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Abstract

This thesis is divided into four parts, which reflect the various components of the re-
search covered. The introductory section covers the essential, basic quantum chem-
istry necessary for any fruitful study in the subject; a review of necessary tools
is given which ranges in topic from the presentation of Schrodinger’s equation for
many-body theory to density functional theory versus perturbation theory. After a
clear exposition of these topics, their practical implementation to characterise the
Diels-Alder reaction of 2,4-hexadiene with sulfur dioxide is described. This theoreti-
cal study is rooted in the experiments on the same reaction; additionally, a previous
— albeit, more elementary — theoretical study was also completed by another group.
The work herein is distinct in two ways: first, all possible isomers of the diene were
investigated; secondly, the reactions were studied with greater accuracy and results
were compared using different methods. Additionally, the molecular orbitals of the
reaction were localised using standard techniques in the literature. The third section
of the thesis is devoted to clearly covering a series of numerical methods which can be
used to solve common problems encountered in quantum chemistry. A discussion of
the strengths and weaknesses of each method is also given. Although, it is true that
many of these methods are implemented in stable quantum chemistry packages, these
methods were primarily discussed in light of their potential application for solving
the, yet unresolved, issue of constructing highly localised non-orthogonal molecular
orbitals. To date, localised molecular orbitals are constructed as linear combinations
of atomic orbitals with the restriction that the molecular orbitals form an orthonor-
mal set; while mathematically convenient, the constraint that the set be orthogonal
is unrealistic and its removal should allow for constructing non-orthogonal LMOs.
Presented is an original solution to Boys’ functional for optimising the construction
of non-orthogonal molecular orbitals.



Every attempt to employ mathematical methods in the study of chem-
ical questions must be considered profoundly irrational and contrary to
the spirit of chemistry.... if mathematical analysis should ever hold a
prominent place in chemistry — an aberration which is happily almost
impossible — it would occasion a rapid and widespread degeneration of
that science. — Auguste Comte
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Chapter 1

Introduction

From antiquity, there has been an interest in understanding the fundamental laws
that govern the universe; science, necessarily, developed to rigorously attempt to
answer these questions. Towards the end of the nineteenth century many zealous
physicists believed that nearly all the fundamental questions of the universe had
been answered and it was only a matter of time before we had a theory to explain
everything. However, a series of experiments began to show that our universe and
its governing laws are more complicated than they appear at first glance. Many of
their results began to blur the lines between chemistry and physics; in particular,
Rutherford’s experiment and the discovery of wave-particle duality truly changed
our understanding of what matter is. Chemistry, on the other hand, with its own
rich history tended to avoid the pursuit of mathematical formulae, which often leads
physicists to reductionism. Classical chemistry concerned itself with mixing and
creating new substances, which is at the heart of modern industrial chemistry with a
significantly improved grounding. Perhaps the biggest problem, and what ultimately
brought these seemingly separate fields together, was rigorously predicting chemical
reactions through the chemical bond; equivalently, chemists began to realise that
structure and reactivity were highly correlated. However, chemists had not yet
understood true structure or why molecules united, or what that really meant until
the concept of a chemical bond was born. It is the goal of this present work to
attempt to clearly elaborate the concept of a chemical bond, and show that this can
be done in a very precise mathematical framework. In doing this we will rigorously
connect the idea of bonding with molecular orbitals and also illustrate how electronic
structure can explain many chemical phenomenon.

In classic physics, we have a few axioms, Newton’s laws, which explain the relation-
ship between mass and energy
E=T+V
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To view chemistry through the eyes of physics, we must apply a similar equation.
Radically, though, matter does not behave in a way which is predicted according
to Newton’s laws at the micro scale, which is the setting we must take when ap-
proaching the chemical bond. In 1926, Erwin Schrodinger showed that if one fixes
the dimension of time, a one-dimensional quantum particle behaves according to:

EYp=——— +V(2) (1.2)

where 1 is the solution to the equation and is a function of position, x [34, Chapter 2].
n2 924

There is actually considerable similarity between these equations: %% coincides

with % and they both have mass dependency. The next step in any physics problem
is to consider the system and its setting for formulating solutions. Heuristically, one
can view the wave function, for a simple atom, H, system as the solution path or
place that its electron occupies; whether or not the wave function has any true
physical interpretation is outside the scope of this thesis and I leave such answers to
philosophers. Moving to a two-electron system, helium, we introduce an additional
variable:

(Lwemn-z(Le D) e Llopm—ponm 0

T1 T2 1,2

where Z is the atomic number of the atom involved. Fortunately, this equation can-
not be solved in closed form and it is the last piece in brackets that gives birth to
quantum chemistry — a blend of physics, chemistry, and most importantly, applied
mathematics. The part in brackets is known as the electronic Hamiltonian, it is
the operator we consider when searching for suitable wave-functions; when applied
tw molecules it is only an approximate Hamiltonian in that it ignores contributions
of chemical bond vibration and rotation (known as the Born-Oppenheimer approx-
imation), as well as relativity and quantum electrodynamics [34, Chapter 2]. We
shall refer to the electronic Hamiltonian simply as the Hamiltonian in this thesis.
In some way, quantum chemistry is nothing more than solutions to a generalised
Schrodinger equation, yet there are deep assumptions that we make in developing
these solutions that must be grounded solidly and there are subtle tricks we employ
to implement these ideas in a practical manner.



1.1 Formalism of Quantum Chemistry

As stated previously, one approach to studying the electronic structure of systems
is to simplify their Hamiltonians and then calculate the energy of such a system. If
the Hamiltonian is treated as a sum of simple Hamiltonians, a simple approximation
comes out: ]

H:hl(r1)+h2(7“2)+r— ghl(T1)+h2(T2) (14)

1,2

This is the independent particle model and actually a toy example of the variational
method, which was used extensively in our research [34, Chapter 7|. The proof of
the variational method is really quite straightforward and worth investigating for its
insight [39, Chapter 1.3

/f*de:1—>/f*Hfd72E0 (1.5)
We can assume that there exist solutions for the Schrodinger equation:

Hi = Eq; (1.6)

Furthermore, the space is complete so any function can be expressed as a linear
combination of its basis functions:

f= Zci%’ (1.7)
/f*Hf dr =) |ci|2/w;H¢i dr = |elPE = By Y el (1.8)
/f*f dr = / (Z c,-z/g—) (Z cjwj) dr = Z |ci|?0;; =1 (1.9)

(2
d;,; is merely a result of choosing the basis set in such a way that the components
are orthonormal, but this immediately forces Y, |¢;|* = 1 so that what we have
proven the result. The result of this proof is independent of the choice of the trial
wave-function used; this means, practically, that any wave-function will do, and
our intuition and experience should aide us in our constructions of such functions.
Quantum chemical methods that employ the variational method essentially seek to
find a wave-function that gets the energy as low as possible; after all, the energy is
bounded below by the exact wave-function’s energy. The other major tool in quan-
tum chemistry is perturbation theory. Using perturbation theory, one attempts to
find a Hamiltonian which is close to the Hamiltonian of interest. Rather than opti-
mizing trial wave-functions through a known Hamiltonian, we choose Hamiltonians
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so we can find exact eigenfunctions and their eigenvalues (energy). The premise of
perturbation theory is that any Hamiltonian, H can be written in parts:

H=H"+\P (1.10)

where AP is the perturbation term and HY is some expression we can represent
analytically and quickly solve. If the perturbation is small then the equations will
look like [27, Chapter 9]:

HO); + AP, = Ejp; - A — 0 (1.11)

(H*+ AP — E)) ;=0 (1.12)

In general however, one may consider an analytical wave-function to consist of an
infinite series of parts, or ‘perturbations’:

v =)+ Ny (1.13)
j=1

B, =E°+ Z)‘jEi(j) (1.14)
j=1

Where Hi); = (H° + \P) ()\%50) e+ a2p® 4 ) = (BO 4+ AEW 4+ ... ) gy,
we see that a simple, albeit infinite, set of equations is formed when we multiply
through and collect term of similar powers of lambda:

(H = E}) vy =0
(1~ ED) oV + (P BY)) 0! =0 (1.15)

(H° — E?) 4 + (p — E.(1)> W — BP0 =

Solved in succession, one can get a closer solution each time; each term in the
infinite series is another order of perturbation. For example, the first iteration is
the 0-th perturbation, the third term is 2nd order perturbation. An example of a
perturbation approximation would be, equation, (|1.4]).



Chapter 2

The Hartree-Fock Method and
other techniques

As stated previously, the molecular wave-function is constructed as linear combi-
nations of the basis functions; naturally, one asks what the basis functions are.
One popular method is to express the simplest molecular wave-function as a Slater
determinant[24] p. 58]:

1 x1(I1) Xn(fﬁl)
w(arl,...,a:n):ﬁ Xl(sxn) Xn(sxn) (2.1)
Y(x1,72) = X1(21)X2(72) (2.2)
blar,2) = % (e (@1)xa(22) — 31 (@2)x2(21)) (2.3)

Equation is the Hartree product for a two particle system, while is a
generalisation of which also factors in a normalization condition, \/Lﬁ, and
has the property that an exchange of any pairs of rows or columns changes the
sign of the equation and satisfies the Pauli principle. Notice that is really
just but considering a system in which the particles are indistinguishable (i.e.
W(xy, x9) = —1(x9, 1) ), and therefore takes an antisymmetric combination of both
possibilities.

Given that one can express a molecular orbital as a linear combination of basis
functions and also that such a trial function will satisfy the certain bounds (1.5,
there is still the pressing issue of optimizing the functions, . If the basis functions are
chosen to be atomic-like orbitals then our intuition of molecular chemistry will fit
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appropriately. The atomic orbitals are themselves functions of spatial orientation,
so a method that can accurately describe a set of molecular orbital must both treat
the molecular orbitals as functions of all atomic orbitals and each atomic orbital
as a function of position [39, p. 181]. In the Hartree-Fock method, the optimal
orbitals are calculated through a self-consistent field procedure. The Hamiltonian
for m-electrons is [34], p. 127]:

m

YN IS D W 24

=1 j<i Tij

which is applied in the generalised Schrodinger equation:

H(ry,..oorm) = EY(ry, ..., rm) (2.5)

The so-called Hartree-Fock (HF) method becomes self-consistent through optimising
the energy of a Slater determinant. Looking at only the i*" electron in an m-electron
system, the Fock operator is [34, p. 133]:

R =20 = 23 [20,) - K ) 20

Clearly, the operator applied to the full system of electrons takes on a general form:

F(i)x (i) = €(i)x(4) (2.7)
J is the Columb operator Jb = [ |xs(2)|?r13 ds and K is the exchange operator,
K(1 = [/ X (2)r5 Xal ) dr] xp [39 p. 114]. The key observation we need to

take away from the definitions of these operators, J and K, is that they make each
one-electron function dependent on the entire system and therefore the system of
equations are highly non-linear because the Fock operator in turn is composed of the
orbitals. The method presented here is known as the closed-shell HF method and
is designed for molecular (and atomic) orbitals which have no unpaired electrons.
There are two other methods used in the case of open shells, the Restricted open-
sheel Hartree-Fock (ROHF) and the Unrestricted Hartree-Fock (UHF) methods. In
any of the cases, the method operates iteratively until the set of orbitals, {x;} , does
not change — becomes self consistent. As a result of becoming convergent, the Slater
determinant (energy) is minimised.

Without ever explicitly saying what the atomic orbitals were (other than they have
a spatial component), we have defined them as the basis for constructing molecular
orbitals, and see that they can be optimized through transformations via the HF

6



method. In fact, any choice of ‘atomic orbitals’ is allowed but commonly we use the
Gaussian orbitals [24, p. 15]:

g =" Y, (0,) : fixed a € R (28)

where n is the principal quantum number, 7 is the position operator, and Y}, (0, ¢)
stands for the spherical harmonic function. Other orbitals that have been used in-
clude the Slater orbitals which look like hydrogen orbitals; however they are usually
only useful for linear molecules. The atomic orbitals can be chosen as linear combi-
nations of the Gaussian orbitals which, in turn, approximate Slater orbitals [34], p.

165]:
K

Xp = Z Cu,p9p (29)
p

The convention being that the number is used in naming the basis set STO-KG.
However, more commonly we use the k-k'’k”G Split-Valence basis sets, where k
designates the number of Gaussian-like orbitals used to construct the inner shell for
the given atom centre, while the k’k” numbers describe the valence electrons of an
atom. For example, the valence electrons can be represented as a linear combination
of Slater-like functions, with different choice of zeta, ¢ [24, p.158]:

valence = Ae” 71y, (6, ¢) + Be r" 7Y, (0, ¢) (2.10)

A common basis choice is 6-31G, which uses six Gaussians to represent the inner-
shell, three Gaussians in one set of the valence and one Gaussian for the other set.
Given any basis function, one can add additional diffuse (d) or polarization (p)
functions; using the basis set we just discussed, this addition would be represented
as 6-31G(d,p). Our research employed the set 6-311G(d,p) most commonly (valence
of three sets of size three, one and one). In practice it is convenient to first perform
a crude calculation using small basis sets with simple methods like Hartree-Fock,
then transferring the optimised results to a higher level of theory for more accurate
treatment.

The Hartree-Fock method is only a first approximation although the rationale be-
hind its use is critical for having a good understanding of what quantum chemical
calculations should do. Previously we studied the idea of perturbation theory in a
very abstract and general setting; however, perturbation theory has a very fruitful
setting with Mgller-Plesset (MP) perturbation theory. MP theory was developed in
1934 by Mgller and Plesset [29] however it was not applied to chemical models until
1975 by Barlett [5] and Pople in 1976 [33]. The orders (refer to equations (1.15)) of
the MP method are written MPn, and the Oth is defined as follows[29]:

E(MPO) = i € (2.11)
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E(MPO0) + E(MP1) is merely the Hartree-Fock energy, the best result using only
a Hartree-Fock calculation. However, we can begin to get perturbation corrections
for order two and higher. The form of the second order correction is[29]:

occ vir

E(MP2) Z Z [(Pids|Pats) — (Dis|Dv0a)] (2.12)

€ +€ —€,— 6

1<j a<b

(6:0;|0ads) = / 6:(1)65(2)(r12) "o (1)0(2)drydr (2.13)

where the integral is known as the two electron integral and is useful in other ap-
plications, as well. While there are higher order approximations (MP3,MP4, ), our
research only conducted MP2 calculations and it is worth noting that the values of
the energies converge in a zigzag pattern towards the actual solution ad infinitum
[24, p. 131]. One key distinguishing feature of MPn calculations (and perturbation
in general) is that no new wave-functions are constructed; rather, electron correla-
tions are corrected for more terms through the perturbation expansion. This is why
the calculated energy is not an upper bound to the exact Schrodinger equation’s
energy; however, as we shall soon see there is another method that is a widely-used
variation of DFT (Density Functional Theory) that has some variational elements.
The Becke, three-parameter, Lee-Yang-Parr (B3LYP) method is a hybrid model
which is composed of multiple equations[38]:

EB3YE — (1 — qo)EHY 4 0, AEP® + 0 . EYF + (1 — a)EY"N (2.14)

where ag = .2, a. = .81, and a, = .72. For a complete description of the functions
implicit to Eff’LYP reference the article in bibliography [38][24, Chapter 6].

2.1 Basis Set Superposition Errors

No discussion of bases would be complete without exposing their limits. The number
one issue with any choice of basis is that it is finite and therefore incomplete. The
obvious solution is to simply add more basis functions to a calculation, however this
is not practical because computational effort is proportional to the fourth power
(or worse) of the basis set size; therefore, the number of functions in a basis is
typically several hundred, occasionally to a few thousand [24, pp. 172-173]. One
obvious consequence of finite basis sets is the need to report the energies (of parts of
reactions) using the same approximate basis; otherwise, comparisons are nonsensical.
Further, when molecules are brought in close proximity to one another, the van der
Waals interaction becomes more evident and basis functions between neighbours



become highly overlapped; this is to say that, near molecules begin to behave like
one entity rather than two. The Counterpoise (CP) correction is a good approach
towards analysis of basis set superposition error (BSSE).

In this next section we will discuss geometry optimisation in both a heuristic and
exact manner, but for now let us simply assume that we can compute the geometry
associated with a molecule. It should be obvious that the geometry of a part of a
molecule isolated is different than the geometry of the whole because of intramolec-
ular interactions. The CP method attempts to approximate BSSE by looking at the
differences of energy between the parts and the whole, while considering associated
geometries and bases [24, pp. 172-173]:

A-Ecomplezation = E(AB)Zb - E<A)a - E(B>b (215)

Where the AB* complex has basis set ab, molecule A has basis set a, and molecule
B has basis set b Now to consider the basis overlap contributions, we treat each
part as it were in the whole with all the bases but without the other parts’ nuclei —
known as ghost atoms — then subtract individual contributions to attempt to deduce
redundancy:

AEcp = (E(A)g + E(B)y) — (E(A), + E(B)) (2.16)

In the first parenthesis, we have each part’s geometry treated as it appears in the
whole with both of the bases contributing in each case, while in the second paren-
thesis, we have each part as its geometry appears in the whole but with only its own
basis determining the energy. The reader should note that in the case of F(A)Z,
for example, that the geometry is fixed and energy is calculated with a basis that
would otherwise render F(A), if the HF method was applied without a totally fixed
geometry. Finally, AE  rected = AEcomplezation — AEcp and we note that in the
more general case of more parts, one would take many sums and differences. The
error is always present and the CP technique merely approximates a correction, and
notably does not give an analytical lower or upper bound to these errors. Like most
quantum chemists, we ignore intramolecular (internuclear) BSSE, error due to basis
functions on atoms within the same reactant; although, this error exists as well,
there is not a consistent definition [24, pp. 172-173].

2.2 Geometry Optimisation

Having seen how the HF method operates, we wish to investigate how this is practical
to the experimentalist who wishes to carry out ordinary chemistry. Chemists are
often interested in the geometry of a molecule, because they can use this information
to understand things such as steric hindrance, effects from certain functional groups,

9



and so on. Geometry is essential to modern chemistry because without it, chemical
bonding delves into a mystery. Recall, that the wave-function, itself, is a function
of the position of atoms and electrons, so there is a direct connection between the
geometry of a chemical and its solution to Schrodinger’s equation, implicit to the
electronic structure. Solving the Fock equation is equivalent to finding a wave-
function which minimizes the ground state energy (E) of a molecule.

Before going into more complicated problems of arbitrary chemicals, we should
consider simple one and two dimensional problems to geometry. A pair of classic
examples — which are still being investigated in recent times — are the potential
energy curve of the hydrogen molecule cluster [40] and the hydrogen molecule. In
the former the molecules positions are treated as variables (with fixed intramolecular
nuclear coordinates) much like the atoms are treated variable in the latter. In
the latter, one can imagine the hydrogen atoms as points and the only geometry
associated between them is a line (the chemical bond) which can be elongated or
shortened; geometry optimisation is really this simple and this hard. If the atoms are
brought too near to each other, the energy becomes high and the atoms are pushed
away, the opposite is true for the atoms going too far from each other. It should be
noted that while the optimised geometries of molecules are static, molecules such
as water obviously do vibrate but there does exist a most relaxed geometry around
which it oscillates like a spring. Water is a bit different, in that it is the simplest
non-trivial molecule whose optimisation can be accelerated by choice of coordinates.
The wave-function can be formulated equivalently as ) = ¥ (xo, X, , XH,) Or ¥ =
U(rom, 0m,0), where x; = [x;, yi, 2;] and rop is the distance from a hydrogen atom to
oxygen and 0,0 is the angle of the bent water structure. When actually carrying out
the calculation, one can impose symmetry so that the distance from one hydrogen to
oxygen is the same distance from the other hydrogen to oxygen, by using the same
variable, roy, when describing this function — this could not be done in ordinary
Cartesian space. Effectively, we have reduced a problem of nine variables in three
dimensional space to a problem of two variables.

Having spent a great deal discussing methods, basis sets, and a simple heuristic
example with water, it is appropriate now to investigate potential energy surfaces
in a precise sort of language. A first exposure to reaction-energy graphs is usu-
ally presented in very plain language: reactants, intermediates, all transition states,
and products are ‘points’ on the independent axes and their associated energy on
a dependent axis. However, in reality this is a very simple and crude picture of
a chemical reaction. A chemical reaction in the mathematical sense is merely a
minimum energy curve following the potential energy surface with the atomic co-
ordinates as the many dimensions of the function. Except for the most simple of
chemical systems, a full potential energy curve cannot be constructed as the number
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of dimensions (internal coordinates) is 3N-6 for a non-linear molecule of N-atoms.
It is not surprising that the stable molecules are actually the stationary points of
a graph of the reaction path. Stationary points with positive second derivatives
(along the direction of the reaction path) correspond to observable chemical struc-
tures (intermediates, reactants, and products) because the coordinates represent a
local energy minimum so that such molecules are stable; additionally, intermedi-
ate states are characterized with (or rather defined by) having higher energy than
reactants and products. Transition states (TS), on the other hand, correspond to
critical points along the reaction pathway with negative second derivative informa-
tion; these structures are highly unstable and exist very briefly. Additionally, the
van der Waals (VDW) structures are considered to be a local minimum along the
reaction path between non-bonded chemicals which are physically attracted to one
another. While not every reaction path has a VDW(s) structure that is easily dis-
tinguishable from the ‘reactants’ point, such VDW points always exist; this is out
of necessity that no two chemical molecules can ever truly be infinitely distant from
one another in any given reaction. The true ‘reactant points’ of chemicals in a reac-
tion are defined as the sum of the electronic energy of each participating chemical
molecule isolated from interaction with any other reactants. Mathematically, the
positive second derivatives are merely positive eigenvalues of the hessian describing
the coordinates; likewise, the TS point is at a saddle point with a single negative
cigenvalue [24, Chater 12].

2.3 Transition State Confirmation

In searching for transition states, one typically can give a good guess of what the
TS should look like. There are several clever methods that can be used that try
to find the TS by the user providing the reactants and products as input data and
the TS being interpolated [31][27, p. 616], one may also provide a guess for the TS
additionally. From the experience of this research project, it is the opinion of the
author that these methods are not very profitable except for very simple toy models.
The best method for finding transition states, in the author’s opinion, is to guess
what the geometry of the TS looks like while fixing the distance between the atoms
involved directly in the chemical reaction and optimising the geometry of the other
atoms using the Hartree-Fock method. In practice the fixed bond length between
the atoms directly involved in the chemical reaction has to be adjusted multiple
times before finding a suitable distance; typically, the fixed bond length is anywhere
between 1 and 3 Angstroms. After this initial optimisation, a full unconstrained
(no fixed length) optimisation is performed using high level techniques such as den-
sity functional or perturbation methods. Finally, vibrational frequency analysis is
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necessary to confirm that the reactants are in fact interacting in a manner to form
(and/or break) a chemical bond. If a transition state is not found, then the guessed
geometry’s fixed lengths are adjusted and other bonds re-optimised until a suit-
able structure is identified. The molecular vibrations that are present in molecules
can be described very accurately by the harmonic oscillator [24, Chapter 12]; for a
one-dimensional harmonic oscillator the solution for the Schrodinger equation is:

1
emb:<7]+§> hv:ne0,1,... (2.17)
1 K
= — /= 2.18

7 is the quantum number (corresponding to a state), v is the vibrational frequency,
i is the reduced mass, and k is the force constant. From statistical mechanics we
have the vibrational partition function given by:

every state
€
= exp | — 2.19
= > o) 21)

=1

It follows easily, after plugging €,;, into ¢, that for one mole:
hv
exXp <_ 2ka>
1 —exp (—]z—“T)

In the case of polyatomic molecules (of N atoms), one can think of many beads and
springs or many harmonic oscillators; however, in this case, becomes a 3N-by-3N
hessian matrix of coordinates [24, Chapter 12]. As mentioned before, we can diag-
onalise the hessian, these transformed coordinates are referred to as the vibrational
normal coordinates. Here, if one eigenvalue is negative then the corresponding eigen-
vector vibrates along the direction of bond formation and the frequency is imaginary,
observe v. Finally, g, can be used to calculate the vibrational correction to the
electronic energy.

Quib = (220)

2.4 Intrinsic Reaction Coordinates

After identifying all of the stationary points along the reaction pathway, one would
like to know the reaction pathway itself; this is after all only a slice along the po-
tential energy curve. The Intrinsic Reaction Coordinates are merely the points that
connect the transition state to the other stationary points via method of steepest

12



descent on a mass-weighted coordinate path. This path is a differential equation
[24, p. 344):
dx g
—_— = —— =)
ds 9]

x is defined as the mass-weighted coordinates, s is path length, v is the negative
normalised gradient, g. Effectively, there are a number of numerical methods that
can solve this equation; however, the default algorithm implemented by Gaussian 09
is the ‘Hessian-based Predictor-Corrector integrator’ method [21][22]. The HBPC
method is a second-order iterative method which traces the IRC path by considering
local information along each segment of the reaction path.

(2.21)
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Chapter 3

Theoretical Study of a Pericyclic
Reaction

In 1928, Otto Paul Hermann Diels and Kurt Alder reported the first known chem-
ical pericyclic reaction to occur in a concerted manner between a diene and a ‘di-
eneophile’ [11]. Today primarily, the Diels-Alder reaction is defined by having a
single transition state which is possible only because the double bonds of the diene
are arranged in an s-cis formation so that ‘electron pushing’ is concerted. As a re-
view, the s-cis geometry is characterised by the pair of double bonds positioned on
the same side of the single bond connecting them. This ‘s-cis’ geometric terminol-
ogy should not be confused with the cis/trans assignment associated with the single
bonds about the double bonds in question. Aside from these descriptions, there are
no rigid rules for defining a Diels-Alder reaction, and it is because of the concerted
push of electrons that there are no reaction intermediates. The first Diels-Alder
reactions studied were between a conjugated diene and an alkene — the dieneophile
— although in the research of this thesis the author assigned sulfur dioxide as the
dienophile. In other words, the ring may be formed even by non-carbon elements.

The research herein, investigated the cheletropic addition of sulphur dioxide to 2,4
hexadiene using every technique discussed throughout this thesis within the environ-
ment of Gaussian ‘09 and GAMESS (The General Atomic and Molecular Electronic
Structure System), the latter was used exclusively for molecular orbital localisation
calculations to be discussed later in this thesis. The trans-trans isomer chemical re-
action has been investigated to some extent previously using B3LYP/6-311+G(d,p);
here, however, the research includes every s-cis isomer: trans-trans, trans-cis, and
cis-cis (respectively), as they each can react with sulfur dioxide:
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Figure 3.1: List of reactants
\ ;

The reactions were investigated with a 6-311+G(d,p) basis, at the level of B3LYP
and MP2, with and without counterpoise correction to assess the effect of basis
superposition error. To accurately present the geometry, in addition to reporting
bond lengths, the author considered dihedral angles as a very good mark for revealing
both reaction progression and comparing the accuracy of each method. The C2-C3-
(C4-C5 dihedral angle is monitored to show how 2,4-hexadiene contorts itself to get
in phase for transition, it is here that symmetry is made and destroyed. On the other
hand, the S-C2-C3-C4 dihedral is a good monitor of the alignment of the dienophile
with the plane of the diene; additionally, it was interesting to monitor the subtle
change in the SO, bond angle between various reactions and levels of theory.

Numerically, very tight convergence criteria and ultra-fine integration was used for
all final optimisation calculations within the Gaussian ‘09 environment [I][3]; this is
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merely the academic standard of imposing sufficiently strong conditions to get ac-
curate results. Essentially, ultra-fine integration requires that the grid for numerical
integration is very dense so that the measurement is ‘almost continuous’. In the case
of van der Waals structure calculations, special care was given to aide convergence
and the QC (quadratically convergent) SCF procedure was implemented; essentially,
linear searches are used when distant from optimisation and Newton-like steps when
near except in the case of the energy increasing [3]. In general, this method should
be avoided because it is very slow and usually unnecessary; however, in practice it
was very robust.

In an attempt to preserve the highly symmetric nature of the (independent) diene,
TS, and product, all VDW calculations were initialised from confirmed TSs with
the dienophile pulled back until it was sufficiently distant from the reaction centre
to prevent the formation of the product. In other words, many calculations were
performed with sulfur dioxide initialised at various lengths from the reaction centre,
in order to find the shortest distance such that sulfur dioxide would not converge in
its geometry to a product. Special care was taken to ensure that the S-C2-C3 angle
was equal to the S-C5-C4 angle as the dienophile was initialised at different distances.
In the case of trans-trans and trans-cis, the dieneophile’s position converged towards
the side of the hexadiene’s C1 atom. The reasons for this occurring in the case of the
trans-cis molecule are quite clear from the unsymmetrical layout of the carbon atoms;
however, the rationale for the trans-trans convergence is probably best understood
as the convergent geometry being highly sensitive to initial conditions. Finally in the
case of the cis-cis geometry, the VDW complex has the sulfur dioxide coordinated
in closer proximity to the C5 atom than the C2 atom of the diene; this, too, is
probably due to sensitivity to initial conditions. There are likely to exist many
VDW complexes (for example with the dienophile behind the reaction centre, as
opposed to in front of it), however only the VDW complex that is most likely to
occur before a TS is formed is interesting for this study.

Although the author of this thesis does not believe that reaction schemes using
arrows and harpoons are entirely accurate, due to the fact that such illustrations
depict simple, idealistic movements of electrons as point particles, these schemes
still provide some insight as they portray our best understanding of the progression
of a chemical reaction in a naive way. Here the reaction is summarised with such a
mechanism:

16



Figure 3.2: Proposed reaction mechanism
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The reader should note that the oxygen atoms are actually intended to come in and
out of the page with respect to the nearly planar 2,4-hexadiene. The striking feature
of the first step in the mechanism is that all of the bond movement is heterolytic
while standard literature on this mechanism depicts three homolytic movements.
The author does not believe that the homolytic mechanism is more realistic because
there is no reason that the lone pair of electrons on sulfur should prefer either double
bond on the diene; nor is there any reason why a pair of electrons would want to
attack the diene as a point-like pair. Additionally, the IRC calculations (below)
strongly suggest a heterolytic mechanism. In any case, the electrons do not know
that they move as half or full arrows. In fact, recent research by Karadakov et al
also supports the heterolytic mechanism [20].

Returning to the discussion of geometry, in the illustrations below, all images list
the C2-C3-C4-C5 dihedral angle within the ring structure; all values are listed in the
following order, from top to bottom: B3LYP, CP-B3LYP, MP2, CP-MP2, except
in the case where only two values are listed, BSLYP then MP2. Lengths, angles,
and dihedrals are to be understood in context and thus explicit assignments are not
shown when clear. If a value if completely omitted it is because of symmetry about

the C3-C4 bond.

Figure 3.3: Illustrations of trans-trans reaction geometry progression
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1.50225
1,50121
1.50233
1.52561 1.50039
1.52427
1.52638

1.52458

1.86526
1.82844
1.86939
1.85691

The last two images are both showing the same product from two different angles, to
illustrate more properties clearly. Furthermore, the isolated geometry of sulfur diox-
ide is only shown for comparison as it progresses throughout the chemical reaction.
The key observations of the reaction are that the C2-C3-C4-C5 dihedral becomes
planar during the transition state as it is as its product. Another striking feature
is that the C2-C3 and C4-C5 bonds elongate as the reaction proceeds while the C3-
C4 bond becomes progressively shorter. Additionally, the SO5 bond angle becomes
slightly wider in the product. Having shown the trans-trans geometry above, it is
now appropriate to focus on the trans-cis reaction progression.

Figure 3.4: Illustrations of trans-cis reaction geometry progression
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118.890  77.271 2.32940 356,944 3319
118027  77.430 2.30021 36119 2132
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5-C2-C3-C4
-0.669
-0.629

C2-C3-C4-C5
0.952
0.894

120.277
120.571

5-C2-C3-C4
14.565
12.603

C2-C3-C4-C5
2.807

3897 502

120,910

Please, notice a distinct difference in geometry between the B3LYP (top) and
MP2(bottom) calculations; further, observe the BSSE contribution has an unap-
preciable effect on geometry.
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£2-5

186526
182635
186935
1.85404
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1.52852
152808

C55

186526
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Very similar observations can be made about this reaction as well; the central di-
hedral angle becomes essentially planar at the transition state and the same bonds
are either stretched or contracted appropriately. Finally, cis-cis reaction geometry
progression is studied:

Figure 3.5: Ilustrations of cis-cis reaction geometry progression
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a 1.49826
s
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4.68980 3.53171 52.451 24.055 44322 118.258
4.55034 3.29521 58.368 27.875 45.372 118.427

4.7236]1 3.72545 53.351 32.465 43.006 119.215
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1.39288
1.39035
1.40663

1.40108 1.41032

1.41019
1.4132 1.41313
1.40991 1.40645

1.41697 1.41413

1.50742 1.51217
1.50816 C2-s 1.51307
1.51147 2.44295 1.51543
1.51343 2.42907 2.39093 1.51813

2.39070
2.35631

2.35828

C2-C3-C4-C5 502 C2-5-C5 5-C2-C3-C4
2.01%9 117.623 79.306 33.933
1.886 117.961 79.346 33.971
3.972 118.745 79.560 33.073
3.234 119.092 79.854 32.589

Hopefully, it is evident that because the cis-cis and trans-trans isomers both undergo
conrotatory ring closure, they both produce the same products (hence a redundant
depiction of the identical product is omitted); however, the trans-cis isomer’s ring
closure occurs via a disrotatory mechanism.

As mentioned before, the geometry of a compound is intimately associated with its
energy being minimised. However, it should be clear that there is not only one po-
tential energy surface for each compound; it is the different basis sets and methods
(variatonal or perturbation) which, in fact, give rise to different potential surfaces.
Consequently, each surface will have different coordinate minimisers, and each min-
imum is only approaching the true Schrodinger energy surface; needless to say, a
good method is one which has stationary points in an approximate neighbourhood
of the actual wave-function’s minimisers. To show this, one can compare improve-
ments to methods (such as MP2 vs. MP3 ) and appreciate that the improvements
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are convergent; in addition, independent methods (such as B3LYP vs MP2) which
share similar data should give reassurance to our results. From our results above,
it is seen that the biggest disagreements come with the cis-trans isomer; the VDW
complex’s C2-C3-C4-C5 dihedral has an array of values {-32.373, -40.081, -31.281,
-39.593} over the techniques, which shows that the BSSE has a great impact on the
validity of the results. However, it is noteworthy that the disagreement is not at
the choice of method for solving the Schrodinger equation but whether or not CP
correction is used, this should be no surprise as the molecules” wave-function should
have significant overlap at this stage in the reaction mechanism. In contrast, the
product’s geometry is then affected not by BSSE but rather choice of method in the
case of the S-C2-C3-C4 dihedral: B3LYP {-.669, -.629} and MP2 {12.603, 14.565}.
Finally, a textbook example of the usefulness of CP correction is how the C2-S-C5
angle is more or less the same at the level of B3LYP {96.526 95.414} but how MP2
is corrected in correlation {107.135 95.025}. Clearly, each method has its strengths
and weakness; only by comparing the geometry with the energyﬂ can one begin to
appreciate the reaction and gain some insight.

Table 3.1: Trans-Trans Isomer
All B3LYP energies relative to IRC calculated energy, -783.325657 Ha
All MP2 energies relative to IRC calculated energy, -781.673728 Ha

Reaction Point\Method

B3LYP

CP-B3LYP

MP2

CP-MP2

Reactants

-0.022616188

N/A

-0.019431270

N/A

VDW Complex

-0.029392055

-0.025822636

-0.029429152

-0.023788872

Transition State

0.000000457

0.008609926

0.000000135

0.017646206

Product

-0.028192148

-0.015122818

-0.036429410

-0.006620097

Table 3.2: Cis-Trans Isomer
All B3LYP energies relative to IRC calculated energy, -783.317404 Ha
All MP2 energies relative to IRC calculated energy, -781.667593 Ha

Reaction Point\Method

B3LYP

CP-B3LYP

MP2

CP-MP2

Reactants

-0.028392067

N/A

-0.023813548

N/A

VDW Complex

-0.034621519

-0.030914736

-0.033948875

-0.027676862

Transition State

-0.000927043

0.008253065

-0.000000432

0.018305898

Product

-0.035839507

-0.022923549

-0.042621174

-0.012721281

'Reported in Hartrees (Ha) 1 Ha = 4.35974394(22) x 101 J
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Table 3.3: Cis-Cis Isomer
All B3LYP energies relative to IRC calculated energy, -783.304919 Ha
All MP2 energies relative to IRC calculated energy, -781.654075 Ha

Reaction Point\Method | BSLYP CP-B3LYP MP2 CP-MP2

Reactants -0.03898957 | N/A 0.03713861 N/A
19998776 41599714

VDW Complex -0.04404162 -0.04090348 -0.04539448 -0.04000079
09999057 57209463 43799263 86310129

Transition State 0.00000671499 | 0.00947457 0.0000000865 | 0.0184400
992677127 418408249 900346980197 | 072730568

In the case of the BSLYP Trans,Trans-product, the final energy is lower than the
reactant however not lower than the VDW, a similar trend exists for the CP-B3LYP
and CP-MP2 calculation, only at the MP2 level (with BBSE) is product distinctly
favourable. Likewise, in the Cis-Trans case the Counter-Poise correction methods
brought the energy to be higher than the VDW complex while their analogue with
BBSE continues to have lower energy compared with the VDW complex. In all
calculations, the products with Counter-Poise correction are significantly higher
than the reactants. In every case, the energy for the VDW complex is appreciably
lower than the respective reactant’s associated energy for the same level of theory,
indicating that the complex is stable for reactants in solution.

The optimised single point transition states without a counter-poise correction were
used as the starting point for the IRC calculations, the difference in energy illus-
trates to what order of magnitude the energy values can be trusted. Around the
stationary points, the Berny algorithm[35][2] — and quasi-Newton methods in general
— tend(s) to be oscillatory especially if the potential energy surface is particularly
flat. Fortunately, the differences in energy are not particularly drastic; therefore, one
can conclude that the various methods are strongly in agreement. Having presented
the stationary geometry, it at least seems that the reaction would be concerted
and follow the proposed heterolytic reaction mechanism; now the intrinsic reaction
coordinates are studied which clearly demonstrates the proposed mechanism.
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Trans-Trans IRC at MP2
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Cis-Trans IRC at B3LYP Level
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Cis-Trans IRC at MP2 Level
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Cis Cis IRC at B3LYP Level
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The IRC calculations confirm that the reaction is concerted, that is that there are no
other hidden transition states or unanticipated intermediates. The MP2 calculations
were taken further along the reaction coordinates to better approach the products or
VDW complexes, to illustrate that the path connects these stationary points; while
the B3LYP calculation was taken sufficiently far to confirm that the IRC starting
point is the proper transition structure. The extraordinary number of points for the
MP2 IRC calculations took less than 2 days each and it is the belief of the author
that such calculations should be done if time and resources permit.

Before going into a detailed treatment of the theory of localised molecular orbitals
and the various numerical methods for solving this quantum chemical problem
(which is the emphasis for the remainder of this thesis), the author will first close
this chapter on the investigation of the Diels-Alder reaction by simply presenting
the hexadienes’ localised molecular orbitals — which will provide a perfect segue for
what is to come. By carefully analysing the localised molecular orbitals, one should
be equipped to identify lone pairs of electrons, how molecular orbitals overlap to
prepare for the transition state, and ultimately view a seamless transition to the
product which comes naturally. The contour value is listed at the top left of every
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image, this is a measure of the density of the molecular orbitals. Recall, that a nor-
malised molecular orbital’s wave-function exists over the entire domain yet chemists
are ultimately only concerned with the behaviour of a wave-function in some rea-
sonable neighbourhood of a chemical molecule. At its core, the localised molecular
orbitals will provide us some insight in how the chemical bonds really behave. The
localised molecular orbitals presented in this section are orthogonal — their associ-
ated molecular orbital overlap matrix is the identity matrix — as it will be shown
in the following chapter, this is merely a mathematical convenience and there is no
reason to assume that the actual molecular orbitals are orthogonal. Although this
method is very limited, it is, to date, the soundest method for studying localised
molecular orbitals. Clearly though, as it will be shown, the localised molecular or-
bitals have the advantage over canonical orbitals because their form — while not
entirely localised — is at least not spread over entire parts of the molecule which is
typical of the canonical form. Sulfur dioxide, in its free form, is presented as a basis
of comparison, as it is surely far more well-known than the dienes studied.

The results show highly localised molecular orbitals and in the transition state it
is clear where the bond formation is proceeding. As expected with the Pipek-
Mezey method, the m and ¢ bonds are not separated very well, for example the
(Cis-Cis reactants HOMO; while the Edmiston-Riidenberg and Boys methods show
very similar results [32].

Table 3.4: SOy HOMO
Edmiston-Riidenberg Boys Pipek-Mezey

.05 .05 1

Table 3.5: SOs LUMO
Edmiston-Riidenberg Boys Pipek-Mezey

.05 .05 .01
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Table 3.6: Trans-Trans HOMO

Edmiston-Riidenberg Boys

Pipek-Mezey

2,4-hexadiene

.05

@«

VDW complex

Transition Structure

Product

N

A am -
NE
TP\
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Table 3.7: Trans-Trans LUMO

Edmiston-Riidenberg

Boys

Pipek-Mezey

2.4-hexadiene

VDW complex

Transition Structure

Product
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Table 3.8: Cis-Trans HOMO

Edmiston-Riidenberg Boys Pipek-Mezey
2,4-hexadiene .05 .05 .05
«
WD e
r A ";&_,‘9)/;1)
VDW complex .05 .05
W | N
)
¢ ‘é%ﬁﬁ
Transition Structure .05
p ’%ﬁxj °
075
!
i 5 S\
7\
Product 075 075
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Table 3.9: Cis-Trans LUMO

Edmiston-Riidenberg Boys Pipek-Mezey

2.4-hexadiene

VDW complex

Transition Structure

Product .075 075 075
AN P
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Table 3.10: Cis-Ci

s HOMO

Edmiston-Riidenberg

Boys

Pipek-Mezey

2,4-hexadiene 075 075
Q.
-~
VS
=4
VDW complex .05
4 \f
Transition Structure 1

Table 3.11: Cis-Ci

Edmiston-Riidenberg

Boys

2,4-hexadiene

075

075

VDW complex

Transition Structure
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Chapter 4

Localised Molecular Orbitals

As a review of quantum mechanics, all pertinent information of a particle — such as
its energy, momentum, expectation value, etc. — is invariant under normalization
of the wave-function (to see this simply re-solve the Schrédinger equation with the
normalised form) :

/DW dr =1 (A1)

Essentially, this can be as an interpreted as ‘the probability that a particle exists
somewhere in the universe, D, is one’ [34, Chapter 2[; similarly, in probability theory
a probability distribution of many variables collectively summing to 1 is taken as
an axiom. If a wave-function is not normalized, then it can easily be made as
such by dividing by its magnitude. In many electron systems, the wave-functions
exhibit properties very similar to classic waves, namely they can be interfering or
constructive when interacting. Quantum chemists, who often deal with many such
wave interactions, usually represent this property with a square matrix called the
‘orbital overlap matrix’ which is symmetric for real valued orbitals and for complex
wave-functions the matrix is equal to its adjoint (complex conjugate transposed)
[39, pp. 136-137]. The research of this thesis deals exclusively with real valued
wave-functions when handling the subject of localised molecular orbitals; however,
certain molecules, such as benzene, are modelled very well with complex form. The
elements of the overlap matrix are every inner product of the wave functions:

(g
o= | DGR )
(1) (0f2) - (nln)



One consequence of the normalisation criteria of wave-functions is that concerning
the overlap matrix, .S; j, only diagonal elements, s; ;, can be identically equal to one.
In other words, off diagonal elements’ magnitude must be less than one and greater
or equal to zero [39, pp 136-137]. This follows immediately from the Cauchy-Schwarz
inequality which formally says [4, Chapter 6]:

[{ely)® < (zl) (yly) (4.3)

n 2 n n
Saty| <3 1P el (4.4)
i=1 j=1 k=1

Where the inner product is defined as:

(x|y) = /Dm*y dr :z e C" (4.5)

As mentioned above, the normalization condition implies that the diagonal of the
overlap matrix should be 1 for every element. If linear combinations of atomic
orbitals (LCAQO) are used to construct molecular orbitals[39, Chapter 3.4, pp. 136-
137]:

N
w] = ZCJ#XM (46)
pn=1

then the normalisation strategy is obvious:

N

o Ciu

The normalisation condition is used because it keep the associated objective func-
tions nicely bounded, simplifies the construction of the function, gradient, and hes-
sian, and allows one to check that the overlap matrix is properly defined and that
results make sense. Interestingly, it is somewhat difficult to understand what this
definition really means because it is not immediately obvious that molecular orbitals
— if they truly exist at all — should behave in such a linear fashion. Fortunately, in
practice this method actually does accurately describe the molecular Schrodinger
equation; the LCAO was first presented by John Lennard-Jones[26]. If one stores
the mixing coefficients, ¢;,, in an n-by-N matrix (with n denoting the number of
atomic orbitals and N representing the number of molecular orbitals), the practice
of fulfilling is as simple as dividing every element of the jth row of the mix-
ing coefficients by (1;[1;)'/? then computing once more. After applying the
normalization criteria to the Cauchy-Schwarz inequality , it is very clear to see
that the range of s;; is from -1 to 41, with zero reserved for orthogonal molecular
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orbitals. The irony of these assumptions, and why is so important, is that in
practice it has been observed that off diagonal elements may converge to 41, which
should be used as a test to ensure that the methods used are working. Off diagonal
elements equal to +1 imply that there is a linear dependence between the molecular
orbitals which is clear from , in that the inner products are scalar multiples
of one another. However, as it will be made very clear shortly this should never
occur because the molecular orbitals are LCAO, and the combinations should be
independent. Most often, in non-orthogonal MO-LCAO calculations, the basis is
a the set of orthogonal MO-LCAO (which in turn is constructed from atomic or-
bitals) which translates to the overlap matrix being the identity matrix, to floating
point precision; therefore only an ill linear combination could even get into such
situations as off diagonal elements being +1. Finally, another useful result is that
the overlap matrix must be positive definite [7]; equivalently every real part of the
eigenvalues must be greater than zero. We also have that the overlap matrix is
in general Hermitian — if the inner product is taken over the real space then the
overlap matrix reduces to a real symmetric matrix and — therefore the eigenvalues
are positive. In practice it has been observed that the eigenvalues have been zero
and off-diagonal elements equal to +1; this, in particular, has often been observed
for optimisations taken using gradient-like methods, or when second-order methods
converge to gradient-like methods.

One natural question is how to choose the coefficients c;,x of in a manner
that makes sense in an ordinary way; that is, how can one implement theoretical
methods that stand the test of reality. Experience, of chemists, reveals that chemical
bonds are experienced between near atoms — here avoid saying adjacent because
such a statement would only be ex post facto, the chemical bonds are precisely the
molecular orbitals to be defined — dense in the region of these atoms.

Returning to the case of wave-functions written as a single Slater determinant, it
can be shown that the canonical MOs are invariant under unitary transformation
(rotation):

(ilhy) = i (4.8)
W =Uy - UU =1 4.9
Y = Zuij% (4.10)
=1
(WiW;) = (Ui|Uy) = (UUTi[ahy) = 655 (4.11)

We emphasise that and the above equations are equivalent for the current
methods in constructing molecular orbitals; is the problem of optimising molec-
ular orbitals as a linear combination of atomic orbitals, while is optimisation
of molecular orbitals as linear combinations of other molecular orbitals which are
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themselves linear combinations of molecular orbitals[25]. If one can solve (£.9), then
each basis molecular orbital can be presented by transforming it back to atomic
orbitals given the inverse transformation of the transformation that converted the
AOs to MOs in the first place.

Many times, the aim of localised molecular orbitals is to find solutions which are
consistent among functional groups between unrelated chemical compounds. For
example, the ester group (RC[=0]OR’) should have similar looking MOs regardless
of what it is connected to, if its MO’s are truly localised. A set of LMOs is usually
defined by optimising the expectation value of a two-electron operator [32]

(Q) =D (Wil (4.12)

=1

Currently, this equation is solved by successive series of orbital rotations; and the
choice of 2 need not be unique. There are various methods, in our research we used
Edmiston-Ruedenberg, Pipek-Mezey, and Boys methods for solving the localised
molecular orbital problem. The Boys method uses the square of the difference
between two electrons for €2:

(W Boys = Y (WiWf|(r1 — 72)*[Wf) (4.13)

=1

This is perhaps the most intuitive of the methods because it aims to minimise
the spatial occupation of the molecular orbitals; highly spatially compact MOs are
comparable to our ideal chemical bond between adjacent atoms. It can also be
shown that the minimisation of Boys method is equivalent to maximising:

Wilrlel) @l \?
B"““ZZ< Wi <w;|w;>) (4.14)

=1 j=1

(ilrlvi)
(Wilv)
of the orbitals and maximising these is intuitively (and mathematically) equal to

minimising their occupation. Further the calculations are made easier by the fact
that the functions are not directly handled but rather their inner products are
manipulated so that the operations reduce to straightforward matrix algebra. The
single electron integrals (inner products) of the molecular orbitals are taken from
their associated atomic orbital integrals:

(Wilr[;) anz (Z cgj(Xalrxs) ) (4.15)
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Then the problem of optimising the localised molecular orbitals is solved essentially
by finding the best linear combination of single electron integrals (the basis). The
exact algorithm for carrying out the optimisation is fairly straightforward and typical
computations

take anywhere between 5 to 10 minutes. Given two molecular orbitals, {i;,;},
Boys’ procedure constructs a new pair via a two dimensional unitary transformation

[32]:
i\ [ cos¢ sin( 05
() = (e =) () (410

These rotations are performed pair wise until the objective function converges and
the elements of the transformation matrix are arbitrarily close between successive
iterations. The Edmiston-Ruedenberg (ER) localisation method, on the other hand,
aims to maximise the inverse of the distance between the electrons [24] 9.4]:

n

Q=3 <wzw;

=1

1

|7‘1—7“2|

wng> (4.17)

It is often said that this corresponds to maximisation of self-repulsion energy, but
notably this method and Boys both utilise a power of the distance between electrons.
The Pipek-Mezey localisation method is the unintuitive method, in that it does not
aim to optimise distances associated with electrons but rather attempts to maximise
the sum the Mulliken atomic charges. In some, indirect, manner this will also solve
the LMO spatial problem but it is not immediately obvious [24, 9.4]:

Atoms

(Qpu = Z [Pz‘(A)]2 (4.18)

A=1

AO AO

pi(A) = Z Z CaiCBiSap (4.19)

acA BeA

Calculations associated with this technique give rise to o/m-bond separation which
is popular among organic chemists, while Boys and Edmiston-Ruedenberg methods
do not preserve this property [32].

Often orthogonal localized molecular orbitals are in fact delocalized more than one
should desire simply because after computing the second derivatives of these func-
tions it is found that the solution is not optimised. Since these optimised solutions
correspond to localised molecular orbitals, it is obvious that the molecular orbitals
are simply not localised to their limits unless an optimum solution is found to these
equations. Ideally, one would like a solution which is global, so that the solution
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set could have no further improvement; this would give us much insight. Clearly,
every theory has its limit and the fact that there are multiple equations alludes to
the obvious, that chemical bonding is a highly complex process; if a global solution
were available one could visualise molecular orbitals as best as they could be given a
particular set of equations. A global minimiser, z°, is one such that [12, Chapter 2]:

f(@°) < fly) :Vy e R” (4.20)

While a local minimum is a solution, z*, such that under a restricted neighbourhood
D" C R", the above equation is true for all points in the neighbourhood. The
theme of this entire thesis — more or less — is the subject of numerical solutions
where the problem is ‘chemical” and the coordinates are atoms or molecular orbitals;
formal quantum mechanics is only our ‘rule book” which motivates our mathematical
methods. Because most physical problems have a massive number of local solutions,
over their entire domain, it is generally the case that global solutions are impossible
to find; however, there is a rich theory of research devoted to this problem. In our
research, however, we are concerned principally on finding local solutions; in the case
of the Boy’s problem, for example, a local solution is very non-trivial and would be
highly valued regardless if it is global. A local solution has a few requirements [12),
Chapter 2[:

1. Every dimension of the function must collectively either be positive or negative
in concavity; because positive concavity corresponds to function minimisers
and negative concavity corresponds to function maximisers, it would make
no sense to talk about a local solution existing with parts being minimisers
and others being maximisers (one optimises functions as a whole and not only
their individual dimensions). The exception to this case is many constrained
optimisations and finding a transition state, these correspond to saddle point
algorithms.

2. However, one must optimise each individual dimension after a function has
dimensions with all the same concavity. At this point, it is clear that if each
dimension can be optimised further (while maintaining dimensions of consis-
tent concavity) then they simply should be. At this point, it is appropriate to
consider the coordinate to be near a local solution and many simple, fast tech-
niques are used, such as the ordinary Newton-Raphson iterative scheme which
has quadratic convergence. Each dimension is converged when the norm of
the gradient is small (each dimension’s associated slope is approaching zero).

3. The solution should be locally smooth; in other words, the function isn’t hy-
peractive in the neighbourhood of a solution. If this were the case, if might be
that one were detecting a dent on a ‘hill’ towards the solution, rather than the
solution itself. It might seem very abstract to even bother with the definition
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of continuity one would find in analysis texts:
Ve>0 36>0 st |Jz—yl<d=|f(z)— fly)] <e (4.21)

However, this is has a perfectly natural interpretation in the computational
optimisation setting; namely, if a numerical method moves the coordinates
slightly then the function value should also only slightly when the objective
function is convergent, assuming the other criteria is met.

Returning to the case of the Boys function, we realise that in practice the solution
coordinates do not satisfy the first condition above, even though they are convergent
under pair-wise rotations with respect to the objective function. If one were to relax
the condition that the transformed molecular orbitals necessarily be constructed
orthogonal to one another, then an unconstrained optimisation of these functions
can be attempted; one should also expect that the orthogonal localised molecular
orbital solutions are a good start for finding solutions to the non-orthogonal LMOs
(NOLMOs) problem. There are a number of numerical methods which employ
second derivative information; here a discussion of the methods studied is covered.
In order to find a local optimised solution for the Boy’s problem, first and second
derivative information must be known; here is presented the analytical derivations
for these derivatives as lucid as possible.

The following short-hand — 1; = i and % = [¢,] — will be used in order to keep
the derivations neat, compact, and succinct. Additionally, over the real valued space
of wave-functions, it is apparent that & = 0 ((ilr|y) + (y|r|i)) = 6:i22(i|r|y),
where the bra and ket components can be switched freely after applying the chain
rule; likewise, %ﬁi? = 6:22(1)y).

B =333 ()= (37 (1.22)

(] = 10n)?) 2l 0 (5 (] = [50])?
anq Z < : Icpq >+Z ( Icpq )

=1 i#p

op 1 [0(Si)-10?) o (S - 15)?)

Ocpy 2 Jcpq * Ocpq

5 oS %) o 50)
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By symmetry;,

[ 4
anq Z acpq

=1

?a[cj:2W)@'r'qu‘p)@‘q”p””'m 2({plrla) — (Bla) (Blrls)
3—3 = 4((plrla) — Bla) @irl) Y_([5] — [ir) (4.23)

This completes the derivation of the first derivative, where the normalisation con-
dition is used insofar as it simplifies the results; however, it is necessary to keep
normed terms when computing the second derivative (such as (i|i)) because they
are functionals that change with respect to the mixing coefficients. Finally, it is
noted that in practice S0 ([5] — [i,]) = nl[p] — Soiy [ir]-

2 o || n ;
O°B -9 MZ([T]_[TD"‘ Alpr] 0 i, (8] — [ir])

Ocst0cpq Ocgy — 0cpq OcCgt
0> ([pr] = [i]) a[$,] d[s:]
aCst B <n 1) aCst 5178 aCst (1 5 )

e (W10 irla) — (wla) (lr1))|
8cst

_ L o[plp)(Blrla) — Bla) BB | RN Vil
- <<25|15)2 dew + ((2lp) (Blrla) — (Bla) <p’1”|p>)Tst>

55) —2 s 2\ — , ,
where _3<15|01:>t_ = —2(p|P) 32(P|t)0ps = —A(P|t)Ss

= 20,5 { (2081) (Plrla) + {tIrla) — 2(pla) (Blrlt) — (tla)(plrIp)) — 41 (Blrla) — (Bla) Blrlp)) ]
If these parts are carefully combined,
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0*[p,]
0Cstﬁcpq

= 205, { =2((Bt) (BIrlg) + (Bla) (BIrle)) + (tirla) — {tla) (BIrlp) + 4@l (Bla) (Blr|p) }

which is obviously symmetric with respect to second derivatives (interchanging ¢
and q).

If we consider each case, d,; = {0, 1}, separately then the symmetry of the second
derivatives of the Boy’s function should be more clear.

acieipq = —8((lrla) — Bla) Blr[p)) (Slrfe) — (se)(slrls)) - if s #£p  (4.24)

Obviously this is symmetric, if one were to switch the ¢ and ¢ terms the second
derivative is preserved. If s = p:

aciipq =2 {ai[giq (”[P’r] - ;[@]) + gﬁ’j (n— 1)%[2 } (4.25)
2B S\ s , , o o o
Bende 4[{_2“]"” (Blrla) + Fla)pIrle)) + (irla) — (tla) GIrlF) + ALFIE)5la) el =

i=1

<n<15|7“!p’> - Z(ﬂ?"@) + ((Zlrlg) — (Bla) (Blrlp)) (2n — 2)((s]r[t) — <S’!t><5’!rlé>)]
(4.26)

There is a convenient representation for these somewhat messy equations, using
matrices it becomes apparent that all the terms above can easily be called (within the
environment of FORTRAN or MATLAB, for example) and used for computing. If
one lets (I|J) represent the overlap matrix for the atomic orbitals, then taking linear
combinations of the elements of this matrix one can represent all of the necessary
elements. Here subscripts are used to indicate the dimensions to avoid ambiguity.

i1 - CIN <1|1> <1|N>
Cx (1)) = - z ;
G e ) C\NIL) e (NINY)
(V1) - (V)
- z — (') (4.27)
W) - Ny
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i1 -+ CIN <1’|1> <n’|1>

Cx (I'N)T = : :
o ean)  \IN) Ny )
) - (1)
= : : = (I'lJ") (4.28)
Y|y - ) )

provided chp<i|ﬂ> = (ils")

p=1

To get the position values, (z|r|;), the same method is applied to the matrix (I|r]J).
The matrices above represent the traditional orthogonal localised molecular orbitals;
so that the OLMO overlap matrix (I'|J’) is identity. Appropriately, one can use a
similar set of OLMO mixing coefficients, D,,«,, to construct the NO-LMOs which
optimally solve the Boys function. In summary:

n n N
j=1 k=1

Jj=1

Once the final optimisation is complete, the matrix product of D and C will rep-
resent how to mix the atomic orbitals — in the form of one electron integrals —
best. Practically, one can simplify the Boys problem even further through choosing
to make the non-orthogonal localised molecular orbitals constructed as ‘unit self-
contribution’ plus a linear combination of the other orbitals, over each iteration, k,
of the calculation:

n
(@i)k = (Pi)k—1 + Z dij(d)k-1 (4.30)

J#i
Of course, this is the unnormalised form and all of the mixing coefficients will still
need to be scaled to construct normalised molecular orbitals; however, the empha-
sis is that the self-contribution is constant and therefore the problems of finding
n? optimum mixing coefficients reduces to finding n(n — 1) optimum mixing coeffi-
cients. Another reason for doing this (other than reducing number of variables) is
that a linear dependence over the set used to form the new molecular orbital can
form. Accordingly, the gradient and hessian elements of such self-contriubtions will
be zero; but more importantly, one must remove these terms in order to prevent
the construction of a singular hessian (a matrix with rows (and therefore columns)
of zeros). Done carefully and correctly, the matrix of mixing coefficients is repre-
sented as a reshaped vector — of dimension n(n — 1) — with the elements of the one
dimensional array ordered with the first row of the matrix mixing coefficients first
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then the second row and so on (as opposed to column by column); this manoeuvre
might seem pointless but the advantage is obvious when comparing the number of
unique elements in the ordinary hessian — @ — versus the contracted hessian
— % :p=mn(n—1). In the case of water, for example, which has five molecular
orbitals, the number of unique hessian elements is reduced from 325 to 210. Finally,

the measure of ‘delocalisation percentage’ is defined as [25]:
1 R
dl = 5 (gf)l - gbl) dr (431)

&, is the localised molecular orbital constructed by erasing any non-local additions
to the molecular orbital and renormalising.

It is no secret that there already exists research into the non-orthogonal localised
molecular orbitals. Perhaps, the best of the previous results in this field was done
by Yang et al. in a series of papers. Essentially, his approach is to maximise the
Boys function by minimising the spread functional, 2 (with m equal to the number
of electrons) [23][28][10]:

m/2
O =D Yidin (4.32)
m/2
QLA] =Y [{delr’lox) — (Srlrlen)’] (4.33)

Which has an equal representation using the mixing coefficients (the NO-LMOs are
functions of the coefficients after all):

m/2
QA] = {(ATR?A)ip — (ATRA)gy % (ATRA) i } (4.34)

k=1

Ry = (¢ilr®|y;)

The spread functional is quite clearly the same as the Boys function whenever the
set of orbitals in consideration is an orthonormal set; however, in his own words,
“they will yield different results when the orthogonality condition is released.” He
continues to argue that the method is valid because a constraint on his NO-LMOs
is that the centroids are forced to coincide with the centroids of the OLMOs which
makes the set of final orbitals linearly independent. However, it is simply not fair
to make these artificial conditions; our method, on the other hand, only requires
that the wave-functions be made normalised after every update, which is a widely
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accepted technique of quantum mechanics. In addition to this trick and optimis-
ing the spread functional rather than the Boys functional, the spread functional is
transformed into yet another function:

m/2
Q[A] = Z{(ATRQA)M — (ATRA)},}
m/2 - m/2
= Z{GILRZCUC — (a} Ray)?} = Zw[ak} (4.35)
k=1 k=1

Which is a perfectly valid representation, the reasons for this are because in his
method he aims to optimise each row of A independently which appears to be a
valid argument; however, we disagree with his liberal use of the multiplier-penalty
function method.

Wlag, A] = wlax| + penalty parts [23][28][10] (4.36)

The extra parts have Lagrange multipliers and involve terms of the three principal
dipole directions (X,Y,Z); additionally, analytical gradient and hessian terms are
calculated from this penalty function. The modified Newton method due to Gill
and Murray was used to optimise the Lagrange multipliers of the penalty parts,
and convergence of this iterative scheme was established once the following two
conditions were met:

a,tak =1

(Dklrlon) — (Splrldh) =0 (4.37)

The first condition is the re-normalisation of the wave-functions, the latter is that
the centroids of a given NO-LMO, ¢y, coincide with the corresponding one from an
O-LMO, ¢?. The results are in some respect promising because the spread functional
of their NO-LMOs are lower in value that the corresponding O-LMOs; additionally,
they report positive definite hessians on convergence to a minimiser. However, a
major flaw in their method is failure to report the final contribution of ‘penalty
parts’; one does not actually know if the error in this method is converging to error
and if the modified functional is approaching the intended one. In summary, the
author of this thesis believes the method of this thesis is better because it is much
simpler to describe, the derivative information for the Boys function is exact, no
contribution of error is made due to penalty functions, and no assumption about
fixing the centroids is imposed.
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4.1 Optimisation Methods

Often is the case in all flavours of applied mathematics — such as economics, physics,
and chemistry — that many problems simply cannot be solved with a closed form
answer. In the first chapter this idea was praised and humorously the opening
quote scoffed at the idea of applying mathematics to chemistry; the fact is, the
Schrdinger equation is a key equation of quantum chemistry like many others which
cannot be solved that are equally ‘simple’ in their expression but nontrivial in their
solutions. The Taylor series for an analytic function is around a change slight change
in coordinates is:

F@n+62) = f(zn) + f(22)02 + % F(@)0z? + - (4.38)

The equation should obtain a minimising/maximising solution, x*, when its
derivative is exactly zero. This motivates the use of the Newton-Raphson method
which truncates for terms higher than the second derivative, then differenti-
ates the equation with respect to dx and attempts to find a root to the equation,
f'(zn) + f"(x,)dz = 0 Guesses taken successively follow the general form, known as
a line search Newton-like method [12, Chapter 3.1]:

O fr

1 82fk
Tppr =Tk —YH, g : g, :E | H=[h)i; =

i 50 (4.39)

The non-negative scalar v is chosen so as to further optimise the multidimensional
problem in one dimension:

¢(v) = f(ypk + k) px = direction (4.40)

min/max

Explicit to its formulation, the hessian, H, is assumed to be non-singular and the
gradient, g, should converge to zero as xp — x*. From now on we will speak of
minimisation techniques; if one wishes to maximise a problem P, it is equivalent to
minimising —P. One consequence of this simple numerical method is that
corrections to an approximation cannot occur if near or at a saddle point, where
the gradient is zero but a local minima does not exist. In order for a value to be an
optimal point it is necessary for the second order derivatives to be positive in every
dimension, equivalently every eigenvalue must be positive. It can be easily shown
that this would require every eigenvalue of the hessian to be positive because the
non-singular hessian is similar (A ~ B < 3C : A = C7'BC)to a diagonal matrix
where each entry along its diagonal corresponds to a specific dimension of pairs of
variables:

H=Q 'AQ (4.41)
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At 0 i
H— (CZ q"m) (4.42)
0 Am Im

In particular, matrices which are similar have the same eigenvalues, moreover the
entries of a diagonal matrix are its eigenvalues; therefore, the eigenvalues of H are
the diagonal entries of A. We will not prove any of these results but a good text on
useful results from finite dimensional linear algebra is provided by Axler [4]; these
results are merely quoted without proof because they were especially useful and
assumed in this research. Moreover, the decomposition we are interested in is known
as eigenvalue-eigenvector decomposition (or spectral decomposition); wherein, @ is
a matrix of row eigenvectors of H and Q! = QT (due to the fact that eigenvector
basis was chosen such that ¢/ ¢; = 9, ;).

There is a serious issue in that, when the guess is really far from a local minimum it
is almost surely going to converge to a saddle point. There are many different ways
to fix this issue, but if the initial iterate is good — in some sense — then the following
technique should work in theory [12, Chapter 3.1]:

H = H + | min{min(og),0}| * I (4.43)

pe=-—H"'lg :7>0 (4.44)

og denotes the eigenspectrum of the hessian. Observe that when the hessian is
not sufficiently positive definite one then shifts the eigenspectrum by a sufficient
amount to make the new modified matrix, H, sufficiently positive definite; this
doesn’t change the set of eigenvectors so an eigenvalue eigenvector decomposition
only needs to be performed once. As a result p, becomes a direction of negative
curvature because [30]:

pkg <0 and p{ Hyp <0 (4.45)

These conditions on p will naturally be imposed if the hessian is positive definite
and while there are many clever methods that exist to satisfy (4.45) other than

(4.43) and (4.44]), we believe the modification (4.43)) to work particularly well. One
obvious advantage of this method over others it that it is computationally very

simple to define (4.43]), while would be a step carried out regardless. After
finding this direction, one must still compute the step length, ~, which satisfies the
one dimensional optimisation subproblem ¢(). Finding the optimal solution is not
surprisingly extremely difficult — even in this one dimension — because this would
require a complete description of the one dimensional line. Therefore, we generally
accept a coordinate, v, which results in a decrease in the function [12, Chapter 2.5]:

f(@ri1) = flop +pr) i fn+ ) < f) (4.46)
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The case of equality is not a problem (ideally) because continuous evaluations should
correct the function further. In practice, however, one wants a fast convergence, one
which will reduce the function to a substantial degree; we would like to reduce the
number of hessian evaluations but without completely minimising ¢(y). A good
balance are the Wolfe conditions [12, Chapter 2.5]:

f(@ye +vpe) < flz) + avplg (4.47)
Prg(x +YDk) > capig (4.48)
O<c<e<1

The first is known as the Armijo rule which aims to significantly reduce the function,
while the second inequality is the curvature condition and encourages the slope of the
function to deduce. The second condition is extremely important because it prohibits
pathological searches that oscillate between sets of values which only slightly reduce
the function; this can be seen, for example, in gradient like methods near a solution
which zig-zag along ‘valley structures’. Any starting point will converge under a
gradient driven optimisation, but numerically (in finite time) the solution may never
be found; the curvature condition helps ensure that such ‘gradient-like’ directions
are not acceptable during the course of a line search. It has also been shown that the
curvature condition is a bit weak, it can be made more robust through the following
modification (known as the Strong Wolfe condition of curvature)[42] [43]:

1Pk g(zk + vpi)| < calpi g (4.49)

The method commonly used to enforce these conditions is known as the backtrack-
ing line search. One first picks 79 and 7 € (0,1) then updates 7, := ,_17 then
updates until both of the inequalities are satisfied for a given ;. This is known
as an inexact line search because ¢(7) is not actually minimised totally; moreover,
if 7o is not chosen to be large enough then 7, — 0 and the line search fails com-
pletely. Obviously, one way around this problem is to then evaluate ¢(7) over a
larger domain. In general, a good bracketing strategy is needed to pre-condition the
subproblem for a sufficient line search; here the techniques of Fletcher were used
[12] Chapter 2.6].

Another way to speed up computations without losing a significant amount of ac-
curacy is to factor matrices that need to be inverted because, in general, matrix
inversion is a costly procedure especially on a dense matrix of several dimensions.
The Cholesky decomposition is a special type of LU-decomposition with U = L7;
additionally the Cholesky decomposition is always unique while the general LU-
decomposition is never unique. The only rule for using the Cholesky decomposition
is that the matrix being operated on must be positive definite. Some authors refer
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to L as the matrix square root, however this is misleading because L # L7 albeit,

I

the algorithm does use square roots in its simplest form [I8, Chapter 4.2]:

j-1
Lis = | A = 2_ L (4.50)
k=1
1 !
L;; = E (Ai,j — kz:; Lz‘,ij,k) 1> (4.51)

A=LL" (4.52)

Additionally, there is also a square root free (i.e. free) method where A =
LDLT. While the square root can be seen as an opportunity to introduce error,
it was often found that when taking the difference between our hessians and their
decomposed versions, the error was on the order of machine epsilon. When it came
to computing the inverse of the modified hessian times its gradient, H™'g, one can
easily complete this with (LT)~'(L7!)g because computing the inverse of a lower
triangular matrix is simple and accurate. There were a number of other methods
which were also investigated to see if they could potentially speed up the process of
solving Boys equation more effectively than the method of . A large part of
this research was devoted to testing these various methods to see what would work
in practice and what the most efficient method available was. There exists a large
portion of studies which suggests that Newton’s method does not make full utility
of second derivative information because it only generates a single direction. The
‘Newton-like direction’ or ‘descent direction’ is computed from a positive definite
matrix, P:

Sk = — lglgk (453)
Without making any assumptions about P, we see that the Newton direction is
very similar in form to the descent direction; in particular, if the hessian is positive
definite, then one should use the hessian as the matrix for computing the descent
direction. A direction of negative curvature is one such that:

dfHd, <0 (4.54)

Notice that d; will always exist so long as there is at least one negative eigenvalue,
to see this consider a unitary transformation on the hessian which diagonalises the
eigenspectrum. Some of the methods perform a curve linear search for [30]:

Tpor =T + sy +ad,  1a>0 (4.55)

However, it has been suggested by others that this is prone to error as well as
slow; there is a general philosophy in optimisation theory that one can try to ‘over-
optimise’ a single step at the expense of time, when a less optimised method would
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do the job cleaner and less expensively. In other words, more fast iterations may be
better than a few slow ‘better’ iterations. The alternate choice is to construct the
next iterate as [13][14]:

Tpy1 = xp +a(sp+ Bdy)  a>0 (4.56)

T 2 T
{_Z;gzll + \/<_§ng> +1— %} cdp #0and sTHs > d"Hd

0 : otherwise

8= (4.57)

The exact methods used to compute s and d are different between various authors.
Gill and Murray have suggested that the negative curvature be computed by a
modified Cholesky decomposition; essentially, very similar to , a non-positive
matrix is modified by shifting diagonal matrix such that is ‘small’ enough to make
the new matrix positive definite:

H+ E=LDL" (4.58)
R=1IVD (4.59)
o(R)=c(H+E) YA€o,A>0 (4.60)

It is pragmatic to compute the direction of negative curvature using the shifted
matrix technique , in practice it is found that other methods such as those
suggested by Gill and Murray are too expensive at each iteration and the benefits are
not worth the cost. All of these methods are definitely worth investigating; however,
it was found that in the case of finding non-orthogonal localised molecular orbitals
none of them worked. It could be that the ‘initial guess’ provided by ordinary Boy’s
calculations was not sufficient, as most eigenvalues of the coordinate hessian were
positive but a few were negative — 2 to 3. The technique dual to the ‘Line Search’
treatment of the Taylor expansion is known as the ‘Trust region’ algorithm. The
line search approach is to find a good direction (or directions) and minimise the
objective function along the given line (or curve, in the case of linear combinations
of directions); on the other hand, the trust region procedure is to find a good distance
to travel from the current coordinate then find a direction given the ‘good distance’
and transfer the coordinates under some conditions. The ‘line search’ method is
desirable for many reasons — its deep-rooted, its intuitive, and cheap — however it
fails occasionally if the ‘best’ distance given a direction is far and the truncated
Taylor expansion is no longer valid. The line search is good only if the distance is
bounded, in some sense; this is the idea behind a trust region. Briefly, there is a
small niche of optimisation theory which considers higher order Taylor expansions; it
is possible that the third derivative tensor methods like Halley’s method are better
suited for line searches however this is both computationally and algorithmically
complex.
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4.2 Trust Region Methods

The trust region (or restricted step) problem can be summarised as follows, find [12),
Chapter 5]

pe el <A (4.61)

Where A? is the trust region, an open ball of n-dimensions centred at the current
position, xg, contains the set of vectors which satisfy this criteria:

B=A{x:||zo— x| <A} (4.62)

However, this is not a simple problem because unlike the case of the line search
where an n-dimensional problem is reduced to a 1-D problem, a trust ‘ball’ is still n-
dimensional and there is no obvious choice for the ‘best direction’. One can rewrite
the second order truncated Taylor expansion as a quadratic equation [12, Chapter 5]:

1
fzo+0) = Q(6) := f(xo) +6Tg + 5cSTH5 (4.63)
The trust region problem then becomes rephrased as:
min Q(0) subject to ||d]]2 < 4,6 € R (4.64)

moreover as § — 0%, Q(0) <0 (4.65)

It can be shown that any minimiser of the above equation restricted to the boundary
of the ball will satisfy [12, Chapter 5]:

H+vI=Hv) :HW)s" =—g (4.66)
oo >v* >0

v-(l[s"| =A)=0 (4.67)

Y(v)=s"s—A*=0 (4.68)

Where H(v*) is positive semidefinite, if H(v*) is positive definite then s* is unique.
The question then becomes one of finding v* in order to find s* given the restrictions
imposed by A. Further, it is clear that this is a highly non-linear problem. There are
many ways of finding the correct shift, but essentially this becomes another nested
optimisation problem; first one must properly bracket off where v* should be, before
finding it. After upper and lower bounds are set for finding v*, one should seek
solutions of v* using means which are simple, such as the bisection method or the
golden section search. It is the opinion of the author that that a one-dimensional
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Newton method is more efficient and in fact simple to calculate. Suppose that our
hessian has a spectral decomposition H = QTAQ then it follows that:

H(v)=Q"(A+vDQ (4.69)
v* > min(0, — min(o(H))) (4.70)
s) = —Hw) g = Q" (A +vI) ™' Qg (4.71)

Equation can be proven but we will not show it here, while equation
has the brilliant property that the inverse of a spectral decomposition is analytical
— one simply needs to find the scalar inverse of every element of the diagonal matrix
(A + vI). Rather than directly dealing with the case of finding s(v) such that
||s(v)||3 = A — which is a tough non-linear, non-convex problem — one can transform
the problem into a simple problem with a clean first derivative and strictly increasing

after the solution [37]:
1 1

||()||2_Z

o s(w)H 's(v)
) =R

Vi1 = v — 0(v)¢ ' (v) (4.74)

The function is particularly pleasant because for v > min(o(H)), ¢(v) is monoton-
ically increasing and concave. The norm of swv) is also easily computed given that
the rotation matrix @) is an isometry:

P(v) == (4.72)

(4.73)

Is(W)ll2 = IQT (A +vI) " Qgllz = [|Q" (A + vI) ™' Qgll> =

Clearly all the components can be calculated very rapidly so that s’s — A? as
v, — v* and our solution to the trust region problem is very clear. Because of the
definite hessian we can decompose accelerate computation through the Cholesky
factorisation. Moreover, we have the following [6, Chapter 4]:

(sW)|H 's(v)) = (L 's|L7's) = ||w||* w=L""'s (4.76)
s=—L"'L"Tg (4.77)
w=L"s (4.78)

e (S ()
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It is not necessary for one to do the Cholesky decomposition after computing the
eigenvalues and shifting, as this is only one option; alternatively, ¢'(v) can be com-
puted as:

s()H 's(v) _ (Qg)" (A +vI)*(Qg)

A e TP N N IIE (4:80)

This is straight forward to show true, given the definition of H(r) and the fact that
a decomposition exists. This approach has the advantage over using the Cholesky
decomposition because one is shifting the Hessian — after computing eigenvalues and
eigenvectors — followed by the extra decomposition, finding explicitly s and its norm,
as well as w. The disadvantage is the extra assurance one receives through a suc-
cessful Cholesky decomposition which is only ensured on positive definite hessians.

There is only one caveat, we have yet to define the bounds on this method and any
convergent method should start in a good domain. Because of the Gersgorin circle
theorem, we can put exact (analytical) limits on the domain of |6, Chapter 4]:

vo = max|\/vovy; Vi + .01(vy — vp)] (4.81)

A fair and natural query is ‘why bother with this complex Newton method when
something simple like the bisection method will work?’; fortunately, there is realistic
trade off. To the best of the author’s knowledge there is no published suggestion
to use the secant method to solve ¢(v) The secant method is a finite differences
approximation to the Newton-Raphson method. It has a convergence rate equal to
the golden ratio — not quite as fast as Newton’s method — but is faster than Newton’s
method per iteration because it does not involve extra computations as discussed
above. The Secant method:

Vg—1 — Vg—2

¢(ka1) - ¢(ka2)

Ve = V-1 — ¢(Vk_1) (482)

on average converges in about 7 to 8 iterations, in contrast to the bisection method
which typically took at least 20 iterations. In some sense, the secant and Newton
methods are risky because they have no bracketed domain which is updated — as in
the case of the bisection method — therefore there is always the possibility that a
value for v < 0 can be found. A puerile yet effective way around this is to always
choose the first pair of values for the secant method (v, v4) to be very large so that
convergence is guaranteed. An illustration of the plots of 1(v) and ¢(v) is given to
compare the chaotic nature of the first function with the calmed behaviour of the
latter.
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Figure 4.1: Plots of the Trust Region sub-problem function
&0 -
hli] :

#F

These plots were made using the initial hessian and gradient of the Boys NOLMO
problem for water over various values of v, setting A to 1, within the Mathematica
8.0 environment. The three roots of each function coincide, however it is clear that
the second function is easier to optimise because it is monotonically increasing after
the third root; additionally, one can clearly see that the bisection method may fail
under certain conditions. Namely, if the initial pair of values (v, 1) do not have
opposite signs for their given function, then the bisection method will never converge.
Looking at the graphs, it is clear that even if one value is chosen arbitrarily large
that the other value needs to be chosen so its function’s sign is negative, which may
be difficult to do because of unexpected extra roots and the extra domain of positive
values. Namely, there appear to be two unexpected roots between 40 and 60, for a
different value of A these roots would disappear or become exaggerated; we would
like to find root invariant to subtle changes in A, which is resolved by using the secant
method approaching from the far right. Also notice that an increase in the value
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of the trust region would result in ‘nearly similar solutions for v’ being pushed left,
corresponding to slightly lower values of v. In the limiting situation, as A becomes
larger there may appear more roots; this should be expected as this corresponds to
more minimising directions accepted, those with the given magnitude. However, the
bisection method could pick a bad initial pair (in which case, a new pair must be
selected) or it could pick a root like that between 40 and 60.

Both the 1-D Newton and secant iteration are inexpensive because the inverse of the
shifted hessian must be calculated regardless for the purpose of checking convergence,
this information might as well be employed to accelerate convergence rather than
just testing it. So far we have talked about the so called ‘trust region’ in a very
intangible way, essentially the trust region is updated in a way that the algorithm
remains restricted yet robust. The ratio between the actual reduction in a function
and its predicted quadratic reduction is measured as [12, Chapter 5|:

f(xo) — f(zo+9)
Q(0) — Q(0)
Ap

if p<Kg: xpy1=xpand Agpyq = 5

p= (4.83)

if ko <p<Kg: Xpp1 =+ sand Apyq = Ay
if P > Kg : Tk+1 = T+ S and Ak+1 = 2Ak

The choice for k, and kg (0 < p < 1) is particular to the problem at hand; in
actuality, one may even choose a more sophisticated set of rules, involving more
than three criteria. Essentially the idea is that if the quadratic approximation
to the trust region is poor then we should reevaluate what we consider ‘safe’ and
restrict ourselves to a smaller region of the Taylor expansion; then again, if the
ratio is approaching unity then we can assume the higher order terms provide little
correction and we make our trust region less conservative.

Finally, it is appropriate to discuss the Broyden—Fletcher—Goldfarb—Shanno (BFGS)
method, because a slightly modified version of it is used as default for standard ge-
ometry calculations in the Gaussian environment [12), Chapter 3.2]. If one were think
of the domain of our variables as having regions with positive definite hessians and
those without positive definite hessians, then it is correct to consider our problem of
minimising our function in two parts. In the first half of optimisation, our modifica-
tion to the hessian is an attempt to approach a coordinate domain associated with a
hessian which is positive definite in its own right. In the second half of optimisation,
we simply want to find the minimising coordinates within this subdomain. At this
point, one can imagine cutting this domain out of the full space and considering only
how to find its minimum. Here, a method should be used which is fast, reliable, and
does not leave domain; the BFGS method is perfectly suited to solve a sufficiently
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good approximation.

BFGS Algorithm
i $9 = H, provided min(oy) > +107% & H is sufficiently positive definite
i 95, = (LT)" YL ) H=LL ;set k=0
i pr = —9; " gr
iV Tp1 =z +ypr < f(@r1(y)) = ming (2, + ypr)
v yr = g(Tri1) — g(wr)

. def
f <9 Uk®uyr _ Hre*(sk®sk)*Hk
‘ 1 g I I
kt1 k ykTSk Sff)ksk

—1 def

T Te—1 —1 —1
vii 55]“_1 def 573;1 + (Yi Sk+Ye D Uk)(3k®5K) N, (Yr®sk) +(skBYr )9y,

(i sk)? yF sp

viii Return to iii and repeat until g <, |f(zr11) — f(zx)] <€, and
|E A

ix Confirm that the final analytical hessian is sufficienty positive definite

Here the author used ® to emphasise the outer product. In the first step, £ is set
to equal the exact positive definite Hessian; obviously, there is no guarantee that
the hessian should be positive definite in general. However, given a positive definite
hessian this method will maintain that property; otherwise, setting $, to identity
or some weighted diagonal will work, which is common in the case of geometry
calculations.

4.3 Future Research

The dynamic evolution of overlap integrals through a reaction pathway (such as
the IRC) is an especially interesting approach to analysing the progression of a
chemical reaction because chemical reactions can be thought of as nothing more
than reorientation of groups of electrons with respect to one another and their
associated molecular orbitals. Even though the research contained in this thesis does
not include any quantum chemical computation of this type, it would be interesting
to merge the algorithms of Boys’ non-orthogonal totally localised molecular orbitals
with the intrinsic reaction coordinate calculation. This would simply mean that for
every given number of steps along the reaction pathway a full Boys calculation would
be performed; alternatively one could require, for example, a significant change in
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energy to occur before performing another Boys procedure. If the computation is
updated regularly enough, the initial set of mixing coefficients for a given step could
be the final set of mixing coefficients for the previous step.

A large part of this thesis was exclusively devoted to the stating the Boys localisa-
tion problem and analysing various potential numerical methods to find one which
worked; remarkably, there exists another function very similar to Boys functional
which has received very little attention in texts, online communities, or academic
journals. The so called exclusive molecular orbitals also maximise the centroids of
electronic charge, equivalent to maximising the following functional:

e A A R (A A LA
“ ‘2}}( o ) (489
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Chapter 5

Conclusions

The research contained within this thesis was primarily devoted to describing the
Diels-Alder reaction of 2,4-hexadiene with sulfur dioxide while presenting the general
theory that underlies the means for performing such calculations. This reaction
was shown to have a very concerted mechanism as per the IRC calculations and
highly suggestive TS localised molecular orbitals; for this reason, the author insists
that if a mechanism is to be proposed, it should depict homolytic bond cleavage.
Energies reported are in good agreement with the literature [41]. The geometries for
each structure along the reaction path are optimised and compared using MP2 and
B3LYP methods. Additionally, basis set superposition error was shown to contribute
very little to this reaction’s geometry; not surprisingly, BSSE was shown to have an
appreciable contribution to the energy of the system.

Our investigation of optimising the Boys functional is to date partially sucessful so
this puts it in good light. Using water as our model system, we were able to optimise
the mixing coefficients such that the Hessian is sufficiently positive definite and the
norm of the gradient is less than 1. Unfortunately, some of the off-diagonal elements
of the overlap matrix are approaching +1, this is associated with different molecular
orbital centroids coinciding, which is unacceptable. Recently, we suspect that per-
forming a constrained optimisation — for a given fixed determinant value — may force
the linear independence of the molecular orbitals. Over various values for any given
determinant value one could select the best results so that the localised molecular
orbitals are both optimised and natural. We have tested various unconstrained non-
linear optimisation algorithms, which manipulate second-order information more
efficiently than equation (4.43)) combined with a simple line search. Currently we
are concerned with finding a solution without nonsensical results; however, practi-
cally, it would be desirable to pick the most efficient method after we obtain sound
results.
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Our method is distinct from that of Yang et al. [23][28][10] in that we do not assume
that the centroids of the localised molecular orbitals should be fixed nor do we
transform the Boys functional to equation followed by the addition of penalty
functions. While Yangs’s method does produce somewhat pleasant results, it is not
accurate to consider such results as optimised. In the same manner, the ordinary
Boys solution is not mathematically optimised and is therefore unsatisfactory for
the same reasons. Just as Yang’s and our method uses the non-optimal solution
from Boys method, an alternative approach may be to apply our methods to Yang’s
‘solution’. This technique may precisely avoid the linear dependence of our molecular
orbitals and give satisfactory overlap matrix elements. While inchoate, this and the
constrained determinant method may be tested, with the best method used in the
future.
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