO4: To examine the application of an immune-inspired algorithm within the pro-

posed scheme for adaptive error detection.

Chapter 7 presented the RDA algorithm and implemented the classifier in
the context of the CoDe scheme. Results from the experiments showed that
the RDA can be effectively implemented for adaptive error detection in dy-

namic environments.

Revisiting the research question in this thesis, on the basis of the results and
the findings from the work conducted, it can be concluded that for the specific
case study investigated in this thesis, data-driven error detection from the per-
spective of a collective can be used to provide an adaptive detection for robot

swarms deployed in time-varying environments.
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APPENDIX

A

Tables for Statistical Testing

Table A.1: Critical values of Dixon’s Q-test [146].

Number of Confidence Level
observationsn | 80% | 90% | 95% | 96% | 98% | 99%
3 0.886 | 0.941 | 0.970 | 0.976 | 0.988 | 0.994
4 0.679 | 0.765 | 0.829 | 0.846 | 0.889 | 0.926
5 0.557 | 0.642 | 0.710 | 0.729 | 0.780 | 0.821
6 0.482 | 0.560 | 0.625 | 0.644 | 0.698 | 0.740
7 0.434 | 0.507 | 0.568 | 0.586 | 0.637 | 0.680
8 0.399 | 0.468 | 0.526 | 0.543 | 0.590 | 0.634
9 0.370 | 0.437 | 0.493 | 0.510 | 0.555 | 0.598
10 0.349 | 0.412 | 0.466 | 0.483 | 0.527 | 0.568
11 0.332 | 0.392 | 0.444 | 0.460 | 0.502 | 0.542
12 0.318 | 0.376 | 0.426 | 0.441 | 0.482 | 0.522
13 0.305 | 0.361 | 0.410 | 0.425 | 0.465 | 0.503
14 0.294 | 0.349 | 0.396 | 0.411 | 0.450 | 0.488
15 0.285 | 0.338 | 0.384 | 0.399 | 0.438 | 0.475
16 0.277 | 0.329 | 0.374 | 0.388 | 0.426 | 0.463
17 0.269 | 0.320 | 0.365 | 0.379 | 0.416 | 0.452
18 0.263 | 0.313 | 0.356 | 0.370 | 0.407 | 0.442
19 0.258 | 0.306 | 0.349 | 0.363 | 0.398 | 0.433
20 0.252 | 0.300 | 0.342 | 0.356 | 0.391 | 0.425
21 0.247 | 0.295 | 0.337 | 0.350 | 0.384 | 0.418
22 0.242 | 0.290 | 0.331 | 0.344 | 0.378 | 0.411
23 0.238 | 0.285 | 0.326 | 0.338 | 0.372 | 0.404
24 0.234 | 0.281 | 0.321 | 0.333 | 0.367 | 0.399
25 0.230 | 0.277 | 0.317 | 0.329 | 0.362 | 0.393
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Table A.2: Critical values of T-test

Degree of D
freedom df | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.0005
1 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | 636.619
2 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 31.598
3 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 12.941
4 1.533 | 2132 | 2.776 | 3.747 | 4.604 | 8.610
5 1.476 | 2.015 | 2.571 | 3.365 | 4.032 6.859
6 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 5.959
7 1.415 | 1.895 | 2.365 | 2.998 | 3.499 5.405
8 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 5.041
9 1.383 | 1.833 | 2.262 | 2.821 | 3.250 4.781
10 1372 | 1.812 | 2.228 | 2.764 | 3.169 | 4.587
11 1.363 | 1.796 | 2.201 | 2.718 | 3.106 4.437
12 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 4.318
13 1.350 | 1.771 | 2.160 | 2.650 | 3.012 4.221
14 1.345 | 1.761 | 2.145 | 2.624 | 2977 | 4.140
15 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 4.073
16 1.337 | 1.746 | 2.120 | 2.583 | 2921 4.015
17 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | 3.965
18 1.330 | 1.734 | 2.101 | 2.552 | 2.878 3.922
19 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.883
20 1.325 | 1.725 | 2.086 | 2.528 | 2.845 3.850
21 1.323 | 1.721 | 2.080 | 2518 | 2.831 | 3.819
22 1.321 | 1.717 | 2.074 | 2.508 | 2.819 3.792
23 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 3.767
24 1318 | 1.711 | 2.064 | 2.492 | 2.797 3.745
25 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 3.725
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APPENDIX
B

Statistical Classifiers Supplementary
Results

This appendix presents the supplementary results for the experiments in Chapter
6 on the ability of statistical classifiers in detecting errors in non-dynamic and
dynamic environments.

For each classifier, the data were tested with a range of values for the detection
threshold. The best results of each classifier according to the MCC score was then
used to compare the error-detection ability of the four classifiers: the ESD, T-test,
Quartile-based, and Q-test classifiers. Presented here are the full results for the
detection of errors due to faults of the wheels: Pcp, Por = 45 X102 m.s™!, Ppr =
100 x107° m.s™2.

The range of values for the detection threshold is as shown in the following
table.

| Classifier | Parameter | Value |
ESD k 0.0,05,1.0,1.5,2.0,2.5,3.0
T-Test P 0.40, 0.25, 0.10, 0.05, 0.025, 0.01, 0.005, 0.0005
Quartile k 0.0,05,1.0,1.5,2.0,2.5,3.0
Q-Test (e 800/0, 900/0, 95(70, 960/0, 99%
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Table B.1: The median TPR, FPR, Latency (LT), and MCC of the classifiers as the

detection threshold is varied in detecting the P; errors.

i CST Vopr Vobs
Classifier | k/p/k/c TPR FPR LT MCC | TPR FPR LT MCC | TPR FPR LT MCC
0.0 1.00 1.00 1.0 000|100 1.00 10 0.00 | 1.00 1.00 1.00 0.00

0.5 1.00 1.00 1.0 000|100 100 10 0.00 | 1.00 1.00 1.0 0.00

ESD 1.0 100 059 1.0 022|098 061 1.0 020|100 063 1.0 021
1.5 1.00 059 10 022|098 061 10 020|100 063 1.0 0.21

2.0 095 028 10 037088 031 10 032095 031 10 0.36

2.5 095 028 10 037088 031 10 032 |09 031 1.0 036

3.0 088 018 10 044 |08 019 10 038 | 0.85 020 1.0 041

0.40 077 066 10 0.06 | 066 057 10 005|073 067 1.0 0.03

0.25 077 065 10 0.06 | 066 056 10 006 | 0.73 066 1.0 0.04

T-Test 0.10 077 042 10 018 | 0.66 038 10 0.17 | 0.73 047 1.0 0.16
0.05 077 033 10 025066 029 10 024|073 035 1.0 0.23

0.025 077 026 10 030|066 023 10 029|073 028 1.0 0.28

0.010 077 019 10 037|066 016 10 035|073 020 1.0 0.36

0.005 077 014 10 043|066 013 10 040|072 015 1.0 040

0.0005 074 0.06 10 056 | 060 006 1.0 050 | 066 007 1.0 0.51

0.0 1.00 051 10 026|100 050 10 027|100 050 1.0 0.27

0.5 1.00 024 10 044 | 08 024 10 035|098 026 1.0 041

1.0 084 018 10 042|065 017 10 031|076 019 10 0.36

Quartile 1.5 070 012 10 041|046 010 10 026|059 013 1.0 032
2.0 065 010 1.0 040 | 042 009 1.0 026|055 011 10 031

25 063 008 10 040|042 008 10 025|050 010 15 0.29

3.0 061 008 10 041|037 007 10 025|044 0.09 20 0.27

80 093 017 10 047 | 081 018 10 038 | 0.89 019 1.0 044

90 08 012 10 051064 013 10 036|075 013 10 042

Q-Test 95 076 010 10 049 | 058 011 10 034|063 011 1.0 040
96 073 010 10 049 | 056 011 10 032|063 010 15 040

99 058 008 10 039036 009 20 023|041 008 2.0 0.30
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Table B.2: The median TPR, FPR, Latency (LT), and MCC of the classifiers as the

detection threshold is varied in detecting Pr =45 x107° m.s™ .

. CST Vopr Vobs
Classifier | k/p/k/c TPR FPR LT MCC | TPR FPR LT MCC | TPR FPR LT MCC
0.0 1.00 100 1.0 000|100 100 10 0.00 | 1.00 1.00 1.0 0.00

0.5 1.00 1.00 1.0 000|100 100 10 0.00 | 1.00 1.00 1.0 0.00

ESD 1.0 1.00 054 10 024|100 057 10 023|100 058 1.0 0.23
1.5 1.00 054 10 024|100 057 10 023|100 058 1.0 0.23

2.0 096 028 10 038092 030 10 033|097 030 1.0 037

2.5 096 028 10 038 092 030 10 0331097 030 1.0 037

3.0 088 017 10 045|083 020 1.0 039 | 090 0.19 1.0 043

0.40 072 064 10 004 | 065 058 20 004|078 068 1.0 0.06

0.25 072 063 10 005|065 055 20 005|078 068 1.0 0.06

T-test 0.10 072 040 10 018 | 065 038 20 015|078 045 1.0 0.17
0.05 072 031 1.0 023]065 029 20 020|078 034 1.0 024

0.025 072 024 10 029 | 065 023 20 0261|078 026 1.0 030

0.010 072 017 10 037|065 016 20 032|078 018 1.0 0.39

0.005 072 013 10 043|065 012 20 038|078 014 1.0 043

0.0005 071 006 10 056 | 064 006 20 051|073 006 1.0 0.57

0.0 1.00 043 1.0 030 | 1.00 043 10 030|098 044 1.0 0.29

0.5 08 023 10 036|081 022 10 034 |08 023 1.0 036

1.0 08 017 10 039|073 016 10 037|073 016 1.0 037

Quartile 1.5 078 012 10 047|070 010 10 045|074 011 1.0 0.44
2.0 078 010 1.0 050 | 0.69 008 1.0 047 | 073 0.10 1.0 047

25 078 0.09 10 051|069 007 10 0501|073 008 1.0 050

3.0 078 0.08 10 053|068 006 10 051|073 008 1.0 052

80 098 025 10 042|095 028 10 038 | 094 026 1.0 0.40

90 092 020 10 043 |08 022 10 039 | 08 020 1.0 042

Q-test 95 087 017 10 044 | 080 018 10 038 | 080 0.16 1.0 040
96 084 016 10 044|077 018 10 037|077 015 1.0 040

99 068 012 10 039058 014 15 029 | 057 012 20 033
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Table B.3: The median TPR, FPR, Latency (LT), and MCC of the classifiers as the
detection threshold is varied in detecting Pz = 100 x107° m.s 2.

i CST Vopx Vobs
Classifiers | k/p/k/ TPR FPR LT MCC | TPR FPR LT MCC | TPR FPR LT MCC
0.0 1.00 100 1.0 000|100 1.00 10 0.00 {100 100 1.0 0.00

0.5 1.00 100 1.0 000|100 1.00 1.0 0.00 | 1.00 1.00 1.0 0.00

ESD 1.0 1.00 049 10 027|100 048 1.0 027|100 052 1.0 0.26
1.5 1.00 049 10 027|100 048 1.0 027|100 052 1.0 0.26

2.0 1.00 025 1.0 043|099 028 1.0 040|098 028 1.0 0.40

25 1.00 025 1.0 043|099 028 10 040 | 098 028 1.0 0.40

3.0 098 016 10 052 | 095 018 1.0 048 | 095 0.17 1.0 0.51

0.40 087 065 10 013|080 058 1.0 0.11 ] 082 067 1.0 0.08

0.25 087 064 10 013|080 058 10 012|082 066 1.0 0.09

T-test 0.10 087 035 10 029|080 032 10 027|082 039 1.0 024
0.05 087 027 10 035]080 025 10 032|082 030 1.0 0.29

0.025 087 022 10 040 | 080 020 1.0 038|082 023 1.0 035

0.010 087 016 10 046 | 080 014 10 047|082 0.17 1.0 043

0.005 087 013 10 050|080 010 1.0 052|082 012 1.0 048

0.0005 087 006 10 0.68 | 0.80 005 1.0 065 | 0.82 0.06 1.0 0.63

0.0 1.00 041 10 031|100 041 10 031|100 042 1.0 0.30

0.5 1.00 022 10 045|100 021 10 047 | 100 022 1.0 045

1.0 08 016 10 045 |08 015 10 046 | 08 016 1.0 044

Quartile 1.5 081 011 10 052077 010 10 049 | 076 011 1.0 048
2.0 081 009 10 0551|077 008 10 053|076 010 1.0 0.50

25 080 008 10 055|077 007 10 0551|075 008 1.0 053

3.0 080 0.08 1.0 057 | 077 006 1.0 056 | 0.75 008 1.0 055

80 1.00 017 1.0 052|100 018 1.0 050|100 018 1.0 0.51

90 1.00 012 1.0 060|097 013 1.0 054|098 013 1.0 0.57

Q-Test 95 097 010 10 063|094 011 10 057|093 010 1.0 0.60
96 095 009 10 063 | 092 010 1.0 056 | 093 0.10 1.0 0.60

99 087 007 10 0.61 | 0.83 010 2.0 054 |08 008 1.0 0.61
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APPENDIX
C

Supplementary Results for Variants

of the Ppr and Pgr

This appendix presents the supplementary results as part of the experiments in
Chapter 7 on the performance of the RDA classifier. Here, the performance of the

statistical classifiers in detecting the variants of the P;; and P are presented.

C.1 Variants of the Py

Here the full results on the performance in detecting the variants of P errors
with the statistical classifiers are presented. The variants of the P;;: 45, 60, 75, 80,
85, 90, 95, 105 x1073 m.s ~!. Results are in Tables C.1 for the ESD classifier, C.2
for the T-test classifier, C.3 for the Quartile-based classifier, and C.4 for the Q-Test

classifier.
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C.1 Variants of the Py

Table C.1: The median TPR, FPR, Latency (LT), and MCC of the ESD classifier
using a range of k values in detecting the variants of the Pp; from 45 x 103 m.s™*
to 105 x1072 m.s~ L.

CST Vopr Vops
TPR FPR LT MCC TPR FPR LT MCC TPR FPR LT MCC

001|100 100 10 0.00| 100 1.00 1.0 0.00| 1.00 1.00 1.0 0.00
051|100 100 10 0.00 |1.00 1.00 1.0 0.00 | 1.00 1.00 1.0 0.00
1.0 | 1.00 054 10 024|100 057 10 023|100 058 10 023
151|100 054 10 024|100 057 10 023|100 058 10 023
20109 028 10 038|092 030 10 033|097 030 1.0 037
25109 028 10 038092 030 10 033|097 030 10 037
3008 017 10 045|083 020 1.0 039|090 019 1.0 043
00| 100 100 10 0.00 |1.00 0.00 1.0 0.00 | 1.00 0.00 1.0 0.00
051] 100 100 10 0.00| 1.00 0.00 1.0 0.00| 1.00 0.00 1.0 0.00
1.0 | 1.00 061 1.0 021 | 100 061 1.0 022|100 062 1.0 0.21
151|100 061 10 021|100 061 10 022|100 062 10 0.21
201091 031 10 033]087 032 10 029 |09 032 1.0 0.34
251091 031 10 033 ]087 032 10 029 |09 032 1.0 034
30083 019 10 040|077 020 10 033|089 019 1.0 043
00| 100 100 10 0.00 | 1.00 0.00 0.0 0.00 | 1.00 0.00 0.0 0.00
05| 100 100 10 0.00 | 1.00 0.00 0.0 0.00 | 1.00 0.00 0.0 0.00
1.0 099 064 10 020|098 062 10 020 | 1.00 066 1.0 0.19
151099 064 10 020|098 062 1.0 020|100 066 10 0.19
20108 034 10 02908 033 10 026|090 034 1.0 0.30
251088 034 10 029|083 033 1.0 026 |09 034 1.0 0.30
30082 021 10 036|077 021 1.0 033|080 021 1.0 0.36
001|100 100 10 0.00| 1.00 0.00 00 0.00| 1.00 0.00 0.0 0.00
051]100 100 10 0.00| 100 0.00 00 0.00|1.00 0.00 0.0 0.00
1.0 100 052 10 0.01]| 100 062 10 020|100 0.65 10 0.18
15| 100 064 10 019|100 064 10 020 | 1.00 0.65 1.0 0.18
201088 034 10 029079 035 10 024|088 035 1.0 029
25108 034 10 029079 035 10 024|088 035 1.0 0.29
301078 021 10 034|072 022 10 030|080 020 1.0 0.36
00| 100 100 10 0.00 | 1.00 0.00 0.0 0.00 | 1.00 0.00 0.0 0.00
05| 100 100 10 0.00 | 1.00 0.00 0.0 0.00 | 1.00 0.00 0.0 0.00
1.0 | 1.00 066 1.0 019 | 098 063 1.0 019 | 099 066 10 0.18
15100 066 10 019|098 063 10 019 | 099 066 10 0.18
201087 034 10 028|083 034 10 026 |08 036 1.0 0.28
251087 034 10 028|083 034 10 026 |08 036 1.0 028
30080 021 10 037|078 021 1.0 034|075 021 1.0 0.34
00| 100 100 10 0.00 | 1.00 0.00 0.0 0.00 | 1.00 0.00 0.0 0.00
05| 100 100 10 0.00 | 1.00 0.00 0.0 0.00 | 1.00 0.00 0.0 0.00
1.0 | 098 065 10 019|098 064 00 019 | 1.00 0.66 1.0 0.19
15098 065 10 019|098 064 10 019 | 1.00 0.66 1.0 0.19
201083 035 10 026078 034 10 023|083 035 10 027
251083 035 10 026|078 034 1.0 023|083 035 10 027
301076 021 10 033|068 023 10 029|075 021 1.0 0.33

Ppr k

45

60

75

80

85

90
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C.1 Variants of the Py

CST Vopr Vobs
TPR FPR LT MCC TPR FPR LT MCC TPR FPR LT MCC

00| 100 100 10 0.00 | 1.00 0.00 0.0 0.00 | 1.00 0.00 0.0 0.00
05| 100 100 10 0.00 | 100 0.00 0.0 0.00 | 1.00 0.00 0.0 0.00
1.0 { 098 066 10 0.18 | 097 065 0.0 018|097 067 0.0 0.17
15098 066 10 018 | 097 065 10 018 | 097 0.67 10 0.17
201083 035 10 026|075 036 1.0 020|082 036 1.0 025
251083 035 10 026|075 036 10 020|082 036 1.0 025
30078 021 10 035068 022 10 027|073 022 1.0 031
00| 100 100 10 0.00 | 1.00 0.00 00 0.00 | 1.00 0.00 0.0 0.00
05| 100 100 10 0.00 | 1.00 0.00 0.0 0.00 | 1.00 0.00 0.0 0.00
1.0 09 067 10 016|097 065 00 017|097 068 0.0 0.16
15109 067 10 016|097 065 10 017 | 097 068 1.0 0.16
201|080 036 1.0 024|077 036 10 021|075 037 10 021
251080 036 10 024|077 036 10 021|075 037 1.0 0.21
301069 022 10 029|072 024 10 029|059 021 1.0 024

PPT k

95

105

Table C.2: The median TPR, FPR, Latency (LT), and MCC of the T-test classifier
using a range of p values in detecting the variants of the P from 45 x 103 m.s~!
to 105 x1073 m.s~ .

CST Vopr Vobs
TPR FPR LT MCC TPR FPR LT MCC TPR FPR LT MCC

040 | 072 064 1.0 004|065 058 20 004|078 068 10 0.05
025 | 072 063 1.0 005|065 057 20 005]|078 068 1.0 0.06
010 | 072 040 10 018|065 038 20 015|078 045 10 0.17
005 | 072 031 10 023|065 029 20 020|078 034 10 024
0025 | 072 024 10 029|065 023 20 026|078 026 1.0 0.30
0.010 | 0.2 017 10 037|065 016 20 032|078 018 1.0 039
0.005 | 072 013 1.0 043 | 065 012 20 038|078 014 1.0 043
0.0005 | 0.71 0.06 10 056 | 064 006 20 051|073 0.06 10 057
040 | 0.68 064 1.0 002|060 057 10 003|072 066 10 0.02
025 | 068 062 1.0 003|060 056 10 003|072 066 10 0.02
0.10 | 0.68 044 10 012|060 041 10 012|072 048 1.0 0.12
005 | 068 033 10 019|060 032 10 018|072 036 10 0.18
0.025 | 068 026 10 026|060 025 10 023|072 028 1.0 0.24
0.010 | 068 0.18 10 033|060 017 10 029|072 019 1.0 032
0.005 | 068 014 10 038|060 013 10 033|070 015 1.0 038
0.0005 | 0.64 0.06 10 051|058 005 1.0 048|067 0.07 1.0 051
040 | 0.66 065 1.0 0.00 | 058 056 250 0.02| 068 068 10 0.00
025 | 066 063 1.0 0.00 | 058 055 250 0.02| 068 066 10 0.01
010 | 0.66 048 1.0 0.10| 058 042 25 010|068 050 1.0 0.09
005 | 066 038 10 015|058 033 25 015|068 040 1.0 0.15
0.025 | 066 029 10 021|058 025 25 020|068 030 1.0 0.22
0.010 | 065 020 10 029|058 017 25 028|068 021 1.0 0.29
0.005 | 065 015 10 034|058 013 25 033|068 015 1.0 034
0.0005 | 0.61 0.07 1.0 048 | 055 006 25 045|062 0.06 10 047

Ppr p

45

60

75
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C.1 Variants of the Py

Por p CST Vorr Vops
TPR FPR Lt MCC | TPR FPR LT MCC | TPR FPR LT MCC
040 | 0.63 064 1.0 0.00| 056 057 1.0 0.00 072 068 1.0 0.02
025 | 063 063 1.0 0.00| 056 056 1.0 0.00 072 067 1.0 0.03
80 0.10 | 0.63 049 1.0 0.08 | 056 043 1.0 0.07 | 072 053 1.0 0.11
005 | 063 038 1.0 014|056 035 1.0 012|072 042 10 0.17
0025 | 063 029 10 020|056 027 10 017|072 031 1.0 022
0.010 | 0.63 020 1.0 028 | 056 019 1.0 024|072 021 1.0 0.30
0.005 | 063 0.15 10 032|056 014 1.0 030|071 016 1.0 0.36
0.0005 | 0.58 0.07 1.0 045|052 006 20 042|063 007 10 048
040 | 0.65 064 1.0 0.00 | 058 057 1.0 0.01 | 065 0.67 1.0 0.00
025 | 065 063 1.0 0.00| 058 056 1.0 0.02 | 065 066 1.0 0.00
85 0.10 | 065 049 1.0 0.07 | 058 043 1.0 0.08 | 065 052 1.0 0.07
005 | 065 039 1.0 013|058 035 1.0 013|065 041 1.0 0.14
0025 | 065 030 10 019 | 058 027 10 018 | 0.65 0.32 1.0 0.19
0.010 | 064 020 10 027|058 019 10 025|065 023 1.0 026
0.005 | 063 0.16 10 033|058 014 1.0 031|065 017 1.0 032
0.0005 | 0.58 0.07 15 044|053 006 1.0 043|057 007 10 043
040 | 066 064 15 001|055 056 1.0 0.00 | 0.68 0.67 1.5 0.00
025 | 066 063 1.5 001|055 055 1.0 0.01 | 068 065 1.5 0.01
90 0.10 | 066 049 15 0.08 | 055 043 1.0 0.07 | 068 052 15 0.08
005 | 066 039 15 014|055 036 1.0 012|068 042 15 0.14
0025 | 066 031 15 019|055 027 10 018 | 068 032 1.5 020
0.010 | 066 021 15 027|055 019 1.0 025|067 022 15 027
0.005 | 065 0.17 20 032|055 014 10 029|065 016 15 033
0.0005 | 0.57 0.08 2.0 042|050 006 1.0 040|056 0.07 20 043
040 | 0.63 063 1.0 0.01 | 054 056 1.0 0.00 | 070 066 1.0 0.02
025 | 063 062 1.0 001|054 055 1.0 0.00 | 070 065 1.0 0.02
95 0.10 | 0.63 051 1.0 0.08 | 054 044 10 0.05| 070 052 1.0 0.09
005 | 063 040 1.0 013|053 036 1.0 010|070 043 10 0.14
0025 | 063 031 1.0 019 | 053 028 10 016|070 032 1.0 021
0.010 | 063 021 1.0 027|053 020 10 022067 023 1.0 028
0.005 | 063 016 10 032|053 015 1.0 028 | 0.67 016 1.0 034
0.0005 | 0.55 0.07 2.0 042|048 006 1.0 038|056 007 10 044
040 | 0.62 064 1.0 0.00| 052 057 1.0 0.00 | 065 067 1.0 0.00
025 | 062 063 1.0 0.00| 052 056 1.0 0.00 | 065 065 1.0 0.00
105 0.10 | 062 052 1.0 005|052 046 1.0 0.04 | 065 055 1.0 0.06
0.05 0.62 042 1.0 011|052 037 10 0.09 | 065 044 10 0.11
0025 | 062 033 10 016|052 029 10 013|064 035 1.0 0.16
0.010 | 060 023 1.0 023|052 020 10 021|063 024 10 023
0.005 | 060 017 1.0 029 | 052 015 10 025|062 018 1.0 028
0.0005 | 049 0.07 1.0 037|045 007 10 035|048 008 10 0.35
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C.1 Variants of the Py

Table C.3: The median TPR, FPR, Latency (LT), and MCC of the Quartile-based
classifier using a range of k values in detecting the variants of the Py; from 45
x1072 m.s~! to 105 x1073 m.s~ L.

CST Vopr Vobs
TPR FPR LT MCC TPR FPR LT MCC TPR FPR LT MCC

00100 043 10 030 |1.00 043 10 030|098 044 1.0 0.29
05108 023 10 036|081 022 10 034|086 023 1.0 0.36
1.0 08 017 10 039|073 016 10 037|073 016 10 0.37
45 | 15078 012 10 047|070 010 1.0 045|074 011 1.0 044
20078 010 10 050|069 008 1.0 047|073 010 1.0 047
251078 0.09 10 051069 007 1.0 050|073 008 1.0 0.50
30078 008 1.0 053|068 006 10 051|073 0.08 1.0 052
00] 08 045 10 022 |09 046 10 026|091 046 1.0 023
05078 025 10 032|078 025 10 031|081 025 1.0 033
1.0 076 018 10 038 | 076 018 1.0 038 | 078 0.18 1.0 0.38
60 (151|075 012 10 045|068 011 10 041|076 012 1.0 045
20075 010 10 049 | 068 010 1.0 043|075 010 1.0 046
251075 009 10 051|068 008 1.0 046 | 072 009 1.0 048
30073 0.08 10 051|068 007 1.0 047 | 068 008 1.0 047
00|08 048 10 019|081 048 10 0.18 | 083 049 1.0 0.19
05]072 025 10 028|070 025 10 026|076 027 1.0 0.30
1.0/ 071 019 10 034|065 018 10 031|073 019 1.0 0.36
75 115|071 013 10 042|063 012 10 038|072 012 10 041
201069 011 10 044 | 063 010 10 041|068 011 1.0 042
251068 009 10 048 | 063 0.08 10 043|063 0.09 1.0 041
30| 065 0.09 10 047 | 063 0.08 1.0 045|057 009 1.0 0.39
00|08 047 10 019|082 048 10 018 | 082 049 1.0 0.17
051076 025 10 029|068 025 10 025|075 026 1.0 0.30
1.0 076 019 10 034|067 018 1.0 031|073 019 10 0.35
80 | 15]074 013 10 041|066 012 10 039|070 012 1.0 041
201072 011 10 044 | 066 011 1.0 042|068 011 1.0 041
251071 010 10 046 | 064 009 1.0 044 | 062 009 1.0 040
30069 009 10 045|063 008 10 044 | 053 0.08 1.0 037
00]078 050 10 015|080 050 10 017|083 049 1.0 0.18
05071 026 10 025|069 027 10 025|076 026 1.0 029
1.0 071 020 10 033|066 019 10 029|073 020 1.0 0.34
8 | 151|070 013 1.0 040 | 062 012 1.0 036 | 067 013 1.0 040
20068 011 10 042|062 011 10 039|064 011 1.0 040
251063 010 10 043 | 060 0.09 1.0 041|060 0.09 1.0 040
30| 058 009 10 040|058 0.08 1.0 040 | 053 0.08 1.0 0.39

Ppr k
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C.1 Variants of the Py

CST Vopr Vops
TPR FPR LT MCC TPR FPR LT MCC TPR FPR LT MCC

00078 050 10 016|078 049 10 0.15| 080 050 1.0 0.16
051073 026 10 025|073 027 10 027|075 027 1.0 027
1.0|072 019 10 032|068 019 10 030|070 020 10 0.31
90 |15 |068 012 10 039 | 066 012 10 038 | 065 013 1.0 0.37
20| 067 011 10 040 | 063 011 10 038|058 011 1.0 0.35
251|061 010 10 039|063 0.09 10 040|050 010 1.0 031
30058 009 10 038|056 009 10 037|043 009 1.0 0.28
00078 050 10 014|074 049 10 0.14 | 083 050 1.0 0.17
051070 027 10 024|064 027 10 021|077 027 1.0 0.29
1.0 (077 027 10 029|060 020 1.0 025|072 020 1.0 032
95 | 1.5 |067 013 10 036 |05 012 10 032|065 013 1.0 0.34
20062 011 10 036|055 010 1.0 035|057 011 1.0 0.33
25105 010 10 035|053 009 10 035|047 009 1.0 0.30
301|048 009 10 031|052 008 10 035|039 0.09 15 026
00074 052 10 011|074 050 10 013|078 051 1.0 0.14
05068 028 10 023|066 028 10 023|069 028 1.0 023
1.0 067 021 10 027|063 021 10 027|063 021 1.0 025
105 15]062 013 10 033|058 013 1.0 033|053 014 1.0 0.28
20105 011 20 031|055 011 1.0 033|046 012 1.0 0.24
2511048 0.09 20 030|050 009 10 033|038 010 1.0 0.22
30042 0.09 20 027|046 008 20 031|029 010 15 0.17

Ppr k

Table C.4: The median TPR, FPR, Latency (LT), and MCC of the Q-Test classifier
using a range of a values in detecting the variants of the P+ from 45 x 103 m.s™!
to 105 x107® m.s~ .

CST Vopr Vobs
TPR FPR LT MCC TPR FPR LT MCC TPR FPR LT MCC

80 | 098 025 1.0 042 |09 028 10 038|094 026 10 040
90 | 092 020 1.0 043 |08 022 10 03908 020 1.0 042
45 | 951|087 017 10 044 |08 018 10 038|080 016 1.0 040
9% | 084 016 10 044|077 018 10 037|077 015 10 040
99 | 068 012 1.0 039|058 014 15 029|057 012 20 033
80 | 095 026 1.0 039 |09 027 10 037 |09 026 10 0.37
90 | 0.88 020 10 042|087 021 10 039|081 019 10 0.38
60 | 951|079 016 10 040 | 082 018 1.0 039|069 016 1.0 035
% | 075 015 10 039|079 017 10 039|065 015 10 035
99 | 054 0.12 1.0 03105 014 20 031|044 010 1.0 025
80 | 090 027 1.0 036|093 027 10 036|082 026 1.0 032
90 | 082 020 10 038|083 021 10 036|069 019 10 033
75 (9 |073 016 10 037|073 016 1.0 036|054 015 1.0 0.29
9% | 072 016 15 037|070 016 1.0 035|050 014 10 026
99 | 049 012 3.0 028|048 014 10 026|030 010 10 0.15

PPT (0%
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CST Vopr Vobs
TPR FPR LT MCC | TPR FPR LT MCC | TPR FPR LT MCC

801|089 027 10 035|092 028 10 035|078 026 10 0.30
9 | 081 019 10 037|082 021 10 035|065 018 1.0 0.30
80 | 95| 070 016 10 036|069 018 1.0 032|051 015 1.0 025
9% | 0.67 015 1.0 035|065 017 10 030|047 014 10 023
99 | 044 012 25 027|036 014 20 016|027 010 20 0.13

80|08 026 1.0 034 |09 026 10 036|078 025 1.0 0.30
90 | 074 019 10 035|080 020 1.0 036|065 019 10 0.30
8 |95 ]062 015 15 031|068 017 1.0 033|048 014 1.0 0.24
9% | 056 015 15 030|064 016 00 031|045 014 10 023
99 | 040 011 20 023|042 012 15 022|028 010 20 0.15

80| 08 026 10 033|088 028 10 034|073 025 10 0.27
9 | 071 020 10 031|074 021 10 033|054 018 10 025
90 |9 | 057 016 1.0 028|060 017 20 029|043 014 10 0.20
9% | 054 015 1.0 026|054 016 20 027|038 013 10 021
99 1034 011 20 017|036 013 25 017|023 010 20 0.13

801|079 026 10 030|083 028 1.0 031|068 026 10 024
90 | 067 018 1.0 029|068 021 10 030|052 019 10 022
95 |95 ]053 015 10 028|055 017 15 026 | 040 0.15 2.0 0.18
9% | 048 014 15 026|048 016 15 022|038 014 20 0.19
99 | 033 010 3.0 0.16 | 028 013 3.0 011|021 010 40 0.11

80 | 068 025 1.0 024|073 027 10 027|053 024 10 0.18
90 | 053 018 1.0 022|058 020 10 024|038 016 20 0.15
105 |95 | 038 015 20 017|041 016 15 017|028 013 20 0.12
9% | 035 014 3.0 014|036 015 20 014|026 012 20 0.12
99 | 019 011 55 007|018 012 50 0.05|0.18 0.09 40 0.08
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C.2 Variants of the Py

Presented here are the full results on the performance in detecting the variants of
Pr errors for the statistical classifiers. The variants of the Pg: 5, 10, 20, 30, 40, 50,
60, 70, 80, 90, 100 x10~° m.s ~2. Results are in Tables C.5 for the ESD classifier, C.6
for the T-test classifier, C.7 for the Quartile-based classifier, and C.8 for the Q-Test

classifier.

Table C.5: The median TPR, FPR, Latency (LT), and MCC of the ESD classifier
using a range of p values in detecting the variants of the Pg; from 5 x 107° m.s™2
to 100 x107° m.s2.

CST Vopr Vobs
TPR FPR LT MCC TPR FPR LT MCC TPR FPR LT MCC

00| 100 100 10 0.00 | 1.00 0.00 1.0 0.00 | 1.00 0.00 1.0 0.00
05]100 100 10 0.00| 100 0.00 1.0 0.00| 1.00 0.00 1.0 0.00
1.0 100 049 10 027|098 051 10 024|098 053 10 024
15100 049 10 027|098 051 10 024|098 053 1.0 024
20109 026 10 040|092 029 15 035|093 028 25 0.36
25109 026 10 040|092 029 15 035|093 028 25 0.36
301092 017 20 047 |08 019 20 042|089 017 35 046
00| 100 100 10 0.00 |1.00 0.00 1.0 0.00 | 1.00 0.00 1.0 0.00
05| 100 100 10 0.00 |1.00 0.00 1.0 0.00 | 1.00 0.00 1.0 0.00
10 | 1.0 099 045 10 029|098 050 1.0 026 | 100 051 1.0 025
151099 045 10 029|098 050 1.0 026|100 051 10 025
201098 024 15 042 |09 028 20 037|097 027 1.0 040
251098 024 15 042 |09 028 20 037|097 027 1.0 040
30109 015 25 051091 018 25 045|095 017 20 049
001|100 100 10 0.00| 100 0.00 1.0 0.00|1.00 0.00 1.0 0.00
05| 100 100 10 0.00 |1.00 0.00 1.0 0.00 | 1.00 0.00 1.0 0.00
20 | 10| 100 043 10 030|100 048 10 026 |1.00 050 1.0 0.26
151|100 043 10 030|100 048 10 026 | 1.00 050 1.0 0.26
201098 024 20 043|098 027 20 039|098 028 20 0.39
251098 024 20 043|098 027 20 039|098 028 20 0.39
301097 015 20 052093 018 2.0 048 | 096 017 2.0 049
00| 100 100 10 0.00 | 1.00 0.00 1.0 0.00 | 1.00 0.00 1.0 0.00
051]100 100 10 0.00| 100 0.00 1.0 0.00| 1.00 0.00 1.0 0.00
30 | 1.0| 1.00 044 1.0 030|100 o047 10 027|100 048 1.0 027
151|100 044 10 030|100 047 10 027|100 048 10 0.27
201098 024 10 044 | 098 026 1.0 041|098 027 1.0 041
25,1098 024 10 044 | 098 026 1.0 041|098 027 1.0 041
301098 015 15 053 |09 017 20 049 | 098 0.16 15 0.50
00| 100 100 10 0.00 |1.00 0.00 1.0 0.00 | 1.00 0.00 1.0 0.00
05| 100 100 10 0.00 | 1.00 0.00 1.0 0.00 | 1.00 0.00 1.0 0.00
40 | 10| 100 043 10 030|100 048 1.0 027|100 050 1.0 027
15100 043 1.0 030 | 100 048 1.0 027|100 050 1.0 0.27
20| 100 023 10 045|098 027 1.0 040|098 026 1.0 042
25100 023 10 045|098 027 1.0 040|098 026 1.0 042
301099 015 10 054 |09 018 15 048 | 098 016 1.0 0.51

Ppr | k

194



C.2 Variants of the Py

CST Vopr Vobs

P k
T TPR FPR LT MCC | TPR FPR LT MCC | TPR FPR LT MCC

001|100 100 10 0.00|1.00 0.00 10 0.00 | 1.00 0.00 1.0 0.00
05]100 100 10 0.00|1.00 0.00 10 0.00 | 1.00 0.00 1.0 0.00
1.0 100 043 10 030|100 048 10 027 |1.00 051 1.0 026
151|100 043 10 030|100 048 10 027 |1.00 051 1.0 026
20 100 023 10 044 | 100 026 10 041|100 027 1.0 040
251100 023 10 044|100 026 10 041 | 1.00 027 1.0 040
301|098 016 1.0 053 |09 017 10 049 | 097 018 20 048

50

00| 100 100 10 0.00 | 100 0.00 1.0 0.00 | 1.00 0.00 1.0 0.00
05]100 100 10 0.00 | 100 0.00 10 0.00 | 1.00 0.00 1.0 0.00
60 | 1.0 | 1.00 045 1.0 029|100 048 10 027|100 051 1.0 026
151|100 045 10 029|100 048 10 027 |1.00 051 1.0 026
20 | 100 024 10 044 | 098 027 20 040|098 027 1.0 040
251100 024 10 044 | 098 027 20 040|098 027 1.0 040
30| 100 015 10 054|093 018 20 048 | 097 018 1.0 049

00| 100 100 10 0.00 | 100 0.00 1.0 0.00 | 1.00 0.00 1.0 0.00
05| 100 100 10 0.00 | 100 0.00 1.0 0.00 | 1.00 0.00 1.0 0.00
70 /10| 100 043 10 030|100 049 10 027|100 048 10 0.27
15100 043 10 030|100 049 1.0 027|100 048 1.0 0.27
20| 100 023 1.0 044 | 098 028 10 040|100 026 1.0 042
251100 023 10 044 | 098 028 1.0 040|100 026 1.0 042
301098 015 10 054|094 018 10 048 | 098 016 1.0 0.52

001|100 100 10 0.00|1.00 0.00 10 0.00 | 1.00 0.00 1.0 0.00
05]100 100 10 0.00|1.00 0.00 10 0.00 | 1.00 0.00 1.0 0.00
80 | 10| 100 046 10 029|100 049 10 026 | 1.00 052 1.0 026
151|100 046 10 029|100 049 10 026 | 1.00 052 1.0 026
20 100 025 10 043|098 028 10 039|100 029 1.0 040
251100 025 10 043|098 028 10 039|100 029 1.0 040
3009 017 1.0 051|092 019 10 045|098 017 1.0 0.50

00| 100 100 10 0.00 | 100 0.00 1.0 0.00 | 1.00 0.00 1.0 0.00
05| 100 100 10 0.00 | 100 0.00 1.0 0.00 | 1.00 0.00 1.0 0.00
90 |10 | 100 044 10 030|100 051 1.0 026 | 1.00 049 1.0 0.26
151|100 044 10 030|100 051 10 026 | 1.00 049 1.0 026
20 100 023 1.0 044|098 028 1.0 040|100 027 10 041
251100 023 10 044|098 028 10 040|100 027 10 041
301098 015 10 052|093 018 10 046 | 098 017 1.0 0.50

00| 100 100 10 0.00 | 100 0.00 1.0 0.00 | 1.00 0.00 1.0 0.00
05|100 100 10 0.00 | 100 1.00 1.0 0.00 | 1.00 1.00 1.0 0.00
100 | 1.0 | 1.00 049 10 027 | 100 048 10 027 | 1.00 052 1.0 026
151|100 049 10 027|100 048 10 027 | 1.00 052 1.0 026
20100 025 10 043099 028 10 040 | 098 028 1.0 040
251100 025 10 043|099 028 1.0 040|098 028 1.0 040
30098 016 10 052|095 018 1.0 048 | 095 017 1.0 051
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C.2 Variants of the Py

Table C.6: The median TPR, FPR, Latency (LT), and MCC of the T-Test classifier
using a range of p values in detecting the variants of the Py from 5 x107° m.s™2
to 100 x107° m.s™2,

CST VOPR vODS
TPR FPR LT MCC | TPR FPR LT MCC | TPR FPR LT MCC

040 | 08 064 10 012|075 057 15 011|082 066 1.0 0.09
025 |08 063 10 012|075 056 15 011|082 065 1.0 0.09
010 |08 035 10 027|075 033 15 025|082 039 10 023
005 |08 028 10 032|075 026 15 030|082 031 10 029
0025 | 085 022 10 038|075 020 15 035|082 024 10 035
0.010 | 085 0.16 10 044|075 014 20 042|082 016 1.0 043
0.005 | 083 012 10 051|075 011 20 047|082 013 1.0 048
0.0005 | 0.83 0.06 20 067|073 005 30 059|078 0.06 20 0.62
040 | 087 065 1.0 013|080 058 1.0 013|086 066 1.0 0.11
025 | 087 064 10 013|080 057 10 014|086 065 1.0 0.11
10 010 | 087 032 10 031|080 033 10 027 |08 037 10 0.26
005 | 087 025 10 036|080 025 10 033 |08 029 10 032
0025 | 087 019 10 043 |08 019 10 039 |08 023 1.0 037
0.010 | 0.87 014 10 049 | 080 014 15 046 | 08 016 1.0 045
0.005 | 087 0.11 10 054|080 011 15 052|085 012 1.0 051
0.0005 | 0.87 005 1.0 070|080 005 20 065|083 006 20 0.67
040 | 08 064 10 014|082 058 1.0 014 | 087 068 1.0 0.10
025 |08 063 1.0 014|082 058 1.0 015|087 067 1.0 0.11
20 010 |08 031 10 032|082 031 10 029|087 037 10 0.26
005 |08 023 10 039|082 024 10 035|087 029 1.0 033
0025 | 088 019 10 044|082 019 10 041|087 023 1.0 0.39
0.010 | 0.88 014 10 051082 013 10 048 | 087 0.16 1.0 046
0.005 | 0.88 011 1.0 056|082 010 10 054|087 013 1.0 0.52
0.0005 | 0.88 005 1.0 070|081 004 10 068 | 086 0.06 1.0 0.66
040 | 088 065 10 013|082 057 1.0 014|087 067 1.0 0.11
025 |08 064 10 014|082 057 1.0 015|087 066 1.0 0.11
30 010 |08 031 10 032|082 029 10 031|087 037 10 0.27
005 |08 024 1.0 039|082 023 10 037|087 028 1.0 033
0025 | 088 019 10 044|082 018 10 042|087 021 1.0 0.39
0.010 | 088 0.13 10 051|082 013 10 050|087 015 1.0 046
0.005 | 0.88 011 1.0 057|082 010 10 054|087 012 1.0 051
0.0005 | 0.88 0.06 10 070|082 005 10 067 | 086 006 1.0 0.66
040 | 090 064 10 015|079 058 1.0 012|085 067 1.0 011
025 | 090 064 10 015|079 058 1.0 013 |08 066 10 0.12
40 0.10 | 090 030 10 035|079 030 1.0 028 |08 036 1.0 0.27
005 |09 022 10 041|079 023 10 033|08 028 1.0 0.33
0.025 | 090 0.17 10 046|079 019 10 039|085 022 1.0 0.38
0.010 | 090 0.13 10 053|079 013 10 045|085 015 1.0 045
0.005 | 090 010 10 058|079 010 10 051|085 013 1.0 051
0.0005 | 090 0.05 10 071|079 005 10 064|085 006 1.0 0.66
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CST Vopr Vobs
TPR FPR LT MCC TPR FPR LT MCC TPR FPR LT MCC

040 | 090 064 1.0 015|082 058 1.0 013|083 066 1.0 0.09
025 |09 063 10 015|082 057 10 014|083 066 1.0 0.10
50 010 |09 029 10 035|082 029 10 029|083 038 10 026
005 | 09 023 10 040 | 082 023 10 035|083 029 1.0 031
0.025 | 090 0.18 10 046|082 018 10 040 | 083 022 10 037
0.010 | 090 0.13 10 053|082 013 10 047|083 016 1.0 045
0.005 | 090 010 10 058|082 010 10 052|083 013 1.0 050
0.0005 | 090 005 10 072]082 005 10 065|083 0.06 10 0.66

040 | 090 065 1.0 014|078 057 10 011|084 067 1.0 0.10
025 | 09 065 1.0 015|078 056 1.0 012|084 066 1.0 0.10
60 010 |05 032 10 032|078 031 10 027|084 037 10 026
005 |09 024 10 038|078 023 10 032|084 029 105 0.32
0025 | 090 019 10 044|078 018 10 038|084 023 1.0 037
0.010 | 090 0.14 10 051|078 013 10 046 | 084 016 1.0 044
0.005 | 090 0.11 10 056|078 010 10 051|084 012 1.0 050
0.0005 | 0.89 005 1.0 0.69 | 078 005 10 064 | 084 0.06 10 0.65

040 | 08 064 10 014|079 060 1.0 013 |08 066 1.0 0.0
025 |08 063 10 014|079 058 10 013 |08 065 10 011
70 010 |08 030 10 034|079 032 10 027 |08 035 10 027
005 |08 023 10 041|079 025 10 034 |08 028 1.0 032
0025 | 0.88 018 10 046|079 019 10 039 |08 022 10 0.38
0.010 | 0.88 013 1.0 053079 014 10 046 | 08 016 1.0 046
0.005 | 0.88 0.10 10 059|079 010 10 051|085 012 1.0 0.51
0.0005 | 0.88 005 1.0 071|079 005 10 065|085 0.06 10 0.66

040 |08 065 10 014|077 058 1.0 010|084 067 1.0 0.09
025 |08 064 10 014|077 058 1.0 010 | 084 066 1.0 0.0
80 010 |08 033 10 032|077 032 10 025|084 039 10 026
005 |08 0206 10 037|077 026 10 029|084 030 10 031
0025 | 088 021 10 043|077 020 10 034|084 024 1.0 036
0.010 | 0.88 015 1.0 050|077 015 10 041|084 017 1.0 044
0.005 | 0.88 011 1.0 054|077 011 10 048 | 084 013 1.0 0.50
0.0005 | 0.88 0.05 1.0 0.69 | 077 006 10 060 | 083 0.06 10 0.64

040 | 089 063 10 014|077 058 1.0 011|087 067 1.0 0.10
025 |08 062 10 015|077 057 1.0 012|087 065 1.0 0.0
90 010 | 089 030 10 034|077 032 10 028|087 036 1.0 0.27
005 | 089 023 10 040|077 025 10 033|087 028 1.0 0.33
0025 | 089 018 10 045|077 020 10 037|087 023 1.0 0.38
0.010 | 0.89 013 10 052|077 014 10 045|087 016 1.0 046
0.005 | 0.89 011 10 057|077 011 10 050|087 012 1.0 052
0.0005 | 0.89 0.05 10 069|077 006 10 063 | 08 006 1.0 0.65

040 | 087 065 1.0 013|080 058 1.0 011|082 067 1.0 0.08
025 | 087 064 10 013|080 058 1.0 012|082 066 1.0 0.09
0.10 | 087 035 10 029|080 032 1.0 027|082 039 10 024
005 | 087 027 10 035|080 025 10 032|082 030 10 029
0.025 | 087 022 10 040 | 080 020 10 038|082 023 1.0 035
0.010 | 0.87 0.16 10 046 | 080 014 10 047|082 017 1.0 043
0.005 | 087 013 10 050|080 010 10 052|082 012 1.0 048
0.0005 | 0.87 0.06 10 068 | 080 0.05 10 065|082 006 1.0 0.63

100
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Table C.7: The median TPR, FPR, Latency (LT), and MCC of the Quartile-based
classifier using a range of £ values in detecting the variants of the Psz from 5
x107° m.s~? to 100 x107° m.s~%.

CST Vopr Vobs
TPR FPR LT MCC 5TPR FPR LT MCC TPR FPR LT MCC

0009 040 15 030 | 094 041 1.0 027|095 043 1.0 0.27
05109 022 20 043 | 092 022 20 041|093 023 20 040
1.0 08 016 30 045 | 078 016 25 043|083 017 25 042
5 |15|08 010 40 050 | 100 010 3.0 058|077 011 3.0 045
20080 0.09 50 052| 071 0.09 35 051|075 0.09 40 048
251078 007 60 055| 071 0.08 35 053|072 0.08 4.0 050
301|078 007 60 057]| 070 0.07 45 053|070 0.07 55 0.50
00097 039 15 031 | 097 041 10 030|097 041 20 030
051097 021 20 044 | 094 021 20 045|093 021 20 043
1.0 (08 015 20 048 | 080 016 25 044 | 08 016 3.0 043
10 | 15|08 010 20 05| 074 010 3.0 049 | 080 0.11 3.0 0.50
201083 0.09 25 057 | 074 0.08 35 052078 0.09 3.0 052
251083 008 30 05 | 074 0.07 40 054|078 0.08 3.0 054
30083 007 35 060 | 074 0.06 40 055|078 0.08 4.0 055
0009 038 10 032 098 040 20 030|098 041 1.0 031
051098 020 15 047 | 097 020 20 046|098 021 2.0 045
1.0/ 09 015 20 049 | 080 014 20 042|088 015 20 048
20 | 151098 020 15 047 097 020 20 046|098 021 20 045
20|08 008 20 059 | 074 0.08 20 051|082 008 3.0 0.56
25108 007 20 061 | 074 0.07 20 054|082 007 3.0 059
3008 007 20 062| 073 0.06 25 055|082 0.07 3.0 0.60
00109 039 10 032 | 100 040 10 032|099 040 10 031
05109 020 10 047 | 098 020 10 047 | 098 021 15 046
1.0 (091 015 10 050 | 082 015 20 044 |09 015 15 048
30 | 15|08 010 20 056 075 010 20 050|082 010 2.0 052
20087 009 20 05 | 075 0.08 20 052082 008 20 055
251087 008 20 061 | 074 0.08 20 054|082 007 20 059
30|08 007 20 062| 074 006 20 055|082 0.06 20 0.61
00| 100 039 10 032] 100 041 10 032|100 039 1.0 032
05109 021 10 047 | 100 020 10 048 | 1.00 020 1.0 046
1.0|09 015 10 049 | 08 015 10 047|087 015 1.0 047
40 | 15088 010 1.0 055| 077 009 15 052|083 010 1.0 0.53
20|08 009 10 057 | 077 0.08 15 054|082 009 1.0 0.55
251087 008 20 060 | 076 0.07 20 056|081 008 15 057
301087 007 20 061 | 076 0.07 20 057|080 0.07 20 059
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CST Vopr Vobs

P k
T TPR FPR LT MCC | TPR FPR LT MCC | TPR FPR LT MCC

001|100 037 10 034|100 039 10 031|100 040 1.0 031
05100 019 10 049|099 020 10 047|098 021 1.0 045
1.0 093 014 10 052|083 014 10 04508 016 15 044
5 | 15|08 010 10 058|077 010 20 053079 010 15 048
20089 0.09 10 060|077 008 20 055|078 009 20 052
251|088 007 20 062|077 007 20 058|078 0.07 20 0.55
30|08 006 20 063|077 006 20 059|077 0.07 20 0.56

00| 100 038 10 033|100 039 10 032|100 041 1.0 031
05100 021 10 047|100 021 10 047|100 022 1.0 045
1.0 (092 016 10 049 | 080 015 1.0 043 | 088 0.16 1.0 046
60 | 1.5 1087 010 10 056 | 068 010 10 048 | 0.82 010 1.0 0.50
20087 0.09 10 059|068 008 1.0 050|082 008 1.0 0.52
251086 0.08 10 061|068 007 15 052|082 007 1.0 055
3008 007 10 063|068 006 20 054|082 007 1.0 057

00100 039 10 032|100 040 10 031|100 041 1.0 031
05100 021 10 047|100 020 10 048 | 1.00 022 1.0 044
1.0 093 016 10 050|080 016 10 045|088 017 10 045
70 {15]08 010 1.0 057|073 010 10 050|080 011 1.0 049
2008 009 15 059|073 008 10 053|080 010 1.0 0.52
251089 008 20 062073 007 15 055|080 008 1.0 054
3008 008 20 063|073 006 20 056|080 008 1.0 0.55

001|100 039 10 032|100 040 10 031 | 100 042 1.0 031
05(100 021 10 047|100 021 10 046 | 1.00 023 1.0 045
1.0 09 016 10 047|078 015 10 040 087 018 10 045
8 | 15|08 010 10 051|070 010 10 042|080 012 1.0 0.50
20080 0.09 10 054|070 008 1.0 044|080 010 1.0 0.53
251080 008 20 056|070 007 10 047|079 0.09 1.0 0.55
301|080 008 20 057|070 0.07 10 048|079 0.08 1.0 0.576

00100 039 10 032|100 041 10 031|100 040 1.0 031
05100 021 10 047|100 021 10 047|100 022 1.0 045
1.0 (091 015 10 049|081 016 1.0 043 | 08 016 1.0 043
9 | 15|08 010 1.0 055|073 010 1.0 048 | 079 011 1.0 0.50
20108 0.09 10 057073 009 1.0 050|079 009 1.0 0.1
251084 008 10 060|073 007 1.0 052|079 008 1.0 0.53
30084 008 10 061|073 007 1.0 054|078 008 1.0 054

00| 100 041 10 031|100 041 10 031 | 1.00 042 1.0 0.30
05100 022 10 045|100 021 10 047 |1.00 022 1.0 045
1.0 08 016 10 045| 08 015 10 046 | 08 016 10 044
100 | 1.5} 081 011 10 052077 010 1.0 049 | 076 011 1.0 048
20081 009 10 055077 008 10 053|076 010 1.0 0.50
251080 008 1.0 055077 007 10 055|075 0.08 1.0 0.53
301|080 008 10 057|077 006 1.0 056|075 008 1.0 0.55
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C.2 Variants of the Py

Table C.8: The median TPR, FPR, Latency (LT), and MCC of the Q-Test classifier
using a range of « values in detecting the variants of the P¢z from 5 x107° m.s™2
to 100 x107° m.s™2.

CST Vopr Vobs
TPR FPR LT MCC TPR FPR LT MCC TPR FPR LT MCC

801|092 018 3.0 047|093 020 20 043|088 018 3.0 043
9 | 089 013 35 051|088 015 20 047|083 013 4.0 048
5 |9 |08 011 35 053|083 013 40 048 | 078 011 6.0 049
9% | 085 010 35 054|081 013 50 048|075 011 70 048
99 | 076 008 50 052|070 011 55 044 | 068 0.08 10.0 048
80|09 015 3.0 053|097 019 20 046 |09 018 25 048
90 | 093 011 3.0 058|093 015 30 050|093 013 3.0 0.54
10 {95092 009 40 061 |08 012 35 051|087 011 40 0.55
9% | 090 0.09 40 061|087 012 35 051|087 010 50 0.56
99 | 0.84 0.07 45 061|074 011 40 049|078 0.08 55 055
80| 098 015 20 053|098 018 20 048 | 097 018 2.0 0.50
90 | 097 011 20 061|095 013 20 054 |09 013 3.0 0.57
20 195|093 009 20 062|092 011 30 055|093 010 3.0 0.60
9% | 093 008 20 063 |08 010 30 055|092 010 3.0 0.60
99 | 088 007 35 063|078 010 35 049|083 0.07 35 0.60
80 | 098 016 20 053|098 018 20 049|098 017 15 052
90 | 098 012 2.0 058|098 013 20 054|097 013 20 057
30 | 95109 0.09 20 062|092 011 20 05 | 093 010 2.0 0.60
9 | 095 009 20 062|092 010 20 056|093 010 20 061
99 | 0.88 007 3.0 063|080 009 30 055|087 0.08 3.0 0.60
80| 098 015 20 054|098 018 20 049|098 017 15 052
90 | 098 011 20 060|097 013 20 055|097 013 20 058
40 | 951097 009 20 064|092 011 20 055|093 010 20 0.61
9% | 096 009 20 064|091 011 20 055|093 010 20 061
99 | 092 007 20 066|082 010 20 053 |08 007 20 0.60
80 | 1.00 015 1.0 054|100 016 1.0 050|098 018 15 0.51
90 | 098 011 2.0 059|098 012 10 056 | 097 013 2.0 0.56
50 | 951097 0.09 20 063|093 010 15 057|093 010 20 0.59
9% | 095 009 20 064|092 010 15 057 |09 010 20 059
99 | 092 007 20 064|081 009 20 053|083 008 20 058
80 098 015 1.0 054|098 017 10 048 | 099 018 1.0 0.1
90 | 098 011 1.0 061|097 013 1.0 053|098 013 1.0 0.57
60 | 951097 0.09 20 062|093 011 1.0 054|093 011 1.0 0.58
9% | 095 009 20 063 |09 011 10 055|093 010 15 059
99 | 090 007 20 064|078 010 2.0 050 |08 008 20 0.59

Ppr «
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C.2 Variants of the Py

CST VOPR VODS
TPR FPR LT MCC | TPR FPR LT MCC | TPR FPR LT MCC

80 | 1.00 014 1.0 055|100 019 10 049|100 017 1.0 0.1
90 | 098 010 1.0 063|098 015 20 054|098 012 1.0 0.59
70 | 951098 0.09 15 065|092 012 20 055|094 010 1.0 0.1
9% | 097 008 15 066 | 090 012 20 054 | 093 0.09 15 0.61
99 | 093 006 2.0 068|080 010 20 050 |08 0.07 20 059

80 | 1.00 016 10 053|100 019 10 047 | 100 018 1.0 0.52
90 | 099 012 1.0 059|098 014 10 054|098 014 1.0 057
80 | 95097 010 15 061|093 011 1.0 054 |09 011 1.0 0.60
9% | 095 010 15 061|091 011 10 054|093 010 1.0 0.60
99 | 0.89 0.08 20 061|074 010 20 046 | 083 008 20 0.60

80 | 1.00 0.15 1.0 053|100 018 1.0 050|100 017 1.0 051
90 | 098 011 1.0 059|098 014 10 054|097 013 1.0 057
90 |9 | 097 010 1.0 061|093 012 1.0 055|093 010 1.0 0.60
9% | 095 010 1.0 062|093 012 1.0 055|093 010 1.0 0.60
99 | 090 0.08 20 061|080 010 20 052|083 008 15 0.8

80 | 1.00 017 1.0 052|100 018 1.0 050|100 018 1.0 0.1
9 | 1.00 012 1.0 060|097 013 1.0 054|098 013 10 0.57
100 | 95 | 097 010 1.0 063|094 011 1.0 057|093 010 1.0 0.60
9% | 095 009 10 063|092 010 1.0 056 | 093 010 1.0 0.60
99 | 0.87 007 1.0 061 | 083 010 20 054 |08 0.08 10 0.61
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