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Abstract 

On-line responsive traffic signal optimization strategies most commonly use data 

received from loop detectors to feed information into an underlying traffic model. The 

limited data available from conventional detection systems has dictated the way that 

current ‘state-of-the-art’ traffic signal control systems have been developed. Such 

systems tend to consider traffic as having homogenous properties to avoid the 

requirement for more detailed knowledge of individual vehicle properties. However, a 

consequence of this simplification is to limit an optimizer in achieving its objectives. 

The first element of this study investigates whether additional data regarding vehicle 

type can be reliably extracted from conventional detection to improve optimizer 

performance using existing infrastructure. A single detector classification algorithm is 

developed and it is shown that, using a modification of an existing state-of-the-art 

optimization method, a modest improvement in performance can be achieved. 

The emergence of connected vehicle technology and, in particular, Vehicle-to-

Infrastructure (V2I) communications promises more comprehensive data. V2I-based 

optimization methods proposed in literature require a minimum penetration rate of V2I 

equipped vehicles before performance matches existing systems. To address this 

problem, the second part of the study focuses on the development of a hybrid 

detection model that is capable of simultaneously using information from conventional 

and V2I detection. It is demonstrated that the hybrid detection model can begin to 

realise benefits as soon as V2I data becomes available. V2I-based vehicle classification 

is then applied to the developed hybrid model and significant benefits are 

demonstrated for HGVs. 

The final section of the thesis introduces the use of a more sophisticated internal traffic 

model and a new optimization method is developed to implement it. The car-following 

model based optimization method addresses the lack of modelled interaction between 

vehicles and is shown to be capable of reducing vehicle stops over and above the 

developed (vertical queue based) hybrid model. 
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Chapter 1: Introduction 

Introduction 

Demand has outstripped supply for decades when considering the capacity of 

road networks in many major cities in the UK and across the world. The fact that 

commercial traffic data providers such as TomTom (2018) and INRIX (2018) 

make headlines by producing annual congestion rankings for major cities is 

symptomatic of the problem. 

Transport policy in the UK, and elsewhere to varying degrees, has historically 

focused on providing ever increasing capacity to meet demand, often creating 

barriers between communities to accommodate the increasingly imposing 

infrastructure. However, it is now starting to be recognised, at least in some 

cities, that this policy is not sustainable and that economic growth should be 

pursued in a more inclusive manner (Leeds City Council, 2018). Furthermore, 

providing additional capacity tends simply to induce further demand and, as air 

quality becomes an increasingly prominent topic, this is not a desirable 

outcome. Papageorgiou et al. (2007) provides a well presented reasoning for 

why the continuous expansion of transportation infrastructure cannot be the 

only solution to increasing demand. The discussion, as part of a review of traffic 

control strategies, focuses on the impact of congestion on economic 

competitiveness. 

The proportion of road traffic miles driven in the UK by each vehicle class has 

changed considerably in recent years with a 5% increase in the share of ‘light 

commercial vehicle’ miles from 1995 to 2015 after a roughly constant 10% share 

in the preceding 30 years (Department for Transport, 2018). This change largely 

reflects changing consumer habits and is an example of how cities must adapt 
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management and control of traffic to cater for changes in travel behaviour, 

whether policy-led or driven by external factors.  

This research considers the often studied topic of traffic signal control in the 

context of the shifting attitudes of policy makers. Initially this introductory 

chapter provides a background to the use of traffic signal control and discusses 

issues that can limit the performance of optimizers in achieving chosen 

objectives. The emergence of connected vehicle technology is then discussed 

before the scope and objectives of the research are set out. Finally, an outline of 

the thesis is presented and summarised. 

1.1 Motivation 

Traffic signals have become an increasingly important tool for managing traffic 

flow as demand has increased. The use of traffic signal control offers a means of 

improving safety at junctions with poor visibility between conflicting vehicle 

movements and at locations where pedestrians come into conflict with other 

road users. However, aside from safety implications, it can also be used to 

manage traffic flow more strategically to achieve desired policy objectives. 

Since the first traffic signal control installations, methods of control have 

evolved to accommodate increasing demand and to take advantage of 

advances in technology. The concept of Urban Traffic Control (UTC), i.e. 

managing traffic from a centralized system, has become widespread in the past 

half century to the point that most cities and major towns across the world 

manage traffic signals using a UTC system. Alongside the technological 

developments in communications and computing, there has also been a variety 

of control strategies developed in order to optimize the operation of the signals. 

Some strategies have been developed specifically for isolated junctions whilst 

others can be applied to much larger networks. 
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A comprehensive review of the history of traffic signal control is presented by 

Hamilton et al. (2013) whilst other reviews by Heydecker (2004) and 

Papageorgiou et al. (2007) also provide useful insights. Papageorgiou et al. 

(2007), for example, summarise the difficulties involved in optimizing traffic 

signals and conclude that the solution to the optimization problem is infeasible 

for more than one intersection, thus requiring simplifications to be introduced. 

Unfortunately, the simplifications often reduce the effectiveness of strategies in 

saturated conditions. 

Often control strategies consider network (or area) wide optimization, and work 

by synchronizing signal cycle times across either a group of junctions or the 

whole network. The green splits and offsets between adjacent junctions are then 

adjusted, either dynamically or via offline optimization, usually with the aim of 

providing coordination and minimizing delay to traffic on strategically important 

routes. At isolated junctions a more dynamic approach to optimization can 

often be taken without fear of decisions in the optimization process causing 

adverse effects at upstream or downstream junctions. 

Minimizing delay is a common aim of traffic signal control but is just one of the 

many possible objective functions that can be considered. Shepherd (1994) lists 

minimization of delays to public transport, minimization of delays to 

pedestrians, maximizing reliability and minimizing environmental impacts as 

examples of objective functions. The effectiveness of an optimization method in 

achieving its objective is determined by the quality of available data, the 

representativeness of the traffic model it is using and the efficiency of the 

optimization algorithm itself. 

‘Intelligent’ methods of traffic signal optimization came to prominence with the 

development of the ‘offline’ tool TRANSYT (Robertson, 1969). TRANSYT was 

developed as a tool to optimize fixed-time plans for networks of junctions and, 
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although very successful and still widely used today, it was recognized that 

there are various limitations to fixed-time control. The performance of plans 

naturally deteriorates over time due to changes in traffic patterns and demand 

(Bell and Bretherton, 1986). Updating fixed-time plans to address performance 

degradation requires large amounts of traffic flow information to be gathered at 

regular intervals for generating new plan timings. Regular revalidation exercises 

on that scale are an unrealistic prospect for many Local Authorities. Fixed-time 

plans are also limited in that they cannot take into account day to day 

fluctuations in demand or the random nature of arrivals meaning that even 

optimal fixed-time plans can take a long time to recover from perturbations. 

Some Local Authorities automate changes to sets of fixed-time plans by 

monitoring flow and occupancy on the network. This enables timings to be 

adapted in the case of events and in response to changes in traffic conditions 

(Reid, 2007). Introducing different fixed-time plans in response to network 

conditions can provide some benefit compared to fixed-time alone but is still 

limited by the need for regular revalidation of the plan timings and meticulous 

configuration of the flow and occupancy thresholds. 

Many of the ideas of TRANSYT were subsequently incorporated into the ‘on-

line’ optimization tool SCOOT (Hunt et al., 1982). SCOOT (Split Cycle Offset 

Optimization Technique) makes use of vehicle detectors to provide real-time 

flow information to the optimization process, addressing the previously 

described problem of plan degradation. SCOOT was primarily developed as a 

network-wide optimization tool (although optimization is actually split into 

smaller ‘regions’). In SCOOT the green splits, cycle time and offsets for each 

region are updated at regular intervals to adapt the signal timings to the current 

traffic conditions. SCOOT is used widely in the UK and in many cities 
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internationally but there are various other network focused control strategies 

that have been developed. These will be reviewed in more detail in Chapter 2. 

Network-wide control strategies are popular in dense road networks as they 

enable coordination between closely spaced junctions. However, the benefit of 

coordination reduces as the distance between junctions increases, dependent 

on factors that lead to platoon dispersion such as the ‘friction’ along the 

connecting links as well as, for example, the homogeneity of vehicle mix/driver 

behaviour. Where platoon dispersion is significant, junctions may be considered 

in isolation. The single isolated junction is a simpler problem to solve than for a 

network but is not entirely straightforward. 

In the UK it is still common to operate the standard System-D vehicle actuated 

(VA) strategy (Highways Agency, 2005) at isolated junctions. System-D VA is a 

demand responsive system that enables a green signal to be terminated early if 

all traffic has been cleared. The system is not capable of systematic optimization 

but remains popular at junctions where, for example, signal control has been 

introduced to improve safety but demand does not necessarily exceed capacity. 

Subsequent developments such as the popular Microprocessor Optimised 

Vehicle Actuation (MOVA) control strategy (Vincent and Peirce, 1988) 

introduced systematic optimization. In MOVA, the optimizer considers the 

intensity of approaching traffic rather than simply whether there are vehicles 

present or not. The MOVA strategy is very popular in the UK with over 1000 

junctions operating the system in 2005 (Crabtree, M.R.K., J.V., 2005). 

1.2 Summary of limitations to optimization 

One of the historical limitations to traffic signal optimization has been the 

information available to the internal traffic model to build an accurate 
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representation of traffic conditions. Ordinarily, for adaptive control strategies, 

traffic detectors provide a snapshot of vehicles passing a fixed point from which 

an on-line model is constructed. It is expensive to install and maintain the 

inductive loop detectors and, consequently, the number of detectors required 

for most strategies is kept to a minimum; often just a single detector per lane of 

an approach. 

It has been shown that humans (and human learning algorithms) can 

outperform ‘conventional’ algorithms at traffic signal control (Quinn et al., 1988; 

Box and Waterson, 2012). One of the reasons for this is that humans are able to 

view the wider traffic situation and make a more informed decision on when to 

change the signals. The emergence of more sophisticated and reliable video 

detection and the on-going development of cooperative systems, including 

vehicle to infrastructure (V2I) technology, offers the possibility of more accurate 

representation of traffic conditions. 

A consequence of the limitations of conventional vehicle detection is that 

various aspects of traffic behaviour must be approximated or homogenised. For 

example, the vehicle mix at traffic signals can significantly affect the discharge 

rate but is usually only represented in control strategies as a fixed, user-defined 

value because information on vehicle type is not available. In reality the vehicle 

mix will vary from one cycle to the next and, consequently, so will the rate of 

discharge. Other parameters such as travel-time (i.e. from an upstream detector 

to the traffic signal stop line) are fixed values based on observations by traffic 

engineers over a limited period of time. Ultimately, the variation of actual values 

compared to the configured fixed values limits the ability of an optimizer to 

reach an optimal solution. 
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As already discussed, the ability (or lack thereof) to discern vehicle type on an 

approach to a junction can affect the performance of an optimizer. A lack of 

knowledge of vehicle type from conventional detection also results in all 

vehicles being treated equally by optimization strategies when considering 

vehicle stops. Unfortunately, this methodology can have inequitable results as 

vehicles with poorer braking/acceleration performance (and generally larger 

headways to preceding vehicles) are more likely to be stopped by optimization 

strategies that consider the efficiency of flow. It is worth noting that this is not a 

desirable outcome given the disproportionate volume of emissions from larger 

vehicles compared to the number of miles travelled (Figure 1.1) 

1.3 Emergence of connected vehicle technology 

The discussion so far has identified that there are limitations with conventional 

detection that necessitate simplifications in the internal traffic models of traffic 

signal optimizers. As a consequence of those simplifications, the effectiveness of 

an optimizer in achieving objectives related to minimizing emissions is limited. 

As a simple example, if vehicles with high emissions can be stopped less 

frequently then it is likely to be beneficial in terms of air quality. However, in 

order to stop specific vehicle classes less frequently requires more information 

than is currently received by traffic signal control strategies from conventional 

detection. Additionally, it is not desirable for vehicles with low acceleration to be 

Figure 1.1: Comparison of urban vehicle miles driven by each vehicle class compared 

to urban NOx emissions in the UK for 2015 (Department for Transport (2018) and 

NAEI (2018)). 
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positioned at the front of a queue as it is likely to constrain the performance of 

the vehicles behind it at the start of the following green but, as described 

previously, this impact cannot be evaluated with simplified traffic models. 

Connected vehicle technology is an emerging technology that is often referred 

to as connected and autonomous vehicle (CAV) technology. However, to 

combine the two elements is to disregard the benefit that can be provided by 

connected vehicles with little or no autonomy. Despite much attention in the 

media, it is likely to be at least 2025 before fully autonomous vehicles will begin 

to operate with full integration on public highways (Adams, 2017) and possibly 

another decade before autonomous vehicles are a significant proportion of the 

vehicle fleet. In the meantime, connected vehicle technology offers the 

opportunity to realise significant benefits in the shorter term. 

Vehicle-to-infrastructure (V2I) technology, an aspect of connected vehicle 

technology, is the wireless transfer of information from a vehicle to roadside 

infrastructure such as traffic signals. V2I introduces the potential to obtain 

information on vehicle position, speed and type (and many more properties if 

the information is made available) to utilise in an optimization strategy. 

Consequently, V2I provides an opportunity to address the shortcomings of 

conventional detection that limit the effectiveness of traffic signal optimizers. It 

has been predicted that almost all new cars will be connected by 2020 (Gissler, 

2015) although the term ‘connected’ is often used to refer to any connection 

rather than V2I specifically. Currently there are very few V2I enabled vehicles 

and it is therefore important to ensure that traffic signal control strategies are 

capable of maintaining existing performance levels whilst taking advantage of 

V2I data where available.   
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1.4 Scope and objectives of research 

This thesis tackles issues related to the limitations of traffic signal optimization 

caused by the quality (and nature) of available data and the simplified 

representation of traffic conditions. In particular, in the context of the discussed 

air quality issues surrounding road transport, the thesis seeks to quantify the 

benefit in terms of stops and delay that can be obtained by providing a more 

detailed representation of traffic to an optimizer. The overall objectives of the 

study can be summarised as follows: 

1) To investigate the feasibility of supplying vehicle type information to an 

optimizer, using only existing infrastructure, in order to test whether 

knowledge of individual vehicle type can be used to improve 

performance of an existing signal optimizer in terms of minimizing 

vehicle stops and delay; 

2) To understand whether any performance benefit can be achieved by 

applying V2I detection to an existing optimization strategy, taking into 

account the need to accommodate initially low V2I penetration rates; 

3) If the use of V2I detection provides a performance benefit, then a 

subsequent objective is to assess whether any further benefit can be 

provided by including vehicle type information, derived through V2I, in a 

modified optimizer; and 

4) To develop an optimization method capable of using a more 

sophisticated representation of traffic to assess whether it can provide a 

benefit in terms of overall optimizer performance compared to a 

conventional method. 

The study has been conducted using a Simulated Environment, described in 

Chapter 3, which enables comparison of optimizer performance in repeatable 

conditions. 
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The initial investigation of this thesis (Chapter 4) is focused on whether the 

appropriate information (such as vehicle speed and type), required to enable an 

optimizer to accurately estimate delay and the impact of stops, can be reliably 

extracted from conventional detection using existing infrastructure. This aspect 

of the thesis is undertaken to understand whether, within the constraints of 

conventional detection, any significant benefit can be achieved without the 

introduction of additional hardware. 

Additional hardware in this context refers to hardware that would be required to 

estimate speed and vehicle type from conventional detectors. The reason that 

additional hardware has not been considered (although relevant literature has 

been reviewed), is that it has been assumed such investments would not be 

realistic given the emergence of connected vehicle technology and more 

sophisticated video detection techniques.  

In the second element of the thesis (Chapter 5), the benefit to the optimizer of 

introducing connected vehicle technology by simulating the use of V2I 

communication is demonstrated. First, V2I based detection is applied to an 

existing optimizer by developing a traffic model capable of using conventional 

detection and V2I data simultaneously. The existing optimization method, a 

representation of the popular MOVA strategy, is introduced and described in 

detail in Chapter 3. Subsequently, vehicle type information (assumed to be 

supplied through V2I) is applied by modifying the MOVA representation. 

In the third part of the thesis (Chapter 6), a new optimization method is 

developed to enable a more sophisticated traffic model to be accommodated. 

The construction of the optimizer is described and the optimization method is 

compared to the MOVA representation with and without V2I based detection. 
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This research focusses on on-line signal optimization at isolated junctions. That 

focus certainly does not preclude the principles of this study from being applied 

to network control strategies. However, by focusing on isolated junction control, 

it has allowed a representation of the existing, well-established, MOVA control 

strategy to be developed within the timescales of this study. The MOVA 

representation provides a robust benchmark for all subsequent testing within 

the thesis. 

1.5 Outline of thesis 

Figure 1.2 shows the outline of this thesis. A more detailed structure of how the 

various aspects of the study interact is provided in Chapter 3. 

Figure 1.2: Outline of thesis. 
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At the end of each of the main chapters (i.e. Chapter 4, Chapter 5 and Chapter 

6) there is a summary of the outcomes. Chapter 7 draws the conclusions from 

each chapter together and discusses the findings and potential opportunities for 

further work. 
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Chapter 2: Literature review 

Literature review 

2.1 Introduction 

This chapter is divided into four sections that cover: 

� Single detector vehicle classification;  

� Vehicle classification in a traffic signal control context; 

� Connected vehicle technology in traffic signal control systems; and 

� On-line traffic models. 

Each of the four sections is a distinct discipline but together they form the 

foundation of this research. 

At the start of the second section there is a review of traffic signal control 

strategies that provides a background for the subsequent literature review. At 

the end of each section is a discussion and identification of a research gap from 

which objectives are set out. Finally, there is a summary of the objectives set out 

in each of the sections. 

2.2 Single detector vehicle classification 

Speed estimation and vehicle classification (i.e. the identification of vehicle type 

based on characteristics such as length) from a single detector has been the 

subject of many research papers (Oh et al. (2002), Sun and Ritchie (1999), Ki and 

Baik (2006), Meta and Cinsdikici (2010), Ye et al. (2006), Hellinga (2002), Wang 

and Nihan (2003), Coifman (2001), Zhanfeng et al. (2001)) with complex filtering 

methods often being proposed in an attempt to improve accuracy. Accurate 
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classification from a single detector is an enticing prospect for practitioners as it 

can provide redundancy at traditional monitoring sites, such as MIDAS (Tucker 

S., 2006) in the UK, where two closely spaced detectors are employed at a 

known distance to calculate speed (thus allowing length to be derived) and 

occupancy. Indeed, the vast majority of the literature regarding single detector 

classification focuses on freeway applications where such monitoring stations 

are predominantly located. 

There are two principal techniques of estimating speed (and classifying vehicles) 

from a single detector. The first technique makes use of the signature profile 

created by a vehicle chassis passing through the electromagnetic field of an 

inductive loop (or a magnetic sensor) to classify vehicles. Examples of this 

technique are Oh et al. (2002), Sun and Ritchie (1999), Ki and Baik (2006), Meta 

and Cinsdikici (2010). The second draws on the relationship between flow and 

occupancy to calculate a space mean speed over a specified time interval using 

Figure 2.1: Example of an inductive loop detector installation providing the raw signal 

data or processed presence output to a control/monitoring application (own work). 
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processed vehicle presence data. Examples of this technique are Wang and 

Nihan (2003), Coifman (2001), Zhanfeng et al. (2001). 

In this chapter the first technique will be referred to as the ‘profile method’ and 

the second as the ‘flow-occupancy method’. Figure 2.1 is an example of an 

inductive loop installation providing an output in different formats to a control 

and/or monitoring application. 

2.2.1 The profile method 

The profile method of estimating vehicle speed and/or classifying vehicles 

exploits the waveform profile of the electrical pulse created by a vehicle chassis 

when passing over an inductive loop detector (ILD). The electrical pulse is 

created as the vehicle passes through the electromagnetic field formed by the 

inductive loop detector. The widely used detector packs in the UK such as the 

Siemens SLD4 (Siemens Plc, 2016b) are primarily used to output a bivariate 

signal of either 0 or 1 depending on whether a vehicle presence sensitivity 

threshold has been exceeded. For some applications, such as vehicle actuated 

traffic signal control methods, the simpler vehicle presence output is sufficient. 

However, there are detector packs (RTEM, 2013) that explicitly manipulate the 

waveform profile, processed at a high scan rate, to derive vehicle speed and 

class. 

Oh et al. (2002) exploit the profile method, setting the detector scan rate at 7 

milliseconds as a trade-off between sampling rate and the ability to manipulate 

the waveform profile. Oh et al. (2002) observed that the profiles for each vehicle 

exhibit different features. The maximum magnitude, magnetic length and area 

of a vehicle profile are all examples of vehicle specific features that can be used 
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to determine vehicle type. However, the profiles are also functions of vehicle 

speed. 

Previous research by Sun and Ritchie (1999), using a simple linear regression 

equation between vehicle speed and vehicle profile slew rate (the slope of the 

waveform profile at half the maximum magnitude) showed promising results. 

However, it was found to result in a significant increase in speed estimation 

error for longer vehicles when applied to a new dataset containing a more 

diverse vehicle mix. 

To address the increase in error, Oh et al. (2002) presented three neural network 

architectures for grouping vehicles. The reasoning for grouping the vehicles was 

so that different speed estimation models could be applied to each group. Oh 

et al. (2002) chose to use four vehicle groups incorporating a wide range of 

vehicle lengths and the results showed a correct classification rate of 90% for 

the group with the largest training data set. For the second vehicle group (i.e. 

small buses, vans and pickup trucks), the results showed a 78% correct 

classification rate. The results of the research suggest that the presented 

method suffers from one of the same issues associated with the flow-occupancy 

method in that, where vehicle lengths are close to the threshold of 

neighbouring vehicle groups, the error in grouping the vehicles increases. 

Very similar research, using a back-propagation neural network (BPNN), was 

presented by Ki and Baik (2006). In this case, vehicles were grouped into five 

classes to include motorcycles. The vehicle specific characteristics used were the 

variation rate of the frequency, waveform of the magnetic profile and 

occupancy. The results were very similar to that presented by Oh et al. (2002) in 

that the method performed well for all vehicle classes (particularly for trucks 
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where the recognition rate was 100%) but the results for the second vehicle 

group, incorporating vans, were not so accurate (approximately 79%). 

Meta and Cinsdikici (2010) identified that the Ki and Baik (2006) method did not 

solve the problem of noise and it was also suggested that the relatively few 

vehicle specific features extracted from the waveform profile (fewer than those 

used by Oh et al. (2002)) limited the ability to distinguish between vehicle type. 

To address these shortcomings, Meta and Cinsdikici (2010) applied a discrete 

Fourier transform to clear the noise before applying a feature extraction 

technique. A statistical feature, the local maximum parameter, was extracted 

from the waveform in addition to other features. The local maximum parameter 

exploits the fact that the undercarriage of different vehicles can vary 

significantly in height. For example, a waveform associated with a heavy goods 

vehicle (HGV) is likely to incorporate more local maxima than a car. Finally, a 

BPNN was employed to classify the vehicles. The results showed an 

improvement on previously presented methods with a 98% recognition rate for 

cars, 90% for vans and 93% for HGVs. Buses and motorcycles were classified 

with 100% accuracy, albeit with smaller vehicle samples (approximately 30 each). 

2.2.2 Flow-occupancy method 

The flow-occupancy method of estimating vehicle speed draws on the 

fundamental relationship between traffic flow, speed and occupancy (as a proxy 

for density). Using this method, a space mean speed is calculated over a 

specified time interval using processed vehicle presence data from a vehicle 

detector. An advantage of this method is that any type of detection technology 

capable of providing a presence output could be used. 



 18 

 

The space mean speed of a sample of vehicles can be derived from the 

relationship between speed, flow and occupancy. The derivation is described by 

Kwon et al. (2003) and is summarised in Appendix A using similar terminology. 

This relationship enables the speed of a sample of vehicles to be estimated on 

the assumption that vehicle speeds within the measured sample interval are 

constant. A summary of the derivations is described below. 

The calculated flow in any sample time period is given by the number of 

recorded vehicles divided by the length of the sample time period (Equation A.1 

in Appendix A). The occupancy is given by the sum of the so-called ‘on-time’ of 

each recorded vehicle divided by the length of the sample time period 

(Equation A.2 in Appendix A). The on-time of a vehicle is defined as the time 

spent travelling over a conventional detector. 

The space mean speed for a particular sample of vehicles is defined by the sum 

of each vehicle speed divided by the total number of vehicles (Equation A.3 in 

Appendix A). The speed of each vehicle is, of course, unknown in this case but 

can be estimated using the relationship between speed and length of a vehicle 

(Equation A.4 in Appendix A). Through substitution and re-arrangement, the 

space mean speed of a particular sample can be redefined as being 

approximately equal to the flow multiplied by the space mean length divided by 

the occupancy. This enables the speed to be approximated based on the known 

parameters of on-time and flow along with an estimate of vehicle length 

(Equation A.8 in Appendix A). 

Equation 2.1 reiterates the relationship between parameters for reference given 

the various terminologies in the related literature reviewed here. 

 (2.1) 
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 = Space-mean length (metres). 

 = Number of vehicles in the specified vehicle sample. 

 = Mean effective vehicle length (metres). 

 = Reciprocal of MEVL. 

For a given sample time period, Equation A.8 in Appendix A can also be 

expressed as 

 (2.2) 

as is the case in Wang and Nihan (2003). However, Athol (1965) referred to the 

g-factor as the K-factor. 

Both components of the MEVL, vehicle length and effective detector length, can 

be estimated but, whilst the effective detector length can be considered 

constant, the vehicle length is not. 

In the case of inductive loops there are numerous factors that can contribute to 

Ldet varying from one detector to another even if the design length of each loop 

is identical. These include variations in the buried depth of the cable, the length 

of the cable run from the detector to the roadside cabinet and the sensitivity of 

the monitoring equipment. However, at a specific site this value can be assumed 

constant as the value does not change significantly over time. Wang and Nihan 

(2003) recognised that the effective detector length can change from one 

detector site to the next and proposed a correction coefficient to the g-factor to 

account for changes in loop sensitivity. This could also be extended to other 

types of detection (such as radar or video detection) where the size of the 

detection zone may vary slightly from one site to another. 
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The length of each vehicle is more difficult to calibrate as it cannot be measured 

directly from the detector and is therefore usually given as an average from 

observed data for the associated link. The value of the MEVL or its inverse the, 

so called, g-factor has been subject to various research including Wang and 

Nihan (2003), Coifman (2001) and Zhanfeng et al. (2001) with its value subject to 

extensive debate. Further methods have been presented in literature by 

Mikhalkin et al. (1972), Pushkar et al. (1994) and Dailey (1999) but this review 

focuses on more recent literature that encompasses and builds on some of the 

methods presented previously. 

It is clear that the g-factor is not in fact constant as it depends on the vehicle 

mix in any measured sample time period which can vary significantly from a 

mean length measured over a longer time interval. As the length of a sample 

time period increases it becomes more likely a representative vehicle mix will be 

captured but it also increases the likelihood that the actual vehicle speed during 

the interval is not constant, particularly in saturated conditions, thus severely 

reducing the effectiveness of the speed estimate. 

Zhanfeng et al. (2001) demonstrated empirically that the g-factor can vary by up 

to 50% between detector sites and can also vary significantly at the same site 

due to changes in the vehicle mix over time. In recognition of the fact that a 

constant g-factor is therefore invalid, Zhanfeng et al. (2001) employ a strategy of 

specifying a free-flow speed and identifying free-flow conditions by selecting an 

occupancy threshold value. This enables the g-factor to be calculated for each 

sample time period (in this case 5 minutes). In congested periods this method 

does not hold and, instead, the g-factor is estimated using historical data. 

Wang and Nihan (2003) take an alternative approach and separate sample time 

periods with long vehicles (i.e. HGVs) from those without. Time intervals of 5 

minutes are used and split into 20 seconds sample periods. The 20 second 
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sample time periods are sorted by average occupancy per vehicle and a ratio 

threshold between occupancy and effective vehicle length used to select sample 

periods with no long vehicles. The ratio threshold used is based on trial and 

error but enables the average speed for the 5 minute time interval to be 

calculated. The remaining sample time periods are used to estimate the volume 

of long vehicles. 

This method relies on the presence of sample time periods with no long vehicles 

in order to estimate speed. It is also susceptible in periods of high volume traffic 

(where vehicle speeds can drop significantly) to discarding legitimate sample 

time periods of slow moving short vehicles that it identifies as long vehicles. The 

method can feasibly be used to estimate vehicle speed in ‘real-time’, that is, in 5 

minutes time intervals (often considered real-time in traffic applications) but, as 

in the case of Zhanfeng et al. (2001), it is not feasible to use on a vehicle-by-

vehicle basis. 

Coifman (2001) recognises that the purpose of developing a flow-occupancy 

method is to produce a solution that could be deployed on a simple processor. 

Indeed, this reasoning can be extended to the legacy communications 

architecture employed by most UTC systems as it enables the vehicle presence 

data to be transmitted by existing methods with minimal software changes. 

Transmitting the data to a central system provides the advantage of enabling 

algorithm improvements to be quickly applied to every detector site. 

Coifman (2001) extends on the work by Zhanfeng et al. (2001), selecting a free-

flow occupancy threshold, below which a pre-specified free-flow speed is used. 

Coifman (2001) proposes the use of an exponential filter to dynamically update 

the MEVL value between sample time periods. An important update to Coifman 

(2001) introduces the concept of using the median (rather than mean) vehicle 

‘on-time’ value to estimate a median velocity for each sample time period 
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(Coifman et al., 2003). The idea of using a fixed number of vehicles rather than a 

fixed sample time period is also explored but it is noted that the fixed sample 

time period is more practical as it is easier to observe break down in traffic flow. 

Coifman and Kim (2009) discuss two techniques, including the previously 

introduced median method, the sequence method of Neelisetty and Coifman 

(2004) and introduces a third that is referred to as the distribution method. In 

the updated study, the median method is implemented as a rolling sample of 33 

vehicles, of which the speed of the centre vehicle is estimated. Interestingly this 

contradicts Coifman et al. (2003) in that, presumably, the benefit of using a 

sample with a fixed number of vehicles outweighs the issues associated with 

observing flow break down. 

The sequence method incorporates the median method but also assumes that 

the speed of successive vehicles rarely differs significantly, even under 

congested conditions, and that it follows that the ratio of vehicle on-times can 

be used to deduce vehicle lengths where the successive vehicle lengths differ 

significantly. However, it was quickly realised that, in fact, the assumption of 

successive vehicle speeds rarely differing significantly does not hold true in 

congested conditions, particularly when vehicle speeds drop below 

approximately 10mph (i.e. stop/start conditions). 

The distribution method also incorporates the median method but attempts to 

address the shortcomings of the sequence method by introducing a bi-modal 

filter. Coifman and Kim (2009) identify that the distribution of observed vehicle 

lengths (and on-times) exhibits a bi-modal property. That observation is 

incorporated into the distribution method by analysing the on-time distribution 

of each sample of vehicles. In many cases, due to the relatively small sample 

size, the distribution will exhibit a single peak from which the median method is 
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used to estimate speed. If a bi-modal distribution of on-times is identified then 

the median on-time of the dominant peak is used to estimate speed. 

This technique suffers from the same issues associated with Wang and Nihan 

(2003) in that a sample could be considered uni-modal but may be comprised 

solely of HGVs. In that case, deducing whether it is indeed a sample of HGVs or 

a sample of slow moving short vehicles is more difficult. In this case, three 

additional tests are applied including the already described low occupancy 

threshold, the on-time variance and the estimated speed from the previous 

sample. 

Ultimately, Coifman and Kim (2009) conclude that the distribution method 

offers the best performance. Length based classification into three categories, 

approximately translating to <8.5 metres (Class 1), 8.5-14 metres (Class 2) and 

>14 metres (Class 3), produced results in excess of 99% correct classification 

rate for Class 1, 73-76% for Class 2 and 94-97% for Class 3. This demonstrates 

that, as with the profile method, vehicles with lengths between 8.5-14 metres 

are difficult to classify accurately. 

The reviewed literature would suggest that there is a limit to vehicle 

classification performance from a single conventional detector, whether using 

the profile or flow-occupancy method. However, that limitation may matter less 

if classifying more broadly into, say, two classes (i.e. long or short). However, it 

does suggest that, if more accurate classification of multiple vehicle classes is 

required then an alternative approach is necessary. Installing a second 

conventional detector is one possible option but is costly and there are 

potential alternatives that could provide more comprehensive data. Those 

alternatives, such as V2I data and video detection are discussed in more detail 

later in this chapter and in Chapter 7 respectively. 
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2.2.3 Other methods 

A more recently introduced vehicle detection technology uses magnetic sensors. 

The wireless detector sensors (Clearview Intelligence, n.d.), approximately the 

size of a coffee mug, are core drilled into the road surface and monitor changes 

in the Earth’s magnetic field. This type of sensor offers advantages to 

practitioners in that they can be installed in locations where ILDs are not 

feasible. This may include locations where the road surface is in a poor 

condition or where the ducting infrastructure, required to connect the ILDs to a 

traffic control system, would be difficult to install. However, the currently 

available systems are more complex to configure than conventional ILDs and 

the requirement to monitor battery life of wireless equipment has perhaps 

limited its popularity in the UK. 

Magnetic sensors could be used to estimate speed and classify vehicles with the 

flow-occupancy method in the same way as ILDs. However, magnetic sensors 

are also capable of measuring changes to the Earth’s magnetic field along 

multiple axes (i.e. the direction of the lane and vertically). This offers the 

possibility of applying the profile methods for ILDs, such as that proposed by 

Meta and Cinsdikici (2010), to the vehicle signature produced by the magnetic 

sensor. Cheung et al. (2005) presented results from limited experiments that 

provided promising results but the overall classification accuracy was low 

(approximately 60%). 

He, Y. et al. (2012) applied a methodology more akin to that proposed for ILDs 

by Meta and Cinsdikici (2010) with much improved classification accuracy, 

although the dataset was small and included an unusually high proportion of 

buses, for which the profile method has been shown to classify accurately. 

Likewise, Tafish et al. (2016) applied a discrete Fourier transform and a feature 
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extraction technique. Tafish et al. (2016) used a much larger sample size with a 

HGV proportion of approximately 17% (for reference to the work by Oh et al. 

(2002) with ILDs) and classified into three vehicle groups. The results showed 

very similar results to those of Oh et al. (2002) with approximately 88% 

classification accuracy for group 1 (cars and vans), 74% accuracy for group 2 

(rigid HGVs) and 91% accuracy for group 3 (articulated HGVs). The results 

demonstrate that using magnetic sensors is clearly a valid approach to vehicle 

classification when compared to ILDs. 

2.2.4 Discussion and research gap 

The recurring feature of the flow-occupancy methods, with the exception of 

Coifman et al. (2003) and Coifman and Kim (2009), is that they all estimate 

speed over a specific sample time period ranging between 20-30 seconds to, in 

some cases, minutes in length. In the case of Coifman and Kim (2009), a 

minimum sample size of vehicles (33) is required. All the algorithms have been 

produced to estimate freeway speed where it is likely that, for the majority of 

the time, conditions will be free-flow and, consequently, the assumption that 

speeds are constant during each sample interval holds. 

The methods discussed are useful for their applications and pose no problem if 

the data is being collected offline for later analysis or even if the data is to be 

used to detect congestion or incidents at a reasonable reporting frequency. 

However, for the purpose of this thesis it is necessary that each vehicle is 

Figure 2.2: An example of vehicle sample sizes over a detector. 
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classified instantly upon leaving the detector so that the information can be fed 

into an on-line traffic model. 

Figure 2.2 demonstrates that the vehicle crossing the detector is in the centre of 

the vehicle sample. The estimated speed (and subsequently classification) data 

cannot be utilised until the last vehicle in the sample has crossed the detector. 

For the 11 vehicle sample, assuming headway between vehicles of 

approximately 2 seconds in the busiest conditions, it would take 10 further 

seconds (after the centre vehicle has crossed the detector) to ‘complete’ the 

sample. Most conventional detection at traffic signals is located no more than 

10 seconds travel time from the junction. Consequently, even an 11 vehicle 

sample would be ineffective for a traffic signal application as the centre vehicle 

would, in most cases, have crossed the stop line by the time information 

became available. The larger vehicle samples recommended by Coifman and 

Kim (2009), would compound this problem. A delay of, say, 2-3 seconds may be 

less problematic but there is no guarantee, even for a 3 vehicle sample, that the 

last vehicle will cross the detector within 2-3 seconds of the centre vehicle. 

Furthermore, the proposed traffic signal application for the speed estimation 

algorithm developed in this work is for traffic signal controlled junctions where 

speeds are likely to fluctuate significantly over short periods of time, particularly 

in oversaturated conditions. This fluctuation in speed significantly reduces the 

accuracy of methods that use longer sampling periods as they assume speed is 

constant for the duration of each sampling interval. In the case where a vehicle 

has been stationary – or is moving very slowly – over the detector, it will heavily 

influence all the ‘rolling’ samples either side of the stationary vehicle, causing 

consistent underestimation of speed. 

The alternative method for estimating speed from a sample of vehicles, 

proposed by Coifman et al. (2003), of using the median detector on-time in a 
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sample produces the opposite problem. Using the median on-time effectively 

excludes the long on-time caused by the stopped, or almost stopped, vehicle 

and therefore over-estimates vehicle speeds over the detector when queues 

form from the traffic signals. In the freeway application, for which the Coifman 

et al. (2003) method was developed, this is unlikely to be an issue but it requires 

an alternative solution for this application. 

The use of a sample size larger than one vehicle necessarily introduces latency 

into the classification process where the vehicle being classified is in the centre 

of the sample. In practice, data from detectors on freeways is often recorded to 

report to a central database at, say, 5 minute intervals for use in strategy 

selection by traffic managers or to inform road users of traffic conditions. For 

such applications, the requirement for the ‘second half’ of the vehicle sample to 

be collected (16 further vehicles in the case of Coifman and Kim (2009)) before 

the ‘centre’ vehicle can be classified is not significant. However, for this 

application the usefulness of the classification data deteriorates rapidly once a 

vehicle has left the detector and it is therefore not viable to implement such 

methods. 

The profile method, whether applied to ILDs or magnetic sensors, provides 

more promising results in the sense that it could provide ‘instantaneous’ speed 

estimation and vehicle classification as a vehicle leaves the detector. 

Instantaneous classification is essential for the traffic signal control optimizer 

application in this thesis. However, current commercial products (i.e. RTEM 

RTEM (2013)) require a bespoke detector card to perform the profile method 

classification. For new or refurbished traffic signal controllers the bespoke cards 

can be specified but for existing sites the use of the profile method would 

require additional expenditure to replace the incumbent cards. The practitioner 
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is also dependent on specialists to configure the detector card to extract 

optimal performance. 

There are many other methods of estimating vehicle speed and classifying 

vehicles such as using video detection, radar and even infrared/ultrasonic 

sensors that have not been included in this literature review for the sole reason 

that they all require additional infrastructure. However, some of these solutions 

will be discussed later in Chapter 7. The methodology used in this thesis is to 

first explore the maximum that can be extracted from existing infrastructure 

before investigating how V2I technology could be used to improve the 

performance of traffic signal control. The review of literature for single detector 

speed estimation and vehicle classification has therefore focused on methods 

that could be delivered without additional infrastructure requirements as it has 

been assumed that V2I data will provide accurate vehicle speed and type 

information. 

In summary, the review of literature for single detector vehicle classification has 

demonstrated two primary methods for classifying vehicles from existing 

infrastructure (namely ILDs). The profile method showed more useful results for 

the application to traffic signal optimization due to the ability to provide 

instantaneous classification as a vehicle leaves the detector. However, the 

requirement for replacement detector cards does not meet the initial aim of this 

research to extract the maximum performance from existing infrastructure. 

The flow-occupancy method offers much reduced data requirements, making 

the use of multiple types of detector (as long as it is capable of producing a 

vehicle presence output) feasible. This in itself makes the flow-occupancy 

method attractive in that it could potentially be easily applied using a range of 

existing detector infrastructure.  
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Reviewed methods use vehicle presence data collected at 60Hz (Coifman et al., 

2003), a relatively high frequency. However, controller scan rates are usually no 

more than 5-10Hz (Siemens Plc, 2015), outstation transmission units (OTUs) 

20Hz (Steel, 2012). Most existing UTC communications architecture (i.e. 

communicating from the OTU back to a centralised system) limits detector data 

transfer to 4Hz as a legacy from the early development of the SCOOT traffic 

control system with the communications infrastructure available at that time. 

Any developed method would therefore need to prove effective in using 

detector data at a lower frequency than the reviewed methods. 

The main drawback of the flow-occupancy method is that all the reviewed 

methods are for freeway applications and do not provide the instantaneous 

classification required in this thesis. There is therefore an identified research gap 

to investigate whether the flow-occupancy method of classifying vehicles could 

be adapted to the stop/start conditions of an urban setting and whether it is 

feasible to provide an instantaneous vehicle classification output. The objective 

of the research is to investigate whether a method can be developed that is 

capable of providing an adequate performance for the application of traffic 

signal optimization using existing infrastructure. The use of existing 

infrastructure will necessitate using data supplied at a lower frequency than the 

reviewed methods. 

2.3 Vehicle classification in a traffic signal control context 

2.3.1 Signal optimization strategies 

There are many ‘on-line’ responsive traffic signal control strategies in use across 

the world today. These control strategies make use of real-time detector data to 

adapt signal timings in response to traffic conditions. SCOOT is a particularly 

successful strategy (in terms of popularity at least) but there are a number of 
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other strategies for network-wide control that have experienced various degrees 

of commercial success including SCATS (Sims and Dobinson, 1980) and 

UTOPIA/SPOT (Mauro and Di Taranto, 1989). Other examples are PRODYN 

(Henry et al., 1983), OPAC (Gartner, 1983), RHODES (Mirchandani and Head, 

2001) and TUC (Diakaki et al., 2002). ALLONS-D (Porche, Isaac et al., 1996) is a 

highly decentralized method and to some extent sits between network-wide 

and isolated control. 

Network-wide control strategies can be split, generally speaking, into 

centralised (SCOOT, TUC) or decentralised/hierarchical (SCATS, UTOPIA/SPOT, 

PRODYN, OPAC) where more optimization decisions are taken at a local level 

but informed by a strategic central function. This categorization is not entirely 

clear-cut as some systems control the network from a central location but 

operate in a decentralized manner. For example, although SCOOT operates from 

a central system, it does so with independent ‘regions’ of adjacent, similar, 

junctions that are defined during configuration of the system by a UTC operator. 

More recent versions of SCOOT (Bodger, 2011) include the ability to operate 

individual junctions independently when the regional optimizer judges that 

there is more benefit than providing coordination, thus introducing a more 

decentralized approach. However, although decentralized to some degree, the 

SCOOT system still considers at least region-wide optimization with a 

methodology based on the off-line TRANSYT tool. 

SCOOT operates by calculating green durations (i.e. stage lengths) 4 seconds 

before each stage change is scheduled to occur. At this point the optimizer 

decides to either end the stage early, retain the original decision or change 4 

seconds later (Department for Transport, 1995). If changing earlier or later a 

smaller change (1 second) is made to the permanent stage length for the 

following cycle. This method allows the timings to follow longer term trends 



 31 

 

whilst adapting to shorter term ‘noise’. Offsets are calculated every cycle and 

cycle times calculated at intervals of no less than 2.5 minutes. The SCOOT 

philosophy of small changes to timings is designed to limit perturbations in the 

network but in doing so it does limit the general applicability of the system. For 

example, in the UK it is now commonplace to operate SCOOT during the peak 

periods with MOVA (or System-D VA) run outside the peaks when coordination 

is less critical to provide more dynamic control (Witts D., 2013). The switch 

between SCOOT and MOVA is based on heuristic rules, usually applied to flow 

and occupancy data collected from detectors. 

More decentralized systems such as SPOT/UTOPIA provide a more defined 

hierarchical control method. In this case, the SPOT control system provides the 

individual junction level control. Optimization is performed over a time horizon 

of 120 seconds, repeated every 3 seconds. Communication on a local level 

between SPOT controllers enables traffic forecasts and counts to be used from 

neighbouring junctions. UTOPIA provides area level forecasts of public transport 

arrivals that are then included in the local optimization objective function. The 

SPOT objective function includes delay, stops, queue lengths and also considers 

the deviation from the reference plan (provided at area level). The latter element 

enables the degree of freedom within which the individual level control can 

operate (Fox et al., 1998). 

For isolated junctions (with no interaction with adjacent junctions) the 

optimization problem is simpler, although certainly not trivial. MOVA and 

LHOVRA (Peterson et al., 1986) are examples of strategies developed specifically 

for isolated junctions. LHOVRA, popular in Sweden, is phase (signal group) 

based and uses multiple detectors on an approach to drive a series of functions 

that can provide priority to heavy vehicles and vehicles on the main road, and 

aim to reduce accidents. The timing logic for LHOVRA is relatively simplistic and 
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does not attempt real-time optimization. An alternative method, referred to as 

approximate dynamic programming has been developed by Cai et al. (2009) and 

has shown promising results when compared to fixed-time plans but it is yet to 

be evaluated against the currently considered ‘state-of-the-art’ MOVA system in 

either simulated or real-world conditions. 

MOVA has become a very popular method of control in the UK (Highways 

Agency, 2005). The MOVA control strategy is based on the Miller (1963) 

approach to optimization that employs a win/loss technique to calculate 

whether or not it is beneficial to extend the current green signal for a specified 

time-step. The Miller technique is, in effect, a rolling horizon strategy with a 

horizon of one cycle (not fixed) that considers in detail the effect of extending a 

green signal for vehicles within 8-10 seconds of the stop line (depending on the 

upstream detector location) on delay. Miller proposed a time-step of 2 seconds 

but MOVA uses a time-step of 0.5 seconds (Vincent and Peirce, 1988). In over-

saturated conditions MOVA switches to a different optimization method in 

order to maximize capacity. In that mode of operation, MOVA redistributes 

available green time according to efficiency of use. 

An alternative approach to traffic signal control is presented by Box and 

Waterson (2013) in the form of a neural network based junction controller. The 

junction controller can learn strategies through supervised learning (by a human 

expert) or reinforcement learning by temporal difference. The temporal 

difference trained neural network matched the performance of the human 

trained controller at an isolated junction. The human trained neural network 

(Box and Waterson, 2012) had previously been shown to outperform MOVA by 

up to 25% when probe data (i.e. from GPS/LIDAR etc) is accurate. 
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2.3.2 Applying vehicle classification to traffic signal optimization 

Vehicle classification data is usually collected for the purposes of off-line 

analysis. Common methods of data collection include manual traffic surveys, 

video detection and automatic number plate recognition (ANPR) cameras. The 

classification data, amongst other applications, is often collected by survey 

companies and subsequently analysed for transport planning purposes, often to 

provide data for transport models. Such applications do not require the vehicle 

classification to be performed in real-time and so video detection is often 

employed simply to record images for later manual analysis by human 

operators. In the UK, ANPR data can be submitted to the Driver and Vehicle 

Licensing Agency (DVLA) to determine vehicle type, providing accurate data for 

modelling purposes (Driver & Vehicle Licensing Agency, 2018). 

Applying vehicle classification to a traffic signal optimizer introduces more 

onerous requirements as it requires that classification data is available for use 

immediately. In fact, the closer a vehicle travels to the traffic signal stop line 

before the optimizer is provided with the classification data, the less useful it 

becomes as there is less time available for the optimizer to react. 

Whilst it is possible that ANPR data could be used to provide instantaneous 

vehicle type information, to do so would likely require that a database is used to 

store raw number plate data along with the vehicle details in order to rapidly 

recall the vehicle type information. If that were the case then it may introduce 

data governance issues, although this might be possible to overcome. An ANPR 

solution would be costly but is also likely to be accurate and thus useful if the 

vehicle type data could be acquired at a reasonable distance from the traffic 

signal stop line. It would, however, require additional infrastructure to be 

installed on street. To date, the author has found no literature on the use of this 

technique for the proposed application. 
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As discussed in the previous section, there are various techniques for classifying 

vehicles from ILDs but there are also different types of detection that are 

capable of providing similar information. Historically, traffic signal control has 

most commonly employed single detectors rather than pairs of detectors on the 

approach to a junction. The use of single detectors limits the cost of installing 

the ILDs and, for many signal control strategies, the primary purpose of a 

detector is to count or provide occupancy data which negates the requirement 

for detector pairs. An exception to this is Speed Discrimination (SD), used in the 

UK in conjunction with the System-D VA control strategy. SD uses a pair of 

loops to determine the speed of approaching vehicles. If the speed is above a 

pre-defined threshold then the currently green signal and following safety 

period is extended to minimise the likelihood of vehicle conflicts (Highways 

Agency, 2002). 

2.3.3 Transit signal priority (TSP) 

A basic example of vehicle classification in a traffic signal control context is the 

use of selective vehicle detection (SVD) to reduce delay to buses (and/or trams). 

Traditionally, this was implemented using ILDs, either by placing a pair of ILDs in 

a dedicated bus lane approximately 10-12 metres apart to ensure only longer 

vehicles are detected, or by using the profile method described in the previous 

section. A profile method commonly employed in the UK for the bus priority 

application was the now defunct PRISM system (Hertfordshire County Council, 

2009). An alternative method for detecting specific vehicles is the Sietag system 

that uses a radio signal antenna located in the road surface (Whittingham, 

2004). The relevant vehicles are fitted with Radio Frequency Identification (RFID) 

transponders that, when matched with a database of tag type and serial 

numbers, enables a trigger to be generated in the traffic signal controller to 

provide priority. 
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Automatic Vehicle Location (AVL) is, again, primarily deployed on buses and is a 

popular method of providing bus priority centrally without the need for physical 

infrastructure at the roadside. One method of AVL is to use radio beacons to 

transmit vehicle location to a central system. This method requires equipment to 

be installed on buses to transmit the GPS based location when travelling 

through one of a series of stored ‘virtual’ detection zones or trigger points 

(Hounsell and Shrestha, 2005). An alternative method, becoming increasingly 

common, is for bus operators to use the ticket machines already installed on 

buses to perform a similar operation but using mobile data communication (i.e. 

3G/4G). This method negates the need for additional equipment on the buses 

and takes advantage of the fact that bus operators in many cases already 

transmit Real-Time Passenger Information (RTPI) data from their ticket machines 

at regular intervals for the purpose of tracking buses and predicting arrival times 

at bus stops (FirstGroup Plc, 2018). 

Both AVL methods require UTC operators to configure bus trigger points that 

are downloaded to buses on a regular basis (as new junctions are added or 

layouts modified etc). However, the accuracy of GPS location in many devices is 

not high enough to be lane specific (Ordnance Survey, 2018). Instead, an 

Figure 2.3: An example implementation of AVL for a bus priority application (own work). 
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example solution is for UTC operators to configure route specific bus priority 

trigger points. The movement of each bus route through a junction is known 

and so each trigger point will be configured only to apply to a specific 

movement through a junction. Buses do not necessarily operate the same route 

from one day to the next and bus drivers register their bus service on the ticket 

machine at the start of their route. The ticket machine, now aware of the route it 

is operating, can transmit a priority request (with a route reference) to a central 

trigger database system. Finally, the trigger database can assign a movement 

through the junction from the trigger request and pass it to the signal control 

system (see Figure 2.3). 

It is clear that implementation of AVL is not entirely straightforward and much 

of the process described in Figure 2.3 is undertaken using bespoke systems or 

even spread-sheet tools. The process varies between Local Authorities with 

multiple AVL methods in use across Europe (Hounsell and Shrestha, 2005). In 

addition, bus routes are changed periodically and so the assignment of bus 

triggers to routes must be reviewed on a regular basis. However, despite that, 

an AVL system does allow the progress of vehicles to be compared with that 

predicted by timetable and hence differing levels of priority can be provided 

according to bus lateness. This is a useful tool for UTC operators as it prevents 

priority being given to a bus that is early (at the expense of other traffic), only 

for it stop at a downstream bus stop for a lengthy period. 

2.3.4 Other applications for vehicle classification 

Bus priority continues to be a significant focus for Local Authorities as there is 

political pressure to reduce bus journey times and increase bus patronage. As 

an example, the Transport Strategy for Leeds City Council (LCC) aims to double 

bus patronage within ten years and LCC is investing £173.5 million in bus travel 
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with the Leeds Public Transport Programme over three years in an attempt to 

improve performance (Leeds City Council, 2016). 

However, air quality is becoming an increasingly prominent issue, particularly 

since legally binding targets were introduced by the European Union (EU) with 

the 2008 Ambient Air Quality Directive (European Union, 2008). As part of a 

wider range of measures to address air quality issues, some cities have chosen 

to ban diesel vehicles. In Hamburg a ban has already been introduced that 

excludes all diesels older than a Euro 6 (or Euro VI for HGVs) standard 

specification (Chazan, 2018). However, the ban is very limited in its geographical 

extents and residents are exempted. In the UK, London plans to introduce an 

Ultra-Low Emission Zone in a central area of the city from April 2019 that will 

ban all pre-Euro 6 standard diesel vehicles (Transport for London, 2018). In five 

other UK cities, a Clean Air Zone (CAZ) is to be implemented by 2020 (DEFRA, 

2015) in line with the Department for Environment, Food and Rural Affairs Clean 

Air Zone Framework (DEFRA, 2017). In Leeds, the proposed CAZ will cover a 

large proportion of the city and will introduce a charge for vehicles with pre-

Euro 6 diesel engines. However, private cars are planned to be exempt from the 

charge. 

It is worth noting that there is continuing legal action against various 

governments within the EU in an attempt to force further action which suggests 

that the air quality issue will remain prominent for some time (Cuff, 2018). As a 

consequence, it is appropriate that the objectives of traffic signal optimization 

are reviewed and that there is an increased focus on investigating ways to 

minimize emissions as part of the overall objective function. 
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2.3.5 Methods of utilising vehicle classification within a control 

system 

So far, the application of vehicle classification to provide bus priority through 

traffic signal control has been reviewed and the possibility of alternative 

applications for vehicle classification, such as for reducing vehicle emissions. 

However, the review has mainly focused on the method of identifying selected 

vehicles (such as buses) and generating a priority request that is subsequently 

passed to a traffic signal control system to make a decision. This section focuses 

on how various traffic signal control systems actually utilise vehicle classification 

data. 

When considering public transport (or emergency vehicle) priority, there are 

various techniques that can be used to implement it depending on the control 

strategy that is being operated. In the UK, many cities still operate fixed-time 

plans and, in London, the Selective Priority Network Technique (SPRINT) 

strategy was developed to incorporate bus priority into a fixed-time network 

(Hounsell et al., 1996). The SPRINT strategy enables green signal extensions and 

recalls subject to a set of constraints that a UTC operator can decide on. The 

constraints include the maximum time difference from the base plan and the 

maximum allowable levels of saturation to permit green extensions and recalls 

(Fox et al., 1998). The SPRINT strategy also includes a recovery period following 

a priority event to compensate general traffic. 

Selected Vehicle Priority in a UTMC Environment (SPRUCE) is an alternative 

system for fixed-time networks. SPRUCE is currently operated in Leeds, Sheffield, 

Bradford and Edinburgh and is a tool for UTC operators to write bespoke 

strategies rather than a strategy itself (Collier, 2017). Bus priority strategies can 

be developed to include all the features of SPRINT but can be modified and 

made as simple or complex as necessary by the UTC operator. 
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A common theme of SPRINT and SPRUCE is that the method of handling 

priority requests, particularly in the recovery phase, is based on a set of heuristic 

rules, taking into consideration average traffic flow and saturation flow 

parameters. Optimization techniques that incorporate an on-line traffic model 

can provide more optimal recovery strategies. In theory, a strategy in SPRUCE 

could be developed to incorporate an on-line model but it would potentially be 

difficult to implement and replicate without an object oriented programming 

environment. 

In road networks where adaptive traffic signal control is in operation there are 

various techniques for providing bus priority. Again, the method of 

implementation depends on the control strategy. In the case of the SCOOT 

system, green extension and recall facilities are provided through the Bus 

SCOOT module (Bretherton et al., 1996). The extent to which priority is granted 

to buses depends on the degree of saturation (DOS) targets for non-priority 

links set by the UTC operator. The higher the DOS target, the greater the extent 

of priority afforded to buses but with greater delay to general traffic. Reductions 

in delay vary from as high as 50% in low flow conditions to 5-10% when the 

degree of saturation is high (Department for Transport, 2000).  

The SPOT/UTOPIA system implements transit priority by providing the local 

junction controller (SPOT) with forecasts of the bus or tram arrivals. Each transit 

vehicle is effectively treated within the optimizer as multiple private vehicles to 

provide a greater weighting (i.e. making a green extension more likely). A very 

high weighting can be applied to provide buses (or more commonly trams) with 

absolute priority (Fox et al., 1998). Providing the local controller with a forecast 

of the transit arrival time means that the junction offset can be slowly adjusted 

in advance of the vehicle arriving so that it coincides with a green signal. This is, 

in effect, an automated version of a strategy developed by Sheffield City Council 
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in SPRUCE for fixed-time control to ensure that trams arrive at a green signal 

(Collier, 2017). 

In MOVA, bus priority has traditionally been applied in a similar manner to SPOT 

but with buses always being provided absolute priority (if arriving during a 

green signal) by effectively suspending the optimizer until the bus has crossed 

the stop line. Providing priority to buses outside the ‘visibility’ of the optimizer 

introduces the possibility of causing additional delay to vehicles on opposing 

approaches (including any buses on those approaches) that may ultimately 

outweigh the benefit to the first bus. However, the latest version of MOVA 

(MOVA 8) introduces a bus priority feature that enables buses to be included in 

the optimization process with a higher weighting than other traffic (TRL Limited, 

2018). This provides the opportunity to apply differential priority to transit 

vehicles depending on whether or not they are late running. 

The ALLONS-D optimization method (Porche, Isaac et al., 1996) incorporates the 

capability to use minimization of person delay as an objective function, primarily 

as a tool to provide ‘passive’ bus priority. As with SPOT and MOVA, passive 

priority is used here to refer to providing vehicles with a higher ‘importance’ 

than other vehicles in the optimization process making it less likely they will be 

stopped. 

In practice, the objective function of minimizing person delay was not used as 

tests were performed by weighting by vehicle type rather than occupancy. The 

tests concluded that a large reduction in delay for buses (~30%) could be 

expected when the level of background demand – in this context the ‘non bus’ 

demand – was low with negligible increase in overall delay (Porche, I. and 

Lafortune, 1997). At a higher level of background demand there was a larger 

(~5%) increase in overall delay on the network to achieve a similar benefit for 
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buses. However, the comparative effects on person delay were not reported and 

the level of bus demand is also unclear. 

Outside of transit priority applications, SCOOT attempts to incorporate some 

degree of general vehicle classification by using profiling to convert each 

consecutive quarter second of presence data into a Link Profile Unit. However, 

this type of method suffers from reduced accuracy with the onset of congestion 

and does not determine between individual vehicles or vehicle type so cannot 

be applied to all types of optimization traffic model. 

2.3.6 Discussion and research gap 

Of the on-line control strategies reviewed there are some that provide the 

facility to implement differential vehicle priority. That is, some vehicles can be 

given a higher weighting within the optimization process to make it more likely 

that they will receive a green signal upon arriving at the junction. Each reviewed 

control strategy that incorporates the ability to provide differential priority (i.e. 

SCOOT, SPOT, MOVA and ALLONS-D) does so in slightly different ways but the 

common theme between them is that the differential priority has been applied 

to transit vehicles with a policy designed to reduce journey times and increase 

journey time reliability of public transport. 

The application of vehicle classification to bus or tram priority is a special case in 

that the objectives for prioritising public transport vehicles often conflict rather 

than complement those for general traffic. For example, in many cases, 

extending a green signal for a bus will incur additional delay for general traffic 

on opposing approaches that worsens the overall performance index (as in the 

case of Porche, I. and Lafortune (1997)), particularly if considering vehicle delay 

rather than person delay. This is not necessarily a bad policy if it supports an 

increase in bus patronage. However, there can be significant performance 

differences between other vehicles such as private cars and HGVs (i.e. rate of 
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acceleration and braking) that, if considered explicitly, could have an even 

greater influence on overall optimizer performance. 

No reviewed strategy explicitly considers vehicle class of general traffic. SCOOT 

implicitly considers vehicle length to improve queue length estimation accuracy 

but, as already discussed, the method used suffers in congested conditions. It is 

of particular relevance, given the previously discussed topic of air quality 

becoming an increasingly prominent issue, that methods of reducing stops for 

the most polluting vehicles are investigated. 

The identified research gap in this section is the consideration of differential 

priority for general traffic. The objective of the research will be to explicitly 

classify vehicles with the aim of applying higher weightings in the optimization 

process for larger vehicles (that roughly correlate to those with the highest 

emissions). The effect on the objective functions of individual vehicle classes as 

well as the overall performance index will be evaluated. 

2.4 Connected vehicle technology in traffic signal control 

systems 

The term ‘connected vehicle technology’ is often applied to various aspects of 

information exchange from vehicle-to-vehicle (V2V) and between vehicles and 

infrastructure (V2I). The terms car-to-x (C2x) and vehicle-to-x (V2x) are 

alternative terms used that incorporate V2V and V2I. The type of information 

exchange referred to by the term V2x can range from data as simple as 

receiving traffic alerts or transmitting an emergency signal in the case of an 

accident to receiving advance warning of queues from downstream vehicles and 

communicating with traffic signal controllers. 
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Communication with traffic signal controllers can be with the objective of 

smoothing the trajectory of approaching vehicles by enabling drivers to adapt 

their speed to arrive at a green signal. It can also be to provide a traffic signal 

optimization strategy with more accurate information on vehicle position and 

speed (for example) to improve efficiency. In fact, research into the potential 

benefits of connected vehicle technology for improving the performance of 

traffic signals is loosely split into three categories: 

� Optimization of vehicle trajectory to minimize acceleration/braking; 

� Providing more accurate spatial data to improve the efficiency of traffic 

signal optimization; and 

� Removing the requirement for physical traffic signals. 

A preferred communications technology for connecting vehicles has not yet 

emerged but a communications protocol, sometimes referred to as ITS-G5 (ETSI, 

2010) or Dedicated Short Range Communications (DSRC), has been developed 

based on the IEEE 802.11p wireless standard (Jiang and Delgrossi, 2008). The 

range of DSRC is stated to be approximately 1000 metres (DEVPOST, 2018), 

although that distance is likely to vary depending on influencing factors in the 

environment such as buildings and trees. Stahlmann et al. (2016) evaluated ITS-

G5 based GLOSA systems and reported ‘real-world’ results. The findings 

suggested that, as with other wireless technologies, the predicted range was 

optimistic when considering environmental factors such as foliage and 

buildings. Even so, the relatively long range compared to standard WiFi 

introduces the possibility of utilising a single beacon to serve multiple junctions 

in dense road networks thus reducing the cost of deployment. 

An alternative to ITS-G5 is the use of cellular networks such as 3G/4G and, in the 

near future, 5G. Cellular technology has the advantage of being deployed in a 

very large number of mobile devices and so implementing V2x solutions is 
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relatively straightforward. The downside is that the latency of current cellular 

networks is not low enough for safety critical applications, although that may 

change in the future. 

In the short term then at least, there is likely to be a mix of dedicated and 

cellular communications technology depending on the application. For the 

purposes of this research it will be assumed that data can be supplied to a traffic 

signal control optimizer at a minimum frequency of 1Hz. In reality, if using 

DSRC, it is possible that the data could be supplied considerably more 

frequently (i.e. up to 20Hz) but, if collating data from various sources, it is likely 

that the data will require some degree of processing to smooth the data before 

passing it the traffic signal optimizer at a lower frequency (Alessio, 2017). 

Communications infrastructure aside, the structure and format of the data to be 

broadcast from traffic signals to vehicles is also an important consideration. The 

International Organization for Standardization developed Signal Phase and 

Timing (SPaT) protocol provides signal timing data to vehicles and Map Data 

(MAP) describes the physical geometry of a junction (Amsterdam Group, 2015). 

The combination of SPaT/MAP data enables vehicles to map themselves onto a 

detailed layout of the junction and thus interpret the associated phase and 

timing data correctly. 

2.4.1 Optimization of vehicle trajectory 

In the first use case, the focus is on optimizing vehicle trajectories to reduce 

delay and emissions (by minimizing stops), usually with fixed signal timings that 

are known to the vehicles. There are two principal methods proposed for 

optimizing trajectories: 
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� A passive system – the driver of a vehicle is presented with information 

on the time until the next signal change. The response to the 

information is within the control of the driver; and 

� An active system – the, presumably autonomous, vehicle automatically 

adjusts its trajectory in response to the data received from the traffic 

signals. 

An example of a passive system is Green Light Optimal Speed Advice (GLOSA) 

where signal timings are broadcast to approaching vehicles and a suggested 

speed is presented to the driver in order to arrive at a green signal 

(Bodenheimer et al., 2014). The difficulty associated with this method is that the 

current traffic conditions and behaviour of preceding vehicles can affect the 

speed at which a vehicle can approach the junction. 

Eckhoff et al. (2013) investigated the potentials and limitations of GLOSA and 

found that it provided significant benefit in under-saturated conditions (up to 

11.5% lower CO2 emissions) but that it could result in longer waiting times and 

higher CO2 emissions for non-equipped vehicles in congested conditions. 

Katsaros et al. (2011) reported a reduction in average fuel consumption of up to 

7% from a GLOSA simulation with a much larger reduction in ‘stopped time’ (up 

to 89%) although this does not necessarily suggest a similar reduction in delay. 

The optimal distance for activating GLOSA was found to be 300 metres. 

Kamalanathsharma and Rakha (2016) is an example of ‘active’ vehicle trajectory 

optimization and uses SPaT data provided from the traffic signals through 

Infrastructure to Vehicle (I2V) communication. It is unclear what operational 

strategy the traffic signals employ but it is assumed to be fixed-time. Fuel 

savings from 5% (at approach speeds of 30km/h) to 23% (at approach speeds of 

90km/h) are reported. 
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Similarly, He, X. et al. (2015) focus on optimization of vehicle trajectories 

through traffic signals but include queue consideration. Traffic signal timings are 

predicted based on assumed readily available historical data. Fuel savings of up 

to 29% are reported. 

For both the passive and active cases reviewed here, it is assumed that the 

traffic signal control systems operate fixed time plans as there is no mention of 

dynamic control. It is plausible that some degree of adaptive signal control 

could be developed whilst still retaining the ability to optimize vehicle trajectory. 

However, at 500 metres (Eckhoff et al.), or even 300 metres (Katsaros et al.), 

optimal distance for activation of GLOSA messages, the travel time to the 

junction is likely to be in the region of at least 30 seconds in many cases. The 

scope for adapting signal timings would therefore be significantly reduced as 

the next change of the signals would have to be fixed well in advance of the 

arrival of the vehicle at the stop line. 

It is unclear whether the benefit of providing optimized trajectories outweighs 

the diminished flexibility of signal control (and associated loss of performance) 

required to do so. 

2.4.2 Improving the efficiency of traffic signal optimization 

The second category, in which the research undertaken in this thesis can be 

placed, uses the additional information (i.e. vehicle position and speed) available 

to the traffic signal optimizer to develop new, or improve existing, optimization 

strategies. 

Feng et al. (2015) developed a state estimation algorithm to address low 

penetration rates of connected vehicle technology. For the state estimation 

algorithm, an approach link is modelled as three regions, a queuing region, a 

slow-down region and a free-flow region (Figure 2.4). The regions are defined 



 47 

 

based on information from V2I equipped vehicles. In the queue region, the 

queue length is based on the queue propagation speed. However, in the slow-

down region, the algorithm uses the Wiedemann (1974) car-following model to 

predict where an unequipped vehicle is likely to be. The algorithm compares the 

actual acceleration of the known vehicle with the expected acceleration from the 

Wiedemann (1974) model. If, for example, the known vehicle is decelerating 

more harshly than would be expected given the modelled positions, it can be 

assumed that the vehicle may be reacting to an undetected unequipped vehicle. 

In that case, a new vehicle is inserted into the model. In the free-flow region the 

number of equipped vehicles is divided by the V2I penetration rate to calculate 

the total number of vehicles. 

An adaptive control algorithm is then developed, based on the Controlled 

Optimization of Phases (COP) algorithm (Sen and Head, 1997) used in RHODES, 

that utilizes the connected vehicle data. Minimization of delay and queues are 

used as objective functions and reductions in delay of approximately 16% at a 

higher demand scenario and 10% at a lower demand, compared to a ‘well-

tuned’ fully actuated control strategy, are reported at a 100% connected 

technology penetration rate. Reduced benefits are still reported at a 50% 

penetration rate. At a penetration rate of 25% the performance is worse than 

the conventional COP strategy for the lower demand scenario suggesting that 

Figure 2.4: Diagram showing how an approach link is split into three regions (Feng et al. 

(2015)). 
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V2I begins to provide a benefit between 25-50%. At a higher demand level, V2I 

provides a benefit even at 25% penetration rate. 

Lee et al. (2013) develop a cumulative travel-time responsive algorithm utilizing 

Kalman filtering. At 100% penetration rate a reduction in delay of 34% is 

reported although this is compared to a generic VA strategy based on 

optimized timings from TRANSYT rather than a more sophisticated on-line 

optimized strategy. The paper reports that at least 30% of vehicles are required 

to be equipped with V2I to achieve benefits. 

Yang et al. (2016) develop a control method for connected and automated 

vehicles that integrates the three stages of technology development. The 

control method switches between methods using heuristically defined 

thresholds of technology penetration rate. The control method is compared to a 

basic VA strategy with conventional detection and it is found that the developed 

algorithm requires approximately 50% penetration rate of V2I vehicles before it 

outperforms the conventional method. 

2.4.3 Removing physical traffic signals 

The third category assumes that all vehicles must be equipped with V2I and is 

an extension of optimization of vehicle trajectories to the point that physical 

traffic signals can be dispensed with altogether. The premise of this research 

theme is that, if all vehicles are equipped with V2I (and a high level of 

autonomy) then it will be possible to manipulate the trajectories on the 

approach to a junction to the point that the vehicle paths will interleave and 

there will be no, or very little, requirement for vehicles to stop. In this case, 

physical traffic signals would no longer be required. 

Ahmane et al. (2013) assume a 100% penetration rate and use Timed Petri Nets 

with Multipliers to enable vehicles to negotiate a right of way through a 
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junction. The reported reduction in average stopped times compared to traffic 

signals is impressive (between 40% and 60%) but the stopped time is not the 

full delay that the vehicle experiences and the traffic signal control strategy used 

for comparison is not reported. Lee et al. (2013) also propose a new ‘Connected 

Vehicle Intersection Control’ system that manipulates the speed of approaching 

vehicles to negotiate a safe path through the junction. The reduction in average 

stopped time (again, not the delay) is reported as 99% compared to generic AC 

with a 44% reduction in fuel consumption expected. Travel time, perhaps a truer 

indication of delay, was reduced by 33%. 

The promise of significant reductions in delay and stops is an appealing 

prospect but there are some practical issues with this method. Firstly, the 

requirement for 100% V2I coverage (and a high level of autonomy to accurately 

manipulate trajectories) is possibly unrealistic, at least in the short-medium 

term, given that there is likely to be resistance to a fully autonomous vehicle 

fleet. Secondly, even if it were possible to fully automate the vehicle fleet, 

cyclists and pedestrians will still need to be catered for in most cases.  

2.4.4 Discussion and research gap 

In each of the three research areas there have been interesting studies and 

promising algorithms developed. For trajectory optimization applications, the 

research has generally been undertaken with fixed, or near-fixed, traffic signal 

control. The use of fixed-time control raises the question of whether the 

benefits provided by GLOSA applications outweigh the performance difference 

between fixed-time and dynamic signal control. This is probably more the case 

at isolated junctions than in networks where signal timings are generally more 

constrained. The research also suggested that GLOSA applications are most 

effective in under-saturated traffic conditions and perform less well during 

congestion. 
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The traffic signal optimization application of V2I is effectively the alternative 

approach to finding performance gains at traffic signals. This approach allows 

traffic signals to operate dynamically with the performance gains being realised 

through improved prediction of queue lengths and vehicle arrival times. 

The study of Feng et al. (2015) is perhaps the most representative study as it 

builds on an existing vehicle actuation control strategy (COP) with a state 

estimation model for connected vehicles. Yang et al. (2016) also use a car-

following model to predict where conventional vehicles should be but compares 

to a less sophisticated vehicle actuation control strategy. However, although 

Yang et al. (2016) develop a method for switching between control methods, 

depending on V2I/autonomous vehicle penetration rate, there is still an 

acceptance that the strategies do not provide benefits until the V2I penetration 

rate is at least approximately 30%. That leaves an, as yet unknown, period of 

time that such strategies cannot realistically be implemented. 

There are two identified research gaps in this section. The first is that the 

reviewed literature focuses on developing control methods that solely use 

connected vehicle data. More than one method (Feng et al. (2015) and Yang et 

al. (2016)) use the connected vehicle data to infer the presence of unequipped 

vehicles but none attempt to use existing conventional detection to provide 

data to assist the algorithms. The second gap is that there is very little mention 

of V2I range and how the varying range of the wireless communication 

technology can affect the performance of the proposed control methods. 

The first objective for this research will be to develop a control method capable 

of incorporating a hybrid detection traffic model that can make use of 

conventional and connected vehicle data. The second objective will be to assess 

the impact of V2I range on the performance of a developed control method. 
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2.5 On-line traffic models 

On-line traffic models are used by traffic signal optimization strategies to 

construct a representation of traffic conditions on the approaches to a junction. 

The traffic model enables the optimizer to predict the arrival times of vehicles at 

the junction and to make decisions on when junction approaches should be 

served. 

There are various types of traffic model that have been developed for off-line 

and on-line traffic signal optimization applications. Macroscopic models tend to 

describe traffic behaviour at a high level of aggregation using properties such as 

traffic density, mean speed and flow. Models that are based on hydrodynamic 

theory (Lighthill and Whitham, 1955) treat traffic flow in a similar way to a fluid 

and tend to be used to represent traffic behaviour in large networks. 

Microscopic models describe the movement of individual vehicles through the 

network using various techniques but generally based on the interaction 

between a following and preceding vehicle to maintain a safe following 

distance. 

2.5.1 Vertical queue model 

The vertical queue model, a form of macroscopic model, is sometimes referred 

to as a point-queue model and provides a representation of vehicle progress 

along a link that does not consider interaction between vehicles. It is widely 

used in on-line traffic models and, in its simplest form, vehicles are modelled as 

travelling at a constant speed until they reach the stop line. At the stop line they 

join a ‘vertical’ queue if the signal state is red or the queue has not yet fully 

discharged. The MOVA control strategy uses a simple vertical queue model in 

the form of a shift register (Vincent and Peirce, 1988). In the shift register, the 
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link is split into multiple segments with the length of each segment based on 

the average free-flow speed of vehicles along the link and the model time-step.  

In the case of SCOOT, the detector state (i.e. whether or not a vehicle is present) 

is evaluated at quarter second intervals. The presence data is converted to a Link 

Profile Unit which is moved a segment closer to the stop line every modelled 

time-step. However, SCOOT also incorporates the Platoon Dispersion Model 

(PDM) developed in the off-line optimization tool TRANSYT. The PDM is a more 

sophisticated vertical queue model that takes into account the tendency for 

platoons of vehicles to become less defined as they travel along a link (Figure 

2.5). For network optimization this is an important feature as assuming no 

platoon dispersion could provide overly optimistic results. 

An advantage of the vertical queue model for on-line applications is that it 

requires very little computational power compared to more complex models. 

However, the modelled vertical queue has no physical dimensions and is 

therefore limited in its ability to fully capture the impact of queue spill-back at 

upstream junctions. As a consequence, this type of model performs reasonably 

Figure 2.5: Representation of platoon 

flow pattern (McCoy et al., 1983). 
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well in low to moderate congestion but is less successful in congested or over-

saturated conditions. 

2.5.2 Cell transmission model 

The cell transmission model (CTM), first presented by Daganzo (1994), is a 

macroscopic model that provides a convergent approximation to the Lighthill-

Whitham-Richards model. CTM is a spatial model that splits links into a number 

of cells based on the distance a typical vehicle will travel during one model 

time-step. Queuing is incorporated into CTM by applying the constraint of a 

maximum number of vehicles being present in a cell at a particular time (i.e. jam 

density) as well as the maximum number of vehicles that can flow into the cell in 

the next time-step (i.e. capacity). 

The effect of bottlenecks and queue spill-back at upstream junctions can be 

more accurately modelled by CTM than with a vertical queue model and it is 

therefore more useful for congested conditions. Attempts have been made to 

incorporate CTM into an on-line control strategy (Lo, 1999) but it is worth 

noting that Van den Berg et al. (2003) and Aboudolas et al. (2007) have 

questioned the applicability of CTM to real-time control applications given the 

computationally intensive nature of the model. 

For this research, however, the applicability of CTM on computational grounds is 

not the main consideration as it does depend to some extent on the 

optimization method being employed. For example, car-following models that 

are discussed in later in this section can be equally, if not more, computationally 

intensive. Instead, the general applicability of macroscopic models to the 

problem of minimizing vehicle stops or emissions is the focus. Neither vertical 

queue models nor the cell transmission model consider the interaction between 

individual vehicles. Consequently, the impact at a microscopic level of the 

interaction between vehicles with different acceleration characteristics cannot be 
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accurately evaluated. For this reason, it is not considered the optimal choice for 

this application where minimizing stops by vehicle type will be part of the 

investigations of the study. 

2.5.3 Store-and-forward model 

The store-and-forward model is another macroscopic model that simplifies the 

representation of the network compared to a cell transmission model on the 

basis that accurate representation of link-internal traffic flow has limited 

significance in an interrupted traffic flow network (i.e. networks with signal 

control). In the store-and-forward method, the model describes a continuous 

average outflow from each network link, as long as there is sufficient demand 

upstream and sufficient space downstream (Figure 2.6, where S is the saturation 

flow, G is the green time, C is the cycle-time and u is the modelled outflow). 

Store-and-forward methods, most notably the TUC strategy, have shown 

promise when applied to congested networks. As Aboudolas et al. (2009) note, 

the most suited control objective under congested traffic conditions is to 

minimize the risk of oversaturation and spill-back of link queues. However, even 

if that is achieved at an area level by applying a store-and-forward method, it 

could still be beneficial at a local level, if also attempting minimization of stops 

and/or emissions, to consider the microscopic interaction between vehicles. 

Figure 2.6: Simplified store-and-forward outflow model 

(Aboudolas et al., 2009). 
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2.5.4 Car-following model 

Car-following models address the primary issue raised with the previously 

discussed types of model by considering the interaction between vehicles at a 

microscopic level. There have been many car-following models developed but 

two of the most well-known models are implemented in the Aimsun (Gipps, 

1981) and PTV-Vissim (Wiedemann, 1974) micro-simulation software packages. 

The Gipps (1981) model is one of a class of collision avoidance car-following 

models. In this type of model, a following vehicle attempts to maintain a safe 

distance so as to avoid a collision. The Gipps (1981) formula uses two terms to 

describe constraints associated with the acceleration, maximum speed and 

deceleration of a following vehicle. These terms are used together to determine 

the speed of a following vehicle. 

The first term describes the following constraints: 

� A vehicle should not exceed the desired speed of its driver; and 

� The acceleration of a vehicle should first increase with speed as engine 

torque increases and then decrease to zero as the vehicle approaches 

the desired speed (Aghabayk et al., 2015). 

The second term ensures that a following vehicle maintains a safe distance to 

the preceding vehicle. That is, the following driver must be sure that their 

vehicle will stop safely if the leading vehicle brakes suddenly. 

The (Wiedemann, 1974) model is a psycho-physical car-following model based 

on drivers’ perception of the difference in speed between their vehicle and the 

preceding vehicle. The model assumes that a driver is in one of four states, 

either free driving, approaching, following or braking. The basic premise is that 

the driver of a faster vehicle begins to decelerate as they reach the point which 

they perceive the speed difference. However, because drivers cannot accurately 
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determine the exact speed of a preceding vehicle, the following vehicle will fall 

further behind the preceding vehicle until the point that the driver perceives the 

difference and begins to accelerate again. This results in a sub-conscious 

iterative process of acceleration and deceleration which results in oscillation of 

the gap between the vehicles. 

Figure 2.7 shows the typical behaviour of a vehicle as it approaches a preceding 

vehicle, first crossing the SDV threshold (the point at long distances where 

drivers perceive a speed difference when approaching a slower vehicle). At this 

point the driver decelerates but then decelerates more severely when reaching 

the CLDV threshold (the point at short distances where drivers perceive their 

speed is higher than the preceding vehicle). Finally, the vehicle enters the state 

of unconscious reaction where the gap between the vehicles oscillates between 

the SDV and OPDV (the point at which a driver perceives they are travelling at a 

lower speed than the preceding vehicle) thresholds (Aghabayk et al., 2013). 

Figure 2.7: Typical car-following behaviour of a vehicle (PTV-Vision, 

2011). 
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2.5.5 Discussion and research gap 

The traffic models reviewed in this section are a selection of the most widely 

used on-line traffic models. As discussed, the macroscopic models, although 

useful for larger network simulation, do not consider the interaction between 

individual vehicles. However, computationally, they are generally much more 

efficient than microscopic models and the vertical queue model has been used 

extensively in on-line control strategies. 

To model the more complex interaction of vehicles with different acceleration 

characteristics, the traffic model is required to model the behaviour of individual 

vehicles and that can be achieved by using a car-following model. It is 

acknowledged that this significantly increases the computation required to 

evaluate the model but when applied to an individual junction, and depending 

on the method used, it is possibly less significant. 

The identified research gap is the application of a traffic model, capable of 

considering the interaction between individual vehicles, to an on-line traffic 

signal optimizer. The objective for this research is to identify whether the use of 

a microscopic model can provide a benefit to the performance of an optimizer 

in terms of its ability to minimize stops. 

2.6 Summary 

The review of literature in each of the four areas has identified various research 

gaps, from which some clear objectives have been identified. The objectives of 

this research, based on those set out in Chapter 1, are summarized below: 

1) To investigate whether a single detector vehicle classification method can 

be developed, using only existing infrastructure, which is capable of 

explicitly classifying HGVs. Then, to assess whether the accuracy of such a 
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method is adequate to provide a performance benefit (in terms of 

minimizing delay and stops) by modifying an existing traffic signal 

optimization technique; 

2) To develop a control method capable of incorporating a hybrid detection 

traffic model that can simultaneously make use of conventional and 

connected vehicle (i.e. V2I) data in order to test whether benefits of V2I 

can be realised sooner than the, approximately, 30-50% penetration rate 

described in current literature; 

3) Extend the hybrid model to utilise V2I-based vehicle classification data 

and investigate the effect on optimizer performance; 

4) Apply a microscopic traffic model to an on-line responsive traffic signal 

optimizer to identify whether the more detailed representation of vehicle 

interaction can provide a benefit to the performance of an optimizer in 

terms of its ability to minimize stops; and finally 

5) Assess the impact of V2I range on the performance of the developed 

control method. 
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Chapter 3: Methodology 

Methodology 

3.1 Introduction 

This chapter describes the construction of a Simulated Environment that 

incorporates a state-of-the-art control algorithm for isolated junctions. The 

Simulated Environment is employed throughout subsequent chapters to test 

various modifications to, and ultimately a replacement for, the state-of-the-art 

control algorithm introduced in the following sections.  

The state-of-the-art traffic signal control algorithm for isolated junctions, 

described in this chapter, will be used as the benchmark in later comparisons. 

The Miller method has been selected for this purpose. The Miller method is in 

common use in the UK as a component of the popular MOVA strategy and 

incorporates a reasonably sophisticated optimizer, providing a more useful 

comparison than a generic VA strategy. 

Modifications are made to the Miller algorithm in this chapter to provide a 

representation of MOVA. The development of a MOVA representation was 

required, as opposed to simply using the MOVA software package, because the 

core components are modified in chapters 4, 5 and 6. MOVA is proprietary 

software and, consequently, those modifications would not have been possible. 

A 20 site MOVA trial demonstrated an average reduction in delay of ~13% 

compared to up-to-date System-D VA timings (Peirce and Webb, 1990). Any 

performance gains provided by enhancements or alternatives to the 

representation of MOVA presented in this chapter (proposed in chapters 5 and 

6) are further to this reduction. 
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Figure 3.1 provides a flow chart demonstrating the interaction between the 

various components of the MOVA representation and developments made in 

chapters 4, 5 and 6. The next section describes the first component of the 

MOVA representation, the Miller algorithm. 

Figure 3.1: A flow chart demonstrating the interaction between various elements of 

the thesis. 
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3.2 A state-of-the-art control algorithm 

Generic VA strategies are capable of providing a benefit over fixed-time plans at 

isolated intersections, particularly during under-saturated conditions. The 

efficiency of operation is improved by the ability to re-allocate available green 

time to alternative approaches by monitoring gaps in the traffic. System-D VA is 

an example of a VA strategy and is widely used in the UK. A typical detector 

layout is shown in Figure 3.2 and the basic logic is described in Figure 3.3. 

 

Figure 3.3: VA logic. 

Figure 3.2: VA detection layout. 



 62 

 

Each detector has an associated extension timer that is set to enable vehicles 

travelling at a reasonable speed to reach the downstream detector (or, in the 

case of the Z detector, the stop line). The green signal is terminated at the point 

all timers have expired on all approaches and there is demand for a conflicting 

stage. 

The performance of the System-D VA strategy relies on appropriate maximum 

green times being set by practitioners, ideally based on timings derived from a 

well validated network model. Fine adjustments can then be made on street, 

based on observations. However, in much the same way as for fixed-time plans, 

even a well implemented system requires regular reviews of the timings to 

minimize degradation of performance. 

Operationally, the System-D method is prone to extending the green whilst 

traffic is at a low intensity, even when there is a significant queue on an 

opposing approach. At junctions where multiple approach lanes receive green in 

the same stage (the vast majority of sites), the system requires simultaneous 

gaps in traffic across all the lanes for the green signal to be terminated. 

The System-D method does not incorporate a traffic model and has no concept 

of the intensity of traffic on the approaches to the junction. As a result, the 

system does not attempt to perform optimization in any way beyond the basic 

logic. Therefore, this thesis considers the more complex case with an internal 

traffic model and an optimization approach. 

3.2.1 The original Miller method 

For the purposes of this research, the Miller optimization approach (Miller, 1963) 

that underpins the MOVA control strategy is used as the basis for testing the 

effect of V2I and vehicle classification. This is due to the ease of which the 

control method can be replicated - ensuring that comparisons are not affected 
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by the optimization process itself – and that it is capable of systematic 

optimization, rather than simply a series of heuristically derived logical steps. 

The Miller method estimates the difference in delay to traffic at a junction over 

one cycle caused by changing the signals in 1 time-step (h), 2 time-steps (2h) 

etc compared to changing immediately with a suggested time-step of two 

seconds. The difference in delay is estimated for each time-step up to a horizon 

of approximately 8-10 seconds, depending on the upstream detector location. If 

changing the signals immediately causes the least delay then the signals will 

change, otherwise the current signal is extended and the process repeated at 

the next time-step until a pre-specified maximum green limit is reached (usually 

set for policy reasons). 

As described in the introduction section, the following modifications are made 

later in this chapter, in section 3.2.2 and section 3.2.3, to mimic the 

‘conventional’ approach as represented by MOVA: 

� Modification 1 – Identifies when the queue discharge rate drops 

significantly below the saturation flow rate (i.e. vehicles are travelling at 

an approximately constant speed) in order to begin the Miller 

optimization process; and 

� Modification 2 – Adds minimization of stops to the objective function. 

First, the original Miller method is introduced. The method works with a variable 

cycle; it ‘scans’ the junction in a pre-determined time interval of h seconds and 

determines whether to change to the next stage or to extend the green time by 

h seconds to the stage that is currently on green. The decision is made based on 

minimizing the total delay of traffic through the junction. The workings of the 

Miller method are illustrated in a simple two stage junction with a north-south, 
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east-west layout shown in Figure 3.4, although as Miller noted, the same 

argument can be applied to any type of junction. 

The calculations for delay are split into two parts. The first part calculates the 

saving in delay that would benefit traffic that is currently receiving a green 

signal if that green were to be extended h seconds (Miller suggested h = 2 

seconds). For example, if the N-S stage is receiving a green signal, the effect of 

the green signal continuing for a further h seconds is considered. Miller showed 

that the additional number of N-S vehicles which can cross the stop-line (or at 

least travel to a ‘point of no return’) during the h seconds green extension 

would be: 

 (3.1) 
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Figure 3.4: A two stage junction. 
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where: 

= Number of vehicles crossing the stop-line during the h second 

green extension from approach N. 

= Arrival rate of vehicles on approach N per h second green 

extension. 

 = Saturation flow rate of vehicles on approach N per h second 

green extension. 

These vehicles will no longer have to wait for the next green, and save a total 

wait time which includes the amber period, red period, and the lost time due to 

acceleration at the start of the next green. Thus the total saving of delay to the 

N-S traffic, if the green is extended by h seconds, would be: 

(3.2) 

where: 

= Amber period (seconds). 

= Length of next red phase for the N and S approaches (seconds). 

 = Start-up lost time at the beginning of the next green signal for 

the N and S approaches due to acceleration (seconds). This 

includes the red/amber period. 

For each vehicle that crosses the stop-line during the green extension h, the 

following vehicle moves up by one in the queue and is therefore closer to 

leaving during the next green signal than if the green was not extended. 

However, by extending the current green signal, more vehicles will arrive before 

the next green signal and be subject to delay in addition to what would 

otherwise have been the case. The second term(s) of Equation 3.1 represent the 

difference between the rate at which vehicles are leaving and arriving on the link 

during the green extension period. 
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Consider the values of N from Equation 3.1 set out in the following table for a 

green extension on a single approach lane of h =5 seconds and saturation flow 

s = 2000 veh/h: 

Table 3.1: Values of N from Equation 3.1 for a single approach lane. 

 δ=1 δ=2 δ=3 δ=4 

q = 360 veh/h  1 2 3 4 

q = 720 veh/h 0 2 3 5 

q = 1440 veh/h -4 0 4 7 

The values in the table are somewhat contrived and are rounded to integer 

values for the purposes of clarity. However, it can be seen that where the 

predicted demand flow in the considered extension period is less than the 

number of vehicles predicted to cross the stop line, Equation 3.1 will result in a 

positive value (and thus a delay saving). Conversely, where the predicted 

demand flow is greater than the number of vehicles predicted to cross the stop 

line, Equation 3.1 will result in a negative value and thus cause additional delay. 

Where the values are equal, there is no delay saving by extending the green 

signal for that value of h. 

The Miller algorithm utilises a simple vertical queue model, although it is 

described by Vincent and Peirce (1988) as a shift register. Vehicles are ‘shifted’ 

along the link in cells, the number of which is defined by the calibrated free-flow 

speed and the model time-step (Figure 3.5). If the signal state is red then, once 

Figure 3.5: Schematic of a vertical queue model. 
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vehicles have travelled the full length of the link, vehicles are added to a vertical 

queue (nw in Equation 3.3). The length of the next red phase, r, for this thesis has 

been estimated by considering the discharge time required for any currently 

queued vehicles and any additional vehicles expected to arrive before the initial 

queue has finished discharging. The length of the red phase could alternatively 

be estimated using an estimator such as a moving average or exponential 

smoothing based on the length of the red phase in previous cycles.  

The second step of the Miller calculation is to determine the delay caused to the 

vehicles waiting at the junction on the east and west approaches by extending 

the green for north-south traffic. Miller’s second equation estimates the time 

required to discharge the initial queue on approach W as well as the additional 

queue formed during that process. The same process is also applied to 

approach E. Equation 3.3 calculates the estimated time to discharge traffic on 

the opposing approach W if the decision to change the signals is taken in the 

next time-step (of 2 seconds in this case). The value of k is the smallest integer 

such that: 

  (3.3) 

where: 

  = Number of vehicles already waiting on approach W. 

 = Number of units of h seconds of time until the queue on 

approach W is discharged. 

 = Lost time on approach W before saturation flow is achieved 

(seconds). 

Then the total delay to the E-W traffic caused by extending N-S green time by h 

seconds is: 
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 (3.4) 

The value of k will almost certainly differ between approaches. However, 

vehicles arriving after a queue has discharged will not experience delay and so 

only the vehicles in the initial queue and those added to the queue during the 

period of queue discharge are considered in Equation 3.4. 

Equation 3.4 is then subtracted from Equation 3.2 to provide a quantity defined 

by Miller as the ‘test quantity T’; the difference between delay saved and delay 

caused by extending the green. A negative value of T implies that extending the 

green is not beneficial and that the signals should change immediately. 

However, values of T for green extensions of 2h, 3h etc must also be calculated 

as it is possible that an extension of the current stage beyond the next time-

step may cause less delay. The value of T is calculated for each time-step up to 

the upstream detector location (usually 8-10 seconds from the stop-line). 

A junction with multiple stages would operate in the same manner except that 

for each additional stage, a further instance of Equation 3.4 would be calculated 

for the relevant approach lanes, with the lost time lw, in Equation 3.3 modified 

for each stage to account for the length of time required to discharge the traffic 

in the stages that precede it. 

3.2.1.1 Constant speed assumption 

The Miller method, using conventional detection, relies on vehicles travelling at 

an approximately constant speed to be valid due to the absence of live, vehicle 

specific, speed data. 

Consider Equation 3.1, used to calculate the number of vehicles that will 

experience a saving in delay if the green is extended by a time-step h. At the 

beginning of the green, in most cycles, vehicles on the approach will be 

stationary and so it could be concluded that no vehicles will cross the stop-line 
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during any extension of the green signal (i.e. no benefit in extending the green 

signal). If that were the case then, with no intervention, the Miller algorithm 

would simply switch the signals at the end of the legal minimum green time to 

clear any queue on opposing approaches. 

Additionally, if Equation 3.1 was employed at the beginning of the green signal 

then, even if the situation described above was avoided, some vehicles will be 

accelerating and, potentially, others decelerating until any queue has fully 

discharged. In this case, the predicted trajectory of the vehicles using the 

vertical queue model described in Figure 3.5 is likely to be inaccurate, leading to 

sub-optimal decisions on green extensions. As such it is necessary to first ensure 

vehicles are travelling at an approximately constant speed by clearing any 

queue on the link before entering the delay minimising process. Section 3.2.2 

describes the modification made to the original Miller algorithm to address this 

problem. 

3.2.1.2 Impact of vehicle stops 

The delay saving calculated in Equation 3.2 considers the delay that would have 

been incurred by a vehicle if it had been stopped. The delay includes the amber 

period, red time and the lost time at the start of the following green due to 

acceleration. However, it is unclear in Miller (1963) whether the lost time value in 

Equation 3.2 incorporates the full delay incurred by a vehicle stop or whether it 

only includes the time required for the vehicle to cross the stop-line. If it is the 

latter then there is an additional delay saving for the vehicle if it does not stop 

that is not accounted for by Miller (Figure 3.6). 
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It is also the case that the Miller approach uses the single objective function of 

minimizing delay. The single objective function is a limitation if, for example, a 

practitioner wishes to place a greater emphasis on, say, air quality. In that case it 

may be beneficial to reduce the number of stops at the expense of a small 

increase in delay. Section 3.2.3 explains how vehicle stops have been 

incorporated into the Miller method to provide a combined objective function 

of vehicle delay and stops. 

3.2.2 Modification 1: Queue discharge 

Identifying the moment at which a queue has cleared with conventional 

detection is not completely straightforward. For example, a gap between 

vehicles longer than the average headway for discharging traffic could indicate 

that the queue has finished discharging but it could also be caused by a vehicle 

with slow acceleration or a lack of driver attention. The MOVA software 

incorporates a ‘critical gap’ function (Vincent and Peirce (1988) suggest a gap of 

approximately 3.5 seconds) using a supplementary ‘X’ detector sited 

approximately 3.5 seconds from the stop-line (Crabtree, M.R., 2011). 

Figure 3.6: A space-time diagram showing delay caused by a vehicle stop. 
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The critical gap is measured from the moment a vehicle leaves the X detector 

and is reset each time a new vehicle is detected until the pre-specified gap value 

is reached. Consider the example of a queue that extends to the X detector but 

with vehicles not positioned on the X detector itself (Figure 3.7). If the critical 

gap is timed from the start of the green signal then vehicles in the queue at the 

point of the X detector will not have started moving by the time the critical gap 

value has been reached. In that situation, the end of the queue discharging will 

have been falsely identified. 

To overcome this issue, a variable minimum green is used in MOVA to reduce 

instances of spurious gaps in traffic, early in the green, being falsely identified as 

the end of a queue (Crabtree, M.R. et al., 2012). A variable minimum green value 

is preferred to a fixed minimum green as the number of vehicles between the 

stop-line and X detector can vary from one cycle to the next. The number of 

vehicles depends on the length of the vehicles and the headway between 

vehicles at standstill. 

MOVA is proprietary software but for this work a variable minimum green time 

has been calculated based on the average headway of the vehicles that have 

crossed the X detector during the red signal as shown in Equation 3.5. The 

search for the critical gap does not begin until the variable minimum green time 

has elapsed.  

 (3.5) 
min

redg l
s

θ
θ

δ= +

Figure 3.7: Example of queued vehicle behaviour. 



 72 

 

where: 

= Minimum green (seconds). 

= Number of vehicles to cross ‘X’ detector during red.  

= Saturation flow rate on any approach θ.  

 = Lost time due to acceleration on any approach θ. 

Miller (1963) does not consider the case of a queue extending beyond the 

upstream detector. However, it is clear that the estimation of queue discharge 

time could be significantly underestimated if vehicles beyond the upstream 

detector are ignored. A simple queue estimation algorithm has therefore been 

incorporated for this thesis as it is assumed that MOVA must also incorporate 

one. Once a queue has reached the detector furthest upstream of the stop line 

there is no longer any information provided to the model regarding vehicle 

arrivals. The queue length is approximated, for this thesis, by increasing the 

length of the queue each model time step by the average arrival rate (veh/s) 

multiplied by the model time step as shown in Equation 3.6. 

 (3.6) 

where: 

= Length of the queue at time t (veh). 

 = Model time step (seconds). 

 = Average arrival rate (veh/s). 
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3.2.3 Modification 2: Stop penalty 

In addition to ensuring the full delay caused by a vehicle stop is accounted for, 

the introduction of a value of delay per vehicle stop enables minimization of 

stops to be added to the objective function. 

The MOVA control strategy makes use of fixed value ‘stop penalties’, and, 

although it is a proprietary software it is known that the weighted stops are 

summed with the net delay (Vincent and Peirce, 1988). In order to provide a 

more accurate representation of MOVA, it is proposed that the stop penalty is 

incorporated into Miller’s model by modifying Equation 3.2 as shown below: 

  (3.7) 

where: 

 = Stop penalty value (seconds). 

 = Total delay and weighted stops saving for vehicles on approaches 

N and S (seconds). 

The stop penalty concept will be varied in later chapters as it is useful as a 

means to provide higher penalties (and therefore increased weighting) for 

HGVs. 

3.3 Construction of the Simulated Environment 

The following sections describe the construction of the Simulated Environment 

used throughout this thesis, including the software architecture of a signal 

controller (see Appendix D) developed for this research to enable testing of the 

various developed algorithms. The chapter also details the scenarios tested and 

the evaluation criteria used to determine the performance of the algorithms in 

Chapter 5 and Chapter 6.  
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A micro-simulation modelling environment (PTV-Vissim) was used to mimic real 

world conventional detection and V2I technology. PTV-Vissim is an example of a 

micro-simulation modelling tool that employs a car-following and lane 

changing model to simulate traffic behaviour at an individual vehicle level. The 

car-following model simulates the interaction between vehicles travelling on the 

road network by providing a representation of the behaviour of a following 

vehicle in response to the trajectory of a leading vehicle. 

The PTV-Vissim software package was chosen for this thesis as it enables 

external signal controller modules to be developed that can integrate with the 

model environment to receive data from simulated conventional vehicle 

detectors and to control the state of the traffic signals. The software also 

provides the option to write live vehicle record data (i.e. position, speed, 

acceleration, unique identifier) to a database at a chosen frequency. This can be 

read by external software and used to represent the data that could be received 

through V2I communication.  

As vehicles enter the network they are randomly assigned parameter values for 

performance and behaviour (i.e. desired speed, acceleration, deceleration, 

desired headway) from a pre-defined user selected distribution. This 

methodology introduces stochasticity to the car-following model, enabling it to 

provide a representation of real world conditions. As a consequence of the 

stochastic nature of micro-simulation, it is necessary to run each model multiple 

times using various random seeds that produce a different set of parameter 

values for each vehicle entering the network. The results of the multiple runs are 

then averaged to provide a performance indicator. 

A schematic of the micro-simulation model configured is shown in Figure 3.8 for 

the single intersection, the layout of which is based on the original paper by 

Miller (1963). In the conventional model, detectors were placed at 50 metres 
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and 150 metres from the signal stop-lines on each approach. In the hybrid V2I 

model it was assumed that vehicles could be detected from approximately the 

same point as the conventional upstream detector. In reality, V2I information 

may be available further upstream (up to 1000 metres) by using Dedicated 

Short-Range Communications technology (DSRC) or further using 3G/4G/5G 

(albeit at a reduced frequency) but that was not initially modelled so as to 

provide a fair comparison between approaches. 

Vehicle mix and desired speed distributions for each vehicle type were input 

into Vissim using three vehicle ‘classes’ – cars/vans, rigid HGVs and articulated 

HGVs – based on Automatic Traffic Count (ATC) data provided by Rotherham 

Metropolitan Borough Council. The observed vehicle mix is replicated across all 

approaches of each model and the total demand on each approach is the same. 

The traffic signals operate a simple two stage, north-south followed by east-

west, strategy. The interstage value (5 seconds for both stages) incorporates the 

Figure 3.8: The simulated layout for the Miller 

method - conventional and V2I detection overlaid. 
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leaving amber of the terminating phase and starting red/amber of the next 

phase. 

Table 3.2: Distribution of vehicle characteristics (min and max values) 

 Car/Van HGV 

 Min Max Min Max 

Length (m) 4.1 8.8 10.2 18.5 

Acceleration (m/s2)  3.3  1.8 

Desired Deceleration (m/s2) -3  -1.3  

In all the various scenarios tested for this research the results have been 

averaged across 10 different random seeds (consistent between scenarios). The 

number of random seeds was chosen as a value that provided statistical 

significance to the results whilst allowing the required simulations to be 

completed within the timescales of the study. The results include confidence 

intervals to demonstrate the statistical significance. The simulation period for 

each scenario is one hour. 

The proportion of the sum of HGVs in the base scenario is 5% (4% rigid HGVs 

and 1% articulated HGVs), as determined from the ATC data. From herein the 

term HGV is used to define a combination of rigid and articulated HGVs with a 

4:1 ratio. Table 3.2 shows the vehicle length distribution and values for 

acceleration for each vehicle class used in the simulations. Desired vehicle speed 

distributions, shown in Figure 3.9, were also derived from ATC data using speed 

data from time periods with free flowing traffic. 

It should be noted that, although the data collected from the ATC site provided 

a continuous distribution of vehicle lengths, this was approximated in Vissim 

using a distribution of the closest available vehicle model types. This resulted in 

a small gap between car/van and HGV vehicle lengths which may affect the 

results described in Chapter 4 in a real-world application as, in reality, there may 
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be a less defined grouping of vehicle lengths. However, the percentage of 

vehicle lengths in the crossover region, as observed from ATC data, is small. 

In the base scenario the demand on each approach to the junction is 600 veh/h 

with vehicles entering the network according to a Poisson distribution. The exact 

nature of the implementation is unknown as it is not discussed in the Vissim 

documentation. Two further scenarios have been assessed: 

� Scenario 1: The proportion of HGVs is varied whilst the demand is fixed; 

and 

� Scenario 2: Demand is varied whilst the proportion of HGVs is fixed. 

The degree of saturation of the junction for a given demand varies according to 

the vehicle mix. It has been assumed that the average number of stops provides 

a good indication of saturation and that a value below 0.9 stops per vehicle 

indicates that the junction is under-saturated. Above that value the junction is 

increasingly likely to be over-saturated during at least some of the simulation 

period and the Miller algorithm no longer valid. All reported results are for 

under-saturated conditions. 

Figure 3.9: Cumulative speed distributions derived from ATC data. 
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The delay evaluation tool available in Vissim was used to output the average 

total delay per vehicle. This is computed by subtracting the ‘theoretical’ travel 

time for each vehicle (i.e. travelling at its desired speed with no signals) from the 

actual travel time. Travel time markers were placed on the entry to the network 

and downstream of the signals. The delay evaluation tool also records the 

number of stops for each vehicle. 

3.3.1 Integrating the Signal Controller with micro-simulation 

To control the traffic signals in the micro-simulation model it was necessary to 

develop an external traffic signal controller module (using Visual Basic .NET) that 

receives detector data from the model every time-step (10Hz) and responds 

with the relevant signal state information. 

Figure 3.10 shows how the micro-simulation model, representing the ‘real-

world’ situation, outputs detector data, either in the form of conventional 

presence data or as V2I based data (or both) to an internal traffic model. The 

internal traffic model is then used by the optimizer, within the Signal Controller. 

The Signal Controller manages several tasks. First, at the start of each green, the 

queue discharge process – for which the method varies depending on the 

Figure 3.10: Traffic signal controller schematic – V2I and conventional. 
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internal traffic model used (e.g. the vertical queue model in the MOVA 

representation) – is undertaken. When queues are deemed to have discharged 

on all links currently at green, the chosen optimization method is employed to 

make decisions on when to move to the next stage. At this point the Signal 

Controller assumes responsibility for managing the inter-stage process and 

ensuring all safety timings are adhered to. When V2I data is introduced into the 

MOVA representation, the vehicle record data output from Vissim into a ‘live’ 

database replaces the conventional detection method. The addition of accurate 

vehicle position data from the database enables the internal traffic model to 

become spatial thus allowing alternative methods of identifying queue 

discharge to be employed. Figure 3.10 provides a schematic to demonstrate the 

difference between how conventional and V2I data is used. 

3.3.1.1 Implementation of V2I 

Implementation of a V2I proxy required modification to some aspects of the 

Signal Controller model. Vehicle record data was written to a database from 

Vissim at a rate of 1Hz. In reality, V2I information may be available at a higher 

frequency but, given that information will be received from vehicles at different 

times and from different sources, it would make sense to collate the data into a 

database, filter it, and populate the optimizer traffic model. Using that logic it is 

likely that the processed information would be available at a similar frequency 

to that used in this research. 

The external Signal Controller module was modified to enable the vehicle record 

data to be filtered every second from the intermediary database and the internal 

model updated accordingly. It has been assumed for this work that V2I is able 

to provide speed, position and vehicle type information. The information in the 

internal traffic model is updated every second from the database but the Signal 

Controller operates at 10Hz. For intermediary time-steps (i.e. time-steps 
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between database updates) the position of each vehicle is predicted based on 

the speed/position from previous updates. The exact nature of the prediction 

depends on the internal traffic model employed (e.g. vertical queue model, car-

following model). 

The proportion of V2I equipped vehicles within a simulation period is 

determined by the Signal Controller model by applying a random number 

generator when newly detected vehicles are entered into the internal traffic 

model. For example, given a random number range between 1 and 100 and a 

V2I penetration rate target of 20%, if the generated random number falls below 

20 the vehicle will be V2I equipped. The vehicle remains V2I equipped (or 

otherwise) for all future time-steps. 

Vehicles are equipped with V2I on a random basis, described above, that is 

independent of vehicle class. In reality, it is possible (although not certain) that 

some vehicle classes may become equipped more quickly than others. For 

example, if haulage companies found value in equipping vehicles with V2I, it 

may be that HGVs are equipped more quickly than other vehicles. It could 

potentially be the case that potential benefits to HGVs of V2I technology are 

realised more quickly than for the rest of the vehicle fleet. This could be tested 

in future research.   
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Applying V2I to some but not all of the vehicles entering the internal traffic 

model provided some challenges. The intermediary database is populated by 

Vissim with the position, speed, acceleration, time and Vissim vehicle number 

information for every vehicle travelling through the junction, regardless of 

whether it is equipped with V2I or not as this decision is made within the Signal 

Controller. In reality, a database collecting V2I data would only present V2I 
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equipped vehicles to the Signal Controller, thus removing the need for some of 

the logic used for this thesis (shown in Figure 3.11 as a dashed outline). 

When the modelled V2I penetration rate is less than 100%, some vehicles will 

not be V2I equipped and they are instead detected through conventional 

detection only. However, even those vehicles that are detected conventionally 

must be matched with the relevant vehicle in the Vissim ‘V2I’ database to 

Figure 3.11: Adding new vehicles to the internal traffic model. 
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prevent duplicate vehicles being entered into the model. The logic for adding 

new vehicles to the internal traffic model from either the conventional detectors 

or from the V2I database is shown in Figure 3.11. 

The process of ‘matching’ vehicles detected conventionally and using V2I 

assumes that the range of V2I is at least that of the conventional detection. In 

doing so, vehicles can be matched at the point a conventional vehicle leaves the 

detector thus reducing the likelihood of internal model error. 

3.3.2 Turning movements 

The simulation environment described above enables the performance of each 

algorithm to be compared in typical conditions. However, it does not include 

any turning movements, in particular opposed turns. It has been assumed that 

unopposed left turning vehicles would have only a minor impact on 

performance for the algorithms described in Chapter 5 and Chapter 6 compared 

to opposed right turning vehicles. An additional simulation environment (Figure 

3.12) was therefore developed to enable a small storage area in the centre of 

the junction for opposed right turning vehicles. Results from testing in this 

environment are shown separately in Chapter 5. 

In general, the geometry of traffic signal controlled junctions is designed to 

accommodate waiting vehicles in the safest possible manner. In most cases, 

vehicles making turning movements across opposing traffic are provided with 

dedicated road space (i.e. a flared approach lane). TD 50/04 (Highways Agency, 

2004) states that “the storage length of the left and right turn entry lanes should 

be designed to meet the capacity requirements of the junction” and that “to avoid 

turning traffic blocking the adjacent lane it should be of sufficient length to 

accommodate the longest queue of stopped traffic”. However, in some locations 

there may be insufficient space to provide adequate storage capacity, or the 

volume of turning traffic may not be deemed sufficient to require a dedicated 
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lane. At junctions where such conditions exist, there is a risk that vehicles giving 

way to oncoming traffic may impede other vehicles. 

In the modified environment the same conditions have been created for each 

approach in terms of turning proportions and the storage capacity within the 

junction. Testing in this environment has been undertaken using 600 veh/h 

demand on all approaches with an increasing proportion of right turners up to a 

proportion of 15%. The evaluation criteria used for the modified layout in 

Chapter 5 is derived in an identical manner to the initial testing. 

3.3.3 Evaluation criteria 

A performance indicator (PI) has been calculated for each scenario to take into 

account delay and stops. The PI is derived by summing the Vissim model 

outputs of total delay with a factored number of total stops for each vehicle 

type (also output from Vissim). The factor for stops, or ‘stops factor’ for the 

purposes of this thesis, is an approximate value in delay of one vehicle stop. 

Figure 3.12: Modified layout for turning movements. 
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The stops factor is used to determine the influence of stops in the PI calculation 

for evaluation purposes and remains constant to provide consistency between 

results. Robertson et al. (1980) discusses the merits of including vehicle stops in 

the TRANSYT PI and proposes a value of 20 seconds, the value used here, to 

provide a suitable balance between stops and delay that minimises fuel 

consumption. The result for each vehicle type is then weighted by its associated 

PCU value before being summed with the other vehicle types into a final PI 

value. 

 (3.8) 

where: 

= Total delay (seconds) for vehicle type α  

= Total number of vehicles 

= PCU value for vehicle type α 

= Total stops for vehicle type α 

 = Set of vehicle types 

The stops factor of 20 seconds, used within the PI calculation, assigns a value of 

delay to each vehicle stop recorded by Vissim to enable stops to be considered 

in the PI. The stops factor remains constant whilst the PCU value provides the 

weighting per vehicle type. For evaluation purposes the stops factor provides a 

means for assessing the impact of a particular optimization method on a 

combination of delay and stops. The value must remain constant for all 

scenarios and methods to provide a fair comparison. 
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The value used has been chosen at 20 seconds based on the figure proposed by 

Robertson et al. (1980) to provide a balance between stops and delay that 

minimizes fuel consumption. Various alternative values have been assessed 

during the course of this study and have been shown not to significantly affect 

the outcomes for the scenarios tested. 

The PI is also weighted by PCU value of each vehicle type to ensure that the size 

of a vehicle is factored into the overall performance (i.e. a stop is less desirable 

for a vehicle with inferior acceleration performance which is likely to correlate 

with vehicle size to some extent). In reality, the impact on emissions/fuel 

consumption etc is unlikely to be exactly proportional to the PCU factor. 

However, since the exact figures are unknown, using the PCU value would seem 

to provide a reasonable representation of the difference. 

To investigate the sensitivity of this parameter, some alternative methods of 

evaluating across different vehicle types have been tested on a sample of results 

during the course of this study, particularly in the process of deriving optimal 

stop penalty values for the modified Miller method. The ratio of weighting for 

the evaluation criteria using the various methods is shown below: 

Table 3.3: Comparative weighting per vehicle type in evaluation criteria using alternative 

methods. 

 Car/Van Rigid HGV Articulated 

HGV 

Equal weighting 1.0 1.0 1.0 

PCU value (used) 1.0 1.8 3.3 

Optimal stop penalty value 1.0 2.5 4.0 

In Table 3.3, the alternative methods of evaluation used are: 
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� Applying an equal weighting to all vehicle types; and 

� Applying the optimal stop penalty values for each vehicle type as 

calculated in Chapter 5. 

The optimal stop penalty values for the sample of results tested were shown not 

to deviate from the values calculated using the PCU value method, even using a 

constant weighting, although the difference between the performance 

indicators decreased. 

The stops factor differs from the stop penalty value, discussed in the 

introduction of Modification 2 earlier in this chapter. Part of the role of the stop 

penalty is to enable the delay that is expected to be experienced by a particular 

vehicle as a result of a stop to be fully accounted for during the optimization 

process. As a result, the stop penalty, in effect, partly contributes to the delay 

minimizing objective function. The optimal stop penalty value changes 

depending on average speed and proportion of HGV (and later individual 

vehicle type). 

3.4 Conclusions 

At the beginning of this chapter it was established that a benchmark was 

required to which later work could be compared. The Miller optimization 

method was chosen as a suitable strategy because it is relatively straightforward 

to implement and it is capable of systematic optimization unlike many generic 

VA strategies. 

The methodology of the Miller method, that underpins the popular MOVA 

control strategy, has been explained in detail. Some modifications have 

subsequently been made to ensure that the benchmark used in comparisons 
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adequately reflects the performance that can be achieved by a ‘state-of-the-art’ 

control system, in this case MOVA. 

A 20 site MOVA trial demonstrated an average reduction in delay of ~13% 

compared to up-to-date System-D VA timings, a generic VA strategy used in 

the UK. Any performance gains provided by enhancements or alternatives to the 

representation of MOVA presented in this chapter (proposed in chapters 5 and 

6) are further to this reduction. 

The construction of a Simulated Environment has then been described including 

the development of an external Signal Controller model that enables different 

traffic models and optimization methods to be tested. Finally, the evaluation 

criteria used in chapters 4, 5 and 6 has been explained. 
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Chapter 4: Single Detector Vehicle Classification 

Single detector vehicle classification 

4.1 Introduction 

This chapter describes the development of a speed estimation algorithm for the 

purposes of instantaneous length based classification of vehicles leaving a 

single detector. The proposed application of the algorithm is to utilise existing 

detection at traffic signal controlled junctions, commonly a single upstream 

detector on each approach lane, to provide reliable vehicle classification data for 

optimization strategies. The chapter investigates whether, through the use of 

various filtering processes, a technique primarily employed for freeway 

applications can provide speed estimates that are accurate enough to classify 

vehicles for use in a traffic signal control strategy. 

There are two main approaches to classifying vehicles from a single detector. 

The first approach is to use the vehicle profile produced by a vehicle chassis 

travelling through the electro-magnetic field created by an inductive loop 

detector (Figure 2.1). This shall be referred to in this chapter as the ‘profile’ 

method. The distinctive profile created by different types of chassis can be 

matched to a database of known vehicle chassis, thus enabling vehicles to be 

classified. The profile method is capable of providing a good performance if 

calibrated effectively but it requires specialist calibration and, in the context of a 

traffic signal application, additional roadside equipment compared to a 

standard traffic signal installation. 

The second approach is to make use of the processed presence output from the 

detector to estimate vehicle speed, utilising the relationship between speed, 

flow and occupancy (described in Chapter 2). This shall be referred to as the 
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‘flow-occupancy’ method. The flow-occupancy method requires no additional 

roadside equipment compared to a standard traffic signal installation as the 

processed presence output is already passed to the Signal Controller for use in 

either generic VA strategies or adaptive control algorithms such as MOVA and 

SCOOT. 

The flow-occupancy method to vehicle classification from a single detector is 

the focus of this chapter as it is important to first understand the extent of what 

could be achieved from the use of existing infrastructure. This will provide a 

useful benchmark from which to compare the potential benefit of V2I 

technology. Accordingly, this chapter investigates the accuracy that can be 

achieved using two alternative methods of flow-occupancy type classification. 

� Method 1 – Estimate vehicle speed over the detector independently of 

traffic signal control; and 

� Method 2 – Use the internal queue model of a traffic signal control 

optimizer to provide additional information to the algorithm from 

downstream of the detector. 

As discussed in Chapter 2, the flow-occupancy approach to single detector 

classification has predominantly been used in freeway applications where the 

variation in speed over a detector is usually relatively small. In that context, the 

classification of vehicles can be performed using large sample sizes and/or over 

large time intervals as assumptions regarding (approximately) constant vehicle 

speed over a detector hold true for a large proportion of the time. However, in 

an urban context, particularly in close proximity to traffic signal controlled 

junctions, the speed of vehicles over a detector can vary dramatically from on 

vehicle to the next as a queue builds at a red signal and then discharges during 

the following green. The algorithms developed in this chapter look to address 
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the issues associated with estimating speed (and subsequently classifying 

vehicles) from a single detector in an urban setting. 

First, the methodology used to develop, test and evaluate both algorithms is 

described in section 4.2. Next, some initial investigation into vehicle sample 

sizes is undertaken and some potential sources of error in vehicle presence data 

explained. Finally, the development of each algorithm is detailed, the results 

compared and conclusions drawn. 

4.2 Methodology for testing 

In order to develop a speed estimation algorithm, the Simulated Environment 

described in Chapter 3 has been utilised to provide the relevant data from 

conventional detectors. The Signal Controller software module is modified to 

enable it to record the detector presence data from the detectors furthest from 

the stop line on each approach (Figure 4.1). 

To evaluate the accuracy of the developed algorithms, the vehicle record feature 

in Vissim is used to write the actual vehicle speed and type information (as 

configured in the Simulated Environment) to a database at a 1Hz frequency. The 

database is subsequently filtered off-line to provide speed and type information 

for each vehicle at the location of the conventional detection. Figure 4.2 shows 

the methodology applied to provide a platform for developing and evaluating 

the vehicle classification algorithms. The algorithm development in this chapter 

Figure 4.1: Schematic of initial model setup. 
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has been undertaken off-line using a spread-sheet tool but the preferred 

algorithm is subsequently incorporated into the Signal Controller in Chapter 5. 

The simulations have been run with a resolution of 10 time steps per simulation 

second. The vehicle presence data from each detector has been recorded at 4Hz 

(to mimic the data available to SCOOT) and 10Hz by the Signal Controller. The 

4Hz communication rate, used to transmit processed vehicle presence data back 

from the roadside to a central SCOOT system, has been included in the testing 

as it is an existing feature of many UTC systems. In fact, the majority of UTC 

systems now operate with IP based communications but the software still uses 

legacy protocols limiting data transfer to second-by-second communication of 

bits (with the exception of 4Hz SCOOT data). Thus, assessing the performance of 

each algorithm when using data at 4Hz will determine whether the performance 

significantly degrades compared to 10Hz. If not, the developed algorithms could 

be deployed on centralised traffic signal control systems using existing 

infrastructure with very minor software modifications. 

Figure 4.2: Schematic showing the testing and 

evaluation process. 
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As shown in Figure 4.2, the Signal Controller software module is used to process 

the conventional detector presence data. The presence data is output in the 

form of vehicle ‘on’ times (herein referred to as τ) and is written to a file. The file 

is subsequently imported into a spread-sheet to enable development of the 

algorithms. 

Early testing for this work showed that using fixed sample intervals produced a 

higher error rate than using a fixed sample size with a varying time interval. 

However, sample size and the latency of availability of the classification data are 

more significant factors in the development of algorithms for this application 

and are discussed in section 4.3. 

4.2.1 Classification by length 

Classification of the vehicles is performed simply by subtracting the effective 

length of the detector from the product of the final speed estimate and vehicle 

τ. As described in section 2.2.2, the effective length of the detector is not known 

precisely and will vary from site to site depending on various factors such as 

how a detector is installed. The ‘average’ effective length could be calibrated by 

site. However, the effective length will also change slightly depending on the 

shape and size of the vehicle chassis. 

The vehicle is then classified by defining length thresholds between the desired 

vehicle classes (Table 4.1). As described previously, the Simulation Environment 

consists of three vehicle classes split into car/van, rigid HGV and articulated 

HGV. The algorithm has been tested with a three class bin for consistency with 

the vehicle classes configured in the Simulated Environment, as described in the 

previous chapter. However, a two class bin has also been tested to determine 

whether a reduced number of vehicle class bins can improve the performance of 

the algorithms. 
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Table 4.1: Length thresholds for two and three vehicle class bins. 

 2 Class (m) 3 Class (m) 

Car/Van l<=8.8 l<=8.8 

Rigid HGV l>8.8 8.8<l<=12 

Articulated HGV as above l>12 

4.2.2 Evaluation criteria 

The performance of each algorithm has been evaluated using three separate 

indicators. The first two indicators evaluate the performance of the algorithm in 

classifying the vehicles into either two or three class bins. The third indicator 

evaluates the performance when taking into account the application of the 

algorithm to the traffic signal optimization process described in Chapter 5. 

When classifying into three bins, referred to as ‘3 Class’ in the results section, 

the evaluation criterion is straightforward. The accuracy of the algorithm is 

simply the sum of correctly classified vehicles, when compared to the Vissim 

vehicle record data, divided by the total number of vehicles in the vehicle record 

sample: 

 (4.1) 

where: 

 = Correctly classified as a short vehicle (i.e. car/van). 

 = Correctly classified as rigid HGV. 

 = Correctly classified as an articulated HGV. 

 = Any vehicle present in the Vissim vehicle record data. 

Classification into two bins, referred to as ‘2 Class’ in the results section, requires 

that a decision is made on how to define the two classes. Intuitively it would 
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make sense to group rigid and articulated HGVs into a single HGV class, hence 

the length thresholds set in Table 4.1. In this case, the requirement for the 

algorithm to correctly determine the type of HGV is removed. The evaluation 

criterion is then: 

 (4.2) 

where: 

 = Correctly classified as an HGV, either rigid or articulated. 

4.3 Initial Consideration 

As discussed previously, the predominant use of the flow-occupancy method for 

classifying vehicles from a single detector is in freeway applications. In a freeway 

setting, the vehicle sample sizes used to estimate vehicle speed can be relatively 

large (33 in the case of Coifman et al. (2003)) as, for the most part, the speed is 

not expected to vary rapidly over the detector from one vehicle to the next. 

Consequently, the speed estimation tends to follow longer term trends and is 

less sensitive to stop-start conditions. 

In Chapter 2, the principle behind the flow-occupancy method of speed 

estimation was discussed. The use of a mean τ value for a vehicle sample to 

estimate speed was introduced using the following equation: 

 (4.3) 

Into which the mean value of τ and the MEVL can be substituted (see Appendix 

A): 

 (4.4) 
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where: 

 = Mean detector ‘on-time’ value (seconds). 

 = Space-mean speed (ms-1). 

 = Number of vehicles in the specified vehicle sample. 

 = Sample interval length (seconds). 

 = Occupancy in the specified sample interval. 

 = Reciprocal of MEVL. 

 = Mean effective vehicle length (metres). 

The issue of underestimating speed when the estimate is heavily influenced by 

the longest vehicle (i.e. in stop-start conditions) was explained in Chapter 2, 

section 2.2.4, along with the opposite problem of overestimating speed in the 

same circumstances when using the median τ  value method of Coifman et al. 

(2003). 

Figure 4.3 shows the results of unfiltered speed estimation from a single 

detector, applying Equation 4.3 with a one-vehicle sample and an eleven-vehicle 

sample. The detector data used in the example shown was collected at 10Hz 

τ
v

n

T

O

g
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Figure 4.3: Comparison of unfiltered speed estimation with different sample sizes. 
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and is compared to the actual vehicle speeds recorded from the Vissim vehicle 

record data. 

The plotted speeds demonstrate that the speed estimation using a larger, 

eleven-vehicle, sample is less sensitive to changes in vehicle length. This is 

expected as the sample occupancy is averaged across multiple vehicles. 

Consequently, the larger sample size provides consistent speed estimation that 

is able to follow longer term trends. However, the performance significantly 

deteriorates when stop-start conditions occur, such as a queue from the 

downstream traffic signals reaching the upstream detector (approximately 1665 

simulation seconds in Figure 4.3). 

In addition to the speed estimation issues, the use of any sample size larger 

than one vehicle necessarily introduces latency into the classification process 

where the vehicle being classified is not the last vehicle in the sample. This is 

because, as shown in Figure 4.3, every vehicle in the sample must necessarily 

have crossed the detector before a speed estimate can be calculated. 

In practise, data from detectors on freeways is often recorded to a centralised 

database, or ‘in-station’, for use in strategy selection by traffic managers or to 

inform road users of traffic conditions. In that case the data is reported at, say, 1 

minute intervals (NIS Ltd, n.d.). For such applications, the requirement for the 

‘second half’ of the vehicle sample to be collected (16 further vehicles in the 

case of Coifman et al. (2003)) before the ‘centre’ vehicle can be classified may 

not be significant. However, for this application the usefulness of the 

classification data deteriorates rapidly once a vehicle has left the detector and it 

is therefore not viable to employ large sample sizes. 
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4.3.1 One-vehicle sample 

The use of a one-vehicle sample eliminates the latency issues but results in the 

speed estimation being heavily influenced by vehicle length. In fact, for a one-

vehicle sample size, n = 1 in Equation 4.3 and consequently the MEVL becomes 

the Effective Vehicle Length (EVL). It is therefore possible to reduce the equation 

further: 

 (4.5) 

The speed estimation from a one-vehicle sample is less consistent at higher 

speeds, as shown in Figure 4.3. This is expected given the direct relationship to 

vehicle length. However, despite the erratic nature of the speed estimation, 

Figure 4.3 demonstrates that (as would be expected at low HGV proportions) 

the estimated speed follows the actual speed much more closely than a larger 

sample during periods where queuing affects vehicle speed over the detector. 

This chapter investigates whether, through the use of various filtering processes, 

the flow-occupancy method of estimating speed (primarily used in freeway 

applications) can be adapted to an urban situation. If such a method can 

produce reasonable results then it would provide a means of classifying vehicles 

using existing infrastructure. 

4.3.2 Potential sources of error 

The detector information has been collected at 4Hz and 10Hz in order to assess 

whether each algorithm can still provide reasonable performance at a lower 

data resolution. There is an inherent measurement error resulting from the 

rounding of the analogue vehicle detection profile when it is processed into a 

digital signal that increases as the data resolution decreases. For example, an 

average car of 4.5 metres in length could be expected to spend approximately 

EVL
v

τ
=
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0.325 seconds on a detector (with 2 metres effective length) when travelling at 

20ms-1, 0.43 seconds at 15ms-1 and 0.26 seconds at 25ms-1. At 4Hz, all those 

timings will potentially be rounded to either 0.5 seconds or 0.25 seconds, 

depending on the sampling method used, potentially resulting in significant 

speed estimation error. 

Increasing the resolution of the vehicle presence sampling reduces the influence 

of this error, as can be observed in Table 4.2, in which the values of τ for an 

identical vehicle sample, using 4Hz and 10Hz resolution processing, are 

compared to the actual value of τ calculated using the vehicle speed data from 

the Vissim vehicle record output and the known length of the detector in the 

Simulated Environment. 

As briefly discussed above, the method of sampling (i.e. scanning for and 

packaging the data) for SCOOT can differ between outstation units, even from 

the same manufacturer. Modern outstation units are capable of scanning for 

data at a much higher resolution (up to 20Hz) and can therefore store data at 

resolutions that can be easily downscaled to 4Hz. However, the way that the 

data is converted to 4Hz can vary (Steel, 2012). For example, users can choose 

whether all 50ms samples within a 250ms period are required to be active (i.e. a 

vehicle is present) or whether any of the 50ms samples are required to be active 

to set the ¼ second reply bit to the SCOOT in-station active. The different 

options equate to rounding up or rounding down to the nearest 250ms and it is 

clear from this that there can be a significant degree of uncertainty in the 

information that a centralised system receives from detectors on street. In this 

thesis the data is assumed to be rounded up. 
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Table 4.2: Average error for a 3200 vehicle sample. 

 4Hz 10Hz 

Average � error (s) 0.09 0.04 

RMS � error (s) 0.31 0.21 

MOVA is a decentralised control strategy that operates locally at a junction. 

There is therefore no need to transmit data to a central in-station and, 

consequently, the same historical limitations to communication rate do not 

apply. In the case of MOVA, the detector data frequency limitations will be 

determined more by the roadside equipment and will depend on the 

manufacturer. 

4.4 Algorithm development: Method 1 

Coifman (2001) proposed that, for detector occupancy values below a specific 

threshold, an average free-flow speed should be used to improve estimation 

accuracy. This chapter further explores the idea that assumptions can be made 

based on observed data that improve the estimation of speed and, 

subsequently, vehicle length. 

The initial, unfiltered, speed estimates are calculated using Equation 4.5 at the 

beginning of each pass through the algorithm based on nominal short and long 

vehicle lengths, in this case a vehicle length (Lveh) of 4.5m and 16m respectively. 

The value of EVL short and long vehicles differed in testing between 4Hz and 

10Hz resolution data. For example, in Method 1 the short vehicle EVL was 

calibrated at 6.9m and 6.1m for 4Hz and 10Hz respectively. The difference in the 

two values can be explained by the rounding errors associated with processing 

the detector data into 4Hz, detailed in section 4.3.2. The rounding up of the τ 

value results in a consistent overestimation of τ in the 4Hz scenario that 
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necessitates an increase in EVL to compensate. This is discussed in more detail 

in section 4.6.2. 

In both proposed methods a speed estimate is calculated using the typical short 

vehicle EVL and is then subjected to a series of filters. The initial short vehicle 

speed estimate (SVE) is adjusted based on various conditions and, depending 

on which criteria are met, either SVE is taken forward, or it is discarded in favour 

of the long vehicle speed estimate (LVE). The process is shown in more detail in 

Figure 4.4. 

Figure 4.4: Schematic of the Method 1 Speed Estimation and Vehicle 

Classification Algorithm. 
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4.4.1 Low occupancy speed correction 

The first filter presented in the algorithm is introduced to categorize the vehicle 

speed estimate with more certainty, based on the occupancy of a vehicle 

sample, into either a ‘free-flow’ or ‘constrained’ state. If the occupancy falls 

outside the free-flow threshold then no further deduction is made about the 

vehicle state at this point. 

The initial speed estimate uses a one-vehicle sample. However, for the low 

occupancy filtering, a larger sample size of 20 vehicles is used as it provides an 

indication of the longer term trend of vehicle speed over the detector. It should 

be noted that, in this case, the sample covers the current and previous 19 

vehicles rather than placing the current vehicle in the centre of the sample, as 

described in the Coifman et al. (2003) method. Consequently, the data can be 

used instantaneously. As described, the occupancy sample is simply used here 

to categorize the speed estimate and is not used to estimate the speed itself, as 

in the equations described in section 4.3. The previously described problems 

with larger sample size in this application are less influential as a result. 

Analysis of the data output from simulation runs enabled the selection of a ‘low 

occupancy’ threshold value, in this case a 20-vehicle sample occupancy of 11% 

(see Figure 4.6). However, rather than assuming that all vehicles below this 

occupancy are travelling at an average free-flow speed, the filter differs from 

Coifman (2001) in that it only adjusts SVEn if it is less than a free-flow lower 

bound speed. 
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In this case, the free-flow lower bound speed is selected as approximately 70% 

of the average free-flow speed observed from the collected data. If the 

occupancy is less than (or equal to) 11% but the estimated speed is less than 

the lower bound free-flow speed then the speed is adjusted to the lower bound 

free-flow speed (see Figure 4.5). The reason for not adjusting all vehicles to the 

average free-flow speed is to preserve variation in the data. 

Figure 4.5: Example of adjustments made to initial speed estimate. 

Figure 4.6: A sample of speed/occupancy relationship with free-flow threshold shown. 
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The optimal low occupancy threshold value for the vehicle sample used in this 

study was found to be 11%. This is marginally higher than the 10% used by 

Coifman (2001). Figure 4.7 shows the classification accuracy of the algorithm in 

a selection of cases with different occupancy thresholds. It can be seen that 

optimal threshold value for the 20% HGV proportion case is higher than the 

11% value used in this study. However, it was considered that the 20% HGV case 

is less likely to occur than the 800 veh/h 5% HGV case and so, considering the 

minimal change in the base case, the value was chosen at the optimal point for 

the 800 veh/h case. 

4.4.2 Speed drop limit 

It was found during the development of the algorithm that introducing a limit to 

how much vehicle speed could drop over the detector from one vehicle to the 

next provided a modest improvement to the performance of the algorithm if 

calibrated carefully. In this case the limit imposed is a 2.5ms-1 drop from the 

final speed estimate for the preceding vehicle. It was found that the speed rarely 

legitimately falls by more than this value and imposing a limit allows more 

variability in the estimated vehicle lengths. 

Figure 4.7: Occupancy threshold value selection. 
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4.4.3 Downward trend 

The site of the detector on each approach, from which the algorithm is receiving 

presence data, experiences queuing from the traffic signals, even in periods of 

otherwise under-saturated traffic conditions due to the random nature of 

arrivals. It is therefore difficult to quickly and reliably determine when vehicle 

speeds have dropped over the detector. A longer duration of τ could represent 

a drop in speed but it could also be caused by a longer vehicle crossing the 

detector. 

For this work, a ‘down flag’ is introduced to identify where a possible downward 

trend may begin. A down flag is triggered where the preceding vehicle speed 

estimate (SEn-1) is lower than its preceding vehicle (SEn-2). 

If the speed drop limit is triggered and LVE, calculated at the beginning of the 

algorithm step, is lower than SEn-1 then, if the down flag is not present, the 

speed estimate can be substituted for LVE. Here, the algorithm recognises that 

vehicle speeds over the detector have not dropped prior to the current 

estimate, and that a longer vehicle crossing the detector is the more likely cause 

of an increase in τ than a drop in vehicle speed. 

4.5 Algorithm development: Method 2 

The algorithm development described in the previous section relies solely on 

presence data received from a single detector. The algorithm works in isolation 

of the traffic signal control strategy, despite the proximity of the detector to the 

junction. The algorithm developed in this section makes use of the traffic signal 

optimizer modelled queue lengths to provide additional information for speed 

estimation. As in the previous section, speed estimations are derived for a 

typical short and long vehicle and are then subject to a series of filters. 
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The immediate difference is that the low occupancy speed correction filter is not 

used in Method 2 as the general traffic conditions can instead be deduced from 

the traffic signal optimizer model. The process is described by the schematic 

shown in Figure 4.8. 

4.5.1 Downward trend flag 

As for Method 1, the common occurrence of queuing or 

decelerating/accelerating traffic over the detector requires that such conditions 

can be identified quickly. The introduction of the queuing model from the traffic 

signal optimizer enables possible downward trends to be identified more easily. 

Once the available storage between the last vehicle in a queue and the detector 

reaches less than 100 metres, the downward trend flag is set. 

4.5.2 Speed drop limit 

Another concept introduced in Method 1 has been modified slightly in Method 

2. If the initial speed estimate falls more than 2.5ms-1 below the preceding 

vehicle speed estimate, the initial speed estimate can, in some cases, be 

substituted for the long vehicle estimate. If the speed estimate for a long vehicle 

falls below the preceding vehicle final speed estimate, it can be assumed that an 

increase in τ has been caused by a longer vehicle crossing the detector. If the 

long vehicle speed estimate is greater than the preceding vehicle final speed 

estimate then the initial speed estimate is kept but the drop in speed limited to 

2.5ms-1. 
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Figure 4.8: Schematic of the Method 2 Speed Estimation and Vehicle Classification 

Algorithm. 
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4.5.3 Minimum speed 

A new concept, introduced for Method 2. This acts as a replacement for the low 

occupancy speed correction described in Method 1. If periods of free-flow over 

the detector can be reliably identified, then a lower bound minimum speed limit 

can be applied to reduce instances of longer vehicles being incorrectly identified 

as a slow moving short vehicle. The downward trend flag, previously described, 

is used to identify when vehicle speeds over the detector become constrained. 

Consequently, if the flag is not set, the conditions can be assumed to be free-

flow. 

To ensure that vehicle speeds are unconstrained, an additional condition is 

included that takes into account the time since the downward trend flag was 

last cleared. In this case, the flag must have been cleared for more than 30 

seconds before this filter can be implemented. 

If the conditions for free-flow are met, the minimum speed is implemented as 

70% of the free-flow speed. This value is a compromise since it has been found 

that, with higher demand, a smaller value of 20% provides better results due to 

the frequent fluctuation of speed over the detector. 

4.5.4 Exponential smoothing 

Smoothing of the filtered speed estimation is introduced in Method 2. 

Exponential smoothing is utilised, as shown in Equation 4.6. However, in 

addition to the basic smoothing, the value of α is modified to provide a variable 

weighting that is influenced by the time that has elapsed since the last vehicle 

was detected. 

 (4.6) 

where: 

1
(1 )

n n
SE FSE SEα α −= ⋅ + − ⋅
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= Filtered speed estimate for current vehicle. 

= Smoothed speed estimate for current vehicle. 

 = Smoothed estimate for preceding vehicle. 

When headway between vehicles is small, it is likely that changes in speed will 

also be relatively small. Figure 4.9 demonstrates that observation and also 

shows that the constraint on speed quickly reduces as the headway between 

vehicles increases. The basic exponential smoothing function does not take into 

account the rapid decay in usefulness of the preceding vehicle estimate in 

estimating the current vehicle speed. 

To address the shortcoming described above, a logarithmic function has been 

incorporated, shown in Equation 4.7, to change the value of α according to the 

headway between vehicles. The logarithmic function allows the rapid decay in 

usefulness of the previous vehicle speed estimate to be reflected in the 

smoothing. 

 (4.7) 

FSE

1n
SE −

n
SE

(0.075 ln( 1)) 0.45Hα = ⋅ − +

Figure 4.9: Average difference in speed between consecutive vehicles 

over a detector at different headways for a 3200 vehicle sample. 
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where: 

= Headway from preceding vehicle (s).  

A value of 1 second was chosen as the minimum headway as it was deemed 

unlikely that headways less than that would occur. However, this figure could be 

adjusted if necessary. 

Figure 4.10 plots the value of α for increasing headway using Equation 4.7. It 

was expected that the value of α would tend to 1, even for relatively low 

headway values, given that Figure 4.9 demonstrates that speed difference is 

only significantly constrained by headways below 3 seconds. However, it was 

found that retaining some of the previous speed estimate proved 

advantageous, particularly at higher proportions of HGV due to the increased 

variability in vehicle length. This is possibly a reflection of the fact that the speed 

difference between consecutive vehicles rarely exceeds 5mph. The final 

logarithmic function used is a compromise between the optimum parameters 

for high HGV volumes (low value of α) and high demand. 

H

Figure 4.10: A plot of the α value for increasing headway. 
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Further testing has shown that the smoothing process could be simplified 

somewhat by applying a constant smoothing factor either side of a headway 

threshold value of approximately 2 seconds. The smoothing factor for headways 

below 2 seconds would largely be weighted towards the previous speed 

estimate as the preceding vehicle would constrain the speed. Headways above 2 

seconds would be given an approximately 50/50 weighting. Initial testing has 

shown that this method could improve classification accuracy at higher HGV 

proportions (due to the increased stability of the speed estimation) but at the 

expense of some speed and length estimation accuracy. Consequently, the 

development of alternative smoothing methods may depend on the application 

of the algorithm. 

4.6 Results 

4.6.1 Introduction 

This section details the algorithm performance according to the evaluation 

criteria previously described in section 4.2.2. The algorithm results are shown for 

each method using the following scenarios: 

� Different proportions of HGV with fixed demand of 600 veh/h 

(Scenario 1); and 

� Different demands with a fixed proportion of 5% HGV (Scenario 2). 

The results have been presented in various different formats to provide a 

comparison with similarly presented results in other literature. Figure 4.11, 

Figure 4.12 and Figure 4.13 show a sample trace of the speed of successive 

vehicles over a detector to illustrate the effectiveness of the algorithm (in 

this case Method 2) in following the variations in speed. They also provide 
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an indication of the volume of wrongly classified vehicles in different 

scenarios. 

It can be seen even from a relatively small sample that errors occur during 

periods of rapid change in speed between successive vehicles. This 

observation is not unexpected since they are the periods during which it is 

most difficult to estimate speed accurately. 

 

Figure 4.11: Sample of vehicle speeds over a detector (base case). 

Figure 4.12: Sample of vehicle speeds over a detector (20% HGV). 
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At very low speeds the algorithm speed is shown to be close to zero. This 

is a result of a vehicle moving very slowly over the detector, or even being 

stationary for a period of time before the vehicle speed is estimated. As a 

consequence, the estimated speed is lower than the speed the vehicle is 

travelling by the time it leaves the detector (the point at which the Vissim 

speed is measured). 

4.6.2 Method 1 results 

Table 4.3 and Table 4.4 demonstrate the accuracy of the Method 1 algorithm in 

estimating vehicle speed and length for Scenario 1 and Scenario 2. The 

performance of the algorithm in estimating speed and length deteriorates as 

the percentage of HGVs increases, as expected. There is also a worsening in 

performance as demand is increased up to 800 veh/h. This is due to the 

increased variability of vehicle speed over the detector caused by the queue 

from the downstream signals reaching the detector more often. 

Figure 4.13: Sample of vehicle speeds over a detector (800 veh/h). 
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Table 4.3: Method 1 speed and length estimation RMSE results for Scenario 1. 

 

 

5% HGV 

(Base case) 

10% HGV 15% HGV 20% HGV 

 4Hz 10Hz 4Hz 10Hz 4Hz 10Hz 4Hz 10Hz 

Speed (mph) 4.0 3.5 4.3 3.7 4.5 4.0 4.8 4.2 

Length (m) 0.9 0.9 1.1 1.0 1.4 1.2 1.6 1.4 

 

Table 4.4: Method 1 speed and length estimation RMSE results for Scenario 2. 

 600 veh/h 

(Base case) 

700 veh/h 800 veh/h 

 4Hz 10Hz 4Hz 10Hz 4Hz 10Hz 

Speed (mph) 4.0 3.5 4.1 3.5 4.4 3.6 

Length (m) 0.9 0.9 1.0 0.9 1.4 1.2 

 

Figure 4.14: Cumulative Distribution Functions for speed estimation AAE - Method 1. 
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Figure 4.14 shows Cumulative Distribution Functions (CDFs) for the Average 

Absolute Error (AAE) in the speed estimation of Method 1 at 10Hz and 4Hz. It 

can be seen that the majority of estimation error is less than 5mph with a 

greater number of larger errors as the proportion of HGVs increases. At 4Hz 

there is a deviation in the CDF at approximately 5mph that indicates a cluster of 

errors distributed around that value. 

As discussed previously, the τ value is rounded up when the detector presence 

data is converted to 4Hz and this produces lower speed estimation (on average) 

at free-flow speeds than the equivalent 10Hz data. For example, τ values of 0.3 

and 0.4 seconds are most common when vehicle speeds are approximately 30-

40mph. However, at 4Hz these τ values will both be rounded up to 0.5 seconds 

when the presence data is processed resulting in consistently lower speed 

estimation for τ values that are not equal to those at 10Hz. 

Table 4.5: Demonstration of the effect of EVL and data frequency on error. 

τ values (s) Speed estimate (mph) 

(5.8 metres EVL) 

Speed estimate (mph) 

(6.9 metres EVL) 

10Hz 4Hz 10Hz 4Hz Difference 4Hz Difference 

0.20 0.25 65 52 13 62 3 

0.30 0.50 43 26 17 31 12 

0.40 0.50 32 26 6 31 2 

0.50 0.50 26 26 0 31 -5 

0.60 0.75 22 17 4 21 1 

0.70 0.75 18 17 1 21 -2 

0.80 1.00 16 13 3 15 1 

To compensate, the EVL used in the algorithm is increased to provide the overall 

least error but, as a consequence, there is an increase in estimation error 

wherever the τ values are similar. Table 4.5 shows that increasing the EVL for 

4Hz data reduces the overall speed estimation error but introduces an error of 
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approximately 5mph when the τ values are both 0.5 seconds (shown in the 

highlighted row). This is consistent with the Figure 4.14.   

The capability of the algorithm to classify vehicles within various criteria is 

shown for Scenario 1 and Scenario 2 in Table 4.6 and  

Table 4.7 respectively. 

Table 4.6: Method 1 classification results for Scenario 1 (%). 

 5% HGV 

(Base case) 

10% HGV 15% HGV 20% HGV 

 4Hz 10Hz 4Hz 10Hz 4Hz 10Hz 4Hz 10Hz 

2 Class 97.3 97.5 96.1 96.4 94.2 94.5 92.3 92.8 

3 Class 96.9 97.3 95.3 95.7 93.0 93.3 90.8 91.0 

 

Table 4.7: Method 1 classification results for Scenario 2 (%). 

 600 veh/h 

(Base case) 

700 veh/h 800 veh/h 

 4Hz 10Hz 4Hz 10Hz 4Hz 10Hz 

2 Class 97.3 97.5 97.2 97.3 95.8 96.5 

3 Class 96.9 97.3 96.8 97.1 95.4 96.2 

The results show that, in the case of the 2 class and 3 class bins, the 

performance of the algorithm deteriorates quite significantly as the proportion 

of HGVs increases. Interestingly, the algorithm results slightly improve when 

using 4Hz data compared to 10Hz as the HGV proportion increases. This is not 

the case for Scenario 2. 

4.6.3 Method 2 results 

The results in Table 4.8 and Table 4.9 show the speed and length RMSE for 

Scenario 1 and Scenario 2. Only a small deterioration in speed estimation is 

experienced as the proportion of HGVs increases. The Method 2 algorithm is 

shown to outperform the Method 1 algorithm in both scenarios for speed 
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estimation and classification. As for Method 1, the 10Hz resolution data 

provides greater accuracy than 4Hz, as expected. 

Table 4.8: Method 2 speed and length estimation RMSE results for Scenario 1. 

 5% HGV   

(Base case) 

10% HGV 15% HGV 20% HGV 

 4Hz 10Hz 4Hz 10Hz 4Hz 10Hz 4Hz 10Hz 

Speed (mph) 3.7 3.1 3.9 3.3 4.0 3.6 4.2 3.8 

Length (m) 0.8 0.8 1.0 0.9 1.2 1.1 1.3 1.2 

 

Table 4.9: Method 2 speed and length estimation RMSE results for Scenario 2. 

 600 veh/h 

(Base case) 

700 veh/h 800 veh/h 

 4Hz 10Hz 4Hz 10Hz 4Hz 10Hz 

Speed (mph) 3.7 3.1 3.8 3.1 4.1 3.4 

Length (m) 0.8 0.8 0.9 0.9 1.2 1.0 

 

Figure 4.15: Cumulative Distribution Functions for speed estimation AAE - Method 2. 
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Figure 4.15 shows CDFs for the AAE in the speed estimation of Method 2 at 

10Hz and 4Hz. The CDFs at 10Hz for both scenarios follow a similar trend to 

those shown in Figure 4.14 for Method 1. However, it can be seen that there are 

fewer estimation errors greater than 5mph. For the 4Hz data the CDF is 

comparatively smoother than that produced by Method 1. The exponential 

smoothing incorporated into Method 2 distributes the speed estimation error 

more widely and can be observed in the ‘straightening’ of the CDF from 

approximately 3-7mph. The result is approximately 10% fewer speed estimation 

errors greater than 5mph in both scenarios. 

Wang and Nihan (2003) presented a standard error of 3.47mph for a 24 hour 

sample of vehicles that contained between 5-10% long vehicles during what 

would assumed to be the morning and evening peak periods, rising to 

approximately 15% during the inter-peak period. The RMSE, of 4.0mph and 

3.6mph respectively, calculated for Method 1 and Method 2 at 15% HGVs 

(10Hz) compare favourably with that presented by Wang and Nihan (2003). This 

is particularly useful given that the freeway application would be expected to 

have less significant speed differences than an urban application immediately 

upstream of a traffic signal controlled junction. Comparing between standard 

error and RMSE values is considered reasonable in this case given the large 

sample size. 

The CDF plots have been included to provide a comparison with those 

presented by Coifman and Kim (2009). The CDFs demonstrate that the speed 

estimation of both methods described in this chapter compares favourably. 

However, it is more difficult to compare the distribution of larger errors as the 

various methods proposed (Coifman (2001), Coifman et al. (2003), Coifman and 

Kim (2009)) focus on a freeway application where variation in speed at free-flow 

is likely to be greater than in constrained urban conditions. 
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The performance of the Method 2 algorithm in classification is shown in Table 

4.10 and  

Table 4.11. The Method 2 algorithm consistently outperforms Method 1, 

particularly at 4Hz. The 4Hz data resolution provides comparable results in both 

scenarios although the performance degrades more significantly at 800veh/h. 

This finding is significant as it enables the algorithm to be applied to legacy 

systems that use the 4Hz communication protocol with no hardware changes 

and very little software development. 

Table 4.10: Method 2 classification results for Scenario 1 (%). 

 5% HGV   

(Base case) 

10% HGV 15% HGV 20% HGV 

 4Hz 10Hz 4Hz 10Hz 4Hz 10Hz 4Hz 10Hz 

2 Class 97.5 97.8 96.5 96.7 94.9 94.8 93.1 93.3 

3 Class 97.1 97.5 95.5 96.1 93.0 93.6 90.5 91.5 

 

Table 4.11: Method 2 classification results for Scenario 2 (%). 

 600 veh/h 

(Base case) 

700 veh/h 800 veh/h 

 4Hz 10Hz 4Hz 10Hz 4Hz 10Hz 

2 Class 97.5 97.8 97.3 97.3 96.3 97.0 

3 Class 97.1 97.5 96.9 97.1 95.8 96.6 

For both algorithm methods the classification into three length bins is less 

accurate than into two bins. This is perhaps to be expected given that vehicle 

length distributions, as in this case, are often bi-modal (Coifman and Kim, 2009). 

A bi-modal distribution lends itself to classifying into two length bins as it 

provides a clear distinction between long and short vehicles. However, when a 

third length bin is introduced that spans between long and short vehicles there 

is a less clear distinction and a greater probability of incorrectly classifying into 

the neighbouring length bin. 
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The results demonstrate that the performance of both algorithms when 

classifying into three length bins is comparable with two length bins at low HGV 

proportions but deteriorates significantly as the proportion of HGVs increases. 

4.6.4 Cumulative performance improvement 

Each of the algorithms is described in this chapter as a series of steps for the 

purposes of clarity. Each of the steps provides an enhancement in the accuracy 

of speed and length estimation as well as classification that contributes to the 

overall performance of the algorithm. Figure 4.16 demonstrates the 

improvement in classification performance provided by each step of Method 2 

compared to a baseline of simply classifying every vehicle as a short vehicle. The 

cumulative performance is shown as three distinct phases for a selection of 

cases where: 

� Phase 1 is the initial filtering of speed estimates (step 1); 

� Phase 2 is the application of intermediate filters (steps 3, 4 and 5); 

and 

� Phase 3 is the final smoothing process (step 6). 

Figure 4.16: Cumulative classification performance improvement - 

Method 2. 
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Figure 4.16 shows that the initial phase is a small improvement but that the 

second phase provides a significant benefit for the cases with lower demand. 

The third phase provides a less substantial improvement for the lower demand 

cases but a greater improvement for the 800 veh/h case. This highlights the 

importance of incorporating all of the phases to provide resilience of 

performance in different scenarios. 

4.7 Conclusions 

In this chapter, two algorithms have been developed to estimate the speed of 

vehicles crossing a detector and to classify them by length. The performance of 

both algorithms is similar in both scenarios but the second algorithm, 

incorporating exponential smoothing and knowledge of the queue length from 

the downstream traffic signals, consistently outperforms the first. Consequently, 

Method 2 has been incorporated into the previously described Signal Controller 

for testing in the following chapter. 

The first algorithm, Method 1, is based on previous work by Dodsworth et al. 

(2014) with some modifications made to reduce the number of parameters that 

would require calibration. The second algorithm is, to some extent, based on the 

first but makes use of the modelled queue from the downstream traffic signals 

and exponential smoothing. The algorithms have been tested with speed 

profiles derived from ATC data retrieved from a site in a 40mph speed limit 

section of road, as described in the previous chapter. The algorithms have not 

been tested with different speed profiles but in the previous work by Dodsworth 

et al. (2014) it was shown that the algorithm performed marginally better with a 

30mph speed profile. 

It is recognised that it is unlikely either algorithm could be used as a 

replacement for a dual loop detector site. However, at traffic signal junctions 
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where single detectors are employed, the preferred algorithm could prove 

useful to traffic authorities for basic monitoring of HGV proportions on the 

urban road network. The ‘instant’ nature of the speed estimation, as opposed to 

the five minute aggregation employed by standalone ATC sites, would also 

provide a quick response to drops in vehicle speed that could be used for 

incident detection purposes. 

Neither algorithm experiences a significant deterioration in performance when 

receiving detector presence data at 4Hz until the demand is increased to 

800veh/h. However, despite the deterioration in performance at higher demand, 

the preferred algorithm could still prove useful to deploy on existing systems 

that use a 4Hz data protocol, a common feature of many Urban Traffic Control 

systems in the UK.  

The primary proposed application of the developed algorithm, however, is to 

provide classification information to a traffic signal optimizer. The modified 

Miller method of signal optimization, described in Chapter 3, requires that any 

queue that exists at the start of a green signal is discharged before optimization 

begins. That condition dictates that, for the majority of the time, vehicles will be 

moving freely over the detector during the period that classification is actually 

utilised in the Miller process. This provides a benefit in that, as Figure 4.17 

demonstrates, the speed and length estimation error above 20mph (assumed to 

be relatively free-flowing) is consistently smaller than for below 20mph. The 

exception, speed estimation at 600veh/h, is likely to be due to the very small 

number of vehicles crossing the detector at less than 20mph in the base case. 
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It is not straightforward to quantify the level of classification accuracy that is 

required for the proposed application of the algorithm as there are multiple 

variables that will dictate how much of an effect on optimizer performance the 

classification accuracy will have. For example, even if a classification algorithm 

could classify vehicles with a 100% success rate, the trajectory of a vehicle 

beyond the upstream detector is estimated and so there is potential error in the 

prediction of when a vehicle crosses the stop line. 

The traffic model used in the Miller method is a simple vertical queue model but 

more sophisticated models such as a car-following model could introduce 

further error as the interaction between vehicles is explicitly modelled and so 

the classification accuracy is important at all speeds. 

The following chapters will investigate the application of the preferred 

algorithm to two optimization techniques and report and provide conclusions 

on the results. 

More investigation would be needed to prove algorithm performance on links 

with different characteristics and at different detector distances from a traffic 

signal stop line. 

Figure 4.17: AAE for speed and length estimation - Method 2. 
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Chapter 5: Vehicle classification, V2I and a hybrid model 

Vehicle classification, V2I and a hybrid model 

5.1 Introduction 

The Miller method was first introduced in Chapter 3 and two subsequent 

modifications were made in order to provide a representation of the MOVA 

control algorithm that could be used as a benchmark for comparisons in this 

chapter and Chapter 6.  

In this chapter, the potential benefit of differentiating vehicle classes within the 

traffic signal optimizer is investigated. The stop penalty modification to the 

Miller method, described in Chapter 3, enables the stops to be incorporated into 

the objective function. In the representation of MOVA the same stop penalty 

value is applied to each vehicle regardless of type. In reality, however, the value 

of delay caused by a stop can vary significantly between vehicles, particularly by 

vehicle type, and so a single stop penalty value is likely to result in sub-optimal 

decisions by the optimizer. 

Consequently, this chapter investigates the application of vehicle classification 

to enable different stop penalty values to be applied according to vehicle type 

with the aim of providing a more accurate representation of the impact of stops 

in the optimizer traffic model. Figure 5.1 provides a summary of each element in 

the chapter. 

Initially, vehicle classification is applied to the MOVA representation using the 

preferred single detector classification algorithm, described in the previous 

chapter. Next, V2I detection is introduced and is compared, without 

classification, to the MOVA representation. This enables the benefit of V2I 

detection alone to be quantified. A hybrid model is developed to enable 
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evaluation of the effect of increasing V2I penetration rates on the realisation of 

benefit. 

Ultimately, the single detector classification algorithm is replaced with V2I 

classification data V2I detection and the results compared to the benefit of 

providing V2I alone. Finally, the Simulated Environment is modified to include 

opposed right turning movements on each approach. The effect on the 

performance of the developed algorithm at various turning proportions is 

evaluated. 

Figure 5.1: A summary of chapter 5. 
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5.2 Methodology 

5.2.1 Incorporating vehicle classification 

Vehicle classification is first introduced into the MOVA representation using 

data provided by the preferred single detector classification algorithm described 

in Chapter 4. The value of delay associated with a vehicle stop will vary 

significantly depending on the performance of the vehicle that is being 

considered. In general, longer vehicles will have an inferior acceleration 

performance to shorter vehicles. Clearly there are exceptions to this, not least 

HGVs that are ‘empty runners’ but the single detector length based classification 

algorithm offers a proxy for vehicle performance. Vehicles with slower 

acceleration will experience more delay through the stop/start process and, if 

the vehicle is at the front of a queue, the additional delay will also affect the 

following vehicles. 

Vehicle classification enables the stop penalty value in the MOVA representation 

to be varied, per vehicle, according to vehicle type (based on length). Equation 

3.7 (introduced in Chapter 3) has been modified as shown in Equation 5.1 to 

include a variable stop penalty value based on vehicle type. 

 (5.1) 

where: 

= Stop penalty value (seconds) for vehicle type α. 

  = Number of vehicles of type α crossing the N, S approach stop-

lines respectively during green extension. 

  = Set of vehicle types. 
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The vehicle classification takes place instantaneously upon the vehicle leaving 

the detector, at which point a representation of the vehicle is inserted into the 

internal traffic model. The effect of applying vehicle classification is tested and 

compared to the MOVA representation with no classification. 

5.2.2 V2I and a hybrid model 

The more precise vehicle position and speed data provided by V2I to the 

internal controller model improves the accuracy of the decisions made by the 

MOVA representation. The algorithm can more accurately determine how many 

vehicles will cross the stop line for a given green extension as well as the length 

of queues on approaches currently at red. However, a secondary benefit is that 

the 3 second amber period (in the UK) that follows the green can be more 

efficiently used. That is, the amber signal in the conventional scenario is 

displayed later than is necessary in most cases in order to cater for slower 

vehicles. With V2I the amber signal can be displayed to drivers at the relevant 

time according to the individual vehicle speed thus allowing the signal to be 

changed earlier. It was assumed for this paper that, in the algorithm, 2 seconds 

of the amber could be used as effective green, leaving a 1 second ‘buffer’ for 

minimizing any driver uncertainty. 

Figure 5.2 shows the advantage of V2I technology in determining the point at 

which the Miller algorithm begins. The vehicle at the back of the queue can be 

clearly identified and subsequently used to determine the point at which the 

queue has finished discharging. Various criteria were tested for determining the 

point at which the Miller algorithm should start, the most successful of which 

was simply that the last queuing vehicle must exceed a pre-specified speed and 

be within a pre-specified acceleration range. 
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The internal controller model has been developed as a hybrid model capable of 

handling conventional detector and V2I data. Conventional detector data is 

used to insert a conventional vehicle into the model at a constant speed. If the 

position of a V2I vehicle matches the conventional vehicle closely (i.e. within 20 

metres) it is redefined in the model as a V2I vehicle. The position of 

conventional vehicles in the model can be manipulated if required based on the 

known position, speed and acceleration of neighbouring, V2I enabled, vehicles 

whilst ensuring a safe distance is maintained. 

In the MOVA representation the internal traffic model employs a shift-register 

method of modelling vehicle trajectory along each approach link to a junction. 

The shift-register is essentially a form of vertical queue model where vehicles 

travel along the link at a constant speed to the traffic signal stop line, at which 

point they are added to a ‘vertical’ queue. This is described in more detail in 

Chapter 3 section 3.2.1. 

Figure 5.2: Optimizer traffic model modifications for V2I. 
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When V2I is incorporated into the model it becomes feasible to implement a 

spatial element to the queue model. The V2I data provides the position of an 

enabled vehicle along the link and the speed that the vehicle is travelling (either 

by directly providing the speed, or by allowing the speed to be derived from 

successive positional records). The accurate positional data allows the length of 

a queue, and subsequently the interaction of approaching vehicles with the back 

of the queue, to be modelled. 

The model has been constructed so as to enable hybrid operation depending 

on the number of V2I enabled vehicles on the link and where those vehicles are 

relative to the end of the modelled queue. The hybrid model incorporates a 

number of rules that determine how conventional vehicles traverse the link. The 

rule-based approach enables V2I data to be used to increase the accuracy of the 

model around those vehicles that are enabled and is, in some ways, a form of 

car-following model. However, whilst a following vehicle must maintain a 

minimum safe headway to the leading vehicle, as is the case in more 

sophisticated car-following models, the hybrid model does not attempt to 

represent the full complexity of interaction between vehicles as it is designed to 

Figure 5.3: Hybrid model adjustment of queue length example. 
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be able to switch between a vertical and spatial queue model depending on the 

number of V2I enabled vehicles present on the link. The basic premise is that, 

where a vehicle is V2I enabled and the V2I data is up-to-date, the vehicle acts as 

a ‘ground truth’ point that can be used to increase the accuracy of the 

estimated positions of conventionally detected vehicles around it. Figure 5.3, 

Figure 5.4 and Figure 5.5 provide examples of how the model is manipulated 

based on V2I data. 

If a queue of conventional vehicles has been modelled but a V2I vehicle stops 

before (Figure 5.3) or beyond the end of the queue, the length of the modelled 

queue can be adjusted accordingly. When in free-flow conditions, if the distance 

between a following, V2I enabled, vehicle and a preceding conventionally 

detected vehicle falls below a value dictated by a ‘minimum headway’ rule, the 

V2I enabled vehicle effectively ‘pushes’ the preceding vehicle along the link 

(Figure 5.4). 

For a multi-lane situation, if the distance between vehicles in the internal model 

falls below the minimum headway then it could be because the preceding, 

Figure 5.4: Hybrid model adjustment of trajectory example ‘push’. 
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unequipped, vehicle has changed lanes. In that case, the preceding vehicle may 

be ‘pushed’ unnecessarily. However, unless lane changing is frequent at a 

particular site, it is unlikely to have a significant impact on performance. If lane 

changing of an unequipped vehicle occurs into lanes controlled by different 

signal phases (i.e. in the case of a flared approach) then it would be expected 

that the vehicles would be detected by additional conventional vehicle 

detection and updated appropriately in the internal model. 

If a conventionally detected vehicle is added to the link at an average free-flow 

speed and is following a V2I enabled vehicle travelling more slowly then, 

depending on the position of both vehicles along the link, the trajectory of the 

following vehicle may be constrained by the V2I vehicle (Figure 5.5). 

As discussed, the extent to which the position of conventional vehicles can be 

modified based on the trajectory of a V2I enabled vehicle is governed by a 

parameter derived from the minimum safe distance between vehicles at 

standstill and the minimum headway. In free-flow conditions that parameter will 

be governed by the minimum headway that is based on the average saturation 

flow value. However, at very low speeds the minimum safe distance between 

Figure 5.5: Hybrid model adjustment of trajectory example ‘hold’. 
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vehicles will be the dominant factor. Equation 5.2 describes how the minimum 

distance between vehicles is calculated. 

 (5.2) 

where: 

 = Minimum distance to preceding vehicle (m). 

  = Safe distance between vehicles at standstill (m). 

  = Speed of the following vehicle (ms-1). 

 = Saturation flow on the approach link (veh/s). 

The model will operate as a vertical queue model until the point that a V2I 

vehicle enters the link. This means that, until a V2I vehicle is present in the 

queue, the detection of free-flow conditions (the point that the optimization 

process begins) relies on identifying a ‘critical gap’ over the conventional 

detection. If a V2I vehicle is present in the queue then, depending on the 

position of the V2I enabled vehicle in the queue, the method of identifying free-

flow conditions can be switched (see Figure 5.6). Figure 5.6 demonstrates that 

the position of the V2I enabled vehicle in the queue determines which method 

of identifying free-flow conditions is used. 

Testing undertaken during the development of the hybrid model showed that 

the V2I method of identifying free-flow conditions (triggered by the last 

queuing vehicle reaching a minimum speed threshold) provides the optimum 

performance when the position of the V2I enabled vehicle is no more than three 

vehicles from the end of the queue. Beyond that, the uncertainty of the 

behaviour of the following vehicles in discharging (and consequently, the 

estimation of the speed of the last queuing vehicle) outweighs the advantages 

safe
x

hw
x

nv

, n
hw safe

v
x MIN x

s

 =   

s



 134 

 

of using the V2I data. The ability of the hybrid model to switch continuously 

between methods as new vehicles join the queue maximises the opportunity of 

using V2I data but ensures that, when V2I penetration rate is low, the 

performance does not degrade below that provided by conventional detection. 

The presence of a V2I enabled vehicle introduces a spatial element to the queue 

model. Once a V2I vehicle is detected, and whilst it remains in the link, the 

interaction of following vehicles that are conventionally detected is modelled. 

The modelling of interaction is not as sophisticated as a true car-following 

model but instead is based on a set of rules such as the minimum distance 

between vehicles already described. The interaction of conventionally detected 

vehicles that are following a V2I enabled vehicle, in addition to the minimum 

distance rule, is governed by the driver reaction time and constant acceleration. 

When stationary in a queue, the reaction time of a conventionally detected 

vehicle to a preceding vehicle accelerating away has been modelled as 0.7 

seconds. Gipps (1981) chose a reaction time value of 0.6�  seconds in the 

development of a car-following model. The Signal Controller developed for this 

Figure 5.6: Example cases of identifying the point at which the optimization begins. 
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work operates at 10Hz and consequently the reaction time here is rounded to 

0.7 seconds. As the preceding vehicle beings to move away, a reaction timer is 

started. Once the reaction timer expires, the following vehicle accelerates until 

the average free-flow speed is reached. However, the speed and position of the 

following vehicle is then subject to the minimum distance rule already 

described. The process is shown in Figure 5.7. 

Testing during the development of the hybrid model, using a single acceleration 

value for all vehicles, suggested that a value of 2.5ms-1 is most appropriate in 

Figure 5.7: A schematic showing the methodology, repeated each controller time-step, for 

updating conventionally detected vehicle trajectories when a V2I enabled vehicle is 

present. 
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this case. However, although a single value has been used here, this parameter 

is likely to change from site to site depending on junction geometry, gradient 

and vehicle characteristics. If the hybrid model was to be developed further, this 

could be an area that is investigated in more detail to introduce an acceleration 

profile. 

When a queue reaches the location of the conventional upstream detector and 

a queue is detected, it cannot be assumed that vehicles further upstream from 

the detector are V2I equipped unless the entire vehicle fleet is equipped. The 

model therefore adds ‘temporary’ vehicles to the back of the queue (whilst the 

signal state is red) at the average demand rate to ensure that the optimizer 

judges the queue discharge time appropriately (Figure 5.8). Once the signal 

state is green, the additional vehicles are removed from the model (unless a V2I 

equipped vehicle has been identified beyond the location of the upstream 

detector) as the actual length of the queue is not the important factor in 

determining when the queue has finished discharging. It cannot be guaranteed 

that a queue actually exists beyond the upstream detector, or if it does, how 

Figure 5.8: Hybrid model methodology for when a queue reaches the conventional 

upstream detector location. 
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long the queue actually is, unless there is 100% V2I coverage. If a V2I vehicle is 

present beyond the upstream detector then it can be used to indicate the back 

of the known queue and used to prevent the optimization process beginning to 

early. However, there may still be non V2I vehicles queued beyond that. For that 

reason, the critical gap method or the minimum speed of the last queuing 

vehicle is used (depending on how many V2I equipped vehicles are present on 

the link) to identify the point at which the optimization process should begin 

again. 

5.2.3 V2I based classification 

The single detector algorithm, first described in Chapter 4 and applied to the 

MOVA representation in section 5.2, classifies vehicles by length. In reality, the 

impact of stopping a vehicle will differ according to various characteristics such 

as powertrain performance, age, vehicle weight and driver behaviour. Most of 

these factors cannot be derived using conventional detection and control 

strategies that do utilise a stop penalty value, such as MOVA, instead rely on a 

user-specified fixed value that is adjusted during initial calibration and validation 

based on observations. 

It is anticipated that smarter detection (e.g. video, radar), and the emergence of 

V2I will begin to provide accurate data for vehicle type and speed. More 

accurate and detailed data will enable the performance of each vehicle to be 

derived more accurately than, for example, using the length based classification 

applied in this chapter. Here, the effect of using V2I based classification (that 

assumes knowledge of vehicle type and length) is investigated and compared to 

the performance of applying V2I detection with no classification. 

V2I based classification in this case is applied to the MOVA representation using 

Equation 5.2. The V2I data is extracted by the Signal Controller from a vehicle 

record database written to by Vissim every simulation second. The database is 
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queried and filtered by the Signal Controller to extract the most recent position 

and speed data for every vehicle on each approach to the junction. Figure 5.9 

provides a basic summary of how the data, from conventional detectors and V2I, 

output from Vissim during a simulation run is used to populate the internal 

traffic model. Figure 3.11 in Chapter 3 describes the process in more detail. 

5.2.4 Impact of opposed turning vehicles 

The Simulated Environment has been constructed for consistency with the 

junction layout used in the original Miller (1963) paper. However, the junction 

layout does not accommodate opposed right turning vehicles as it is primarily 

used to prove the concept of the Miller algorithm. In this chapter, the Simulated 

Environment is used to model the each scenario and to test the performance of 

the hybrid model at different V2I penetration rates. The Simulated Environment 

is then modified to accommodate storage of a small number of opposed right 

turning vehicles on each approach and the performance of the hybrid model is 

tested with different turning proportions and V2I penetration rates. 

Figure 5.9: Summary of the process used to populate the 

internal traffic model.  
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5.3 Results 

5.3.1 Introduction 

This section details the outcome of the various model runs used to compare the 

performance of the single detector classification, V2I and V2I classification 

models to the MOVA representation described in Chapter 3 for: 

� Different proportions of HGV with fixed demand of 600 veh/h 

(Scenario 1); 

� Different demands with a fixed proportion of 5% HGV (Scenario 2); 

� Different V2I penetration rates; and 

� Different proportions of opposed turning vehicles. 

For each scenario the effect of vehicle classification using single detector 

classification and V2I is demonstrated and, subsequently, the performance of 

the hybrid model for different penetration rates of V2I equipped vehicles is 

shown. Finally, the effect of opposed right turning vehicles on the performance 

of the hybrid model is tested. For the Scenario 1 and Scenario 2 comparisons, 

the penetration rate of V2I equipped vehicles is assumed to be 100%. 

Figure 5.10: Example of process to find 

the optimal stop penalty 
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In this section the term HGV refers to the previously defined combination of 

rigid and articulated HGVs. Optimal stop penalty values have been derived for 

each scenario by finding the minimum PI value using multiple model runs as 

shown in Figure 5.10. The introduction of vehicle classification required the 

optimal stop penalty values for each vehicle type (or class as defined in Vissim) 

to be derived. The optimal stop penalty is the value that provides the lowest PI 

value when calculated using Equation 3.8. 

The term HGV is used to refer to a combination of rigid and articulated HGVs, as 

defined previously. However, some specific results for rigid and articulated 

HGVs are also reported. 

A degree of validation that is only possible in a test environment (i.e. identical 

conditions can be recreated in order to identify optimal parameters) was 

undertaken for the conventional detection models used as the benchmark for 

comparison in this work. In reality, for the conventional detection case, some 

performance deficit would be expected as a result of sub-optimal parameter 

values being chosen during on-street validation. The documented benefit of V2I 

could therefore potentially be greater than that demonstrated in this work as 

V2I would substantially reduce the number of parameters requiring validation. 

Conversely, it is also the case that this work assumes timely and ‘perfect’ 

knowledge of vehicle position, speed and type that, in reality, may be less 

accurate and/or comprehensive due to, as yet unknown, technological or 

political constraints. 

The majority of results in the following sections and in Chapter 6 are shown with 

confidence intervals represented by shaded areas around the mean. In all cases, 

the confidence intervals are shown at 95% and based on the standard deviation. 

Where one case is being compared to another, the confidence intervals are 

based on the square root of the sum of the squared standard deviations. 
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5.3.2 Optimal stop penalty values 

Table 5.1 and  

Table 5.2 show the optimum stop penalty values for each scenario using a 

model with conventional detection and the developed hybrid V2I model with 

100% penetration rate. In Table 5.1 there is a clear trend, as expected, of 

increasing stop penalty with percentage of HGV that, for the MOVA 

representation (labelled as conventional), is broadly in line with the AG45 MOVA 

manual (Crabtree, M.R. et al., 2012) values for comparable vehicle speed and 

HGV proportion. The rate of increase of optimal stop penalty value for the 

hybrid (V2I) model is greater than that for the MOVA representation. It is 

unclear why that should be the case but an explanation may lie in the V2I 

method of identifying when to enter the optimization process. 

The V2I method for identifying when to enter the optimization process, 

described in section 5.2.2, requires the last queuing vehicle to have reached a 

pre-specified minimum speed and for the acceleration of the vehicle to fall 

within pre-specified bounds. Those identification parameters do not vary 

between vehicle classes and have been optimized for the base case. It is 

therefore possible that the parameters are sub-optimal for HGVs and that the 

increased stop penalty value acts to compensate by encouraging extension of 

the green signal. 

Table 5.2 shows that, whilst the proportion of HGVs and the average free-flow 

speed remain the same, the optimal stop penalty values also remain similar 

regardless of the level of demand. There are some discrepancies, most notably 

at 700 veh/h demand, but no significant deviations. 



 142 

 

Table 5.1: Optimal, fixed, stop penalty for Scenario 1 with conventional and V2I detection 

(seconds). 

 0% HGV 5% HGV 

(Base case) 

10% HGV 15% HGV 20% HGV 

Conventional  13 17 20 23 27 

V2I  11 17 23 29 36 

 

Table 5.2: Optimal, fixed, stop penalty for Scenario 2 with conventional and V2I detection 

(seconds). 

 400 veh/h 500 veh/h 600 veh/h 

(Base case) 

700 veh/h 

Conventional  17 17 17 14 

V2I  19 17 17 16 

The optimal stop penalty values used when implementing vehicle classification 

are specific to vehicle class. The values have been derived using the same 

process described for the conventional and V2I detection models. A range of 

stop penalty values was tested for each vehicle class using a model containing 

only those vehicles. Table 5.3 shows the derived optimal stop penalty values for 

each class. The optimum stop penalty value for articulated HGVs is greater than 

that for rigid HGVs. This reflects the slower acceleration characteristics. 

Table 5.3: Optimal stop penalty values for each vehicle class (seconds). 

Cars/vans Rigid HGVs Articulated HGVs 

11 28 44 

5.3.3 Benefit of vehicle classification using single detector 

classification 

Having obtained the optimal stop penalty values for each scenario and each 

vehicle class, the single detector classification algorithm is applied to the MOVA 

representation to ascertain the benefit provided by vehicle classification within 

the limits of existing infrastructure. The full tabular results for this and the 

following section can be found in Appendix B. 
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Figure 5.11 demonstrates the benefit of using the single detector classification 

algorithm to apply different stop penalty values to each vehicle class for 

Scenario 1 and Scenario 2 respectively. The results show that the application of 

vehicle classification provides a consistent benefit – in terms of delay and stops 

– of between approximately 5-10% when the proportion of HGVs is 5%. The 

benefit for articulated HGVs is greatest which reflects the higher stop penalty 

value applied to that vehicle class.  

As the proportion of HGVs increases, the benefit to HGVs quickly reduces. In the 

case of a 20% proportion of HGVs, the vehicle classification begins to negatively 

impact on delay and stops for other vehicles. The deterioration in performance 

of the single detector classification algorithm with increasing HGV proportions, 

shown in Chapter 4, is likely to influence this result. 

The second factor that will affect the performance of vehicle classification in the 

MOVA representation is the uncertainty of the vehicle position along a link. As 

described in Chapter 3, vehicles are detected at the upstream location and then 

traverse the link at a constant speed. It is possible that an HGV can be correctly 

classified at the upstream detector, the green signal extended by the optimizer 

to enable it to cross the stop line, but the HGV fail to actually cross the stop line 

because its speed is less than the average free-flow speed of the link. In that 

case, the detriment to performance is two-fold as the green has been extended 

(causing additional delay to opposing traffic) but the expected benefit of saving 

the HGV a stop has not occurred. The likelihood of this situation will increase as 

the distance of the upstream detector from the stop line increases. 

For this work, HGVs have been assigned a free-flow speed of 80% of the link 

free-flow speed in an attempt to reduce occurrences of HGVs failing to cross the 

stop line during a green extension. However, the reduced free-flow speed 

applies to all HGVs, in the absence of individual vehicle speed data, and 
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attempts to cater for the majority of HGVs. Consequently, the green will be 

extended for longer than is necessary on some occasions, causing additional 

delay to opposing traffic. 

It is also worth noting that the single detector classification algorithm was 

configured to classify into two class bins (short and long) for this application 

(applying vehicle classification to the MOVA representation). This decision, 

made to maximise the performance of the algorithm, results in only one ‘long 

vehicle’ stop penalty being applied to all HGVs which is likely to have a slight 

detrimental effect on overall performance of the optimizer as the characteristics 

of HGVs will vary. 

5.3.4 Benefit of V2I and vehicle classification using V2I 

Having demonstrated the benefit to HGVs of providing vehicle classification in 

the optimization process, the MOVA representation is now replaced with the 

Figure 5.11: Reduction in delay and stops by vehicle class, using single detector 

classification, compared to the MOVA representation alone for Scenario 1 (a, b) and 

Scenario 2 (c, d). 
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hybrid model which is first tested with a 100% V2I coverage to ascertain the full 

benefit that can be expected from V2I. 

Figure 5.12(a) and Figure 5.12(d) first demonstrate the benefit – in terms of 

reduction of stops and delay – of using V2I compared to conventional detection 

(the MOVA representation) with vehicle classification for Scenario 1 and 

Scenario 2 respectively. The results show that, despite the stochastic nature of 

micro-simulation, V2I consistently provides an additional overall benefit in the 

region of 10% – 15% in terms of delay, increasing as the junction approaches 

saturation. The benefit of V2I is consistent as the proportion of HGVs increases. 

Figure 5.12 (b, c) provides a detailed breakdown of the effect of assigning 

different stop penalty values to each vehicle class, compared to using V2I alone, 

with an increasing proportion of HGV. The results show the effect on all HGVs 

(rigid and articulated HGVs combined) as well as on articulated HGVs (A-HGV) 

separately to demonstrate the benefit given to the slowest accelerating vehicles. 

As expected, the benefit to HGVs reduces as the proportion of HGVs increases 

but it is clear that vehicle classification provides a significant benefit to HGVs 

with very little, and in some cases no, adverse effect on other vehicles. In fact, at 

the highest proportions of HGVs there is a positive effect on delay for all 

vehicles. The increase in benefit to HGVs from the previous section can be 

attributed both to the more accurate V2I classification and the more accurate 

representation of vehicle trajectories. 

It is important to note that, in reality, the vast majority of junctions operate with 

less than 10% HGVs in the vehicle mix. A benefit of between 10% and 20% in 

terms of both stop and delays, above and beyond that for V2I alone, would 

therefore be expected for the slowest accelerating vehicles in most cases, except 

where the junction is approaching saturation, and between 5% and 10% overall 

for HGVs combined. 
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Figure 5.12 (e, f) shows the effect of vehicle classification, compared to V2I 

alone, with increasing demand. The results indicate that the use of vehicle 

classification provides a significant benefit in delay and stops of between 

approximately 5 and 15%, except at 700 veh/h demand where the junction is 

approaching saturation. Interestingly the largest benefit for HGVs occurs at 500 

veh/h demand when it might have been expected to occur at 400 veh/h. 

However, it should be noted that these results compare to V2I alone. The 

introduction of V2I alone does not provide the same degree of benefit to every 

vehicle class compared to the MOVA representation using conventional 

detection. Some of the benefits to HGVs therefore appear large when compared 

to V2I alone but a truer representation of the relative benefit is provided by 

comparing to the consistent benchmark of the MOVA representation (Figure 

5.13). 

Figure 5.13 (a, b) demonstrates that, when compared to the MOVA 

representation without vehicle classification, the introduction of V2I with vehicle 

classification provides consistent benefit in delay for Scenario 1 to all vehicle 

classes of between approximately 10-20%. The benefit in stops is generally 

lower at around 10% but is consistent as the proportion of HGVs increases. 



 1
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Figure 5.12: Reduction in delay and stops for all vehicles, using V2I alone, compared to conventional detection for Scenario 1 (a) and Scenario 2 

(d). Additional reduction in delay and stops by vehicle class, using V2I with vehicle classification, compared to V2I alone for Scenario 1 (b, c) and 

Scenario 2 (e, f). 
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The benefit in stops to articulated HGVs is shown to be considerably larger 

(greater than 20%) at a 5% proportion of HGV than for other cases but the 

sample of articulated HGVs in that case is small and so it does depend to some 

degree on whether the HGVs arrive at the signals during a green signal 

(enabling an extension). The change in stops for the 600 veh/h case does not 

follow the trend in Scenario 1 or Scenario 2 when compared to other cases.  The 

plotted results for combined HGVs therefore provide a more consistent 

representation of the benefit in terms of stops. 

Figure 5.13 (c, d) shows that the introduction of V2I with vehicle classification 

provides a greater benefit for HGVs than other vehicle classes, particularly at 

lower demand where there is a significant benefit to all HGVs of around 25% in 

delay and stops. At higher demand, the benefit to all vehicles of V2I increases 

but the relative benefit to HGVs reduces. This is to be expected as the 

opportunities to provide green extensions over and above the initial queue 

discharge time decrease. 

Figure 5.13: Reduction in delay and stops by vehicle class, using V2I with classification, 

compared to the MOVA representation alone for Scenario 1 (a, b) and Scenario 2 (c, d). 
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5.3.5 Secondary benefits 

More comprehensive data provided by V2I enables the position of individual 

vehicles, not travelling at a constant speed, to be predicted more accurately for 

future model time-steps. The accuracy of the predicted vehicle trajectory 

improves as vehicles accelerating from a queue reach a constant speed. There is 

therefore a compromise between entering the optimization process early 

enough during the green to maximize the opportunity for optimal stage end 

decisions but not so early that the vehicle trajectory predictions are inaccurate 

due to rapid vehicle acceleration. The decision to enter the optimization process 

when using V2I is made based on the speed and acceleration of the last 

queuing vehicle reaching pre-defined thresholds that ensure adequate 

trajectory prediction accuracy. 

In the case of 0% V2I penetration rate, the model relies solely on the critical gap 

method to predict when a queue has discharged. The critical gap method is 

required to be cautious so as to minimize the instances of the optimization 

process beginning too early. If the optimization begins before ‘non-V2I’ vehicles 

are travelling at an, approximately, constant speed it is likely to result in sub-

Figure 5.14: Distribution of time during the green that the Miller 

algorithm begins – 100% V2I coverage. 
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optimal decisions being made. As a consequence, the optimization process is 

entered comparatively later on average than when V2I data is available. In some 

situations this may lead, for example, to the optimizer missing the opportunity 

to end a stage at the optimal point, thus reducing efficiency. Figure 5.14 

demonstrates that the optimization process is entered consistently earlier with 

V2I than when using conventional detection. 

Figure 5.15 shows a distribution of the time into an amber signal that vehicles 

cross the stop line. In the conventional detection case it is necessary to be 

conservative in presenting the amber signal to vehicles to avoid slower moving 

vehicles either failing to cross the stop line or ‘running the red’. V2I detection, 

specifically knowledge of individual vehicle trajectories, enables the amber 

signal to be presented at the relevant time based on the individual vehicle 

speed and, consequently, enables the amber signal to be presented earlier on 

average. This results in a greater proportion of vehicles crossing the stop line 

within the amber period (t<=3 seconds). 

Figure 5.15: Distribution of time into amber signal 

that vehicles cross the stop line. 
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In addition, amber times of greater than 3 seconds indicate non-compliance (i.e. 

vehicles running the red signal). It is clear to see the positive effect on vehicle 

compliance rates with no vehicles crossing amber after 3 seconds with V2I. 

Hence, the introduction of V2I not only reduces delays also increases safety by 

significantly reducing, or in this case eliminating, red running. 

5.3.6 V2I penetration rate 

In the previous sections, although a hybrid model has been introduced, the V2I 

penetration rate has been assumed to be 100%. In this section the performance 

of the hybrid model is tested with different V2I penetration rates to 

demonstrate the rate at which the total benefit of V2I detection can be realised. 

Figure 5.16 demonstrates the performance of the hybrid detection model with 

an increasing V2I penetration rate. The benefit of V2I in the internal traffic 

model is primarily accrued from two elements; more accurate queue discharge 

identification and more efficient stage endings. The profile for higher demand 

reflects the increased importance of more accurate queue discharge 

identification as the junction approaches saturation. 

Figure 5.16: Effect of increasing V2I penetration rate with 

varying demand. 
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The results suggest that the majority of the benefit provided by more accurate 

queue discharge identification is accrued with a penetration rate of 20-30% with 

the remainder of the benefit being primarily provided by improved efficiency of 

stage endings. The overall rate of benefit realisation follows a similar trend for 

both presented demand flows, indicating that approximately two thirds of the 

overall benefit of V2I detection can be realised at approximately one third 

penetration rate. 

At 600 veh/h demand, the benefit at 80% V2I penetration rate is slightly more 

than that for the 100% V2I case. This could simply be explained by the 

stochastic nature of micro-simulation but could be a result of the way the hybrid 

model operates. In some situations, conventionally detected vehicles may be 

presented with an amber signal earlier than a V2I equipped vehicle would due 

to errors in the modelled vehicle position (Figure 5.17). If the conventionally 

detected vehicle still crosses the stop line, albeit later during the amber period 

Figure 5.17: Stage ending example of conventionally detected vehicle stage ending. 
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or even into the red, then it will experience no additional delay. However, 

opposing traffic has been saved a small amount of delay as the signal has 

changed quicker than it would if the green had been extended for the true 

position of the conventionally detected vehicle. 

Clearly, the earlier stage ending is not ideal in terms of road safety and the 

hybrid model has been configured to ensure that instances of red-running are 

minimized. However, it does potentially raise questions regarding the balance of 

safety and performance if the V2I penetration rate reaches 100% of the vehicle 

fleet. 

5.3.7 Turning movements 

As described in Chapter 3, the Simulated Environment has been modified to 

allow a small amount of storage for opposed right turners. The hybrid model 

has been tested with various turning proportions to understand the effect of 

opposed right turners on performance. The results for the base case (0% right 

turning vehicles) vary slightly from those reported in previous sections as a 

consequence of the minor modifications to the network to accommodate right 

turning vehicles (Figure 5.18). 

The results in Table 5.4 demonstrate that, at any V2I penetration rate, the 

performance of the optimizer is not significantly affected with a 5% turning 

proportion. That indicates that the number of vehicles waiting to turn right 

rarely exceeds the internal storage space. As the turning proportion increases, 

the performance of the junction begins to deteriorate more quickly due to 

queued right turning vehicles blocking vehicles travelling ahead. The 15% case 

is considered a worst case scenario as it would be expected that an early cut-off 

filter is provided for such significant proportions of turning vehicles or that the 

junction design would accommodate the movement in a more appropriate 

manner (see section 3.3.2). 
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The improvements in PI for higher V2I penetration rate compared to 0% are 

substantial for higher turning proportions. This is a particularly significant result 

given that the comparison is with the reasonably sophisticated Miller algorithm. 

Table 5.4: PI with turning movements for varying V2I penetration rates. 

 
Proportion of Vehicles 

Turning Right 

V2I Penetration Rate 0% 5% 10% 15% 

0% 31.6 34.1 42.6 63.3 

33% 30.2 33.1 40.6 59.1 

67% 29.1 31.4 37.4 52.4 

100% 28.5 30.3 37.9 53.1 

An interesting observation is that the 67% V2I penetration rate slightly 

outperforms the 100% case at higher turning proportions. The likely explanation 

for this result lies in the queue clearance strategy that is employed before 

Figure 5.18: Modified Simulated Environment incorporating 

opposed turning movements with storage space. 



 155 

 

optimization takes place. At higher turning proportions, the queue on an 

approach fails to clear more often due to blocking from right turning vehicles 

(Figure 5.19). At higher V2I rates, the green signal will continue to be extended 

until the queue clears or the pre-specified maximum is reached. However, in the 

initial queue clearance period the control strategy is not yet optimizing and, 

consequently, the longer green extensions may actually result in a sub-optimal 

stage ending in this circumstance. At lower V2I rates the critical gap method is 

likely to be employed more often, incorrectly identifying that the queue has fully 

discharged but, in some circumstances, potentially providing a better result. 

The MOVA control strategy attempts to address the problem of exit blocking by 

monitoring the queue over the X detector from the start of green and, if 

vehicles have not moved off after a reasonable time, making a decision on 

whether to terminate the green early. However, if the queue is beyond the 

downstream detector it is effectively ignored. 

Figure 5.19: Opposed right turners blocking ahead traffic 

causing a queue downstream of the conventional detector. 



 156 

 

5.3.8 Summary 

The application of the single detector vehicle classification algorithm, developed 

in Chapter 4, to the MOVA representation described in Chapter 3 provides a 

benefit to HGVs of up to 5% in terms of stop and delays. The benefit to the 

articulated HGV class in Scenario 2 (the 5% HGV proportion cases) is greater 

(between 5-10% reduction in delay and stops) but the benefit to all HGVs 

rapidly reduces as the proportion of HGV increases. At the highest proportion of 

HGVs the introduction of vehicle classification has a negative impact on other 

vehicle classes. 

Introduction of V2I detection without classification – at a 100% penetration rate 

– provides a significant benefit compared to conventional detection of between 

10% and 15% for delay and between 5% and 15% for stops. Increased demand 

does not have a significant impact on the optimal stop penalty value for either 

conventional or V2I detection. The benefit in delay provided by V2I increases 

with demand. 

The use of V2I increases the opportunity for optimization and enables the 

amber signal to be presented earlier, on average, than when using conventional 

detection. A secondary benefit of improved stage endings is a substantial 

reduction in vehicles crossing the stop line during the red signal. 

The developed hybrid model is capable of delivering a significant proportion of 

the overall V2I benefit at low penetration rates. For example, it has been shown 

that approximately 65% of the benefit can be realized with a penetration rate of 

around 30%. 

V2I with classification provides a significant benefit for all HGVs over and above 

the use of V2I alone. A consistent reduction in delay of around 5% is reported 

for lower proportions of HGV, reducing as the proportion of HGV increases. The 
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benefit to articulated HGVs is greater, particularly at lower demand flows. In 

most cases the introduction of vehicle classification has a negligible effect on 

non-HGV vehicles but at the highest HGV proportion it provides a noticeable 

benefit to all vehicles. 

Table 5.5 shows that introducing vehicle classification to the MOVA 

representation improves the overall PI in all but the highest HGV proportion 

(with the exception of the 10% HGV case). At the highest HGV proportion, the 

performance of the single detector classification algorithm deteriorates and is 

likely to be an influencing factor. 

The introduction of vehicle classification to the V2I hybrid model improves the 

overall PI compared to V2I alone except in the case of the highest demand, 

demonstrating that providing vehicle classification benefits overall performance. 

At the highest demand it may be the case that providing additional green 

extensions for HGVs is detrimental to overall performance although it is unclear 

why it would only affect the V2I case. The ability to benefit HGVs without 

worsening the overall performance is important when considering road safety 

and local emissions. 

Table 5.5: Percentage improvement in overall PI when implementing vehicle classification. 

HGV Proportion 5% HGV 

(Base case) 

10% HGV 15% HGV 20% HGV 

Conventional  0.4 -0.2 0.5 -1.1 

V2I 0.5 0.0 0.9 1.3 

Demand 400 veh/h 500 veh/h 600 veh/h 

(Base case) 

700 veh/h 

Conventional  0.1 0.1 0.4 0.3 

V2I 0.7 0.7 0.5 -0.9 
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5.4 Conclusions 

Initially, this chapter considered the effect of applying the single detector 

classification algorithm, developed in Chapter 4, to the MOVA representation. 

The length based classification of the algorithm provides a proxy for vehicle 

acceleration performance and enables the effect of applying different stop 

penalty values to each vehicle class to be evaluated.  

Assumptions were made about the frequency and type of data (e.g. vehicle 

speed and type) that will be made available through V2I. Importantly, the 

purpose of incorporating V2I in this case was to quantify the benefit that can be 

achieved by improving the accuracy of the traffic model of the existing Miller 

optimization method. To implement V2I, a hybrid model was developed that is 

capable of combining conventionally detected data with V2I data to realise the 

benefits of V2I as quickly as possible. The benefit of introducing vehicle 

classification to enable assignment of optimization weightings by vehicle type 

was subsequently considered and compared to V2I alone. 

Considerable benefit, compared to a MOVA representation, of between 10% 

and 15% in terms of delay has been demonstrated for all vehicles as a 

consequence of the more accurate and more comprehensive data provided by 

V2I. The magnitude of benefit is consistent with the outcomes reported by Feng 

et al. (2015) for a 100% penetration rate, supporting the findings of this chapter. 

However, the benefit for HGVs can be substantially increased, by almost 20% in 

the case of the slowest accelerating vehicles, as a result of incorporating vehicle 

classification. The additional benefit to HGVs is particularly apparent at lower 

demand. The results also suggest that providing HGVs with a superior level of 

service can benefit all vehicles, particularly as the proportion of HGVs increases. 
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It is important to note that the comparisons made in this chapter are not to a 

fixed-time, or even the UK standard System-D VA strategy, but rather a 

reasonably sophisticated and well-established optimization technique. 

The vehicle classification section of this paper has focused on providing vehicles 

with slow acceleration a greater weighting in the optimization process. This 

differs from the majority of bus priority applications in that the optimizer 

weighting is based on vehicle performance rather than factors such as vehicle 

occupancy or policy objectives. 

Such a large reduction in stops per vehicle, particularly for HGVs – including up 

to 30% for articulated HGVs – as a result of introducing V2I technology with 

vehicle classification would have a considerable positive effect on fuel 

consumption and emissions. The freight industry would benefit from this but 

the impact on public health due to reduced emissions is just as important, if not 

more. 

The hybrid detection model tests indicate that a substantial proportion of the 

benefits demonstrated in this paper can be achieved at relatively low 

penetration rates (e.g. 65% of the full benefit with 30% penetration rate) and 

that there is no lower threshold of V2I coverage required before benefits start to 

materialize. Consequently, the findings of this chapter have important policy 

and implementation implications given the immediate nature of return on 

investment. 
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Chapter 6: A car-following based optimizer 

A car-following model based optimizer 

6.1 Introduction 

The previous chapter investigated whether modifying an existing, state-of-the-

art, algorithm to explicitly account for vehicle class in the optimization process, 

could improve the performance of the optimizer. It also described the 

development of a hybrid model that enables V2I data to be used alongside 

conventional detection to enhance the performance of the algorithm. The 

hybrid model is capable of providing a relatively simple spatial representation of 

vehicles traversing approach links to a junction when the V2I penetration rate is 

greater than 0%. 

The spatial representation of the hybrid model takes into account some of the 

interaction between vehicles and enables an improved estimation of vehicle 

trajectories. However, the Miller algorithm incorporated in the MOVA 

representation still makes use of the data provided by the hybrid model in the 

same way as the simple vertical queue model presented in Chapter 2. That is, no 

changes are made to the Miller optimizer itself but rather to the accuracy of the 

data presented to the optimizer and the identification of when the optimization 

process should begin. 

It is recognised that, although the hybrid model provides some representation 

of vehicle interaction, it is not a sophisticated car-following model and is based 

on a set of simple rules (i.e. retaining a minimum headway between vehicles) as 

opposed to being derived from traffic flow theory. Furthermore, in the previous 

chapter, the hybrid model is used in conjunction with the Miller (1963) 
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algorithm, thus necessitating the retention of a pre-specified stop penalty to 

ensure that the delay caused by a vehicle stop is fully accounted for. 

This chapter investigates whether a more detailed spatial model, capable of 

representing interaction between vehicles, could provide an additional 

performance enhancement compared to the hybrid model incorporated into the 

MOVA representation developed in Chapter 3. A popular and more 

sophisticated car-following model is described here and the methodology used 

to implement it explained. A new optimization method has been developed to 

incorporate the more sophisticated car-following model into the optimizer, the 

development and testing of which is also described. 

Figure 6.1: Schematic showing 

Chapter 6 structure. 
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The car-following traffic model is first implemented with the classification 

algorithm developed in Chapter 4 and is then developed to incorporate V2I 

detection with classification. Finally, the developed control strategy is tested 

with various V2I ranges to demonstrate the effect of providing an increased 

visibility of vehicle arrivals on optimizer performance. 

6.2 Model type 

The vertical queue model used in the MOVA representation, described in 

Chapter 2, assumes that vehicles travel at a constant speed from the point of 

detection to the signal stop line and are then added to a ‘vertical’ queue whilst 

the signal is at red. When the signal becomes green, the queue is assumed to 

discharge at a constant rate, the saturation flow rate. In the modified Miller 

method, described in Chapter 3 the saturation flow rate is primarily used to 

estimate the length of time a queue on an approach, currently receiving a red 

signal, will take to discharge once the signal becomes green. 

The vertical queue model does not represent any interaction between vehicles 

and the delay calculated in the Miller method is therefore a simplification and 

possibly, in some cases, an underestimation of the reality. As discussed in 

Chapter 3, it is not clear whether the Miller algorithm fully accounts for the 

delay caused by a vehicle stop or whether it only accounts for the initial delay 

between the start of the green signal and the average queue discharge rate 

being achieved (Figure 6.2). Consequently, a modification is made that is 

described in Chapter 3 section 3.2.3 as part of the MOVA representation. The 

stop penalty value, as implemented in the MOVA control strategy, must be 

calibrated by a practitioner during a relatively short time period based on 

observations of vehicle mix, speed and site specific factors that affect driver 

behaviour. It can be seen that the selection of a stop penalty value is therefore 
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subject to error that can result in deterioration of performance from the optimal 

value. 

Conversely, a spatial model such as a car-following model can more accurately 

represent the interaction between vehicles. The deviation of journey time from 

an ‘ideal’ (i.e. unstopped) journey can be recorded to effectively include the 

delay incurred throughout the stop/start process. When considering emerging 

technology such as V2I, the increase in the volume and type of information 

available would suggest the use of a more detailed model to enable more of the 

information to be utilised. For the existing situation, the use of a model that can 

more accurately reflect the impact of vehicle stops, thereby removing the need 

for a stop penalty value, is an attractive proposition. However, the use of a more 

complex model poses a number of challenges that need to be considered when 

developing a practical solution, some of which are addressed in this chapter. 

Figure 6.2: Vehicle trajectory example showing the stop penalty purpose. 
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6.3 The Gipps model 

6.3.1 Choice of model 

Any reasonably sophisticated car-following model could realistically have been 

chosen for this application. The aim of this chapter is not to re-invent or develop 

a new car-following model but rather to evaluate the effect of applying a more 

detailed traffic model to the optimization process. The Gipps (1981) model was 

chosen for this study due to the relative ease with which it could be 

implemented into the optimizer and the correlation between model parameters 

and driver behaviour/vehicle characteristics. The correlation between model 

parameters and real-world properties is important if the car-following method is 

developed further. As with existing models, practitioners would need to 

calibrate the model to account for site specific conditions, particularly in the 

case of conventional detection. The easier it is to relate the model to the real-

world, the more likely it is that the model will be accurately calibrated. 

The Vissim micro-simulation software package, in which the Simulated 

Environment is constructed, employs the Wiedemann (1974) car-following 

model described in Chapter 2. The Wiedemann (1974) model is a psycho-

physical model based on a drivers’ perception of the difference in speed 

between their vehicle and the preceding one. The model parameters that affect 

saturation flow are less relatable to real-world characteristics. For example, in 

the Wiedemann (1974) model, one of the terms used to calculate the following 

distance consists of two parameters, the additive part of desired safety distance 

and a multiplicative part of the safety distance. The correlation between these 

parameters and real-world vehicle/driver characteristics is unclear in the 

available literature. 
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A consequence of using different car-following models is that the model 

behaviour will differ slightly and model parameters will not directly correlate. 

Conversely, using the same car-following model in the Simulated Environment 

and the internal traffic model of the optimizer would not present a reliable 

indication of the ability of a car-following model to reflect real-world conditions 

as model parameters could be calibrated to match those of the Simulated 

Environment. The use of a different model ensures that the optimizer does not 

have perfect knowledge of the following behaviour and is therefore more 

representative of a system that is calibrated to a real-world set of parameters 

such as vehicle performance characteristics. 

Ordinarily, in micro-simulation software, the characteristics such as acceleration, 

deceleration and desired speed are randomly chosen from a pre-specified 

distribution as the vehicle is entered onto the modelled network. The stochastic 

nature of micro-simulation is created as the random seed specified for the 

model is adjusted from one simulation run to the next, resulting in different 

parameter values being selected from the various distributions. 

In this application, certainly in the case of the real-time element of the optimizer 

algorithm, much of the stochasticity is removed as parameters such as the 

desired speed, for example, are not known. In future, it may be possible to 

gather more information regarding vehicle and driver characteristics such as 

acceleration, deceleration, desired speed and reaction time but such information 

is subject to various issues regarding data privacy and policy, discussed in 

Chapter 7. Ultimately, if the performance characteristics of a vehicle such as 

acceleration and deceleration can be tracked at upstream junctions through a 

network, the parameters used in the model could be made vehicle specific 

rather than vehicle type specific. 
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6.3.2 The Gipps model principles 

The car-following model proposed by Gipps (1981)is based on the principle of 

setting performance limits on the driver and vehicle that are used to calculate a 

safe speed, that is, a speed that ensures the vehicle can stop safely if the 

preceding vehicle stops rapidly. The equation used to describe the Gipps model 

is split into two terms. The first term (Equation 6.1) describes two constraints. 

The first constraint is that a vehicle should not exceed its driver’s desired speed 

and the second is that the acceleration should first increase with speed as 

engine torque increases and then decrease to zero as the vehicle approaches 

the desired speed. 

The second term (Equation 6.2) considers the limitation of braking. If the 

preceding vehicle brakes at its driver’s maximum desirable rate then the 

following vehicle must be travelling at a far enough distance behind to allow for 

the driver reaction time and the vehicle stopping distance. A further safety 

margin is also included that allows for an additional delay in driver reaction 

time. This allows for some margin of error for the following driver to react to the 

vehicle ahead. 

The vehicle speed in the new time step is calculated by Gipps (1981) as the 

minimum of the two terms Equation 6.1 and Equation 6.2, described by 

Equation 6.4. 
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 (6.3) 

 (6.4) 

where: 

= Maximum acceleration that the driver of vehicle n wishes to 

undertake (ms-2). 

  = The maximum deceleration that the driver of vehicle n wishes to 

undertake (ms-2). 

  = The maximum deceleration that the driver of vehicle n-1 wishes 

to undertake (ms-2). 

 = The effective length of vehicle n. The sum of the vehicle length 

and the distance to the preceding vehicle at standstill (m). 

  = The desired speed of vehicle n (ms-1). 

 = The position of the front of vehicle n at time t (m). 

 = The speed of vehicle n at time t (ms-1). 

 = The reaction time (s). 

6.3.3 Calibration of parameters 

As already discussed, in micro-simulation applications vehicle and driver 

characteristics are randomly assigned from a distribution of values (based on 

observed data) as vehicles enter the road network. Assigning characteristics with 

a certain degree of randomness helps to reproduce the stochasticity observed in 

reality. 
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For this application, the car-following model is being used to replicate the 

behaviour of real vehicles where the exact parameter values are not known. In 

the optimizer algorithm (discussed later) the car-following model parameters 

are assigned average values based on evaluation of optimizer performance over 

multiple model runs. This applies to the real-time and ‘cloned run-ahead’ 

elements of the optimizer algorithm. 

However, as is explained later in the chapter, random variation could be 

introduced for the ‘cloned run-ahead’ element of the optimizer algorithm. 

Introducing noise in the optimizer calculations would be an interesting further 

study and could potentially improve the performance of the optimizer but 

would also increase the computational requirements considerably and thus the 

number of random seeds (i.e. the number of model runs with different random 

noise distribution) would need to be carefully considered. 

The calibrated parameters in Table 6.1, with the exception of desired speed, 

have been evaluated in quarter second steps using the PI described in Chapter 

3. The desired speed has been evaluated in half second steps. The various 

parameters were calibrated by evaluating the results from multiple model runs 

containing only vehicles of the respective classes. An indication of the 

parameter values could be gained from the speed distributions used in Vissim, 

derived from ATC data (as described in Chapter 3). However, as previously 

discussed, the values are not necessarily directly comparable given the 

difference in car-following models. 
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Table 6.1: Calibrated Gipps vehicle characteristics. 
 

Car/Van Rigid HGV A-HGV 

     (ms
-2

) 3.0 1.5 2.0 

     (ms
-2

) -3.5 -2.5 -2.5 

     (ms
-1

) 13.5 13.5 13.5 

Table 6.1 shows that the desired speed parameter is identical across all three 

vehicle classes. This reflects the urban nature of the link and that speeds are 

constrained by a speed limit. Interestingly, the optimum desired speed value is 

lower than the free flow speed used in Chapter 5. The maximum acceleration of 

the rigid HGV class is slightly lower than for the articulated HGV class reflecting 

the different vehicle power distributions used in Vissim. 

The parameter �� has been set using a method that users can employ in the 

Aimsun micro-simulation software package, referenced by Ciuffo et al. (2012), 

which averages the maximum desired deceleration of the leading and following 

vehicle: 

 (6.5) 

It is recognised that this does not guarantee there will be no intrusions on the 

leading vehicle. However, in this context it is unlikely to significantly affect the 

outcome of the optimization. It is possible that an alternative method of 

estimating �� could provide superior results. However, it should be noted that, as 

�� is an estimation by a driver of the maximum deceleration of the preceding 

vehicle, it is impossible to derive the value with 100% accuracy. 
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6.4 Optimizer development 

The Simulated Environment has been modified, as shown in Figure 6.3, to 

relocate the conventional downstream detector to beyond the stop line. The 

primary reason for relocating the detector is to allow the flow rate to be 

monitored at the start of the green signal. Monitoring the rate of queue 

discharge enables adjustments to be made to the model, discussed in the 

following section, to account for instances of a queue discharging more slowly, 

or quickly, than predicted. This can particularly present an issue at higher HGV 

proportions where errors in the single detector classification algorithm, 

described in Chapter 4, become more common. The consequence of an increase 

in error is that some HGVs may be incorrectly classified as short vehicles and 

thus the predicted rate of discharge is higher than the actual rate. 

Figure 6.3: The updated simulated layout for the car-

following method - conventional and V2I detection overlaid 
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Relocating the detector is made possible due to the change in model type. The 

modified Miller method employed in the MOVA representation relies on a 

critical gap being identified over the ‘X’ detector to identify the point at which 

the optimization begins. That method eliminates the requirement to explicitly 

model the process of the queue discharging but, as a result, prevents any spatial 

representation of interaction between vehicles. 

The relocation of the X detector to beyond the traffic signal stop line requires 

new infrastructure to be implemented where a site already has a MOVA type 

layout. In some cases, stop line detection will already be present. This is usually 

the case where the signals do not automatically revert to green when no 

demand is present as it ensures a fail-safe for cyclists if the vehicle detection 

does not register the demand. Where no detection currently exists, the 

detectors would make use of existing ducting infrastructure (required for the 

traffic signals themselves) which would significantly reduce the cost of 

installation compared to detection further upstream. 

In the car-following method, the last queuing vehicle is instead tagged in the 

internal traffic model and monitored to ascertain the point at which the 

optimization process can be entered. The method of identifying the point at 

which optimization begins is consistent with that introduced for the hybrid 

model developed in the previous chapter. The use of the latter method negates 

the need for a second detector upstream of the stop line to monitor gaps but 

introduces a requirement to accurately monitor the initial queue discharge rate. 

Thus, relocating the detector to immediately beyond the stop line satisfies this 

requirement whilst enabling the physical infrastructure requirements to be kept 

to two detectors per lane. 
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6.4.1 Accommodating model error 

To implement any traffic model in an on-line optimizer requires that practical 

issues regarding the response of the model to limited data availability and 

model error are addressed. The introduction of a car-following model is no 

different in this regard and some of the techniques used to accommodate 

practical issues are described in Appendix C. 

6.4.2 A car-following model based optimizer 

6.4.2.1 Justification 

As described in Chapter 3, the Miller method is implemented using a vertical 

queue model. The algorithm makes assumptions regarding the queue discharge 

rate and the ‘penalty’, in terms of overall delay, of a vehicle approaching the 

stop line being stopped. The queue discharge rate is assumed to be constant 

from one cycle to the next. Although the discharge rate, selected by a 

practitioner during observations, implicitly takes into account the vehicle mix, it 

does so as an average value rather than reflecting the impact that individual 

vehicle performance can have on queue clearance time from one cycle to the 

next. 

Figure 6.4: Examples of the placement of slow accelerating vehicles in a queue. 
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As an example, for a vehicle mix with an otherwise low HGV proportion, the 

discharge rate may be selected at a relatively high value. However, in some 

cycles the queue may contain at least one HGV with substantially inferior 

acceleration performance compared to other vehicles. In that situation, the 

queue clearance time could be significantly underestimated, resulting in the 

optimization process being entered prematurely and sub-optimal decisions 

being made. The degree to which the heterogeneous nature of the vehicle mix 

will impact the performance of the optimizer is also likely to depend on the 

position within the queue of the vehicle with inferior performance 

characteristics. 

If a vehicle with a slow acceleration profile is leading the discharging queue, all 

following vehicles will be constrained to the performance of the leading vehicle 

(Figure 6.4). The ‘stop penalty’, according to the modified Miller algorithm could 

therefore effectively be far greater depending on the number of vehicles in the 

queue and their acceleration characteristics. It is clear that the dynamics of 

interaction between vehicles results in greater complexity than can be 

represented by a simple vertical queue model, hence the proposal for a car-

following model. The Miller algorithm used in the MOVA representation cannot, 

using average values for parameters, fully reflect the resulting variability in 

discharge rate or impact of stops. Consequently, a new optimization method 

has been developed to accommodate a car-following model. 

6.4.2.2 Optimization principles 

The developed optimizer operates on the same principle as the Miller method, 

principally that a rolling horizon scheme is employed, updated each time step 

with the most recent data available. As in the Miller method, the benefit of 

extending a green signal is compared to the additional delay caused to waiting 
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vehicles. Retaining the principle of the Miller method allows for comparison of 

the vertical queue and car-following traffic models. 

However, rather than evaluating extensions of h, 2h, 3h etc time steps, the green 

signal is instead extended until the next vehicle reaches the ‘critical distance’, 

the point where it is committed to crossing the stop line even if the green signal 

were terminated (Figure 6.6). To enable the total delay experienced at the 

junction to be evaluated for different green extensions, this process is repeated 

for each vehicle on the modelled links currently at green (i.e. every vehicle that 

has been detected is tested). 

Figure 6.6: Initial green extension time for each signal controller clone. 

Figure 6.5: Example of one-cycle horizon. 
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In practise, to evaluate the delay resulting from different green extensions 

requires that a clone of the signal controller model is created for each vehicle on 

the link. For each clone, the model of the traffic signal junction is run ahead for 

the initial green extension time required for the identified vehicle on the 

approach link to reach the point at which it will cross the stop line. At this point 

the green signal is terminated, queues on conflicting links are discharged and 

then, finally, any residual queue on the links that were at green when the signal 

controller was cloned is discharged to complete evaluation over one cycle 

(Figure 6.5). The final part of the process ensures that any consequential delays 

to vehicles in the next cycle as a result of a green extension are accounted for. 

The total ‘run-ahead’ time ensures that the delay, incurred by vehicles that are 

stopped as a result of terminating the green after the initial green extension, is 

fully accounted for. The delay for each vehicle is recorded by the optimizer as it 

crosses a point downstream of the stop line (to ensure the delay has been fully 

captured) and is retrieved at the end of each cloned signal controller run-ahead 

along with the total number of vehicles to cross the stop line to enable the 

average delay per vehicle to be calculated. 

The value of delay is compared to that resulting from the signal switching 

immediately. If, at any point, it is identified that there is an advantage to 

Figure 6.7: Example of an optimizer result for one time-step. 
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extending the green signal, the optimizer is suspended until the following time 

step (Figure 6.7). 

6.5 Implementing V2I 

The introduction of V2I to the car-following model is considered with an 

assumed 100% coverage. The interaction between leading and following 

vehicles, represented in the car-following model, makes the implementation of 

V2I more complex than in a vertical queue model. For example, the headway 

between modelled vehicles depends on the value of the parameters used in the 

car-following model. However, there may be cases where, in reality, a vehicle is 

willing to follow another more closely than the model will allow. Whilst this is 

not an issue when the model is running in real-time and updating vehicle 

positions from V2I data, it causes issues when the signal controller model is 

cloned to run ahead, at which point the car-following model is applied. 

Once the car-following model is applied, the model parameters take effect and, 

for a vehicle following more closely than the parameters will allow, the result is a 

rapid deceleration, or in some cases a ‘jump’ backwards, to the point at which 

the vehicle is following at a headway that satisfies a safe following distance in 

the car-following model (Figure 6.8). This perturbation will propagate along the 

link to any vehicles following within a reasonable distance and potentially cause 

vehicles to discharge at a slower rate than would otherwise be the case. 
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To mitigate this effect, the headway between vehicles is monitored in the real-

time instance of the model and, where it falls below the safe following distance 

dictated by the car-following model, the parameters of the model are modified 

to reduce the safe distance. To modify the parameters, an iterative process is 

undertaken whereby the relevant parameters are adjusted until the car-

following derived speed (and thus safe distance) matches the actual speed 

taken from the V2I data, or until the parameter values reach a pre-defined limit 

of acceptability. 

Figure 6.8: Example of the effect of switching from real-time V2I data to car-

following model calculated vehicle positions in a cloned signal controller 

model. 
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First, it is determined whether Equation 6.1 or Equation 6.2 is dictating the 

following vehicle speed. If Equation 6.2 is dictating the vehicle speed then the 

speed is being constrained by the leading vehicle. The nature of the constraint is 

determined by whether the following vehicle is decelerating or accelerating. If 

the following vehicle is decelerating then the maximum deceleration that the 

driver of the vehicle wishes to undertake n
b  is likely to be the dominant factor 

in the derivation of vehicle speed. If, however, the following vehicle is 

accelerating then the maximum expected deceleration b̂  of the leading vehicle 

Figure 6.9: Schematic of the iterative process followed to adjust car-following 

parameters based on actual vehicle speed and position data from V2I. 



 180 

 

is likely to become the dominant factor. If parameter n
b is dominant then the 

value of n
b  is reduced in steps of 0.25ms-2 down to a limit of -4.5ms-2. If 

parameter b̂ is dominant then the value of b̂  is increased in 0.25ms-2 steps up to 

a limit of -1.75ms-2. This process is described in Figure 6.9. 

The parameter value limits chosen here are approximately 25% above and 

below the respective -2.5ms-2 and -3.5ms-2 maximum deceleration values 

assigned to the vehicle classes in Table 6.1. The 25% limit was chosen as a 

reasonable performance deviation from the original parameter values but could 

be subject to additional investigation if this method were to be developed 

further. It is perhaps the case that the limit values could be absolute values 

rather than being relative to the validated vehicle class parameter values. 

Finally, if the vehicle speed is very low then the distance between vehicles 

becomes the dominant factor. In this case, the position of the leading and 

following vehicle is known and so the modelled effective vehicle length (that is, 

the sum of vehicle length and safety standstill distance between vehicles) can be 

adjusted to the actual effective vehicle length. 

Once the parameters have been modified, the new values are retained until the 

vehicle leaves the link unless further interaction with a preceding vehicle 

triggers subsequent parameter changes. 

6.6 Results 

6.6.1 Introduction 

The results for implementing a car-following model into the traffic signal 

optimizer, using conventional detection with the single detector classification 

algorithm and V2I detection with classification, are detailed in this chapter. The 
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results are compared to the MOVA representation described in Chapter 3 and 

the hybrid model presented in Chapter 4 for: 

� Different proportions of HGV with fixed demand of 600 veh/h 

(Scenario 1); and 

� Different demands with a fixed proportion of 5% HGV (Scenario 2). 

Results are also presented for various V2I detection ranges to demonstrate 

the effect of an increased range. 

As in Chapter 4, the term HGV refers to the previously defined 

combination of rigid and articulated HGVs. However, some specific results 

for rigid and articulated HGVs are also reported. 

Initial testing showed that applying a stop penalty value to the car-following 

model does not provide a benefit in terms of the PI described in Chapter 3. The 

reason for this is likely to be that the car-following model method already 

includes the full delay associated with a vehicle stop and therefore the addition 

of a stop penalty would be solely for reasons of policy. If more than one 

junction was to be considered in an optimizer then the introduction of a stop 

penalty may have more of an influence in determining the offset between the 

junctions.  

6.6.2 Implementation with conventional detection 

Results are first presented for the implementation of a car-following model 

using conventional detection with the single detector classification algorithm 

presented in Chapter 4. The results are compared to the MOVA representation, 

described in Chapter 3 to provide a consistent evaluation. 
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Figure 6.10 demonstrates the change in delay for each vehicle class compared 

to the MOVA representation when using a car-following model with 

conventional detection. The results show that, for Scenario 1 (a, b), whilst there 

is an overall benefit for delay, there is actually an increase in delay to HGVs at 

lower HGV proportions. For vehicle stops there are mixed results for HGVs but 

the general trend is a benefit to all vehicles that decreases as the proportion of 

HGVs increases. The results for Scenario 2 (c, d) suggest that the car-following 

model only begins to provide a benefit at higher demand and that, in general 

any benefit is relatively minor. 

The negative impact of the car-following model on delay at lower levels of 

demand is possibly a result of the increased uncertainty of vehicle positions 

between the upstream detector and stop line when compared to the MOVA 

representation. Moving the downstream detector beyond the stop line provides 

Figure 6.10: Change in delay and stops by vehicle class, using a car-following model with 

single detector classification, compared to the MOVA representation for Scenario 1 (a, b) 

and Scenario 2 (c, d). 
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a benefit when monitoring the rate of queue discharge during a green signal 

but it increases the reliance on the internal traffic model to accurately estimate 

the position of vehicles upstream of the stop line. It could also be the case that, 

at low demand, the vertical queue model provides a good approximation of 

traffic flow that then deteriorates as the conditions approach saturation. 

Another contributing factor, and also the probable reason for the mixed results 

for HGVs, is the single detector classification algorithm. In Chapter 5, the single 

detector classification algorithm is implemented into the MOVA representation 

to allow stop penalty values to be assigned based on vehicle length (as a proxy 

for class). In that case, the accurate classification of vehicles is most important 

during the Miller optimization process. During that process, the speed of 

vehicles over the upstream detector is assumed to be approximately free-flow 

and approximately constant. The results of Chapter 4 show that the single 

detector classification performs better in those conditions than when the vehicle 

speed is reduced, or is fluctuating over the detector (Figure 4.17). 

However, when applying the classification algorithm to the car-following model, 

the performance of the model relies on accurate data during all conditions as it 

affects interaction between vehicles during initial queue discharge. The 

performance of the classification algorithm at lower vehicle speeds therefore 

has a greater impact on the overall performance of the car-following model 

than on the MOVA representation. 
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At higher demand, the relocation of the downstream detector to beyond the 

stop line is likely to provide a greater benefit to the car-following model as the 

accurate estimation of the rate of queue discharge becomes an increasingly 

dominant factor in the control strategy performance. 

6.6.3 Implementation with V2I detection 

The next results are presented for the implementation of a car-following model 

using V2I detection. Two comparisons are shown in this section to provide a 

demonstration of the relative performance of the car-following based optimizer: 

� A comparison to the hybrid model developed in Chapter 5 (using V2I 

but without vehicle classification); and 

� A comparison to the hybrid model developed in Chapter 5 with V2I 

based detection and vehicle classification. 

Figure 6.12 demonstrates a much more consistent performance benefit for the 

car-following model, over and above the hybrid model with V2I detection alone. 

The increased consistency compared to the use of conventional detection 

supports the hypothesis provided in the previous section regarding the impact 

of the single detector classification algorithm performance on the car-following 

model. 

Figure 6.11: Average absolute error for speed and length estimation of 

single detector classification algorithm. 
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As expected, the benefit to HGVs decreases as the proportion of HGVs 

increases. However, for Scenario 2 (c, d), although there is an expected trend of 

reducing benefit to HGVs as the demand increases, there is also an anomaly in 

the lowest demand case. The increase in articulated HGV delay and stops 

compared to the hybrid model does not follow the general trend of the results. 

The full results (Appendix B) show that the hybrid model (without classification) 

tends to provide the most benefit to non-HGVs. However, in the lowest demand 

case the benefit of the hybrid model to HGVs is greater than for non-HGVs and 

greater than the benefit provided by the car-following model. The benefit of the 

car-following model is actually more equitable across vehicle types in this case. 

Figure 6.12: Change in delay and stops by vehicle class, using a car-following model 

with V2I detection, compared to the hybrid model with V2I detection for Scenario 1 (a, 

b) and Scenario 2 (c, d). 
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Aside from the anomaly for HGVs in the lowest demand case, the results for all 

vehicles provide a clearer demonstration of the performance benefit that the 

car-following model provides. The graphs for vehicle stops show that there is a 

consistent benefit for all vehicles of approximately 5% when compared to the 

hybrid model, increasing at lower demand, whilst the results for delay remain 

largely consistent with the hybrid model. 

To compare the relative performance of the developed hybrid model and the 

car-following based optimizer, both with V2I detection and vehicle classification, 

the results are presented in Figure 6.13. The results show that, in terms of delay, 

the car-following model based optimizer performs similarly to the hybrid model 

with the differences generally not statistically significant. However, when 

considering vehicle stops, the car-following model provides a clear benefit 

compared to the hybrid model. There is a consistent overall benefit, regardless 

of HGV proportion, of approximately 5% and a more significant benefit at lower 

Figure 6.13: Change in delay and stops for all vehicles when using a car-following model 

with V2I detection compared to the hybrid model with V2I detection (including 

classification). 
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demand of almost 10%. This suggests that the combination of a more 

comprehensive representation of interaction between vehicles provided by the 

car-following model and the modified optimizer does indeed provide an overall 

benefit in performance. 

6.6.4 The effect of V2I range 

Finally, the Simulated Environment has been modified to enable the V2I range 

to be varied to understand the effect on the performance of the optimizer. 

Figure 6.14 shows the normalized PI for various demand cases indicating the 

optimal range. Normalization has been achieved by taking the maximum and 

minimum values for each data series and scaling each series between those 

points. 

The range of between 200-300 metres equates to a travel time of approximately 

15-22 seconds. It could be assumed that an ever increasing detection range 

would provide diminishing benefits but benefits nonetheless. However, these 

results suggest that there is no benefit to providing a range in excess of 

approximately 22 seconds travel time from the junction (based on the average 

free-flow speed of 13.5ms-1), a finding that is consistent with the 25 seconds 

derived by Robertson and Bretherton (1974). 

Figure 6.14: Normalized PI for various demand cases for an 

increasing V2I detection range. 
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The reason for this is likely to be a result of the uncertainty associated with 

vehicle travel time to the stop line. The V2I data for vehicle position and speed 

is available to the optimizer continuously and, as is the case for the Miller 

algorithm, the effect of extending the green signal is considered up to the 

maximum range of the detection on links currently at green. However, as the 

distance from the stop line increases, the benefit associated with providing an 

increased look-ahead to the optimizer eventually becomes outweighed by the 

uncertainty in vehicle travel time. Thus, there is a point beyond which the 

increased range is no longer useful. 

In Figure 6.14 the optimiser performance worsens significantly beyond 

approximately 400 metres in the low demand case but less so for the high 

demand scenario (800 veh/h). As the junction approaches saturation, vehicles on 

the approach travel more closely together and so there is less variation in speed. 

Consequently, there is a greater certainty of travel time further from the junction 

in the 800 veh/h scenario than in the 400 veh/h scenario, hence the less 

significant worsening in performance. 

In this study, the same weighting has been applied to all green extensions 

during the optimization. However, an increasing penalty could be applied to 

longer green extensions to account for the increased uncertainty in the 

estimated arrival time at the junction. This may reduce the extent to which 

overall performance worsens at longer detection ranges. Full results are 

available in Appendix B. 

6.7 Conclusions 

In this chapter a car-following model has been implemented to replace the 

vertical queue method employed in the MOVA representation described in 

Chapter 3. The implementation of the car-following model required 
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development of a new optimizer and a modification to the Simulated 

Environment to relocate the downstream conventional detector beyond the 

signal stop line. 

The results showed that implementation of the car-following model using 

conventional detection provides a general overall benefit for delay and stops 

when compared to the MOVA representation. However, the MOVA 

representation outperforms the car-following model at lower demand and the 

results for HGVs are mixed. It is likely that the mixed results are at least partly a 

consequence of vehicle classification errors when using the single detector 

classification algorithm presented in Chapter 4. As discussed in section 6.6.2, the 

way that the classification algorithm is applied to the MOVA representation 

reduces the impact of classification errors compared to the car-following model. 

The addition of V2I detection to the car-following model introduces greater 

consistency. The performance of the optimizer is first compared to the hybrid 

model alone, developed in Chapter 5 (both with 100% V2I coverage). The hybrid 

model makes use of the Miller method and the car-following model uses the 

optimizer developed in this chapter. The comparison between methods 

demonstrates that the car-following model provides a benefit for stops, 

particularly at low levels of demand, of up to almost 10% with little or no impact 

on delay. The benefit for HGVs is more pronounced, with the exception of the 

lowest demand case, with a reduction in stops of approximately 30% in one 

case. 

The subsequent comparison of the car-following based optimizer with the 

hybrid model, this time with V2I-based vehicle classification included, is perhaps 

the most representative comparison of the two techniques. The results show a 

consistent and statistically significant benefit provided by the car-following 

based method in terms of stops of almost 10% in the lowest demand case. The 
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reduction in stops is over and above the benefit (compared to the MOVA 

representation) already demonstrated in Chapter 5 by the hybrid model with 

V2I-based vehicle classification. 

The introduction of V2I to the car-following model demonstrated the advantage 

of modelling the interaction between vehicles more comprehensively but also 

highlighted the importance of providing accurate data to the traffic model. The 

car-following model has been shown to provide important benefits compared 

to the hybrid model but provided mixed results when implemented with 

conventional detection. 

The effect of V2I range on optimizer performance was also tested in this 

chapter. Normalized PI results demonstrated that the optimal V2I detection 

range for the Simulated Environment is between 200-300 metres from the signal 

stop line. At the average free-flow speed, this equates to approximately 15-22 

seconds travel time, a finding consistent with Robertson and Bretherton (1974). 

It is possible that at a junction with more ‘friction’ on the approach to a junction, 

such as on-street parking or bus stops, the increased travel time uncertainty 

would reduce the useful V2I range further. The findings, primarily that there is 

an optimal range and that the benefit does not simply continue to increase with 

range, has potential implications on infrastructure requirements. For example, 

the range of current DSRC communications devices is approximately 1000 

metres and so it may be possible to deploy fewer devices across a network. 
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Chapter 7: Conclusions 

Conclusions 

This chapter draws together the conclusions from each of the previous chapters 

and provides an overall summary of the contributions of this research in relation 

to the objectives set at the beginning of the study. There then follows a 

discussion of the findings and the possible next steps to further develop the 

research undertaken in this thesis. 

7.1 Main conclusions and contributions 

The main objectives of this study were set out in Chapter 1 and then refined in 

Chapter 2. A Simulated Environment is constructed and described in Chapter 3. 

The research described in each of the following chapters (Chapter 4, 5 and 6) 

contributes to achieving the objectives of the study. In this section the 

conclusions from those chapters are brought together and the contributions 

discussed. The objectives of this thesis were: 

1) To investigate whether a single detector vehicle classification method can 

be developed, using only existing infrastructure, which is capable of 

explicitly classifying HGVs. Then, to assess whether the accuracy of such a 

method is adequate to provide a performance benefit in a traffic signal 

optimizer in terms of minimizing delay and stops; 

2) To develop a control method capable of incorporating a hybrid detection 

traffic model that can simultaneously make use of conventional and 

connected vehicle (i.e. V2I) data in order to test whether benefits of V2I 

can be realised sooner than the, approximately, 30-50% penetration rate 

described in current literature; 
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3) Extend the hybrid model to utilise V2I-based vehicle classification data 

and investigate the effect on optimizer performance; 

4) Apply a microscopic traffic model to an on-line responsive traffic signal 

optimizer to identify whether the more detailed representation of vehicle 

interaction can provide a benefit to the performance of an optimizer in 

terms of its ability to minimize stops; and finally 

5) Assess the impact of V2I range on the performance of the developed 

control method. 

A summary table is provided in Table 7.1 to provide clarity on how various 

sections of the study relate to each of the objectives. The conclusions related to 

each objective are then discussed in greater detail below. 

Table 7.1: Objective summary table. 

 Relevant sections of study 

Objective 1 

Two single detector classification algorithms were developed in Chapter 

4 with testing of the preferred algorithm in Chapter 5 (modified MOVA 

representation) and Chapter 6 (car-following model based optimizer). 

Objective 2 
The development of a hybrid model that is capable of using 

conventional and V2I-based detection data was developed in Chapter 5. 

Objective 3 
An extension of the hybrid model to incorporate V2I-based vehicle 

classification data was developed later in Chapter 5. 

Objective 4 
A car-following model based optimization method was developed in 

Chapter 6. 

Objective 5 
The impact of range on the performance of the car-following model 

based optimization method was investigated later in Chapter 6. 

The first objective was initially addressed in Chapter 4 with the development of 

two algorithms to estimate the speed of vehicles crossing a detector and to 

classify them by length. The preferred algorithm was then applied to a modified 
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existing traffic signal optimizer in Chapter 5 and a developed optimizer in 

Chapter 6 with the findings concluding the aims of the objective. 

The second single detector classification algorithm described in Chapter 4 

incorporates exponential smoothing and knowledge of the queue length from 

downstream traffic signals. It was found to consistently outperform the first 

algorithm that operated with no knowledge of the traffic signal control.  

It was concluded that neither algorithm would realistically be a replacement for 

vehicle classification at a dual loop detector site. However, the preferred 

algorithm could prove useful to traffic authorities for basic monitoring of HGV 

proportions on the urban road network at traffic signal sites where single 

detectors are employed. The ‘instant’ nature of the speed estimation would also 

provide a quick response to ‘abnormal’ drops in vehicle speed that could be 

used for incident detection purposes. 

The primary objective of developing a single detector classification algorithm 

was to provide accurate vehicle type information to a traffic signal optimizer 

using existing infrastructure. The MOVA representation method of signal 

optimization, described in Chapter 3, requires that any queue that exists at the 

start of a green signal is discharged before optimization begins. This suits the 

developed algorithm because the speed and length estimation error is lower 

when vehicles are travelling closer to a free-flow speed and hence the variation 

in speed between consecutive vehicles is less. 

It was demonstrated in Chapter 5 that incorporating the single detector 

classification algorithm into a modified MOVA representation could indeed 

provide a benefit to HGVs in terms of stops and delay without adversely 

affecting other vehicles. However, the results showed that the benefit is not 

large. 
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Even so, application of the single detector classification algorithm to the MOVA 

representation reduced delay and stops for the largest articulated HGVs by 5-

10% at a 5% proportion of HGVs with negligible impact on other vehicles. There 

are over 1000 MOVA controlled junctions in the UK that could potentially be 

retrofitted with the preferred algorithm to reduce HGV stops and, by extension, 

reduce associated emissions. 

Conversely, the initial results of Chapter 6 showed that the algorithm does not 

perform well enough for providing vehicle type data into the car-following 

model. This is because, unlike the MOVA representation, the car-following 

model requires accurate classification data regardless of vehicle speed over the 

detector. 

The development of a single detector classification algorithm that can be 

successfully deployed on existing infrastructure is an important contribution and 

satisfies the first objective of this study. The finding that the algorithm did not 

perform well when applied to the car-following model in Chapter 6 is also an 

important contribution as it demonstrates the limitations of using existing 

infrastructure. It also confirms that the required accuracy of the classification 

algorithm is, to some extent, dependent on the nature of the application. 

The second objective, to develop a control method capable of incorporating a 

hybrid detection traffic model, was addressed in the second part of Chapter 5. 

Initially, V2I data was implemented with a 100% penetration rate of equipped 

vehicles to understand the maximum benefit that could be gained by applying 

V2I to an existing optimization method. The introduction of V2I data resulted in 

benefit, in terms of stops and delay, of between 10-15% that supported the (10-

16%) findings of Feng et al. (2015). The 10-15% reduction is achieved at 100% 

V2I coverage but, as the review of literature in Chapter 2 showed, the previously 

developed V2I based optimization algorithms require approximately 30-50% V2I 
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penetration rate before providing a benefit compared to conventional 

detection. The significant contribution of this research is to show that, by 

developing a hybrid detection traffic model, the potential benefit of V2I 

detection can be realised immediately as the technology begins to penetrate 

the vehicle fleet. The results suggest that more than 50% of the maximum 

benefit of V2I data could be achieved with just 20% of the vehicle fleet enabled 

and that the benefit achieved at 80% penetration rate is similar to the 

maximum. The hybrid model enables conventional detection to be used 

alongside V2I data to enhance the performance of an existing optimization 

strategy and, in doing so, achieves the second objective of this study. 

Later in Chapter 5, the third objective was addressed by introducing V2I based 

vehicle classification to the hybrid detection traffic model. The results clearly 

demonstrated the benefit of using vehicle classification in an optimization 

method. The initial results from the first objective, applying the single detector 

classification algorithm to the MOVA representation, were mixed with modest 

benefits in terms of stops and delay for all HGVs combined of less than 5%. 

Larger benefits were demonstrated for articulated HGVs of up to between 5-

10% but, as the proportion of HGV increased, the benefit quickly reduced as a 

result of an increase in error from the classification algorithm. 

The use of V2I based vehicle classification resulted in larger and more consistent 

benefits in terms of stops and delay for all HGVs of up to 15% in Scenario 2. 

Articulated HGVs experienced even greater benefit at lower demand when 

compared to V2I alone. 

The increase in benefit compared to applying vehicle classification with the 

single detector classification algorithm demonstrates the importance of accurate 

vehicle classification. It also shows that the ability to track vehicles on the 

approach to a junction is vital to eliminating the estimation error of 
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conventional detection systems. For example, when vehicle position and speed 

is estimated, it can lead to a green signal being extended for a vehicle but, due 

to the vehicle travelling more slowly than estimated, it fails to cross the stop 

line. This situation increases delay to opposing traffic whilst not delivering the 

planned delay saving benefit for the stopped vehicle. 

This contribution has important implications for minimizing vehicle emissions at 

traffic signal junctions. The benefit, particularly for larger HGVs, is shown to be 

particularly significant with a reduction in stops of more than 25% in one case 

compared to the MOVA representation without classification. Reducing the 

number of stops will reduce vehicle emissions and, in doing so, could provide a 

valuable tool for traffic managers in helping to achieve air quality objectives. 

Finally in Chapter 5, the modified MOVA representation was tested with 

opposed right turning movements that periodically blocked vehicles travelling 

ahead at the junction. The results showed the modified MOVA representation to 

be robust to such issues, providing a significant benefit compared to 

conventional detection, particularly as the proportion of right turning vehicles 

increases. 

In Chapter 6, the internal traffic model of the optimizer was replaced with a car-

following model, in this case using the Gipps (1981) model. The aim of using a 

more sophisticated car-following model, as stated in the fourth objective, was 

to better evaluate the impact of interaction between vehicles on the number of 

stops. To facilitate the use of the more sophisticated traffic model, a new 

optimizer was developed. Initially the car-following model was tested using 

conventional detection. Various modifications were made to the control 

algorithm to enable the traffic model to be adjusted when discrepancies 

between the modelled representation and actual traffic conditions were 

detected. 
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The results showed that, with conventional detection, the use of a car-following 

model provided mixed results. The overall performance of the algorithm, 

compared to the MOVA representation, was improved with higher demand but 

was less effective with low demand. This is likely due to the relocation of the 

first upstream detector (50 metres from the stop line in the MOVA 

representation) to immediately downstream of the stop line. The relocation 

enabled vehicles to be counted at the beginning of the green to increase the 

accuracy of the modelled queue discharge rate but reduced the information 

available during free-flow conditions. 

The benefit to HGVs was also mixed with some reduction in stops for HGVs but 

only at low demand and with a low proportion of HGVs. As already discussed, 

this highlights the increase in error of the single detector classification algorithm 

at higher proportions of HGV and when speeds of consecutive vehicles over the 

detector are increasingly varied (i.e. with higher demand). 

Introducing V2I with classification clearly demonstrated the benefit of the car-

following model in terms of reduction of stops. The change in delay for all 

vehicles when using the car-following model compared to the MOVA 

representation (both methods incorporating V2I based vehicle classification) is 

negligible at lower proportions of HGV but, as the proportion of HGV increases, 

the delay is reduced. Vehicle stops are reduced for all proportions of HGV by up 

to 5% and, in the lower demand case, by up to 10%. 

The work in Chapter 6 satisfies the fourth objective of this study and its 

contribution to current literature is important in establishing that the use of a 

more sophisticated traffic model does provide a useful performance benefit to a 

signal optimizer and is feasible to implement in terms of computational power. 

Issues regarding the practicality of implementation are discussed later. 
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In the final section of Chapter 6, the effect of V2I detection range on the 

optimizer performance was investigated. The results showed that, for the 

Simulated Environment used in this study, the optimum detection range was 

between 200-300 metres from the junction. This equates to a travel time of 

approximately 15-22 seconds depending on the approach speed. The finding 

was consistent with Robertson and Bretherton (1974), that there is no benefit to 

providing information to the optimizer more than 25 seconds in advance. This 

element of work satisfies the fifth and final objective of the thesis. 

7.2 Discussion 

The outcomes of this study have shown that explicitly classifying vehicles in a 

traffic signal optimization strategy can lead to significant benefits in stops and 

delay for those vehicles whilst having a negligible impact on other vehicles. If a 

more sophisticated internal traffic model is incorporated then those benefits, 

particularly in terms of stops, are increased further. 

7.2.1 Practical issues 

Chapter 6 described the process of incorporating a more sophisticated internal 

traffic model into an optimizer. As discussed in the previous section, there are 

certainly some practical issues to overcome if this method is to be developed 

further. Firstly, there is an issue associated with how capable such models are of 

accommodating ‘unexpected’ driver behaviour. The second issue related to the 

car-following model is how easy it would be for a practitioner to understand 

and validate model parameters.  

For the first issue, it was shown in Chapter 6 that methods can be employed to 

enable the model to be adjusted without causing significant perturbations. 

However, those methods (involving adjusting model parameters) can only be 
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effective in a situation where a significant proportion of the vehicle fleet is V2I 

enabled. The study suggests that the more sophisticated traffic model may only 

be feasible to introduce at higher levels of V2I penetration unless video 

detection, discussed later in this section, could be used as a proxy for V2I. 

The second issue is possibly more difficult to address. An important factor that 

affects the performance of any traffic model is the accuracy of the model 

parameter values. To maximise the performance of an optimizer, the traffic 

model must be calibrated to accurately reflect real-world conditions. Existing 

control strategies such as SCOOT and MOVA incorporate many parameters that 

must be understood and adjusted by a practitioner based on site specific 

conditions. 

The introduction of V2I detection will greatly reduce the number of parameters 

to calibrate but will not eliminate the requirement completely. For example, the 

car-following model parameters for each vehicle type (i.e. acceleration, 

deceleration) must still be validated with the most suitable values for each 

vehicle class. Those parameter values are likely to also be dependent to a certain 

extent on site characteristics such as the approach gradient and external factors 

such as weather. 

One method would be to build a database, through simulation, of various 

vehicle types and gradients that would enable the traffic model to assign 

appropriate model parameters based on the junction topology entered by the 

practitioner. This is something that is already undertaken by micro-simulation 

software manufacturers (PTV-Vision, 2011), albeit with limited documentation as 

to the evidence behind the modification of acceleration parameters to 

accommodate gradient. However, it would be necessary to ensure that such a 

database was managed carefully and values updated regularly. 
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Ultimately, to provide the most accurate vehicle specific (rather than class 

specific) data, the performance of each vehicle in terms of acceleration and 

deceleration could be recorded prior to arrival at a junction. If that were 

possible, profiles for the acceleration and deceleration performance could be 

constructed and refined as vehicles travel through the network. The relevant 

parameter values could then be applied to each vehicle as it is inserted into the 

traffic model on the approach to a junction. Using this method would help to 

take into account driver behaviour as well as vehicle performance. It would also 

reduce error associated with larger vehicles where HGV performance, for 

example, may differ significantly depending on whether a vehicle is fully laden 

or an ‘empty runner’. However, the viability of this method would depend 

largely on whether any data privacy issues surrounding the storage of vehicle 

specific parameter values could be overcome. 

The pursuit of increasingly accurate vehicle performance data will eventually 

result in diminishing returns in terms of the improvement in performance of the 

optimizer. However, even if vehicle performance data was perfect, the variability 

and uncertainty of driver behaviour would still affect the accuracy of the traffic 

model. Consequently, there is a limit to the usefulness of ever increasing vehicle 

performance data accuracy whilst vehicles are human operated. 

Fully autonomous vehicles, and maybe those with a high level of autonomy, will 

reduce or remove the influence of driver behaviour on the accuracy of the traffic 

model. Hypothetically, if the vehicle performance and driver behaviour error 

could be, in effect, eliminated then the remaining error would reside with the 

accuracy of the traffic model itself and its ability to represent traffic conditions. 

In the scenario of full autonomy it may be possible to change the way that 

traffic signals are optimized to take advantage of trajectory manipulation and/or 

remove the requirement for physical traffic signals altogether. There are 
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practicalities to be overcome in this scenario such as how cyclists and 

unequipped vehicles (e.g. classic cars) would be accounted for but initially it 

could be introduced in an area restricted to fully autonomous vehicles.  

In this study, vehicle stops have been used as a proxy for emissions. The use of a 

sophisticated emissions model would, in theory, enhance the performance of an 

optimizer in achieving the explicit objective of minimising emissions. However, 

that performance enhancement would not be realised unless vehicle specific 

data that affects emissions (i.e. knowledge of engine type, age, current vehicle 

weight and driver behaviour) was available. 

7.2.2 V2I data quality and availability 

It has been assumed throughout the thesis that V2I data will become available 

and that it will penetrate the vehicle fleet to a point where there is effectively 

100% coverage. It may never be the case that 100% of vehicles are V2I equipped 

but it could be that information regarding the location, speed etc of non-

equipped vehicles is derived from those that are equipped. However, it is 

currently uncertain whether V2I data will indeed become widely available and, if 

it does, how quickly that transition will occur. 

The business case for developing a traffic signal control strategy that 

incorporates V2I data depends on the availability of the data. If vehicle 

manufacturers choose not to provide the data then, unless regulation is 

introduced to force manufacturers to supply it, it is unlikely that a traffic signal 

control strategy that can make use of it will be developed into a commercial 

solution. However, there are potential alternative solutions that would enable 

data to be provided to an optimizer that mimics the data provided by V2I and 

would therefore allow the development of a V2I capable traffic signal optimizer. 
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Radar detection is widely used in the traffic signal control industry but its 

application is generally limited to providing outputs that would be expected 

from conventional detection. The aim of most above ground detection has been 

to reduce the requirement for physical works to install ducting and inductive 

loop detection. However, radar detection is capable of tracking vehicles and 

providing real-time speed and position data so could therefore potentially be 

used to mimic V2I data. 

Video detection is also capable of tracking vehicles and, with recent advances in 

machine learning, can also provide classification. The continual development of 

processing power and camera technology has made the use of more 

sophisticated above-ground detection technically viable and more financially 

competitive with conventional detection. All ‘above-ground’ detection solutions 

are prone to issues with occlusion and some development is required to 

determine how a traffic model would accommodate such issues. The range is 

also limited by the capability (and expense) of the above-ground detection and 

is likely to be less than that expected from V2I detection. However, an 

advantage of using this technique is that all vehicles can be tracked and there is 

therefore effectively 100% penetration rate of V2I –type data (i.e. position, 

speed, type etc) within the range of the detection. Trials are currently underway 

to test the capability of radar and video detection to mimic V2I detection (NIC, 

2018). 

The use of alternative solutions to either supplement or replace V2I data may 

prove important to overcome barriers to development but it could also help to 

address another issue. Box and Waterson (2013) test their optimization method 

with various degrees of random noise applied to the V2I data. This has been 

done on the basis that GPS devices, even in the most accurate cases, contain a 

degree of error and that error can increase significantly in ‘urban canyons’ 
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where there are a large number of tall buildings. In this thesis the V2I data has 

been assumed to be more or less perfect and, as such, the results could be 

viewed as optimistic. However, the nature of information to be supplied by V2I 

is still not yet entirely clear and it has been assumed in this study that GPS 

information supplied by vehicles would be supplemented by other on-board 

sensors to increase the accuracy of the positional data. If the data provided was 

limited to the accuracy of GPS data then the use of alternative methods such as 

radar and video detection is likely to provide an enhanced performance 

compared to V2I, albeit with a shorter range. 

In the previous chapter, the issue of data privacy was discussed in the context of 

collecting performance data from vehicles as they travel through a network. This 

data could be used to create acceleration/deceleration profiles and provide 

preferred following headway/driver reaction time to an internal traffic model. 

Data privacy could make this difficult to achieve unless V2I devices could be 

anonymised in much the same way as Bluetooth MAC addresses are in journey 

time monitoring systems. This would enable the combination of vehicle and 

driver performance to be reflected in the traffic model to improve accuracy. 

It is perhaps worth noting that Local Authorities could potentially use 

interventions such the introduction of Clean Air Zones across the UK to 

incentivise vehicle manufacturers to provide V2I data. For example, a discount or 

exemption from the enforcement charge could be provided for vehicles that 

provide V2I data on the basis that the data will enable emissions for that vehicle 

to be reduced through improved signal optimization. 

7.2.3 Research limitations 

The research in this study is only applicable to under-saturated conditions. The 

MOVA representation described in Chapter 3 reflects the under-saturation 

algorithm of the MOVA control strategy. When over-saturation is detected, 
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MOVA switches to an alternative algorithm with the objective function of 

maximising capacity rather than minimising delay. There is less available 

literature on the method that is employed by MOVA in the alternative algorithm 

but Vincent and Peirce (1988) describe it as a redistribution of green time based 

on the efficiency of flow over the X detector, the detector closest to the stop 

line. 

It should be feasible to apply V2I detection to the alternative algorithm to 

improve the measurement of flow efficiency and thus improve optimizer 

performance to provide an increase in capacity during periods of over-

saturation. Incorporating V2I data would also be useful to ensure reliable 

detection of over-saturated conditions and prevent instances of the under-

saturated algorithm being used in oversaturated conditions and vice versa. 

The focus of this research was on applying V2I detection and vehicle 

classification to an existing optimization method, although a new optimizer was 

developed to accommodate the car-following traffic model. The methodology 

of the study was, in part, based on the idea that a lack of accurate and 

comprehensive data contributes to estimation error in the internal traffic models 

of signal optimizers thus limiting their performance. The development of a 

hybrid model enables the benefits of V2I to be realised as data becomes 

available rather than using purely conventional data until the penetration rate of 

V2I technology reaches, say, 30% of the vehicle fleet. However, the emergence 

of above-ground detection as a technique for mimicking V2I data may present 

an alternative scenario: 

� Scenario 1: An existing junction has conventional detection and 

associated infrastructure. It is therefore not immediately cost effective to 

implement above-ground detection. V2I data is instead incorporated 

with the hybrid model as it becomes available; and 
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� Scenario 2: An existing junction has no conventional detection (common 

where infrastructure such as ducting cannot be installed) making the 

implementation of above-ground detection cost effective. A new 

optimization algorithm designed specifically to use V2I-type data could 

be developed to take advantage of the effectively ‘100%’ vehicle fleet 

data coverage. 

This thesis has focused on isolated intersections to enable the research to be 

conducted within the timescales of the study. The focus on isolated 

intersections does not preclude the application of the study outcomes to wider 

network optimization. The use of V2I detection and vehicle classification in 

particular would improve the accuracy of any internal traffic model that uses 

conventional detection. However, the computational requirements of the car-

following model implementation in Chapter 6 may deem it inappropriate for 

network-wide use unless it was within a hierarchical control strategy. 

7.3 Suggestions for further research 

As discussed in the previous section, the collection of vehicle specific data 

regarding acceleration and deceleration performance prior to a vehicle arriving 

at a junction would enable the optimizer to more accurately determine the 

degree of weighting to be applied to it. In the MOVA representation that would 

manifest itself in the value of the stop penalty applied to each vehicle. In the 

car-following method described in Chapter 6 it would enable the model 

parameter values to be adjusted to more accurately represent vehicle specific 

behaviour. Research could focus on the methodology of collecting vehicle 

performance data as a vehicle travels through a network and at what point the 

collected data provides a benefit compared to a pre-specified value applied to 

all vehicles of the same class (used in this study). 
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All work in this study is undertaken in a Simulated Environment that allows 

repeatable conditions for representative comparisons of optimizer performance. 

Further research would seek to apply the developed hybrid traffic model and 

the alternative car-following model solutions to real-world conditions to 

investigate the practical issues that have been raised in this chapter. 

In Chapter 6, a V2I penetration rate of 100% was assumed. Allowing for a 

situation where the V2I penetration rate is less than 100% introduces additional 

complexities in using the car-following model. For example, a common scenario 

will arise where a following vehicle is V2I equipped but the leading vehicle has 

been detected conventionally. In that scenario, the V2I equipped vehicle 

effectively provides ‘ground truth’ data whereas the leading vehicle position is 

estimated after leaving the upstream detector. 

In the case of full V2I coverage, the car-following parameters can be adjusted 

with the knowledge of the actual position and speed of both vehicles. However, 

in this situation it is not desirable to change the deceleration parameters of the 

following vehicle based only on an estimation of the leading vehicle position. 

There is therefore a decision to make when the V2I equipped following vehicle 

violates the safe following distance calculated by the car-following model. Is the 

leading vehicle effectively ‘pushed’ forward to maintain the safe headway (which 

assumes the model parameter values are correct) or is it instead assumed that 

the violation of the safe following distance does indeed reflect reality, in which 

case the model parameters should be adjusted. 

It is certainly not a straightforward exercise to adjust the model in a consistent 

manner that maintains the integrity of the vehicle trajectories along the link and 

so a decision was made not to pursue the development of a model that caters 

for a mix of V2I and conventionally detected vehicles. It may be interesting to 

pursue this in more detail as part of a further study but it would need to be 
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considered in the context of the discussions regarding V2I data availability, 

accuracy and possible supplementary data. 

In Chapter 6, the possibility of adding random noise to the car-following model 

parameter values was discussed. It was identified that adding noise to the 

cloned run-ahead element of the optimizer could be an interesting further study 

in that the behaviour of the optimizer may become more or less cautious 

depending on the amplitude of the random noise. However, the number of 

variations of parameters would have to be carefully considered as the 

computational requirements would increase proportionally with the number of 

random seeds used (i.e. the use of 10 random seeds would increase the 

computation requirements by one order of magnitude). 

Finally, the MOVA representation and the more sophisticated car-following 

model method used in this study are applicable to under-saturated conditions. 

To develop a control strategy that is generally applicable, an alternative strategy 

must be developed for over-saturated conditions. In the hybrid model, 

conventional detection could continue to be used in the short term but further 

research would enable alternative V2I based methods of monitoring efficiency 

of flow to be investigated. 
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Appendix A: Flow-occupancy derivations 

Flow-occupancy derivations 

A.1 Introduction 

This appendix provides a detailed derivation of space-mean speed, using the 

relationship between speed, flow and occupancy. The space-mean speed 

approximation is the basis of many single detector speed estimation algorithms. 

The derivation below is based on that by Kwon et al. (2003).  

 (A.1) 

 

 (A.2) 

 

where: 

 = Flow in sample time period i (vehicles/second). 

 = Number of vehicles in sample time period i. 

 = Sample i interval length (seconds). 

 = Occupancy in the sample time period i. 
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The space mean speed for a particular sample of vehicles is defined by Equation 

(A.3) where vk is the speed of vehicle k. If all vehicle speeds were known (i.e. if all 

vehicles in a sample were providing real-time tracking data) then this would be 

straightforward to calculate. However, in this case the vehicle speeds are not 

known and so instead, an estimation of vehicle length is used (Equation (A.4)) 

along with the sum of the time vehicles spend over the detector during a 

sample time period, as shown in the following equations. 

 (A.3) 

 

The vehicle on-time (the duration for which a vehicle is present over a detector) 

is related to the speed and length of a particular vehicle by 

 (A.4) 

where Ltot is the sum of the length of the vehicle and the effective length of the 

detector. So, from Equation (A.2), 

 (A.5) 

 

and substituting Equation (A.1), 

 (A.6) 

 

Equation (A.6) can be re-written as, 
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assuming that vehicle speeds are approximately constant during the sample 

interval.  

Equation (A.9) reiterates the relationship between parameters for reference 

given the various terminologies in the related literature reviewed here. 

 (A.9) 

where: 

 = Space-mean length (metres). 

 = Number of vehicles in the specified vehicle sample. 

 = Mean effective vehicle length (metres). 

 = Reciprocal of MEVL. 

For a given sample time period, Equation (A.8) can also be expressed as 

 (A.10) 

as is the case in Wang and Nihan (2003). However, Athol (1965) referred to the 

g-factor as the K-factor. 
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Appendix B: Tabular results 

Tabular results 

B.1 Summary 

The full tabular results for Chapter 5 and Chapter 6 are included in this appendix 

for reference. A key is provided below: 

� A: MOVA representation; 

� B: Modified MOVA representation with single detector vehicle 

classification; 

� C: Hybrid model (with 100% V2I penetration rate); 

� D: Hybrid model (100% V2I) with V2I-based classification; 

� E: Car-following model based optimizer using conventional detection; 

and 

� F: Car-following model based optimizer using V2I based detection. 

The results are presented for delay, stops and PI for all vehicles. Within each 

category a breakdown of results for all vehicles, all non-HGV vehicles, all HGV 

vehicles and articulated HGVs is also provided. All results are an average taken 

from 10 simulation runs with different random seeds. 

Finally, the PI results from testing the performance of the car-following based 

optimizer with different V2I ranges are presented. 
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B.2 Tabular results for Chapter 5 and Chapter 6 

B.2.1 Delay 

Table B.1: Average delay (seconds per vehicle) for all vehicles. 

Scenario 1 5% HGV 

(Base case) 

10% HGV 15% HGV 20% HGV 

A 13.6 14.7 15.9 17.0 

B 13.5 14.8 15.8 17.0 

C 11.9 12.7 13.9 14.4 

D 11.8 12.7 13.7 14.7 

E 13.5 14.4 15.5 16.3 

F 11.9 12.7 13.5 14.5 

Scenario 2 400 veh/h 500 veh/h 600 veh/h 

(Base case) 

700 veh/h 

A 9.4 11.1 13.6 17.6 

B 9.4 11.1 13.5 17.6 

C 8.5 9.8 11.9 14.9 

D 8.4 9.8 11.8 14.9 

E 9.8 11.3 13.5 16.1 

F 8.4 9.6 11.9 14.8 

 

Table B.2: Average delay (seconds per vehicle) for all non-HGV vehicles. 

Scenario 1 5% HGV 

(Base case) 

10% HGV 15% HGV 20% HGV 

A 13.5 14.6 15.7 16.7 

B 13.5 14.7 15.7 16.8 

C 11.8 12.5 13.7 14.2 

D 11.8 12.6 13.7 14.6 

E 13.4 14.2 15.3 16.0 

F 11.8 12.7 13.4 14.3 

Scenario 2 400 veh/h 500 veh/h 600 veh/h 

(Base case) 

700 veh/h 

A 9.3 11.1 13.5 17.6 

B 9.3 11.1 13.5 17.6 

C 8.4 9.8 11.8 14.8 

D 8.4 9.8 11.8 14.9 

E 9.8 11.3 13.4 16.1 

F 8.3 9.7 11.8 14.8 
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Table B.3: Average delay (seconds per vehicle) for all HGVs. 

Scenario 1 5% HGV 

(Base case) 

10% HGV 15% HGV 20% HGV 

A 14.7 15.7 16.8 17.8 

B 14.3 15.6 16.8 18.1 

C 13.1 14.0 14.8 15.0 

D 12.3 13.1 14.2 15.4 

E 15.3 15.6 16.5 17.4 

F 12.1 13.2 13.7 15.0 

Scenario 2 400 veh/h 500 veh/h 600 veh/h 

(Base case) 

700 veh/h 

A 10.5 11.9 14.7 18.5 

B 10.3 11.7 14.3 18.3 

C 8.8 10.5 13.1 15.5 

D 8.1 9.4 12.3 15.2 

E 10.6 12.2 15.3 17.1 

F 9.0 9.3 12.1 15.0 

 

Table B.4: Average delay (seconds per vehicle) for articulated HGVs. 

Scenario 1 5% HGV 

(Base case) 

10% HGV 15% HGV 20% HGV 

A 14.7 15.5 16.4 18.3 

B 13.4 15.4 16.4 18.1 

C 13.8 14.8 15.1 15.1 

D 12.2 13.3 13.8 15.5 

E 15.9 16.0 16.1 17.6 

F 12.5 13.4 14.0 15.4 

Scenario 2 400 veh/h 500 veh/h 600 veh/h 

(Base case) 

700 veh/h 

A 9.9 11.7 14.7 19.2 

B 9.3 11.1 13.4 18.2 

C 7.9 11.7 13.8 16.0 

D 7.0 9.4 12.2 15.9 

E 10.2 13.4 15.9 17.0 

F 9.6 9.7 12.5 16.4 
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B.2.2 Stops 

Table B.5: Average stops per vehicle for all vehicles. 

Scenario 1 5% HGV 

(Base case) 

10% HGV 15% HGV 20% HGV 

A 0.60 0.62 0.66 0.67 

B 0.60 0.62 0.65 0.68 

C 0.53 0.55 0.59 0.61 

D 0.53 0.56 0.60 0.61 

E 0.57 0.61 0.65 0.68 

F 0.51 0.54 0.56 0.58 

Scenario 2 400 veh/h 500 veh/h 600 veh/h 

(Base case) 

700 veh/h 

A 0.41 0.49 0.60 0.74 

B 0.41 0.49 0.60 0.74 

C 0.39 0.44 0.53 0.66 

D 0.39 0.44 0.53 0.67 

E 0.41 0.49 0.57 0.69 

F 0.35 0.41 0.51 0.64 

 

Table B.6: Average stops per vehicle for all non-HGV vehicles. 

Scenario 1 5% HGV 

(Base case) 

10% HGV 15% HGV 20% HGV 

A 0.60 0.62 0.66 0.68 

B 0.60 0.63 0.65 0.69 

C 0.53 0.55 0.60 0.61 

D 0.53 0.56 0.60 0.61 

E 0.57 0.61 0.65 0.68 

F 0.51 0.54 0.57 0.59 

Scenario 2 400 veh/h 500 veh/h 600 veh/h 

(Base case) 

700 veh/h 

A 0.41 0.49 0.60 0.74 

B 0.41 0.49 0.60 0.74 

C 0.39 0.44 0.53 0.67 

D 0.39 0.45 0.53 0.67 

E 0.41 0.49 0.57 0.69 

F 0.35 0.41 0.51 0.64 
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Table B.7: Average stops per vehicle for all HGVs. 

Scenario 1 5% HGV 

(Base case) 

10% HGV 15% HGV 20% HGV 

A 0.58 0.59 0.65 0.65 

B 0.56 0.59 0.64 0.67 

C 0.52 0.55 0.58 0.59 

D 0.50 0.54 0.56 0.59 

E 0.56 0.60 0.63 0.66 

F 0.45 0.50 0.52 0.56 

Scenario 2 400 veh/h 500 veh/h 600 veh/h 

(Base case) 

700 veh/h 

A 0.43 0.46 0.58 0.72 

B 0.42 0.45 0.56 0.71 

C 0.35 0.44 0.52 0.63 

D 0.31 0.37 0.50 0.64 

E 0.39 0.46 0.56 0.65 

F 0.31 0.32 0.45 0.60 

 

Table B.8: Average stops per vehicle for articulated HGVs. 

Scenario 1 5% HGV 

(Base case) 

10% HGV 15% HGV 20% HGV 

A 0.55 0.56 0.57 0.63 

B 0.53 0.55 0.56 0.61 

C 0.53 0.55 0.55 0.56 

D 0.43 0.52 0.53 0.55 

E 0.52 0.59 0.58 0.62 

F 0.42 0.50 0.50 0.54 

Scenario 2 400 veh/h 500 veh/h 600 veh/h 

(Base case) 

700 veh/h 

A 0.32 0.42 0.55 0.68 

B 0.30 0.40 0.53 0.64 

C 0.27 0.50 0.53 0.61 

D 0.22 0.34 0.43 0.64 

E 0.30 0.49 0.52 0.59 

F 0.29 0.35 0.42 0.61 
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B.2.3 Performance Indicators 

Table B.9: Average PI in each test case for Scenario 1 and Scenario 2. 

Scenario 1 5% HGV 

(Base case) 

10% HGV 15% HGV 20% HGV 

A 27.5 30.7 34.6 38.0 

B 27.4 30.8 34.4 38.4 

C 24.2 27.1 30.8 33.2 

D 24.1 27.0 30.5 33.6 

E 26.9 30.1 33.9 37.4 

F 23.7 26.6 29.3 32.6 

Scenario 2 400 veh/h 500 veh/h 600 veh/h 

(Base case) 

700 veh/h 

A 19.0 22.5 27.5 35.0 

B 19.0 22.4 27.4 34.9 

C 17.3 20.1 24.2 30.3 

D 17.2 19.9 24.1 30.6 

E 19.4 22.7 26.9 32.1 

F 16.5 19.1 23.7 29.8 

B.3 Tabular results for V2I range 

Table B.10: Average PI for increasing V2I range. 

 100m 200m 300m 400m 500m 

400 veh/h 18.5 16.2 16.3 16.7 18.0 

600 veh/h 26.3 23.6 23.6 24.3 24.8 

800 veh/h 44.2 38.1 37.4 38.8 38.7 
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Appendix C: Accommodating car-following model practical issues 

Accommodating car-following model 

practical issues 

C.1 Introduction 

This appendix is provided to describe in more detail some of the practical issues 

associated with implementing the car-following model in an on-line optimizer. 

The following examples describe how the model accommodates discrepancies 

in the representation of reality once those discrepancies become apparent. 

C.2 Discharge rate 

As already discussed, relocation of the downstream detector to beyond the stop 

line allows the discharge rate of vehicles over the stop line to be monitored. The 

car-following model has been implemented with the ability to ‘pause’ if it is 

identified that the model is discharging vehicles more quickly than has been 

recorded over the detector. The ability to pause the model has been added to 

provide some protection against incorrect classification of vehicles and to 

accommodate uncertainty in driver reaction times. For example, an HGV that is 

incorrectly classified as a car/van may accelerate much more slowly than the 

model predicts. If this is left unchecked it may result in premature termination of 

the green signal as the modelled queue will discharge too quickly. To avoid this 

potential problem, the car-following model on the relevant link can effectively 

be paused until another vehicle has crossed the downstream detector. 

The MOVA strategy does not explicitly model the discharge of the queue and, 

instead, identifies the end of queue discharge by monitoring gaps over the X 

detector (approximately 3.5 seconds travel time upstream of the stop line). 
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Pausing of the model is only permitted during the start of the green signal as it 

is important to avoid over-reliance on precisely counting vehicles in and out of 

the link. In many real world situations there are traffic sources and sinks along a 

link, between detectors, that are either too difficult or too minor to justify 

additional detection. If the model relied entirely on counting vehicles in and out 

of the link it would not cope with such perturbations. The pause function is also 

only employed if the count difference between the modelled and actual 

discharge is greater than two vehicles to allow for some variation between the 

model and reality. 

C.3 Queues beyond the detector 

When a vehicle is detected travelling over the upstream detector, the 

classification algorithm detailed in Chapter 4 is employed to identify the vehicle 

class. The vehicle is then entered onto the modelled link with relevant 

characteristics based on the identified vehicle class. However, once a queue 

reaches the upstream detector, there is no more data available to inform the 

model of queuing beyond that detector. 

To overcome this issue, when the queue extends close to the upstream detector, 

‘temporary’ vehicles are added to the model at an average demand flow rate. 

Those vehicles are considered by the optimizer but do not necessarily exist in 

reality. If a new vehicle is detected (i.e. more space between the actual end of 

queue and the upstream detector than is modelled) then the temporary vehicles 

are removed from the model and the process restarted. 
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This process is necessary as it enables the optimizer to take into account the 

likelihood that the queue has extended beyond the upstream detector and thus 

consider the likely increase in delay resulting from a further green extension to 

the opposing links. If this process was not undertaken then the modelled queue 

lengths would never extend beyond the upstream detector and the optimizer 

may continue to extend an opposing green signal on the assumption that the 

queue will still take the same amount of time to discharge whether the signal 

changes now or at some indeterminate time in the future. 

At the start of the following green, the temporary vehicles are removed from the 

model as they are no longer required in the optimizer. 

C.3.1 Queue length error 

In some instances (for example, when a queue has discharged more quickly than 

the model has predicted) there may be a modelled vehicle located at the point a 

newly detected vehicle is planned to be inserted. In this situation the model 

must be adjusted to accommodate the new vehicle. 

Figure C.1: Examples of queues extending back to an upstream detector. 
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The condition described occurs most commonly in the following two situations, 

particularly when the link is approaching saturation: 

� Situation 1 – The signal state is red and the modelled queue extends to 

the upstream detector location (Figure C.2); and 

� Situation 2 – The signal state is green, traffic has begun discharging but 

the last vehicle in the queue is still stationary or slow moving (Figure C.3). 

In Situation 1, there are two reasons (in the Simulated Environment) that the 

modelled queue could be longer than the actual queue. The effective vehicle 

lengths in the queue may have been overestimated, or, the vehicle at the front 

of the queue could have incorrectly been modelled as stopping at the red signal 

whereas in reality it crossed the stop line after the end of the previous effective 

green (the green signal plus some period of amber). Of course, it could also be 

a combination of the two. In this case, the vehicle at the front of the queue can 

simply be removed from the model and the position of the other vehicles 

adjusted to move one space up in the queue. This process can be repeated until 

there is sufficient space to accommodate the newly detected vehicle. 

Figure C.2: An example of Situation 1 occurring where the model (top) queue length 

extends to the upstream detector whereas the reality (bottom) is that the queue is 

shorter. 



 235 

 

An alternative option could be to iteratively reduce the effective length of the 

vehicles in the queue (and adjust the position of each vehicle to maintain the 

minimum safety distance at standstill) until there is sufficient space for the newly 

detected vehicle. In this situation there is an uncertainty as to the cause of the 

model error and therefore neither method of model adjustment carries greater 

validity. For this work the first method has been implemented. 

If this method were to be developed further and implemented in a real world 

scenario, a third reason for overestimation of the queue could occur. Junction 

layouts that include a traffic ‘sink’ between the upstream and downstream 

detector (i.e. traffic can leave the link before it crosses the stop line) will result in 

consistent overestimation of queue lengths if the proportion of traffic leaving 

the link is significant. In that case, an additional detector could be installed at 

the location of the sink to enable the model to be adjusted appropriately. This is 

something that is already applied in MOVA using IN-SINK and X-SINK detectors 

for vehicles leaving the link after the upstream and downstream detector 

respectively. It is also incorporated into SCOOT through the use of ‘subtractive’ 

links (Siemens Plc, 2016a). 

In Situation 2, the queue is already in the process of discharging and so it is 

assumed that the vehicles in the modelled queue have not discharged as quickly 

as in reality. Rather than removing any vehicles from the link model, the model 

for the specific link (not the whole junction) is run ahead until there is sufficient 

space on the link for the newly detected vehicle to be inserted. 
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Figure C.3: An example of Situation 2 occurring where the model (top) discharges less 

quickly than in reality (bottom). 
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Appendix D: Software architecture and source code 

Software architecture and source code 

D.1 Introduction 

An outline of the software architecture used to create the Simulated 

Environment is described by the class diagram shown in Figure D.1. The detailed 

source code is available on the CD included with this thesis. 

Figure D.1: Architecture for Simulated Environment Signal Controller software. 


