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Abstract

Definitive confirmation of the detection of gravitational waves will require strong
independent detections from at least two sources which may include the opportunity
for astronomical observation of associated electromagnetic and/or neutrino bursts. For
these events, the most energetic of which may be of short duration, to be confirmed
astronomically it is necessary to pass source location information to astronomical
instruments with sufficient low latency to supply steering information to the instruments
before fading of any counterpart. Furthermore, the limitations on computing resources
for searches, and the likelihood that at least some sources are likely to have waveforms
poorly localised in a time-frequency basis, leads us to seek a search method that operates
primarily in the time domain.

We present a rapid time domain exponential cross-correlation indicator which is capable
of generating event triggers with a latency on the order of signal duration whilst providing
source resolution. A complete analysis pipeline was developed and trigger method tested
using archived data from the LIGO H1 (Hanford, WA) and L1 (Livingston, LA) detectors.

Standard data preprocessing techniques such as linear predictive filtering were
combined with novel line removal methods. The events selected by this algorithm were
further processed by novel level 2 signal enhancement and parameterisation algorithms.
Detection efficiency and false alarm rate results were generated from mock data challenge
injection signals added to data from the S6/VSR3 science run of initial LIGO. Our results
indicate that this search algorithm is a good candidate for an unmodelled burst pipeline
complementary to the existing codes, and having certain advantages over these codes in
terms of latency, computational burden and robustness.
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Chapter 1

Gravitational Waves and
Astrophysical Sources

Introduction

All modern observational astronomy relies on the processing of received particles: photons,
neutrinos and cosmic rays, emitted, reflected or otherwise influenced by the presence of
matter and energy distributions in stars, galaxies, and intergalactic media [1]. Early
optical observation and analysis of planetary motion by astronomers such as Kepler led
Isaac Newton to his Universal Law of Gravitation (1687), which explains gravitational
interaction in terms of forces between matter within an absolute space and time [2].
Almost two hundred years later, Albert Einstein, using a geometrical approach to light
and energy, would show in his theory of Special Relativity (SR) that space and time are
not the passive stage for physical events assumed in the Newtonian view. SR describes the
relationship between physical events as observed in reference frames of constant relative
motion and occurring within a four dimensional space-time, a continuum space formed
by combining the three spatial dimensions and time. Extending SR to include gravity,
Einstein developed the theory of General Relativity (GR) which he had fully formulated
and published in 1915. GR is a theory of gravitation in which gravity is no longer
interpreted as a force, but is an effect due to the curvature of space-time caused by the
presence of matter and energy. Einstein’s 1916 paper [3] showed that the field equations
of GR predict the existence of gravitational waves (GWs), the propagation of space-time
curvature variation caused by the interaction between matter, energy and space-time.

Confidence in the validity of GR comes from high precision experiments which
verify many of its predictions. Examples are the gravitational redshift of light
(Pound-Rebka-Snider experiment [4]), gravitational lensing through the observed double
image of quasar 0957+561 [5], and the Shapiro time delay effect, where light is delayed
in its travel time close to a large gravitating body due to space-time curvature [6]. The
direct detection of GWs remains as one of the last tests of GR.

The first indirect evidence for the existence of GWs followed from the discovery in 1974
of the first known binary pulsar PSR 1913+16 made by Joseph Taylor and Russell Hulse
1. Subsequent observation of the rate of orbital decay of this system over a six year period

1Hulse and Taylor received the 1993 Nobel Prize in Physics “for the discovery of a new type of pulsar, a
discovery that has opened up new possibilities for the study of gravitation”.
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made by Taylor and collaborators was found to be in excellent agreement with the rate
of energy loss predicted by GR via the emission of GWs [7]. Fig. 1 shows the results of
extended observation of the periastron (closest approach) time shift over a period totaling
three decades, from which the departure from GR theory (solid curve) is calculated to be
around 0.2% [8].

Figure 1.1: Observation of periastron shift of the binary pulsar PSR 1913+16 is plotted along
with the GR prediction (solid curve) with energy loss mechanism due to emission of GWs.
Deviation from theory was found to be around 0.2%. Reproduced from [8].

We begin with a brief outline of the properties of GWs in Section 1.1, showing that GWs
are extremely difficult to detect. Section 1.2 provides an abridged derivation of GWs from
linearised GR and in Section 1.3 we review some of the expected astrophysical sources
of GWs, the nature of the processes leading to the emission of GWs, and the type of
detection analysis required. Finally, Section 1.4 briefly covers the historical developments
which led to the current GW detector era.

1.1 Gravitational Waves

The detailed properties of GWs were first derived in Einstein’s 1918 paper Über
Gravitationswellen [9]. Einstein used a linearised form of the GR field equations to
determine that the leading order term contributing to the generation of GWs is the
mass quadrupole moment of the system. The quadrupole moment is a measure of the
axial asymmetry of the moment of inertia or aspherical distribution. The locally time
varying curvature of space-time so produced radiates energy outward at the speed of
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light, inducing waves of spatial strain in the space traversed. The field strength of GWs
was found to be proportional to the second time derivative of the quadrupole moment
and inversely proportional to the distance from the source.

GWs, like light, oscillate perpendicularly to the direction of propagation and have
two independent polarisations but differ from electromagnetic (EM) radiation in several
important respects. EM radiation is dipolar due to the existence of two EM charges
whereas GWs result from quadrupolar (at lowest order) motion due to the fact that
spherically symmetric motion cannot change the gravitational potential energy. EM
waves interact strongly with matter and so are easily absorbed or scattered, making
their detection trivial compared to GWs whose coupling with matter is exceedingly
weak, and pass through space-time with virtually zero dispersion. For example, the
quadrupole formula predicts that a system of two orbiting neutron stars, located at typical
distances from Earth, would induce a GW strain minuscule even when compared to nuclear
dimensions (see Section 1.3.5). GWs are generated by bulk coherent motions throughout
the source in contrast to EM radiation, which is skin deep in the sense that the received
signal results from incoherent superposition of emission from the atoms on the outermost
surface of the source. For this reason GWs are expected to convey information about the
inner dynamics of the source which cannot be obtained through EM observation. Typical
wavelengths of visible light are much smaller than the emitting sources and therefore
permit both source localisation within the narrow field of view of a single instrument and
detailed source images to be constructed. However, the relativistic conditions required
for a source of strong GWs place a minimum bound on the wavelength λmin at which
emission occurs. The source must be gravitationally compact and so a source of mass M
should have minimal radial dimension r close to the Schwarzschild radius rs. Therefore

r & rs =
2GM

c2
, (1.1)

where G is Newton’s gravitational constant and c the speed of light. We should therefore
expect λmin to correspond to near relativistic bulk processes occurring around source
circumference & 2πr. This gives the estimated minimum wavelength as

λmin &
4πGM

c2
∼ (104 m)

M

M�
⇒ fmax .

c3

4πGM
∼ (104 Hz)

M�
M

. (1.2)

When scaled to the Solar mass M� we find the proportionality of λmin to source mass is of
order 104 m and corresponding maximum frequency fmax of order 104 Hz. Given that λmin
is at least of order the source dimension (Solar rs ∼ 3× 103 m) then GW emission will
give poor spatial resolution. The result for fmax, in the audio frequency range, provides
a useful experimental limit when searching for GW signals.

GWs also differ from EM in that they are non-linear, due to the energy of the wave
contributing further to the space-time curvature [10]. These non-linearities complicate
the analysis of systems in which very strong gravitational fields are present locally, but in
the far field limit, in which GW detection takes place, may be neglected. We now provide
an abridged derivation of GWs from the linearised field equations of GR.

3
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1.2 Linearised GR and Gravitational Waves

Before highlighting the main steps involved in showing GW solutions of the Einstein field
equations, we first attempt to convey some meaning to the key concepts of GR whilst
providing an explanation of the notation in the equations presented. A comprehensive
treatment of GR is beyond the scope of this work and for this the reader is referred to the
sources on which this section is based, i.e. Gravitation [11] by C.W. Misner, K.S. Thorne
and J.A. Wheeler and A First Course in General Relativity [12] by B.F. Schutz.

1.2.1 GR Concepts and Notation

GR is founded upon two principles, the equivalence principle and general covariance. The
equivalence principle states that no distinction can be made between a local gravitational
field g and, in the absence of gravity, a frame of reference with uniform acceleration
−g. Thus, in the reference frame of a freely falling body one obtains a local inertial frame
(LIF) in which gravity is perceived as absent and which is locally the flat space-time of SR.
General covariance is a natural requirement of GR in which the form of physical laws are
restricted to those which are valid in all coordinate systems. In mathematical language
this means that the quantities (terms) expressed and those resulting from operations
performed in GR transform under general coordinate change as tensors.

Without formal definition, we may regard tensors as coordinate independent
geometrical objects which may be characterised by their total number of vectorial
components (rank). They encompass scalars (rank=0), vectors (1) and more complex
objects with multiple vectorial components, each of which is indicated by an index which
may take on the range of values corresponding to the dimensions of the relevant space
(e.g a Cartesian tensor Aij where i, j = x, y or z). In this notation, the coordinates of
space-time points in a LIF may be given by xµ, where the index µ ranges from 0 to 3.
Indices 1 to 3 denote the usual three spatial dimensions (e.g. x, y, z) with x0 reserved for
ct, the product of the speed of light c and time t, giving all coordinates the unit of length.
The infinitesimals and partial differentials required for space-time calculus now take the
respective forms dxµ and ∂/∂xµ = ∂µ.

In general coordinate systems we must make the distinction between two
interconvertible forms of vector component (equivalent in Cartesian systems) based upon
how they transform with respect to change of the coordinate axes or basis set. Under a
rotation of basis the components of a covariant vector transform in the same way as the
basis vectors whilst those of a contravariant vector (e.g. displacement vector) transform
in a contrary (inverse) manner so as to preserve vector orientation and length. These
transformations1 acting together upon a tensor, which in general may have any number
of covariant and contravariant components, maintain the geometric identity of the object.
In the following equations, contravariant and covariant components are indicated by upper
and lower indices respectively and we indicate the coordinate independence of tensors or
covariant operations in boldface.

As a notational convenience Einstein introduced the convention whereby repeated
assignment on upper and lower indices on single terms within an expression imply

1Covariant and contravariant transformations respectively follow the chain rule for partial derivatives
and differentials i.e. Vi → V ′

i = (∂xj/∂xi′)Vj and V i → V i′ = (∂xi
′
/∂xj)V j .
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summation over all coordinate index values2, thus removing the need for explicit
representation of the summation sign. The Einstein convention applied to individual
tensors, which must be of at least rank 2, is known as the operation of contraction, with
the resulting tensor losing 2 orders of rank for each pair of contracted indices1. Contraction
amongst tensor and vector products is equivalent to the dot product. With this notation
we can express in compact form the generalisation of Pythagoras’ Theorem known as the
space-time interval. This gives the differential line element ds in curved space-time

ds2 = gαβ dx
αdxβ. (1.3)

The additional ingredient is the metric tensor gαβ, the fundamental geometrical object in
GR which encodes the structure of space-time in terms of the local coordinate basis ~eα,
the elements of which are given by gαβ = ~eα · ~eβ. In flat space-time one can find a set of
coordinates such that the metric tensor is globally identified with the Minkowski metric
ηαβ

gαβ = ηαβ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.4)

The principles of GR can be applied to a space-time assumed to have the properties
of a differentiable manifold, a generally curved and continuous space where finite vectors
and derivatives can be defined at all (or nearly all) points. The equivalence principle
follows naturally from continuity of the manifold, which permits the construction of local
Euclidean coordinate systems at each point in space-time, equivalent to LIFs, much in the
same way in which a smooth curved surface can be approximated locally with a sufficiently
small flat plane at the single point of contact. In the neighbourhood of each LIF, gravity is
then manifest as second order deviations from flatness or space-time curvature. General
covariance is somewhat more complex. In the Newtonian description of gravity, the
density of matter ρ is the sole source of the gravitational field or potential φ (i.e. via
∇2φ = 4πρ), but the SR result of mass-energy equivalence means that all forms of energy
must contribute, and the covariant source takes the form of the stress-energy tensor TTT .
This contains information on all densities of energy, momentum and stress (i.e. pressure).
Einstein proposed that the field equations of GR should then be of the form

GGG = κTTT , (1.5)

where GGG is the Einstein tensor, related to space-time curvature, and κ a proportionality
constant. We now illustrate how the application of general covariance to the operation of
differentiation, clearly required by a dynamical theory, yields a new form derivative and
its important relationship to space-time curvature.

Euclidean space can be defined by a single basis set and so comparison of vectors
requires only the partial differentiation of vector components. In curved space-time,

2For example, the inner product for Cartesian vectors A ·B =
∑3
i=1AiB

i = AiB
i, where the assignment

Ai = Ai is valid.
1For example contracting Ajki on the i, k indices Ajki → Ajii → Aj .
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however, both vector components and basis are position dependent, and the resulting
partial derivative is now not covariant. Since, in GR we do not have an independent
reference by which we can directly compare vectors in different LIFs, the vector must
be transported to the point of comparison whilst maintained parallel to itself in a
process known as parallel transport. In the limit that the parallel transported vector
is infinitesimally close the differential comparison is the new form of derivative we seek,
known as the covariant derivative DDD. In addition to the partial derivative, the covariant
derivative includes terms which account for the differential change of basis occurring
between infinitesimally separated LIFs. These are given by the Christoffel symbols Γ,
defined by

Γµαβ =
∂ ~eα
∂xβ
· ~eµ, (1.6)

and whilst formally resembling tensors they are coordinate dependant sets of coefficients.
The form of the covariant derivative is therefore DDD = ∂ + Γ, reducing to the partial
derivative in flat space (i.e. Γ = 0).

We are now in a position to make the connection between local space-time curvature,
the geometric significance of which we should expect to be characterised by a tensor, and
the covariant derivative. Consider parallel transporting a vector Vi which is tangential to
the surface of a sphere around the path formed by the quarter circumference sides of a
curved triangle covering one octant of the surface as depicted in Fig. 1.2.

O

Vi

Vf

Figure 1.2: Parallel transport of a vector Vi from position O clockwise around the curved
triangular path (dotted line) on the surface of a sphere. The final orientation of the transported
vector Vf is at 90◦ with respect to Vi.

On returning to the starting point we will find that the resulting vector Vf has a rotation
of 90◦ (clockwise) with respect to its starting orientation. Curvature induces a change in
parallel transported vectors which is in general path dependent. This manifestation of
curvature at a point in space-time can be obtained by the parallel transport of a vector
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around an infinitesimal parallelogram in the directions α and β. This operation gives the
commutator of the covariant derivative [Dα, Dβ] = DαDβ−DβDα which can be shown to
be equivalent to the Riemann curvature tensor

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓµνρ + ΓµαρΓ

α
νσ − ΓµασΓανρ, (1.7)

which is the standard geometric description of curvature on differentiable manifolds.
In component form the Einstein field equations are

Gαβ =
8πG

c4
Tαβ, (1.8)

with κ now determined by correspondence with the Newtonian gravitational field in the
non-relativistic limit. The curvature tensor may be contracted to give the Ricci tensor

Rµν = R α
µαν . (1.9)

and the Ricci scalar

R = gµνRµν = R ν
ν . (1.10)

In terms of these quantities, Einstein found that the requirements of general covariance
and local conservation of stress-energy and momentum led to the following form for the
Einstein tensor

Gαβ = Rαβ −
1

2
gαβR. (1.11)

The Einstein field equations form a set of non-linear coupled equations which are in
general difficult to solve. In the next section we employ the method known as perturbation
which enables extraction of the simplest non-trivial solutions to complex sets of equations.

1.2.2 Gravitational Wave Solutions from Linearised GR

We may treat the induced GW strain from a distant and/or weak source of GWs as a
small perturbation on an otherwise flat space, i.e.

gαβ = ηαβ + hαβ where |hαβ| � 1. (1.12)

In terms of the perturbed metric, the Christoffel symbols are given by

Γρµν =
1

2
gρσ(∂µgσν + ∂νgσµ − ∂σgµν). (1.13)

Note that Eq. 1.13 uses the inverse metric gαβ = ηαβ−hαβ, obtained by the conversion of
covariant to contravariant components1. For brevity and flow of derivation we omit some
of these component raising/lowering manipulations. Now substituting for gαβ in Eq. 1.13
and neglecting the higher order terms we obtain

Γρµν =
1

2
ηρσ(∂µhσν + ∂νhσµ − ∂σhµν). (1.14)

1Consistency of vector representation yields the following relations between contravariant and covariant
components Vµ = gµνV

ν and V µ = gµνVν .
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By inspection of Eq. 1.14, we can see that the Γ square terms of the Riemann tensor only
involve terms non-linear in h (i.e. (∂h)2). Therefore we may first reduce the Riemann
tensor to

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓµνρ. (1.15)

Insertion of the linearised Christoffel symbols now yields

Rµ
νρσ =

1

2
(∂ρ∂νh

µ
σ + ∂µ∂σhνρ − ∂µ∂ρhνσ − ∂σ∂νhµρ). (1.16)

Defining the d‘Alembertian wave operator � = ∇2 − ∂2
t = ∂µ∂µ and the perturbation

trace h = hµµ, upon contraction of the Riemann tensor we obtain the linearised Ricci
tensor

Rνσ =
1

2
(∂µ∂νh

µ
σ + ∂µ∂σhνµ −�hνσ − ∂σ∂νh). (1.17)

Contraction on the remaining indices now yields the linearised Ricci scalar

R = ∂µ∂
σhµσ −�h. (1.18)

We may now construct the linearised Einstein tensor

Gαβ =
1

2
(∂µ∂αh

µ
β + ∂µ∂βhαµ − ηαβ∂µ∂ρhµρ −�hαβ − ∂β∂αh− ηαβ�h), (1.19)

which can be simplified by defining the the trace-reversed perturbation as

h̄αβ = hαβ −
1

2
ηαβh where h̄µµ = −hµµ. (1.20)

This now gives the Einstein tensor

Gαβ =
1

2
(∂µ∂αh̄

µ
β + ∂µ∂βh̄αµ − ηαβ∂µ∂ρh̄µρ −�h̄αβ). (1.21)

The first three terms of Eq. 1.21 all involve contraction of the partial derivative with a
component of h̄αβ and therefore may be eliminated if we are able to set

∂αh̄αβ = 0. (1.22)

This condition, known as the Lorentz gauge, is analogous to that used in electromagnetic
theory and it can be shown that selection of this gauge leaves the physical content of the
theory unchanged. This now leaves the linearised Einstein field equations as

�h̄αβ = −16πG

c4
Tαβ. (1.23)

In vacuum Tαβ = 0 and so we are simply left with the wave equations

�h̄αβ = 0. (1.24)
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1.2.3 Effect of Gravitational Waves on Matter

GWs may be resolved into two independent polarisations h+ and h× whose axes are, unlike
light, at 45◦. In general, the GW strain h(t) is a linear superposition of both polarisations,
the magnitudes of which depend on the orientation of the source in relation to the observer.
Fig. 1.3 shows (highly exaggerated) the individual effect of the polarisations of a GW
with normal incidence to the plane of a ring of free test particles at quarter phase intervals
during one GW cycle. The h+ component simultaneously increases particle separation
on the central vertical axis whilst equally decreasing separation on the horizontal axis.
Particle separation on the oblique axes is continuously gradated such that the ring becomes
an ellipse, achieving its maximum semi-major axis at π/2. In the next quarter the
deformation proceeds in reverse until regaining circularity at π. Over the remaining
half cycle the same deformation now occurs along the reverse axes. The same magnitude
h× polarisation reproduces the h+ strain rotated by 45◦.

Figure 1.3: Action on the separation of a ring of particles over one cycle of h+ and h×
polarisations for GW propagation along ring axis. Reproduced from [13].

1.3 Astrophysical Sources of Gravitational Waves

In this section we review some of the main astrophysical sources of GWs. Except where
otherwise stated, this material is based on the relevant sections of Gravitational-Wave
Physics and Astronomy, by J.D.E. Creighton and W.G. Anderson [14].

GW sources may be classified by the type of GW signal we expect the source to emit
at some point during the evolution of the system and may be categorised as continuous,
burst, or stochastic background. Further classification can be made based on the frequency
range of GW emission as this determines which type or scale of detector may be sensitive
to the source. Depending upon the complexity of GW generation, the waveforms may be
mathematically modelled or unknown and this determines the GW data analysis search
method for such sources. Compact binary systems, which can produce both continuous
and burst signals, whilst contributing to a weak random GW background (stochastic),
present the most likely candidate for first detection and so are treated separately.

9
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1.3.1 Continuous Sources

Continuous sources emit GW signals of long duration compared to observation time
and are produced by systems undergoing periodic motions with gradual loss of energy.
Consequently the GWs emitted are expected to be weak with frequency and amplitude
which change very slowly. The frequency of GWs emitted is generally twice the frequency
of the GW generation process, which is typically the orbital or rotational frequency of the
system.

Rapidly spinning neutron stars (NS) with nonaxisymmetry (pulsars) and compact
binary systems far from coalescence are considered sources of continuous GWs. Spherical
asymmetry in NSs may be due to surface irregularities such as crustal deformation
(mountains), internal fluid oscillation, rotational precession, or slow mass accretion from
a companion object. Pulsars have been observed with rotational periods on the order of
milliseconds and therefore considered likely sources of high frequency continuous GWs.
The strength of GWs emitted by a pulsar is proportional to its ellipticity, which has been
estimated to have an upper limit ε ∼ 10−6 and so substantially weaker by approximately
this factor compared to the estimate we obtain in section 1.3.5 for a compact binary
system.

Continuous source signals can be modelled to high precision as sine waves of a
given frequency f and time evolution ḟ . Searches for continuous sources permit signal
correlation with GW signal models over long periods. This has the advantage that very
weak GW signals may be extracted from detector noise with the signal-to-noise ratio
increasing as the square root of the observation time. However, the analysis is complicated
by the necessary inclusion of source-receiver relative motion due to the Earth’s rotation
on its axis and orbit around the Sun.

1.3.2 Burst Sources

In contrast to continuous sources, burst sources emit GWs for periods which are
short compared to the observation time. These sources are systems or bodies which
undergo short-lived catastrophic events. The coalescence of compact binary systems and
asymmetric core-collapse supernovae are considered primary burst sources.

Core-collapse supernovae occur when the outward pressures due to nuclear fusion
radiation and degeneracy pressure (electron or neutron) within the core can no longer
support the star against gravitational collapse. The ensuing highly energetic explosion,
classified as either Type II,Ib or Ic supernovae, ultimately leads to neutron star or black
hole formation, depending upon the mass of the progenitor and remnant mass distribution.

White dwarfs may undergo accretion induced collapse when its total mass exceeds the
Chandrasekhar mass limit of 1.4 solar masses as a result of the transference of matter from
a companion star. The thermodynamics of the collapse may lead to nuclear detonation
resulting in a Type Ia supernovae event.

The timescale for these events ranges from ∼ 1–1000 ms giving these sources an
inherent bandwidth of the reciprocal of their duration. As with the compact binary
merger phase, these processes are extremely difficult to model, requiring input from
magnetohydrodynamics and neutrino physics in addition to GR in order to predict
the time varying quadrupole moment of the object. Given these difficulties, the
methods used to extract these signals employ unmodelled search methods which make

10
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minimal assumptions about the waveform. These highly energetic processes may also
be accompanied by strong short-lived bursts of electromagnetic radiation, in particular
gamma-rays and/or neutrinos. Combined observations of these counterparts with strong
GW detection candidates would provide compelling evidence that GWs had been detected.

1.3.3 Compact Binary Systems

Compact binary systems are considered as the best understood and the most likely sources
to be detected with current interferometers. A compact binary system is composed of two
gravitationally bound compact stellar mass objects. The objects which form these systems
may be any binary combination of neutron star, black hole, or white dwarf.

These systems are characterised by undergoing three stages of evolution. First is
the inspiral phase, during which the orbit is quasi-periodic and GW emission is almost
monochromatic. As GWs carry away energy from the system, the orbital distance
gradually decays and the binary objects spiral in towards each other. This increases the
frequency and amplitude at which GWs are emitted and rapidly rises towards the end of
the inspiral phase, the waveform of which is referred to as a ‘chirp’. This continues until the
innermost stable orbit, when phase two, merger, begins. During this phase the coalescence
of the two objects begins and an intense burst of GWs is emitted. The coalescence forms
an excited Kerr (i.e. rotating) black hole. Stage three is the ringdown phase in which the
excited Kerr black hole relaxes by emission of GWs which have waveforms predicted to
be exponentially damped sinusoids. The evolution and characterisation of the expected
waveform of a compact binary system is depicted in Fig. 1.4.

Figure 1.4: Evolution of a compact binary system (top) and expected GW waveform (bottom).
Reproduced from [15].
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Intense interest in these sources exists because, with some limitations, the waveforms
for the inspiral, merger and ringdown phases may be confidently predicted. The
complex, highly non-linear, dynamics of the late inspiral and merger phase makes
theoretical waveform prediction extremely challenging, employing the techniques of
post-Newtonian theory and numerical relativity. Knowledge of these waveforms and the
use of matched filter techniques, to be discussed in section 3.3.1, considerably enhance
detection probability. Were the inspiral and ringdown waveforms detected, it should then
be possible to measure the merger waveforms which may aid the development of better
models for coalescence.

White dwarf binaries are expected to emit in a frequency range 10−3 – 1 Hz which is far
too low to be detectable with ground based detectors but would be within the sensitivity
range of detectors such as the proposed space interferometer LISA.

1.3.4 Stochastic Gravitational Wave Background

In addition to independent sources of GWs, a stochastic (random) GW background of
astrophysical origin is expected to result from the incoherent superposition of many
independent GW sources, intrinsically weak or sufficiently distant such that individual
contributions cannot be resolved nor can be localised to a sky position. The independence
of these sources are expected to produce a Gaussian distributed random GW background
noise, difficult to distinguish from detector noise unless correlated with signals from other
detectors over long periods. If this background was successfully detected, this would
provide a basis for testing existing astrophysical source population models. Furthermore,
underlying the astrophysical background, there may also be a cosmological stochastic
background from the epoch of the big bang, when the Universe was 10−43 s old.

1.3.5 Estimate of Gravitational Wave Strain from a Compact
Binary Source

GW detection poses a technical challenge which can be better appreciated by estimating
the measurement precision required to detect a ‘typical’ source. We take the source to
be a compact binary system of mass M ∼ 1030 kg, orbital radius R ∼ 20 km, orbital
frequency f ∼ 400 Hz, at a distance of r ∼ 1023 m (3 Mpc). For such a system Einstein’s
mass quadrupole formula gives

h ≈ GMR2f 2

c4r
, (1.25)

where G is Newton’s gravitation constant, c the speed of light. This gives a strain value
of h ∼ 10−21, corresponding to a change in dimension of ∼ 10−6 m of a nuclear diameter
over 1 m.

One might consider the nearby detection of GWs produced on Earth with a suitable
arrangement of rapidly rotating large masses. For example, a dumbbell spinning about
the central axis perpendicular to the connecting rod is similar to a binary system. There
are two main reasons prohibiting local or remote detection of laboratory generated GWs.
Most important is the exceedingly small coupling factor of the dynamics to the GW strain
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G/c4 ∼ 10−45 N−1. Also, for the radiative character of GWs to be received, detection
must take place in the far-field limit, at a distance of at least the GW wavelength,
and so r ∼ λgw ∼ c/2f . If we take h ∼ 10−21 as the order of magnitude of the
minimal detectable strain, then our GW generation and detection experiment must now
require that MR2f 3 ∼ 1032 W. The rotational kinetic energy needed is immense and
no practical experiment is conceivable. Therefore the search for GWs must remain an
entirely observational endeavour.

1.4 The Search for Gravitational Waves

The search for GWs initially began in the minds of theorists. Although GWs were one
of the first predictions of GR and naturally address ‘action at a distance’ issues, in 1936
Einstein, amongst other relativists, was not convinced that GWs existed. Einstein’s
conclusions were based on attempts (with Nathan Rosen) to obtain exact solutions for
gravitational plane waves but which resulted in singularities that he believed disproved
their existence. This debate elicited Arthur Eddington’s comment on some GW solutions
travelling ‘at the speed of thought’ [16].

The theoretical basis of GWs as detectable phenomena was established in 1957 at
the Chapel Hill Conference (University of North Carolina), held primarily to discuss the
relationship between GR, quantum theory and measurement. The close analogy in the
derivation of GWs to electrodynamics made the existence and nature of GWs of prime
importance. A number of notable contributors, Felix Pirani, Hermann Bondi and (in
later correspondence) Richard Feynman, discussed the matter. Pirani contributed a clear
physical interpretation of the tidal effects of the Riemann tensor. This led Feynman to
propose a thought experiment to determine if a rigid rod threaded with beads which are
free to slide (subject to friction) would absorb energy from a passing GW and so dissipate
heat to the rod. This argument left the consensus of opinion in favour of GW energy
absorption and so provided a physical principle for detection. Also attending was Joseph
Weber, who would begin designing the first GW experiment a year after Chapel Hill [17].

The detection principle of Weber’s experiment was the measurement of thermal energy
absorbed from a GW by resonance of a large aluminium cylindrical bar. His resonant
bar detectors were designed to have dimensions which give a sharp resonance at around
1660 Hz, a frequency of GW emission expected to occur during supernova collapse,
and achieved a sensitivity to strain of ∼ 10−16. In a 1969 paper [18], Weber reported
coincident GW detection between detectors separated by ∼1000 km, but his results were
controversial on energetic grounds and not reproduced by other experimenters. Weber
defended his results but by 1975 a consensus had formed that the significance of his
reported detections were the result of statistical errors [19]. Although this was not an
auspicious beginning for GW astronomy, Weber is generally considered to have pioneered
the field of GW experimental methods and his contribution is recognised in the annual
Joseph Weber Award for Astronomical Instrumentation, awarded from 2002. Enhanced
resonant detectors such as AURIGA are still in operation [20]. Fig. 1.5 shows Weber
working on one of his detectors.
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Figure 1.5: Joseph Weber working on one of his resonant bar detectors.
Reproduced from Special Collections University Archives, University of Maryland Libraries.

One major disadvantage of resonant detection is that high sensitivity in a very narrow
frequency range, apart from severely limiting which sources could be detected, cannot
provide the full waveform description required to characterise the dynamics of the GW
source. A detector with high sensitivity over a broad range of frequency is therefore
desirable. Broadband strain measurement can be achieved with the detection principle of
differential length measurement of the separation of test masses based upon the Michelson
interferometer configuration.

The first suggestion of GW detection by interferometry was made by the Russian
physicists Michael Gertsenshtein and Vladislav Pustovoit in 1962, in a critique of Weber’s
bar detection method [21]. Weber’s former doctoral student Robert Forward, who
had worked with him on the development of resonant bar detectors, was the first to
construct a prototype laboratory scale laser interferometric detector at Hughes Research
Labs in 1972 [22]. As we will see in Section 2.2, the intrinsic sensitivity to GW strain
scales in proportion to the effective test mass separation. Consequently, all prototype
interferometers of metre scale constructed by a number of groups during the 1970s and
80s (MIT (Weiss - see below), University of Glasgow [24], and Max Planck Institute
(Munich) [25]) were not large enough to detect GWs but these would be of considerable
value in developing the technologies necessary for interferometers of much larger scale.

The first detailed study of large-scale GW interferometry was set out by Rainer
Weiss in an MIT laboratory report (unpublished) of 1972 [23], in which an extensive
analysis of the noise sources limiting detection sensitivity is presented. The 1983 National
Science Foundation (NSF) funded study, authored by Paul Linsay, Peter Saulson, and
Weiss, comprehensively states the case for the building of (at least) two kilometre-scale
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interferometers. The document cites the compelling evidence from Taylor and Weisberg’s
1982 results on the observation of PSR 1913+16 that GWs exist and states that the
primary factor in achieving realistic prospects of GW detection is detector scale rather
than the need for technological innovation as motivation for such an endeavour. Now
known as the ‘blue book’, the report also included the practical considerations of potential
sites, construction and expense of such a project [26]. In 1984, on the basis of the
feasibility of GW detection presented in the blue book, the National Science Board
(NSB) endorsed the formation of a joint Caltech/MIT project which came to be known
as LIGO (Laser Interferometer Gravitational-Wave Observatory), initially headed by
Ronald Drever (Caltech, formerly Glasgow), Weiss and theorist Kip Thorne (Caltech).
In 1990, following organisational restructuring with LIGO now under the direction of
Rochus Vogt, the NSB accepted the 1989 proposal to build the LIGO observatory: two
4 km GW interferometers at widely separated locations within the US and a third 2 km
collocated detector. The proposal envisaged both incremental evolution of the detectors
from the initial design by future enhancements anticipated through knowledge gained
during operation of the detectors and advanced detectors, essentially new installations
incorporating new technical advances which offer substantial improvements in sensitivity
[27]. Similar proposals towards establishing large scale GW interferometry were taking
place in Europe leading to the joint French-Italian VIRGO and British-German GEO600
projects, and in Japan with the TAMA300 project. In the following, we list a selection
of the major developments leading to the first generation of large scale GW detectors
based upon an NSF funding report for LIGO [28], a status report for VIRGO [29], and
descriptions of the GEO600 [30] and TAMA300 [31] projects.

• 1992 Hanford (Washington) and Livingston (Louisiana) sites selected for LIGO
installation.

• 1994-95 Barry Barish (Caltech) appointed as LIGO director and construction
begins at Hanford and Livingston. Construction of the 600m GEO600 GW detector
in Hannover (Germany) begins. TAMA300 project starts.

• 1997 Formation of the LIGO Scientific Collaboration (LSC), extending LIGO
collaboration to GW research groups worldwide.

• 1999-2000 TAMA300 detector (Tokyo) operational and completes first data taking.

• 2002-03 All three LIGO detectors and GEO600 begin scientific operation.
Commissioning of newly built 3 km VIRGO detector in Cascina (Italy).

• 2007 Collaborative agreement between LSC and VIRGO project. VIRGO detector
starts scientific operation.

Figs. 1.6 and 1.7 show the 4 km detectors sited at Livingston (Louisiana), labeled L1,
and at Hanford (Washington state) H1, which houses the third 2 km detector H2. As a
collective, these are regarded as the LIGO observatory.
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Figure 1.6: LIGO Livingston site (May 19, 2015). Photo credit Caltech/MIT/LIGO Lab (ID
ligo20150731c).

Figure 1.7: LIGO Hanford site (May 2, 2008). Photo credit Caltech/MIT/LIGO Lab (ID
ligo20150731f).
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Chapter 2

Laser Interferometric Detectors

Introduction

All present GW interferometric detectors are highly evolved enhancements of the
Michelson interferometer used by Albert Michelson and Edward Morley in their famous
experiments to test for the presence of a ‘luminiferous aether’ [32]. From this point on,
when referring to GW detectors, we mean just this type of detector. GW detectors have
each of their mirrors (test masses) suspended as a pendulum, and at frequencies well above
the pendulum resonance (∼ 1 Hz) they are free to move along the optical axes in response
to a GW. All interferometer optical paths are maintained at high vacuum for acoustic
isolation and to reduce beam scattering and variation of refractive index. The majority
of content in this chapter is based on Interferometer Techniques for Gravitational-Wave
Detection by A. Friese [33] and Gravitational Waves Volume 1 by M. Maggiore [34].

2.1 The Michelson Interferometer

The principle of interferometric length measurement may be illustrated using a simple
Michelson interferometer as shown in Fig. 2.1. The input light is provided by a stable
Nd:YAG laser emitting at an amplitude ε0 and wavelength λ=1.064 µm. The beam is
incident on a 50:50 beam splitter (BS) which transmits half of the light intensity along the
x-axis and reflects the other half along the y-axis. The beams traverse the interferometer
arm length distances Lx and Ly before encountering highly reflecting mirrors Mx and My

which return the light to the BS. On return to the BS, each beam has acquired a phase
shift1 of ∆φ = 2π · (2L/λ) due to the round trip travel time for the given arm length L.
The returning beams are each transmitted and reflected by the BS along paths towards
the photodiode (PD), which measures the output light intensity, and towards the laser
where it exits the interferometer. The PD receives the sum of the transmitted beam
returning from My and the reflected component from Mx. Overall both beams have been
transmitted and reflected by the BS, which introduces a factor of 1/2 in amplitude and a
relative phase shift of π due to reflection from opposite sides of the BS.

1The common phase factor of π upon reflection from the end mirrors can be ignored as these disappear
upon measurement of the field modulus by the PD.
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My

Mx

Ly

laser

PD

MxBS

Lx

Figure 2.1: Simple Michelson Interferometer. Interferometer components lie in the horizontal
plane. A 50:50 beamsplitter (BS) directs the laser light along two perpendicular paths
towards the y-arm mirror My at distance Ly, and the x-arm mirror Mx at distance Lx. The
photodiode (PD) receives the combined components of the light returning from Mx and My

which respectively have been reflected and transmitted by the BS.

The resulting output field amplitude to the photodiode EA is antisymmetric with respect
to the arm lengths and is given by

EA =
ε0

2
(ei2kLy − ei2kLx), (2.1)

where the wavenumber k = 2π/λ. If we define the common arm length and differential
arm length respectively as

L̄ =
Lx + Ly

2
and ∆Ld = Lx − Ly, (2.2)

then expressing Lx and Ly in terms of these quantities in Eq. 2.1 yields

EA = iε0e
i2kL̄ sin (k∆Ld). (2.3)

Therefore the output intensity |EA|2 is proportional to sin2(k∆Ld).
Now consider the effect of a passing GW with normal incidence to the plane of

an interferometer whose arm lengths are L. For simplicity, we consider only the
h+ component and assume the polarisation axes to be parallel with the arms of the
interferometer. The GW will produce time dependent separations between the beam
splitter and end mirror in each arm, undergoing oscillations similar to those shown in Fig.
1.3. If one arm is lengthened by ∆L then the other is shortened by the same magnitude.
Therefore ∆Ld = 2∆L and the output power is now proportional to sin2(2k∆L). Similarly
obtained, or via conservation of energy (|EA|2 + |ES|2 = ε2

0), is the symmetric output
towards the laser ES = ε0e

i2kL̄ cos (2k∆L), which shows that in the absence of a GW all
laser power is reflected back towards the laser.
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Although we require the arm lengths Lx ≈ Ly so that the GW strain induced in the
arms is of the same magnitude, they do not need to be exactly the same since the output
is identical modulo λ and so satisfied when |Lx − Ly| = nλ for integer n. This freedom
is referred to as the Schnupp asymmetry and will be of use when we consider an optimal
GW detection strategy to be described in Section 2.3.2.

2.2 Gravitational Wave Interferometry

In this section we motivate the development of the simple Michelson interferometer
towards a GW detector capable of measuring strain amplitudes of order h ∼ 10−21 with a
few simple calculations that will give some insight into the technical and practical issues
to be addressed in the design of GW detectors.

Since the output of the interferometer is a measurement of ∆L = hL, then we can
improve sensitivity to h by making L as large as practically possible. For a GW of a
given frequency, the optimal response of the detector occurs when the time taken for the
light to travel from the BS to the end mirrors and back is equal to half the period of the
GW. After this time the GW changes sign, producing cancellation which degrades the
output signal. For example, to optimally detect GWs of frequency 100 Hz we require arm
lengths of L ∼ λGW/4 = c/4fgw ∼ 750 km. The provision of a detector site on this scale
(squared) is clearly impractical for ground based interferometers. The simplest method
to achieve much longer optical paths within each arm is to reflect the beam multiple
times along separate paths between an additional mirror and the end mirror before the
light returns to the BS. The disadvantage of this method is that very large mirrors would
be required to accommodate the hundreds of paths required for a detector on the more
realistic scale of a few kilometres. The more compact solution, first suggested by Ronald
Drever and adopted into the design of all subsequent GW detectors, is to make each arm
a Fabry-Perot cavity. This important modification is discussed in Section 2.3.1.

Regardless of the optical path configuration, the interferometer must measure a phase
difference of order ∆φ ∼ 2πLh/λ = 2π(750 × 103 m)(1 × 10−21)/(1 × 10−6 m) ∼ 10−9

rad. The intensity measured at the output is a photon average, but associated with this
is an error due to fundamental fluctuations in photon number known as shot noise. The
uncertainty in photon number N for coherent state1 light is given by ∆N =

√
N . This

introduces an uncertainty in the energy

∆E = ∆N~ω =
√
N~ω, (2.4)

where ω is the angular frequency of the light and 2π~ is Planck’s constant. The Heisenberg
Uncertainty Principle in the energy and time form ∆E∆t ≥ ~ can be used to relate the
uncertainty in the phase ∆φ = ω∆t to ∆N , to give

∆φ ≥ 1√
N

⇒ N ≥ 1

|∆φ|2
= 1018. (2.5)

The laser must then supply N photons in a time half the period of the GW, therefore
the minimum power needed is P = 2N~ωfGW ∼ 30 W. At the time the initial LIGO
detectors were being designed, stable laser power was limited to ∼ 10 W and to overcome

1Waveform is that of a classical harmonic oscillator, or far from quantum behaviour.
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this deficit it was suggested, again by Drever, that the light which is lost by reflection
back through the symmetric output be reused in a method known as power recycling.
This is accomplished by means of an additional mirror situated between the laser and the
BS, which is highly transmissive to the input laser light and highly reflective to the light
received from the symmetric output.

2.3 Detector Optical Techniques

The design of a GW detector of practical proportion and required sensitivity relies upon
a number of optical techniques which reduce the extreme values of arm length and laser
power that otherwise would be needed. We begin this section by considering a simple
model of the Fabry-Perot Cavity. In the following treatment of light propagation we
neglect transverse beam diffraction, but in practice the beam wavefront must be profiled
by lenses and mirror curvature to confine the maximum beam diameter within the arm
cavity.

2.3.1 The Fabry-Perot Cavity

A simple modification of the interferometer arms can increase the effective arm length
considerably, allowing much shorter arms. Originally proposed by Ronald Drever [35],
this was the inclusion of one partially reflective mirror in each arm, close to the BS, to
form Fabry-Perot cavities between the additional and end mirrors.

The Fabry-Perot cavity is a two mirror laser resonator which is highly sensitive to both
the frequency of input light and the mirror separation. We can see how light is stored
in the cavity by modelling the cavity with two mirrors M1 and M2 with reflection and
transmission coefficients r1, t1 and r2, t2 respectively. The squared values of the mirror
coefficients are proportional to the probability of photon reflection and transmission at
the mirror boundary. Optical losses due to scattering and mirror absorption are ignored
in this discussion, therefore r2 + t2 = 1 for each mirror. Laser light of wavelength λ and
field amplitude ε0 is incident on M1 at the origin of plane wave propagation and M2 is the
highly reflecting end mirror of an interferometer arm with r2 ∼ 1 and t2 ∼ 0, separated
from M1 by the arm length distance L. The cavity model along with the steady state
circulating and reflected field amplitudes are shown in Fig. 2.2.

The circulating field Ecirc and corresponding power Pcirc can be determined from the
field amplitudes ai at the mirror surfaces as follows:

a4 = a3e
−ikL = a2r2e

−ikL = a1r2e
−i2kL = r2e

−i2kL(r1a4 + it1ε0), (2.6)

and Ecirc = it1ε0 + r1a4 which gives

Ecirc = ε0
it1e

−i2kL

1− r1r2e−i2kL
⇒ Pcirc = |ε0|2

t21
1 + r2

1r
2
2 − 2r1r2 cos(2kL)

. (2.7)

Resonance occurs when the length of the cavity is an integer multiple of λ/2 (i.e.
kL = nπ) and when r1 ∼ 1 the circulating power in the cavity can become very large.
The ratio Pcirc/|ε0|2 is defined as the cavity gain and at resonance given by
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Pcirc

|ε0|2
=

t21
(1− r1r2)2

. (2.8)

M1 (r1 ,t1) M2 (r2 ,t2)

ε0

Ecirc

a1 a2

L

Eref

Ecirc

a4 a3

Figure 2.2: Simple model of a Fabry-Perot interferometer arm cavity of length L. M1 is situated
close to the BS and M2 is the end mirror. For incident light of amplitude ε0, the circulating and
reflected fields Ecirc and Eref are determined from the mirror boundary amplitudes ai.

In Fig. 2.3 we show that when the frequency of light is gradually increased (or decreased)
from resonance the power inside the cavity falls to a minimum at anti-resonance and new
resonances occur at integer values of the free spectral range (FSR) given by FSR=c/2L.
We can equally regard Fig. 2.3 as showing how stored power changes with cavity length
by replacing the frequency axis values nc/2L with nλ/2.
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Figure 2.3: Ratio of circulating power to input power as a function of frequency.

The sharpness of resonance is characterised by the finesse F of the cavity, defined as
the ratio of FSR and the full width at half maximum. For a high finesse cavity, with
r1 ∼ r2 ∼ 1, this can be approximated as
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F ≈
π
√
r1r2

1− r1r2

≈


π

2(1− r1)
when r1 = r2.

π

1− r1

when r1 < r2 ' 1.

(2.9)

The first limit applies to the condition known as critical coupling, which is shown below
to be of no practical use for GW interferometry. A third limit is obtained from the second
by interchange of the coefficients (i.e. r1 � r2) and we also show this to be suboptimal.

As with the simple Michelson interferometer, measurement of GW strain depends upon
the (average) phase acquired by photons during transit within the Fabry-Perot cavities.
The average number of round trips photons make before exiting the cavity is a statistical
quantity which is proportional to the cavity finesse. If we take r1 ∼ 1 and r2 = 1, on
each round trip an initial photon number N is depleted by a factor (1− r2

1) in time 2L/c.
Therefore

dN

dt
= −c(1− r

2
1)

2L
N, (2.10)

which gives the average lifetime of the photon in the cavity τ as

τ =
2L

c(1− r2
1)
⇒ No. of round trips =

cτ

2L
=

1

1− r2
1

≈ 1

2(1− r1)
. (2.11)

Comparing this with Eq. 2.9 for the case (r1 < r2 ' 1) implies the approximate relation
F ≈ 2π×(No. of round trips).

Phase information is carried in the reflected field Eref , which is the sum of the reflected
incident field and transmitted circulating field at M1, and is given by

Eref = ε0
r1 − r2e

i2kL

1− r1r2ei2kL
. (2.12)

Considering the numerator of Eq. 2.12, the relative values of the reflection coefficients
determine which of three distinct conditions apply, r1 = r2, r1 < r2 or r1 > r2, referred
to as critical coupling, overcoupling and undercoupling respectively. For GW detection
or control purposes we require a phase response around resonance which is sensitive to
change in cavity length or laser frequency and so critical coupling (i.e. Eref = 0) is clearly
of no value. Expressing the reflected field in the form Eref = |Eref |eiφ, the tangent of the
phase φ is found to be

tan(φ) =
r2(r2

1 − 1) sin(2kL)

r1(r2
2 + 1)− r2(r2

1 + 1) cos(2kL)
. (2.13)

We characterise the phase response φ(2kL) for instances of overcoupling (r1 = 0.95 r2 =
0.99) and undercoupling (r1 = 0.99 r2 = 0.95) in Fig. 2.4. In both cases the phase response
is virtually zero over a wide range around anti-resonance but significant differences can
be seen on approaching resonance. Compared to undercoupling, the overcoupling phase
response is prominent, almost linear near resonance and monotonic between resonances.
Overcoupled cavities are therefore the optimal choice for interferometer arms.
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Figure 2.4: Phase response φ(2kL) of overcoupled (r1 = 0.95 r2 = 0.99) and undercoupled
(r1 = 0.99 r2 = 0.95) Fabry-Perot cavities.

We now estimate the linear phase response for an overcoupled cavity near resonance.
The gradient of the phase can be obtained by expanding Eq. 2.13, where φ → φres + δφ
and 2kL→ 2nπ + δ(2kL), to give

dφ

d(2kL)
=

(1 + r1)2

1− r2
1

∼ 4

1− r2
1

∼ 2F
π
. (2.14)

Thus, compared to the simple Michelson interferometer with phase response ∆φM = 2kLh,
high finesse cavities give a large amplification factor of 2F/π in phase sensitivity. The
magnitude of the total phase change in a Fabry-Perot interferometer is therefore

∆φFP =
4F
π

∆φM. (2.15)

A Fabry-Perot interferometer can then achieve the required sensitivity of ∆φFP ∼ 10−9

rad with arm lengths of a few kilometres (∆φM ∼ 10−11) if the arm cavity finesse F ∼ 102.
Later, it will be useful to consider the cavity input mirror to have a frequency/cavity

length dependent reflectivity r(2kL) = Eref/ε0 = |r(2kL)|eiφ. The magnitude of the
cavity reflection coefficient for the overcoupled case above is plotted in Fig. 2.5.
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Figure 2.5: Magnitude of cavity reflection coefficient |r(2kL)| (r1 = 0.95 r2 = 0.99).
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This shows that the magnitude at resonance r0 = |(r1 − r2)|/(1 − r1r2) rapidly rises to
a constant magnitude of (r1 + r2)/(1 + r1r2) ∼ 1. It follows that for light at frequencies
which are not close to resonance, where φ ∼ 0, the reflection coefficient is insensitive to
both frequency and cavity length and so are entirely reflected. This difference between
the reflection coefficient sensitivity on resonance and insensitivity around anti-resonance
can be exploited in a powerful technique (or variants) for both GW detection and
interferometer control purposes.

2.3.2 Interferometer Operation and Gravitational Wave Signal
Extraction

In Section 2.1 we found that the output power P measured by the photodiode in a
simple Michelson interferometer is proportional to sin2(2k∆L). A plot of the ratio of
output power to incident intensity |ε0|2 is shown in Fig. 2.6, where we have indicated two
possible operating points, each achieved with the appropriate phase offset. Point 1 would
seem to be the natural choice to obtain maximum sensitivity to change in length since
the gradient is maximal and has linear response. However, the output is also maximally
sensitive to laser power noise and the small signal we wish to detect must compete with
noise within a relatively large DC offset.
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Figure 2.6: Ratio P/|ε0|2 as function of ∆L showing possible operating points located at points
1 and 2.

The DC offset can be eliminated by operation at point 2, achieved by ensuring that the
light returning to the BS from the arm cavities destructively interferes on the output side
of the BS. This operating point is referred to as the ‘dark fringe’, where the output signal
is now entirely due to the induced phase change. The cost of operation at the dark fringe
is that the response is now quadratic about the null point since sin2(2k∆L) ∼ (2k∆L)2,
making detection practically impossible since (∆L)2 ∼ 10−36 m2. Recovery of a linear
response is possible by means of a modulation-demodulation technique which we now
discuss.

The input laser light is phase modulated by passing it through an electro-optic
modulator (EOM), a device whose index of refraction can be varied with an applied
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voltage. If the EOM is supplied with a sinusoidal signal at a radio frequency (RF)
Ω ∼ 107 Hz, chosen so that ω ± Ω fall between resonances, and modulation depth m,
then the input light to the interferometer will be of the form

E = ε0 exp(i(ωt+m cos(Ωt)). (2.16)

Eq. 2.16 may be expressed in terms of Bessel functions of the first kind Jk(m) using the
Jacobi-Anger expansion [36], from which we obtain

E = ε0e
iωt

∞∑
k=−∞

ikJk(m)eikΩt, (2.17)

where

Jk(m) = (m
2
)
k ∞∑
n=0

(−m
2

4
)
n

n!(n+ k)!
and J−k(m) = (−1)kJk(m). (2.18)

A large number of sidebands will be created but for m � 1 the Bessel functions fall off
rapidly with increasing k, and so a good approximation is obtained by only considering
the k = ±1 contributions. With J−1(m) = −J1(m) we then have

E ≈ ε0e
iωt(J0(m) + iJ1(m)eiΩt + iJ1(m)e−iΩt), (2.19)

which to second order in m reduces to

E = ε0e
iωt(1− m2

4
+ i

m

2
(eiΩt + e−iΩt)). (2.20)

This shows that a small proportion of the energy from the carrier has been transferred
to the sidebands. The field reflected from the cavities is the linear superposition of each
field component multiplied by the corresponding reflection coefficient. This gives

Eref = ε0e
iωt(r(ω)J0 + r(ω + Ω)J1e

i(Ω)t + r(ω − Ω)J1e
i(−Ω)t), (2.21)

where for brevity we retain the Jk and the factor of i is ignored as this changes the phase
of both sidebands by π/2.

In the presence of a GW phase changes of magnitude ∆φ = 2FkLh/π but opposite
sign are induced in each arm, thereby changing the reflection coefficients at the carrier
frequency of the x and y arm cavities to rx = r(ω)e+i∆φ and ry = r(ω)e−i∆φ respectively.
As discussed in Section 2.3.1, the reflection coefficients for the sideband components
remain unchanged at r(ω±Ω) ∼ 1. Following some algebra and making the approximation
sin(∆φ) ≈ ∆φ, we find the output field to the photodiode is then of the form

EA = i
ε0

2
ei2kL̄(r(ω)J0FkLh/π + J1 sin(2π∆L/λmod) cos(Ωt)), (2.22)

where λmod = 2πc/Ω is the modulation wavelength. In Eq. 2.22, the first term comes
from the carrier whilst the second is from the sidebands. With Lx = Ly (i.e ∆L = 0) both
carrier and sidebands lie on the dark fringe, and our measured signal is again proportional
to h2. If we now introduce a Schnupp asymmetry by setting the cavity length in both arms
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equal but the difference in distance between the arm cavities and the beam splitter to nλ,
then the sidebands no longer lie on the dark fringe even when the carrier is, and |EA|2 now
contains a cross term linear in h, oscillating at the modulation frequency. Demodulation
of the output at the modulation frequency, followed by low-pass filtering to remove the
2Ω component, enables recovery of the linear term in h.

2.3.3 Interferometer Control

Maintaining the conditions for maximum sensitivity requires precision control systems
which hold the relative positions of the mirrors accurate to a very small fraction of the
wavelength of the laser. Feedback control systems must sense deviations from the required
operating point and then respond with an appropriate signal from actuators which reduce
the deviation.

We can see from Fig. 2.3 that the power circulating in a Fabry-Perot cavity is symmetric
on either side of resonance and so this signal would not be useful in determining whether,
for example, a mirror position along the optical axis should be increased or decreased.
The gradient, however, is antisymmetric around the control point and in Fig. 2.7 we show
the derivative of the circulating power. This has the ideal form of a control signal near
the required operating point; the signal is bipolar where its sign depends on which side
of the operating point the system has moved; it has zero crossing at the operating point;
and it also has high gain and linearity.
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Figure 2.7: Gradient of Pcirc/|E0|2 as a function of ∆L/λ showing the bipolar behaviour around
resonance required for a control signal.

In order to obtain a control signal similar to that shown in Fig. 2.7 the
Pound-Drever-Hall (PDH) [37] locking technique may be used. The laser light is phase
modulated with a modulation frequency, usually in the radio frequency (RF) band, which
is far from an integer multiple of the FSR of the cavities. Modulation imposes sidebands
on the carrier whose transmission into the cavities will differ from that of the carrier.
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Most of the sideband amplitude will be reflected from the cavities which beat with the
reflected carrier. Demodulation of the output at the modulation frequency and low-pass
filtering of the signal yields a signal proportional to ∆L.

2.4 Detector Noise

In this section we briefly review some of the main sources of noise present in GW detectors.
Whilst our discussion is quite general, our focus will be on the noise characteristics of the
LIGO detectors.

In the absence of a GW signal all detector output is the summation of noise originating
from various sources. Individually or in combination, these sources may dominate or
mimic a GW signal, severely hindering the prospect of detecting the presence of relatively
weak GW signals. The sources of noise may be internal or external to the detector,
examples of the latter being gravity gradient noise, caused by local changes in mass
distribution which induce gravitational forces on the mirrors, and anthropogenic noise.
Internal sources of noise may be classified as either technical or fundamental.

Technical noise sources, generated by the various subsystems within the interferometer,
result from the design implementation, experimental practice, or unexpected behaviour of
instrumental components. Examples of technical noise are the 60 Hz powerline harmonics,
and vibrational modes of the pendulum suspensions. Predictable noise, produced at
well-defined frequencies, may be monitored and removed with signal processing techniques
[38]. Fundamental forms of noise such as photon shot noise and thermal noise are
unavoidable as they are inherent in the physics of the detection principle used or necessary
operating conditions. Fundamental noise represents the theoretical limit of experimental
design sensitivity.

With the exception of some forms of technical noise shared by detectors with common
design (e.g. powerline harmonics), all of the noise sources mentioned so far generally
produce noise which is uncorrelated to noise in other distantly separated detectors.
However, there are some natural phenomena such as earthquakes, solar storms and
Schumann resonances1 [39] which, due to their extensive or global effects, can produce
correlation. The impact of such noise sources on data can be reduced by subtraction of
noise detected by seismometers and magnetometers.

2.4.1 Seismic Noise

The natural choice of location for high precision instruments such as GW detectors
are areas of low seismic activity and distanced from anthropogenic disturbances.
Unfortunately, natural seismic vibrations are a constant presence and some environmental
noise input from human activity, such as local vehicular motion, and atmospheric
conditions (e.g. wind) is unavoidable. Seismic noise couples into the alignment and
suspension systems of the mirrors and dominates all noise input in the low frequency
range . 40 Hz (initial LIGO). Microseismic motion of the ground, induced by coupling
of ocean waves to land or sea floor, produces peaks in the range 0.1–1 Hz [40].

1Lightning discharge excitations of the cavity formed between the Earth’s surface and ionosphere which
induce magnetic forces on susceptible detector components.
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The detectors employ seismic vibration isolation systems which fall into two categories,
passive and active. Passive isolation of the mirrors utilises the filtering properties of
the pendulum suspension at frequencies above the pendulum resonance (∼ 1 Hz) and
spring-mass isolation stacks for optical benches. Active isolation is used to precisely
control the mirror positions by means of ground motion sensors and actuators which
provide correctional feedback to the suspensions.

2.4.2 Thermal Noise

Thermal noise originates from the fact that at a given operating temperature T the
molecules or atoms of which the detector is composed must have a random motion with
a kinetic energy of order ∼ kbT for each degree of freedom by equipartion.

There are two main types of thermal noise which affect the detector: off-resonance
thermal excitation of the mirror suspension wires and mirror mode vibration. The normal
modes of the suspensions produce clusters of many sharp resonances around 300 Hz
and at kHz frequencies, referred to as ‘Violin modes’. Mirror thermal noise arises from
Brownian motion of the mirror surface and within the bulk (substrate). Thermal noise
limits detector sensitivity in the frequency range of the detector between approximately
35 – 100 Hz.

2.4.3 Quantum Noise

Shot noise results from the fact that photons obey Poisson statistics. Fluctuations in the
number of photons arriving at the photodiode of the detector are related to the average
number of photons sampled N as ∆N =

√
N , so the relative error in the photodiode

measurement varies as N−1/2. Shot noise limits the sensitivity of the detector in the high
frequency band of the detection range above ∼ 100 Hz.

The detector is subject to another fundamental quantum noise due to photon
momentum transfer to the mirrors which gives rise to radiation pressure. Whereas
shot noise decreases with increasing laser power, radiation pressure increases. Radiation
pressure limits the effective number of bounces desirable in the interferometer arms and
is therefore the reason that laboratory scale GW detectors with very high finesse cavities
are not feasible. The sum of shot and radiation pressure noise defines a fundamental
restriction to detector sensitivity known as the standard quantum limit.

2.4.4 Characterisation of Detector Noise

The noise characteristics of a GW detector may be represented by its strain amplitude
spectral density (ASD) in units of Hz−1/2 over a broad range of frequencies. Fig. 2.8 shows
the design noise budget ASD for the initial LIGO configuration, with major contributing
sources of noise shown individually and total noise (red). The best sensitivity or lowest
noise occurs around 160 Hz with an ASD value ∼ 4×10−23 Hz−1/2. In general, the sources
of noise which limit the sensitivity in the interferometer (e.g. in the initial LIGO design,
seismic, thermal, and shot noise) are those which touch the sum noise curve, and those
lying just below are sources which present the next noise issues to be addressed in future
proposed design improvements.
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Figure 2.8: Design sensitivity for initial LIGO. The main noise contributions are shown
individually along with the total noise (red curve). Reproduced from [41].

Following approximately two years of operation at design sensitivity, in late 2007 the 4
km LIGO detectors H1 and L1 underwent a program of upgrades referred to as Enhanced
LIGO [42] which included higher laser power (10→ 35 W). In Fig. 2.9 we show the typical
ASD of the Enhanced detectors during the S6 science period (July 2009 – October 2010).
The general features of noise shown in the ASD are trends in the noise spectrum over
wide ranges of frequency (broadband noise), similar in shape to the noise design curve
in Fig. 2.8, and high amplitude narrowband sinusoidal backgrounds which we henceforth
refer to as lines. We can also see that the best sensitivity at around 200 Hz of ∼ 2×10−23

Hz−1/2 is an improvement beyond the initial design by a factor of ∼ 2, in agreement with
the anticipated enhancement goal.

The second generation of GW detectors employ techniques which reduce the limiting
noise sources described in the previous section by varying degrees. For example,
the Advanced LIGO detectors use signal recycling for better (and tunable) frequency
response, higher laser power which reduces shot noise, and improvements in seismic
isolation. Overall, these enhancements give Advanced LIGO (ALigo) detectors an order of
magnitude improvement in sensitivity. For a detailed description of the second generation
detectors the reader is referred the following; for Advanced LIGO [45], Advanced VIRGO
[46] and GEO-HF [47].
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Figure 2.9: Typical noise characteristics for LIGO detectors H1 (red) and L1 (green) during S6.
The noise design curve is shown for comparison (black). Reproduced from [43].

2.5 Gravitational Wave Detector Response

The sensitivity of an interferometer to GWs is not only a function of source strength and
distance. The response of the detector to incident GWs is a linear combination of the
h+ and h− polarisations which is given by the projection of each polarisation onto the
arms of the interferometer. For a source direction with sky position given by the spherical
polar angle θ and azimuthal angle φ with polarisation angle ψ, the response of a detector
whose arms lie along the x and y axes is given by

∆L(t)

L
= F+(θ, φ, ψ)h+(t) + F×(θ, φ, ψ)h×(t), (2.23)

where F+ and F× are the antenna response functions. These are given by

F+(θ, φ, ψ) =
1

2
(1 + cos2(θ)) cos(2φ) cos(2ψ)− cos(θ) sin(2φ) sin(2ψ), (2.24)

F×(θ, φ, ψ) =
1

2
(1 + cos2(θ)) sin(2φ) cos(2ψ) + cos(θ) sin(2φ) cos(2ψ). (2.25)

Fig. 2.10 shows the interferometer response function. Although the response drops
to a minimum in the plane of the detector, the root mean squared sensitivity to
both polarisations is significant over a large proportion of the sky. Therefore, unlike
most other astronomical instruments such as telescopes, GW detectors have an almost
omnidirectional sensitivity but due to the long wavelengths of GWs are non-imaging.
Consequently, GW source sky location can only be inferred from a single detector by
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long period observation taking into account Earth’s orbit and rotation, thereby limiting
localisation to continuous sources. With a minimum of three GW detectors, each
separated by long baselines, short-lived or transient GW sources can be localised on the
sky by triangulation of source signal delay times between the detectors. As with many
other experiments, reproducibility in the form of independent coincident observation also
gives greater confidence and statistical significance.

Figure 2.10: Interferometer antenna response for a detector whose beam splitter is situated at
centre of each figure and arm orientation indicated by black lines. Left: + polarisation, middle:
× polarisation and right: zero polarised (i.e.

√
(|F+|2 + |F−|2)). Reproduced from [44].
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Chapter 3

Gravitational Wave Data Analysis

In this chapter we present the key concepts underlying many of the current approaches to
GW detector data analysis. The chain of analysis leading to GW candidate selection is
referred to as an ‘analysis pipeline’, of which there are three main components: detector
data characterisation and preprocessing, the GW search algorithm, and assessment
of the search sensitivity and reliability. For simplicity we follow this chain in order
of presentation but the development of a mature analysis pipeline involves continual
evolution and/or feedback from all these components.

In the following sections we illustrate some data analysis procedures using a sample
of LIGO detector strain data and with figures drawn mainly from early development of
the work presented later. Our treatment of the Fourier transform (FT) and time domain
filtering closely follow the relevant material in Numerical Recipes by W.H. Press et al.
[48].

3.1 Data Characterisation

The amplitude spectral density (ASD) of the detector strain data is a convenient form
of characterisation for GW search purposes, from which we can assess the potential
sensitivity of the GW search frequency band and consider our approach to data
conditioning or preprocessing methods.

Most GW search pipelines use some form of discrete function transform to perform
spectral analysis and comparison between signals. The discrete Fourier transform (DFT)
is used for sampled data and so we begin with a brief discussion of the FT and its relation
to data spectral characterisation by the ASD.

3.1.1 The Fourier Transform

The FT forms the basis for both preprocessing spectral analysis and some GW search
algorithms by its utility in determining autocorrelation for signal power estimation and
cross-correlation for signal comparison. FTs decompose a time domain signal into an
equivalent representation in the time-frequency domain in an orthonormal basis of sines
and cosines. The DFT is implemented as a fast Fourier transform (FFT) since, for sample
size N , the computational effort scales as N log2N compared to N2 for the time domain
computation of cross-correlation related quantities. Eq. 3.1 shows the FT for continuous
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data and Eq. 3.2, the discrete form for data sampled at the rate fs. For the remainder
of this discussion we use the continuous form. Theorems stated in this section are to be
found in [49].

F [h(t)] = H(f) =

∫ ∞
−∞

h(t)e−2πiftdt. (3.1)

F [hn] = Hn =
n=∞∑
n=0

hne
−2πifn∆t where ∆t = 1/fs. (3.2)

For two signals h(t) and g(t) the cross-correlation C(τ) at time lag τ is given by

C(τ) =

∫ ∞
−∞

g∗(t)h(t+ τ)dt. (3.3)

The correlation theorem relates the FT of the correlation to the FTs of the functions as

F [C(τ)] = G(f)H∗(f). (3.4)

When g(t) = h(t) in Eq. 3.3 we obtain the autocorrelation function and Eq. 3.4 is then
equivalent to the Wiener-Khinchin theorem. Assigning zero lag τ = 0 we then obtain
Parseval’s theorem Eq. 3.5, which equates the energy of the signal calculated in both
time and frequency domains:∫ ∞

−∞
|h(t)|2dt =

∫ ∞
−∞
|H(f)|2df. (3.5)

We may then regard |H(f)|2 as an energy density per unit Hz. In practice one evaluates
the time average (〈..〉) of the integrands in Eq. 3.5 over some period T and finite frequency
range 2∆f (i.e. ±∆f), where ∆f is the highest positive frequency. Since h(t) is real,
|H(−f)|2 = |H(f)|2 and so negative frequencies can now be included when we evaluate
the ASD over the positive frequency range ∆f with a prefactor of 2. This yields the power
spectral density S(f), again in units Hz−1 with a frequency resolution fres = 1/T ,

〈|h(t)|2〉 = 2

∫ ∆f

0

S(f)df. (3.6)

Since h(t) is dimensionless the ASD has units of Hz−1/2. We can directly relate the ASD
at a particular frequency to the value of h(t) by1

hf (t) =
√

2∆fS(f). (3.7)

1N.B. the output of a single sided spectrum analysis already includes the factor of 2 and so this may be
omitted.
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3.1.2 Detector Noise ASD

The sampling frequency of data imposes a general restriction upon the highest frequency
representation of amplitude in the ASD to ∆f . fs/2 = Nf , where Nf is known as the
Nyquist frequency. This is a consequence of the Nyquist-Shannon sampling theorem [50]
which may be stated: complete representation of a signal with a maximum frequency
component fmax requires a sampling rate of at least 2fmax. Higher spectral components
than Nf cause the power at those frequencies to be attributed to lower frequencies. This
type of misassignment is known as aliasing1, and may be avoided by the removal of signal
components higher than Nf by low-pass filtering prior to ASD determination.

The ASD may be obtained from the DFT of a large data set, or for ongoing analysis
and/or data presentation purposes, in fixed short segments when processing incoming
data. For a given sampling rate fs and DFT block length n, corresponding to a time
interval ∆t = n/fs, the frequency resolution of the ASD is equal to 1/∆t. This is the
width of frequency or bin size over which each ASD amplitude is evaluated over the range
0−Nf Hz.

Unfortunately, the block treatment of data causes another form of aliasing known as
spectral leakage, where signal power which should be allocated to a particular frequency
bin is distributed amongst neighbouring bins. This may be reduced by applying an
appropriate window function to the data segments, which taper the time series at the
beginning and end of the data block prior to the DFT. Examples of commonly used
window functions include the Hann, which is a raised cosine function, and the triangular
Bartlett window. Suppression of segment ends requires that the ASD should be obtained
from overlapping data segments rather than contiguous blocks to minimise window edge
effects.

If we wish to characterise detector data spectrally over long periods of time, then the
average of many ASD spectra is required. In Fig. 3.1 we show characterisation of 128 s of
LIGO H1 detector data2 from the strain output channel H1:LDAS-STRAIN, sampled at
fs = 16384 Hz. We have averaged the ASD over 4 s windows with applied Hann function,
giving a frequency resolution of 0.25 Hz over a frequency range 0 – 8 kHz.

The figure shows that low frequency noise (. 40 Hz) dominates the strain data.
Maximum sensitivity (i.e. lowest noise) is achieved at around 200 Hz and at higher
frequencies follows the shot noise trend seen in Fig. 2.8. Apart from general trends in the
ASD, we can also see many instrumental lines due to suspension noise and those at the
mains powerline frequency 60 Hz and harmonics (120 and 180 Hz).

Before turning to the next link in the analysis chain, data preprocessing, we may
use Eq. 3.7 to estimate the ASD sensitivity required to detect a source with the value
of characteristic strain calculated in Section 1.3.5 hc = 10−21. This gives the required
sensitivity as

√
S(f) = hc/

√
fs ∼ 8×10−24 Hz−1/2, less than one order of magnitude

lower than the ASD minimum in Fig. 3.1.

1The potential severity of aliasing can be seen in the following. Consider sampling the position of an
oscillator at the rate of its frequency of motion. From this single sample the motion appears stationary
and so assign the oscillation frequency to zero.

2Data used is 128 s from 2010-09-16 06:00:17 UTC.
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Figure 3.1: Short term characterisation of LIGO H1 strain data.

3.2 Data Preprocessing

The objective of data preprocessing is to achieve the best detection sensitivity in the GW
search frequency range and to give the resulting data suitable statistical properties for the
search analysis. Gaussian noise power is distributed equally at all frequencies (spectrally
white) and thus gives the simplest non-trivial spectrum we could obtain, a constant ASD
value of σ/

√
Nf , where σ is the noise standard deviation. Moreover, Gaussian noise is

easily characterised and makes theoretical analysis of search methods considerably more
tractable. It is therefore desirable, whether conducting time or frequency domain analysis,
to condition the data such that it is close to Gaussian within the search frequency range.

The characterisation of detector data by ASD shows the features, both general trends
and lines, which divide our preprocessing tasks into two distinct types: broadband
whitening and narrowband line removal. We have at our disposal a number of standard
signal processing techniques which assist in these tasks and so we now begin with a general
description of time domain filtering.

3.2.1 Time Domain Filtering

The general form of the output of a time domain filter yn of a time series xn is given by
a linear sum of M + 1 previous inputs and N previous outputs as

yn =
M∑
k=0

bkxn−k +
N−1∑
j=0

aj+1yn−j−1. (3.8)

If N 6= 0 then Eq. 3.8 represents an infinite impulse response (IIR) filter and when
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N = 0 we have a finite impulse response filter (FIR). The IIR filter is so called because
the feedback from previous outputs results in non-zero output for extended periods, even
when the input has zero value. In contrast, the FIR filter output must reach zero after a
finite number of steps upon zero-valued input. IIR filters have the advantage of requiring
fewer coefficients to achieve the desired response and therefore computationally faster.
For this reason we now confine our discussion of time domain filtering to the IIR filter.

The frequency response of the IIR filter may be obtained by taking the z-transform of
Eq. 3.8. The z-transform of a discrete time series xn is defined as [51]

X(z) =
∞∑

n=−∞

xnz
−n, (3.9)

where z is a complex number. Taking the z-transform of Eq. 3.8 and rearranging to give
the z-domain response, H(z) = Y (z)/X(z), gives

H(z) =

∑M
k=0 bkz

−k

1−
∑N−1

j=0 aj+1z−j
. (3.10)

Comparing the discrete FT (Eq. 3.2) with the z-transform when z is expressed in polar
form z = re2πif/fs , reveals that the z-transform is equivalent to the discrete FT when
r = 1. Therefore the FT lies on the unit circle in the z-plane. In terms of the filter
coefficients and sampling frequency fs, the frequency response of the filter, H(f) is given,
upon making the substitution z = e2πif/fs in Eq. 3.10, by

H(f) =

∑M
k=0 cke

−2πikf/fs

1−
∑N−1

j=0 dje−2πi(j+1)f/fs

for − fs/2 < f ≤ fs/2. (3.11)

Designing a time domain filter first involves determining the required filter response
function, the complexity of which depends upon the data conditioning required. For
example, we might wish to attenuate signal frequencies below and/or above particular
values with high-pass and low-pass filters respectively. The difficulty resides in finding an
economic set of coefficients which give a sufficiently accurate approximation. Fortunately
the problem can be recast by reducing the forms which H(z) can take to products of
functions which are the ratio of two second-degree polynomials in z. These functions are
known as second order sections (SOS). The recurrence relation for a SOS is given by1

yn = b0xn + b1xn−1 + b2xn−2 + a1yn−1 + a2yn−2. (3.12)

This yields the general form of the z response of a SOS as a rational function of quadratic
polynomials in z−1 given by

H(z) =
b0 + b1z

−1 + b2z
−2

1− a1z−1 − a2z−2
. (3.13)

1N.B. the signs of the feedback coefficients (i.e. a1/2) are often reversed.
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The frequency response depends on the locations of the roots of the quadratic forms.
Roots in the numerator, referred to as ‘zeros’, suppress the response at the corresponding
frequency. Roots in the denominator (poles) amplify the response and these must lie
within the unit circle of the z-plane for stability. We have calculated the frequency
response of the SOS as

|H(f)| =

√
b2

0 + b2
1 + b2

2 + 2b1(b0 + b2) cos(2πf/fs) + 2b0b2 cos(4πf/fs)

1 + a2
1 + a2

2 − 2a1(1− a2) cos(2πf/fs)− 2a2 cos(4πf/fs)
. (3.14)

A simple time domain line removal filter such as a notch filter works by weighting the
previous inputs and outputs such that the frequency response is equivalent to a band-reject
filter. The ASD of Gaussian noise which has been filtered with a single SOS notch filter
designed for line removal at 60 Hz is shown in Fig. 3.2. The figure shows clear attenuation
within a bandwidth ∼ 6 Hz around 60 Hz.
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Figure 3.2: 60 Hz single SOS notch filter response. The SOS coefficients for this filter are
b0 = 1, b1 = −1.99947, b2 = 1, a1 = −1.99794, a2 = 0.998467.

More complex IIR filters which achieve a level of whitening can also be designed. A
Butterworth filter can be constructed as the product of 12 SOSs with a low frequency 120
Hz cutoff multiplied by a second order section with a pole at 1000 Hz. Fig. 3.3 shows
this filter applied to the same data used to produce Fig. 3.1.
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Figure 3.3: ASD on applying 12th order Butterworth filter.

The effect is dramatic, confining the general ASD trend to within one order of magnitude
in the frequency range 120 – 7000 Hz, with a rapid drop in amplitude either side. We are
still left with lines in the ASD which are up to about two orders of magnitude greater
than the average ASD.

A convenient way to view the contribution to the noise amplitude at each frequency is
by the cumulative amplitude spectral density (CASD). The amplitude of the CASD for
a particular frequency bin is the sum of all ASD amplitudes in frequency bins less than
or equal to that frequency. The resulting curve is monotonic and shows clear steps when
the amplitude contribution is significant, corresponding with large peaks in the ASD.
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Figure 3.4: Cumulative ASD representation of Fig. 3.3.
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In Fig. 3.4 we show the CASD representation of the ASD in Fig. 3.3 where we can see
that the largest step at ∼ 350 Hz, due to violin modes, contributes approximately one
order of magnitude to the total noise amplitude. The CASD of Gaussian noise would
show a linear increase with frequency.

Filters often introduce large amplitude signals into the output during initialisation of
the filter, known as filter transients. The transient time of the filter may be determined
by applying it to Gaussian distributed data and observing how long it takes for the RMS
of the filtered time series to stabilise. The filtered samples covering this transient time
must not be used in subsequent analysis and are therefore removed from the data before
proceeding. Alternatively, the filter may be preconditioned by prepending the data with
a segment of length equal to the transient time from the beginning of the data. Again we
discard the initial transient time filtered output but have now filtered all of the data.
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Figure 3.5: Filter transient determination of Butterworth 12th order filter.

3.2.2 Broadband Whitening by Linear Prediction

For GW search purposes, cross-correlation (CC) in particular, it is required that the
ASD is not a strong function of frequency. A very powerful method used for speech
processing and recognition is the linear prediction error filter (LPEF) which can be used
for broadband whitening purposes. Our mathematical description of the LPEF essentially
follows that contained in Advanced Digital Signal Processing and Noise Reduction by S.V.
Vaseghi [52].

The LPEF attempts to predict future values of the time series from a linear combination
of prior inputs by measuring correlated input via the autocorrelation matrix. For a time
series xn the predicted value xpn from M previous values is

xpn =
M∑
i=1

aixn−i, (3.15)
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where ai are the filter coefficients. The prediction error epn is the difference between the
actual sample value and that predicted:

epn = xn − xpn = xn −
M∑
i=1

aixn−i. (3.16)

The prediction error sequence is the original signal minus predictable content, which is
the filtered output we require.

Obtaining the coefficients for the LPEF is achieved by minimising the expectation
value of the prediction error squared with respect to all coefficients. Ultimately this leads
to

A = R−1r, (3.17)

where A is the column vector of filter coefficients, R is the autocorrelation matrix of
x having components Rjk = E(

∑M
n=1 xn−jxn−k), where E(..) denotes the expectation

value, and r is the column matrix formed from the autocorrelation components, rj =

E(
∑M

n=1 xnxn−j), excepting r0. Explicitly,


a1

a2

a3
...
aM

 =


r0 r1 r2 · · · rM−1

r1 r0 r1 · · · rM−2

r2 r1 r0 · · · rM−3
...

...
...

. . .
...

rM−1 rM−2 rM−3 · · · r0


−1

r1

r2

r3
...
rM

 . (3.18)

The matrix R−1 has the form of a Toeplitz matrix, i.e is square and has constant left to
right descending diagonal elements. The solution of Toeplitz matrix equations, especially
for large matrices, is most efficiently obtained by use of the Levinson-Durbin algorithm
(see pages 238–240 in [52]). The computational speed of the Levinson-Durbin algorithm
facilitates the use of the LPEF as an adaptive filter, where the filter coefficients may be
re-evaluated at chosen intervals.

The effect of the filter is to remove signal components correlated over M samples. If
the sampling frequency of the time series is fs, then the LPEF achieves spectral whitening
over bandwidths [53]

∆f &
fs
M
. (3.19)

Given the simplicity of the LPEF configuration, we decided to use the LPEF for
broadband whitening purposes and during early preprocessing development we wrote
our own LPEF code for testing. Fig. 3.6 shows the ASD of prefiltered LIGO H1 strain
data where the noise ranges over three orders of magnitude. Fig. 3.7 shows the result of
applying the LPEF configured with M = 2000, giving whitening over frequency ranges of
∆f = 16384/2000 & 8 Hz. The spectrum is now considerably flatter but has left many
of the lines above or below the main horizontal trend. Our LPEF was written without
the Levinson-Durbin optimisation and found to be unacceptably slow. Fortunately, much
faster LPEFs were available in the LIGO software library, so we decided to use those. On
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comparison with the LIGO LPEF, we observed the same behaviour, strong subtraction
occurring where the line bandwidth is close to ∆f , whilst leaving those lines with less
bandwidth above the median trend. The LPEF could also be used to remove the lines
but would require a significantly larger value of M and therefore more LPEF coefficients
to be computed.

Figure 3.6: Spectrum of bandpassed H1 data prior to LPEF filtering.

Figure 3.7: Spectrum of data used to produce Fig. 3.6 following LPEF broadband whitening.
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3.3 GW Searches

The GW search analysis selects signals of interest or candidate GWs by setting thresholds
or conditions on some statistically characterised properties of the data (e.g. signal power),
which when satisfied signal the need for deeper analysis and, if not already included,
evidence of corroborative events in other detectors. Confidence in the significance of the
event trigger is based upon selecting threshold conditions such that detector noise is highly
unlikely to result in the issue of an event trigger over long periods (e.g. months or years).

In order to determine the nature of the GW source and facilitate potential optical
searches, the search analysis must be able to parameterise the event data in terms of
variables intrinsic to the source, such as signal duration and characteristic frequency, and
extrinsic parameters such as detection time lag between detectors from which the sky
source location may be determined.

The best forms of discriminant between noise events and causally related triggers,
whose origin may be a GW source, are coincidence measures. These may be the results
of our source parameterisation, such as time coincidence windows, duration, frequency,
waveform and any other means of showing consistency between the signals of interest.

3.3.1 Time-Frequency Domain Analysis

Short time Fourier transforms (STFTs) may be used to produce time-ordered
power spectra to give a ‘three-dimensional’ representation known as a spectrogram.
Spectrograms plot the power, indicated by a range of colours, at each time and frequency
bin to give a pixel. Algorithms may be used to detect clusters of pixels where the
power exceeds background noise by some predefined threshold for the generation of event
triggers, or when used as a data quality monitor, to indicate times when the data may be
unsuitable for analysis.

The Hierarchical Algorithm for Curves and Ridges (HACR) is a time-frequency cluster
analysis developed by GEO600 for the detection of burst GW signals [54]. Fig. 3.8 shows
an example of HACR output when processing simulated data with test waveforms added
to Gaussian noise.

Figure 3.8: HACR time-frequency cluster analysis reproduced from [55].
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HACR processes the data in short time segments ∼ 1 s. These segments are further
divided into smaller equal time segments, the STFTs of which produce the spectrogram
for the whole segment. Extremes in the distribution of power in each time-frequency
bin or pixel are removed before computing a mean power and root mean squared (RMS)
power. The mean is then subtracted from each pixel and divided by the RMS to obtain
its signal-to-noise ratio (SNR). Event triggers are generated by the clustering of pixels
which satisfy two thresholds on pixel SNR. If two or more neighbouring (i.e. adjacent or
closest diagonal) pixels have SNR above the first lower value SNR threshold and at least
one these pixels has SNR above the second upper SNR threshold then these are regarded
as a time-frequency cluster. Event parameterisation such as event time and dominant
frequency are determined by the SNR weighted average of the cluster in time-frequency
coordinates.

An important class of search algorithms for modelled GW sources employ the matched
filter technique. Theoretical waveforms for a well modelled source type, such as the inspiral
phase of a compact binary coalescence (CBC), are used to generate a template bank from
the parameter space of the generic waveform. Each template is a Fourier transform of the
theoretical waveform hT (t). If the detector output is given by s(t) = h(t) + n(t), where
h(t) is the GW signal and n(t) the noise, the matched filter output is

M(t) = 4

∫ ∞
0

H∗T (f)S(f)

Sn(f)
e2πiftdf, (3.20)

where Sn(f) is the power spectral density of the detector output.
Whilst the matched template method has been shown theoretically to have optimum

detection sensitivity when when searching for known waveforms amidst Gaussian noise,
the exact waveform is never known in advance1. The expected signal from any modelled
source may depend upon many parameters. Therefore the matched template search is
often computationally demanding, involving the generation of thousands of waveform
templates which must sample the parameter space with sufficient density to give some
acceptable threshold probability of detection [56]. This method also requires that the
noise should be accurately modelled and, ideally, Gaussian.

Regardless of whether the pipeline operates in the time or frequency domain, power
or SNR alone is not a sufficiently reliable discriminator between noise transients and
signals of interest, especially when, as is most often the case, the noise is neither Gaussian
nor stationary. Therefore, most analysis pipelines will use at least one more consistency
measure or ‘statistic’. For example, the χ2 time-frequency test [57] can be used as a
secondary statistic for pipelines employing the matched filter technique. In essence, the
GW search frequency band is subdivided and the time-frequency response of the signal
in each frequency band is compared to that computed for the waveform template.

3.3.2 Time Domain Search Analysis

Time domain analysis permits the data to be streamed into the analysis algorithm
one sample at a time and, given adequate computing power, processed faster than the
sampling rate of the detector. Therefore, these methods are suitable for rapid low latency

1Whist some waveforms can be computed to high precision, the scale and phase remain unknown.
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analysis. Unlike time-frequency methods, which process data in segments, the sensitivity
of the analysis is independent of time, and the only edge effects introduced are by data
conditioning filters. The signals we seek may be of very short duration, so it is an
important advantage that time domain analysis preserves the time locality of such signals,
rather than spreading these over windows as in the time-frequency approach which must
always make a compromise between time and frequency resolution.

An example of an early LIGO time domain GW burst search algorithm is SLOPE [58].
SLOPE uses a sliding window of N samples of the time series data to generate gradient
and intercept (or offset) line fitting parameters. If XN and TN denote the set of N time
series samples and sample times (ti = i/fs) respectively, the gradient a and offset b are
given by

a =
E(TNXN)− E(TN)E(XN)

E(T 2
N)− E(TN)2

, (3.21)

b = E(XN)− aE(TN), (3.22)

where for example E(T 2
N) = (1/N)ΣN−1

i=0 t
2
i . When processing Gaussian zero mean noise

with variance σ2, a and b are themselves Gaussian zero mean random variables, the
respective variances of which are found to be

σ2
a =

12f 2
s

N(N2 − 1)
σ2, (3.23)

σ2
b =

4N + 2

N(N − 1)
σ2. (3.24)

The SNR of the SLOPE output gradient and offset parameters can now be expressed as
A = a/σa and B = b/σb respectively. A threshold on the magnitude (or SNR) of the
gradient output is set based upon the probability of obtaining output of this value or
greater from processing noise. If the threshold and N values are appropriately selected,
the presence of a burst signal is then much more likely than noise to result in an event
trigger.

3.4 Detection Sensitivity and Reliability

The sensitivity of an analysis pipeline is measured by the efficiency with which it
detects simulated GWs or signals with characteristic temporal/spectral properties added
(injected) to the detector strain data. The injections are performed periodically and scaled
over a range of strain amplitudes for the duration of the study. The detection efficiency
is the ratio of true detections to the number of potentially detectable signals within the
observation time.

Fig. 3.9 shows example1 detection sensitivity curves for injected sine-Gaussian
waveforms (described in Section 5.3) at four RTCC pipeline threshold values. The
sensitivity curves plot on the x-axis (usually logarithmic) the injection amplitude
expressed as the root-sum-square of the strain hrss in units of Hz−1/2 and detection

1From development of the RTCC pipeline to be described later.
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efficiency on the y-axis. The curves are monotonic, tending to be sigmoid in shape,
and often show that detection efficiency rapidly increases above a particular hrss.
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Figure 3.9: Example detection sensitivity curves of sine-Gaussian waveforms for four RTCC
pipeline threshold values. The curves show the typical sigmoid shape with a rapid rise in
detection efficiency above a particular injection amplitude hrss.

Sensitivity curves are useful for both threshold configuration and comparison of analysis
pipelines. The figure shows improvement in sensitivity with decreasing threshold but this
also results in increased sensitivity to noise. The ability of the pipeline to distinguish
noise events from injections or GW candidates is measured by the pipeline reliability.

The reliability of a pipeline trigger event is in inverse proportion to the false alarm rate
(FAR). This is the rate at which noise backgrounds alone pass search pipeline thresholds
to issue an event trigger, thereby indicating a false detection. Since detector noise
characteristics are not stationary, it is necessary, especially when evaluating potentially
strong GW candidates, to assess the FAR within a short time window close to the trigger
event.

For pipelines which use data from at least two detectors the method used to estimate
the FAR is known as a time-slide analysis. The data (excluding GW candidates) from each
detector is first time shifted with respect to each other to eliminate all causal relationship.
For example, time-slide data for the LIGO Livingston and Hanford detectors, separated
by 3000 km, would require a minimal time offset equal to the light travel time between
the detectors of ∼ 10 ms. The pipeline then processes this data to measure the rate of
triggers to determine the FAR. The advantage of this method is that, apart from the causal
constraint, the time shift is arbitrary and so a modest amount of data with different time
offsets can generate very long period data for accurate FAR determination [59]. In the case
where the pipeline input data is from a single detector, the FAR estimation is limited to
one short dataset and is therefore subject to significantly more uncertainty than time-slide
analysis. In this case we might consider increasing the size of the dataset by substantially
extending the time window around the event, but this increases the probability that the
determined FAR is no longer representative of the noise characteristics relevant to the
event.
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Chapter 4

Real Time Cross-Correlation
Indicator

In this chapter we introduce the Real Time Cross-Correlation (RTCC) algorithm which
we propose as a viable event trigger generator. We refer to the algorithm as an indicator
of the standard time domain cross-correlation (CC). This means that in the presence of
a signal of interest we require a high degree of correspondence between the significance
of RTCC output above background noise and that obtained from standard CC. Close
comparison will be made between the output from the RTCC algorithm and standard
time domain CC using test data.

Event triggers are generated when a search algorithm indicates that a statistically
significant signal is present in the data. Therefore, the trigger threshold criteria depend
upon the statistical properties of the output of the algorithm when processing background
noise. In particular, we are interested in the extremes (tails) of the output distribution
as these will determine the probability that thresholds set in this region will be exceeded
by noise alone, and so determine the false alarm rate. We make the assumption that
the background noise output of the RTCC algorithm will be approximately Gaussian
distributed. This is justified on the basis that many systems whose signal results from
the summation of many independent random variables exhibit or tend towards Gaussian
distributed output as a consequence of the Central Limit Theorem (CLT) [60]. The power
of the CLT for analytic purposes lies in the fact that the distributions of the variables
need not be Gaussian in order to produce Gaussian distributed output. Gaussian input
and output is highly desirable since it is easily modelled, being completely described by
its first and second central moments (i.e. mean and variance), and often makes analysis
more tractable.

4.1 The RTCC Algorithm

The RTCC algorithm is an exponential average applied to the product of samples within
two data streams for a range of sample lags. The algorithm is given in Eq. 4.1 and for
comparison we give the standard time domain CC algorithm for real-valued data in Eq.
4.2. C l

n is RTCC output at sample n and lag l between the time series X and Y , which
could be the output from two detectors. The weighting factor w (0 < w < 1) determines
the relative contributions to the output made by past RTCC output and present data
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products.

C l
n = (1− w)C l

n−1 + wxnyn−l where w = 1− e−1/N . (4.1)

(X ? Y )ln =
L−1∑
i=0

xn−iyn−l−i. (4.2)

Recasting the (1− w) factor in Eq. 4.1 into the exponential decay term e−1/N , with N a
positive integer, shows that N is the number of samples processed after which the previous
C l
n−N output contributes w/e of its value to the current output. Therefore, N plays a

role somewhat analogous to the correlation length L in standard time domain CC. The
value of N may be chosen to correspond to the signal duration or signal features and for
N � 1 w ∼ 1/N .

Notice that the number of operations required to compute C l
n is independent of N ,

involving at most 5 operations, but since (X ?Y )ln is a dot product of length L, standard
CC requires 2L−1 operations. We should therefore expect the RTCC algorithm to operate
faster than standard CC for correlation lengths L > 3.

In order to illustrate and characterise RTCC output we will use two time series X and
Y as input. In the following descriptions of data we use the standard notation N (µ, σ2) to
describe a Gaussian distribution, where µ and σ2 are the mean and variance respectively.
In Fig. 4.1 we show the two 1 Hz sampled time series X and Y , which are the sum of
Gaussian noiseN (0, 1) and Gaussian pulses of the form g(t) = A exp(−(t−tc)2/2σ2). Both
pulses have amplitude A = 5 and width parameter σ = 40 s, but have time centre values
tc which centre the X and Y pulse maxima at 600 s and 1400 s respectively. Although we
cannot represent a general signal, we suggest that a suitable series of Gaussian pulses
might be considered a reasonable approximation to more interesting signals such as
sinusoidal pulses.
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Figure 4.1: Time series X and Y . Both are the sum of Gaussian noise and a Gaussian pulse.
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The RTCC output in Fig. 4.2 shows, as one would expect from standard CC, the time
when the Gaussian pulse in the X time series strongly correlates with the pulse in the Y
time series with a delay equal to the lag (we define positive (negative) lag to mean before
(after) X). We have also marked the maximum RTCC value with a green cross.

Figure 4.2: RTCC output for time series X and Y in Fig. 4.1. Maximum RTCC correlation of
22.5 is indicated by the green cross with time and lag coordinates (618,−792).

The (time,lag) coordinate of the maximum at (618,−792) corresponds closely to the
expected location (600,−800) in the absence of noise. The difference between the lag and
pulse central times indicated by the RTCC algorithm and the known lag and pulse timing
we refer to as errors. In this case the timing and lag errors are 18 s and 8 s respectively.

The timing and lag errors occur for two reasons: the presence of noise and the
exponential nature of the algorithm. Since noise determines the exact location of peaks
within the time series, the lag error is dependent upon the particular instances of noise
occurring in the neighbourhood of the pulse maxima. The timing error persists in the
absence of noise and is then entirely due to the exponential decay rate of the algorithm.
This effect is replicated for selected values of N in Fig. 4.3, which plots the RTCC C−800

t

output for the product of the X and Y Gaussian pulses (minus noise). The pulses are now
effectively aligned and for comparison the −800 lag time-series product XY = A2e−t/σ

2

is shown. The figure shows that as N increases so does the timing error of the maximum,
the spread of the curve, and asymmetry about the output maximum. The RTCC output
maxima all lie on the XY product curve. We can see why this occurs by defining the
change in RTCC output at sample n as

∆C l
n = C l

n+1 − C l
n = −wC l

n + wxn+1yn+1−l. (4.3)

Therefore, RTCC maxima occur when the output is equal to the next XY product.
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Figure 4.3: RTCC timing error for N = 25, 50, 100. Maxima are indicated by red crosses which
are found to coincide with the XY product curve.

The asymmetry seen in Fig. 4.3 illustrates, perhaps, the main difference between
RTCC and standard CC: standard CC has a memory only as long as its correlation
length, whereas RTCC output, most noticeably after a maximum (or minimum), retains
past contributions for all time. Once the maximum amplitude is reached then the RTCC
output decays exponentially with time constant N . The timing error may appear to be
a serious issue: however, in practice it is quite trivial to monitor both the X and Y time
series to accurately establish maximum amplitude times.

Our main focus will be on the detection of burst type signals, but we conclude this
section with a brief demonstration of RTCC applied to the detection of low signal-to-noise
ratio (SNR) continuous signals.
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Figure 4.4: Time series X and Y , which are both the sum of a 100 Hz sine wave of amplitude
0.1 (SNR ∼ 0.07) and N (0, 1) noise.
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Fig. 4.4 shows a 0.25 s excerpt of two time series X and Y sampled at 16384 Hz, both
of which are the sum of a 0.1 amplitude sine wave of frequency 100 Hz and N (0, 1) noise.
The RTCC output for 0.25 s of processing the time series is given in Fig. 4.5 and shows no
clear presence of of an underlying signal. If we now sum the output at each lag value we
find that small correlations build faster than those due to noise alone. The accumulated
output for the extended period 10 s is shown in Fig. 4.6, which clearly indicates the
presence of a sinusoidal wave of period 0.01 s.

Figure 4.5: RTCC output for 0.25 s of time series X and Y showing no obvious presence of a
continuous underlying signal.
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Figure 4.6: Summation of 10 s of RTCC output at each lag for X and Y . This shows the
presence of a low SNR 100 Hz sine wave.
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4.2 Cross-correlation Indication and Sensitivity

To see how RTCC performs as a CC indicator we now compare the SNR of the output
obtained from both RTCC and standard CC upon processing the X and Y Gaussian pulse
time series represented in Fig. 4.1. For ease of display we have modified the X time series
so that its pulse is now coincident in time with that in Y .

SNR may be expressed in terms of signal power or amplitude; we adopt the latter
and so scale the RTCC and standard CC outputs by the expected standard deviation of
output for each when processing uncorrelated noise. In Section 4.3 we derive the required
expressions for σRTCC and σSTD.

Given the differences between RTCC and standard CC, we should not expect the
output for both to correspond closely when N = L, and so for comparison we have chosen
the value of L = 41 which gives the closest standard CC maximum SNR to that for
RTCC when N = 25. The scaled outputs for both are shown in Fig. 4.7, where we have
made the time correction of the RTCC output maxima referred to in Section 4.1 (see Fig.
4.3). Visually, these look very similar, indicating that the RTCC algorithm is capable of
achieving a good approximation to standard CC and demonstrates that the RTCC noise
output is constrained to a similar range as that for standard CC.

(a) RTCC output scaled by σRTCC. (b) Standard CC scaled by σSTD.

Figure 4.7: Comparison of SNR output between the RTCC algorithm and standard CC.

Our principal interest is in the degree of correspondence between the central maximum
correlation regions (SNR & 60) which we will refer to as discs. We may compare the
outputs above quantitatively by plotting the absolute value of the ratio of RTCC to
standard CC SNR output as shown in Fig. 4.8. The absolute value is chosen to flatten
the noise output range (i.e make all output positive). We also restrict the ratio plot range
to 0 – 2 for better contrast since the ratio of RTCC and standard CC noise output leads to
extreme values. White areas indicate that the ratio was higher than the selected and occur
primarily at the lower right hand edge of the disc. We suspect here that relatively high
RTCC output extends beyond lower standard CC output, in part due to the asymmetry
effect observed in Fig. 4.3 and due to disc non-alignment. The figure shows that the ratio
is quite constant and close to unity in the disc region which now indicates a very close
correspondence between RTCC and standard CC output.
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Figure 4.8: Absolute value of the ratio of the RTCC to Standard CC SNR output shown in Fig.
4.7.

We now investigate and compare which values of N/L optimise RTCC and standard
CC SNR for the X and Y time series. It would be impractical to produce figures similar
to Fig. 4.7 for many values of N and L, so we take the approach used to produce Fig. 4.3,
where we consider only the zero lag output. Even though the correlation maximum was
in fact 8 s earlier, we still find the results given in Fig. 4.9 to be consistent with output
such as Fig. 4.7 for all other values of N/L we compared.
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Figure 4.9: RTCC and standard CC SNR on input of time series X and Y for a range of N/L.
Maxima for RTCC and standard CC are indicated by the orange boxes at 59,152 and 70,161
respectively.

The figure shows that the RTCC maximum occurs at an N value lower than the optimal
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L and RTCC SNR falls off much slower than for standard CC. We find this behaviour
to be general and due again to the exponential ‘memory’ of the RTCC algorithm. The
flatter peak for RTCC SNR shows that a broader range of N values give a higher SNR in
proportion to the optimal SNR. For standard CC we would expect the optimal choice of
L would be proportional to the signal duration. We find that this depends upon the SNR
of the signal, which determines the effective duration of the signal amplitude above ∼ 3σ
of the noise ∆teff . An excerpt of the X time series in the neighbourhood of the pulse is
shown in Fig. 4.10 which shows that ∆teff ∼ 70 s close in value to the optimal L value.

efft

Figure 4.10: Effective length of time series X pulse as number of samples above 3σx of the noise.
∆teff =70 s corresponds to the optimal correlation length L for standard CC shown in Fig. 4.9.

For a signal composed of a train of pulses we should expect the optimal correlation length
to correspond to the minimal sample length which covers most of the signal power.

4.3 Gaussianity

In this section we attempt to derive an analytic model of the RTCC output distribution
when the input time series are drawn from two separate Gaussian distributions. Our
motivation is driven by the convenience of being able to theoretically predict the false
alarm rate (FAR) as a function of threshold. We assume that the RTCC output will be
approximated by a zero mean Gaussian distribution (via the CLT) and therefore need only
model the RTCC output variance. The model obtained will be compared to the normalised
histogram distribution of RTCC output on input of pseudo-randomly generated time series
X and Y , with distributions N (0, σ2

x) and N (0, σ2
y) respectively.

Inspection of Eq. 4.1 shows that the output values are weighted sums of sample
products R = xy. The probability distribution function (PDF) of the product of two
Gaussian distributed random variables is given by (see page 49 of [61])
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p(R) =
1

πσxσy
K0

(
|R|
σxσy

)
, (4.4)

where K0 is a modified Bessel function of the second kind. From this one obtains the
variance of the products, σ2

R, as

σ2
R = σ2

xσ
2
y. (4.5)

Fig. 4.11 shows the distribution p(R) (red) and a normalised histogram of the products
of ∼ 20 million Gaussian random numbers (blue). p(R)→∞ as R→ 0 and so we curtail
the distribution close to R = 0.

Figure 4.11: Probability density function p(R) (red) and normalised histogram of products of
Gaussian data with σx = 1 and σy = 2 (blue).

We make the assumption that the input Gaussian time series are uncorrelated.
Therefore, the expected RTCC output distribution should be lag independent and so we
ignore lag in the following (i.e. omit the l index). Each iteration of the RTCC algorithm
introduces a new sample product and we can therefore determine the distribution of
the output by evaluating how the sample products Ri = xiyi are weighted following n
iterations of the algorithm. We set the initial RTCC output value C0 to zero and proceed
as follows:

C0 = 0 (4.6)
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C1 = (1− w)C0 + wR1 = wR1 (4.7)

C2 = (1− w)C1 + wR2 = (1− w)wR1 + wR2 (4.8)

...

Cn = (1− w)n−1wR1 + (1− w)n−2wR2 + ....+ (1− w)wRn−1 + wRn. (4.9)

In Eq. 4.9 we can see that iterative application of the RTCC algorithm (Eq. 4.1) gives
Cn values which are the sum of the products Ri weighted by factors w(1−w)n−i , where
i = 0, 1, 2, · · · , n−1. Since the products Ri are all from the same distribution, the variance
of the resulting distribution should be the product of the variance σ2

R and the sum of the
square of the weights. The variance of RTCC output as a function of w is then given by

σ2
RTCC(w, n) = w2

(
n−1∑
i=0

(1− w)2i

)
σ2
R = w2

(
1− (1− w)2(n−1)

)
1− (1− w)2

σ2
R. (4.10)

In general the output of the RTCC algorithm will be the result of many iterations of
the algorithm over large data sets. This permits simplification of Eq. 4.10 if the condition
(1− w)2(n−1) � 1 is satisfied for large iteration to

σRTCC(w) =

√
w

(2− w)
σxσy. (4.11)

We can justify this approximation by showing that only modest amounts of input data
are required before the σRTCC(w, n) sample dependence becomes negligible. If we require
the relative difference between the variances as given by both expressions to be less than
some small arbitrary value ε� 1, i.e.

σ2
RTCC(w)− σ2

RTCC(w, n)

σ2
RTCC(w)

= (1− w)2(n−1) < ε, (4.12)

in terms of N one can show that n should satisfy

n > −1

2
N ln(ε) + 1. (4.13)

For example, for N = 25 and ε = 0.01, Eq. 4.13 gives n > 58. In the results that follow,
RTCC output for n far in excess of this requirement was used.

As a test of the standard deviation predicted by Eq. 4.11, we now compare this with
that obtained from the sample standard deviation of RTCC output for a range of w values.
The results given in table 4.1 show agreement to ∼ 99.5%.
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N w σRTCC σRTCC(w)

25 0.039210 0.2834 0.2835
50 0.019801 0.2002 0.2005
75 0.013244 0.1633 0.1637
100 0.009950 0.1413 0.1418
125 0.007968 0.1263 0.1268
150 0.006644 0.1152 0.1158
175 0.005697 0.1066 0.1072
200 0.004987 0.0997 0.1002

Table 4.1: Comparison of the measured standard deviation of RTCC output σRTCC with
predicted value σRTCC(w).

The same argument as above can be used to predict the standard deviation of standard
CC output σSTD, where in this case all product weights are unity. For correlation length
L we obtain

σSTD(L) =

√√√√(L−1∑
i=0

12

)
σxσy =

√
Lσxσy. (4.14)

We omit the results for brevity but state that Eq. 4.14 was found to be in excellent
agreement with σSTD observed. This result and σRTCC(w) (Eq. 4.11) were used to scale
the standard CC and RTCC output in Section 4.2.

We now compare the distribution of RTCC output for N = 25 with the Gaussian
distribution model N (0, σ2

RTCC). The normalised frequency histogram or PDF of the
RTCC output for Gaussian distributed random input of two data sets with σx = 1 and
σy = 2 and the predicted distribution is shown in Fig. 4.12. We show only the positive
half of the distribution and indicate integer multiples of the predicted standard deviation
(σRTCC = 0.283) on the correlation axis.
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Figure 4.12: . Normalised histogram of RTCC output on processing time series with σx = 1 and
σy = 2 compared to model prediction with N (0, σ2

RTCC), where σRTCC = 0.283.
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On close examination, Fig. 4.12 reveals two crossover points between the RTCC output
distribution and the Gaussian model. In the approximate range 0 – 0.7 σRTCC, the RTCC
distribution is significantly higher than the Gaussian model, then is close to but less than
the model in the range 0.7 – 2.3 σRTCC and beyond this again higher. We can emphasise
the distribution tail by replotting Fig. 4.12 on a logarithmic scale. This is shown in
Fig. 4.13 which shows that the tails in the distribution are poorly modelled. Worse, the
tails lie significantly above those predicted and would therefore more frequently reach set
thresholds. This means that thresholds would need to be set accordingly higher thereby
reducing sensitivity.
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Figure 4.13: Logarithmic plot of Fig. 4.12 to emphasise distribution tails.

We would have liked to predict the false alarm rate (FAR) for a set threshold from a
suitable distribution model and so were motivated to seek functions which could provide
a better fit to the observed distribution. The most promising functions devised were of
the form f(x) = A exp(Q(x)), where Q(x) is a symmetric quartic polynomial. It was
reasoned that these functions may possess the necessary freedom to produce the excess
peak and crossover points observed in Figs. 4.12 and 4.13. We appear to have modelled
the standard deviation of the RTCC output successfully but not the exact distribution.
Something must be wrong with our assumptions.

On investigation of the distribution of standard CC output for the correlation length
L = 41 used above, we found that the tails of the distribution were similarly above that of
the predicted Gaussian distributionN (0, σ2

STD). In Fig. 4.14 we now make the comparison
between the distribution of RTCC output for N = 200 and the Gaussian model prediction
of σRTCC = 0.100 (see Table 4.1). The agreement is now far better, with elimination of
the peak excess and the tails well modelled out to ∼ 4.5 σRTCC. This suggests that the
output of RTCC approaches Gaussianity in the limit of large N (i.e longer memory), or
in the case of standard CC, large correlation length.

In practice, RTCC will process real data whose noise character is unlikely to be
neither stationary nor exactly Gaussian, so we abandoned trying to model the tails of
the distribution in favour of measuring the FAR.
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Figure 4.14: Comparison of distribution of RTCC output for N = 200 (blue) with Gaussian
model (red). The RTCC output is well modelled out to ∼ 4.5 σRTCC.

4.4 Frequency Response

Comparison of the second order section (SOS) difference equation (Eq. 3.12) with the
RTCC algorithm (Eq. 4.1) shows that we may use the SOS model to obtain the frequency
response of the RTCC algorithm. If we set b0 = w, a1 = 1 − w and b1 = b2 = a2 = 0 in
the SOS frequency response Eq. 3.14, after some manipulation we obtain

|H(f)| = w√
w2 + 2(1− w)(1− cos(2πf/fs))

. (4.15)
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Figure 4.15: Frequency response of RTCC algorithm for selected values of N .
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Figure 4.16: Logarithmic plot of Fig. 4.15.

In Fig. 4.15 and the logarithmic plot Fig. 4.16 above is shown the RTCC frequency
response for a range of values of N . These figures show that as N increases the RTCC
suppression of higher frequency output also increases and becomes broader.

As a test of the |H(f)| model we may compare the ASD of RTCC processed noise with
the predicted frequency response. For ease of comparison the standard deviation of the
noise is chosen such that the 16384 Hz sampled noise ASD is unity, i.e. σ =

√
∆f . Fig.

4.17 shows this comparison for N = 25 where the ASD ∆f = fs/2 = 8192 Hz.
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Figure 4.17: Comparison of frequency response model with ASD of RTCC output for N = 25
when processing noise N (0, 8192) scaled to have unfiltered ASD value of 1 Hz−1/2.
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The agreement is excellent over the full 0 – 8192 Hz range of the ASD but we show the
reduced 0 – 2000 Hz range for clarity.

Performing the inverse scaling on |H(f)|, now for general noise input N (0, σ2), we can
express the ASD of RTCC output as√

S(f) =
σ√
∆f
|H(f)|. (4.16)

Eq. 4.16 permits a derivation of the standard deviation of RTCC output σRTCC

independent from the assumptions made in Section 4.3. We spare the reader the details
of the calculation but confirm that with σ = σxσy

σ2
RTCC = 2σ2

xσ
2
y

∫ fs/2

−fs/2

w2

w2 + 2(1− w)(1− cos(2πf/fs))
df =

w

(2− w)
σ2
xσ

2
y, (4.17)

which is consistent with Eq. 4.11.
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Chapter 5

RTCC Pipeline and Mock Data
Challenge

Having described the basic processes involved in the development of a GW analysis
pipeline and characterised the RTCC output when processing noise and Gaussian pulses,
we now present in detail the pipeline developed to test the RTCC algorithm detection
sensitivity and reliability.

A common method of testing and comparing pipelines is to measure the detection
efficiency of signals added to the detector data. These are referred to as ‘injections’
and may be performed during detector operation by excitation of detector mirrors via
control systems (hardware injection) or added to the detector output by software (software
injection) whilst preserving the original output. The injected waveforms may be based
on GW emission models or selected for particular characteristics, but in either case the
injections simulate the detector response for a given waveform source distance and sky
location.

For the development and study of the RTCC pipeline we have used archived data
from the LIGO 4 km detectors at Hanford (H1) and Livingston (L1) and simulated burst
waveforms from the LIGO Mock Data Challenge (MDC), generated for the purpose of
testing LIGO analysis pipelines. The RTCC pipeline will process the sample sum of
archived detector and MDC data from which we will measure the detection efficiency and
false alarm rate of the pipeline. We begin with a brief description of the main pipeline
goals.

5.1 RTCC Pipeline Objectives

The RTCC pipeline employs an unmodelled search method, where the presence of a
significant signal in the data from both detectors may be indicated by the RTCC
algorithm. The pipeline will monitor the RTCC algorithm output C l

n for all sample
lags corresponding to within plus or minus the light travel time between the H1 and
L1 detectors (∼ 10 ms), equivalent to ± 180 samples (at 16384 Hz). Following an event
trigger, we attempt to capture the event signals by recording and monitoring both detector
data to determine the event lag and define the trigger end. Immediately following the
trigger end a post trigger analysis will use the determined lag to align the recorded data
for computation of the normalised standard CC of the trigger and estimate the dominant
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frequency in the trigger data from each detector. These will be our main discriminants
when we attempt to reject triggers caused by noise. We also wish to measure the sensitivity
of the pipeline at trigger thresholds close to the noise floor and accept the challenge of
rejecting false alarm triggers with the aim of achieving false alarm rates of ∼ 1/year.
Before describing the RTCC pipeline we now address detector data access and the software
infrastructure required.

5.2 LIGO Data

The LIGO Data Grid (LDG) provides Ligo Scientific Collaboration (LSC) members access
to archived detector data from the collaboration detectors LIGO (H1,H2,L1), VIRGO
(V1) and GEO600 (G1). The data are stored in a common format agreed upon by
LSC members known as a Gravitational Wave Frame (GWF) [62]. GWFs store data
in channels containing output from detector instrumental and environmental monitors.
GWF data are timestamped in Global Positioning System (GPS) seconds, which is the
time elapsed since 6 Jan 1980 00:00 UTC (Coordinated Universal Time) as measured by
atomic clock. Whilst this data is acquired, LIGO operates various data quality monitoring
tasks which trigger when there are particular issues which affect the reliability of the data
for GW analysis. These periods are marked with data quality flags, the category of which
indicates the severity of the issue. The particular analysis being undertaken will determine
which of these flags are relevant to the exclusion of detector data (cuts). Further cuts, to
remove intervals when either detector or environmental issues degrade the data quality,
are made using Veto Definer Files from which one can generate science segment lists for
each detector. Periods deemed suitable for GW analysis are referred to as ‘science quality’
data. The remaining science segments for analysis are those periods common to all the
detectors belonging to the network analysis.

5.2.1 GWF Data Access

LIGO has developed many GW analysis software tools which are contained in LALSuite
(LSC Algorithm Library). The LAL software command gw data find may be used to
return a list of the LDG directory paths of GWFs of specified type containing data
from science segments during a specified time interval. The frame types used in this
study were the version 2 calibrated frames H1 LDAS C02 L2 and L1 LDAS C02 L2 for the
detectors H1 and L1. Our interest is in the detector strain channels H1:LDAS-STRAIN and
L1:LDAS-STRAIN, sampled at 16384 Hz, where GW signals may reside and into which our
MDC injections are to be made.

The initial task is to locate the H1 and L1 GWFs, typically 128 s in length, on
the LDG for each run period. We developed code, unimaginatively called DATAFIND,
incorporating the command gw data find, to locate the GWFs and write the LDG
directory paths in frame time order to file. For example,

datafind -o H -t H1 LDAS C02 L2

-s 954115215 -e 961977615

-out H1 954115215 961977615.txt
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returns in H1 954115215 961977615.txt the required list of LDG frame paths for H1.
Essentially the same procedure is followed for the MDC GWFs. Occasionally the time
ordered GWF paths are not contiguous between the end of a GWF and the start of the
next GWF and so DATAFIND reports these gaps which must be taken into account.

5.2.2 Data Quality

We must now produce files which contain lists of periods which are of at least the minimal
quality acceptable for GW analysis for each detector. We have used version 4 of DMT
science segments H1:DMT-SCIENCE:4, L1:DMT-SCIENCE:4 which we obtain using the LAL
command ligolw segment query. The output segment files, returned in xml format, may
then be converted to plain text files via the ligolw print command.

These science segments may be further refined in quality by removal of periods for
which the data quality categories or flags CAT1, CAT2 and CAT4 applied to each detector.
The decision to use these flags was based upon LIGO S5 burst criteria [63]. The flag
definitions relevant to the LIGO S6 data are given as follows [64]:

• CAT1

Periods during which severe detector issues exist, including zero detector output.

• CAT2

Noise entering into detector strain and auxiliary channels where the coupling
mechanism is understood.

• CAT3

Noise entering into detector strain and auxiliary channels where the coupling
mechanism is not understood.

• CAT4

Noise entering into detector strain and auxiliary channels where the coupling
mechanism is poorly understood.

Lists of periods when the data quality flags are active for each detector are produced
using the LAL command ligolw segments from cats, with input from a veto definer file
for the pipeline run period concerned, with output in separate files for each category and
again in xml format. These are then converted to plain text files.

We then subtract the CAT1,2 and CAT4 periods from the DMT science 4 data. The final
step is to produce the intersection of both files which leaves the run segments. Segmenting
the data may leave science segments which are too short for data analysis, especially
when filter transient periods must also be subtracted. We have chosen a minimal segment
length of 100 s which permits the detection of one injection. Segments shorter in length
are removed by the analysis pipeline prior to the run.

LIGO operates ongoing testing of pipelines with both hardware and software signal
injection periods. These periods must also be removed either before or after the analysis.
We chose to account for these in post processing and the injection times were passed to
the post run analysis code in file form.
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5.3 MDC GWFs and Injection Waveforms

The GWFs used for injection were the burst MDC data sets configured for injection
times during the joint LIGO science run 6 and VIRGO science run 2 (S6/VSR2). The
GWF resource is named S6/VSR2 All Sky Sine-Gaussian, Gaussian, White-Noise Linearly
Polarised Burst MDC and these frames contain a separate channel for each detector. The
MDC injection frames contain short duration burst signals which are separated in time
by 100 s plus or minus a random time within 10 s with zero amplitude in-between. The
MDC resource also provides injection log files for each period. These are headed with
summary information which give the number of injections of each particular waveform
and then lists each injection in time order, giving injection parameters such as waveform
and injection time for each detector.

The MDC injection waveforms are of various types, Gaussian pulses (GA),
sine-Gaussians (SG), and white noise bursts (WNB) (short duration band limited
Gaussian noise). These signals have been simulated by the Gravitational-wave Engine
(GravEn) software which reproduces the response of a network of detectors to GWs of
specified type, distance, sky position and other parameters [65]. The MDC injection set
name reflects that they are burst injections (BRST) and cover the particular quarterly
period in LIGO science run 6 (S6) shown in Table 5.1. Each analysis run was divided into
those periods with the exception that BRST S6 10Q3 was divided into two runs due to a
62592 s H1 data gap between GPS 965353984-965416576.

MDC GWF set GPS period Calendar period (UTC times)

BRST S6 10Q1 946339215 - 954115215 1 Jan 2010 00:00:00 - 1 Apr 2010 00:00:00
BRST S6 10Q2 954115215 - 961977615 1 Apr 2010 00:00:00 - 1 Jul 2010 00:00:00
BRST S6 10Q3 961977615 - 969926415 1 Jul 2010 00:00:00 - 1 Oct 2010 00:00:00
BRST S6 10Q4 969926415 - 977875215 1 Oct 2010 00:00:00 - 1 Jan 2011 00:00:00

Table 5.1: MDC injection GWF sets and GPS periods.

Our focus will be on the detection efficiency of SGs. The SG waveform is a sine wave
with a Gaussian function as amplitude and may be characterised by the central frequency
fc of its bandwidth ∆f and quality factor Q. Q is proportional to the number of prominent
oscillations in the waveform. In terms of fc, Q, location t0 and phase φ0 the generic form
of a sine-Gaussian may be expressed as

hSG(t) = h0 sin(2πfc(t− t0) + φ0)e−2(t−t0)2(πfc/Q)2 . (5.1)

SGs are not of astrophysical significance but are easy to characterise and define
spectrally [66]. The bandwidth ∆f of a SG is given by the ratio fc/Q and after setting
both t0 = 0 and φ0 = 0 the root-sum-square amplitude is given by [67]

hrss ≡

√∫ ∞
−∞
|h(t)|2dt = h0

(
Q

4fc

)1/2

π−1/4. (5.2)

In Fig. 5.1 is shown a plot of the SG waveform SG361Q8d9 from the MDC set with
file names in the format SG(fc)Q(Q) where d signifies a decimal point.
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Figure 5.1: Sine Gaussian waveform with fc=361 Hz and Q=8.9.

All SGs in the injection sets have an hrss of 2.5× 10−21 Hz−1/2. During each separate
run the injection data will be multiplied by one of a range of scale factors prior to adding
this to the detector GWF data. Scaling the injection data permits emulation of a range of
source strengths and distances to measure detection sensitivity. We have used a total of
31 scale factors ranging from the highest at 1000 and decreasing exponentially to 0.001,
which scale the injection hrss from 2.5× 10−18 to 2.5× 10−24 Hz−1/2.

SG Waveform fc Q ∆f f− f+ ∆T Ns

SG70Q3 70 3 23.33 58.3 81.7 0.04286 702
SG70Q8d9 70 8.9 7.86 66.0 74.0 0.12723 2084
SG70Q100 70 100 0.70 69.7 70.4 1.42857 23405
SG100Q8d9 100 8.9 11.23 94.4 105.6 0.08905 1459
SG153Q8d9 153 8.9 17.19 144.4 161.6 0.05817 953
SG235Q3 235 3 78.33 195.8 274.2 0.01277 209
SG235Q8d9 235 8.9 26.40 221.8 248.2 0.03789 621
SG235Q100 235 100 2.35 233.8 236.2 0.42553 6971
SG361Q8d9 361 8.9 40.56 340.7 381.3 0.02465 404
SG554Q8d9 554 8.9 62.25 522.9 585.1 0.01606 263
SG849Q3 849 3 283.00 707.5 990.5 0.00353 58
SG849Q8d9 849 8.9 95.39 801.33 896.7 0.01048 172
SG849Q100 849 100 8.49 844.8 853.3 0.11778 1930
SG1053Q9 1053 9 117.00 994.5 1111.5 0.00855 140
SG1304Q9 1304 9 144.88 1231.6 1376.4 0.00690 113
SG1615Q3 1615 3 538.33 1345.8 1884.2 0.00186 30
SG1615Q9 1615 9 179.44 1525.3 1704.7 0.00557 91
SG1615Q100 1615 100 16.15 1606.9 1623.0 0.06192 1014
SG2000Q9 2000 9 222.22 1888.9 2111.1 0.00450 74

Table 5.2: All MDC SG injection waveforms and parameters: central frequency fc, quality factor
Q, bandwidth ∆f , lower bandwidth frequency f−, upper bandwidth frequency f+, time width
∆T = 1/∆f , and number of samples corresponding to the latter Ns = fs∆T .
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In Table 5.2 we list all SG injection types in the MDC sets, giving central frequency,
bandwidth, and approximate range of spectral content from lower frequency f− to higher
frequency f+, where f± = fc±∆f/2. We also include the estimate of the duration of each
SG from its bandwidth, ∆T = 1/∆f and the corresponding number of samples Ns. The
minimum f− and maximum f+ of the SG injection waveforms determine the bandwidth
of our search. This gives our search a frequency range from ∼ 60 Hz to 2100 Hz to cover
all significant spectral content of the SG waveforms.

Given that the SG injections have a broad range of duration, we could run several
different pipelines, each with N selected to optimise SNR for a particular signal duration
(see section 4.2). This however, would either considerably multiply the computational
time required or necessitate modification of the MDC injection types and times. The
minimum number of optimal N we could use is one, and in the next section we determine
the detection sensitivity just one choice of N for all pipeline runs can provide.

5.4 RTCC Pipeline Sensitivity Dependence on N

In Section 4.2 we determined the value of N which gave maximum RTCC SNR and
observed that the SNR peak was substantially broader than seen in standard CC. It is
this behaviour of the RTCC algorithm which may permit selection of only one N value
and still retain good sensitivity to all the waveforms considered in this analysis. Figs. 5.2,
5.3 and 5.4 show the ratio of the RTCC output maximum to σRTCC(N) for all waveforms
in Table 5.2 grouped by Q value. We have chosen N ranging from 1 to 10000 to include
all RTCC maxima. All waveforms were scaled to have an equal maximum amplitude of
35 and added to Gaussian noise N (0, 1).
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Figure 5.2: RTCC SNR(N) for Q = 3 waveforms.
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Figure 5.3: RTCC SNR(N) for Q = 8.9 and Q = 9 waveforms.
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Figure 5.4: RTCC SNR(N) for Q = 100 waveforms.

The figures all show the same general trend with increasing SG frequency with both the
SNR maxima and corresponding optimal value of N decreasing. Also, as the value of Q
increases, the range of SNR and N at the maxima shifts towards higher values. Table 5.3
summarises the results.
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SG Waveform SNRopt Nopt Ns

SG70Q3 8067.19 137 702
SG70Q8d9 12219.5 410 2084
SG70Q100 38182.2 5329 23405
SG100Q8d9 10150.6 287 1459
SG153Q8d9 8783.2 190 953
SG235Q3 4446.41 41 209
SG235Q8d9 7098.73 120 621
SG235Q100 20906.2 1629 6971
SG361Q8d9 5773.24 78 404
SG554Q8d9 4587.21 52 263
SG849Q3 2312.16 10 58
SG849Q8d9 3725.52 32 172
SG849Q100 11924.9 452 1930
SG1053Q9 3339.49 26 140
SG1304Q9 2992.4 22 113
SG1615Q3 1677.5 5 30
SG1615Q9 2717.8 16 91
SG1615Q100 8672.52 238 1014
SG2000Q9 2428.13 14 74

Table 5.3: Optimal N values for SG waveforms.

If we define the SNR sensitivity for a particular SG and value of N as the ratio
SNR(N)/SNR(Nopt), then summation of this quantity over all waveforms gives the total
sensitivity SNRSG(N) with an ideal value equal to the number of waveforms (i.e 19). Fig.
5.5 shows the layered summation of SNR(N)/SNR(Nopt) for all waveforms, with the last
contribution from the SG2000Q9 representing the total SNRSG(N).
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Figure 5.5: Total SNR(N)/SNR(Nopt) for all waveforms. SNRSG(N) represented by the top
curve as the last SG (2000Q9) is added. The maximum is located at N = 65.
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The maximum total sensitivity to all SGs occurs at N = 65 and in Table 5.4 we
compare this to that obtained when N = 25, a value which during pipeline development
had already returned promising results prior to undertaking the analysis presented in this
section. For N = 25 the total sensitivity is 14.3 out of 19 or 75 % and for N = 65 we
obtain the rather modest improvement of 78 %. For this reason we retained the value
N = 25 for the pipeline.

SNR(N)/SNR(Nopt)
SG Waveform N = 25 N = 65

SG70Q3 0.749 0.926
SG70Q8d9 0.587 0.736
SG70Q100 0.190 0.238
SG100Q8d9 0.633 0.808
SG153Q8d9 0.710 0.889
SG235Q3 0.967 0.969
SG235Q8d9 0.801 0.940
SG235Q100 0.264 0.370
SG361Q8d9 0.871 0.994
SG554Q8d9 0.946 0.990
SG849Q3 0.913 0.688
SG849Q8d9 0.989 0.946
SG849Q100 0.431 0.641
SG1053Q9 0.999 0.917
SG1304Q9 0.997 0.881
SG1615Q3 0.755 0.528
SG1615Q9 0.972 0.832
SG1615Q100 0.575 0.812
SG2000Q9 0.961 0.781
Total 14.317 14.894
Total/19 0.753 0.783

Table 5.4: Comparison of SNRSG(25) and SNRSG(65) showing a slight improvement in sensitivity
for N = 65.

5.5 The DMT

The Data Monitoring Tool (DMT) is a suite of software written in C/C++, authored
mainly by John Zweizig (Caltech), which provides software tools for signal processing
and data monitoring of the detectors [68]. The DMT also provides GWF data access
and buffering methods. DMT classes of particular use were GWF data access Dacc, time
series TSeries, IIRFilter and LPEFilter filters. The software we developed to perform
GWF data access and preprocessing techniques was tested by implementing the DMT
classes via a ROOT (CERN) [69] interface locally, and once approved, directly on the
Caltech cluster. Several mathematical functions available within ROOT have been used
for convenience throughout.
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So far detector characterisation has been discussed in terms of the ASD; however,
the native output of the DMT class used for spectral analysis, FSpectrum, is the power
spectral density (PSD). The PSD is just the square of the ASD and future discussion will
now be in terms of the PSD.

5.6 Preprocessing

The preprocessing procedure we have developed is an adaptation of the broadband
whitening method for use with LPEF filters described in [70]. Before discussing our
method to achieve broadband whitening, we first briefly describe iWave (Iterative
Waveform Action-Angle Variable Estimator), a line monitoring and subtraction tool
currently in development at the University of Sheffield [71], our method of choice for
line removal.

5.6.1 iWave Line Removal

iWave models the line wave component of the data in terms of the action angle variables
(AAV) of the oscillator. In classical mechanics AAVs permit the frequencies of oscillation
of systems to be determined without necessitating the solution of the equations of motion
[72]. The reconstructed line may then be subtracted from the input data. This technique
can be implemented as either a dynamic or static line remover. In the former case, iWave
adapts to changes in the frequency, amplitude and phase of the line and in the static
case, the mode to be used in our pipeline, iWave accepts as input the data sampling
frequency fs, the frequency of the line for removal fline and the line bandwidth parameter
τ = 1/(π∆f). Fig. 5.6 shows attenuation of a 180 Hz powerline harmonic by tuning of
the τ parameter.
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Figure 5.6: Tuning of iWave τ parameter for the removal of 180 Hz mains line harmonic (blue)
to give data with significantly reduced amplitude at the line frequency (red).
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In addition to line removal to facilitate search analysis, the ability to monitor lines
may be useful for detecting causal relationships between lines which are not obvious, as
may occur during the commissioning/upgrading of detector instrumentation. iWave was
incorporated into the RTCC pipeline line removal procedure to be described in Section
5.6.3.

5.6.2 Initial Preprocessing

In order to limit the spectral content of the detector data to the search frequency range
60 – 2100 Hz we use IIR high-pass and low-pass filters. Having first obtained an IIR filter
with the desired frequency response, we can use the IIRFilter class to provides access to
the filter parameters in terms of the second order section (SOS) coefficients. The pipeline
builds the IIR filters from the product of individually created SOSs using the IIRSos class
and SOS coefficients provided by file input.

Our first preprocessing task will be to high-pass the data at 64 Hz. The PSD of the
raw data after high-pass filtering with a 6th order Butterworth filter at 64 Hz is shown in
Fig. 5.7.

1.0e-46

1.0e-44

1.0e-42

1.0e-40

1.0e-38

1.0e-36

1.0e-34

1.0e-32

 50  64  500  2000 10  100  1000

PS
D

Frequency (Hz)

Pre-filtered data
64 Hz high-pass

Figure 5.7: PSD of raw H1 strain data (blue) and after high-pass filter at 64 Hz. This levels the
power below 64 Hz in preparation for further preprocessing.

In this case we have not cutoff spectral power below 64 Hz but have levelled the spectrum
in preparation for the next preprocessing steps.

5.6.3 Line Selection and iWave Line Removal

The PSD of the lines may be compared to the noise power surrounding the line by taking
the median baseline average (MBA) of the spectrum. For this we choose a frequency
window of sufficient width so that the median value gives a good estimate of the noise
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floor surrounding the lines. Starting at the low end of the frequency spectrum, lines are
detected in the PSD by determining the frequencies at which a negative change of gradient
occurs and selected for removal if the ratio of the PSD to MBA power exceeds a particular
threshold. The identified lines are then listed in order of descending power relative to the
MBA for use by the line subtraction procedure. Fig. 5.8 shows both the MBA (red) and
line selection (green crosses) where PSD/MBA exceeds a threshold of 2. The frequency
resolution of the PSD was 0.25 Hz and the MBA window chosen for this analysis was 30
Hz. The number of lines identified for removal is 138, with many clustering around the
violin modes and harmonics.

1.0e-46

1.0e-45

1.0e-44

1.0e-43

1.0e-42

1.0e-41

1.0e-40

1.0e-39

1.0e-38

 50  500  2000 10  100  1000

PS
D

Frequency (Hz)

64 Hz high-pass
MBA

lines selected

Figure 5.8: 64 Hz high-pass data (blue), MBA (red) and line selection (green crosses).

iWave line removal is preconfigured by passing the line selection list to code which tunes
iWave for the removal of lines independently and in list order to produce a list of τ for each
line. The list of line frequencies and τ values are then used to create separate instances
of the iWave filter for each line. Fig. 5.9 shows the effect of applying all iWave line filters
to the data. The figure shows that many of the selected lines have been successfully
subtracted, substantially attenuated or when clusters of lines occur, effectively notched.
An undesirable degree of notching occurs around the violin modes at around 340 Hz which
more than inverts the ASD in a bandwidth of ∼ 150 Hz. The degree of notching depends
upon the number of lines in the cluster, line power and the bandwidth overlap. The
cause of excessive line subtraction is our implementation of iWave. This employed simple
independent tuning which uses the original data to be filtered for each line, taking no
account of the effect on other lines. Therefore, lines belonging to a cluster can be subject
to iWave subtraction multiple times. Our line subtraction procedure is only suitable for
data whose lines are bandwidth exclusive. The large violin mode notch is quite a broad
feature, and before we considered developing a more adaptive line removal procedure, we
were interested to see how the LPEF filter would affect the PSD in this region.
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Figure 5.9: Line selection (green crosses). Prior to line removal (blue) and after iWave line
removal (red).

The cumulative PSD spectrum following the 64 Hz high-pass filter and after iWave line
removal is shown in Fig. 5.10 below.
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Figure 5.10: Cumulative PSD after 64 Hz high-pass filter (blue) and following iWave removal
of selected lines (red).

The large step corresponding to a cluster of lines around 347 Hz has been removed leaving
a much flatter noise spectrum.
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5.6.4 LPEF Whitening

The LPEF alone is capable of removing lines and whitening the PSD; however, applied on
its own this may require a longer filter length and therefore incur a higher computational
cost. The strategy adopted was to use iWave to remove many of the most powerful lines in
the PSD, thereby reducing the burden on the LPEF to do mainly whitening and adaptive
filtering. The LPEF filter used had length 81920 samples (5 s) and a filter training time
of 50 s. Re-training of the filters was performed approximately every 2000 s at times
when the measured injection signal was zero. Fig. 5.11 shows the PSD following LPEF
filtering of the data post line removal. The PSD is now confined to within approximately
one decade in power, showing that the data is now considerably whiter. The LPEF has
also removed the most prominent effects of aggressive line subtraction caused by our too
simplistic implementation of iWave. The LPEF filter also raises the power at frequencies
below 64 Hz which we counteract in the final preprocessing step.
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Figure 5.11: PSD following LPEF filter (red). The PSD is now much flatter and has removed
most of the effect of excessive line subtraction.

5.6.5 Final Preprocessing

Preprocessing is concluded by first applying a second 64 Hz high-pass filter to suppress
the elevation in power below 64 Hz due to LPEF filtering, followed by low-pass filtering
at 2500 Hz with a 12th order Butterworth filter. The resulting PSD is shown in Fig. 5.12
(green)1 where we can see that the spectral content of the data has now been substantially
whitened within the pipeline search frequency range and attenuated at either end.

1Shown slightly elevated so that the 2nd high-pass step can be seen.
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Figure 5.12: 2nd high-pass at 64Hz (red) and low-pass at 2500Hz (green).

In summary, the data preprocessing steps are as follows:

• High-pass filter at 64 Hz

• iWave line removal

• Apply LPEF

• Second high-pass at 64 Hz

• Low-pass filter at 2500 Hz

5.7 Post Trigger Processing

In this section we describe the processing steps performed immediately following an event
trigger in the order of pipeline execution.

5.7.1 Trigger Capture

On passing a set RTCC event trigger threshold our objective is to capture the most
significant causally related data prior to and after the trigger from both detector data
streams for use in post trigger analysis. Relative to the trigger threshold, data prior to
the trigger is likely to be less significant and we simply choose to continuously retain a
set number of samples from each detector which can be prepended to the data captured
following the trigger event. It is highly unlikely that the threshold will be equal to the
RTCC output maximum following the trigger; therefore the most significant trigger data
almost always occur post trigger and so we take more care in finding a method of defining
the trigger end.
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The RTCC output on processing SG triggers is not a simple pulse as we show in
Fig. 5.13, which gives the C0

n output for two SG235Q8d9 signals injected with zero lag.
In general we observe approximately twice the number of local maxima as prominent
oscillations of the SG, each separated by 1/(2fc) s and distributed over a pulse envelope.
Therefore, simply defining the end of the trigger period as the condition when RTCC
output again falls below threshold would almost certainly omit important data.
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Figure 5.13: RTCC output for a SG235Q8d9 (shown for comparison) trigger.

We considered measuring the convergence of the summed signal power Pn at sample
n following the trigger by taking successive power ratios Pn/Pn−1 for each detector time
series. These should converge to a value close to unity on passing of the trigger signal.
We therefore set a convergence threshold Tp . 1. Since the power from the injections
arrive as a series of pulses, premature termination is avoided by establishing the stability
of convergence by setting a threshold on the consecutive number of times TN that Tp
must be satisfied before termination. Since noise may disrupt convergence, especially for
low SNR injections, termination is ensured by setting a maximum post trigger recording
length of 1 s.
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Figure 5.14: Example of SG849Q8d9 trigger capture using sample power ratio. The green
vertical line at n = 94 marks the first instance where the power ratios for each detector satisfy
the Tp threshold.
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Fig. 5.14 shows an example portion of the power ratio evolution for a SG849Q8d9
trigger (shown in Fig. 5.16) where the convergence criterion Pn/Pn−1 > Tp = 0.999 is first
reached at 94 samples. The stability criterion TN = 540 ultimately leads to a total post
trigger sample length of 8084 = 0.49 s. Comparison with NS = 172 (Table 5.3) shows
that in some cases the trigger sample length will far exceed the SG injection waveform
length.

This method was found to be good at defining the trigger end for medium to high
SNR injections, but convergence was often slow for low SNR injections. In some cases
convergence was prolonged by the presence of long LPEF filter transients which were
observed to remain for times longer than the trigger signal duration. To illustrate the
above points, in Fig. 5.15 we show 8 consecutive captured trigger time series, each
separated by the vertical lines reaching the top edge of the plot. Triggers (left to right)
1, 2, 4, 6, 7, and 8 are all from SG injections. Trigger 8, resulting from a comparatively
low SNR SG, takes an excessive length of time to converge in proportion to the waveform
duration. We can mitigate the effect of poor convergence by the signal enhancement
methods described in Section 5.7.4.

-3x10-8

-2x10-8

-1x10-8

 0

 1x10-8

 2x10-8

 3x10-8

 0  0.25  0.5  0.75  1  1.25  1.5

am
pl

itu
de

time (s)

H1
L1

Figure 5.15: Series of 8 triggers captured by power ratio convergence. Convergence is good for
medium/high SNR triggers but poor for low SNR triggers.

5.7.2 Lag Alignment of Trigger Data

During trigger capture, the lag between the SG injections in the detector data is
determined by finding the sample lag lmax at which the RTCC output achieves its
maximum over the trigger duration. The accuracy of lag determination depends on the
contrast in amplitude in the neighbourhood of the the SG waveform maximum and SNR.
When multiple amplitudes are similar, as occurs with SG waveforms with large Q factor,
noise is more likely to cause RTCC maxima to occur at peaks neighbouring the waveform
maximum. This introduces lag errors in multiples of 1/(2Fc). All subsequent analysis
now uses the determined lag to align the waveforms in the captured detector trigger data.
Fig. 5.16 shows the lag alignment of SG849Q8d9 waveforms.
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Figure 5.16: H1 and L1 SG849Q8d9 trigger signal aligned by detected lag.

5.7.3 Normalised Standard Cross-correlation

Although the RTCC algorithm has indicated a correlation between the two input time
series, our primary discriminant will be the standard cross-correlation of the captured data
at the determined lag lmax. It is convenient to scale the output such that its magnitude
lies between 0 and 1 by normalising the cross-correlation output by the product of the
measured standard deviations of both time series. For the cross-correlation of N samples
we therefore use

(X ? Y )lmax =

∑N−1
i=0 xiyi−lmax

σxσy
. (5.3)

5.7.4 Probabilistic Filtering and Spike Removal

In the next section we describe a method of estimating the dominant frequency in the
captured trigger data. The results of applying this method directly to data containing
SG injections were promising but not deemed sufficiently reliable, especially for low
SNR injections. We often observed instances where the method would have given a
close correspondence to the SG injection frequency, but noise led to frequency selection
outside the expected bandwidth. We were therefore motivated to find a method which
reduces noise whilst retaining most of the injected waveform. The first method of
signal enhancement we considered was the singular value decomposition (SVD) [73]. We
developed trial code and the result of applying our SVD filter to trigger data containing
a low SNR SG is shown in Fig. 5.17. The filtered signal closely resembles the injected
SG waveform and so represents an almost ideal output. Unfortunately, this method is
computationally expensive as it requires the solution of large matrices.

Having seen how effectively the SVD filter eliminates noise, with practically null output
either side of the wave form, we considered it probable that frequency estimation would
benefit by effectively zeroing all data lying below approximately three standard deviations
of the background noise.
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Figure 5.17: SVD recovery of SG849Q8d9 waveform. Left: SG plus noise. Right: SVD filter
output (blue) and original injected SG849Q8d9 waveform (green).

This would remove a significant fraction of the noise surrounding low SNR SG waveforms
in the trigger data. For example, in the above figure (left) approximately two thirds
of the noise surrounding the waveform would be removed. We achieved a primitive
approximation to the SVD filter output by applying what we will refer to as a probabilistic
Gaussian filter followed by a spike removal filter.

The probabilistic Gaussian filter weights each sample xi in the time series by a measure
of its probability Pi(xi) not to occur in a Gaussian distribution with variance equal to
the noise background σ2

n. The error function could have been used for this purpose,
but we found that the proportional term Pi(xi) ∝ 1 − exp(−x2

i /2σ
2
n) sufficed. In order

to obtain weights for any given data set which do not suppress maximum amplitudes,
we normalise by the same expression as the proportional factor but with the maximum
observed excursion xmax as argument. The Gaussian filter function is then given by

Pi(xi) =
1− e(−x2

i /2σ
2
n)

1− e(−x2
max/2σ

2
n)
. (5.4)

We then set a threshold on the value of Pi(xi), below which we set its value to zero. The
threshold value is chosen so as to retain most of the injection signal information whilst
removing most of the noise content.

Clearly, we inevitably lose some of the waveform data at either extreme, and even the
SVD filter noticeably attenuates , but since our primary interest in this case is to obtain
a satisfactory estimate of the frequency we only require that a sufficient portion of the
waveform remains. The RTCC pipeline uses a threshold of 0.8 and in Fig. 5.18 (left) we
show an example of the selectivity of the weighting function for a SG849Q8d9 injection.
After Gaussian filtering (Fig. 5.18 (right)) we are often left with isolated spikes which
we remove by applying a simple conditional filter which determines the presence of spike
features of between one and three samples duration.
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Figure 5.18: Gaussian probabilistic filter selectivity for SG849Q8d9 (left) and Gaussian filtered
time series (right).

Fig. 5.19 shows the combined filter process applied to a SG849Q8d9 trigger, better
defining where the dominant power in the injection is present and leaving almost zero
signal elsewhere. Apart from the potential improvements in frequency estimation, this
also has the benefit of making the computation of quantities whose output only relies
upon non-zero signal values much faster.
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Figure 5.19: Application of Gaussian filter and spike filter to H1 and L1 SG849Q8d9 trigger
signals.
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Of course, we could have obtained similar output to the Gaussian-spike filter directly
by setting to zero all data amplitudes below ∼ 3σn, but this would in general still leave
spikes and indiscriminately null low amplitude waveform data. The Gaussian-spike filter
approach has more scope, we believe, for further development and so we test its use in
this pipeline.

5.7.5 Frequency Estimation

The method devised to estimate the dominant frequency present in each of the captured
trigger data sets is based on the Fourier decomposition of a signal into a sum of sine and
cosine harmonics. To obtain an indication of the power at a particular frequency A(f),
we sum the squared correlation of the captured time series with the discretely sampled
sine and cosine of corresponding frequency. For a time series xi of N samples the power
amplitude function is given by

A(f) =

(
N−1∑
i=0

xi sin(2πfti)

)2

+

(
N−1∑
i=0

xi cos(2πfti)

)2

, (5.5)

where discrete time ti = i/fs. We obtain a ‘spectrum’ by calculating A(f) in discrete 1
Hz steps over the pipeline frequency search range. The dominant frequency estimate is
the value of f at which A(f) is maximum.

For high SNR SG injections, this method produces frequency estimates which are
accurate to within a few Hz of the SG central frequency. However, to be of use in the
pipeline, we require at least adequate estimates for low SNR injections. In Fig. 5.20 we
show the spectra obtained from a low SNR SG849Q8d9 trigger before (top) and after
(bottom) Gaussian-spike filtering (see Section 5.7.4).
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Figure 5.20: Top row: Frequency estimation spectra A(f) for SG849Q8d9 injection trigger data
prior to Gaussian-spike filtering with maxima at H1 831 Hz L1 785 Hz. Bottom row: Spectra
following Gaussian-spike (GS) filtering giving improved estimates H1 838 Hz and L1 828 Hz.
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In the above figure, prior to Gaussian-spike filtering the estimated trigger frequencies for
H1 and L1 are 831 Hz and 785 Hz respectively. These estimates would be considered
adequate as they are relatively close in value and either lie within or close to the SG
bandwidth. Nevertheless, in general we find that for low SNR injections the spectra show
many strong spikes across the frequency search range which often force frequency selection
far outside the SG bandwidth. We can substantially improve the probability that both
H1 and L1 frequency estimates more closely correspond by applying the Gaussian-spike
filter described in Section 5.7.4.

The significant noise reduction following Gaussian-spike filtering produces spectra with
more prominent maxima and approximate Gaussian1 spectral profile about the maximum.
From this we might consider attempting estimation of the Q value as an additional
parameterisation. Taking the definition of Q as the ratio of central frequency fc to the
spectrum standard deviation σf , we may estimate Q by relating the full width at half

maximum (FWHM) to σf by FWHM = 2σf
√

2 ln 2. This gives

Q =
fc
σf

= 2
√

2 ln 2
fc

FWHM
. (5.6)

For example, in the above figure we measure FWHMH1 = 196 Hz and FWHML1 = 178
Hz which respectively give estimates of QH1 = 10.0 and QL1 = 10.9. Unfortunately,
after several Q determination trials we found the method given above too unreliable and
reluctantly decided to omit this trigger parameterisation.

5.8 RTCC Thresholds

Each run uses one of five RTCC trigger thresholds. These were chosen such that the
highest threshold gave 100 % detection efficiency at the highest injection scale and the
lowest as the minimum which still gives an acceptable trigger rate. The trigger rate at the
lowest threshold, now primarily due to noise, should not be too high (e.g. 1 Hz) as this
will severely impede run progress and lead to excessively large trigger files. The RTCC
thresholds are scaled exponentially and given by the relation,

thresholdn = 10
23+4(n−1)

16 for n = 1...5. (5.7)

Eq. 5.7 therefore gives thresholds for n = 1 to 5 of 27.38, 48.70, 86.60, 153.99 and 273.84
(rounded to two decimal places).

5.9 RTCC Pipeline Execution Timing

Although the RTCC pipeline was designed to process archived data rather than during
detector data acquisition in real time, we will present the main pipeline operation times
scaled to filter sample length for preprocessing and post-trigger process timing per sample.
Additional scalings for some operations are given for generality. In particular, we give the
iWave times scaled to the number of lines removed and RTCC algorithm times per ±1

1The frequency spectrum of a SG is a Gaussian function centred on fc.
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ms of lag. Processing triggers, whether from injections or noise, clearly takes more time,
and therefore the times obtained are upper limits on the pipeline execution speed.

All timing tests were performed on a computer running the Scientific Linux 6.3
operating system with x86 64 architecture. The hardware consisted of 4 Intel(R)

Core(TM) i5-3210M CPU @ 2.50GHz processors with 2 cores and 3.3 GiB RAM. The
RTCC software (see Section 7.2) was compiled with gcc/g++ and c/c++ O2 optimisation.

Table. 5.5 provides average preprocessing timings per sample for high-pass (HP)
filtering, iWave line removal (per line), LPEF (pre-trained) and low-pass (LP) filtering.
The second high-pass HP2 is equivalent to HP1 and the LP filter takes approximately
double the processing time of the HP filter.

HP1 iWave LPEF HP2 LP

Time (µs) 0.026 0.006 0.335 0.025 0.050

Table 5.5: Average preprocessing times per sample for the first high-pass (HP1), iWave per line,
LPEF, second high-pass (HP2) and low-pass (LP) filters.

The above table can be used to estimate the total preprocessing time per sample for the
total of 201 lines removed during pipeline runs for each detector (H1 - 138, L1 - 63), to
give 1.64 µs.

Table. 5.6 gives timing averages per sample for the RTCC algorithm (per ±1 ms
lag), Gaussian-spike (GS) filtering, normalised cross-correlation (NCOR), and dominant
frequency estimation (Fest) in the range 50 – 3000 Hz.

RTCC (/± 1 ms) GS NCOR Fest

Time (µs) 0.14 0.12 0.22 35.35

Table 5.6: Average timing per sample for the RTCC algorithm, Gaussian-spike filter (GS),
normalised cross-correlation (NCOR) and frequency estimation (Fest).

Our pipeline runs have RTCC lag configured for ±180 sample lags at 16384 Hz (i.e. ±11
ms) and so the total trigger processing time is 37.23 µs, of which the largest portion is
consumed by trigger frequency estimation.

The total preprocessing and trigger processing times give an estimated time of ∼ 39 µs
per sample. Real time data processing would require processing faster than the sampling
rate, i.e. within 1/16384 ∼ 61 µs. Therefore, the main pipeline operations are capable of
very low latency data processing. Unfortunately, trigger capture power convergence times
introduce latencies which were observed to range on average between 1 – 10 waveform
lengths, depending upon SNR and the waveform quality factor. In real time processing
we should then expect trigger delays of ∼ 5 ms for a 1 ms duration waveform.

5.10 RTCC Pipeline Structure and Large Scale Runs

The RTCC pipeline was developed with the intention that it could process GWF formatted
data from any detector and meet different preprocessing requirements. In order to
facilitate this flexibility we have enabled configuration of the pipeline analysis entirely
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by the input of files. All preprocessing filters are either built or initialised from input
configuration files which can request a wide range of IIR Filters, including the LPEF.

The outer layers of the RTCC pipeline software parse the separate input files for
frame paths, science segments, and preprocessing configuration. Inner layers manage
coordinated data input for the detector H1/L1 GWFs and injection MDC GWFs
(generally not equal in length), perform the software injections and preprocess the
resulting data. At the core of the pipeline lies the RTCC algorithm, trigger data analysis
and trigger file writing routines.

Before a run commences, the availability of each frame is checked since frame access
on the LDG may have changed since production of the frame path files. In the event
that a required frame becomes unavailable during a run, the DMT data access class Dacc
will issue an error message regarding GWF access and the run terminates. The pipeline
was written so that if a run stopped due to the unavailability of frame data or any other
cause, then the run may be restarted and automatically process data commencing from
the last trigger time recorded and proceed by appending the trigger files.

By way of summary, we show in Fig. 5.21 a schematic representation of the RTCC
pipeline which outlines the required input to the pipeline and the main processes
performed during operation. Terminal input refers to manual keyboard entry of the
pipeline arguments (e.g. run start/end times).

Large scale runs utilise the Directed Acyclic Graph (DAG) job management system on
the LDG. This permits the allocation of computing resources for multiple computing jobs.
These are submitted to the DAG via DAG job submission files. These files detail the job
input parameters. For example, one RTCC run requires one of 31 separate injection scales
and one of five trigger threshold values. Therefore a typical multiple run will comprise 155
jobs. Processing speed will depend upon available computing resources and load usage.
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Figure 5.21: RTCC pipeline schematic. This shows both the required input (terminal and files)
and main processes during operation.
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Chapter 6

RTCC Pipeline MDC Results

We now present the results of our RTCC pipeline runs. Sine-Gaussian (SG) injection
triggers are selected based on two coincidence criteria: the post-trigger normalised
standard cross-correlation (CC), and a measure of the similarity of the dominant
frequencies in both of the captured detector data. In addition, we discard all triggers
where the determined signal-to-noise ratio (SNR) is plus or minus infinity or negative
(i.e. unphysical). The SNR is determined periodically from the RMS of the data when
injections are not present and we reject triggers when this is above the post-trigger RMS.
We will consider the measured distributions of the trigger discriminants in order to decide
how to apply thresholds or cuts which give close to maximal rejection of time slide (TS)
triggers whilst minimising rejection of SG injection triggers.

As in Section 4.3, the probability distribution functions (PDFs) shown are obtained
from the frequency histogram by normalisation relative to area.

6.1 Normalised Cross-Correlation Distribution

We show in Fig. 6.1 the distribution of normalised CC for the SG and TS triggers from
run 954115215-961977615 for the five RTCC output thresholds used.
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Figure 6.1: Distribution of normalised CC for SG triggers and time slide (TS) triggers.
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The distributions show marked separation of maxima: most of the SG triggers have
normalised CC greater than 0.8 whilst most of the TS triggers fall below 0.2. The tail of
the TS distribution is better viewed on the logarithmic plot of Fig. 6.1 shown in Fig. 6.2.

 0.001

 0.01

 0.1

 1

 10

 100

 0  0.2  0.4  0.6  0.8  1

PD
F

normalised cross-correlation

Normalised CC Distribution (Time slide and Detection) run 954115215-961977615

threshold
27.38
48.70
86.60

153.99
273.84

27.38 (TS)
48.70 (TS)
86.60 (TS)

153.99 (TS)
273.84 (TS)

Figure 6.2: Logarithmic normalised distribution of normalised CC for SG triggers and time
slide (TS) triggers.

It is now clear that some TS triggers have normalised CC values far above 0.2. We can
see how our choice of rejecting TS triggers which fall below a particular normalised CC
threshold Cthr will affect our SG trigger acceptance in the cumulative distribution of Fig.
6.3.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

Cu
m

ul
at

iv
e 

PD
F

normalised cross-correlation threshold Cthr

Normalised CC Cumulative Distribution (Time slide and Detection) run 954115215-961977615

threshold
27.38
48.70
86.60

153.99
273.84

27.38 (TS)
48.70 (TS)
86.60 (TS)

153.99 (TS)
273.84 (TS)

Figure 6.3: Cumulative distribution of TS and SG triggers for threshold selection Cthr.
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If we set Cthr = 0.6 this would eliminate all TS triggers from this run but also reject
from between around 10 – 30 % of SG triggers, depending on the detection threshold. The
maximum distance between TS and SG trigger curves occurs in range of Cthr = 0.98−2.2.
We chose a value of Cthr = 0.25 which rejects 99.8% of TS triggers and retains 97, 94, 90,
86 and 80% of SG triggers from highest to lowest trigger threshold.

6.2 Trigger Frequency Discriminant Frat

We assume that the probability that the difference between the determined dominant
frequencies from both detector trigger time series fdet1 and fdet2 will be large is much
greater for noise triggers than for triggers of SG injection origin. Therefore, when the
trigger frequencies are plotted as points on a graph with axes spanning the search range
0 – F for each detector, we expect SG triggers to lie close to the line fdet2 = fdet1 and
that TS trigger points will be approximately uniformly randomly distributed within the
search frequency space F 2.

As a measure of the proximity of the trigger frequencies we define Frat as the sum of
the ratio of trigger frequencies and the inverse ratio. Thus,

Frat =
fdet1

fdet2

+
fdet2

fdet1

, (6.1)

which is symmetric with respect to interchange of detector frequencies and has a value
always greater than or equal to 2. For frequencies very similar in value Frat ' 2, and
for very different frequencies Frat gives the approximate ratio of the largest frequency to
the smallest. If we choose to accept triggers with Frat ≤ R where R > 2, this defines
a trigger acceptance zone Aac within the frequency space which is symmetric about the
fdet2 = fdet1 line. The frequency space is shown in Fig. 6.4 with Aac in grey and the
remaining area Arej, in which triggers are rejected, in white.

fdet2 

fdet1 

F 

F 0 

Frat≤ R 

Figure 6.4: Frequency space for plotting (fdet1,fdet2) where triggers are accepted if Frat ≤ R
(grey zone) and otherwise rejected (white areas).
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Given our naive assumption on the distribution of TS trigger frequencies, we expect
the proportion of TS triggers occurring over a sufficiently long period of time within any
defined area A of the total F 2 space to be P = A/F 2. A little algebra yields the proportion
of triggers rejected as a function of the threshold R as

Prej(R) =
(R−

√
R2 − 4)

2
. (6.2)

Clearly, we have accepted the proportion Pac(R) = 1 − Prej(R) of TS triggers and these
must contribute to the FAR unless rejected by another criterion. Since the bandwidth
of SG waveforms is proportional to frequency, our intuition in devising this form of
discriminant was that the tolerance for acceptance based on difference in estimated
frequency should also increase with frequency.

In order to find the threshold value of R which maximises TS rejection whist minimising
SG trigger rejection, we investigate the distributions of Frat for both trigger types. Fig.
6.5 shows a logarithmic plot of the normalised distribution of Frat where, as expected, the
TS triggers show a much higher probability that the frequencies are significantly different,
only approaching the SG probability when Frat & 30.

 0.001

 0.01

 0.1

 1

 10

 100

 2  10  30  100  300

PD
F

Frat

TS
SG detection

Figure 6.5: Normalised distribution (PDF) of Frat for TS and SG triggers.

The 1-cumulative distribution shown in Fig. 6.6 shows the proportion of TS and
SG triggers rejected upon setting the threshold. From Frat = 2 onward, the distance
between the TS and SG trigger rejection curves increases and then decreases. Therefore,
a maximum distance between the curves occurs at some point in-between, which we take
to be the optimal R threshold. This maximum was found to occur at Frat = 2.05, giving
a TS rejection of 83%, close to the 80% value expected from Eq. 6.2, and a SG trigger
rejection of 7%. This value was subsequently used for our post-trigger cuts.
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Figure 6.6: 1-cumulative Frat distribution.

6.3 Detection Sensitivity and False Alarm Rate

Fig. 6.7 shows the sensitivity curves obtained prior to threshold cuts from detection of all
SG injection types at each RTCC trigger threshold. The sensitivity curves are separated
at 50% detection efficiency by h50%

rss values of 2.8, 4.0, 5.5, 7.6 and 10.2× 10−21 Hz−1/2.
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Figure 6.7: SG detection sensitivity before applying cuts.
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Fig. 6.8 shows the sensitivity curves obtained following the threshold cuts on
normalised CC and Frat from detection of all SG injection types at each trigger threshold.
Comparing this with Fig. 6.7, we can see that the curves much closer together, with
detection at the two lowest thresholds now barely distinguishable. At 50 % detection
efficiency the sensitivity curves are separated by h50%

rss values of 6.9, 7.1, 7.5, 8.6 and
10.4× 10−21 Hz−1/2.
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Figure 6.8: SG Detection sensitivity after cuts applied

Figs. 6.9 – 6.12 show the post cut sensitivity for all SG injections individually. All the
sensitivity curves for SGs of frequency 235 Hz or less show a marked inflection at around 70
% detection efficiency with a reduction in the rate at which detection efficiency increases
with injection hrss and then the rate recovers. These results were not as expected, given
the overall detection efficiency curves in the above figures. We expended a considerable
amount of time and effort in an attempt to explain these results, but without resolution.

The remaining results for SGs of frequency 361 Hz, whilst not perfectly smooth, are
much closer to the expected sigmoid shape. All results show that the sensitivity curves
of Q = 3, 8.9, and 9 converge with increasing SG frequency whilst those with Q = 100
have a higher dependence on RTCC threshold and maintain distinct separation. This can
be explained simply by the fact that Q = 100 SGs have much more waveform for RTCC
correlation than the lower valued Q waveforms.
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Figure 6.9: Sine-Gaussian sensitivity curves SG 70Q3/8d9/100 100Q8d9 153Q8d9 235Q3.
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Figure 6.10: Sine-Gaussian sensitivity curves SG 235Q8d9/100 361Q8d9 554Q8d9 849Q3/8d9.
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Figure 6.11: Sine-Gaussian sensitivity curves SG 849Q100 1053Q9 1304Q9 1615Q3/9/100.
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Figure 6.12: Sine-Gaussian sensitivity curve SG2000Q9.

After applying the normalised CC and detector frequency thresholds to the TS trigger
set we obtain the false alarm rate dependence on RTCC trigger threshold shown in Fig.
6.13, which we summarise in Table 6.1. From these we can see that the false alarm
rate rapidly decreases upon increasing the RTCC threshold, where it achieves a limiting
minimum value of ∼ 48 nHz above 154.
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Figure 6.13: False alarm rate dependence on RTCC trigger threshold.
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Threshold FAR (nHz) (days)

27.38 273± 32 42
48.70 206± 28 56
86.60 81± 17 142

153.99 48± 13 241
273.84 48± 13 241

Table 6.1: FAR dependence on RTCC threshold as plotted in Fig. 6.13.

In Table 6.2 we collate the results shown in Figs. 6.9 – 6.12 at 50 % detection efficiency
h50%

rss and for comparison those obtained during the ‘All-sky search for gravitational-wave
bursts in the second joint LIGO-Virgo run’ conducted jointly by the LIGO and VIRGO
collaborations [78]. Their study uses a network of three detectors (H1, L1, and V1 - the
Virgo detector) and the pipeline coherent WaveBurst (cWB) [79]. Coherent WaveBurst
has its thresholds configured to achieve a FAR of 1/8 year−1. We cannot make a direct
comparison since their pipeline has the advantage of triple coincidence from three detectors
which vastly improves upon the SNR obtained from two detectors. However, their study
uses LIGO data from the same period (S6) and the same family of SG waveforms.

RTCC cWB
(H1,L1) (H1,L1,V1)

Threshold h50%
rss FAR 1/8 yr−1

Injection 27 48 86 153 273 h50%
rss

SG70Q3 101.7 112.4 116.6 126.1 169.2 18.9
SG70Q8d9 129.9 135.7 167.0 219.7 297.6 21.5
SG70Q100 248.3 382.6 555.9 733.0 1023.0 24.2
SG100Q8d9 49.3 54.6 59.6 70.5 96.0 10.5
SG153Q8d9 32.1 34.5 35.9 39.0 52.3 6.7
SG235Q3 32.8 36.7 36.9 32.8 35.8 5.7
SG235Q8d9 29.1 33.3 33.8 32.3 41.6 5.2
SG235Q100 35.5 53.1 73.5 90.5 124.4 4.6
SG361Q8d9 54.3 60.8 59.5 56.7 72.3 8.6
SG554Q8d9 53.3 55.8 56.6 53.8 57.5 8.9
SG849Q3 59.0 59.2 59.8 59.3 61.8 15.1
SG849Q8d9 54.6 56.5 57.0 58.6 63.5 14.1
SG849Q100 54.5 56.5 57.0 58.5 63.5 12.3
SG1053Q9 63.1 64.6 66.7 69.2 76.6 16.9
SG1304Q9 67.8 67.3 68.6 73.8 82.7 21.1
SG1615Q3 74.9 75.4 76.1 76.2 81.3 41.6
SG1615Q9 71.0 71.0 72.2 73.9 79.0 35.2
SG1615Q100 76.2 83.8 98.1 126.1 170.4 28.3
SG2000Q9 81.6 79.0 79.3 85.2 91.5 30.8

Table 6.2: Sensitivity of the RTCC pipeline at each threshold and results of the LIGO-VIRGO
all-sky burst search study at 50 % detection efficiency. Units of h50%

rss are in 10−22 Hz−1/2.

In Figs. 6.14 and 6.15 we plot the h50%
rss values for each SG along with the LIGO-VIRGO
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results in order to compare the sensitivity trends with increasing SG frequency and Q.
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Figure 6.14: Comparison of the trends in detection sensitivity at h50%
rss (10−22 Hz−1/2) between

RTCC and the All-sky study results for SG injections in the range 70 – 554 Hz.
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Figure 6.15: Comparison of the trends in detection sensitivity at h50%
rss (10−22 Hz−1/2) between

RTCC and the All-sky study results for SG injections in the range 849 – 2000 Hz.

These figures show a similar average trend in sensitivity across the injection frequency and
that the ratio of RTCC pipeline h50%

rss values to those of the ‘All-sky’ study is decreasing
with increasing frequency, at best approaching a value of ∼ 2 for the SG 1615Q3.

6.4 Trigger Lag Error

The difference between the determined trigger lag and the corresponding lag computed
from the injection log files is the lag error. The injection lag is taken to be the difference
between the H1 and L1 MDC injection times given in the log files. We show the resulting
normalised histograms for each SG injection type in figures 6.16 – 6.19 below.
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Figure 6.16: SG lag determination error SG 70Q3/8d9/100 100Q8d9 153Q8d9 235Q3.
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Figure 6.17: SG lag determination error SG 235Q8d9/100 361Q8d9 554Q8d9 849Q3/8d9.
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Figure 6.18: SG lag determination error SG 849Q100 1053Q9 1304Q9 1615Q3/9/100.
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Figure 6.19: Lag determination error SG2000Q9.

Table. 6.3 summarises the above results, giving the maxima of the distributions and
where possible some description of general features.

Injection max (ms) sepn (ms) 1/(2fc) description

SG70Q3 -0.66 5.16 7.14 2
SG70Q8d9 -0.84 6.50 5
SG70Q100 -0.46 7.04 small comb 5
SG100Q8d9 -0.53 4.62 5.00 3
SG153Q8d9 -0.29 3.06 3.26 3
SG235Q3 -0.18 2.14 2.13 2
SG235Q8d9 -0.16 1.99 3
SG235Q100 1.94 2.13 comb 19
SG361Q8d9 -0.08 1.27 1.39 3
SG554Q8d9 -0.06 0.92 0.90 3
SG849Q3 -0.04 0.59
SG849Q8d9 -0.01 0.58 3
SG849Q100 0.56 0.59 comb 50 (est)
SG1053Q9 -0.01 0.47 0.47 3
SG1304Q9 -0.00 0.38 0.38 3
SG1615Q3 -0.02 0.31
SG1615Q9 -0.02
SG1615Q100 -0.64 0.31 comb 44 (est)
SG2000Q9 -0.00 0.25

Table 6.3: Summary of lag error. The distribution maximum (max) and approximate peak
separation (sepn) are given. The value of 1/(2fc) is given at each waveform central frequency
for comparison with the peak separation. When multiple peaks are present, a brief description
of the distribution is given. The number of peaks have been estimated (est) in some cases.
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The determination of trigger lag depends upon locating the peaks in the trigger data
which produce a maximum RTCC correlation, and because RTCC maxima can be positive
for crest or trough then neighbouring maxima may occur at twice the SG waveform
frequency. This can most clearly be seen for the higher Q waveforms which display a
comb of peaks separated in time by 1/(2fc). Lower SG frequency results in poorer lag
determination at low frequency as shown in the result for SG70Q100.

6.5 Trigger Timing Error

Here we compare the H1 peak RTCC trigger times with the H1 SG injection time from
the MDC injection log files. Figures 6.20 – 6.23 show the normalised distribution of the
difference between trigger time and log injection time for each SG waveform. The results
are summarised in Table. 6.4 where we give the location(s) of the distribution maxima,
average separation of local maxima and general description.

As with lag determination, timing again depends upon locating the trigger signal
maxima and the results show large timing errors for Q100 signals and improvement with
increasing frequency.

Injection max (ms) sepn (ms) 1/(2fc) description

SG70Q3 17.43 4.46 7.14 4
SG70Q8d9 24.36 6.79 5
SG70Q100 17.33 7.15 comb 40
SG100Q8d9 12.45 4.87 5.00 3
SG153Q8d9 7.91 3.11 3.26 4
SG235Q3 4.49 2.70 2.13 2
SG235Q8d9 4.63
SG235Q100 4.58 2.11 comb 42
SG361Q8d9 0.86 0.70 1.39 4
SG554Q8d9 1.17 0.43 0.90 4
SG849Q3 1.06 0.31 0.59 2
SG849Q8d9 1.15 0.27 4
SG849Q100 1.08 0.59 comb 26
SG1053Q9 1.05 0.47
SG1304Q9 1.06 0.38
SG1615Q3 1.06 0.31
SG1615Q9 1.04
SG1615Q100 1.07 0.30 comb 26
SG2000Q9 1.38 0.30 0.25 2

Table 6.4: Summary of timing error. The distribution maximum (max) and approximate peak
separation (sepn) are given. The value of 1/(2fc) is given at each waveform central frequency
for comparison with the peak separation. When multiple peaks are present, a brief description
of the distribution is given. The number of peaks have been estimated (est) in some cases.
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Figure 6.20: Timing error SG 70Q3/8d9/100 100Q8d9 153Q8d9 235Q3.
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Figure 6.21: Timing error 235Q8d9/100 361Q8d9 554Q8d9 849Q3/8d9.
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Figure 6.22: Timing error SG 849Q100 1053Q9 1304Q9 1615Q3/9/100.
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Figure 6.23: Timing error SG2000Q9.

6.6 Frequency Estimation

In this section we provide the results of frequency estimation of the captured trigger data
from each detector. The Frat cut ensures that all accepted SG trigger frequencies must
lie within the defined proximity.

Figure 6.24: H1 L1 trigger frequency estimation scatterplot 0 – 450 Hz.
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Figure 6.25: H1 L1 trigger frequency estimation scatterplot 450 – 1200 Hz..

Figure 6.26: H1 L1 trigger frequency estimation scatterplot 1200 – 2200 Hz..
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Prior to the Frat cut there were clear indications of cases where frequency estimation
was correct (or acceptable) for one detector signal but poorly determined in the other,
resulting in the rejection of the trigger. For a given SG injection we expect the frequency
estimation to be distributed across the SG bandwidth ∆f = fc/Q and therefore good
frequency identification at low injection frequency or high Q values.

In Figs. 6.24 – 6.26 above we plot trigger frequency determination at each RTCC
threshold with axis labels at the injection frequencies. These show definite structure and
correspondence to the SG injection frequencies. Frequency determination is better for
high amplitude injections which can be seen by the closer clustering at higher thresholds.
However, some trigger frequencies are systematically misassigned. For example, in Fig.
6.24 there is a cluster of triggers between 70 Hz and 100 Hz and an additional higher
frequency cluster near to the 235 Hz group.

In Fig. 6.25 we can see a zone around ∼ 690 Hz in which frequency selection appears
to be excluded. This effect can also be seen to a lesser extent in Fig. 6.26 between 1304
– 1615 Hz. We believe that this is a boundary effect between frequency selection for
different injections rather than direct exclusion.

The above plots show only the spread of trigger frequencies and in some cases leaves
ambiguity as to which injection frequency the trigger pixel or cluster belongs. In Figures
6.27 – 6.30 we show the two dimensional histogram distribution of trigger frequency for
each SG waveform. In general the distributions are spread in approximate agreement
with the SG bandwidth and show some symmetry about the fL1 = fH1 axis. All SG
Q = 100 distributions display simple maxima and give accurate frequency selection.
The distributions for Q = 3, 8.9 injections less than 235 Hz are again simple but show
a bias towards overestimation of the injection frequency. For Q = 3, 8.9 injections of
frequency 235 Hz and above the distributions are no longer simple. These distributions
are quite complex in some cases, showing sparsely dispersed frequency selection along
with clear singular or multiple maxima. We cannot explain the observed structure of
these distributions but expect that non-stationarity of the detector noise plays some part.

108



CHAPTER 6 6.6. FREQUENCY ESTIMATION

Figure 6.27: Frequency distribution SG 70Q3/8d9/100 100Q8d9 153Q8d9 235Q3.
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Figure 6.28: Frequency distribution SG 235Q8d9/100 361Q8d9 554Q8d9 849Q3/8d9.
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Figure 6.29: Frequency distribution SG 849Q100 1053Q9 1304Q9 1615Q3/9/100.
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Figure 6.30: Frequency distribution SG2000Q9.
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Chapter 7

Conclusions and Further Work

7.1 Conclusions

The nucleus for the research presented in this work was the RTCC algorithm, a
cross-correlation indicator which uses exponential memory rather than the sliding dot
product used in standard cross-correlation and we were motivated by its potential use as
a low latency trigger generator for GW searches.

We have shown that the RTCC algorithm is capable of close replication of standard
cross-correlation output at a lower computational cost. Rather than adapt an existing
pipeline to accommodate the RTCC algorithm output, we have developed a complete
pipeline relying entirely upon time domain methods. Although the method of trigger
frequency determination used was relatively slow, we have demonstrated that the main
pipeline operations are capable of execution in real time or with very low latency.

We found direct comparison of the accuracy our trigger parameterisations (times of
arrival, lag, and frequency) difficult, as often, when presented at all in a given study,
these tended to be summary statistics (see comments below).

The primary limiting factors affecting the performance of the RTCC pipeline in terms
of the sensitivities and false alarm rates obtained were, in our opinion, due to the signal
processing procedure adopted. We almost certainly could have achieved better sensitivity
if the LPEF filter was not in part negating the effects of excessive line subtraction.
Nevertheless, at the highest RTCC threshold with a false alarm rate of 1/241 days the
measured 50 % detection sensitivities are generally within an order of magnitude of those
obtained in the comparison study.

For the above reasons we believe that the embryonic RTCC pipeline is worthy of further
development.

7.2 Future Work

We were, perhaps, a little too pragmatic in our acceptance of the LPEF filter to remedy
our poor implementation of iWave line removal. Therefore, a more adaptive line removal
procedure should be developed. This would, as was originally intended, leave the LPEF
filter to perform whitening and should give higher sensitivity. Further improvement in
sensitivity would also be expected by implementing iWave line removal in its adaptive
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mode rather than in static mode.
A natural development of the pipeline would be to enable processing data input from

three or more detectors to perform RTCC correlation on detector pairs. The pipeline
would then benefit from an increased ability to reject noise events and the potential to
localise sources. Since the common objective of GW burst analysis pipelines is source
localisation, we might then find it easier to directly compare the source localisation errors
resulting from lag determination errors.

The following comments are suggestions, some of which are speculative.

• Our pipeline used only one instance of the RTCC algorithm and given the rapidity
of the algorithm we might consider running the pipeline with multiple instances
with a range of values of N.

• Preliminary tests suggest that the Gaussian-spike filter might have use as a general
preprocessing filter (after usual filtering) given that the process may significantly
improve SNR and has little computational cost.

• The use of the RTCC algorithm is clearly not limited to GW analysis pipelines and
its use in other data analysis fields could be considered, for example, in seeking
correlations in complex data sets where, for example, standard cross-correlation
methods may be computationally expensive or prohibitive.
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Appendix

RTCC Pipeline Code Listing

In the following two pages we list the c code implementation of the real time
cross-correlation indicator corest.c. The remainder of this appendix lists the full RTCC
pipeline c++ code INJTRIG.cpp. Important sections have been commented.
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corest.c
~/THESISPLOTS/

1/2
11/01/2015

//clive tomlinson
//University of Sheffield ‘‘1/11/2015
//RTCC Correlator
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "corest.h"
#include <string.h>

int init_correlator( cordata* pmydata, int maxlag, double w, int reclength) 
{
  pmydata−>txdata=calloc(3*maxlag+1, sizeof( double)); //det1 data array  
  pmydata−>tydata=calloc(3*maxlag+1, sizeof( double)); //det1 data array
  pmydata−>pcorrdata=calloc(2*maxlag+1, sizeof( double)); //correlation array
  pmydata−>dcount=0; //data count
  pmydata−>weight=w;
  pmydata−>maxlag=maxlag; //maximum sample lag
  pmydata−>reclength=reclength; //set trigger recording length in samples
  pmydata−>rec=0; //record flag
  pmydata−>reccount=0; //record sample counter
  //allocate recording array
  pmydata−>xrecdata=calloc(pmydata−>reclength, sizeof( double));
  pmydata−>yrecdata=calloc(pmydata−>reclength, sizeof( double));
  return 0;
}
int run_correlator( cordata* pmydata, double nx, double ny) 
{
  int i;
  //correlate at each lag offset
  pmydata−>pcorrdata[pmydata−>maxlag]=
    (1−pmydata−>weight)*pmydata−>pcorrdata[pmydata−>maxlag]+
    pmydata−>weight*pmydata−>txdata[2*pmydata−>maxlag]*
    pmydata−>tydata[2*pmydata−>maxlag];
  pmydata−>maxcor=fabs(pmydata−>pcorrdata[pmydata−>maxlag]);
  pmydata−>maxcorlag=0;
  for(i=0;i<pmydata−>maxlag;++i)
    {
    pmydata−>pcorrdata[pmydata−>maxlag+i+1]=

(1−pmydata−>weight)*pmydata−>pcorrdata[pmydata−>maxlag+i+1]+
pmydata−>weight*pmydata−>txdata[2*pmydata−>maxlag]*
pmydata−>tydata[2*pmydata−>maxlag−i−1];

     pmydata−>pcorrdata[pmydata−>maxlag−i−1]=
(1−pmydata−>weight)*pmydata−>pcorrdata[pmydata−>maxlag−i−1]+
pmydata−>weight*pmydata−>txdata[2*pmydata−>maxlag]*
pmydata−>tydata[2*pmydata−>maxlag+i+1];

     if(fabs(pmydata−>pcorrdata[pmydata−>maxlag+i+1])>pmydata−>maxcor)
       {

pmydata−>maxcor=fabs(pmydata−>pcorrdata[pmydata−>maxlag+i+1]);
pmydata−>maxcorlag=i+1;

       }
     if(fabs(pmydata−>pcorrdata[pmydata−>maxlag−i−1])>pmydata−>maxcor)
       {

pmydata−>maxcor=fabs(pmydata−>pcorrdata[pmydata−>maxlag−i−1]);
pmydata−>maxcorlag=−i−1;

       }
    } 
  if(pmydata−>rec==1)
    { //record trigger data
      pmydata−>xrecdata[pmydata−>reccount]=pmydata−>txdata[0];
      pmydata−>yrecdata[pmydata−>reccount]=pmydata−>tydata[0];
      pmydata−>reccount++;
      if(pmydata−>reccount==pmydata−>reclength)

{
pmydata−>rec=0; 
pmydata−>reccount=0;

}
      pmydata−>xpow+=pmydata−>txdata[2*pmydata−>maxlag]*

pmydata−>txdata[2*pmydata−>maxlag];
      pmydata−>ypow+=pmydata−>tydata[2*pmydata−>maxlag]*

pmydata−>tydata[2*pmydata−>maxlag];
    }
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  memcpy(pmydata−>txdata,pmydata−>txdata+1,(3*pmydata−>maxlag)* sizeof( double));
  pmydata−>txdata[3*pmydata−>maxlag]=nx;
  memcpy(pmydata−>tydata,pmydata−>tydata+1,(3*pmydata−>maxlag)* sizeof( double));
  pmydata−>tydata[3*pmydata−>maxlag]=ny;
  pmydata−>dcount=(pmydata−>dcount+1)%pmydata−>maxlag;
  return 0;
}
int destroy_correlator( cordata* pmydata) 
{
  free(pmydata−>txdata);
  free(pmydata−>tydata); 
  free(pmydata−>pcorrdata);
  free(pmydata−>xrecdata);
  free(pmydata−>yrecdata);
  return 0;
}
int corest_copy( double* destination, cordata* pmydata) 
{
  unsigned int nbytes;
  nbytes=(2*pmydata−>maxlag+1)* sizeof( double);
  memcpy(( void*)destination,( void*)pmydata−>pcorrdata,nbytes);
  return 0;
}
int corest_dump( cordata* pmydata) 
{
  int i;  
  printf( "correlation buffer:\n");
  for(i=0;i<(2*(pmydata−>maxlag)+1);i++) 
    {
      printf( "%d\t%lf\t%d\n",i,pmydata−>pcorrdata[i],pmydata−>dcount);
    }
  return 0;
}
int corest_copystruct( cordata* ptarget, cordata data) 
{
  ptarget−>maxlag=data.maxlag;
  ptarget−>weight=data.weight;
  ptarget−>txdata=calloc(3*data.maxlag, sizeof( double));
  ptarget−>tydata=calloc(3*data.maxlag, sizeof( double));
  ptarget−>xrecdata=calloc(16384, sizeof( double));
  ptarget−>yrecdata=calloc(16384, sizeof( double));
  memcpy(( void*)ptarget−>txdata,( void*)data.txdata,3*data.maxlag* sizeof( double));
  memcpy(( void*)ptarget−>tydata,( void*)data.tydata,3*data.maxlag* sizeof( double));
  memcpy(( void*)ptarget−>xrecdata,( void*)data.xrecdata,16384* sizeof( double));
  memcpy(( void*)ptarget−>yrecdata,( void*)data.yrecdata,16384* sizeof( double));
  ptarget−>pcorrdata=calloc((2*data.maxlag+1), sizeof( double));
  memcpy(( void*)ptarget−>pcorrdata,( void*)data.pcorrdata,

(2*data.maxlag+1)* sizeof( double));
  ptarget−>dcount=data.dcount;
  return 0;
}
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//clive tomlinson
//University of Sheffield 1/11/2015
//RTCC Pipeline
//N.B. RTCC correlator alias Corest, IWave alias PIIR 
#include  <iostream>
#include  <fstream>
#include  <sstream>
#include  <stdlib.h>
#include  "Dacc.hh"
#include  "TSeries.hh"
#include  "PIIR.hh"
#include  "Corest.hh"
#include  "corest.h"
#include  "IIRFilter.hh"
#include  "TMath.h"
#include  "LPEFilter.hh"
#define  pi  3.14159265

double  CORRcon( const  char * conffile , double  * mean, int  * nlin , double  * fs )
{ //Pipeline configuration returns mean and number lines for removal from
  //configuration file
  std :: ifstream  config ;
  std :: string  line ;
  double  sigma ;
  int  lcount =0;
  int  pcs =0;
  int  pce =0;
  config.open(conffile);
  while (config.good())
    {
      getline(config,line);
      if (line== "sampling frequency" )

{
getline(config,line);  
*fs= std ::atof(line.c_str());

}
      if (line== "sigma" )

{
getline(config,line);  
sigma= std ::atof(line.c_str());

}
      if (line== "mean" )

{
getline(config,line);  
*mean=std ::atof(line.c_str());

}
      lcount++;
      if (line== "piir" )

{
pcs=lcount+1;

}
      if (line[0]== ’n’ )

{
pce=lcount−1;

}
    }
  *nlin=pce−pcs+1;  
  config.close();
  return  sigma;
}

IIRFilter  CORRcon( const  char * conffile , double  * ftrans , std :: string  filtname )
{ //return IIR filter from config file and filter transient time
  std :: ifstream  config ;
  std :: string  line ;
  int  ccount =0;
  int  ec ;
  double  a0=1;
  double  a[5];
  double  val ;
  double  fs ;
  config.open(conffile);
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  while (config.good())
    {
      getline(config,line);  
      if (line== "sampling frequency" )
        {
          getline(config,line);
          fs= std ::atof(line.c_str());
        }    
      if (line== "filter transient time(s)" )

{
getline(config,line);  
*ftrans= std ::atof(line.c_str());

}
    }
  config.close();
  IIRFilter  IIR (fs);
  config.open(conffile);
  while (config.good())
  {
      getline(config,line);
      if (line==filtname)

{
getline(config,line);
while (line[0]!= ’t’ )

{
ccount++;
ec=0;
while (line[ec]!= ’=’ )

{
ec++;

}
line.erase(line.begin(),line.begin()+ec+1);
val= std ::atof(line.c_str());
a[(ccount−1)%5]=val; 
if ((ccount−1)%5==4)

{
IIRSos  SOS( a[0], a[1], a[2],a0, a[3], a[4]);
IIR*=SOS;

}
getline(config,line);

}
}

  }
  config.close();
  return  IIR;
}

int  CORRcon( const  char * conffile , double * freq , double * tau )
{ //return line removal frequency array and IWave tuning parameter tau
  std :: ifstream  config ;
  std :: string  line , linecopy ;
  int  lcount =0;
  int  pcs , pce ;
  config.open(conffile);
  while (config.good())
    {
      getline (config,line);
      lcount++;
      if (line== "piir" )

{
pcs=lcount+1;

}
      if (line[0]== ’n’ )

{
pce=lcount−1;

}
    }
  int  nlin =pce−pcs+1;
  config.close();
  config.open(conffile);
  lcount=0;
  while (config.good())
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  {
      getline (config,line);
      lcount++;
      if (lcount>=pcs && lcount<=pce)

{
int  sc =0;
while (line[sc]!= ’\t’ )

{
sc++;

}
linecopy=line;
line.erase(line.begin(),line.begin()+sc+1);
linecopy.erase(linecopy.begin()+sc+2,linecopy.end());
freq[lcount−pcs]= std ::atof(linecopy.c_str());
tau[lcount−pcs]= std ::atof(line.c_str());

}
      }
  config.close();
  return  0;
}

LPEFilter  CORRcon( const  char * conffile , double  * ftrans )
{ //return LPEF filter and transient time from config file
  std :: ifstream  config ;
  std :: string  coefline ="    Coefs:" ;
  std :: string  line , cline , coefstring ;
  std :: string  delcol =":" ;
  std :: string  dels =" " ;
  double  fs ; //sampling frequency    
  int  coefcount =0;
  int  d1 , d2 ; //string delimeter positions
  int  M; //filter length        
  int  TRL; //training length                         
  int  TRP; //retraining length 
  config.open(conffile);
  while (config.good())
    {
      getline(config,line);
      if (line== "sampling frequency" )
        {
          getline(config,line);
          fs= std ::atof(line.c_str());
        }
      if (line== "LPEF" )
        {
          getline(config,line);
          getline(config,line);
          M= std ::atoi(line.c_str());
        }
      if (line== "training length" )
        {
          getline(config,line);
          TRL= std ::atoi(line.c_str());
        }
      if (line== "re−training time" )
        {
          getline(config,line);
          TRP= std ::atoi(line.c_str());
        }
    }
  config.close();
  double * COEFS=new double [M]; //array for LPEF coefficients                     
  config.open(conffile);
  while (config.good())
    {
      getline(config,line);
      if (line.substr(0,10)==coefline)
        {
          d1=line.find(delcol);
          d2=line.find(dels,d1+1);
          cline=line.substr(d2,line.size());



INJTRIG.cpp
~/THESISPLOTS/

4/15
11/01/2015

          int  wcount =0;
          int  s=0; int  e=0;
          for ( int  i =0;i<cline.size();i++)
            {
              if (cline[i]== ’ ’ )
                {
                  wcount++;
                }
            }
          int * se =new int [wcount+1];
          wcount=0;
          for ( int  i =0;i<cline.size();i++)
            {
              if (cline[i]== ’ ’ )
                {
                  wcount++;
                  se[wcount−1]=i;
                }
            }
          se[wcount]=cline.size();
          for ( int  i =0;i<wcount;i++)
            {
              coefcount++;
              coefstring=cline.substr(se[i]+1,se[i+1]−1−se[i]);
              COEFS[coefcount−1]=atof(coefstring.c_str());
            }
        }
    }
  //config LPEF
  LPEFilter  LPEF(M,TRP,TRL);
  LPEF.setRate(fs);
  LPEF.setCoefs(M,COEFS);
  *ftrans=LPEF.getTransientTime().GetSecs();
  config.close();
  delete [] COEFS;
  return  LPEF;
}

void  dumphelp ( void ) { //print help
  std ::cout << "useage: injtrig −injp\tinjection <file path>\n\t\t" ;
  std ::cout << "−sc\tinjection scale factor\n\t\t" ;
  std ::cout << "−xgwf\t<file path>\n\t\t" ;
  std ::cout << "−xchan\tgwf channel\n\t\t" ;
  std ::cout << "−xinj\tinjection channel\n\t\t" ;
  std ::cout << "−xconf\t<file path>\n\t\t" ;
  std ::cout << "−ygwf\t<file path>\n\t\t" ;
  std ::cout << "−ychan\tgwf channel\n\t\t" ;
  std ::cout << "−yinj\tinjection channel\n\t\t" ;
  std ::cout << "−yconf\t<file path>\n\t\t" ;
  std ::cout << "−segf\tscience segments file\n\t\t" ;
  std ::cout << "−sdur\tsigdur\n\t\t" ;
  std ::cout << "−thr\tthreshold\n\t\t" ;
  std ::cout << "−s\tstart\n\t\t−e\tend\n\t\t" ;
  std ::cout << "−o\ttrigger file output file path" <<std ::endl;
  return ;

}

int  main ( int  argc , char ** argv ) 
 { 
  if  (argc == 1) { dumphelp(); return  0; }   
  std :: string  clineflag , clinedata , injpathstring , scalestring , xgwfstring ,
    xchanstring , xinjchanstring , xconstring , ygwfstring , ychanstring ,
    yinjchanstring , yconstring , sigdurstring , thresstring , segfile , startstring ,
    endstring , trigfilestring ;
  for ( int  ccount =1; ccount<argc; ++ccount) {
    clineflag = argv[ccount++];
    clinedata = argv[ccount];
    if  ( clineflag== "−injp"  ) {
      injpathstring=clinedata;
      std ::cout << "injection file path set to "  <<injpathstring<< std ::endl;
    }
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    if  ( clineflag== "−sc"  ) {
      scalestring=clinedata;
      std ::cout << "injection scale set to "  <<scalestring<< std ::endl;
    }
    if  ( clineflag== "−xgwf"  ) {
      xgwfstring=clinedata; 
      std ::cout << "x file path set to "  <<xgwfstring<< std ::endl;
    }
    if  ( clineflag== "−xchan"  ) {
      xchanstring=clinedata; 
      std ::cout << "x channel set to "  <<xchanstring<< std ::endl;
    }
    if  ( clineflag== "−xinj"  ) {
      xinjchanstring=clinedata;
      std ::cout << "x injection channel set to "  <<xinjchanstring<< std ::endl;
    }
    if  ( clineflag== "−xconf"  ) {
      xconstring=clinedata; 
      std ::cout << "x config file path set to "  <<xconstring<< std ::endl;
    }
    if  ( clineflag== "−ygwf"  ) {
      ygwfstring=clinedata; 
      std ::cout << "y file path set to "  <<ygwfstring<< std ::endl;
    }
    if  ( clineflag== "−ychan"  ) {
      ychanstring=clinedata; 
      std ::cout << "y channel set to "  <<ychanstring<< std ::endl;
    }
    if  ( clineflag== "−yinj"  ) {
      yinjchanstring=clinedata;
      std ::cout << "y injection channel set to "  <<yinjchanstring<< std ::endl;
    }
    if  ( clineflag== "−yconf"  ) {
      yconstring=clinedata; 
      std ::cout << "y config file path set to "  <<yconstring<< std ::endl;
    }
    if  ( clineflag== "−sdur"  ) {
      sigdurstring=clinedata;
      std ::cout << "sigdur set to "  <<sigdurstring<< std ::endl;
    }
    if  ( clineflag== "−thr"  ) {
      thresstring=clinedata;
      std ::cout << "trigger on threshold "  <<thresstring<< std ::endl;
    }
    if  ( clineflag== "−segf"  ) {
      segfile=clinedata;
      std ::cout << "science segments from "  <<segfile<< std ::endl;
    }
    if  ( clineflag== "−s"  ) {
      startstring=clinedata;
      std ::cout << "trigger start >= "  <<startstring<< std ::endl;
    }
    if  ( clineflag== "−e"  ) {
      endstring=clinedata;
      std ::cout << "trigger end <= "  <<endstring<< std ::endl;
    }
    if  ( clineflag== "−o"  ) {
      trigfilestring=clinedata;
      std ::cout << "trigger output to "  <<trigfilestring<< std ::endl;
    }
  } 
  
  std :: ifstream  input , tempin1 , tempin2 ;
  std :: ofstream  Trigfile , test , test2 ;
  std :: stringstream  ss ;
  std :: string  line , start , end , dur ;
  std :: string  del ="−" ; // delimeter
  std :: string  dels =" " ;
  std :: string  delr ="\r" ;
  std :: string  del2 ="." ;
  std :: string  del3 =":" ;
  std :: string  deltab ="\t" ;
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  std :: string  delfs ="/" ;
  int  d1 , d2 , d3 ; //delimeter place variables
  int  append =0; //trigger file append flag
  int  Tcount =0; //initialise trigger count                                      
  double  TRS, TRE; //trigger start/end variables
  int  oldTcount =0;
  Time  apptime ;
  int  apps , appn ;
  input.open(trigfilestring.c_str());
  if (input.is_open())
    { //permit restart of run by appending existing trigger files
      append=1;
      std ::cout<< "file exists appending " <<std ::endl; 
     while (getline(input,line))
        {
          if (line[0]!= ’#’ )
            {
              oldTcount++;
              d1=line.find(deltab);
              d2=line.find(deltab,d1+1);
              d3=line.find(deltab,d2+1);
              startstring=line.substr(d2,d3−d2);
            }
        }
      TRE=atof(startstring.c_str());
      apps=( int )TRE; 
      appn=( int )((TRE−( double )apps)*1e+9);
      std ::cout<< std ::fixed<< std ::setprecision(9)<<TRE<< std ::endl;
      std ::cout<<apps<< "\t" <<appn<< std ::endl;
      apptime.setS(apps); apptime.setN(appn);
    }
  else { std ::cout<< "new file" <<std ::endl;}
  input.close();
  int  trigs =atoi(startstring.c_str());
  int  trige =atoi(endstring.c_str());
  if (append==0){Trigfile.open(trigfilestring.c_str());}
  if (append==1)
    {
      Tcount=oldTcount;
      Trigfile.open(trigfilestring.c_str(), std :: ios ::out | std :: ios ::app);
    }
  
  int  GPSS, GPSE, DUR;
  int  injfcount =0;
  int  xfcount =0;
  int  yfcount =0;
  int  segcount =0;
  int  fs [4]; //arrays for start/end seg/frames gps, 0−segs,1−inj,2−det1,3−det2
  int  fe [4]; //for overlap test
  TSeries  xts , yts , xinjts , yinjts ; //frame/injection time series
  double  xfs , yfs ; //frame sampling frequencies
  Time  tS , tE ; //TSeries time for cross−correlation time series 
  int  maxlag =180; // max time lag in samples between detectors ~ 0.01s LH 
  double  timeoff =( double )maxlag/16384.0; //correlation time offset
  double  wtime ;
  int  sigdur =atoi(sigdurstring.c_str()); //signal sample length
  double  w =1− TMath ::Exp(−1/( double )sigdur);
  int  recl =16384; // recording length after trigger in samples
  CORRest Corr (maxlag,w,recl); //inialise correlator
  int  wincount ;
  double  xhtrans , xltrans , xlpeftrans ; //filter transients from config file 
  double  yhtrans , yltrans , ylpeftrans ;
  double  trans ; //maximum of above transients  
  double  xsig , ysig , xmean, ymean; //mean and sigma from config file
  int  xlin , ylin ; //number of lines to be removed (config file)
  double  scale =atof(scalestring.c_str());
  double  scitime =0; //total time detector in "science" mode  
  double  downtime =0; //total time not in science mode
  double  DF; //Duty factor DF=scitime/(scitime+downtime)
  double  time ; //start time for CC loop
  double  SEC, trigtime , lag ; //SEC:secs part of trigger time (trigtime),lag(s)
  double  filttime ; //filter time
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  int  segmin =100; //minimum segment length (s)
  Dacc  xIn , yIn , injIn ;
  //open segments file
  input.open(segfile.c_str());
  while (getline(input,line))
    {
      d1=line.find(dels);
      d2=line.find(delr,d1+1);
      start=line.substr(0,d1);
      end=line.substr(d1+1,line.size()−d1);
      GPSS=atoi(start.c_str());
      GPSE=atoi(end.c_str());
      if (((GPSS<=trigs && GPSE>trigs) ||
         (GPSS>trigs && GPSE<=trige) ||

(GPSS<trige && GPSE>trige)) &&
GPSE−GPSS>=segmin) 

        {
          segcount++;
          if (segcount==1){fs[0]=GPSS;}
          fe[0]=GPSE;
        }
    }
  input.close();

  if (fs[0]>trigs){trigs=fs[0];}
  if (fe[0]<trige){trige=fe[0];}
  int * SEGS=new int [segcount];
  int * SEGE=new int [segcount];
  int  count =0;
  input.open(segfile.c_str());
  while (getline(input,line))
    { //assign science segment array
      d1=line.find(dels);
      d2=line.find(delr,d1+1);
      start=line.substr(0,d1);
      end=line.substr(d1+1,line.size()−d1);
      GPSS=atoi(start.c_str());
      GPSE=atoi(end.c_str());
      if (((GPSS<=trigs && GPSE>trigs) ||
         (GPSS>trigs && GPSE<=trige) ||

(GPSS<trige && GPSE>trige)) &&
         GPSE−GPSS>=segmin)
        {
          count++;
          SEGS[count−1]=GPSS;

SEGE[count−1]=GPSE;
if (count==1 && (GPSS<=trigs && GPSE>trigs) && GPSE−trigs>=segmin)

{
SEGS[0]=trigs;

}  
if (count==segcount && (GPSS<trige && GPSE>trige) 

&& trige−GPSS>=segmin)
{

SEGE[segcount−1]=trige;
}

scitime+=( double )(SEGE[count−1]−SEGS[count−1]);
if (count>1 && count<segcount)

{
downtime+=( double )(SEGS[count−1]−SEGE[count−2]);

}
        }
    }
  DF=scitime/(scitime+downtime);
  input.close();
  int  oldgpse ;
  //open injections
  input.open(injpathstring.c_str());
  while (getline(input,line))
    { //add paths of injection GWFs
      d1=line.find(del);
      d2=line.find(del,d1+1);
      d3=line.find(del,d2+1);
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      d1=line.find(del,d3+1);
      d2=line.find(del,d1+1);
      d3=line.find(del,d2+1);
      d1=line.find(del,d3+1);
      d2=line.find(del2);
      start=line.substr(d3+1,d1−d3−1);
      dur=line.substr(d1+1,d2−d1−1);
      GPSS=atoi(start.c_str());
      DUR=atoi(dur.c_str());
      GPSE=GPSS+DUR;
      if ((GPSS<=trigs && GPSE>trigs) ||
         (GPSS>trigs && GPSE<=trige) ||

(GPSS<trige && GPSE>trige))
        {
          injfcount++;
          if (injfcount==1){fs[1]=GPSS;}
          injIn.addPath(line);
          fe[1]=GPSE;

if (injfcount>1 && GPSS!=oldgpse)
            { //alert missing GWFs

std ::cout<< "Missing injections ! " <<oldgpse<< " to " <<GPSS<<"\t"
                       <<GPSS−oldgpse<< std ::endl;
            }
          oldgpse=GPSE;
        }
    }
  input.close();
  //open det1 gwf
  input.open(xgwfstring.c_str());
  while (getline(input,line))
    { //add GWF paths for detector 1
      d1=1; //1st character is "/"
      int  fspos =0;
      while (d1!=−1)

{
d1=line.find(delfs,d1+1);
if (d1!=−1){fspos=d1;}

}
      d2=line.find(del,fspos);
      d1=line.find(del,d2+1);
      d2=line.find(del,d1+1);
      d3=line.find(del2,d2+1);
      start=line.substr(d1+1,d2−d1−1);
      dur=line.substr(d2+1,d3−d2−1);
      GPSS=atoi(start.c_str());
      DUR=atoi(dur.c_str());
      GPSE=GPSS+DUR;
      if ((GPSS<=trigs && GPSE>trigs) ||
         (GPSS>trigs && GPSE<=trige) ||
         (GPSS<trige && GPSE>trige))
        {
          xfcount++;
          if (xfcount==1){fs[2]=GPSS;}
          xIn.addPath(line);
          fe[2]=GPSE;

if (xfcount>1 && GPSS!=oldgpse)
{ //alert missing GWFs

std ::cout<< "Missing H1 ! " <<oldgpse<< " to " <<GPSS<<"\t"
<<GPSS−oldgpse<< std ::endl;

}
oldgpse=GPSE;

        }
    }
    input.close();
    std ::cout<< "x frames " <<xfcount<< std ::endl;
  
  //open det2 gwf 
  input.open(ygwfstring.c_str());
  while (getline(input,line))
    { //add GWF paths for detector 2
      d1=1; //1st character is "/"
      int  fspos =0;
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      while (d1!=−1)
        {
          d1=line.find(delfs,d1+1);
          if (d1!=−1){fspos=d1;}
        }
      d2=line.find(del,fspos);
      d1=line.find(del,d2+1);
      d2=line.find(del,d1+1);
      d3=line.find(del2,d2+1);
      start=line.substr(d1+1,d2−d1−1);
      dur=line.substr(d2+1,d3−d2−1);
      GPSS=atoi(start.c_str());
      DUR=atoi(dur.c_str());
      GPSE=GPSS+DUR;
      if ((GPSS<=trigs && GPSE>trigs) ||
         (GPSS>trigs && GPSE<=trige) ||
         (GPSS<trige && GPSE>trige))
        {
          yfcount++;
          if (yfcount==1){fs[3]=GPSS;}
          yIn.addPath(line);
          fe[3]=GPSE;

if (yfcount>1 && GPSS!=oldgpse)
            { //alert missing GWFs

std ::cout<< "Missing L1 ! " <<oldgpse<< " to " <<GPSS<<"\t"
                       <<GPSS−oldgpse<< std ::endl;
            }
          oldgpse=GPSE;
        }
    }
  input.close();
  std ::cout<< "y frames " <<yfcount<< std ::endl;
  //check frame time overlap
  if (injfcount==0 || xfcount==0 || yfcount==0 || segcount==0)
    { //abort run on zero science data overlap
      std ::cout<< "Input frames/science do not overlap. Aborted.\n" ;
      return  −1;
    }
  
  xIn.nextFrame();
  yIn.nextFrame();
  injIn.nextFrame();
  injIn.addChannel(xinjchanstring); //add det1 injection channel 
  injIn.addChannel(yinjchanstring); //add det1 injection channel
  xIn.addChannel(xchanstring); //add det1 channel 
  yIn.addChannel(ychanstring); //add det2 channel 
  //get det1/2 configuration data standard deviation
  xsig=CORRcon(xconstring.c_str(),&xmean,&xlin,&xfs);
  ysig=CORRcon(yconstring.c_str(),&ymean,&ylin,&yfs);
  //construct filters
  std :: string  highpass ="high pass filter" ;
  std :: string  lowpass ="low pass filter" ;
  std :: string  LPEF="LPEF" ;
  IIRFilter  xhigh =CORRcon(xconstring.c_str(),&xhtrans,highpass);
  IIRFilter  xlow =CORRcon(xconstring.c_str(),&xltrans,lowpass);
  IIRFilter  yhigh =CORRcon(yconstring.c_str(),&yhtrans,highpass);
  IIRFilter  ylow =CORRcon(yconstring.c_str(),&yltrans,lowpass);
  IIRFilter  xhpcopy , yhpcopy ; //copies of hp filters
  xhpcopy=xhigh; yhpcopy=yhigh;
  PIIR  xpfilt [xlin];
  PIIR  ypfilt [ylin];
  LPEFilter  xLPEF=CORRcon(xconstring.c_str(),&xlpeftrans);
  LPEFilter  yLPEF=CORRcon(yconstring.c_str(),&ylpeftrans);
  xLPEF.fm_zero_phase;
  yLPEF.fm_zero_phase;
  int  xbins =xLPEF.getTrainLength();
  std ::cout<< "LPEF training length " <<xbins<< std ::endl;
  int  LPEFLEN=xLPEF.getLength();
  std ::cout<< "LPEF filter length " <<LPEFLEN<<std ::endl;
  wtime=( double )xbins/16384.0;
  Interval  frint (wtime); //interval of frame data
  double * xdata =new double [xbins];
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  double * ydata =new double [xbins];
  double * xfiltereddata =new double [xbins]; //det1 array for iwave filtered data
  double * yfiltereddata =new double [xbins]; //det2 array for iwave filtered data
  double * xfv =new double [xlin]; //det 1 line freq array for iwave
  double * xtau =new double [xlin]; //det 1 tau array
  double * yfv =new double [ylin]; //det 2 line freq array for iwave
  double * ytau =new double [ylin]; //det 2 tau array
  double ** xfm =new double *[xlin];
  double ** yfm =new double *[ylin]; 
  CORRcon(xconstring.c_str(),xfv,xtau); //populate arrays
  CORRcon(yconstring.c_str(),yfv,ytau);   
  double * nx =new double [xbins];
  double * ny =new double [xbins];
  double  TRANS[6]={xhtrans,xltrans,xlpeftrans,yhtrans,yltrans,ylpeftrans};
  trans= TMath ::MaxElement(6,TRANS); //obtain max transient of filters  
  Interval  textract (trans); //interval of filter transient
  //construct piir filters
  double * xfstate =new double [xpfilt[0].getStatesize()];
  double * yfstate =new double [ypfilt[0].getStatesize()];
  //initialise IWave
  for ( int  i =0;i<xlin;i++)
    {
      xfm[i]=xfstate;
      xpfilt[i]=PIIR(xfs,xtau[i],xfv[i],xfm[i]);
    }
  for ( int  i =0;i<ylin;i++)
    {
      yfm[i]=yfstate;
      ypfilt[i]=PIIR(xfs,ytau[i],yfv[i],yfm[i]);
    } 

  std ::cout<< "maximum filter transient " <<trans<< std ::endl;
  double  M=( double )sigdur*log(1000);
  double  radic =w*(1−pow(1−w,2*M))/(2−w+w*w);
  double  sigmachar =sqrt(radic)*xsig*ysig; //expected sigma of RTCC output 
  double  sigmult =atof(thresstring.c_str()); //threshold value multiplier
  double  thresh =sigmult*sigmachar; //trigger threshold
  std ::cout<< std ::scientific<<thresh<< std ::endl;
  double  x , y ;
  int  trigstart , trigend ;
  int  s , ns , yc ;
  Interval  ext ;
  double  trigskip =1.5*xlpeftrans; //min time between triggers
  if (append==0){ //output header to trigger file
    Trigfile<< "#\t mdc injection trigger input info" <<std ::endl;
    Trigfile<< "# triggering from science segments :" <<segfile<< std ::endl;
    Trigfile<< "# gwf input det1 :" <<xgwfstring<< std ::endl;
    Trigfile<< "# channel det1 :" <<xchanstring<< std ::endl;
    Trigfile<< "# config file det1 :" <<xconstring<< std ::endl;
    Trigfile<< "# gwf input det2 :" <<ygwfstring<< std ::endl;
    Trigfile<< "# channel det2 :" <<ychanstring<< std ::endl;
    Trigfile<< "# config file det2 :" <<yconstring<< std ::endl;
    Trigfile<< "# injection file "  <<injpathstring<< std ::endl;
    Trigfile<< "#\t mdc trigger parameter info" <<std ::endl;
    Trigfile<< "# injection scale :" <<scale<< std ::endl;
    Trigfile<< "# maxlag (samples):" <<maxlag<< std ::endl;
    Trigfile<< "# sigdur (samples):" <<sigdur<< std ::endl;
    Trigfile<< "# minimum time between triggers (s) :" <<trigskip<< std ::endl;
    Trigfile<< "# correlation sigma :" <<sigmachar<< std ::endl;
    Trigfile<< "# trigger threshold :" <<thresh<< std ::endl;
    Trigfile<< "# Science Duty factor :" <<DF<<std ::endl;
    Trigfile<< "# Minimum segment length (s) :" <<segmin<< std ::endl;}

  int  correc , reccount ; //correc=1 record trigger reccount−samples recorded
  double  cormax , cormaxmem, cormaxlag , cormaxlagmem , cormaxmemtime ;
  double * xREC; //array for det1 data upon trigger
  double * yREC; //array for det2 data upon trigger
  double  oldxpow , oldypow ; //trigger power variables
  double  xpowdelta , ypowdelta ;
  int  tscount =0;
  int  init =0; //flag trigger file inilialised
  int  cor ; //flag for CC 
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  int  lpeftrain , lpeftrainwait , lpeftraincancel , getsigma ;
  int  lpefint =40; //wincount%lpefint sets train wait
  double  xsigma , ysigma ; //sigma of filtered signals
  double  frtime , exttime ;
  for ( int  i =0;i<segcount;i++)
    { //loop through science segments
      std ::cout<< "segment " <<SEGS[i]<< "\t" <<SEGE[i]<< std ::endl;
      cor=1;
      Time  triggerstart ( SEGS[i],0);
      if (append==1)

{
triggerstart=apptime;
append=0;

}
      else {TRE=( double )SEGS[i];} //look at this for other error
         
      xIn.seek(triggerstart); //locate start time in GWF data
      yIn.seek(triggerstart);
      injIn.seek(triggerstart);
      xhigh.reset(); xlow.reset(); xLPEF.reset();
      yhigh.reset(); ylow.reset(); yLPEF.reset();
      xhpcopy.reset(); yhpcopy.reset();
      wincount=0;
      correc=0;
      while (xIn.synch()==0 && yIn.synch()==0 && cor==1 && frtime<SEGE[i])

{ 
wincount++;
lpeftraincancel=0;
if (wincount%lpefint==1){lpeftrainwait=1;}
ext=frint;
frtime=xIn.getCurrentTime().totalS();

          exttime=frtime+frint.GetSecs();
if (exttime>SEGE[i]) //check when data exceeding segment end

            {
              double  diffext =exttime−( double )SEGE[i];
              ext−=(diffext);
              cor=0;

xhpcopy.reset(); yhpcopy.reset();
xlow.reset(); ylow.reset();
lpeftraincancel=1;

            }
  

xIn.fillData(ext);
yIn.fillData(ext);
injIn.fillData(ext);
xts = *(xIn.refData(xchanstring));
xinjts=*(injIn.refData(xinjchanstring));
xinjts*=(scale);
yts = *(yIn.refData(ychanstring));
xbins=xts.getNSample();
yinjts=*(injIn.refData(yinjchanstring));
yinjts*=(scale); //scale injection
if (xinjts.getMaximum()==0 && //determine if injection zero

yinjts.getMaximum()==0)  //so LPEF can train
{lpeftrain=1;}

else {lpeftrain=0;}
xts+=(xinjts); //inject
yts+=(yinjts);
//filter

          TSeries  xTSHP(xhigh.apply(xts)); //apply high pass   
          TSeries  yTSHP(yhigh.apply(yts));

xTSHP.getData(xbins,xdata);
yTSHP.getData(xbins,ydata);      
for ( int  j =0;j<xlin;j++)

{ //IWave line filter det1 data
xpfilt[j].filterline(xdata,xfiltereddata,xbins,xfm[j]);
xdata=xfiltereddata;

} 
for ( int  j =0;j<ylin;j++)

{ //IWave line filter det2 data
ypfilt[j].filterline(ydata,yfiltereddata,xbins,yfm[j]);
ydata=yfiltereddata;
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}
//cast data arrays to TSeries objects
TSeries  xLR(xTSHP.getStartTime(),xTSHP.getTStep()

                       ,xbins,xfiltereddata);
          TSeries  yLR(yTSHP.getStartTime(),yTSHP.getTStep()
                       ,xbins,yfiltereddata);

TSeries  xTSLPEF, yTSLPEF;
if (lpeftrainwait==1 && lpeftrain==1 && lpeftraincancel==0)

{ //train LPEF filter on condition 
xLPEF.train(xLR); yLPEF.train(yLR);
lpeftrainwait=0;
getsigma=1;

}
          xLPEF.apply(xLR,xTSLPEF); //apply LPEF     
          yLPEF.apply(yLR,yTSLPEF);

TSeries  xHP2(xhpcopy.apply(xTSLPEF)); //apply hp again
TSeries  yHP2(yhpcopy.apply(yTSLPEF));
TSeries  xCor (xlow.apply(xHP2)); //apply final low pass

          TSeries  yCor (ylow.apply(yHP2));
//
if (wincount==1)

            { //subtract maximum filter transient       
              Time  xt0 =xCor.getStartTime();
              xt0+=(textract);
              xCor=xCor.extract(xt0);
              yCor=yCor.extract(xt0);
              trigstart=xCor.getStartTime().totalS();

if (Tcount==0 && init==0)
{ //output data header line and trigger start

Trigfile<< "# trigger start :" <<trigstart<< std ::endl;
Trigfile<< "#n\tstart\t\t\tend\t\t\tdet1 max\t\t" ;
Trigfile<< "det2 max\t\tlag\t\tnormcorln\t" ;
Trigfile<< "det1 freq\tdet2 freq\tdet1*det2 freq\t" ;
Trigfile<< "det1 sigma\tdet1 trig sigma\tdet2 sigma\t" ;
Trigfile<< "det2 trig sigma\tdet1 SNR\tdet2 SNR\n" ; 
init=1;

}
            }

tS=xCor.getStartTime();
          tE=xCor.getEndTime();

xCor.getData(xbins,nx);
yCor.getData(xbins,ny);
if (getsigma==1 || wincount==1)

            { //get sigma of det1/2 data
              xsigma= TMath ::RMS(xbins,nx);
              ysigma= TMath ::RMS(xbins,ny);

getsigma=0;
}

for ( int  xc =0;xc<xbins;xc++) 
{ //loop through data

SEC=xc/xfs;
time=tS.totalS()+SEC; //−timeoff;
if  (time>=SEGS[i] && time<=SEGE[i])

{
x=nx[xc];
y=ny[xc];
Corr.apply(x,y); //apply RTCC
cormax=Corr.getMax(); //get max value
if (cormax>=thresh && correc==0 && ((time−TRE)>=trigskip))

{ //initiate trigger  
correc=1;
Corr.setRec(correc);
tscount=0;
reccount=0;

}      
if (correc==1)

{
reccount++;
if (reccount==1)

{
Tcount++;
cormaxmem=0; 
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TRS=time−timeoff;
}

if (cormax>cormaxmem)
{

cormaxmem=cormax; 
cormaxlagmem=Corr.getLag();
cormaxmemtime=time;

}
//power ratio
xpowdelta=oldxpow/Corr.getXpower();

                      ypowdelta=oldypow/Corr.getYpower();
oldxpow=Corr.getXpower();

                      oldypow=Corr.getYpower();
                      if (xpowdelta>0.999 && ypowdelta>0.999)
                        {tscount++;}
                      else {tscount=0;}  

}
if ((correc==1 && 

(cormax<thresh) && 
reccount>maxlag && (tscount>3*maxlag)) || reccount==recl)

{ //end trigger
TRE=time−timeoff;
double  flow =0;

                      double  fhigh =3000;
                      double  fstep =1;
                      double  xfreqest , yfreqest , xamp, yamp, xyamp;
                      double  xsamp, ysamp, xcamp, ycamp, frq , t ;
                      double  xampmax=0;
                      double  yampmax=0;
                      double  xyampmax=0;
                      double  xyfreqest ;
                      int  Nf =( int )((fhigh−flow+1)/fstep);

xREC=Corr.getXRec(); //return det1 data record 
yREC=Corr.getYRec(); //return det1 data record 
double  xx , yy , xmm, ymm, phi ;
double  pcut =0.8;

                      double  xprob , yprob ;
                      double  xexp , yexp ;

int  xpos , ypos ;
if (cormaxlagmem==0){xpos=0; ypos=0;}
if (cormaxlagmem<0){xpos=0; ypos=−cormaxlagmem;}
if (cormaxlagmem>0){xpos=cormaxlagmem; ypos=0;}
double  xmean=TMath ::Mean(reccount,xREC);

                      double  ymean=TMath ::Mean(reccount,yREC);
                      double  xssigma =TMath ::RMS(reccount,xREC); //signal sigma
                      double  yssigma =TMath ::RMS(reccount,yREC);
                      double  normcor =0;
                      double  xmax=TMath ::MaxElement(reccount,xREC);
                      double  xmin =TMath ::MinElement(reccount,xREC);
                      double  ymax=TMath ::MaxElement(reccount,yREC);
                      double  ymin =TMath ::MinElement(reccount,yREC);
                      if (fabs(xmin)>xmax){xmax=fabs(xmin);}
                      if (fabs(ymin)>ymax){ymax=fabs(ymin);}

double * xpdata =new double [reccount];
                      double * ypdata =new double [reccount];
                      double  xSNR=(xssigma*xssigma−xsigma*xsigma)/
                        (xsigma*xsigma);
                      double  ySNR=(yssigma*yssigma−ysigma*ysigma)/

(ysigma*ysigma);
double  xpsigma =xsigma; //prob sigma
double  ypsigma =ysigma;
if (xSNR<1){xpsigma=xssigma;} //invert sigma if SNR<1
if (ySNR<1){ypsigma=yssigma;}
double  xmaxexp =−(xmax−xmean)*(xmax−xmean)/

                        (2*xpsigma*xpsigma);
                      double  ymaxexp =−(ymax−ymean)*(ymax−ymean)/
                        (2*ypsigma*ypsigma);
                      double  xmaxprob =(1− TMath ::Exp(xmaxexp));

double  ymaxprob =(1− TMath ::Exp(ymaxexp));
// norm corln & prob
int  xmaxpos , ymaxpos ;

                      for ( int  h=0;h<reccount;h++)
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                        { //operate on lag aligned data
                          if (h+xpos<reccount && h+ypos<reccount)
                            {
                              xx=xREC[h+xpos];
                              yy=yREC[h+ypos];
                              xmm=xx−xmean;
                              ymm=yy−ymean;
                              normcor+=xmm*ymm;
                              if (fabs(xx)==xmax)
                                {xmax=fabs(xx); xmaxpos=h+xpos;}
                              if (fabs(yy)==ymax)
                                {ymax=fabs(yy); ymaxpos=h+ypos;}

//Gaussian filter
                              xexp=−xmm*xmm/(2*xpsigma*xpsigma);
                              yexp=−ymm*ymm/(2*ypsigma*ypsigma);
                              xprob=(1− TMath ::Exp(xexp))/xmaxprob;
                              yprob=(1− TMath ::Exp(yexp))/ymaxprob;
                              if (xprob<pcut){xprob=0;}
                              if (yprob<pcut){yprob=0;}
                              xpdata[h]=xprob*xx;
                              ypdata[h]=yprob*yy;
                            }
                        }
                      normcor*=1/(xssigma*yssigma* double (reccount));
                      normcor=fabs(normcor); //normalised CC value   

//freq estimate
                      for ( int  j =0;j<Nf;j++)
                        {
                          frq=flow+j*fstep;
                          xsamp=0; ysamp=0; xcamp=0; ycamp=0;
                          for ( int  h=0;h<reccount−1;h++)
                            {
                              if (h+xpos<reccount && h+ypos<reccount)
                                {
                                  t=(1/16384.0)*h;
                                  phi=2*pi*frq*t;

if (j==0)
{ //spike filter

if (xpdata[h−1]==0 && xpdata[h]!=0 
&& xpdata[h+1]==0)

{xpdata[h]=0;}
if (xpdata[h−1]==0 && xpdata[h]!=0 && 

xpdata[h+1]!=0 &&  xpdata[h+2]==0)
{xpdata[h]=0; xpdata[h+1]=0;}

if (xpdata[h−1]==0 && xpdata[h]!=0 && 
xpdata[h+1]!=0 &&  xpdata[h+2]!=0 &&

xpdata[h+3]==0 && xpdata[h+4]==0)
{xpdata[h]=0; xpdata[h+1]=0; 

xpdata[h+2]=0;}
if (ypdata[h−1]==0 && ypdata[h]!=0

                                         && ypdata[h+1]==0)
                                        {ypdata[h]=0;}
                                      if (ypdata[h−1]==0 && ypdata[h]!=0 &&
                                         ypdata[h+1]!=0 &&  ypdata[h+2]==0)
                                        {ypdata[h]=0; ypdata[h+1]=0;}
                                      if (ypdata[h−1]==0 && ypdata[h]!=0 &&
                                          ypdata[h+1]!=0 &&  ypdata[h+2]!=0 &&
                                         ypdata[h+3]==0 && ypdata[h+4]==0)
                                        {ypdata[h]=0; ypdata[h+1]=0;
                                          ypdata[h+2]=0;}

}
                                  if (xpdata[h]!=0)
                                    {
                                      xsamp+=xpdata[h]* TMath ::Sin(phi);
                                      xcamp+=xpdata[h]* TMath ::Cos(phi);
                                    }
                                  if (ypdata[h]!=0)
                                    {
                                      ysamp+=ypdata[h]* TMath ::Sin(phi);
                                      ycamp+=ypdata[h]* TMath ::Cos(phi);
                                    }
                                }
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                            }
                          xamp=xsamp*xsamp+xcamp*xcamp;
                          yamp=ysamp*ysamp+ycamp*ycamp;
                          xyamp=xamp*yamp;
                          if (xamp>xampmax){xampmax=xamp; xfreqest=frq;}
                          if (yamp>yampmax){yampmax=yamp; yfreqest=frq;}
                          if (xyamp>xyampmax){xyampmax=xyamp; xyfreqest=frq;}

}
//
double  xmaxtime =TRS+(−(2*maxlag+1)+xmaxpos)/16384.0;

                      double  ymaxtime =TRS+(−(2*maxlag+1)+ymaxpos)/16384.0;
// output to trigger file
Trigfile<<Tcount<< "\t"

<<std ::fixed
<<std ::setprecision(9)
<<TRS<<"\t" //trigger start
<<TRE<<"\t" //trigger end
<<xmaxtime<< "\t" //det1 max
<<ymaxtime<< "\t" //det 2 max
<<std ::fixed
<<cormaxlagmem<< "\t" //lag
<<normcor<< "\t" //normalised CC
<<xfreqest<< "\t" //det1 freq
<<yfreqest<< "\t" //det2 freq
<<xyfreqest<< "\t" //freq prod
<<std ::scientific
<<xsigma<< "\t" //det1 sigma
<<xssigma<< "\t" //det1 trig sigma
<<ysigma<< "\t" //det2 sigma
<<yssigma<< "\t" //det2 trig sigma
<<xSNR<<"\t" //det1 trig SNR
<<ySNR<<"\t" //det2 trig SNR
<<std ::endl;

std ::cout<<Tcount<< "\t"
<<std ::fixed
<<std ::setprecision(9)
<<TRS<<"\t"
<<TRE<<"\t"
<<xmaxtime<< "\t"
<<ymaxtime<< "\t"
<<std ::fixed
<<cormaxlagmem<< "\t"
<<normcor<< "\t"
<<std ::fixed
<<xfreqest<< "\t"
<<yfreqest<< "\t"
<<xSNR<<"\t"
<<ySNR<<"\t"
<<std ::endl;

std ::cout<<xmaxpos<< "\t" <<ymaxpos<< std ::endl;
correc=0;
Corr.setRec(correc);
reccount=0;
cormaxmem=0;
cormaxlagmem=0;

}
}

}
}

    }
  input.close();
  Trigfile.close();
  return  0;
 }
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