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SYNOPSIS 

A successful model for off-road tyres must be reliable, efficient and capable of 

reproducing and predicting the main system phenomena. Mathematical models are 

proposed for longitudinal, lateral and combined lateral and longitudinal force 

generation characteristics of off-road tyres. 

For a better understanding of off-road tyre behaviour, the study of the interaction 

between the tyre forces and those generated by the deformed soil is very important. 

Details of the force system in the contact patch, therefore, are used as a basis for 

developing models for the prediction of the tractive performance and comering 

characteristics of off-road tyres. 

Previous work of the relevant literature pertaining to tyre behaviour is reviewed 

to provide the reader with background information on off-road tyre characteristics. 

Various models for off-road tyres of differing degrees of complexity but which 

all incorporate the key features of off-road tyre problems are then developed. 

Previous methods of analysing the combined lateral and longitudinal forces 

generated by off-road tyres on deformable surfaces are investigated. A modified 

version of a previous model is then proposed which is based on a different and 

original method foz investigating tyre behaviour in the contact region. An entirely 

new model is then developed which is based on a modification of the "multi-spoke" 

tyre model used for road vehicle studies. Predicted results are compared with those 

obtained from other models and with reported experimental data. 

The usefulness of such models is in problems involving the steering, braking and 
handling behaviour of off-road vehicles. Hence, the models are formulated so that 

they can be applied to such vehicle problems by enabling lateral and longitudinal 

forces on the tyre to be predicted from any combined conditions of wheelslip, 

wheelskid and slip angle. 

The proposed models provide an improved qualitative description of behaviour 

in the contact region. Although slightly more complex than previous models, the 

computational load is nevertheless sufficiently small that the tyre models can 

conveniently be incorporated in off-road vehicle handling models. 



Suggestions for future recommendations are discussed with particular reference 

to improving the predictive models and for a possible extension of the study to 

generate more detailed practical results for tyre. forces under controlled experimental 

conditions. 
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NOMENCLATURE 

NOTATION 

A Constant in equation (2.1), m 
A, Horizontal contact area of patch, m2 
b Width of tyre contact patch, m 
B Constant in equation (2.1) 

C Soil cohesion, k1V/M2 

CW Soil cohesion in equation (2.56), kNIM2 
Ca Soil adhesion, kN /M 2 

C Cone index of the soil, kN /M 2 

CAH Project contact area of patch, M2 

COT Coefficient of traction (or braking) 

COT,,,,, Maximum coefficient of traction 

CS Initial slope of longitudinal force vs. wheelslip 

CT Coefficient 

Ca Comering stiffness at Fx =0 

C'X Longitudinal tyre stiffness, k1VIM 3 unit slip 

CIY Comering tyre stiffness, kNIM3 rad 

d Undeflected tyre diameter, m 

dFx Ile net force on thin strip in X-direction, k1V 

dFy The net force on thin strip in Y-direction, k1V 

dt Small time increment, Sec 

A, & Small longitudinal displacement, m 

dO Angle between each spokes, Degrees 

DR Radial tyre deflection, m 

EMOB, ýMOB Mobility number 

A Bending force, kN 

f9 Ground force, kN 

fr Radial force, kN 

fs Soil shear force, kN 

fSX Longitudinal component of soil shear force, kN 



fSY Lateral component of soil shear force, kZV 

ft Elastic resultant spoke force in X-Y Plane, k? V 

fX Spoke force in fore and aft direction, kIV 

fy Spoke force in lateral direction, kIV 

fz Spoke force in vertical direction, kIV 

F General tyre force, kIV 

F., Tyre force in fore and aft direction, MV 

F , Longitudinal force in equation (2.51) 
,, . 

Fy Tyre force in lateral direction, kIV 

Fy, Lateral force in equation (2.52) 

F, s Steady state value of tyre force, W 

Fz Tyre force in vertical direction, k1V 

h Tyre section height, m 
i Soil shear displacement, m 
ix Longitudinal soil shear displacement, m 
jy Lateral soil shear displacement, m 
Jk Soil deformation coefficient 
K Soil deformation modulus, m 
K1, K2, K4, K5, K6, K7 Tyre stiffness parameters 
K, Cohesive soil modulus, Wlm"' 

K,, Radial tyre stiffness, kIVIM 

Kx Circumferential tyre stiffness, kIVIm 

Kxn Longitudinal tyre stiffness, W In, 3 unit slip 

KYn Cornering tyre stiffness, kIVIM3 rad 

Ký Frictional soil modulus, k1V /Mn+2 

I Length of the tyre contact patch, m 

Ir Tyre relaxation length, m 

LFC Lateral force coefficient 

LFCmax Constant for particular conditions 

n Exponent of soil deformation 

N Number of spokes in the contact region 
MY, N,,, Nq, N, Nr, N,,,, Soil coefficients 

P The resultant force in equation (2.56), W 

P, P9 Normal ground pressure, kNIM 



Pf Soil resistance, kNIm 

Pe Soil reaction forve against the pseudo interface, kN 

q Surcharge, kIVIM2 

R Undeflected tyre radius, m 

S Wheel slip (or skid), % 

S Laplace operator in equation (2.16) 

T Time constant in equation (2.16) 

U Constant in equation (2.28) 

U Total force in equation (2.30), k1V 

U Forward velocity of tyre, m Isec 

Um Maximum resultant force in equation (2.32), k1V 

V Lateral velocity of tyre, m Isec 

W Simply relates to the case in which a wedge is formed 

W Tyre load, k1V 

X, X, Distance in longitudinal direction, m 

Y Total lateral displacement, m 
ZI ZW Soil sinkage, m 
Zmax Maximum Soil sinkage, m 

(X Tyre slip angle, Degrees 

CCU Generalized resultant force 

8 Tyre deflection under load, m 
5f Soil-rubber angle of friction, Degrees 

5S Tyre steer angle, Degrees 

51 Time increment, Sec 

5X Longitudinal tyre deflection, m 
8. Y Lateral tyre deformation, m 

Entry spoke angle in equation (2.57), Degrees 

The tyre tread Deformation, m 
TIX Circumferential spoke deflection, m 
'1Xk Circumferential spoke deflection in Kinematic position, m 

Tly Lateral spoke deflection, m 
Ilyk Lateral spoke deflection in Kinematic position, m 

7 Camber angle, Degrees 

ly Soil specific weight in equation (2.55), kIVIM3 



Longitudinal coordinate in the contact region 
Longitudinal displacement, m 
Coefficient of friction 

Spin velocity of the tyre, rad1sec 
Soil internal angle of friction, Degrees 

O(PO) Radial force an the spoke tip equation (2.60), N 

P, PO Radial spoke deflection in equation (2.57), N 

CY Normal ground pressure, kIV IM 2 

Ir Shear stress, kIV /M 2 

're Soil shear density 

Tex Longitudinal component of density 

Tey Lateral component of density 

Tfriction Soil stress due to friction, kIVIM2 

Tk Stress due to. friction in equation (2.48), ktV/M2 

Tmax Soil shear strength, kIVIM 2 

Ts, Tsoil, Tiread Soil shear stress, k1V/M2 

TX Component of soil shear stress in X-directionAIWM2 

Ty Component of soil shear stress in Y-direction, kN/M 2 

0 Spoke angle position, Degrees 

01 Entry angle, Degrees 
02 Rear angle, Degrees 

4 Angle of the total resultant force, Degrees 

ý' ýO Longitudinal spoke deflection in equation (2.57), m 

Subscripts 

i Spoke number 

max Maximum 

min Minimum 

r Radial 

X, Y, Z Coordinate system 



Abbreviation 

atm Atmospheric pressure 

Cm Centimetres 

f, (tany), f2(5) Functions 

Fig. Figure 

in. inch 

kIV Kilonewton 

1b, Ibs Pound, Pounds 

M Meter 

MM Millimeters 

N Newton 

0 Degrees 

rad Radian 

sec Second 

S Distance vector 
a Partial derivative 
f Integration 

Sum 
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CHAPTER1 

INTRODUCTION 

The background to the growing requirement for off-road tyre 

models is explained and the overall objectives of the 

thesis are outlined. Also the main subject matter 

of each chapter is indicated to summarise 

the overall structure of the thesis. 
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One of the important factors that influences the steerability of off-road vehicles 

is the magnitude of the lateral force developed between the tyre and soil contact area 

when the plane of the tyre is turned at an angle to the direction of travel. When a tyre 

operates at a slip angle, tyre distortion occurs and the contact region is displaced 

laterally relative to the wheel plane. 

This study is aimed at an improved understanding of the mechanism of lateral 

tyre force generation on off-road surfaces. Work to date on the force generated by 

off-road tyres has been dominated by analyses, measurements and predictions of 

tractive and rolling resistance behaviour. By comparison, the lateral force 

characteristics have received little attention, though their importance is becoming 

more widely recognised, mainly because of the pressure for increased speeds in many 

agricultural vehicles. 

Lateral forces generated at the tyres are responsible for controlling the steering, 

cornering, and sideslope operation of vehicles. If one reasonably excludes the effects 

of aerodynamic forces on agricultural vehicles, then the only external forces to make 

the vehicle move in any direction, longitudinally or laterally, are generated at the 

tyres. 

Traditionally, studies of the steering and handling of agricultural vehicles have 

taken an emphatic second place to the analysis and prediction of their tractive 

capabilities. T'his relative position has reinforced the traditional view of, for example, 

the tractor as a low speed, draught producer. This view is already changing and the 

change seems likely to accelerate with trends towards higher speeds for conventional 

tractors and the development of more specialised vehicles. To support this view, 

recent studies ( Crolla and Horton [1984] and Gohlich [1984] ) have pointed to the 

high percentage of time spent by tractors on transportation and other light dudes, 

operating with the power take off perhaps, for which work rates can be increased 

simply by increased speed. 
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Ile overall picture, therefore, is of a changing emphasis on the requirements of 

tractors and other agricultural vehicles with one of the design priorities being on safe 

and stable handling behaviour both on and off the road. Hence, the interest in lateral 

force characteristics of the tyres fitted to such vehicles. 

The main objectives of the study presented in this thesis are 

1) To analyse the lateral force characteristics of off-road tyres. 

2) To develop mathematical models which describe the characteristics of off- 

road tyres in the above respect. 

3) To validate the models by comparison with measured results. 

An outline of the contents of the thesis is as follows : 

A review of the relevant literature pertaining to tyre behaviour is given in 

Chapter 2. The object of this is to provide the reader with background information on 

the subject matter, some of which is essential and some peripheral to the work detailed 

in this thesis. Previous work is critically reviewed in the context of the objectives 

above. Documents devoted to methods of theoretical analyses and off-road vehicle 

dynamics problems are referenced where necessary in the main body of the text. 

An approach leading to the off-road tyre force model which is simple but which 

also incorporates the key features of the problem is given in Chapter 3. 

In Chapter 4, this is extended to include the combined lateral and longitudinal 

tyre force characteristics. Results from a computer model suitable for use in 

combination with vehicle handling models are presented. 

A more detailed model is presented in Chapter 5. This model is called the multi- 

spoke tyre model and the basis of this model is to use a transfer matrix method to 

calculate the tyre deflections in the circumferential, lateral and radial directions and to 

recalculate by an iterative method the tyre forces generated when the tyre moves on 

an off-road surfaces . 
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The objective of Chapter 6, is to compare the results obtained from tyre models 

presented in Chapters 3,4 and 5 with those results obtained by a range of authors 

presented in the literature. Comments regarding the accuracy and applicability of 

each model are made. 

Chapter 7 contains a discussion of the main results obtained from models 

presented in this thesis and concentrates on analysing the relationship between real 

tyre behaviour and the representation of tyre model behaviour. Conclusions together 

with a set of recommendations for future work are given in Chapter 8. 

0 



CHAPTER2 

REVIEW OF PREVIOUS WORK 

A summary of published work to date is presented, 

concentrating on theoretical and experimental 

results for off-road tyre forces. 
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71is chapter contains a review of the available work that has been done on the 

behaviour of off-road tyres in generating lateral and longitudinal forces. Although the 

behaviour of off-road tyres in generating longitudinal forces in particular tractive 

forces has received an enormous amount of attention, this work is summarised and not 

reviewed in detail because it is restricted to the case of the wheel travelling in a straight 

line. In contrast, studies which include either the generation of lateral forces alone or 

the combined force generation system are given the most attention because they are 

central to the theme of the thesis. This work can be categorised into two main basic 

parts : - 
1. BASIC TYRE MECHANICS 2. BASIC SOIL MECHANICS 

2.1. BASIC TYRE MECHANICS 

The lateral force generated by a tyre, whether on hard or deformable surfaces, depends 

on the "slip angle" at which the tyre is operating. Slip angle, cc, defined in Fig. (2.1), is 

most conveniently defined as the angle between the direction the tyre is pointing and 

the direction it is actually going. This definition applies whether or not the wheel is 

steered. The steer angle, 8,, is the angle the wheel is pointing relative to a longitudinal 

axis fixed in the vehicle body. 

The forces acting at the tyre and ground interface can be defined in two ways: 

"Relative to the direction of travel" or "relative to the plane of the wheel". 

The more convenient of these for vehicle studies is the latter and so throughout 

this work, tyre forces are defined relative to the plane of the wheel. The forces defined 

by each of these methods are simply related via the slip angle. Throughout the 

literature, the terms "side force", "lateral force" and "comering force" are all used and 

care must be taken in comparing results to note the definition system used. 

Because the effective line of action of tile lateral force does not coincide with the 

centre of the wheel axis, a self-aligning torque is generated. Pneumatic trail is the term 

used to describe the effective moment arm at which the lateral force acts relative to the 
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wheel axis centreline. 

When a tyre operates at a slip angle, tyre distortion occurs and the contact region 

is displaced laterally relative to the wheel plane. This is shown in Fig. (2.2), the most 

important feature being the distortion of the line representing the equatorial line around 

the circumference of the tyre treadband. This distortion is described in more detail in 

Fig. (23), which shows how the forces are produced by the tyre. Iliese characteristics 

apply to a hard surface but it will be shown in the next chapters that they can easily be 

modified for deformable surface conditions. 

The literature on the force generated by off-road tyres has been dominated by 

analyses, measurements and predictions of tractive and rolling resistance behaviour. 

However, some lateral tyre force investigations have been made with the aim of a better 

understanding of off-road vehicle handling behaviour. These investigations, theoretical 

and experimental, have mainly been made on towed, steered pneumatic tyres, although 

a number of attempts have been made to develop lateral and longitudinal tyre forces on 

different types of soil. 

2.1.1. MEASURED RESULTS 

Measurements of soil forces acting on a driven or undriven steered wheel have been 

made several times in the recent past, and a good summary of results is given by Crolla 

and Hales [1979] for off-road vehicles. These forces are required for the study of two 

main aspects of vehicle behaviour: 

1) To investigate stability for level ground and side slope operation. 

2) To investigate handling characteristics. 

Crolla and Horton [1984], have reviewed the available information on the lateral 

force characteristics of off-road tyres. The main idea of this was to provide a 

comprehensive summary of existing measurements with a view to using the tyre data in 

off-road vehicle handling and stability studies. 
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Phillips [1959] measured and compared reaction forces from a 6.00 x 16 

implement tyre with those on a rigid cast iron wheel, on a purpose built experimental 

rig towed over a grassland surface. With the pneumatic tyre it was found possible to 

make tests over a fairly wide range from 100 to 1000 Ib of vertical load, and from 0 to 

85' of slip angle. For the cast iron wheel, however, the region within which the 

apparatus would function properly was considerably reduced. Limits of 400 to 1200 Ib 

of vertical load and from 0 to 300 slip angle were made for the cast iron tests. 

T'he results showed that for a given tyre load, the lateral force increased with 

increased slip angle and reached a maximum value at about 170 of slip angle. 

Taylor and Birtwistle [1966] investigated three tread designs for 7.50 x 16 6-ply 

front tractor tyres in the following operating conditions : 

1) A multi-rib or compactor tyre on sandy loam soil. 

2) A multi-rib or farm tmctor tyre on silty clay soil. 

Tests were made under two tyre loads of 1000 and 1500 Ibs. with a range of slip angle 

between 0 to 15'. They showed that for a given tyre load, the lateral force coefficient 

increased with slip angle but the rate of increase reduced after approximately 10' of 

slip angle. 

Schwanghart [1968] using a soil bin made a comprehensive study of a range of 

tyres, mainly tractor front tyres, and reached several interesting conclusions regarding 

operation in loose soil. The relationship between lateral force and slip angle was 

markedly different in loose soil from that on concrete. On concrete the lateral force 

reached a peak at about 15' slip angle and then decreased, but in loose soil the curve 

was much flatter and had not reached a peak even at 30' slip angle. For a 5.50 x 16 

tyre, the lateral force coefficient decreased slightly as vertical load was increased from 

1 to 4 kIV, and for small variations in vertical load a constant figure could be assumed. 

Ile most comprehensive work of tyres driven on off-road surface was carried out 

by Krick [1973]. His results are one of the few which include driving, braking, and 
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lateral forces. The tests were carried out in a soil bin. Two different sets of test were 

made, the first set was on sandy loam soil with 14% water content and the second set 

was on plastic slippery soil at 22% water content. Front tractor tyres were used with 

two different sizes, a 7.50 x 18 AS and 12.50-20 EM at an inflation pressure of 1 atm. 

For each tyre tested, wheelslip was kept constant while variation of slip angle ranged 

between 0 to 30' and tyre loads of 330,430 and 530 kp. 

The results, represented as a set of curves, showed that when the tyre travelled in a 

straight line (at zero slip angle) there were no changes noticeable from the previous 

work. As the slip angle increased, the driving force largely dropped. Also with an 

increased driving force at constant slip angle, the lateral force was considerably 

reduced. 

The tyre characteristics were presented as friction ellipse graphs for a 7.50 x 18 

AS tYre. Loads of 430 and 530 kp were used in the tests at 1 atm inflation pressure. 

With the variation of slip angle, the negative driving force was a maximum at 55% 

wheelslip and the positive driving force was maximum at a range of 55 to 100% 

wheelslip. The tyre characteristic graphs showed a significant relationship between the 

longitudinal force and lateral force for varying slip angle and wheelslip. As a result, the 

interaction of the lateral force and driving force significantly affects the motion of a 

vehicle. 

The results obtained by Gilfillan, Spencer and Rowe [1976] for a 7.50 x 16 tractor 

front tyre were on two types of soil, grass on soft ground and stubble soils with tyre 

loads of 308,608,958 and 1258 lbs at 100 Win 2 cone index. The results were 

presented in terms of forces lying in the ground plane and applied by the ground to the 

wheel, i. e. side force and rolling resistance. 

These forces are defined with reference to the direction of travel of the wheel. 

They defined the steer angle as the angle between the direction of travel and the line of 

intersection of the wheel vertical plane with the ground plane. 
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Meyer et al [1978) described measurements of tractor rear tYre performance by 

measuring the lateral forces generated on sloping ground. Different tyre tread patterns 

resulted in significantly different lateral forces. The results showed that the influence of 

sloping ground on the tyre behaviour rather than constraining the tyre to operate at a 

slip angle. 

Work was carried out at N. I. A. E. [1978] to measure lateral tyre forces and 

involved six different tyre sizes, carefully arranged into three series of experiments to 

establish the effect of the tread pattern on tyre behaviour. Each of three experiments 

was carried out on many field surfaces, predominantly stubble and the side force results 

were analyzed by fitting a curve of the form: 

LFC =A (1-e-Ba ) (2.1) 

Equation (2.1) is an empirically obtained result based on fitting curves to 

measured results. Various forms of equations, including polynominals of different 

levels, have been tried but the exponential form has the advantage of being reasonably 

accurate and simple. The constants, A and B, refer of course to a particular set of tyre 

parameters and ground conditions. Typical examples for three different surfaces are 

shown in Fig. (2.4) and data such as this is convenient for representing the performance 

of off-road tyre behaviour in modelling studies. 

Del Rosario (1980] has described an investigation of four types of steered 

pneumatic tyre described below :- 

7.50 x 16 8-ply ribless, 

7.50 x 16 8-ply traction, 

7.50 x 16 8-ply shallow ribbed and 

7.50 x 16 6-ply traction 

A single wheel tester was designed and developed including ancillary devices to meet 

the requirements of the tyre behaviour. Results show the significant effect of rib size as 

a factor on the lateral force. Slip angle was measured from 5 to 25', and wheelslip from 
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0 to 50% .A soil tank in the laboratory at Silsoe College was used for the project, with 

the soil kept at about 8% dry basis. 

Gee-Clough and Sommer [1981] measured two tyres, a 4.00 x8 smooth 

implement tyre and a 18 x 9.50 8-ply terra-type buffed smooth tyre, in a soil bin. Loam 

soil was used at four soil strength values, described by cone index values of 

approximately 150,300,550 and 900 kPa. Tyre loads and pressures were varied and a 

speed of 0.5 m Isec was maintained throughout. 

Their results were a good fit to the relationship described by the equation 

LFC = LFC. 2,, (1 -e -B cc ) (2.2) 

where 

LFC = Lateral force coefficient 

LFCn,,,,,, B= Constants for particular conditions 

cc = Slip angle 

They then tried to correlate the results with four different forms of mobility number, of 

which the two most important were: 

EMOB =Cbd1 (2.3) 
w1 +b12d 

ýMOB cbdI ýn (2.4) 
w1 +b12d 

Relationships between these numerics and two parameters in equation (2.1) were 

sought : namely LFCmax and B. LFCmax which is the initial slope of the LFC vs. (x 

curve. Examples of the results using EMOB were: 

0.89-0.14 EMOB (2.5) 

B. LFCmax = 2.18 + 0.38 EMOB (2.6) 

Equation (2.5) was not statistically significant though it provided a good subjective fit 

to the data, whereas equation (2.6) was significant at the 2% level. 
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McAllister's work [1981,84] used six different tyres including tractor front, 

implement and trailer tyres in 38 field conditions. Tyres size were 7.50 x 16 and 12.00 x 

18 and forward speed was 1 m1sec throughout. Details of the test rig are given in 

reference [1984] and measurements were made up to slip angle of 401. 

McAllister found good correlation between measured results and equation (2.1). 

Ms attempts to correlate the results with mobility number led to the following CD 

expressions : 

For cross-ply tyres 

0.69 LFCmax - EMOB + 0.61 (2.7) 

(significant at 5% level) 

BLFCmax = 2.34 + 0.088 EMOB (2.8) 

(significant at 0.1 % level) 

For radial-ply tyres 

There was no significant relationship between LFC,,,,, and EMOB, but: 

B. LFCm, x = 2.79 + 0.16 EMOB (2.9) 

These are compared with Gee-Clough's results in Fig. (2.5). Equation (2.7) is a 

surprising result because it indicates that maximum lateral force increases as soil 

strength (described by cone index values) decreases. 

There have been two recent and important contributions to the lateral tyre forces 

generation presented at the 1981 I. S. T. V. S. conference. Schwanghart [19811 described 

measurements made on two tractor front tyres, a 7.50 x 18 with a T85 non-driven type 

profile and a 6.50 x 20 with an A7 lugged profile. A specially designed frame towed 

behind a Unimog tractor was used on 8 different surfaces. Slip angle was varied from 0 

to 301 and vertical tyre load varied from 1 to 8 kIV, so that a wide range of conditions 

was covered . Only a sample of the results are published in his work and the lateral 

force data for a 7.50 x 16 tyre are shown in Figs. (2.6 and 2.7). The relationship of 
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lateral force with vertical load is given in Fig. (2.6) and the classic lateral force 

coefficient/slip angle curves are shown in Fig. (2.7). Ile curves which are fitted to the 

data are second and third order polynomials respectively. 

There is a lot of information to digest here and obviously it is subject to 

considerable experimental scatter. From Fig. (2.7), however, it appears that the effect of 

vertical load varies dramatically with the surface. 

The work done by Janosi, Kamm and Wray [1981] concentrated on three military 

truck tyres in the range 9.00 x 20 to 10.00 x 20. An interesting measuring rig was 

adopted using a four wheel drive military truck. The front wheel hubs were 

instrumented to measure forces in three directions and slip angles were achieved by 

adjusting the toe-in or toe-out values of both front wheels. The effect of braking or 

tractive forces on lateral force as shown in Fig. (2.8) could be studied by braking or 

driving the appropriate axle on the vehicle. 

This technique, which could be applied to a four wheel drive tractor for example, 

appeared to be successful although it was only used up to slip angles of 9'. The 

parameters varied were vertical load, tyre pressure and braking and tractive force to 

give a total of 1300 measurements over the three surfaces used; smooth concrete, hard 

soil and the same soil scarified to produce a6 inch soft sandy top layer. 

The results of particular interest are those in which braking or tractive forces were 

used. The examples are shown for concrete, hard soil and soft soil surfaces. I'lley 

appear to substantiate the proposed friction ellipse model. The authors comment that 

although the analysis of results is not yet completed, there is a trend for the maximum 

longitudinal force to be greater than the maximum lateral force, implying a friction 

ellipse rather than a friction circle relationship. 

It is worth surnmarising their initial findings :- 

1) Lateral force decreases with decreasing tyre pressure on concrete and hard soils 

whereas on soft soils it increases. 
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2) 'Me greater the load and the lower the tyre pressure, the smaller the difference 

in lateral force on soft and hard surfaces. 

3) The greater the load, the higher the sensitivity to inflation pressure. 

4) Lightly loaded tyres at low inflation pressure produce the most uniform 

handling characteristics over different surfaces. 

5) In soft soil, the lateral force peaks at lower slip angles and is less sensitive to 

load and inflation pressure than on the hard surfaces. 

6) At high inflation pressures, there was little difference between the radial and 

cross ply tyre results ; at low pressure the radial tyre always generates more lateral 

force. 

Both Schwanghart [1981] and Janosi et al [1981] included measurements on road 

surfaces. Of particular interest are the comparisons between a wet and dry road 

Fig. (2.7). In certain cases, e. g. 10' slip angle with a lightly loaded tyre, the lateral 

force coefficient changes from 0.9 to 0.05 in going from a dry to a wet surface. 

The overall conclusion to be drawn from the measured results is that vehicles 

which travel both on and off the road have special problems. The tyre characteristics 

vary dramatically between surface conditions and so the vehicle handling behaviour 

will also be affected. Tractors with different lug patterns on the front and rear tyres will 

be especially sensitive to changes in the handling balance due to different surfaces. 

Different tyre pressures for on and off the road operation are indicated if optimum 

performance is aimed for. 

This is analogous to the conflicting tyre pressure requirements of low pressure for 

tractive perfonnance and higher pressures for transport and road work. However, if 

changes in inflation pressure to match the task are impractical, the lightly loaded tyres 

of low inflation pressures offer the best compromise for consistent lateral force 
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behaviour. 

When the tyre is driven or braked, the lateral force behaviour is modified 

significantly. This was shown in 1973 by Krick [1973] who measured lateral forces at 

up to 350 of slip angle for various driven tyres in a soil bin with sandy loam soil. 

Under these conditions, he calculated that the approximate relationship between lateral 

and longitudinal force was given by :- 

Fy = (1±CTF., )Ccc cc (2.10) 

where 

Fy Lateral force 

F., Tractive (+) or braking (-) force 

a= Slip angle 

C,, = Cornering stiffness at F,, =0 

CT = Coefficient relating the variation in lateral force with tractive or 

braking force. 

The plus/minus sign in equation (2.10) refers to braking or tractive force respectively. 

For a given slip angle, lateral force decreases as tractive force increases but increases as 

braking force increases. This behaviour agrees with Krick's measured results for a 7.50 

x 18 tyre although they were measured for relatively small variations in longitudinal 

force and so the application of equation (2.10) should be restricted to this range. 

Ile only other published data on combined lateral and longitudinal forces for 

off-road tyres were measured by Janosi, Kamm and Wray [1981]. Cross country truck 

tyres, 9.00-20 and 11.00-20, were used in this work and an example of their results is 

shown in Fig. (2.8). The soft soil surface had a 150 mm top layer of scarified sand. 

These results are rather different from Krick's and show similar trends to those 

expected from road tyre experience. When these results are extended to the limiting 

conditions in any direction they are referred to as friction-ellipse characteristic of the 

tyre. 
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2.1.2. AN EMPIRICAL MODEL OF TYRE FORCE GENERATION 

In order to model either lateral or longitudinal behaviour independently of each other, 

equations (2.2) and (2.11), can be, used. However, when both forces are generated in 

combination the following approach offers an approximate representation of behaviour. 

The shape of the lateral force coefficient vs. slip angle curve is assumed to be 

controlled by the tractive or braking force generated ; 

LFC = LFC.,,, (1-e -B a) (2.2) 

where LFC.,,,, is now given by the equation: 

LFCmax ( 
COT 1 (2.11) 

LFC'Max COTm,, x 

where 

LFC'm,,., = maximum value of LFCma,, at COT =0 

COT. ý.. = maximum value of COT .. a,, at LFC =0 

This relationship is shown in Fig. (2.9), plotted in the friction ellipse form for the 

measured results shown earlier. 

If equation (2.11) is to be used in any vehicle dynamics study, there are several 

other points to consider. First, the vertical load (F,. ) on each tyre will normally by 

varying and the above analysis assumes a linear relationship between lateral and 

tractive forces with vertical load. If the variations of load are small, then the above 

analysis is satisfactory , the "constants" LFCmax, COTma,, and B being referred to the 

mean load condition. If the variations in load are great, then the above parameters 

should be included as function of (F. ). Second, the relationships only apply to the case 

in which the wheel is rolling. If it is locked and therefore sliding, then the distinction 

between lateral and longitudinal forces ceases to be meaningful. 

There is only one resultant force and it may be assumed to act in the opposite 

direction to the resultant sliding velocity, although there are few measurements 

available in these conditions. Since LFC'ma,, and COT.. may not, in general, be the 
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same, a friction ellipse characteristic occurs again and the resultant force can be 

calculated from the angle of the resultant velocity, Fig. (2.10) shows the angle of the 

resultant velocity for which : 

Resultant force =! CF: z 
F., COTmax LFC'max 

(2.12) 
-qLF ma,, cos'a + COT'ma., sin'(x 

Ibird, the relationships assume steady state conditions. However, for any change 

in operating condition, i. e. change in wheelslip or slip angle, tyres have a finite 

response time relating to the time taken for the contact region to assume a new distorted 

shape. For road vehicle tyres, this aspect of dynamic response has been widely 

measured and can be approximated by :- 

F= F� (1 -e-xl" ) (2.13) 

where 

F= Force, lateral or longitudinal 

F,, = Steady state value of force 

x= Distance 

1, = Relaxation length 

The relaxation length, 1, for the case of lateral force build up is approximately equal to 

the rolling radius of the tyre. Although no published measurements are available for 

off-road tyres, this type of response characteristic is a fundamental property of the tyre 

and there is no reason to expect off-road tyres to behave differently from road tyres. In 

1U 
the time domain, the response is of first order lag with break freque....., 

T-I, . For 

road vehicle parameters the break frequency is sufficiently high that tyre dynamic 

response does not affect the vehicle response. But for off-road vehicles, where U is low 

and I., can be large, e. g. tractor rear tyres, the tyre dynamic response may be important. 

In transfer function terms, equation (2.13) becomes : 

F-1 (2.14) 
Fss 1+ST 
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where 

S= Laplace operator 

T= Time constant = 
Ir 
U 

For example, if Ir =1m and U=1.5 m Isec, the break frequency = 1.5 rad Isec (0.24 

Hz). So for these conditions, the tyre dynamic response would be important since the 

frequency range of interest goes up at least 3 Hz for handling motion and say 4 to 5 Hz 

for lateral ride motions. 

2.1.3. ANALYSIS OF LATERAL TYRE FORCE GENERATION 

Three simplified analyses of lateral tyre force generation on off-road surfaces have 

been done by the following authors: 

Schwanghart [1968,81], Grecenko [1969,75], Jurkat and Brady [1981]. In addition, 

Karaflath and Nowatzki [1978] have proposed a finite element based model to predict 

all soil-tyre forces under any condition of load, longitudinal and lateral slip. This 

model, however, is rather too elaborate to use in vehicle handling studies since the 

calculations required for each set of conditions are extensive and to incorporate it in a 

vehicle model would require the calculations to be repeated every time step. 

Ile other three models have distinct similarities in their approach. The main 

features are as follows : 

1) A pressure distribution in the contact region is either assumed or calculated. 

This involves the important assumption that the force systems in the vertical and 

lateral directions can be decoupled, i. e. that the lateral force and slip angle do not 

affect the normal pressure distribution. Clearly, this is not the case since the soil in 

the contact region is subjected to three dimensional stress, but as a first order 

approximation it is reasonable. 
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2) Ile lateral force generated is a function of two parameters :- 

a. Lateral deformation of the tyre. 

b. Soil lateral defonnation due to soil shear. 

The first of these implies a force at the soil-tyre interface due to a displacement of the 

tyre tread or carcass. Tle force is usually assumed to be a linear function of lateral tyre 

deflection. For the second, the displacement can be described by the well-known 

relationship as : 

1-e -J (2.15) 

where 

0r (Pg taný +c) (2.16) 

Although all three models use the same basic approach, there are differences. 

Schwanghart is the only one to assume a deep rut, and so he calculates an additional 

lateral force component acting on the tyre sidewall. He does not, however, include 

longitudinal forces in his analysis whereas the other two theories include the 

longitudinal force vs. wheelslip relationship. Finally, a slightly different approach to 

calculating the: tyre deformation is used in each model. 

'Me analysis of Del Rosario [1980] is not included as a separate model here 

because it is based on Grecenko's work, apart from the passive soil terms. He assumes 

that the total lateral force has three components, due to soil-rubber friction, soil shear in 

the contact region and passive soil failure against the tyre sidewall. He describes the 

shear stress due to friction by the equation -- 

=(C,, + (y tan 5f ) (2.17) 

k 

where 
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C,, = adhesion 

Bf = Soil-rubber angle of friction 

He also uses a friction forces vs. creep relationship which is similar in form to 

equation (2.15) and has a similar deformation constant. Hence, the analysis for the 

shear stresses due to friction and soil shear are identical. A simplified version of 

Grecenko's theory is used in which the longitudinal slip of the tyre is ignored and the 

normal pressure distribution is assumed to be governed by a pressure vs. sinkage 

relationship of the form: 

P= (Kc +K, ) Zn (2.18) 
b 

where the sinkage, Z, increases linearly from zero at the front of the contact patch to its 

maximum and the decreases linearly to zero at the back of the contact patch. 
I 

where 

n= an exponent 

K, Ko = Bekker's sinkage parameters 

b= Width of the contact area 

This gives a parabolic pressure distribution in the contact region rather than the 

constant pressure distribution assumed by Grecenko. 

2.1.3.1. ANALYSIS OF SCHWANGHART 

For tyres with deep treads, he assumes that tyre deformation is dominated by bending 

of the lugs and so carcass deformation can be neglected. Thus, the shear force arising 

from the lug is: 

'Utread --' C" 11 (2.19) 

where 11 is deformation of the tyre tread and the stiffness, C", can be measured by 

applying static lateral forces to the tyre. Soil shear stress, Tsoil is given by equation 

(2.15). 
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Ilen, for a slip angle, cc, the total lateral displacement, y, depends on the 

longitudinal coordinate in the contact region, X, i. e. : 

tana (2.20) 

This is the same as the line [ defined in Fig. (2.3) ) that the tyre centreline would 

follow under ideal Idnematic conditions if there were no slip or soil shear. Recognising 

that the total lateral displacement results from (i) tread deformation, (ii) soil 

deformation, and (iii) slip after exceeding maximum soil deformation, Schwanghart 

writes : 

+ il =X tana (2.21) 

where the terms (ii) and (iii) are both included in j. 'Men combining equations (2.19), 

(2.20) and (2.2 1) gives: 

-K log 1- 
Tsai Tiread X tana (2.22) 

a tano +cI'C, 

For equilibrium at any small area in the contact region, the shear stress generated in the 

soil must equal that due to tyre, deformation i. e. 

'rsoil ý-- Ilread ý-- C' 11 (2.23) 

and so substituting this in Equation (2.22) gives: 

il-Klog 1- * C, 11 
1 

Tiread 
tan cc (2.24) 

1 

cy taný +cC, 

This allows, 71, to be found and hence, j, and then the total shear stress. Schematically, 

these parameters are plotted throughout the contact region in Fig. (2.1 1) for two 

assumed pressure distributions. Schwanghart differentiates between soil deformation 

and slip by approximating equation (2.24) to a bilinear form in which : 

-T - Tmax (2.25) K 
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until r.,,, is reached. This is shown in Fig. (2.12). When r is defined by equation 

(2.25), he calls it soil deformation, whereas when r=r. u it is referred to as slip. Not 

surprisingly, as tyre slip angle is increased, the point in the contact region at which this 

changeover occurs, moves forward. 

The component due to the sidewall of the tyre is calculated from the expression 

for the passive soil resistance of a blade moving through the soil as given by Reece 

[19651. 

The importance of this term depends on the particular tyre and soil condition. 

Schwanghart's calculations for a 6.00 x 20 tyre in loose soil gave an average sinkage of 

12 cm and he showed that for these conditions the sidewall component was of a similar 

order of magnitude to the contact patch component. With less sinkage and shallower 

rut, its effect is less important and the following two authors ignore it in their analyses. 

2.1.3.2. ANALYSIS OF GRECENKO 

The main assumptions of his analysis are that: 

1) I'lie contact area is rectangular. 

2) The total resultant force, U= 4H-"'-+-Y; -17 

as seen in Fig. (2.13) acts at an angle, ý, to the wheel plane. 

3) Rolling resistance force arises mainly from compaction and is constant for slip 

angles less than 40', where, slip angle. 

4) The rut is shallow. 

5) The normal pressure distribution is constant. 

The total deformation in the horizontal plane, j, arises from soil deformation. From 

Fig. (2.13) and for steady-state conditions, Grecenko derives the relationship : 
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ux 

where 

x= distance along the contact patch. 

u=a constant depending on the particular slip and slip angle conditions. 

(2.26) 

This assumes that the resulting contact patch does not distort relative to the wheel 

centreline, so the tyre deformation is ignored and the force generated is due solely to 

the effect of soil deformation. 

The force, U, and displacement vector, j, act in the same direction. The force on a 

small element, dx, of the contact region is : 

dU = cb dx 

where, r = soil shear force. 

(2.27) 

Therefore, the total force is obtained by integrating this expression over the whole 

contact region : 

U=b fr dx 
0 

where 

rm (1_e_»K) 

, r. = Soil shear strength. 

Substituting for j, and integrating gives : 

(2.28) 

U=bl, rm 1- 
Jk 

1 
(2.29) 
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where Jk =11, a deformation coefficient. The maximum resultant force, U, as K 

a is : 

b 1, r.. (2.30) 

so that the generalised resultant force, cc., may be expressed solely in terms of the 

parameter Jk as: 

-il 
CCU -u 

O-e A) 

um Jk 
(2.31) 

Alternatively, Grecenko derives a similar relationship but based on the bilinear 

form of the shear stress vs. displacement equation rather that the exponential form 

given in equation (2.15). 

Grecenko then goes on to compare the forces generated as a function of wheelslip 

and slip angle. 

Wheelslip, s= 
ix j cos4 

=u 
sin4 (2.32) 

xx 1-s 

Slip angle, tany 
jy j sin4 u sin4 (2.33) 

x -jx x -j COS4 1-s 

Equations (2.32) and (2.33) can be combined to give :- 

-s )' tan2y + s2 (2.34) 

Now, substituting into equation (2.20) for two special cases, gives -- 

for s=0, (x,, = f, (tany) at H=0 (2.35) 

for y=O, cc. = f2(s) atY=o (2.36) 

Since these two functions are identical : 

f, (tany) = f2 (s) (2.37) 

Grecenko refers to this as the "principle of equivalence". It means that for a given set of 

soil and tyre parameters, the relationship between longitudinal force and wheelslip (at 
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zero slip angle) is the same as that between lateral force and the tangent of slip angle (at 

zero wheelslip). 

In the more general case when both forces (H and Y) are present, these forces 

may be calculated from a knowledge of the wheel motion described by s and y. 

Alternatively, knowing the forces, the wheel motion may be calculated. 

Notice that equation (2.29) is identical to the result of Schwanghart for the special 

case in which H=s=0 and C' is very stiff so that the tyre deformation, il, approaches 

zero. 

2.1.3.3. ANALYSIS OF JURKAT AND BRADY 

This model is based completely on an early version of a road vehicle tyre model 

developed by Dugoff, Fanche 
Ir 

and Segel [1970] at U. M. T. R. I., Nfichigan. It is modified 

by introducing an extra failure mode due to soil shear in addition to the possibility of 

exceeding the available friction force in the contact region. 

The assumed distortion of the tyre under longitudinal and lateral forces is shown 

in Fig. (2.14). Point P is in the contact patch whereas P' is in the centre plane of the 

tyre. When no forces act, P' is directly above P but when forces act they cause a 

distortion of the contact patch and P moves away from P'. Notice that X is defined in 

the tyre coordinates whereas V is defined in the contact patch, the relationship between 

them being: 

V= X(l-s) (2.38) 

The position of P relative to a point directly below P' is defined by the vector: 

ý=Xs, 2, tancc 
1 

(2.39) 

whose magnitude j=IsI 

As the distance into the contact region, X, increases the distortion between P and 

P' increases. At some point, the shear force due to tyre deformation equals the 
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minimum of 

a. tyre/ground friction, 

b. soil shear strength. 

This point is defined by V, So for V< %',, elastic deformation of the tyre occurs 

with no sIdd or soil shear. And for X" > V, the tyre/ground friction or soil strength 

cannot support further tyre deformation and skid or soil shear occurs. 

In the initial part of the contact region, the elastic shear stresses, 'T, x and 'r, Y, are 

assumed to be linearly related to the strains so: 

'rex = kx,, Xs (2.40) 

, rey = ky, 2, tancc (2.41) 

where 

k. 1 n= 
CS 

(2.42) 
b 12 

kyn = 
Ca 

(2.43) 
b 12 

DFx 
and C. =C., (Fý) = 5s- ls=cc=o (2.44) 

DF 
C cc =Ca (Fz) 

Da Is = cc =0 (2.45) 

and are determined empirically. 

Thinking of the contact region as being divided into strips of length A and width 

b, the shear density, z,. (k), for each strip is approximately 

'Ce (k) = q(k.,,, (?, ) S )' + (k,. y,, (k) tanu)' (2.46) 

This stress increases as ?, increases and Xs may exceed the stress due to : 

friction, rk (k) =g cr (k) (2.47) 

or soil slicar, -r, (%) =(c+a (k) taný )(1-e -j'K ) (2.48) 
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Ilerefore, V, = ks (1 -s ) defines the coordinate of the point at which : 

Te (X) = min 

1 

'Ck (I)p 'Cs (X)l (2.49) 

In the region 0<X<W, the forces are given by : 

2! 2 

cý Te (X) dX = k�. sb (2.50) 

Fy =bW. (X) A= ky,, tan ab 
V2 

(2.51) 
ef 

Te), 
2(1-s) 0 

The total forces over the whole contact region consist of the above terrns plus the 

components developed in the region V, 

+bsf min k(X)f us(%) 4s-7 +-ta-n-7-a W, 

f1c 

Fy = Fy, +b 
tancc 

. qs 2+ tan2 CC 

1 
f nün k (X)s 'ls (1) dX 
ý!. 

11r 1 

(2.52) 

(2.53) 

Jurkat and Brady point out the important fact that for road surfaces r, (%) will be 

very much greater than ck (k) and their model conveniently reduces to one already 

commonly used for road vehicle handling studies. 

The force generated by the side wall of the tyre is calculated in the analysis of 

Schwanghart [1968] and Del Rosario [1980]. Ile other authors assume that for small 

values of sinkage, this component may be ignored. Both analyses are based on the 

fundamental equation of earthmoving mechanics for passive soil resistance of a wall or 

blade embedded in the soil :- 

p' = (, yZ2 Ny +cZ Nc +qZ Nq) cosSf (2.54) 

where 
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p, = Soil resistance/unit length 

y= Soil specific weight 

C= Soil cohesion 

q= Surcharge load/unit area 

Sinkage 

8f = Soil-rubber angle of friction 

N,, Nq = Soil coefficients 

The use of this equation and charts containing the soil coefficient are discussed by 

Reece [1965] and Hettiaratchi [1969]. 

In Schwanghart's use of this equation, he substitutes a parabolic distribution of 

sinkage in the contact region. He also calculates surcharge load by first calculating the 

volume of soil which is displaced laterally by the tyre and then assuming that this can 

be taken as an additional distributed load acting on the shear zone. This results in a 

value for P' as a function of distance in the contact patch which is then integrated over 

the contact length to give a total force. 

Del Rosario [1980] identifies another possible mode of failure in addition to the 

passive failure described by equation (2.54). Following the work of Hettiarachi [1966], 

he points to the case in which a soil wedge appears and becomes part of the interface. 

The resultant force is then given by :- 

pe N, +, yZ2 Ny� + c� Zý N�, (2.55) 

where P, = Soil reaction force against the pseudo interface and suffix, w, simply relates 

to the case in which a wedge is formed. 

in using equation (2.54), he assumes a linear relationship between sinkage and 

distance in the contact patch and lie also assumes that there is no surcharge load. He 

does, however, calculate an extra small contribution to the total force due to the 

adhesion force acting along the interface. 
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Overall, therefore, these two approaches are similar and hinge around the 

application of equation (2.55) which is slightly more difficult for a rolling, slipping 

wheels than for a rigid plate. The importance of this term in the total lateral force 

generated by the tyre depends on the value of tyre sinkage in the soil. 

2.1.4. SPOKED TYRE MODEL ON HARD SURFACE 

Ile spoke tyre model is depicted in Fig. (2.15) and represented as a single plane wheel 

consisting of a multi-spoke structure. The spokes are cantilevers fixed to the wheel hub 

at their inner ends. The other ends form a complete circle in the unloaded condition. 

The wheel model diameter is equal to the real tyre diameter, and the number of 

spokes are chosen to make the calculation economical on the one hand, and hopefully 

realistic on the other. The spokes are radially flexible as shown in the Fig. (2.14). They 

are also assumed to be flexible in the circumferential and lateral directions. The 

summations of the spoke stiffnesses in the normal, circumferential and lateral 

directions are considered to be comparable with the pneumatic tyre stiffnesses. 

The spokes are free to deflect in the radial, longitudinal 'and lateral directions 

when the wheel is rolling along. These deflections will be related to the normal and 

shear forces generated. Because there is no connection between the spoke tips, the 

spokes outside the contact line are unstressed and, therefore, unstrained until they enter 

the contact region. 

The spoke tips are assumed not to slide across the surface until the elastic forces in 

the surface plane implied by the absence of any sliding become greater than the friction 

force available. When sliding occurs the spoke tips will move across the road to 

establish a balance between the elastic force and the friction force. 

EI-Nashar [1985] predicted results that qualitatively agree with those obtained 

from a range of published work. His model is built on fundamental ideas and does not 

include any empirical formula. Consequently, the model behaviour reflects rather than 

closely follows that of a real tyre. The model can, therefore, be used to give the user an 
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improved appreciation of the relationship between tyre carcass stiffness properties, 

tyre/road friction properties and the shear force generation process. 

Sharp and EI-Nashar [19861 have recently reviewed and studied tyre behaviour. 

Their study is based on an mathematical model called a multi-spoke tyre model for 

predicting the generation of tyre shear forces. The model specifies wheel motion which 

in turn leads to a complete tyre force and moment system, and has been aimed at 

economical digital computer simulation. The model consists of a single plane of equi- 

spaced discrete radial spokes interconnected through the wheel hub, each spoke having 

radial, lateral and longitudinal tip flexibilities. The force components are normal to 

ground and in ground plane, so that the total force and moment system acting on the 

tyre can be obtained by summation over all the spokes in the contact region. 

A transform axis system as shown in Fig. (2.17) was used to calculate tyre force 

components generated under steady-state condition on a hard surface. To explain this 

analysis, Fig. (2.18) shows the simple example for a rolling tyre in a straight running 

condition, with zero camber angle, i. e. a two dimensional case. 

According to Fig. (2.18), point 0, represents the position of the tyre centre at time 

zero and, OP, the first spoke just entering into the contact region at this time. OP, will 

have length, R, called the free radius of each spoke, and will be at an angle, C, to the 

vertical plane. At time, t, the tyre centre will be at 0', where, 00' =Ut, the spoke tip 

will be at Q, and O'Q will have components as follows: 

(R +p) Sin ( F, - 92 t)+ Cos (e-Qt) along the X direction. 

(R +p) cos (e-Qt)- sin ( F, - 92 t) along the Z direction. 

For Q and P to be at the same height (steady-state condition) :- 

R Cose = (R + p) cos (F- - K2 t)-ý sin (P- - K2 t) (2.56) 

R Sine=(R+p) sin(c-92t)+ý cos(e-92t)+Ut (2.57) 

Sharp and EI-Nashar assumed that the spokes are positioned at l' intervals and 

chose t such that Qt IC 
. They then solved equations (2.56) and (2.57) for p and 180 
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These values of p and C then become po and CO, which are the initial second estimated 

for the next spoke. By using a bisection method, they corrected values of spoke tip 

deflections if there was not sufficient friction available to prevent sliding. 

The normal force applied to the spoke tip by the ground surface is 

fz = ý(p)cos(e-ilt)-ý K4 sin(F, -flt) (2.58) 

and the shear force is : 

f, = ý(po)sin(F--üt)+ý K4 cos (F, -nt) (2.59) 

where ý (po) is the radial force an the spoke tip and K4 is the constant circumferential 

spoke tip stiffness. 

The main idea of their model is that the wheel motion and properties (spoke 

radius, spoke stiffnesses and spoke tip to road ffiction coefficient) will be specified and 

the force system will then be deduced. The calculations started from the point when the 

spoke whose motion is to be followed is right at the front of the contact region. 

2.1.5. COMPARISONS OF MEASURED AND PREDICTED DATA 

From the previous work concerning the relationship between the lateral force 

coefficient and slip angle, it is concluded that the tyre and soil data are the most 

predominant parameters in this relation. 

Comparison between the measured and predicted results for the above relation is 

shown in Figs. (2.19 to 2.25). Fig. (2.19) shows the comparison between Schwanghart's 

results and those predicted by Grecenko for a 5.50-16 tractor front tyre under soft soil 

condition. The plot shows that the characteristics of the curves follow a similar pattem 

except that the rate of change of the slope in the measured results is higher than that of 

the predicted one. The results also show a quantitative agreement at a point where the 

two curves intersect at about 16' of slip angle and slight discrepancies over the other 

range of slip angles. 
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For results measured by Del Rosario, Fig. (2.20) he indicates that the measured 

and predicted results have similar trends although in quantitative terms, there are some 

differences. The same behaviour as Fig. (2.19) is shown in Fig. (2.21) with slight 

variation in agreement and pattern for McAllister's results. The intersection between 

the two curves occurs at about 15' of slip angle. 

In Fig. (2.22) the intersection between the curve measured by Krick and predicted 

results occurs at about 18' of slip angle. Figs. (2.23) and (2-24) show the same overall 

behaviour as Fig. (2.20) for a different tyre size and range of operating conditions. Both 

figures have the same trends and the predicted results are consistently higher than the 

measured results. 

Measured results obtained by Gilfillan show a maximum value of lateral force at 

about 180 of slip angle as seen in Fig. (2.25). Ile intersection between the measured 

and predicted results are in the range from 10 to 250 of slip angle. 

'Mese figures ( Figs. (2.19 to 2.25) ) show the typical measured data compared with 

predicted results based on Grecenko's theory [1975], this theory being adaptable for 

each set of conditions. Some of the measured results were obtained from the field and 

some of them obtained by laboratory tests. It is necessary to estimate various 

parameters that are not described in the experimental data. This obviously introduces a 

degree of uncertainty into the results, but the exercise does attempt to test the theory 

over a reasonably wide range of conditions. Comparison of measured data and 

predicted results is often difficult because of the lack of soil and tyre parameters quoted 

in the reports of measurements. 

2.2. BASIC SOIL MECHANICS 

In agricultural soil mechanics, the most relevant soil properties are the reactions of soils 

to applied forces. For simplicity these properties are called "strength properties". For a 

given soil they will change with time under the influence of climate, soil management 

and plant growth. Ile strength properties of a given soil and their change with time are 
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determined by the following factors : - 

1) Number of particles per unit of volume. 

2) Spatial distribution of particles. 

Moisture content as a percentage of total volume. 

4) Moisture distribution. 

5) Bonds between particles. 

6) Distribution of bonds. 

2.2.1. A HISTORICAL PERSPECTIVE 

The development of a traction theory for off-road vehicles (agricultural, construction 

and forestry ) dates from the 1940's. A considerable role in this development was 

played by Bekker [1956,60,69,741. Traction theory depends upon the measurement of 

the fundamental soil shearing strength and the establishment of a "deformation 

modulus" to characterise the variation of shearing strength with deformation. 

Significant research effort from the 1950's through the 1970's was directed 

toward the development of analysis systems for evaluating mobility and predicting 

tractive performance. These research efforts have led to systems which permit 

evaluation of new traction mobility vehicles and concepts which minin-tise 

experimental effort. 

Terrain-vehicle problems involving self-powered vehicles, have a lengthy history. 

Current trends of traction and mobility technology and their applications to vehicle 

design have been discussed recently by Burt and Turner [1983). In ten-ns of the 

relevance of traction and mobility calculations to vehicle, a number of problems still 

remain. In particular, the descriptions of soil strength remains today as a major obstacle 
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to the development of a fully acceptable and accurate soil-mobility terrain mechanics 

description. 

2.2.2. SOIL-VEHICLE TRACTION PERFORMANCE 

The various approaches that have been taken to analyze soil-vehicle systems can be 

broadly categorised into three types :- 

2.2.2.1. Semi-empirical methods 

This modelling approach is based on theoretical mechanics concepts (equilibrium and 

soil strength theories) coupled with empirical pressure-sinkage relationships for soil. 

The maximum thrust developed by a tractive device is taken to be the local value of the 

maximum soil shear stress underneath the device, integrated over the contact area. The 

maximum soil shear stress acting on the device is estimated from simple Mohr- 

Coulomb Failure 'Meory for cohesive-frictional soils. 

An empirically developed pressure-sinkage relationship for soil is used to 

calculate motion resistance to forward movement. Net pull force of a traction element 

is calculated as the difference between developed thrust and forward motion resistance. 

The semi-empirical approach was developed by Bekker [1956,60] for applications 

to rigid wheels, pneumatic tyres and tracked vehicles. I'his analysis technique has not 

been widely adopted for use in off-road vehicle design. 

2.2.2.2. Empirical methods 

Empirical analysis methods based on the theory of dimensional analysis and have been 

developed and applied to a variety of soil-vehicle problems. The basic approach 

involves the identification of dimensionless groups of pertinent variables relevant to the 

problem, followed by experimentation in order to empirically relate these parameters. 

'Mus, modelling laws are empirically derived through experimentation as opposed 

to analytically derived through solution of fundamental equations which describe the 
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phenomena of interest. Ibrough application of this approach one can possibly avoid 

explicit formulation and solution of the governing (typically differential) equations Of 

the system. 

One of the first attempts at applying the theory of dimensional analysis to tyre-soil 

systems was reported by Freitag [1968]. This report successfully derived tyre mobility 

numbers, i. e. independent dimensionless terms that led to empirical prediction 

equations for tyre traction and rolling resistance performance in dry sand and saturated 

clay soils. The mobility numbers comprise variables which describe tyre and soil 

properties. 

Most importantly, cone index can be measured in field conditions with a relatively 

simple instrument, unlike most other common measurements of soil strength. Empirical 

equations were experimentally validated over a practical spectrum of tyre-soil 

conditions relative to agricultural earthmoving and forestry applications. These 

equations allow prediction of maximum tractive effort and rolling resistance of a single 

tyre based on tyre geometry, normal load, rate of slip and soil cone index. 

Nevertheless, empirical methods using cone index was found to be much more 

reliable than the semi-empirical methods as reported by Domier and Williams [1979]. 

2.2.2.3. Analytical methods 

This approach to vehicle-soil mobility is an outgrowth from the application of soil 

plasticity concepts to foundation and footing stability problems. I'lle first attempt to 

apply soil plasticity analysis to problems of vehicle mobility, was reported by Karafiath 

[19701.77his work was motivated by an interest in problems associated with lunar 

locomotion. 

The assumption of perfectly plastic soil behaviour is inherent in this analysis, thus 

situations in which elastic soil deformation is of importance as referred to by Karaflath 

and Nowatzki [19781 cannot be treated. 
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Another analytical method that is beginning to evolve for application to soil- 

vehicle problems is the "finite element method". 'nis is a technique which provides a 

means of representing differential equations with approximate algebraic equations. 'Me 

technique has received much attention since the early 1960's and has been applied to a 

variety of physical phenomena, stress, deformation, heat transfer, fluid flow, diffusion 

processes and electromagnetic fields. 

Numerous applications of the finite element method to problems of soil and rock 

mechanics have appeared only over the last decade. Far less effort has been directed 

towards finite element modelling of soil traction problems. Ibis modelling approach 

reported by Chung and Lee [1975] was more ambitious and treated the soil as a 

nonlinear viscoelasto-plastic material. 

The finite element meth 
, 
od will most likely be the vehicle for implementation of 

the theory. The major disadvantages of this method are associated with the large 

computer resource and costs and the complexity of the software required to conduct a 

general nonlinear analysis. 

2.3. CRITICAL SUMMARY AND CONCLUSIONS 

The above survey has shown that, most of the tyre studies to date have been directed 

towards the tractive behaviour of off-road tyres. In contrast, for fewer measurements 

have been concerned with the lateral behaviour of off-road tyres. 

Reports of measurements of combined lateral and longitudinal forces are even 

more scarce and consequently, empirical or analytical descriptions of the behaviour of 

off-road tyres in generating these forces are not generally accepted although some 

attempts have been made to develop such descriptions. 

Because of the small amount of work done on lateral off-road tyre, behaviour and 

on measurements of the associated soil parameters, little success has been achieved 

either in relating tyre forces to soil properties or in developing predictive expressions 

from a fundamental soil mechanics viewpoint. 
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According to the above summary and literature survey, it is suggested that better 

off-road tyre models are needed, firstly, to represent tyre behaviour more accurately, 

secondly, to understand the tyre-soil interaction in more detail and finally, for use in 

off-road vehicle handling and stability models. 

2.4. OBJECTIVE OF THE THESIS 

The objectives of the work described in this thesis are :- 

(a) to understand the mechanisms by which tyres generate forces on deformable 

surfaces. 

(b) to develop models of varying degrees of complexity to describe this behaviour. 

(c) to compare results predicted by these models with available data for tyre 

forces. 

(d) to draw conclusions about the accuracy of the models and make 

recommendations about their usefulness in off-road vehicle dynamics problems. 
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CHAPTER3 

A SIMPLE TYRE FORCE GENERATION MODEL 

In this chapter a simple tyre model is presented 

to predict the vertical and longitudinal forces 

in the case of stationary and steady state 

tyre conditions on a deformable surface. 
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3.1. INTRODUCTION 

Using existing work on modelling the behaviour of on-road tyres as a background, a 

new simple model to represent the tyre forces gefierated between a tyre and a 

deformable surface is developed. It is based on a simplified calculation involving the 

combination of a multi-spoke representation of the tyre and simple soil mechanics 

equations. 

The model predicts the forces in the vertical and longitudinal directions for a 

stationary and rolling tyre in steady state conditions. Distributions of the forces 

throughout the contact region are presented and discussed. The effect of tyre stiffness 

and soil strength parameters are discussed and the model is intended to establish a basis 

for further off-road tyre model studies. 

Most previous studies to describe the behaviour of off-road tyres in generating 

longitudinal and vertical forces are based on one of the three following points : - 

1) ale soil is compact and harder than the tyre. In this situation, the deformation of 

the tyre is completely dominant, and the interface is assumed to be flat. Therefore, the 

proposed model becomes exactly like those used for road vehicle tyres with differences 

in parameters to describe the off-road tyre. 

2) The tyre is harder than the soil, thus the tyre deformation is smaller and the 

interface has a convex shape. The proposed model then becomes similar to those used 

to describe the behaviour of a rigid wheel in soil. 

3) The case in between the previous cases, in which there is tyre deformation in the 

contact region, and at the same time the ground is affected and deformed by the tyre 

load. This case, which is obviously closest to the practical situation, is the one which 

has received little attention in the literature. 
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3.2. STATIC TYRE ON DEFORMABLE SURFACE 

Let us consider a tyre, standing on ground either hard or deformable at tyre load, W, 

with zero camber angle, y, as shown in Fig. (3.1). The shape of the contact surface 

depends on the tyre deflection. In general, the shape of the surface is slightly shorter 

and wider than would follow from an imaginary, intersecting plane between the tyre in 

its unloaded shape and the supporting surface. The shape of the contact region depends 

on the particular tyre type and the inflation pressure. However, Fig. (3.1a) shows the 

cross section of the impression that is obtained when a non-rotating (static) tyre is 

lowered vertically onto hard ground. An entirely different impression is found when 

the tyre inflation pressure is increased to the maximum range (as a rigid wheel), and 

lowered vertically onto a soft surface as shown in Fig. (3.1b). 

If the tyre has a low inflation pressure and is standing on a soft surface, it will 

deflect and sink to a certain extent. The process in the contact region incorporates 

aspects of the tyre on a hard ground as well as aspects of a rigid wheel (or tyre at high 

inflation pressure) with sinkage. Fig. (3.1c) shows the tyre standing at tyre load, W, on a 

deformable soil. 

It is interesting to note that the most the soils are deformed when subjected to 

load. This deformation is elastic when the soil regains its original shape upon removal 

of the load. Plastic deformations occur for stresses exceeding the elastic limit of the 

soil, and elasto-plastic deformations occur in soils which have no clearly defined elastic 

limit (or properties). In general, when the load is removed from the soils, very little 

deformation is recovered by elastic rebound, as illustrated in Fig. (3.2). This is because 

the principal soil deformations are state changes caused by relative particle motion. 

only a very small amount of the soil deformation occurs from particle distortion and is 

elastically recoverable. 

To sum up, when the soil shear stress becomes equal to the soil shear strength, and 

the normal load is released, which is. indicated by "A", then if is there no elastic 

recovery for this soil, the soil shear stress decreases to zero value at "B "', but if the soil 
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has an elastic recovery behaviour then the soil shear stress will decrease to zero value at 

3.2.1. LOAD-DEFLECTION BEHAVIOUR 

To describe the behaviour of off-road tyres and the forces acting on them, it is 

necessary to define an axis system that serves as a reference for the definitions of 

various pammeters. Ile axis systems used in this tyre model are shown in Fig. (3.3). 

The origin of the axis system is the centre of the line of tyre contact with the ground. 

The X axis is the intersection of the wheel plane and the ground plane with a positive 

direction forward. The Z axis is perpendicular to the ground plane with a positive 

direction downward. 7le Y axis is in the ground plane, its direction being chosen to 

make the axis system orthogonal. 

There are three main forces acting on the tyre from the ground, longitudinal force, 

fx, which is the component in the X direction of the resultant force acting on the tyre, 

lateral force, fy, which is the component in the Y direction and normal force, fz-, which 

is the component in the Z direction of the resultant force acting on the tyre from the 

load. With this axis system many performance parameters of the tyre can conveniently 

be defined. 

3.2.2. EQUILIBRIUM FORCE EQUATIONS 

When the tyre load applied to the deformable surface exceeds a certain limit, the stress 

level within a certain boundary of the surface may reach a point which is denoted by K 

on the idealised stress-strain relationship shown in Fig. (3.4). An infinitely small 

increase of stress beyond point K produces a rapid increase of strain, which constitutes 

plastic flow. Ilie state that precedes plastic flow is usually referred to as plastic 

equilibrium. 

Ilere are a number of criteria proposed for the failure of soils under tyre, load and 

of other similar materials. One of the widely used and simplest criteria is that due to 
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Mohr-Coulomb. It postulates that the shear stress in the material is related to 

displacement according to the following condition :- 

, r, = (c+Pgtaný)(1-c-i1K) 

where 

, c, = Soil shear stress 

Pg = Nonnal ground pressure 

c= Soil cohesion 

ý= Soil internal angle of friction 

Soil shear displacement 

K= Soil deformation modulus 

The basis of the Bekker theory [1969] is a relationship between the ground pressure, 

Pg, and soil sinkage, Z, as follows: - 

c p (! -+K, ) Zn (3.2) 9ýb 

where 

K, = Cohesive soil moduli 

KO = Frictional soil moduli 

b= Width of tyre contact patch 

n= Exponent of soil deformation 

in which Kc, Ký and n are empirically measured, soil describing constants. 

The use of basic equations (3.1) and (3.2) can perhaps best be appreciated by 

considering the case of a static tyre on deformable surfaces. At the interface between 

the tyre and the off-road sur-face an element of tyre surface area is acted upon by forces 

which can be expressed as two components, one perpendicular to the contact region, 

called the normal force, fg, and other tangential to the contact region, called shear 

force, f, This is shown in Fig. (3.5). The idea behind the modelling is that at any point 



-68- 

point of the interaction between the tyre and ground, the shear and normal forces must 

equal the bending and radial forces generated by the tyre. Accordingly the tyre and soil 

forces are :- 

fs = (c + Pg ta#) (1 -e-j'K) Ac (3.3) 

c fg = (L+KO)ZnAc (3.4) b 

fb = ljx Kx (3.5) 

f, = DR K,, (3.6) 

where 

A, = Horizontal contact area 

71., = Circumferential deflection 

K, = Circumferential tyre stiffness 

DR = Radial tyre deflection 

K, = Radial tyre stiffness 

ne equilibrium force equations can be written as following 

fs 
"' fb (3.7) 

f9 = fr (3.8) 

Substitution of equations (3.3) to (3.6) into equations (3.7) and (3.8) give: 

(c + Pg tano) (I -e-j'K) Ac = il., K, (3.9) 

Kc 
+ KO) Z' Ac = DR K, (3.10) b 

and from the tyre geometry as shown in Fig. (3.5), the relation between the tyre 

deflections and the soil sinkage at any point through the contact region is :- 

R Cos01 +Z +ilx Sin0 = (R-DR) Cos0 
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where 

Undeflected tyre mdius 

dO = Spoke angle position 

01 = Entry angle 

0= 01 -dO and 

i= lix 

The simplified model contains two main assumptions: 

The area of contact region between the tyre and the surface is assumed to be 

rectangular, i. e. (area =b 1) and divided into infinitely thin strips. 

where I is length of the tyre contact patch. 

2) The tyre load/deflection relationship is assumed to be a linear function. 

Equilibrium force equations (3.9), (3.10) and (3.11) can be solved for DR, 71., and Z. 

The vertical and horizontal tyre force components would be :- 

DR K., Cos 0+ 71., K, Sin 0 (3.12) 

fx = DR Kr SinO + lix Kx CosO (3.13) 

Ilie summation of vertical tyre force components is :- 

0=-Ol 

0=01 
(3.14) 

0=-Ol 
Fz = Y, (DR K,, cosO + Tjx Kx sinO (3.15) 

0=01 

The total vertical force, F, must be equal to the tyre load, TV. If not, then there is 

a subroutine called "Angle" to recalculate the correct value of 01 for which F., = IV. 

Fig. (3.6) shows the load distribution of a 7.50 x 18 front tractor tyre along the length of 

the contact region. The longitudinal shear force distribution is shown in Fig. (3.7). 
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3.2.3. EFFECT OF RADIAL TYRE STIFFNESS 

Fig. (3.8) shows the influence of the radial tyre stiffness on the radial tyre deflection and 

the soil sinkage for a static tyre on deformable soil. Vertical and horizontal components 

of tyre force generation are affected by different values of radial tyre stiffness as shown 

in Fig. (3.9). 

3.2.4. EFFECT OF TYPE OF SOILS 

Simple tyre model results are affected significantly by three type of soils, clay soil, 

loose soil and sandy loam soil. Fig. (3.10) illustrates the radial tyre deflection and soil 

sinkage distributions along the length of the contact region. Vertical and horizontal 

force distributions are shown in Fig. (3.11). 

3.3. ROLLING TYRE ON DEFORMABLE SURFACE 

With constant forward speed, U, and constant spin velocity, CO, there will be combined 

tyre deflection and soil deformation. The deformations of the tyre and the soil are 

dependent on several important parameters, such as tyre stiffnesses, tyre inflation 

pressure, soil type and soil strength. 

Fig. (3.12) shows how the tyre moves in steady state conditions on hard ground 

(a), rigid wheel on soft surface (b) and tyre on deformable surface (c). The entry angle, 

01, in case (c) is greater than that in case (a), but less than that in case (b). However, the 

soil sinkage, Z, increases with increasing tyre inflation pressure until a maximum value, 

which is the same as the case of the rigid wheel, is reached. 

According to Fig. (3.12), the interface between the tyre and a deformable surface 

is assumed to be split into two main regions as follows: - 

1) Deformable region, that is the region at the front of the tyre contact patch, where all 

the soil defonnation occurs. 

2) Compacted region, that is the region at the rear of the tyre contact patch, the tyre 

forces are decreased and the soil reaches a maximum sinkage. 
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3.3.1. TYRE AND SOIL FORCES 

As mentioned earlier in equations (3.3) and (3.4), the forces acting on the tyre from the 

ground are f, and fg. Ilese forces must be equal to those forces generated by the tyre 

deformations. In order to describe the behaviour of the rolling tyre on deformable 

surfaces, the equilibrium force equations are :- 

Deformable region 

Kc 
+ K, ) Zn Ac = DR Kr (3.16) b 

(c + Pg taný) (I -e-j'K) Ac = 11., K, (3.17) 

R CosOl +Z+ ilx SinO = (R -DR) CosO (3.18) 

R Sin0l =U dt + (R-DR) SinO +ljx CosO (3.19) 

where 

dt = time increment =A Co 

and A= 1'. 

Equations (3.16) to (3.19) can be solved for DR, %, j and Z Then the vertical and 

longitudinal tyre force components can be resolved :- 

fz = DR Kr Cos 0+ ilx Kx Sin 0 (3.20) 

L= DR K., SinO B+ il, K., CosO (3.21) 

Compacted region 

To determine the tyre and soil force components in the second half of the tyre, the 

approximate relation between the entry angle, 01, and the rear angle, 02, is as follows -- 

02 ý-- COS-1 COSOI + 
Zmax 

(3.22) R 

where Zm,,., is maximum soil sinkage. 
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The equilibrium force equations in this region are: 

R C05 02 = (R -DR) Cos 0+ 71x Sin 0 (3.23) 

R Sin02 =U dt + (R-DR) SinO-ilx CosO (3.24) 

The solution of equations (3.23) and (3.24) in DR and il., are used to calculate the tyre 

force components in vertical and longitudinal directions as follows :- 

f, = DR K., Cos 0+ 11., K, Sin 0 (3.25) 

=DRK., SinO-ij., K,, COSO (3.26) 

The total vertical tyre force through the length of contact region is :- 
0"= -02 

0=01 
(3.27) 

07-02 

Fz = F, (DR Kr CosO + ilx Kx SinO) (3.28) 
0=01 

Fig. (3.13) shows the behaviour of soil sinkage and the radial tyre deflection 

through the length of the contact region for rolling steady state tyre on sandy loam soil. 

Both soil sinkage and radial deflection reach a maximum value at the centre of the tyre. 

In the second half of the contact length, the soil sinkage stays. The radial deflection 

behaviour is similar to the soil sinkage up to the centreline of the tyre. After that point 

the soil sinkage remains constant because force decreases and soil behaviour is clearly 

not elastic recovery. 

The longitudinal and vertical force distributions along the contact region of a 

rolling tyre moving under steady-state conditions on sandy loam soil are shown in 

Fig. (3.14). The longitudinal force distribution takes form which has a small part at the 

rear of the figure. Rolling resistance can be found by a summation of the longitudinal 

force over the length of the contact region. Pressure distribution along the contact 

region is presented also in Fig. (3.14). The centre of pressure remains in front of the tyre 

which is ahead of the centre of the contact region. 
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3.3.2. INFLUENCE OF TYRE STIFFNESS 

For the steady state tyre, Fig. (3.15) illustrates the influence of the radial tyre stiffness 

on the radial tyre deflection and soil sinkage. With increasing tyre stiffness, tyre 

deflection is decreased, while the soil sinkage increases. 7be distributions of tyre force 

are indicated in Fig-(3.16) for various tyre stiffnesses. The soil parameters remain 

constant, an increase in tyre stiffness parameters results in less radial tyre deflection and 

a reduction, therefore, in the length of the contact region. 

3.3.3. EFFECT OF SOIL STRENGTH 

Fig. (3.17) and Fig. (3.18) show the influence of the soil strength on the tyre deflection, 

soil sinkage and force distributions for vertical and horizontal directions. The dominant 

feature is that since the tyre load is maintained constant, an increase in soil strength 

results in less sinkage and a reduction, therefore, in the length of the contact region and 

an increase in ground pressure. 

3.4. CONCLUDING REMARKS 

A simple tyre model for vertipl and longitudinal force generation of an off- 

road surfaces in the case of stationary and rolling tyre in steady state conditions has 

been presented. 

(2) In predicting the longitudinal and vertical force distributions within an off- 

road tyre, the model forms a basis for an extension of the analysis to include lateral 

force behaviour. 

(3) The presented results cover the static and steady state cases for a wide range 

off-road surfaces. 
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(4) A comparison between the vertical tyre load/deflection relationships and those 

obtained experimentally by Plackett [1983] for a 7.50 x 16 front tractor tyre under hard 

surface conditions is shown significantly in agreement in qualitative terms with the 

trends of the relationship. The quantitative agreement occurs at 4.15 kN/m radial tyre 

stiffness as depicted in Fig. (3.19). 
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CHAPTER 4 

AN EXTENDED MODEL FOR COMBINED LATERAL 

AND LONGITUDINAL TYRE FORCES 

The extended model for combined lateral and longitudinal 

off-road tyre forces is presented. A fulIer treatment 

of tyre/soil behaviour in the contact region 

than existed previously is outlined. 
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4.1. INTRODUCTION 

A qualitative description of behaviour in the contact region is given in Fig. (4.1), for the 

case of a tyre operating at a slip angle but zero wheelslip. The tyre equatorial line is 

distorted relative to the wheel centreline. In fact, if there were no soil shear or sliding, 

the wheel equatorial line would follow the line (AD), in the resultant direction of 

motion of the tyre. However, in order to generate a force at the tyre/ground interface, 

soil shear occurs and the tyre equatorial line displaces to a new position at which : 

FORCE DUE TO SOIL SHEAR = FORCE DUE TO TYRE DISTORTION (4.1) 

An exactly similar situation occurs in the longitudinal direction, though for clarity it is 

not shown on the diagram. This simple concept is the basis for the mathematical model. 

The tyre distortion actually has two components, one due to carcass and the other 

due to tread deformation. However, the deformation due to the tread or lugs is normally 

much smaller than that due to the carcass, so it may be ignored. Also, the tyre carcass is 

distorted in the areas immediately in front of and behind the contact patch and these 

two areas are also ignored in the analysis. 

Conceptually, the model is based on the idea of idealizing the tyre contact region 
into a number of individual points along the tyre equatorial line, writing equation (4.1) 

in full for the longitudinal and lateral directions, solving to obtain the appropriate 

displacements and finally summing the individual force components over the contact 

length to obtain the total tyre forces. 

4.2. DEFORMATION-FORCE RELATIONSHIP 

In this derivation of the model, the contact area is assumed to be rectangular (b 1), and 
f- 

the pressure distribution is assumed to be constant over the contact area (Cr z ). The 
bl 

assumed distortion of a point in the contact region under the action of lateral and 

longitudinal forces is shown in Fig. (4.2), for the sideslip and braking conditions. 
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where 

a= Normal ground pressure 

Fý = Tyre force in vertical direction 

b= Width of tyre contact patch 

I= Length of the tyre contact patch 

The total tyre distortion, il, and the total soil deformation, j, are separated into 

longitudinal and lateral components denoted respectively :- 

TI, ily and J,, jy 

where 

(4.2) 

AT )", T (j, 7 (4.3) 

From Fig. (4.2), the following equations for displacements can be written :- 

llx + Jx s (4.4) 

tana (4.5) Ily + jy = f- s 

where 

7jx = Longitudinal tyre deflection 

ily Lateral tyre deflection 

jx Longitudinal soil defonnation 

jy = Lateral soil deformation 

Wheelslip 

V= Longitudinal displacement 

a= Tyre slip angle 

The deformation in the contact region for the case of sideslip and traction are 

shown in Fig. (4.3). 'llie displacement equations (4.4) and (4-5) are now :- 
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il', +A=s2, ' (4.6) 

ly + jy = (1 - s) X' tanct (4.7) 

The definitions of wheelslip used in equations (4.6 and 4.7) are :- 

For tractive case 

Wheelslip (s no slip velocity - actual velocity (4.8) 
no slip velocity 

which is true for 0<s 

For braking case 

Wheelskid (s) = 
actual velocity - no skid velocity (4.9) 

actual velocity 

which is true for -1 <s 

The total shear stress in the soil is governed by the total soil displacement, j, and 

so the shear stress components in the X and Y directions depend on the magnitudes of j., 

and jy relative to j. Note that the soil cannot generate maximum shear stress, "Cmax , in 

both directions simultaneously. Equating the shear stress in the soil to the shear stress 

resulting from the tyre deflection gives: 

ix 

i, 
(1_e-jlK)i =c, x lIx = Tx (4.10) 

where 

= Soil shear strength 

, rx = Component of soil shear stress in X-direction 

, cy = Component of soil shear stress in Y-direction 

C'.,, = Longitudinal tyre stiffness 

C'y = Cornering tyre stiffness 

jy 
e -j'K) , 71Y = Icy 

iI= 
cy (4.11) 
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When equation (4.3) is substituted, equations (4.4) to (4.11) become a set of four 

simultaneous, non-linear equations in four displacements, j.,,, jy, 71., and ily. The 

required data for a particular tyre and soil condition are surnmarised in Table (4.1), with 

example values for a 7.50 x 18 tyre on a sandy loam soil. The tyre stiffness parameters, 

C ** and C/, are obtained empirically from the behaviour of the tyre on a hard surface. XY 

They are obtained from the initial slopes of the longitudinal and lateral forces with 

wheelslip and slip angle respectively. 

clfx 
cs 

b 12 

Ca 
(4.13) 

b 12 

where 

C., = Initial slope of longitudinal force vs. wheelslip 

Cc, = Cornering stiffness at F, =0 

(x = Tyre slip angle 

dV = Length of the thin strip 

C' Y= Cornering tyre stiffness 

and 

cs = 
DFx is 

= cc 0&C,,, = 
DFy 

s=a0 (4.14) Ds Da 

The solution for the predicted forces are essentially found by integrating stresses 

over the contact area. Computationally, this is done as follows -- 

1) The contact region is assumed to consist of a finite number of thin strips of 

length, d 

1 
2) ForvaluesoO: from -! 

ýX- 
to )j. e. along the contact length, equations 22 

(4.7) to (4.10) are solved to obtain displacements. 
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3) The displacements are used to calculate the shear stress components, r., and ry, 

in the X and Y directions from equations (4.9) and (4.10). 

4) The net forces on each strip are then : 

dFx = -rx b 

and 

dFy = cy b 

where 

dF., = The net force on thin strip in X-direction 

dFy = The net force on thin strip in Y-direction 

(4.15) 

(4.16) 

5) The total forces on the tyre are the summations of these force components 

throughout the contact region. 

Repeating this procedure for a range of values of wheelslip and slip angle enables 

the complete force characteristics of the tyre to be built up. A computer programme 

was written in Fortran to do this and it incorporated a subroutine to obtain the solution 

to equations (4-7) to (4.10) using the bisection method. Thus, the structure of the 

computer programme is that for a given set of tyre and soil data, the input values are 

wheelslip and slip angle and the output values are longitudinal and lateral forces. This 

enables it to be linked as a subroutine to off-road vehicle handling programmes. 

4.3. SOIL AND TYRE DEFORMATION 

The deformation of the tyre and the soil at various points in the contact region is shown 

in Fig. (4.4). The values of 12'. slip angle and 60% wheelslip represent a fairly extreme 

condition and were chosen so the components of displacement could be seen clearly. 

only ten points are shown in this figure although the computation is actually done for 

more than 100 points. 
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4.4. EFFECT OF TYRE STIFFNESS PARAMETERS 

The effect of the tyre stiffness parameters, C'x and C' Y, are shown in Fig-(4.5) and 

Fig. (4.6). The lateral force coefficient is plotted against slip angle for the condition of 

zero wheelslip with different values of C'x and C'y. In Fig. (4.6), the longitudinal force 

coefficient is plotted against wheelslip for the condition of zero slip angle and the same 

variation of C'x and C'y. 

As the tyre stiffness parameters increase, the predicted tyre forces at a particular 

wheelslip or slip angle also increase. In the limit as C'X and C'Y approach infinity, the 

predicted forces approach those calculated in Grecenko's model [1975] which assumes 

that the tyre is rigid compared to the soil. 

4.5. EFFECT OF SOIL DEFORMATION MODULUS 

The sensitivity of the model predictions to one of the important soil parameters, i. e. the 

deformation modulus, K, is shown in Figs. (4.7) and (4.8). As the value of this modulus 

parameter increases, the predicted forces decrease because the soil becomes very stiff at 

lower values of soil deformation modulus. 

It is interesting to note that as the soil parameters approach those of an "infinitely 

stiff' soil, i. e. a non-deformable, road surface, the model becomes the same as that 

originally proposed at the University of NEchigan Transportation Research Institute 

[19701 and used by them for some vehicle handling studies. 

As a general presentation of the results, Fig. (4.9) illustrates the influence of lateral 

force coefficient as a function of slip angle and wheelslip. It also shows the relationship 

between the longitudinal force coefficient and wheelslip with different slip angles. The 

slip angle ranged between 0 to 45' and wheelslip ranged between 0 and 100%. 
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4.6. CONCLUDING REMARKS 

(1) A model for the combined lateral and longitudinal force generation of an off-road 

tyre has been presented. It is based on the idea that in the tyre/ground contact region the 

forces due to soil shear must equal those due to tyre deflection at any point. 

(2) Predicted force relationships with slip angle and wheelslip agrees qualitatively 

with those obtained from measured data. 

(3) The model is in a form which is suitable for inclusion in vehicle models to 

predict handling and steering behaviour. 

(4) The model agree quantitatively with the model predicted by Grecenko. The 

comparison and the model accuracy are presented in Chapter 6 later. 



-102- 

Soil data 

Cohesion, c 4.0 kNIM 2 

Internal angle of friction, 290 

Deformation soil modulus, K 0.029 m 

Sinkage exponent, n 0.9 

Cohesive modulus, K, 1.72kNlmn+l 

Frictional modulus, KO 1515 kNIM n+2 

Tyre data 

Tyre load, W 5.2 kiV 

Width of the contact region, b 0.204 m 

Length of the contact region, 1 0.36 m 

Longitudinal tyre stiffness, C,, 2950 kN IM 3 unit slip 

Lateral tyre stiffness, Cy 1115 kNIM 3 rad 

Table (4.1) Typical soil and tyre data parameters for a 7.50 x 18 tractor 

front tyre operating on medium sandy loam soil. 
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Fig. (4.5) Effect of the tyre stiffness parameter, 
C'y on the LeteraL tyre force. 
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Fig. (4.8) InfLuence of solL deformation moduLus, K, on the 
LongitudinaL tyro force/wheeLeLip reLationship. 
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CHAPTER5 

MULTI-SPOYX- D TYRE MODEL ON DEFORMABLE SOILS 

A tyre model based on representing the tyre as a series 

of cleforinable spokes is presented and results for 

the combined longitudinal and lateral force 

relationships are calculated. 
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5.1. INTRODUCTION 

The accurate prediction of the forces generated between 'the deformable soil and the 

rolling tyre is one of the most important and difficult problems in developing a 

mathematical tyre model simulation. In any study to predict the dynamic performance 

of off-road vehicles, it is vital to be able to model the off-road tyre accurately. 

Accordingly, predictions of tyre performance over a range of soil conditions are 

important. Also, the tyre model may be helpful in gaining a better understanding of the 

force distributions throughout the contact region and in establishing the detailed way in 

which tyre and soil parameters affect behaviour. 

The model is represented by a series of individual spokes whose only connection 

to each other is through the hub of the wheel. The spokes have both radial and bending 

stiffness and solving the force equations at the tips of the spoke in the lateral, 

longitudinal and vertical directions is the basis of the mathematical tyre model 

simulation. 

The modelling results are verified by comparisons with measured data and it is 

then argued that the model is sufficiently accurate and economical in computing 

requirements to be used in vehicle simulation studies. Accurate predictions of off-road 

tyre forces are essential when studying off-road vehicle handling and stability 

behaviour because these are the external forces which are responsible for guiding, 

braking and propelling the vehicle. 

5.2. DEVELOPMENT OF MODEL 

The key to developing a comprehensive model of an off-road tyre i's the ability to 

predict accurately the force system at the tyre-soil interface. The behaviour of off-road 

tyres at the tyre-soil interface is governed by forces originating from external sources 

above the soil surface and reaction forces from the soil against them. This'reaction 

comes through the tyres via the spoke contacts of the wheel on the soil surface. 
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The model can be described as a simple and stmightforward approach utilising the 

idea of the tyre being formed by a series of radial spokes, each spoke having three 

degrees of freedom, laterally, longitudinally and radially. Fig. (5.1) illustrates the 

behaviour of the spoke tip under conditions of static tyre deformation on a deformable 

surface. 

In the case of steady-state rolling conditions, Fig. (5.2) shows the spoke tip 

behaviour in the contact region, the spoke tips will deflect in three directions (if there is 

any lateral wheel movements) circumferentially, radially and laterally, though for 

clarity the lateral deflection is not shown in the diagram. The soil will also be deformed 

under these spoke tip movements. These spoke tip deflections will imply forces in 

longitudinal, radial and lateral directions respectively with the soil surface generating 

forces against them as shown in Fig. (5.3). 

5.3. MATHEMATICAL ANALYSIS 

As described in Fig. (5.3), the spoked tyre model is moving at a constant forward speed, 

U, with constant spin velocity, co, and tyre load, W, under operating condition of 

wheelslip, s, and slip angle, (x, on a deformable soil. Suppose the entry contact angle 

(angle between centreline of the tyre and forward position) is, 01, and the rear contact 

angle( angle between the centreline of the tyre and the rear contact position) is, 02- 

Calculations start from the point when the first spoke enters into the soil surface at 

the front of the contact region. The tyre is moving forwards and rotates a small amount, 

the rotation being sufficient to make the particular spoke of interest become the second 

in the contact region. At this point, the next proceeding spoke has just touched the 

contact region. 

Because the tyre movement in the time increment described are completely 

specified, the radial, lateral and longitudinal deflections can be related directly to 

instantaneous tYre forces and soil shear forces in the contact region. Referring to 

Fig. (3.12) in Chapter 3, the contact region is divided into two portions. The first portion 
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is defined as the deformable region and the other portion is defined as the compacted 

region. 

The equations of the force equilibrium relationships through the length of the 

contact region can be described as follows :- 

For the deformable region of the contact area 

According to Fig. (5.3), the point, 0, represents the position of the tyre centre at time 

zero and OA is the first spoke just to touch the contact region at this time. OA has an 

undeflected length, R, will be at an angle, 01, to the vertical. After a small time 

increment, 8t, the spoke tip will be at B1 (case of the rigid wheel with soft soil) or at 

B2 (case of the hard surface). Because the surface is deformable and the spoke has 

radial, lateral and circumferential tip flexibilities, the spoke at point B needs to achieve 

equilibrium between the radial spoke tip force, f, and the component of ground 

reaction force, fg. Iliese equilibrium forces can be written as follows :- 

f, = fg COSO 

where 

(5.1) 

f, = Ki (1-e-K2DR ) (5.2) 

c )Zn fg = (L+K CAH (5.3) b 

where 

K 1, K2 = Tyre stiffness parameters 

DR = Radial spoke deflection 

Pg = Normal ground pressure . 

Cohesive soil modulus 

Frictional soil modulus 
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b= Width of tyre contact patch 

Soil sinkage 

n= Exponent of soil defonnation 

CAH = Projected area of the contact patch 

0= Spoke angle 

f 

Then by substitution into equation (5.1), the equilibrium equation in the radial direction 

is : 

Kc 
+Ko) Z'CAH cosO = K, (1-e-K2DR) (5.4) b 

Note that the spokes are free to deform in the radial, lateral and longitudinal 

directions, so that the spoke will be deforming circumferentially due to the soil shear 

displacement, j, as well as due to soil sinkage, Z Fig. (5.4) indicates the spoke b 

behaviour in the X-Y plane with soil force components, fsx and fs 
y that can be written 

as: 

fsx 
Xf 

(5.5) s 

fsy 4jy 
) 

fv (5.6) 

where 

f, = (c + P,, taný )(1-e -j'K) CAH (5.7) 

and 

qTx T 7T (5.8) 

where 

Longitudinal soil defonnation 
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jy = Lateral soil deformation 

K= Soil deformation modulus 

ý= Soil internal friction angle 

Soil shear displacement 

The spoke tip also has two force components fb and fy in longitudinal and lateral 

directions respectively written as follows : 

fb = Tjx K4 

fy = K5 (1 -K6 DR 
K7 

) ily 

where 

K4, K5, K6, K7 = Tyre stiffness parameters 

T6 = Longitudinal tyre deflection 

ily = Lateral tyre deflection 

(5.9) 

(5.10) 

By substitution, the equilibrium equations in longitudinal and lateral directions become 

Kc 
f, = llx K4 +Ký)Z"CAHsin0+ X 

b 

K5 (1-K6 DR K7 ) lly fs (5.12) 

With a loaded, steady state rolling tyre on a deformable surface, equilibrium 

occurs in between soil and tyre deformations. The soil deformation is plastic while the 

tyre deformation is elastic. However, the lateral deformation is divided into two main 

parts, one part due to spoke deformation and other part due to soil shear displacement 

as shown in Fig. (5.5). These deformations vary under any operating condition through 

the length of the contact region and can be described as : 

jx +"x «2 llxk (5.13) 
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jY + 11Y *: " 'lYk (5.14) 

where ilxk and 11y, are kinematic spoke tip deflections in circumferential and lateral 

directions respectively. 

Once again, Fig. (5.3) shows the geometry of the spokes indicating clearly the first 

spoke tip position after entering into the soil surface. Equilibrium occurs at this point 

for which : 

R CosOl +Z+ T6 SinO = (R -DR ) CosO (5.15) 

Similar calculations for the compacted region are summarised as follows :- 

For the compacted region of the contact area 

The rear angle, 02, calculated as described in Chapter 3 :- 

02 : -- COS-1 COSO, + 
Zmax 

R 

where 

R= Undeflected tyre mdius 

Zmax ý Maximum soil sinkage 

So the equilibrium spoke tip force equadons are: 

Pg = 
[K 

1 (1 _e-K, 
DR ) cosO + 71., K4 sinO] lAc (5.16) 

f, (c+Pgtaný)(1-e-j'K)Ac (5.17) 

ijx- 
ilx K4 (5.18) 

4y K5 (1 -K6 DR K7 ) ily (5.19) 

j= 437X T jyr (5.20) 

ix + Tlx " '2 llxk (5.21) 
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jY + 11Y 11Y k (5.22) 

R CosOl +Zm,,,, -ilx SinO = (R-DR) CosO (5.23) 

where b, R, Kc, KO, ý, c and n are quoted in Chapter 4, Table(4.1). 

These calculations in both the deformable. and compacted regions are then 

repeated for each time increment as the spoke passes through the contact region, with 

the forces being stored at each step. These steps continue until the spoke leaves the 

contact region and the total wheel tyre force system is then computed over all the 

length of the contact area. 

The relationships between the tyre deflections and their corresponding forces, are 

modelled by rolling a tyre on hard ground and are described by a set of parameters 

called "spoke stiffness parameters" which are chosen and compared with experimental 

data obtained by Schwanghart [198 1) for a 7.50 x 18 front tractor tyre rolling on a hard 

surface as shown in Figs. (5.6). 

lbe objective in choosing the spoke stiffness parameters KI, K21 K4, K5, K6 and 

K7 is to match the shape of the relationships between the gross tyre forces and the tyre 

deflection and sideslip angle on hard ground. Parameters K, and K5 govern the 

magnitudes of the maximum values of the radial and lateral spoke forces respectively. 

Other parameters are chosen to control the shape of the spoke tip force relationships 

with various deflections in order to get a good pressure distribution throughout length 

of the contact region. The remaining parameters concern the shear force and the soil 

shear displacement relationships between the spoke tips and the ground. 

The spoke stiffness parameters used are :- 

KI=4.8kN 
. 

K2 = 64 m-1 
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14 kIV Im 

K5 = 15.4 k? Vlm I 

K6 ý-- 100 

K7 ý-- 1.95 (with DR in metres) 

Equations (5.4), (5.7), (5.8) and (5.11 to 5.15) become eight simultaneous 

equations in eight unknowns, j, jy, j, Z, %, 71y, DR and fs. To obtain a solution, a 

numerical analysis must be used and a computer programme is therefore required. 

Finally, the spoke tip deflections and soil deformations are used to calculate tyre 

forces in the lateral, longitudinal and vertical directions via the stiffness parameters 

mentioned above. However, the total vertical force components must be equal to the 

input tyre load. This condition can thus be stated as :- 

i=N i=N 
F, due bending + f; due radial (5.24) 

As a result, the total vertical force is then expressed as : 

i=N i=N K2DR Fz T6 K4 sinO + KI (1-e- COSO (5.25) 

where 

i= Spoke number 

N= Number of spokes in the contact region 

Note that for a rolling tyre on a hard surface the spoke tip may remain stationary 

at the first point of contact with the ground or it may slide to an equilibrium position at 

which the carcass forces and friction forces are equal. In fact, the main difference 

between the spoke behaviour on hard and soft surfaces is that in case of off-road 

surfaces, the spoke tip is never in the kinematic (no sliding) condition. The spoke tips 

must always slide due to the soil shear displacement until an equilibrium position is 
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established. 

With regard to the behaviour of the tyre on a hard surface, Fig. (5.7a) illustrates 

the small element for the tyre under braking conditions which describes the 

longitudinal deformation, 5x, as follows : - 

Suppose that A moves small a distance, x, and B moves distance, X', at the same time, 

8,, where; 

R co 8t (5.26) 

uöt (5.27) 

The difference between these two distances is called "the longitudinal deformation", 

can be expressed as: 

Bx = X, -x 
(OR 

X, (5.28) u 

where 

Tyre forward velocity 

co = Spin velocity of the tyre 

51 = Small time increment 

X, X'= Distance in longitudinal direction 

5x = Longitudinal tyre deflection 

and as described in Chapter 4, the wheelslip, s, is equal to (1- co R ), then U 

5x =sX, 

or 
G-S) x 

s 9x- 
This gives the longitudinal deformation as: 

(5.29) 

(5.30) 

s 8X = (5.31) (1-S) 
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Therefore, the lateral deformation, 5y, can then be calculated as : 

tancc 5y 
1-S )x (5.32) 

Similarly, Fig. (5.7b) indicates the small element for a rolling tyre under tractive 

operating conditions which leads to the longitudinal and lateral deformations as follows 

k= sx (5.33) 

8y =(1 -s ) tanoc x_ (5.34) 

Note also that the longitudinal and lateral deformations described in equations 

(5.13), (5.14), (5.21) and (5.22) in the case of the traction condition, can be now 

expressed as :- 

lix + ix = sx (5.35) 

Ily + jy = tancc (1 -s )x (5.36) 

and in the case of the braking tyre, these become: 

s 
Jx = -( -, , lx +* 

-S) 
x (5.37) 

tana 
-S) 

x (5.38) Ily + jy T -, 

where x is longitudinal displacement. 

5.4. SPOKE TYRE COMPUTER PROGRAMME 

The method of solution is summarised by the flow chart in Fig-(5.8). The flow chart 

shows the programme structure including seven subroutines called; Soft, Hard, Sharp, 

Adjust, Angle, Sinkage and Plot. The main programme is used to specify the running 

conditions and to call all these subroutines. 

This programme is capable of showing graphically, the tyre and soil forces and 

their deformation distributions L, fy, f,, fg, f,, ilx, ily, DR, jx, jy, j and Z. In order to 
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run this programme, it must be initialised with a set of running conditions (entry angle, 

soil data and the tyre data which are shown in Table (4.1) 1 and operating conditions 

(slip angle, wheelslip or wheelskid and tyre load). 

Subroutine Soft calculates the values of spoke tip deflections, soil defonnations, 

soil sinkage, spoke tip and ground forces under the deformable region. Subroutine Hard 

is used to calculate these parameters under the compacted region. By using subroutine 

Sharp, the values of Ijxk and ily, can be determined. 

To calculate the entry angle, 01, and the correct number of spokes , N, in the 

contact region, subroutine Angle is used. Subroutine Sinkage is used in order to iterate 

,, 
in order for the entry angle and hence recalculate maximum soil sinkage, Z,,,,,, 

summation of vertical component forces to equal the tyre load. 

The bisection method inside the Adjust subroutine has been used in the 

programme in order to calculate the equilibrium point involving the balance between 

the soil shear force, f,,, and the elastic shear force required at spoke tip, ft, as shown in 

Fig. (5.9). The soil shear force must be greater than or equal to the spoke tip force 

resultant where : 

fs ; -> 
47X -+-f"YX' (5.39) 

where 

f, = Soil shear force 

L= Spoke force in fore and aft direction 

fy = Spoke force in lateral direction 

Subroutine Plot is used to provide graphical output to the computer terminal with 

hardcopy to illustrate the results of the computer programme. 
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5.5. SPOKE TYRE FORCE CHARACTERISTICS 

The behaviour of the tyre and soil through the length of the contact region are shown in 

Figs. ( 5.10 to 5.12). These diagrams should give an indication of tyre deflection and 

soil deformation. Fig. (5.10) shows the longitudinal distributions of tyre deflection and 

of soil deformation. Lateral deflection distributions are illustrated in Fig. (5.11). The 

variations of the radial tyre deflection and the soil sinkage through the contact region 

are depicted in Fig. (5-12). Fig. (5.13) shows the distributions of spoke tyre forces in 

longitudinal, lateral and vertical directions respectively under the operating condition 

of 100 slip angle and 10% of wheelslip. 

Typical results from the spoke tyre model operating on a sandy loam soil are 

shown in Figs. (5.14) and (5.15). The lateral tyre force as a function Of tyre load and slip 

angle is plotted as a carpet plot in Fig. (5.14). ne longitudinal tyre force behaviour as 

indicated in Fig. (5.15) for a 7.50 x 18 front tractor tyre is plotted with a wide range of 

operating conditions. 

5.6. CONCLUDING REMARKS 

(1) A model for predicted longitudinal and lateral off-road tyre forces which is in 

a form for use in vehicle handling and stability models is presented. 

(2) Results from the off-road tyre model become the same as those obtained by 

the on-road tyre model when the soil parameters are changed to make the soil 

infinitely stiff 

(3) The magnitudes of the forces predicted by multi-spoked tyre model for off- 

road surfaces are generally lower than those predicted by an on-road tyre model as 

seen in Figs. (5.16) and (5.17) for a 6.50-16 tyre with hard ground and soft soil 

respectively. 
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(4) The model is computationally economical and applicable to a wide range of 

operating conditions to give tyre and soil force distributions in detail. 

(5) The multi-spoke method for modelling the tyre shows advantages over other 

methods because the forces obtained can be investigated in greater detail 

throughout the contact region and there is an attempt to include the three 

dimensional aspect of the tyre-soil interface. 



F ig. (5.1) Static muLti-spoke tyre modeL on 
a deformabLe surface. 

Fig. (5.2) The spoke tip behaviour 
which I LLustrate8 the 
equiLibrium position on 
the soft surface. 

is 

1% 



Jg 

Fig. (5.3) Geometry of a spoke tip operating under 
steady-state conditions on a soft solL. 



z 

Y 

z 
Fig. (5.4) The point which has a beLance between 

the solL shear force and the eLes-tic 

U 

resuLtent spoke force in X-Y PLene. 



Fig. (5.5) The LateraL deformations behaviour for a 
tyro moving on a deformabLe surface with 
zero wheeLoLlp condition. 



Predicted by Spoke Tyre ModeL 

*** Measured by Schwenghert, 1981 

z 

CD 
0 
L 
0 

U- 

CD 
L 

--p 0 
L 
0) 

4 

3 

2 

0 

SLIp AngLe ( Degrees ) 

B 

Fig-(5.6) Comparison between the predicted reLationship 
between the LeteraL force and the aLlp angLe 
and Schwanghert's date for a 7.50 x 18 tyre 
moving an hard surface. 

12 



w 

5x x 
A 

--x 

CO 
w 

(b) 

-X' >pe_s, seZ,, K 

B 

8x x 

F 9. (5.7) The tyro behaviour under braking and tractive 
conditions for a roLLIng vyre on hard ground. 



START 

READ 
TYRE & SOIL 

DATA 

GUESS, 01 

4 

CALCULATE, N 

INITIALISE 
fx=o fy=o fz=o 
fg=O fg=O fr=o 

llx =O Ily =O DR=0 
Z =O ix=o iv=o 

I= 

2 

CALCULATE, 0 

3 

CALL SHARP 
llxk , Ilyk- 

CALL SOFT CALL HARD 

CALCULATE, 02 

YES IS IT NO 
DEFO E 

ON REGION 
0 

I 
7ýý 



Fig. (5- 8) The flow chart for the multi-spoke 
tyre model on off-road surfaces. 



7t- 

to 

toll u 

42, 

L 
0 

94- 

L 
Co 
0 

X 
CD 

Z CD 

0 
X 

XD 

c -0 
XD 

0L 
CL 

0 cr 
0 
L 

C» 0 
0 

0L 
43,0 

0L 
X0 
.p0 0 _c E CD 
c0 

0 cg 

r_ 
-0 

0 c: 
ZD 0 

o. 
Lfl 

C, 



LongitudinaL Direotion 

0 

L 
0 

C2 

--0 

E 

c 
0 

P 

C3 

CL 

4) 
_u 0 
CL 

U) 

...... 0.03 .... ...... 
. TyrG Load (5. ý kN) 

-SLIp AngLe 1.00 
: WheeLeLlp ld % 

.............. 0.02. - 

........... ... 0,01 .... ...... 

. 0.. 004 

4).. 002 .... ...... 

-0.18 -0.09 0.00 

Length of -the oonteot region (m) 

Fig. (5.10) The deformation of spoke tip and the solL in 
LongitudinaL direotion on a sandy Loam solL. 



LeveraL Direction 

E 

C 
0 

4) 
0 
E 
C.. 
0 

0 

-J 
0 

(1, 

E 

c 
0 

CL 

CD 
_u 0 
M 

W 

: Tyre Load 5.2-kN 
0. 'SLIp AngLe 10 - 

: 
WheeLeLip - la Z 

I............ 0.04.. -. 

0.02. --. 0.02. 

0 

........ .... 0.. 003. 

-0.18 -0.09 0.00 

LGngth of the contsot region (m) 

Fig. (5-11) Spoke tip dGfLeotIon and solL deformevion 
for a ro LL Ing tyro on sandy Loam so I L. 



Tyre Size (7.50 x 18) 
Tyre Load ( 5.2 M) 

E 

0 
0) 

E 

c 
0 

C3 

CL 

M 
tv 

ix 

(104 .... ...... 

........... .... 0.02. --. 

-0.18 -0.09 0.00 

.: :-.. -0. 

0. -006. 

.- 

-0.18 -0.09 0.00 

Length of the conteot region ( m) 

Fig. (5.12) The rediaL spoke def Loot ton and sol L sinkage 
for a roLLIng tyro on sendy Loam soiL with 
10% wheeLeLlp and 10 degrees of eLlp engLe. 



0ý 

z 

Ju 

CD 
0 
L 
0 

U- 

0 
_u 0 
a- 

U) 

-j co 
4A 
C: 
0 

0 

z 

0 
0 

0 
U- 

0 

0 
0 

U, 

-J 0 
C- 
0 
0 

-J 

N-- 

0 
0 
L. 
0 

U- 
0 

a U, 
-J 
0 
0 

L. 
0 

04 

0.02 .. ........ 

.:............ o. .. .. 

........ .... 

.............. 0. -2 .. ........ 

0,1 

-0.18 -0.09 0.00 

Length of the conteot region (m) 

Fig. (5.13) Spoke foroe distributions sLong Length of the 
oontsot region for a 7.50 x 18 tyre operating 
under oonditions of IOZ wheeLeUp. 10 dog of 
aLip ang Le and 5.2 Mt yre Load on Loam so i L. 



0 
-i CI) 
c 

0000000 
(D Ln C: ) Ln (D Ln 

(%j CIJ K) -Y 

L 

............. Z :ZZ : 7- ZZZ 

CD CD c> a c> KD 
0 
L (\i fe) 't L. n 10 r- 
>, 

--- -- -------- 

i 

CL 

c 
m 

'D 
w 
0 

-j 

Im 
L 
X 

0 

c 
0 

4-0 
0 
c 

%4- 

CD 

L 
0 

L 

L 
m 
44 
CD 

0 

4-0 
0 

/I LJL 

D CL 

C%j 

Lri 

NI ) GOJOA OJAi 18-JOI-8-11 



CD 
2- C: ) 

, 
C: ) 
(-, j 

C) 0 CD C) 
po LfN G 

0 
0'.. - ,*... ..... . .... 

- 

. . kv . ý- .. :z ..... z. zzz . . Z. 
... 

CD . q 

-A C) C: ) CD c) CD a Cl 

CD . 
- 

. (N ... .. rr) -. t Ln 0 .. 1, -- 
0 

. .. . ..... ... .. 

Ln -.! r 

( tp ) aojoA 9jXj -ý, eujpr.: ij6uo7 

CD 

ci. 
-4 
OD 

-i CD 

c 
w 

_0 
CD 
0 

0 
L 

0 

c 
0 

c 

0 

L 
0 

L 
X 
41 

c 

c 
0 

-j 

14- 
0 

+-P 
0 

CL 

4-11 
a) 
Cl. 
L 
m 

L) 

rn 

LA 
6) 
E 



c 

gas CD 0 
mc 

0 

0. CD 

II 
CD -L 

ML 
0 

-C 
- .--1-. 0 

c 

-11 00 fw4 L 
X a) 
4-P C 

-4- 
; 

00 
1 
0* 

,cE 
0 CD 

L 
0 4.3- 

5 Ln *4- 

0 Cl 

Ln co 
. 

V-0 tI-10 
. -0 CD CD 

ca 
LL 
00 

44- 4- 

(D Il- 
L 'o 
x 0ý 

wc 
L CD 
(D CD C. D 1 4m 4.1, -0 
0L 

0 CD 
C 

NO 

81 '331101 lVH3lVl 



(D 
-. j 
a) c 

0 0 0 0 00 0 
- 

:r OD C) 
. .. . . ... . ..... w. ..... 

.... 0 

COD (D 
L 
x 
LL 

0 G) C) CD Cl C) (D Cl 
0 CD CD 0 0 CD 0 
C31 C) CD C) C) (D C) 

L to Ln Zo F- co 5ý 
X 

. . .. . . ... . .. p... 

. . . . . . . . . .. . 

( NI ) 83JOA 9JXi IIBJW181 

C) 

c 
Im 

0 
__j 

CD 
L 
>1 
4-21 

%4- 
0 

c 
0 

c 

co 

L 
0 

4- 

(D 
L 
x 

L 

(D 

0 

4.31 
0 

L 

(D 
u 

iz 
LA 

C) C) 9-1 

C) C) Cl 
Cl Ln Cl Ln 
10 't Pr) - tD 



CHAPTER 6 

COMPARISON BETWEEN RESULTS PREDICTED BY 

VARIOUS MODELS AND MEASURED RESULTS 

Comparison between the predicted results and measured data 

are given. A large number of results are presented to 

investigate thoroughly a wide range of off-road 

tyre operating conditions. 
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6.1. INTRODUCTION 

For a better understanding of off-road tyre behaviour on deformable surfaces sample 

plots have been generated from the various models presented in this thesis, and are 

compared with measured data recorded in the literature (Chapter 2) under a wide range 

of operating conditions. 

The results predicted from the various models for off-road tyre forces can be 

categorised into three main sections. Firstly the simple tyre model, which only deals 

with generating tyre forces in longitudinal and vertical directions for a stationary and 

rolling tyre under steady state conditions. Second is the extended tyre model for com- 

bined lateral and longitudinal forces on a deformable surface. Finally there is the 

multi-spoked tyre model on deformable surfaces initiated in order to present a better 

understanding of off-road vehicle handling behaviour. 

6.2. SIMPLE TYRE MODEL 

The predicted contact area/tyre load relationships for a 7.50 x 16 front tractor tyre with 

three different soil types dry sand, artificial and sandy loam soils shown in Fig. (6.1) are 

significantly in agreement in qualitative terms with the trends of those results obtained 

experimentally by Yong et al [1978a] for a different tyre size on silty soil and by Pret- 

tyman [ 19 81) for a static tyre on hard surface as shown in Figs. (6.2) and (6.3). 

Fig. (6.4) presents a comparison between the theoretical and experimental relation- 

ships between the soil sinkage and the tyre load for a 7.00 x 16 tyre on artificial soil 

rnade by Bekker and Janosi [1960] compared with predicted results shown in Fig. (6.5). 

The soil sinkage increases significantly with the increase in tYre load. It should be noted 

however, that the slope of this relationship decreases with increasing tyre load. The 

difference between the predicted results and measured data may be expected due to the 

differences in soil parameters reported and used for tyre, model input data. 

Variation of rolling resistance with tyre load for a 7.00 x 16 tyre on wet plastic 

soil is shown in Fig. (6.6) as measured by Bekker and Semonin [1975). Ilis can be 



-144- 

compared with predictions by a simple off-road tyre, model as shown in Fig. (6.7). Ilie 

predicted relationship between the rolling resistance and the tyre load is similar to that 

obtained by Bekker and Semonin [19751, although again slight magnitude discrepan- 

cies occur due to different soil parameters. 

6.3. EXTENDED TYRE MODEL 

The results for the extended model for combined lateral and longitudinal tyre force 

become the same as those proposed by Grecenko [1975] as the tyre stiffness parame- 

ters, C' , and C' are increased. Fig. (6.8) illustrates this comparison, with the Xy 

coefficient of lateral force plotted against slip angle at zero wheelslip and 500,750, 

1000,1500 and 20,000 WIM3 rad. tyre stiffness. Fig. (6.9) shows the comparison 

between the coefficient of longitudinal force/wheelslip relationship and the results 

predicted by Grecenko under the same range of operating conditions and zero slip 

angle. 

The measured results of the influence of slip angle on the relationship between 

lateral force and tyre load and the influence of tyre load on the relationship between 

lateral force and slip angle, obtained by Schwanghart [1981] for a 5.50-16 front tractor 

tyre shown in Figs. (6.10) and (6.11) are very close to those predicted by the model for 

the same operating conditions as seen in Fig. (6.12) and (6.13). 

Figs. (6.14 to 6.21) present comparisons between results measured by different 

authors and results predicted by the extended off-road tyre models presented in chapter 

4. The comparisons show the qualitative agreement in the curves. It is interesting to 

note that Fig. (6-21) does not show rolling resistance and therefore, looks significantly 

different from the predicted results shown in Fig. (6.20). In general, the behaviour of the 

tractive force for on and off-road tyre can be summarised as shown in Fig. (6.22). The 

rolling resistance is shown to be significantly influenced by the tractive behaviour. As a 

result, the rolling resistance of the tyre on hard surfaces is primarily caused by the hys- 

teresis in the tyre material due to the deflection of the carcass while rolling. But in case 
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of a rigid wheel moving on a deformable surface, the rolling resistance occurs due to 

the soil shear deformations. 

Fig. (6.23) shows comparison between the computed and measured 

lateral/longitudinal force relationship as obtained by Matejka [1977] for a 6.0 x 16 

driven wheel on field (wheat stubble on soil). These results are in significant agreement 

with the same relationship predicted by the off-road tyre model under varying operat- 

ing conditions of 10,20,30,40 and 50% of wheelslip and 10,20,30 and 40' of slip 

angle as seen in Fig. (6.24). 

A better presentation of the tyre characteristics was achieved by Grecenko [1975], 

presented in Fig. (6.25) compared with the extended tyre model results in Fig. (6.26) for 

the same operating conditions. The results from two models become similar as the tyre 

stiffness in the extended tyre model increases. 

6.4. SPOKED TYRE MODEL 

The load and shear force distributions along the length of the contact region are shown 

in Fig. (6.27) obtained by Krick [1969] under soft soil operating conditions. Similar 

relationships in Fig. (6.28) measured by Burt [1987] are compared with results 

predicted by the off-road tyre model operating on a deformable surface as shown in 

Fig. (6.29). 

By increasing the soil parameter values the soil becomes effectively very stiff 

compared to the tyre, the contact region between the tyre and the surface becomes 

smaller, so the spoked tyre model results should be the same as those predicted by the 

Sharp and EI-Nashar [1986] model on a hard surface. These results are shown in 

Figs. (6.30) and Fig. (6.31) for the relationship between side force and longitudinal slip 

and the relationship between side force and longitudinal force (braking or traction) 

respectively. These results are compared under typical Ciperating conditions with results 

predicted by the multi-spoked tyre model for off-road surfaces in Figs. (6.32) and 

(6.33). However, the comparison shows the quantitative differences that can be 
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expected due to the dependence on the tyre input data. 

Fig. (6.34) and Fig. (6.35) illustrate the relationship between the longitudinal 

force/wheelslip and the lateral force/slip angle at two different soil hardness values, 

4500 and 20,000klVlmn +2 
, compared with predicted results obtained by Sharp and El- 

Nashar [1986]. For an accurate comparison of off-road tyre model results with any 

other model results, Figs. (6.36) and (6.37) show a comparison with the same tyre size 

data and operating conditions (except different soil types). Not surprisingly, the forces 

predicted for hard ground (stiff soil) conditions are generally higher than those 

predicted for soft soil conditions. 

The relationship between tyre load and the contact length predicted by Sharp and 

EI-Nashar [1986] is shown in Fig. (6.38), compared with results from the spoked tyre 

model on hard surface conditions as shown in Fig. (6.39). 

To demonstrate the multi-spoked tyre model, Fig. (6.40) shows the relationship 

between side force and longitudinal force with different slip angles of -1,2,4,6 and 9' 

obtained by Janosi [19811 compared with predicted results in Fig. (6.41) from the 

spoked tyre model under the same operating conditions. This is the classic tyre force 

ellipse curve and shows how readily the tyre model can emulate actual experimental 

results. 

6.5. CONCLUDING REMARKS 

(1) The figures show that the forces generated by various off-road tyre models in 

longitudinal, lateral and vertical directions under a wide range of operating condi- 

tions, follow the same general trends as the measured results obtained by a wide 

range of authors. 

(2) The plots illustrate the capability of off-road tyre models in representing tyre 

behaviour over a very wide range of operating conditions. The results obtained 

from these models show a very good qualitative agreement with published 
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experimental results obtained and collected from a wide range of sources as seen 

in "LIST OF REFERENCES". 

(3) Comparisons of results of off-road tyre models and measured data are recog- 

nised to be often difficult because of the lack of soil and tyre parameters quoted in 

reports of measurements. However, despite these difficulties, qualitative agree- 

ment between the predicted results and measured data is generally good. 

(4) Since the comparisons between the results predicted from various tyre models 

and those measured for a wide range of different operating conditions are in 

agreement qualitatively it is suggested that this validation of models is sufficient 

to justify their usefulness for vehicle handling and stability studies. 
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(6.27) Distributions of normaL pressure and tangentiaL 
stress measured by Krick, 1969. 
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F (6.30) ReLationship between side force and 
LongitudinaL force as predicted by 
Sharp's modeL, 1986. 
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CHAPTER7 

DISCUSSION OF RESULTS 

Further discussion of effect of various parameters 

on the off-road tyre force models is presented 

following the verification in the 

previous chapter. 
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7.1. INTRODUCTION 

This chapter concerns the presentation of results obtained from the various off-road 

tyre models that have been developed to help investigate the handling and stability of 

off-road vehicles under specific operating conditions of wheelslip or wheelskid 

(traction or braking condition), slip angle and tyre load. 

The predicted and measured results for various operating conditions have the 

same trends with slight differences in the magnitudes. This difference is expected as 

the data used in the models do not exactly match those used for the experiments usually 

because of insufficient data being provided in experimental papers or because it is 

presented in a form different from that used in the model. 

General trends of the lateral force vs. slip angle relationship for a 7.50 x 18 front 

tractor tyre, for example are very close to those results obtained by Schwanghart 

[1968], Grecenko [1975], Matejka [1977] and Sharp and EI-Nashar [1986] under 

similar operating conditions of slip angle, wheelslip and tyre loads. 

With regard to Chapter 6, some insight into the general behavioural trends has 

been gained when comparing the results of off-road tyre force models with those 

obtained experimentally by a wide range of researchers. The factors affecting the 

behaviour of off-road tyre forces can be shown to have differing relative importance. 

71ese factors can be categorised into three main types. Firstly, the influence of the tyre 

load, second, the influence of the slip angle and finally the influence of wheelslip. The 

following results all refer to the spoke tyre model. 

7.2. INFLUENCE OF TYRE LOAD 

The radial tyre deflection and the soil sinkage are influenced by tyre load for a 

static tyre as shown in Fig. (7.1). The resulting tyre deflection and the soil sinkage 

noticeably increase with increasing tyre load. The maximum value of the soil sinkage 

and radial deflection occur at the centre of the wheel and decreases symmetrically till it 

reaches the minimum value at ends of the contact length. The effects of the tyre load 
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on the vertical and horizontal force distributions along the length of the contact region 

are shown in Fig. (7.2). The results show that the tyre forces generated from a static tyre 

on a deformable surface are significantly influenced by the tyre load. 

lie relationship between the lateral tyre force and tyre load is shown in Fig. (7.3). 

The curves representing this relationship are dependent on slip angle, the slope 

increasing with an increase in the slip angle. In general, lateral tyre force increases 

with the increasing tyre load with the shape of the relationship changing slightly as slip 

angle is increased from 5 to 30'. 

The, relationship between longitudinal tyre force and tyre load in Fig. (7.4) shows 

that the longitudinal tyre force increases significantly with increasing tyre load at 

constant wheelslip in an approximately linear manner over the range tested which 

represents approximately ± 20% of the nominal tyre rated load. 

7.3. INFLUENCE OF SLIP ANGLE 

The influence of slip angle on lateral tyre force is shown in Fig. (7.5). The relationship 

between the lateral tyre force and slip angle with various wheelslip values indicates that 

the lateral tyre force increases with an increase in slip angle in an approximately 

exponential manner. This result confirms the measured results obtained by 

Schwanghart [1968]. Fig. (7.6) shows the influence of slip angle on longitudinal iyre 

force with different wheelslip ranged between 5% and 30%. Increasing slip angle 

produces decreases longitudinal tyre force. 

Fig. (7.7) shows the influence of the slip angle on the lateral tyre force generated 

with various tyre loads. The tyre load is ranged from 2 up to 12 W and slip angle from 

0 to 45". The general trend of lateral tyre force vs. slip angle at different tyre loads is 

very close to the results measured by Schwanghart [1968]. 

Lateral and longitudinal force coefficient distributions throughout the length of 

the contact region are shown in Fig. (7.8). As the slip angle increases the lateral force 

coefficient increases, while the longitudinal force coefficient decreases. In general, the 
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resultant of lateral and longitudinal force act at some distance behind the contact centre. 

This distance decreased with increasing slip angle in the case of the lateral force 

coefficient and it is this distance together with the force which controls the value of the 

aligning moment. The initial slope of the relationship between the aligning moment and 

slip angle is increased with tyre load increasing as shown in Fig. (7.9). As slip angle is 

then increased further, two things happen : the lateral force increases but the distance of 

its effective line of action relative to the tyre centreline decreases. Tbus, the aligning 

moment reaches a maximum value and then drops to lower values. The way in which 

this trend is affected by tyre load is shown in detail in Fig. (7.9). Fig. (7.10) illustrates 

the relationships between the lateral tyre force and the aligning moment with different 

tyre load. The initial slope of this relationship is decreased with an increasing tyre load. 

on other hand, in the case of the longitudinal force coefficient, both the force 

itself and the distance of the effective line of action of the resultant longitudinal force 

behaind the tyre centreline continue to decrease with increasing slip angle as more of 

the soil shear forces are used up in generating lateral force. 

7.4. INFLUENCE OF WIIEELSLIP 

Wheelslip significantly influences lateral tyre force as shown in Fig. (7.11). For a 

specific slip angle, the lateral tyre force decreases as wheelslip increases as more of the 

soil forces are used to generate longitudinal force. the rate of increasing decreased with 

increase of the slip angle. Fig. (7.12) illustrates the relationship between the 

longitudinal tyre force and wheelslip at different slip angles. The slip angle 

significantly affects the shape of the important tractive force vs. wheelslip curve, and in 

marginal traction conditions it is clear that trying to manoeuvre a vehicle and thereby 

generating slip angles at the tyres could cause the vehicle to stall through insufficient 

traction force being available. 

In Fig. (7.13) the longitudinal tyre force is plotted against wheelslip with various 

tyre loads. Ilie slope of the relation between longitudinal tyre force and wheelslip 
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shows a significant increase as tyre load increases. The behaviour of lateral and 

longitudinal force coefficient distributions through the length of the contact region are 

shown in Fig. (7.14). At low values of wheelslip, most of the longitudinal force is 

generated at the rear of the contact area. However, as the wheelslip increases, more of 

the contact area is used to generate force and the shape of the curve changes. 

The overall behaviour of the tyre as summarised in Fig. (7.15), gives a complete 

assessment of the influence of the main factors of the operating conditions. The forces 

available under any general conditions of slip angle, wheel slip or skid can be 

interpolated from these curves. 

These relationships between lateral force, braking force, tractive force, wheelslip 

and slip angle, illustrated in the friction ellipse graph shown in Fig. (7.15), are for a 7.50 

x 18 front tractor tyre in sandy loam soil with a tyre load of 5.2 kN. The longitudinal 

force (braking or tractive) significantly decreases with increasing lateral force as shown 

by lines of constant slip angle. On the other hand, there is a relatively sharp fall in 

lateral force with increasing tractive force at constant wheelslip, with a slow rising of 

the lateral force with braking force at constant wheelskid. 

As a result, the relationships between the lateral and longitudinal forces are 

asymmetric. Of course, the distance that the tyre travels when subject to a tractive 

operating condition will be less than that in the free rolling case Whereas when a 

braking operating condition is applied, the distance will be greater than that in free 

rolling condition. However, the braking force gives a higher obtainable lateral force 

than when the tyre is producing a tractive force. The presence of the tractive force 

means that a higher slip angle is required to generate the same lateral force as in 

braking conditions. 
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7.5. CONCLUDING REMARKS 

(1) The results from the tYre model presented in this chapter provide an 

understanding of the detailed behaviour at the soil-tyre interface of an off-road 

tyre operating on a deformable surface. 

(2) I'lie detailed distributions of the forces within the contact region have been Zý 
shown and their relationships with the tyre's operating conditions have been 

presented. 

(3) Finally, the overall behaviour of the tyre as surnmarised in the fliction ellipse 

graph has been given. 
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CHAPTER8 

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

In this chapter the overall conclusions arising 

from this research are presented. A number 

of recommendations for future work 

are also outlined. 
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8.1. CONCLUSIONS 

The proposed spoke tyre model offers an improved qualitative description of behaviour 

in the tyre/soil contact region by incorporating both longitudinal and lateral tyre 

stiffness and by recognising that the soil forces necessary to sustain tyre deformations 

result, in general, in soil displacements throughout the contact region. 

The resulting spoke model requires slightly more computation than previous 

models, but may conveniently be incorporated in off-road vehicle handling models to 

study combined steering and braking or traction manoeuvres. Although the model gives 

good qualitative agreement with previous measured data, further verification requires a 

more detailed set of measurements of tyre and soil deformations under a wide range of 

operation conditions. 

It is believed that comparisons of the results obtained from the off-road tyre 

models with those results obtained from a wide range of work recorded in the literature 

presented, demonstrates the usefulness of an analysis using soil and tyre parameters. 

This is emphasised by the. freedom to run the model under totally variable operating 

conditions and model parameters. The general conclusions to be made are as follows- 

1) A review of published work has established that there is a need for more study 

of lateral off-road tyre behaviour. 

2) Various models for off-road tyres are proposed. One model is expressed in a 

simple form in terms of unspecified values for the operating conditions. The constraints 

are determined by solving a set of non-linear equations by using the simple 

optimization procedure. 

3) A simple tyre model for off-road surface predicts forces in the vertical and 

longitudinal directions for a static and rolling tyre in steady state conditions. 

4) 717he results from a simple tyre model are significantly in agreement in 

qualitative terms with the trends of the measured data obtained by a wide range of 

researchers. Ile quantitative agreement between the predicted and measured results has 

been also included and shown to be reasonable. 
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5) An extended model for combined lateral and longitudinal off-mad tyre 

behaviour has been presented. It is based on the idea that in the tyre/ground contact 

region the forces due to soil shear must equal those due to tyre deflection at any point. 

6) Predicted force relationships with slip angle and wheelslip using the extended 

model agree qualitatively with those obtained from measured data by a wide range of 

researchers. 

7) The most important finding for the scope of the extended tyre model is that the 

model becomes the same as that proposed by Grecenko [19751 as the tyre stiffness is 

increased and it becomes the same as that proposed by Dugoff et al [19701 at 

U. M. T. R. I. as the soil strength increases. Additionally, the model is in a form which is 

suitable for inclusion in vehicle models to predict handling and steering behaviour. 

8) The extended tyre model offers an improved qualitative description of 

behaviour in the tyre/soil contact region by incorporating both longitudinal and lateral 

tyre stiffness and by recognising that the soil forces necessary to obtain tyre 

deformations result, in general, in soil displacements throughout the contact region. 

9) 'I'he resulting extended model requires slightly more computation than models 

previously proposed in the literature, but may conveniently be incorporated in off-road 

steering and braking or tractive modelling manoeuvres. 

10) Although the extended model gives good qualitative agreement with 

previously measured data, further verification requires a more detailed set of 

measurements of tyre and soil deformations under combined longitudinal and lateral 

force conditions. A further research project at the University of Leeds is in progress to 

obtain such data. 

11) The extended model represents a significant advance over previous models in 

that it is the first time that tyre/soil interaction has incorporated both the tyre 

flexibilities and soil deformation characteristics. At the extreme conditions of a very 

stiff tyre or very stiff soil, however, it reduces to models previously derived for off- 

road and on-road conditions respectively. 
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12) The multi-spoked tyre model on deformable soils is well suited to calculating 

the tyre forces in vehicle simulations because of its generality in that it can be used for 

on and off-road conditions, its reliance on readily available computing devices, and its 

mode of operation involving the specification of the motion and deduction of the 

forces. 

13) The spoke tyre simulation represents a better understanding of the tyre 

behaviour in rapid manoeuvring and steering on off-road surface conditions. The 

method for modelling the tyre shows advantages over the extended tyre model because 

the forces obtained can be investigated in greater detail throughout the length of the 

contact region and the aligning moment as a function of the slip angle and tyre load is 

developed. 

14) The predicted results show a significant qualitative agreement with measured 

data which have been collected from many sources and relate to a wide range of 

operating conditions. Quantitative agreement between the results and measured data is 

also shown although it is recognised that this comparigon is often difficult because of 

the lack of soil and tyre data quoted in reports of measurements. 

15) This application in this thesis of spoke tyre model, which was originally 

derived for road vehicle tyres, is novel in that it is the first attempt to model a flexible 

and deformable surface under the spoke tips. As the soil becomes infinitely stiff, the 

model reduces to that already proposed for a road tyre. 

16) Each of the models is implemented in a computer programme suitable for 

inclusion in vehicle handling models, i. e. given the relevant data and operating 

conditions, the model produces the predicted tyre forces as outputs. 
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8.2. FUTURE RECOMMENDATIONS 

From the work detailed and the conclusions drawn in this thesis it is apparent that 

several avenues for future work exist and these should be explored. In order to 

overcome the limitations described above, the recommendations for future research on 

off-road tyre models are summarised as follows: - 

1) A detailed experimental study of the forces generated by off-road tyres model 

carefully controlled conditions eg. in a soil tank. The soil and tyre data should be 

measured and then the tyre forces measured over the entire range of operating 

conditions. This would provide a detailed and reliable data set against which to 

compare the model predictions. 

2) Further extensions of these measurements would include various soil types, 

inflation pressures, tread pattern etc. In fact, such a programme of work is now in 

Progress at the University of Leeds. 

3) Development of off-road tyre models to include the real contact width which is 

expected to affect the tyre deflections and tyre forces. 
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