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Abstract

In this thesis, low-complexity adaptive filtering algorithms that ex-

ploit the sparsity of signals and systems are derived and investigated.

Specifically, sparsity-aware normalized least-mean square and affine

projection algorithms are developed based on the l1-norm incorpo-

rated to their cost function, which we term zero-attracting NLMS

(ZA-NLMS) and zero-attracting APA (ZA-APA). These algorithms

are analyzed and applied to the identification of sparse systems. To

further improve the filtering performance, the reweighted ZA-NLMS

(RZA-NLMS) and reweighted ZA-APA (RZA-APA) are also proposed,

which employs reweighted step sizes of the zero attractor for different

taps, inducing the attractor to selectively promote zero taps rather

than uniformly promote zeros on all the taps. We also develop zero-

forcing techniques to further improve their performance when the sys-

tem has a significantly degree of sparsity, i.e., a very small number of

non-zero coefficients. Simulation results show that the proposed algo-

rithms outperform the standard NLMS and APA algorithms in both

convergence rate and steady-state performance for sparse systems.
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Chapter 1

Introduction

In this chapter, we give a general introduction to adaptive filters and their appli-

cations and discuss the motivation and contributions of our work.

1.1 Adaptive Filters

In the last thirty years, the field of digital signal processing has developed in a

very fast way. The tremendous growth and development in the digital signal pro-

cessing area has turned some of its specialized topics into whole fields themselves.

One example of a digital signal processing system is the adaptive filter [1–3]. The

objective of filtering is to process a signal in order to manipulate the information

contained in it. A digital filter is one that processes signals represented in digital

format [4]. When dealing with signals whose statistical properties are fixed, the

designer can easily choose the most appropriate algorithm to process the signal.

However, fixed algorithms cannot process a signal efficiently if its properties are

unknown. The solution is to use an adaptive filter which can change its charac-

teristics automatically [5, 6].

As previously discussed, the design of digital filters with fixed coefficients re-

quires well defined prescribed specifications. However, there are situations where

the specifications are not available, or are time-varying. An adaptive filter is

required when either the fixed specifications are unknown or the specifications

cannot be satisfied by time-invariant filters. The ability of an adaptive filter to
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operate satisfactorily in an unknown environment and track time variations of

the statistics makes the adaptive filter a powerful device for signal processing

and control applications. There are many different applications in which adap-

tive techniques can be used. Some examples are system identification, echo can-

celation, equalization of dispersive channels, adaptive beamforming and adaptive

control. As the power of digital signal processors has increased, adaptive filters

have become much more common and are now routinely used in devices such as

mobile phones and other communication devices [2].

1.2 Motivation

In many scenarios, the impulse response of unknown systems can be assumed to be

sparse, containing only a few large coefficients interspersed among many negligi-

ble ones. Using such sparse prior information can improve the filtering/estimation

performance [7]. However, standard adaptive filters do not exploit such informa-

tion. In the past years, many algorithms exploiting sparsity were based on apply-

ing a subset selection scheme during the filtering process, which was implemented

via statistical detection of active taps or sequential partial updating [8–10]. Other

variants assign proportional step sizes to different taps according to their magni-

tudes, such as the proportionate normalized least-mean square (PNLMS) [11–14]

algorithm and its variants [15].

Motivated by recent progress in compressive sensing [16–22], several authors

have considered using the l1-norm penalty to exploit sparsity [8, 9, 23–26]. The

basic idea is to introduce a penalty that favors sparsity in the cost function.

In this thesis we propose an alternative approach to identifying sparse systems

using affine projection algorithm (APA). A particular form of this APA is the

normalized least-mean-square (NLMS) algorithm [5,6].

1.3 Contribution

In this thesis, we firstly incorporate an l1-norm penalty on the coefficients into the

quadratic cost function of the standard NLMS. This results in a modified NLMS

update with a zero attractor for all the taps, which we term ZA-NLMS. Then
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we apply the same strategy to the APA, and obtain an updated ZA-APA which

can exploit the sparsity in the impulse response of linear systems. To further

improve the filtering performance, the reweighted ZA-NLMS (RZA-NLMS) and

reweighted ZA-APA (RZA-APA) are also proposed, which employ reweighted step

sizes of the zero attractor for different taps, inducing the attractor to selectively

promote zero taps rather than uniformly promote zeros on all the taps. We

demonstrate via simulations and analytically that the ZA-APA and RZA-APA

achieve better steady-state performance than that of the standard APA for sparse

models.

Secondly, to further improve the performance of ZA-NLMS and ZA-APA in

a sparse systems with a significant degree of sparsity, i.e., a small number of

non-zero coefficients, we introduce a new zero-forcing strategy, whose idea is to

force the small tap-weight coefficients to zero. By using this strategy, we obtain

two new algorithms called zero-forcing NLMS (ZF-NLMS) and zero-forcing APA

(ZF-APA).

Simulation results illustrate that the proposed algorithms outperform stan-

dard NLMS and APA in both convergence rate and steady-state performance for

sparse systems; and the reweighted ones outperform the ordinary zero-attracting

algorithms. Furthermore, RZA-NLMS and RZA-APA show robustness when the

number of non-zero taps increases, with little loss in performance with respect to

the standard ones in non-sparse situations.

1.4 Thesis Outline

The structure of the thesis is as follows.

• In Chapter 2, a review of adaptive filtering is given, and some of its appli-

cations are introduced.

• In Chapter 3, the proposed sparsity-aware algorithms are detailed, including

zero-attracting algorithms and zero-forcing algorithms.

• In Chapter 4, we analyze the proposed algorithms, including an estimation

of their computational complexity, and we carry out the MSE analysis and
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steady-state performance.

• In Chapter 5, conclusions and a discussion on possibilities for future work

are presented.

1.5 List of Publications

Some of the research presented in this thesis has been published, or will be sub-

mitted to some publications at the time of submission of this thesis.
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Signal Processing for Defence Conference, London, UK, 2011.
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Chapter 2

Review of Adaptive Filtering

In this chapter, a review of adaptive filtering is given. Firstly, we introduce the

motivation for using adaptive filters. Then we discuss some popular applications

of adaptive filters. Finally, some of the most commonly used adaptive algorithms

are introduced.

2.1 Objective of Adaptive Filters

The basic objective of an adaptive filter is to set its parameters, in such a way

that its output tries to minimize a meaningful objective function involving a

reference signal. In many scenarios, the objective function F is a function of

the input, the reference and the adaptive filter output signal. We can consider

that an adaptive algorithm is composed of three basic items: definition of the

minimization algorithm, definition of the objective function and definition of the

error signal. The error signal is usually defined as the difference between the filter

output and a desired response. The optimal filter parameters are found through

minimization of a cost function of the error signal. A useful approach is based on

minimizing the mean-square value of the error signal [1].

The basic objective of an adaptive filter is to set its parameters, in such a

way that its output tries to minimize a meaningful objective function involving

a reference signal.

The general setup of an adaptive filtering system is illustrated in Fig. 2.1.
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Adaptive

Adaptive
algorithm

u(n) y(n)

d(n)

e(n)

Filter

Figure 2.1: General adaptive filter configuration.

Here, x(n) denotes the input signal, y(n) is the adaptive filter output signal,

and d(n) denotes the desired signal at time instant n. The error signal e(n)

is calculated as e(n) = d(n) − y(n). The error signal is then used to form a

performance function that is iteratively minimized by the adaptation algorithm

in order to determine the appropriate updating of the filter coefficients. The

minimization of the objective function implies that the adaptive filter output

signal matches the desired signal in some sense [5].

Basically, there are two major classes of adaptive digital filters, distinguished

by the form of the impulse response, namely the finite-duration impulse response

(FIR) filter and the infinite-duration impulse response (IIR) filter [4, 27]. FIR

filters are implemented with nonrecursive structures, whereas IIR filters utilize

recursive structures. Adaptive FIR filters are the most popular ones due to their

stability.

The most widely used adaptive FIR filter structure is the transversal filter.

The structure of the FIR filter is shown in Fig. 2.2. Here, we can define the

complex-valued tap-weight vector with M coefficients as

ŵ(n) = [w0(n), w1(n), ..., wM−1(n)]T , (2.1)

where [ · ]T is the transpose of a vector or a matrix. With the M-length tap-weight

vector shown as above, the complex-valued input signal can be defined as

u(n) = [u(n), u(n− 1), ..., u(n−M + 1)]T . (2.2)

6



u(n) u(n− 1) u(n−M + 2) u(n−M + 1)

T T T

w0(n) w1(n) wM−2(n) wM−1(n)

∑

y(n)

Figure 2.2: FIR Filter: Time-shifted structure of the input signal.

Then the output of the filter is

y(n) = ŵH(n)u(n). (2.3)

where [ · ]H is the Hermitian transpose of a vector or a matrix.

2.2 Applications

The ability of an adaptive filter to operate satisfactorily in an unknown envi-

ronment and track time variations of input statistics makes the adaptive filter

a powerful device for signal processing and control applications. Although the

applications of adaptive filters are quite different in nature, they have one com-

mon feature: an input vector and a desired response are used to compute an

estimation error, which is in turn used to control the values of a set of adjustable

coefficients [5]. However, the essential difference between the various applications

arises in the way which the desired response is extracted. From this point of view,

we may distinguish four basic classes of adaptive filtering applications, as shown

in Fig. 2.3. The notation used in this figure is:

u = input applied to the adaptive filter,

7



Table 2.1: Applications of adaptive filter
Class of adaptive filtering Application
I: Identification System identification

Layered earth modeling
II: Inverse modeling Predictive deconvolution

Adaptive equalization
III: Prediction Linear predictive coding

Signal detection
IV: Interference canceling Echo Cancelation

Adaptive beamforming

y = output of the adaptive filter,

d = desired response,

e = d− y = estimation error.

In Table 2.1 we listed some applications that are illustrative of the four basic

classes of adaptive filtering applications [1].

Here we make a brief introduction on some of these applications such as system

identification, echo cancelation and adaptive beamforming.

2.2.1 System Identification

System identification is the experimental approach to the modeling of a process

or a plant. It involves the following steps: experimental planning, the selection of

a model structure, parameter estimation, and model validation. Here we discuss

briefly the idea of adaptive filtering algorithms for estimating the parameters of an

unknown plant modeled as a transversal filter [1]. Suppose we have an unknown

plant that is linear and time varying. This plant is characterized by a set of

discrete-time measurements that describe the variation of the plant output in

response to a known input. The requirement is to develop an on-line transversal

filter model for this plant, as illustrated in Fig 2.3(a). The model consists of

a finite number of unit-delay elements and a corresponding set of adjustable

parameters. When there is no available reference signal, we call the problem

blind system identification [28,29].

Let the available input signal at time n be denoted by the set of samples: u(n),
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Figure 2.3: Four basic classes of adaptive filtering applications: (a) class I: iden-
tification; (b) class II: inverse modeling; (c) class III: prediction; (d) class IV:
interference canceling.

9



u(n − 1), ... , u(n −M + 1), where M is the number of adjustable parameters

in the model. This input signal is applied simultaneously to the plant and the

model. Let their respective outputs be denoted by d(n) and y(n). The plant

output d(n) serves the purpose of a desired response for the adaptive filtering

algorithm employed to adjust the model parameters. The model output is given

by

y(n) =
M∑

k=1

ŵk(n)u(n− k), (2.4)

where ŵ1(n), ŵ2(n), ... , and ŵM(n) are the estimated model parameters. The

model output y(n) is compared with the plant output d(n). The difference be-

tween them e(n) = d(n)− y(n), defines the estimation error.

When the plant is time varying, the plant output is nonstationary, and so

is the desired response presented to the adaptive filtering algorithm. In such

a situation, the adaptive filtering algorithm has the task of not only keeping

the modeling error small but also continually tracking the time variations in the

dynamics of the plant.

2.2.2 Echo Cancelation

Almost all conversations are conducted in the presence of echoes. An echo may be

unnoticeably distinct, depending on the time delay involved. If the delay between

the speech and the echo is short, the echo is not noticeable but perceived as a form

of spectral distortion or reverberation. Generally speaking, the longer the echo

delay, the more it must be attenuated before it becomes noticeable [1, 15,30,31].

The basic principle of echo cancelation is illustrated in Fig. 2.4 for only one

direction of transmission (from speaker A on the far left of the hybrid to speaker

B on the right). The adaptive canceler is placed in the four-wire path near the

origin of the echo. The synthetic echo, denoted by r̂(n), is generated by passing

the speech signal from speaker A through an adaptive filter that ideally matches

the transfer function of the echo path. The reference signal, passing through

the hybrid, results in the echo signal r(n). This echo, together with the far-end

speaker signal x(n) constitutes the desired response for the adaptive canceler.
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Filter

∑
e(n)

r̂(n)

−

+

Speaker B

Speaker B’s

signal x(n)

Speaker A’s

echo r(n)

Figure 2.4: Block diagram of an echo cancelation scheme.

The synthetic echo r̂(n) is subtracted from the desired response r(n) + x(n) to

yield the canceler error signal for only one direction of transmission (from speaker

A on the far left of the hybrid to speaker B on the right).

e(n) = r(n)− r̂(n) + x(n). (2.5)

Note that the error signal e(n) also contains the far-end speaker signal x(n),

In any event, the error signal e(n) is used to control the adjustments made in the

coefficients of the adaptive filter.

2.2.3 Adaptive Beamforming

Adaptive beamforming is widely used in radar, sonar, communications, geophys-

ical exploration and biomedical signal processing [15, 24, 32]. In radar systems,

the sensors consist of antenna elements that respond to incident electromagnetic

waves. In sonar, the sensors consist of hydrophones designed to respond to acous-

tic waves. In any event, beamforming is used in these systems to distinguish

between the spatial properties of signal and noise. [2, 33–35]

In a primitive type of spatial filtering, known as the delay-and-sum beam-

former, the various sensor outputs are delayed and then summed. Thus for a
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single target, the average power at the output of the beamformer is maximized

when it is steered toward the target. A major limitation of the delay-and-sum

beamformer is that is has no provisions for dealing with the sources of interfer-

ence. In order to enable a beamformer to respond to an unknown interference

environment, it has to be made adaptive in such a way that is places nulls in

the directions of the source of interference automatically and in real time. By so

doing, the output signal-to-noise ratio (SNR) of the system is increased , and the

directional response of the system is thereby improved. [1]

Adaptive beamforming takes advantage of the interference to change the di-

rectionality of the array. When transmitting, the phase and relative amplitude

of the signal can be controlled by a beamformer at each transmitter, in order

to create a pattern of constructive and destructive interference in the wavefront.

When receiving, information from different sensors is combined in a way where

the expected pattern of radiation is favorably observed. In communications,

adaptive beamforming is used to point an antenna at the signal source to reduce

interference and improve the transmission quality.

2.3 Adaptive filtering algorithms

Adaptive filters can be based on various basic algorithms, of which the two most

known are the least mean square (LMS) and the recursive least squares (RLS)

[5,6]. The LMS algorithm is an extremely simple technique from a computational

complexity point of view, however, it may have a poor performance with colored

signals. The RLS algorithm has often a high performance, however, it is often

too complex to implement in real time [36–38]. This is one of the reasons why

designers seek solutions with an improved performance as compared with the

LMS and with a significantly lower complexity than the RLS for applications

with large filters. As the required adaptive filter lengths grow, the conventional

LMS algorithm exhibits a slower convergence rate.

In this section, the LMS, the normalized least-mean-square (NLMS) and the

affine projection algorithm are introduced.
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2.3.1 The Least Mean Square (LMS) Algorithm

The major advantage of the LMS algorithm is its simplicity and this feature

makes the LMS a standard against other linear adaptive algorithms. The cost

function of the LMS algorithms is:

J(n) = |e(n)|2, (2.6)

where | · | is the Euclidean norm and the e(n) is the error signal, that is equal to

the difference between the desired signal and the filter output signal,

e(n) = d(n)− ŵH(n)u(n), (2.7)

where ŵ(n) is the filter represented by a M -by-1 tap-weight vector and u(n) is

the M -by-1 input signal. Then the gradient vector of J(n) can be expressed as:

∂J

∂ŵ∗
= −p + Rŵ(n), (2.8)

where R is the correlation matrix of the received signal and p is the cross-

correlation vector between the received signal and the desired signal. The op-

timum solution of such a linear filter is known as the Wiener solution that is

given by

ŵ0 = R−1p. (2.9)

One possible solution is to estimate the gradient vector by employing instan-

taneous estimates for R and p as follows:

R = u(n)uH(n),

p = u(n)d∗(n),
(2.10)

then the gradient vector is given by

∂J

∂ŵ∗
= −u(n)d∗(n) + u(n)uH(n)ŵ(n). (2.11)
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So the filter coefficient vector is then updated by

ŵ(n+ 1) = ŵ(n)− µ ∂J

∂ŵ∗

= ŵ(n) + µu(n)[d∗(n)− uH(n)ŵ(n)]

= ŵ(n) + µu(n)e∗(n),

(2.12)

where µ is the step-size parameter controlling the convergence and the steady-

state behavior of the LMS. An approximate condition for the convergence is:

0 < µ <
2

MSmax
, (2.13)

where M is the length of the filter and Smax is the maximum value of the power

spectral density of the received vector [1].

2.3.2 The Normalized LMS (NLMS) Algorithm

The normalized least mean square (NLMS) algorithm is the companion to the

ordinary LMS algorithm. We may formulate the NLMS algorithm as a natural

modification of the ordinary LMS. The NLMS algorithm usually converges faster

than the LMS algorithm, since it utilizes a variable convergence factor aiming at

the minimization of the instantaneous output error [5, 39,40].

Denote a plant modelled by an FIR filter with M coefficients. Given the tap-

input vector u(n) and the desired response d(n), determine the tap-weight vector

ŵ(n+ 1) so as to minimize the squared Euclidean norm of the change

δŵ(n+ 1) = ŵ(n+ 1)− ŵ(n), (2.14)

in the tap-weight vector ŵ(n + 1) with respect to its old value ŵ(n), subject to

the constraint

ŵH(n+ 1)u(n) = d(n). (2.15)

We can use the method of Lagrange multipiers to solve this optimization

problem. The cost function of this problem can be expressed as

J(n) = ‖ŵ(n+ 1)− ŵ(n)‖2 +Re{λ∗[d(n)− ŵH(n+ 1)u(n)]}, (2.16)
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where λ denotes the Lagrange multipliers. By using the method of Lagrange mul-

tipliers, the solution of this optimization problem is the following filter coefficient

update equation [1]

ŵ(n+ 1) = ŵ(n) +
µ

‖u(n)‖2u(n)e∗(n). (2.17)

Equation (2.17) clearly shows the reason for using the term normalized so the

NLMS algorithm can be viewed as an LMS algorithm with a time-variant step-

size parameter. That is the intuitive reason why the NLMS algorithm exhibits a

faster rate of convergence than the conventional LMS algorithm.

2.3.3 Proportionate NLMS (PNLMS) Algorithm

The proportionate algorithm is one technique that belongs to a class of algorithms

in which each filter coefficient is updated proportionally to its magnitude, result-

ing in higher convergence speed when the optimal weight vector is sparse [11].

The PNLMS algorithm differs from the NLMS algorithm in that the available

adaptation energy is distributed unevenly over the taps [12–14]. The PNLMS

algorithm is specified in Table 2.2, where M is the length of the adaptive filter, µ

is the step-size parameter, δ is a small positive number used to avoid overflowing,

and ŵk(n) is the kth coefficient of ŵ at time n. The constant δ is important when

all the coefficients are zero (in the beginning) and, together with ρ, prevent the

very small coefficients from stalling.

The PNLMS algorithm has very fast initial convergence speed, which is favor-

able for applications such as network echo cancelation. However, after the initial

period, it begins to slow down dramatically, even becoming slower than the NLMS

algorithm. To solve this problem, some variations such as the improved PNLMS

(IPNLMS) and µ-law PNLMS (MPNLMS) [13, 14] are also developed to keep

the fast initial convergence speed during the whole adaptation process until the

adaptive filter reaches its steady-state.
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Table 2.2: Summary of the PNLMS algorithm

Initialization:

ŵ(0) = [0, 0, ..., 0]T

Update for each time instant: n > 0

l∞(n+ 1) = ρ max{δ, ‖ŵ1(n)‖, ‖ŵ2(n)‖, ..., ‖ŵM(n)‖}
lk(n+ 1) = max{l∞(n+ 1), ‖ŵk(n)‖}
gl(n+ 1) = lk(n+1)

1
M

∑M
i=1 li(n+1)

1≤i≤L
G(n+ 1) = diag{g1(n+ 1), g2(n+ 1), ..., gM(n+ 1)}
ŵ(n+ 1) = ŵ(n) + µG(n+1)u(n)e∗(n)

uT (n)G(n+1)u(n)

n = n+ 1

2.3.4 Affine Projection Algorithm (APA)

Data-reusing algorithms are considered an alternative to increasing the rate of

convergence in adaptive filtering algorithms in situations where the input signal

is correlated. But the data reusing will increase the misadjustment of these

algorithms [2]. The APA and its variations [30, 41–45] is a popular method in

adaptive filtering applications, with complexity and performance intermediary

between those of LMS and of RLS. Its applications include echo cancellation,

channel equalization, interference cancellation, and so forth.

Let us assume that the last N input signal vectors are organized in a M -by-N

matrix as follows

U(n) = [u(n),u(n− 1), ...,u(n−N + 1)], (2.18)

where the u(n) denotes the vector of the input signal at time n, and N denotes

the APA order. We can also define some vectors representing the filter output

y(n), the desired signal d(n) and the error e(n) = d(n) − y(n) vectors. These

vectors are, respectively given by

y(n) = [y(n), y(n− 1), ..., y(n−N + 1)]T , (2.19)
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d(n) = [d(n), d(n− 1), ..., d(n−N + 1)]T , (2.20)

From (2.18) - (2.20), we can obtain the following equation

y(n) = UH(n)ŵ(n). (2.21)

For the APA, the tap-weight vector variation is defined as δŵ(n+1) = ŵ(n+

1)− ŵ(n). The objective of the APA is to minimize

‖ŵ(n+ 1)− ŵ(n)‖2

subject to d(n)−UH(n)ŵ(n+ 1) = 0.
(2.22)

Here again the method of Lagrange multiplier can be used to find the solution

that minimizes the cost function J(n).

J(n) = ‖ŵ(n+ 1)− ŵ(n)‖2 +Re{[d(n)−UH(n)ŵ(n+ 1)]Hλ}, (2.23)

where λ = [λ(0), λ(1), ..., λ(N − 1)]T denotes the vector of Lagrange multipli-

ers. Then the solution of this optimization problem would be the following filter

coefficient update equation

ŵ(n+ 1) = ŵ(n) + µU(n)[UH(n)U(n)]−1e(n) (2.24)

with µ = 1, and e(n) = d(n) − y(n). In general, a step-size µ < 1 is used to

control convergence and the steady-state behavior of the APA.

The APA is a generalization of the NLMS adaptive filtering algorithm. When

the AP order N is set to one, the equation (2.24) will reduce to the familiar NLMS

algorithm. As the AP order increases, so does the convergence speed of the tap

weight vector. But unfortunately, the computational complexity of the algorithm

will also increase significantly. So the fast affine projection (FAP) [31,46,47] has

been developed by using a sliding windowed fast recursive-least-square (FRLS)

to compute the inverse in a fast manner.
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Chapter 3

Proposed Sparsity-Aware

Algorithm

In this chapter, the problem of sparse system identification is briefly introduced.

The proposed sparsity-aware NLMS and APA techniques that employ zero-attracting

and reweighted zero-attracting strategies are then derived. A zero-forcing strat-

egy which can improve the performance of the proposed sparsity-aware algorithms

is then detailed . Finally, some experimental results are shown to illustrate their

performance.

3.1 Sparse System Identification

In many scenarios of system identification, impulse responses of unknown sys-

tems can be assumed to be sparse, containing only a few large coefficients in-

terspersed among many negligible ones. The basic idea of sparse system iden-

tification is to try to incorporate those sparse prior information to improve the

filtering/estimation performance. In the past years, many algorithms exploiting

sparsity were based on applying a subset selection scheme during the filtering pro-

cess, which was implemented via statistical detection of active taps or sequential

partial updating [8–10].

In a sparse system identification application, the desired signal is the output

of an unknown sparse system when excited by an input signal. The input signal
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u(n) d(n)
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e(n)

+

−

ŵ0(n)
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Figure 3.1: Block diagram of sparse system identification using an adaptive al-
gorithm.

is also used as an input for an adaptive filter ŵ(n) with M coefficients to produce

an output estimate y(n) which is compared to the reference signal d(n). The

error signal e(n) consists of the difference between the desired signal d(n) and

the output of the sparse adaptive filter y(n). When the output error e(n) is

minimized, the adaptive filter represents a model for the unknown sparse system.

The block diagram of sparse system identification is shown in Fig. 3.1. Here,

u(n) is the input signal with M samples that is applied to the unknown sparse

system, and the response signal d(n) is the reference signal. The problem we

are interested in solving is how to identify the unknown sparse system using an

adaptive algorithm that is able to identify and exploit the sparse nature of the

system.
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3.2 Zero-Attracting NLMS (ZA-NLMS) Algo-

rithm

To exploit the sparsity of the system, we incorporate the l1-norm optimization

strategy with the conventional NLMS algorithm. Here, the l1-norm penalty on

the coefficients is combined into the conventional NLMS cost function (2.14) and

(2.15). The objective of the ZA-NLMS is to minimize

J1(n) = ‖ŵ(n+ 1)− ŵ(n)‖2 + ‖ŵ(n)‖1
subject to d(n)− ŵH(n+ 1)u(n) = 0.

(3.1)

To solve this constrained optimization problem, we may use the method of

Lagrange multipliers. By using this method, the cost function can be expressed

as

J1(n) = ‖ŵ(n+1)−ŵ(n)‖2+Re{λ∗[d(n)−ŵH(n+1)u(n)]}+‖ŵ(n+1)‖1. (3.2)

We can compute the partial derivative of J2(n) with respect to ŵ∗(n+ 1)

∂J1(n)

∂ŵ∗(n+ 1)
= ŵ(n+ 1)− ŵ(n)− u(n)λ∗ + α sgn[ŵ(n+ 1)], (3.3)

where sgn[ · ] is a function that returns the sign of the arguments. Denote a

complex number z = a+ bj, the sgn[ · ] is defined as

sgn(z) =





1 + j if a > 0, b > 0

1− j if a > 0, b < 0

j if a = 0, b > 0

1 if a > 0, b = 0

0 if a = 0, b = 0

−1 if a < 0, b = 0

−j if a = 0, b < 0

−1 + j if a < 0, b > 0

−1− j if a < 0, b < 0

(3.4)
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By equating (3.3) to zero, then we can get

λ =
e(n)

‖u(n)‖2 +
α

‖u(n)‖2 sgnH [ŵ(n+ 1)]u(n). (3.5)

Assuming that sgn[ŵ(n+ 1)]≈sgn[ŵ(n)], then combining (3.5) with (3.3), we

can get the filter coefficient update equation of ZA-NLMS:

ŵ(n+ 1) = ŵ(n) +
µ

‖u(n)‖2u(n)e∗(n) +
αu(n)uH(n)

‖u(n)‖2 sgn[ŵ(n)]− α sgn[ŵ(n)].

(3.6)

Comparing the ZA-NLMS update equation (3.6) with the conventional NLMS

function (2.17), we can see an additional term α sgn[ŵ(n)], which attracts the

tap coefficients to zero. We call this the zero attractor feature, whose strength is

controlled by α. Intuitively, the zero attractor will speed-up convergence when

the majority of coefficients of ŵ are zero, i.e., the system is sparse. Table 3.1

summarizes the ZA-NLMS algorithm.

Table 3.1: Summary of the ZA-NLMS algorithm

Initialization:

ŵ(0) = [0, 0, ..., 0]T

Update for each time instant: n > 0

y(n) = ŵH(n)u(n)

e(n) = d(n)− y(n)

ŵ(n+ 1) = ŵ(n) + µ
‖u(n)‖2 u(n)e∗(n) + αu(n)uH(n)

‖u(n)‖2 sgn[ŵ(n)]− α sgn[ŵ(n)]

n = n+ 1

3.3 Zero-Attracting Affine Projection Algorithm

(ZA-APA)

For conventional APA, we can also apply the same strategy to get a new cost

function J2(n) by combining the instantaneous square error with the l1-norm
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penalty of the coefficient vector. The new cost function is shown as below

J2(n) = ‖ŵ(n+1)−ŵ(n)‖2+Re{[d(n)−UH(n)ŵ(n+1)]λ}+α ‖ŵ(n+1)‖1. (3.7)

To minimize the cost function, we can compute the partial derivative of J2(n)

with respect to ŵ∗(n+ 1)

∂J2(n)

∂ŵ∗(n+ 1)
= ŵ(n+ 1)− ŵ(n)−U(n)λ+ α sgn[ŵ(n+ 1)]. (3.8)

By equating (3.8) to zero, we get

ŵ(n+ 1) = ŵ(n) + UH(n)λ− α sgn[ŵ(n+ 1)]. (3.9)

Multiplying both sides by UH(n) from the left, we obtain

d(n) = UH(n)ŵ(n) + UH(n)U(n)λ− αUH(n)sgn[ŵ(n+ 1)]. (3.10)

Because e(n) = d(n) − UH(n)ŵ(n) we can solve for λ. Assuming that

sgn[ŵ(n + 1)]≈sgn[ŵ(n)], with further manipulations, we can obtain the new

filter coefficient update equation

ŵ(n+1) = ŵ(n)+µU+(n)e(n)+αU+(n)UH(n)sgn[ŵ(n)]−αsgn[ŵ(n)], (3.11)

where U+(n) = U(n)[UH(n)U(n)]−1.

Comparing the ZA-APA update (3.11) to the standard APA update (2.24),

the ZA-APA has two additional terms, which attract the tap coefficients to zero.

In addition, if we set the AP order N to one, (3.11) reduces to the update formula

for the Zero-Attracting NLMS (ZA-NLMS) algorithm. A summary of the ZA-

APA is shown in Table 3.2.
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Table 3.2: Summary of the ZA-APA

Initialization:

ŵ(0) = [0, 0, ..., 0]T

Update for each time instant: n > 0

y(n) = UH(n)ŵ(n)

e(n) = d(n)− y(n)

U+(n) = U(n)[UH(n)U(n)]−1

ŵ(n+ 1) = ŵ(n) + µU+(n)e(n) + αU+(n)UH(n)sgn[ŵ(n)]− αsgn[ŵ(n)]

n = n+ 1

3.4 Reweighted Zero-Attracting Affine Projec-

tion Algorithm (RZA-APA)

Unfortunately, the ZA-APA does not distinguish between zero taps and non-zero

taps. Since all the taps are forced to zero uniformly, the performance of ZA-APA

can be deteriorated when applied to less sparse systems. In order to solve this

problem, we adopt a heuristic approach [8, 9, 26] to reinforce the zero attractor

called the reweighted zero-attracting affine projection algorithm (RZA-APA). For

the RZA-APA, we use a new l1-norm penalty to minimize the cost function

J3(n) = ‖ŵ(n+ 1)− ŵ(n)‖2 + α

M∑

i=1

log(1 +
|ŵi|
ε

)

subject to d(n)−UH(n)ŵ(n+ 1) = 0.

(3.12)

Here, we may use the method of Lagrange multipliers to solve this constrained

optimization problem,

∂J3(n)

∂ŵ∗(n+ 1)
= ŵ(n+ 1)− ŵ(n)−U(n)λ+ α

sgn(ŵ(n+ 1))

1 + ε|ŵ(n+ 1)| , (3.13)

By equating (3.13) to zero, we get the new filter coefficient update equation
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of RZA-APA

ŵ(n+ 1) = ŵ(n) + µU+(n)e(n) + αU+(n)UH(n)S(n)− αS(n), (3.14)

where

U+(n) = U(n)[UH(n)U(n)]−1,

Sk(n) =
sgn[ŵk(n)]

1 + ε|ŵk(n)| , for 0≤k≤M,

where ε is the shrinkage magnitude, ŵk(n) is the kth coefficient of ŵ at time

instant n, and Sk(n) is the kth coefficient of S at time instant n.

The RZA-APA is more sensitive to taps with small magnitudes. The reweighted

zero attractor takes more shrinkage exerted on those taps for which magnitudes

are comparable to 1/ε; and takes less effort on the taps whose |ŵ(n)|�1/ε. In

this way, the bias of the RZA-APA can be reduced. We show a summary of the

RZA-APA in Table 3.3.

Table 3.3: Summary of the RZA-APA

Initialization:

ŵ(0) = [0, 0, ..., 0]T

Update for each time instant: n > 0

y(n) = U(n)ŵ(n)

e(n) = d(n)− y(n)

U+(n) = U(n)[UH(n)U(n)]−1

for k=1,2,...,M

{
Sk(n) = sgn[ŵk(n)]

1+ε|ŵk(n)|

}
ŵ(n+ 1) = ŵ(n) + µU+(n)e(n) + αU+(n)UH(n)S(n)− αS(n)

n = n+ 1

The update equation for RZA-NLMS can be obtained from the RZA-APA by
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setting N equal to zero and is described by

ŵ(n+ 1) = ŵ(n) +
µ

‖u(n)‖2u(n)e∗(n)− α sgn[ŵ(n)]

1 + ε|ŵ(n)| . (3.15)

3.5 Zero-Forcing Technique

In many scenarios of sparse system identification, some of the tap-weight co-

efficients are so small that they can be ignored. By ignoring those taps, the

computational complexity of the adaptive algorithm could also be reduced. In

addition, we can also get some performance gain if those taps that are signif-

icantly small and are associated with zero coefficients of the impulse response

of the system can be forced to zero. From this point of view, we set up a new

idea forcing those small tap-weight coefficients to zero after some iterations. This

technique can be incorporated into any sparsity-aware adaptive algorithm.

We incorporate the zero-forcing technique into the ZA-NLMS algorithm as an

example to show how it works. In the normal procedure of ZA-NLMS, we will

calculate the sign of every tap-weight coefficient in every iteration. When the

algorithm is about to converge after the Lth iteration, if some of the coefficients

are smaller than the zero-attractor procedure α, they will be forced to change their

sign after every iteration. These calculations are not necessary. Therefore, we can

set up a threshold η to identify if there are any coefficients that are small enough

so that we could force them to zero to reduce the computational complexity. By

using this zero-forcing technique, we can get a new algorithm called zero-forcing

NLMS(ZF-NLMS). Here, we often choose the time instant L = 2M which is 2

times of the filter length to start the zero-forcing procedure.

Denote ŵk(n) the kth coefficient of ŵ at time n, the summary of the ZF-NLMS

is shown in Table 3.4:

We can see that the difference between ZF-NLMS and ZA-NLMS is just the

zero-forcing procedure. This technique can also be incorporate to other algo-

rithms such as ZA-APA, which in turn get the ZF-APA. In the next section,

experiments will be designed to test the performance of these proposed algo-

rithms.
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Table 3.4: Summary of the ZF-NLMS algorithm
Initialization:

ŵ(0) = [0, 0, ..., 0]T

Update for each time instant: n > 0

Step 1: 0 < n < 2M

y(n) = ŵH(n)u(n)

e(n) = d(n)− y(n)

µ
′
= µ
‖u(n)‖2

ŵ(n+ 1) = ŵ(n) + µ
′
u(n)e∗(n) + αu(n)uH(n)

‖u(n)‖2 sgn[ŵ(n)]− α sgn[ŵ(n)]

n = n+ 1

Step 2: n > 2M

For k = 1, 2, ...,M − 1

{
If ŵk(n) < η

ŵ
′

k(n) = 0

k = k + 1;

}
y(n) = ŵH(n)u(n)

e(n) = d(n)− y(n)

µ
′
= µ
‖u(n)‖2

ŵ(n+ 1) = ŵ(n) + µ
′
u(n)e∗(n) + αu(n)uH(n)

‖u(n)‖2 sgn[ŵ(n)]− α sgn[ŵ(n)]

n = n+ 1

3.6 Simulations

In this section, simulation results are given to show the performance of the pro-

posed sparsity-aware algorithms in stationary scenarios.

Firstly, we set up a simulation example to compare the performance of pro-

posed sparsity-aware NLMS algorithms compared with the PNLMS and IPNLMS

algorithms, which are also improvements of the conventional NLMS algorithm,

also designed specified for sparse systems. Then four simulations are set to ana-

lyze the performance of zero-attracting algorithms, including the comparison be-

tween NLMS, ZA-NLMS, RZA-NLMS, APA, ZA-APA and RZA-APA. The last

two simulations are for the zero-forcing algorithm, including the ZF-NLMS, ZF-

APA, RZF-NLMS and RZF-APA. The input signals we use in these simulations
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are independent and identically distributed (i.i.d.) signals, and the measurement

noise here are i.i.d Gaussian white noise as well. In these simulations, the SNR

of the system is set to 30dB, the affine projection order N is set to 4, and other

parameters of the simulation system are shown in Table 3.5

Table 3.5: Table of Parameters
Exp. Algorithm Step-size µ Zero-attractor α Reweighted ε
No. 1 NLMS 0.5 5×10−4 100
No. 2 APA 0.5 5×10−4 100

NLMS 0.5 5×10−4 100
No. 3 APA 0.5 1×10−3 100

NLMS 0.5 1×10−3 100
No. 4 APA 0.5 1×10−3 100

NLMS 0.5 1×10−3 100
No. 5 APA 1 1×10−3 100

NLMS 1 1×10−3 100
No. 6 NLMS 1 1×10−3 100
No. 7 APA 1 1×10−3 100

In the first experiment, we compared the proposed sparsity-aware NLMS al-

gorithms with the conventional NLMS, PNLMS and IPNLMS algorithms. In

this experiment, we introduce a 32-tap system with only 2 non-zero coefficients,

which is a significantly sparse system. The simulation result describing the MSE

against the number of iterations is shown in Fig. 3.2.

As we can see from the MSE results, the PNLMS algorithm has a slightly

faster initial convergence rate at the start, but begins to slow down after the initial

period. The IPNLMS, which is a improved variation of the PNLMS, has a better

convergence rate in the initial period than the PNLMS, but it still does not achieve

a better steady-state performance than our proposed sparsity-aware algorithms.

Both of our proposed algorithm get the best steady-state performance, especially

the RZA-NLMS. So we will focus on our proposed sparsity-aware algorithms in

the following experiments.

A system with 32 tap-weight coefficients is set in the next three experiments.

Note that the number of non-zero taps for each experiment are 2, 16 and 32. In

the experiment 2, we set the 4th and 6th tap with value 1 and the others to zero,

so that it is a really sparse system with sparsity factor 2/32. In the experiment
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Figure 3.2: Simulated MSE for experiment 1.

3, all the odd taps are set to 1, while all the even taps remain equal to zero. For

the experiment 4, all the taps are set to 1, which means it is a totally non-sparse

system. In these three experiments, we choose the step-size µ = 0.5 to achieve

balance between convergence rate and steady-state performance.

For the experiment 2, the average estimate of mean square error (MSE) is

shown in Fig. 3.3. As we can see from the MSE results, both the zero-attracting

algorithms and reweight zero-attracting algorithms achieve faster convergence

rate and better steady-state performance than the conventional NLMS and APA.

The convergence rate of APA is also much faster than the NLMS algorithms. We

can also see that when the system is significantly sparse, the convergence rate of

the zero-attracting algorithms are faster than the reweighted ones.

As we can see from Fig. 3.4, when the number of non-zero taps increases to 16,

the performance of ZA-NLMS and ZA-APA deteriorates, while the RZA-NLMS

and RZA-APA still have the best convergence rate. Again, the APA algorithms

achieve better convergence rate than the NLMS algorithms.

In the 4th experiment, we introduce a non-sparse system to test if these pro-

posed algorithms can still work in this bad environment. As it can be seen from
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Figure 3.3: Simulated MSE for experiment 2.
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Figure 3.4: Simulated MSE for experiment 3.

the Fig. 3.5, RZA-NLMS and RZA-APA show a robust performance when the

system is non-sparse. Due to the uniform zero-attractor parameter, the perfor-
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Figure 3.5: Simulated MSE for experiment 4.

mance of ZA-NLMS and ZA-APA is not robust in the non-sparse system.
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Figure 3.6: The impulse response of the system in the experiment 5.

In the 5th experiment, we introduce a 64-tap system with 16 non-zero co-

efficients. The impulse response of the system is show in Fig. 3.6. Since this

is a large system, it will be much slower in convergence rate, so we choose the

step-size µ = 1 to achieve a balance between the steady-state performance and

the convergence rate. From Fig. 3.7, for this large sparse system, the reweighted

algorithms significantly outperform the conventional NLMS and APA in steady-

state MSE. The RZA-APA still has a faster convergence rate compared to the

RZA-NLMS. On the other hand, both of them can achieve a good steady-state

MSE almost at the same level.
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Figure 3.7: Simulated MSE for experiment 5.

In the next two simulations, we introduce a 32-tap sparse system with only

2 non-zero coefficients, to show the improvement that the zero-forcing technique

can provide if the system is significantly sparse. The first experiment is the com-

parison between NLMS algorithms, and the second one is for the APA algorithms.

In experiment 6, the zero-forcing threshold η = 0.005, which is 5 times higher

than the zero-attracting parameter α = 10−3. We can see from Fig. 3.8 that when

the system is very sparse, the zero-forcing technique can help the ZA-NLMS and

RZA-NLMS to get a better result both in steady-state MSE and convergence rate

by making full use of the sparse prior information.

For the 7th experiment, as we can see from Fig. 3.9, the zero-forcing technique

can also slightly improve the steady-state performance and convergence rate of

the sparsity-aware APA.

3.7 Summary

In this chapter, a set of sparsity-aware zero-attracting adaptive algorithms have

been developed by incorporating the l1-norm penalty on the coefficients with the
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Figure 3.8: Simulated MSE for experiment 6.
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Figure 3.9: Simulated MSE for experiment 7.

conventional NLMS and APA. We have also developed a zero-forcing technique

to further improve the performance of the proposed zero-attracting algorithms.
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Simulation results have been carried out to compare the proposed algorithms with

the conventional ones. As we can see from the results, the proposed algorithms

possess faster convergence-rate and better steady-state performance. They can

be applied to a number of applications in which the signals and systems under

consideration have a sparse nature, resulting in a better performance than the

conventional NLMS and APA. Specifically, we have considered the proposed al-

gorithms to identification of sparse systems that occur in applications of control

and echo cancellation. We will further analyze the proposed algorithms in the

next chapter.
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Chapter 4

Analysis of the Proposed

Sparsity-Aware Algorithms

In this chapter, an analysis of the proposed algorithms is carried out and in-

cludes an assessment of the computational complexity, a convergence analysis,

and a steady-state analysis. Simulation results are also provided to illustrate the

effectiveness of the analytical expressions for predicting the mean-square error

performance of the proposed algorithms.

4.1 Computational Complexity

In this section, we discuss the computational complexity of the proposed sparsity-

aware adaptive algorithms and compare them with the complexity of conventional

adaptive algorithms. The complexity considered here is the arithmetic complex-

ity, which includes additions and multiplications. We assume that there are only

Q non-zero taps in a sparse system modelled as an FIR filter with M coefficients,

and the order of the APA is N . For data without a time-shifting structure, we

detail the computational complexity of the algorithms in terms of additions and

multiplications as shown in Table 4.1.

We set up two experiments to analyze the computational complexity of the

NLMS, ZA-NLMS, RZA-NLMS, AP, ZA-AP and RZA-AP algorithms, in which

the computational complexity of the proposed sparsity-aware algorithms are shown
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Table 4.1: Computational Complexity
Algorithm Additions Multiplications Divisions

NLMS 3M 3M + 1 1

ZA-NLMS M + 3Q M + 3Q+ 1 1

RZA-NLMS M + 4Q M + 4Q+ 1 M + 1

APA N2M +MN N2M +N2 +MN M
+Q−M +O(N3) +N +O(N3)

ZA-APA N2M +N2 + 3MN N2M + 2N2 + 3MN M
−2N − 2M + 3Q+O(N3) +2N +Q+O(N3)

RZA-APA N2M +N2 + 3MN N2M + 2N2 + 3MN 2M
−2N − 2M + 4Q+O(N3) +N +M + 2Q+O(N3)
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Figure 4.1: The computational complexity of the NLMS algorithms.

as a function of M , and include both additions and multiplications. From Fig.

4.1, we can see that the complexity of ZA-NLMS and RZA-NLMS is a little higher

than the conventional NLMS algorithms. In addition, the sparsity of the system

can also help reduce the computational complexity of the proposed algorithms.

We can also see in Fig. 4.2 that the proposed ZA-APA and RZA-APA have the

same effect as the NLMS algorithm.
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Figure 4.2: The computational complexity of the APA (Affine projection order
N = 4).

4.2 Analysis of the Proposed Algorithms

In this section, we investigate several characteristics of the proposed ZA-NLMS

and ZA-AP algorithms and carry out an analysis of them. Firstly, a sufficient con-

dition for the convergence of the mean weight vector is obtained. Then, steady-

state mean-square error expressions are derived.

4.2.1 ZA-NLMS Algorithm

Firstly, we analyze the convergence behavior of the ZA-NLMS algorithm. We

use the energy-conservation approach [30,48–50] to derive theoretical expressions

for the excess mean-square error (EMSE) of the ZA-NLMS algorithm. Let us

consider the reference data d(n) that arise from the linear model

d(n) = ŵH
0 u(n) + v(n), (4.1)
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where ŵ0 is a tap-weight vector of the system that we wish to estimate, v(n)

accounts for measurement noise at time instant n, and u(n) denotes the input

signal at time instant n. Our objective is to evaluate the steady-state MSE

performance of the ZA-NLMS algorithm. The steady-state MSE can be defined

as

MSE , lim
n→∞

E|e(n)|2, (4.2)

where

e(n) = d(n)− ŵH(n)u(n) (4.3)

is the output estimation error at time n.

Combining (4.1) with (4.3), we can get

e(n) = ŵH
0 (n)u(n) + v(n)− ŵH(n)u(n)

= [ŵ0 − ŵ(n)]Hu(n) + v(n).
(4.4)

Combining the update equation of the ZA-NLMS algorithm (3.6) with (4.4),

we get

δŵ(n+ 1) ,ŵ0 − ŵ(n+ 1)

=ŵ0 −
{

ŵ(n) +
µu(n)e∗(n)

‖u(n)‖2 +
αu(n)uH(n)

‖u(n)‖2 sgn[ŵ(n)]− α sgn[ŵ(n)]

}

=

[
I − µu(n)uH(n)

‖u(n)‖2
]
δŵ(n)− µ

‖u(n)‖2u(n)v∗(n)

− αu(n)uH(n)

‖u(n)‖2 sgn[ŵ(n)] + α sgn[ŵ(n)].

(4.5)

Because the measurement noise v(n) is statistically independent of the input

signal u(n), we have E[u(n)v∗(n)] = 0. Taking expectations of both sides of

(4.5), we get

E [δŵ(n+ 1)] =E

[
I − µu(n)uH(n)

‖u(n)‖2
]
E [δŵ(n)]

− αE
[

u(n)uH(n)

‖u(n)‖2
]
E {sgn[ŵ(n)]}+ αE {sgn[ŵ(n)]} .

(4.6)
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If the SNR is large, and α is small, we can assume that in the steady-state

E {sgn[ŵ(n)]} ≈ sgn(ŵ0). (4.7)

In addition, ref. [51, 52] show that, for long filters (M � 1), expected value

related to u(n) can be approximated as

E

[
u(n)uH(n)

‖u(n)‖2
]
≈ E[u(n)uH(n)]

E[‖u(n)‖2] =
R

Tr(R)
=

R

Mσ2
u

, (4.8)

where R = E[u(n)uH(n)], and σ2
u is the power of the input signal u(n). Then

(4.6) can be rewritten as

E [δŵ(n+ 1)] =

[
I− µR

Mσ2
u

]
E [δŵ(n)]− αR

Mσ2
u

sgn(ŵ0) + α sgn(ŵ0). (4.9)

Note that the matrix α sgn(ŵ0) is bounded between −αI and αI. Therefore,

E[δŵ(n)] remains bounded if [I− µR
Mσ2

u
] is less than 1, which is satisfied by

0 < µ <
Mσ2

u

λmax

, (4.10)

where λmax is the maximum eigenvalue of the autocorrelation matrix of u(n). We

can see that the stability condition of the ZA-NLMS algorithm is independent of

the zero-attractor parameter α.

For n → ∞, we assume that the mean coefficient vector E[ŵ(n)] converges.

From (4.9), we obtain

E [δŵ(∞)] =

[
I− µR

Mσ2
u

]
E [δŵ(∞)]− αR

Mσ2
u

sgn(ŵ0) + α sgn(ŵ0), (4.11)

which can be rearranged as

E [δŵ(∞)] =− α

µ
sgn(ŵ0) +

αMσ2
u

µ
R−1sgn(ŵ0). (4.12)
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Then we obtain

E [ŵ(∞)] =ŵ0 −
α

µ
sgn(ŵ0) +

αMσ2
u

µ
R−1sgn(ŵ0). (4.13)

Note that (4.13) implies that the optimum solution of the ZA-NLMS algorithm

is biased, as was also shown for ZA-LMS in [8].

We then proceed to derive the steady-state MSE expression for the ZA-NLMS

algorithm. Multiplying both sides of (3.6) by u(n) from the right, we obtain

ŵH(n+ 1)u(n) =ŵH(n)u(n) +
µ

‖u(n)‖2 e(n)uH(n)u(n)

+
α

‖u(n)‖2 sgnH [ŵ(n)]u(n)uH(n)u(n)− α sgnH [ŵ(n)]u(n)

ŵH(n+ 1)u(n) =ŵH(n)u(n) + µe(n).

(4.14)

Introducing the a posteriori and a priori error ep(n) and ea(n), we have

ep(n) = ŵH
0 u(n)− ŵH(n+ 1)u(n),

ea(n) = ŵH
0 u(n)− ŵH(n)u(n).

(4.15)

Then, from (4.14), it holds that

ep(n) = ea(n)− µe(n). (4.16)

Combining (4.3) and (4.15), we obtain

e(n) =d(n)− ŵH(n)u(n)

=ŵH
0 u(n) + v(n)− ŵH(n)u(n)

=ea(n) + v(n).

(4.17)

Then (4.16) can be rewritten as

ep(n) =ea(n)− µe(n)

=(1− µ)e(n)− v(n).
(4.18)
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We can also use (4.16) to express e(n) as follows,

e(n) =
1

µ
[ea(n)− ep(n)]. (4.19)

Substituting the above into (3.6), we get

ŵ(n+ 1) =ŵ(n) +
1

‖u(n)‖2u(n)[ea(n)− ep(n)]∗

+
αu(n)uH(n)

‖u(n)‖2 sgn[ŵ(n)]− α sgn[ŵ(n)].

(4.20)

In the steady-state condition, E[‖ŵ(n + 1)‖2]≈E[‖ŵ(n)‖2] when n → ∞,

and assuming that ea(n) and ŵ(n) are independent of u(n) in steady-state. By

evaluating the energies of both sides of the above equation, we obtain

E

[
ep(n)

uH(n)

‖u(n)‖2
u(n)

‖u(n)‖2 e
∗
p(n)

]
= E

[
ea(n)

uH(n)

‖u(n)‖2
u(n)

‖u(n)‖2 e
∗
a(n)

]

+ E

{
α ea(n)

uH(n)

‖u(n)‖2
u(n)uH(n)

‖u(n)‖2 sgn[ŵ(n)]

}

− E
{
α ea(n)

uH(n)

‖u(n)‖2 sgn[ŵ(n)]

}

+ E

{
α sgnH [ŵ(n)]

u(n)uH(n)

‖u(n)‖2 u(n)e∗a(n)

}

+ E

{
α2 sgnH [ŵ(n)]

u(n)uH(n)

‖u(n)‖2
u(n)uH(n)

‖u(n)‖2 sgn[ŵ(n)]

}

− E
{
α2 sgnH [ŵ(n)]

u(n)uH(n)

‖u(n)‖2 sgn[ŵ(n)]

}

− E
{
α sgnH [ŵ(n)]

u(n)

‖u(n)‖2 e
∗
a(n)

}

− E
{
α2 sgnH [ŵ(n)]

u(n)uH(n)

‖u(n)‖2 sgn[ŵ(n)]

}

+ E
{
α2 sgnH [ŵ(n)]sgn[ŵ(n)]

}
,

(4.21)
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with uH(n)u(n)
‖u(n)‖2 = 1, (4.21) can be reduced to

E

[
ep(n)

1

‖u(n)‖2 e
∗
p(n)

]
= E

[
ea(n)

1

‖u(n)‖2 e
∗
a(n)

]

− α2E

{
sgnH [ŵ(n)]

u(n)uH(n)

‖u(n)‖2 sgn[ŵ(n)]

}

+ α2E
{

sgnH [ŵ(n)]sgn[ŵ(n)]
}

= E

[
ea(n)

1

‖u(n)‖2 e
∗
a(n)

]

+ α2E

{
sgnH [ŵ(n)]

[
I− u(n)uH(n)

‖u(n)‖2
]

sgn[ŵ(n)]

}
.

(4.22)

With the assumption (4.8), we obtain

1

Mσ2
u

E
[
ep(n)e∗p(n)

]
=

1

Mσ2
u

E [ea(n)e∗a(n)]

+ α2E

{
sgnH [ŵ(n)]

(
I− R

Mσ2
u

)
sgn[ŵ(n)]

}
,

E
[
ep(n)e∗p(n)

]
= E [ea(n)e∗a(n)]

+ α2E
{

sgnH [ŵ(n)]
(
Mσ2

uI−R
)

sgn[ŵ(n)]
}
,

(4.23)

where σ2
u is the power of the input signal u(n).

Substituting (4.18) into the left-hand side (LHS) of (4.23), we get

LHS =(1− µ)2E [e(n)e∗(n)]− (1− µ)E [e(n)v∗(n)]

− (1− µ)E [v(n)e∗(n)] + E [v(n)v∗(n)] .
(4.24)

Substituting (4.17) into the right-hand side (RHS) of (4.23), we obtain

RHS =E[e(n)e∗(n)]− E[e(n)v∗(n)]− E[v(n)e∗(n)] + E[v(n)v∗(n)]

+ α2E
{

sgnH [ŵ(n)]
(
Mσ2

uI−R
)

sgn[ŵ(n)]
}
.

(4.25)
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Combining (4.24) and (4.25), we obtain

E[e(n)e∗(n)] =
1

2− µE[e(n)v∗(n) + v(n)e∗(n)]

− α2

2µ− µ2
E
{

sgnH [ŵ(n)]
(
Mσ2

uI−R
)

sgn[ŵ(n)]
}
.

(4.26)

With the assumption that the noise v(n) is statistically independent of the

input signal u(n), i.e., E[u(n)v(n)] = 0, and substituting (4.4) into (4.26), we

obtain

E|e(n)|2 =
2

2− µE|v(n)|2 − α2

2µ− µ2
E
{

sgnH [ŵ(n)]
(
Mσ2

uI−R
)

sgn[ŵ(n)]
}
.

(4.27)

With the assumption (4.7), then we can arrive at

MSE = lim
n→∞

E|e(n)|2

=
2

2− µσ
2
v −

α2

2µ− µ2
E
{

sgnH [ŵ(n)]
(
Mσ2

uI−R
)

sgn[ŵ(n)]
}
.

=
2

2− µσ
2
v −

α2

2µ− µ2
sgnH(ŵ0)

(
Mσ2

uI−R
)

sgn(ŵ0),

(4.28)

where σ2
v is the power of the observation noise v(n). Finally, the excess MSE can

be written as

EMSE = MSE− σ2
v

=
µ

2− µσ
2
v −

α2

2µ− µ2
sgnH(ŵ0)

(
Mσ2

uI−R
)

sgn(ŵ0).
(4.29)

Note that the first part of the expression for the EMSE is a function pro-

portional to µ
2−µ . In Section 4.3, simulation results will evaluate the expressions

obtained for the EMSE in detail.

42



4.2.2 ZA-APA

The ZA-APA is an improvement of the conventional APA. We can also use the

energy-conservation approach [30, 48–50] to derive the theoretical expressions of

the EMSE of the ZA-APA. Firstly, multiplying both sides of (3.11) by UH(n)

from the left, we can find

UH(n)ŵ(n+ 1) =UH(n)ŵ(n) + µUH(n)U+(n)e(n)

+ αUH(n)U+(n)UH(n)sgn[ŵ(n)]− αUH(n)sgn[ŵ(n)]

UH(n)ŵ(n+ 1) =UH(n)ŵ(n) + µ e(n),

(4.30)

where we used the fact that, from the definition of UH(n)U+(n) = I.

Introducing the a posteriori and a priori error vectors ep(n) and ea(n), we

have

ep(n) = UH(n)ŵ0 −UH(n)ŵ(n+ 1),

ea(n) = UH(n)ŵ0 −UH(n)ŵ(n).
(4.31)

Then, from (4.30), it holds that

−ep(n) = −ea(n) + µe(n). (4.32)

In addition

e(n) =d(n)−UH(n)ŵ(n)

=UH(n)ŵ0 + v(n)−UH(n)ŵ(n)

=ea(n) + v(n).

(4.33)

Then (4.32) can be rewritten as

ep(n) =ea(n)− µe(n)

=(1− µ)e(n)− v(n).
(4.34)
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We can also use (4.32) to express e(n) as follows,

e(n) =
1

µ
[ea(n)− ep(n)]. (4.35)

Substituting the above into (3.11), we get

ŵ(n+ 1) = ŵ(n) + U+(n)[ea(n)− ep(n)] + αU+(n)UH(n)sgn[ŵ(n)]− αsgn[ŵ(n)].

(4.36)

Note that UH(n)U+(n) = UH(n)U(n)[UH(n)U(n)]−1 = I. By evaluating the

energies of both sides of the above equation, and using the steady-state condition

E[‖ŵ(n+ 1)‖2]≈E[‖ŵ(n)‖2] when n→∞, we obtain

E
{
eHp (n)[UH(n)U(n)]−1ep(n)

}
=E

{
eHa (n)[UH(n)U(n)]−1ea(n)

}

− α2E
{

sgnH [ŵ(n)] U+(n)UH(n)sgn[ŵ(n)]
}

+ α2E
{

sgnH [ŵ(n)] sgn[ŵ(n)]
}
.

(4.37)

Substituting (4.34) into the LHS of (4.37), we get

LHS =(1− µ)2E
{
eH(n)[UH(n)U(n)]−1e(n)

}

− (1− µ)E
{
eH(n)[UH(n)U(n)]−1v(n)

}

− (1− µ)E
{
vH(n)[UH(n)U(n)]−1e(n)

}

+ E
{
vH(n)[UH(n)U(n)]−1v(n)

}
.

(4.38)

Moreover, substituting (4.33) into the RHS of (4.37), we obtain

RHS =E
{
eH(n)[UH(n)U(n)]−1e(n)

}

− E
{
eH(n)[UH(n)U(n)]−1v(n)

}

− E
{
vH(n)[UH(n)U(n)]−1e(n)

}

+ E
{
vH(n)[UH(n)U(n)]−1v(n)

}

− α2E
{

sgnH [ŵ(n)] U+(n)UH(n)sgn[ŵ(n)]
}

+ α2E
{

sgnH [ŵ(n)] sgn[ŵ(n)]
}
.

(4.39)
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Combining (4.38) and (4.39) , we obtain

(2µ− µ2)E
{
eH(n)[UH(n)U(n)]−1e(n)

}
=µE

[
eH(n)[UH(n)U(n)]−1v(n))

}

+ µE
{
vH(n)[UH(n)U(n)]−1e(n)

}

+ α2E
{

sgnH [ŵ(n)] U+(n)UH(n)sgn[ŵ(n)]
}

− α2E
{

sgnH [ŵ(n)] sgn[ŵ(n)]
}
.

(4.40)

With the assumption that the noise v(n) is statistically independent of the

input signal u(n), we obtain

E
{
eH(n)[UH(n)U(n)]−1e(n)

}
=

2

2− µE
{
vH(n)[UH(n)U(n)]−1v(n)

}

+
α2

2µ− µ2
E
{

sgnH [ŵ(n)] U+(n)UH(n)sgn[ŵ(n)]
}

− α2

2µ− µ2
E
{

sgnH [ŵ(n)]sgn[ŵ(n)]
}
.

(4.41)

Ref. [48] suggests that we can assume that at steady-state, U(n) is statistically

independent of e(n), and moreover, E[e(n)eH(n)] = E|etop(n)|2 S, where S ≈ I

when µ is small and S ≈ 1 · 1T for large µ, where 1T = [1 0 ... 0] and etop(n) is

the top entry of e(n). Then we obtain

E
{
eH(n)[UH(n)U(n)]−1e(n)

}
≈Tr

{
E[e(n)eH(n)[UH(n)U(n)]−1]

}

≈E|etop(n)|2Tr
{
S · E

[
[UH(n)U(n)]−1

]}
.

(4.42)

Note that the MSE at time instant n equals E|etop(n)|2.
Similar manipulations can be applied to the first terms in the RHS of (4.41),

and we obtain

E
{
vH(n)[UH(n)U(n)]−1v(n)

}
≈Tr

{
E[vH(n)v(n)[UH(n)U(n)]−1]

}

≈Nσ2
vTr

{
E
[
[UH(n)U(n)]−1

]}
.

(4.43)
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In addition, the remaining term in (4.41) can also be rewritten as

E
{

sgnH [ŵ(n)] [U+(n)U(n)]sgn[ŵ(n)]
}
≈sgnH(ŵ0)E[U+(n)UH(n)]sgn(ŵ0)

−sgnH(ŵ0)sgn(ŵ0).

(4.44)

In order to find an approximation for this expression, we need to restrict the

analysis to the case of uncorrelated input, i.e., we assume now that R = σ2
uIM ,

where IM is the M ×M identity matrix. In this case, for large M we have

E[U+(n)UH(n)] = E
{
U(n)[UH(n)U(n)]−1UH(n)

}

≈ E
{
U(n)(E[UH(n)U(n)])−1UH(n)

}
.

(4.45)

Since E[uH(n)u(n− 1)] = 0, the inner expectation reduces to

E[UH(n)U(n)] =




uH(n)

uH(n− 1)
...

uH(n−N + 1)




[u(n) u(n− 1) . . . u(n−N + 1)]

=




‖u(n)‖2 uH(n)u(n− 1) . . . uH(n)u(n−N + 1)

uH(n− 1)u(n) ‖u(n− 1)‖2 . . .
...

...
...

. . .
...

uH(n−N + 1)u(n) . . . . . . ‖u(n−N + 1)‖2




=




‖u(n)‖2 0 . . . 0

0 ‖u(n− 1)‖2 . . . 0
...

...
. . .

...

0 0 . . . ‖u(n−N + 1)‖2



,

(4.46)

with R = σ2
u IM , (4.46) equals

E[UH(n)U(n)] ≈ Tr(R) IN = M σ2
u IN , (4.47)
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where IN is the N ×N identity matrix.

Moreover, we also assume that

E
{

[UH(n)U(n)]−1
}
≈ E

[
UH(n)U(n)

]−1
=

1

M σ2
u

IN . (4.48)

Assuming that M is large, we can approximate E[U(n)[UH(n)U(n)]−1UH(n)]

by

E
{
U(n)[UH(n)U(n)]−1UH(n)

}
≈ E

{
U(n)

1

M σ2
u

INUH(n)

}

≈ N R

Mσ2
u

.

(4.49)

When µ is small, S ≈ I. Combine with (4.42), we obtain

Tr
{
S · E[UH(n)U(n)]−1

}
= Tr

{
I · E[UH(n)U(n)]−1

}

=
N

Mσ2
u

.
(4.50)

So the MSE of ZA-APA with small step-size can be written as

MSE =
2

2− µσ
2
v +

α2

2µ− µ2
sgnH(ŵ0)

Mσ2
u

N
· N R

Mσ2
u

sgn(ŵ0)

− α2

2µ− µ2
sgnH(ŵ0)

Mσ2
u

N
sgn(ŵ0)

=
2

2− µσ
2
v +

α2

2µ− µ2
sgnH(ŵ0)

(
R− Mσ2

u

N
I

)
sgn(ŵ0).

(4.51)

Then we can also obtain the EMSE of ZA-APA with small step-size µ

EMSE =
µ

2− µσ
2
v +

α2

2µ− µ2
sgnH(ŵ0)

(
R− Mσ2

u

N
I

)
sgn(ŵ0). (4.52)

Moreover, when µ is large, S ≈ 1 · 1T . In this case, we have [48]

Tr
{
S · E[UH(n)U(n)]−1

}
=

1

Mσ2
u

. (4.53)
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Then the MSE of ZA-APA with large step-size can be written as

MSE =
2

2− µσ
2
v N +

α2

2µ− µ2
sgnH(ŵ0)

(
NR−Mσ2

uI
)

sgn(ŵ0). (4.54)

Finally, the excess MSE can be written as

EMSE =
µ

2− µσ
2
v N +

α2

2µ− µ2
sgnH(ŵ0)

(
NR−Mσ2

uI
)

sgn(ŵ0). (4.55)

In section 4.3, simulation results will evaluate the expressions obtained for the

EMSE in detail.

4.3 Simulation Results and Analysis

In this section, simulation results are given to show the steady-state properties of

the proposed sparsity-aware algorithms. In these experiments, all the unknown

sparse systems have 16 taps with only 2 non-zero taps.

4.3.1 Simulation and Analysis for ZA-NLMS Algorithm

Firstly, we present two simulation examples to compare the steady-state MSE of

the ZA-NLMS algorithm with different step-sizes µ. The zero-attractor parameter

we choose is α = 10−3, and the signal-to-noise ratio (SNR) is set to 30dB. Two

different types of signals, viz., independent and identically distributed (i.i.d.) and

uniformly distributed signals, are used for the input signal, viz.,

u(n) = τu(n− 1) + ρ(n), (4.56)

which is a first-order autoregressive (AR) process with a pole at τ . For the i.i.d.

case, ρ(n) is a white, zero-mean, Gaussian random sequence having unit variance,

and is τ set to 0. As a result, an i.i.d. Gaussian input signal is generated. For

the uniform case, ρ(n) is a uniform random sequence between −1.0 and 1.0, and

τ is set to 0.5. In addition, the measurement noise here are i.i.d Gaussian white

noise as well. Moreover, in these figures, the optimal line stands for the power of

the noise.
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Figure 4.3: Steady-state MSE curve of the ZA-NLMS alogorithm with lower
step-sizes µ [α = 10−3, SNR=30dB, Input: i.i.d. Gaussian signal].
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Figure 4.4: Steady-state MSE curve of the ZA-NLMS alogorithm with larger
step-sizes µ [α = 10−3, SNR=30dB, Input: i.i.d. Gaussian signal].

Fig. 4.3 and 4.4 show the steady-state MSE curves of the ZA-NLMS algorithm

as a function of the step-size for i.i.d. Gaussian input signal. The step-size µ

varies from 0.2 to 1.9. The theoretical results are calculated using (4.29), and
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Figure 4.5: Steady-state MSE curve of the ZA-NLMS alogorithm with lower
step-sizes µ [α = 10−3, SNR=30dB, Input: uniform AR(1)].
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Figure 4.6: Steady-state MSE curve of the ZA-NLMS alogorithm with larger
step-sizes µ [α = 10−3, SNR=30dB, Input: uniform AR(1)].

the simulation results are obtained by averaging 1000 independent trials. The

simulated results present good agreement with the theoretical results for different

step-sizes. We can easily see from the figures that larger step-sizes lead to larger
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misadjustment, but faster convergence. So in most cases we will choose a step-size

to balance the steady-state performance and the convergence rate. In addition,

from Fig. 4.5 and 4.6, for colored uniform input signal, we theoretical results

do not match the simulated ones accurately. However, for colored uniform input

signals, µ have the same effect as for i.i.d. Gaussian input signal.

Furthermore, we also make a simulation to learn how the zero-attractor α

influences the EMSE. In the experiment, we choose a fixed step-size µ = 0.5.
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Figure 4.7: Steady-state MSE curve of the ZA-NLMS algorithm with different
zero-attractor parameters α [µ = 0.5, SNR=40dB, Input: i.i.d. Gaussian signal].

From Fig. 4.7 and 4.8, we can see that the simulation results present a perfect

match with the theoretical results for small zero-attractor α, but deviates from

the theory for a large zero-attractor. Generally speaking, as α increases, the MSE

also increases. Although a higher zero-attractor leads to a higher misadjustment,

it can also help the algorithm to converge faster at the initial period. A wisely

chosen α can improve the steady-state performance and convergence rate.

4.3.2 Simulation and Analysis for the ZA-APA

The following experiments are made to analyze the EMSE of the ZA-APA.

In the first 4 experiments, the steady-state MSE curves of the ZA-APA are
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Figure 4.8: Steady-state MSE curve of the ZA-NLMS algorithm with different
zero-attractor parameters α [µ = 0.5, SNR=40dB, Input: uniform AR(1)].

shown as a function of the step-size µ. The step-size we test varies from 0.2 to

1.8. we use (4.52) to predict the theoretical MSE, when µ varies from 0.2 to 0.8.

Moreover (4.55) is used when µ varies from 1 to 1.8.
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Figure 4.9: Steady-state MSE curve of the ZA-APA with different step-sizes µ
[α = 10−3, K = 4, SNR=30dB, Input: i.i.d. Gaussian signal].
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Figure 4.10: Steady-state MSE curve of the ZA-APA with different step-sizes µ
[α = 10−3, K = 4, SNR=30dB, Input: i.i.d. Gaussian signal].
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Figure 4.11: Steady-state MSE curve of the ZA-APA with different step-sizes µ
[α = 10−3, K = 4, SNR=30dB, Input: uniform AR(1)].

As shown in Fig. 4.9 and 4.10, the curves of the steady-state MSE match the

theoretical ones with i.i.d. Gaussian input signal. We can also easily see that as

the step-size µ increases, the misadjustment increases. However, increasing the
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Figure 4.12: Steady-state MSE curve of the ZA-APA with different step-sizes µ
[α = 10−3, K = 4, SNR=30dB, Input: uniform AR(1)].

step-sizes can also lead to faster convergence rate during the period when the

step-size increases from 0.2 to 1. From 4.10, the curves of the steady-state MSE

also match the theoretical ones well. In addition, a larger step-size µ implies

a higher misadjustment. But differently from Fig. 4.9, we can see that the

convergence rate does not improve with the increase of the step-size. In contrast,

the convergence rate becomes slower and the steady-state MSE becomes higher

during the period when the step-size increases from 1 to 1.8. In Fig. 4.11 and

Fig. 4.12, uniform input the signal is used for the simulation. In these figures,

the theoretical results do not accurately match the simulated ones accurately.

However, µ shows the same effect as for i.i.d. Gaussian input signal.

The second experiment’s objective is to analyze the effects of the affine pro-

jection order N . We can easily see from Fig. 4.13 and 4.13 that a higher N

leads to a faster convergence rate. However, increasing N can also bring a higher

misadjustment.

We also make a simulation to learn how the zero-attractor parameter α in-

fuences the EMSE. In the experiment, we choose the step-size µ = 0.5 and affine

projection order K = 4.

From Fig. 4.15 and 4.16, we can see that the simulation results present a
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Figure 4.13: Steady-state MSE curve of the ZA-APA with different affine projec-
tion order N [µ = 0.5, α = 10−3, SNR=30dB, Input: i.i.d. Gaussian signal].
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Figure 4.14: Steady-state MSE curve of the ZA-APA with different affine projec-
tion order N [µ = 0.5, α = 10−3, SNR=30dB, Input: i.i.d. Gaussian signal].

perfect match with the theoretical results. Generally speaking, as α increases,

the MSE also increases. Although higher zero-attractor leads to higher misad-

justment, it can also help the algorithm to converge fast at the initial period. A
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Figure 4.15: Steady-state MSE curve of the ZA-APA with different zero-attractor
parameter parameters α [µ = 0.5, K = 4, SNR=40dB, Input: i.i.d. Gaussian
signal].
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Figure 4.16: Steady-state MSE curve of the ZA-APA with different zero-attractor
parameter parameters α [µ = 0.5, K = 4, SNR=40dB, Input: uniform AR(1)].

wisely chosen α can improve the steady-state performance and convergence rate.
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4.4 Summary

In this chapter, an analysis of the proposed algorithms has been presented, in-

cluding the computational complexity requirements, a convergence analysis and

a steady-state analysis. The theoretical expressions of the EMSE for ZA-NLMS

and ZA-APA have been derived by using the energy-conservation approach, and

we have also made use of an extensive set of simulations to verify the theory.

Simulation results show that the theoretical expressions can predict the steady-

state MSE for ZA-NLMS and ZA-APA effectively. Note that we did not perform

a tracking analysis in the non-stationary scenarios, which is a topic for future

investigation.
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Chapter 5

Conclusions and Future Work

5.1 Summary of Work

In this thesis, low-complexity adaptive filtering algorithms that exploit the spar-

sity of signals and systems have been derived and investigated.

In Chapter 2, a general review of adaptive filtering techniques has been given.

Firstly, we have introduced the main objectives of the adaptive filters and then we

have discussed some popular applications of adaptive filters that include system

identification, echo cancellation and adaptive beamforming. Finally, some of the

most commonly used adaptive algorithms have been introduced.

In Chapter 3, a set of sparsity-aware zero-attracting adaptive algorithms have

been developed by incorporating the l1-norm penalty into the coefficients with

the conventional NLMS and APA algorithms. Firstly, we have incorporated the

l1-norm optimization strategy with the conventional NLMS algorithm, which re-

sulted in the proposed ZA-NLMS algorithm. Moreover, the same strategy has

been applied to the conventional APA algorithm to obtain the proposed sparsity-

aware ZA-APA algorithm. However, the ZA-NLMS and ZA-APA algorithms do

not distinguish between zero taps and non-zero taps. Since all the taps are forced

to zero uniformly, the performance of ZA-APA can be deteriorated when applied

to systems with a low degree of sparsity, i.e., when the number of non-zero coef-

ficients is significant. In order to solve this problem, we have adopted a heuristic

approach to reinforce the zero attractor and proposed the RZA-NLMS and RZA-

APA algorithms. We have also developed a zero-forcing technique to further
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improve the performance of the proposed zero-attracting algorithms.

Finally, simulation results have been carried out to compare the proposed

algorithms with the conventional ones. As we can see from the results of an

extensive set of simulations, the proposed algorithms possess a faster convergence

rate and a better steady-state performance.

In Chapter 4, the analysis of the proposed algorithms has been presented in

detail, including their computational complexity, the convergence analysis and

the steady-state analysis. By using the energy-conservation approach, we have

derived the theoretical expressions of the EMSE of the ZA-NLMS and the ZA-

APA algorithms. We have also carried out a large number of simulations to

verify the theoretical expressions derived. Moreover, we have introduced a set of

simulation results to analyze the effects of the most important parameters used

in the ZA-APA algorithms.

5.2 Future Work

In this thesis, the tracking performance analysis of the proposed sparsity-aware

algorithms has not been performed yet. Therefore, one of the possible future

works could be the development of the tracking analysis of the proposed algo-

rithms. Moreover, another area for investigation is the application of the pro-

posed in other scenarios different from system identification, such as adaptive

beamforming and channel equalization. Furthermore, the zero-attractor strategy

considered for the proposed algorithms has been studied analytically, however,

an analytical study of the reweighted zero-attractor and other similar strategies

remains an open problem. Another possible future work could be to introduce a

self-adaptive selection parameter to control the zero-attracting weight, by which

the performance is expected to be further improved.
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