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Abstract 

Movements of animals form a vital link between individual behaviour and spatial processes 

affecting populations, communities and ecosystems. Predators often have to search for prey 

that is unpredictable or patchily distributed and increasingly have to do so in habitats that are 

changing as a result of climate change or anthropogenic activity. Our understanding of 

animal movement has been revolutionised by the development of miniaturised loggers which 

allow tracking of individual animals over a range of spatial and temporal scales. However, 

while flight heights of birds are a critical component of avian movement ecology, they have 

been little-studied in comparison to horizontal movements. In this thesis I examine the three-

dimensional foraging behaviour of northern gannets (Morus bassanus) at the world’s largest 

breeding colony, at Bass Rock, Scotland. I first combine GPS and pressure data to estimate 

flight heights, and develop a novel refinement that uses sea surface pressure data to correct 

estimated heights during long periods of sustained flight. I then investigate sexual 

differences and effects of weather on three-dimensional foraging behaviour, before 

examining potential population-level consequences of mortality from collisions with 

offshore wind turbines. I found that sexual differences in foraging behaviour extend to the 

heights at which birds fly, and that wind speed in particular has a marked effect on 

movements and behaviour at sea. I also found that predicted levels of mortality from 

offshore wind farms would be likely to retard population growth but unlikely to drive the 

population into long-term decline. My thesis describes some of the complexity and 

flexibility of gannet foraging behaviour and highlights the importance of understanding 

movements in three dimensions.   
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Chapter 1 : Introduction 

1.1 Three-dimensional tracking of animal movement  

Movements of individuals are a key component of population ecology and central to species’ 

responses to the global challenges of climate change, habitat loss, invasive species and 

infectious diseases (Wikelski et al., 2007). Animal movement is orientated to foraging, 

avoiding predators, finding shelter and reproduction but is limited and scaled by time and 

space (Nathan et al., 2008). Foraging theory suggests that behaviour should be adjusted to 

optimise foraging efficiency and maximise fitness, requiring complex movement decisions 

at multiple spatial and temporal scales (Baker et al., 2004, Hamer et al., 2009, Reynolds, 

2012). Predators often have to search for patchy or unpredictable prey (Eide et al., 2004, 

Benoit-Bird et al., 2013, Kittle et al., 2017) using strategies that can be broadly grouped into 

two types; ambush and active searching (Higginson and Ruxton, 2015). Those that actively 

search for prey use a variety of strategies to maximise prey encounter over different scales 

(Weimerskirch, 2007, Auger-Methe et al., 2016, Dannemann et al., 2018, Freitas et al., 

2018).  

Until recent decades, knowledge of foraging movements was limited to visual observations 

but technology now allows us to track individual animals, with important consequences for 

studying the ecology, evolution and conservation of species (Webster et al., 2002). The first 

devices transmitting radio signals were deployed on animals in the 1950’s, providing a much 

greater insight into horizontal movement behaviour (LeMunyan et al., 1959, Cochran and 

Lord, 1963, Southern, 1964, Southern, 1970). Initially these devices were relatively large, 

heavy and limited in range and accuracy, but advances in radio telemetry technology now 

make it possible to track fine-scale movements of animals as small as insects along with 
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long-distance migratory journeys of small passerines (Entwistle et al., 1996, Bowlin et al., 

2005, Decourtye et al., 2011, Hagen et al., 2011, Knutson et al., 2018).  

The tools available for animal tracking have now increased in number and include light-level 

geolocators, archival Global Positioning System (GPS) loggers and ARGOS-GPS PTTs 

(platform terminal transmitters) (Lopez et al., 2015). Geolocators, which record light level 

from which latitude and longitude can be estimated, are small, light-weight devices that can 

provide data for up to several years, making them suitable for tracking large-scale 

movements including migrations. However, a disadvantage of these devices is poor spatial 

resolution (Egevang et al., 2010, Heckscher et al., 2011, Ouwehand et al., 2016). GPS-based 

devices provide latitude and longitude data with the greatest precision and temporal 

resolution, with the additional advantage in the case of archival GPS devices that they are 

small and light. However these require the animal to be recaptured to retrieve the data. If 

recapture is unlikely, remote download GPS devices such as GPS-RF (radio-frequency), 

GPS-GSM (linked to the GSM (Global System for Mobile) network) and those linked to the 

ARGOS satellite system allow remote data access (Bridge et al., 2011).  

To build a more complete understanding of space use by animals, it is important to study the 

vertical as well as horizontal dimensions of movement. The height at which birds and 

mammals fly has been of interest since long before it was possible to measure flight height 

reliably (Stebbins, 1906, Meinertzhagen, 1954). Flight height has important consequences 

for flight speed and energetics (Bruderer et al., 1995, Mandel et al., 2008), the detection and 

capture of prey (Garthe et al., 2014, Helms et al., 2016) and energy and water budgets 

(Klaassen, 1996, Carmi et al., 1992). Estimates of flight height can be made using a variety 

of methods. Visual observations and radar can estimate heights within a limited range of the 

observer but are restricted by light and weather conditions and they do not often allow 

recording of individuals over entire trips (Johnston et al., 2014a, Johnston et al., 2014b, 

Cleasby et al., 2015a, Borkenhagen et al., 2018). Radar also underestimates the abundance 
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of low-flying individuals and visual estimates are difficult for birds at high elevations 

(Huppop et al., 2006). GPS loggers can be used to provide estimates of the height of the 

device above the ellipsoid, a mathematically generated surface of the earth based on 

Cartesian coordinates, but with an error typically ± 20 m (Cook et al., 2012). As a result they 

are not useful for most biological contexts although the accuracy can be increased by 

allowing longer power-up time and shorter intervals between fixes (Bouten et al., 2013, 

Ross-Smith et al., 2016). However, high power requirements (approximately 0.15 Watts 

over about 30 seconds) required to obtain GPS locations result in reduced battery life and 

limited deployment durations (Corman and Garthe, 2014, Ross-Smith et al., 2016). 

1.2 External influences on flight behaviour 

Birds exhibit a wide variety of foraging strategies which utilise airspace in different ways, 

from high-speed flight at low altitudes to capture insects in the air column to soaring, high-

elevation flight to locate ephemeral food resources on the ground (Shepard and Lambertucci, 

2013, Warrick et al., 2016). All flight modes are influenced by morphology (Shatkovska and 

Ghazali, 2017) but require individuals to adapt to rapidly changing environmental conditions 

to reduce the energy costs of movement or adjust movement speed (Kogure et al., 2016, 

Shamoun-Baranes et al., 2016, Richardson et al., 2018).  

Tracking birds during long-distance migrations has revealed the impact of global wind 

patterns on behaviour, influencing the timing of departure, speed of travel and flight paths 

(Alves et al., 2016, Horton et al., 2016a, Hedenstrom and Akesson, 2017). High-resolution 

tracking over shorter time periods has also revealed how behaviour is influenced by wind at 

much finer scales (Gibb et al., 2017). Flight altitude may be adjusted in response to weather 

conditions, playing a key role in reducing energy costs and determining speed of travel, but 

it is also activity-specific (Kahlert et al., 2012, Gerdzhikov et al., 2014, Malmiga et al., 
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2014, Weimerskirch et al., 2016, Bruderer et al., 2018) as well as varying with time of day 

and topography (Bruderer et al., 1995, Liechti, 2006, Avery et al., 2011).  

To understand how birds respond to the environmental conditions during flight it is now 

possible to annotate movement tracks with additional information about conditions 

encountered whilst on a particular path (Dodge and Bohrer, 2013). Weather reanalysis 

datasets, products of global atmospheric models with assimilated meteorological 

observations, are increasingly being used to annotate animal movement tracks (Safi et al., 

2013, Vansteelant et al., 2017). The applicability of these datasets for integration with 

animal movement data has improved greatly as the resolution of the weather data has 

decreased, with global data now available at spatial resolutions of < 10 km and at temporal 

resolutions of 3 - 6 hours (Dee et al., 2011). 

1.3 Importance of understanding space use by birds 

In recent decades the importance of estimating how birds and mammals use the aerial 

environment has increased as rising global temperatures have affected atmospheric 

circulation, with impacts on rainfall, storm frequencies and wind regimes (McInnes et al., 

2011, Trenberth, 2011). Anthropogenic structures and air-borne vehicles have also 

encroached on habitats, introducing potential hazards for both wildlife and people (Dolbeer, 

2006, Barrios and Rodriguez, 2004, Biondi et al., 2013, Voigt et al., 2018).  These 

anthropogenic changes to the environment in addition to the changes to atmospheric 

conditions in the context of climate change make it important to predict how avian 

behaviour may be influenced (Gibb et al. 2017). For instance, the height at which vultures 

fly, which is dependent on time of day and season, can have implications for potential bird 

strike with aircraft (Avery et al., 2011).  
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Evidence of observed climate change impacts is strongest and most comprehensive for 

natural systems (IPCC, 2014). Increases in global temperatures during the 20th century have 

been linked to wide-spread range shifts in flora and fauna with the geographical ranges of 

marine species ranges shifting at an order of magnitude faster than those of terrestrial 

species as a result of warming seas (Sorte et al., 2010). In response to threats from global 

climate change, a large increase in renewable energy infrastructure is planned in the marine 

environment, including wind and tidal turbines and wave energy devices (Pelc and Fujita, 

2002). These may cause collision mortality, disturbance and habitat loss to marine taxa 

(Furness et al., 2012, Wade et al., 2016, Johnston et al., 2018) raising concerns about 

potential adverse effects on populations of seabirds and other species (Furness et al., 2012, 

Sebastian-Gonzalez et al., 2018). 

1.4 Three-dimensional behaviour of seabirds 

Seabirds are the most threatened group of birds in the world, facing threats from climate 

change, energy generation, fisheries and invasive alien species (Croxall et al., 2012). During 

the breeding season, seabirds need to balance their own nutritional needs with those of their 

offspring whilst being constrained to return repeatedly to the nest. They are therefore 

restricted in the distances they can travel and the duration of time they can be absent from 

the nest-site (Elliott et al., 2009). Seabirds forage for patchily distributed prey whose 

location is strongly influenced by environmental conditions (Santora et al., 2017). These 

prey patches are often predictable (Weimerskirch, 2007) but threats to the marine 

environment have raised increasing concerns about adverse changes in prey quantity, 

nutritional quality and distribution, and the ability of seabirds to adapt to these changes 

(Howells et al., 2017, Schoen et al., 2018).    

Until recently, relatively little was known about the behaviour of seabirds at sea. Early 

surveys were ship-based, until aerial surveys and radar were employed to establish densities 
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at sea (Briggs et al., 1985). Much of this work was driven by a need to understand the 

potential impact of offshore developments (Ainley et al., 2012). Now, bird-borne loggers are 

increasingly being used to identify important feeding areas and migration routes, providing 

data to inform the designation of Marine Protected Areas and the monitoring of ocean health 

(Parsons et al., 2008, Mallory et al., 2010, Masello et al., 2010, Camphuysen et al., 2012, 

Ceia et al., 2015, Arizaga et al., 2018). Many such tracking studies, however, and 

particularly those requiring high-resolution GPS data, have been restricted to particular 

stages of the breeding season when birds can most easily be captured, with the pre-laying 

stage in particular often being missed (Isaksson et al., 2016).   

Seabirds can make long foraging trips during chick rearing that may cover 1000s of km and 

last up to several weeks (Phalan et al., 2007, Magalhaes et al., 2008). Sex-specific foraging 

behaviour is a common trait among seabirds, initially linked to sexual size dimorphism but 

now known to also occur in a variety of sexually monomorphic species (Gray and Hamer, 

2001, Thaxter et al., 2009). Sexual differences in foraging areas, diets and parental duties 

among monomorphic species have been attributed to intra-specific competition, sex-specific 

nutritional requirements or differences in parental investment strategies (Lormee et al., 1999, 

Elliott et al., 2010, Phillips et al., 2011).  

Flight heights of seabirds are known to vary between species and with behaviour and 

weather conditions (Schreiber and Burger, 2001, Cleasby et al., 2015a). Lesser black-backed 

gulls (Larus fuscus) fly higher over land than sea and higher at night than during the day 

(Ross-Smith et al., 2016) while red-footed boobies (Sula sula) double their height at the end 

of each foraging trip, probably to facilitate locating the colony or avoid attacks from great 

frigatebirds (Fregata minor) (Weimerskirch et al., 2005a). Frigatebirds can use uplift 

beneath clouds to gain altitudes of over 4000 m, allowing them to cover long distances by 

gliding until they reach another cloud updraft (Weimerskirch et al., 2016). In contrast, 
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albatrosses cover long distances with little mechanical cost by moving within the shear wind 

directly above the surface of the ocean (Sachs et al., 2012). 

1.5 Study species  

Northern gannets (Morus bassanus) (hereafter gannets) are the largest breeding seabird in 

the North Atlantic Ocean (Nelson, 2002). Gannets have a single egg clutch which they 

incubate for approximately 6 weeks after which it takes 13 weeks for the chick, being 

brought food by both parents to reach fledging age (Nelson, 2002). Breeding success is 

typically 0.60 – 0.90 chicks fledged per breeding pair (Nelson, 2002, JNCC, 2016). The 

survival estimate for gannets in their first year after fledging varies between colonies but for 

the birds from the Bass Rock the estimate is ~ 0.542 (Wanless et al., 2006). Gannets 

typically have a period of 4-5 years of immaturity during which annual survival probabilities 

increase each year after the first year (Table 1.1). Once they become adults, gannets can no 

longer be aged from their plumage and so changes in productivity and survival associated 

with senescence are difficult to assess (Wanless et al., 2006). Immature gannets are pelagic 

in their first and second years and as a result are rarely seen at colonies. However, from their 

third summer they begin to associate with breeding colonies and act increasingly as central 

place foragers (Votier et al., 2011, Grecian et al., 2018). 
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Table 1.1. Mean estimates of age-specific survival of gannets from Bass Rock taken from 

Wanless et al. (2006). 

 
Age Class Annual survival estimate 95% confidence limits 

1st year 0.542 0.516 – 0.567 

2nd year 0.779 0.765 – 0.793 

3rd year 0.859 0.848 – 0.869 

4th year 0.863 0.852 – 0.874 

5th year 0.863 0.852 – 0.874 

Adult 0.916 0.910 – 0.922 

 

Adult gannets are present at colonies between March and September each year. Outside of 

these months they are pelagic and occur further south than their breeding areas (Stone et al., 

1995, Fort et al., 2012). Colonies vary in size from just a few pairs to tens of thousands and 

are found around the coast of the UK (Figure 1.1) and in the Channel Islands, Faeroes, 

Norway, Iceland and north-east Canada (Nelson, 2002). The population in the UK has been 

increasing steadily since the early 20th century when they were first afforded protection from 

culling at the colonies (Nelson, 2002). Between the first full census of all UK gannet 

colonies in 2003-04 and the most recent in 2013-2015 the population increased by 34 % 

(JNCC, 2016). 

 

 

 

 

 



9 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6 Foraging behaviour 

Gannets are medium-range foragers capable of travelling more than 1000 km on a single trip 

(Hamer et al., 2007) although trip distance is dependent on population size and proximity to 

other colonies (Lewis et al., 2001, Wakefield et al., 2013). At Bass Rock, the typical range 

of trips is 150 – 300 km over 20 – 30 h (Hamer et al., 2009, Cleasby et al., 2015b). Gannets 

Figure 1.1. Locations of UK gannet colonies with > 100 AON’s (apparently 

occupied nests) during their most recent count. HS - Hermaness, FA – Foula, NS - 

Noss, FI - Fair Isle, NH - Noup Head, SS - Sule Skerry, ST - Sule Stack, SG - Sule 

Sgeir, FN - Flannan Isles, SK - St Kilda, BH – Barra Head, AC - Ailsa Craig, SR - 

Scar Rocks, LB - Lambray, IE - Ireland’s Eye, GS - Great Saltee, TB - Bull Rock, 

LS - Little Skellig, GH - Grassholm, BC - Bempton Cliff, BR - Bass Rock, TH - 

Troup Head. 
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target frontal areas (Scales et al., 2014, Cox et al., 2016) where they feed on lipid-rich 

pelagic fish such as mackerel (Scomber scombrus), herring (Clupea harengus), sprats 

(Sprattus sprattus) and sandeels (mainly Ammodytes marinus) (Lewis et al., 2003, Hamer et 

al., 2007). Fish are caught using a variety of techniques including plunge diving, scooping 

from the surface and by scavenging discards from fishing vessels (Hamer et al., 2009, 

Camphuysen, 2011, Votier et al., 2010, Votier et al., 2013) although a discard ban is now in 

place on pelagic stocks meaning that gannets are no longer able to obtain as much food by 

scavenging from fishing vessels (Catchpole et al., 2018). Breeding adults are repeatable in 

their foraging behaviour, making consecutive trips over a narrow range of bearings both 

within and across years, providing some evidence that they may learn and remember the 

locations of profitable feeding areas from one year to the next (Patrick et al., 2014, 

Wakefield et al., 2015). However, durations and ranges of trips are less repeatable, probably 

reflecting variation in environmental conditions (e.g. wind speed and direction) and feeding 

opportunities encountered at sea (Hamer et al., 2001). Foraging areas also differ among 

years and, at least in some years, between sexes (Lewis et al., 2002, Hamer et al., 2007, 

Pettex et al., 2012, Davies et al., 2013). Immature gannets have been less well studied than 

adults but have less repeatable foraging tracks than adults, ranging more widely as they 

develop their individual foraging strategies (Votier et al., 2017, Grecian et al., 2018).    

1.7 Study site 

The Bass Rock, situated approximately 2 km off the coast of East Lothian in the Firth of 

Forth, SE Scotland (6o 6’ N, 2o 36’ W) has been associated with gannets since at least 1447 

with records of  chicks being culled for food there between 1511 and 1865 (Nelson, 2002). 

Since the first official count of apparently occupied nests (AONs) in the early 1900’s the 

Bass Rock population has risen from approximately 2000 breeding pairs to become the 

largest colony of gannets in the world with an estimated 75,259 apparently occupied nests in 

2014 (Murray 2015) (Figure 1.2). Population growth at gannet colonies is density-dependent 
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with per-capita growth declining as population size increases (Lewis et al., 2001). Despite 

this decline, a 57% increase in the number of apparently occupied nests between 2004 and 

2014 has seen the Bass Rock colony brought to the point where there is little unoccupied 

nesting space available (Figure 1.3a) (Murray et al., 2015).  

The main study site for gannets on Bass Rock is located next to the remains of an old chapel, 

above the cliffs fringing the rock (Figure 1.3b). This area is well suited to fieldwork with a 

large area in which to work and access to ample numbers of breeding birds.   

 

Figure 1.2. Population growth rate of the Bass Rock gannet colony in the context of six 

other Scottish gannetries. Plot taken from Murray et al. (2015). 

The gannets on the Bass Rock have been studied extensively since the early 1960s, both by 

observations at the colony (Nelson, 1964, Nelson, 1966, Davies et al., 2013) and, since 

1998, using tracking devices (Hamer et al., 2000, Lewis et al., 2003, Kubetzki et al., 2009, 

Wakefield et al., 2015, Cleasby et al., 2015a). These studies have identified foraging ranges, 

core foraging areas and identified traits in individual foraging behaviour. Wind farm 

developments which have been planned and consented for construction in the North Sea fall 
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within the foraging range of gannets from Bass Rock, making it a colony for which is it 

particularly pertinent to examine foraging behaviour (The Crown Estate, 2017). 

1.8 Outline and aims of this thesis 

This thesis aims to increase knowledge and understanding of gannets’ foraging behaviour, 

with the main aim being to investigate variation in flight height during foraging trips.  

Chapter 2, the first data chapter, introduces the method I use for estimating flight height in 

the subsequent data chapters. Estimates of flight height in seabirds have not been studied as 

comprehensively as horizontal movements yet have important consequences for ecology and 

conservation. Seabirds can make journeys during the breeding season of hundreds of km 

during which they allocate their time between periods on the water and periods in flight. 

This means height can be estimated using changes in pressure between time on the water and 

time in flight. However, long periods of time in flight are known to increase the error in 

height estimates. Here I outline a novel refinement to using atmospheric pressure where I 

incorporate reanalysis pressure data to improve height estimates during longer periods in 

flight.   

In Chapter 3 I investigate behavioural differences between male and female gannets. 

Previous work has recorded differences in foraging locations, dive behaviour and diet, and I 

was therefore interested to see whether these differences extended to height and how this 

might have potential consequences for conservation in the context of prey distribution and 

installation of wind farm developments.  

Chapter 4 considers environmental influences on foraging behaviour. The marine 

environment experiences particularly challenging weather conditions known to affect 
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seabird behaviour. Here I incorporate weather data from a reanalysis dataset to investigate 

how weather conditions affected the behaviour of gannets at sea.   

Among the uncertainties identified in estimating collision risk at offshore wind farm sites is 

variation in the behaviour of birds in relation to sex, age and breeding stage. In Chapter 5 I 

use a combination of GPS and altitude data from adults at two breeding stages and from 

immature birds to examine how potential collision risk might change throughout the year 

and for birds of different age and sex. I then make a projection for how predicted collision 

risk might impact population growth. 

In Chapter 6 I draw the conclusions of the four data chapters together and suggest future 

areas for research that have arisen from this work.  
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Figure 1.3. (a) The Bass Rock gannet colony on 23rd July 2014. The area within the red 

shape is the area is the study site; (b) is a close up on the study area, the building is the 

remains of St Baldred’s chapel, yellow line indicates the path, blue indicates non-breeders 

displaced when we are present and the red shapes indicate the areas from which birds are 

caught and tagged. Access to the rest of the island is impossible due to breeding birds. Photo 

credits; (a) Murray et al. (2014), (b) Murray et al. (2015). 
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Chapter 2 : Estimating flight heights of seabirds using atmospheric 

pressure and a global reanalysis dataset 

Abstract 

Flight heights of birds are a critical component of avian movement ecology but little-studied 

in comparison to horizontal movements. Flight height can be assessed by equipping birds 

with pressure loggers and calibrating pressures obtained during flight against atmospheric 

pressure at ground level. However, changes in surface atmospheric pressure over both time 

and space can introduce potentially large errors into height estimates obtained this way, 

particularly during long periods of sustained flight. Here I combine GPS and pressure data to 

examine the variability in flight height estimates during foraging trips of a mid-ranging 

marine predator, the northern gannet. I first use GPS data to identify when birds settle on the 

water during trips and calibrate pressures obtained during flight against sea surface pressure 

at the start or end of each flight bout (Method 1). I then develop and explore a novel 

refinement that uses ERA-Interim reanalysis sea surface pressure data to correct estimated 

heights during long sustained periods of flight, accounting for both temporal and spatial 

changes in atmospheric pressure throughout each bout (Method 2). I found that individual 

flight bouts lasted up to 514 minutes and covered up to 381 km, with ~10 % of bouts longer 

than 2 hours and 15 % covering > 50 km. Consequently, the median error in flight height 

assessments using Method 1 was calculated to be 3.9 m, with estimated heights often 

showing continued drift during long periods of sustained flight, in some cases resulting in 

negative height estimates. This problem was greatly reduced using Method 2, with a 

significant positive relationship between both the distance and duration of a flight bout and 

the absolute difference in mean heights estimated using each method. These results indicate 

that the use of environmental re-analysis data to correct for spatial and temporal changes in 

atmospheric pressure during individual flight bouts could greatly improve flight height 

estimates, particularly for species that spend long periods in sustained flight and/or cover 
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large distances without landing and/or in regions or at times of year when atmospheric 

circulation is highly variable. 

2.1 Introduction 

Understanding how birds use aerial environments is a critical component of avian movement 

ecology. Variation in flight altitude has potential consequences for the detection and capture 

of prey (Garthe et al., 2014), energy and water budgets (Finn et al., 2012, Carmi et al., 1992) 

and interactions with humans (Horton et al., 2016b). In turn, flight height is influenced by 

weather conditions including wind and rain (Liechti, 2006, Kemp et al., 2013), which are 

likely to be affected by changes in climate (Kovats et al., 2014). The ability to gather fine-

scale three-dimensional movement data from free-ranging birds is of increasing importance 

in the context of wind power. Generation of electricity from wind energy is rapidly 

increasing (Kumar et al., 2016), raising concerns about potential ecological impacts, 

including both displacement and mortality of birds from collision with turbine blades 

(Masden et al., 2009, Boehlert and Gill, 2010). The impacts of wind turbines on seabirds, 

one of the most threatened groups of birds globally (Croxall et al., 2012), are a particular 

concern as the number of offshore wind farms in European, North American and Chinese 

waters in particular is likely to increase greatly over the next few decades (Sun et al., 2012, 

European Wind Energy Association, 2016, U.S. Department of Energy, 2016).      

Flight heights of birds can be estimated from land or ship-based visual observations and 

radar but these methods are restricted by light and weather conditions and do not allow 

recording of individuals over entire trips (Cleasby et al., 2015a, Borkenhagen et al., 2018). 

Bird-borne GPS loggers are well established tools for recording horizontal movements 

(Hamer et al., 2007, Sala et al., 2012, Wakefield et al., 2013, Hallworth and Marra, 2015, 

Gilbert et al., 2016) and can also provide information on height, but the accuracy of recorded 

flight heights (typically ± 20 m; (Cook et al., 2012)) is too low for most biological contexts 
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(Johnston et al., 2014a) as discussed in Chapter 1. Consequently, despite rapid advances in 

bio-logging technology (Evans et al., 2013, Gibb et al., 2017), bird-borne measurements of 

flight height over entire trips are still lacking for most species. 

An alternative method for determining flight height is to use a bird-borne sensor to record 

atmospheric pressure. Using this method, pressures when the bird is in flight can be 

combined with the pressure at sea level (hereafter calibration pressure) to calculate flight 

height using the barometric formula (BerberanSantos et al., 1997, Wallace and Hobbs, 2006, 

Cleasby et al., 2015a, Helms et al., 2016). This method has been used in tropical regions 

(Weimerskirch et al., 2003, Weimerskirch et al., 2004, Weimerskirch et al., 2005b) where 

pressure systems are more stable over both time and space than at higher latitudes (Manabe 

and Hahn, 1981). Under these conditions atmospheric pressure at sea level may remain 

more-or-less constant across the temporal and spatial extent of foraging trips, making it 

possible to calibrate flight heights with sea level pressure measured at the colony. 

Difficulties arise, however, using this approach in regions or during times of year when 

atmospheric circulation is more variable. For instance, an error of 1 mb in calibration 

pressure equates to an error of approximately 8.4 m in flight altitude (Wallace and Hobbs, 

2006).  

During foraging trips, seabirds intersperse periods of flight with other activities including 

time on the water surface (Edwards et al., 2007, Gutowsky et al., 2014). If the latter can be 

identified, for instance using salt-water immersion loggers (Afanasyev and Prince, 1993, 

Edwards et al., 2007) or from behavioural classification of GPS data (Wakefield et al., 2013, 

Bennison et al., 2017), the atmospheric pressure recorded by a logger on the bird during this 

period can be used to re-calibrate pressure at sea level (Garthe et al., 2014, Cleasby et al., 

2015a). However, this may be insufficient to reduce errors to manageable levels during long 

periods of sustained flight as the accuracy of height estimates decreases with time since 

calibration (Cleasby et al., 2015a).  
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Northern gannets (hereafter gannets) are medium-ranging neritic foragers that breed at sites 

in the North Atlantic Ocean and have been identified as one of the species at greatest 

potential risk from collision with offshore wind turbines (Furness et al., 2013). 

Approximately 60 % of the world’s breeding population of gannets breeds in the UK 

(Mitchell et al., 2004) with an estimated 75,000 pairs at the world’s largest colony, Bass 

Rock in SE Scotland (6o 6’ N, 2o 36’ W) (Murray et al., 2015). Foraging trips during chick-

rearing at this colony can cover > 1000 km and last over 40 hours, with long periods of 

sustained flight interspersed with periods of active foraging including diving for prey and 

time at the water surface (Hamer et al., 2000, Hamer et al., 2007, Cleasby et al., 2015b). In 

this chapter I estimate the flight heights of gannets over entire trips using GPS and pressure 

loggers and explore how spatial and temporal changes in atmospheric pressure affect 

calculated heights. I also develop and explore a novel refinement that corrects estimated 

heights during long periods of flight by accounting for both temporal and spatial changes in 

atmospheric pressure.  

2.2  Materials and methods 

2.2.1 Study site and sampling 

Fieldwork took place at Bass Rock, UK (6o 6’ N, 2° 36’ W) between mid-June and mid-

August of 2015 and 2016. Adult gannets with chicks (n = 32 in 2015, n = 29 in 2016; eight 

birds were sampled in both years) were caught at the nest using a 6-meter telescopic pole 

fitted with a metal noose or hook. Each bird was fitted with a metal British Trust for 

Ornithology ring and a coloured plastic ring with a unique alphanumeric code for easy 

identification at the nest site. A GPS logger (igotU-GT600, Mobile Action Technology, 

Taipei, Taiwan) was then attached to the upper side of the central tail feathers and a logger 

recording atmospheric pressure and temperature (MSR-145W, MSR Electronics, Seuzach, 

Switzerland) was attached to the central tail feathers, on the underside to reduce Bernoulli 
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effects during take-off from the water. The GPS logger weighed 30 g and recorded location 

at 2-minute intervals; the pressure logger weighed 18 g and recorded at 1 Hz; both were 

attached using Tesa tape. All sampled birds were recaptured after 7 - 14 days to retrieve 

loggers. Handling time of birds at both deployment and recapture was no longer than 15 

minutes and on both occasions’ birds returned to their chick almost immediately and 

resumed normal behaviour. The combined weight of loggers used in this study was < 2 % of 

body mass, well within the critical threshold of ~3 % of body mass (Phillips et al., 2003). 

Previous studies of gannets at this colony recorded that such deployments had no significant 

impact on trip duration or body mass (Hamer et al., 2007, Hamer et al., 2009, Cleasby et al., 

2015b) however, the deployment of tags > 1% of body mass can have small but significant 

negative impacts on survival, reproduction, parental care and trip durations in birds.  

2.2.2 Classification of behaviour at sea 

I defined foraging trips as periods when the bird was greater than 500 m from the colony for 

more than 40 minutes (Carter et al., 2016). To remove any irregularities in the GPS data due 

to variation in satellite uplink time, I regularised the data by linear interpolation to 2-minute 

intervals using the package adehabitatLT v.0.3.20 (Calenge, 2006). Following Wakefield et 

al. (2013) I then used the speed and turning angles of birds to define three categories of 

behaviour at sea: commuting, active foraging (i.e. searching or diving for prey) and sitting 

on the water. Validation of these criteria against a separate sample of birds equipped with 

GPS loggers and time-depth recorders (TDRs) showed that, within individuals, 99 % of GPS 

locations occurring within 10 minutes of dives detected using TDRs were classified as 

foraging and 62 % of GPS locations classified as foraging occurred within 10 minutes of 

dives (Wakefield et al., 2013). I chose this method over alternatives such as Hidden Markov 

models (HMMs) (Bennison et al., 2017, Grecian et al., 2018) because the latter emphasise 

foraging bouts that include diving whereas gannets frequently exhibit search behaviour 
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without diving (Hamer et al., 2009) and I was interested in all periods of active foraging 

whether they included dives or not.  

2.2.3 Estimation of flight heights 

I used the barometric formula (BerberanSantos et al., 1997, Wallace and Hobbs, 2006) to 

estimate height h (m) above sea level:  

ℎ =  −
𝐾𝑇 

𝑚𝑔
ln (

𝑃

𝑃0
) 

Equation 2.1 

where P0 and P are the atmospheric pressures (Pascals) at sea level and at height h (m), 

respectively; K is the universal gas constant for air (8.31432 N m mol-1 K-1); m is the molar 

mass of air (0.0289644 kg mol-1); g is the acceleration due to gravity (9.80665 ms-2); and T is 

the temperature (K) of the atmosphere between P0 and P. Validation of this method using 

loggers placed at different known heights indicated that the mean absolute error of height 

estimated by recording pressure was 0.88 m (range 0.32–1.92 m), although the precision of 

height estimates decreased linearly as the interval between observations of P0 and P 

increased (Cleasby et al., 2015a). 

To calculate birds’ heights during periods of flight, I first removed pressure observations ≤ 5 

seconds before and ≤ 3 seconds after dives (identified by a rapid increase in pressure above 

ambient), as there was typically high variation in pressure within these periods due to 

acceleration and turbulence. I also removed individual anomalous pressure readings (i.e. 1-

second ‘spikes’) suggesting abrupt and implausibly rapid changes in height or turbulence 

around the logger, for instance as a result of the bird flexing its tail in flight. Following 

Cleasby et al. (2015a) I next smoothed the pressure data using a running median calculated 

using a moving window of 11 observations centred on each successive pressure reading (i.e. 

over a period of 5 s before and after each reading). I then selected those smoothed pressure 

records that coincided with GPS data-points, to give a location- and activity-specific 
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measurement of pressure every 2 minutes. In doing so I discounted short periods of flight 

and on the water (< 6 min; i.e. fewer than 3 consecutive GPS points) to ensure accurate 

classification of behaviour from GPS data (see 2.2.2 above).  

I used periods classified as in flight, whether commuting or active foraging, to obtain height-

specific pressure data P and I used either the previous or the subsequent period on the water 

(whichever was closer in time) to estimate calibration pressure P0 in each case. Before 

calculating P0 I removed the first and final pressure records for each period on the water, to 

avoid including pressures during take-off or landing. P0 was then calculated as the mean 

smoothed pressure over either the final remaining 8 minutes of the previous period or the 

first remaining 8 minutes of the subsequent period on the water (i.e. a mean of four 

smoothed data points generated from a total of 44 unsmoothed pressure readings in each 

case). This procedure required a minimum period of 10 minutes on the water to estimate P0. 

Hence, because periods on water were often shorter than 10 minutes, in those cases I 

allowed up to two intervening flight periods before or after the period on the water used to 

estimate P0.  

This method (hereafter Method 1) allowed me to obtain estimates of P0 during foraging 

trips, accounting for both spatial and temporal variation in atmospheric pressure at sea level. 

However, a previous analysis of how temporal changes in atmospheric pressure affected 

estimates of height at a single location indicated an average error of ~5 m in heights 

estimated with an interval of 2 h between measurement of P and P0 (calculated from data in 

Cleasby et al. 2015a SOM). Hence, since gannets can sustain flight for much longer than this 

(Hamer et al. 2007), I additionally refined estimates of P0 during flights using ERA-Interim 

reanalysis sea surface pressure data (6-hourly data at 0.125 × 0.125 degree or approximately 

8 km resolution) produced by the European Centre for Medium-Range Weather Forecasts 

(ECMWF) (Dee et al., 2011). To achieve this, I first established the interpolated ERA-

Interim pressure for each of a bird’s locations at sea. Then for every location in flight, the 



37 

 

corresponding calibration pressure was adjusted by applying the change in interpolated 

ERA-Interim pressure between the time and place of measurement of P0 and P. This method 

(hereafter Method 2) therefore accounted for both temporal and spatial changes in sea 

surface pressure throughout a flight bout, not just between bouts. 

2.2.4 Potential errors in flight height estimates 

I calculated the error in estimated flight height throughout a flight bout, due to spatial and 

temporal changes in pressure at sea level, by calculating the time (Δt; seconds) and distance 

(Δd; meters) elapsed between measuring P0 and P. The error in flight height (σz) due to 

temporal changes in pressure over Δt was estimated according to the following equation 

(from Cleasby et al. 2015a):  

σz =  0.39 +  5.27 × 10−4 Δt            Equation 2.2 

This equation is based on changes in atmospheric pressure at a static reference point (Bass 

Rock) during the summer of 2011 (Cleasby et al., 2015a), which were similar to those 

during the current study (summer 2015 and 2016; Appendix A).  

I calculated the error in flight height due to spatial changes in pressure over Δd using 

ECMWF surface pressure data. I calculated the median change in surface pressure over Δd 

for the period 1st June – 31st August 2015 over a domain of 53o 5’ – 60o 0’ N, 3o 5’ – 5o 0’ E, 

then used Equation 2.1 to estimate the error in flight height. I assumed spatial and temporal 

errors were independent and estimated the combined spatial and temporal error to be the 

square root of the sum of squares.  
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2.2.5 Statistical analysis 

All analysis was carried out in R version 3.3.1 (R Development Core Team, 2016b). To 

examine whether or not there were significant differences between the height estimates 

derived using each method I used a generalised linear mixed model (GLMM) in the R 

package ‘lme4’ (Bates et al., 2015). To account for autocorrelation and repeated measures I 

used the median height per flight bout and included individual bird as a random effect.    

2.3 Results 

2.3.1 Trip and flight-bout durations and distances travelled 

I obtained combined GPS and pressure data from 159 trips by 38 individuals (29 in 2015, 16 

in 2016; seven birds were sampled in both years) encompassing 2128 flight bouts (mean ± 

SD = 15.1 ± 7.1 per trip). Trip durations (24.7 ± 9.7 h in 2015; 20.5 ± 13 h in 2016) and total 

distances travelled (567.8 ± 250.4 km and 432.2 ± 261.6 km, respectively) were similar to 

those in previous years at this colony (Hamer et al., 2007, Cleasby et al., 2015a). The 

duration of individual flight bouts varied from 6 – 514 minutes (median = 20 min; Figure 

2.1a) and the distance covered over a single flight bout ranged varied 0.4 to 381 km (median 

= 8.2 km; Figure 2.1b). Overall, 8 % of flight bouts lasted more than 120 minutes and 14 % 

of bouts were longer than 50 km. There was a significant positive relationship between the 

duration of each trip and the number of flight bouts (F1,174 = 333.7, P < 0.001) and between 

the total distance travelled per trip and the median distance covered during a flight bout 

(F1,174 = 6.72, P < 0.05). There was, however, no relationship between trip duration and the 

median duration of each flight bout (F1,174 = 0.07, P > 0.5). 
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Figure 2.1. Frequency distributions of (a) duration (minutes) and (b) distance travelled (km) 

for individual flight bouts of chick-rearing gannets during foraging trips from Bass Rock 

(combined data for 2015 and 2016). 

 

2.3.2 Estimated flight heights 

The median time interval between measurement of P and P0 (Δt) was 50 minutes (IQR = 

20.0 – 114.0) and the median distance travelled between measurements (Δd) was 22.2 km 

(IQR = 5.7 – 68.0). Consequently, using Method 1, the median errors in flight height 

assessment due to temporal and spatial changes in atmospheric pressure during flight bouts 

were estimated to be 3.6 m and 1.5 m, respectively (from eqns 2.1 & 2.2). Assuming these 

errors were independent, the estimated combined error in flight height using this method was 

therefore 3.9 m. Moreover, heights estimated using Method 1 tended to exhibit continual 

drift during longer flight bouts. For long flights (> 60 min), this drift resulted in some cases 

in estimated heights becoming negative however, this phenomenon was greatly reduced 

using Method 2 (Figure 2.2), with a significant positive relationship between both the 

distance (F1, 329 = 77.34, P < 0.001) and duration (F1,171 = 34.48, P < 0.001) of a flight bout 

and the absolute difference in mean heights estimated using each method (Figure 2.3).   
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Figure 2.2. Examples of estimated flight height during two long flight bouts. The x-axis in 

each case is time elapsed since the calibration pressure was measured (Δt, minutes). 

Spurious drifts in flight height due to changes in atmospheric pressure over long flight bouts 

(Method 1, red) were greatly reduced when ECWMF surface pressure data were used to 

correct calibration pressures (Method 2, blue).  

a)    b) 

 

Figure 2.3. Absolute difference in mean flight heights between Method 1 and Method 2 for 

flight bouts (a) > 50 km and (b) > 120 minutes. Red line and grey shading show linear 

model and 95% confidence level, respectively. 
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Despite the potentially large sampling errors using Method 1, the median flight height 

estimated using this method (21.3 m, IQR = 7.5 – 40.5) was not significantly different from 

that estimated using Method 2 (20.2 m, IQR = 7.4 – 39.9) (GLMM: 𝜒2
1 = 1.59, P = 0.2), 

presumably because atmospheric pressure could drift either upwards or downwards during 

flight bouts. However, as flight bout duration increased the difference between methods in 

H-spread (Q3 – Q1) also increased (Table 2.1), indicating an increasing disparity between 

methods in the variability of height estimates.  

Table 2.1. IQRs of flight heights estimated during long flight bouts using Methods 1 and 2. 

Flight bout 

duration 

(min) 

Method 1 Method 2 
Diff in H-

spread (m) 

 
IQR  

(m) 

H-spread  

(m) 

IQR  

(m) 

H-spread  

(m) 
 

≤ 60 10.9 – 44.5 33.6 10.9 – 43.8 32.9 0.7 

60.1 – 120 10.0 – 44.2 34.1 9 – 43.0 34 0.1 

> 120 3.4 – 33.1 29.7 4.6 – 31.8 27.4 2.5 

 

2.4 Discussion 

Initial studies using pressure loggers to estimate flight heights accounted for changes in 

atmospheric pressure over time by correcting measurements from the bird using atmospheric 

pressure recorded by a fixed altimeter at the colony (Weimerskirch et al., 2005b, Garthe et 

al., 2014). This method was refined by re-calibrating sea-level pressure from periods the bird 

spent on the water (Cleasby et al., 2015a) to account for changes in atmospheric pressure 

over short periods of time. However, over sustained flights or during unstable weather 

conditions, changes in atmospheric pressure may introduce unmanageable errors into 

estimated flight heights. This could be a particular problem for species that make long 
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sustained flights and/or occupy regions with unstable weather patterns and/or for studies of 

how flight height varies with weather conditions. 

In this study I used GPS data obtained at 2-minute resolution to estimate flight heights 

throughout the full durations of foraging trips. Using this resolution resulted in a median 

interval of 50 minutes between the time the calibration pressure was estimated and the time 

the flight height of the bird was estimated because flight bouts durations were a median of 

20 min long and the bird needed to be on the water for a minimum of 10 minutes to measure 

P0. This interval could be reduced using higher resolution GPS data (e.g. 1-10 Hz) (Cleasby 

et al., 2015a, Gibb et al., 2017) but limited device storage capacity restricts this method to 

short trips or parts of longer trips. 

To help overcome these problems, here I tested a novel method to account for spatial and 

temporal changes in pressure over individual flight bouts. I found that estimated heights 

were similar to those recorded by Cleasby et al. (2015a) with the advantage of being able to 

estimate flight heights for multiple complete trips per bird. Although using reanalysis data to 

correct for pressure changes (Method 2) had no significant effect on the median flight height 

calculated, improvements in flight height estimates were evident in some long flight bouts, 

and there was increasing disparity between methods in the variability of height estimates as 

flight bout duration increased. Longer trips involved flight bouts of longer duration and so 

height estimates during long trip durations will be particularly improved using Method 2. 

These results indicate that the use of environmental re-analysis data to correct for spatial and 

temporal changes in atmospheric pressure during individual flight bouts could greatly 

improve flight height estimates, particularly for species that spend long periods in flight 

(Gill et al., 2009, Liechti et al., 2013b) and/or cover large distances without landing (e.g. 

during migration; (Catry et al., 2004, Egevang et al., 2010) and/or in regions or at times of 

year when atmospheric circulation is highly variable. The spatial and temporal resolution of 
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environmental re-analysis datasets are steadily improving (Gleeson et al., 2017) which could 

lead to further increases in the efficacy of such data in the future.    
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Chapter 3 : Three-dimensional tracking of a wide-ranging marine 

predator: sex-specific foraging behaviour of northern gannets 

Abstract 

Sexual differences in foraging behaviour are widespread among sexually dimorphic species 

but also occur in species with little or no dimorphism, including many seabirds. However the 

selective advantage of sex-specific foraging behaviour among monomorphic species remains 

unclear. In this chapter I use GPS and pressure data to examine sexual differences in the 

three-dimensional foraging behaviour of northern gannets, a sexually monomorphic species 

in which sexes differ in foraging habitat and dive depths, although sex differences in trip 

durations and ranges have been recorded in some years but not in others. I examine whether 

or not sex-specific behaviour extends to flight height and whether or not differences in male 

and female foraging behaviour are influenced by annual variation in prey abundance. Over 

three consecutive years I found that females foraged more frequently in offshore waters to 

the east of the colony, whereas males foraged more frequently in coastal waters to the north-

east and south-east of the colony, as also found in previous years. I recorded no difference 

between sexes in the durations of trips or distances travelled at sea, in contrast to some 

previous years, and I present data for multiple years suggesting that the difference in 

foraging trip durations of males and females may be positively related to the abundance of 0-

group sandeels in surrounding waters. I also found that females not only dived deeper than 

males but also flew higher than males, particularly during active foraging, probably to gain 

greater momentum during V-shaped dives. Differences in the foraging distributions and 

flight heights of males and females led to different patterns of spatial variation in flight 

height, providing evidence of sexual segregation in three dimensions. This study adds to the 

body of work revealing differences in the foraging behaviour of males and females in 

sexually monomorphic species and highlights the importance of including sex-specific 

foraging information in impact assessments for renewable energy developments. 
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3.1 Introduction 

Sexual differences in foraging niches and behaviour occur in a wide range of socially 

monogamous but sexually dimorphic birds including passerines, raptors and seabirds (Cook 

et al., 2013, Duron et al., 2018, Kruger, 2005). These differences are often attributed to the 

influence of body size on foraging efficiency and competitive ability (Pearson et al., 2002, 

Rey et al., 2012, Gwiazda and Ledwon, 2016). In some cases, the degree of difference 

between sexes in foraging behaviour reflects the extent of sexual size dimorphism among 

closely-related species (Lewis et al., 2005). However, sex-specific foraging behaviour also 

occurs in species with little or no dimorphism, including many seabirds (Lewis et al., 2002, 

Phillips et al., 2004, Gladbach et al., 2009, Paredes and Insley, 2009, Thaxter et al., 2009). 

During the breeding season, sex-specific foraging behaviour in seabirds with little or no size 

dimorphism includes segregation in foraging areas (Hedd et al., 2014) and differences in 

diets and rates of food provisioning to offspring (Gray and Hamer, 2001, Navarro et al., 

2009, Ismar et al., 2017). Possible explanations for such sex-specific behaviour include 

differences between sexes in nutritional requirements (e.g. related to egg production by 

females; (Peters and Grubb, 1983, Lewis et al., 2002)), differences in foraging efficiency 

leading to competitive exclusion (Gonzalez-Solis et al., 2000) and, at least proximately, 

differences between sexes in sensitivity to chick condition and food solicitation (Hamer et 

al., 2006). However the selective advantage of sex-specific foraging behaviour among 

monomorphic species remains unclear. For instance, at present no proximate mechanism has 

been proposed for why one sex would consistently outcompete the other in a monomorphic 

species (Peck and Congdon, 2006). 

3.1.1 Flight height 

A relatively unexplored element of avian behaviour is how birds use airspace in the vertical 

dimension, an important knowledge gap with implications for foraging strategies 
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(Weimerskirch et al., 2005b, Helms et al., 2016, Warrick et al., 2016, Mills et al., 2018) and 

energetics (Dokter et al., 2011, Corman and Garthe, 2014, Sherub et al., 2016). By changing 

flight altitude birds can take advantage of ground effect and thermal lift to reduce costs of 

flight (Finn et al., 2012, Weimerskirch et al., 2016), and capture prey species found at 

different heights in the air column (Helms et al., 2016). Increasing height above the surface 

also enables birds to extend the distance over which they can potentially detect feeding 

opportunities (Andersson et al., 2009, Bodey et al., 2014a). Flight height has been shown to 

vary with activity, light levels, topography, wind speed and direction and between species 

(Katzner et al., 2012, Seeland et al., 2012, Johnston et al., 2014b, Cleasby et al., 2015a, 

Villegas-Patraca and Herrera-Alsina, 2015, Ross-Smith et al., 2016) but differences between 

sexes have seldom been considered.  

3.1.2 Sex differences in foraging behaviour of northern gannets 

Northern gannets (hereafter gannets) are medium-ranging neritic predators with little sexual 

size dimorphism (females are on average  ~ 8% heavier (Stauss et al., 2012)). Female 

gannets have been recorded to make longer foraging trips than males in both distance and 

duration in some years, though not in others (Lewis et al., 2002, Cleasby et al., 2015b). Sex 

differences have also been recorded in foraging distribution, diet and diving behaviour 

(Lewis et al., 2002, Cleasby et al., 2015b). In common with many air-breathing diving 

species, gannets perform dives with two distinct time-depth profiles: V-shaped and U-

shaped. V-shaped dives tend to be shallower and of shorter duration than U-shaped dives, 

which typically involve underwater propulsion (Garthe et al., 2000, Ropert-Coudert et al., 

2009). By using momentum gannets can attain depths of up to ~10 m during V-shaped dives 

(Ropert-Coudert et al. (2009), and these dives are more common among females, which 

attain greater depths during such dives than males (Cleasby et al., 2015b). In contrast, males 

make more U-shaped dives involving underwater wing beats to actively pursue prey 

(Cleasby et al., 2015b). Dive profile is also linked to habitat, with U-shaped dives more 



53 

 

common closer to the colony in mixed waters, possibly driven by prey type (Stauss et al., 

2012) or because waters closer to the coast are typically more turbid than those further 

offshore (Melin and Vantrepotte, 2015) favouring underwater pursuit (Grémillet et al., 

2012). A positive relationship exists between flight heights of gannets and subsequent dive 

depths (Garthe et al., 2014). However, it is not known whether or not differences in diving 

behaviour result in males and females flying at different heights, nor whether or not 

differences in foraging movements result in different spatial distributions of flight height in 

males and females. 

Estimates of flight heights of birds are commonly made by visual observations (Liechti et 

al., 2013a), laser range finders (Kahlert et al., 2012) or radar (Kemp et al., 2013) but it is 

now possible to estimate heights throughout foraging trips using pressure loggers 

(Weimerskirch et al., 2005b, Cleasby et al., 2015a, Helms et al., 2016). In this chapter I 

investigate the foraging behaviour of male and female gannets in three dimensions by 

examining the relationship between sex-specific foraging behaviour and flight height. I 

combine GPS and pressure data to test the hypothesis that females fly higher than males 

during active foraging, and I examine whether or not segregation in foraging areas leads to 

different spatial distributions of flight heights in males and females. I then explore a 

potential link between sex differences in foraging behaviour and the abundance of 0-group 

sandeels, which comprise more than 50 % of the diet by biomass in some years but much 

less in others (Lewis et al. 2003; Hamer et al. 2007). 
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3.2 Methods 

3.2.1 Study site and data collection 

Fieldwork took place at the Bass Rock, UK (6o 6’ N, 2° 36’ W) between mid-June and mid-

August of 2015 - 2017. In total 63 adult gannets with chicks (39 males, 24 females) were 

caught at the nest using a 6-meter telescopic pole fitted with a metal noose or hook. Each 

bird was fitted with a metal British Trust for Ornithology ring and a coloured plastic ring 

with a unique alphanumeric code for easy identification at the nest site. I then recorded body 

mass to the nearest 10 g using an electronic scale. Each bird had a GPS logger (igotU-

GT600, Mobile Action Technology, Taipei, Taiwan) attached to the upper side of the central 

tail feathers and a logger recording atmospheric pressure and temperature (MSR-145W, 

MSR Electronics, Seuzach, Switzerland) attached to the underside of the central tail feathers 

as described in Chapter 2. Birds were sexed from observations of copulation and other sex-

specific behaviour at the colony (Redman et al., 2002) and, at the Natural Environment 

Research Council (NERC) Biomolecular Analysis Facility, Sheffield, UK, using DNA 

extracted from breast feathers shed during handling and from blood collected in previous 

years under Home Office Licence (Wakefield et al., 2015). 

3.2.2 Trip analysis 

For each foraging trip, I determined the duration (h), total distance travelled (km), maximum 

distance (km) on a direct bearing from the colony and departure angle (degrees) from the 

colony (an average of the first 5 bearings > 10 km from the colony) (Patrick et al., 2014). I 

used speeds and turning angles derived from the GPS data to classify the behaviour of birds 

at sea into three categories: commuting, active foraging and time spent on the water 

(Wakefield et al., 2015).  I used the furthest location from the colony during each trip to 

distinguish between outbound and inbound stages, and I identified individual flight bouts as 

periods of flight separated by periods on the water.  
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To compare the foraging locations of males and females, I used the utilisation distribution 

(UD) of locations at sea, estimated using kernel density analysis (Calenge, 2006) of those 

locations categorised as active foraging. Hence I excluded periods of commuting and time 

spent on the water surface between periods of flight and during hours of darkness (gannets 

do not forage at night; (Lewis et al., 2002, Furness et al., 2018)). This analysis was carried 

out using the R package adehabitatHR (Calenge, 2006) over a 1 km-2 grid with a smoothing 

parameter of 10 km (Stauss et al., 2012). I used the 50 % and 95 % UDs to represent core 

and overall foraging areas, respectively (Hamer et al., 2007, Cleasby et al., 2015b).  

I investigated the link between male and female foraging behaviour and sandeel abundance 

by comparing the trip durations of males and females from this study and previous studies at 

this colony (Lewis et al. 2002; Cleasby et al. 2015b) with annual 0-group sandeel stock 

assessment data (billions of recruits) for the southern and central North Sea including 

Dogger Bank, and the central and northern North Sea 

(http://standardgraphs.ices.dk/stockList.aspx; datasets san.sa.1r and san.sa.4, respectively). I 

summed datasets to give an index of annual abundance weighted 1:2:1 for the southern, 

central and northern North Sea, respectively (i.e. weighting abundance data in proximity to 

Bass Rock more heavily). 

3.2.3 Flight height and dive depth estimation 

Following Cleasby et al.(2015a) I used the barometric formula (Equation 3.1) to estimate the 

heights of birds (h m) above sea level:    

ℎ =  −
𝐾𝑇 

𝑚𝑔
ln (

𝑃

𝑃0
) 

Equation 3.1 

where K is the universal gas constant for air (8.31432 N m mol-1 K-1); m is the molar mass of 

air (0.0289644 kg mol-1); g is the acceleration due to gravity (9.80665 ms-2); and T is the 
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temperature (K) of the atmosphere between P0 and P. P0 and P are the atmospheric pressures 

(pascals) at sea level and at height h (m) respectively.  

I accounted for spatial and temporal changes in atmospheric pressure at sea level by 

adjusting calibration pressures (P0) throughout the duration of each flight bout using the 

ERA-Interim reanalysis sea surface pressure dataset (6-hourly data at 0.125 × 0.125 degree 

or approximately 8 km resolution) produced by the European Centre for Medium-Range 

Weather Forecasts (ECMWF) (Dee et al., 2011), as described in Chapter 2. 

Dive depths were estimated by identifying rapid increases in pressure above ambient (1000 

mb) and converting them to depth below the water surface using the following equation: 

𝐷 =  
𝑃𝑏 − 𝑃𝑎

100
 

 

Equation 3.2 

Where D = dive depth (m), Pb (mb) is the pressure recorded on the bird and Pa (mb) is 

ambient pressure. A standard ambient pressure of 1000 mb was applied to all pressure data 

because pressure increases rapidly with depth below the surface (by 1 mb per cm of depth), 

and so using an ambient pressure of 1000 mb gave confidence that all dives were captured.  

3.2.4 Statistical analysis  

I used linear mixed effects models (LMMs) fitted using the ‘nlme’ package (Pinheiro et al., 

2018)  to model the relationships among behaviour, sex, year and dive depth. Duration, 

distance and maximum displacement from the colony were square root transformed prior to 

analysis. Bird identity was included in all models as a random factor with trip nested within 

bird identity in flight height models. The serial autocorrelation in successive height 

measurements during trips was modelled using a first-order continuous autoregressive 

structure. Some estimated flight heights were below 0 m and following Cleasby et al. 
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(2015a) these were retained in the analysis by adding the minimum estimated height 

(absolute value) to all cases to permit square root-transformation. Spatial variation in flight 

height was modelled using a generalized additive mixed model (GAMM) with Gaussian 

errors in the R package mgcv (Wood, 2006). To explore the relationship between trip 

durations and sandeel abundance I used a linear model with a quasi-Poisson model structure 

to address over-dispersion in the data. All statistical tests and models were implemented 

using R statistical software (R Development Core Team, 2016b). 

3.3 Results 

3.3.1 Trip metrics and activity budgets  

I acquired combined GPS and altitude data for 173 trips by 53 individuals (57 trips by 16 

males and 40 trips by 10 females in 2015; 31 trips by 9 males and 16 trips by 7 females in 

2016; 18 trips by 7 males and 11 trips by 4 females in 2017). I also obtained GPS data for an 

additional 46 trips by males and 33 trips by females over the three years of the study, 

included in the analysis of horizontal movements.  

Overall, females foraged more frequently in offshore waters to the east of the colony, 

whereas males foraged most frequently in coastal waters to the north-east and south-east of 

the colony (Figure 3.1), as also found in previous years (Cleasby et al. 2015b). Despite this 

difference in distributions, however, there was no significant difference between sexes in 

foraging trip duration (LMM; F1, 47 = 1.4, P = 0.2), total distance travelled (F1, 47 = 1.6, P = 

0.2), maximum displacement from the colony (F1, 47 = 1.3, P = 0.3) or departure angle from 

the colony (F1, 47 = 1.0, P = 0.3) (Table 3.1). There was no difference among years in 

maximum displacement from the colony (F2, 195 = 2.4, P = 0.09) or departure angle (F2,195 = 

0.7, P = 0.5) but both trip duration (F2,195 = 6.7, P = 0.002) and total distance travelled (F2,195 

= 3.9, P < 0.05) were shorter in 2016 than the other two years studied (Table 3.2). 
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a.1 a.2 a.3 

 

b.1 b.2 b.3 

 

c.1 c.2 c.3 

 

Figure 3.1. (1) Foraging tracks and (2 and 3) utilisation distributions (UDs) of (2) female 

and (3) male gannets during the breeding seasons of (a) 2015, (b) 2016 and (c) 2017. UDs 

are based on active foraging locations from 100 tracks by females (red) and 152 tracks by 

males (blue). Shading denotes UD contours (darker, 50%; lighter, 95%). 
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Table 3.1. Trip metrics of male and female gannets rearing chicks at Bass Rock in 2015- 

2017. 

  Male Female 

Variable  Mean n SD Mean n SD 

Trip duration (hours) 23.0 147 11.2 24.8 100 11.6 

Total distance (km) 502.4 147 288.7 546.6 100 236.3 

Maximum displacement 

(km) 
201.6 147 117.0 218.1 100 90.4 

Departure angle (deg) 31.7 147 64.1 15.0 100 35.4 

 

Table 3.2. Trip metrics of male and female gannets rearing chicks at Bass Rock in 2015- 

2017. 

  2015 2016 2017 

  Mean n SD Mean n SD Mean n SD 

Trip duration 

(hours) 
24.9 114 9.7 20.9 90 12.3 25.8 48 11.2 

Total distance 

(km) 
568.9 114 251.9 454.2 90 267.4 533.4 48 288.7 

Maximum 

displacement 

(km) 

226.4 114 102.4 187.5 90 105.3 208.6 48 116.9 

Departure 

angle (deg) 
21.4 114 47.3 22.4 90 62.1 42.7 48 55.1 
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3.3.2 Sex-, behaviour- and location-specific flight heights 

Median flight height was 21.2 m (IQR 7.7 – 42.1 m). Flight height was significantly higher 

during periods of active foraging than commuting (𝜒2 = 267.66, P < 0.001) and significantly 

higher during outbound than inbound commuting (𝜒2 = 54.3, P < 0.001) (Figure 3.2).  

 

Females flew significantly higher than males when actively foraging (𝜒2 = 6.39, P = 0.01) 

and when commuting away from the colony (𝜒2 = 4.53, P = 0.03) but the difference was 

only marginally significant when returning to the colony (𝜒2 = 2.99, P = 0.08) (Figure 3.3). 

There was no difference among years in foraging or commuting flight heights (P > 0.1). 

Across the foraging distribution, birds of both sexes tended to fly lower over inshore waters 

than elsewhere, particularly along the coast NE of the colony, with the greatest difference 

between sexes occurring mainly over offshore waters, particularly to the east of the colony 

(Figure 3.4). 
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Figure 3.2. Illustration of the variation in flight height throughout a single foraging trip 

from Bass Rock (red triangle). Line shading represents height (m) from blue (lowest) to 

red (highest). 
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Figure 3.3. Flight heights (medians, IQRs and ranges) of female (white) and male (grey) 

gannets while commuting away from the colony, actively foraging and commuting back to 

the colony. 
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a) 

 

b) 

 

 

Figure 3.4. Spatial variation in flight heights of (a) female and (b) male gannets when 

actively foraging. Contours and shading show estimated heights (m) above sea level 

(brighter shading shows higher elevations). 
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3.4 Flight height and dive depth 

Females were ~ 185 g heavier than males on average (mean ± SD; female, 3096 ± 308 g; 

male, 2910 ± 214 g; Student’s t-test; t83 = 3.32, P < 0.001) and made deeper dives than males 

on average (median = 5.01 m, IQR 3.8 – 5.5 m and median = 3.74 m, IQR 2.8 – 4.9, 

respectively; LMM using log transformed depths, χ2
1,46 = 5.70, P = 0.017). There was also a 

significant interaction between body mass and sex (χ2
1,46 = 5.03, P = 0.02), due to a stronger 

effect of mass on dives depths of males than females (Figure 3.5), however these results 

should be viewed with some caution as removal of points makes the relationship non-

significant (χ2
1,38 = 0.69, P = 0.4).  

a) b) 

  

Figure 3.5. The relationship between body mass and (a) mean maximum dive depth and (b) 

maximum dive depth for males (blue) and females (red). Lines show linear model 

predictions (solid – all data; dashed – outliers (within squares) removed), error bars are 

standard error.  
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3.4.1 Trip durations and sandeel abundance  

The index of 0-group sandeel abundance varied widely between years, ranging from < 100 

billion in 2015 to > 400 billion in 2001. There was a significant negative relationship 

between trip duration and sandeel abundance index (LM; 𝜒2 = 8.03, P = 0.017), with some 

indication of a steeper rate of decline for males than females (Figure 3.6); trips by females 

were longer than those by males in all years except the two with lowest sandeel abundance 

(2011 and 2015), with the difference between sexes tending to be greater in years with 

higher sandeel abundance. However the difference between sexes was only marginally 

significant (P = 0.09) and further data for more years are needed to confirm or refute this 

pattern. 

 

Figure 3.6. The relationship between the mean trip durations of male and female gannets 

and the abundance of 0-group sandeels in the North Sea. 
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3.5 Discussion 

Previous studies of sex-specific foraging behaviour in gannets have highlighted differences 

in horizontal movements and dive depths (Lewis et al., 2002, Cleasby et al., 2015b). I found 

that these differences also extend to flight heights. Foraging trip durations and destinations 

in this study were similar to those in some previous years at this colony (Hamer et al., 2007, 

Wakefield et al., 2015) and I found no differences in these metrics between males and 

females, in accordance with results of a study at the same colony in 2001 (Lewis et al., 

2002). In contrast, Cleasby et al. (2015b)  found that males made significantly shorter trips 

than females in both distance and duration in 2010 to 2012, with a significant difference 

between years in the overlap between male and female foraging distributions. A possible 

explanation for this annual variation in sex differences could involve the abundance of 

sandeels. Gannets at Bass Rock feed extensively on 0-group sandeels in some years but not 

in others, and trip durations at the colony have been putatively linked to 0-group sandeel 

abundance in surrounding waters (Hamer et al., 2007). The foraging distribution of males 

has also been linked with sandeel habitat (Cleasby et al., 2015b). The data presented here 

suggest a possible link between the abundance of 0-group sandeels and the difference in trip 

durations of males and females. Trips were shorter in both sexes when sandeel numbers 

were higher, with some evidence of a steeper rate of decrease for males than females. This 

pattern suggests that males may prey upon sandeels to a greater extent than females when 

they are available, resulting in shorter trips by males in years of high sandeel abundance. 

However the difference between sexes was only marginally significant and this suggestion 

should be viewed with caution until further data are available for more years to confirm or 

refute it.  

3.5.1 Differences in flight height 

Flight height estimated in this study (median = 21 m) was very similar to that estimated by 

Cleasby et al. (2015a) (median = 22 m) with heights during active foraging higher than those 
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during commuting in both sexes. Active foraging involves birds spending more time in areas 

where prey might be expected to be more plentiful by moving at slower speeds and along 

more tortuous paths (area-restricted search behaviour; (Pinaud and Weimerskirch, 2007, 

Hamer et al., 2009)). I found that active foraging in gannets not only involved reducing 

speed and increasing path tortuosity but also flying at greater heights. This combination of 

more time in an area at higher elevations may facilitate detection of prey either directly 

(Weimerskirch et al., 2005b, Bodey et al., 2014a) or through local enhancement (Haney et 

al., 1992, Hamer et al., 2000). Commencing plunge-dives from a greater height may also 

increase momentum, enabling attainment of greater depths (Garthe et al., 2014, Cleasby et 

al., 2015b).   

I found support for the hypothesis that females fly higher than males during active foraging. 

Garthe et al. (2014) found that gannets making V-shaped dives for mackerel dived from a 

mean height of 37.1 m. This was very similar to the median height of 35.3 m for females 

during active foraging in this study, and much higher than the corresponding height of 25.7 

m for males (Figure 3.3). Garthe et al. (2014) also found a positive relationship between 

flight height and dive depth, and I found that females not only flew higher than males during 

active foraging but also dived to greater depths. Cleasby et al. (2015b) found that females at 

Bass Rock made more V-shaped dives than males and foraged more over thermally stratified 

water off-shore, where they were presumed to be feeding mainly on mackerel. Together, 

these data suggest that sex differences in both mean flight heights and the spatial distribution 

of flight heights were associated with females making more V-shaped dives than males, 

particularly in thermally stratified waters offshore to the east of the colony. 

Most active foraging by gannets occurs during the outbound leg of a trip or around the 

maximum range from the colony (Hamer et al., 2009), although birds do sometimes dive 

during the return leg (Lewis et al., 2004). Commuting flight height during the outbound leg 

was higher on average than during the return leg, probably to facilitate detection of feeding 
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opportunities (Andersson et al., 2009, Votier et al., 2011, Bodey et al., 2014a, Corman and 

Garthe, 2014, Weimerskirch et al., 2016). That males and females flew at similar heights 

during the inbound leg of the trip strongly suggests that differences in flight heights during 

outbound commuting and active foraging were linked to foraging behaviour. Commuting 

flight height may also have been influenced by wind speed and direction (Krüger and 

Garthe, 2001), and the relationship between windscape and flight height is explored in 

Chapter 4. 

My findings add to the body of work highlighting foraging differences between male and 

female gannets despite only slight sexual size dimorphism. Gannets have been identified as 

one of the seabirds at greatest potential risk from collision with offshore wind turbines 

(Furness et al., 2013) and so sex-specific foraging behaviour and flight heights raise 

concerns about potential sex-biased collision risks (Cleasby et al., 2015a). Sex-specific 

mortality has demographic implications (Martinez-Abrain et al., 2006) and with large 

increases in wind farm infrastructure planned for the North Sea over the coming decade, 

consideration should be taken to include sex-specific and three-dimensional behaviour in 

assessments of risk. This topic is examined further in Chapter 5.  
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Chapter 4 : Effects of weather on three-dimensional foraging 

behaviour 

Abstract 

Foraging is a key component of time-activity budgets, forming an essential link between 

prey availability and predator breeding success. Gannets are large seabirds that make long 

foraging trips during the breeding season but the influence of weather conditions on their 

foraging behaviour is unclear. In this chapter I use data from GPS and pressure loggers to 

investigate the effects of weather on the three-dimensional foraging behaviour of gannets 

breeding at Bass Rock, Scotland. I found that birds spent a greater proportion of each trip 

actively foraging during stronger winds, suggesting more challenging conditions as wind 

speed increased, probably due to changes in prey visibility and behaviour. However, there 

was no increase in trip durations during stronger winds, because birds compensated for 

spending more time foraging by spending less time on the water. Wind speed and direction 

had a significant effect on ground speeds during both the outbound and return stages of trips 

and also influenced the height at which birds flew during both commuting and active 

foraging. Adults returned at higher speeds from more distant foraging locations up to ~200 

km from the colony, due at least in part to a decrease in the proportion of time on the water. 

Over the longest return distances, birds encountering headwinds spent less time on the water 

and so were able to attain similar speeds of travel on average to those encountering 

crosswinds or tailwinds, suggesting that by adjusting time spent on the water, birds were 

able to buffer trip durations to some extent against adverse weather conditions encountered 

at sea.  
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4.1 Introduction 

Global climate change is having a profound effect on terrestrial and aquatic biota, leading to 

pervasive changes in species abundance, distributions, demography and behaviour (Jones et 

al., 2018, Thackeray et al., 2016, Sydeman et al., 2015, Zuckerberg et al., 2018, Jenouvrier 

et al., 2018). Drivers of these changes include both indirect effects on prey availability and 

habitat quality (Regehr et al., 2007, Durant et al., 2007), and direct effects of changing 

weather conditions (McKechnie and Wolf, 2010, Lamarre et al., 2018). The impacts of 

changes in temperature and rainfall on species have been an increasing focus of recent 

research (Parmesan et al., 1999, Oswald et al., 2008, Terraube et al., 2017, Jones et al., 

2018) yet while changes in other environmental variables such as cloud level and wind 

regime are also affecting species, these factors are less frequently considered (Foster, 2001, 

Bowlin and Wikelski, 2008, Gill et al., 2014). In temperate and polar latitudes 

environmental conditions are often highly variable and unpredictable, with increases in 

mean wind speeds and storm frequencies predicted as a result of anthropogenic climate 

change, particularly in mid-latitudes (McInnes et al., 2011, Young et al., 2011), although 

uncertainties still exist (Coumou et al., 2015).  

Wind is a major component of the environmental conditions experienced by birds, affecting 

the cost of travel on migration (Gill et al., 2014, La Sorte and Fink, 2017) and on foraging 

trips during the breeding season (Hernandez-Pliego et al., 2017, Gibb et al., 2017), as well as 

affecting the efficiency of detecting and capturing prey (Nevitt et al., 2008, Moller, 2013). In 

aquatic environments wind influences wave patterns (Salisbury et al., 2013, Albert et al., 

2016) and turbidity (Cho, 2007) which can alter the vertical distribution of forage fish in the 

water column (Konarzewski and Taylor, 1989, De Robertis et al., 2003, Parker-Stetter et al., 

2016) making them more difficult to locate or pursue (Dodd and Vahle, 1998, Finney et al., 

1999, Stienen et al., 2000, Baptist and Leopold, 2010). The effect of rainfall on the water 

surface is complex and dependent on rain intensity, raindrop size, terminal velocity and the 
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angle at which the rain droplets strike the surface (Yang et al., 1997). At low wind speeds, 

rain dampens waves but at higher wind speeds the damping effect of the rain decreases 

(Zhao et al., 2013). Wave-breaking and rainfall also produce underwater sound (Nystuen et 

al., 1993, Thorpe, 1995) which may affect the ability of prey close to the surface to detect 

predators aurally. There may also be lagged effects of wind on foraging efficiency through 

increases in sea surface swell and choppiness after the wind has subsided (Dunn, 1973) .   

In addition to affecting foraging efficiency, wind conditions also influence foraging flight 

height. Several studies have shown that birds alter their flight elevations in response to wind 

direction, with head winds associated with lower heights (Krüger and Garthe, 2001, 

Villegas-Patraca and Herrera-Alsina, 2015, Tarroux et al., 2016). Flying lower into 

headwinds allows birds to take advantage of wind shear, where wind speed may be reduced 

by ~15 - 20 % at heights below 4 m (Finn et al., 2012). Flying less than 1.5 × wingspan 

above the surface also allows birds to utilise ground effect, where lift is increased and 

aerodynamic drag is decreased as a result of the ground interrupting wingtip vortices and 

downwash behind the wing (Rayner, 1991). Hence flying close to the ground reduces flight 

costs when flying into head winds (Rayner, 1991, Finn et al., 2012) whereas flying higher 

with tail winds enables faster and more efficient flight (Liechti et al., 2000, Krüger and 

Garthe, 2001, Green, 2004).  

Many seabirds forage over large areas of ocean and so how they respond to weather 

conditions across their foraging ranges may have consequences for trip durations, nest 

attendance patterns, foraging success and chick provisioning rates. Numerous studies of 

seabirds have highlighted changes in trip durations and distances travelled in response to 

changes in prey distributions and abundance (Hamer et al., 2007, Orben et al., 2015, 

Camprasse et al., 2017) but few have considered responses to weather conditions. Gannets 

(Morus spp.) are plunge diving predators that make foraging trips covering 10s to 100s of 

km (Hamer et al., 2000, Angel et al., 2016, Botha et al., 2017). They use vision to detect 
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prey during the underwater phase of dives (Machovsky-Capuska et al., 2012), which are 

shallower at dawn and dusk than at other times of day (Cleasby et al., 2015b), probably due 

to changes in the vertical distribution of prey coupled with greater difficulty in visual 

detection of prey in low light conditions (Wanless et al., 1999, Elliott and Gaston, 2015). 

Similarly, a reliance on visual cues to identify suitable foraging locations (Tremblay et al., 

2014, Bodey et al., 2014b) may explain the little time gannets spend flying at night (Hamer 

et al., 2000, Garthe et al., 2003, Furness et al., 2018). 

Northern gannets (M. bassanus; hereafter gannets) are the largest seabird breeding in the 

North Atlantic Ocean with an increasing population in the United Kingdom (Murray et al., 

2015). They exploit prey of a wide range of sizes from 0-group sandeels (< 10 cm length) to 

herring, mackerel and garfish (> 35 cm) and larger species obtained as fisheries discards 

(Hamer et al., 2000, Lewis et al., 2003). Energy expenditure in gannets is higher during 

active foraging than commuting to and from the colony but during both activities, less 

energy is expended when flying with the wind (Amelineau et al., 2014). However they spend 

more time actively foraging with a head wind than with a tail wind, possibly a consequence 

of numerous take-offs into the wind following dives or to reduce flight speed, which is 

advantageous in the detection of prey (Machovsky-Capuska et al., 2012, Amelineau et al., 

2014). Gannets also fly higher during active foraging than commuting (Chapter 3) but it is 

not clear how weather conditions affect flight heights, time-activity budgets or overall 

durations of foraging trips. 

In this chapter I investigate variation in the three-dimensional foraging behaviour of gannets 

at Bass Rock in response to weather conditions in the North Sea. I test the hypotheses (1) 

that trip duration and time spent foraging increase in deteriorating weather conditions, and 

(2) that weather conditions affect flight heights during commuting and active foraging. In 

light of the differences I found between male and female flight heights (Chapter 3) I also 

explore how males and females respond to weather conditions experienced at sea.  
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4.2 Methods 

4.2.1 Study site and data collection 

Fieldwork took place at the Bass Rock, UK (6o 6’ N, 2° 36’ W) between mid-June and mid-

August of 2015 - 2017. In total 63 adult gannets with chicks (39 males, 24 females) were 

caught and fitted with identification rings, a GPS logger and a logger recording atmospheric 

pressure and temperature as described in Chapter 2. Birds were sexed from observations at 

the nest and from biomolecular analysis as described in Chapter 3.  

4.2.2 Trip analysis 

All location data were interpolated to 2 min intervals and behaviours at sea classified as 

described in Chapter 2. I determined the trip metrics as described in Chapter 3. I also 

calculated the direction of travel throughout each trip as the bearing between successive 

locations.  

4.2.3 Flight height estimation 

Flight heights were estimated using a combination of GPS and pressure data recorded using 

loggers attached to the bird, and reanalysis sea surface pressure data as described in Chapter 

2. 

4.2.4 Weather conditions 

I downloaded the following data from the ERA-Interim reanalysis dataset (see above): 10 m 

zonal (U) and meridional (V) wind components at 10 m a.s.l, rainfall (mm h-1) and low cloud 

cover (% of sky covered by low clouds, defined as those at pressures greater than 80 % of 

surface pressure, equivalent to altitude below ~1.9 km). I then selected those data closest in 

time and space to every bird location at sea (maximum distance was 4 km and maximum 
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time difference was 3 h). I next used the U and V wind components to calculate wind speed 

(ms-1) and direction (o) using Equations 4.1 and 4.2, respectively. 

𝑊𝑠 =  √𝑈𝑤2 + 𝑉𝑤2  Equation 4.1 

𝑊𝑣 =
180

𝜋
(atan(𝑉𝑤, 𝑈𝑤)) Equation 4.2 

where Ws = wind speed, Uw = zonal (U) wind component, Vw = meridional (V) wind 

component, Wv = meteorological wind direction.  

Following Amélineau et al. (2014), I used the bird-wind angle (BWA) to characterise the 

relationship between wind direction and the bird’s direction of travel. Values of 0 - 45o were 

categorised as tail winds, 45 - 135o as cross winds and 135 – 180o as head winds (Figure 

4.1). To examine the use of ground effect I assumed that birds experienced lift at heights < 

2.74 m (i.e. 1.5 × wingspan) above sea level (Finn et al., 2012).  

4.2.5 Statistical analysis 

I modelled trip parameters and flight heights during active foraging and commuting in 

relation to weather variables using linear mixed-effects models (LMMs) fitted using the R 

package ‘nlme’ (Pinheiro et al., 2018). I included foraging trip identity nested within bird 

identity as a random effect to control for repeated measures across multiple trips per bird, 

and I included a temporal autocorrelation structure to control for non-independence of 

successive data within each trip. I used generalized linear models (GLM) to examine the 

relationship between speed, time on the water, distance travelled and wind direction. I used a 

Gamma error distribution to examine speed and a Poisson error distribution to examine time 

on the water both with an identity link function. I ran three models for both speed and time 

on the water so as to include all combinations of distance and distance2 and selected the best 

model using Akaike Information Criterion (AIC) values. 
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Flight heights were treated as described in Chapter 3 for inclusion in models. All response 

variables, with the exception of trip distance, were right skewed and were therefore square-

root transformed prior to analysis. Global models for each response variable included wind 

speed and direction at 10 m a.s.l., rainfall and low cloud cover and their two-way 

interactions. Sex was included as a fixed effect in the global models of flight height to see 

whether differences in flight heights of males and females (Chapter 3) were influenced by 

weather. Year was included as a fixed effect in trip parameter models due to it being a 

significant factor in explaining variation in trip distances and durations (Chapter 3) but I did 

not include it in flight height models as there was no annual variation found in flight height 

(Chapter 3). Continuous predictor variables were normalised to increase the interpretability 

of parameter estimates (Schielzeth, 2010) and I tested for collinearity between predictor 

variables to ensure this would not cause difficulties for determining true relationships 

(Freckleton, 2011).  

All combinations of variables from the global model were modelled separately using the 

dredge function in the R package MuMln (Bartón, 2013) and the top ranked model was 

selected using the Akaike Information Criterion (AIC). Models with the greatest raw AIC 

weight and a ∆AIC < 2 from the next ranked model were considered to have the best model 

fit (Burnham and Anderson, 2002) but where there was uncertainty over the top model, the 

outputs of the top six models were examined (Harrison et al., 2018).  
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Figure 4.1. (a) Graphical representation of how bird-wind angle (α) was calculated from the 

direction of the birds ground track (dashed line – T) and the wind direction (dotted line – 

W). The birds heading (solid line – H) is the direction in which the bird is flying. In this 

example α represents a tail wind. (b) Illustration of wind directions classified as head winds 

(purple), cross winds (white) and tail winds (green). Arrows show mean wind direction in 

each case. 

4.3 Results 

I acquired combined GPS and altitude data for 189 trips by 48 individuals (107 trips by 29 

birds in 2015; 47 trips by 16 birds in 2016; 35 trips by 13 birds in 2017) and GPS data for an 

additional 44 trips over the three years of the study (Figure 4.2a). Bearings between the 

colony and the terminal point of trip had a bimodal distribution with peaks between 30 - 40o 

and 110 - 120o (Figure 4.2b). 
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a) b) 

 

Figure 4.2. (a) Tracks of foraging trips and (b) bearings between the colony and the 

terminal point of the trip (n=189) by adult gannets rearing chicks at Bass Rock between mid-

June and mid-August of 2015-2017. 

The prevailing wind during each year of data collection was from the south and west, with 

wind speed most commonly 3 – 6 ms-1 at Bass Rock and stronger at greater distances from 

the coast (Figure 4.3). Rainfall at Bass Rock averaged 0.12 mm h-1 (range 0 – 2.76 mm h-1). 

These weather conditions were in keeping with the long-term average 

(https://www.meteoblue.com/en/weather/forecast/modelclimate/dunbar_united-

kingdom_2650776).  
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Figure 4.3. Wind speed and direction (wind origin) at Bass Rock (left column) and across 

the northern and central North Sea (right column) during the breeding seasons (June-August) 

of 2015, 2016 and 2017. Wind data are represented on a 0.125 × 0.125o grid. Shading 

represents wind speed (ms-1) from 0 (dark blue) to 8 (yellow). Black arrows represent wind 

direction and their length is proportional to wind speed. 
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4.3.1 Effects of weather conditions on behaviour at sea 

When commuting away from the colony, birds spent 28 % of their time in flight with a tail 

wind and 15 % with a head wind, compared with 12 % with a tail wind and 41 % with a 

headwind when returning to the colony (Figure 4.4a & c). When actively foraging, birds 

spent significantly more time flying into the wind (33 %) and less with the wind behind 

them (18 %) than expected by chance (Figure 4.4b; 𝜒2
2

 = 511.0, P < 0.0001).  

                    

 

Figure 4.4. Frequency distribution of bird-wind angles for GPS locations during (a) 

outbound commuting (n = 19,238 locations), (b) active foraging (n = 20,446) and (c) 

inbound commuting (n = 21,233). Green shading represents tail winds; white, cross winds; 

purple, head winds. 
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Linear mixed effects models allowed evaluation of how different weather variables affected 

trip durations and the proportions of each trip spent travelling, actively foraging and sitting 

on the water. Increases in the distance travelled per trip resulted in significant increases in 

both trip duration (Figure 4.5a; F1,140 = 522.7, P < 0.001) and the proportion of each trip 

spent commuting (Figure 4.5b; F1,140 = 45.1, P < 0.001) but no other predictor variable 

meaningfully improved either model (ΔAIC > 2 in each case; AICc weight dropped from 

0.80 to 0.05 and from 0.50 to 0.11, respectively; Appendix B1). The proportion of time spent 

actively foraging per trip increased significantly with increasing wind speed (Figure 4.6; 

F1,140 = 18.4, P < 0.001) but the model was not meaningfully improved by including any 

other variable (Appendix B1).  

 

Figure 4.5. Trip distance in relation to (a) trip duration and (b) proportion of the trip spent 

travelling. Lines show linear model predictions with 95% confidence region. 
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Figure 4.6. Proportion of trip spent actively foraging (mean ± SE) in relation to mean wind 

speed encountered at sea. Line shows linear model prediction with 95% confidence region. 

There was no clear top model for the proportion of daylight hours spent on the water but all 

seven models with ΔAIC < 2 included distance travelled per trip and three included wind 

speed, including the top model (Appendix B1), indicating that the proportion of time on the 

water decreased as distance travelled increased and with increasing wind speed (Figure 4.7). 

 

Figure 4.7. LMM predictions for the proportion of daylight hours spent on the water in 

relation to distance travelled per trip, for five different wind speeds.   
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During periods of commuting, whether outbound or inbound, ground speeds were higher 

during tail winds than head winds (mean ± SD = 17.5 ± 3.4 ms-1 and 12.6 ± 2.0 ms-1, 

respectively; Figure 4.8). Ground speed increased by ~3 ms-1 for every 10 ms-1 increase in 

tail wind speed (LM; F1,8 = 18.46, P < 0.001, R2 = 0.70, slope = 0.31) and decreased by ~ 4 

ms-1 for every 10 ms-1 increase in head wind speed (LM; F1,8 = 171, P < 0.001, R2 = 0.96, 

slope = -0.41).  

Average travel speed over the return leg of a trip (including time on the water) was 

significantly related to distance from the colony (GLM; F1,184 = 26.1, P < 0.001) and bird-

wind angle (GLM; F1,182 = 5.9, P < 0.05), with the best fitting GLM describing a quadratic 

relationship:  

Travel speed (km h–1) = 3.394 × 10-2 (SE ± 7.68) distance – 5.9 × 10-5 (SE ± 

2.22 × 10–5) distance2 - 1.229 × bird-wind angle 

Travel speed increased with increasing distance to the colony up to 100 - 200 km, beyond 

which the relationship levelled off, with some indication of a reduction in average speed 

over the longest distances (Figure 4.9a). In addition, travel speeds over distances up to ~150 

km were fastest for birds returning with a tail wind and slowest for those returning into a 

head wind, with no clear effect of bird-wind angle over greater distances (Figure 4.9a). Time 

spent on the water during the return leg of a trip was also significantly related to maximum 

distance from the colony, distance2 and bird-wind angle (GLM; P < 0.001 in each case). For 

return legs up to 100 - 200 km in length, time on the water decreased with increasing 

distance and was greatest for birds returning with a tail wind and least for those returning 

into a head wind (Figure 4.9b).  
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Figure 4.8. Ground speeds of commuting gannets in relation to head (- ve) and tail (+ ve) 

wind speed.  

a) b) 

 

Figure 4.9. (a) Average speed of travel and (b) proportion of daylight hours on the water 

during the return leg of foraging trips in relation to distance (km) for different bird-wind 

angles (green, head wind; pink, cross wind; blue, tail wind). Lines show linear model 

predictions estimated with loess function in R. Shaded areas are 95% confidence regions. 

Based on data for 198 foraging trips. 
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4.3.2 Flight height 

Gannets adjusted their flight heights depending on wind speed and direction. Flight heights 

were lower when commuting than when actively foraging (Chapter 2) and lower when 

commuting into head winds than with tail winds (LM; 𝜒2 = 761.7, P < 0.001; Table 4.1). 

When actively foraging, flight heights were unaffected by bird-wind angle, with median 

heights of ~ 28 m in both head and tail winds (Table 4.1).     

Table 4.1. Flight heights of gannets during commuting and active foraging with head and 

tail winds. 

 Head wind Tail wind 

 Median (m) IQR (m) Median (m) IQR (m) 

Commuting 12.6 3.8 – 29.2 25.6 9.6 – 46.1 

Active foraging 27.8 9.4 – 47.3 28.3 7.7 – 48.7 

 

Linear mixed effects modelling allowed evaluation of the effects of different weather 

variables on flight heights of males and females during active foraging and commuting. The 

top models, ranked according to AICc (∆AIC < 2), indicated that wind speed and rainfall 

had the strongest influence on flight height during active foraging (Appendix B2) with both 

variables included in all six top models, whereas sex and low cloud were included in four of 

the top six models. Model predictions from the top model set indicated that flight height 

during active foraging increased as wind speed increased and as rainfall increased in both 

males and females. There was no difference between sexes in the slopes of these 

relationships but females flew higher in both cases (Figure 4.10). Wind speed and rainfall 

also interacted such that the relationship between wind speed and flight height became 

steeper as rainfall increased in both sexes (Figure 4.11). Some caution should be placed on 

the interpretation of the rainfall data, however, due to the small quantity of data during 

heavy rain. 
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Figure 4.10. Model predictions (LMM) for the relationship between flight height during 

active foraging and (a) wind speed and (b) rainfall in males and females.  

 

 

Figure 4.11. Model predictions (LMM) for the relationship between flight height during 

active foraging and wind speed under different rates of rainfall.   

The proportion of flight in ground effect increased from 11 % in rough sea conditions to 28 

% in calm sea conditions when commuting away from the colony with a tail wind and from 

25 % in rough sea conditions to 42 % in calm sea conditions when returning to the colony 

with a head wind (Table 4.2).  
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Table 4.2. Proportion of time spent utilising ground effect (GE) relative to wind direction 

whilst commuting outbound and inbound. Wind speeds < 2 ms-1 produce calm sea 

conditions, > 2 ms-1 produce conditions where sea surface is rough (Met Office, 2016). 

 Tail winds Head winds 

Wind speed Outbound Inbound Outbound Inbound 

 GE Non GE GE Non GE GE Non GE GE Non GE 

< 2 ms-1 0.28 0.72 0.17 0.83 0.17 0.83 0.42 0.58 

> 2 ms-1 0.11 0.89 0.16 0.84 0.16 0.84 0.25 0.75 

 

4.4 Discussion 

The location of the Bass Rock, 2 km off the coastline of East Lothian in the Firth of Forth, 

means that gannets breeding there are strongly constrained in the directions they are able to 

travel on foraging trips without crossing land. Nonetheless bearings of trip were bimodal, 

with more NE and SE of the colony and fewer due east, as also found in previous studies at 

this site (Hamer et al., 2000, Wakefield et al., 2015). The prevailing wind came from the 

south-west meaning that birds making trips to the north-east were likely to have encountered 

tail winds on the outbound part of the journey and head winds on the return leg whereas 

birds that made trips to the south-east were more likely to have encountered cross winds 

during both phases of the trip.  

Both wind speed and direction influence energy expenditure during flight (Gabrielsen et al., 

1991, Furness and Bryant, 1996, Sakamoto et al., 2013) with a greater effect for gannets 

during commuting than active foraging (Amelineau et al., 2014). Birds might be expected to 

reduce energy expenditure during trips by avoiding headwinds and making use of tailwinds 

but in the case of gannets breeding at Bass Rock and elsewhere (Amelineau et al., 2014) 

structuring a foraging trip to avoid headwinds is difficult due to the location of the colony in 

relation to the coastline and the prevailing wind direction. Gannets from Bass Rock spent 
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more time flying into with head winds during active foraging than when commuting, similar 

to northern gannets from Rouzic (Amelineau et al., 2014). This supports the suggestion that 

foraging into head winds makes it easier for gannets to reduce their ground speed and spot 

prey (Amelineau et al., 2014, Machovsky-Capuska et al., 2012).   

In support of hypothesis (1), increases in wind speed resulted in a greater proportion of each 

trip spent actively foraging. This suggests that lighter winds were more favourable for the 

location and capture of prey, possibly because as visual predators, birds could more easily 

target prey when there was less disruption to the water surface (Sundarabalan et al., 2016). 

The increase in time spent foraging did not, however, result in an increase in overall trip 

duration, because birds at least partly compensated for this increase by decreasing the time 

they spent on the water during strong winds. These results contrast to some extent with the 

behaviour of Cape gannets (Morus capensis) where mild to no wind, as well as strong winds 

resulted in shorter foraging trips durations (Pistorius et al., 2015). It was suggested that low 

rates of prey capture during strong winds could be offset by enhanced location of prey 

patches through wind-supported flight. However, I found no evidence that the proportion of 

time spent commuting during trips was affected by wind speed, and very little support for 

any effect of wind direction. An alternative explanation for the pattern observed in Cape 

gannets was that strong winds reduced the distances travelled per trip, which were not 

examined in that study. I found no discernible effect of rainfall on trip duration or the 

proportion of the trip spent actively foraging. Again, this differs from the pattern recorded in 

Cape gannets which shortened trip durations in response to no or heavy rainfall (Pistorius et 

al., 2015). However, Cape gannets experienced much heavier rainfall than the Northern 

gannets in this study. 

 

Adults returned at higher speeds from more distant foraging locations up to ~200 km from 

the colony, presumably reflecting a benefit in returning quickly to feed dependent offspring 

and relieve the partner at the nest. A similar pattern was recorded by (Hamer et al., 2007), 
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who also found that speeds decreased for the furthest destinations (beyond ~400 km), 

probably due to constraints on energy expenditure during flight. In keeping with this notion, 

I found that the increase in speed of travel for distances up to ~200 km was due at least in 

part to a decrease in the proportion of time on the water, with the asymptote in speed of 

travel corresponding with a levelling off in time on water beyond this distance, particularly 

for birds flying into headwinds. Over the longest return distances, birds encountering 

headwinds spent less time on the water and so were able to attain similar speeds of travel on 

average to those encountering crosswinds or tailwinds. These data suggest that by adjusting 

time spent on the water, birds were able to buffer trip durations to some extent against 

adverse weather conditions encountered at sea.  

 

In support of hypothesis (2), wind speed significantly affected flight heights during both 

commuting and active foraging. The higher proportion of commuting flight at low elevations 

into head winds compared with tail winds supports the notion that individuals can reduce 

energy expenditure by avoiding headwinds (through wind shear effect) or by taking 

advantage of additional lift provided by ground effect. Wind speed and its interaction with 

rainfall had a significant but complex effect on flight height during active foraging. Flight 

height of both males and females during active foraging increased as wind speed increased 

with its influence amplified in the presence of higher rainfall. The response to the 

combination of these two variables, which disrupt the sea surface in different ways, could be 

linked to changes in the visibility or behaviour of prey (Kowalczyk et al., 2015, Albert et al., 

2016). For instance, herring larvae approach the sea surface in calm conditions but move 

deeper when wind speed increases (Gallego et al., 1999). Mackerel are visual predators of 

herring larvae (Skaret et al., 2015) and so may track their vertical distribution, resulting in 

turn in changes in the heights from which gannets preying on mackerel commence their 

dives. In more challenging conditions it may also be more energetically efficient to perform 

multiple V-shaped dives (linked to flight height - Chapter 3) during which momentum is 

used to dive rather than actively pursuing prey under water.  
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Climate-induced changes in weather patterns and oceanic wind regimes could strongly affect 

both the foraging and migration strategies of seabirds as they adapt to changes in 

environmental conditions encountered at sea as well as in prey distribution, abundance and 

behaviour (Weimerskirch et al., 2012, Fayet et al., 2017). Gannets are very flexible in the 

distances they can travel and the range of prey they are able to capture (Hamer et al., 2007) 

but how they and their prey respond to weather conditions is a key aspect of their continued 

success. The influence of weather and particularly wind strength and direction on flight 

height is also something that is currently lacking from assessments of potential collision risk 

from offshore wind farms (Cook et al. 2018) and so more analysis of how seabirds respond 

to different weather conditions is recommended, particularly at proposed wind farm sites.   
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Chapter 5 : Collision risk from offshore wind farms and potential 

population consequences 

Abstract  

Marine habitats around the coast of the UK are coming under increasing pressure from 

renewable energy developments leading to concerns about potential impacts on wildlife, 

including seabirds. Mortality from collision with turbine blades could have significant 

negative effects on some seabird populations but estimates of potential mortality are often 

based on partial or subjective data, with key knowledge gaps including temporal and age-

specific variation in movements and behaviour at sea. Northern gannets are a species of key 

concern in this respect and in this chapter I compare the foraging movements and behaviour 

of adult and immature gannets at Bass Rock, including data for adults during two different 

periods of the breeding season (pre-laying and chick-rearing). I examine how differences in 

the distribution and behaviour of birds at sea affect the potential collision risk from planned 

and operating wind farms within the overall foraging ranges of birds and I assess the likely 

consequences of predicted mortality levels for future population growth. I found that birds 

spent > 70 % of their flight time within the wind farm sites commuting, mainly below the 

minimum height swept by turbine blades. However, the proportion of time spent flying at 

risk height varied between sexes, resulting in a higher collision risk for females than males. 

Collision risk was also higher for adults during chick-rearing than for immature birds or 

adults in spring. Adjusting vital rates to account for this predicted additional mortality 

reduced the predicted population growth rate but the population was still predicted to 

increase by > 2.5 % per annum, and increasing or decreasing predicted collisions by 10 % 

yielded a range of estimates that all predicted sustained population growth. Nonetheless, in 

view of the uncertainty in different elements of these estimates, I advocate caution including 

continued monitoring of adult survival and population size following installation of turbines 

at proposed wind farm sites. 



105 

 

5.1  Introduction 

Commitments made by the UK Government aimed at reducing reliance on fossil fuel energy 

have driven a large increase in the number of operational and proposed wind farms off the 

coasts of the UK (H.M. Government, 2017). Consequently, concerns have been raised over 

the potential ecological impacts of this industrialisation of marine habitats (Garthe and 

Huppop, 2004, European Commission, 2010, Certain et al., 2015), with particular concern 

over impacts on the internationally important populations of seabirds that forage in the seas 

around the UK (Masden et al., 2015, Thaxter et al., 2018).  

Both direct mortality from collision with turbine blades and indirect displacement and 

barrier effects could have significant negative effects on some seabird populations (Cook et 

al., 2018). However, estimates of potential mortality are often based on partial or subjective 

data (Green et al., 2016), with key knowledge gaps including temporal and age-specific 

variation in movements and behaviour (Furness et al., 2013, Borkenhagen et al., 2018, Cook 

et al., 2018). 

Northern gannets have been identified as potentially at risk from offshore wind farms 

(Furness et al., 2013, Bradbury et al., 2014) due to their long foraging ranges (Hamer et al., 

2007, Wakefield et al., 2013) the heights at which they fly (Cleasby et al., 2015a) and the 

proximity of several consented offshore wind developments to large breeding colonies of 

international importance for this species (Furness and Wanless, 2014). Estimation of 

potential collision risks requires data on the movements and behaviour of birds at sea, which 

have been derived from several sources including ship-based surveys, land-based radar and 

bird-borne data loggers (Johnston et al., 2014a, Cleasby et al., 2015a). These different 

sources are to some extent complementary (Camphuysen et al., 2012) but while survey and 

radar data provide only limited coverage and do not allow the provenance or breeding status 

of birds to be determined, currently available tracking data are almost entirely for breeding 
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adults during the chick-rearing stage of the season, with very limited or no data for birds of 

known sex, or for other age-classes or times of year. For instance, immature birds, which can 

comprise > 50 % of the total population (Klomp and Furness, 1992), are known to range 

more widely than adults during the breeding season (Votier et al., 2017, Grecian et al., 2018) 

and males and females differ in their foraging distributions and behaviour (Chapter 3) but 

the consequences for potential collision risk have not previously been examined. Similarly, 

calculations of collision risk across the year have relied on the assumption that the foraging 

behaviour of adults during chick-rearing is representative of the entire breeding season, 

although this is unlikely to be the case. 

Previous data have indicated that adult gannets spend more time flying at collision risk 

height (i.e. within the range of heights swept by turbines’ blades) when actively foraging 

than when commuting to or from the colony (Cleasby et al. 2015, and Chapter 3). Therefore 

the time spent actively foraging within offshore wind farm sites is a key determinant of 

potential collision risk. In this chapter I compare the foraging movements and behaviour of 

immature and adult gannets at Bass Rock, including data for adults during two distinct 

periods of the breeding season (pre-laying and chick-rearing). I examine how differences in 

the distribution and behaviour of birds at sea affect the potential collision risk from wind 

farms within the overall foraging ranges of birds at Bass Rock.  

5.2 Methods 

5.2.1 Fieldwork 

Fieldwork took place at Bass Rock, UK (6o 6’ N, 2° 36’ W) between mid-April and mid-

August over three consecutive years (2015 - 2017). Using a 6-meter telescopic pole fitted 

with a metal noose or hook, 63 adult gannets (age ≥ 5 years) were caught at the nest site 

while attending chicks or, in 2017, before the commencement of egg-laying (the latter had 

all bred at least once previously). These birds (39 males, 24 females) were sexed from 
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observations of sex-specific behaviour or in some cases, DNA analysis (as described in 

Chapter 3). In addition, 21 immature birds (ages 2 - 4 years, determined from plumage 

characteristics; (Nelson, 2002, Votier et al., 2011) were caught in June - July 2015 at club 

sites (areas of the colony frequented by pre-breeding individuals) or while attempting to hold 

territories around the colony.  

Unless already ringed, birds were fitted with a metal British Trust for Ornithology ring and 

an individually numbered colour ring (Wakefield et al., 2013). Each adult bird was equipped 

with a GPS logger (i-gotU GT600, Mobile Action Technology Inc., Taipei, Taiwan) 

weighing 37 g and, during chick-rearing, a pressure logger (MSR-145W, MSR Electronics, 

Seuzach, Switzerland) weighing 18 g. Immature birds were fitted with a GPS Radio 

Frequency logger (GPS-RF, e-obs GmbH, Munich, Germany) weighing 45 g, as recapture 

was unlikely but remote download of the data was possible within 2 km of the colony. All 

loggers were attached using Tesa tape: GPS loggers were attached to the upper side of the 

central trail feathers and programmed to record locations every 2 minutes; pressure loggers 

were attached to the underside of the central tail feathers and programmed to record pressure 

and temperature at 1 Hz. Adults were recaptured after 7 - 14 days to retrieve the loggers. 

Handling time of birds at both deployment and recapture was no longer than 15 minutes. 

Maximum device weight per bird (55 g) was less than 2 % of body mass (3.2 ± 0.3 kg) and 

below the maximum recommended for bio-logging studies (Phillips et al., 2003) while the 

difference in device weights for adults and immature birds was at most only 0.3 % of body 

mass. Previous studies have shown that such deployments have no discernible impact on trip 

durations or body masses of birds (Hamer et al., 2007, Cleasby et al., 2015b). 
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5.2.2 Trip metrics 

I interpolated all location data to 2 min intervals and classified behaviours at sea as 

described in Chapter 2 and determined trip metrics as described in Chapter 3. I then 

compared trip metrics between age-classes and stages of the season by fitting linear mixed 

models (LMM) using residual maximum-likelihood (REML) in the R package lme4 (Bates 

et al., 2015).  

5.2.3 Population size of immature birds 

Gannets have a stage-structured life history (Figure 5.1). To estimate the number of 

immature birds (age 2 - 4) acting as central place foragers from the Bass Rock, I used R 

version 3.5.1 (R Development Core Team, 2016a) to construct a Lefkovitch (stage-

structured) population matrix model, A, with the following form:  

A = 
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Fecundity (F) was set at 0.36 estimated as P × f × R × ϕa, where P = breeding probability 

(assumed to be 1); f = proportion of females in the population (assumed to be 0.5), R = E × B 

× ϕc where E is clutch size (assumed to be 1), B is breeding frequency (assumed to be 1 

attempt per annum) and ϕc is probability of the chick fledging (0.720 (Wanless et al., 2006, 

Sherley et al., 2015)). Annual adult survival (φa) was set at 0.949 (based on annual sightings 

of colour-ringed birds at the colony; Deakin et al. submitted), juvenile survival from age 0 – 

1 (φ0-1) was set at 0.542 and survival of immature birds (φ1-2 to φ4-5) was 0.779, 0.859, 

0.863 and 0.863, respectively, based on BTO ring recovery data; (Wanless et al. 2006). 
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Figure 5.1. Life history model for gannets. Each life-history stage (age) is represented by a 

circle. The arrows represent transitions between stages and indicate survival (ϕ) and 

transitioning from one stage to the next. The curved arrow at the top represents fecundity (F) 

or the number of young fledging per female. 

The population growth rate estimated from this model (λ = 1.036) was very similar to the 

observed growth of the population at Bass Rock between 2004 and 2014 (Murray et al., 

2015). Hence, I used this matrix to calculate the stable age distribution, giving the numbers 

of individuals in each age-class for a breeding population of 150,000 adults (Murray et al., 

2015).   

5.2.4 Spatial distribution and density at sea 

For each identified group within the population (age-class plus, for adults, sex and stage of 

season) I determined the 50, 75 and 95 % utilisation distribution (UD) over a 1 km2 grid for 

those locations where birds were in flight, using a smoothing parameter of 10 km in the R 

package adehabitatHR (Calenge, 2006). I estimated the number of birds at sea at any time 

using mean trip duration and mean time spent at the colony between trips. I next estimated 

the density, d, of birds from each group in flight at sea following (Wakefield et al., 2013) 

using the equation: 

𝑑 =  𝑢̂𝑖,𝑥𝑁𝑍 
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where 𝑢̂𝑖,𝑥 is the empirical probability density of use of cell 𝑥 by bird 𝑖, 𝑁 is the number of 

birds within each group predicted to be sea at any time and Z is the proportion of time spent 

in flight. 

5.2.5 Modelling collision risk 

The foraging distribution of gannets from Bass Rock covers the footprints of six proposed, 

consented and operational wind farms (hereafter, wind farm sites). Within each wind farm 

site, I calculated the proportion of time in flight spent commuting and actively foraging. For 

adults in summer I then used flight heights estimated every 2 minutes (see Chapters 2 and 3) 

to calculate the proportion of time spent at risk height during each of these activities. For 

each wind farm site the total proportion of flight at risk height was therefore: 

PFRF + PCRC 

where P = proportion of time spent foraging (F) or commuting (C) and R = proportion of 

flight at risk height during each activity. 

Flight height data were not obtained for immature birds or adults pre-laying so rather than 

calculate collision risk at individual wind farm sites I assumed that the proportion of 

commuting and active foraging flight at risk height (RF and RC above) across all sites was the 

same as that estimated for adults during the summer.  

I then used the basic collision risk model (Band, 2012) to assess the potential impact across 

six wind farm sites within the foraging distribution of adult and immature gannets from Bass 

Rock. Locations and parameters of wind farm sites (numbers and sizes of turbines, etc) were 

obtained from an online database (www.4coffshore.com) with additional information from 

individual developers. Shape files of wind farm sites were downloaded from the Crown 

Estate (The Crown Estate, 2017). For each wind farm site the proportion of locations where 

http://www.4coffshore.com/
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birds were flying within the height envelope swept by the turbines was estimated using the 

parameters given in Appendix C. The density of birds in flight within each wind farm site 

was estimated from the map of estimated densities in flight at sea calculated using the 

method described above (1.3.5). The monthly collision risk estimates for males, females and 

immatures during summer (June, July and August) and adults during spring (April) for each 

wind farm site were estimated using an assumed avoidance rate of 98.9 % (Cook et al., 

2018). Details of the bird data and the time the turbines were assumed to be operational are 

given in Appendix C.  

5.2.6 Estimating potential population impact 

To assess the potential impact of mortality from wind farms on population growth, I first 

used the predicted additional mortality from collision with wind turbines to adjust the 

survival estimates for each age class in the population projection matrix A above (assuming 

that wind farm mortality was entirely additive, and dividing additional mortality of immature 

birds evenly across age-classes). I then recalculated λ and applied 10 % confidence intervals 

to this estimate by recalculating survival rates of each age-class assuming mortality due to 

wind farms was ± 10 % of estimates from collision risk models.  

5.3 Results 

5.3.1 Foraging trip destinations and metrics 

I obtained 265 tracks (189 with altitude data) from 58 adults during chick-rearing in 2015 - 

17, 16 tracks from 9 adults prior to egg-laying in 2017 and 118 tracks from 15 immature 

birds in 2015. Active foraging areas of adults were mainly SE and NE of the colony, 

extending as far as Dogger Bank to the SE and Little Halibut Bank and the Fladen Ground to 

the NE, with no marked difference in areas used pre-laying and during chick-rearing (Figure 

5.2b-d). In contrast, immature birds ranged widely across the North Sea with core foraging 

areas encompassing the Norwegian Trench and Danish, Dutch and German waters (Figure 
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5.2a). Consequently, active foraging locations of immature gannets overlapped with more 

wind farm sites than those of adults (Figure 5.3). 

Trip durations of adults in 2017 differed significantly between pre-laying and chick-rearing 

(Table 5.1; LMM using sqrt hours 𝜒2
1 = 5.0, P < 0.05). This was partly because adults spent 

significantly longer on the water overnight during pre-laying trips (median = 13.6 h, IQR 7.6 

– 14.7) than during chick-rearing (median = 4.8 h, IQR 3.7 – 6.1) (𝜒2 = 41.8, P < 0.001).  
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a) b) 

 

c) d) 

 

Figure 5.2. Foraging tracks of (a) immature birds (b) adults pre-laying (c) chick-rearing 

males and (d) chick-rearing females tracked from Bass Rock (indicated by yellow circle). 

Wind farm sites are outlined in black. 
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a) b) 

 

c) d) 

Figure 5.3. Utilisation distributions (UDs) of (a) immature birds (b) adults pre-laying (c) 

chick-rearing males and (d) chick-rearing females tracked from Bass Rock (indicated by 

yellow circle). UDs are based on active foraging locations, shading denotes UD contours 

(darker, 50%; lighter, 95%). Wind farm sites are outlined in black. 
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However, the difference in trip durations (18.2 h, calculated from Table 5.1) far exceeded 

the difference in time on the water overnight (8.8 h). Departure angles from the colony also 

differed between time-periods (Table 5.1; 𝜒2
1 = 6.8, P < 0.05) but there was no significant 

difference in total distance travelled at sea (𝜒2
1 = 1.57, P = 0.2) or maximum displacement 

from the colony (𝜒2
1 = 0.43, P = 0.5). Trip durations of immature birds in 2015 were 

significantly longer than those of adults rearing chicks at the same time (Table 5.1; LMM 

using data only for 2015, with log-transformed hours, 𝜒2
1 = 4.8, P < 0.05). However there 

was no difference between age-classes in departure angle (𝜒2
1 = 0.00, P = 0.96), total 

distance travelled per trip (square root of distance, 𝜒2
1 = 1.3, P = 0.26) or maximum 

displacement (𝜒2
1 = 0.01, P = 0.92). Despite adults making trips of significantly longer 

duration pre-laying than when providing for chicks, there was no significant difference 

between time-periods in the proportion of each trip spent foraging (𝜒2
1 = 1.68, P = 0.19) or 

travelling to and from the colony during daylight hours (𝜒2
1 = 0.72, P = 0.4) (Figure 5.4). 

During June to August, immature and chick-rearing gannets spent similar proportions of 

each trip foraging (χ2
1 = 1.68, P = 0.19). However, chick-rearing adults spent a greater 

proportion of daylight hours travelling than immature birds (χ2
1 = 21.46, P < 0.001). 

Table 5.1. Characteristics of foraging trips by immature gannets (2015), and by adult 

gannets prior to laying (2017) and during chick-rearing (2015-2017). 

 Immatures Pre-laying Chick-rearing 

 Median IQR Median IQR Median IQR 

Duration (h) 42.9 12.1 – 71.0 41.6 28.0 – 50.4 23.4 17.0 – 29.5 

Distance (km) 695.5 122.0 – 1063.0 717.8 555.5 – 800.6 536.6 309.6 – 724.0 

Maximum 

displacement 

(km) 

283.9 40.7 – 364.3 267.6 185.2 – 295.5 218.3 121.1 – 303.6 

Departure 

 angle (deg) 
30.9 -6.5 – 70 -18.3 -27.4 – -2.9 37.2 -16.9 – 62.6 
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Figure 5.4. Activity budgets as the proportion of the total trip time (medians, IQRs and 

ranges) for trips made by immature birds (blue) and adult foraging trips during pre-laying 

(purple) and chick-rearing (green). 

5.3.2 Collision risk 

The population of immatures (ages 2 - 4 yrs) acting as central-place foragers from Bass 

Rock was estimated at 49,814 birds. Immatures spent approximately 68 % of their time at 

sea giving an estimated 33,874 at sea at any one time. Adults spent approximately 65 % of 

time at sea pre-laying and 50 % of time at sea during chick-rearing, giving estimates of 

97,500 and 75,000, respectively, at sea at any one time.  

During the summer, adult females spent 7.6 % and adult males spent 4.5 % of their total 

time in flight within wind farm sites, compared with 4.0 % spent by immatures. In spring, 

adults spent 3.2 % of their total flight time within wind farm sites. Across all groups, the 

majority of flight time within wind farm sites was spent commuting (adults pre-laying, 71.3 

%; adult males during chick-rearing, 70.8 %; adult females during chick-rearing, 77.2 %; 

immatures, 79.6 %).  
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The estimated combined density of adults and immatures in wind farm sites during the 

summer varied between 0.08 and 2.31 birds km-2 with higher densities at sites in the Firth of 

Forth than elsewhere. The proportion of time spent flying at collision risk height varied 

between sites and sexes, resulting in a total of 457 predicted collisions by males and 853 

predicted collisions by females for the months of June, July and August combined. A total of 

353 collisions by immature birds were predicted during the months of June, July and August 

and 142 collisions by adults during the month of April (Table 5.2). Combining the monthly 

totals for males and females and conservatively assuming the same number of collisions in 

May as in April, an estimated 1,593 collisions of adults would be predicted to occur between 

April and August. Assuming immatures behaved the same way during April and May as 

they did in June would give a total of 440 predicted collisions between April and August. 

Table 5.2. Predicted number of collisions per month for adults and immature gannets from 

Bass Rock, summed across six wind farm areas in the North Sea. 

 April June July August 

Adults     

Unknown sex 142 - - - 

Male - 155 157 145 

Female - 289 292 271 

Immatures - 89 90 83 

 

5.3.3 Potential population impacts 

Including the predicted additional mortality from collisions with turbine blades reduced the 

predicted population growth rate (λ) from 1.036 to 1.026. However the population was still 

predicted to increase by > 2.5 % per annum (Figure 5.5) and increasing or decreasing 

predicted collisions by 10 % yielded a range of estimates that were all > 1 (λ =1.35 – 1.017), 

predicting sustained population growth. 
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Figure 5.5. Predicted age-structured population growth for the Bass Rock gannet colony 

under conditions (a) without mortality from wind turbines and (b) with mortality from wind 

turbines. Line colour identifies age class; adults (purple), age 4 (light blue), age 3 (dark 

blue), age 2 (green), age 1 (red), age 0 (black).  

5.4 Discussion 

5.4.1 Collision risk 

When travelling between the colony and active foraging sites, gannets had a mean flight 

height below the minimum height swept by wind turbine blades, as shown in Chapter 3 and 

previously (Cleasby et al., 2015a). Differences in time spent travelling between sexes, age-

classes or time-periods within or among years were therefore unlikely to greatly alter 

potential collision risk. Flight heights within the collision risk envelope were more likely to 

occur during active foraging (Cleasby et al. 2015a; Chapter 3) although there was some 

overlap in flight heights during the two behaviours and birds sometimes commuted at 

collision risk height. 

Cleasby et al. (2015a) estimated that ~300 adults from Bass Rock could be killed each 

month of the breeding season at two wind farm sites in the Firth of Forth. They suggested 

that if behaviour earlier in the season was similar to during the summer there was potential 
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for ~1500 adults to be killed each year between mid-April and mid-September. By tracking 

birds in April I have shown that the behaviour of adults early in the breeding season differs 

from that later in the summer. In April adults spent longer at sea than at the colony and when 

at sea they spent more time on the water than when they were feeding chicks. Despite 

spending more time at sea, the densities of adults and the proportion of time they spent 

actively foraging in the wind farm sites was lower in spring than in summer, resulting in a 

lower number of predicted collisions. Had I assumed the same behaviour in April and May 

as in June, the total number of predicted collisions across all six wind farm sites would have 

been ~ 2200 between April and August compared with the estimate of ~1600. However, the 

predictions for adults in spring should be viewed with caution due to the small sample size 

and short tracking period. Collision risk also differed between males and females. Despite 

females occurring at lower densities than males within wind farm sites they spent a greater 

proportion of time actively foraging, resulting in a greater number of predicted collisions.  

The predicted number of collisions for immature birds holds considerable uncertainty, 

including a lack of information on movements between colonies, flight heights and turbine 

avoidance behaviour, but was less than half that of adults during the summer months. This 

was partly a consequence of the smaller number of immature birds than adults, but the 

predicted number of collisions per bird during the summer months was much higher for 

adults (1310/150,000  = 0.87 %) than for immatures (262/47,800 = 0.58 %). Coupled with 

the low elasticity of immature survival compared to adult survival in long-lived species such 

as gannets (Crone, 2001), this lower per capita probability of mortality suggests that impacts 

of turbines on immature birds are likely to be of less consequence than those on adults.  

5.4.2 Potential population-level effects  

A previous population model based on a population of 48,000 breeding pairs at Bass Rock in 

2004, suggested that additional mortality of 1400 adults and 600 immature birds would be 

sufficient to cause a sustained decrease in the breeding population size (WWT Consulting 
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2012). The estimated predictions of additional mortality in this study of 1593 adults and 593 

immatures are therefore large enough to cause concern. Cleasby et al. (2015a) suggest that 

this threshold may have been underestimated, since the breeding population at Bass Rock 

has apparently increased by an average of 2700 pairs per year since then (Murray et al., 

2015). Green et al. (2016) drew attention to inadequacies in approaches based on thresholds 

and suggested that predicted changes in population sizes based on projection models would 

provide much more robust assessments of impact. Here I have used a stage-structured matrix 

model to suggest that predicted mortality from wind farms would reduce the growth rate of 

the gannet population at Bass Rock but would be insufficient to drive the population into 

decline. Moreover, my model assumes that mortality from wind farms is entirely additive 

and takes no account of density-dependent population regulation or compensatory 

mechanisms such as recruitment from other colonies, which might off-set losses from 

collisions (Horswill et al., 2017). Nonetheless, in view of the uncertainty in different 

parameter estimates and the potential population consequences of both sexed-biased 

mortality and stochastic variation in different model parameters (Donald, 2007, Szekely et 

al., 2014) I advocate continued caution including further collection of foraging data during 

different stages of the breeding season and continued monitoring of adult survival and 

population size following installation of turbines at proposed wind farm sites.  
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Chapter 6 : Discussion 

6.1 Introduction 

At a time when there is great pressure on the environment as a result of climate change and 

direct anthropogenic changes there is increasing need to understand how animals use space 

over different temporal and spatial scales (Wikelski et al., 2007). Foraging is a fundamental 

component of animal behaviour and the ability to document foraging movement is key to 

understanding the ecology of a species (Kranstauber et al., 2011). Foraging behaviour is 

influenced by intrinsic factors including sex and morphology (Ginnett and Demment, 1997, 

Bueno and Motta-Junior, 2008). Studies of animal movement have been revolutionised by 

tracking devices which can provide highly accurate location data at high temporal frequency. 

Integrating other sensors with tracking tags and combining this information with remotely 

sensed or modelled environmental data is greatly improving our ability to describe 

movement and understand how habitats and weather influence behaviour (Kays et al., 2015). 

However, movement does not only occur in the horizontal dimension but also in the vertical 

dimension (Watts et al., 2017, Attanasi et al., 2015). Birds are a group of organisms that 

move within three-dimensional space yet tracking individuals in three dimensions has been 

the focus of relatively few studies, with even fewer focusing on the influence of weather on 

three-dimensional behaviour.  

The aim of this thesis was to increase understanding of three-dimensional foraging 

behaviour in the Northern gannet. The four previous chapters explored sex-specific foraging, 

the influence of weather and variation between sexes and birds of different age in the context 

of the potential risk posed by wind farms. In this chapter I summarise my key findings from 

the previous four chapters and consider them in a broader context. I then discuss the wider 

implications of my work and recommend directions for future research. 
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6.2 Three-dimensional tracking 

A number of methods exist for estimating the flight height of birds but very few involve the 

direct measurement of height using loggers attached to an individual (Cleasby et al., 2015a, 

Ross-Smith et al., 2016). The advantage of recording height directly from the bird is that the 

provenance of the bird is known and multiple measurements of height can be estimated 

providing greater scope for behaviour interpretation (Cleasby et al., 2015a). However, error 

in height estimates has always been a significant concern especially when considering the 

potential effects of collisions with structures and aircraft.  

The error in flight height estimates becomes increasingly important for low flying birds such 

as many species of seabird including gannets (Johnston et al., 2014a). Gannets have also 

been identified as being one of those species at greatest potential risk of collision with wind 

turbines, making them an excellent species on which to refine methods for measuring flight 

height. I explored the potential for collision with wind turbines in Chapter 5 but first, in 

Chapter 2 I developed and explored a novel refinement to a published method that uses 

atmospheric pressure recorded on the bird to estimate flight height. My revised method tries 

to reduce the previously acknowledged error in height estimates over prolonged periods in 

flight. Cleasby et al. (2015a) showed how the error in estimates of flight height is likely to 

increase over time and so the durations of individual flight bouts are important for 

estimating the potential error in measurements. Gannets make some of the longest foraging 

trips of any seabird breeding in the UK and in Chapter 2 I presented for the first time 

estimates of individual flight bout durations. Cleasby et al. (2015a) had already partially 

accounted for changes in atmospheric pressure by recalibrating sea level pressure for each 

individual flight bout. I then recalibrated sea level pressure throughout the time in flight 

using reanalysis data of sea surface pressure data. In doing so I was able to reduce the 

continuous drift in height estimates that can occur when atmospheric pressure changes over 

the spatial and or temporal extent of a period in flight. Typically environmental datasets are 
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used to investigate how conditions influence behaviour as I did in Chapter 4. However, to 

the best of my knowledge, this is the first time a global dataset has been used to improve 

estimates of a behavioural parameter. I propose that this integration of reanalysis sea level 

pressure could be important for the estimation of flight heights in birds that spend long 

periods in sustained flight, especially those that fly at low elevations and at latitudes where 

atmospheric circulation is variable. 

At present the only other method for determining flight height measurements directly from a 

bird is to use estimates from GPS (Ross-Smith et al., 2016, Bouten et al., 2013). The 

accuracy of GPS height estimates is highly dependent on the dilution of precision which 

varies between species and could be related to behaviour (Ross-Smith et al., 2016). For 

gannets, a fast-moving species that shows considerable variation in the distribution of flight 

heights, I suggest that using a combination of GPS and pressure is the most appropriate 

method for interpreting three-dimensional behaviour, especially if continuous high-

resolution data are required. Such data are especially pertinent when it comes to acquiring 

detailed information on three-dimensional space use in locations proposed for wind farm 

construction; an area I explore in Chapter 5.  

In an exciting initiative for the world of animal movement science, ICARUS (International 

Cooperation for Animal Research Using Space) has the potential to increase the capacity for 

exploring the three-dimensional space use by birds, not just short-range foraging trips but 

long distance migrations (Wikelski et al., 2007). Tags that combine GPS technology with 

other sensors including atmospheric pressure will communicate with the ICARUS satellite, 

installed on the International Space Station in August 2018, with the anticipation that the 

system will open to the scientific community in 2019 (http://www.orn.mpg.de/ICARUS). 

These tags, currently with a working lifespan of a year will create the potential for estimates 

of flight height to be obtained from individuals not only undertaking foraging trips from a 

central place but during long distance migrations and over winter when many species are 

http://www.orn.mpg.de/ICARUS


128 

 

entirely pelagic. These tags will open up new possibilities for exploring three-dimensional 

movement of birds and increase knowledge of how birds reduce flight costs and manage 

energy budgets over winter as well as during the breeding season.   

Sex-specific differences in two-dimensional foraging behaviour, dive behaviour and diet 

occur in sexually size-monomorphic seabirds including Northern gannets. However, these 

differences are not found consistently between years. The aim of Chapter 3 was to establish 

whether differences in foraging behaviour between male and female gannets also extended 

to flight height and what the possible selective advantage could be of sex-specific foraging 

differences in a sexually size-monomorphic seabird. By using the method I refined in 

Chapter 2, I created spatial maps of the variation in three-dimensional foraging behaviour 

showing for the first time that spatial segregation above the water occurs in three, not just 

two dimensions. Cleasby et al. (2015b) suggested that the difference could be mediated by 

different responses to habitat features such as tidal mixing fronts and that their dive 

behaviour could result from adaptations to the habitats in which they forage. I found a 

possible relationship between foraging trip durations of males and females and the 

abundance of 0-group sandeels, a species that contributes more extensively to the diet of 

gannets at Bass Rock in some years than in others (Hamer et al., 2007). I also found that 

flight height during active foraging was higher in females than in males and that females 

made deeper dives, consistent with the findings of Cleasby et al. (2015b). This spatial 

segregation has potentially important consequences which I began to explore in Chapter 5 

where I found that collision risk could potentially be biased towards females as a result of 

them flying higher during active foraging and spending a greater proportion of time flying 

within wind farm sites. Studies of sex-biased mortality at wind farms sites are limited but 

have been found to occur in common terns (Sterna hirundo) and skylarks (Alauda arvensis) 

(Morinha et al., 2014, Stienen et al., 2008) both of which were linked to behavioural 

differences. Sex-biased mortality could have potential consequences for minimum viable 
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population size but has received very little focus in risk assessments and population 

modelling so far, and has not been identified as a key knowledge gap (Cook et al., 2018).  

Foraging behaviour is influenced not only by sex but also by weather conditions. Animals, 

especially central place foragers, are constrained to return to the nest site to provide food for 

their offspring (Boyd et al., 2014). To have the best opportunity of a successful breeding 

attempt, foraging for prey must be undertaken as efficiently as possible meaning that 

behaviour has to be adjusted to compensate for environmental conditions. However, how 

seabirds that forage far from the colony do this has until recently been unknown. For birds 

that forage within a few km of the colony, data from a near-by weather station can be used to  

provide reliable data about conditions experienced at sea (Lewis et al., 2015). Visual 

observations are also used (Spear and Ainley, 1997) however establishing the weather 

conditions encountered at sea by mid-long range foragers has always been a challenge. We 

are now in an exciting phase of animal tracking where the temporal and spatial resolution of 

environmental reanalysis data is appropriate for integrating with animal movement data, 

providing opportunities for understanding three-dimensional space use, which has been 

impossible until now.  

In Chapter 4 I combined three-dimensional movement data with data on wind, rain and 

cloud cover to explore how these variables influenced the foraging behaviour of gannets at 

sea. The adjustments gannets made to their behaviour suggest that they are able to 

compensate for unfavourable conditions at sea by altering activity-time budgets and flight 

height. Gannets spend ~50 % of the total trip duration on the water, motivated by the need to 

rest, preen and by hours of darkness making prey detection difficult (Carter et al., 2016). 

Gannets typically spend a lower proportion of time during trips (~20 %) actively foraging 

(Chapter 5). I suggest that gannets can adjust this time on the water to buffer extended 

periods of time spent foraging in more challenging conditions associated with higher wind 

speeds. The increase in flight height during active foraging in both males and females in 
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response to increases in wind and rainfall highlights the complex relationship between 

weather, prey behaviour and predator response. Under current climate projections increases 

in wind and rain could occur meaning that birds will be required to spend more time flying 

at higher elevations. This is the first time that the three-dimensional behaviour of gannets 

has been explored in relation to weather variables and highlights the importance of including 

the influence of weather on behaviour in collision risk models (Cook et al., 2018).   

Assessments of potential collision risk for seabirds are required for any wind farm 

development proposal with flight height a critical parameter for the models (Drewitt and 

Langston, 2006). The majority of flight height estimates for seabirds around the UK have 

been measured visually or using radar in or around the locations of potential wind farm 

developments (Skov et al., 2018, Johnston et al., 2014a). The disadvantages and biases 

associated with data collected using these methods were discussed in Chapter 5 and include 

the lack of data in poor weather conditions and for birds of different ages. The work in 

Chapters 3, 4 and 5 of this thesis has demonstrated how three-dimensional space use varies 

with behaviour, sex and weather conditions. It is also known that horizontal movements of 

immature birds differ from adults and Chapter 5 indicates that adult behaviour differs 

throughout the breeding season. When using visual or radar methods for estimating flight 

heights of seabirds, behaviour, sex, time in the area cannot be evaluated and with just a 

single estimate of height per bird can give no indication how flight height varies over time. 

The work in Chapter 5 is to my knowledge the first attempt to undertake a collision risk 

assessment for immature gannets and to account for different behaviour in adults at different 

times of the year. As a consequence it has revealed the potential for variation in collision 

risk between males, females and immature birds. The results should be viewed with caution 

due to sample sizes, the lack of flight height data for immatures and adults in spring and the 

estimates of the number of immature birds associated with the Bass Rock colony and 

therefore the density of immature birds at sea. Nonetheless, by using an age-structured 

population model I have been able to present a population projection for the Bass Rock 
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colony based on the potential additional mortality from wind farm collisions as 

recommended by Green et al. (2016).    

6.3 Wider context 

The research in this thesis should be viewed in the context of the colony at which the work 

was undertaken. The Bass Rock is the largest gannet colony in the world, having grown 

rapidly since the late 1970’s to the extent that there is virtually no remaining space (Murray 

2015). As colonies increase in size, individuals have to travel further to find food due to 

depletion or disturbance of prey close to the colony (Lewis et al., 2001, Wakefield et al., 

2013). Distances travelled during foraging trips by gannets from Bass Rock are amongst the 

longest in the UK (Wakefield et al., 2013) therefore activity budgets and the way in which 

they are adjusted under varying environmental conditions have the potential to differ from 

gannets at other colonies. In addition to this, the location of the Bass Rock on the eastern 

side of the UK, means gannets at the Bass Rock experience different prevailing wind 

conditions when at sea compared to other colonies in the UK, with the exception of the 

colony at Bempton Cliffs (Chapter 1). 

6.4 Future research 

Three-dimensional foraging behaviour in seabirds is an area with huge potential for future 

research. Here I suggest number of possible areas for further research based on the work in 

this thesis.   

In Chapter 2 I introduced a refinement to the method of using GPS and pressure data to 

estimate flight height which improves height estimates during long periods of flight. This 

method is especially relevant for species such as Procellariiformes that fly at low elevations 

and spend prolonged periods of time in flight without landing on the water. It would, for 

instance, allow a greater understanding of dynamic soaring. 
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More work is required to establish whether behavioural differences between male and 

female gannets from Bass Rock, found in some years but not others, are related to the 

abundance of sandeels. This has potential consequences for spatial segregation in foraging 

areas. To continue the work investigating differences in the foraging behaviour of males and 

females, further three-dimensional tagging is required, firstly with the aim of linking flight 

height immediately prior to a dive with dive depth and secondly, to try and establish whether 

trip durations of male and female gannets from Bass Rock are indeed linked to the 

abundance of sandeels. This would also require data on diet to be collected.    

Additional three-dimensional tracking of males and females would also provide the 

opportunity to investigate and better understand how the constraints on breeding birds 

change between pre-laying, incubation and chick-rearing. The work in Chapter 5 has 

demonstrated that it is possible to collect high resolution tracking data from gannets prior to 

egg laying, and during field work in May 2018 data was obtained during incubation. Not 

only are behavioural constraints important to understand in the context of gannet ecology but 

they also have relevance for collision risk assessments. 

This first use of weather data to annotate the foraging tracks of gannets from Bass Rock has 

introduced a number of potential avenues for future research. The first is to establish 

whether immature gannets adjust their behaviours in the same way as adults in response to 

wind conditions. The second would be to see how gannets breeding in colonies on the west 

coast of the UK respond to wind given that the prevailing wind will be different to that 

experienced by birds at Bass Rock. Thirdly, it would be possible to investigate the influence 

of weather on winter migration routes. By incorporating accelerometry data it would then be 

possible to establish how weather conditions and behavioural adaptations, including 

adjustments to plunge diving behaviour, influence energy expenditure during foraging trips 

(Ropert-Coudert et al., 2004).  
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6.5 Final Conclusion 

Estimating flight heights of seabirds using bird-borne loggers is an area of research still in its 

infancy. Much of the data collected on flight height of European seabirds has been motivated 

by offshore wind farm developments and has relied on visual observations and radar 

measurements that are biased towards flight in favourable weather conditions during the 

breeding season (Johnston and Cook, 2016). This thesis provides evidence that the three-

dimensional foraging behaviour of gannets is highly variable and dependent on activity, sex 

and weather conditions. With likely further changes to the marine environment resulting 

from climate change and energy generation infrastructure, it is more important than ever to 

understand three-dimensional space use by gannets and other seabirds.   
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Apendices  

Appendix A 

 

A.1. Comparison of atmospheric pressure at sea level at Bass Rock during June, July and 

August in the years of this study (2015 and 2016) and the years (2011, 2012) studied by 

Cleasby et al. (2015). Calculated using ECMWF ERA-Interim reanalysis data (0.125° × 

0.125°, 6-hourly product) for the closest grid cell to Bass Rock. Plot shows median, 25th and 

75th percentiles and range. 
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Appendix B 

B.1 Top models sets for estimating effects of weather parameters on trip metrics. 

P
ro
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1 Wind speed 4 -192.21 392.7 0 0.773 

2 Wind speed + Wind direction 5 -193.75 397.9 5.2 0.057 

3 Wind speed + Rainfall 5 -194.03 398.4 5.76 0.043 

4 Wind speed + Low cloud  5 -194.16 398.7 6.02 0.038 

5 Wind speed + Trip distance 5 -194.18 398.7 6.06 0.037 

6 Wind speed + Year 6 -194.14 400.8 8.12 0.013 
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1 Trip distance + Wind speed + Year 7 -249.82 514.3 0.00 0.143 

2 Trip distance 4 -253.11 514.5 0.15 0.133 

3 Trip distance + Wind speed 5 -252.07 514.5 0.18 0.131 

4 Trip distance + Year 6 -251.00 514.5 0.20 0.130 

5 
Trip distance + Wind speed + Wind 

direction 
8 -249.57 516.0 1.70 0.061 

6 
Trip distance + Wind direction + 

Year 
7 -250.74 516.1 1.84 0.057 

7 Trip distance + Wind direction 5 -252.97 516.3 1.98 0.053 

 

 

 Rank Model df logLik AICc ∆AIC 
AIC 

weight 

T
ri
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1 Trip distance 4 -168.55 345.3 0 0.804 

2 Trip distance + Wind direction 5 -170.33 351.0 5.69 0.047 

3 Trip distance + Wind speed 5 -170.52 351.4 6.07 0.039 

4 Trip distance + Rainfall  5 -170.53 351.4 6.08 0.038 

5 Trip distance + Low cloud 5 -170.64 351.6 6.30 0.034 

6 Trip distance + Year 6 -170.46 353.4 8.08 0.014 
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1 Trip distance 4 -243.61 495.5 0 0.500 

2 Trip distance + Year 6 -243.02 498.5 3.09 0.107 

3 Trip distance + Rainfall 5 -244.28 498.9 3.46 0.089 

4 Trip distance + Wind direction  5 -244.32 499.0 3.54 0.085 

5 
Trip distance + Wind direction + 

Year 
7 -242.95 500.6 5.12 0.039 

6 Trip distance + Low cloud 5 -245.27 500.9 5.44 0.033 
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B.2 Top models for estimating effects of weather parameters on flight height. 

 Rank Model parameters df logLik AICc ΔAIC 
AICc 

weight 

A
ct

iv
e 

fo
ra

g
in

g
 h

ei
g
h

t 
1 

Sex + Wind speed + Rainfall + 

Wind speed:Rainfall 
9 -34381.12 68780.3 0 0.213 

2 

Sex + Wind speed + Rainfall + Low 

cloud + Wind speed:Rainfall + Low 

cloud:Rainfall 

11 -34379.49 68781.0 0.73 0.104 

3 
Wind speed + Rainfall + Wind 

speed:Rainfall 
8 -34383.2 68782.4 2.16 0.081 

4 
Sex + Wind speed + Rainfall + Low 

cloud + Wind speed:Rainfall 
10 -34381.45 68782.9 2.67 0.065 

5 

Wind speed + Rainfall + Low cloud 

+ Wind speed:Rainfall + Low 

cloud:Rainfall  

13 -34381.67 68783.4 3.11 0.041 

6 

Sex + Wind speed + Rainfall + Low 

cloud + Wind speed:Rainfall + 

Wind speed:Low cloud + 

Lowcloud:Rainfall 

10 -34380.12 68784.3 4.01 0.041 

        

C
o

m
m

u
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n
g

 h
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g
h
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1 Sex 7 -38723.3 77460.6 0 0.85 

2 Sex + Rainfall 8 -38725.46 77466.9 6.32 0.036 

5 Sex + Wind speed 8 -38725.62 77467.2 6.63 0.031 

4 Sex + Low cloud 8 -38725.7 77467.4 6.79 0.028 

5 
Sex + Low cloud + Wind direction 

+ Low coud:Wind direction 
10 -38723.78 77467.6 6.96 0.026 

6 Sex + Wind direction 8 -38726.13 77468.3 7.67 0.018 
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Appendix C 

Table C.1 Details of proposed wind farm sites within the summer (April – August) foraging distribution of gannets from Bass Rock. See Figure C.1 

for map of locations of wind farm sites. 

Development Status 

Number 

of 

turbines 

Risk 

window 

(m) 

Rotor 

radius 

(m) 

Reference 

Hywind Operational 5 21 - 175 154 
https://www.equinor.com/content/dam/statoil/documents/newsroom-additional-

documents/news-attachments/hywind-scotland-facts.pdf  

Aberdeen 
Under 

construction 
11 31 - 191  160 

https://www.offshorewind.biz/2018/04/10/vattenfall-and-mhi-vestas-claim-

worlds-first-with-8-8mw-eowdc-offshore-wind-turbine/ 

https://corporate.vattenfall.co.uk/contentassets/d3aadc7a5b1244b9b605c7715222

afaa/project-overview-february-2017.pdf  

Neart na 

Gaoithe 
Consented 54 35 - 208 167 https://www.4coffshore.com/transmission/neart-na-gaoithe-gb-uk56.html 

Inch Cape Consented 72 22 - 272 250 
http://www.inchcapewind.com/files/Inch_Cape_Wind_Farm_Scoping_Report_20

17_Hi_Resolution.pdf  

Seagreen 

Phase One - 

Alpha Bravo 

Consented 150 
26.1 - 

193.1 
167 http://www.seagreenwindenergy.com/assets/phase1-offshore-addendum1.pdf 

Seagreen 

Phase Two & 

Three 

Planning stage 260 
26.1 - 

193.1 
167 http://www.seagreenwindenergy.com/offshore-scoping-phases2and3.asp 

Dogger Bank 

Creyke Beck 

A & B 

Consented 400 100 - 315 215 
http://www.forewind.co.uk/uploads/files/Creyke_Beck/Phase_2_Consultation/Ch

apter_5_Project_Description.pdf 



 
 

 

Figure C.1 Map of wind farm sites. Adapted from Russell et al. (2016). 

 

Table C.2. Gannet data used in basic overall collision risk models. 

Flight speed 14.9 m/sec 

Bird length 0.94 m 

Wingspan 1.72 m 

Nocturnal activity score 2 

Flying mode Gliding 

Proportion of flights upwind 50% 

 

Table C.3 Proportion of time wind farms likely to be operational. 

April 0.773 

June, July and August 0.8 

 


